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ABSTRACT 

The objective of this thesis is to study the crystal structures and electronic properties of 

solids at high pressure using state-of-the-art electronic structure computational methods. The thesis 

is divided into two main sections.  The first part is to examine the performance and reliability of 

several current density functionals in the description of the electronic structures of small band gap 

materials and strongly correlated systems. The second part is to compare and evaluate two recently 

proposed first-principles methods for the prediction of stable structures of solids at high pressure. 

To accomplish the first goal, first-principle electronic structure calculations employing 

density functional theory (DFT) and several “correlation corrected” functionals calculations were 

used to investigate the properties of solid AlH3 and EuO at high pressure. The primary reason to 

study AlH3 is to resolve a discrepancy between previously predicted superconductivity behavior 

at 110 GPa but was not observed in experimental resistance measurements. The key to resolve the 

discrepancy is an accurate calculation of the valence and conduction band energies. The results 

shows that the Fermi surface is modified by the “improved” functionals over the previous 

calculations using “standard” gradient corrected functional.  These changes in the Fermi surface 

topology removed the possibility of nesting of the electronic bands, therefore, solid AlH3 above 

100 GPa is a poor metal instead of a superconductor. In the second system, we have studied EuO 

with highly localized electrons in the Eu 4f orbitals.  A particular interest in this compound is the 

report of an anomalous isostructural phase transition with a significant volume reduction at 35-40 

GPa and the relationship with the electronic state of Eu at high pressure.  Using the Hubbard on-

site repulsion model (LDA+U), we successfully predicted the insulator   metal transition of EuO 

at 12 GPa and the trend in the Mössbauer isomer shifts.  However, the isostructural transition was 

not reproduced.  The U on-site repulsion to localized Eu 4f orbtials helped to ameliorate some 

deficiencies of the PBE functional and improved the agreement with experimental observations 

but not all the properties were correctly reproduced. 

The second objective of this investigation is to predict energetically stable crystalline 

structures at high pressure. The reliability and relative efficiency of two recently proposed 

structure prediction methods, viz, Particle Swarm Optimization (PSO) and the Genetic Algorithm 

(GA) were critically examined. We applied the techniques to two separate systems.  The first 

system is solid CS2. The motivation is that this compound was recently found to be a 

superconductor with a critical temperature of 6 K from 60 – 120 GPa.  However, no crystalline 
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structure was found by experiment in this pressure range. Our calculations suggest the energetic 

favorable structures contain segregated regions of carbon and sulfur atoms. The sulfur atoms adopt 

a planar closed pack arrangement forming 2D square or hexagonal networks and the carbon atoms 

tend to form hexagonal rings. A global minimum crystalline structure with structural features 

observed in the amorphous structure was found and shown to be superconductive.   In the second 

case, we studied the possibility on the existence of Xe-halides (XeHn (H=Cl, Br and I, n = 1, 2 and 

4)) compounds below 60 GPa. We reported the stability, crystal and electronic structures, 

vibrational and optical spectra of a number of stoichiometric crystalline polymorphs. We found 

that only XeCl and XeCl2 form thermodynamically stable compounds at pressure exceeding 60 

GPa. A stable cubic fcc structure of XeBr2 was found to be a superconductor with critical 

temperature of 1.4 K.  From these studies, we found both merits and shortcomings with the two 

structural prediction approaches.  In the end, we proposed a hybrid approach to assure the same 

stable structure is predicted from both computational strategies. 
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Introduction and computational methodology  

To uncover the nature and properties of materials, scientists have to employ sophisticated 

experimental techniques to obtain accurate measurements on their chemical, physical and 

electronic properties. Although many properties of materials can be determined by experiments, 

sometimes it is difficult, or even infeasible to characterize systems, under extreme pressure and 

temperature conditions. To tackle this problem, first-principles or ab initio methods has been 

developed to study complex materials based on laws of quantum mechanics. These methods have 

been applied to the study of the electronic structure and prediction of the properties of a wide 

variety of materials. In this thesis, Density Function Theory method (DFT) [1]–[3], the most 

widely used electronic theory for theoretical calculations was employed. To find the solution to 

the many body Schrödinger equation without any adjustable parameter. Conceptually, DFT 

reduces the description of a system with N electrons from the 3N-dimentional total electron wave 

function to just the density. Hohenberg and Kohn theorem [1] proved that this mapping is exact. 

Kohn and Sham [2] also derived a practical scheme to compute the approximate solution of the 

Schrödinger equation by replacing an artificial non-interacting system, in which all many body 

(complex) effects are included in the exchange-correlation (XC) functional. The remaining 

problem, however, is the form of a universal density functional which describes the exchange and 

correlation of electrons. It is very complicated and not known. To overcome this shortcoming, over 

the years, a variety of XC functionals have been developed to describe a real electronic system 

under different conditions. Despite the success of some of the functionals to describe the electronic 

structure on a wide range of materials, major drawbacks of these functionals still remain. For 

example, due to the separate treatments of the exchange and coulomb interactions, the functional 

resulted in the unphysical interaction of an electron with itself was not cancelled exactly and this 

error needs to be corrected.  For this reason, a few properties such as the band gap of insulators, 

cannot be predicted reliably.  Methods to remediate this shortcoming have been proposed. In this 

thesis, we examined several approaches with an emphasis to the properties of solids under high 

pressure.  

        The study of material properties under extreme pressure and temperature conditions is an 

important subject in geophysics, planetary physics, and applied materials science. It is known that 
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the physical and chemical properties of almost all condensed systems can be dramatically changed 

by compression. In this thesis, the electronic structure of two particularly problematic compounds, 

AlH3 and EuO were studied and the results are reported in Chapter 2.  Above 100 GPa, AlH3 was 

predicted to be a metal and a superconductor by using the usual Generalized Gradient 

Approximation (GGA). Although the metallic character is confirmed by experiment, so far 

superconductivity has not been observed. This is a very important system as AlH3 is one of the 

few solid hydrides in which the structure at very high pressure is known unambiguously. The 

failure to verify the predicted superconductivity is a critical issue to be resolved, as it directly 

challenges the computational methods currently used to predict the critical temperature from the 

Bardeen-Cooper-Schreiffer (BCS) theory of superconductivity. We have examined several 

functionals to improve the description of the electronic structure of AlH3 in the pressure range 

from 90 to 160 GPa. All calculations suggest that AlH3 is a poor metal at 100 GPa with decreasing 

metallicity at high pressures.  Significantly, it is found that the Fermi surface topology is dependent 

on the functional used. We also performed perturbative GW calculations to correct for the 

eigenvalues obtained from the GGA functional. Another system of interest is EuO. EuO has 

strongly localized 4f electrons with complex electron-election interactions. Experimental 

measurements show this compound is a semiconductor under ambient conditions and transformed 

to a metal by compression. A small volume change associated with no change in the crystal 

structure (isostructural phase transition) was found to occur near 35 GPa. This observation has not 

been explained in a satisfactory manner. We investigate several other methods, such as the local-

density-approximation + Hubbard parameter (LDA+U), hybrid functional and modified Becke-

Johnson (mBJLDA) to examine the electronic structure of EuO and the phase transitions under 

pressure. All the methods employed failed to predict isostructural phase transition due to 

difficulties to describe strongly localized energy states but, LDA+U successfully predicts the 

pressure-induced semiconductor to metal transition.  

The conventional way to characterize the crystal structure of a material is based on 

diffraction experiments [4]. There are obstacles preventing direct experimental characterization of 

crystal structures under high pressure. An example, is that even under most favorable conditions 

it is difficult to define accurately the positions of light elements such as hydrogen or lithium at 

high pressure and theoretical electronic calculation becomes an indispensable tool to understand 

the electronic and crystal structure. Nowadays, in principle, it is possible to predict the structure 
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of any material from first-principle that is only from the information of the chemical composition, 

i.e. the type and number of constituent atoms. 

        In the past decade, new computational strategies have been developed to predict crystal 

structures. Here, we examine in detail the performance and reliability of two recently proposed 

methods, revolutionary algorithm and particle swarm optimization. In spite of the claims that these 

methods are almost infallible, we found it is not always to be the case. We have found different 

“global minimum” on a number of systems predicted using the two methods. The result led us to 

suggest a hybrid approach to assure the most stable structure is found. In Chapter 3, we investigated 

structures of solid CS2 at the pressure range from 2 to 120 GPa.  We found substantial energy 

barrier is required to break the molecular C=S bond. At high compression, CS2 decomposed and 

segregated into C and S regions.  A crystalline structure with the P21/m space group was found to 

be most stable from 60 to 100 GPa. Consistent with experiment, the predicted structure is metallic 

and superconductive in this pressure range. In Chapter 4, we report a systematic and detailed 

structural search for the low energy structures in XeCln (n=1,2 and 4) below 60 GPa. We have 

computed the optical absorption spectra from the solution of the Bethe-Salpeter-equation (BSE) 

based on the GW corrected quasi-particle energies. The results suggest that most XeCl and XeCl2 

compounds are semiconductors and thermodynamically unstable with respect to solid Xe and 

halogens lower than 60 GPa. We have also explored possible stable structures of Xe-Br and Xe-I 

in Chapter 5.  A stable cubic structure of XeBr2 is found at 60 GPa. This structure is metallic and 

superconductive with a critical temperature of 1.4 K. For XeIn, the theoretical results suggest that 

no thermodynamically stable compound can be formed.     

A material is simply a collection of atoms composed of electrons and nuclei and their 

behaviors are governed by the laws of physics. Therefore, any property of a solid, whether 

electronic, mechanical or optical, can in principle, be calculated by solving the many-body 

Schrödinger equation. Over the years, very accurate solutions of the Schrödinger equation have 

been feasible only for the simplest systems such as isolated atoms or simple molecules. As a result, 

approximate numerical solutions have been developed to study the behaviors of larger systems. 

First-principles methods are very powerful tools in physics and chemistry since they are based on 

the laws of quantum mechanics. These methods do not require experimental input beyond the 

general information on the composition of the system. However, a full quantum mechanical 
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treatment of a many-body system is still intractable. The many-particle Hamiltonian for a solid 

system in SI unit can be written as 

 

𝐻 = −
ℏ2

2
∑

∇𝑹𝑖
2

𝑀𝑛
𝑖

−
ℏ2

2
∑

∇𝒓𝑖
2

𝑚𝑒
𝑖

+
1

4𝜋𝜖0
∑

𝑒2𝑍𝑖𝑍𝑗

|𝑹𝑖 − 𝑹𝑗|𝑖<𝑗

−
1

4𝜋𝜖0
∑

𝑒2𝑍𝑖
|𝑹𝑖 − 𝒓𝑖|

𝑖,𝑗

+
1

4𝜋𝜖0
∑

𝑒2

|𝒓𝑖 − 𝒓𝑗|
,

𝑖<𝑗

 

(1.1)  

where 𝑀𝑛 and 𝑚𝑒 are the masses of the nucleus and electrons, respectively. The first and second 

term are kinetic energies and the last three terms describe nucleus-nucleus, electron-nucleus and 

electron-electron Coulomb interactions.  

Many approximations have been developed to reduce the burden of solving the many-body 

problems. For example, the Born-Oppenheimer approximation [5] separates the motion of 

electrons from the nuclei by assuming that the velocity of the nuclei are much slower compared to 

that of the electrons. In this way, the positions of nuclei can be regarded as fixed and only 

contribute as an external potential. This approximation has proven to be sufficiently accurate for a 

large number of systems. Many first-principles methods such as Hartree-Fock method (HF) [6] 

and DFT have been developed within the Born-Oppenheimer assumption.  The HF approximation 

is a mean field theory assuming individual electron motion does not depend explicitly on the 

instantaneous motions of the other electrons. Each electron is assumed to be described by its own 

spin orbitals. The DFT [1]–[3] assumes that electron density is the fundamental property and in 

principle, requires no orbital approximation. However, all these approximations have been 

developed to solve many-body problems. In the following, we described the theory behind the 

electronic structure calculations employed in this research. 

 

1.1 Electronic structure  

1.1.1 Hartree-Fock approximation 

Hartree-Fock theory is the first method employed to solve the many-body problem. The 

starting point is the construction of a total wave function for the system expressed as a product of 

one-electron wave functions. This approximation assumes that electrons are independent of each 

other and the total wave function of the system is a superposition of the one-electron wave 
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functions. To satisfy the Pauli Exclusion Principle, the total HF wave function can be expressed 

as a Slater determinant [7] 

                                      𝜓𝐻𝐹 =
1

√𝑁!
|

𝜓1(𝒓1) 𝜓2(𝒓1) … 𝜓𝑁(𝒓1)

𝜓1(𝒓2)
⋮

𝜓2(𝒓2) …
⋮    

𝜓𝑁(𝒓2)
⋮

𝜓1(𝒓𝑁) 𝜓2(𝒓𝑁) … 𝜓𝑁(𝒓𝑁)

| ,                                  (1.2)                                                             

the ground state wave function 𝜓𝐻𝐹 is an antisymmetrized product of N orthonormal spin orbitals 

𝜓𝑖(𝒓𝑖)  which is a product of a spatial orbital and spin function. The optimal wave function 𝜓𝐻𝐹 

should minimize the total energy  

                                                     𝐸𝐻𝐹 = 𝑚𝑖𝑛(𝜓𝐻𝐹→𝑁)𝐸[𝜓𝐻𝐹].                                                  (1.3) 

As a result, the full HF energy of a solid in atomic unit can be written as  

                       𝐸𝐻𝐹 = ∫𝜓𝑖
∗(𝒓) [−

∇2

2
+ 𝑉𝑒𝑥𝑡(𝒓)] 𝜓𝑖(𝒓)𝑑

3𝑟 +
1

2
∑ (𝐽𝑖𝑗 − 𝐾𝑖𝑗),𝑖,𝑗=1                             (1.4) 

the first and second terms are the kinetic energy and the electron-nucleus attractive (external) 

potential. The last term, so-called HF potential (VHF), is consisted of Coulomb integrals (𝐽𝑖𝑗) and 

exchange (𝐾𝑖𝑗) integrals. The two electrons integrals are expressed as  

                                        𝐽𝑖𝑗 = ∬𝜓𝑖
∗(𝒓1)𝜓𝑖(𝒓1)

1

𝑟12
𝜓𝑗
∗(𝒓2)𝜓𝑗(𝒓2)𝑑

3𝑟1𝑑
3𝑟2,                                    (1.5) 

                                       𝐾𝑖𝑗 = ∬𝜓𝑖
∗(𝒓1)𝜓𝑗(𝒓1)

1

𝑟12
𝜓𝑖(𝒓2)𝜓𝑗

∗(𝒓2)𝑑
3𝑟1𝑑

3𝑟2,                                   (1.6) 

 𝐽𝑖𝑗 is the electrostatic potential arising from the charge distribution of electron 1 and 2. This term 

includes a ‘self-interaction’ of the electron (i = j) which has no physical meaning and should be 

removed from the total energy. In the case of HF method, this self-interaction is exactly cancelled 

by the corresponding 𝐾𝑖=𝑗 exchange integrals.  

Although the HF approximation treats the electron self-interaction correctly, it is a mean 

field theory and neglects electron correlation effects since the one-electron wave function depends 

only on the coordinate of a single electron and is independent from the others. To overcome this 

shortcoming, explicit consideration of electron correlation must be exploited. This includes the 

construction of many-electron wave functions and this makes the calculation of a solid almost 

intractable.  
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1.1.2  Hohenberg-Kohn theorems  

DFT is a method that in principle does not need the assumption of a wave function. 

Historically, the first density functional was developed by Thomas [8] and Fermi [9] to describe 

the kinetic energy of a free electron gas in 1927. Not until 1964, DFT was formally established by 

two theorems due to Hohenberg and Kohn [1] 

Theorem I For any system of interacting particles in an external potential 𝑉𝑒𝑥𝑡(𝒓), the total energy 

is determined uniquely, except for a constant, by the ground-state particle density n0(r) 

Theorem II A universal functional for the energy E[n] in terms of the density n(r) can be defined, 

valid for any external potential 𝑉𝑒𝑥𝑡(𝒓). For any particular 𝑉𝑒𝑥𝑡(𝒓) the exact ground-state energy 

of the system is the global minimum value of this functional, and the density n(r) that minimizes 

the functional is the exact ground-state density n0(r). 

The first Hohenberg-Kohn (H-K) theorem implies that if the density of the system is 

known, everything about the system can be determined since the density of a system corresponds 

uniquely to the external potential. To solve the problem, we only need to find the ground state 

density. The second H-K theorem provides a recipe to construct the ground state energy functional. 

So far the exact energy functional of an interacting many-body system is not known. In 1965, 

Kohn and Sham (KS) [2]  proposed a practical scheme for DFT calculation as will be described in 

the next section. 

 

1.1.3 Kohn-Sham equations 

The KS approach states that a system of ‘non-interacting’ particles corresponds to a system 

of ‘interacting’ particles yielding the same ground state electron density. This means that instead 

of solving a system of interacting particles in an external potential, one can reproduce a solution 

with the assumption of non-interacting particles in an effective potential. In this way, the local 

electron densities obtained in these two systems are identical. All many-body interactions are 

defined by an effective potential and independent electrons will only interact through the effective 

potential. 

Following the KS approach, each electron in the interacting electron system is described by a set 

of single particle Schrödinger equations in SI unit 

                                     (−
ℏ2

2𝑚𝑒
∇2 + 𝑉𝑒𝑓𝑓(𝒓))𝜑𝑖(𝒓) = 𝜖𝑖𝜑𝑖(𝒓).                                              (1.7) 
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Note that φ is the single particle wave function in the interacting system often referred to as the 

KS orbital. The effective potential is defined as 

                                  𝑉𝑒𝑓𝑓(𝒓) = 𝑉𝑒𝑥𝑡(𝒓) + ∫
𝑛(𝒓′)

|𝒓−𝒓′|
𝑑3𝑟′ +

𝛿𝐸𝑥𝑐[𝑛(𝒓)]

𝛿𝑛(𝒓)
 ,                                       (1.8) 

where 𝑉𝑒𝑥𝑡, the external potential, includes electrons-nuclei interactions. The second term is the 

electron-density interaction and the exchange-correlation is represented by the last term. The 

electron density is simply a sum over squares of the KS orbitals 

                                                         𝑛(𝒓) = ∑ |𝜑𝑖(𝒓)|
2

𝑖 .                                                           (1.9) 

As a result, the ground state total energy of a solid can be written in terms of a functional of the 

electron density 𝑛(𝒓) and energy of nuclei 

                                                    𝐸𝑡𝑜𝑡𝑎𝑙[𝑛] = 𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛[𝑛] + 𝐸𝑖𝑜𝑛.                                          (1.10) 

Note that based on Born-Oppenheimer approximation, 𝐸𝑖𝑜𝑛 is only the energy of Coulomb 

interaction between nuclei and is explicitly determined by the atomic configurations. The complex 

term is 𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 which is 

𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛[𝑛(𝒓)] = 𝑇0[𝑛(𝒓)] +
1

2
∬

𝑛(𝒓)𝑛(𝒓′)

|𝒓−𝒓′|
𝑑3𝑟𝑑3𝑟′ + ∫𝑉𝑒𝑥𝑡𝑛(𝒓)𝑑

3𝑟 + 𝐸𝑥𝑐[𝑛(𝒓)],                 (1.11) 

                                    𝑇0[𝑛(𝒓)] = ∑ ∫𝑑3𝑟𝜑𝑖
∗(𝒓)𝑖 (−

ℏ2

2𝑚𝑒
∇2)𝜑𝑖(𝒓).                                     (1.12) 

As seen in Eq.(1.12), kinetic energy functional 𝑇0  consists of the independent motions of electrons. 

The second term of Eq.(1.11), the Hartree Coulomb energy, is obtained from electron-electron 

Coulomb interactions and the third term is comprised of the external potential describing the 

Coulomb interaction between the electrons for a given arrangement of the nuclei. Eventually the 

last term of Eq.(1.11) is the exchange-correlation energy functional 𝐸𝑥𝑐. 

The correct ground state total energy can be expressed by  
𝜕𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛

𝜕𝑛(𝒓)
 which means 

minimizing the Eq.(1.11) in terms of the ground state electron density 𝑛(𝒓). Note that the electron 

number is conserved in a solid system 

                                                            ∫𝑛(𝒓)𝑑3𝑟 = 𝑁.                                                            (1.13) 

Unfortunately, the exact form of 𝐸𝑥𝑐 is unknown. Different methods (functionals) have been 

developed to approximate this quantity.   
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1.1.4 Functional forms of exchange correlations 

Although the DFT approach simplified the solution of the many-body problem, a 

shortcoming is that the exact form of the exchange-correlation functional is not known. The easiest 

approximation assumed a homogeneous electron gas and is known as the local density 

approximation (LDA) [2]. It assumes the electron density of the system is constant in a small 

region of space. This earliest approximation treated a general inhomogeneous electronic system as 

locally homogenous. The exchange-correlation energy per electron is approximated using the 

electron density of a uniform electron gas 

                                               𝐸𝑥𝑐
𝐿𝐷𝐴[𝑛] = ∫𝑑3𝑟𝑛(𝒓) 𝜀𝑥𝑐[𝑛],                                                   (1.14) 

                                                  𝜀𝑥𝑐[𝑛] = 𝜀𝑥𝑐
𝑢𝑛𝑖𝑓𝑜𝑟𝑚[𝑛].                                                            (1.15) 

The numerical values of  𝜀𝑥𝑐
𝑢𝑛𝑖𝑓𝑜𝑟𝑚

 were calculated using quantum Monte Carlo techniques [10] 

for a uniform electron gas at a variety of electron densities. This approximation was highly 

successful but failed in situations where the electron density undergoes rapid changes, such as in 

transition metals and highly correlated systems. For non-uniform charge densities, LDA can 

significantly deviate from an accurate solution. Subsequently, the LDA approximation can be 

improved by Generalized Gradient Approximation (GGA) [11]–[14] where the gradient of the 

charge density is applied. The GGA functional can be written as 

                                               𝐸𝑥𝑐
𝐺𝐺𝐴[𝑛] = ∫𝑑3𝑟𝑛(𝒓)𝜀𝑥𝑐

𝐺𝐺𝐴[𝑛, ∇𝑛],                                           (1.16) 

 𝐸𝑥𝑐
𝐺𝐺𝐴 is expressed in terms of the gradient and higher spatial derivatives of the n(r). Furthermore, 

𝐸𝑥𝑐
𝐺𝐺𝐴 is separated into the sum of the exchange 𝐸𝑥 and the correlation 𝐸𝑐 functionals 

                                  𝐸𝑥𝑐
𝐺𝐺𝐴[𝑛] = ∫𝑑3𝑟𝜀𝑥

𝑢𝑛𝑖𝑓𝑜𝑟𝑚 [𝑛]𝐹𝑥𝑐[𝑛, ∇𝑛]𝑛(𝒓),                                      (1.17) 

where 𝜀𝑥
𝑢𝑛𝑖𝑓𝑜𝑟𝑚 = (−3𝒌𝑓 4𝜋⁄ ) is defined as the Slater exchange energy density for homogenous 

electronic system [15] and 𝒌𝑓 = [3𝜋
2𝑛(𝒓)]1/3 is a local Fermi wave vector. An analytic 

function, 𝐹𝑥𝑐[𝑛, ∇𝑛], known as the enhancement factor, modifies the energy density by including 

two exchange (Fx) and correlation (Ec) terms. The exchange enhancement factor Fx is a function 

of an important dimensionless reduced density gradient which is defined as 

                                                   𝑠 =
|∇𝑛(𝒓)|

2𝒌𝑓𝑛(𝒓)
.                                                            (1.18) 

The correlation term is given by 

                                       𝐸𝑐 = ∫𝑑3𝑟𝑛(𝒓){𝜀𝑐[𝑛] + 𝐻(𝑟𝑠, 𝑡, 𝜉)}.                                               (1.19) 
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Here, 𝜀𝑐[𝑛] is the homogeneous electron gas correlation energy and rs is the Seitz radius. Note that 

in the correlation term 𝐻(𝑟𝑠, 𝑡, 𝜉), rs is independent of Fx because the exchange energy scales 

linearly with uniform density [16]. Therefore, Fx does not change with different rs values. Another 

dimensionless gradient term is t defined as 

                                                        𝑡 =
|𝛻𝑛(𝒓)|

2𝑔𝒌𝑠𝑛(𝒓)
,                                                                     (1.20) 

                                                   𝑔 =
[(1+𝜉)2/3+(1−𝜉)2/3]

2
,                                                                 (1.21) 

where ks is a function of kf and 𝜉 is the degree of spin polarization.  

Beyond LDA and GGA, several functionals have been proposed, such as the meta-GGA 

[17], [18], Becke [11], the Becke-Lee-Yang-Parr (BLYP) [12]. Each approximation was developed 

to improve results for certain chosen properties. Among this class of functionals, Perdew, Burke 

and Ernzerhof (PBE)[14] is most successful and commonly used in the calculations.  

 

1.1.5 DFT+U 

Most DFT calculations on solids have been performed with either the LDA or GGA 

functionals. Although these approximations are able to describe the electronic properties of many 

materials, they are not sufficient for strongly correlated electronic systems with localized 3d or 4f 

electrons. Furthermore, LDA and GGA calculations often underestimate the band gaps and 

magnetic moments. The main reason for the failure is that electrons in d and f orbitals are localized 

with strong inter-electron interactions which cannot be treated as homogeneous electron gas and, 

moreover, the self-interaction term does not get cancelled explicitly. A remedy is an ad hoc 

approximation to overcome this problem. In 1991 V.I.Anisimov, et al [19] suggested the LDA+U 

method.  The one electron Hamiltonian is augmented by a Hubbard like term to account for strong 

local electron correlation. The on-site U parameter describes the effective electron-electron 

interaction (Coulomb interaction) in a solid state environment. If the U parameter is chosen 

properly, LDA+U can provide a reasonable description of the electronic structure. 

 

1.1.6  Calculation of the Hubbard U parameter 

The U parameter is dependent on the atom and the electron configuration. It is known that 

with an increasing number of 𝑑 electrons, the spatial expansion of the d wave function also changes 
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[20]. U is rigorously defined as the sum of the energy differences between two excited 

configurations, 𝑑𝑛+1, 𝑑𝑛−1 and the ground state 𝑑𝑛. The energy cost for this reaction is 

                                            𝑈 = 𝐸(𝑛𝑑 + 1) + 𝐸(𝑛𝑑 − 1) − 2𝐸(𝑛𝑑),                                    (1.22) 

𝐸 is the Coulomb energy of d orbitals. The strong Coulomb repulsion between d electrons can be 

taken into account by adding a term, 𝐸𝑈 =
1

2
𝑈∑ 𝑛𝑖𝑛𝑗𝑖≠𝑗 , in the Hamiltonian. Here, 𝑛𝑖𝑛𝑗 (n=0 or 

1) are the occupancies of the ith and jth localized d orbital. The total energy of a system can be 

written as 

                                                     𝐸𝐷𝐹𝑇+𝑈 = 𝐸𝐷𝐹𝑇 + 𝐸𝑈 − 𝐸𝑑𝑐 .                                                   (1.23) 

Since 𝐸𝐷𝐹𝑇  already is contained in part of 𝐸𝑈, the energy contribution of these orbitals should be 

removed in order to not double count their contributions. The subtracted term is called ‘double 

counting’ which is equal to the on-site LDA contribution to the total energy. 𝐸𝑑𝑐 is approximated 

as the mean-field value of the Hubbard term U. Therefore, the mean value of 𝐸𝑑𝑐 and neglected 

orbital polarization effects is simply given by 

                                      𝐸𝑑𝑐(𝑛𝑑) =
1

2
𝑈𝑁𝑑(𝑁𝑑 − 1) −

1

2
𝐽𝑁𝑑(𝑁𝑑 − 1),                                   (1.24) 

where 𝑁𝑑 = ∑ 𝑛𝑖𝑖  is the total number of d electrons. The on-site exchange parameter 𝐽 can be 

determined by fitting the expression (1.24) for the electron-electron interaction to the result of 

constrained LSDA calculations [20]. Several methods have been proposed to calculate the U value 

such as the linear response method [21] or most often U is empirically determined by fitting to 

experimental data [22]. In most cases, this simple approach permits a reasonable description of 

electronic structures of insulator/semiconductors with localized electrons which is underestimated 

by standard DFT functionals. 

 

1.1.7 Hybrid functional 

A hybrid functional is an approximation to improve the Hartree exchange and to correct 

for the self-interaction. The methodology is simple involving mixing of DFT exchange-correlation 

functional with a prescribed amount of non-local HF exchange. This simple approach has been 

shown to overcome some poor results given by GGA and LDA approximations for localized states 

[23]. A popular hybrid functional is the PBE0 [24], [25] functional where the exchange-correlation 

energy is given by 

                                        𝐸𝑥𝑐 = 𝛼𝐸𝑥
𝑒𝑥𝑎𝑐𝑡 + (1 − 𝛼)𝐸𝑥

𝑙𝑜𝑐𝑎𝑙 + 𝐸𝑐
𝑙𝑜𝑐𝑎𝑙 .                                       (1.25) 
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The value of α in Eq.(1.25) is set to 0.25 (i.e. 25% Fock-exchange). To reduce computational cost 

the exact exchange is only needed for a subset of the orbitals. For example, for the 3d electrons in 

a transition metal, often PBE0 preserves the popular density functional and is defined as 

                                𝐸𝑥𝑐
𝑃𝐵𝐸0[𝜌] = 𝐸𝑥𝑐

𝑃𝐵𝐸[𝜌] +
1

4
(𝐸𝑥

𝐻𝐹[𝜓𝑠𝑒𝑙] − 𝐸𝑥
𝑃𝐵𝐸[𝜌𝑠𝑒𝑙]),                              (1.26) 

where 𝜓𝑠𝑒𝑙 and 𝜌𝑠𝑒𝑙 represent the wave function and electron density of the relevant electrons. 

This approximation has been successfully applied to study a number of solids [26], [27]. However, 

it has not been well tested on transition metal compounds, in particular the metal oxides. A 

significant point missing in this discussion but central to this study is that all the previous studies 

were focused on systems at ambient pressure and the efficiency of hybrid functional methods under 

extreme conditions has not been critically examined.  

 

1.1.8 Semi-local mBJLDA functional 

Another method to improve the standard DFT calculation is to construct a functional that 

reproduces the exact exchange of the atom. As mentioned in Eq.(1.7), the Kohn-Sham density 

functional method is to solve the Schrödinger equation with the effective potential (𝑉𝑒𝑥𝑡 + 𝑉𝐻 +

𝑉𝑥𝑐,𝜎) which is the sum of the external, Hartree and exchange-correlation terms. As we know, the 

last term is obtained as a functional derivative of the energy 𝐸𝑥𝑐 with respect to the electron density 

(𝑉𝑥𝑐,𝜎 = 𝛿𝐸𝑥𝑐 𝛿𝜌𝜎⁄ ). This multiplicative potential was first suggested by Becke-Johnson (BJ) and 

is given by 

                                              𝜐𝑥,𝜎
𝐵𝐽 (𝒓) = 𝜐𝑥,𝜎

𝐵𝑅(𝒓) +
1

𝜋
√
5

6
√
𝑡𝜎(𝒓)

𝜌𝜎(𝒓)
 ,                                              (1.27) 

where 𝜌𝑁𝜎 = ∑ |𝜓𝑖,𝜎|
2𝑁𝜎

𝑖=1 is the electron density. 

                                                𝑡𝜎(𝒓) =
1

2
∑ 𝛻𝜓𝑖,𝜎

∗ (𝒓). 𝛻𝜓𝑖,𝜎
𝑁𝜎
𝑖=1

(𝒓),                                         (1.28) 

is the kinetic energy density and 

                                    𝑣𝑥,𝜎
𝐵𝑅(𝒓) = −

1

𝑏𝜎(𝒓)
(1 − 𝑒−𝑥𝜎(𝒓) −

1

2
𝑥𝜎(𝒓)𝑒

−𝑥𝜎(𝑟)).                             (1.29) 

Becke and Roussel [18] proposed to model the Coulomb potential by the exchange hole. 

In Eq (1.29) 𝑥𝜎 is determined from a nonlinear equation involving  𝜌𝜎, 𝛻𝜌𝜎, 𝛻
2𝜌𝜎 and then 𝑏𝜎 is 

calculated with 𝑏𝜎 = (𝑥𝜎
3𝑒−𝑥𝜎 (8𝜋𝜌𝜎)⁄ )1 3⁄  note that there is no exchange energy functional 𝐸𝑥 

whose functional derivatives  𝛿𝐸𝑥 𝛿𝜌𝜎⁄  satisfies Eq.(1.27) so there is no unique choice of 
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functional for the evaluation of the exchange energy if the BJ potential is used [28]. A modification 

of the BJ potential+LDA-correlation (TB-mBJ) was proposed recently by changing the relative 

weights of the two terms in the BJ potential on the exchange term [29], [30] 

                                       𝑣𝑥,𝜎
𝑇𝐵−𝑚𝐵𝐽(𝒓) = 𝑐𝑣𝑥,𝜎

𝐵𝑅(𝒓) + (3𝑐 − 2)
1

𝜋
√
5

6
√
𝑡𝜎(𝒓)

𝜌𝜎(𝒓)
.                             (1.30) 

In the TB-mBJ method, c was chosen to depend linearly on the square root of the average of 

|𝛻𝜌| 𝜌⁄  

                                            𝑐 = 𝛼 + 𝛽 (
1

𝑉𝑐𝑒𝑙𝑙
∫

|𝛻𝜌(𝒓′)|

𝜌(𝒓′)
𝑑3𝑟′

𝑐𝑒𝑙𝑙
)
1 2⁄

,                                          (1.31) 

where 𝛼 and  𝛽 are free parameters and 𝑉𝑐𝑒𝑙𝑙 is the unit cell volume. Based on a series of 

calculations the values of 𝛼 and  𝛽 were determined to be -0.012 (dimensionless) and 

1.023 𝑏𝑜ℎ𝑟1 2⁄ , respectively. For c=1 the original BJ potential is recovered. In general, the band 

gap increases monotonically with respect to c using Eq.(1.31). A larger value for c leads to better 

agreement with experiment for small band gap semiconductors. However, for larger band gap the 

optimized c value should also be larger. Thus, the goal is to find an optimal value for c that can be 

applied to different solids. Several groups have used this potential for the calculation of electronic 

properties and the results show general improvement on the predicted band gap for a variety of 

materials. For some systems, the results of mBJLDA is similar to the very expensive GW 

calculations.  In the WIEN2K code [31] used in this study, the kinetic energy density 𝑡𝜎 is 

calculated with Eq.(1.32) instead of Eq.(1.28) and correlation effects are implemented by adding 

LDA the correlation potential to  𝑣𝑥,𝜎
𝑀𝐵𝐽(𝑀𝐵𝐽𝐿𝐷𝐴) [32]  

                           𝑡𝜎(𝒓) = ∑ 𝜀𝑖,𝜎|𝜓𝑖,𝜎(𝒓)|
2𝑁𝜎

𝑖=1 − 𝑣𝑒𝑓𝑓,𝜎
𝐾𝑆 (𝒓)𝜌𝜎(𝒓) +

1

4
𝛻2𝜌𝜎(𝒓).                      (1.32) 

 

1.1.9 Periodic boundary conditions 

The total number of particles in a solid, including nuclei and electrons, is on the scale of 

Avogadro’s number (6.022 x 1023). Numerical solution of the KS equations are usually found by 

expanding the one-electron orbitals in a basis set. For example, since the one-electron wave 

function of a metal is expected to extend throughout the entire system, the basis set required to 

expand the KS orbitals is infinite. Fortunately, an ideal crystal is defined by repeated unit cells and 

each consists of a finite number of electrons and nuclei. The existence of periodic unit cells leads 

to the periodic boundary conditions (PBC) and the use of the Bloch theorem. The starting point is 
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that the potential is periodic and the solution of the single particle Schrödinger equation in the 

presence of this potential taking the form of Bloch wave functions 

                                                   𝜓𝑛(𝒌, 𝒓) = 𝑒𝑖𝑘.𝑟𝑢𝑛(𝒌, 𝒓).                                                     (1.33) 

Since 𝑢𝑛(𝒌, 𝒓) = 𝑢𝑛(𝒌, 𝒓 + 𝑹) is a periodic function for any lattice vector R, equation above can 

be rewritten as 

                                                  𝜓𝑛(𝒌, 𝒓 + 𝑹) = 𝑒
𝑖𝑘.𝑹𝜓𝑛(𝒌, 𝒓).                                              (1.34) 

Here n represents the band, k is the wave vector of the electron in the first BZ. Substituting 

𝜓𝑗(𝒌, 𝒓 + 𝑹) into the KS equation, a new set of eigen-equations are found for a given k. The Bloch 

wave functions simplify the calculation of a large system with ~ 1023 electrons into a single unit 

cell with a finite number of electrons. The complete solution is given by simply multiplying a wave 

vector k to the phase factor of the solutions in a single reciprocal unit cell. Solving the KS equations 

for infinite number of k points, however, does not make the solution simpler. It should be noted 

that electronic wave functions at k points close to each other have similar results. Therefore, only 

a finite number of k points in a small region of the reciprocal lattice are required to determine the 

total energy of a solid.  

 

1.1.10 Plane-wave basis sets  

To solve the KS equation for a periodic system, the functional form of KS orbitals should 

be represented by well-defined basis sets. The plane wave (PW) basis set with simple mathematical 

functions is commonly used in periodic solids. The convergence of the basis set is easily 

adjustable, essentially through a single parameter, i.e., the kinetic energy cutoff (Ecut). The KS 

orbital 𝜓𝑛(𝒌, 𝒓), can be expanded using the PW basis set as 

                                     𝜓𝑛(𝒌, 𝒓) = 𝑒𝑖𝑘.𝒓𝑢𝑛(𝒌, 𝒓) =
1

√𝑉
∑ 𝑐𝑖,𝒌+𝑮. 𝑒

𝑖𝑮.𝒓. 𝑒𝑖𝒌.𝒓𝐺 ,                        (1.35) 

where V is the volume of the unit cell and G is the reciprocal lattice vector. In principle, an infinite 

basis set of G should be used to expand the KS orbital 𝑢𝑛(𝒌, 𝒓). In practice, it is possible to truncate 

the infinite basis set to include only PW’s that have kinetic energies less than a defined cutoff 

energy 

                                                          
1

2
|𝒌 + 𝑮|2 < 𝐸𝑐𝑢𝑡.                                                          (1.36) 
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Clearly, the truncation of the PW basis set will cause an error in the calculated total energy. 

However, to verify the accuracy of the computed total energy, a given tolerance should converge 

by gradually increasing the kinetic energy cutoff. 

 

1.1.11 Pseudopotential approximations 

One of the main problems with the use of plane waves as a basis set is the difficulty in 

describing the core wave functions. Since the Coulomb potential is proportional to (~ 1/r), it is 

very steep in the nuclear core region. Thus, it results in rapid oscillations of orbital wave functions 

in the core region which requires a large number of PW components. For example, all orbital wave 

functions of aluminum are shown in Figure 1.1a. The core wave functions (1s, 2s and 2p) are 

sharply peaked near the nucleus. Valence wave functions (3s and 3p) are peaked far away from 

the nucleus but the oscillatory nature of the wave functions near the nucleus will require a large 

number of PW components to describe them properly.  

To resolve this problem, a potential to mimic the effect of the core to the valence electrons, 

known as a ‘pseudopotential’, can be employed [33]. Since the core region of the atom has little 

influence to the electronic structure, the core electrons and ionic potential are removed and 

replaced by a smooth part, leading to a more effective PW expansion. In this approximation, only 

the valence electrons are explicitly considered. All-electron and pseudo wave functions of 

aluminum valence electrons are shown in Figure 1.1b. As can be seen, the constructed pseudo 

wave function is generally identical to the all-electron wave function in the valence region r > rc 

and for the core region is nodeless. The proper cutoff radius should avoid overlapping of core 

regions with neighbor atoms.  
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Figure 1.1 (a) All wave functions and (b) comparison of all and pseudo wave functions of valence 

electrons of aluminum. 

 

1.1.12 Projected augmented wave potentials  

The projector augmented-wave (PAW) method developed by Blöchl [34] is an extension 

to the pseudopotential method. In principle, PAW is an all-electron potential that accurately and 

efficiently calculate the electronic structure of materials. A PAW potential possesses numerical 

advantages of pseudopotential by reconstructing correct nodal behavior of the valence electrons in 

the core region [35]. The general scheme of PAW is the composition of the three wave functions 

as illustrated below (Figure 1.2).  

                          PAW                             Pseudo                 Pseudo core              All-electron core 

 
 

Figure 1.2 A depiction of reconstructed PAW wave function that contains contribution of the all-

electron (inside core region) and pseudo (outsite of core region) wave function. 

 

Note that when the all-electron partial waves ∑ 𝜓𝑛
𝑎(𝒓)𝑎  are added to the total wave 

function, the corresponding pseudo partial waves ∑ 𝜓̃𝑛
𝑎(𝒓) 𝑎 must be subtracted. Therefore, the 

total wave function is a combination of the pseudo wave function outside the core region and the 
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all-electron wave function inside the core region. The all-electron single particle KS wave function 

can be written as 

                                                   𝜓𝑛(𝒓) = 𝜓̃𝑛(𝒓) − ∑ 𝜓̃𝑛
𝑎(𝒓) 𝑎 + ∑ 𝜓𝑛

𝑎(𝒓)𝑎 ,                          (1.37) 

the first term in Eq. (1.37) is a pseudo wave function that is smooth everywhere. The second term 

is the smooth part within the spheres a, and the last term, a steep function defined only within each 

augmentation sphere. In this thesis, the PAW potentials were used with the “Vienna Ab-initio 

Simulation Package” (VASP) [36], [37].  

 

1.1.13 Full potential linear augmented plane wave 

An alternative strategy to describe the core wave functions is the use of Linear Augmented 

Plane Waves (LAPW’s). This basis set is extremely efficient as modeling the properties related to 

core electrons such as the hyperfine fields or core level excitations.  In the region far from the 

nuclei, the electrons which are more or less ‘free’ to move are described by plane waves. Close to 

the nuclei, the electrons are more accurately described by their atomic functions. A sphere with 

muffin tin radius (Rmt) is defined to divide the valence electrons from the core electrons. Such an 

atomic sphere is called a muffin tin sphere and the remaining space outside the spheres is the 

interstitial region. Any eigenfunction  𝜓𝒌
𝑛  of a periodic Hamiltonian can be express exactly by a 

basis set with a finite set of coefficients 𝑐𝐾
𝑛,𝒌

 . Therefore the wave function of band index n at k 

point is defined as  𝜓𝑘
𝑛(𝒓) = ∑ 𝑐𝐺

𝑛,𝑘𝜙𝐺
𝑘(𝒓)𝐺 . Note that for eigenstates with another k, a new basis 

set using that other k has to be used. As mentioned above, it is infeasible to work with an infinite 

basis set, hence in practice, the plane wave expansion is limited to all G with G ≤ Gmax .In the BZ, 

a sphere with radius Gmax is centered at the origin of reciprocal space. LAPW used in the expansion 

of 𝜓𝑘
𝑛 is defined as 

𝜙𝐺
𝑘(𝒓) = {

1

√𝑉
𝑒𝑖(𝒌+𝑮).𝒓                                                                                      𝒓 > 𝑹𝑚𝑡 ,

∑ (𝐴𝑙𝑚
𝒌+𝑮𝑢𝑙(𝒓

′, 𝐸0) + 𝐵𝑙𝑚
𝒌+𝑮𝑢𝑙

·(𝒓′, 𝐸0)) 𝑌𝑚
𝑙 (𝒓′)                 𝒓 <  𝑹𝑚𝑡 .𝑙,𝑚

                    (1.38) 

 

The symbols k, G, V and r were defined in Eq.(1.35). The position inside the spheres is given with 

respect to the center of each sphere, r'. The 𝐴𝑙𝑚
𝒌+𝑮 and 𝐵𝑙𝑚

𝒌+𝑮 are uniquely determined by expansion 

of the plane waves in spherical harmonics and must be continuous at the sphere boundary. The 
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muffin tin sphere 𝑢𝑙  and its derivative (𝑢𝑙
·) are only parts of a basis function and are used to find 

how the actual eigenfunction looks like in that region of the crystal. It has to be constructed at the 

unknown eigenenergy 𝐸. The  𝑌𝑚
𝑙  are spherical harmonics.  

Up to this point we have defined LAPW as a basis set. To accurately describe the non-

uniform potential in the interstitial region, a full-potential treatment is essential. In this scheme, 

the potential between the muffin tin spheres is expanded into plane waves and calculated self-

consistently from the interstitial charge density [38]. Since the method includes non-spherical 

components, the choice of sphere radii is not very critical. The optimum choice for different radii 

depends on the potential or charge density, maximum between two adjacent atoms. 

                                     𝑉(𝒓) =

{
 
 

 
 ∑𝑉𝐿𝑀(𝒓)𝑌𝐿𝑀(𝒓)   𝒓 < 𝑹𝑚𝑡 ,

𝐿𝑀

∑𝑉𝐾𝑒
𝑖𝑲⃗⃗⃗ .𝒓⃗ 

𝐾

               𝒓 > 𝑹𝑚𝑡 .
                                       (1.39) 

 

This is the general scheme of full potential calculation. In order to have a small number of LM in 

the lattice harmonics expansion, a local coordinate system is used for each atomic sphere according 

to the point group symmetry of the corresponding atom [38]. In this thesis, all FP-LAPW 

calculations were performed with the WIEN2K package [31]. 

 

1.1.14 Self-consistent solution 

The ingredients needed to solve the KS equations have now been described. The ground-

state electron density and ground-state total energy can be solved self-consistently using the 

pseudopotential, PAW and LAPW method [39], [40]. The general procedure is illustrated in the 

flow chart in Figure 1.3.  

A self-consistent calculation starts with an initial guess of electron density n(r) that can be 

simply constructed from superposition of the electron densities of non-interacting atoms in the 

system. From this initial electron density, a set of KS equations including kinetic energy and Veff 

can be constructed. The KS equations are then solved at each k point employing wave functions 

described by a finite set of plane waves and truncated at the kinetic energy cutoff Ecut. A new 

electron density and potential are then constructed.  Convergence is achieved when variations of 

the charge density and potential are smaller than a pre-set tolerance. Otherwise, initial density will 



 

18 

 

be replaced by a new one and this procedure will be repeated. The following work flow illustrates  

the basic steps in the Kohn-Sham self-consistency solution.  

 

 

 

Figure 1.3 The workflow chart describing the KS self-consistent calculation. 

 

1.1.15 The GW approximation 

For a system of interacting electrons, due to the deficiency of the exchange correlation 

functional, DFT often fails to predict accurate band gaps and electronic excitation energies [41]. 

In 1965, Lars Hedin [42] suggested a method  based on the GW approximation to compute the 

self-energy using perturbative treatment on the XC potential of the KS equation. The quasi particle 

(QP) energies computed with the many body perturbation theory employed the “GW” 

approximation,  ∑ = 𝑖𝐺𝑊, [43], [44]  where G is the electron Green’s function and W = 𝜖−1 ν, the 

screened Coulomb interaction can be written as a product of the Coulomb kernel (ν) with the 

inverse dielectric matrix 𝜖−1. 
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  Since the perturbed potential screens the interacting electrons, GW correctly describes the 

required energies to add/remove an electron from a system.  The QP equations for a periodic crystal 

can be written as  

(𝑇 + 𝑉𝑒𝑥𝑡(𝒓) + 𝑉𝐻(𝒓))𝜓𝑛𝒌(𝒓) + ∫∑(𝒓, 𝒓
′, 𝐸𝑛𝒌)𝜓𝑛𝒌(𝒓

′)𝑑3𝑟′ = 𝐸𝑛𝑘𝜓𝑛𝒌(𝒓),                       (1.40) 

where T is the kinetic energy operator, 𝑉𝑒𝑥𝑡(𝒓) the electrons-nuclei potential, 𝑉𝐻(𝒓) the Hartree 

potential, and the self-energy operator Σ includes the many-body effects due to exchange and 

correlation. The quasi-particle (QP) energies are complex quantities describing the positions 

(𝑅𝑒𝐸𝑛𝑘) and widths (𝐼𝑚𝐸𝑛𝑘) of the QP peaks.  

Several steps are required to systematically improve the QP energies. The first step called 

G0W0, evaluates only the self-energy of the system while the wave functions of KS calculation 

are not updated. The dielectric function (𝜖) which is needed for the evaluation of the screened 

Coulomb interaction (W), is calculated using the DFT eigenvalues. In the second step, GW0, often 

leads to the better results. It is obtained by iterating only the G (partial self-consistency) term with 

the wave functions of KS fixed to the initial DFT calculations. Finally, in the self-consistent 

SCGW scheme, GW calculations were updated self-consistently with the eigenvalues in both G 

and W [45] being updated at each iteration.  

If the QP wave functions are not updated (GW0 step), this corresponds to the neglect of 

non-diagonal matrix elements of the self-energy. The quasi particle energies can be written as 

[46]–[48] 

                                 𝐸𝑛𝒌 = 𝑅𝑒[〈𝜓𝑛𝒌|𝑇 + 𝑉𝑒𝑥𝑡(𝒓) + 𝑉𝐻(𝒓) + ∑(𝐸𝑛𝒌)|𝜓𝑛𝒌〉].                                (1.41) 

The eigenvalues of the QP excitation energy can be solved by iteration 

 

                                𝐸𝑛𝒌
𝑁+1 = 𝑅𝑒[〈𝜓𝑛𝒌|𝑇 + 𝑉𝑒𝑥𝑡(𝒓) + 𝑉𝐻(𝒓) + ∑(𝐸𝑛𝒌

𝑁+1)|𝜓𝑛𝒌〉]                    (1.42) 

 =  𝑅𝑒 [〈𝜓𝑛𝒌 |𝑇 + 𝑉𝑒𝑥𝑡(𝒓) + 𝑉𝐻(𝒓) +∑(𝐸𝑛𝒌
𝑁 )| 𝜓𝑛𝒌〉] + 

(𝐸𝑛𝒌
𝑁+1 − 𝐸𝑛𝒌

𝑁 )𝑅𝑒 [〈𝜓𝑛𝒌| |
𝜕 ∑(𝑤)

𝜕𝑤
|
𝑤=𝐸𝑛𝒌

𝑁

|𝜓𝑛𝒌〉]. 

 

The N+1th iteration is related to the Nth iteration through the linearized equation and Z is the 

normalization factor. The QP energies can then be approximated as 
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𝐸𝑛𝒌
𝑁+1 = 𝐸𝑛𝒌

𝑁 + 𝑍𝑛𝒌
𝑁 𝑅𝑒[〈𝜓𝑛𝒌|𝑇 + 𝑉𝑒𝑥𝑡(𝒓) + 𝑉𝐻(𝒓) + ∑(𝐸𝑛𝒌

𝑁 )|𝜓𝑛𝒌〉 − 𝐸𝑛𝒌
𝑁 ].                             (1.43) 

 

In summary,  GW approximation can be used with wave functions generated  from a variety 

of XC functionals such as LDA, HSE03, PBE0, and HF [46]. However, since it is a perturbative 

theory, the more accurate the initial wave function, the better the results.  

 

1.1.16 Wannier function 

The crystalline solids consist of spatially repeated unit cells and led to periodic boundary 

conditions in which the crystal wave functions can be expressed in terms of the Bloch orbitals 

(BOs) (𝜓𝑛𝒌). The BOs are labelled with k and the band index n in reciprocal space. For a periodic 

system the translation operator TR and Hamiltonian H commutes. So, the composition operators 

HTR and TRH acting on Bloch orbitals both give the same eigenstates. 

                                            [𝐻, 𝑇𝑅] = 0         ⟹    𝜓𝑛𝒌(𝒓) = 𝑢𝑛𝒌(𝒓)𝑒
𝑖𝒌.𝒓 ,                              (1.44) 

𝑢𝑛𝒌(𝒓)  has the same periodicity as the electric potential and r  is the position in real space. 𝑒𝑖𝒌.𝒓 

is called the envelope function [49] and constructs a different wave function for every k. The 

construction of a wave function by the superposition of two or even more Bloch functions in k 

space is now feasible. A set of Wannier functions (WF’s) in real space can be written as  

                                                           𝑤0(𝒓) =
𝑉

(2𝜋)3
∫ 𝜓𝑛𝑘(𝒓)𝑑

3𝑘
𝐵𝑍

,                                          (1.45) 

where V is the volume of the real space primitive cell and integral is carried over the BZ. More 

generally, by inserting a phase factor 𝑒−𝑖𝑘.𝑹 into the integrand of Eq.(1.45), more WF’s can be 

constructed. 

                                                            |𝑤𝑛𝑹 >=
𝑉

(2𝜋)3
∫ |𝜓𝑛𝑘 > 𝑒

−𝑖𝒌.𝑹𝑑3𝑘
𝐵𝑍

,                            (1.46) 

 |𝑤𝑛𝑹 > is in Drirac bra-ket notation for every value of n at real space lattice vector R. Since the 

Bloch functions are normalized to one BZ and form an orthogonal set, WF’s should also form an 

orthogonal set in real space. In practice, two WFs |𝑤𝑛𝑹 > and |𝑤𝑛𝑹′ > transform into each other 

under translation by the lattice vector R-R'. The inverse transform of Eq.(1.46) leads to the Bloch 

functions. Therefore, any set of Bloch functions can be built up by linearly superposing the WFs, 

if the appropriate  𝑒−𝑖𝒌.𝑹 are used. 

Since the transformation of |𝑤𝑛𝑹 >  and |𝜓𝑛𝒌 > constitute a unitary transformation 

between Bloch and Wannier states, both sets of states lead to same physical properties.  Even 
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though WFs are not necessarily eigenstates of the Hamiltonian, both provide a valid and equal 

description of the band substance or charge density as the summation on the squares of |𝑤𝑛𝑹 >  or 

|𝜓𝑛𝒌 >.  

WF’s are non-unique and have an indeterminacy regarding the overall phase and the choice 

of gauge [49]. Therefore, Bloch functions can be defined without changing the physical description 

of the system  

                                                               |𝜓̃𝑛𝒌 >= 𝑒
𝑖𝜑𝑛(𝒌)|𝜓𝑛𝒌 >,                                                     (1.47) 

or 

                                                                |𝑢̃𝑛𝒌 >= 𝑒𝑖𝜑𝑛(𝒌)|𝑢𝑛𝒌 >,                                              (1.48) 

 𝜑(𝒓) in Eqs.(1.47) and (1.48)  is a real function that has the same periodicity as the Hamiltonian. 

However, the choice of a convenient gauge is important in the construction of  maximally localized 

WF. Ref’s [50], [51] present a method to show it is possible to interpolate WF in a dense k mesh 

to calculate band structure plots. Wannier interpolation is particularly useful to fine sampling of 

the BZ required to converge the parameter of interest. A schematic illustration of the Wannier 

interpolation procedure is shown in Figure 1.4. In the left panel, from first-principles calculation 

in reciprocal space (left panel), f(q) parameters are obtained for the Bloch eigenstates in coarse q 

points. Then, for selected bands the eigenstates and f(q) are transformed into WFs and F(R) in real 

space (middle panel). Note that Wannier-transformed F(R) should be strongly localized in the 

equivalent supercell. The f(q) parameters can be interpolated onto an arbitrary k point (e.g., k points 

along high symmetry paths) in reciprocal space by carrying out  an inverse transformation (right 

panel). This procedure is mostly used in accurate Fermi surface energy and band structure 

calculations.   
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Figure 1.4 Schematic overview of the Wannier interpolation procedure from Ref [48]. The left 

panel shows a coarse q mesh in BZ, where the f(q) is explicitly calculated using first-principle 

methods. The F(R) is calculated in real space (middle panel) and the right panel shows f(k) 

obtained from interpolation of k points in the BZ.   
 

In this thesis, accurate band structures of XeCln were constructed from the interpolation of 

the GW corrected eigenvalues at selected k points using the wannier90 code developed by Ref 

[49], [52].  

 

1.1.17 Bethe-Salpeter equations  

Many-Body Perturbation theory has been successfully applied to describe one-particle and 

two-particle excitations. Within a similar theoretical framework of the GW approximation, the 

Bethe-Salpeter Equation (BSE) [53] takes into account electron-hole interactions in the calculation 

of the optical spectra.  The first absorption spectrum using the BSE has been calculated by Hanke 

and Sham [54]. However, ab initio BSE approaches have only been used to compute the dielectric 

function of a large variety of materials, including semiconductors/insulators [55], [56].  

Three steps are needed to compute an optical spectrum (Figure 1.5). In the first step, 

eigenvalues and KS orbitals are determined from DFT calculations. The second step, QP 

eigenvalues of energies are obtained from GW calculations. In the last step, electron-hole 

interactions are included, and solving the BSE provides an accurate solution of the absorption 

spectrum [57], [58].  
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Figure 1.5 The left panel shows ground state energy, the middle panel is QP energies using GW 

correction and the last panel shows exciton energy obtained from BSE. 

 

The excited states relevant to the optical processes involving the simultaneous creation of QP 

coupled electron-hole is [59]  

                                                         |𝑆 >= ∑ ∑ 𝐴𝑣𝑐
𝑆 𝑎𝑣

†𝑏𝑐
†|0 >ℎ

𝑐
𝑒
𝑣 ,                                            (1.49) 

|0 > is the ground state of the many-electron system, 𝑎𝑣
†
 and 𝑏𝑐

†
 creates quasi-electrons and holes, 

respectively. The coupling coefficient 𝐴𝑣𝑐
𝑆 , is determined for each k point. The effective two-

particle Hamiltonian associated with the BSE can be written as  

                                       (𝜀𝑐
𝑄𝑃 − 𝜀𝑣

𝑄𝑃)𝐴𝑣𝑐
𝑆 + ∑ < 𝑣𝑐|𝐾𝑒ℎ|𝑣′𝑐′ > 𝐴𝑣′𝑐′

𝑆
𝑣′𝑐′ = Ω𝑆𝐴𝑣𝑐

𝑆 .              (1.50) 

The Hamiltonian in Eq.(1.50) is composed by the construction of a large matrix including all the 

valence and a sufficient number of conduction bands at different k points. The single particle 

valence (𝜀𝑐
𝑄𝑃
) and conduction (𝜀𝑣

𝑄𝑃
) band state energies are the GW QP energies and Ω𝑆 is the 

excitation energy. The first term in Eq.(1.50) is the diagonal part containing the QP energies. The 

second term, 𝐾𝑒ℎ, includes the electron-hole interaction kernel. For quasi-particle wave functions 

𝜓𝑣 and 𝜓𝑐 the second term of Eq.(1.50) can be written as  

< 𝑣𝑐|𝐾𝑒ℎ|𝑣′𝑐′ >= ∫𝑑3𝑟𝑑3𝑟′𝜓𝑐
∗(𝒓)𝜓𝑣(𝒓)𝑣(𝒓, 𝒓

′) 𝜓𝑐′(𝒓
′)𝜓𝑣′

∗ (𝒓′) −

                                  ∫ 𝑑3𝑟𝑑3𝑟′𝜓𝑐
∗(𝒓)𝜓𝑐′(𝒓)𝑊(𝒓, 𝒓

′)𝜓𝑣(𝒓
′)𝜓𝑣′

∗ (𝒓′),                                       (1.51) 

the first term contains the Coulomb kernel 𝑣 which represents repulsive electron-hole exchange 

and the second term, W is the attractive screened electron-hole interaction for the single-particle. 

The dielectric function is obtained in terms of the eigenvectors and eigenvalues. In this thesis we 

used the G0W0-BSE method to obtain optical spectra of XeCln structures at different pressures. 

Details of the implementation can be found in Refs [60], [61]. 



 

24 

 

1.1.18  Electronic localization function 

In quantum chemistry, the localized electrons help to determine covalent bond and lone 

pairs. In 1975, Bader et al. [62] realized that electron localization is related to same-spin pair 

probability and its associated Fermi hole function, which satisfies the Pauli exchange repulsion 

principle. Indeed, the probability of finding an electron close to a same-spin reference electron 

indicate the mapping of electron pair in multi-electrons systems. Becke and Edgecombe in 1990 

introduced a method [63] to calculate electron localization function (ELF). The assumption is that 

when the probability of finding the same spin electron near the reference point is small, the 

reference electron is highly localized. Hence, electron localization is associated with the smallness 

of the following expression 

                                            𝐷𝜎 = 𝜏𝜎 −
1

4

(∇𝜌𝜎)
2

𝜌𝜎
,                                                           (1.52) 

where 𝜏𝜎 is kinetic energy density with 𝜎-spin and 𝜌𝜎 is electron density. The ELF is defined as 

follows 

                                                        ELF =
1

[1+(
𝐷𝜎

𝐷𝜎
0⁄ )
2

]

 ,                                                          (1.53) 

here, 𝐷𝜎
0
 corresponds to a uniform electron gas with spin density equal to the local value of 𝜌𝜎. 

Note that ELF value is dimensionless and the possible values are between 0 and 1. An ELF value 

of 1 indicates perfect localization and an ELF value of 0.5 indicates free electron gas behavior. 

Therefore, ELF provides a convenient scheme for the classification of chemical bonding. 

 

1.1.19  Structural stability of solids  

One of the major conditions to confirm the existence of a stable phase is that when the 

structure is dynamically stable. Indeed, structural stability of a crystal structure is verified when 

its phonon band structure does not possess imaginary frequency. To obtain phonon band structure, 

the vibrational frequencies which are the eigenvalues of the dynamical matrix, 𝐷̃𝑖,𝑗(𝑞), should be 

calculated. 

                                   𝐷̃𝑖,𝑗(𝑞) =
1

√𝑀𝑖𝑀𝑗
∑ 𝐶𝑖,𝑗(𝑹𝐿 , 𝑹𝐿′). 𝑒

−𝑖𝒒.𝑹𝐿
𝑅𝐿 ,                              (1.54) 
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where M is the mass of atom with index i and j, 𝑹𝐿 and 𝑹𝐿′ are displacement of the atomic 

coordinates on the equilibrium positions, and 𝐶𝑖,𝑗 coefficient is the inter-atomic force constant. 

Phonon frequencies can be obtained as the square root of the eigenvalues of the dynamical matrix. 

Force constants can be computed from the second derivatives of the total potential energy 

with respect to atomic displacements. There are two strategies to obtain this quantity. First method 

is the supercell approach [64] which is a direct method to obtain phonon dispersion curves. The 

force constants are determined from the Hellmann-Feynman forces [65], [66] directly induced by 

the displacement of all atoms in the supercell. In this method, arbitrary q wave vectors in the first 

BZ are calculated through interpolation of the force constants.  In the second method, vibrational 

frequencies are obtained within the framework of density functional perturbation theory (DFPT) 

[67], [68], also known as the linear response method. The main idea in DFPT, is to show that the 

first derivatives can usually be calculated directly through the Hellmann-Feynman theorem, which 

states that a linear order variation of the electronic charge density is calculated using the value of 

the first derivative of the Hamiltonian from unperturbed wave functions.  The calculation of the 

second derivatives is more complicated. It includes the linear response of the ground state 

electronic charge density to the perturbation. An advantage of the second method is that the 

frequencies at any arbitrary q wave vector can be computed, contrary to the supercell. 

 

1.2 Structural prediction 

A main part of the thesis research is to predict the structure of materials at high pressure. 

Structure prediction is a global optimization problem. Many geometry search methods such as 

metadynamics [69],[70], minima hopping [71], simulated annealing [72], [73], particle swarm 

optimization [74], random sampling method [75] and evolutionary algorithms [76], [77] have been 

proposed and tested. In a sense, all these methods are conceptually related as they attempt to find 

the global minimum by overcoming energy barriers of the complicated potential energy surface. 

However, most optimization methods suffer from a common problem of being trapped in a local 

minimum. The strength of an optimization method relies on the ability to escape from these local 

minima. The ease of finding the global minimum is also a key in an optimization search. Random 

sampling method is a simple method and has been applied to many applications [78]–[80]. The 

evolutionary algorithm using self-improving algorithm has correctly predicted many structures 

[81]–[83]. Metadynamics is highly successful to yield reliable results if long simulation time was 



 

26 

 

employed [84], [85]. It is important to consider all the methods starting the search with randomly 

generated structures. It is almost impossible to benchmark the various methods in order to 

determine which ones work best for a given set of problems. In this thesis, two popular techniques, 

Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) were investigated. We wish to 

compare the reliability and explore the strength of these two methods.  

 

1.2.1 Crystal lattice and Gibbs free energy 

A crystal lattice is composed of a unit cell repeated infinitely in three dimensions. Six 

parameters are needed to define a unit cell. Three lattice vectors (a,b,c) and the angles between 

them (α,β,γ). Positions of the atoms are defined by the Cartesian coordinates. Therefore, there are 

3N-3 degrees of freedom associated with atomic positions with 3N+3 degrees of freedom in total 

to describe a crystal. Any crystal structure prediction technique must therefore optimize 3N+3 

variables collectively known as particles. The grey circles in Figure 1.6 illustrate these “particles” 

in the search space. The task is to locate the global minimum in an efficient manner. In practice, 

for all the methods each particle samples the energy surface at specific points dictated by the 

structure prediction algorithm. A set of “particles” found at each move is called a generation. Note 

that the number of particles and generations play significant roles in the structure search. The 

probability of finding the global minimum increases with increasing number of particles and 

generations. The most stable structure is the one having the lowest Gibbs free energy, G  

                                                     𝐺 = 𝐸 + 𝑃𝑉 − 𝑇𝑆 ≡ 𝐻 − 𝑇𝑆,                                      (1.55) 

where E is the internal energy at pressure P with volume V. T and S are the temperature and entropy 

of the system, respectively. Crystal structure searches were often performed at a selected pressure. 

Zero point energy (ZPE) is not included in the energy as temperature is ignored. Therefore, only 

the enthalpy H=E+PV is the relevant property to optimize. At high pressure, the PV term is the 

most important term of the free energy.  
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Figure 1.6 Several particles in grey color move in different directions of free energy surface. 

Balck dot circle is the global minimum and blue dot circles is a local minimum . 

 

1.2.2 Particle swarm optimization 

PSO is a technique originally introduced by J. Kennedy and R. C. Eberhart in 1995 [86]. 

PSO method was adopted for structural prediction by Mao et.al, [87].  This method was 

implemented in the CALYPSO code. The structural search starts with randomly generated 

structures but constrained by the crystallography space groups [88]. The trial structures can be 

constrained by the bond lengths information.  

The position of each particle 𝑥𝑖(t) is randomly chosen in the free energy surface. Each 

particle then moves within the multidimensional PES with an initial velocity, 𝑉𝑖(t), which is 

randomly generated. In the PSO scheme, position of each individual particle in the subsequent 

step, 𝑥𝑖(t+1), is dependent upon its prior location, as well as the velocity, 𝑉𝑖(t+1), by  

 

                                                      𝑥𝑖[𝑡 + 1] = 𝑥𝑖[𝑡] + 𝑉𝑖[𝑡 + 1],                                 (1.56) 

                                                                                                                                                   

                                                                                                                                                  (1.57) 

 

where, i ∈ {X, Y, Z}, w an inertia weight, 𝑤 = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
× 𝑖𝑡𝑒𝑟 is modified during the 

calculations ranging between 0.4 to 0.9 [87]. Note that w is dynamically varied and decreases 

linearly during the iterations. The coefficients 𝐶1 and 𝐶2 are the self-confidence and swarm 

𝑉𝑖[𝑡 + 1] = 𝑤𝑉𝑖[𝑡] + 𝐶1𝑟1{𝑥𝑖𝑏𝑒𝑠𝑡[𝑡] − 𝑥𝑖[𝑡]} + 𝐶2𝑟2{𝑥𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖[𝑡]},  
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confidence factors, respectively. These factors reflect how much the particle trusts its own 

experience more than the swarm. In this study, the default values of 𝐶1 = 𝐶2 = 2, determined from 

previous tests of the PSO method were used [87],[89]. 𝑟1  and 𝑟2 are random numbers generated 

within the range of [0,1]. 𝑥𝑖(t) after optimization moves into the nearest local minimum and the 

position is denoted as 𝑥𝑖𝑏𝑒𝑠𝑡[𝑡]. 𝑥𝑔𝑏𝑒𝑠𝑡[𝑡] is the position of the global minimum with the best fitness 

value for a given population. The workflow of the CALYPSO program in a hypothetical 1D energy 

surface (Figure 1.7) shows how 𝑥𝑖(t) propagate to the 𝑥𝑖(t+1) positions. At each generation, 

duplicate structures are identified and removed and new structures are generated via the PSO 

algorithm.  Following the recommendation from previous studies, a certain percentage (often 60%) 

of the lowest energy structures employed from the previous generation are used to construct the 

new structures of the ensuing generation. The remaining 40% of the structures are then generated 

randomly to maintain diversity during the search. A PSO search is terminated if no new lowest 

enthalpy was found after 20 successive generations. 

 

Figure 1.7 (a) A schematic diagram [81] depicting how generated structures explore minima within 

the PSO algorithm in a 1D PES. (b) The workflow in the PSO technique as implemented in the 

CALYPSO code. 

 

Since, the “movement” of particles in the search space is dynamically influenced by 

𝑥𝑔𝑏𝑒𝑠𝑡[𝑡], the particle position was not kept in succeeding generations. That means the best 

structure found in a particular generation is not necessary the same 𝑥𝑔𝑏𝑒𝑠𝑡[𝑡] for succeeding 

generations. For instance, the history of the search on the most stable structure of XeI2 at 10 GPa 

is shown in Figure 1.8. The black line represents the lowest enthalpy structure found at each 
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generation. For example, a low energy structure 𝑥𝑔𝑏𝑒𝑠𝑡[𝑡] was found in the third generation. 

However, in the 15th generation an even lower enthalpy structure was found. Then, no better 

structure was found for succeeding generations and the search was terminated at the 41st 

generation.  
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Figure 1.8 The PSO search performed on XeI2 at 10 GPa. 

1.2.3 Genetic algorithms  

Another structure search method employed in this research is based on the evolutionary 

algorithm. The genetic algorithms (GAs) attempt to find the local minima and global minimum 

from evolutionary principles such as mutation and heredity. The best structure is the one with the 

lowest enthalpy. The two main genetic operations, heredity and mutation, are shown in a schematic 

Figure 1.9. An offspring structure is generated through mutation operation by distortion of the 

parent structure. The heredity operation is to combine two parents to produce a single offspring.  
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Figure 1.9 The offspring structures generated via heredity and mutation. 

The GA software’s have been implemented by several groups [90]–[93] including 

ourselves and many different heredity and mutation operators are used to propagate offsprings. In 

this work, the GA method was mainly performed with our ASAP code [94].  

The only required input to the structural search is the chemical composition, such as the 

type and number of different atoms and bond length constrains. According to this information, 

random initial structures were generated. The mutation operation in ASAP code is performed in 

two steps. The first step, small distortions of the unit cell vectors are chosen randomly [95]–[98]. 

In practice, a symmetric strain matrix is applied 

                                          𝑉𝑛𝑒𝑤 = [

1 + 𝜀11 𝜀12/2 𝜀13/2
𝜀12/2 1 + 𝜀22 𝜀23/2
𝜀13/2 𝜀23/2 1 + 𝜀33

] . 𝑉,                                      (1.58) 

where the 𝜀𝑖𝑗 are zero-mean Gaussian random numbers taken from a specified standard deviation. 

The new cell vectors are re-scaled to generate a reasonable volume. In the second step, to displace 

atomic positions, ASAP applies small random shifts on x, y and z directions. At the end, the 

neighbour’s distances are calculated to ensure that the atomic distances are reasonable. 

Using the ‘cutting-shifting-splicing’ procedure [95]–[98] employed in the ASAP, the 

heredity operator combines the preferable properties of the parent structures to the offspring. The 

‘cutting-shifting-splicing’ procedure uses a spatially coherent fractional slab from each parent to 

assemble them together in order to produce the offspring. However, the generated offspring may 

not contain the correct number of atoms in the model cell. To overcome this problem, the parent 

structures are translated or shifted to generate the integer number of atoms in the offspring. After 
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the atomic coordinates are generated, the unit cell parameter of the offspring is determined from a 

weighted linear combination of the lattice vectors of the two parents.  

The percentage of new structures created via mutation and heredity operators is different 

for different GA codes. In the default setting of the ASAP code used in this study, 10% of structures 

are kept from the prior generation, 30% and 60% are generated from mutation and heredity, 

respectively. The choices of these default values have been evaluated previously [94] and were 

adopted here. The workflow employed in ASAP is similar to PSO (Figure 1.7b). A set of initial 

structures is randomly created. This is followed by local optimization and removal of duplicate 

structures. Then the GA generates new structures. Since in our ASAP code the lowest enthalpy 

structures are always kept and pass on to the succeeding  generations, the best local minimum 

(structure) is included into the next generation. For instance, the lowest enthalpy structure vs 

generations for XeCl at 40 GPa is shown in Figure 1.10. The lowest enthalpy structure is kept in 

the succeeding generation. 
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Figure 1.10 The GA search performed on XeCl at 40 GPa. 
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Study of the electronic structures in AlH3 and EuO at high pressure 

As mentioned in the chapter on the theoretical background, in some systems very accurate 

descriptions of the band gap for insulators or semiconductors with localized d and f electrons are 

challenging with standard DFT functionals. In this chapter, we examine existing and recently 

developed density functionals that claimed to provide a satisfactory solution to this problem. If an 

efficient computational scheme could be found, it would be beneficial for routine studies of high 

pressure systems. For this reason, we tested several functionals and their performance in the 

description of the electronic band structures of AlH3 and EuO.  

AlH3 is a solid with a high hydrogen content (10% by weight) [99]. At low pressure it is 

an insulator. Due to the high ionicity at high pressure electrons are being transferred from Al to H 

atoms. Aluminum hydride is very compressible and the volume can be reduced by almost 70% at 

100 GPa. The strong compression results in broadening of the valence band leading to metallic 

character. Metallic AlH3 has been predicted to be a superconductor with a critical temperature of 

24 K [100]. The origin of superconductivity was attributed to the nesting of two parallel Fermi 

surfaces. However, the superconductivity has not been confirmed by experiment. One of the 

possible reasons is that the nesting of the valence bands at the Fermi level that give rise to the 

superconductivity behavior, may critically depend on the accuracy of the electronic band structure. 

To examine this possibility, we wish to compute more accurate electronic band structure for AlH3 

above 100 GPa using several functionals that have demonstrated success on a number of systems. 

    An accurate description of electronic structure of compounds containing f electrons is the 

most challenging problem. The strongly localized 4f orbitals of lanthanide are known to be difficult 

to describe correctly using the standard density functional.  EuO is a protypical example of a highly 

correlated system. It is known to exhibit an anomalous isostructural transition at 35GPa. The origin 

of this transition has not been well established and often a 4f→ 5d (transition) hybridization is 

suggested to occur at high pressure. This conjecture is generally accepted by the community but 

has never been proven by rigorous theoretical calculations. The research to be performed here is 

to evaluate several theoretical approximations on their ability to describe the phase transition and 

the metallic state of EuO at high pressure. The intention is to examine whether these methods can 

provide reasonable results and reproduce the isostructural phase transition and isomer shifts 
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measured by Mössbauer spectroscopy. In this chapter, the results on the study of AlH3 will be 

presented first then followed by EuO. 

 

A portion of the research described in this chapter, namely the studies of solid AlH3 has 

been published at Ref [101] 

H. Shi, N. Zarifi, W. Yim, J. S. Tse, “Electron band structure of the high pressure cubic        

phase of AlH3,” J. Phys. Conf. Ser., vol. 377, p. 012093, Jul. 2012. 

The author contributed as follow: Dr. Hongliang Shi performed screened hybrid density 

functionals and GW calculations in this paper. 

 

2.1 Electronic structure of the high pressure cubic phase of AlH3 

2.1.1 Introduction 

Dense solid hydrogen was expected to exhibit unusual physical properties, such as metallic 

conductivity and high temperature superconductivity [102]. So far, solid hydrogen in a metallic 

state has not been found. In view of the very high pressure required, it was suggested that 

superconductors with high critical temperature may also exist by compressing hydrogen-rich 

alloys [102]. This is a very tempting proposal and has stimulated many experimental and 

theoretical efforts to investigate the structural and electronic properties on a wide variety of hydride 

compounds. Experimentally, superconductivity has been reported in SiH4 at high pressure [103]. 

However, the nature of SiH4 and the origin of the superconductive behavior is still a topic of debate 

[104]–[106]. On the other hand, theoretical calculations have  reported very optimistic predictions 

of Tc ( > 80 K) in simple molecular hydrides at high pressure [107], [108]. Without exception, all 

theoretical studies employed “standard“ density functionals with the ground state electronic 

structures and vibrational spectra obtained from semi-local (generalized gradient corrected GGA) 

density functionals with the pseudopotential plane wave method [109]. The electronic and 

vibrational information were then used in subsequent electron-phonon calculations in which Tc can 

be estimated [110]. It should be noted that an accurate band structure (Fermi surface) is critical to 

the prediction of the superconductivity. As will be shown later, it is particularly important in AlH3. 

 



 

34 

 

2.1.2 Structure of AlH3  

Unlike most simple main group hydrides, e.g. SiH4, there is no dispute on the crystal 

structure of the predicted superconductive phase of AlH3 stable beyond 100 GPa. Both 

experimental x-ray diffraction and theoretical studies found a cubic structure to be stable at > 100 

GPa [100]. The structure of the cubic phase 𝑃𝑚3̅𝑛 is remarkably simple and different from 

complex structures found in most high pressure hydrides. It is consisted of a bcc arrangement of 

Al at the corners and the center of the cube and pairs of H atoms (H2 molecule) on the faces. The 

structure at 110 GPa (shown in Figure 2.1) has the H-H distances (1.54 Å) which are shorter than 

Al-H distances (1.72 Å ). 

 

Figure 2.1 The 𝑃𝑚3̅𝑛  structure of AlH3 has been suggested at 100 GPa. 

 

2.1.3 Electronic properties using standard functional  

The electronic band structure obtained from DFT calculations using the Perdew-Burke-

Ernzerhof (PBE) functional revealed two electronic bands cross the Fermi level forming an 

electron pocket at R and an electron hole at M symmetry points (Figure 2.2). The theoretical results 

show the band dispersion of two bands along M → R are almost parallel at Fermi level and these 

two pieces of Fermi surfaces can be nested in the M → R direction. This feature has led to the 

predicted superconductive behavior of AlH3.   
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Figure 2.2 Electronic band structure of the cubic 𝑃𝑚3̅𝑛 phase of AlH3 calculated with PBE 
functional at 100 GPa from Ref [100]. Two bands cross the Fermi level at M and R. The red arrow 

indicates the nesting vector connecting the two pieces of Fermi surfaces. 

  

    As the result of the nesting, a large mass enhancement parameter, λ=0.74, was obtained 

from electron-phonon calculations for the cubic AlH3 phase. Using the extended McMillan 

equation, a fairly high Tc of 24 K was predicted at 110 GPa [100]. To test the theoretical prediction, 

resistance measurements have been performed down to 4 K and up to 164 GPa. Although the 

results show AlH3 is a metal, no superconductivity was found [100]. The experimental result is 

somehow surprising with a judicial choice of a nominal Coulomb repulsion parameter (μ*, ca. 

0.1 – 0.15). Since the calculated Tc’s are often in reasonable agreement with experiment, the 

discrepancy between the theory and experiment in AlH3 is perplexing and has motivated several 

theoretical investigations [111]. In one study, it was shown that the lattice vibrations in AlH3 are 

highly anharmonic [112]. If the renormalized frequencies were used in the calculations of the 

phonon line-widths, a smaller mass-enhancement parameter was obtained. However, theoretically, 

anharmonicity should enhance the electron-phonon couplings as this is one of the basic 

assumptions of the Garland-Benneman-Mueller theory on the superconductivity of disordered 

solids [113]. More recently, calculations on the optical spectrum of cubic AlH3 predicted a highly 

damped low energy transition below 1 eV that induced an abrupt edge in the reflectivity [111]. 

This observation is significant as the electronic excitation energy is very close to the H-H vibration 

frequencies, thus raising the possibility of strong coupling between them. In this study, we took a 

different viewpoint. Since the large electron-phonon coupling in AlH3 was attributed to the nesting 

of the Fermi surfaces predicted from semi-local PBE calculations, it is relevant to investigate 
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possible changes in the band structure calculated with improved DFT methods proposed recently. 

These changes may help to explain the lack of superconductivity. 

 

2.1.4  Methodology   

    The Kohn-Sham (KS)-DFT method is computationally efficient and can be used on a wide 

variety of complex materials. The calculated structural and chemical properties are often in good 

agreement with experiments. However, there are several known shortcomings with this approach 

using the existing GGA functional. Pertinent to the discussion here, is that these functionals often 

underestimate the energy gap between the occupied valence and unoccupied conduction band, and 

in some cases, even the profile of the band structure was incorrect. This deficiency can be traced 

back to the failure of DFT in describing the electron self-interaction and/or exchange interaction 

correctly. Several remedies to this problem have been proposed. Within the local density 

approximation (LDA) framework, an approximate functional designed to mimic the gap structure 

in the exact exchange of an atom was introduced by Becke and Johnson (BJLDA) [114] and later 

extended to solids by Tran and Blaha (TB-mBJLDA) [29], [30]. An alternative is to add a small 

amount of non-local Hartree-Fock (HF) exchange to the semi-local density functional. The PBE0 

hybrid functional is a combination of the popular PBE functional with a 25% Hartree-exchange 

[24]. Taking advantage of the fast spatial decay of the short range HF exchange, a screened 

Coulomb hybrid functional separating the short-range and long range HF exchange was introduced 

by Heyd-Scuseria-Erhzerhof (HSE) [115]. The HSE functional offers an efficient computational 

scheme for extended periodic systems. On the other hand, a different approach based on many-

body perturbation theory (GW) can be used to correct for the band gap problem. The GW method 

[57],[116] goes beyond the local exchange mean field approximation and includes many-body 

electron-electron interactions through the screening of the exchange term. Comparisons of the 

different methods have been made in several recent publications [46], [47], [117], [118] Therefore, 

a discussion on their strength and weakness will not be repeated here. In general, all the above 

mentioned methods have succeeded to ameliorate the underestimated band gap energies, albeit 

each has its own limitations and problems. 

In this study, electronic band structures of AlH3 in the pressure range from 90 to 160 GPa 

calculated from first-principles methods PBE [14], TB-mBJLDA [29], HSE [26], single shot 

G0W0 and self-consistent GW(SCGW) [46], [47] were investigated. The pressure was obtained 
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from the calculated equation of state (EOS, i.e. energy vs volume) from the respective methods. 

The exception is that the pressure for G0W0 and SCGW were taken from the PBE and HSE 

calculations. Full-potential linearized augmented plane wave (FLAPW) WIEN2k program [29] 

were used for the PBE calculations. The WIEN2k code was also used for TB-mBJLDA 

calculations using the PBE optimized wave functions as initial estimates. Converged FPLAPW 

results can be achieved with an RKmax value of 5 and a plane wave cutoff, Gmax, of 20 Ry. HSE, 

G0W0 and SCGW calculations were performed with the VASP code. Projected augmented wave 

(PAW) potentials [37] for Al and H were used in the PAW planewave calculations. The energy 

for the planewave cutoff was 710 eV. A 12×12×12 Monkhorst-Pack k point mesh [119] was used 

for Brillouin integration. For G0W0 and SCGW, calculations were performed with both PBE and 

HSE optimized zeroth-order wave functions.  

 

2.1.5 Results and discussions  

High pressure cubic AlH3 has been shown to be a metal from DFT calculations. However, 

DFT calculations using the common functional is expected to introduce large errors in the proper 

description of H atom due to incomplete cancellation of the Hartree and exchange-correlation self-

interaction energies [117]. The PBE and TB-mBJLDA band structures for AlH3 computed using 

WIEN2k at selected pressures are compared in Figure 2.3. The band structure profiles are similar 

to previous PBE results (Figure 2.2) [100].  
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Figure 2.3 Electronic band structure of AlH3 calculated from PBE (red) and TB-mBJLDA 

functionals using the WIEN2k code (black) from Ref [101]. The pressures are obtained from the 

equation of states calculated from the respective functionals. 

 

Ensuing discussions will focus on the profile of the two energy bands crossing the Fermi 

level at the M and R symmetry point. At M, the electronic band has the shape of an inverted 

parabola while the band dispersion at R resembles a parabolic free-electron band. At first glance, 

there is little difference in the band structure of the occupied bands obtained from the two methods. 

In detail, the vacant TB-mBJLDA conduction bands were found to shift to higher energies. This 

observation is consistent with previous reports in which TB-mBJLDA exhibits a similar trend on 

the band shift. At 93 GPa with lattice constant of a=3.15 Å, the maximum at R and the minimum 

at M cross the Fermi level forming electron-hole and pocket, respectively. As the pressure 

increases, the energy minimum at R near the Fermi level also increases. Although the energy 
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maximum at M stays very close to the Fermi level using TB-mBJLDA method, the “pseudo-gap” 

between M and R increases with pressure. 

 

Variation of the energy with pressure at R and M symmetry points relative to the Fermi 

level from PBE, TB-mBJLDA, HSE, G0W0 and SCGW calculations are compared in detail and 

the results are presented in Figure 2.4. If the energy at M is positive, the electronic band crosses 

the Fermi level. If the energy at R is positive, the band does not cross the Fermi level. The corollary 

is, if the energy at M is negative and the energy at R is positive then the system is a semiconductor 

or insulator. As long as the energy at M remains positive, the system is metallic. First we examine 

the consistency between the pseudopotential and all electron calculations using the PBE functional. 

As shown in Figure 2.4a, the results are almost identical. This observation confirms the choice of 

the various computational parameters. The PBE results show a steady decrease in the maximum 

energy at the M point with increasing pressure but still does not touch the Fermi level at pressure 

above 160 GPa. The minimum energy at R shows exactly the opposite trend. Since M is positive 

and R is negative within this pressure range, AlH3 is metallic and the nesting of two pieces of 

Fermi surfaces at R and M is still possible.  

The same conclusion is reached in a previous study using the PBE functional [100]. 

Although the trends on the variation of the band energy at M and R are similar to the PBE results, 

the TB-mBJLDA band structure in Figure 2.4b shows a significantly different profile.  At 93 GPa, 

the band structure is broadly similar to that of the PBE functional. The maximum energy of the 

band at M is not very sensitive to pressure and remains above the Fermi level showing that the 

system is metallic up to the highest pressure studied here. The energy minimum at R, however, 

moves to higher energy at high pressure and no longer crosses the Fermi level. Therefore, nesting 

of the two Fermi surfaces is no longer possible. 

The HSE results show a similar pattern as PBE (Figure 2.4c). The only difference is that 

the energy at R and M relative to the Fermi level are substantially smaller. For example, at 98 GPa,  

the PBE maximum energy at M of 0.53 eV and minimum energy at R -0.99 eV differ quite 

significantly from the corresponding HSE values of 0.18 eV and -0.44 eV. AlH3 is still metallic 

within the pressure range studied, however, since the HSE conduction bands were shifted to higher 

energies, the curvatures of the two Fermi surfaces will no longer be same as predicted by PBE and 

nesting of the Fermi surfaces may not be feasible. 
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Figure 2.4 Comparison of calculated maximum energy at R and minimum energy at M relative to 

the Fermi energy using (a) PBE functional with VASP and Wien2k code and GW corrections; (b) 

TB-MBLJDA; (c) Comparison of HSE functional with VASP and GW corrections; (d). Pseudo-

gap energy between the R and M using PBE (VASP and WIEN2k), TB-mBJLDA, HSE, G0W0 

(PBE and HSE) and SCGW (PBE and HSE) [101] . 

 

One shot G0W0 corrections were made using ground state wave functions computed from 

PBE and HSE functionals and are reported in Figure 2.4a, 4c and 4d. The variation of the energy 

at M and R with pressure follows a similar trend observed in the corresponding PBE and HSE 

calculations. G0W0 corrections to the quasi-particle energy are noticeably larger with the PBE 

wave function. Relative to the PBE, G0W0 (PBE) calculations show an almost uniform shift of 

+0.3 eV of the energy at R and -0.4 eV for the energy at M over the entire pressure range. In 

comparison, the G0W0 (HSE) corrected quasi-particle energies at R are much smaller. The quasi-



 

41 

 

particle corrections, however, are more significant at M where the G0W0 (HSE) energies are ca. 

0.2 eV lower than the corresponding HSE values. There is one important difference between the 

PBE and HSE G0W0 results. At pressures higher than 135 GPa, G0W0 (HSE) energy of M 

becomes lower than the Fermi energy and is higher than the Fermi level at R. Results of G0W0, 

GW0, and SCGW corrections on the PBE and HSE ground state wave functions are compared in 

Figure 2.4a and 4c, respectively. Both the PBE and HSE quasi-particle energy differences relative 

to the Fermi energy at M and R are reduced with increasing level of correlation treatment. For 

example, for the HSE corrections at 100 GPa, the energies at M relative to the Fermi level decrease 

from 0.18 eV (G0W0), to 0.12 eV (GW0) and then to 0.02 eV (SCGW).  Similarly, the energies 

at R relative to the Fermi level increases steadily from -0.26 eV (G0W0), to -0.16 eV (GW0) and 

finally to -0.09 eV (SCGW). The GW0 corrections to the quasi-particle energies are close to of the 

SCGW values but the absolute differences are still fairly significant (< 0.1 eV).  Shifts in the band 

energies lowered the possible “metal → insulator” transition pressure from the G0W0 (HSE) 

predicted value of 135 GPa to 120 GPa for SCGW. A similar trend in the energy shift is also 

observed on the quasi-particle GW corrections to the PBE eigenvalues at different level of 

approximations. The SCGW energies of the M and R points, like the pseudo R-M gaps calculated 

from the PBE wave functions are still noticeably different from the corresponding results using 

the HSE wave functions as references. 

Since the original proposal of possible superconductivity in AlH3 was attributed to the 

nesting of two pieces of Fermi surfaces cutting the Fermi level at M and R [100], the critical 

parameter to be examined is the pseudo-gap between the M and R point. The main results obtained 

from the present investigation are summarized in Figure 2.4d. All the methods studied here display 

the same general trend. Within the pressure range studied, all methods show AlH3 is metallic and 

there is gradual opening of the gap between M and R. In comparison, GW calculations show the 

gap opening much faster with pressure and AlH3 may become an insulator at higher pressure. It is 

interesting to note that even though the TB-mBJLDA calculations predicted that the energy change 

at M was not very sensitive to pressure, the predicted R-M pseudo-gap energies are very close to 

the SCGW (HSE) results. 
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2.1.6 Conclusions 

Owing to a lack of experimental data, it is not possible to ascertain the accuracy of the band 

structures computed from the different methods. Experimental resistance measurements [100] 

show that the resistivity increased from 100 to 160 GPa and the temperature profiles resembled 

that of a bad metal. Present results obtained from more refined density functionals suggest there is 

an increase in the pseudo-gap between M and R with pressure. This band shift will affect 

curvatures of the bands at the Fermi level and the possibility of extensive nesting might diminish. 

The prediction from PBE calculations that the two electronic bands crossing the Fermi level near 

M and R led to nesting of Fermi surfaces may not be realized in reality.  It can be concluded that 

AlH3 will be a poor metal or even a low band gap semiconductor under pressure up to 160 GPa, 

not a superconductor. In passing, it is noteworthy that in spite of many successful applications of 

standard DFT calculations in reproducing structures and structural transitions for solids at high 

pressure, in some systems, accurate band structures are critical for the determination of the phase 

transitions. An example is that DFT calculations underestimate the insulator to metal transition in 

𝜀-O2 transition pressure by almost 50 GPa [120], [121]. The discrepancy with experiment is 

removed once the quasi-particle corrections are made with G0W0 calculations [122]. In a recent 

calculation of the electron-phonon coupling in C60 molecules [123], the hybrid functional 

although did not alter the structure and vibrational properties significantly, it increased the 

contribution of the exchange energy to the total electron-phonon coupling by almost 40% bringing 

the theoretical prediction in better agreement with experiment. 

 

 

2.2 Insulator-metal transition and valence instability in EuO  

2.2.1   Introduction 

Eu is a rare-earth lanthanide element and its magnetism arises from the open half-filled 4𝑓 

shell with an electron configuration of 4𝑓75𝑑06𝑠2. With perfect spin polarization and a large local 

moment of 7𝜇𝐵, EuO is an ideal spintronic material under ambient conditions [124], [125]. The 

first experimental study of the electronic structure of EuO was made in 1970 [126]. At 300 K, 

optical absorption spectra established that the indirect energy gap between the localized 4f state 

and the conduction band edge is about 1.12 eV [127]. The 4f electrons are highly localized near 
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the Fermi level forming almost flat bands. On the other hand, the 5𝑑6𝑠 conduction bands are 

highly dispersive and separate from the filled states by a small energy gap. Unlike the majority of 

the lanthanide elements with trivalent electronic states, owing to the very stable heavy filled 4𝑓7 

configuration, Eu is a divalent metal under ordinary conditions [128]. A recent study reported that 

Eu metal, similar to EuO, remains nearly divalent to the highest pressures (87 GPa) with magnetic 

order persisting to at least 50 GPa [129]. The characteristics feature of valence electrons and 

magnetic instabilities of EuO and Eu2O3 have been the subject of many experimental and 

theoretical investigations [130]–[133].  

The first pressure-induced semiconductor to metal transition of EuO at high pressure was 

reported in 1972 [134]. Recently, the experiment was repeated with Eu L2,3 edges x-ray absorption 

and Eu Mössbauer spectroscopy using synchrotron radiation [135]. The experimental EOS in 

Figure 2.5 clearly shows two phase transitions at 35 and 45 GPa. Under ambient conditions, EuO 

has a simple NaCl (B1) crystal structure. A small volume change associated with an isostructural 

phase transition from B1 to B1' was found near 35 GPa. This transition with a modest volume 

collapse (~ 0.5%) was first noticed by Jayaraman [134]. The precise nature of this phase transition 

is still not known but it is often referred to as an electronic instability [135]. A first-order structural 

phase transition to a denser simple cubic CsCl (B2) structure occurs with a large coexistence region 

of both phases from 44 to 59 GPa  [135], [136]. The B2 structure is stable up to at least 92 GPa. 

For lanthanides, pressure-induced electronic collapse has often been assumed to be due to the 

promotion of a 4f electron to the iterant 5d orbitals leading to mixed valence states. So far, no 

theoretical calculation has been able to reproduce all the experimental features. Here, we computed 

and compared EOS and electronic structures of EuO using PBE+U, mBJLDA and Hybrid PBE0 

functionals. 
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 Figure 2.5 Pressure-volume dependence of EuO up to 92 GPa obtained from Ref [135]. The inset 

panel shows a modest isostructural volume collapse at about 35 GPa. Two schematic figures show 

the local coordination in NaCl (B1) and CsCl (B2) phases. 

 

Nuclear forward scattering (NFS) and x-ray absorption near-edge spectroscopy (XANES) 

experiments have also been performed [135], [137]. From the comparison with the XANES Eu2+ 

and Eu3+ oxides, fractional occupation of 4f orbitals with a mixed valence (Eu2+ and Eu3+) states 

between 14 and 40 GPa was suggested [138]–[140]. A surprise reentrant valence behavior (i.e. 

disappearance of the Eu+3 features and return that of Eu+2) between 45 to 80 GPa was observed 

from the B1' to B2 phase transition. To provide support for a change of electronic transition, 

Mössbauer isomer shift (IS) were determined from the NFS experiments. In the hope that the 

change in the Eu IS can provide additional information on the valence states [141], [142]. The 

experimental Mössbauer spectra show a single resonance indicating that the compound is spatially 

homogeneous in the B1 phase below 40 GPa and B2 phase above 60GPa. Between 44 and 59 GPa 

where B1' and B2 phases coexist the Mössbauer spectra show two resonances indicating Eu is in 

a spatially inhomogeneous valence state. A second objective of this study is to investigate how 

nucleus charge density that affects the IS, changes as a function of pressure. 
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2.2.2  Computational details 

Ab initio calculations were performed using the Full-potential linearized augmented plane-

wave with WIEN2K program [31]. In the LDA+U calculations, an effective on-site Coulomb 

repulsion correction Ueff = (U − J) = 6.9 eV is applied to the Eu 4f orbitals [132]. The plane wave 

cutoff  𝑅𝑀𝑇𝐾𝑚𝑎𝑥 was set to 9. The charge density in the Fourier expansion was truncated at 𝐺𝑚𝑎𝑥 =

12𝑏𝑜ℎ𝑟−1 .The convergence in the charge density was better than 10−4𝑒. A 21⨉21⨉21 k point 

mesh to sample the first Brillouin zone was used in all calculations. Only spin-polarized 

ferromagnetic states were considered and the contribution of the spin-orbit coupling was found to 

be negligible.  

 

2.2.3 The electronic band structure of EuO 

In the ground state, EuO is a semiconductor. Hybrid functional PBE0 and semi-local 

mBJLDA method, however predicted erroneously that EuO is a metal. The over-emphasis of the 

hybridization between Eu 4f and 5d orbtials is the cause for the closing of the indirect band gap 

for PBE0 at Γ and X  (Figure 2.6a). Unlike AlH3, mBjLDA did not improve the band structure and 

also failed to correctly describe the electronic structure of EuO even at an ambient pressure 

(Figure 2.6b).  

As already discussed in Chapter 1, the Hubbard U correction was designed to model the 

on-site electron repulsion correction. Electronic band structure of EuO obtained from PBE+U 

calculations at the experimental structure is shown in Figure 2.6c. The occupied and unoccupied 

bands are separated with an indirect band gap of ~0.6 eV between 𝛤and X.  The direct band gap at 

the 𝑋 is significantly smaller than the direct gap at the 𝛤 point. In the present study, only the 

correction for the f electrons was found to be necessary to provide a qualitatively correct band 

structure. In comparison to the Eu 4f bands, the dispersion of the unoccupied 5d conduction bands 

are much more significant. This may be the reason that it is not essential to take U𝑑 into account 

in the 5d shell [134]. The indirect band gap was found to close at 0.88V0 with the equilibrium 

volume, V0=238 bohr3, obtained from EOS (Figure 2.6d). The PBE+U predicted the volume is 4% 

larger than experimental volume corresponding to 0.88V0 at 12 GPa. Adding the Hubbard model 

in the mBJLDA+U functional also gave the expected electronic band structures with a larger gap 

(Figure 2.6c). The inclusion of an on-site repulsion U𝑓 shifted the occupied 4f bands down closer 
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to the O 2p bands. The Eu 5d states are still located at the bottom of the conduction band at  𝑋 and 

at 𝛤. However, the gap between the Eu 4f and 5d bands closes much faster than the O 2p and Eu 

4f band gap. The results obtained here show adding U one-site repulsion to the f orbitals with PBE 

and mBJLDA functionals helps to reproduce the expected band structures and the magnetic 

semiconductor ground state of EuO. However, from the band structure, mBJPBE+U wrongly 

predicted that EuO maintains a semiconductor for B1 phase at higher pressure. 
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Figure 2.6 Electronic band structures of EuO (a) Hybrid fuctional, (b) mBJLDA at ground state. 

Red (PBE+U) and black (mBJLDA+U) lines represents electronic band structures at (c) ground 

states and (d) 0.88V0. 

 

The EOS obtained from spin polarized PBE+U calculations are shown in Figure 2.7a. The 

energies and volumes were fitted to the Birch and Murnaghan equations of state [143], [144]. A 

very small volume discontinuity near 0.88V0 was found. This result is consistent with recent more 
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precise diffraction study which indeed shows a small volume change at 12 GPa pressure (see 

Figure 2.5). The reason for the discontinuity is that at 12 GPa, the d band touches the localized f 

bands at X closing the indirect gap, and EuO becomes a metal. When the system is compressed 

beyond 12 GPa, the EOS remains continuous and shows no sign of the observed B1  B1' 

transition. Despite the failure to predict the isostructural phase transition at ~ 35 GPa, the EOS 

clearly shows the B1 to B2 phase transition occurs at 0.72V0 or 55 GPa. In agreement with 

experiment, Eu was found to maintain the high spin state in the calculated pressure range. It should 

be noted that mBJLDA and PBE0 calculations also failed to predict the isostructural B1 B1' 

transition.   
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Figure 2.7 Equation of state of EuO using PBE+U functional as a function of (a) volume and (b) 

pressure.  Inset (a) illustrates the calculated small kink around the 0.88 V/V0. 

 

2.2.4 Isomer shift of EuO under pressure 

The Eu Mössbauer spectra of EuO obtained from NFS technique have been measured up 

to 80 GPa at ambient temperature. The results suggested that Eu remains in the divalent state at 

this pressure [135]. Mössbauer isomer shift is related to the s-electron density at the nucleus. 

However due to shielding by other atomic orbitals, the IS can be influenced by the valence state. 

We have calculated the s-electron density at the nucleus (ρ0) using all electron PBE+U functional 

with WIEN2K in the B1 and B2 phases. 

The electron densities were calculated using two different integration meshes and the 

results were compared in Figure 2.8. We found that the size of the integrating mesh plays a 

significant role in determining the absolute magnitude of the electron density. In the WIEN2K 
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code, the first radial mesh point (R0) determines the logarithm mesh difference for the integration 

scheme. For heavier elements such as Eu, a smaller R0 is recommended. We first examined the 

core (1s, 2s, 3s and 4s) and the valence (5s and 6s) contributions to the total sum of the s-electron 

densities using R0=0.00001 and R0=0.0001. Then, the calculations were repeated using R0 with 

0.00005 and 0.00008. 

Several conclusions can be drawn by the analysis on the results obtained with choice of 

different radial mesh points. The core nucleus density computed with R0=0.00001 (Figure 2.8a) 

shows significant fluctuations close to equilibrium volume at low pressure. This fluctuation   

suggested a serious numerical error. Even increasing the value of R0 (Figure 2.8b) could not totally 

diminish the numerical error of the core orbitals. In comparison, the valence orbital contribution 

is less noisy for both R0s, particularly for the larger R0. 

993824

993828

993832

993836

 

(0

) 
(a

. 
u
.)

(b)

 

core+valence

(a)

V/V0


(0

) 
(a

. 
u
.)

928

932

936

940

 

core

 

corevalence 992894.4

992894.8

992895.2

992895.6

992896.0

 

  

 

R
0
=0.00001

0.7 0.8 0.9 1.0
586754

586756

586758

586760

586762 R
0
=0.0001

core+valence

0.8 0.9 1.0

548

550

552

554

 

 

0.8 0.9 1.0

586207.5

586207.8

586208.1

valence

 

 

Figure 2.8 Electron densities ρ0 of EuO at the nucleus under pressure with two different radial 

mesh points. 

 

The absolute values of ρ0 were found to be sensitive to the integration mesh. For instance, 

decreasing R0 from 1x10-4 to 1x10-5 caused an increase in the s-electron density at the nucleus 

from 556755 to 993825 au-3! In contrast, the ratio ρ0/ρmax shows very similar feature for the B1 

phase and are identical from 0 to 70 GPa (Figure 2.9a). The errors are negligible at pressures 

greater than 10 GPa. Interestingly, a small discontinuity (red circle) was observed around ~12 GPa. 
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The discontinuity is directly related to the closing of the gap at X symmetry point leading to metal 

transition. In addition, two “kinks” were predicted around ~29 GPa and a smaller one at 35 GPa. 

We tentatively associate these features to the B1 to B1’ transition. 

In comparison, the calculated EOS (energy vs. volume) are identical regardless of the 

different radial mesh points (Figure 2.9b) Therefore, the total energy of EuO is not seriously 

affected by the choice of the integration mesh.  
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Figure 2.9 Electron densities at the nucleus and (b) calculated energy as a function of volume of 

EuO with different R0s. 

 

The isomer shift is related to the density at the nucleus by a linear equation [145],  

                                                                𝐼𝑆 = 𝐴. ∆𝜌0 + 𝐶,                                                        (2.1) 

where A is a calibration constant [146], [147]. ∆𝜌0, is the relative density with respect to ρ0 at zero 

pressure [129] and C is a numerical constant. The experimental isomer shifts and the calculated s-

electron density (∆𝜌0) of Eu with R0=0.00001 in the pressure range from 0 to 83 GPa are compared 

in Figure 2.10. The experimental isomer shift observed a small “kink” around 30 GPa (see inset) 

and the absolute values of IS decrease from -11.28 mm/s at low pressure to -3.97 mm/s at 60 GPa 

in B1 phase. The calculated nucleus s-density reproduces the experimental trend qualitatively, 

where a discontinuity predicted around ~30 GPa is consistent with the experiments. Furthermore, 

the calculated ρ0 also decreased abruptly in the B2 phase. 
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Figure 2.10 Pressure-induced electron densities at the nucleus of EuO. The inset shows IS 

measured by Ref [135]. 

 

2.2.5 Conclusions 

In summary, although PBE+U functional was not able to reproduce the isostructural B1  

B1' phase transition, the semiconductor to metal transition with a very small volume change at 12 

GPa was correctly described.  The mBJPBE+U method also predicted an indirect band gap at 

ambient conditions but it failed to reproduce the metallic phase of B1 and B2 structures at high 

pressures. The Hubbard U is generally an empirical parameter and may be obtained by fitting to 

experimental results or using linear response. In this study we employed a constant U parameter 

at the pressure range studied. Isostructural phase transitions observed in the experiments were not 

predicted by the calculations. An accurate modeling of the electronic structure of this highly 

correlated system (EuO) at high pressure remains a challenge and may require a mixed-valence 

state multi-configurations composed of both Eu2+ and Eu3+ states.  

Finally, we showed the numerical integration scheme plays an important role in computing 

the s-electron density near the nucleus. Although the choice of radial mesh for integration changes 

the absolute value of ρ0, it does not affect the pressure trend. Our results indicate large numerical 

error in the nucleus electron density calculations below 10 GPa. At higher pressure a discontinuity 

related to the B1 to B1' transition was correctly predicted around ~30 GPa. The increase of ρ0 in 

Eu2+ can be rationalized by the following reasons. A compression of s-like electron shells can 
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increase exchange interactions between 4f electrons and unoccupied d orbitals. In our case, 4f 

electrons decrease with increasing pressure but real valence change towards Eu3+ was not solved 

due to isostructural phase transition. Eventually, further compression reduces ρ0 at B2 phase and 

increases valence electrons of f orbitals above 50 GPa.  

 

2.3 Summary  

In this chapter, the electronic band structures and properties of AlH3 and EuO were 

examined using different functionals within the framework of DFT theory.  For AlH3, since the 

nesting feature is removed by all the methods employed in this study, this compound is a poor 

metal not a superconductor at high pressure. However, the profiles of the valance and conduction 

bands near the Fermi level can be quite different with these methods. For example, the GW 

calculations show the gap opens much faster with pressure and AlH3 may become an insulator at 

higher pressure. The choice of the zeroth order wave functions from PBE and HSE calculations 

also affect the GW results. The GW predicted semiconductor behavior at 145 and 115 GPa starting 

from the PBE and HSE wave functions, respectively. The TB-mBJLDA predicted that the energy 

change at the M symmetry point is relatively insensitive to pressure as compare to other methods 

which showed the energy of M decreases. The results highlight the importance of the correction 

to the exchange and correlation energy to the band structures of metal hydrides at high pressure. 

For EuO, no mean-field approximation (i.e. PBE+U or mBJLDA) can consistently 

reproduce all the experimental observation. The mBJLDA including the U parameter predicted an 

incorrect semiconductor with indirect gap. The volume reduction and Mössbauer IS associated 

with the insulator to metal transition in the B1 phase are correctly predicted by PBE+U 

calculations. However, the isostructural B1 to B1' is not evident. EuO as a highly correlated system 

may not be described by a single determinant wave function near the B1 to B1' phase transition. 

Sophisticated methods such as Quantum Mont Carlo (QMC) or Dynamical mean-field 

theory (DMFT) are needed in order to describe the mixed valence states of EuO.   
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Structures of the metallic and superconducting high pressure phases of solid 

CS2 

 

The part of work presented in this chapter is in the following paper [148] 

N. Zarifi, H. Liu and J. S. Tse. Structures of the metallic and superconducting high pressure 

phases of solid CS2, Sci. Rep., vol. 5, no. April, p. 10458, 2015. 

The co-author contributed as follow: Dr. Hanyu Liu performed the MD calculations in the CS2 

paper. 

Pressure can induce structural changes as a result of the breaking or forming of chemical 

bonds. For example, simple molecular solids possessing strong covalent bonds are expected to 

undergo phase transition into non-molecular or disordered structures.  Instability of molecular 

bonds or polymeric compounds has been found in O2[120], [121], [149], [150], N2[151]–[153], 

CO [154]–[156], and CO2[157]–[159]. Previous studies on solid CO2 demonstrate the successive 

structural transformations and eventual conversion into extended 3D non-molecular structures at 

60 GPa [157]. On further comparison, the extended structure of CO2 transformed into an 

amorphous solid at ambient temperature or an ionic solid at high temperature [159]. Compared to 

the molecular form, in an extended structure the electrons become more mobile and it is feasible 

that the system may transform from an insulator to a metal.  However, the strong covalent C-O 

bonds are quite resistive to transformation into a metallic phase. Theoretical studies predict six 

coordinated CO2 solids only exist at pressure close to 1 TPa but remain as insulators [160]. In 

comparison, although molecular CS2 is similar to CO2 it has weaker C-S bonds and it may offer 

an opportunity for metallization. CS2 is a transparent liquid under ambient conditions [161]. It 

transformed into a molecular solid with the Cmca structure at 1 GPa [161], [162].  This phase is 

stable up to 9 GPa [163]. Further compression resulted in a highly reflecting, extended non-

molecular solid above 40-50 GPa [164]. Within this pressure range, the electrical resistance 

decreased continuously and an insulator-metal transition was found at ~50 GPa [164]. A recent 

report further established that the metallic CS2 phase is a superconductor with a critical temperature 

(Tc) of 6 K, which remains almost constant from 60 GPa to 170 GPa [165]. The latest study also 

reveals some interesting findings. For example, it is suggested magnetism exists in the normal state 

above 100 GPa and the structure is composed of six-fold coordinated carbon atoms. There is little 
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information on the structure of the high pressure phases. Above 9 GPa, x-ray diffraction [164] 

measurements show the intensity of the Bragg diffraction peaks weakened and the line-widths 

broadened indicating a gradual transformation into an amorphous form. Up to 120 GPa, no features 

characteristic of elemental carbon and sulfur were observed. Thus, CS2 had not segregated into the 

elements. Due to a lack of structural information, first-principle calculation is an effective tool to 

explore the high pressure structure.  

 The objectives of this study are (i) exploration of the candidate structures responsible for 

the superconducting behavior; (ii) examination of the possible magnetic electronic states and (iii) 

investigation of the existence of unprecedented hypervalent six coordinated carbon atoms in the 

structures. For these purposes, first-principles molecular dynamics (MD) and structure prediction 

calculations using GA and PSO methods were performed.  As is demonstrated in the ensuing 

discussion, both methods showed that structures with distinct carbon and sulfur domains are 

favored at high pressure.  Moreover, a crystalline structure with a 2D sulfur network linked to 

carbon chains was found to be most stable between 60 and 120 GPa.  This structure was metallic 

and superconductive.  Within the experimental pressure range, no evidence of six coordinated 

carbon atoms or magnetism was found in any of the predicted structures.  

 

3.1 Computational details 

All electronic calculations were performed using the VASP, [36], [37]  a plane wave code 

employing the projected-augmented wave (PAW) potentials [34] based on the density functional 

theory with the Perdew-Burke-Ernzerhof (PBE) [14] parameterization of the generalized gradient 

approximation (GGA). During the structural search, Monkhorst-Pack k point grids [119] were 

generated at a predefined mesh by scaling the reciprocal lattice vectors of each individual structure. 

The convergence criterion was that the forces acting on the atoms were all less than 10-3 eV/ Å 

using the highest k point mesh. A plane wave basis set cutoff of 500 eV was chosen to ensure that 

the enthalpy calculations converged with an accuracy better than 1 meV/atom. Both the supercell 

approach [64], [166] and the linear response method [67], [68] were used for phonon band structure 

calculations.  

Structural searches were performed with the PSO method implemented in the CALYPSO 

suite [87] and GA method was performed with XtalOpt [90] and our ASAP code [94]. For these 

calculations, the only input was the chemical composition (i.e. the type and number of different 



 

54 

 

atoms and the size of the populations). For practical purposes, it was essential to impose chemically 

sensible constraints to guide the generation of the initial candidate structures. For CS2, only 

structures with carbon-carbon, carbon-sulfur and sulfur-sulfur bonds longer than 1.1 Å, 1.7 Å and 

1.9 Å, respectively, were accepted.  Searches were performed at 2, 60 and 100 GPa with up to 24 

atoms per cell.  The population for investigation was 40 structures for CALYPSO and XtalOpt 

codes and 50 for ASAP. The structural search was terminated if a minimum enthalpy structure 

persisted over 20 generations. In this work, a total of 30 or 40 generations were needed for each 

set of structural searches and eventually over 10,000 structures were created and optimized in the 

procedure. 

 

3.2 Results and discussions at 2 GPa  

First we tested the performance of the two structural prediction methods on the known 

molecular CS2 crystal structure observed at 2 GPa.  To evaluate the efficiency of the computational 

methods, PSO and GA calculations consisting of 4 CS2 formula units were performed and the 

results are summarized in Figure 3.1. 
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Figure 3.1 Black and Red circles show the enthalpy of optimized structures by PSO and GA, 

respectively. The enthalpy of the P21/c structure was 0.098 eV/atom lower than the Cmca 

structure and the P1 structure found by GA had the lowest energy at 2 GPa. 

 

Surprisingly, we found it was not straightforward to find the most stable molecular 

structure. Over 600 and 500 structures were examined by the PSO and GA methods, respectively. 

Although the observed Cmca structure was found, several structures with lower enthalpies were 
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predicted. For GA, over 90 structures were found to be energetically more favorable than the 

molecular structure. Furthermore, GA calculations failed to produce the experimental structure. 

Although several molecular structures were found, the CS2 packing of these structures was slightly 

different from the Cmca structure. The results highlight the difficulty in theoretical prediction of 

the correct crystal structures of weakly interacting molecular solids. It is also significant to know 

that PSO and GA calculations do not produce exactly the same crystal structures with the same 

energetic order.  

The low enthalpy structures found by PSO and GA are summarized in Figure 3.2. To 

distinguish different structures of P1 space group symmetry, they are labelled alphabetically P1-n 

(n=a,b,c …to g).  These structures were characterized by the existence of molecular fragments 

composed of C-C, S-S, C-S bonds and C-S cyclic rings. The lowest enthalpy P1-a structure found 

by GA was ~0.1 eV/atom lower than the molecular Cmca structure. It was composed of ring-like 

four carbon and one sulfur atoms with separated S2 molecules. On the other hand, a crystalline 

P21/c structure was predicted to be most stable by the PSO method. This structure is consisted of 

C-C chains linked to S layers and molecular S2. This is followed by three ring-like structures 

composed of 3 C and 2 S atoms in the ring and eventually at higher energies, several molecular 

structures with different CS2 packings were found. 

 

Figure 3.2 Ten lowest predicted enthalpy structures for solid CS2 at 2 GPa from Ref [148]. 
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To examine the stability of the structures at different pressures, the calculated enthalpies 

relative to the Cmca structure as a function of pressure were compared in Figure 3.3. The results 

confirm that the Cmca structure was indeed not the most stable C-S compound in the pressure 

range from 0 to 10 GPa. At 0 GPa, the energy of the molecular CS2 was about 0.03 eV/atom higher 

than the predicted lowest enthalpy structure.  
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the Cmca structure.  

 

The fact that molecular CS2 was not the lowest enthalpy structure can be explained by 

considering the bond energies. Empirical bond energy consideration shows structures with C-C 

chains and C and S ring units were energetically more favorable than those composed solely of 

molecular CS2. Moreover, since a large number of predicted structures had low space group 

symmetries (e.g. P1) it indicates that these structures were probably disordered. Experimentally, 

crystalline CS2 was obtained from the condensation of CS2 molecules. A large energy barrier is 

expected to break the C=S bonds into molecular fragments of the extended structures and this 

explains the metastability of the molecular crystal structure. The preference towards the formation 

of connected extended structures has also been found in a recent theoretical study on solid carbon 

monoxide (CO). The molecular structure was only found to be stable at ambient pressure. At higher 
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pressures, polymeric C-O structures were preferred since the C-O triple bond is not energetically 

competitive with the formation of C-O chains [155].   

 It is known that van der Waals (vdW) interaction, which was neglected in the PBE 

functional, may be important in molecular crystals. To examine this effect, geometry optimizations 

and total energy calculations were performed using the vdW-DF2 functional [167] on several 

selected structures at 2 GPa. The results reported in Table 3.1 show the vdW functional gave lower 

total energies for all the structures. However, except for the P1-c structure, the relative stability 

sequence obtained from the PBE calculations remains the same. Therefore, we expected results 

obtained without inclusion of the vdW functional will not substantially change. 

   

Table 3.1 The calculated lowest enthalpy structures with vdW corrections for CS2 at 2 GPa. 

Space Group P1-a P21/c P1-b P1-c Cmca 

PBE(eV/atom) -5.31467 -5.31195 -5.18168 -5.21965 -5.21242 

PBE+vdW-

DF2(eV/atom) 

-5.33501 -5.33366 -5.32610 -5.24672 -5.28835 

 

Several conclusions can be drawn from the structural search for the low pressure structure 

of CS2. Although both methods found similar extended structures with C-S cyclic rings, GA found 

the lowest enthalpy structure and only PSO found the molecular Cmca structure. The discrepancy 

between the results from these two structural search methods may be due to the following reasons: 

first, the initial crystal structures generated by GA were random with no space group symmetry 

imposed.  This is in contrast to PSO in which the starting structures were generated randomly but 

subjected to conform to one of the 230 space groups.  Therefore, PSO has a tendency to favor 

crystal structures with high space group symmetry. This explains the structures of PSO in finding 

the molecular but higher energy Cmca structure. Second, the number of structures in a population 

is very significant. The chance of finding the global minimum increases with the number of trial 

structures. The smaller number of candidate structures considered in the PSO calculations may 

explain the failure to find the lower energy ring-like structures. For a reasonable assessment of the 

performance of the three codes (CALYPSO, XtalOpt and ASAP), the number of structures in the 

population must be equal. Although both GA and PSO methods succeeded in finding metastable 

molecular CS2 structures, the different low pressure crystalline structures predicted by PSO and 
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GA methods were problematic and prompted us to adopt an alternative protocol for the structural 

search in the ensuing calculations. First, structural searches were performed using the PSO and 

GA methods independently in the normal manner. If the two methods produced different 

energetically most stable structures, these structures were then introduced into both populations 

and the search was repeated. In this way we could increase the probability that the predicted 

structure was the global minimum.  

 

3.3 Structures predicted at 60 and 100 GPa 

Adopting the strategy described above, two sets of structural searches using PSO and GA 

were performed. If the global minimum structures predicted by the two methods were different in 

the first trial, then these structures were included in both populations and the searches were 

repeated. We then summarized the results obtained at 60 and 100 GPa.  

The first structure searches are labelled PSO-I and GA-I and the second searches are 

labelled PSO-II and GA-II at 60 GPa as illustrated in Figure 3.4a. The first search, PSO-I, found a 

lowest enthalpy structure (P21/c) in the 13th generation but GA-I failed to find the same structure. 

As described above, the P21/c structure was then included into the population of the second search 

(GA-II). Interestingly, a new P21/m structure with lower energy was found at the 22nd generation. 

To ensure that the global minimum was achieved, the search was repeated with PSO-II by 

including the P21/m structure in the population. We found this structure remained as the lowest 

enthalpy structure after 21 consecutive generations. At 100 GPa, once again the first searches are 

labelled PSO-I and GA-I. In PSO-I, the lowest enthalpy P1 structure (Figure 3.8, #4) was found 

in the 8th generation. Again, GA-I did not predict the same structure. On comparing the PSO-I and 

GA-I results, we found that a majority of the low energy structures predicted by PSO-I had one 

very long crystal axis and possessed no space group symmetry (i.e. P1). Since an axis in the GA-

I search was constrained to be at most twice the length of the other two axes, we relaxed this 

constraint in the second search (GA-II). This resulted in a significant change in the predicted 

structures. The lowest enthalpy structure predicted by GA-II is shown in Figure 3.8, #3. 

Surprisingly, the P21/c structure found at 60 GPa did not appear in the PSO and GA searches at 

100 GPa. Additional calculations found the enthalpy of the P21/c structure was lower than all the 

optimized structures at 100 GPa. Therefore, this structure was included in the population in the 

third round of structure searches (GA-III) and the P21/m structure was again found in the 13th 
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generation. Eventually P21/m was included into the population of the PSO-II search and its 

structure remained the most stable after 21 generations. 

0 10 20 30 40

-1.1

-1.0

-0.9

-0.8

-0.7

(a)

Generations

E
n

th
al

p
y(

eV
/
at

o
m

)

 PSO-I

 GA-I

 GA-II

 PSO-II

      

0 5 10 15 20 25 30

1.1

1.2

1.3

1.4

1.5

1.6
(b)

Generations

E
n

th
al

p
y(

eV
/
at

o
m

)

 PSO-1

 GA-1

 GA-2

 GA-3

 PSO-2

 

Figure 3.4 Enthalpy of the best structure versus generation for CS2 at (a) 60 and (b) 100 GPa. 

 

We can conclude that despite the often-claimed reliability of both GA and PSO methods, 

comparative tests are definitely required in order to ensure the lowest enthalpy structure. Now we 

return to the discussion of the crystalline P21/m and P21/c structures obtained from PSO and GA 

calculations. As shown in Figure 3.5, P21/m was constructed from a C-C layer sandwiched between 

two S layers linked in the third dimension by C-S bonds.  The C-C layer consisted of hexagonal 

rings in a chair conformation.  Remarkably, a P21/c structure with a very similar bonding pattern 

as the P21/m was also found. To accommodate chemical bonding with the C layer arranged in the 

chair form in the P21/c structure, the square net in the S layer was distorted. In comparison, the 

square nets in the P21/m structure fit well to bond with C atoms in the chair conformation. The fact 

that a small difference in the 2D packing of S layers can affect the energy of the crystals illustrates 

that C-S bonding is important to the stability of the high pressure phases. 

Several structures within an energy window of ~0.2 eV/atom at 60 GPa are shown in 

Figure 3.6. Predicted structures within a small energy interval often clustered into groups with 

similar local bonding patterns.  For example, we found two structures within < 0.05 eV/atom (C2/m 

and C2/c) of the P21/m structure having similar carbon packing patterns. The major difference of 

these structures from P21/m was their increasingly closed pack from squares to rhombuses (C2/m) 

and hexagons (C2/c) in the S layers. At higher energy, the chemical bonding in the solids changed 
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to a group of structures with disconnected mixed C-S regions and finally molecular fragments with 

C-C bonds starting to emerge.  At this pressure, CS2 molecules decomposed into segregated C and 

S regions. 

 

 
Figure 3.5 Comparison of the P21/m and P21/c structures at 60 GPa. 

 

 

Figure 3.6 Ten lowest predicted enthalpy structures for solid CS2 at 60 GPa from Ref [148]. 
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There is limited experimental information on the structure of the high pressure metallic 

phase of CS2. X-ray powder diffraction experiments performed at 55 GPa show that two broad 

peaks centered at 2.8 and 4.8 Å-1 is typical of a disordered solid [164]. In the previous study, 

following the high pressure transformation sequence observed in the analogous solid CO2, it is 

proposed that the disordered phase (Figure 3.7) had distorted tridymite P212121 or chalcopyrite (I-

42d) structures [158], [168]. These structures were not found in the search. Separate calculations 

show it had a substantially higher enthalpy of 0.2 eV/atom than the P21/m structure. Indeed, four 

C-S bonds were not found in the low enthalpy structures. 

                             

Figure 3.7 The proposed structure of α-tridymite (P212121, left) and α-chalcopyrite (I-42d, right) 

at 60 GPa. 

 

   

Figure 3.8 Ten lowest predicted enthalpy structures for solid CS2 at 100 GPa from Ref [148]. 



 

62 

 

To investigate the suggestion of unusual hypervalent carbon atoms in the structure above 

100 GPa [165], structural searches were performed following a similar procedure described above.  

It was found that the P21/m crystalline structure remained as the most stable.  This was followed 

by the P21/c structure. In the next group of structures with much higher enthalpy (< 0.12 eV/atom), 

instead of separate C and S layers, we found they consisted of C clusters embedded in the 2D plane 

composed of S atoms (Figure 3.8), while the second group of P1 structures tended to form ring-

like C-C with a sulfur sub-network. The higher energy structures like P21 and Pnma were not 

composed of ring-like C atoms. 

 

3.4 Molecular dynamics simulations  

To complement the structural prediction calculations, we compressed the molecular CS2 

structure to high pressure with constant-pressure (NPT) molecular dynamics (MD) at 300 K. The 

motivation for the additional calculations was that under the experimental conditions the phase 

transition may follow a low energy path. Therefore, the observed structures determined by the 

kinetics and the energy landscape might likely be the precursor and product. In some cases, the 

predicted lowest enthalpy structure from the search techniques (i.e. PSO and GA) might not be 

realized.  

 
(a) 10GPa                          (b) 20GPa                     (c) 80GPa                    (d) 120GPa 

 

Figure 3.9 Snapshot of molecular dynamics calculations on CS2 from Ref [148]. (a) 10 GPa, (b) 

20 GPa, (c) 80 GPa and (d) 120 GPa.  The red circle highlights the formation of C-C “clusters” 

at 80 GPa.  The occurrence of S square nets is clearly seen at 120 GPa. 

 

Upon compression, the molecular Cmca structure was found to transform into a disordered 

3D solid connected by C-C, C-S and S-S bonds (Figure 3.9b) at 20 GPa.  Upon further 
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pressurization to 80 GPa, MD calculations revealed the existence of segregated C and S regions 

(Figure 3.9c). A layer of C-C was arranged between two S layers. This structural feature was 

similar to the P21/m, which was constructed from a C-C layer sandwiched between two S layers. 

At 120 GPa, planar square networks formed by S atoms were almost fully developed (Figure 3.9d).  

 

3.5 Stability of the predicted structures   

As discussed above, the P21/m structure 2D planar square network of S layers was distorted 

to rhombus in the P21/c structure. This feature affected the stability of the P21/c structure making 

it unstable. The phonon-band structure of the P21/c (Figure 3.10) shows imaginary modes along 

the A→ B and B→ D symmetry directions. Therefore, the structure is not stable and we do not 

further examine the properties of the P21/c structure.  
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Figure 3.10 The phonon-band structure for the P21/c structure of CS2 at 60 GPa. 

 

We now compared the molecular Cmca structure with the crystalline P21/m structure. This 

structure becomes more stable than the crystalline molecular Cmca phase at pressures higher than 

10 GPa (Figure 3.11). This result is consistent with the experimental findings [164] and the MD 

calculations shown in Figure 3.9a indicate that the molecular CS2 is still stable at 10 GPa. 
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Figure 3.11 Relative enthalpy of molecular CS2 with respect to Cmca structure. 

 

3.6 Radial distribution functions  

To compare the predicted structures with the experiment at 60 GPa, the calculated static 

structure factor, S(q), for the crystalline P21/m (broadened by a linewidth of 0.5 Å-1 to mimic the 

disorder) and several low enthalpy structures were calculated (Figure 3.12a). Similar to the 

experiment, all the calculated diffraction patterns show two bands at ~ 2.8 and 4.8 Å-1. The P21/m 

structure shows an additional weak feature at ~ 4 Å-1. The calculated pair distribution functions 

(PDF) and G(r), are in agreement with the experimental assignment (Figure 3.12b). Previously, 

[164] the first peak in the radial distribution function (RDF) was assigned to the nearest C-S 

distance at ~1.7 Å and the second peak to neighbouring S-S distances at around 2.77 Å. These two 

features can be related to the calculated peaks at 1.5 and 2.6 Å. Inspection of the lowest energy 

structures can be attributed the first peak in the PDF to C-C bonds where the S-S distances are 

between 2.13-2.89 Å and the second-nearest neighbour C-C and C-S bonds distributed between 

2.33-2.81 and 2.56-2.95 Å, respectively. The S(q) and G(r) obtained from the MD structure and 

the structural assignments are also consistent with the predicted structures and experiment. 

Unfortunately, the rather limited information from experiment precludes an unambiguous 

determination of the structure. Although, the observed high pressure disordered phase at 60 GPa 

is likely to be segregated into C- and S-rich domains linked by C-S bonds as predicted.  
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Figure 3.12 (a) Structural factor and (b) radial distributional function of solid CS2 at 55 GPa from 

Ref [148].  

In the experimental pair distribution function (G(r)) derived at 103GPa [165], the peaks at 

1.9 and 2.7Å were assigned to the first nearest neighbour C-C, C-S distances and the second nearest 

neighbour C-C at 3.84 Å and C-S at 4.7 Å. Based on the assignments, an octahedral local 

configuration with six coordinated C atoms (Figure 3.13) was hypothesized. The theoretical G(r) 

of several low enthalpy structures were compared with results obtained from experimental 

diffraction patterns at 103 GPa (Figure 3.13). The calculated G(r) reproduced all the main features 

of the observed distribution function. The structure obtained from MD calculations also supported 

these assignments. Analysis shows the first observed peak can be attributed to the C-C distances. 

However, the second broad peak contains contributions from both second nearest neighbours of 

C-S and C-C and the first nearest neighbour S-S distances. Although the second nearest neighbour 

C-C was located at 3.84 Å in the crystalline P21/m structure, the dominant peak in the experimental 

G(r) also contained overlapping C-C, C-S and S-S bond distances. The peak at 4.7 Å was assigned 

to the next nearest C-S separation. We also examined predicted structures with much higher 

enthalpy. All features in the G(r) derived from the experimental diffraction pattern can be 

explained adequately with a structure consisting solely of tetrahedrally coordinated C atoms.  No 

evidence of the existence of six coordinated carbon atoms was found. Moreover, the proposed 

structural pattern, constructed from alternate C and S atoms at the corners (Figure 3.13) of a square 

net, was not found in any of the predicted structures. 
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Figure 3.13 (Left) Radial distributional function of solid CS2 compared with experimental data 

from Ref [148]. (Right) Six coordinated C structure of CS2 proposed in Ref [165]. 

The G(r) based on the diffraction pattern provides information on atom arrangement in the short 

and intermediate order. Undoubtedly, the experimental high pressure structure was non-

crystalline. However, in view of the gross agreement between the experimental and calculated G(r) 

of the predicted crystalline P21/m and several energetically competitive structures, and with the 

disordered structure obtained from MD calculations, it is probable that the observed structure was 

composed of segregated C-C and S-S regions linked by C-S bonds with the latter forming 2D 

square nets or even micro-crystalline domains of the P21/m phase.  

 

3.7 Electronic and vibrational properties  

We now examined the electronic structures of the high pressure phases. Apart from the 

structural similarities, the calculated electronic density of states (DOS) of both the crystalline 

P21/m and the disordered MD structure show the electronic DOS near the Fermi level was also 

dominated by the S valence 3p and 3d orbitals (Figure 3.14).  
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Figure 3.14 Calculated electronic density of states for the P21/m and MD structures at 60 and 80 

GPa, respectively. 

Since electron-phonon coupling is determined by electronic states lying within a thin shell 

near the Fermi surface, it is not unreasonable to explore the origin of the superconducting behavior 

in the experimental disordered phase using the crystalline P21/m structure as a model. Density 

functional perturbation theory and frozen phonon calculations were performed to establish the 

stability of the P21/m structure (Figure 3.15).  At 60 GPa, no imaginary frequency was found with 

either methods, indicating that the structure is dynamically stable. 
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Figure 3.15 Calculated (left) phonon band structure and Eliashberg spectral function (2F())  

with DFPT, Ref [148], and (right) phonon band structure with FP method. 

 

  Inspection of the phonon dispersion curves shows that soft phonon modes, reminiscent of 

Kohn-anomalies, are found at the B and D symmetry points (Figure 3.15). The projected 
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vibrational density of states onto C and S atoms for the P21/m phase are also presented.  As 

expected, the low frequency modes were dominated by S-S vibrations due to the heavier atomic 

mass.  The DOS of the P21/m structure, depicted in Figure 3.14, shows unequivocally that it is 

metallic. The DOS near the Fermi energy was dominated by low-lying S-3p states. This is a 

consequence of the S-rich regions in the structure, a distinctive feature shared by all the predicted 

low energy structures. For this purpose, the electron-phonon coupling parameter (λ) and the 

logarithmic average phonon frequency (ωln) at 60 GPa were calculated using the linear response 

theory. The individual interatomic force-constant matrix and electron-phonon coupling matrix 

were calculated employing the linear response method at a 1×3×2 q point mesh with a 4×12×8 k 

point mesh for the first Brillouin zone integrations, and the plane wave cutoff was chosen as 60 

Ry. At 60 GPa, the calculated coupling parameter λ is 1.04 with an average phonon frequency ωln 

of 341 K.  Using the strong-coupling Allen-Dynes equation, an extension of the McMillan theory 

[169],  and nominal Coulomb pseudopotential parameter (*) with values of 0.1, 0.12 and 0.15,  

the estimated superconducting critical temperatures Tc are 25 K, 22.8 K and 19.5 K, respectively. 

These values are slightly higher than the observed 5.6 K. The origin of the superconductivity is 

revealed from the calculated Eliashberg spectral function: α2F(ω)/ω [170]. As shown in 

Figure 3.15, nearly 100% of the electron-phonon coupling was contributed by S-S vibrations in 

the frequency region from 0–500 cm-1. The strong interactions have led to a pronounced peak in 

the spectral function at 200 cm-1.  In addition, we also computed the phonon line widths and nesting 

functions ξ(q) (Figure 3.16). The k points were sampled uniformly on the Fermi surface and a 

broadening of 0.05 was used in the Gaussian function to represent the δ function. The calculation 

employed 200 k points and 134 q points, which resulted in the evaluation of energy, εk+q, at 26,800 

points.  In the square planar S-S layers, strong nesting was found approximately midway from  

 Y, D  E and at the B symmetry point. 
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Figure 3.16 The nesting function ξ(q) of P21/m CS2 at 60 GPa along selected high symmetry 

lines of the nesting vector, q. 

 

The superconductivity in high pressure CS2 is a consequence of the S-S bands dominating 

the Fermi level.  Further electronic and superconductivity calculations on the P21/m structure were 

also performed at 80 and 100 GPa.  The electron and phonon band structures are very similar to 

those at 60 GPa (Figure 3.17).  It is remarkable that using a * of 0.12, the predicted Tc at both 

pressures is 13 K.  This result is in accord with the almost constant Tc of 6 K reported from 60 – 

172 GPa [165]. In passing, we also performed spin-unrestricted calculations on several low 

enthalpy structures and no stable magnetic state was found.  However, since the electronic 

calculations were performed at 0 K, the results do not preclude possible magnetism at finite 

temperature. 
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Figure 3.17 Phonon and electronic band structures of the P21/m structure, at 80 and 100 GPa. 

3.8 Conclusions 

Structural search calculations indicate that molecular CS2 will decomposes and segregates 

into C and S regions in the solid state at high pressure.  The carbon atoms tend to form fused 

hexagonal rings either in the boat or chair conformation, akin to hexagonal and cubic diamonds, 

respectively.  On the other hand, the sulfur atoms adopt a planar closed pack arrangement forming 

2D square or hexagonal networks. Intuitively, it is logical to expect it is energetically favourable 

to form regions with diamond-like and sulfur-like sub-structures at high pressure.  A crystalline 

structure with the P21/m space group was found to be most stable between 60-120 GPa. This 

structure is metallic and superconductive with a Tc of 20-13 K from 60-120 GPa. The 

superconductivity is mainly due to electron-phonon coupling in the S layers. The measured 

diffraction pattern (S(q)) and the derived pair distribution functions (G(r)) at 55 GPa and 103 GPa 

can be reproduced from the predicted low enthalpy structures with 2D S-layers. The theoretical 
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results show the low enthalpy structure is non-magnetic and no evidence of six coordinated carbon 

atoms above 100 GPa was found.  

It is pertinent to comment on the structural similarity in disordered CS2 with the 

superconductive [171] phase-V of elemental  sulfur [172].  Under compression, S undergoes a 

series of structural transformations. Between 83 – 253 GPa, a metallic state with superconductivity 

in an incommensurate structure was observed.  The existence of closed pack S atom layers is a 

feature common to the predicted disorder high pressure structure of CS2 presented here and S-V. 

In the former case, the S atoms are arranged in a hexagonal closed pack but cubic pack in the latter.  

It is evident that delocalization of electrons in planar S-layers is the essential ingredient for the 

superconducting behaviour.  Recently, a very high Tc (ca. 190 K) has been found in hydrogen 

sulphide (H2S) compressed to 200 GPa [173]. It is suggested that the high pressure phase is 

composed of decomposed H2S.  From the results obtained here, we speculate that similar S-layers 

are formed and strong electron-phonon coupling in these layers and with the hydrogen atoms may 

be the reason for the very high Tc. 
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Crystal structures and electronic properties of Xe and Cl compounds at high 

pressure 

Until the early 1960s, it was believed that only electrons in the partially filled outer shell 

(valence electrons) could participate in the formation of chemical bonds. Since the discovery of 

argon in 1894, noble gases with completely filled valence shells were thought to be unreactive and 

only exist as monoatomic elements. The stability and unreactive nature of octet valence 

configurations of these elements imposed a new law in science in 1916:  “Nothing can force a 

noble gas (Ng) atom into a chemical bonding” [174], [175]. About half a century later, one of the 

most important discoveries in chemistry was made by Bartlett in 1962 [176]. It was found that Xe 

could form chemical compounds with oxygen and fluorine, which are two electronegative 

elements. These findings attracted great interest in the possibility of synthesizing a variety of 

compounds from Xe. Recent studies propose that less than 10% of the expected amount of Xe 

exists in the Earth’s atmosphere while the missing Xe is probably found in the interior of the planet 

[177], [178]. Since chemical reactions in the Earth’s core occur under extreme pressures and 

temperatures, they may lead to the formation of unusual or unexpected Xe compounds [179]. The 

objective of this project is to investigate the possible existence of Xe-halide compounds under high 

pressure. 

The most studied Xe-halide is xenon fluorine. Recently, it was reported  that the linear 

insulating XeF2 solid transforms to a graphite-like semiconducting hexagonal layered structure at 

22 GPa; above 67 GPa a metallic phase of Xe-F was observed [180]. In a theoretical study, D. 

Kurzydzowski et al,  [181] found a structure maintaining the linear XeF2 molecules have much 

lower enthalpy than the reported experimental phase below 100 GPa. The stability of XeFn 

compounds with respect to decomposition into Xe and F2 has been established up to 200 GPa from 

both theoretical and experimental studies. In comparison to XeFn, the high pressure chemistry of 

other Xe-halides such as Cl, I and Br remains largely unexplored. A brief report on the synthesis 

of Xe-halide compounds with pressure up to 60 GPa and high temperature was published in 2012 

at HPCAT workshop [182]. However, the structure of the Xe-halide has not yet been confirmed. 

The purpose of this study is to search for new promising structures of Xe-halide compounds at 

high pressure using first principle electronic structure calculations. In this chapter, we report the 

phase stabilities of stoichiometric XeCln (n=1,2,4) up to 60 GPa. For each system, this is followed 
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by a discussion of the electronic, optical and vibrational properties of stable structures.  Since 

experimental and theoretical results for high pressure XeF2 are already available, we focused of 

the XeCl2 calculations in the initial study.  

 

4.1 Computational details 

        Structural searches were performed using two methods: the PSO method implemented in the 

CALYPSO code [87] and the genetic algorithms (GA) within the ASAP code [94]. As described 

in Chapter 1, to reduce the search space, minimum inter-atomic distance constraints were applied 

to generate the initial structures and were maintained during the structural searches. In all XeHn 

calculations (H= Cl, Br and I), the minimum distances between xenon-xenon, xenon-halogen and 

halogen-halogen atoms were set to 2.9 Å, 1.9 Å and 1.2 Å, respectively. Structural optimizations, 

optical spectra and electronic structure calculations were performed with the VASP code [36], 

[37]. During the initial structural search, coarse k point meshes were chosen. The potentials of 

atoms were described using PAW within the PBE exchange-correlation as implemented in the 

VASP code [34]. The valence electron configurations s2p5 for halogens and s2p6 for xenon were 

used. The reliability of the PAW potentials have been checked against all electron calculations to 

ensure that the results are valid within the pressure range (10 to 60 GPa) studied (Figure 4.18). To 

achieve better geometry and energy convergence, much higher k point meshes with a tighter force 

criterion less than 1 meV/Å were used in further calculations on promising candidate structures. 

The plane wave basis energy cutoff was set to be 500 eV. Phonon band structures were calculated 

using the supercell approach [64], [166] and/or DFT perturbation theory [183]. In the supercell 

method, Hellmann-Feynman forces were calculated from a supercell constructed from replicating 

the optimized structure. Dynamical matrices were computed using the PHONPY code [184]. In 

selected cases, convergence of phonon band structures with the supercell sizes were examined and 

compared with the DFT linear response method.  In the DFPT approach, the phonon spectra were 

calculated using VASP and QUANTUM ESPRESSO codes [185]. Accurate electronic band 

structures of Xe-halides were calculated with the GW method and the results were compared with 

the PBE approximation. Optical absorption spectra of structures were calculated by solving the 

Bethe-Salpeter equation (BSE) using the GW eigenvalues. 
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4.2 Thermodynamic stability of XeCln (n=1, 2 and 4) 

We first investigated the phase stabilities of XeCln in the Cl-rich region by computing the 

formation enthalpy from 10 to 60 GPa. The enthalpies of formation of candidate structures at given 

pressures were calculated using the following formula:  

                                      ∆𝐻(𝑋𝑒𝐶𝑙𝑛) = [𝐻(𝑋𝑒𝐶𝑙𝑛) − 𝐻(𝑋𝑒) − 𝑛𝐻(𝐶𝑙)]/𝑛                               (4.1) 

Where ∆𝐻 is the enthalpy of formation per atom and H is the calculated enthalpy per formula unit 

of XeCln with respect to the decomposition into Xe and molecular Cl2 solids at the same pressure.  

Previous studies report that the fcc structure of Xe is stable at room temperature up to at least at 

pressure of 55 GPa [186], [187] and the molecular structure of Cl2 with the Cmca space group is 

stable up to 142 GPa [188]. To compute the enthalpy differences, the Cmca phase of Cl2 and fcc 

phase of Xe atoms were optimized in the pressure range studied. The stability of the predicted 

lowest enthalpy structures at different Xe-Cl stoicheometries is compared with the convex hull 

plot shown in Figure 4.1. The results show that below 50 GPa all the predicted compounds are 

thermodynamically unstable with respect to solid Xe and Cl2 since the predicted structures have 

positive formation enthalpies (∆𝐻). In apparent contradiction to the theoretical prediction, 

experimentalists have found that a solid solution of Xe and Cl2 can be formed above 15 GPa at 

high temperature [189]. As will be shown below, the calculations show when the pressure is 

increased above 50 GPa, XeCl and XeCl2 structures can be formed. In the following section we 

discuss in detail the structures and properties of the lowest enthalpy phases of XeCln (n=1,2 and 

4) obtained from this structural search. 
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Figure 4.1 Predicted thermodynamic stabilities of XeCln (n=1,2 and 4)  compounds. 
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4.3 Predicted high pressure structures of XeCl2 

In this section, results of the structures, energetics, electronics and phonon properties of 

XeCl2 in the pressures range from 10-60 GPa are reported and discussed. One of the objectives of 

the study is to explore and compare the efficiency and reliability of the PSO and GA methods. For 

this purpose, several tests were performed with XeCl2 as a model to ensure that the global 

minimum is found in the structural search.  As mentioned in Chapter 1, the structural search was 

terminated after a minimum energy structure was found and no new lower enthalpy structure 

appeared for at least 20 successive generations.  For the PSO method, we also examined the effect 

of the population size with models consisting of 40 and 50 structures with 4 XeCl2 formula units. 

To monitor the progress of the search, enthalpy of the most stable structure found in each 

generation was plotted for both GA and PSO calculations. The structural searches are labelled 

PSO-p(x)-n and GA-p(x)-n, where “x” is defined by the population size (40 and 50 structures) and 

“n” denotes the number of the trial (I, II or III). The results, illustrated in Figure 4.2, show that 

except in 30 GPa calculations, the larger population (50 structures) reached the most stable 

structure with fewer generations. This observation suggests that the PSO procedure is more 

efficient in finding the global minimum with a large population. The reason may be that a richer 

variety of random structures are generated by the method and helps to sample broader regions of 

the potential energy landscape. In addition, structural diversity is also desirable to avoid trapping 

during the structural search at local minima in a large population. However the obvious 

shortcoming is that since more structures must be optimized in a larger population, the calculations 

become lengthier. As will be shown below, in this case, it appears that populations of 40 and 50 

structures are adequate.  

Increasing the number of atoms (formula units) in the model will increase the number of 

degrees of freedom. To test the efficiency, we considered two different models consisting of 4 and 

8 formula units per unit cell with the same population size (40 structures) at 20 GPa. In Figure 4.2b, 

the PSO-p40-III results indicate that the 24 atom calculations failed to predict the lowest energy 

structure even after 35 generations. In comparison, the PSO-p40-I calculations were repeated with 

12 atoms and found the most stable structure in the 8th generation. As expected, increasing the 

system size demands more generations to fully explore the energy landscape. Therefore, a “global” 

minimum structure is easier to find in a smaller model with fewer degrees of freedom. However, 
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very small structural models with a few atoms may lead to false results. From the limited test, we 

may conclude that 4 formula units in this case are adequate for this system. 

At 30 GPa, the GA method with a population of 50 structures (GA-p50-I) failed to find the 

minimum energy structure found by PSO. The GA search was trapped at a local minimum even 

after 40 generations. The GA-p50-I run in Figure 4.2c shows that the structure found in the 10th 

generation has high enthalpy. In this case, we attribute the failure to the inefficiency of the GA 

evolution operators (i.e. heredity, permutation and mutation). These operators were not able to 

successfully explore different regions of the energy landscape. This observation is similar to our 

prior experience on the CS2 study when GA did not find the lowest enthalpy structure at the first 

trial. The most favorable structure predicted by the PSO search was included in GA and the search 

was repeated. In Figure 4.2c, GA-p50-II, the structure was maintained to be the lowest enthalpy 

after 21 generations. This test helped to ascertain that the candidate structure is indeed the global 

minimum.  

At 60 GPa, in the PSO-p40-I calculations, the structure found in the 4th generation is not 

the global minimum. As mentioned in the Chapter 1, crude k point meshes were used during the 

structural search. Therefore, geometry optimization must be repeated for candidate structures with 

dense k mesh. It was found that the energy of the structure in the 4th generation is much higher 

than the prior calculation (as mentioned in Chapter 1, using the coarse k points during the structural 

search can cause wrong energy convergence) and the lowest enthalpy structure was found in the 

41st generation. Both PSO calculations (PSO-p40-I and PSO-p50-II) found the same P41212 

structure. On the other hand, the most stable structure found by the GA method is very similar but 

not exactly the same as the PSO structure. A summary of the lowest enthalpy structures of XeCl2 

at different pressures is shown in Table 4.1. 
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Figure 4.2 (a), (b), (c) and (d) represent the PSO and GA searches performed on XeCl2 at 10, 20, 

30 and 60 GPa. 

The space groups of the predicted lowest enthalpy structures together with the pertinent 

information on the structural searches by PSO and GA methods are summarized in Table 4.1. Since 

the geometry optimizations in the structural searches were performed with relatively crude k 

meshes and small plane wave energy cutoffs, more calculations must be repeated for candidate 

structures using denser k meshes and higher cutoff energies. In these calculations, convergence to 

self-consistent iterations was reached when the total energy difference between cycles was less 

than 10-5 eV and the residual forces were less than 0.005 eV/Å. To compare relative stability of 

the candidate structures, we computed the equation of states in the pressure range from 10 to 80 

GPa. Phonon calculations using density functional theory and the frozen phonon were performed 

to establish the structural stability, as shown in Table 4.1.   
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 Table 4.1 Comparison of the lowest enthalpy structures of XeCl2 (4 formula units) predicted with 

the GA and PSO methods in the pressure range from 10 to 60 GPa. 

 

 

 

PSO 

Population 40 50 

Pressure (GPa) 10    20 30 60 10 20 30 60 

    Total #Gen 50 29 40 60 46 29 46 41 

Structure Cmcm Cmcm Cmcm P41212 P1 Cmcm Cmcm P41212 

Found at #Gen 7 8 24 41 5 7 27 16 

Enthalpy (eV/atom) 0.6864 2.1317 3.4139 6.7082 0.6848 2.1317 3.4139 6.7082 

 

 

 

GA 

Population 50 

Pressure (GPa) 10 20 30 60 

Total #Gen 40 35 40 54 

Structure P1 P21/m C2/m P212121 

Found at #Gen 8 21 10 36 

Enthalpy(eV/atom) 0.6845 2.1355 3.4288 6.7082 

 

We now analyze the effect of the population size (40 and 50) with the PSO method 

(Table 4.1). At 10 GPa, two different structures with the Cmcm and P1 space groups were obtained 

with populations of 40 and 50 structures, respectively. The energy of the P1 structure is slightly 

lower (0.002 eV/atom) than the Cmcm structure. However, at 20 and 30 GPa, both populations 

found the same Cmcm structures. At 60 GPa, the P41212 structure was also found to be the most 

stable one from both populations. The GA method was performed at 10, 20, 30 and 60 GPa with 

a population of 50 structures.  The P1 structure found at 10 GPa is the same as the P1 structure 

found by PSO. The GA failed to predict the lowest enthalpy structures predicted by PSO at 20 and 

30 GPa but at 60 GPa the energy of the predicted P21212 structure was almost identical to the 

P41212 structure found by PSO. It indicates that both GA and PSO at 60 GPa might sample the 

same region of the potential energy landscape. The similarities of these two structures are 

explained in detail later. 
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The relative enthalpy as a function of pressure for several candidate structures obtained by 

PSO and GA are compared in Figure 4.3. Surprisingly, the P21/m structure found at 20 GPa by 

GA is also the most stable at 10 GPa. The result shows that, contrary to claims of near-infallibility 

in structural search methods, both PSO and GA methods may miss the lowest enthalpy structure! 

The energy of the P21/m, P1 and Cmcm structures was nearly degenerated at 15 GPa. The Cmcm 

structure became the most stable up to 40 GPa.  For convenience, the Cmcm structure was chosen 

to be the reference. Between ~40 and 60 GPa, three structures (P41212, P43212 and P212121) had 

comparable energies. As indicated in the convex hull plot (Figure 4.1), the P41212 structure resisted 

decomposition into Xe and molecular Cl2 solids. Therefore this compound, in principle, can be 

synthesized above 50 GPa from Xe and Cl2. 
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Figure 4.3 Relative enthalpies (ΔH) vs pressure for several XeCl2 configurations, with respect to 

the Cmcm structure. 
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4.3.1 Structural analysis at 10 GPa  

 

Figure 4.4 The lowest predicted enthalpy structures, P21/m (a, b and c), P1 (d, e and f) and Cmcm 

(g, h and i) for solid XeCl2 at 10 GPa. To distinguish layers in (b) and (h), Xe (blue) and Cl (green) 

atoms are shown with two different dark and light color tones. 

 

We now examine the predicted crystal structures in detail. At 10 GPa, the three lowest 

energy structures (P21/m, P1 and Cmcm) found within an energy window of 3 meV/atom consist 

of molecular Cl2 but different Xe sublattices. We will focus on the description of the prominent 

structural differences (Figure 4.4).  The monoclinic P21/m structure has 12 atoms in the unit cell 

(Figure 4.4a). In this structure, the Cl-Cl bond lengths alternate between 2.02 and 2.04 Å and are 

almost collinear between two Xe atoms (Figure 4.4b). The nearest Xe-Cl contacts are 2.92 and 

2.98 Å. The Xe-Cl-Cl angle with the longer interatomic distance (2.98 Å) is 173° and with the 

shorter Xe-Cl-Cl  (2.92 Å) is almost 180°. Figure 4.4c shows that the Xe forms a puckered layer. 

The second lowest enthalpy P1 structure found by both GA and PSO (Figure 4.4d) has 12 atoms 

per unit cell. The gross structural features are similar to the P21/m structure. The closest Xe-Cl 
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contacts are 2.98 and 2.99 Å. The Xe-Cl-Cl angles are in the range of 173.1°-175.6° (Figure 4.4e). 

The Xe sublattice also forms buckled layers. The third lowest enthalpy structure which was only 

found by PSO, has a base-centered orthorhombic structure with the Cmcm space group. Again, 

this structure has four formula units (12 atoms) per unit cell and was found to be the lowest 

enthalpy structure below 40 GPa. Unlike the other two structures, linear Cl-Cl-Xe units are 

arranged in a zigzag manner in the b-c plane. The molecular Cl2 with 2.02 Å bond lengths connect 

to Xe atoms with 2.99 Å distances. The Cl-Xe-Cl angle is 89.6°. The Xe atoms form a 2D planar 

square network stacked along the a axis. The Xe sublattice, shown in Figure 4.4i, is in sharp 

contrast to the buckled Xe layers in the P21/m and P1 structures. 

        The predicted structures in crystalline XeCl2 are very different from the solid XeFe2 where 

linear XeF2 molecules having two equal Xe-F bond was predicted to be stable up to 100 GPa.  

Further compression only resulted in bending of the F-Xe-F molecule [181]. In comparison, linear 

Cl-Xe-Cl units did not form in a pressure range from 10 to 40 GPa. This result highlights the 

structural diversity of high pressure Xe-halides. 

 

4.3.2 Electronic and dynamical properties at 10 GPa 

To characterize the Xe-Cl interaction, electron localization functions (ELFs) were 

computed at 10 GPa. Only valance electrons were considered in the calculations [190], [191]. 

Usually, regions with ELF values close to 1 indicate a high probability of paired electrons such as 

lone pairs or covalent bonds. At an ELF value of ~0.5, the electrons behave as a uniform electron 

gas [14]. The contour plots of the ELFs in the P21/m, P1 and Cmcm structures at 10 GPa are 

compared in Figure 4.5. All the plots share a common feature: very low ELF values were found 

between Xe atoms and Cl2 molecules and no electron localization was found in the voids. High 

ELF regions are centered spherically around the Xe atoms due to the filled 5s and 5p electrons. 

Moderate ELF values of ~0.7, corresponding to covalent bonds, were only found between the Cl 

pairs. In addition, high ELF values corresponding to the Cl lone pairs were also observed. 

The calculated Bader charges show a small charge (~0.1e) transfer from the Xe to Cl atoms. 

Thus, it is likely that partial ionic chemical bonds exist between Xe atoms and Cl2 molecules. The 

amount of charge transfer remains relatively constant from 10 to 30 GPa. From this analysis, we 

can conclude that Cl2 is molecular in nature and the interaction with Xe atoms is weakly ionic. 
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Figure 4.5 The ELF values for P21/m, P1 and Cmcm structures of XeCl2 with cross sections of 
(010), (100) and (100) are shown at 10 GPa, respectively. The positions of Xe and Cl atoms are 

also shown for clarity. 

We now examine the structural stability of the three candidates P21/m, P1 and Cmcm 

structures. Phonon band structures calculated by the supercell are shown in Figure 4.6. For 

comparison, linear response calculations (not shown) were also performed and the results were 

found to be almost identical. The phonon dispersion curves have no imaginary phonon frequency 

between 10 to 30 GPa, indicating that the three structures are dynamically stable. 

The projected vibrational densities of states of the three structures at 10 GPa are compared 

with the solid Xe (fcc) and Cl2 (Cmca) in Figure 4.7. The three nearly energetically degenerate 

structures exhibit similar features in their phonon densities of states. As expected, due to the 

heavier atomic mass, the low frequency modes (below 4 THz) are assigned to Xe vibrations. The 

vibrational bands between 13 and 14 THz are mainly derived from the Cl motions. The dominant 

vibrational bands of Xe atoms in the XeCl2 compounds are slightly extended to higher frequencies 

than in the fcc Xe solid and are hybridized with the Cl bands. In the P21/m and P1 structures 

(Figure 4.4), there are two distinctive Cl-Cl bond lengths and this resulted in two stretched bands 

at 12 and 14THz. In contrast, the Cl-Cl stretch in the Cmcm structure shows one vibrational band 

at 13.5 THz. The shift to a higher frequency is due to the shorter Cl-Cl bonds (~0.01 Å) as compare 

to the free Cl2 molecule. 
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Figure 4.6 Phonon dispersion curves for P21/m (a), P1 (b) and Cmcm (c) of XCl2 at 10 GPa.  
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Figure 4.7 Comparison of phonon densities of states for molecular Cl2 and Xe solids with XeCl2 

structures at 10 GPa. 
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4.3.3 Energy corrections beyond PBE functional 

As the enthalpy differences between high pressure structures are typically around 5 

meV/atom, dense k point sampling and energy convergence better than 0.01 meV/atom were 

required to reliably predict the relative stability. In addition, it was necessary to include the ZPE 

and vdW interactions. These effects were investigated and the results were reported below. 

        ZPE were calculated from the vibrational frequencies and the results are reported at 10 GPa 

in Table 4.2. Since Xe and Cl are heavy atoms, there is no surprise that ZPE did not affect the 

order of the stability. Another factor to be considered regarding the stability of the Xe-Cl2 

compounds is vdW interactions. Since the PBE functional used in the calculations is not able to 

describe this interaction [192], to this end, calculations were performed on the three candidate 

structures using the vdW-DF2 functional developed by the Langreth and Lundqvist [167]. The 

change in the functional has a significant effect. The difference in energy with and without the 

vdW interaction is more than 500 meV/atom. More significantly, the vdW functional calculations 

altered the order of the stability. The re-optimized Cmcm structure with the vdW functional 

becomes the most stable structure at 10 GPa. As described above, the major difference between 

the Cmcm and P1 and P21/m structures is in the arrangement of the Xe atoms. Apparently, the 

planar square Xe network has a more dispersive interaction with the Cl2 than the buckled layers 

observed in the P21/m and P1 structures. The enthalpies of formation, however, do not change 

with ZPE and vdW interactions and remain positive with respect to solid Xe and Cl2.   

 

Table 4.2 Numerical values of the calculated lowest enthalpy structures with ZPE and vdW 

corrections. 

Space  Group PBE 

(eV/atom) 

PBE+ZPE 

(eV/atom) 

PBE+vdW-DF2 

(eV/atom) 

P21/m 0.682606 0.712813 1.010094 

P1 0.684546 0.713794 1.010773 

Cmcm 0.685419 0.714667 1.009844 
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It should be noted that the vdW functional not only corrects the dispersive interaction but 

also properly accounts for the asymptotic behaviour of the exchange interaction at short distance. 

To further examine the effect of the vdW functional, calculations were extended to higher pressure 

on the P21/m and Cmcm structures. The enthalpy differences relative to the P21/m structure are 

shown in Figure 4.8a shows The energy difference increases slightly from 10 to 60 GPa for both 

the P21/m and Cmcm structures. It is often misunderstood that the vdW functional only affects 

structures with weak intermolecular interactions rather than the PBE results. In fact, the vdW 

functional of Langreth et al., used in the present study, correctly accounts for the exchange 

interactions at both short and long distances. Therefore, the effect of exchange interaction becomes 

even more important at high pressure (shorter distances) than low pressure (longer distances). The 

results clearly show that the PBE functional overbinds the system at high pressure since the 

optimized volume of both the P21/m and Cmcm structures obtained with the vdW functional are 

slightly larger at high compression.  
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Figure 4.8 Comparison of calculated PBE and vdW-DF2 functionals for Cmcm and P21/m 

structures of XeCl2. (a) Relative enthalpy with respect to P21/m structure. (b) and (c) the calculated 

equation of states of P21/m and Cmcm structures, respectively. 

 

4.3.4 Comparison with experiment 

In the experimental study, formation of deep red crystalline phases was observed in the 

pressure range of 2-20 GPa [189]. Initially from a 50:50 mixture of Xe and Cl2 at 14 GPa, the 

pressure dropped to 8 GPa when the sample was heated to 800 K. The drop in pressure hinted at 

the formation of a compound. The image shown in Figure 4.9b was taken when the sample was 

cooled from 440 K [189].  
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Figure 4.9 (a) The microscopic picture of Xe-Cl at ~ 0.1 MPa. The clear spherical regions were 

xenon-rich and (b) Xe-Cl at ~8 GPa. The crystals agglomerated as seen in the upper left on further 

cooling from 440 K [189]. The sample chamber is approximately 120 μm in diameter. 

The experimental spectra acquired before thermal annealing at 14 GPa show a sharp peak 

near 520 cm-1, which can be assigned to a Cl-Cl bond. After heating and reducing the pressure to 

4.2 GPa, the sample remarkably separated into clear and red regions. In both the clear and red 

regions the strong Cl2 peak had disappeared and a new band emerged at 390 cm-1 (Figure 4.10). In 

addition to this strong peak, a weaker band at 200 cm-1 was also observed. The peaks with energies 

higher than 600 cm-1 were attributed to overtones. The band at 401 cm-1 was tentatively assigned 

to Cl-Xe vibrations suggesting the formation of a xenon-chlorine compound.  

To compare with experiment, the Raman spectra of the two lowest enthalpy structures 

(P21/m and Cmcm) were computed (Figure 4.10).  The Raman intensities were calculated from 

derivatives of the macroscopic dielectric tensor with respect to the normal mode coordinate [193]. 

Since the P21/m and P1 structures are almost identical, we only show the result of the P21/m and 

Cmcm structures. Figure 4.10 shows that for the P21/m structure, the calculated Raman spectra 

reproduced the observed band around 440 cm-1. In addition, the predicted peak centred around 116 

cm-1 is slightly lower than the experimentally observed peak (~200 cm-1). When the pressure was 

increased to 20 GPa, the intensity of the peak at 116 cm-1 was decreased and the peak shifted to 

higher energy (~250 cm-1), while the strong peak shifted to lower energy (~400 cm-1). For the 

Cmcm structure, the strong peak (470 cm-1)  slightly changed up to 20 GPa but the first peak, which 

was very weak, became stronger and emerged into the higher frequency region (~236 cm-1 at 30 

GPa). Although the calculated and experimental spectra show some similarities, particularly the 
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appearance of a new Xe-Cl stretch vibration, the details, however, do not match. Therefore, the 

xenon chlorine complex observed with experiment is not one of the predicted structures. 

 

Figure 4.10 Comparison of Raman spectra of our calculated P21/m and Cmcm structures of XeCl2 

at 4 and 20 GPa with the experimental result of that at 4 GPa [189]. 

In an attempt to characterize the crystal structure of the Xe-Cl compound found with 

Raman study, energy dispersive x-ray diffraction measurements were performed at two detector 

angles. Figure 4.11 shows only the results collected at 10 degrees [189]. In our calculations, the 

Bragg equation, 𝜆 = 2𝑑 sin 𝜃, was used  to determine energy (𝐸 = ℎ𝑐
𝜆⁄ ).  The presence of Xe is 

confirmed by fluorescence peaks at 30 and 34 keV. All the diffraction lines can also be indexed to 

the Cmca structure of Cl2 and no additional diffraction lines due to the mixed alloy of Xe and Cl 

atoms are observed. Therefore, the x-ray results contradict the Raman measurement showing no 

formation of Xe-Cl2 complex at 4 GPa. We computed the energy dispersive x-ray diffraction 

patterns for the P21/m and Cmcm structures. Figure 4.11 shows the positions of the peaks of the 

calculated patterns are not consistent with the experimental measurements.  
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Figure 4.11 Comparison of the measured X-ray diffraction pattern of the Xe-Cl2 sample [189] with 
P21/m and Cmcm structures at 4 GPa. 

 

4.3.5 Electronic structures at 15 GPa 

The band structures of the XeCl2, calculated at 15 GPa, are shown in Figure 4.12. The PBE 

results show that both the P21/m and Cmcm are insulators with indirect band gaps of 1.75 and 

2.15eV, respectively. Calculations with the TB-mbjLDA functional which correct self-interaction, 

also produced similar results. It is known that the PBE functional often underestimates the band 

gap and thus the real energy gap may be much larger. To provide an accurate description of the 

band structure, quasi-particle energy corrections were calculated using the GW approximation. In 

the DFT perturbation approach, self-energy corrections are added to the Khon-Sham eigenvalues 

at selected k points. In the calculation of the self-energy matrix, the number of unoccupied bands 

was increased to at least twice the number of occupied bands. The band structure was then 

constructed from the interpolation of the corrected GW eigenvalues at each k point using the 

Wannier function technique [194]. The GW corrected band structures are compared to the PBE 

results for the P21/m and Cmcm structures in Figure 4.12. The calculated band gaps have increased 

to 4.06 and 4.31eV for P21/m and Cmcm, respectively. The predicted large band gaps show the 

crystalline structures should be transparent.  
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Figure 4.12 Band structures (top) and partial electronic DOSs (bottom) of the Cmcm and P21/m 

structures of XeCl2 are shown at 15 GPa. The black and red solid lines in band structure plots show 

results of PBE and GW corrections.    

  The projected densities of states of the Cmcm and P21/m structures, calculated using the 

PBE functional (Figure 4.12), show the Cl 3p orbitals dominate the Fermi level. The s orbitals are 

not shown due to their small contribution near the Fermi level. For XeCl2, at 15 GPa, each Cl atom 

shares one electron with another Cl atom to form a 𝜎 bond. The corresponding unoccupied 

antibonding Cl2 orbitals are located at higher energies but close to the Fermi level. 
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Figure 4.13 Absorption and reflectivity of Cmcm and P21/m structures of XeCl2 at 15 GPa are 

shown on the top, middle and bottom, respectively. The black and red solid lines in band structure 

plots show results of PBE and GW corrections. 

The absorption and reflectivity spectra were then calculated by the BSE method using the 

GW corrected wave functions shown in Figure 4.13. The results of BSE spectra calculations show 

that a band gap of ~4eV for both structures is in agreement with the GW band structures. Moreover, 

reflectivities of these compounds are very low as expected for insulators. 

 

4.3.6 Structural analysis at 60 GPa  

Now we return to discussion on the stable structures found at higher pressure. As indicated 

in the convex hull plot (Figure 4.1), at 60 GPa, XeCl2 with the P41212 structure was stable against 

decomposition into solid Xe and Cl2. In addition, the structural prediction calculations performed 

at 60 GPa also found two similar structures that are energetically competitive to the P41212 phase. 

The difference of energies is within 0.1 meV/atom. Energies of the P43212 and P41212 structures 

are slightly less than an orthorhombic P212121 phase. We will first describe the most stable one 

(P41212) shown in Figure 4.14. From the EOS, this structure is found to be stable in the pressure 
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range from 37 to 60 GPa. The P41212 structure is very different from the lower pressures structure 

and has four formula units per unit cell. Each Cl2 unit is surrounded by 9 Xe atoms connected from 

2.93-3.14 Å. Since a nominal Xe-Cl bond at ambient pressure is between 2.31-2.85 Å [195], the 

Xe..Cl separation of ~3 Å suggests a weak interaction. Locally, the Xe atoms are surrounded by 

12 Cl atoms. This seemingly complex coordination can be explained easily from the consideration 

of the Cl and Xe sublattices. Figure 4.14c illustrates the Cl sublattice is composed of a triangle-

like network of Cl atoms. The shortest Cl-Cl bond is 2.04 Å and Cl neighbours are located with < 

2.64 Å distances. Most interestingly, the Xe atoms form a fcc sublattice (Figure 4.14b). Although 

the Xe..Xe distances are all equal (3.15 Å), the Xe-Xe-Xe angles are distorted from the ideal 

tetrahedral value and vary from 105-111°. Therefore the XeCl2 structure can be simply described 

as a cubic fcc Xe lattice with Cl2 situated in the octahedral sites. Bader charge analysis show about 

0.2e as transferred from Xe to Cl atoms.  

 

Figure 4.14 (a) the lowest predicted enthalpy structure, P41212, for solid XeCl2 at 60 GPa. (b) and 

(c) present the sublattices of Xe and Cl, respectively. (d) and (e) show the coordination of Xe and 

Cl2. 

 

The second lowest enthalpy candidate found at 60 GPa is the P43212 structure and its 

energy is only 0.0002eV/atom higher than P41212. The structural features of P43212 are similar to 

P41212. Here, we only show the coordination around Xe and Cl atoms in Figure 4.15.  
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Figure 4.15 The coordination of Cl2 and Xe for the P43212 structure of solid XeCl2 at 60 GPa. 

The local structure of Xe in Figure 4.15 shows 6 unequal Xe-Cl contacts < 3.14 Å while each Cl2 

unit is surrounded by 9 Xe atoms separated from 2.94-3.14 Å. Similar to the P41212 structure, the 

Xe..Xe distances are all equal (3.15 Å), but the Xe-Xe-Xe angles have a small variation from 108-

111°. 

In the third low enthalpy P21212 structure, shown in Figure 4.16, the Xe is surrounded by 

6 unequal Xe-Cl contacts < 3.15 Å. The number of coordinates at the Cl atoms, however, is the 

same as the P43212 and P41212. The fcc-like sublattice of Xe was also formed but with two unequal 

distances (3.14 and 3.17 Å) and the Xe-Xe-Xe angles are in a range of 108-111°. Once again, the 

Cl sublattice forms a triangle-shape bonding network with Cl-Cl contacts between 2.05-2.61 Å.  

 

 
Figure 4.16 The coordination of Cl2 and Xe for the P212121 structure of solid XeCl2 at 60 GPa. 
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4.3.7 Dynamical stability at 60 GPa 

  Frozen phonon calculations were performed to evaluate the stability of the P41212, P43212 

and P212121 structures (Figure 4.17).  At 60 GPa, no imaginary frequency was found in the three 

structures. The projected vibrational densities of states of Cl and Xe atoms are also presented in 

Figure 4.17. In contrast to the low pressure structures at 10 GPa discussed above, mixing of Xe 

and Cl atomic motions is evident. In particular, the Cl-Cl stretch bands between 4 and 6 THz have 

broadened and hybridized with Xe vibrations. This observation suggests stronger Xe..Cl 

interactions than at low pressure. In view of the similarities in the crystal structures and very small 

energy differences in the predicted structures, they are just small variants of each other. The 

existence of stable but distinct structures reflects on the complexity of the multi-minimum energy 

landscape. 
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Figure 4.17 Phonon dispersion curves for P41212, P43212, and P212121 structures of XeCl2 at 60 

GPa. 



 

94 

 

We have also investigated the effect of vdW interaction on the P43212 structure and the 

result is compared with the PBE functional in Figure 4.18. In addition, we have also performed all 

electrons calculations to gauge the validity of the PAW potential at high pressure. The full potential 

and PAW results are indistinguishable below 30 GPa and they only deviated slightly at 60 GPa. 

This observation reaffirms the reliability of the PAW potentials at the pressure range studied. Once 

again, the vdW functional predicted a larger volume at high pressure. The “standard” 

parameterization of the PAW potential may not be accurate enough for studies at higher pressures. 

The same result was already observed in the calculations of the lower pressure structures. 
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Figure 4.18 Three calculated equations of state of the P43212 structure for XeCl2 compound. 

4.3.8 Raman spectra and electronic structures at 60 GPa 

The calculated Raman spectra for the P41212 and P212121 structures at 60 GPa are shown 

in Figure 4.19. The two Raman spectra are very similar with a strong band predicted at 350 cm-1 

and vibrations with lower interactions at around 200 cm-1.  
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Figure 4.19 The calculated Raman spectra for the P41212 and P212121 structures of XeCl2 at 60 

GPa. 

The band structures calculated using the PBE functional and GW corrections for the P41212 

and P212121 structures at 60 GPa are shown in Figure 4.20. Details of the third low enthalpy 

structure (P43212) are given in APPENDIX A. The GW band gaps are 1.92 and 1.66eV for P41212 

and P212121, respectively. Both are larger than the corresponding PBE values of 0.85 and 0.69 eV, 

respectively. At this pressure, XeCl2 is a semiconductor, which differs from high-pressure XeF2 

phases. The metallization of the XeF2 phase was found at < 70 GPa [180]. XeCl2 at this pressure 

still has a fairly large band gap and the color of the compound would be blue-green. The projected 

DOSs indicate that the p orbitals of Xe and Cl are strongly hybridized at the Fermi level. 

The optical spectra and reflectivity, shown in Figure 4.21, were calculated using the BSE 

method. The reflectivity is slightly higher when compared to XeCl2 at 15 GPa (Figure 4.13) due 

to much smaller energy gaps of the crystal structures at 60 GPa. 
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Figure 4.20 At 60 GPa, band structures (top) and partial electronic DOSs (bottom) of the P41212 

and P212121 structures of XeCl2 are shown. The black and red solid lines in band structure plots 

show results of PBE and GW corrections. 
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Figure 4.21 At 60 GPa, absorption and reflectivity of P41212 (left) and P212121(right) structures 

of XeCl2. 

4.4  Predicted high pressure structures of XeCl                

We now discuss the results of the high pressure structures of XeCl. Information relevant to 

the structural search with the GA and PSO methods are summarized in Table 4.3. Once again, PSO 

and GA methods predicted different stable structures. Based on enthalpy calculations, only the 

Cmcm and Cmc21 structures found by PSO are thermodynamically stable at 60 GPa. At this 

pressure, the energy difference between these two structures is less than 2 meV/atom. 

The GA method did not predict the lowest enthalpy structures at the desired pressures. At 

20 GPa, the energy of the P21/m structure found by GA is 0.005 eV/atom higher than the C2/m 

structure found by PSO. Interestingly, the P21/m structure was also found at 40 GPa by PSO with 

a population of 40 but it is not the lowest enthalpy structure. In the GA search, energies of the two 

different P1 structures found at 40 and 60 GPa are about 0.02 eV/atom higher than stable 

structures. Therefore, the P1 structures found by GA will not be examined further. In addition, the 

dynamical stabilities of all structures in Table 4.3 were determined from phonon calculations 

(APPENDIX A) and no imaginary frequencies were found at the pressures studied.   



 

98 

 

Table 4.3 Comparison of the lowest enthalpy structures of 8 formula units of XeCl, predicted with 

GA and PSO methods in pressure ranges of 20 to 60 GPa. 

PSO 

Population 40 50 

Pressure (Gpa) 40 20 40 60 

Total #Gen 26 37 47 40 

Structure P21/m C2/m Cmc21 Cmcm 

Found at #Gen 7 13 23 8 

Enthalpy (eV/atom) 5.5494 2.819 5.5329 7.8854 

GA 

Population 50 

Pressure (GPa) 20 40 60 

Total # Gen 40 40 40 

Structure P21/m P1 P1 

Found at #Gen 14 25 14 

Enthalpy (eV/atom) 2.8245 5.5569 7.9367 
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Figure 4.22 Relative enthalpy vs. pressure plot of the predicted structures of XeCl relative to the 

C2/m structure. 
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4.4.1 Structural analysis at 10 GPa  

 

Figure 4.23 (a) The lowest enthalpy C2/m structures of solid XeCl at 10 GPa. This structure is 

shown along the c axis with (b) shorter and (c) longer cutoff of Xe..Xe atomic bonding distance 

and (d) is the sublattice of Xe. 

  We will describe the structural features of the three low enthalpy structures found by both 

GA and PSO methods at 10 GPa. The most stable structure in the pressure range 10-34 GPa 

predicted by PSO is a C-centred monoclinic C2/m with four formula units per unit cell 

(Figure 4.23a). The C2/m structure in Figure 4.23b shows the dimer Xe atoms connected with 3.29 

Å Xe..Xe distances. After increasing the cutoff of the Xe..Xe contact to < 3.5 Å (Figure 4.23c), 

the occurrence rippled layers of Xe atoms with six members becomes apparent. The Cl2 molecules 

are clearly seen arranged along the c direction through the Xe channels. Viewing down the layers 

in Figure 4.23d, the buckling of the Xe atoms in a chair form along the c axis is clear. 
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Figure 4.24 (a) The second lowest enthalpy Cmca structures of solid XeCl at 10 GPa. To 

preserve clarity, deep and light blue colors are used to illustrate the Xe atoms in the two planes. 

(b) shows the structure along a axis. (c) and (d) illustrate the Xe layers. 

The next lowest enthalpy Cmca structure (found by PSO) has 16 atoms in the unit cell 

(Figure 4.24a). The Cl2 molecules are arranged in a plane parallel to each other in Figure 4.24b.  

The Xe atoms are arranged to form layers and connected together at 3.41 Å distance. The bottom 

layer in Figure 4.24c forms a rhombus network with Xe-Xe-Xe angles of 82° and 98° and Xe..Xe 

contacts of 3.51 Å distance. The structure of the top layer is identical to the bottom layer. These 

two layers in Figure 4.24d are linked in the c direction but the top layer is shifted to the center of 

the rhombus network of the bottom layer.   
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Figure 4.25 (a) The third lowest enthalpy P21/m structures of solid XeCl at 10 GPa. (b), (c) and 

(d) show sublattices of Xe with different bond cutoffs. (e) shows Cl2 molecules are located along 

Xe channels. 

The third lowest energy structure with the P21/m symmetry consists of 8 atoms per unit 

cell.  The 3.29 Å distance connects two Xe atoms parallel to each other in the a-b plane but if the 

bond cutoff increases to < 3.3 Å other contacts appear, as shown in Figure 4.25c. the Xe atoms in 

puckered layer can be classified into four groups. In the first and fourth group all Xe atoms lie on 

the b-c plane with x=0.67 and x=1.32, respectively. In the second and third groups the Xe layers 

are similar and lie on the x=0.98 and x=1.02 planes. Increasing the cutoff to < 3.55 Å reveals new 

contacts between Xe atoms. A perspective view normal to the a axis in Figure 4.25d, shows 

corrugated Xe layers forming unequal parallelograms.  Once again, long Xe..Xe contacts in 

Figure 4.25e form channels where Cl2 molecules are running through the c axis.   

To summarize, analysis of XeCl structures at 10 GPa shows that the Xe atoms tend to arrange 

into layers to interact with Cl2 molecules. As discussed above, the C2/m structure is energetically 

most favourable where Cl2 molecules run along the c direction through the Xe channels. In 

comparison, in the Cmca structure, Cl2 molecules are arranged along the a axis between the 2D 

Xe layers. Interestingly, a similar arrangement of the Xe 2D layers between Cl2 molecules (the 

Cmcm structure in Figure 4.4g) was also found energetically favorable in XeCl2 at 10 GPa. 
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Eventually, in the P21/m structure, the puckered layers of Xe with Cl2 aligned through the c axis 

have higher energy.  

4.4.2 Energy corrections and electronic properties  

The three structures are dynamically stable as no imaginary modes were found in the 

phonon calculations. In this case, inclusion of the vdW interaction did not change the energy 

sequence predicted by the PBE functional. In the PBE calculations in Table 4.4, the enthalpy 

difference for the C2/m, Cmca and P21/m structures is less than 3 meV/atom at 10 GPa. Even 

though the vdW functional uniformly increased the energy by about 0.4 eV/atom, it did not change 

the energetic order. The C2/m structure remains the most stable structure in the pressure range 

from 10-34 GPa. 

Table 4.4 Calculated lowest enthalpy structures with vdW corrections for XeCl compound at 10 

GPa. 

Space group PBE 

(eV/atom) 

PBE+vdW-DF2 

(eV/atom) 

C2/m 1.216801 1.630152 

Cmca 1.219087 1.6315583 

P21/m 1.219696 1.6332095 

 

        We have calculated the ELFs for the three lowest enthalpy structures at 10 GPa. Figure 4.26 

shows high ELF contours are found at the region of the lone pairs and at the Xe atoms. Moderate 

ELF values (~0.7) are found between two Cl atoms showing the existence of a covalent bond. 

There is no evidence of any interaction between Xe and Cl atoms. Bader charge analysis [196] 

indicates an electronic charge being transferred from Xe to Cl atoms and, similar to XeCl2, this 

value is about (~0.1e) for the three structures at 10 GPa. Once again, it is indicative that Xe and 

Cl atoms are slightly ionic at 10 GPa. 
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Figure 4.26 At 10 GPa, the ELF values for the C2/m, Cmca and P21/m structures of XeCl with 
cross sections of (010), (100) and (010), respectively. The positions of Xe and Cl atoms are also 

shown for clarity. 

 

4.4.3  Comparison with experiment 

Raman spectra were calculated for C2/m, Cmca and P21/m structures at 4 and 20 GPa. 

Figure 4.27 shows the Raman spectra of the C2/m structure are very similar at two pressures where 

the low intensity peaks emerge around 160 cm-1 and a strong band is evident at 440 cm-1. At 4GPa, 

the Cmca Raman spectra show very weak peaks around 150 cm-1 and the strong band at 480 cm-1. 

At 20 GPa, a few weak peaks appear at low frequency and the vibration of the strong peak shifts 

to 462 cm-1. The first peak of the P21/m structure remains weak at 160 cm-1 at both pressures but 

the main peak has shifted from 460 to 443 cm-1. The shift to a lower frequency is unusual as it 

would have suggested a weakening of Xe-Cl interactions. Once again, the calculated Raman 

spectra do not reproduce all the features in the observed spectra. 
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Figure 4.27 Comparison of Raman spectra of our calculated C2/m, Cmca and P21/m structures of 

XeCl at 4 GPa with the experimental result of that at 4.2 GPa in Figure 4.10. 

The calculated energy dispersive x-ray diffraction patterns of C2/m, Cmca and P21/m 

structures were computed and compared with experiment at 4.2 GPa [189]. Figure 4.28 illustrates 

that once again, no agreement with experiment was observed.  
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Figure 4.28 Comparison of the measured X-ray diffraction pattern of the Xe-Cl2 sample [189] with 

C2/m, Cmca and P21/m structures of XeCl at 4 GPa. 

 

 

4.4.4 Electronic structure at 15 GPa 

Since the electronic band structures of the predicted structures of XeCl2 are shown at 15 

GPa, we calculated the electronic properties of the C2/m structure at the same pressure using the 

PBE functional and GW corrections (Figure 4.29).  An indirect gap separates the occupied band 

at 𝛤 and E symmetry points of the conduction band. The PBE gap is 2.13 eV and increased to 4.17 

eV after the GW corrections. The rather large band gap (> 4 eV) indicates that the compound 

should be transparent. The calculated partial DOS shows the p orbitals of Cl2 contribute the most 

near the Fermi level. We also computed the optical absorption and reflectivity spectra using the 

BSE approximation. Once again at 15 GPa, reflectivity is weak due to the insulating property. 
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Figure 4.29 Band structures, partial electronic densities of states, absorption and reflectivity of the 

XeCl C2/m structure at 15 GPa. 

 

4.4.5 Structural analysis at 40 and 60 GPa  

Between 40 and 60 GPa, structure searches by the PSO method predicted the Cmc21 and 

Cmcm structures are the most stable, respectively. The Cmc21 orthorhombic structure consists of 

8 formula units per unit cell. From EOS calculations, this structure has the lowest enthalpy among 

all the predicted structures in the pressure range 35-55 GPa. This structure at 40 GPa is illustrated 

in Figure 4.30. The Xe atoms located at the x=0.68 and at x=0.81 planes form buckled layers with 

Xe..Xe contacts < 3.32 Å. These connected atoms created the Xe channels as shown in 

Figure 4.30a. A perspective view down to the a axis in Figure 4.30b shows the corrugated Xe 

layers are constructed from a network of edge-shared parallelograms. The bond lengths of the Cl2 

in the channels alternate between 2.06 and 2.33Å. The Cl atoms form zigzag chains running 
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parallel to the c axis with a Cl-Cl-Cl angle of 75.7°(Figure 4.30c). When the Xe..Xe contacts were 

increased to 3.5 < Å, new linkage appeared between the Xe and a buckled hexagonal network of 

Xe atoms formed (top view of the b-c plane in Figure 4.30d). 

 

Figure 4.30 The Cmc21 structure for solid XeCl at 40 GPa. To preserve clarity, the Xe atoms are 

shown with deep and light blue colors. Different Cl and Xe bond cutoffs, (a) and (b) shorter and 

(c) and (d) longer, are shown. 

 

The most stable structure predicted at 60 GPa has an orthorhombic structure with the Cmcm 

space group (Figure 4.31). This structure is related to the Cmc21 structure with 8 formulae per unit 

cell. The difference between the two structures is in the arrangement of the zigzag Cl chains. In 

the Cmcm structure, the Cl-Cl-Cl angle value is 73.1° and the Cl-Cl bond lengths are equal (2.17 

Å). Two Xe atoms (light blue) from two buckled layers are connected with 3.2 Å distance. The 

features in the Cmc21 and Cmcm structures along the a axis are quite similar. Figure 4.31b shows 

the top view of the Xe and Cl networks. Clearly, the zigzag Cl-Cl chains follow the arrangement 

of Xe layers. This interesting configuration indicates that the interaction between the Xe and Cl 

layers may be important. 
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Figure 4.31 The Cmcm structure for solid XeCl at 60 GPa, shown in two perspectives. 

4.4.6 Electronic properties at 40 and 60 GPa 

The ELF contour maps for the Cmc21 and Cmcm structures respectively at 40 and 60 GPa 

in the (100) planes of the Cl layer are depicted in Figure 4.32a-b. At 40 GPa, due to the zigzag 

arrangement of Cl2 molecules, ELF values are small between intermolecular Cl..Cl regions. (ELF 

values are about ~0.4 between longer Cl..Cl contacts). Indeed, higher ELF values are found 

between the shorter (intramolecular) Cl-Cl bonds. Therefore, at 40 GPa, there is little interaction 

between Cl2 pairs and they are still molecular in character.  At 60 GPa, the Cmcm structure 

becomes the most stable. ELF analysis shows an accumulation of electronic charge density located 

within the zigzag chain of the Cl atoms. The ELF values of ~0.6 between Cl-Cl pairs may indicate 

weak covalent bonds. In the (100) section of the Xe puckered layers (Figure 4.32c), highest ELF 

values are found in the region at the Xe atoms. No charge localization was found in the interstitial 

site of the Xe hexagonal networks. Bader analysis found that the charge transferred from the Xe 

to Cl atoms is about 0.2e at 60 GPa. We can conclude, similar to XeCl2, that this amount of charge 

transfer shows ionic interaction between adjacent Xe and Cl layers.  
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Figure 4.32 The ELF values for the (a) Cmc21 (b) and (c) Cmcm structures of XeCl with cross 

sections of (100). The ELF values were computed for the Cmc21 and Cmcm structures at 40 and 

60 GPa, respectively. The positions of Xe (light and dark blue color) and Cl atoms are also shown 

for clarity. 

 

4.4.7 Raman spectra and electronic structures at 40 and 60 GPa 

The calculated Raman spectra for the Cmc21 and Cmcm structures at 40 and 60 GPa are 

shown in Figure 4.33.These calculated spectra are similar to the high pressure XeCl2 structures 

(the P41212 and P21212 Raman spectra shown in Figure 4.19), with the lowest frequency vibrations 

found at 200 cm-1 and the strongest peak at ~350 cm-1.  
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Figure 4.33 The calculated Raman spectra for Cmc21 and Cmcm structures of XeCl at 40 and 60 

GPa, respectively. 

Electronic band structures of Cmc21 and Cmcm were calculated using the PBE functional 

and GW corrections at 40 and 60 GPa, respectively. For the Cmc21 structure, the PBE and GW 

band gaps are 0.81 and 1.99 eV, respectively (Figure 4.34). At 60 GPa, in the Cmcm structure, the 

PBE gap is 0.3 eV and increases to 0.81 eV after GW corrections. In comparison to the electronic 

structures of the high pressure XeCl2, the band gaps of the XeCl compounds are smaller. The larger 

Cl-Cl interactions in the Cl chains led to the substantial lowering of the band gaps. The calculated 

electronic density of states of both structures shows the DOS near the Fermi level are dominated 

by the Xe and Cl valence p orbitals. The substantially smaller band gap suggests XeCl may 

metallize at pressure higher than 60 GPa. 
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Figure 4.34 Band structures of Cmc21 and Cmcm structures of XeCl shown by black and red 

lines for PBE and GW corrections at 40 and 60 GPa, respectively. Total and partial DOSs of 

both structures are shown as well. 

 

4.5 Predicted high pressure structures of XeCl4 

XeCl4 is the last member of the XeCln series studied. Structural searches were performed 

with both PSO and GA methods using populations consisting of 50 trial structures and four formula 

units of XeCl4 (20 atoms). Results of the predicted lowest enthalpy structures are summarized in 

Table 4.5. In contrast to XeCl and XeCl2, in the pressure range from 10 to 60 GPa, the formation 

enthalpies of the high pressure structures are highly positive. Therefore, all the predicted structures 

are not stable against dissociation into the elemental solids. Compared to the PSO results, the GA 

method failed to predict low enthalpy structures. The energies of the favorable predicted structures 

found by GA are at least 0.03 eV/atom higher than PSO structures. We have checked the stability 

of the predicted PSO structures and except for the P1 structure predicted at 20 GPa, the other 



 

112 

 

structures shown in Table 4.5 have imaginary modes, which means these structures are 

dynamically unstable. Details on the phonon band structures are given in the APPENDIX A.  

Table 4.5 Comparison of the lowest enthalpy structures of 4 formula units of XeCl4 predicted by 

GA and PSO methods in pressure range of 20 to 60 GPa. 

PSO 

Population 50 

Pressure (GPa) 20 40 60 

Total #Gen 40 40 40 

Structure  P1 P1 𝑃6̅2𝑚  

Found 9 17 30 

Enthalpy (eV/atom) 1.6116 3.8766 5.8232 

GA 

Population 50 

Pressure (GPa) 20 40 60 

Total #Gen 40 40 40 

Structure  P1 P1 Pm 

Found 37 22 30 

Enthalpy(eV/atom) 1.6484 3.9257 5.8810 

 

        Although no stable structures were expected for XeCl4 within the pressure range studied, an 

analysis the of low enthalpy structures is still of interest. At 60 GPa, the 𝑃6̅2𝑚 structure was 

predicted to have the lowest enthalpy. The existence of slabs of connected six-member Xe atoms 

is evident (Figure 4.35). Two types of Cl bondings are found: The first group, molecular Cl2 with 

two lengths of 1.97 and 2.1Å, and the second group, a Cl chain with longer Cl..Cl contacts of 2.66 

Å, are located along the Xe channels.  

The second lowest enthalpy P21/c structure is formed from 1D Xe chains and Cl2 

molecules. Higher enthalpy structures (P1 and C2) tend to arrange Xe in a planar form. Eventually, 

monoatomic Xe with Cl atoms arranged in a 1D chain found in the C2/m structure has the highest 
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enthalpy (~0.1eV/atom higher than the 𝑃6̅2𝑚 structure). All the structures of XeCl4 compounds 

are unstable and thus may not be synthesized in the pressure range from 10 to 60 GPa.  

 

                Figure 4.35 The lowest enthalpy predicted structures for solid XeCl4 at 60 GPa. 

 

4.6 Conclusions  

In this study, we have examined possible high pressure structures of XeCln (n=1, 2 and 4) 

below 60 GPa. We found that, quite often, the lowest enthalpy (global minimum) structures are 

missed by both PSO and GA methods. This observation is in contrary to claims of almost absolute 

reliability of the two structural search methods. For example, the low enthalpy P21/m structure of 

the XeCl2 compound was not predicted at 10 GPa. We should be caution that apart from the atomic 

species and the number of atoms in the model, both structural search methods have inherent 

parameters governing the convergence, such as the percentage of mutation vs heredity operations 

in GA and the relative weigh of the bias against local and global minimum is PSO. Only the 

recommended default values were used in this investigation. However, since randomly generated 

structures in the PSO search were constrained by 230 space groups, it was more efficient to find 

crystalline structures. Our comparisons indicate that the PSO method was more successful at 

predicting lower enthalpy XeCln structures in the Cl-rich region. The calculated Raman spectra 
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and energy dispersive x-ray diffraction for XeCl and XeCl2 structures are not consistent with 

experimental measurements [189]. At this point, the discrepancies between theory and experiment 

are not clear but, it is likely due to difficulties to the formation of Xe-rich XenCl compounds. 

However, all predicted structures for XeCl and XeCl2 turned out to be dynamically stable but 

thermodynamically unfavorable below 55 GPa. The stable compounds (XeCl and XeCl2) found at 

60 GPa, are semiconductors. In contrast to the XeCl and XeCl2 compounds, in the pressure range 

from 10 to 60 GPa, the formation enthalpies are highly positive for XeCl4. In addition, the 

predicted compounds are also not dynamically stable, which ensures the compound does not form 

below 60 GPa. In the next chapter, we will present the results on the possible of the formation of 

high pressure compounds for the two remaining Xe-halide (Br and I).   
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Crystal structures and electronic properties of xenon bromide and iodide at 

high pressure 

The primary motivation for the study of XeBrn and XeIn (n=1, 2 and 4) compounds at high 

pressure is based on speculation since the size of Br and I atom are larger than Cl and more 

comparable to Xe, should be more polarizable and have a better chance in forming covalent bonds 

with Xe.  Therefore, a systematic comparison of the evolution of the high pressure structures and 

chemical bonding in Xe-halides from Cl to Br and I at high pressure is worthy and is investigated 

in this chapter.   The content of this chapter is divided into two major parts: the study of the high 

pressure structures of Xe-Br and Xe-I and the associated properties. 

We first describe the structural transformation sequence of solid Br2 under pressure. 

Similar to Cl2, Br2 is a diatomic molecular crystal at low pressure and has a base-centered 

orthorhombic Cmca structure.  This structure is found to be stable by x-ray diffraction up to 70 

GPa [197] A first-order phase transition associated with molecular dissociation was found to begin 

at 80 ± 5 GPa.  Coexisting with the molecular phase, new diffraction peaks begun to emerge at 82 

GPa that can be indexed to a body-centered orthorhombic structure with the Immm space group.  

The monatomic phase has a structure similar to that observed in solid iodine at 21 GPa [198]. 

However, the direct molecular → monoatomic phase transition was later challenged by a recent x-

ray absorption spectroscopy experiment which presents evidence that an intermediate phase 

occurred at 84 GPa [199]  This phase was suggested to have an incommensurate modulated 

structure.  The monoatomic Immm phase was only observed at pressure above 115 GPa [199], 

[200].  

Regarding the electrical property, studies have shown that bromine is a metal at high 

pressure [197],[201]. A hint of metallization was detected around 60 GPa where the surface of the 

sample begins to reflect light. Later, Shimizu et al reported direct measurements of the electrical 

resistance of solid bromine [202]. According to their measurements, molecular Br2 metallized at 

ca. 80 GPa. In addition, the metallic phase is a superconductor with a critical temperature Tc of 1.5 

K  between 80 and 120 GPa [203]. This observation is supported by a theoretical calculation 

showing the monatomic phase is a superconductor with Tc of 1.46 K at 100 GPa [204]. In this 

chapter, we first report the theoretical investigation of the phase stabilities of stoichiometric XeBrn 
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(n=1, 2 and 4) up to 60 GPa. Then, the electronic and vibrational properties of selected stable 

structures will be presented.   

5.1  Thermodynamics stability of XeBrn (n=1, 2 and 4) 

The enthalpies of formation were computed relative to solid fcc Xe and the Cmca structure 

of molecular Br2 which is the stable phase below 60 GPa. Most of the predicted structures were 

found to have positive formation enthalpies (Figure 5.1).  The exception is a XeBr2 compound 

formed at 60 GPa. Detailed discussion on the crystal and electronic structures of XeBr, XeBr2 and 

XeBr4 is given below.  
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Figure 5.1 Predicted formation enthalpies of Xe–Br compounds below 60 GPa. 

5.2 Predicted high pressure structures of XeBr 

Similar to previous studies on XeCln, a structural search was terminated after a minimum 

energy structure was found and no new lower enthalpy structure appeared for at least 20 successive 

generations. We considered a model consisted of 8 formula units per unit cell with one population 

of 50 structures.  The lowest enthalpy structures for XeBr found by PSO at 10, 40 and 60 GPa are 

summarized in Table 5.1. At 10 and 40 GPa, the P21/c and Cmcm were found to be the lowest 

enthalpy structures, respectively. The Cmcm structure became the second lowest enthalpy structure 

at 60 GPa. At this pressure, the primitive cell of Fmm2 structure (32 atoms in the conventional 

cell) was found to have the lowest enthalpy. 
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Since the primitive cell of the Cmcm structure consists of 4XeBr2 formula units, we 

repeated the PSO search with the smaller primitive cell in order to affirm that the prediction 

procedure is robust.  Surprisingly, during the structure search a P2 structure having higher enthalpy 

of formation found in the 9th generation was trapped in a local minimum and no new stable 

structure was found. The observation suggests contrary to the perception that a global minimum 

structure should be easier to find in a smaller model with less degree of freedom, sometimes, as in 

this case, metastable structures can be trapped in local minima leading to erroneous results.  

 

Table 5.1 The lowest enthalpy structures of XeBr with PSO method in pressure range of 10 to 60 

GPa. 
 

  
PSO 

Population 50 

Formula unit 4(XeBr) 8(XeBr) 

Pressure (GPa) 60 10 40 60 

Total #Gen 39 40 36 31 

Structure  P2 P21/c Cmcm Fmm2 

Found at 9 26 16 8 

Enthalpy (eV/atom) 8.789223 1.49038 6.16024 8.69822 

 

The formation enthalpies as a function of pressure for the predicted low energy candidate 

structures are compared in Figure 5.2. At 10 GPa, the P21/c and Cmcm structures are energetically 

competitive with an energy difference less than 0.1 meV/atom. Their crystal structures are closely 

related with only small variations in the unit cell and atomic positions. However, these two 

structures are not the lowest enthalpy structures at 10 GPa! Instead, a Pccn structure, which is the 

second lowest enthalpy structure found by PSO search at 40 GPa, is found to be the most stable. 

From EOS calculations, at 10 GPa, the Pccn structure is ~0.003 eV/atom lower than P21/c 

structure. Once again, the lowest enthalpy structure was missed in the PSO search! At 60 GPa, the 

Fmm2 structure was found to have the lowest enthalpy. Note that the energy of this structure 

decreased dramatically by increasing the pressure and eventually the formation enthalpy became 

negative above 70 GPa and was thermodynamically stable against the elemental components.  The 
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Cmcm structure found at 40 GPa now becomes the second lowest enthalpy structure. The stabilities 

and characteristics of the Pccn and P21/c structures at 10 GPa and Cmcm and Fmm2 structures at 

60 GPa will be discussed in detail below.  
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Figure 5.2 The formation per atom with respect to elemental Xe and molecular Br2 for XeBr 

compounds. 

 

5.2.1 Structural analysis at 10 GPa       

        The orthorhombic Pccn structure has 16 atoms (8XeBr) in the unit cell.  The Br atoms form 

zigzag chains running parallel to the [1 1 0] and [1̅ 1 0] directions with a Br-Br-Br angle of 88.7° 

(Figure 5.3b).  The closest Br..Br atom contact is 2.51 Å. When viewed down the a axis, Xe also 

seems to form zigzag chains with Xe..Xe contacts < 3.6 Å (Figure 5.3c). However, in fact, a 

buckled square layer of Xe was observed when viewed along the c axis (Figure 5.3d). Two 

identical Xe layers depicted in Figure 5.3e show the top layer was displaced slightly in the a axis. 

When a longer Xe..Xe contact (~3.75 Å) was used, the two layers were linked and a triangle 

network of Xe appeared (Figure 5.3f).  
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Figure 5.3 (a) the lowest predicted enthalpy Pccn structure of XeBr at 10 GPa. Br sublattice in 

two different directions is shown in (b). (c), (d) and (e) show sublattice of Xe with bond cutoff   

< 3.6 Å and (f) the Pccn structure with Xe bond cutoff  < 3.75 Å. 

The second lowest enthalpy P21/c structure is composed of 8 formula units. This structure 

is similar to Cmcm XeCl at 60 GPa in Figure 4.31, which also formed from zigzag chains of Cl 

running along the channels created by the Xe (Figure 5.4b). The Br chains running parallel to the 

b axis have Br-Br-Br angles of 78.5°. The shortest Br..Br atoms contact is 2.49 Å and the Xe..Xe 

contacts alternate between 3.79 and 3.95 Å.  

 

Figure 5.4 The second lowest predicted enthalpy P21/c structure of XeBr at 10 GPa. 
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5.2.2 Electronic and dynamical properties  

        Even though the Pccn and P21/c are not thermodynamically stable, we wish to examine the 

dynamical stability with phonon calculations using the supercell method. Frozen phonon 

calculations reveal a number of imaginary branches. More accurate calculations were then repeated 

with the linear response method with a dense k mesh at the q points where imaginary frequencies 

were found.  Same results were obtained thus confirming the supercell results. We also employed 

the vdW functional in the frozen phonon calculations and obtained the same results. Therefore, the 

Pccn structure is not dynamically stable. Phonon calculations on the P21/c structure also showed 

imaginary modes indicating that this structure is not dynamically stable.  

        The effect of vdW interaction for the Pccn structure is investigated in Figure 5.5. The 

predicted volumes are almost equal to the PBE result at 10 GPa.   The calculated volumes only 

deviated slightly at higher pressures with the PBE having a smaller volume. 
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Figure 5.5 The calculated equation of state of Pccn structure of XeBr compound. 

 

       The ELF of the two lowest enthalpy structures at 10 GPa (Pccn and P21/c) were calculated. 

Small ELF values (< 0.5) between Br atoms in the zigzag chains indicate the absence of strong 

covalent bond (Figure 5.6).  Bader analysis show very small charge transfer (< 0.1e) between Br 

and Xe atoms, suggesting a weak ionic interaction at 10 GPa. 
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Figure 5.6 The ELF values of zigzag chains of Br atoms in the Pccn and P21/c structures. For 

clarity, the positions of Xe and Br atoms were shown. 

 
5.2.3 The Fmm2 structure at 60 GPa  

The orthorhombic Fmm2 structure has 32 atoms per unit cell and is not thermodynamically 

stable at 60 GPa. To assist the description of the structure in Figure 5.7, the two types of Xe and 

Br atoms in the structure are highlighted in dark and light blue and red, respectively. Slabs 

consisting of three Xe layers are stacked along the c direction (Figure 5.7A) and hexagonal patterns 

of the layers are evident when viewed down the c axis. The Br sublattice is composed of two 

identical layers running parallel to b axis (Figure 5.7B). The top view of the Br atoms in the a-b 

plane is composed of a triangular pattern (brown atoms) with diatomic Br (red atoms).  
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Figure 5.7 The Fmm2 structure of XeBr at 60 GPa. For clarity sublattice of Xe and Br atoms were 

shown with deep and light colors. 

    

         Phonon calculations indicate that the Fmm2 structure is not dynamically stable even though 

it is the predicted lowest enthalpy structure. It is likely that the 8 formula units used in the search 

may not be sufficient and bigger models are needed in order to obtain the most stable structure. 

The result points to a weakness of current computational limitation on the use of models with small 

number of atoms. This, however, is not an inherent problem with the methodology. Therefore, care 

must be exercised relating to the consequence on the size of the model. Convergence in the 

structure search is not always guaranteed unless models with bigger structural model and larger 

population are used.  

-4

0

4

8
XeBr-60 GPa-Fmm2-PBE

E
n

er
gy

(e
V

)

 UXSYT Z
 

Figure 5.8 The band structure of the Fmm2 structure of XeBr at 60 GPa. 
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Despite the dynamical instability of the Fmm2 structure, a study of the electronic properties 

could be informative. The electronic band structures of Fmm2 computed using the PBE functional 

shown in Figure 5.8 inculcates the XeBr compound is metallic at 60 GPa.   

 

5.2.4 The Cmcm structure at 60 GPa  

        At 60 GPa, the second lowest enthalpy Cmcm structure is consisted of 8 formula units per 

unit cell. The structural features are quite similar to the Cmcm structure of XeCl (Figure 4.31). 

Like the XeCl structure, the Br atoms form zigzag chains running parallel to the c axis with a 

smaller Br-Br-Br angle of 63.9°.The shortest Br..Br distances are all 2.48 Å with Xe..Xe contacts 

alternating between 3.1 and 3.49 Å. The Xe and Br layers viewed along the a axis (Figure 5.9) 

indicate that the Xe atoms form hexagonal puckered layers. 

 
Figure 5.9 The Cmcm structures for solid XeBr at 60 GPa. 

        The ELF plotted in the (100) plane of the Br atom layer at 60 GPa are illustrated in 

Figure 5.10. ELF analysis shows an accumulation of electronic charge density located on the Br 

in the zigzag chains. The calculated ELF value of ~0.4 between the Br atoms again indicates that 

no covalent bond exists and the structure is a monoatomic phase. Bader analysis also found a small 

charge transfer from Xe to Br of about 0.1e at 60 GPa.  

 

Figure 5.10 The ELF values for the Cmcm structure of XeBr with cross section of (100). 
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        The phonon band structure of the Cmcm phase calculated at 60 GPa, is shown in Figure 5.11. 

The absence of imaginary vibration modes shows the structure is dynamically stable. The 

vibrational bands of Xe atoms are hybridized with the Br bands up to 9 THz while the higher 

frequencies Br vibrations extended to 11 THz. As expected, at 60 GPa, due to heavier atomic mass 

of Br rather than Cl, the highest vibrational bands are ~4 THz lower than Cl motions in XeCl but 

for the low frequency modes of Xe in XeCl and XeBr compounds, there is no significant change. 

The band structures and projected DOS calculated at 60 GPa are shown in Figure 5.11. The PBE 

result indicates that Cmcm is metallic. The Xe-p and Br-p states dominate the DOS near the Fermi 

level but the s and d electrons contributed from both atoms (not shown) are significant quite below 

and above Fermi level. Therefore, the electrical conductivity originates from the electrons of the 

overlapping p bands. Moreover, a distinctive flat band is observed near the Fermi level, for 

example, at the S point and midway of the T→ Y line. In addition a steep band was found to cross 

the Fermi level in the Γ→ Z direction. The co-existence of flat (heavy effective mass) and steep 

electronic bands (conducting) is a common feature in pressure-induced superconductors, and this 

scenario has been suggested as a favorable condition for enhancing electron pairing, essential for 

superconductivity [205].  
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   Figure 5.11 The band structures and phonon dispersion of the Cmcm structure of XeBr at 60 

GPa. 

         

        To examine potential superconductivity, electron-phonon coupling calculations were 

performed. An electron-phonon coupling of λ=0.76, was calculated. Using the Allen-Dynes 

modified McMillan equation [169], which is applicable to weak electron phonon coupling (λ<1.5) 

with a nominal value of the Coulomb repulsive parameter µ* of 0.1,a Tc of ~6 K is predicted. This 
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is to be compared with the Tc =1.46 K calculated for monoatomic Br structure between 100 and 

200 GPa [204] showing  that XeBr is a better superconductor at lower pressure.  

 

5.3 Predicted high pressure structures of XeBr2 

           Results of the lowest enthalpy structures of XeBr2 found by PSO at 10, 40 and 60 GPa are 

summarized in Table 5.2. At 10 GPa, a P1 structure was found to be the lowest enthalpy structure 

in the 6th generation. At 40 and 60 GPa, the same Fd3m phase was found to be the lowest enthalpy 

structure. Since the primitive cell of this structure is consisted of 2 formula units we again repeated 

the structural search with a model consisting of only 6 atoms per unit cell. In this case, the same 

Fd3m structure was found.  

Table 5.2 The lowest enthalpy structures of XeBr2 with PSO method in pressure ranges of 10 to 

60 GPa. 
 

  
PSO 

Population 50 

Formula unit 2(XeBr2) 4(XeBr2) 

Pressure (GPa) 60 10 40 60 

Total #Gen 28 30 29 31 

Structure  Fd3m P1 Fd3m Fd3m 

Found at 1 6 1 12 

Enthalpy (eV/atom) 7.67056 1.0217 2.67006 7.67056 

         

The formation enthalpies as a function of pressure for several candidate structures are 

compared in Figure 5.12. Once again, from the equation of state, the Pnma structure which was 

predicted to be the second lowest enthalpy in the structural search at 40 GPa, was found to be the 

lowest energy structure from 20 to 40 GPa. Again, the lowest enthalpy structure was missed at 

20GPa.  The Fd3m structure only becomes thermodynamically stable at pressures higher than 40 

GPa.  The stability and properties of the predicted structures are discussed below. 
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Figure 5.12 The relative enthalpies of formation per atom with respect to elemental Xe and 

molecular Br2 for XeBr2 compounds. 

         

5.3.1 The P1 structure at 10 GPa  

        The P1 structure predicted at 10 GPa has 12 atoms in the unit cell. The Br atoms form twisted 

zigzag chains as shown in the perspective view in Figure 5.13b. In the chain, the Br..Br contacts 

alternate between 2.47 and 2.54 Å with Br-Br-Br angles of 90° and 117°.  However, phonon 

calculations show this structure is not dynamically stable. We have studied the electronic structures 

and potential chemical bonding properties of this structure and we found no evidence to support 

the existence of strong covalent bond. Furthermore, all the low energy XeBr2 compounds are 

insulators at 10 GPa.  

 

Figure 5.13 The lowest enthalpy P1 structure found at 10 GPa for XeBr2 compound. 
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5.3.2 Comparison of the Pnma and Fd3m structures 

        The Pnma structure, the lowest enthalpy structure at 20 GPa, is consisted of 12 atoms per unit 

cell.  From the calculation of the EOS, the Pnma structure transforms spontaneously to the Fd3m 

phase at 40 GPa. The similarities of the Pnma and Fd3m structures at 30 and 60 GPa are evident 

in Figure 5.14. The continuous structural changes suggest Pnma  Fd3m transformation with the 

fact that the Pnma structure was dynamically unstable at 30 GPa by phonon calculations and that 

the structural transformation is a second order transition.   

                     (a)                                                                                (b) 

                            
Figure 5.14 The top view along the [111] direction of the (a) Pnma and (b) Fd3m structures of 

XeBr2 at 30 and 60 GPa, respectively. 

 

5.3.3 The Fd3m structure at 60 GPa          

        At pressures higher than 40 GPa, the only thermodynamically stable structure found in the 

convex hull plot is the Fd3m phase. The fcc structure is consisted of 24 atoms per unit cell. The 

Fd3m phase and the local environment around Xe and Br are shown in Figure 5.15. The Xe atoms 

are surrounded by 12 Br atoms with Xe..Br contacts of 3.11 and 3.12 Å (Figure 5.15b). The Xe 

arrangement is similar to the stable XeCl2 which forms an fcc sublattice at 60 GPa (Figure 5.15c). 

All the Xe..Xe distances are equal (3.26 Å) with  Xe-Xe-Xe angles of 109.5° which is just the ideal 

tetrahedral angle. To describe the Br network, Br atoms in different crystallographic sites are 

represented with different colors as shown in Figure 5.15d and e. The Br atoms are tetrahedrally 

coordinated. In the middle layer, the slab of Br atoms forms 6-member planar rings connected to 

a triangle Br atoms from each side. All Br..Br contacts are equal to 2.66 Å.  
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Figure 5.15 The Fd3m structure for XeBr2 compound at 60 GPa. 

Again, ELF calculations reveal that there is no evidence of Br-Br covalent bond. High ELF 

regions are only found around the Br atoms reflecting the atomic nature at 60 GPa (Figure 5.16).  

 

Figure 5.16 The ELF values of Br network in the Fd3m structure of XeBr2 at 60 GPa. 

The phonon dispersion curves of the Fd3m structure show no imaginary phonon frequency 

suggesting the structure is dynamically stable at 60 GPa (Figure 5.17). The projected vibrational 

densities of states show the flat bands slightly above 4 THz are dominated by Br vibrations.  At 

4.36 THz, the phonon modes at the Γ point can be assigned to the rotation of Br atoms. Higher 

frequency modes (~12 THz) are mainly derived from Br stretch motions. The band structures 

calculated with the PBE functional indicates that the XeBr2 is metallic at 60 GPa. Once again, 

similar to Cmcm XeBr, the band structure shows features of coexistence curve and flat bands. 

Additionally, electron-phonon coupling calculations predicted λ=0.43. Using a µ* of 0.1, a 

superconducting critical temperature of the Fd3m phase is estimated to be ~1.4 K at 60 GPa.  
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Figure 5.17 The band structures and phonon dispersion of the Fd3m structure of XeBr2 at 60 GPa. 

5.4 Predicted high pressure structures of XeBr4 

        A summary on the technical details of search procedure for the predicted lowest enthalpy 

structures of XeBr4 found by PSO at 10, 40 and 60 GPa is shown in Table 5.3. Due to highly 

positive formation enthalpies of all the predicted structures, since none of the structures is likely 

to exist, the PSO search was terminated at 30th generations.  

Table 5.3 The lowest enthalpy structures of XeBr4 with PSO method in pressure ranges of 10 to 

60 GPa. 
 

  
PSO 

Population 50 

Formula unit 4(XeBr4) 

Pressure (GPa) 10 40 60 

Total #Gen 31 30 30 

Structure  P21/c P1 P1 

Found at 2 1 16 

Enthalpy (eV/atom) 0.62178 4.72822 7.01736 

 

 

        The formation enthalpies of several structures with respect to solid Xe and Br were computed 

and are compared in Figure 5.18. Similar to predicted XeCl4 structures, in the pressure range from 

10 to 60 GPa, the formation enthalpies are highly positive showing XeBr4 possibly cannot be 
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synthesized.  For this reason, we simply summarize the structures and enthalpies in Figure 5.19. 

The lowest enthalpy P1 structure is consisted of Br zigzag chains. The higher enthalpy structures 

also tend to form similar zigzag chains. The P1 structure with a linear arrangement of Br atoms 

has the highest enthalpy.  
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Figure 5.18 The relative enthalpies of formation per atom with respect to elemental Xe and 

molecular Br2 for XeBr4 compounds. 
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Figure 5.19 The group of the lowest predicted enthalpy structures for solid XeBr4 at 60 GPa. 
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5.5 Predicted structures of XeIn (n=1, 2 and 4) 

        Iodine, the fourth halogen in group VII was discovered in 1811 by the French chemist Curtois 

during the process of manufacturing potassium nitrate to make gunpowder for the French 

Revolution. Iodine is a nutrient mineral which easily reacts with organic compounds and is needed 

for human diet. Moreover, due to the low toxicity, iodine-based compounds are used in x-

ray medical imaging. In spite of the electronegativity of this element being less than that of chlorine 

and bromine, the chemical properties of I2 are generally similar to the lighter halogens. In the 

periodic table iodine is situated next to Xe atom therefore, it is probable that the two atoms may 

react and form compounds under pressure. As will be shown below, the contrary was predicted. 

        In comparison to the stability of solid diatomic molecular Cl2 up to 142 GPa [188], iodine 

undergoes several phase transitions below 55 GPa. At low pressure, iodine forms a diatomic 

molecular crystal (body-centred orthorhombic) with the Cmca space group (phase I) [198]. The 

crystal structure of the monoatomic phase having an Immm space group was found at 21 GPa 

(phase II)[198]. Metallization of iodine was found to occur before the dissociation into a 

monoatomic solid at about 16 GPa [200]. On further compression, phase III with I4/mmm was 

observed at about 43 GPa and eventually phase IV with the Fm3m space group became stable from 

55 to 276 GPa. A recent study has also identified a novel incommensurate phase (phase V) between 

12.5-23.5 GPa prior to the pressure-induced molecular dissociation [206]. In the calculations of 

the enthalpies, we have used the Cmca phase of I2 and fcc phase of Xe atoms in the pressure range 

studied. As shown in Figure 5.20 all the predicted low enthalpy structures have positive formation 

with respect to solid Xe and I.   

http://en.wikipedia.org/wiki/Potassium_nitrate
http://en.wikipedia.org/wiki/French_Revolution
http://en.wikipedia.org/wiki/French_Revolution
http://en.wikipedia.org/wiki/Toxicity
http://en.wikipedia.org/wiki/X-ray
http://en.wikipedia.org/wiki/X-ray
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                Figure 5.20 The convex hull plots of Xe–I systems at 10, 30 and 60 GPa. 

 

5.5.1 Predicted high pressure structures of XeI 

        Results of the lowest enthalpy structures for XeI found by PSO and GA methods at 10, 30 

and 60 GPa are summarized in Table 5.4  At 10 GPa, two P1 structures predicted by both methods 

are very similar with the energy difference less than 0.0001 eV/atom. The zigzag I sublattice is 

observed in both structures (Figure 5.21). EOS calculations found the P1 structures predicted at 

10 GPa are not the lowest enthalpy at 10 GPa. Instead, a P1 but with a different structure predicted 

by PSO at 30 GPa was found to have the lowest energy at 10 GPa. Once again, both PSO and GA 

failed to find the lowest enthalpy structure at 10 GPa.  Moreover, GA and PSO did not find the 

same structures at 30 and 60 GPa. Although the GA method did not find the lowest enthalpy 

structure at 30 GPa, it predicted the lowest enthalpy P21/m structure at 60 GPa. 
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Table 5.4 Comparison of the lowest enthalpy structures of 8 formula units of XeI with GA and 

PSO methods in pressure ranges of 10 to 60 GPa. 

PSO 

Population 50 

Pressure (GPa) 10 30 60 

Total #Gen 26 25 25 

Structure  P1 P1 C2/m 

Found 21 21 5 

Enthalpy (eV/atom) 1.8190 5.4431 9.8440 

GA 

Population 50 

Pressure (GPa) 10 30 60 

Total #Gen 23 21 25 

Structure  P1 P1 P21/m 

Found 8 9 13 

Enthalpy(eV/atom) 1.8190 5.4642 9.8089 

 

 

Figure 5.21 The lowest predicted enthalpy structures for solid XeI at 10 GPa. 

        The calculated formation enthalpies (Figure 5.22) indicate that all the predicted structures of 

XeI below 60 GPa are not thermodynamically stable. More significantly, the absolute values of 
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formation enthalpies are highly positive ranging from 0.08 to 0.26 eV/atom. Therefore, it is 

unlikely that XeI compounds can be synthesized in this pressure range. 
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Figure 5.22 The relative enthalpies of formation per atom with respect to elemental Xe and 

molecular I2 for XeI compounds. 

 

        A few low enthalpy structures of XeI within an energy window of ~0.14 eV/atom found at 

60 GPa are shown in Figure 5.23. Distinctive Xe and I regions are observed in these structures.  

The lowest enthalpy P21/m and C2/m structures have a 2D hexagonal closed pack of Xe and I 

atoms. The high enthalpy structures are mainly consisted of separated sublattice of I and Xe 

networks. 
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Figure 5.23 The group of the lowest predicted enthalpy structures for solid XeI at 60 GPa. 
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5.5.2 Predicted high pressure structures of XeI2 

        We have explored low enthalpy structures at 10, 30 and 60 GPa using PSO and GA methods 

and the results are summarized in Table 5.5. PSO searches with population size of 40 and 50 did 

not find similar low energy structures at the desired pressures. Moreover, the structures found by 

GA search at 10, 30 and 60 GPa are also different from the PSO search.  

Table 5.5 Comparison of the lowest enthalpy structures of 4 formula units of XeI2 with GA and 

PSO methods in pressure ranges of 10 to 60 GPa. 

PSO 

Population 40 50 

Pressure (GPa) 10 30 60 10 30 60 

Total #Gen 42 40 30 46 45 35 

Structure  Cmmm Fd3m C2/m P1 P1 Cm 

Found 15 20 30 26 26 10 

Enthalpy (eV/atom) 1.4677 4.9971 9.2327 1.4553 4.9755 9.2473 

GA 

Population 50 

Pressure (GPa) 10 30 60 

Total #Gen 41 50 40 

Structure  P1 P1 Cm 

Found 14 50 7 

Enthalpy(eV/atom) 1.4690 4.9746 9.2317 

 

         The formation enthalpies on selected structures plotted as a function of the pressure are 

compared in Figure 5.24. It can be seen that all the predicted structures are not stable towards the 

dissociation into the elemental solids. Interestingly, two low enthalpy structures in the pressure 

range from 10 to 80 GPa (black and red lines: the first P1 structure (Figure 5.24#1) found by PSO 

at 10 GPa and the second P1 structure (Figure 5.24#2) found by GA at 30 GPa) share very similar 

structural motifs. The calculated phonon dispersion curves of the two P1 structures (Figure 5.25) 

show no imaginary phonon frequencies at 60 GPa.  
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Figure 5.24 The relative enthalpies of formation per atom with respect to elemental Xe and 

molecular I2 for XeI2 compounds. 
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Figure 5.25 Phonon dispersion curves for the P1 structure of XeI2 found by, (left) PSO and 

(right) GA at 60 GPa. 

The structures of several low enthalpy structures XeI2 were shown in Figure 5.26. Once 

again, we found that these structures are characterized by segregated Xe and I regions. The two 

lowest energy P1 structures are composed of 2D hexagonal closed pack sublattices of both Xe and 

I atoms. The higher enthalpy structures are mostly consisted of hexagonal packing of I and Xe and 

eventually the P21/m structure is composed of hexagonal-like I and zigzag Xe chains.  For the 

highest enthalpy structure (Fd3m), all Xe atoms are tetrahedrally bonded with I atoms situated in 

the interstitial sites of Xe sublattice. Note that the enthalpy of Fd3m structure is much higher than 

other dissociated phases suggesting that XeI2 should separate into Xe and I rich sides.  
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Figure 5.26 The group of the lowest predicted enthalpy structures for solid XeI2 at 60 GPa. 

 
5.5.3 Predicted high pressure structures of XeI4 

        Structural searches were also performed for XeI4 using PSO and GA methods. Details on the 

search and the candidate structures are given in Table 5.6. In this case, both methods found the 

same lowest enthalpy structure (C2/c) at 10 GPa. The difference of energies between candidate 

structures at 30 and 60 GPa are less than 10 meV/atom. Thus, we re-optimized the predicted 

structures to higher precision and report the results in Table 5.6. 
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Table 5.6 Comparison of the lowest enthalpy structures of 4 formula units of XeI4 with GA and 

PSO methods in pressure ranges of 10 to 60 GPa. 
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Figure 5.27 The relative enthalpies of formation per atom with respect to elemental Xe and 

molecular I2 for XeI4 compounds. 

PSO 

Population 40 50 

Pressure (GPa) 30 60 10 30 60 

Total #Gen 32 40 25 25 26 

Structure C2/m Cm C2/c Pm P1 

Found 22 7 11 10 9 

Enthalpy (eV/atom) 4.6338 8.7811 1.1855 4.6290 8.7828 

GA 

Population 50 

Pressure (GPa) 10 30 60 

Total #Gen 26 25 26 

Structure C2/c P21/m P1 

Found 10 9 8 

Enthalpy(eV/atom) 1.1855 4.6229 8.7737 
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       Formation enthalpy calculations (Figure 5.27) predicted two low enthalpy structures, C2/c 

structure at 10 GPa and P21/m structure at 60 GPa. Both have highly positive values of formation 

enthalpies in a range of 0.07-0.26eV/atom. On thermodynamic reason, XeI4 compounds are not 

expected to exist below 80 GPa. Several low enthalpy structures predicted at 60 GPa were shown 

in Figure 5.28. The lowest enthalpy structure (P21/m) shows segregated Xe and I regions. The next 

higher enthalpy structures (Pm, Cm and two P1) are consisted of hexagonal network of I while Xe 

atoms arrange into I channels. Finally, the Immm structure with linear chain of Xe atoms has the 

highest enthalpy. We can conclude that the XeI4 has phase segregated into rich in I and Xe rich 

regions and high activation energy is needed to force these two elements to react. 

 

Figure 5.28 The group of the lowest predicted enthalpy structures for solid XeI4 at 60 GPa. 

5.6 Conclusions  

        We have performed a less exhaustive investigation on possible high pressure structures of 

XeBrn and XeIn (n=1,2 and 4) to complete the Xe-haldies series. Since the reliability of 

pseudopotentals used in this study have been tested below 60 GPa and that the experimental 

synthesis was performed at low pressures, we focused on the crystal structures and properties of 

Xe-halides below 60 GPa. From the theoretical studies, we can first compare the structural features 

and properties of XeHn (n=2, H:halides). It  has been reported in a recent theoretical study that the 

molecular structure of XeF2 with I4/mmm symmetry, remains the most stable one, up to 105 GPa 
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[181]. This molecular solid is consisted of linear F-Xe-F molecule with two equal Xe-F bond 

lengths. Above 105 GPa, a Pnma structure was found with bent F-Xe-F and unequal Xe-F 

distances. In this structure, if the Xe-F contact cutoff is set to < 2.8 Å, 11 F atoms are found in the 

first coordination sphere of the Xe. Further compression up to 200 GPa, resulted in the dissociation 

of XeF2 into an ionic solid. ELF analysis indicated that ionicity of one of the Xe..F bonds of the 

Pnma structure increases with pressure and eventually leads to self-dissociation into Xe-F and F 

atoms at 200 GPa. In comparison, we found XeCl2 is not thermodynamically stable below 55 GPa. 

However, we did not find linear Cl-Xe-Cl molecule in the calculations. Instead, below 40 GPa, 

molecular Cl2 and Xe atoms is energetically favorable. At 60 GPa, XeCl2 is stable with the Xe 

surrounded by 12 Xe-Cl contacts < 3.15 Å. For XeBr2, a stable structure forms above 40 GPa. The 

lowest enthalpy P1 structure of XeBr2 at 10 GPa contains twisted zigzag chains of Br atoms and 

monoatomic Xe. At 60 GPa, the Fd3m structure is thermodynamically stable. Similar to XeCl2, 

Xe is connected to 12 Br atoms within a distance of < 3.12 Å. For XeI2, the formation enthalpy is 

highly positive indicating this compound is not stable at the high pressure. The lowest enthalpy P1 

structure which is dynamically stable, is consisted of hexagonal packing of I and Xe atoms. For 

other stoicheometries of XeHn (n=1 and 4), except XeCl at 60 GPa, the formation enthalpies of 

Xe-Br and Xe-I compounds are positive. 

In addition, a theoretical study has reported that metallization of XeF2 should occur at 60 

GPa [181]. In comparison, up to 60 GPa all the predicted XeCl2 compounds are semiconductors. 

In comparison, one of the XeBr2 compounds is found to be a superconductive metal at this 

pressure. The present theoretical study suggests that even though no thermodynamic Xe-I 

compounds can be formed, the lowest enthalpy structure at 60 GPa is a metal.  
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Summary and conclusion 

The two primary goals of this thesis were (i) accurate determination of the electronic 

structure of AlH3 and EuO at high pressure, and (ii) evaluation and search for possible high 

pressure polymorphs of binary systems (CS2 and Xe-halides) using state-of-the-art first principles 

algorithms. In Chapter 1, the methodologies used in the thesis research, including the background 

on density functional theory, various types of practical functionals and their improvements and 

two structural search methods were introduced. In Chapter 2, these methods were applied to 

investigate the properties of potentially superconductive AlH3 and to the study on the structural 

phase transformation and insulator to metal transition of compressed EuO. In Chapter 3, we 

investigate in detail the possible existence of metallic crystalline structures of recently discovered 

metallic phase of CS2 up to 100 GPa. A detailed comparison of the performances of two structure 

search methods, viz. PSO and GA was made on the Xe-Cl system in Chapter 4.  Finally, the same 

structure prediction techniques were applied to the study of Xe-Br and Xe-I binary systems.  In 

this chapter, the major results and achievements are briefly summarized and perspectives future 

works are presented. 

The first objective of the research was to apply recently developed functionals to calculate 

the band structure of AlH3 at about 100 GPa in order to explain the discrepancy between 

experiment and previously predicted superconducting behavior of this compound. For this purpose 

ground state wave functions computed from PBE and HSE functionals were improved using 

increasing levels of electron correlation treatment using the GW method. Electronic band 

structures of AlH3 obtained from the commonly used PBE and recently proposed self-interaction 

corrected TB-mBJLDA functionals at selected pressures were compared in detail. It was found, 

contrary to the PBE prediction, the nesting of two pieces of Fermi surfaces which was attributed 

to the superconducting behavior got removed in the more advanced calculations. This observation 

leads us to conclude that high pressure AlH3 is a poor metal or even a low band gap semiconductor 

and not a superconductor. The result is consistent with experiment which indeed failed to detect 

superconductivity at high pressure. The second objective of Chapter 2 was to describe electronic 

structure and the equation of state of EuO with localized 3d or 4f electrons which is a prototypical 

system for the study of highly correlated phenomena. From experiments, EuO is known to exhibit 

an anomalous isostructural transition (B1→B'1) at 35 GPa. We applied several functionals 
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including mbjLDA, PBE0 and PBE+U to describe this system. It was found that none of the 

functionals were able to reproduce the isostructural phase transition.   However, PBE+U model 

correctly predicted the semiconductor to metal transition with a very small volume change near 12 

GPa.  Although the mBJLDA+U method also predicted an indirect band gap at ambient conditions, 

it failed to reproduce the metallic phase of B1 and B2 structures at higher pressure. Finally, we 

calculated the s-electron density near the nucleus which is directly related to the Mössbauer isomer 

shift. Around ~30 GPa, a discontinuity related to the B1 to B1' isostructural transition was 

predicted in agreement with experiments. In summary, in this chapter, we found that no mean-

field approximation (i.e. PBE+U or mBJLDA) can consistently reproduce all the experimental 

observations. We speculated that a single determinant wave function is not accurate to describe 

rapid changes of the electron density of localized electrons under pressure.  EuO as a highly 

correlated system with half-filled 4f shell should be treated with rigorous quantum mechanics.  

That goal can be achieved by quantum Monte Carlo calculations using multi-determinant wave 

fucntions in order to describe the mixed valence states of EuO correctly. 

In Chapter 3, we focused on the effect of pressure on the structure and properties of 

molecular CS2 solid using the PSO and GA structure prediction methods. The study was restricted 

to one stoichiometry with C:S ratio of 1:2, i.e. CS2. To complement the structural prediction 

calculations, we also compressed the solid molecular CS2 phase to high pressure with constant-

pressure MD at 300 K. The structural search found that molecular CS2 is metastable at low 

pressure.  At high pressure (> 20 GPa) the carbon and sulfur tend to segregate. This may indicate 

the possibility of the formation of other CxS (x>1) species. In agreement with experiment, both 

MD and static total energy calculations show that the molecular CS2 is not stable at pressure above 

20 GPa and transformed into a polymeric phase. Both GA and PSO methods found a crystalline 

P21/m structure which has the lowest enthalpy from 60 to 100 GPa. Although the structure search 

revealed carbon or sulfide rich regions, it did not imply that CS2 will phase separate into the 

elements. This is confirmed by experiment in which the x-ray diffraction patterns did not reveal 

the presence of the elements. The P21/m structure is novel as it is constructed from C-C layers 

sandwiched between two adjacent S layers and linked in the third dimension by C-S bonds. This 

feature of the structure is similar to the observation made in the MD calculation in which CS2 was 

also separated into layers of sulfur and carbon. We found that the crystalline phase was metallic 

and superconductive. The origin of the superconductivity is due to electron-phonon couplings in 
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the S layers. The existence of closed pack S atom layers is a feature common to the high pressure 

structures of CS2 and similar to the superconducting phase of solid sulfur.  As mentioned above, a 

full characterization of highly compressed CS2 and the origin of the superconducting phase require 

further study of variable stoichiometries (CxSx) that will require substantially larger effort.  The 

present study was the first step towards this goal. 

In Chapters 4 and 5, we explored the low enthalpy crystal structures of XeHn (H=Cl, Br 

and I) with (n=1,2 and 4) up to 60 GPa using the GA and PSO techniques. From the theoretical 

results, we found only XeCl, XeCl2 and XeBr2 are thermodynamically stable at 60 GPa. There is 

no theoretical evidence to support the formation of thermodynamically stable Xe-I compound at 

this pressure. In fact, for Xe-I, the predicted lowest enthalpy structures are formed from segregated 

regions of I and Xe atoms. We proposed a possible explanation for the formation of Xe-halides at 

high pressure. Since fluorine has the highest electronegativity and smallest atomic radius among 

halogens, the stability of Xe-F compounds that has been established from low pressure to 200 GPa 

from both theoretical and experimental studies, is mainly due to ionic interaction. Linear XeF2 

molecule is found to be stable below 100 GPa. At higher pressures the linear F-Xe-F bent with 

unequal Xe-F distances. A metallic phase of Xe-F was observed at 67 GPa. On the other hand, 

compared to F, Cl atom has a smaller electronegativity and the Xe-Cl compounds are only 

stabilized at pressures > 55 GPa. We found no evidence on the formation of covalent Xe-Cl bonds 

up to 60 GPa. No thermodynamically stable Xe-Cl compounds were found.  However, it is likely 

that partial ionic interactions of Xe and Cl atoms help to stabilize the high pressure structures.  In 

the hope that the theoretical results will be useful to guide experiments, we computed accurate 

band structures using GW approximation and predicted the, Raman, optical and reflectivity spectra 

using the BSE method. The results indicate that all Xe-Cl compounds are semiconductors at 60 

GPa. The only thermodynamically stable structure found in Xe-Br compounds is XeBr2 at 

pressures higher than 40 GPa. There is no evidence of Xe-Br and Br-Br covalent bonds in ELF 

calculations indicating that both Br and Xe are atomic in nature at 60 GPa. In contrast to Xe-F and 

Xe-Cl compounds, XeBr2 was found to be a metal and superconductor with a critical temperature 

of 1.4 K at 60 GPa. Finally, although the chemical properties of I are similar to the lighter halogens, 

Xe-I compounds do not form below 60 GPa. Both elements separate into solid Xe and I rich sides. 

In the present study, we only focused on stoichiometric XeHn (n=1,2 and 4) and the stoichiometry 

was not optimized.  We cannot rule out the possibility that stoichiometric XenH may form stable 
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structures. Substantial larger effort is needed to investigate Xe-rich halogen compounds. A major 

finding of these two chapters is that that both PSO and GA methods must be used with care. We 

often found different structures predicted by the two methods. Hence, we cannot conclude that one 

method is better than the other. However, it must be realized that the recommended default settings 

for both methods were used in this study.  Hence, we aim to further explore the efficiency of the 

structural search methods by adjusting the default settings. 
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APPENDIX A 

Supplementary data for Chapter 4 
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Figure A.1 Electronic band structure of the Cmcm structure of XeCl2 at 15 GPa using two 

different pseudopotentials (black and red lines including valence electron configuration of s2p6 

and d10s2p6, respectively. 
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Figure A.2 Optical properties of Cmcm structure of XeCl2 at 15 GPa with convergence test of 

BSE calculations using different number of valence (O) and conducting (V) bands.  
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 Figure A.3 Band structures, phonon dispersion, absorption and reflectivity of the XeCl2 P43212 

structure at 60 GPa. 
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Figure A.4 Phonon dispersions of predicted XeCl structures in Table 4.3.  
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Figure A.5 Phonon dispersions of predicted XeCl4 structures in Table 4.4.  
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