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Abstract 
  
 A growing demand for information on the human health and environmental 

effects of materials produced using nanotechnology has led to a new area of investigation 

known as nanotoxicology. Research in this field has widespread implications in 

facilitating the medical applications of nanomaterials but also in addressing occupational 

and environmental toxicity concerns. Improving our understanding of these issues also 

has broad appeal in the stewardship of nanotechnology and its acceptance by the public. 

This work represents some of the early research in the field of nanotoxicology. Using a 

variety of in vivo and in vitro models, as well as cellular and molecular techniques I first 

studied a possible role for the novel cytokine endothelial monocyte activating 

polypeptide-II (EMAP-II) in acute lung inflammation in rats (Chapter 2). This work 

demonstrated a significant increase in total EMAP-II concentration in lipopolysaccharide 

inflamed lungs as early as 1h post-treatment (P<0.05). Increased numbers of monocytes 

and granulocytes were also observed in lungs treated with mature EMAP-II relative to 

control rats (P<0.05), and the recruitment of cells did not occur via upregulation of either 

Interleukin-1β or Macrophage inflammatory protein-2. I further studied whether mature 

EMAP-II can be induced in pulmonary nanotoxicity studies by exposure to rosette 

nanotubes (RNT) (Chapters 3-5). In the first in vivo experiments in mice on the RNT(1)-

G0 (Chapter 3) I showed an acute inflammatory response at the 50 µg dose by 24h, but 

this response was resolving by 7d post-exposure as evidenced by a decreased number of 

cells in the bronchoalveolar lavage fluid (P<0.05) and from histological examination. The 

results of this study indicated that water soluble and metal-free rosette nanotubes can 

demonstrate a favorable acute pulmonary toxicity profile in mice. Subsequently, I studied 
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the responses of the pulmonary epithelium using the human Calu-3 cell line (Chapter 4). 

This experiment indicated that RNT(2)-K1 neither reduces cell viability at 1 or 5 µg/ml 

doses nor does it induce a dose-dependent inflammatory cytokine response in pulmonary 

epithelial cells in vitro. My final experiment (Chapter 5) studied the human U937 

pulmonary macrophage cell line since the macrophage is one of the key defense 

mechanisms to encounter RNT in the lung environment. The data indicate that this cell 

line lacks a robust inflammatory response upon exposure to RNT and that when RNT 

length is changed by altering the conditions of nanotube self-assembly, cytokine release 

into the supernatant is not affected profoundly. Although, EMAP-II is upregulated in a 

lipopolysaccharide model of lung inflammation, it does not serve as a good marker of 

RNT exposure. The data indicate that RNT have a favourable toxicity profile and these 

experiments provide a framework upon which rosette nanotubes can be investigated for a 

range of biomedical applications. Furthermore, in light of media and scientific reports of 

nanomaterials showing signs of toxicity, this work demonstrates that a biologically 

inspired nanostructure such as the RNT can be introduced to physiological environments 

without acute toxicity. 
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Preface 
 

 This dissertation details the first work on the pulmonary toxicity of novel self-

assembling rosette nanotubes. The experiments are interdisciplinary in nature and 

represent some of the preliminary studies in the burgeoning field of nanotoxicology. The 

ongoing theme in these chapters is the development of inflammatory responses in lung 

tissue. It begins with a known model of lipopolysaccharide-induced lung inflammation in 

Chapter 2, and progresses to a pulmonary in vivo assessment of rosette nanotube toxicity 

in Chapter 3. In Chapters 4 and 5 the inflammatory responses of two specific lung cell 

lines after exposure to rosette nanotubes are profiled. 

 The data has been organized as manuscripts for publication in scientific journals 

and therefore some overlap may occur in the introductory sections of each chapter. 

Additionally, an abstract is included at the beginning of each experimental chapter. At 

present Chapter 2 has been published in Inflammation Research, Chapter 3 is submitted 

to ACS Nano and Chapter 4 has been accepted in the journal SMALL. Chapter 5 is in 

preparation for publication and an additional piece of this work was requested and 

published in the journal Integrated Environmental Assessment and Management as a 

‘Learned Discourse’. It should also be noted that a number of important activities outside 

the research program have been generated from this work including invited presentations 

on nanotoxicology to: United States Environmental Protection Agency, Health Canada, 

American Industrial Hygiene Association, the Alberta Occupational Health Nurses 

Association, and CIHR Nanomedicine Symposium. Additionally, I contributed to an 

international team project on micro and nanotechnologies in the space industry while 



 XV

representing Canada at the International Space University Summer Session Program in 

Strasbourg, France 2006. 

 Chapter 1 provides the background information on nanotechnology and the 

context for the development of nanotoxicology. Chapter 2 presents data on a rat model of 

acute lung inflammation and identifies for the first time that endothelial monocyte-

activating polypeptide-II (EMAP-II) is upregulated in response to LPS and that it is 

chemotactic for inflammatory cells in vivo. These findings provided the basis to study 

EMAP-II as a possible marker, in addition to the use of established markers of 

inflammation, of rosette nanotube induced inflammation. Chapter 3 presents the first in 

vivo pulmonary toxicity data on the water soluble rosette nanotubes in mice. Chapter 4 

profiles the isolated inflammatory profile of pulmonary epithelium using the human 

Calu-3 cell line. Chapter 5 includes data on the responses of the human U937 pulmonary 

macrophage cell line after exposure to rosette nanotubes and tests the effect of nanotube 

length on cytokine secretion. Chapter 6 discusses the interrelationship of these chapters in 

the context of nanotoxicology research and provides future avenues of study for the 

rosette nanotubes. 
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CHAPTER 1 
 

Introduction and Review of Literature 
 
1.1 Background 
  
 Nanotechnology bridges scientific disciplines such as chemistry, biology, physics 

and engineering, and provides a wide range of applications on the nanoscale in broad 

areas of society. In fact nanotechnology is projected to be so ubiquitous in the world it is 

considered a disruptive technology. A disruptive technology is one that permeates all 

areas of industry and can eventually lead to the demise of firms not utilizing such 

applications (Christensen, 1997). The wide impact of a disruptive technology, can be 

exemplified by the advent of personal computers. Thomas Watson stated in 1943, ‘There 

is a worldwide market for maybe five computers’.  

 Today, the next big thing is really small and our ability to work at the molecular 

level will undoubtedly facilitate the discovery of new or improved value-added products 

in which our very understanding of their function depends on nanoscale, biology, 

chemistry and physics.  As with any new technology that moves as fast as 

nanotechnology the societal impacts are being debated. A central issue is the potential 

human and environmental costs and benefits of this technology. These impacts are being 

portrayed in both a positive and negative light. On one hand, nanotechnology is being 

hailed for green energy as well as improved drugs and diagnostic ability for diseases such 

as cancer. However, these benefits are being tempered by some groups raising concern 

over occupational, environmental and consumer health effects from nanomaterial 

exposure. 
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 At the core of this debate is our knowledge that materials on the nanoscale do 

possess some unique physicochemical properties which are of prime interest. Whether or 

not they lead to novel toxicities, and to what degree humans and the environment will be 

exposed to them, is difficult to answer given the paucity of nanotoxicology data and the 

lack of personnel presently qualified to tackle such issues. Conversely, an understanding 

of how to exploit the novel properties of nanoscale materials for societal benefit will be 

paramount to the maturation of nanotechnology. 

 Regardless of the purported use of nanomaterials, the toxicologist with a sound 

knowledge of the technology will be a key to overcoming such barriers as scalability of 

the nanostructure, commercialization and public acceptance. A broad understanding of 

the basic sciences and knowledge of the value-added properties of nanotechnology will 

be required. The following work combines the fields of molecular biology, chemistry, 

and pulmonary biology to address toxicity questions related to novel self-assembling 

nanotubes. 

 
 
1.2 Nanotechnology 
 
1.2.1 What is nanotechnology? 

 The advancement of technology in the past decade has allowed scientists to 

explore the design of materials on a much smaller scale than ever before. Thus, 

nanoscience has resulted in a greater focus on the unique interactions and behaviour of 

nanoscale materials and has subsequently fuelled the field of nanotechnology. 

Nanotechnology has generated vast interest in the scientific and general community and 

some have termed it the “nanotechnology revolution”, or the next industrial revolution 
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(Donaldson et al., 2004) and even today’s version of the space race (Hood, 2004). 

Nanotechnology can be defined as “… the manipulation, precision placement, 

measurement, modeling or manufacture of sub-100 nanometer scale matter…” (Meyer et 

al., 2001). Other factors which can characterize nanotechnology according to the US 

National Nanotechnology initiative include: a) research and technology development at 

the atomic, molecular or macromolecular levels in the length scale of approximately 1-

100 nanometer range; b) creating and using structures, devices and systems that have 

novel properties and functions because of their size; and c) the ability to control or 

manipulate on the atomic scale (Karluss & Sayre, 2005). Others have defined a nanoscale 

material as “those structured components with at least one dimension less than 100nm” 

(Royal Society, 2004). The capability to exploit the properties of nanoscale materials is 

what drives the development of nanotechnology. Such properties include altered 

conductivity, chemical reactivity and optical activity when in the nanoscale format 

(Hood, 2004). Thus, the ability to engineer and exploit matter at the nanoscale has far 

reaching implications for materials science, electronics and medicine to name a few.  The 

medical applications are particularly promising as the use of nanotechnology to study 

phenomena and treat disease at the cellular and molecular level develops. 

1.2.2 Nanomaterials 

It is important to note that nanomaterials per se are not a new concept. In fact 

materials on the nanoscale have been present in the environment for centuries and include 

sea salt, by-products of forest fires and volcanic eruption. There is also increasing 

production of anthropogenic particulate from diesel fuel combustion and industrial 

emissions (Donaldson et al., 2005). Early investigations of particles tended to focus on 
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micro-sized components however the past decade has seen the examination of ultrafine or 

nanoscale particles (1-100nm) as a contributor to observed health effects during episodes 

of high air pollution (Oberdorster et al., 1995; Seaton et al., 1995). Thus, many terms 

have been used in recent literature such as nanoparticles, nanosized particles, 

nanomaterials, nanoscale materials and ultrafine particles. The term ‘ultrafine’ primarily 

stems from studies on particulate matter or those related to occupational hygiene. The 

‘nano’ terms allude to the nature of modern engineered materials derived from 

nanotechnology that are manufactured with certain specifications in laboratory or 

industrial environments (Karluss & Sayre, 2005). Careful consideration is being given to 

issues of nomenclature and defining nanotechnology in different disciplines, as it will 

significantly effect the regulatory actions towards new products. 

 Presently, nanotechnology-related activities are abundant internationally, although 

Canada does not have a federal nanotechnology strategy in place. Nanomaterials are 

already used in a wide range of products such as sunscreens, composites, medical devices 

and catalysts with approximately 500 products on the market claiming to be 

‘nanotechnology’ based. This field is in its relative infancy but the quantity of 

nanomaterials manufactured is expected to increase tremendously in the next five years 

with a projected ten billion dollar global demand for nanoscale materials, tools and 

devices by 2010 (Hood, 2004), while others estimate a one trillion dollar market for 

nanotechnology by 2015 (Nel et al., 2006). At present nanoscale silicates, metal oxides, 

quantum dots and fullerenes are the most plentiful and commercially viable (Aitken et 

al., 2006). With such an enormous demand for materials comes a need for workers to 

mass produce the materials thus presenting a new challenge to the occupational medicine 
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and health regulatory communities to develop policies and safety measures to ensure 

proper implementation of their handling.   

1.2.3 Carbon nanotubes 

There is a general tendency to consider all nanoparticles as spherical in shape 

however nanomaterials may be nano sized in only one dimension and significantly larger 

in another. Thus, a subclass of nanoparticles can be considered high aspect ratio 

nanoparticles and includes nanotubes, nanorods and nanowires (Oberdorster et al., 2007). 

Carbon nanotubes (CNT), which have a large length to diameter aspect ratio, are one of 

the most studied nanomaterials because of their novel physicochemical properties which 

include high surface area, high mechanical strength yet ultra-light weight, rich electronic 

properties and chemical and thermal stability (Ajayan, 1999). Two common types of 

CNT are the single-walled carbon nanotubes (SWNT) which are formed by a cylindrical 

sheet of graphite with a diameter of 0.4-2 nm, and the multi-walled carbon nanotubes 

(MWNT) which have multiple concentric graphite cylinders with increasing diameter 

ranging from 2-200 nm (Dresselhaus et al., 1996). Single-walled nanotubes have received 

attention primarily as a possible inhalation toxicant (Lam et al., 2004; Warheit et al., 

2004; Shvedova et al., 2005), and carbon nanotubes in general also have potential for 

biomedical applications (Bianco & Prato, 2003; Martin & Kohli, 2003; Bianco, 2004; Lin 

et al., 2004; Polizu et al., 2006). In order for CNT to be used for biomedical applications 

they typically need to become soluble and or functionalized with the additional of surface 

molecules (Georgakilas et al., 2002; Pantarotto et al., 2003; Hudson et al., 2004; Lin et 

al., 2004). Indeed, the compatibility of water soluble carbon nanomaterials such as 

fullerenes and SWNT are functionalisation dependent (Sayes et al., 2004; Sayes et al., 
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2005). The ability to functionalize nanomaterials has raised the possibility of 

‘engineering in’ the properties of a nanomaterial that confer reduced toxicity. The 

experiments herein were directed towards the toxicity evaluation of the rosette nanotubes 

and therefore experimental comparisons with other classes of nanotubes were not 

conducted. 

1.2.4 Rosette nanotubes 

Self-assembled rosette nanotubes (RNT), are a novel class of biologically inspired 

nanotubes that are naturally water soluble upon synthesis (Fenniri et al., 2001; Fenniri et 

al., 2002a; Fenniri et al., 2002b). ‘Biologically inspired’ refers to an approach within 

nanotechnology that attempts to mimic self-assembly mechanisms provide by nature to 

synthesize new structures. In this, context, the RNT are obtained through the self–

assembly of the G∧C motif, a self–complementary DNA base analogue featuring the 

complementary hydrogen bonding arrays of both guanine and cytosine. The first step of 

this process is the formation of a 6–membered supermacrocycle (rosette) maintained by 

18 hydrogen bonds, which then self–organizes into a tubular stack defining an open 

central channel of 1.1 nm diameter and several micrometers of length (Fenniri et al., 

2001; Fenniri et al., 2002a; Fenniri et al., 2002b; Raez et al., 2004; Moralez et al., 2005; 

Johnson et al., 2007). Upon self-assembly, in principle any functional group covalently 

attached to the G∧C motif could be expressed on the surface of the nanotubes, thereby 

offering versatility in functionalization of the RNT for specific medical or biological 

applications.  For preparation and characterization details of the nanotubes studied in this 

work see the methods section of each chapter. 

 



 7

1.2.5 Nanoparticle synthesis 

In the life sciences, nanotechnology has spawned new creativity in drug delivery 

and biomaterials to enhance interactions at the cellular and molecular level.  While 

chemists use nanotechnology to seek new ways of encapsulating important compounds 

for biomedical applications, nature has already provided us with a number of nanoscale 

materials for use in nanotechnology. Nanoscale structures of virus-like particles are 

complex and have been fine-tuned for eons of evolutionary processes. These natural 

assemblies can come in different shapes, sizes and have varying properties and thus can 

be applied in nanotechnology for use in materials science, engineering, and as building 

blocks for chemistry, electronics and biomedical applications (Singh et al., 2006a). 

Specific  properties of virus-like particles that make them attractive for nanotechnology 

are their uniform structures and particle sizes, potential for mutagenesis to manipulate the 

proteins, particle stability, accessibility to the particle interior, and ease of production 

(Singh et al., 2006a). The use of virus structures and virus-like particles allows for 

natural starting structures on the nanoscale, which are uniform in composition. Biological 

entities such as viruses and DNA underscore the nanofabrication process known as self-

assembly. Self-assembly is the basis of formation of the rosette nanotubes and can also be 

considered a bottom-up process. Conversely, top-down approaches begin with bulk 

material to arrive at the desired nanostructure. 
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1.3 Nanotoxicology – “science of engineered nanodevices and nanostructures 
that deals with their effects in living organisms” (Oberdorster et al., 2005b) 

 
Particle and fiber toxicology is a relatively mature field of study. Correlations of   

exposure to various particulates and the manifestation of disease were already being 

made early in the 20th century. One of the classic examples is that of asbestos. In 1924, 

Cooke published a paper in the British Medical Journal relating asbestos exposure to 

fibrosis of the lungs (Cooke, 1924). However, it was not until the 1970s that legislative 

action occurred for occupational exposures.  This example is commonly used by 

opponents to the rate of nanotechnology development, who suggest that a similar 

consequence to nanomaterial exposure might be experienced.  

 The industrial revolution also stimulated research into the field of particle 

toxicology with particular focus on coal dust, diesel particles and various forms of quartz 

(Borm, 2002; Borm & Tran, 2002). In the 1980s an association between ambient 

particulate matter and human health became apparent, while the specific emphasis on 

ultrafine particles was linked to cardiovascular events in the early 1990s (Seaton et al., 

1995). Thus a significant body of literature exists on ultrafine particles and therefore 

serves as a launch point for our understanding of nanoscale materials (Oberdorster et al., 

2005b). 

  It is because of the data on ultrafine particulate matter toxicity that concerns over 

nanomaterials have developed. The key difference between ultrafine particulates and 

nanomaterials is the range of compositions. Ultrafine particulate is usually combustion 

derived and contains a mixture of carbon and metals which adsorb to the particle surface. 

Nanomaterials, while having some overlap with the nature of ultrafine particles, tend to 

be more focused on structures which exploit novel properties conferred at the nanoscale 
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or those that have been engineered at the nanoscale for a specific purpose. It is the 

possibility of generating large quantities of new nanostructures (within the confines of 

entropy) which has led to the development of nanotoxicity research. At present the ability 

to produce nanostructures using a top-down method is the most mature, while bottom-up 

approaches are developing rapidly. The rosette nanotube in this work is a bottom-up 

approach and is produced via self-assembly. 

 Materials on the nanoscale exhibit a range of attractive properties for new 

products and applications but also confer unique challenges for toxicity evaluation 

(Nanotoxicology, 2004). Such physicochemical characteristics include: size, surface area, 

number of particles and reactivity. By virtue of the physical size of nanostructures, their 

potential to interact with biological receptors is altered. Moreover, as particle size 

decreases a greater proportion of atoms and molecules are displayed on the surface rather 

than the interior of the material (Nel et al., 2006). The increase in surface area determines 

the potential number of reactive groups on the particle surface (Nel et al., 2006) and thus 

the reactivity of the particle may be enhanced. One example of increased activity of 

particles at the nanoscale is that of gold which shows a spike in reactivity below the 100 

nm size (Daniel & Astruc, 2004). This also highlights the issue of nomenclature and 

toxicity testing, such that two particles both considered as gold may display different 

dose-response relationships based on the size dependent properties. Such properties also 

have significant implications for determining occupational exposures and interpretation 

of toxicity data for risk assessment purposes. To this end, I attended a workshop titled 

‘Developing experimental approaches for the evaluation of toxicological interactions of 

nanoscale materials’ in Gainesville, Florida in November 2004. The results of this 
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workshop helped shaped the current framework for nanotoxicology testing, and the 

recommendations have generally been upheld in a key publication encapsulating the 

suggested testing guidelines (Oberdorster et al., 2005a). The present work represents the 

first toxicity data on a self-assembling nanotube and contains elements of a tiered 

nanotoxicology screening strategy, proposed at the above workshop. 

 

1.4 Lung inflammation and inflammatory cell recruitment 

 Inhalation toxicology is deeply rooted in not only our understanding of the 

toxicant or drug properties but their interaction and kinetics within the lung environment.  

The respiratory tract is a primary route of exposure to environmental pathogens and its 

structure and function have evolved as an intricate first line of defense for both innate and 

adaptive immunity (Nicod, 2005). From a toxicological perspective the interrelationship 

between the environment and the lung has a long history ranging from chronic 

occupational exposures, acute lethal incidents of hydrogen sulphide exposure, as well as 

cardiovascular morbidity and mortality observed in subsections of the population with 

cardiovascular and respiratory diseases during episodes of high air pollution (Oberdorster 

et al., 1995; Seaton et al., 1995). Clinically, the acute lung inflammatory response is of 

great concern in septic patients (Piantadosi & Schwartz, 2004). The acute inflammatory 

response in the lung is typified most commonly by activation of resident alveolar 

macrophages, as well as epithelial and endothelial cells.  In addition, an influx of 

monocytes and neutrophils occurs (Kobayashi, 2006). While the inflammation pattern, 

time course and long-term effects may differ between toxicants, inflammatory stimuli 

lead to the induction of pro-inflammatory chemokines and cytokines such as IL-8, IL-1β, 
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TNF-α (Driscoll et al., 1997; Driscoll, 2000; Goodman et al., 2003), and by extension the 

downstream pleiotropic effects of these cytokines further amplify the inflammatory 

cascade. Additionally, reactive oxygen species produced by invading neutrophils cause 

damage to the blood-air barrier leading to edema formation (Abraham et al., 2000b; Ning 

et al., 2004). 

A pivotal cellular process in pulmonary toxicology is the alveolar macrophage 

response to particulate that is inert in nature (Lehnert, 1992; Kobzik, 1995; Dorger & 

Krombach, 2000, 2002). This is important because if one considers that a gram negative 

bacterial component such as lipopolysaccharide (LPS) binds to a specific Toll-like 

receptor-4 leading to the activation of macrophages, it leads to the question how do 

alveolar macrophages become specifically activated by inert particulate such as silica or 

asbestos? Alveolar macrophages not only bind certain bacteria to produce 

proinflammatory mediators but they also phagocytose the material, digest it through 

chemical breakdown, thereby initiating and then resolving the pro-inflammatory signal 

(Bowden, 1984; Savill et al., 1989; Duffield, 2003). Furthermore, there has been 

substantial evidence that macrophages phagocytose apoptotic cells such as neutrophils 

and upon engulfing an apoptotic cell they become quiescent and the proinflammatory 

signal is shut off (Savill et al., 1989). Uptake of foreign agents or inert particles 

(apoptotic bodies) induces a proinflammatory or anti-inflammatory signal that is 

dependent upon a variety of molecular factors (Duffield, 2003). A unique aspect of 

phagocytosis of inhaled silica or asbestos fibers is the inability of alveolar macrophages 

to digest them leading to macrophage rupture and the release of proteolytic enzymes, and 

chemoattractants such as MIP-2 leading to an influx of neutrophils (Laskin & Pendino, 
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1995). Under the low-stress of moderate particle load, the alveolar macrophages deliver 

the particles to the mucociliary escalator for expectoration or swallowing. With high 

exposures, the capacity of the alveolar macrophage to deliver particles to the mucociliary 

escalator can be overwhelmed and the proinflammatory signal would persist (Lehnert, 

1992; Oberdorster et al., 1994). Therefore, the biologically strategic positioning of the 

alveolar macrophage to engulf and remove foreign material may cause an initial 

inflammatory response but ultimately rescues the most sensitive alveolar and interstitial 

regions of the lung from particle burden (Lehnert et al., 1985; Lehnert, 1992; Kobzik, 

1995; Kreyling et al., 2006). While it was previously considered that interstitialization of 

inert particles was minimal, it has become a greater issue with increased atmospheric 

ultrafine particulate matter and with the impending boom of nanomaterial production. 

Even though much of the toxicity from nanoparticles is due to oxidative stress (Xia et al., 

2006), there is some evidence to suggest that the alveolar macrophage may not be as 

efficient at detecting and engulfing the smaller particles. Whether this is a chemotactic 

recognition problem or biomechanical constraint remains to be determined (Renwick et 

al., 2001; Moller et al., 2002; Renwick et al., 2004). 

 The mechanisms of neutrophil and monocyte recruitment are incompletely 

understood. Although the major steps of neutrophil influx into inflamed lungs are well 

characterized, those operating in monocyte recruitment are far from elucidated. Monocyte 

chemoattractant protein-1 (MCP-1) is known to promote monocyte recruitment into lungs 

(Maus et al., 2001; Maus et al., 2002). However, it was found that MCP-1 may require 

the presence of neutrophils to exert its full actions (Janardhan et al., 2006). Therefore, 

because the resolution of inflammation and the maintenance of alveolar macrophage 
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populations requires migration of new monocytes into the alveoli, it is important to 

understand the mechanisms that regulate recruitment of monocytes into the lungs. 

Following the findings that MCP-1 alone may not be sufficient to induce migration of 

monocytes in acute lung inflammation, I focused my attention on a novel antiangiogenic 

molecule called endothelial monocyte-activating polypeptide-II (EMAP-II). EMAP-II is 

well recognised as a regulator of angiogenesis, but its inflammatory properties such as the 

ability to recruit monocytes in lung inflammation remain unknown. Therefore, I decided 

to investigate expression and function of EMAP-II in lung inflammation with an intent to 

study its expression in lungs exposed to rosette nanotubes.  

 

1.5 Pulmonary toxicology of nanomaterials 

 Given the large base of literature on inhalation toxicants such as ultrafine 

particles, it is generally accepted that nanomaterials may have the propensity to become 

airborne during production or handling in the industrial environment. Conversely, 

pulmonary delivery of therapeutics holds promise for treating disease (Pison et al., 2006), 

and therefore an understanding of the fate of particulate nanostructures in the lung is 

required. Indeed, nanotoxicology research will not only provide data for safety evaluation 

of engineered nanostructures and devices but will also help to advance the field of 

nanomedicine by providing information about their undesirable properties and means to 

avoid them (Kagan et al., 2005; Oberdorster et al., 2005b). 

 One of the first properties unique to nanostuctures in the realm of inhalation 

toxicology is the relation of size and deposition pattern. The particles with a diameter 

below 0.1 µm (100 nm) show increasing deposition in the alveolar region of the lung 
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(ICRP, 1994). This area of the lung is highly vascular, and therefore particles entering 

this region may have a greater probability of translocating to the interstitium or blood as 

preliminary studies show that such translocation although minimal can occur (Nemmar et 

al., 2001; Kreyling et al., 2002; Nemmar et al., 2002; Oberdorster et al., 2002). The 

extent and toxicological significance of extrapulmonary particle translocation continues 

to be a source of debate (Ghio & Bennett, 2007; Oberdorster & Elder, 2007; Semmler-

Behknke et al., 2007). It should also be noted that the pulmonary deposition patterns for 

nanotubes are unknown at present.  

 Another novel issue that has been raised in the study of nanoparticles in the lungs 

is the correct dose metric. This was first highlighted by exposing rats to 20 and 250 nm 

TiO2  which suggested that surface area and not mass or particle number was the best 

metric to express the dose-response data (Oberdorster, 2000). In workshops on this issue 

(Nanotoxicology, 2004) and in the literature (Wittmaack, 2007) the appropriate metric 

continues to be sought after and it is likely that the answer will not be uniform for all 

nanostructures which further complicates the issue of metrics in nanotoxicology. Despite 

this challenge, adequate characterization data, and reporting of the mass, surface area and 

particle number will allow for analysis of these issues as the field matures. Developing 

new nanostructures and attributing specific nanotechnology-added properties to 

biological responses will ride a fine line between scientific objectivity and teleology. 

1.5.1 In vivo pulmonary toxicology studies of nanotubes 

 Concern over possible adverse human health effects of engineered nanomaterials 

was in large part initiated by the first pulmonary toxicology study on single-walled 

carbon nanotubes at the NASA Johnson Space Center (Lam et al., 2004). This particular 
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study had some criticism over the doses chosen but considering it was the first paper of 

its kind, their observations served as a building block for future studies of SWNT in the 

lungs. Moreover, this work began to highlight some of the difficulties in toxicological 

experimentation with nanoscale materials. Subsequent in vivo studies (Warheit et al., 

2004; Shvedova et al., 2005; Mangum et al., 2006) have been performed on the SWNT 

with a few key conclusions being submitted. These studies showed granuloma formation 

in the lungs of mice and the debate continues over the toxicological significance of this 

response.  It is possible that granuloma formation may be a protective response to 

encapsulate the aggregated nanotubes and that it leads to pathology of no toxicological 

significance. Secondly, the evidence from this work suggests that SWNT produce a 

unique fibrogenic response in the lungs of C57/BL mice (Shvedova et al., 2005). 

Specifically, it was observed that in addition to a fibrogenic response associated with the 

deposition of nanotube aggregates, fibrosis was also apparent in alveolar septa distant 

from deposition sites of aggregates and in the absence of persistent inflammation. 

 Another key factor in SWNT toxicity in the lungs is the metal content of the tubes which 

can lead to significant oxidative stress (Donaldson et al., 2006), and this is further 

exacerbated by batch to batch variation of the nanotubes. 

The interest in SWNT toxicology is driven by concerns over occupational 

exposure during production and handling of the material. This is also of immediate 

interest because the SWNT are likely to be produced in commercial amounts as is 

occurring in ton quantities at select plants in Japan. To this end, one preliminary study on 

the propensity of SWNT to become airborne during laser ablation production at the 

NASA Johnson Space Center showed that levels of material in the air appear to be low 



 16

unless intentionally agitated vigorously (Maynard et al., 2004). At present, adequate 

technology to measure airborne SWNT alone does not exist, nor have the pulmonary 

deposition patterns of SWNT been resolved. It should also be noted that the airborne 

content of SWNT will be dependent on engineering processes. Laser ablation synthesis is 

a combustion reaction whereas the chemical vapour deposition method of nanotube 

synthesis is a more controlled process (Awasthi et al., 2005). Regardless of production 

method, a concern still exists over exposures throughout the lifecycle of SWNT, 

particularly as commercial quantities are being produced and handled. Given the lack of 

data on workplace exposures and therefore realistic aerosol exposures on animals, current 

toxicity data must be treated cautiously. The present work is the first to examine the 

effect of a water-soluble self-assembling nanotube on the pulmonary system and provides 

a framework for the feasibility of using nanostructures for pulmonary biomedical 

applications such drug delivery (Hung, 2006; Moghimi & Kissel, 2006; Pison et al., 

2006). 

1.5.2 In vitro studies of nanotoxicity 

 Just as epidemiology, human clinical and animal studies provide strong 

approaches to evaluating pulmonary toxicological response to particles, in vitro 

approaches are also used (Devlin et al., 2005).  When investigating mixtures of a toxicant 

such as air pollution an integrated interpretation of these approaches is used to answer 

research questions. The ideal goal in particle toxicology would position in vitro screening 

tests at the base of a tiered testing strategy. Moreover, the data gleaned from such studies 

would ideally be predictive of in vivo responses. Recent work suggests that their 

predictive value for in vivo responses is not accurate for some particle types (Sayes et al., 
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2007b). It is likely due to the complex interplay of cellular and molecular responses 

involved in the lung inflammatory response, which involves the interaction of lung 

biology with exposure to and fate of toxicants.  While in vitro nanotoxicology studies 

may not adequately predict the global in vivo responses or possible pathology, they are 

essential to answering some of the fundamental questions pertinent to toxicology such as  

specific cellular responses including cytokine activation, nanoparticle uptake, sub cellular 

fate, signaling pathways and induction of oxidative stress and associated reactive oxygen 

species.  

The present work has examined inflammatory activation in two cellular targets 

likely to encounter nanotubes during pulmonary exposure; the epithelium and 

macrophages. Specifically, we studied the human Calu-3 epithelial cell line and the 

human U937 human macrophage cell line, in an effort to study the qualitative 

contribution to the acute inflammatory response in vivo. 

 

1.6 Objectives and working hypothesis 

Objectives: 

Chapter 2 – To determine the expression and function of endothelial monocyte-

activating polypeptide-II in lipopolysaccharide-induced acute lung inflammation. 

Chapter 3 – To study the acute pulmonary responses after exposure to self-

assembling nanotubes in mice. 

Chapter 4 – To determine the time course of epithelial cell activation from direct 

exposure to rosette nanotubes in vitro. 
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Chapter 5 – To determine the inflammatory activation of human U937 

macrophages after exposure to rosette nanotubes and to determine the effect of nanotube 

length on cytokine secretion. 

 

Working hypothesis:  

 Self-assembling nanotubes will demonstrate a favorable pulmonary toxicity 

profile in vivo and in vitro due to their biologically inspired and water soluble 

architectures. 
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CHAPTER 2 

Expression and function of endothelial monocyte-activating 
polypeptide-II in acute lung inflammation 

 
2.1 Abstract 
 
I tested the hypothesis that total endothelial monocyte-activating polypeptide-II (EMAP-

II) expression (proEMAP/p43 and mature EMAP-II) is up-regulated in 

lipopolysaccharide (LPS)-induced acute lung inflammation (ALI) and that mature 

EMAP-II induces monocyte/macrophage and granulocyte recruitment in vivo. Thirty-five 

10 week old, male Sprague-Dawley rats were instilled intratracheally with 250µg of E. 

coli LPS (N=15) or saline (N=5) or 20µg of mature EMAP-II (N=5). Total EMAP-II was 

quantified using an enzyme linked immunosorbent assay (ELISA) and the protein was 

localized with light and electron microscopic immunocytochemistry in lungs of rats at 1, 

3 and 12h (n=5/group).  Enzyme linked immunosorbent assay showed increased total 

EMAP-II concentrations (p<0.05) in lungs from LPS-treated rats compared to control 

animals. Compared to the control rats, light and electron microscopic 

imunocytochemistry localized total EMAP-II in monocytes/macrophages and alveolar 

septa at 1 and 3 h and in vascular smooth muscles at 12 h post-LPS treatment. Instillation 

of mature EMAP-II increased lung monocytes/macrophages and granulocytes compared 

with control animals (p<0.05). However, compared to the LPS treatment, mature EMAP-

II instillation did not induce expression of IL-1β and Macrophage inflammatory protein-2 

(p<0.05) and provoked less vigorous recruitment of monocytes/macrophages. I conclude 

that endothelial monocyte-activating polypeptide-II expression is increased in LPS-

induced ALI, and that intra-tracheal instillation of mature EMAP-II induces recruitment 
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of monocytes/macrophages and granulocytes into the lungs without stimulating IL-1β or 

MIP-2 expression. 

  

2.2 Introduction 
 

Acute lung injury (ALI) is a clinical condition that involves a complex 

inflammatory response, and in its most severe clinical manifestation is called acute 

respiratory distress syndrome (Abraham et al., 2000a). The disease may be caused by 

acute chemical exposures or be the consequence of systemic infections. The 

pathophysiology of ALI is marked by epithelial and endothelial cell damage, cytokine 

and reactive oxygen/nitrogen species release, inflammatory cell sequestration and 

activation and prothrombotic events. An influx of neutrophils and monocytes into the 

lung occurs, which is a classical histological feature of acute lung inflammation 

(Abraham et al., 2000a). The acute inflammatory response is multifactorial and yet more 

molecules playing a role in ALI are still being considered. While significant data exist on 

molecules that regulate entry of neutrophils into inflamed lungs, relatively little is 

understood of the mechanisms governing migration of monocytes. For example, recently 

it was shown that a potent chemokine MCP-1 alone is not sufficient to stimulate 

recruitment of monocytes in a rat model of LPS-induced lung inflammation (Janardhan et 

al., 2006). 

 Mature endothelial monocyte-activating polypeptide II (EMAP-II) is a 22kDa 

protein, originally isolated from supernatants of methylcholanthrene A-induced 

fibrosarcoma cells (Kao et al., 1992). Mature EMAP-II is derived from a precursor 

proEMAP-II/p43 molecule which is a part of the macromolecular aminoacyl-tRNA 
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synthetase complex (Quevillon et al., 1997; Shalak et al., 2001; Ivakhno & Kornelyuk, 

2004). There is recent evidence that proEMAP-II/p43 of hamster, rat and sheep origin has 

a molecular weight of 43kD while that of humans is 34 kD (Quevillon et al., 1997; 

Murray et al., 2004). The immunohistological expression of aminoacyl-tRNA synthetase 

is ubiquitous in the human body, while the p43 component is cleaved and secreted under 

specific conditions (Knies et al., 1998; Shalak et al., 2001; Matschurat et al., 2003). 

However, the expression of mature EMAP-II is even more restricted (Murray et al., 

2000). Specifically, mature EMAP-II is highly expressed in the developing murine lung 

and remains low during adult life (Schwarz et al., 1999). Murray and colleagues observed 

occasional weak cytoplasmic staining of endothelial cells and alveolar macrophages, and 

a generally negative parenchyma and pneumocytes in human lungs (Murray et al., 2000).  

 Although mature EMAP-II influences the physiology of angiogenesis, lung 

development and neural injury, there is evidence that  proEMAP-II/p43 is also directly 

secreted from mammalian cells and stimulates fibroblast proliferation, wound repair, 

production of pro-inflammatory cytokines, expression of ICAM-1 and adhesion of 

monocytes (Ko et al., 2001; Park et al., 2002; Park et al., 2005). It has also been shown 

in vitro that the physiological stimulants of mature EMAP-II expression include 

apoptosis (Knies et al., 1998) and hypoxia (Matschurat et al., 2003).  The in vitro data 

show that EMAP-II up-regulates expression of P-selectin and E-selectin, causes release 

of von Willebrand factor, induction of tissue factor in endothelial cells and monocytes, 

and is chemotactic for monocytes and neutrophils (Kao et al., 1994). Kao and colleagues 

(Kao et al., 1992) demonstrated in the murine foot pad model that injection of mature 

EMAP-II provokes an inflammatory response typified by neutrophil infiltration and 
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edema. Subsequently, they observed an arrest of circulating leukocytes and other 

inflammatory cells in the pulmonary vasculature after systemic infusion of EMAP-II 

(Kao et al., 1994). To date the expression and role of EMAP-II in acute lung 

inflammation has not been investigated and in vivo data are limited. 

I hypothesized that total EMAP-II expression (proEMAP/p43 and mature EMAP-

II) is upregulated in lipopolysaccharide (LPS)-induced ALI and that the mature EMAP-II 

is capable of inducing monocyte/macrophage and granulocyte recruitment in vivo. To test 

this hypothesis, I conducted experiments to 1) examine expression of total EMAP-II at 

various time points in an LPS model of ALI and 2) to evaluate the ability of mature 

EMAP-II to recruit monocytes/macrophages and granulocytes into the lungs after its 

intratracheal instillation.  

 

2.3 Materials and Methods 

2.3.1 Animals 

All animal protocols in this study were approved by the University of 

Saskatchewan Committee on Animal Care Assurance, and each experimental procedure 

was conducted according to the Canadian Council on Animal Care Guidelines. A total of 

thirty-five 10 week old, specific pathogen free, male Sprague-Dawley rats were procured 

from Charles River Laboratories, Canada. The animals were acclimatized for a period of 

1 week in the animal care unit prior to experimentation, and were randomly assigned to 

treatment groups. Rats were fed standard rat chow and weighed 350-500 g at the time of 

experiments.  
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2.3.2 Induction of acute lung inflammation 

Rats (N = 15) were anesthetized by intraperitoneal administration of xylazine (20 

mg/kg) and ketamine (100 mg/kg). The trachea was exposed surgically and rats were 

treated with E. coli LPS (250µg ; intratracheally) and euthanized at 1, 3 and 12 hours (n = 

5 each) post-treatment. Control animals (n = 5) were prepared in the same manner and 

treated with 250µl of endotoxin-free saline intra-tracheally instead of the LPS and 

euthanized at 6 hours. 

2.3.2 Lung collection and processing 

Lungs for histology and immunohistochemistry were fixed in 4% 

paraformaldehyde for 16 hours. Lungs used for quantification of cells were filled with 

4% paraformaldehyde at 23 cm H2O pressure. Pieces of the lobes were later processed 

through ascending grades of ethanol and then embedded in paraffin. Tissue blocks were 

then cut into 5 µm sections for light microscopy. Lung samples for immunoelectron 

microscopy were fixed in 2% paraformaldehyde containing 0.1% glutaraldehyde for 3 

hours at 4°C. These samples were dehydrated in ascending grades of alcohol and 

embedded in LR white resin followed by polymerization under UV light at -1°C for 48 

hours. The tissue blocks were cut into 80-100nm sections. 

2.3.4 Antibodies and reagents 

The monoclonal antibody against the 22kD portion of EMAP II (mouse anti-

human EMAP II) was purchased from Bachem California Inc, USA. This antibody will 

recognize both the proEMAP/p43 and mature EMAP-II proteins as it recognizes the C-

terminus segment of the complex. The ED-1 antibody, which recognizes mononuclear 

phagocytic (monocytes and macrophages) cells, was purchased from Serotec Inc. The 
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mouse anti-rat granulocyte antibody was bought from PharMingen. Secondary HRP 

conjugated secondary antibodies were obtained from Dako Diagnostics Canada and the 

peroxidase substrate color development kit was purchased from Vector Laboratories, 

USA. Recombinant EMAP-II was purchased from Cell Sciences Inc., Canton, MA, USA. 

Endotoxin free saline and bovine serum albumin were purchased from Sigma-Scientific, 

USA. The EMAP-II and MIP-2 (macrophage inflammatory protein-2) ELISA kits were 

purchased from Medicorp Inc, Montreal, PQ, Canada; a distributor for Biosource, USA. 

Interleukin-1β ELISA detection and capture antibodies were purchased from R&D 

Systems.  

2.3.5 Enzyme linked- immunosorbent assay (ELISA) 

Frozen lung samples were homogenized in lysis buffer [150 mM sodium chloride, 

1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM TRIS (pH 8.0), 5 mM EDTA, 

and protease inhibitor cocktail (100 µl/10 ml)]. Homogenates were collected after 

centrifuging the samples at 25,000 g for 20 minutes. For quantification, samples in 

duplicates, from 3 rats for each time point were used. Because a commercial antibody 

that would exclusively detect the mature form of EMAP-II does not exist our ELISA 

recognizes both proEMAP/p43 and mature EMAP-II. The minimum detectable 

concentration of hEMAP-II is <100 pg/mL.  Interleukin-1β and MIP-2 were quantified by 

sandwich ELISA using antibody pairs and recombinant standards purchased from R&D 

Systems and Biosource respectively.   

2.3.6 Immunohistochemistry 

The immunohistochemical protocol has been described previously (Janardhan et 

al., 2004). Briefly, tissue sections were deparaffinized and rehydrated followed by 
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treatment with 5% hydrogen peroxide to quench endogenous peroxidase. Sections were 

treated with pepsin (2 mg/ml in 0.01 N hydrochloric acid) for 45 minutes to unmask the 

antigens and with 1% bovine serum albumin to block non-specific binding. Sections were 

incubated with primary antibody against EMAP-II (1:50) for 60 minutes followed by 

appropriate HRP conjugated secondary antibodies; normal mouse/goat–biotin in BSA 

(1:100) and streptavidin-HRP (1:300) for 30 minutes each. This EMAP-II antibody has 

previously been used by the Schluesener group to detect EMAP-II with 

immunocytochemistry (Schluesener et al., 1997). Additional lung sections were 

incubated with mouse anti-granulocyte (1:50) or anti-monocyte/macrophage ED-1 

antibody (1:400) for 60 minutes followed by an appropriate HRP conjugated secondary 

antibody in BSA (1:100 for granulocytes) for 30 minutes. The antigen–antibody complex 

was visualized using a color development kit. Control tests consisted of staining without 

primary antibody or with normal mouse IgG instead of primary antibody.  

2.3.7 Immunogold electron microscopy 

Ultrathin sections (80 – 100 nm) were incubated with 1% bovine serum albumin 

to block non-specific sites. This was followed by incubations with EMAP-II (1:50) 

antibody for 60 minutes and appropriate 15 nm gold-conjugated secondary antibodies 

(1:100) for 30 minutes. Sections were stained with uranyl acetate and lead citrate and 

examined in a Philips 410LS transmission electron microscope at 60 kV. Control sections 

were labeled without primary antibody or with normal serum instead of primary 

antibody. 
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2.3.8 Endothelial monocyte-activating polypeptide-II (EMAP-II) instillation 

experiment 

To investigate whether mature EMAP-II was capable of recruiting 

monocytes/macrophages into the lungs, Sprague-Dawley rats (n = 5) were treated with 

20µg of recombinant EMAP-II in 250µL of endotoxin-free saline intratracheally. The 

animals were euthanised at 6 hours post-instillation.   Additionally, control rats were 

instilled with either endotoxin free saline (n = 5) or 250µg of LPS and euthanized at 6 

hours for comparison with the mature EMAP-II treated animals. 

2.3.9 Quantification of monocytes/macrophages and granulocytes 

To evaluate whether instillation of mature EMAP-II resulted in 

monocyte/macrophage and granulocyte recruitment into the lungs, tissue sections were 

stained for ED-1 antibody (1:400) and rat anti-granulocyte antibody (1:50).  To compare 

the numbers of monocytes/macrophages and granulocytes in the lungs between the 

EMAP-II treated and control groups, ED-1 and granulocyte positive and cells were 

counted in tissue sections in 10 random fields of view (40X) per section. The cells were 

counted in 0.076 mm2/section (two sections/lung; 40 fields/animal = total lung area per 

animal 0.304 mm2). The cell counting was performed in a blinded manner. 

2.3.10 Statistical analysis 
 

The ELISA data were compared using a one-way ANOVA. When a significant 

difference was noted Tukey’s Post-hoc test was performed. Cells counts between the 

control and EMAP-II treated lungs were compared using a paired t-test.  Differences 

were considered significant at p<0.05. 
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2.4 Results 

Endothelial monocyte-activating polypeptide-II (EMAP-II) expression in lungs  

2.4.1 Enzyme linked immunosorbent assay (ELISA) for total Endothelial monocyte-

activating polypeptide-II (proEMAP/p43 and mature EMAP-II) 

 I used an ELISA to determine concentrations of total EMAP-II (proEMAP-II/p43 

& mature EMAP-II) in lungs from the control and LPS-treated rats (Figure 2.1). An 

increase in total EMAP-II concentration was detected at 1 (p=0.001), 3 (p=0.002), and 12 

hours (p<0.001) post-LPS treatment when compared with saline-treated control animals. 

However, no difference was observed between the 1, 3 and 12 hour points after the LPS 

treatment.   

2.4.2 Light and electron microscopic immunohistochemistry for total endothelial 

monocyte-activating polypeptide-II 

Compared to the control rats (Figure 2.2A), the LPS-treated rats showed a typical 

inflammatory response in their lungs (Figure 2.2B). Lung sections were stained with an 

antibody that recognizes both proEMAP/43 and mature EMAP-II. The staining for total 

EMAP-II was absent in lung sections from control rats (Figure 2.2C) but present in the 

LPS-treated rats (Figures 2.2 D-F). Total EMAP-II antibody stained alveolar septa 

including the septal monocytes/macrophages at 1 hour (Figure 2.2D) and 3 hours (Figure 

2.2E) and the vascular smooth muscle cells at 12 hours (Figure 2.2F) post-LPS treatment. 

No positive reaction was observed when sections were treated with normal mouse IgG as 

an immunohistochemical control (see inset in Figure 2.2C). Immuno-gold electron 

microscopy confirmed EMAP-II staining in the septal cells and intravascular monocytes 

in inflamed lungs (Figure 2G).  
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2.4.3 Mature endothelial monocyte-activating polypeptide-II instillation experiment 

 To determine if mature EMAP-II is capable of inducing monocyte/macrophage 

and granulocyte recruitment, the peptide was instilled intra-tracheally in 5 rats. 

Histopathology showed septal congestion in lungs from EMAP-II treated rats compared 

to saline-treated control rats (Figure 2.3A-B). ED-1 antibody was used to identify 

monocytes/macrophages (Figure 2.3C-D), which showed more ED-1 positive cells in 

EMAP-II treated rats (Figure 2.3D) compared to the controls (Figure 2.3C). No positive 

reaction was observed when slides were treated with normal mouse IgG as an immuno-

histochemical control (See inset in Figure 2.3C). Lungs from rats treated with mature 

EMAP-II revealed an increase in the numbers of monocytes/macrophages compared to 

the saline-treated controls (26 ± 4 versus 10 ± 2 / 0.304 mm2;   p=0.0003; Figure 2.3E). 

Lung sections from rats treated with mature EMAP-II also showed more granulocytes 

than those from saline-treated animals (44 ± 4 versus 25 ± 2 / 0.304 mm2; Figure 2.3F). 

2.4.4 Enzyme linked immunosorbent assay for Interleukin-1β and Macrophage 

inflammatory protein-2 

We used ELISA to compare the concentration of IL-1β and MIP-2, 

proinflammatory mediators, in lung homogenates from rats at 6 hours after treatment 

with either LPS, EMAP-II or saline. No detectable levels of IL-1β were observed in the 

EMAP-II treated or saline-treated control animals. Macrophage inflammatory protein-2 

levels were not different between control and EMAP-II treated animals. In the LPS 

treated animals, however, IL-1β and MIP-2 concentrations were greater than the control 

(p=0.0005) and EMAP-II (p=0.006) groups (Figure 2.4A-B). 
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Figure 2.1 Endothelial monocyte-activating polypeptide-II concentrations in lungs as 
determined by Enzyme linked- immunosorbent assay: Compared to the control rats, 
Endothelial monocyte-activating polypeptide-II concentrations were significantly more 
(*:P<0.001) in lung homogenates from rats at 1 hour, 3 hour and 12 hours post-LPS 
treatment. Data are expressed as pg/mL of lung homogenate extract from approximately 
100mg of wet lung tissue. Values are means ±SD 
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 Figure 2.2 Endothelial monocyte-activating polypeptide-II expression in lungs: 
Hematoxylin-eosin stained lung sections from control rats (A) show normal histology 
while signs of acute inflammation (B) were observed at 3 h post-LPS treatment. Staining 
for Endothelial monocyte-activating polypeptide-II was absent in lung sections from 
control (C) rats but was observed (arrows) at 1 h (D and inset), 3 h (E and inset) and 12 h 
(F) post-LPS treatment. Immuno-gold electron micrograph (G) shows Endothelial 
monocyte-activating polypeptide-II labeling (arrows) in alveolar septal cells (asterisks) 
lining the alveolar space (AS) and an intravascular monocyte (M). Original 
magnification: A-F: X40; Insets: X100; G: X10000. 

M

*

AS
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Figure 2.3 Intra-tracheal instillation of mature endothelial monocyte-activating polypeptide-
II. Hematoxylin-eosin stained lung sections from the control (A) rats showed normal 
histology while those from mature endothelial monocyte-activating polypeptide-II treated 
rats (B) showed congestion in alveolar septa. Lung sections from control rats (C; inset is a 
normal mouse IgG control) have less ED-1 positive cells compared to those from Endothelial 
monocyte-activating polypeptide-II treated rats (D). Quantification revealed an increase (*: 
P=0.0003) in the numbers of ED-1 positive cells (E) and granulocytes (F) at 6 hours post- 
Endothelial monocyte-activating polypeptide-II instillation. Original magnification: 40X 
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Figure 2.4 Concentrations of Interleukin-1β (A) and Macrophage inflammatory protein-2 
(B) in lungs: Enzyme linked- immunosorbent assay showed increased concentrations of 
Interleukin-1β and Macrophage inflammatory protein-2 in lung homogenates from rats 
treated with lipopolysaccharide (*: P<0.05) compared to those given Endothelial 
monocyte-activating polypeptide-II or the saline. Values are means ±SD. 
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2.5 Discussion 
 

These experiments have resulted in the following observations: 1) LPS challenge 

causes rapid induction of EMAP-II expression (proEMAP/p43 and mature EMAP-II) 

which is localized in septal endothelial cells and epithelial cells, mononuclear phagocytes 

and vascular smooth muscle cells in the lungs and 2) intratracheal instillation of mature 

EMAP-II provokes recruitment of monocytes/macrophages and granulocytes into the 

lungs without altering the lung expression of IL-β or MIP-2. Therefore, the total increase 

in expression of EMAP-II in acute lung inflammation may, in concert with other known 

molecules, stimulate recruitment of monocytes/macrophages and granulocytes. 

First, I employed an ELISA to find that LPS challenge rapidly induces an increase 

in lung concentrations of total EMAP-II compared to the normal rats. Because the 

antibody used in ELISA detects the mature (22kD) as well as proEMAP/p43 forms of 

EMAP-II, both the forms may have contributed to the increased concentrations of this 

cytokine. ProEMAP-II/p43, an integral component of the synthetase complex, is released 

under various conditions of cell activation and is pro-inflammatory (Knies et al., 1998; 

Shalak et al., 2001; Matschurat et al., 2003). ProEMAP-II/p43 is processed into a 22 kD 

mature form of EMAP-II (Shalak et al., 2001). Therefore, I directly localized both 

proEMAP/p43 and mature EMAP-II in lungs from LPS-treated and control rats with light 

and electron microscopy. Compared to a near absence of EMAP-II in lungs from control 

animals, total EMAP-II was localized to alveolar septa and intravascular monocytes at 1 

and 3 hours and to vascular smooth muscles at 12 hours after the LPS treatment. Taken 

together, these data show increased lung expression of total EMAP-II, contributed to by 

both the mature and proEMAP/p43 forms, within 1 hour of LPS-treatment. Previous 



 34

immunohistochemical data have shown increased expression of EMAP-II in the 

developing murine lung followed by lower expression in adult life (Schwarz et al., 1999) 

(Murray et al., 2000). Therefore, my observations of sparse EMAP-II expression in lungs 

from control rats are similar to the previously reported data. However, this is the first data 

on the sharp increase in the expression of total EMAP-II in inflamed lungs.  This work 

adds to data showing other pathologic conditions where EMAP-II is upregulated 

including in infant bronchopulmonary dysplasia (Quintos-Alagheband et al., 2004), in a 

rat model of myocardial infarction (Thompson et al., 2004), and after chemical and 

hypoxic stress in prostate adenocarcinoma cells (Barnett et al., 2000). 

 My experiments do not directly address the specific mechanisms of increased 

expression of EMAP-II in LPS-induced acute lung inflammation. However, it is known 

that mature EMAP-II is upregulated by both apoptosis (Knies et al., 1998) and hypoxia 

(Matschurat et al., 2003) in vitro. In support of such a mechanism, it has been shown that 

the prevention of lung epithelial cell apoptosis by administration of the angiotensin-II 

receptor antagonist saralasin, simultaneously down-regulated EMAP-II expression as 

shown by Western blot (Lukkarinen et al., 2004). Thus, an increased number of apoptotic 

events secondary to LPS induced lung inflammation may have contributed to increased 

total EMAP-II expression. Studies using intratracheal instillation or inhalation of LPS, 

similar to our studies, have shown apoptosis in endothelial cells as well as bronchial and 

alveolar epithelium within 2-6 hours (Fujita et al., 1998; Vernooy et al., 2001). 

Therefore, while it is not known whether LPS can induce apoptotic events at 1 hour to 

cause increased expression of EMAP-II, it is certainly possible 3 hours following LPS 

instillation. This may be a contributing factor to my observations of increased expression 
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of EMAP-II as early as 1 and 3 hours. However, extrapolation from in vitro studies to our 

in vivo LPS model is preliminary given the paucity of in vivo EMAP-II data under 

inflammatory conditions. As recently discussed in a review by van Horssen et al.(van 

Horssen et al., 2006), the mechanisms responsible for processing of proEMAP/p43 to 

mature EMAP-II are dependent upon the experimental model and assay environment 

employed. The authors of the van Horssen et al. review particularly highlighted the 

conflicting data on the role of caspases in EMAP-II maturation. 

It has been shown (Tsai et al., 2004) that the time course of EMAP-II release 

ranges from 8 to 20 hours after induction of apoptosis and 20-28 hours of hypoxia in 

vitro. It is also known that the proform of EMAP-II undergoes intracellular proteolytic 

cleavage to its mature form prior to release (Kao et al., 1994). My immunohistology data 

and ELISA data suggest that the LPS-induced rapid increase in total EMAP-II is 

contributed to by both the proEMAP/p43 and mature EMAP-II forms. Furthermore, 

because there was very little or no staining for mature EMAP-II in normal lungs, it 

appears that a precursor to proEMAP-II/p43 and mature EMAP-II is processed within 1 

hour of the LPS stimulus. It is not known whether proEMAP/p43 is always present in the 

cytoplasm awaiting cleavage and secretion (Tas & Murray, 1996). It is obvious that 

additional time-course studies are required to examine changes in the forms of EMAP-II 

as well as specific cleavage events over time during acute lung inflammation. 

 In an attempt to determine the in vivo potential of mature EMAP-II to recruit 

inflammatory cells, I instilled pure EMAP-II into the airways. I did these experiments 

because of the apparent correlation between the recently observed early rapid recruitment 

of monocytes/macrophages (Janardhan et al., 2006) and the expression of total EMAP-II 
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in inflamed lungs in my present experiments. Mature EMAP-II instillation resulted in a 

significant increase in the number of monocytes/macrophages and granulocytes at 6 

hours after its instillation, thus demonstrating that mature EMAP-II has the in vivo 

capability to recruit mononuclear phagocytes and granulocytes. This is plausible given 

previous work that has shown that mature EMAP-II is chemotactic for monocytes and 

neutrophils in vitro and promotes migration of inflammatory cells in the foot pad model 

(Kao et al., 1992). There is also evidence that systemic administration of mature EMAP-

II induces arrest of circulating leukocytes and other inflammatory cells in the pulmonary 

vasculature (Kao et al., 1992). Recently, it was reported that there is a novel early 

recruitment of monocytes/macrophages at 3 hours in addition to neutrophil migration at 6 

hours after intratracheal instillation of LPS (Janardhan et al., 2006). Compared to the 

intra-tracheal instillation of LPS, EMAP-II provoked a less vigorous recruitment of 

monocytes/macrophages. Therefore, it is possible that EMAP-II is one of the many 

chemotactic signals induced by LPS to stimulate migration of monocytes/macrophages 

and granulocytes into the lungs. Distinct features of my experiments were instillation of 

mature EMAP-II directly into the lungs compared to systemic infusion in previous 

experiments and the immuno-morphometric quantification of recruited 

monocytes/macrophages and granulocytes. Based on the in vivo potential of mature 

EMAP-II to promote recruitment of inflammatory cells, it suggests that increased 

expression of mature EMAP-II in inflamed lungs may have similar functions.  

Currently, the chemotactic signals induced by mature EMAP-II following its 

intra-tracheal instillation are not known. Therefore, I sought to probe whether mature 

EMAP-II may recruit mononuclear phagocytes and granulocytes through the stimulated 
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expression of a proinflammatory cytokine IL-1β and MIP-2.  These molecules were 

targeted because IL-1β is critical in the early phase of acute lung inflammation while 

MIP-2 promotes recruitment of monocytes and granulocytes (Goodman et al., 2003). To 

address this, I examined IL-1β and MIP-2 expression by ELISA at 6 hours after either 

EMAP-II or LPS instillation. I chose this time point because of significant recruitment of 

monocytes/macrophages and neutrophils in the LPS model of lung inflammation 

(Janardhan et al., 2006). My data show similar lung concentrations of IL-1β and MIP-2 in 

the saline or EMAP-II treated rats although the latter showed significant recruitment of 

monocytes/macrophages and granulocytes at 6 hours. In contrast, IL-1β and MIP-2 were 

markedly increased in the LPS treated lungs, which have large numbers of neutrophils 

and monocytes/macrophages, compared to the control or EMAP-II-treated rats. These 

data suggest that mature EMAP-II instillation does not induce expression of IL-1β or 

MIP-2 to manifest its effects on recruitment of monocytes/macrophages and 

granulocytes. Further studies are needed to elucidate EMAP-II induced signaling 

pathways that result in inflammatory cell recruitment, such as the induction of other 

cytokines such as TNF- α, IL-8, MIP-1α and MIP-1β.  It is possible however, that 

EMAP-II may have direct chemotactic effects in vivo.  

 

2.6 Summary 

In conclusion, I report a rapid upregulation of total EMAP-II expression following 

intratracheal instillation of LPS in rats. Secondly, mature EMAP-II promotes septal 

recruitment of monocytes/macrophages and granulocytes in lungs in vivo.  Finally, in 

contrast to LPS, intra-tracheal instillation of mature EMAP-II into the airspace did not 
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induce IL-1β or MIP-2 expression relative to control lungs. I propose to use EMAP-II as 

a marker to understand monocyte recruitment in subsequent experiments focusing on the 

toxicology of rosette nanotubes. Future, studies should examine the role of EMAP-II in 

acute lung inflammation through antibody blocking experiments.  
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CHAPTER 3 
 

Novel self-assembling rosette nanotubes show low acute pulmonary 
toxicity in vivo 

 

3.1 Abstract 

Nanotubes are being developed for a large variety of applications ranging from 

electronics to drug delivery. Common carbon nanotubes such as single-walled and multi-

walled carbon nanotubes have been studied in the greatest detail but require solubilization 

and removal of catalytic contaminants such as metals prior to being introduced to 

biological systems for medical application. The present work represents the first in vivo 

inflammatory characterization of a novel class of self-assembling rosette nanotubes, 

which are biologically inspired, naturally water soluble and free of metal content upon 

synthesis. Upon pulmonary administration of this material we examined responses at 24h 

and 7d post exposure. An acute inflammatory response is triggered at high doses by 24h 

post-exposure but an inflammatory response is not triggered by a 5 µg dose. Lung 

inflammation observed at the 50µg dose at 24h was resolving by 7d as supported by 

bronchoalveolar lavage cell counts and histological examination. This work suggests that 

novel nanostructures with biological design may negate toxicity concerns for biomedical 

applications of nanotubes. This study also demonstrates that self-assembling rosette 

nanotube structures may be an alternative to traditional nanotube compounds and 

represent low pulmonary toxicity, likely due to their biologically inspired design, and 

their self-assembled architecture.  
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3.2 Introduction 

 Nanotechnology is a rapidly evolving interdisciplinary research area offering 

great potential for applications to such fields as electronics, materials science, drug 

delivery, medical imaging and diagnosis. It has been estimated that nanotechnology will 

have a market of $1 trillion by 2015 (Nel et al., 2006). New nanomaterials and 

nanodevices are being developed with the intention of improving everyday life (Roco, 

2004), but efforts are also being devoted to understand the possible toxicity and health 

implications of engineered nanomaterials. Knowledge of such factors is also considered a 

potential barrier to public acceptance, commercialization and future development of 

nanotechnology, and therefore warrants more research. 

 Materials at the nanoscale possess some unique physicochemical properties (Nel 

et al., 2006) which make them attractive for their intended use but may also confer 

challenges upon those evaluating their potential toxicity. Indeed, some of the concerns 

about possible toxicity of engineered nanomaterials have been raised from our 

understanding of ultrafine particle toxicity research (Oberdorster et al., 2005b; Kreyling 

et al., 2006). At present the majority of research on engineered nanomaterials has focused 

on those which are anticipated to be produced in commercial quantities in the near future 

such as carbon nanotubes. The toxicity and biocompatibility of these materials (Fiorito et 

al., 2006; Smart et al., 2006) and the relevance to occupational health (Donaldson et al., 

2006; Lam et al., 2006) have been reviewed elsewhere.  

 Carbon nanotubes  (CNT) are one of the most studied nanomaterials because of 

their novel physicochemical properties which include high surface area, high mechanical 

strength yet  ultra-light weight, rich electronic properties and chemical and thermal 
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stability (Ajayan, 1999). Two common types of CNT are the single-walled carbon 

nanotubes (SWNT) that are formed by a cylindrical sheet of graphite with a diameter of 

0.4-2 nm, and the multi-walled carbon nanotubes (MWNT) that have multiple concentric 

graphite  cylinders with increasing diameter ranging from 2-200 nm (Dresselhaus et al., 

1996). Single walled nanotubes have received attention primarily as a possible inhalation 

toxicant in their raw form (Lam et al., 2004; Warheit et al., 2004; Shvedova et al., 2005), 

but carbon nanotubes also have potential for biomedical applications (Bianco & Prato, 

2003; Martin & Kohli, 2003; Bianco, 2004; Lin et al., 2004). In order for CNT to be used 

for biomedical purposes they typically need to become soluble with the addition of 

surface molecules (Georgakilas et al., 2002; Pantarotto et al., 2003; Hudson et al., 2004; 

Lin et al., 2004). Indeed, the in vitro toxicity of carbon nanomaterials, such as fullerenes 

and SWNT, has been shown to be dependent upon the degree of surface functionalization 

(Sayes et al., 2004; Sayes et al., 2005). 

Self-assembled rosette nanotubes (RNT) are a novel class of biologically inspired 

nanotubes that are naturally water soluble upon synthesis (Fenniri et al., 2001; Fenniri et 

al., 2002a; Fenniri et al., 2002b). The RNT are obtained through the self–assembly of the 

G∧C motif, a self–complementary DNA base analogue featuring the complementary 

hydrogen bonding arrays of both guanine and cytosine (Figure 3.1). The first step of this 

process is the formation of a 6–membered supermacrocycle (rosette) maintained by 18 

hydrogen bonds, which then self–organizes into a tubular stack defining an open central 

channel 1.1 nm across and several micrometers long (Figure 3.1) ((Fenniri et al., 2001; 

Fenniri et al., 2002a; Fenniri et al., 2002b; Raez et al., 2004; Moralez et al., 2005; 

Johnson et al., 2007). Upon self-assembly, in principle any functional group covalently 
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attached to the G∧C motif could be expressed on the surface of the nanotubes, thereby 

offering versatility in functionalization of the RNT for specific medical or biological 

applications. Moreover, the RNT are void of any metals in the synthetic process, which 

confers potential advantage to their biocompatibility given reports on the role of metals in 

particle-induced oxidative stress (Ghio et al., 1999; Donaldson et al., 2006). Several 

hydrophilic RNT have been reported, displaying chiroptical (Fenniri et al., 2002a; 

Johnson et al., 2007) and hierarchical (Moralez et al., 2005) tunability, high thermal 

stability (Fenniri et al., 2002b; Moralez et al., 2005) and entropically–driven self–

assembly behaviour (Fenniri et al., 2002b) in polar solvents.   

Compound 1 (Figure 3.1) was previously shown to undergo self-assembly into 

RNT by NMR spectroscopy, circular dichroism (CD) spectroscopy, variable temperature 

UV-vis melting studies, dynamic light scattering (DLS), tapping mode atomic force 

microscopy (TM-AFM), and transmission electron microscopy (TEM).  In agreement 

with the calculated average diameter of  3.8 nm, TEM images of RNT(1)-G0 featured a 

diameter of 4.0 ± 0.3 nm (Moralez et al., 2005).   

Compound 1 was designed relative to other compounds (Moralez et al., 2005) so 

that upon self-assembly (a) the functional group density and net charge are reduced by a 

factor of two (b) the thermal stability of the corresponding RNT is enhanced as a result of 

preorganization, increased amphiphilic character, and greater number of H-bonds per 

module (12 instead of 6), (c) the corresponding twin rosettes are preorganized and 

maintained by 36 H-bonds instead of 18, and (d) the resulting RNT(1)-G0 is sterically 

less congested and experiences reduced electrostatic repulsion on its surface. These 

design criteria made RNT(1)-G0 far more robust relative to its singe base congeners 
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(Moralez et al., 2005), even in boiling water.  

To date, RNT have only been investigated for application to biomaterial interfaces 

in the field of orthopedics and specifically as a way to promote osteoblast adhesion in 

vitro (Chun et al., 2004; Chun et al., 2005).  No data exist on the in vivo responses to 

exposure of these specific nanotubes and furthermore there are no studies on the 

responses to functionalized nanotubes in the lungs. I have chosen to evaluate the 

pulmonary responses because of the variety of potential applications of RNT including 

drug delivery (Hung, 2006) and the relative paucity of toxicity information on 

functionalized self-assembling nanostructures. Furthermore inflammatory physiology in 

the lung is well characterized, and is therefore a good model organ for studying the 

possible immunologic responses to RNT.  

 

3.3 Materials and Methods  

3.3.1 Animals 

All animal protocols in this study were approved by the University of 

Saskatchewan Committee on Animal Care Assurance, and each experimental procedure 

was conducted according to the Canadian Council on Animal Care Guidelines. A total of 

forty-two 6-8 week old, specific pathogen free, male C57BL/6 mice were procured from 

Animals resource unit at the University of Saskatchewan, Canada (n=6 per group). The 

mice weighed 25-30g. The animals were acclimatized for a period of 1 week in the 

animal care unit prior to experimentation, and were randomly assigned to treatment 

groups. 
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3.3.2 Rosette nanotube(1)-G0 preparation and characterization 

The nanotubes were formed by mixing 1 mg of compound 1 in 1ml of nanopure, 

sterile water and heating at 90ºC for ~30 min. The self-assembly process is quantitative, 

thus 1mg of compound 1 yields 1 mg of RNT(1)-G0 (Figure 3.1). Based on scanning and 

transmission electron microscopy, the length of the nanotubes is polydisperse. But the 

synthetic protocol employed here yields tubes that are several microns long. Without a 

heating protocol the tubes range from 50-200 nm in length.  Regardless of the length, 

RNT(1)-G0’s outer diameter is ~4 nm. Their calculated surface area is ~104 m2/g. The 

aggregation state of RNT(1) is pH-dependent: as the protonation state of the lysine 

changes, the nanotubes aggregate in a parallel fashion (Moralez et al., 2005). At low pH 

they are well dispersed however their status upon being introduced to the lung 

environment is unknown.  

3.3.3 Experimental overview 

 Mice were studied at different doses of RNT(1)-G0 at two time points. The first 

experiment was conducted by treating C57/BL mice with RNT(1)-G0 intratracheally (5, 

25, 50 µg in 50 µl of nanopure water /mouse). Two control groups included mice treated 

with 50 µl of nanopure water, or 50 µg of lysine in 50 µl of nanopure water. The lysine 

group was used as control for the lysine component of the nanotube surface. These mice 

were euthanized at 24h.  In a second group of mice, we examined the effect of 5 and 50 

µg doses at 7 days post instillation. This experiment was selected based on our 24h time 

point results. I wished to test if a 5 µg dose triggered an inflammatory response by 7d and 

whether the inflammatory response measured in our 50 µg group resolved by 7d. Thus an 

intermediate dose of 25 µg was not studied at the 7d time-point. Doses were chosen 
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based on the range used by other studies investigating SWNT pulmonary responses 

(Shvedova et al., 2005). 

 I evaluated the extent of the inflammatory response by examining the 

bronchoalveolar lavage (BAL) total and differential cell counts as well as the peripheral 

blood total leukocyte count (TLC). Changes in lung permeability were assessed using 

BAL fluid protein as a marker. The chemokine macrophage inflammatory protein-2 

(MIP-2) and the cytokines interleukin -1beta (IL-1β) and tumor necrosis factor-alpha 

(TNF-α) were measured in the BAL fluid and lung homogenate. Changes to the mRNA 

levels of MIP-2, IL-1β and TNF-α were also assessed using quantitative real time reverse 

transcriptase polymerase chain reaction (qRTPCR). Histological evaluation of the 

lavaged lung tissue was performed using the Hemotoxylin and Eosin staining technique. 

3.3.4 Lung collection, processing, histology and cell counts 

Mice were euthanized (1mg xylazine and 10 mg ketamine / 100 g) and blood, 

BAL fluid and lung samples were collected. Blood was collected by cardiac puncture for 

total leukocyte counts. A BAL was performed by washing the whole lung with 3 ml (1ml 

x 3 washes) of ice cold Hanks Balanced Salt Solution(Sigma Chemicals Co., St. Louis, 

MO). Total cell count was performed using a standard hemocytomter. Sixty µl of BAL 

fluid was used for a cytospin preparation on which the polymorphonuclear and monocyte 

differential counts were performed. Blood was collected by cardiac exsanguination and 

processed for evaluation on total leuckocyte count on the hemocytometer.  One lung was 

fixed in 4% paraformaldehyde for 16 hours. Lungs used for quantification of cells were 

filled with 4% paraformaldehyde at 23 cm H2O pressure. Pieces of the lobes were later 

processed through ascending grades of alcohol and then embedded in paraffin. Tissue 
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blocks were then cut into 5 µm sections for light microscopy. Hematoxylin and eosin 

stained sections were used for histopathological evaluation. 

3.3.5 Enzyme linked- immunosorbent assay (ELISA) for Macrophage inflammatory 

protein-2, Interleukin-1β, Tumor necrosis factor-α and Endothelial monocyte-

activating polypeptide-II 

Enzyme linked- immunosorbent assay was conducted on both the BAL fluid and 

the lung tissue. For lung tissue analysis, frozen lung samples were homogenized in lysis 

buffer [150 mM sodium chloride, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 50 

mM TRIS (pH 8.0), 5 mM EDTA, and protease inhibitor cocktail (100 µl/10 ml)]. 

Homogenates were collected after centrifuging the samples at 25,000 g for 20 minutes. 

For quantification, samples in duplicates, from 3 mice for each treatment were used. 

Interleukin-1β, TNF-α and MIP-2 were quantified by sandwich ELISA using antibody 

pairs and recombinant standards purchased from R&D Systems. For the lung homogenate 

analysis each well was loaded with 20µg of protein. Endothelial monocyte-activating 

polypeptide-II was assayed as per Section 2.3.5. 

3.3.6 BAL fluid total protein assay 

 Total protein in the BALF supernatant was quantified using an assay kit from 

Bio-Rad Laboratories as per the manufacturer’s protocol. The protein assay is based on 

the Bradford method of protein quantification. Protein concentration values were 

calculated from a standard curve using bovine serum albumin (BSA) concentrations 

ranging from 0 to 1.0 mg/ml. 
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3.3.7 RNA isolation and quantitative real time reverse-transcriptase polymerase 

chain reaction (qRTPCR) 

Total RNA was extracted from the lungs of mice by using TRIzol reagent 

(Invitrogen, Ontario, Canada) followed by treatment with RNase-free DNase (Qiagen, 

Ontario, Canada) and purification on RNeasy mini columns (Qiagen) according to the 

manufacturer’s instructions. Integrity of RNA was confirmed by agarose gel 

electrophoresis and RNA was quantified by spectrophotometric analysis. The mRNA was 

reverse transcribed at 42°C for 40 min by using StrataScript QPCR cDNA synthesis kit 

(Stratagene, USA) and universal oligo dT primer as per manfacturer’s instructions. This 

cDNA was used for QRtPCR analysis for the expression of TNF-α; (GenBank Accession 

No. NP_038721), MIP-2; (GenBank Accession No. X53798), and IL-1β; (GenBank 

Accession No. NP_032387) genes using Brilliant SYBR Green QPCR kit (Stratagene, 

USA). The glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH; GenBank 

Accession No. XR004536) was used as the reference housekeeping gene. The reactions 

were performed using the primer pairs; 5’-ATGAGCACAGAAAGCATG-3’ and 5’-

GGGAACTTCTACTCCCTT-3’ for TNF-α, 5’-ATGGCCCCTCCCACCTGC-3’ and 5’-

ACTTCTGTCTGGGCGCAG-3’ for MIP-2, 5’-ATGGCAACTGTTCCTGAA-3’ and 5’-

GCCACAGCTTCTCCACAG-3’ for IL-1β and 5’-TGCATCCTGCACCACCAACTG-3’ 

and 5’-GGGCCATCCACAGTCTTCTGG-3’ for GAPDH.  A negative control reaction 

consisted of all the components of the reaction mixture except RNA. Real-time PCR 

analysis was performed using the MX3005PLightCycler (Stratagene). The cDNA was 

denatured at 95°C for 5 minutes. This was followed by amplification of the target DNA 

through 45 cycles of denaturation at 95°C for 1 min, annealing at 55°C for 30 seconds 
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and elongation at 72°C for 30 seconds. Relative expression levels were calculated after 

correction for expression of GAPDH using MxPro software. 

3.3.8 Data analysis 

 Statistical analysis was carried out with SigmaStat® statistical software. Values 

represent the means ± SD. Comparisons between 24h treatment groups were performed 

using a one-way ANOVA. When significant main effects were observed, a Tukey’s post 

hoc test was performed. Differences were considered significant when P < 0.05. An 

unpaired Student’s t-test was used to examine differences between 24h and 7d for the 

doses of 5 µg and 50 µg. 

 

3.4 Results 

3.4.1 Bronchoalveolar lavage fluid and blood cell counts 

 The total number of cells observed in the BALF showed a dose dependent effect 

in the 24h treatment groups. The Control, Lysine, and 5 µg treatment groups did not 

differ from each other, while the 25 µg and 50 µg showed an increase in the total cell 

count over these groups (P < 0.001). The 25 µg and 50 µg also differed from each other 

(Fig. 3.2A; P < 0.001). 

 The 5 µg dose of RNT(1)-G0 did not trigger an inflammatory response when the 

24h and 7d responses were compared. However in the 50 µg treatment group a reduction 

in the total cell count was observed at 7d when compared to 24h (Fig. 3.2A, P = 0.001).  

 The absolute PMN and monocyte counts were greater in the 25 µg and 50 µg than 

the Control, Lysine, and 5 µg groups at 24h (Fig. 3.2B-C; P < 0.001). The 50 µg group 

also had a greater absolute numbers of PMN and monocytes than the 25 µg group (P = 
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0.002 and P < 0.001). There was no difference in the absolute number of PMN and 

monocytes between the 24h and 7d groups when the mice were administered 5 µg of 

RNT(1)-G0 (P = 0.103 and P = 0.901). However when the mice were treated with 50 µg 

of RNT(1)-G0, the 7d group demonstrated a decreased number of PMN (P = 0.01) and 

monocytes (P = 0.001) relative to the 24h time-point. 

 Total leukocyte counts in the blood did not differ between any groups at 24h.  The 

5 µg and 50 µg dose groups did not differ between the 24h and 7d time-points (Fig. 3.3). 

3.4.2 Bronchoalveolar lavage fluid total protein assay 

 Protein levels in the lavage fluid were greater in the 50 µg treatment group than 

all the other groups at 24h (Fig. 3.4; P = 0.07). When comparing the 5 µg dose at 24h and 

7d, no difference was observed in protein concentrations in the lavage fluid (P = 0.838) 

nor did the 50 µg dose group differ between 24h and 7d (Fig. 3.4; P = 0.827).  

3.4.3 Enzyme-linked immunosorbent assay (ELISA) for Tumor necrosis factor-α, 

Interleukin-1β, Macrophage inflammatory protein-2, and Endothelial 

monocyte-activating polypeptide-II 

Lavage  fluid analysis 

An ELISA was performed on both the lavage fluid and on tissue homogenate. The 

cytokines IL-1β, TNF-α, and EMAP-II were found to be below detectable levels in the 

lavage fluid. The MIP-2 levels were recorded in the lavage fluid. However, levels did not 

differ between groups at 24h, or between time points for the doses of 5 µg and 50 µg 

(Fig. 3.5). 
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Tissue homogenate analysis 

 At 24h, levels of TNF-α in the lung tissue of mice treated with 5 µg and 25 µg of 

RNT(1)-G0 were greater than both the Control (P = 0.004 and P = 0.04) and Lysine (P < 

0.001 and P = 0.003) treated mice (Fig. 3.6A). The 50 µg did not differ from control but 

did differ from the Lysine treated group (P = 0.005). No differences were detected 

between nanotube treatment groups at 24h (Fig. 3.6A). The amount of TNF-α approached 

a statistically significant decrease between 24h and 7d in the 5 µg groups (P = 0.056), and 

did not differ in the 50 µg group (P = 0.231). 

 The IL-1β levels (Fig. 3.6B) did not differ between the Control and Lysine treated 

groups. While the 5 µg group showed a greater amount of IL-1β than both the Control 

and Lysine groups, the 25 µg and 50 µg levels were only significantly greater than the 

Lysine group. Levels did not differ between the nanotubes groups at 24h.  At 7d, IL-1β 

concentration in the tissue was lower than at 24h when mice were treated with 5 µg (P = 

0.029). In the 50 µg treatment, levels did not differ between 24h and 7d (P = 0.260). 

 The MIP-2 levels did not differ between all treatment groups at 24h (Fig. 3.6C). 

When comparing MIP-2 levels in the 5 µg groups at 24h and 7d no difference was 

detected, however in the 50 µg group levels of MIP-2 were higher at 24h than at 7d (P < 

0.001). 

3.4.4 Quantitative real time reverse-transcriptase polymerase chain reaction 

(qRTPCR) for tumor necrosis factor-α, interleukin-1β and macrophage 

inflammatory protein-2 

 When compared to control lungs the lysine and 5 µg groups showed a ~3 fold 

reduction in TNF-α mRNA (Fig. 3.7A; P < 0.001), while the 25 µg group was the same 
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as control lung and the 50 µg group had a ~2 fold increase in TNF-α mRNA at 24h. In 

the 5 µg group the level of TNF-α mRNA at 7d did not differ from control lungs (P 

=0.378), while the 50 µg treatment group had a ~2 fold lower level of mRNA than 

control (P = 0.02). The IL-1β transcription was increased relative to control lungs in all 

nanotube treated groups at 24h, however the lysine treated group did not differ from the 

control group (Fig. 3.7B; P < 0.001). At 7d, mRNA remained elevated above control in 

the 5 µg (P = 0.004) and 50 µg (P = 0.025) treatment groups. The MIP-2 mRNA was 

reduced at 24h relative to control in the Lysine, 5 µg and 25 µg treated lungs (Fig. 3.7C; 

P < 0.001) and approached statistical significance in the 50 µg treatment group  at 24h (P 

= 0.058). At 7d, the 5 µg treated lungs did not differ from control (P = 0.528) however 

the 50 µg treatment group showed a significant reduction in mRNA levels at 7d (P < 

0.001). 

3.4.5 Histology  

 When compared to Control (Fig. 3.8A), 5 µg (Fig. 3.8B) and Lysine (not shown) 

treated lungs, the 25 µg (not shown) and 50 µg (Fig. 3.8C) treated lungs showed septal 

thickening, edema and influx of cells at 24h.  When examined at 7d post-instillation (Fig. 

3.8D), the 50 µg treated lungs showed less septal congestion and influx of cells relative to 

the 24h lungs (Fig. 3.8C). There was perivascular dilatation at 24h in lungs exposed to 25 

& 50 µg doses but not in the other treatment groups or time points (data not shown). No 

evidence of granuloma formation was apparent. 
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Figure 3.1 Rosette nanotubes assembled from compound 1 and corresponding 
transmission electron micrographs.  Scale bars in nm. 
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Figure 3.2 Total number (A) and differential cell counts (B,C) in bronchoalveolar 
lavage fluid from mice at 24h and 7d. Values represent means ± SD. * denotes 
significant difference from Control, Lysine and 5 µg groups at 24h (P < 0.05). ** 
denotes significant difference from all other groups at 24h.  † denoted different 
from same treatment dose at 24h (P < 0.05). 
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Figure 3.3 Blood total leukocyte count. Values represent means ± SD. 
Significance level was set at P < 0.05. 
 
 

 
Figure 3.4 Total protein in bronchoalveolar lavage fluid. Values represent means 
± SD. Significance level was set at P < 0.05. 
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Figure 3.5  Enzyme linked- immunosorbent assay for Macrophage 
inflammatory protein-2 on bronchoalveolar lavage fluid. Values represent 
means ± SD. Significance level was set at P < 0.05 
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Figure 3.6 Enzyme linked- immunosorbent assay for Tumor necrosis 
factor-α (A), Interleukin-1β (B) and Macrophage inflammatory protein-2 
(C) performed on lung homogenates. Values represent means ± SD. 
Values are presented as pg/µg of loaded protein as equal amounts of tissue 
protein (20 µg) were used in analysis. * denotes significant difference 
from Control and Lysine groups at 24h. ** denotes significant difference 
from Lysine group only. † denotes different from same treatment dose at 
24h (P < 0.05). 
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Figure 3.7 Quantitative real time reverse transcriptase polymerase chain 
reaction for Tumor necrosis factor-α (A), Interleukin-1β (B) and Macrophage 
inflammatory protein-2 (C) mRNA expression. * denotes significant 
difference from Control lungs (P <0.05). Values represent means ± SD. 
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Figure 3.8 Hematoxylin-eosin stained lung sections. Lung sections from mice Control 
(A) and Lysine (B) show normal alveolar septa (arrows) while those from 50 µg at 24h 
(C) show septal congestion (inset), septal thickening and edema (arrows). Section of a 
lung collected 7d post-instillation of 50 µg of RNT(1)-G0 (D) shows nearly normal 
alveolar septa (arrows) and some congestion (arrows). Original magnification: X40 
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3.5  Discussion 
 
 I present the first in vivo data on the acute inflammatory potential of self-

assembled rosette nanotubes in the lungs of C57/BL mice. Moreover, these are the first 

toxicity screening data on a synthetic organic nanomaterial and add to literature on the 

interaction of functionalized nanotubes with biological systems in vitro (Pantarotto et al., 

2003; Sayes et al., 2005; Dumortier et al., 2006). The key findings from this study are 

that C57/BL mice do not show signs of lung inflammation at the dose of 5 µg at 24h and 

no response is triggered by 7d. Additionally, while a dose of 50 µg triggered significant 

lung inflammatory responses at 24h, the effects are resolving by 7d. 

   The intratracheal instillation technique was chosen as an exposure method in this 

screening study of RNT. While there are advantages and disadvantages of this technique 

(Driscoll et al., 2000; Oberdorster et al., 2005a), instillation studies are qualitatively a 

positive predictor of particle induced pathology. Moreover, within the field of inhalation 

toxicology, a reliable method of delivering nanotubes via aerosol or inhalation chamber is 

still being devised and pulmonary deposition patterns of nanotubes upon inhalation 

remain unresolved.  It should also be noted that the dose range used here is similar to 

previous work on SWNT where oropharyngeal aspiration was used to deliver the material 

to the lungs (Shvedova et al., 2005). 

My initial examination of the pulmonary response to instillation of the nanotubes 

included the evaluation of inflammatory cells in the bronchoalveolar lavage fluid 

(Henderson, 2005).  A significant influx of total cells was observed in our 25 µg and 50 

µg dose treatment groups at 24h compared with our control and lysine groups. The 

compound in this study is a lysine based rosette nanotube (Fig 3.1), and thus in an 
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attempt to delineate the possible role of lysine versus the nanotube structure, lysine was 

used as an additional control group. As lysine did not trigger an influx of inflammatory 

cells, we attribute the observed inflammation at 24h to an effect of the nanotube structure 

per se and not the lysine component.  

While acute inflammatory responses are important in the study of particle 

toxicology, the resolution of such responses is crucial to understanding the longer-term 

effects. I tested whether the 5 µg dose triggered inflammation by 7d post treatment and 

additionally whether the inflammation observed at 24h in the 50 µg dose resolved. Of 

note, the 5 µg dose did not induce an influx of cells at 7d and the 50 µg treatment showed 

significant reduction in cell total number compared with 24h. The absolute PMN and 

monocyte count also paralleled the responses of the total cell count. It should be 

emphasized that while instillation of particles into the lungs may cause an acute 

inflammatory response due to the bolus nature of the exposure, the lung is a resilient 

organ that can resolve the effects of modest acute insults after exposure to such toxicants 

as particulate matter. Thus, particulate nanomedicine delivery systems such as 

functionalised nanotubes (Moghimi & Kissel, 2006) may be useful for non-chronic 

delivery of therapies to the lung (Hung, 2006; Pison et al., 2006), provided no persistent 

pathology is caused. In addition to the lung response, I also determined whether nanotube 

instillation caused a peripheral immune response, as determined by blood total leukocyte 

count. Contrary to what is observed upon exposure to particulate matter where monocytes 

may be released from bone marrow (Goto et al., 2004), I did not observe any differences 

in total leukocyte count in the blood between any treatment groups, and conclude that a 

peripheral response was not evoked by pulmonary exposure to the nanotubes.  The BALF 



 61

cell counts were also supported through histological evidence of congestion, 

accumulation of inflammatory cells in alveolar septa and dilatation of perivascular spaces 

in lungs of mice treated with 25 and 50 µg of nanotubes at 24 hours but not at 7 days. 

Lung sections from 5 µg group did not show signs of inflammation at both 24 hours and 

7 days of treatment. In toto, these data support induction of lung inflammation by 24 

hours at the higher doses of RNT used in this study, which is resolving by 7 days. 

  As a marker of lung permeability changes I measured total protein in the lavage 

fluid. Of note, while a significant increase in BAL fluid total cell number was observed in 

both the 25 µg and 50 µg groups, neither group showed a significant change in lung 

permeability.  When measured at 7d post-treatment total protein in the lavage fluid had 

not changed from 24h in the 5 or 50µg groups. The protein data are in contrast to 

evidence of edema in hematoxylin-eosin stained subjectively assessed lung sections 

collected at 24h from the high dose groups. The signs of edema, however, were resolving 

by 7d. Dailey and colleagues (Dailey et al., 2006) observed a reduced level of BAL 

protein at 14d relative to 24h when they compared BAL protein levels at 24h and 14d 

after instillation of fine (220nm) polystyrene nanoparticles. They did observe however 

that treatment with ultrafine (75nm) polystyrene particles resulted in a persistent 

elevation in BAL protein levels at 14d when compared with 24h. Taken together with the 

reduction in total cell count in the present study, these responses are suggestive of 

resolution of inflammation occurring between 24h and 7d. 

 In order to assess the possible molecular contributors to the acute influx of cells I 

examined the expression of the cytokines TNF-α and IL-1β and the chemokine MIP-2 in 

both the lavage fluid and the lung tissues.  I also studied mRNA expression of these 
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inflammatory mediators in lung tissues with qRT-PCR. While TNF-α and IL-1β are 

central players in acute lung inflammation (Goodman et al., 2003), MIP-2 promotes 

migration of inflammatory cells (Driscoll, 2000; Kobayashi, 2006).  

Mouse lungs treated with 5 µg of nanotubes showed higher TNF-α and IL-1β 

protein concentrations compared to Control and Lysine treated tissues at 24 hours while 

the 50 µg group differed from Lysine but not the Control group. Lung tissues from mice 

treated with 25 µg showed higher concentration of TNF-α compared to both Lysine and 

Control but IL-1β levels were more than the Lysine group only. While IL-1β mRNA was 

increased in all the nanotube treated groups compared to the Control, TNF-α mRNA was 

elevated in the 50 µg group only. The TNF-α mRNA levels were reduced in the 5 µg 

group compared to the control. Although there is a discrepancy in the expression of IL-1β 

protein and mRNA in the 5 µg group, we judge the protein data to be of more importance 

because protein is the functional product of gene transcription. Furthermore, it is well 

known that all of the mRNA may not be translated into a mature protein. Both TNF-α and 

IL-1β are released by lung macrophages, epithelium and endothelium in response to a 

variety of stimuli such as endotoxin and bacteria (Goodman et al., 2003). These cytokines 

induce expression of adhesion molecules such as selectins and integrins to facilitate 

migration of inflammatory cells such as neutrophils and monocytes (Goodman et al., 

2003).  Even though expression of the chemokine MIP-2 remained unaltered at 24 hours 

post-treatment, there was an increase in monocytes in BALF. It is well known that 

monocyte and neutrophil migration is promoted though a complex interplay of many 

chemokines and adhesion molecules such as MCP-1, IL-8 and integrin αvβ3 (Janardhan 

et al., 2006; Kobayashi, 2006). The increased expression of cytokines in the 5 µg group 
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did not result in higher migration of inflammatory cells into lungs. Nevertheless, 

increased numbers of cells in the lungs of mice treated with 25 and 50 µg of nanotubes 

could be a functional outcome of increased expression of TNF-α and IL-1β and 

associated expression of adhesion molecules.  

Acute lung inflammation induced by a single application of a stimulus normally 

resolves through migration of inflammatory cells out of the lung. Therefore, I examined 

lung tissues at 7d post-treatment. Histologic examination showed some resolution of 

inflammation in the 50 µg group along with a decrease in MIP-2 protein levels despite 

unaltered protein expression of TNF-α and IL-1β. Macrophage inflammatory protein-2 is 

a central chemokine in bacterial sepsis and oxidant-induced lung injury (Dailey et al., 

2006) and promotes recruitment of neutrophils and monocytes (Goodman et al., 2003). 

Previous work on other classes of nanotubes has clearly indicated the role of metals used 

in the synthetic process and the associated oxidative stress response (Donaldson et al., 

2006). A critical aspect of the RNT studied here is the absence of metals in the synthetic 

process of the compound. Thus, the measurement of MIP-2 was considered an important 

end-point. Macrophage inflammatory protein-2 was detected in both the lavage fluid and 

the tissue homogenate, but no differences in MIP-2 were detected between treatment 

groups in the lavage fluid at 24h or 7d. Furthermore, while no changes were detected in 

the tissue at 24h, a statistically significant decrease in MIP-2 was detected at 7d 

compared to 24h in the 50 µg group. Despite few changes in MIP-2 protein among 

treatments, all groups showed a decrease in MIP-2 mRNA relative to control. This is in 

contrast to previous data (Dailey et al., 2006) showing an increase in MIP-2 mRNA 

expression after treatment with biodegradable polymeric nanoparticles and non-
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biodegradable polystyrene nanoparticles. A reduction in MIP-2 expression may be 

responsible for reduced numbers of inflammatory cells and suggest resolution of 

inflammation in RNT-treated animals. Taken together, these data show that 5 µg and 50 

µg may represent non-inflammatory and inflammatory doses, respectively, of this 

nanotube and provide a framework for their further toxicity characterization.     

 The RNT are by design water-soluble and metal free. Thus their rapid synthesis 

and subsequent administration in water does not allow for easy visualization in vivo upon 

histological examination. However, the observed difference in responses between doses 

shows that the instillation method was successful in exposing the lung to this organic 

nanomaterial. A labelled version of the RNT is currently being developed for in vitro and 

in vivo uptake and distribution studies. Due to the fact that I could not visualize the tubes 

in vivo, the aggregation state in the lung could not be ascertained. While the aggregation 

state of this RNT is pH-dependent when studied under laboratory conditions, it is not 

known whether these observations can be extended to behaviour in physiological fluids 

such as lung surfactant. Indeed, a paucity of information exists on the interaction of 

nanomaterials with components of the physiological environment. 

 

3.6 Summary 

 In summary, here I presented the first in vivo study on rosette nanotubes which is 

also the first of its kind for an organic nanomaterial obtained through self-assembly. 

Moreover, the biologically inspired design of the rosette nanotubes may confer 

toxicological advantages over other nanotube compounds for biomedical application.The 

data demonstrated that a 5 µg dose of RNT(1)-G0 is well tolerated in murine lungs up to 
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7d post-instillation, and that even with a 50 µg dose, inflammation is resolving by 7d. 

Future studies will examine the uptake and distribution kinetics of the RNT in vitro and 

in vivo. In light of many reports of nanomaterial induced toxicity, my study presents a 

much needed example of how a biologically inspired synthetic nanomaterial created on 

the principle of self-assembly can be introduced into the mammalian system without 

adverse effects. Moreover, my data may provide a framework to encourage future novel 

nanomaterials that are toxicologically favourable due to their biologically inspired and 

self-assembling architectures. 
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CHAPTER 4 

Low inflammatory activation by self-assembling rosette nanotubes in 
human Calu-3 pulmonary epithelial cells 

 
4.1 Abstract 

Rosette nanotubes (RNT) are a class of organic nanotubes synthesized through the self-

assembly. These water-soluble nanotubes are synthesized in the absence of any metals 

and have a range of biomedical applications including drug delivery. I have chosen to 

evaluate the potential in vitro toxicity of the RNT(2)-K1 compound in a Calu-3 

pulmonary epithelial cell line. Cells were treated with: Control (media only), Lysine (50 

ug/ml), 1, 5, 50 µg/ml of RNT(2)-K1 (nanotube with lysine residue composition), 80 

µg/ml of Min-U-Sil® Quartz and 1 ug/ml of lipopolysaccharide.  Cells and supernatants 

were collected for analysis at 1, 6, 24 h after treatment. Cellular viability determined with 

Trypan blue was significantly reduced in the quartz and 50 µg/ml nanotube treated 

groups. Enzyme linked- immunosorbent assay was conducted on cell supernatants for 

Interleukin-8 (IL-8), Tumour necrosis factor-α (TNF- α) and Endothelial monocyte 

activating polypeptide-II (EMAP-II). I observed no detectable levels of TNF-α or EMAP-

II in the supernatant of any group. Although IL-8 concentrations did not differ between 

treatments its concentrations increased with time within each of the groups. Quantitative 

real-time reverse-transcriptase polymerase chain reaction (qRTPCR) was also performed 

for IL-8, and the adhesion molecule ICAM-1.  Interleukin-8 mRNA showed increased 

expression in the 50 µg/ml RNT(2)-K1 treated groups at both 1 and 6h, while ICAM-1 

showed the greatest increase at 6h in the quartz-treated group. In conclusion, RNT(2)-K1 

neither reduces cell viability at moderate doses nor does it induce a dose-dependent 

inflammatory response in pulmonary epithelial cells in vitro.  
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4.2 Introduction 

 The field of nanotechnology continues to mature, holding the promise of new and 

value-added materials and devices that will potentially benefit all areas of society (Roco, 

2004). One of the primary drivers of nanotechnology is the potential biomedical 

application of new nanomaterials. While nanomaterials have demonstrated fascinating 

‘proof of concept’ displays of functionality, many fundamental questions remain in order 

to effectively interface nanotechnology with cellular and subcellular structures. 

 The general focus of nanoparticle toxicity has traditionally been on combustion 

derived materials and others with relevance to occupational health such as quartz 

(Donaldson et al., 2005; Oberdorster et al., 2005b; Oberdorster et al., 2007). Modern 

versions of nanomaterials have been engineered to exploit novel properties at the 

nanoscale and have sparked interest in the potential toxicity secondary to particle-cell 

interactions. Our understanding of these interactions have far reaching implications for 

development of nanomedical applications, new biomaterials and also to better combat 

potential toxicity of such materials during human medical application or occupational 

exposure (Kagan et al., 2005). 

 Recently, attention has been focused on engineered carbon nanomaterials and the 

properties which confer biocompatibility or toxicity to them (Cui et al., 2005; Ding et al., 

2005; Jia et al., 2005; Lanone & Boczkowski, 2006; Magrez et al., 2006; Nel et al., 2006; 

Worle-Knirsch et al., 2006; Xia et al., 2006; Yamawaki & Iwai, 2006). In vitro work has 

also been devoted to the cellular responses to carbon nanomaterials (Sayes et al., 2004; 

Sayes et al., 2005; Chlopek et al., 2006; Magrez et al., 2006; Davoren et al., 2007; 

Unfried et al., 2007). However, no work has been conducted on self-assembling 
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nanotubes, that are naturally water soluble and void of metals in the synthetic process 

(Fenniri et al., 2001; Fenniri et al., 2002a; Fenniri et al., 2002b). 

Self-assembling rosette nanotubes, are a novel class of nanotubes that are 

biologically inspired and naturally water soluble upon synthesis (Fenniri et al., 2001; 

Fenniri et al., 2002a; Fenniri et al., 2002b). In brief, the nanotubes are formed from 

guanine-cytosine motif building blocks that undergo a rapid hierarchial self assembly 

process in water maintained by 18 H-bonds which then organize to form a nanotube with  

a central channel of 1.1 nm (Fenniri et al., 2001; Fenniri et al., 2002b) . The formed tubes 

are non-covalent, yet kinetically stable and maintained by electrostatic, hydrophobic and 

stacking interactions (Fenniri et al., 2002b). The nanostructure studied here known as 

RNT(2)-K1, contains lysine at the G/C motif. However, one of the novel properties of the 

rosette nanotube is the ability to accept a variety of functional groups at the G/C site 

which imparts functional versatility to the nanotubes for specific nanomedical or 

biological applications. These nanotubes are in stark contrast to the widely studied 

SWNT or MWNT in that their synthesis requires no use of metals and they are naturally 

water soluble upon formation. The diameter of RNT(2)-K1 was shown to be in agreement 

with the calculated average diameter of 3.2 nm, TEM images of RNT(2)-K1 featured a 

diameter of 3.4 ± 0.3 nm (Moralez et al., 2005). The key difference between these 

compounds is that RNT(2)-K1 has a single G∧C base whereas RNT(1)-G0 from Chapter 

3 features two bases (See Figures 4.1 and 3.1 respectively). 

Previous work has been conducted on the in vivo pulmonary responses to self-

assembling rosette nanotubes.  However, in vivo responses are complex and do not 

provide information on the contributions of individual cells. Airway epithelium is one of 
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the first lines of defense against inhaled pathogens or environmental pollutants (Nicod, 

2005), and has been shown to play a direct role in airway inflammation (Beck-Schimmer 

et al., 2004). Conversely, the epithelium is also a central target for delivery of pulmonary 

therapeutics due to its vast surface area and role in inflammation (Groneberg et al., 

2003).  Upon interaction with foreign particulate material, the epithelium is activated 

through a cell signaling cascade resulting in secretion of inflammatory mediators and 

expression of adhesion molecules (Simon & Paine 3rd, 1995; Takizawa, 1998; Ning et 

al., 2004; Barlow et al., 2005; Gurr et al., 2005; Bergamaschi et al., 2006; Neff et al., 

2006). These events are critical for the host defense and can also lead to airway 

inflammation (Auger et al., 2006). Therefore, it is important to assess the contributions of 

the epithelium to possible lung inflammatory responses after exposure to RNT. Thus, I 

used the Calu-3 epithelial cell line to study the effects of direct in vitro exposure to 

RNT(2)-K1. 

  

4.3 Materials and methods 

4.3.1 Cell culture 

 Calu-3 (human bronchial epithelial adenocarcinoma cell line) cells were procured 

from American Type Culture Collection (ATCC, Manassas,VA,USA) and cultured in 

250ml plastic culture flasks. The cells were cultured and maintained in Minimal Essential 

Medium (MEM), with 10% Fetal Calf Serum, 4mM glutamine, 0.5ml Pen-strep at 

10µg/ml. Cells were grown in an incubator at 37º C, 5% CO2 and 100% humidity. Media 

was changed every 3-4 days or as required.  
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4.3.2 RNT(2)-K1 synthesis and characteristics. 

The nanotubes were formed by mixing 1 mg of compound 2 in 1ml of nanopure, 

sterile water and heating at 90ºC for ~30 min. The self-assembly process is quantitative, 

thus 1mg of compound 2 yields 1 mg of RNT(2)-K1 (Figure 4.1). Scanning and 

transmission electron microscopy shows that the length of the nanotubes is polydisperse. 

The synthetic protocol employed here yields tubes that are several microns long. Without 

a heating protocol they range from 50-200 nm in length.  Regardless of the length, 

RNT(2)-K1 has an outer diameter of ~4 nm. Their calculated surface area is ~104 m2/g. 

The aggregation state of RNT(2)-K1 is pH-dependent: as the protonation state of the 

lysine changes, the nanotubes aggregate in a parallel fashion (Moralez et al., 2005). At 

low pH they are well dispersed however their status upon being introduced into cell 

culture media is unknown.  

Min-U-Sil 5 ® Quartz was used as a positive control and was procured from US 

Silica. The company supplied data sheet indicates the more than 98% of the crystalline 

silica particles were less than 5 µm in diameter and purity was listed at 99.4%. The E. 

Coli lipopolysaccharide (0127:B8) was purchased from Sigma. 

4.3.3 Experimental overview 

Cells were seeded in 24 wells plates at 5x105 cells per well (2cm2 wells) in 1 ml 

of media and were allowed to settle for 36h prior to exposure (Figure 4.2). Cells were 

then exposed to Control (media only), Lysine (50 µg/ml) 1 or 5 or 50 µg/ml of RNT(2)-

K1, 80 µg/ml of Quartz, or LPS at 1 µg/ml.  The Quartz particles were suspended in 

media and vortexed for 30s prior to exposure to cells. The cell treatment groups were 

then incubated at 37º C, 5% CO2 and 100% humidity for 1, 6 or 24h at which time 
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Trypan blue counts were performed, supernatants were collected for analysis and RNA 

was isolated from cell pellets. Cells were exposed between passage numbers 8-10. 

4.3.4 Cell viability 

 Cell viability was determined using the Trypan blue exclusion method (McAteer 

& Davis, 2002). Viability is expressed as percentage of non-viable cells.  

4.3.5 Enzyme linked- immunosorbent assay (ELISA) for Tumor necrosis factor-α, 

Interleukin-8, and Endothelial monocyte-activating polypeptide-II 

The ELISA was conducted on cell supernatants which were collected and stored 

at -80 ºC. For quantification, samples in duplicates, from triplicate exposures for each 

treatment were used. Tumor necrosis factor-α and IL-8 were quantified by sandwich 

ELISA using antibody pairs and recombinant standards purchased from R&D Systems. 

EMAP-II was quantified as described in section 2.3.5. 

4.3.6 RNA isolation and quantitative real time reverse-transcriptase polymerase 

chain reaction (qRTPCR) for, Interleukin-8 and ICAM-1 

Total RNA was extracted from the human lung epithelial cells (Calu-3 cell line) 

by using RNeasy mini kit (Qiagen, Ontario, Canada) according to the manufacturer’s 

instructions. During the extraction process, RNA was treated with RNase-free DNase 

(Qiagen, Ontario, Canada) to rule out any DNA contamination in the samples. Integrity 

of RNA was confirmed by agarose gel electrophoresis and RNA was quantified by 

spectrophotometric analysis. The mRNA was reverse transcribed at 42 °C for 40 min by 

using QuantiTect reverse transcriptase kit (Qiagen, Ontario, Canada) as per the 

manufacturer’s instructions. This cDNA was used for QRtPCR analysis for the 

expression of TNF-α (GenBank Accession No. NM_000594), IL-8 (GenBank Accession 
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No CAG46946) and ICAM-1 (GenBank Accession No. AF340038) genes using 

Quantifast SYBR green PCR kit (Qiagen, Ontario, Canada). The glyceraldehyde-3-

phosphate dehydrogenase gene (GAPDH; GenBank Accession No. NM_002046) was 

used as the reference housekeeping gene. The reactions were performed using the primer 

pairs; 5’- ATG AGC ACT GAA AGC ATG-3’ and 5’-GAG AGG TCC CTG GGG 

AAC-3’ for TNF-α, 5’-ATG ACT TCC AAG CTG GCC-3’ and 5’-ACA ATA ATT TCT 

GTG TTG GCG-3’ for IL-8, 5’-ATG GCT CCC AGC AGC CCC-3’ and 5’-TTA GGC 

AAC GGG GTC TCT-3’ for ICAM-1 and 5’-ATG GGG AAG GTG AAG GTC-3’ and 

5’-GAC AAG CTT CCC GTT CTC-3’ for GAPDH.  A negative control reaction 

consisted of all the components of the reaction mixture except RNA. Real-time PCR 

analysis was performed using the MX3005PLightCycler (Stratagene). The cDNA was 

denatured at 95°C for 5 minutes. This was followed by amplification of the target DNA 

through 45 cycles of denaturation at 95°C for 30 seconds, annealing at 55°C for 30 

seconds and elongation at 60°C for 30 seconds. Relative expression levels were 

calculated after correction for expression of GAPDH using MxPro software. 

4.3.7 Data analysis 

 Statistical analysis was carried out with SigmaStat® statistical software. Values 

represent the means ± SD. Comparisons between treatment groups were performed using 

a two-way ANOVA. When significant main effects were observed, a Tukey’s post hoc 

test was performed. Differences were considered significant when P < 0.05.  
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4.4 Results 

4.4.1 Cell viability   
 
 The percentage of non-viable cells (Fig. 4.3) was increased in the 50 µg/ml 

RNT(2)-K1 and quartz treated cells (P<0.05) compared to all other groups at 1h.  At 6h 

the 50 µg/ml RNT(2)-K1 and Quartz differed from the Control, Lysine and 1 µg/ml 

RNT(2)-K1 groups. At 24h, LPS treated cells showed a greater number of non-viable 

cells than Control, Lysine and 1 µg/ml groups, while Quartz treatment resulted in a 

greater reduction in the percentage of viable cells compared to all other treatment groups 

at 24h. Within the Quartz treated group cell viability was reduced at 24h more than both 

the 1h and 6h time-points indicating an effect of time (P<0.05).  No interaction of time 

and treatment was indicated by the statistical model.  

4.4.2 Enzyme linked- immunosorbent assay (ELISA) for Interleukin-8, Tumor 

necrosis factor-α, Endothelial monocyte-activating polypeptide-II 

 The levels of TNF-α and EMAP-II were below the limit of detection in the 

supernatant studied in this experiment. Interleukin-8 concentrations in the supernatant did 

not differ between treatment groups (Fig 4.4). However, an effect of time was observed 

within each treatment as IL-8 concentration in the supernatant at 24h was significantly 

greater than both 1h and 6h time-points. 

4.4.3 RNA isolation and real time reverse-transcriptase polymerase chain reaction 

(qRTPCR) for Interleukin-8(IL-8) and Intercellular adhesion molecule-1 

(ICAM-1) 

The IL-8 mRNA expression was different between 1 and 6 h within each 

treatment group, with the exception of Quartz and Control cells which did not show an 
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effect of time (Fig 4.5).  At 1h, the 1 and 5 µg/ml RNT(2)-K1 treated groups did not 

differ from LPS or from each other. The IL-8 mRNA expression in the Quartz group did 

not differ from the lysine treated cells. All other groups at 1 hour were different from 

each other. At 6 hours, the quartz treated group did not differ from the 1 and 5 µg/ml 

RNT(2)-K1 treated group, nor did the LPS and 50 µg/ml RNT(2)-K1 treated groups. All 

other groups had significantly different levels of IL-8 mRNA expression at 6h. There was 

a significant interaction effect of dose and time in this statistical model (P<0.001). 

ICAM-1 mRNA expression was significantly different between 1 and 6 h within 

each treatment group. At the 1h time-point, all other groups differed from each other with 

the exception of the Lysine and 50 µg/ml RNT(2)-K1 treated cells. At 6h all treatment 

groups differed significantly from each other. 
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Figure 4.1 Rosette nanotube (RNT(2)-K1) assembled from compound 2 and 
corresponding molecular model and transmission electron micrographs. 
 
 
 

  
 

Figure 4.2. Inverted light micrograph of human Calu-3 epithelial cell line in 
culture. Original image taken at 40X 
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Figure 4.3. Trypan blue cell viability assay. Values are the mean percentage of 
non-viable cells ± SD of triplicate exposures. a denotes significantly greater than 
Control, Lysine,1 µg/ml RNT(2)-K1 and LPS  groups at 1h; b and c denote 
significantly greater than Control, Lysine and 1 µg/ml groups at 6h and 24h 
respectively, * denotes greater than 1h and 6h within the Quartz treatment. † 
denotes greater than all other treatment groups at 24h (P <0.05). 
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Figure 4.4. Enzyme linked- immunosorbent assay for Interleukin-8 on cell supernatant. 
‘a’ denotes significantly greater than 1 h and 6 h values within same treatment group 
(P<0.05) .Values represent means ± SD. 
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Figure 4.5. Quantitative real time reverse transcriptase polymerase chain reaction 
for Interleukin-8 (A) and Intercellular adhesion molecule-1 (B) mRNA 
expression. Values represent means ± SD fold change from control cells. 
Interleukin-8 (A):* denotes no difference between 1&6h. a denotes LPS at 1h not 
different from 1 and 5 µg/ml RNT(2)-K1 treated cells; b denotes no difference 
from 1 µg/ml RNT(2)-K1group at 1h; c denotes quartz not different from Lysine 
treated cells at 1h. d denotes no difference from 1 and 5 µg/ml RNT(2)-K1treated 
cells at 6h; e denotes no difference from 50 µg/ml RNT(2)-K1 treated cells. All 
other groups are significantly different from each other. Intercellular adhesion 
molecule-1 (B): Within each treatment group mRNA expression differed between 
1 and 6 h; a denotes no significant difference from 50 µg/ml RNT(2)-K1 treated 
cells at 1h.  At 6h all treatment groups were significantly different from each 
other. 
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4.5 Discussion 
 
 The present work represents the first in vitro experiments on the interaction of 

self-assembling rosette nanotubes with a human epithelial cell line and add to our 

understanding of the lung response previously observed in vivo in mice (Journeay et al., 

2007b). The results of this study indicate exposure of human Calu-3 epithelial cells to 

rosette nanotubes can alter transcriptional activity of IL-8 and ICAM-1, but no 

differences between treatment groups are detected based on levels of IL-8 protein in the 

supernatant. This is despite changes in cell viability at the highest dose of nanotubes, and 

with Quartz and LPS treatment of the cells. Thus, Calu-3 human epithelial cells do not 

exhibit a robust inflammatory response upon exposure to rosette nanotubes, which is 

likely due to their water soluble and metal free design.  

In an attempt to assess the wide spectrum of inflammatory activation of the cells 

in this study, a range of doses and treatment groups were studied. These doses are 

comparable to in vitro epithelial studies using single-walled nanotubes (Davoren et al., 

2007) and also reflect doses equal to the highest and below the lowest doses administered 

in our in vivo study (Journeay et al., 2007b). While high phenomenological doses in vitro 

can provide useful data for comparison with other studies, caution should be used in 

making broad conclusions from this dose alone. However, the high dose data presented 

here underscore the biologically favorable toxicity profile of the rosette nanotubes. 

Distinct features of the present experiment included the use of the human Calu-3 

epithelial cell line, and the use of lysine, LPS and Quartz as Control groups. Lysine was 

used as a control for the lysine component of the rosette nanotubes while LPS is a known 

activator of epithelial cells (Neff et al., 2006). Other particle cellular toxicity studies have 
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commonly used the human A549 lung epithelial-like cell lines (Worle-Knirsch et al., 

2006; Davoren et al., 2007). Thus, while Calu-3 cells have been used as a model for drug 

delivery and metabolism studies (Florea et al., 2003; Forbes & Ehrhardt, 2005), this work 

is the first to examine responses of this cell line after exposure to a soluble engineered 

nanostructure. 

 I used Tyrpan blue to assess cell viability.  Of note I saw the greatest effect on cell 

viability in the Quartz treated cells, but also observed a reduction in cell viability in the 

50 µg/ml RNT(2)-K1 treated group. Quartz treatment was the only group that showed a 

time-dependent effect on cell viability and by 24h was greater than all other treatment 

groups. While Trypan blue counting is an accepted method for determining cell viability 

in a tiered toxicity screening approach (Oberdorster et al., 2005a), it should be interpreted 

cautiously as this technique indicates grossly disrupted membranes (McAteer & Davis, 

2002) and therefore is not specific to other forms of cell death or injury. It has also been 

shown with molecular nano-onions in skin fibroblasts that the mechanisms of cell death 

are affected by the dose used (Ding et al., 2005). Nevertheless, I provide the first Trypan 

blue screening data on rosette nanotubes, and my Quartz data is in agreement with 

previous work on various forms of Quartz particles (Cakmak et al., 2004). Moreover, the 

RNT(2)-K1 doses of 1 and 5 µg/ml were well tolerated by the cells. These findings are 

important as they lay a framework around which a non-toxic range of doses can be 

developed for future cellular uptake and biomedical application studies using the rosette 

nanotubes. 

 I also examined the potential secretion of three proinflammatory mediators known 

as IL-8, TNF-α and EMAP-II, which if secreted in vivo can amplify the inflammatory 



 81

response and activate other cell types in the lung. Indeed, carbon black has been shown to 

induce secretion of chemotaxins from type II epithelial cells which can potentially induce 

monocyte migration (Barlow et al., 2005). It is also well known that particulate matter 

can directly induce cytokine release in bronchiolar epithelium (Fujii et al., 2001). I did 

not see a treatment effect on IL-8 secretion in this cell line, but rather an effect of time on 

IL-8 levels in the supernatant of all groups.  Similar to Mazzarella and colleagues 

(Mazzarella et al., 2007) I also observed an increase in IL-8 in the supernatant over time 

even in the control cells. While it is somewhat surprising that our controls did not differ 

from the treatment groups, cytokines can play a role in autocrine and paracrine cellular 

processes involved with growth and development. Lipopolysaccharide was used as a 

positive control and was expected to produce large amounts of IL-8.  But others have 

studied A549 cells and failed to induce IL-8 gene expression or protein secretion within 

24 hours of using LPS doses ranging from 1pg to 10µg (Standiford et al., 1990). While 

our LPS dose of 1µg/ml was considered significant I did not observe an effect on 

cytokine secretion and the reasons for lack of an effect are not apparent from these 

experiments. Interleukin-8 and its rodent analogue MIP-2 (Driscoll, 2000), are 

chemokines often associated with oxidative stress and can lead to significant cell 

recruitment in vivo (Dailey et al., 2006; Kobayashi, 2006). Given the role of metals in 

nanostructure-induced oxidative stress (Ghio et al., 1999; Donaldson et al., 2006; Kagan 

et al., 2006; Xia et al., 2006; Shvedova et al., 2007), it is a reasonable conclusion that the 

lack of treatment effect on IL-8 secretion may be due to the fact that the rosette nanotubes 

are void of metals. 
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 While macrophages are generally accepted as a robust source of TNF-α (Rich et 

al., 1989), little is know about secretion of this protein in the Calu-3 cell line. I did not 

detect TNF-α in the supernatant of any of the samples. This is in agreement with other 

work that treated epithelial cells with quartz (Driscoll et al., 1997). Conversely quartz has 

been shown to trigger release of TNF-α in macrophages (Driscoll et al., 1993). It is also 

well known that pulmonary epithelium can respond to exogenous TNF-α produced by 

macrophages (Driscoll et al., 1997; Driscoll, 2000).  However, my data suggest that Calu-

3 cells do not produce detectable levels of the cytokine in response to the treatment doses 

used in these experiments. 

 In my previous work I identified upregulation of total EMAP-II (proEMAP/p43 

and mature EMAP-II) in LPS-treated rat lungs and localized this protein intracellularly in 

the pulmonary epithelium (Journeay et al., 2007a). Additionally, it has been shown in a 

meconium- aspiration induced model of lung injury that mature EMAP-II expression is 

increased (Lukkarinen et al., 2004). Thus, it is possible that in vitro, mature EMAP-II 

could be secreted in response to particle exposure. However, similar to TNF-α, mature 

EMAP-II was not detected in the supernatant. Both proEMAP/p43 and mature EMAP-II 

are proinflammatory so the fact that I did not see secretion of this protein in vitro does 

not rule out the possibility that intracellular proEMAP/p43 is increased. While EMAP-II 

biology is still being investigated (van Horssen et al., 2006) I show here that in vitro 

Calu-3 epithelial cell exposure to rosette nanotubes, quartz or LPS does not cause 

secretion of EMAP-II. It is possible that the concentration of TNF-α and EMAP-II in the 

supernatants were below the detection limit because of their dilution in the supernatant or 

lack of release of these cytokines from intracellular sites. 
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 To better understand whether exposure to nanotubes was inducing transcription of 

proinflammatory molecules, I studied mRNA expression of IL-8 and ICAM-1. Recent 

work has shown an upregulation of IL-8 mRNA in an A549 human epithelial cell line at 

4 h post-exposure to TiO2 (Singh et al., 2007). Our data show an increase in IL-8 mRNA 

in Quartz and 50 µg/ml RNT(2)-K1 treated cells at both 1h and 6h. Furthermore, LPS 

treated cells showed a significant increase by 6h. Of note all treatment groups except 

lysine treated cells showed an increase in IL-8 mRNA over controls, suggesting that for 

some treatments a time period of 1-6 hours is required for a significant transcriptional 

response. While the mRNA data do not parallel responses observed with protein 

secretion, it is possible that even though transcription of the IL-8 gene is activated, it may 

not necessarily lead to a greater level of protein secretion into the supernatant due to post-

translational blocks. Furthermore, there could be intracellular accumulation of IL-8 

protein and in future studies one could disrupt the cells to measure the intracellular pool 

of the protein as well (Standiford et al., 1990). 

 Intercellular adhesion molecule-1 (ICAM-1) has previously been shown to be 

upregulated on the rat epithelial cell surface in response to LPS (Madjdpour et al., 2000) 

and also in human bronchiolar epithelium subsequent to exposure to diesel particles 

(Takizawa et al., 2000), or PM10 (Ishii et al., 2005). However these are the first mRNA 

expression data in the Calu-3 epithelial cell line using an engineered nanomaterial and 

show modest differences in expression between treatment groups, with Quartz showing 

the most prominent increase in ICAM-1 mRNA transcription at 6h. The ICAM-1 is an 

adhesion protein that ligates β-2 integrins and its expression is critical for the recruitment 

of inflammatory cells such as neutrophils (Beck-Schimmer et al., 2004). The modest 
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increases in ICAM-1 mRNA expression along with changes in IL-8 mRNA expression 

following RNT(2)-K1 treatment suggest proinflammatory activation of Calu-3 cells.  

 

4.6 Summary 

 This study provides the first data in the human Calu-3 epithelial cell line on the 

inflammatory activation by water soluble, self-assembling nanotubes. While the 

pulmonary epithelium can be directly activated by particulate matter (Fujii et al., 2001) 

diesel particles (Takizawa et al., 2000), and LPS (Madjdpour et al., 2000), the present 

data suggest a lack of a robust in vitro inflammatory response in the human Calu-3 

epithelial cell line. It is likely that the novel metal free and water soluble nature of the 

rosette nanotubes plays a role in the observed lack of cytokine secretion in this study. 
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CHAPTER 5 

Inflammatory activation of the human U937 monocytic cell line by self-
assembled rosette nanotubes 

 
5.1 Abstract 

 More information on the body’s initial defense responses to nanomaterials are 

required due to possible exposures either through intentional medical and consumer 

application or unintentional airborne occupational materials. Here I have studied the 

inflammatory responses of the human U937 macrophage cell line to rosette nanotube 

exposure and also tested the effect of nanotube-length on cytokine levels in the 

supernatant. Cells were plated in the same number and treated in the same manner as per 

Chapter 4. The results indicate that RNT(2)-K1 can activate transcription of 

proinflammatory genes (IL-8 and TNF-α) as early as one hour, but this effect is not 

paralleled by protein secretion into the supernatant. Although both short and long 

nanotubes exhibit time-dependent effects on cytokine secretion, neither the dose nor 

nanotube length have a profound effect on inflammatory protein release. Moreover, 1 and 

5 µg/ml of RNT(2)-K1 have no effect on cell viability by 24h. These data indicate that 

the U937 human macrophage cell line lacks a robust inflammatory response upon 

exposure to rosette nanotubes.  
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5.2 Introduction 

 Increasing activity in nanotechnology has elevated the demand for information on 

the interactions of biological systems with nanomaterials. The development of 

nanotechnology is leading to a wide array of nanostructures with novel physicochemical 

properties for applications in medicine, composite materials and electronics to name a 

few. As the field matures there is an increased probability of intentional exposure through 

medical or consumer products (Oberdorster et al., 2005b; Oberdorster et al., 2007) or 

unintentional exposure  via occupational handling of commercial quantities of 

nanomaterials (Maynard & Aitken, 2007). Regardless of the exposure scenario, 

information on the toxicity and fate of nanomaterials within organisms is warranted. 

 Nanomaterials may gain access to the body via a number of routes of exposure 

but much of the literature has focused on inhalation exposure. Indeed, our initial 

understanding of nanotoxicology is rooted in studies on ultrafine particles (Oberdorster et 

al., 2005b; Oberdorster et al., 2007). Nanomaterials by the nature of their size are 

considered to have a greater propensity to become airborne and moreover, particles less 

than <100nm have a greater deposition potential and can reach the alveolar region of the 

lung (ICRP, 1994). As a result, pulmonary nanotoxicology studies may have applications 

from two perspectives (Medina et al., 2007). The first being to better understand uptake 

and clearance for particulate nanomedicines to harness the large surface area and highly 

vascular nature of the deep lung (Hung, 2006; Moghimi & Kissel, 2006; Pison et al., 

2006), and the second being to better understand the disposition of nanoscale particles in 

the lung and how their unique properties may trigger disease processes (Bergamaschi et 

al., 2006). 
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 Once an agent reaches the lung environment one of the first cellular defenses to 

be encountered is the macrophage population. Typically, macrophages engulf foreign 

particulate and transport the material to the mucociliary escalator for clearance (Lehnert, 

1992). Indeed this clearance mechanism is a crucial aspect in determining retention of 

particles in the lung and possible translocation to the interstitium or the blood. When a 

macrophage engulfs foreign agents or inert particles it produces a proinflammatory signal 

(Duffield, 2003).  An understanding of this inflammatory activation of macrophages is 

central to understanding the lung response to nanomaterial exposure.  

 Cytotoxicity has been shown to be attenuated when carbon nanomaterials such as 

single-walled nanotubes and fullerenes are made soluble with the addition of surface 

molecules (Sayes et al., 2004; Sayes et al., 2005; Dumortier et al., 2006; Nimmagadda et 

al., 2006). Self-assembling rosette nanotubes however, are a novel class of nanotubes that 

are biologically inspired and naturally water soluble upon synthesis (Fenniri et al., 2001; 

Fenniri et al., 2002a; Fenniri et al., 2002b). We have previously examined their 

proinflammatory potential in vivo using mice and in vitro using a pulmonary epithelial 

cell line. Alveolar macrophages are credited with clearance of inhaled particles and to 

keep the alveolar epithelium clear for gas exchange (Lehnert et al., 1985; Dorger & 

Krombach, 2000). These cells, however, can be activated by bacteria, endotoxins and 

particles which initiates inflammation in the alveolar region (Driscoll et al., 1993; 

Oberdorster et al., 1994; Olivieri & Scoditti, 2005). Given the strategic location and 

inflammatory activity of the alveolar macrophages and the potential biomedical 

implications of their interactions with RNT, I used a human macrophage cell line to 

investigate their responses following exposure to RNT.  
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5.3 Materials and Methods 

5.3.1 Cell culture 

 U937 human monocytic cells (Sundstrom & Nilsson, 1976) were procured from 

American Type Culture Collections (ATCC, Manassas,VA,USA) and cultured in 250ml 

plastic culture flasks. The cells were cultured and maintained in RPMI-1640, with 10% 

Fetal calf serum, 1% Pen-Strep at 100 U penicillin and 100 µg/ml Streptomycin, 4.5 mM 

glucose, 1mM sodium pyruvate, 15mM HEPES. Cells were grown in an incubator at 37º 

C, 5% CO2 and 100% humidity and maintained between 2 x 105 and 2 x 106 cells/ml of 

media. Media was changed every 3-4 days or as required. See Figure 5.1 for cell images. 

The cells were induced to differentiate into macrophages by adding 12-O-

tetradecanoylphorbol 13-acetate (TPA) at 5 µg/ml after which the cells were allowed to 

adhere for 48h prior to exposure.  

5.3.2 RNT(2)-K1 synthesis and characteristics. 

 See section 4.2.2 for RNT(2)-K1, Quartz and LPS characteristics. See Figure 4.1 

for RNT(2)-K1 image. The short RNT(2)-K1, were synthesized in water at 18°C, which 

as been shown to reduce the self-assembled length of the nanotubes relative to synthesis 

at 90°C (Fenniri et al., 2002b). 

5.3.3 Experimental overview 

Cells were seeded at 5x105 cells in 24 well plates (2cm2 ). Cells were then 

exposed to Control (media only), Lysine (50 µg/ml) 1 ,5 or 50 µg/ml of RNT(2)-K1 ,80 

µg/ml  of Quartz or LPS at 1 µg/ml  The Quartz particles were suspended in media and 

vortexed for 30s prior to exposure to cells. The cell treatment groups were then incubated 

at 37º C, 5% CO2 and 100% humidity for 1, 6 or 24h at which time Trypan blue counts 
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were performed, supernatants were collected for analysis and RNA was isolated from cell 

pellets. 

5.3.4 Cell viability 

 Cell viability was determined as per section 4.3.4. 

5.3.5 Enzyme linked- immunosorbent assay (ELISA) for Tumor necrosis factor-α, 

Interleukin-8 and Endothelial monocyte-activating polypeptide-II 

This was performed as per section 4.3.5. 

5.3.6 RNA isolation and real time reverse-transcriptase polymerase chain reaction 

(qRTPCR) for TNF-α, Interleukin-8 and Intercellular adhesion molecule-1 

This was performed as per section 4.3.6. 

5.3.7 Data analysis 

 Statistical analysis was carried out with SigmaStat statistical software. Values 

represent the means ± SD. Comparisons between treatment groups were performed using 

a two-way ANOVA. When significant main effects were observed, a Tukey’s post hoc 

test was performed. Differences were considered significant when P < 0.05. 

 

5.4 Results 

5.4.1 Cell Viability 

 Cell viability results are displayed in Figure 5.2. Within the Quartz treated group, 

cell viability was significantly different between all time points. In the 50 µg/ml RNT(2)-

K1 treated cells a significant reduction in cell viability was observed at 24h relative to the 

1h and 6h groups. Within the 1h time-point no reduction in cell viability was observed 

between any treatments. At 6h Quartz treated cells showed  reduced viability as 
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compared to Control, Lysine and 1 and 5 µg/ml RNT(2)-K1treated cells. At 24h, quartz 

treated cells showed reduced viability over all other treatments at 24h.  

5.4.2 Enzyme linked- immunosorbent assay (ELISA) for Tumor necrosis factor-α 

and Endothelial monocyte-activating polypeptide-II on cell supernatant 

 Within the control, lysine and 1 µg/ml RNT treated groups levels of TNF-α did 

not change over time (Figure 5.3A). Within the LPS, quartz, 5 and 50 µg/ml RNT(2)-K1 

treated groups an effect of time on cytokine level was observed.  At 1h, TNF-α 

concentration did not differ between treatments. At 6h, the Quartz samples contained  

significantly less TNF-α concentrations than the LPS, Lysine, 5 and 50µg/ml RNT(2)-K1 

treated groups. LPS-treated cells showed more TNF-α than the 50 µg/ml RNT(2)-K1 

treated groups at 6h. At 24h, lysine treated cells showed significantly less cytokine 

compared to 5 and 50 µg/ml RNT(2)-K1 treated groups. 

 Endothelial monocyte-activating polypeptide-II was only detected in the LPS and 

Quartz treated groups at 24h of exposure. Interleukin-8 data was inconclusive and 

therefore not reported here (Figure 5.3B). 

 Short nanotubes (Figure 5.4) induced a time-dependent effect among the different 

doses. Within the 5 and 50 µg/ml RNT(2)-K1 treated cells, supernatant levels of TNF-α 

at 1h were lower than both 6 and 24h time-points. In the 1 µg/ml RNT(2)-K1 treated cells 

levels of TNF-α only differed between 1h and 24h samples. 

5.4.3 Quantitative real time reverse-transcriptase polymerase chain reaction 

(qRTPCR) for TNF-α, Interleukin-8 and ICAM-1 

 TNF-α mRNA induction was different in all groups between 1h and 6h except in 

the LPS treated cells (Figure 5.5A). At 1h, all treatment groups exhibited increased 
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mRNA expression relative to control cells except the Lysine and LPS groups in which 

mRNA levels were suppressed below control. Quartz treated cells showed greater TNF-α 

mRNA expression than all of the other treatment groups.  At 6h, the quartz treated cells 

showed a higher level of mRNA expression that all other treatment groups. The RNT(2)-

K1 treated groups did not differ in their mRNA expression as function of dose. 

Within each treatment group IL-8 mRNA was significantly different between 1h 

and 6h (Figure 5.5B).  At the 1h time point, in the 1 µg/ml RNT(2)-K1 treated group, 

mRNA did not differ from the 5µg/ml and 50 µg/ml RNT(2)-K1 groups. The 5 and 50 

µg/ml RNT(2)-K1 groups did not differ from each other or the quartz treated group. All 

other groups were significantly different from each other at 1h. At 6h, the level of 

induction did not differ between nanotubes treated groups, nor did LPS differ from 

Lysine treated cells. All other groups were significantly different from each other at 6h. 

The level of induction demonstrated significant interaction between time and treatment. 

 For ICAM-1 expression (Figure 5.5C) only the LPS, 5 and 50 µg/ml RNT(2)-K1 

treated groups differed between 1 and 6h. At 1h, the Lysine, Quartz, 1 and 5 µg/ml 

RNT(2)-K1treated groups did not differ from each other. At 6h, the Lysine, Quartz, 1 and 

5 µg/ml RNT(2)-K1 treated groups did not differ from each other, nor did the 5 and 50 

µg/ml RNT(2)-K1 treated groups. All other groups were significantly different from each 

other at 6h. The level of ICAM-1 induction demonstrated significant interaction between 

time and treatment. 
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Figure 5.1 Scanning electron micrograph (SEM) images of U937 cell line. A: 
Undifferentiated U937 monocyte and B: differentiated U937 macrophage. Images 
are from work published by Vogel et al. Cardiovascular Toxicology 4: 363-73, 
2004 (Vogel et al., 2004). Permission to use granted on 08-13-2007 (See 
Appendix A). 
 

 
Figure 5.2. Trypan blue cell viability assay. Values are the mean percentage of 
non-viable cells ± SD of triplicate exposures. * denotes difference between other 
time-points within the Quartz treatment (P <0.05). ** denotes significantly 
different from 1 and 6h time points within 50 µg/ml RNT(2)-K1 treated cells. a 
denotes reduced viability as compared to Control, Lysine and 1 and 5 µg/ml 
RNT(2)-K1 treated cells at 6h. b denotes significantly different from all other 
treatments at 24 h. 
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Figure 5.3 Enzyme linked-immunosorbent assay for tumor necrosis factor-α (A), 
and Endothelial monocyte-activating polypeptide-II (B) on cell supernatant. 
Values represent means ± SD. A: * denotes different from same group at 24h. ** 
denotes greater than same group at both 1 and 6h. # denotes less than both 1 and 
24h levels. *** 1h LPS values are less than both 6 and 24h. a denotes Tumor 
necrosis factor-α was lower than all other treatment groups at 6h, except the 50 
µg/ml RNT(2)-K1 group. b indicates higher than all groups at 6h. c indicates 
lysine treated cells showed less Tumor necrosis factor-α in the supernatant than 
both the 5 and 50 µg/ml RNT(2)-K1 treated cells at 24h. B: No difference in 
Endothelial monocyte-activating polypeptide-II concentration was detected in the 
Quartz and LPS groups. 
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Figure 5.4 Effect of RNT(2)-K1 length on tumor necrosis factor-α levels in 
supernatant as determined by Enzyme linked-immunosorbent assay. Effect of 
time for long RNT(2)-K1 is depicted in Fig. 5.3.  ** denotes lower level than 
same dose of short tubes at 24h. * indicates lower than both 6 and 24h time 
points. a indicates significant difference from long RNT(2)-K1 at 6h. 
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Figure 5.5. Quantitative real time reverse transcriptase polymerase chain reaction 
for tumor necrosis factor-α (A) Interleukin-8 (B) and intercellular adhesion 
molecule-1 (C) mRNA expression. Values represent means ± SD fold change 
from control cells. A: * indicates values for LPS treated cells did not differ 
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between 1 and 6h. All other groups demonstrated an effect of time. a indicates 
quartz treated cells expressed greater levels of mRNA than all other treatment 
groups at 1h. b indicates greater mRNA expression than Lysine and LPS groups 
at 1h. c indicates the quartz value was higher than all other treatment groups at 6h. 
d indicated lower mRNA expression than both the 1 and 5 µg/ml RNT(2)-K1 
treated cells at 6h. B: Within each treatment all values differed between and 1 and 
6h. a indicates no difference from 5 and 50 µg/ml RNT at 1h. b indicates not 
different from Quartz or 5 µg/ml RNT at 1h. c indicates not different from 5 
µg/ml RNT at 1h. d LPS did not differ from Lysine at 6h. None of the RNT(2)-K1 
treated groups differed from each other 6h.  All other treatment groups were 
significantly different at 6h. C: * indicates values are different between 1 and 6h. 
a indicates at 1h, 5 µg/ml RNT(2)-K1 did not differ from Lysine, Quartz, or 1 
µg/ml RNT treated cells. b indicates Quartz did not differ from Lysine or 1 µg/ml 
at 1h. c indicates no difference between Lysine and 1 µg/ml RNT(2)-K1 treated 
cells. d indicated LPS treated cells had greater Intercellular adhesion molecule-1 
mRNA expression than all other treatments at 6h. No other differences between 
groups were detected. 
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5.5 Discussion 

This work demonstrates that human U937 macrophages lack a robust 

inflammatory response upon exposure to rosette nanotubes. Such information is 

important because macrophages are a pivotal cell type for recognition and removal of 

engineered nanostructures from the lung environment.  Moreover, by altering the 

temperature conditions of self-assembly I have studied the effect of nanotube length on 

inflammatory activation. Of note, the rosette nanotubes only reduce cell viability at 24h 

under the highest dose conditions, which is in contrast to that of quartz which reduced 

cell viability more prominently.  

 Previous studies have examined macrophage responses to the single-walled 

carbon nanotubes (Jia et al., 2005; Dumortier et al., 2006; Kagan et al., 2006; Pulskamp 

et al., 2007). Additionally, the U937 cell line has been employed to study the induction of 

proinflammatory cytokines by air pollution particulate (Vogel et al., 2005). While 

Dumortier et al.(Dumortier et al., 2006) studied functionalized water soluble carbon 

nanotubes in macrophages additional in vitro work has been conducted on other water 

solubilized nanostructures (Sayes et al., 2004; Sayes et al., 2005). The present work is 

however the first work peformed on a naturally water-soluble and self-assembling 

nanotube with ‘length-tunable’ characteristics.  

 Cell viability was studied using the Trypan blue exclusion method and indicated 

that only at 24h did the highest dose of rosette nanotubes reduce viability. This is in 

contrast to the quartz treated cells which showed a significant reduction in cell viability 

by 6h and also a greater magnitude of effect over all other treatment groups. The quartz 

data are similar to other work using the Trypan blue method in this cell line whereby 
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urban dust and diesel exhaust particulate reduced cell viability by 24h (Vogel et al., 

2005). As discussed in the previous chapter, Trypan blue detects only gross disruption of 

the membrane (McAteer & Davis, 2002) and therefore does not discriminate among other 

forms of cell death. 

 As markers of inflammatory activation, the supernatant levels of cytokines TNF-α 

and EMAP-II were measured. Tumour necrosis factor-α is produced by a number of cell 

types but the alveolar macrophages are a particularly robust source of this protein (Rich 

et al., 1989). It is a key initiator of the lung inflammatory cascade as it induces a number 

of proinflammatory effects in other cellular targets in the lung (Driscoll, 2000). I noticed 

higher concentrations of secreted TNF-α in the LPS treated cells than all other treatment 

groups at the 6h time-point. This difference however was no longer apparent by 24h. 

Conversely, TNF-α concentration in the Quartz treated group was the lowest at 6h but not 

at 24h. This coincides with the reduction in cell viability observed at 6h which would 

suggest fewer viable cells were available to produce and secrete the protein. Quartz 

treated cells showed the greatest induction of TNF-α mRNA at both 1 and 6h and 

therefore suggests that while the gene is being transcribed other factors are contributing 

to the lack of differences in protein level in the supernatant. 

 The rosette nanotubes are synthesized via a self-assembly mechanism, in which 

the length of the nanotubular structures has been shown to be influenced by temperature 

of the solvent (Fenniri et al., 2002b). I leveraged this temperature dependent effect to 

study the effect of nanotube length on TNF-α release. Previously, Sato and colleagues 

(Sato et al., 2005) studied the influence of multi-walled carbon nanotube length on 

responses of a THP-1 leukemia cell line and on subcutaneous inflammatory responses. 
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They concluded that the degree of inflammation in cutaneous tissue was greater for 

825nm-MWCNT than for 225nm-MWNT. They attributed this observation to the 

likelihood that the shorter MWNT would be more readily enveloped. The present 

experiments differ from that of Sato et al. in that the short RNT(2)-K1 ranged from 50-

200nm while the long RNT were microns long. I observed an effect of length only at 6h 

in the 5 and 50 µg/ml RNT groups and contrary to Sato and colleagues I noticed a greater 

response in the short RNT treated cells as measured by TNF-α secretion. This response 

may reflect differences in the phagocytic action towards different sized structures. The 

effect of nanostructure size on uptake and the time-course of proinflammatory activation 

has not yet been fully elucidated (Oberdorster et al., 1994; Lucarelli et al., 2004; Moss & 

Wong, 2006). 

 I also report the first data on secretion of mature EMAP-II from a human 

macrophage cell line in vitro.  In rats, I have previously shown that total EMAP-II is 

upregulated in LPS induced acute lung inflammation and using immuno-gold electron 

microscopy localized EMAP-II in monocytes (See Fig 2.2G). The present data indicate 

that rosette nanotubes do not induce secretion of mature EMAP-II at any dose or time-

point.  However, I did observe an increase in EMAP-II concentration in macrophages 

treated with LPS and quartz at 24h. This finding adds to my data on EMAP-II 

upregulation in vivo and for the first time identifies Quartz exposure as a possible 

stimulant for EMAP-II release in vitro. Elaboration of EMAP-II by macrophages in vivo 

in response to inhaled particulate matter would lead to recruitment of 

monocytes/macrophages to promote lung inflammation as shown by intratracheal 

instillation of pure EMAP-II (Journeay et al., 2007a). 
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 I also studied the induction of gene expression for the proinflammatory mediators.  

Tumour necrosis factor-α gene transcription was quickly activated upon exposure to all 

nanotube doses as well as Quartz at 1h. This effect was not observed in the Lysine and 

LPS treated cells. The fold change in TNF-α mRNA was less apparent by 6h in the RNT 

groups but remained the most elevated in Quartz treated cells. It is logical that 

transcription of the TNF-α is induced rapidly in response to foreign particulate. This is 

supported by studies showing TNF-α is one of the central proinflammatory mediators 

produced by macrophages (Rich et al., 1989) and that its secretion is also a hallmark of 

particle induced inflammation (Driscoll et al., 1997; Driscoll, 2000).  

All treatment groups demonstrated a divergent transcriptional response between 1 

and 6h relative to control cells for IL-8 mRNA. At 1h, all treatment groups with the 

exception of lysine showed an increased transcriptional response relative to controls, 

while at 6 h the opposite was true for all groups except LPS where mRNA levels 

remained elevated above the control cells. While few data exist on engineered 

nanostructures  and the induction of proinflammatory cytokine transcription (Gojova et 

al., 2007), previous work using carbon black, urban and diesel exhaust particulate have 

reported such responses in vitro using the U937 cell line (Vogel et al., 2005). They 

observed comparable IL-8 mRNA changes using carbon black, with much larger changes 

being observed for atmospheric particulate types. A key difference in my study is the 

measurement of mRNA induction at much earlier time points (1 and 6h) and the fact that 

the atmospheric particles contain many contaminants which are metallic in nature (Ghio 

et al., 1999). The increased expression of IL-8 has important implications in vivo because 
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this cytokine is a central chemotactic molecule for neutrophil migration into the lung 

(Goodman et al., 2003; Kobayashi, 2006).  

Intercellular adhesion molecule-1 (ICAM-1) mRNA changes were also studied.  

ICAM-1 mRNA is suppressed below control levels in all groups except the 50 µg/ml 

RNT(2)-K1 group and the LPS treated cells at 1h.  At 6h, however only LPS treated cells 

have increased levels of ICAM-1 mRNA over control cells. Once again few data exist on 

soluble engineered nanomaterials and their ability to induce adhesion molecules. It has 

been shown that alveolar macrophage expression of ICAM-1 can be increased after 24h 

of exposure to PM10 (Ishii et al., 2005), however no effect was seen when measured at 

2h. Given that rosette nanotubes are drastically different structures from PM10 and the 

time course of our measures was different, I can conclude that ICAM-1 is not induced at 

low doses of RNT(2)-K1 before 6h in vitro. However, LPS which is a well known 

inducer of ICAM-1 did show an increase at both 1 and 6h.  

 
5.6 Summary 

 
I provide the first data in a human macrophage cell line after exposure to rosette 

nanotubes. The results indicate that RNT(2)-K1 can activate transcription of 

proinflammatory cytokine genes as early as one hour, but this effect is not paralleled by 

protein secretion into the supernatant. Both short and long nanotubes exhibit an effect of 

time on cytokine secretion. However, neither dose nor nanotube length has a profound 

effect on inflammatory cytokine release. Moreover, 1 and 5 µg/ml doses of RNT(2)-K1 

have no effect on cell viability by 24h. While the macrophage inflammatory activation 

has been studied in this work, future studies must be conducted to examine the 

intracellular uptake of the RNT.



 102

CHAPTER 6 
 

Discussion and Synthesis 
 

6.1 General commentary and conclusions 
 
 Nanotechnology is continuing to develop rapidly as an economic and scientific 

force secondary to both market pull and technology push. Regardless of whether the 

drivers of nanotechnology are scientific or economic, addressing the environmental 

health and safety aspects of this technology are crucial to its societal acceptance and 

economic prosperity. Indeed, the scaling up of nanomaterial production to commercial 

levels might be limited only by a lack of information on human health and environmental 

handling of nanostructures. As with any new substance the science of toxicology is being 

applied to address possible risk associated with exposure to nanomaterials. However, 

assessment of human health risks of nanomaterials presents some unique barriers when 

studying both the exposure and hazard elements of the risk equation (Maynard et al., 

2006). For example, the nature of the rosette nanotube self-assembly process has made it 

difficult to label the structures for uptake and biodistribution studies, whereas more 

traditional materials can be rendered radioactive or tagged fluorescently with greater 

utility. Nevertheless, this dissertation represents some of the first work in the field of 

nanotoxicology. Moreover, it provides an early framework of terminology and research 

design considerations for future nanotoxicology research in Canada and internationally. 

 ‘Nanotoxicology’, which has been defined as the ‘science of engineered 

nanodevices and nanostructures that deals with their effects in living organisms’ 

(Oberdorster et al., 2005b), has been launched on a platform upon our understanding of 

ultrafine particle research. This has raised the issue of whether conventional toxicology 
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approaches are sufficient to establish the relative toxicity of engineered nanostructures 

with traditional particulate toxicants. The answer to this remains to be determined, but 

recent work has highlighted the difficulties in working with nanostructures which include 

characterization, batch variation, aggregation state and the most appropriate dose metric 

(Oberdorster et al., 2005a; Oberdorster et al., 2005b; Powers et al., 2007; Wittmaack, 

2007). The rosette nanotube starting compounds studied here are produced using standard 

operating procedures and the resulting nanotube chemical structures have been well 

characterized (Fenniri et al., 2001; Fenniri et al., 2002a; Fenniri et al., 2002b; Moralez et 

al., 2005). 

 At present, a tiered testing strategy (Oberdorster et al., 2005a) is being 

encouraged due to the lack of toxicity data currently available, however the interpretation 

of the data must recognize the unique properties of nanostructures before making general 

conclusions. These considerations are in stark contrast to the well established toxicity 

data and mechanisms of response to contaminants such endotoxin used in Chapter 1 

(Thorn, 2001; Rylander, 2002). Regardless of the toxicant, pulmonary toxicity studies 

have many well accepted end-points for measuring the degree of response. One hallmark 

end-point is analysis of the bronchoalveolar lavage fluid (Henderson, 2005). Influx of 

inflammatory cells into the airspace is a sensitive marker of inflammation with 

physiological significance. It should be emphasized however that when using the 

accepted screening method of intratracheal instillation (Driscoll et al., 2000), the bolus 

nature of the dose can lead to an inflammatory response being observed early which later 

resolves. In support of this mechanism I have reported an inflammatory response at 24h 

post-instillation which is resolving by 7d. These data are in agreement with recent 
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pulmonary toxicity data on water soluble C60, which showed a response as measured by 

bronchoalveaolar lavage cell counts that later dissipated (Sayes et al., 2007a). 

Characterizing the acute response by 24h is of toxicological importance particularly if it 

is severe, however the long-term outcome is also integral to understanding the possible 

health effects of nanomaterials.  

When studying the lungs as a target organ, distinct differences exist between the 

inflammatory response to nanomaterials and endotoxin. Therefore, in the present body of 

work I began by studying a well established model of acute lung inflammation and 

identified the upregulation of a novel cytokine known as EMAP-II. This is the first study 

to identify a role for EMAP-II in the lung inflammation literature and provides a new 

foundation to further our understanding of the cell recruitment cascade. Using techniques 

and  approaches similar to Chapter 1, I conducted an in vivo pulmonary toxicity screening 

study of self-assembling rosette nanotubes, in which EMAP-II was not detected in the 

bronchoalveolar lavage fluid. Endotoxin induces a robust inflammatory response as part 

of an innate defense via receptors such as Toll-like receptor-4 (TLR-4) (Thorn, 2001; 

Rylander, 2002). In contrast, the general mechanisms by which engineered 

nanostructures induce inflammation are still being elucidated. Until now, no data existed 

on the pulmonary responses to water soluble self-assembling nanotubes. Deriving the 

precise mechanisms of nanostructure induced inflammation is complex given the range of 

compositions and our evolving understanding of the role of oxidative stress and aspect 

ratio in toxicity (Xia et al., 2006; Oberdorster et al., 2007; Unfried et al., 2007). The 

traditional model for understanding ultrafine particle toxicity is grounded in an oxidative 

stress paradigm (Seaton et al., 1995; Donaldson et al., 2001; Donaldson & Stone, 2003; 
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Donaldson et al., 2005). Therefore, depending upon the synthetic process employed and 

the subsequent chemical content of a nanostructure it is reasonable to test the hypothesis 

that oxidative stress is the primary mechanism of toxicity (Xia et al., 2006). Based on this 

line of reasoning and the observed chemical composition, one would not expect the 

rosette nanotubes studied here to act via a similar mechanism. Although these 

experiments were not designed to test this specific hypothesis, the rosette nanotubes are 

biologically inspired, water soluble and metal free (Fenniri et al., 2001; Fenniri et al., 

2002a) and therefore unlikely to generate reactive oxygen species in a manner similar to 

combustion derived carbon particles or metal oxides (Ghio et al., 1999; Unfried et al., 

2007). Additionally, there is no evidence to suggest that rosette nanotubes would act 

through innate receptor responses such as Toll-like receptors, although other innate 

immune recognition responses can be modulated by nanoscale particles (Lucarelli et al., 

2004). 

 In an attempt to probe the potential of the rosette nanotubes to directly activate 

specific cells I applied in vitro methods to look at the human pulmonary epithelial and 

macrophage responses. These data establish important approaches for evaluating rosette 

nanotube toxicity and are the first comprehensive data on the proinflammatory potential 

of the rosette nanotubes in human cell lines. In vitro models to screen for possible in vivo 

toxicity are presently in demand as the development of new nanomaterials is out-pacing 

the capacity to test their toxicity or biocompatibility. The unique issues associated with 

nanostructure dosimetry (Wittmaack, 2007) have made it difficult to develop a suite of in 

vitro tests with comparative capacity to in vivo responses (Sayes et al., 2007b). From a 

risk assessment standpoint, in vitro studies should be used in combination with an 
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evaluation of exposures scenarios, epidemiology and in vivo toxicity studies (Devlin et 

al., 2005). Unfortunately, inadequate consideration of dosing and experimental design 

has led to artefacts and some poor interpretations of in vitro data in nanotoxicology 

research (Worle-Knirsch et al., 2006). Nevertheless, in vitro work is extremely valuable 

in isolating responses of specific cell types, as has been conducted in this work, as well as 

for studying subcellular localization and mechanisms of uptake of other nanostructures 

(Stearns et al., 2001; Chithrani et al., 2006; Chithrani & Chan, 2007; Unfried et al., 

2007).  

 Due to the fact that my studies were not designed for the purpose of studying 

possible in vitro correlates of in vivo responses, the cellular results are discordant with the 

in vivo mouse study. This is likely due to the complex biology of the lung environment. 

For example, as discussed in Chapter 4, while pulmonary epithelium can be activated 

directly to contribute to the inflammatory response, it is also responsive to exogenous 

TNF-α which can amplify the inflammatory cascade in epithelium as well as other cell 

types (Driscoll et al., 1997; Driscoll, 2000).  Conversely, macrophages are a robust 

source of TNF-α (Rich et al., 1989) and can also interact directly with epithelium and in 

concert with neutrophils influence inflammatory cell recruitment (Janardhan et al., 2006). 

Thus, the disagreement between the acute responses at 24h in my mouse study and the 

lack of a robust response observed in vitro may be attributed to a number of factors. 

Firstly, the bolus nature of administering material via intratracheal instillation has been 

known to cause acute responses which may or may not be an artefact. Moreover, the 

incredibly complex interrelationship among cell populations in the lung and the 

redundant physiological nature of the inflammatory response can make it difficult to find 
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accordance between in vivo and in vitro toxicity data. To this end, water soluble C60 has 

been shown to cause no difference in lung toxicity relative to control animals which is in 

contrast to in vitro data (Sayes et al., 2007a).  One noteworthy difference between C60 

and the rosette nanotubes studied here is that of aspect ratio. High-aspect ratio 

nanoparticles such as nanotubes may be more of an irritant for lungs than spherical C60. 

While speculative, there is long history of differences between the inflammation and 

toxicokinetics of fibres in the lung relative to those without a large aspect ratio 

(Donaldson & Tran, 2002; Oberdorster, 2002).  

 

6.2 Future directions 

 Nanotoxicology is presently in its infancy and thus the potential directions it can 

take are wide open. This is particularly true in Canada as this work is the first of its kind 

domestically. With respect to the rosette nanotubes a few logical areas have been 

identified for future directions. The determination of possible inflammation caused by 

nanomaterials is an important element of establishing their toxicity. However, the mere 

size of nanoscale particulate has created a demand to better understand the factors 

influencing the cellular uptake and in vivo toxicokinetics of nanoparticles. In this body of 

work, the complex nature of the rosette nanotube self-assembly process has made it 

difficult to develop a means by which they can be imaged, tracked, and quantified in vitro 

or in vivo. To date, only a few papers exists on the biodistribution of carbon nanotubes in 

vivo (Wang et al., 2004; Singh et al., 2006b; Guo et al., 2007).  Moreover, the nanotubes 

studied in these papers had to undergo considerable surface functionalization to be 

rendered soluble. Therefore, in order for self-assembling rosette nanotubes to be a viable 
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biomedical alternative to single-walled carbon nanotubes, biodistribution and uptake 

studies must be performed. 

 Aggregration of nanomaterials is a common problem in nanotoxicity research 

(Oberdorster et al., 2005a; Oberdorster et al., 2005b), and can indeed alter the toxicity of 

a given nanotube (Wick et al., 2007). The rosette nanotubes studied in this work 

aggregate in a pH-dependent fashion as the protonation state of the surface lysine group 

changes (Moralez et al., 2005). The aggregation state has tremendous implications for the 

interpretation of biodistribution data but even more so for in vivo and in vitro toxicity 

assessment. Solving the issue of aggregation of the nanotubes will be a key to moving 

forward with work on biomedical applications, because at present little is known about 

aggregation state in the physiologic milieu. 

 Finally, while the in vivo responses observed in the my mouse study appeared 

promising, longer term end-points such as 28 and 90 days should be studied to extend 

these results. Additionally, once a labeled rosette nanotube compound is developed, 

pulmonary clearance studies can be performed and a more detailed understanding of 

uptake into the lung cellular architecture and possible translocation can be assessed. 

 In toto, these novel nanotoxicology studies present an opportunity to establish 

experimental benchmarks in a rapidly growing area of research and to address some truly 

fundamental questions on the handling of nanostructures by living organisms. 
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