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Abstract

A networked control system (NCS) is a feedback control system that has its control

loop physically connected via real-time communication networks. To meet the demands

of ‘teleautomation’, modularity, integrated diagnostics, quick maintenance and decentral-

ization of control, NCSs have received remarkable attention worldwide during the past

decade. Yet despite their distinct advantages, NCSs are suffering from network-induced

constraints such as time delays and packet dropouts, which may degrade system perfor-

mance. Therefore, the network-induced constraints should be incorporated into the control

design and related studies.

For the problem of state estimation in a network environment, we present the strategy

of simultaneous input and state estimation to compensate for the effects of unknown input

missing. A sub-optimal algorithm is proposed, and the stability properties are proven by

analyzing the solution of a Riccati-like equation.

Despite its importance, system identification in a network environment has been studied

poorly before. To identify the parameters of a system in a network environment, we modify

the classical Kalman filter to obtain an algorithm that is capable of handling missing

output data caused by the network medium. Convergence properties of the algorithm are

established under the stochastic framework.

We further develop an adaptive control scheme for networked systems. By employing

the proposed output estimator and parameter estimator, the designed adaptive control can

track the expected signal. Rigorous convergence analysis of the scheme is performed under

the stochastic framework as well.
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Chapter 1

Introduction

1.1 Background

A networked control system (NCS), namely, is a feedback control system wherein the

control loops are physically connected via real-time communication networks. Thus its

fundamental feature is that the information (reference input, control input, plant output,

etc) among control system components (sensors, controller, actuators, etc.) are exchanged

in the form of data packets through a network. Fig. 1.1 illustrates a typical single-loop

NCS setup. As the most promising application of networking technology in the control

discipline, NCSs have received considerable attention worldwide during the past few years.

This eye-catching trend is largely driven by three forces:

• Engineering needs: For engineering purposes, many industrial applications in-

creasingly demand ‘teleautomation’, modularity, reduced complexity, integrated di-

agnostics, quick maintenance and decentralization of control. Focusing on the im-

provement of control performance, traditional control methodologies cannot meet

the new demands sufficiently. However, NCSs provide a promising solution. In an

NCS, the network expands the reach of controllers. Moreover, the resultant modular

design makes diagnostics and maintenance easier to implement. A branch of NCSs,

like distributed control systems, are to achieve decentralized control.

• Technology progress: Advances of related technologies such as digital signal pro-

cessing (DSP), embedded computing and data networks have paved the way for the

development of NCSs. The past decades witness the vast progress of DSP hardware

and software. At the same time, processors become more reliable and have much

higher speed, and communication networks (wired, wireless or hybrid) sweep across

the world. These technologies are almost mature, being low-cost and easily available.
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Figure 1.1: A networked control system.

• Research importance: Having significant implications for related research, the

studies of NCSs have been placed emphasis on by the academia. The reason is

obvious: NCSs form an interdisciplinary slant on automatic control, and thus pro-

vide an exceptional platform to fuse and stimulate cutting-edge research on almost

every aspect of control. So far, the development of NCSs has involved robust filter-

ing, proportional-integral-derivative (PID) control, robust control, adaptive control,

control of time-delay systems, control with communication constraints and limited

information, and so on.

As shown in Fig. 1.1, the plant in an NCS is installed at the remote end, whereas

the computer-based controller is at the near end, and the link between them is a shared

network. The output of the plant is measured by the sensors and encapsulated into data

packets. The network transfers the packets to the controller, which then generates control

decisions. The control input packets are sent to the actuator to drive the plant via the

network. Before used by the actuator, the discrete packets are converted into continuous

signals.

Although it reduces cost, wiring and maintenance complexities in practical operations,

the introduction of a network causes some new issues in control designs:

• Time delays: Different from the ‘perfect channel’ in traditional control systems, the

network is time-sharing. Therefore, data packets must wait in order to be accepted

2



by the network, and the time spent waiting is called ‘network access delay’. Another

two kinds of delays are ‘transmission delay’ and ‘computation delay’, which happen

during packet transferring over network and at the encoder, controller and decoder,

respectively.

• Packet dropouts: Data packets may be dropped out before reaching the destina-

tions. The possible reasons are errors of physical network link, network congestion,

buffer overflows or long transmission delays. Besides, due to scheduling problems,

old data packets occasionally arrive later than new ones, and thus be discarded.

• Limited data rate: Packets are actually a finite number of encoded bits, but the

network can only carry a limited amount of information per unit time. Thus a trade-

off must be made: Given a fixed data, one can use fewer-bit packets and increase the

number of packets per time, and vice versa.

It is noted that the issues as a whole often result in serious degradation of system perfor-

mance. Interestingly, they also make the driving force that motivates continuing progress

in this research filed.

1.2 Previous Work

As just mentioned, control engineers invariably confront three notable issues in practical

designs of NCSs. Current research, consequently, has been focused on developing control

related subjects under such issues. The existing research on NCSs mainly targets at three

problems: state estimation, stability analysis and stabilization and controller synthesis

under network environment. We will review a number of the most representative works

on NCSs. For a fuller listing of works in the NCS realm, the reader is referred to the

bibliography and the references therein. The works closely pertinent to research in the

thesis will be separately surveyed in detail in each of the following chapters.

• Networked state estimation: For a plant in a loop built upon lossy networks,

state estimation is complicated. Mostly, a one-side link is assumed from the plant to

a remote estimator, and a Bernoulli process is used to describe the random packet

dropouts. The classical Kalman filter can be modified to adapt to the network

environment [68; 69]. A basic principle in Kalman filtering is the minimum error
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variance design, which is also widely used in solving the considered problem [22; 61;

62]. Robust H∞ filtering is another promising way and some works are dedicated to

this topic [25; 43].

• Stability and stabilization: Time delays and packet dropouts highly degrade the

performance or even destroy the stability of NCSs. Various methods have thus been

proposed to deal with stability conditions or stabilization. In [89; 91; 93], random

time delays are modeled as Markov chain processes, but different types of stability

and related stabilization problems are studied, respectively. For an NCS, input-

state and input-output stability are often concerned and discussed a lot [59; 60; 72].

From the view point of the controller design, stabilization is an important task. A

few techniques, including state or output feedback control, model predictive control

(MPC) have been applied [26; 54; 81].

• Controller synthesis: An NCS is to be controlled ultimately, so the controller

design is of prime interest to researchers. Design of PID, linear quadratic Gaussian

(LQG), MPC and robust H∞ controllers have been developed for NCSs [46; 55; 70;

84; 87; 92]. A novel trend on this aspect is to combine controller design and network

scheduling to get an optimal integrated solution [24].

1.3 Contributions and Outline

1.3.1 Objectives and Contributions

Although NCSs have been studied widely, many problems have not been fully investigated

and still remain challenging. We propose the following research topics in the thesis:

• State estimation with unknown input: State estimation is useful or even in-

dispensable in helping understand the behavior of a system and developing control

schemes. Most previous research on state estimation over lossy networks, especially

wireless sensor networks, uses a state-space model without considering external in-

puts. Yet in NCSs, not only is the input unignorable, the input missing is unknown

to us. This imposes intrinsic barriers to state estimation for NCSs. We would ap-

proach the problem by simultaneous state and input estimation to reduce the effects

of unknown input missing to the minimum.
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• System identification under network environment: The fact that modern

control usually requires reliable models establishes the fundamental importance of

system identification. A little surprisingly, networked system identification is a new

problem in NCS research and has not been extensively studied yet. The challenge to

be confronted with is missing data. Since classical system identification approaches

fail if applied directly, we seek to develop novel effective methods to solve the problem.

• Adaptive control under network environment: Due to the uncertain nature of

networks, NCSs are subject to changing running conditions. Therefore, a plausible

question is how to design a control law that adapts itself to the network environment.

This consideration leads us to study adaptive control schemes for NCSs, on which

few current research has been carried out. In the thesis, we would present a model

reference adaptive control scheme based on results of networked system identification.

The main contributions of the thesis can be summarized briefly as follows:

• We explore three significant problems in the filed of NCSs, i.e., state estimation,

system identification and adaptive control.

• We derive a solution for each problem, and analyze related properties rigorously to

ensure effectiveness.

• We evaluate the performance of the solutions by a large number of simulations.

It is worth noting that the studies of NCSs involve much complexity and are at the

budding age. Thus the thesis is a preliminary adventure of the wide world of NCSs. In

addition, out of research needs, different NCS structures are to be considered for different

problems.

1.3.2 Outline

In Chapter 2, we investigate simultaneous input and state estimation for linear discrete-

time systems. The problem is considered in the setting of NCSs, in which information

regarding input missing is not available. We develop a sub-optimal joint estimation algo-

rithm. We further show that the stability and reliability of the proposed algorithm can be

guaranteed under certain conditions by analyzing a Riccati-like equation. The algorithm’s

performance is illustrated by numerical examples.
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In Chapter 3, we consider the problem of parameter estimation and output estimation

for systems in a network environment based on Transmission Control Protocol (TCP).

Based on the incomplete data caused by network-induced packet dropouts, we develop

a recursive algorithm for parameter estimation by modifying the classical Kalman filter

based algorithm. Under the stochastic framework, convergence properties of the algorithm

are established. Simulation results verify the effectiveness of the proposed algorithm.

In Chapter 4, we consider the problem of adaptive control for NCSs with unknown

model parameters and randomly missing outputs. In particular, for a system with the

output-error (OE) model placed in a network environment, the randomly missing output

feature is modeled as a Bernoulli process. Then an adaptive control is designed to make

the output track the desired signal. Convergence properties of the proposed algorithms are

analyzed in detail. We also show the effectiveness of the proposed method by simulation

examples.

In Chapter 5, we summarize and draw some concluding remarks from the thesis re-

search. Suggestions for some future work in the field of NCSs are presented as well in this

chapter.

The notation used throughout the thesis is fairly standard. Small case letters denote

vectors and capital letters denote matrices. For matrices and vectors, the superscript ‘T’

indicates transpose. We use det(X) to indicate the determinant of square matrix X. For

symmetric matrix, X > 0 or X ≥ 0 indicates that X is positive definite or nonnegative

definite, respectively, and X > Y indicates X − Y > 0. We use ‖ · ‖2 and ‖ · ‖∞ to

denote the 2-norm and ∞-norm, respectively. ‘E’ denotes the expectation. λmax / min(X)

represents the maximum/minimum eigenvalue of X; |X| = det(X) is the determinant of

a square matrix X; ‖X‖2 = tr(XXT) stands for the trace of XXT. If ∃ δ0 ∈ R+ and

k0 ∈ Z+, |f(k)| ≤ δ0g(k) for k ≥ k0, then f(k) = O (g(k)); if f(k)/g(k) → 0 for k → ∞,

then f(k) = o (g(k)).
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Chapter 2

State Estimation for Networked Systems

2.1 Introduction and Literature Review

State estimation is of much importance in networked control based applications such as

remote sensing, telerobotics and sensor networks. A major difficulty while handling the

problem is: Both control input and plant output are subject to missing. The plant output

missing is known, whereas the control input missing is beyond our observation [90]. As

a consequence, the problem is rather challenging and has been studied poorly. In our

research, we attempt to solve the problem partially, that is, we will study a simplified

problem. We assume that the input is totally unknown but all the output is available

for use. Then we study simultaneous input and state estimation (SISE). The problem

scenario is illustrated in Fig. 2.1. The simplification to SISE is a little idealistic, but serves

appropriately as a preliminary attack at the original problem.

Not limited to NCSs, the SISE problem for dynamic systems actually has a wide range

of applications, such as fault detection and diagnosis [63], maneuvering target tracking [53],

geophysics and environmentology [67], where inputs are often unmeasurable or inaccessible.

Due to its practical significance, this problem has received considerable attention during

the past several decades.

For different applications, related SISE research in the existing literature can be mainly

classified into three types:

• State estimation subject to unknown inputs: An unbiased minimum-variance

linear state filter is developed in [49], in which the state estimation is designed in-

dependently with the unknown inputs. The design has been extended to a more

general filter structure in [13] and the convergence conditions are also given for the

time-invariant case. Further, in [14] the same problem is considered for a system with

direct feedthrough. It provide an optimal filter design and stability conditions. The
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Figure 2.1: Blockdiagram of simultaneous input and state estimation.

optimization problem of the recursive filter in [49] and [13] is to minimize the error

variance subject to unbiasedness constraints; however, the optimality of the filter is

not proven. The proof of optimality is given in [48]. Without using optimization

techniques, an alternative method to design state observers with unknown inputs is

through matrix calculations, for example, see [83; 15; 71]. Sliding mode observer is

another promising way to estimate states of a system subject to unknown inputs.

In [23], a sliding mode observer is proposed and the convergence of the observer is

proven either asymptotical or in finite time.

• Unknown input estimation: In many practical applications, such as fault detec-

tion and diagnosis, it is appealing to determine unknown inputs of a dynamic system.

There exist numerous works in this area, for example, see [36; 78; 21; 82] and the

references therein.

• Simultaneous input and state estimation: The above two categories focus on

the estimation of either unknown inputs or system states, but not at the same time.

‘Killing two birds with one stone’, SISE has become very attractive in recent years,

which is challenging since state and input estimations are inherently interconnected

and coupled. In [42], a two-stage Kalman filter and an input filtering technique are

combined to achieve joint estimation. An asymptotic input and state estimation

scheme is proposed in [12] for a class of uncertain systems with some assumptions

on the systems. Employing an LMI based technique, an SISE approach is presented

in [33] for multi-input multi-output systems subject to Lipschitz nonlinearity. In [29]

and [30], a set of multi-step recursive filters is proposed to jointly estimate inputs

and states by minimizing the error variance for discrete-time linear systems without

and with the direct feedthrough, respectively. The obtained algorithms are proven to

be featured by optimality; due to the complex structure, convergence analysis of the
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proposed algorithms is not possible and thus unexplored in [29] and [30]. However,

it is noted that optimality does not necessarily guarantee convergence.

In this piece of research, we develop an algorithm to simultaneously predict the inputs

and states for discrete-time linear systems with direct feedthrough, such as ones in [30].

Though attempting to minimize both mean square errors and error variances, the devel-

oped algorithm is only sub-optimal as some optimality is sacrificed to make the algorithm

convergent. Compared with [30], the purpose and main contribution of this paper lies in

proposing an algorithm with stability properties proven rigorously.

2.2 Problem Formulation

Consider the linear time-invariant dynamic system as shown in Fig. 2.1.





xk+1 = Axk + Buk + wk,

yk = Cxk + Duk + vk,
(2.1)

where xk ∈ Rn denotes the system state variable at time instant k, uk ∈ Rm is the unknown

input, and yk ∈ Rp is the system measurement. A, B, C and D, are known system matrices

with compatible dimensions. The process noise wk and measurement noise vk are assumed

to be mutually uncorrelated zero-mean white noises with known covariances, namely,

E{wkw
T
l } = Rwδk−l, E{vkv

T
l } = Rvδk−l, E{wkv

T
l } = 0,

where δk is the Kronecker delta function, Rw > 0, and Rv > 0 are variances of w and v,

respectively.

For system (2.1), it is desirable to develop optimal recursive input and state estimators.

Here the optimality is defined in the sense of both minimum mean square error (MMSE) and

minimum variance (MV). Moreover, the developed SISE algorithm has to be numerically

stable and the asymptotical convergence of the estimators has to be guaranteed.

Inspired by the theory of observer design for deterministic linear systems [7], the input

and state estimators are designed, respectively, as

ûk = Hk (yk − Cx̂k) , (2.2)

x̂k+1 = Ax̂k + Bûk + Lk (yk − Cx̂k −Dûk) , (2.3)

9



where x̂k represents the state estimate and ûk the input estimate. Hk and Lk are estima-

tors’ gain matrices that will be designed later. The mean square errors of input and state

estimates are defined, respectively, as

Ju
k = E

{
ũT

k ũk

}
, (2.4)

Jx
k+1 = E

{
x̃T

k+1x̃k+1

}
, (2.5)

where ũk and x̃k+1 are estimation errors:

ũk = uk − ûk, x̃k+1 = xk+1 − x̂k+1.

The related covariance matrices of the estimation errors are defined as

P u
k = E{ũkũ

T
k }, (2.6)

P ux
k = E{ũkx̃

T
k }, (2.7)

P x
k+1 = E{x̃k+1x̃

T
k+1}. (2.8)

It is straightforward to see that matrices P u
k and P x

k+1 are symmetric and positive definite.

Our objectives in the research are to:

P1. Design the state and input estimators, that is, determining estimator gains Lk and

Hk in (2.2) and (2.3);

P2. Analyze the stability properties of the proposed estimation algorithm.

2.3 Derivation of the Algorithm

This section focuses on the development of the simultaneous input and state estimation

algorithm. We start with the optimal design, that is, minimizing both Ju
k and P u

k to derive

Lk , and minimizing both Jx
k+1 and P x

k+1 to obtain Hk. However, it is found that the

optimal gain matrices Lk and Hk given by analysis cannot lead to a numerically feasible

algorithm as the result of a necessary inversion of a singular matrix. Therefore, we propose

some modifications to construct the algorithm.

2.3.1 Preliminaries

To study the optimality property of the proposed SISE algorithm, it is important to ensure

that the estimates are unbiased.

10



Lemma 2.1. For system (2.1), for unbiased input and state estimates in (2.2) and (2.3),

D must be of full column rank, and the following initial condition must be satisfied:

x̂0 = E(x0). (2.9)

Proof. Substituting the state equations (2.1) into (2.2) and (2.3), respectively, we obtain

ũk = −Hk (Cx̃k + vk) + (I −HkD)uk, (2.10)

x̃k+1 = (A− LkC) x̃k + (B − LkD) ũk − Lkvk + wk, (2.11)

where I is the identity matrix. Recursively applying the above dynamics until k = 0, it

can be seen that the estimates are unbiased, namely, E(ũk) = 0 and E(x̃k) = 0, provided

both (2.9) and the following input unbiasedness constraint are satisfied

HkD = I. (2.12)

From constraint (2.12), D should be of full column rank. Proof of Lemma 2.1 is completed.

Under the above unbiasedness condition, (2.10) is then simplified as

ũk = −Hk (Cx̃k + vk) . (2.13)

2.3.2 Input Estimation

The optimal input estimator gain matrix, denoted by H∗
k , can be found by solving the

following simultaneous optimization problem of minimizing Ju
k and P u

k :

H∗
k = arg min

Hk

{Ju
k , P u

k } , s.t. HkD = I.

In the following, we first show that an H∗
k can minimize Ju

k subject to (2.12) (Theorem 2.1),

and that the same H∗
k further minimizes P u

k under the same constraint (Theorem 2.2).

Theorem 2.1. Assume that input estimation is unbiased. If the optimal gain matrix H∗
k

is

H∗
k =

(
DTQ−1

k D
)−1

DTQ−1
k , (2.14)

where Qk = CP x
k CT + Rv, then the mean square error Ju

k is minimized.

11



Proof. Using (2.13), Ju
k can be expanded as

Ju
k = E

{
(Cx̃k + vk)

T HT
k Hk (Cx̃k + vk)

}

= E
{
x̃T

k CTHT
k HkCx̃k

}
+ E

{
vT
k HT

k Hkvk

}

= tr
{
HkCP x

k CTHT
k

}
+ tr

{
HkRvH

T
k

}

= tr
{
HkQkH

T
k

}
. (2.15)

Let λ be a weighting matrix of appropriate dimension. By using the Lagrange multipliers

approach, the above equation can be equivalently written as

Ju
k = tr

{
HkQkH

T
k + λ(I −HkD)

}
. (2.16)

Taking the partial derivative of Ju
k with respect to (w.r.t.) Hk to be zero, we have

∂Ju
k

∂Hk
= 2HkQk − λTDT = 0. (2.17)

Combining (2.17) with (2.12), the optimal Hk is obtained

H∗
k =

(
DTQ−1

k D
)−1

DTQ−1
k . (2.18)

This proves Theorem 2.1.

Next, a question arises: Can the same H∗
k in (2.14) minimize the error covariance of the

input estimation P u
k under the unbiasedness constraint? Before answering this question in

Theorem 2.2, we rewrite P u
k by incorporating (2.13) as follows:

P u
k = HkQkH

T
k . (2.19)

Theorem 2.2. For any Hk satisfying (2.12), the following relation holds true:

P u
k ≥

(
DTQ−1

k D
)−1

, (2.20)

where the equality is held if and only if Hk = H∗
k .

Proof. Using (2.12), (2.14), and (2.19), we obtain

[Hk −H∗
k ]Qk [Hk −H∗

k ]T = HkQkH
T
k −

(
DTQ−1

k D
)−1

= P u
k −

(
DTQ−1

k D
)−1 ≥ 0.

Hence (2.20) is proven. The two sides of (2.20) are obviously equal when Hk = H∗
k . The

uniqueness of H∗
k comes directly from the fact that matrix Qk is positive definite.

With the optimal H∗
k and from (2.7) and (2.13), we have

P ux
k = E

{−H∗
k [Cx̃k + vk] x̃T

k

}
= −H∗

kCP x
k . (2.21)
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2.3.3 State Estimation

Now let us consider the state estimation problem. Similarly we aim to design the optimal

Lk, denoted by L∗k, by minimizing Jx
k+1 and P x

k+1 simultaneously:

L∗k = arg min
Lk

{
Jx

k+1, P
x
k+1

}
.

Define the following matrices

Sk = MOkM
T, (2.22)

Tk = MOkN
T −BH∗

kRv, (2.23)

Uk = NOkN
T + Rv −DH∗

kRv −RvH
∗
k
TDT, (2.24)

where

M =
[
A B

]
, N =

[
C D

]
, Ok =


 P x

k (P ux
k )T

P ux
k P u

k


 . (2.25)

Before we proceed to obtain the optimal gain matrix L∗k, we have the following property

for Uk.

Proposition 2.1. For any k, Uk in (2.24) is singular, that is, detUk = 0.

Proof. Expanding Uk gives

Uk = (I −DH∗
k)(CP x

k CT + Rv)(I −DH∗
k)T,

from which it follows that

det Uk = det(I −DH∗
k) det(CP x

k CT + Rv) det(I −DH∗
k)T.

As det(I −DH∗
k) = det(I −H∗

kD) = 0, we have det Uk = 0.

From (2.5) and (2.11), it follows that

Jx
k+1 = E

{
x̃T

k [A− LkC]T[A− LkC]x̃k

}
+ E

{
ũT

k [B − LkD]T[B − LkD]ũk

}

+2E
{
x̃T

k [A− LkC]T[B − LkD]ũk

}− 2E
{
ũT

k [B − LkD]TLkvk

}

+E
{
vT
k LT

k Lkvk

}
+ E

{
wT

k wk

}

= tr
{
[A− LkC]P x

k [A− LkC]T
}

+ tr
{
[B − LkD]P u

k [B − LkD]T
}

+2tr
{
[B − LkD]P ux

k [A− LkC]T
}− 2tr

{
Lkvkũ

T
k [B − LkD]T

}

+tr
{
LkRvL

T
k

}
+ tr(Rw)

= tr
{
Sk − TkL

T
k − LkT

T
k + LkUkL

T
k + Rw

}
. (2.26)
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From (2.8) and (2.11), we have

P x
k+1 = Sk − LkT

T
k − TkL

T
k + LkUkL

T
k + Rw. (2.27)

Equating the partial derivative of Jx
k+1 w.r.t Lk to zero, we obtain

∂Jx
k+1

∂Lk
= −2Tk + 2LkUk = 0. (2.28)

Note that matrix Uk is singular, then solution of (2.28) for the gain matrix L∗k is

not unique. Thus to obtain a numerically stable algorithm, we seek for an alternative

construction of related matrices. Let us define

P̂ x
k+1 = Ŝk − L̂kT̂

T
k − T̂kL̂

T
k + L̂kÛkL̂

T
k + Rw,

Ŝk = MÔkM
T,

T̂k = MÔkN
T,

Ûk = NÔkN
T + Rv,

Ĥ∗
k =

(
DTQ̂−1

k D
)−1

DTQ̂−1
k ,

Q̂k = CP̂ x
k CT + Rv,

Ôk =


 P̂ x

k (P̂ ux
k )T

P̂ ux
k P̂ u

k


 ,

P̂ ux
k = −Ĥ∗

kCP̂ x
k ,

P̂ u
k = Ĥ∗

kQ̂kĤ
∗T
k .

It is noted that if the correlation between ũk and vk can be ignored, the above matrices

will be equivalent to their original counterparts. The sub-optimal matrix gain L∗k can then

be calculated as

L̂∗k = T̂kÛ
−1
k . (2.29)

P̂ x
k+1 can be written equivalently as

P̂ x
k+1 = Ŝk − T̂kÛ

−1
k T̂T

k +
(
L̂k − T̂kÛ

−1
k

)
Ûk

(
L̂k − T̂kÛ

−1
k

)T
+ Rw.

If L̂k is set to be the aforeproposed L̂∗k in (2.29), P̂ x
k+1 will achieve its minimum

P̂ x
k+1 = Ŝk − T̂kÛ

−1
k T̂T

k + Rw = Ŝk − L̂∗kT̂
T
k + Rw. (2.30)
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2.3.4 Algorithm Summary

A summary of the proposed algorithm is given in Algorithm 1:

Algorithm 1. The SISE algorithm.

1: Initialize: x̂0 = E(x0), P̂ x
0 = p0I, where p0 is a large positive value

2: for k = 0 to N − 1 do

3: Q̂k = CP̂ x
k CT + Rv

4: Ĥ∗
k =

(
DTQ̂−1

k D
)−1

DTQ̂−1
k , ûk = Ĥ∗

k (yk − Cx̂k)

5: P̂ u
k = Ĥ∗

kQ̂kĤ
∗T
k

6: if k < N − 1 then

7: P̂ ux
k = −Ĥ∗

kCP̂ x
k

8: Ôk =


 P̂ x

k (P̂ ux
k )T

P̂ ux
k P̂ u

k




9: Ŝk =
[
A B

]
Ôk

[
A B

]T, T̂k =
[
A B

]
Ôk

[
C D

]T, Ûk =
[
C D

]
Ôk

[
C D

]T +

Rv

10: L̂∗k = T̂kÛ
−1
k , x̂k+1 = Ax̂k + Bûk + L̂∗k [yk − Cx̂k −Dûk]

11: P̂ x
k+1 = Ŝk − L̂∗kT̂

T
k + Rw

12: end if

13: end for

Remark 2.1. As aforementioned, our purpose is to develop an algorithm proven stable

in theory. Thus during the development of Algorithm 1, we make a tradeoff between

optimality and stability. Specifically, optimality is sacrificed slightly, but at the same time,

the algorithm will gain stability properties that can be proven explicitly. However, we note

in Section 3.5 that Algorithm 1, though not being fully optimal, still has very satisfactory

performance.

Remark 2.2. Consider the case of a linear time-varying discrete-time system:




xk+1 = Akxk + Bkuk + wk,

yk = Ckxk + Dkuk + vk,
(2.31)

where Ak, Bk, Ck and Dk may change with time and the properties of the noises wk and

vk follow the assumptions in Section 4.2. We can extend conveniently Algorithm 1 to

one such system just by replacing A, B, C and D with their time-varying counterparts Ak,

Bk, Ck and Dk. The derivation steps are analogous to the above.
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2.4 Convergence Analysis

In this section, we analyze the stability of Algorithm 1 by convergence analysis. The

major idea-flow of the proof is sketched first:

• By inspecting Algorithm 1, it is found that its numerical stability depends on the

convergence of P̂ x
k for all matrix variables are functions of P̂ x

k . If P̂ x
k is convergent,

then Algorithm 1 will be convergent accordingly. Therefore, the convergence anal-

ysis of the algorithm is reduced to the convergence property of P̂ x
k or equivalently

P̂ x
k+1.

• To analyze the stability of Algorithm 1, it is necessary to analyze the convergence

properties of P̂ x
k+1. The expression of P̂ x

k+1 is to be formulated as a Riccati-like matrix

equation, for which the convergence of the solution will be analyzed. Some works

have been focusing on the convergence analysis of solutions of the Riccati equation

and its variants, for example, see [2; 80; 5; 69]. Finally, we will prove that P x
k+1 is

upper bounded as k approaches infinity under certain conditions.

According to (2.30), P x
k+1 is expressed as

P̂ x
k+1 = MÔkM

T −MÔkN
T

(
NÔkN

T + Rv

)−1
NÔkM

T + Rw, (2.32)

where Ôk can be considered as a generalized function of P̂ x
k . From (2.32) we define a

generalized algebraic Riccati equation (GARE) as follows:

g(X) = MO(X)MT −MO(X)NT
(
NO(X)NT + Rv

)−1
NO(X)MT + Rw. (2.33)

Here O(X) has the same structure as Ok defined by (2.25), with P x
k replaced by X as

follows:

O(X) =


 X (PuX)T

PuX Pu


 ,

where

PuX = − [
DT(CXCT + Rv)−1D

]−1
DT(CXCT + Rv)−1CX

and

Pu =
[
DT(CXCT + Rv)−1D

]−1
.
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Similar to the construction of Ôk for P̂ x
k being positive definite, we assume that X is also

positive definite in O(X). By (2.33), (2.32) can be written as an iterative equation

P̂ x
k+1 = g(P̂ x

k ). (2.34)

Lemma 2.2. O(X) is symmetric, positive definite and monotonically increasing with X.

Proof. The proof is straightforward and thus is omitted.

Define a Riccati operator

φ(K, X) = FO(X)FT + V, (2.35)

where F = M +KN , V = KRvK
T +Rw. Some properties of the operator are summarized

in the following lemma.

Lemma 2.3. The following facts hold true:

a) With KX = −MO(X)NT
(
NO(X)NT + Rv

)−1, g(X) = φ(KX , X);

b) g(X) = minK φ(K, X), ∀K;

c) For 0 < X ≤ Y , g(X) ≤ g(Y ).

Proof. a) Plugging K = KX into (2.35) immediately gives fact a).

b) It is straightforward to obtain

φ(K,X) = (M + KN)O(X)(M + KN)T + KRvK
T + Rw

We can solve for K that minimizes φ(K, X) by letting

∂φ(K, X)
∂K

= 0.

It is found that K = KX is the solution of the above equation.

c) As O(X) monotonically increases with X, so does g(X).

Lemma 2.4. [69] Assume that h(·) is a monotonically increasing function. If Xk+1 =

h(Xk) and Yk+1 = h(Yk), then

X1 ≥ X0 =⇒ Xk+1 ≥ Xk,

X1 ≤ X0 =⇒ Xk+1 ≤ Xk,

X0 ≤ Y0 =⇒ Xk ≤ Yk.
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To proceed further, let us define a new operator:

ψ(X) = FO(X)FT.

Variable K in ψ(X) is dropped here since we only need to study the effects of X. It

is straightforward to observe that ψ(X) is linear, positive definite, and monotonically

increasing. Moreover, φ(K, X) = ψ(X) + V.

Lemma 2.5. Assume there exists 0 < X̃ < ∞ such that X̃ > ψ(X̃). Consider Xk+1 ≤
ψ(Xk)+∆ with ∆ ≥ 0 and initial value X0 ≥ 0. Then the sequence Xk is upper bounded.

Proof. For any X, there exist m ≥ 0 and 0 ≤ r < 1 such that X ≤ mX̃ and ψ(X̃) < rX̃.

Then it follows from Lemma 2.4 that

0 ≤ ψk(X) ≤ mrk−1ψ(X̃) ≤ mrkX̃,

where

ψk(X) = ψ (· · ·ψ (ψ (X)) · · · )︸ ︷︷ ︸
k

and ψ0(X) = X.

Thus as k →∞, mrkX̃ → 0, and further, ψk(X) → 0. Using this conclusion, we have

Xk ≤ ψk(X0) +
k−1∑

i=0

ψi(∆) ≤
(

mX0r
k +

k−1∑

i=0

m∆ri

)
X̃ ≤

(
mX0 +

m∆

1− r

)
X̃,

where mX0 ≥ 0 and m∆ ≥ 0. Thus the lemma is proven.

Finally, the following theorem establishes the convergence property of Algorithm 1.

Theorem 2.3. Assume that there exits a K̃ and a P̃ > 0 such that

P̃ > φ(K̃, P̃ ).

Then, for any P̂0 ≥ 0, the sequence {P̂ x
k } that is generated by the iterative equation

P̂ x
k+1 = g(P̂ x

k ) converges, namely,

lim
k→∞

P̂ x
k = P̂ ,

where P̂ satisfies P̂ = g(P̂ ).

Proof. Note that

P̃ > φ(K̃, P̃ ) = ψ(P̃ ) + K̃RvK̃
T + Rw ≥ ψ(P̃ )
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Then from Lemma 2.3 we get

P̂ x
k+1 = g(Pk) ≤ φ(K̃, P̂ x

k ) = ψ(P̂ x
k ) + K̃RvK̃

T + Rw.

Letting ∆ = K̃RvK̃
T + Rw and using Lemma 2.5, we assert that {P̂ x

k } is upper bounded.

Next, we shall show the GARE converges to P̂ from any P̂0 ≥ 0. First, consider the

extreme case when P̂0 = 0. Then,

0 = P̂0 ≤ g(P̂0) = P̂1,

which implies by Lemma 2.3-c) and Lemma 2.4 that

P̂0 ≤ P̂1 ≤ P̂2 ≤ · · · .

Yet this sequence is still bounded, as aforeproved. Its upper bound, P , is given by the

solution of

P̂ = g(P̂ ).

Now consider the case when P̂0 > P . Define

K
P̂

= −AP̂X
(
CP̂CT + Rv

)−1
, F

P̂
= A + K

P̂
C, ψ

P̂
(X) = F

P̂
XF

P̂
.

We can see that

P̂ = g(P̂ ) = φ(K
P̂
, P̂ ) > ψ

P̂
(P̂ ).

Thus from Lemma 2.5, we get

lim
k→∞

ψk

P̂
(X) = 0 for any X > 0. (2.36)

Since P̂0 > P̂ , it holds that

P̂1 = g(P̂0) ≥ g(P̂ ) = P̂ ,

which shows

P̂ x
k ≥ P̂ .

Let us consider the sequence {P̂ x
k − P̂}. We have

0 ≤ (P̂ x
k+1 − P̂ ) = g(P̂ x

k )− g(P̂ ) = φ(KP̂ x
k
, P̂ x

k )− φ(K
P̂
, P̂ )

≤ φ(K
P̂
, P̂ x

k )− φ(K
P̂
, P̂ ) = ψ

P̂
(P̂ x

k − P̂ ).
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This, together with (2.36), implies that

lim
k→∞

P̂ x
k+1 = P̂ .

Last, if 0 ≤ P̂0 ≤ P̂ , then gk(0) < P̂ x
k+1 = gk(P̂0) < g(P̂ ) = P̂ and, thus, if k → ∞, we

have limk→∞ P̂ x
k+1 = P̂ , which shows that the sequence P̂ x

k+1 = g(P̂ x
k ) is monotonically

convergent to P̂ , ∀ P̂0 ≥ 0.

Remark 2.3. The stability of Algorithm 1 can be quickly concluded from Theorem 2.3,

which presents a sufficient condition that guarantees the convergence of P̂ x
k+1. Recall that

it is

∃K̃ and P̃ > 0, P̃ > φ(K̃, P̃ ).

If the condition is satisfied, then P̂ x
k+1 converges to solution of the GARE, regardless of

the initial P̂0.

Suppose P̂ x
k+1 → P̂ as k →∞ by Theorem 2.3. As a consequence, L̂∗k and Ĥ∗

k converge

to fixed values, i.e., L̂ and Ĥ, respectively. The following theorem can be established.

Theorem 2.4. Assume there exists 0 < X̃ < ∞ such that X̃ > ϕ(X̃), where ϕ(X̃) =

(L̂N − M)O(X̃)(L̂N − M)T. Then, for any initial value P0 ≥ 0, the sequence {P x
k } is

upper bounded as k →∞.

Proof. From (2.27) it follows that

P x
k+1 = Sk − L̂∗kT

T
k − TkL̂

∗T
k + L̂∗kUkL̂

∗T
k + Rw.

As k →∞, we have

lim
k→∞

P x
k+1 = lim

k→∞

[
MOkM

T − L̂(MOkN
T −BĤRv)T − (MOkN

T −BĤRv)L̂
T

+L̂(NOkN
T + Rv −DĤRv −Rv(DĤ)T)L̂

T
+ Rw

]

= lim
k→∞

[
(L̂N −M)Ok(L̂N −M)T + Λ

]
,

where

Λ = L̂(BĤRv)T + (BĤRv)L̂
T

+ L̂
[
Rv −DĤRv −Rv(DĤ)T

]
L̂

T
+ Rw.

There always exists a Ξ ≥ 0 such that Λ ≤ Ξ. Using Lemme 2.5, we conclude that

limk→∞ P x
k+1 is upper bounded.
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Table 2.1: Example 1: Comparisons between the norms of input and state estima-
tion errors by Algorithm 1 and the Gillijns-Moor algorithm.

Algorithm 1 Gillijns-Moor algorithm

Input estimation
‖ũk‖2 17.6932 17.0132

‖ũk‖∞ 4.7194 3.6580

State estimation

‖x̃1k‖2 11.4800 11.5034

‖x̃1k‖∞ 3.2039 3.1733

‖x̃2k‖2 6.9794 6.9855

‖x̃2k‖∞ 1.4978 1.5098

Remark 2.4. Based on Theorem 2.3, Theorem 2.4 shows that under certain condition

the true error variance has an upper bound. In simulation, it is observed that P x
k+1 is also

convergent to a fixed value. However, to analyze the exact convergence properties of P x
k+1

is a very challenging problem, which requires further research.

2.5 Numerical Examples

In this section, two numerical examples are given to illustrate the effectiveness of Algo-

rithm 1.

Example 1: Consider an LTI system described by

A =


0.67 0

0 0.53


 , B =


1.00

0.53


 , C =


0.55 0.11

0 0.29


 , D =


0.40

0.20


 ,

with

Rw = Rv =


0.08 0

0 0.08


 .

In this example, the input {uk} is taken as a uniformly-distributed sequence with the

following properties:

E(uk) = 0, E(u2
k) = 10, E (ukul) = 0 for k 6= l.

Suppose that no information about {uk} is available for use. In the simulation, only the
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output {yk} is present and Algorithm 1 is applied. The results observed are summarized

as follows:

1. The input estimation and state estimation results are shown in Fig. 2.2, respectively.

It is seen that input estimates are close to the actual inputs. Meanwhile, estimation

of the two states also exhibits good performance as there are only trivial differences

between the estimates and their true values.

2. For initialization, set P̂ x
0 = 106I. In the simulation, we find that P̂ x

k quickly converges

from P̂ x
0 to P̂ :

P̂ =


0.5037 0.2118

0.2118 0.2256


 .

It is straightforward to check that P = g(P ) holds true, which indicates P x to be

the stable solution to the GARE. This result confirms the convergence analysis in

Section 2.4. Meanwhile, we note that the true error variance, P x
k also converges to a

fix point P :

P =


0.8671 0.4185

0.4185 0.3431


 .

The trace of P x
k , shown in Fig. 2.3 (blue solid line), demonstrates the monotonically

converging trend. This suggests that, in addition to being upper bounded, P x
k is

very likely to have certain convergence property. Yet to prove this requires further

research.

3. Comparisons are made between the algorithm in [30] (referred as the Gillijns-Moor

algorithm) and Algorithm 1. First, in Fig. 2.3, it is shown that tr(P x
k ) yielded by the

Gillijns-Moor algorithm (red dashed line) is slightly smaller than that by Algorithm

1. Second, the consequent input estimation errors ũk and the state estimation errors

x̃k are compared between both algorithms. The comparison results of errors’ 2-norm

and ∞-norm values in one implementation are shown in Table 1. From Fig. 2.3 and

Table 1, we note that both algorithms have very close performance.

Example 2: In this example, we study the algorithm performance under strong noises.

Now suppose

Rw = Rv =


0.8 0

0 0.8


 .
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Table 2.2: Example 2: Comparisons between the norms of input and state estima-
tion errors by Algorithm 1 and the Gillijns-Moor algorithm.

Algorithm 1 Gillijns-Moor algorithm

Input estimation
‖ũk‖2 46.5408 45.8290

‖ũk‖∞ 10.2476 10.3013

State estimation

‖x̃1k‖2 31.4444 31.5030

‖x̃1k‖∞ 6.6983 6.7860

‖x̃2k‖2 19.5499 19.6002

‖x̃2k‖∞ 4.4089 4.3822

The estimation results by Algorithm 1 are given in Fig. 2.6; the trace and norm compar-

ison results between Algorithm 1 and the Gillijns-Moor algorithm are shown in Fig. 2.5

and Table 2.

In fact, through numerous simulations for the purpose of comparison (simulation results

are not included here because of space limit, but available upon request), we consistently

observe that the performances of both Algorithm 1 proposed and the Gillijns-Moor al-

gorithm are comparable. On the other hand, an obvious advantage when applying Algo-

rithm 1 is that the convergence can be verified in advance using the analysis provided in

Section 2.4.

In some applications such as maneuvering target tracking, certain a priori information

can be assumed about the input [51], and then it is likely to help improve estimation

performance.

Example 3: Consider again the system in Example 1. However, the input {uk} is chosen

to be a random binary-value signal taking either -10 or 10. Assume that the possible binary

values are known to us. It is shown in Fig. 2.6a that the inputs and their estimates are

accurately superimposed. The state estimation, as illustrated in Fig. 2.6, is also precise;

further, the state estimation performance is better than that in Example 1, since part of

the input signal’s information is known a priori. Both examples have the same GARE,

therefore the convergence pattern of tr(P x
k ) in this example exhibits a very similar trend

as the one in Example 1 (omitted here), which verifies the convergence of the input and
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state estimation.

2.6 Summary

We have studied the problem of simultaneous input and state estimation for systems with

direct feedthrough. The challenge of the problem lies in limited data information. Starting

from the optimality (MMSE and MV) analysis, optimal design procedures for the SISE

problem are presented. To ensure the stability of the algorithm, we modify the procedures

slightly to develop the input and state co-estimation algorithm. Further, the stability of

the proposed algorithm is analyzed in detail, showing that the estimation error variance is

upper bounded. Several numerical examples are presented to demonstrate the effectiveness

of the proposed algorithm and compared with existing results.
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ûk

(a)

55 60 65 70 75 80 85 90 95 100

k

 
x1k

x̂1k

(b)

55 60 65 70 75 80 85 90 95 100

k

 
x2k

x̂2k

(c)

Figure 2.2: Example 1: Results for input and state estimation. (a) The input uk

and its estimate ûk. (b) The first state x1k and its estimate x̂1k. (c) The second
state x2k and its estimate x̂2k.
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Figure 2.3: Example 1: Trace of P x
k vs. k.
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ûk

(a)

55 60 65 70 75 80 85 90 95 100

k

 
x1k

x̂1k

(b)

55 60 65 70 75 80 85 90 95 100

k

 
x2k

x̂2k

(c)

Figure 2.4: Example 2: Results for input and state estimation. (a) The input uk

and its estimate ûk. (b) The first estimate x1k and its estimate x̂1k. (c) The second
x2k and its estimates x̂2k.
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Figure 2.5: Example 2: Trace of P x
k vs. k.
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Figure 2.6: Example 3: Results for input and state estimation. (a) The input uk

and its estimate ûk. (b) The first state x1k and its estimate x̂1k. (c) The second
state x2k and its estimate x̂2k.
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Chapter 3

System Identification for Networked Systems

3.1 Introduction and Literature Review

In NCSs, because network-induced time delays and data packet losses worsen the control

performance and even destroy the stability, many studies have been devoted to controller

design for NCSs, e.g., [11; 73; 34] and the references therein. However, it is known that

many control design methodologies depend on dynamic models, so prior to the development

of controllers, system identification, aimed at building models from measured data, must

be carried out. In this chapter, we thus discuss how to identify model parameters of a

plant subject to randomly missing measurements in a network environment, as illustrated

in Fig. 3.1.

In an NCS, the plant plus the actuator and sensor are installed at a remote location.

At the near end, an input transmitter sends the input signal to excite the plant, and an

output receiver collects the plant output. Both are done through a network. A parameter

estimation module identifies the parameters of the plant in an online manner. The network

is assumed to operate under TCP-like protocols which can guarantee an acknowledgement

of received packets; it has been widely used in research on state estimation and control

over networks [66]. For such a networked system, both input and output are subject to

randomly missing due to the nature of communication networks. Obviously, identification

over networks is more challenging, and classical parameter estimation methods, such as

least squares (LS) [41] and stochastic gradients (SG), can no longer be applied directly.

Generally, existing research on identification for systems with incomplete input-output

data can be divided into two categories.

• Systems with regular missing outputs. Systems with regular missing data can

also be viewed as multirate systems which have uniform but various input/output

sampling rates [10]. Such systems may have regular-output-missing feature. In [17],
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Figure 3.1: Scenario of identification over a lossy network under TCP-like protocols.

an auxiliary model based method is proposed and a modified recursive least squares

(RLS) algorithm is developed to simultaneously estimate the system parameter and

the unavailable outputs of a dual-rate system. Other related research on identification

of multirate system models can be referred to [79; 18; 20; 52], to name a few.

• Systems with randomly missing outputs. In many industrial applications non-

uniform sampling is widely adopted, i.e., the output is unequally measured at time-

varying sampling rates. In [50], LS based estimation of continuous-time autore-

gressive (AR) models from discrete-time data distributed non-uniformly is studied.

Parameter estimation of discrete-time AR models with missing observations is dis-

cussed by using a SG-type method [56]. Yet in both works no or only qualitative

convergence analysis was given. An LS based scheme is presented in [75] for autore-

gressive exogenous (ARX) model identification from incomplete input/output data;

however, this scheme is not recursive for online use, and it is sensitive to data missing

pattern. Albertos et al. and Wallin et al. study the estimation of missing output

measurements [1; 76], which pave the way for further estimating parameters; a sys-

tematic description of joint output and parameter estimation with irregular output

missing is provided in [65]. Isaksson uses the Kalman filtering and fixed-interval
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smoothing techniques to reconstruct the missing data first and then identified ARX

models by LS, ML and expectation-maximization (EM) algorithms [45]; the iden-

tification process [45], however, is one-step but not recursive. A frequency domain

solution is proposed in [64] and it treats all missing measurements as parameters,

potentially leading to a large amount of parameters to be identified. An lp norm

parameter estimation algorithm is proposed in [9] to address parameter estimation

from input/output data that has missing values as well as noisy disturbances; fur-

ther, it is nicely shown that: If the probability of the missing measurements is less

than 1/2, then the parameter estimate will converge to the true parameter; however,

this algorithm is conservative in two-fold: (1) there is a restrictive assumption that

both input and output missing have the same probability, which is not always the

case in practical NCSs; (2) the probability of missing data is less than 1/2.

Parameter estimation subject to data missing is also an important research topic in time

series analysis. ML and EM algorithms appear to be popular solutions, by maximizing the

likelihood functions of linear or nonlinear models, see [44; 6; 74; 47] and the references

therein.

However, we maintain that system identification in a lossy network environment has

not been fully investigated, which is the focus of our research. The celebrated Kalman

filter has been elegantly applied to estimate system parameters [32; 4]; however, when

the networked system is subject to randomly missing measurements, it cannot be directly

applied here. The main objectives of this work are three-fold:

• Under the TCP-like protocols, to model the input and output missing as two separate

Bernoulli processes with different probabilities of missing data, to design a missing

output estimator, and further to develop a modified Kalman filter based recursive

algorithm.

• To investigate the performance of the proposed estimation algorithms using the

stochastic process theory.

• Furthermore, to establish the performance properties of the missing output estima-

tion.
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3.2 Problem Formulation

The identification problem in a TCP-based network environment is shown in Fig. 3.1. Let

us consider the following output-error model with intermittent input and output informa-

tion:

xo
k =

Bz

Az
uo

k, (3.1)

yo
k = xo

k + vk, (3.2)

uo
k = λkuk, (3.3)

yk = γky
o
k, (3.4)

where uo
k is the input to the actuator, uk is the desired input from the input transmitter,

yo
k is the sensor output, and yk is output transmitted to the output receiver. Az and Bz

are polynomials in the unit delay operator z−1:

Az = 1 + a1z
−1 + a−2

2 + · · ·+ anaz
−na ,

Bz = b0 + b1z
−1 + b−2

2 + · · ·+ bnb
z−nb .

The polynomial orders na and nb are assumed to be known. Eqns. (3.1)-(3.2) can be

written equivalently as the following linear regression model:

xo
k = ϕo

k
Tθ, yo

k = xo
k + vk, (3.5)

where

ϕo
k =

[−xo
k−1 − xo

k−2 · · · − xo
k−na

uo
k uo

k−1 · · · uo
k−nb

]T
,

θ = [a1 a2 · · · ana b0 b1 · · · bnb
]T .

Regression vector ϕo
k contains lagged input and output values of the plant, and the param-

eter vector θ contains model parameters to be estimated.

As aforementioned, the network is lossy and thus results in randomly input-output

missing, so Bernoulli random variables λk and γk are introduced to characterize the data

missing pattern. The probability distributions of λk and γk are defined as

P(λk) =





λ, if λk = 1,

1− λ, else if λk = 0,
and P(γk) =





γ, if γk = 1,

1− γ, else if γk = 0.
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Here, the difference between γk and λk is noteworthy. Under TCP-like protocols, receipt

of a packet uk is acknowledged by a packet message. Yet the acknowledgement will have a

unit-time delay. Therefore, at time instant k, γk and λk−1 (instead of λk) are known. We

can define the following information set:

Tk , {ΓkYk, Uk,Λk−1}, (3.6)

where ΓkYk = (γkyk, γk−1yk−1, · · · , γ1y1), Uk = (uk, uk−1, · · · , u1) and Λk = (λk, λk−1, · · · , λ1).

In fact, Tk provides all the data information that is available for system identification.

To this end, the objectives are posed in the follwing:

P1. Based on the incomplete input/output data information Tk, how to estimate the

system parameters θ?

P2. How to evaluate the accuracy of the parameter estimation and the missing output

estimation?

In what follows, a recursive algorithm for identification in a TCP-based network environ-

ment will be proposed. The algorithm is developed based on the Kalman filter. Further,

convergence properties of the proposed algorithm will be analyzed.

3.3 Derivation of the Algorithm

Consider the model in (3.5). It is shown by [32; 4] that the Kalman filter can be used

to perform parameter estimation. By using the auxiliary model, we have the following

Kalman filter based algorithm:

θ̂k = θ̂k−1 + Ka
k (yo

k − ϕaT
k θ̂k−1), (3.7)

Ka
k =

P a
k−1ϕ

a
k

rv + ϕaT
k P a

k−1ϕ
a
k

, (3.8)

P a
k = P a

k−1 −
P a

k−1ϕ
a
kϕ

aT
k P a

k−1

rv + ϕaT
k P a

k−1ϕ
a
k

, (3.9)

xa
k = ϕaT

k θ̂k, (3.10)

ϕa
k =

[−xa
k−1 − xa

k−2 · · · − xa
k−na

uo
k uo

k−1 · · · uo
k−nb

]T
, (3.11)

where θ̂k represents the estimated parameter vector at instant k.

However, due to missing input-output data (as shown in (3.3)-(3.4)), the information

available for identification is constrained within Tk. Hence, the above algorithm will fail if
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directly used to estimate the parameters of the networked plant. Thus we are motivated to

design a new algorithm accounting for the problem of randomly missing data in a network

environment.

From the definition of Tk and Fig. 3.1, let us take a closer look at how to deal with

the problem of randomly input and output missing: (1) Thanks to TCP acknowledgement

mechanism, the input to the actuator uo
k = λkuk is available, but there exists a unit time

delay. For the input missing, we propose to delay identification for a unit time, and if it is

missed, then the input is regarded as 0. (2) The sensor output yo
k is subject to random loss

when transmitted through network to the output receiver. Therefore, an output estimator

is to be designed.

Let us begin with output estimator design. Inspired by the work on output prediction

by Albertos, et al. [1], the following estimator is to be used:

zk = yk + (1− γk)ŷk, (3.12)

where

ŷk = ϕT
k θ̂k

and ϕk will be defined later in (3.17). The above estimator adaptively reconstructs the

missing output data. It has an intuitive yet efficient structure, and its convergence prop-

erties will be analyzed in Section 3.4.

Now we are in good position to derive the recursive parameter estimation algorithm.

Replacing yo
k in the algorithm (3.7)-(3.11) by zk, and incorporating the random variable

γk lead to

θ̂k+1|Tk+1 = θ̂k + Kk+1(zk − ϕT
k θ̂k), (3.13)

Kk+1|Tk+1 =
Pkϕk

rv + ϕT
k Pkϕk

, (3.14)

Pk+1|Tk+1 = Pk − γk
Pkϕkϕ

T
k Pk

rv + ϕT
k Pkϕk

, (3.15)

xk|Tk+1 = ϕT
k θ̂k+1, (3.16)

ϕk|Tk+1 = [−xk−1 − xk−2 · · · − xk−na λkuk λk−1uk−1 · · · λk−nb
uk−nb

]T .(3.17)

For ease of presentation, we shall drop Tk+1 and use θ̂k+1, Kk+1, Pk+1, xk and ϕk alone

instead.
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Remark 3.1. A closer scrutiny of (3.13) shows that it can be decomposed into two equa-

tions: 



θ̂k+1 = θ̂k + Kk(yk − ϕT
k θ̂k), if γk = 1;

θ̂k+1 = θ̂k, else if γk = 0.

Similarly, we can decompose (3.15) in a similar way. It is noted that θ̂k and Pk are updated

only when the output is available, and will remain unchanged otherwise.

3.4 Convergence Analysis

To begin our quest of establishing convergence properties of the estimation algorithms,

some necessary preliminaries are presented first. The convergence analysis of the parameter

estimation in (3.13)-(3.17) and the output estimation in (3.12) are to be carried out under

the stochastic framework inspired by [8], [16] and [17].

3.4.1 Preliminaries

Some basic facts about the positive definite matrices will be used in this section and are

summarized in the following lemma.

Lemma 3.1. [35] Let A, B be n × n positive definite matrices with the relation A ≤ B,

and C be a n×m matrix. Then

λmin(A)I ≤ A ≤ λmax(A)I, (3.18)

CTAC ≤ CTBC, (3.19)

where I is the identity matrix. If the eigenvalues of A and B are arranged in the same

order, then

λi(A) ≤ λi(B) (3.20)

for i = 1, 2, · · · , n.

To facilitate the convergence analysis, we equivalently rewrite the proposed algorithm,

as shown in the following lemma.

Lemma 3.2. The algorithm (3.13)-(3.15) can be written equivalently as follows:

θ̂k+1 = θ̂k + r−1
v Pk+1ϕk(zk − ϕT

k θ̂k), (3.21)

P−1
k+1 = P−1

k + γkr
−1
v ϕkϕ

T
k . (3.22)
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Proof. The proof is straightforward and thus is omitted here.

Further, define

(P o
k+1)

−1 = p0I + r−1
v ϕo

kϕ
o
k
T,

ro
k = tr

(
(P o

k )−1
)
,

rk = tr
(
P−1

k

)
,

where p0 is a positive real value large enough. The relations between ro
k and |P o

k
−1|, and

between rk and |P−1
k |, are established in the following lemma.

Lemma 3.3. The following relations hold:

ln
∣∣(P o

k )−1
∣∣ = O (ln ro

k) , ln E|P−1
k | = O (lnErk) . (3.23)

Proof. It can be proved by following the similar line in [17].

The next lemma shows the convergence of three infinite series that will be useful later.

Lemma 3.4. The following inequalities hold:

t∑

i=1

r−1
v E

(
γiϕ

T
i Pi+1ϕi

) ≤ ln E|P−1
k+1|+ n0 ln p0 almostsurely(a.s.) (3.24)

∞∑

i=1

r−1
v

E
(
γiϕ

T
i Pi+1ϕi

)
(
ln E|P−1

i+1|
)c < ∞ a.s., (3.25)

∞∑

i=1

r−1
v

E
(
γiϕ

T
i Pi+1ϕi

)

ln E|P−1
i+1|

(
ln ln E|P−1

i+1|
)c < ∞ a.s., (3.26)

where n0 = na + nb and c > 1.

Proof. The proof can be done along the similar way as Lemma 2 in [18] and is omitted

here.

The following is the well-known martingale convergence theorem that lays the founda-

tion for the upcoming convergence analysis.

Theorem 3.1. [31] Let {Xk} be a sequence of nonnegative random variables adapted to

an increasing σ-algebras {Fk}. If

E (Xk+1|Fk) ≤ (1 + εk)Xk − αk + βk, a.s.
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where αk ≥ 0, βk ≥ 0 and EX0 < ∞,
∑∞

i=0 |εi| < ∞,
∑∞

i=0 βi < ∞ a.s., then Xk converges

almost surely to a finite random variable and

lim
N→∞

N∑

i=0

αi < ∞, a.s.

3.4.2 Convergence of Parameter Estimation

We will prove that the parameter estimation algorithm (3.13)-(3.17) is convergent by con-

structing a martingale process satisfying the conditions of Theorem 3.1. This is the essential

of the next theorem.

Theorem 3.2. Assume that the driven noise {vk,Fk} is a martingale difference sequence

adapted to a family of increasing σ-algebras {Fk}. For the considered system, the following

assumptions are made:

(A1) E (vk|Fk−1) = 0, a.s.,

(A2) E
(
v2
k|Fk−1

)
= rv < ∞, a.s.,

(A3) ∃ α0, β0, c0 ∈ R+ and k0 ∈ N+, α0I ≤ 1
k

k∑

i=1

ϕo
i ϕ

o
i
T ≤ β0t

c0I, for k ≥ k0,

(A4) Gz =
1

Az
− 1

2
is strictly positive real.

Then the square parameter estimation error, ‖θ̂k − θ‖2, produced by the algorithm (3.13)-

(3.17), satisfies

(C1) ‖θ̂k − θ‖2 = O

[
(ln k)c

k

]
→ 0 a.s., c > 1,

(C2) ‖θ̂k − θ‖2 = O

[
ln k (ln ln k)c

k

]
→ 0 a.s., c > 1.

Proof. The proof is organized into three parts for ease of reading. First of all, the objective

of each part is sketched as follows.

• Part 1 is to show

(P1.1) ‖θ̂k − θ‖2 = O

[
(lnErk)

c

λmin

(
P−1

k

)
]

a.s., c > 1,

(P1.2) ‖θ̂k − θ‖2 = O

[
ln Erk (ln ln Erk)

c

λmin

(
P−1

k

)
]

a.s., c > 1.
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• Part 2 is to show

(P2.1) ‖θ̂k − θ‖2 = O

[
(ln r0t)

c

λmin

(
P−1

0t

)
]

a.s., c > 1,

(P2.2) ‖θ̂k − θ‖2 = O

[
ln r0t (ln ln r0t)

c

λmin

(
P−1

0t

)
]

a.s., c > 1.

• Finally Part 3 will show the conclusions (C1) and (C2).

Part 1:

Define the parameter estimation error vector, innovation vector and residual vector,

respectively, as follows:

θ̃k+1 = θ̂k+1 − θ,

ek = zk − ϕT
k θ̂k,

ηk = γk(yo
k − xk).

It can be verified that

ηk = γk(xo
k − xk + vk), (3.27)

ηk = (1− r−1
v ϕT

k Pk+1ϕk)ek (3.28)

= (1 + r−1
v ϕT

k Pkϕk)−1ek. (3.29)

Further, define the parameter estimation error vector and a Lyapunov-like function as

θ̃k = θ̂k − θ,

Vk = θ̃T
t P−1

k θ̃k.

From (3.21) and (3.28), it follows that

θ̃k+1 = θ̃k + r−1
v Pk+1ϕtek

= θ̃k + r−1
v Pkϕkηk. (3.30)

Vk+1 can be evaluated as

Vk+1 = Vk + γkr
−1
v (ϕT

k θ̃k)2 + 2γkr
−1
v ϕT

k θ̃tek + γkr
−2
v ϕT

k Pk+1ϕte
2
k

= Vk + γkr
−1
v (ϕT

k θ̃k+1)2 + 2γkϕ
T
k θ̃k+1(rv + ϕT

k Pkϕk)−1ek +

γkr
−2
v ϕT

k Pk+1ϕk(r−1
v ϕT

k Pk+1ϕk − 1)e2
k.
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Since ϕT
k Pk+1ϕk ≥ 0 and 1− r−1

v ϕT
k Pk+1ϕk ≥ 0, then

Vk+1 ≤ Vk + γkr
−1
v (ϕT

k θ̃k+1)2 + 2γkϕ
T
k θ̃k+1(rv + ϕT

k Pkϕk)−1ek

= Vk + γkr
−1
v (ϕT

k θ̃k+1)2 + 2γkr
−1
v ϕT

k θ̃k+1(1− r−1
v ϕT

k Pk+1ϕk)ek.

Define

ũk = −ϕT
k θ̃k+1,

ỹk =
1
2
ϕT

k θ̃k+1 + yo
k − ϕT

k θ̂k+1 − vk.

Then it follows that

Vk+1 ≤ Vk − 2γkr
−1
v ũkỹk + 2γkr

−1
v ϕT

k θ̃kvk + 2γkr
−2
v ϕT

k Pk+1ϕtetvk (3.31)

= Vk − 2γkr
−1
v ũkỹk + 2γkr

−1
v ϕT

k θ̃kvk + 2γkr
−2
v ϕT

k Pk+1ϕk[(ek − γkvk)vk + γkv
2
k].

Taking expectation with respect to Fk on both sides of (3.31) gives

E (Vk+1|Fk) ≤ Vk − 2E(γkũkỹk|Fk−1) + 2r−1
v E(γkϕ

T
k Pk+1ϕk). (3.32)

We also have

Az(yo
k − ϕT

k θ̂k+1 − vk) = Bzλkuk −Azxk

= −xk + ϕT
k θ

= −ϕT
k θ̃k+1 = ũk, (3.33)

which leads to

ỹk =
(

1
Az

− 1
2

)
ũk.

In (A2), it is assumed that
(

1
Az
− 1

2

)
is positive real, which implies

Sk+1 := E(2
t∑

i=1

γkũiỹi) ≥ 0, a.s. (3.34)

Adding Sk+1 to both sides of (3.32) yields

E (Vk+1 + Sk+1|Fk) ≤ Vk + Sk + 2r−1
v E(γkϕ

T
k Pk+1ϕk). (3.35)

Define a new sequence:

Wk :=
Vk + Sk(

ln E|P−1
k |)c , c > 1. (3.36)
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Since ln |P−1
k | is nondecreasing, it follows from (3.35) and (3.36) that

E (Wk+1|Fk) ≤ Vk + Sk(
ln E|P−1

k+1|
)c +

2r−1
v E(γkϕ

T
k Pk+1ϕk)(

ln E|P−1
k+1|

)c

≤ Wk +
2r−1

v E(γkϕ
T
k Pk+1ϕk)(

ln E|P−1
k+1|

)c . (3.37)

According to (3.25) in Lemma 3.4, the martingale convergence theorem (Theorem 3.1) is

applicable to (3.37). Therefore, Wk will approach to a finite random variable W0 almost

surely (a.s.), that is, Wk → W0 < ∞, a.s., or equivalently,

Vk = O
[(

ln E|P−1
k |)c

]
, a.s., (3.38)

Sk = O
[(

ln E|P−1
k |)c

]
, a.s. (3.39)

Applying Lemma 3.1, we have

‖θ̃k‖2 ≤ θ̃T
k P−1

k θ̃k

λmin

(
P−1

k

) =
Vk

λmin

(
P−1

k

) . (3.40)

It is indicated by (3.23), (3.38) and (3.40) that

‖θ̃k‖2 = O

[(
ln E|P−1

k |)c

λmin

(
P−1

k

)
]

= O

[
(lnErk)

c

λmin

(
P−1

k

)
]

. (3.41)

This proves (P1.1). If (3.26) instead of (3.25) in Lemma 3.4 is applied in the analysis of

the martingale sequences, (P1.2) can be proved in analogy to the above procedure, and

thus is omitted here.

Part 2:

We need to show that Erk = O(ro
k) and λmin

(
(P o

k )−1
)

= O
[
λmin(P−1

k )
]

in order to

prove (P2.1) and (P2.2).

From (3.33) and (3.39), we have

t∑

i=1

γi‖yo
i − ϕT

i θ̂i+1 − vi‖2 =
t∑

i=1

γi‖xo
i − xi‖2 = O [(lnErk)c] . (3.42)

Define the residual regression vector as ϕ̃k = ϕk − ϕo
k. We have

ϕ̃k = [−xk−1 + xo
k−1 · · · − xk−na + xo

k−na
0 · · · 0︸ ︷︷ ︸

nb+1

]T.

Thus
t∑

i=1

‖ϕ̃i‖2 =
t∑

i=1

na∑

j=1

(
xi−j − xo

i−j

)2 = O [(lnErk)c] . (3.43)
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Referring to the definition of rk and ro
k, we get

Erk = n0p
−1
0 + r−1

v

t−1∑

i=1

E‖γiϕi‖2

≤ n0p
−1
0 + r−1

v

t−1∑

i=1

E‖ϕi‖2

= ro
k + r−1

v

t−1∑

i=1

E‖ϕ̃i‖2 + 2r−1
v

t−1∑

i=1

E
(
ϕ̃T

i ϕo
i

)

≤ 2ro
k + 2r−1

v

t∑

i=1

E‖ϕ̃i‖2

= 2ro
k + O [(lnErk)c] .

Therefore, Erk is comparable to ro
k:

Erk = O(ro
k). (3.44)

From (A3), the boundedness of ro
k and λmin

(
(P o

k )−1
)

for t ≥ t0 can be determined:

n0p
−1
0 + r−1

v α0t ≤ ro
k ≤ n0p

−1
0 + n0r

−1
v β0t

c0+1, (3.45)

p−1
0 + r−1

v α0t ≤ λmin(P o
k
−1) ≤ p−1

0 + r−1
v β0t

c0+1. (3.46)

Hence we have
(ln ro

k)
c

λmin

(
(P o

k )−1
) ≤ [ln(n0p

−1
0 + n0r

−1
v β0t

c0+1)]c

p−1
0 + r−1

v α0t
→ 0, (3.47)

where c > 1. This implies that

ln(ro
k)

c = o
[
λmin

(
(P o

k )−1
)]

. (3.48)

Consider an (na + nb + 1) × 1 vector w that has unit norm, i.e., ||w|| = 1. Then we

have
t∑

i=1

(
wTϕo

i

)2
=

t∑

i=1

[
wT(ϕi − ϕ̃i)

]2

≤
t∑

i=1

(
wTϕi

)2
+

t∑

i=1

(
wTϕ̃i

)2

=
t∑

i=1

(
wTϕi

)2
+ O [(ln ro

k)
c] .

It can be readily obtained that

λmin

(
(P o

k )−1
) ≤ λmin(P−1

k ) + O [(ln ro
k)

c]

= λmin(P−1
k ) + o

[
λmin

(
(P o

k )−1
)]

.

42



Thus

λmin

(
(P o

k )−1
)

= O
[
λmin(P−1

k )
]
. (3.49)

Now the convergence property of θ̂k can be written in the following form by summarizing

(3.41), (3.44) and (3.49):

‖θ̂k − θ‖2 = O

[
(ln ro

k)
c

λmin

(
(P o

k )−1
)
]

. (3.50)

The conclusion (P2.1) is proven. Similarly, (P2.2) can be proved in light of (P1.2).

Part 3:

Now from (3.47) and (3.50), we have

‖θ̂k − θ‖2 = O

[[
ln

(
n0p

−1
0 + n0r

−1
v β0t

c0+1
)]c

p−1
0 + r−1

v α0t

]

= O

[
(ln t)c

t

]
→ 0, a.s., c > 1. (3.51)

This proves (C1). The conclusion (C2) can be derived similarly from (P2.2). This completes

the proof.

Remark 3.2. Assumptions (A1) and (A2) show that vk is an independent noise sequence

with zero mean and bounded time-varying variance.

Remark 3.3. The assumption (A3) refers to the persistent excitation (PE) condition that

is a standard assumption; its practical meaning is to have rich enough excitation signals

to drive and further identify the system.

Remark 3.4. For systems with complete input/output measurements, under the stochas-

tic framework, the convergence analysis of least squares identification algorithms and gra-

dient based algorithms have been discussed extensively [17; 18; 20; 32; 8]. In Theorem 4.1,

following the similar line, the results have been extended to the convergence properties of

the modified Kalman filter based parameter estimation algorithm for systems with ran-

domly missing measurements in a TCP-like network environment. It is worthwhile noting

that γk is involved in the developed algorithm to characterize the random missing mea-

surements, which also poses challenges on the proof of Theorem 4.1; in this sense, the proof

procedure is different from existing results in terms of incorporating the randomly data

missing into account.
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Remark 3.5. Theorem 3.2 reveals that the parameter estimation error of the algorithm

(3.13)-(3.17), even in the presence of output missing, will converge to zero at the speed of

O [(ln k)c/k].

3.4.3 Convergence of Output Estimation

It is also important to analyze the convergence properties of the output estimation. To

establish this, we give the next theorem.

Theorem 3.3. Assume that the assumptions (A1)-(A4) hold, and

(A5) The input is bounded, i.e., u2
k < ∞ for any k.

Then there exists a positive integer t0 such that for any k ≥ k0 the output estimation error

zk − yk satisfies

(C3)
k∑

i=k0

(zi − yo
i )

2 = O
[
(ln k)c+1

]
, a.s., c > 1,

(C4)
1
k

k∑

i=t0

(zi − yo
i )

2 = O

[
(ln k)c+1

k

]
→ 0, a.s., c > 1.

Proof. First, we have

zk − yo
k = (1− γk)(ŷk − yo

k)

= (1− γk)(ϕT
k θ̂k − yo

k)

= (1− γk)(ϕT
k θ̂k − xk − vk).

Then it follows that

E(zk − yo
k) = E

[
(1− γk)(ϕT

k θ̂k − xo
k − vk)

]

= E
[
(1− γk)(ϕT

k θ̂k − xo
k)

]
+ γrv

= E
[
(1− γk)(xk − r−1

v Pk+1ϕtek − xo
k)

]
+ γrv

= E [(1− γk)(xk − xo
k)] + γrv.

According to Theorem 3.2, ‖θ̃k‖2 converges to 0 as k increases. With the assumption

of input being bounded, there must be a positive integer k0 such that for any k ≥ k0

the regression vector is bounded if the system is stable (as assumed in (A4)). That is,

∃ k0 ∈ N+ and ε > 0,

‖ϕk‖2 ≤ ε < ∞ for k ≥ k0.
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Then
k∑

i=k0

(zi − yo
i )

2 =
k∑

i=k0

E [(1− γk)(xi − xo
i )] + γrv

= O




k∑

i=k0

‖ϕT
i θ̃i‖2




= O




k∑

i=k0

ε‖θ̃i‖2




= O




k∑

i=k0

ε
(ln i)c

i




= O
[
(ln k)c+1

]
.

This proves (C3). The conclusion (C4) can be achieved by dividing k on both sides of the

above equation. This completes the proof.

Remark 3.6. The proposed output estimator possesses a simple structure, yet it is effec-

tive: The estimation error is proven to converge to zero in average sense at the speed of

O
[
(ln k)c+1/k

]
.

3.5 Numerical Examples

In this section, the proposed algorithm is examined through simulation studies.

The proposed algorithm (3.13)-(3.17) is applied to the input-output data collected from

a second-order single-input-single-output (SISO) plant placed in a network environment:

yo
k =

b0 + b1z
−1

1 + a1z−1 + a2z−2
uo

k + vk,

uo
k = λkuk,

yk = γky
o
k.

The desired input {uk} is a uniformly-distributed sequence with zero mean and unit vari-

ance. As aforementioned, due to the network-induced randomly data missing, the actual

input to the plant is {uo
k}, an intermittent version of {uk}. In a similar way, {yo

k} is the

output response of the plant, yet it is {yk} that is finally received and used for identifi-

cation. {vk} is a white noise sequence with zero mean and variance rv. The parameter

vector θ = [a1 a2 b0 b1]T is to be estimated. Here, θ is supposed to be

θ = [0.523 0.349 0.440 0.762]T.
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In the following simulation studies, we carry out experiments for three different cases

regarding the data completeness and the data missing pattern.

Example 1: λ = 0.8 and γ = 0.7. In this case, about 20% of the input data and 30% of

the output data are missing.

The estimated parameters and corresponding estimation errors of four parameter un-

knowns are shown in Fig. 3.2 and Table 1, respectively. It is observed that all the parameter

estimates gradually converge to their true values as k increases.

To further quantify the estimation accuracy, define the relative parameter estimation

error as

δpar% =
‖θ̂k − θ‖
‖θ‖ × 100%.

It is shown in Fig. 3.3 that δpar has a clear tendency to approach zero. To examine

the output estimation performance, a comparison between the estimated outputs and true

outputs during the time range 501 ≤ k ≤ 550 is illustrated in Fig. 3.4: The dashed

lines illustrate time instants when data missing occurs, and corresponding small asterisks

represent the estimated outputs at these time instants. In addition, define the average

output estimation error

δout =
1
k

k∑

i=1

(zi − yo
i )

2 .

The curve of the average output estimation error is shown in Fig. 3.5. From both Fig. 3.4

and Fig. 3.5, we can observe that the output estimation also exhibits good performance.

Table 3.1: Example 1: Intermediate parameter estimates and estimation errors
(λ = 0.8 and γ = 0.7).

k â1 â2 b̂0 b̂1 δpar(%)

10 0.567627 1.6701 3.20898 1.68664 296.32

63 0.42823 0.174088 0.49568 0.631873 22.5757

125 0.46955 0.22639 0.474952 0.726835 13.1901

250 0.506762 0.278517 0.417336 0.737531 7.36484

500 0.540054 0.308427 0.407041 0.747389 5.26075

1000 0.53704 0.335451 0.428435 0.749043 2.41542

True values 0.523 0.349 0.440 0.762
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Figure 3.2: Example 1: Estimates of the parameter unknowns a1, a2, b0 and b1

(λ = 0.8 and γ = 0.7).
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k

Figure 3.3: Example 1: Relative parameter estimation error versus time (λ = 0.8
and γ = 0.7).
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Figure 3.4: Example 1: Comparison between estimated and true outputs (λ = 0.8
and γ = 0.7).
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Figure 3.5: Example 1: Average output estimation error versus time (λ = 0.8 and
γ = 0.7).
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Figure 3.6: Example 2: Estimates of the parameter unknowns a1, a2, b0 and b1

(λ = 0.4 and γ = 0.2).
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Figure 3.7: Example 2: Relative parameter estimation error versus time (λ = 0.4
and γ = 0.2).
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Figure 3.8: Example 2: Comparison between estimated and true outputs (λ = 0.4
and γ = 0.2).
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Figure 3.9: Example 2: Average output estimation error versus time (λ = 0.4 and
γ = 0.2).
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Table 3.2: Example 2: Intermediate parameter estimates and estimation errors
(λ = 0.4 and γ = 0.2).

k â1 â2 b̂0 b̂1 δpar(%)

10 -0.182577 -0.148257 0 0 113.976

313 0.299781 0.115871 0.42551 0.762816 29.875

625 0.338345 0.239968 0.325255 0.65233 24.6696

1250 0.452098 0.269698 0.424789 0.72987 10.371

2500 0.509494 0.314595 0.414112 0.755212 4.21955

5000 0.530625 0.312564 0.420325 0.760732 3.8951

True values 0.523 0.349 0.440 0.762

Example 2: λ = 0.4 and γ = 0.2. In the second case, about 60% of the input data

and 80% of the output data are missing, respectively. It is clear that in this example, the

missing data scenario is much worse than that in Example 1.

Estimates of four parameters are shown in Fig. 3.6 and Table 2, respectively. Even

though the available output measurements are more scarce than those in Example 1, it is

still observed that all the parameter estimates gradually converge to their true values as k

increases.

The relative estimation error, δpar%, shown in Fig. 3.7, is still approaching to zero.

Performance of the output estimator in terms of both the difference from the true outputs

and average output estimation error is illustrated in Fig. 3.8 and Fig. 3.9 (dashed red

curve), respectively.

By comparing Fig. 3.3 to Fig. 3.7, and Fig. 3.5 to Fig. 3.9, we note that: (1) The

estimation performance in Example 1 is better than that in Example 2, because there were

less data missed in Example 1; (2) to achieve the same level of estimation accuracy, more

data would be needed in Example 2, when more measurements are missing in this case; (3)

the estimation performance depends on the data completeness that can be characterized

by both λ and γ.

Example 3: Different data missing patterns. It is also paramount to explore the

influence of missing data patterns, e.g., {λk} and {γk}, on the estimation performance. In

51



0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

k

δ
p
a
r
%

With missing data pattern 2

With missing data pattern 1

Figure 3.10: Example 3: Relative parameter estimation errors for two cases with
different data missing patterns (λ = 0.8 and γ = 0.7).
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Figure 3.11: Example 3: Average output estimation errors for two cases with
different data missing patterns (λ = 0.8 and γ = 0.7).
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this example, we implement the proposed algorithm twice with same λ = 0.8 and γ = 0.7,

but the input and output availability sequences λk and {γk}s are randomly generated and

thus different.

The resulting relative parameter estimation errors and average output estimation errors

are visually compared in Fig. 3.10 and Fig. 3.11. Obviously, even with identical λ and γ,

estimation performance may still vary. In fact, not only the data completeness, but also

the missing data patterns are significant factors for identification of systems with randomly

missing measurements in a network environment.

3.6 Summary

In this chapter, we have studied the problem of parameter estimation of systems placed in

a TCP-based network environment. For such a problem, missing input and output data is

the primary concern as data transmitted over a network may encounter time delays or even

packet loss. Random input and output missing are modeled as two Bernoulli processes. A

missing output estimator is designed, and further a modified Kalman filter based recursive

estimation algorithm is developed. Convergence properties for both parameter estimation

and output estimation are established. Simulation examples verify the effectiveness of the

proposed algorithm and also illustrate that the data completeness and the data missing

pattern would affect the estimation performance. It is worthwhile noting that the proposed

algorithm can handle two practical cases: (1) The input and output have different prob-

abilities of missing data; (2) the probabilities of missing data are larger than 1/2. Thus,

the design in this work makes an important step forward in addressing practical issues of

network-induced randomly missing data for identification of systems over lossy networks.

It is worth noting that the idea could be extended to other widely applied commu-

nication protocols, such as UDP, Profibus, factory instrumentation protocol (FIP) [39]

and so on. In addition, although the orders of the system model are assumed to be fixed

and known here, the framework could be extended to the case where model orders are

also needed to be identified. Moreover, it is desirable to further develop adaptive control

schemes for NCSs based on the proposed parameter estimation algorithms. These topics

are worth further studying.
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Chapter 4

Adaptive Control for Networked Systems

4.1 Introduction and Literature Review

Control design has long been a primary concern in the field of NCSs. As aforementioned,

the introduction of networks also presents some challenges such as the limited feedback

information caused by packet transmission delays and packet loss; both of them are due to

the sharing and competition of the transmission medium. The information transmission

delay arises from by the limited capacity of the communication network used in a control

system, whereas the packet loss is caused by the unavoidable data losses or transmission

errors. Both the information transmission delay and packet loss may result in randomly

missing output measurements at the controller node, as shown in Fig. 4.1. Obviously,

randomness of available output measurements brings difficulties for control analysis and

design for NCSs. Yet consequently, we note that adaptive control schemes, which are

continuously adapting the control signals to the environment, have great potentials in

NCSs. In this chapter, we would pursue this topic to develop adaptive controllers for

NCSs. Before proceeding further, we shall review related literature exhaustively to gain a

panoramic view.

Limited feedback information (information transmission delays and packet losses) can

degrade the performance of systems or even cause instability. Various methodologies have

been proposed for modeling, stability analysis, and controller design for NCSs in the pres-

ence of limited feedback information. A novel feedback stabilization solution of multiple

coupled control systems with limited communication is proposed by bringing together

communication and control theoretical issues in [40]. Further the control and communi-

cation co-design methodology is applied in [88; 37] – a method of stabilizing linear NCSs

with medium access constraints and transmission delays by designing a delay-compensated

feedback controller and an accompanying medium access policy is presented. In [90], the
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relationship of sampling time and maximum allowable transfer interval to keep the sys-

tems stable is analyzed by using a stability region plot; the stability analysis of NCSs is

addressed by using a hybrid system stability analysis technique. In [77], a new NCS proto-

col, try-once-discard (TOD), which employs dynamic scheduling method, is proposed and

the analytic proof of global exponential stability is provided based on Lyapunov’s second

method. In [3], the conditions under which NCSs subject to dropped packets are mean

square stable are provided. Output feedback controller that can stabilize the plant in the

presence of delay, sampling, and dropout effects in the measurement and actuation chan-

nels is developed in [57]. In [85], the authors model the NCSs with packet dropout and

delays as ordinary linear systems with input delays and further design state feedback con-

trollers using Lyapunov-Razumikhin function method for the continuous-time case, and

Lyapunov-Krasovskii based method for the discrete-time case, respectively. In [86], the

time delays and packet dropout are simultaneously considered for state feedback controller

design based on a delay-dependent approach; the maximum allowable value of the network-

induced delays can be determined by solving a set of linear matrix inequalities (LMIs).

Most recently, Gao, et. al., for the first time, incorporate simultaneously three types of

communication limitation, e.g., measurement quantization, signal transmission delay, and

data packet dropout into the NCS design for robust H∞ state estimation [25], and passiv-

ity based controller design [27], respectively. Further, a new delay system approach that

consists of multiple successive delay components in the state, is proposed and applied to

network-based control in [28].

However, the results obtained for NCSs are still limited: Most of the aforementioned

results assume that the plant is given and model parameters are available, while few pa-

pers address the analysis and synthesis problems for NCSs whose plant parameters are

unknown. In fact, while controlling a real plant, the designer rarely knows its parameters

accurately [58]. To the best of the our knowledge, adaptive control for systems with un-

known parameters and randomly missing outputs in a network environment has not been

fully investigated, which is the focus of this paper.

It is worth noting that systems with regular missing outputs – a special case of those

with randomly missing outputs – can also be viewed as multirate systems which have

uniform but various input/output sampling rates [10]. Such systems may have regular-

output-missing feature. In [17], Ding, et. al. use an auxiliary model and a modified

55



Figure 4.1: An NCS with randomly missing outputs.

recursive least squares (RLS) algorithm to realize simultaneous parameter and output es-

timation of dual-rate systems. Further, a least squares based self-tuning control scheme is

studied for dual-rate linear systems [18] and nonlinear systems [19], respectively. However,

network-induced limited feedback information unavoidably results in randomly missing out-

put measurements. To generalize and extend the adaptive control approach for multirate

systems [18; 19] to NCSs with randomly missing output measurements and unknown model

parameters is another motivation of this work.

In this chapter, we first model the availability of output as a Bernoulli process. Then

we design an output estimator to online estimate the missing output measurements, and

further propose a novel Kalman filter based method for parameter estimation with ran-

domly output missing (Please note that the method is from Chapter 3 but slightly dif-

ferent). Based on the estimated output or the available output, and the estimated model

parameters, an adaptive control is proposed to make the output track the desired sig-

nal. Convergence of the proposed output estimation and adaptive control algorithms is

analyzed.

4.2 Problem Formulation

The problem of interest in this work is to design an adaptive control scheme for networked

systems with unknown model parameters and randomly missing outputs. In Fig. 4.1,
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the output measurements yk could be unavailable at the controller node at some time

instants because of the network-induced limited feedback information, e.g., transmission

delay and/or packet loss. The data transmission protocols like TCP guarantee the delivery

of data packets in this way: When one or more packets are lost the transmitter retransmits

the lost packets. However, since a retransmitted packet usually has a long delay that is

not desirable for control systems, the retransmitted packets are outdated by the time they

arrive at the controller [3; 38]. Therefore, in this paper, it is assumed that the output

measurements that are delayed in transmission are regarded as missed ones.

The availability of yk can be viewed as a random variable γk. γk is assumed to have

Bernoulli distribution:

E (γkγs) = EγkEγs for k 6= s, P(γk) =





γ, if γk = 1,

1− γ, else if γk = 0,
(4.1)

where 0 < γ ≤ 1.

Consider a SISO process described by an output-error (OE) model:

Azxk = Bzuk, yk = xk + vk, (4.2)

where uk is the system input, yk the output and vk the disturbing white noise with variance

rv. Az and Bz are two backshift polynomials defined as

Az = 1 + a1z
−1 + a−2

2 + · · ·+ anaz
−na ,

Bz = b0 + b1z
−1 + b2z

−2 + · · ·+ bnb
z−nb .

The polynomial orders na and nb are assumed to be given. Eqn. (4.2) can be written

equivalently as the following linear regression model:

yk = ϕoT
k θ + vk, (4.3)

where
ϕo

k = [−xk−1 − xk−2 · · · − xk−na uk uk−1 · · · uk−nb
]T ,

θ = [a1 a2 · · · ana b0 b1 · · · bnb
]T .

Vector ϕo
k represents system’s excitation and response information necessary for parameter

estimation, while vector θ contains model parameters to be estimated.

For a system with the OE model placed in a networked environment subject to randomly

missing outputs, our objectives are:

57



P1. Design an output estimator to online estimate the missing output measurements.

P2. Develop a recursive Kalman filter based identification algorithm to estimate unknown

model parameters.

P3. Propose an adaptive tracking controller to make the system output track a given

desired signal.

P4. Analyze the convergence properties of the proposed algorithms.

4.3 Derivation of the Algorithm

There are two main challenges of the adaptive control design for a networked system

as depicted in Fig. 4.1: (1) randomly missing output measurements; (2) unknown system

model parameters. Therefore, in this section, we first propose algorithms for missing output

estimation and unknown model parameter estimation, and then design the adaptive control

scheme.

4.3.1 Parameter Estimation and Missing Output Estimation

Consider the model in (4.3). It is shown by [32] and [4] that the corresponding Kalman

filter can be conveniently used for parameter estimation. In combination with an auxiliary

model, the Kalman filter based parameter estimation algorithm for an OE model is given

by

θ̂k = θ̂k−1 + Kk
a (yk − ϕaT

k θ̂k−1), (4.4)

Kk
a =

P a
k−1ϕ

a
k

rv + ϕaT
k P a

k−1ϕ
a
k

, (4.5)

P a
k = P a

k−1 −
P a

k−1ϕ
a
kϕ

aT
k P a

k−1

rv + ϕaT
k P a

k−1ϕ
o
k

, (4.6)

xa
k = ϕaT

k θ̂k, (4.7)

ϕa
k =

[−xa
k−1 − xa

k−2 · · · − xa
k−na

uk uk−1 · · · uk−nb

]T
, (4.8)

where θ̂k represents the estimated parameter vector at instant k.

It is worth to note that the above algorithm as shown in (4.4)-(4.8) cannot be directly

applied to the parameter estimation of systems with randomly missing outputs in a network

environment, as yk in (4.4) may not be available. This motivates us to develop a new

58



algorithm that can simultaneously online estimate the unavailable missing output and

estimate system parameters under the network environment. The proposed algorithm

consists of two steps.

Step 1: Output estimation

Albertos, et. al. propose a simple algorithm that uses the input-output model, replacing

the unknown past values by estimates when necessary [1]. Inspired by this work, we design

the following output estimator:

zk = γkyk + (1− γk)ŷk, (4.9)

with

ŷk = ϕT
k θ̂k−1.

In (4.9), γk is a Bernoulli random variable used to characterize the availability of yk at

time instant k at the controller node, as defined in (4.1). With the time-stamp technique,

the controller node can detect the availability of the output measurements, and thus, the

values of γks (either 1 or 0) are known. The knowledge of their corresponding probability

γs is not used in the designed estimator. The structure of the designed output estimator

is intuitive and simple yet very effective, which will be seen soon from the simulation

examples.

Step 2: Model parameter estimation

Replacing yk in the algorithm (4.4)-(4.8) by zk, defining a new ϕk, respectively, and

considering the random variable γk, we readily obtain the following algorithm:

θ̂k = θ̂k−1 + Kk(zk − ϕT
k θ̂k−1), (4.10)

Kk =
Pk−1ϕk

rv + ϕT
k Pk−1ϕk

, (4.11)

Pk = Pk−1 − γk
Pk−1ϕkϕ

T
k Pk−1

rv + ϕT
k Pk−1ϕk

, (4.12)

xb,k = ϕT
k θ̂k, (4.13)

ϕk = [−xb,k−1 − xb,k−2 · · · − xb,k−na uk uk−1 · · · uk−nb
]T . (4.14)

Remark 4.1. Consider two extreme cases. If the availability sequence {γ1, · · · , γk} con-

stantly assumes 1, then no output measurement is lost, and the algorithm above will reduce

to the algorithm (4.4)-(4.6). On the other hand, if the availability sequence {γk} constantly

takes 0, then all output measurements are lost, and the parameter estimates just preserve

the initial values.
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Figure 4.2: Adaptive control diagram.

4.3.2 Adaptive Control Design

Consider the tracking problem. Let yr,k be a desired output signal, and define the output

tracking error

ζk := yk − yr,k.

If the control law uk is appropriately designed such that yr,k = ϕoT
k θ, then the tracking

error ζk approaches zero finally. Replacing θ by θ̂k−1 and ϕo
k by ϕk yields

yr,k = ϕT
k θ̂k−1 = −

na∑

i=1

θ̂i,k−1zk−i +
nb∑

i=0

θ̂na+i+1,k−1uk−i

= −â1,k−1zk−1 − · · · − âna,k−1zk−na + b̂0,k−1uk + · · ·+ b̂nb,k−1uk−nb
.

Therefore, the control law can be designed as

uk =
1

b̂0,k−1

[
yr,k +

na∑

i=1

âi,k−1zk−i −
nb∑

i=1

b̂i,k−1uk−i

]
. (4.15)

The proposed adaptive control scheme consists of the missing output estimator [Equa-

tion (4.9)], model parameter estimator [Equations (4.10-4.14)], and the adaptive control

law [Equation (4.15)]. The overall control diagram is shown in Fig. 4.2.

4.4 Convergence Analysis

This section focuses on the analysis of some convergence properties. Some preliminaries are

first summarized to facilitate the following convergence analysis of parameter estimation
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in (4.10)-(4.12) and of output estimation in (4.9). Inspired by [8], [19] and [17], the

convergence analysis is carried out under the stochastic framework.

4.4.1 Preliminaries

To facilitate the convergence analysis, directly applying the matrix inversion formula [35]

(A + BCD)−1 = A−1 −A−1B(C−1 + DA−1B)−1DA−1,

the proposed parameter estimation algorithm in Section 4.3.1 [(4.10)-(4.12] can be equiv-

alently rewritten as:

θ̂k = θ̂k−1 + r−1
v Pkϕk(zk − ϕT

k θ̂k−1), (4.16)

P−1
k = P−1

k−1 + r−1
v γkϕkϕ

T
k . (4.17)

Suppose that Pk is initialized by p0I, where p0 is a positive real value large enough,

and define rk = tr
(
P−1

k

)
. The relation between rk and |P−1

k | can be established in the

following lemma.

Lemma 4.1. The following relation holds:

lnE|P−1
k | = O (lnErk) . (4.18)

Proof. The proof is the same with that of Lemma 4.1 in Chapter 3.

The next lemma shows the convergence of two infinite series that will be useful later.

Lemma 4.2. The following inequalities hold:

t∑

i=1

µir
−1
v E

(
ϕT

i Piϕi

) ≤ ln E|P−1
k |+ n0 ln p0 a.s. (4.19)

∞∑

i=1

µir
−1
v

E
(
ϕT

i Piϕi

)
(
ln E|P−1

i |)c < ∞ a.s., (4.20)

where c > 1.

Proof: The proof can be done along the similar way as Lemma 2 in [18] and is omitted

here. ¤
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4.4.2 Convergence Analysis

To carry out the convergence analysis of the proposed algorithms, it is essential to appro-

priately construct a martingale process satisfying the conditions of Theorem 3.1. Main

results on the convergence properties of the proposed algorithm are summarized in the

following Theorem.

Theorem 4.1. For the system considered in (4.3), assume that

(A1) {vk,Fk} is a martingale difference sequence satisfying

E (vk|Fk−1) = 0, a.s. (4.21)

E
(
v2
k|Fk−1

)
= rv < ∞, a.s. (4.22)

(A2)
1

Az
− 1

2
is strictly positive real,

(A3) Bz is stable, i.e., zeros of Bz are inside the closed unit disk.

Suppose the desired output signal is bounded: |yr,k| < ∞. Applying the missing output

estimator [Equation (4.9)], model parameter estimator [Equations (4.10-4.14)], and the

adaptive control law [Equation (4.15)], then the output tracking error has the property of

minimum variance, i.e.,

(1) lim
k→∞

1
k

k∑

i=1

(yr,i − yi + vi)2 = 0, a.s.;

(2) lim
k→∞

1
k

k∑

i=1

µiE
{
(zi − yr,i)2|Fi−1

}
= rv < ∞, a.s.

Proof: As pointed out in [8] and [31], from (A2) it follows that

1
k

k∑

i=1

u2
i ≤ O(1) + O

(
c1

k

k∑

i=1

y2
i

)
, a.s. (4.23)

Here, c1 is a positive constant. Define the following vectors:

ek = zk − ϕTθ̂k−1,

η̄k = yk − xb,k,

ηk = γkη̄k,

τ̄k = yr,k − yk + vk,

τk = γkτ̄k.
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From (4.2), (4.3), (4.16) and (4.16), it follows that

ηk = γk(xk − xb,k + vk), (4.24)

ηk = (1 + r−1
v ϕT

k Pk−1ϕk)−1ek, (4.25)

ek = −τk + γkvk. (4.26)

Also define the parameter estimation error vector and a Lyapunov-like function as

θ̃k = θ̂k − θ,

Vk = θ̃T
k P−1

k θ̃k.

From (4.9), (4.16) and (4.25), we obtain

θ̃k = θ̃k−1 + r−1
v Pkϕkek

= θ̃k−1 + r−1
v Pk−1ϕkηk. (4.27)

With (4.17) and (4.27), Vk can be further evaluated as

Vk = Vk−1 + r−1
v γk(ϕT

k θ̃k)2 + 2r−1
v ϕT

k θ̃kηk − r−2
v ϕT

k Pkϕk(1− r−1
v ϕT

k Pkϕk)e2
k.

Let us define

ũk = −ϕT
k θ̃k,

ỹk =
1
2
ϕT

k θ̃k + (η̄k − vk).

Then we have

Vk = Vk−1 − 2r−1
v γkũkỹk + 2r−1

v γkϕ
T
k θ̃kvk − r−2

v ϕT
k Pkϕk(1− r−1

v ϕT
k Pkϕk)e2

k

= Vk−1 − 2r−1
v γkũkỹk + 2r−1

v γkϕ
T
k θ̃k−1vk + 2r−2

v ϕT
k Pkϕk

[
(ek − γkvk)Tvk + γkv

2
k

]

−r−2
v ϕT

k Pkϕk(1− r−1
v ϕT

k Pkϕk)τ2
k + 2r−2

v ϕT
k Pkϕk(1− r−1

v ϕT
k Pkϕk)τkvk

−r−2
v ϕT

k Pkϕk(1− r−1
v ϕT

k Pkϕk)v2
k

≤ Vk−1 − 2r−1
v γkũkỹk + 2r−1

v γkϕ
T
k θ̃k−1vk + 2r−2

v ϕT
k Pkϕk

[
(ek − γkvk)Tvk + γkv

2
k

]

−r−2
v ϕT

k Pkϕk(1− r−1
v ϕT

k Pkϕk)τ2
k + 2r−2

v ϕT
k Pkϕk(1− r−1

v ϕT
k Pkϕk)τkvk. (4.28)

Note that ϕT
k θ̃k−1, ek−γkvk, ϕT

k Pkϕk and τk are uncorrelated with vk and Fk−1-measurable.

Thus taking the conditional expectation of both sides of (4.28) with respect to Fk−1 gives

E (Vk|Fk−1) ≤ Vk−1 − 2r−1
v γE (ũkỹk) + 2r−1

v γE
(
ϕT

k Pkϕk

)

−r−2
v γE

[
ϕT

k Pkϕk(1− r−1
v ϕT

k Pkϕk)
]
τ̄2
k . (4.29)
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Consider that

Az(η̄k − vk) = Az(yk − xb,k)

= Bzuk −Azxb,k

= −ϕT
k θ̃k = ũk.

Therefore, we have

ỹk =
(

1
Az

− 1
2

)
ũk.

In (A2), it is assumed that
(

1
Az
− 1

2

)
is positive real, which indicates

Sk := 2r−1
v

k∑

i=1

γũkỹk ≥ 0, a.s. (4.30)

Adding Sk to both sides of (4.29) yields

E (Vk + Sk|Fk−1) ≤ Vk−1 + Sk−1 + 2r−1
v γE

(
ϕT

k Pkϕk

)

−r−2
v γE

[
ϕT

k Pkϕk(1− r−1
v ϕT

k Pkϕk)
]
τ̄2
k . (4.31)

Define a new sequence:

Wk =
Vk + Sk(

ln E|P−1
k |)c , c > 1. (4.32)

Since lnE|P−1
k | is nondecreasing and ϕT

k Pkϕk = o(1), there exists a k0 such that if k ≥ k0

we have

E (Wk|Fk−1) ≤ Vk−1 + Sk−1(
ln E|P−1

k |)c +
2r−1

v γE
(
ϕT

k Pkϕk

)
(
ln E|P−1

k |)c

−r−2
v γE

[
ϕT

k Pkϕk(1− r−1
v ϕT

k Pkϕk)
]
τ̄2
k(

ln E|P−1
k |)c

≤ Wk−1 +
2r−1

v γE
(
ϕT

k Pkϕk

)
(
ln E|P−1

k |)c

−r−2
v γE

(
1− r−1

v ϕT
k Pkϕk

)
τ̄2
k(

ln E|P−1
k |)c . (4.33)

From (4.12) we have

E
(
1− r−1

v ϕT
k Pkϕk

)
> 0.
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Also note that by Lemma 4.2 the summation of the third term in (4.33) from 0 to ∞ is

finite. Therefore, Theorem 3.1 is applicable, and it gives
∞∑

k=1

r−2
v γE

(
1− r−1

v ϕT
k Pkϕk

)
τ̄2
k(

lnE|P−1
k |)c < ∞ a.s. (4.34)

Further, Lemma 4.1 indicates
∞∑

k=1

r−2
v γE

(
1− r−1

v ϕT
k Pkϕk

)
τ̄2
k

(lnErk)
c < ∞ a.s.. (4.35)

As
[
1− r−1

v E
(
ϕT

k Pkϕk

)]
is positive and nondecreasing, it holds that 1 = O

[
1− r−1

v E
(
ϕT

k Pkϕk

)]
.

Hence, ∞∑

i=1

τ̄2
i

(lnEri)
c < ∞ a.s. (4.36)

Since limk→∞ ln Erk = ∞, then from the Kronecker lemma [31] it follows that

lim
k→∞

∆k = 0, a.s.,

where

∆k , 1
(lnErk)c

k∑

i=1

τ̄2
i .

With

rk =
n

p0
+

k∑

i=1

r−1
v γiϕ

T
i ϕi

and (4.23), we obtain

1
k

k∑

i=1

τ̄2
i =

∆k

k
O [(lnErk)c]

=
∆k

k
O [E(rk)]

=
∆k

k
O

(
n

p0
+ na

k∑

i=1

µiE2(zi) + nb

k∑

i=1

u2
i

)

= ∆kO

(
1
k

k∑

i=1

y2
i

)
(4.37)

By (4.22) we have
1
k

k∑

i

y2
i = O(1) + O

(
1
k

k∑

i

η2
i

)
. (4.38)

Substituting (4.37) into (4.38) gives

1
k

k∑

i

y2
i = O(1), a.s.,
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which implies together with (4.37) that

lim
k→∞

1
k

k∑

i=1

τ̄2
i = 0, a.s.,

or equivalently

lim
k→∞

1
k

k∑

i=1

(yr,i − yi + vi)2 = 0, a.s. (4.39)

Since

E
{
(yr,k − yk + vk)2|Fk−1

}
= E[(yr,k − yk)2 + 2yr,kvk − 2ykvk + v2

k|Fk−1]

= E[(yr,k − yk)2|Fk−1] + 0− 2rv + rv

= E[(yr,k − yk)2|Fk−1]− rv, a.s.,

and γkzk = γkyk, we have

lim
k→∞

1
k

k∑

i=1

µiE
{
(zi − yr,i)2|Fi−1

}
= lim

k→∞
1
k

k∑

i=1

µiE
{
(yi − yr,i)2|Fi−1

}
= rv, a.s.

This completes the proof. ¤

4.5 Numerical Examples

In this section, we give three examples to illustrate the adaptive control design scheme

proposed in the previous sections.

The OE model used in the simulation is chosen as

yk =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
uk + vk,

which is assumed to be placed in a network environment (Fig. 4.1) with randomly missing

output measurements and unknown model parameters. {vk} is a white noise sequence with

zero mean and variance rv = 0.052. The parameter vector θ = [a1 a2 b0 b1 b2]T is to be

estimated. Here, true values of θ are

θ = [−0.3 0.6 0.5 0.2 0.34]T.

For simulation purposes, we assume that: (1) θ is unknown and initialized by ones; (2)

the output measurement {yk} is subject to randomly missing when transmitted to the

controller node; (3) the availability of the output measurements (yk) at the controller node
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is characterized by the probability γ; (4) The desired output signal to be tracked is a square

wave alternating between −1 and 1 with a period of 1000. Mathematically, it is given by

yr,(500i+j) = (−1)i+1, i = 0, 1, 2, · · · , j = 1, 2, ...500.

In the following simulation studies, we carry out experiments for three different sce-

narios regarding the availability of the output measurements at the controller node and

the parameter variation, and examine the control performance, respectively. According to

the proposed adaptive control scheme shown in Fig. 4.2, we apply the algorithms of the

missing output estimator, model parameter estimator, and the adaptive control law to the

networked control system.

Example 1: γ = 0.85. In the first example, 85% of all the measurements are available

at the controller node after network transmission from the sensor to the controller. The

output response is shown in Fig. 4.3, from which it is observed that the output tracking

performance is satisfactory. In order to take a closer observation on the model parameter

estimation and output estimation, we define the relative parameter estimation error as

δpar% =
‖θ̂k − θ‖
‖θ‖ × 100%.

It is shown in Fig. 4.4 (solid blue curve) that δpar% is becoming smaller with k increasing.

Comparison between the estimated outputs and true outputs during the time range 501 ≤
t ≤ 550 is illustrated in Fig. 4.5: The dashed lines are corresponding to the time instants

when data missing occurs, and the small circles on the top of the dashed lines represent the

estimated outputs at these time instants. From Fig. 4.5 it can be found that the missing

output estimation also exhibits good performance.

Example 2: γ = 0.65. In the second example, a worse case subject to more severe

randomly missing outputs is examined: Only 65% of all the measurements are available at

the controller node. The output response is shown in Fig. 4.6. Even though the available

output measurements are more scarce than those in Example 1, it is still observed that the

output is tracking the desired signal with satisfactory performance. The relative parameter

estimation error, δpar%, is shown in Fig. 4.4 (dashed red curve). Clearly, it is decreasing

when k is increasing. The estimated outputs and the true outputs are illustrated in Fig. 4.7,

from which we can see good output estimation performance.

For the comparison purpose, the relative parameter estimation errors of these two

examples are shown in Figure 4.4. We can see that the parameter estimation performance
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Figure 4.3: Example 1: Output response when γ = 0.85.

when γ = 0.85 is better than that when γ = 0.65. It is no doubt that the estimation

performance largely depends on data completeness that is characterized by γ.

Example 3: Output tracking performance subject to parameter variation. In

practice, the model parameters may vary during the course of operation due to the change

of load, external disturbance, noise, and so on. Hence, it is also paramount to explore

the robustness of the designed controller against the influence of parameter variation. In

this example, we assume that at k = 2500, model parameters are all increased by 50%.

The output response is shown in Fig. 4.8. It can be seen that: At k = 2500, the output

response has a big overshoot because of the parameter variation; however, the adaptive

control scheme quickly forces the system output to track the desired signal again.

Observing Fig.s 4.3, 4.6, and 4.8 in three examples, we notice that the tracking error

and oscillation still exist. This is mainly due to (1) the missing output measurements, and,

(2) the relatively high noise-signal ratio (around 25%). On the other hand, it is desirable

to develop new control schemes to further improve the control performance for networked

systems subject to limited feedback information, which is worth to do extensive research.

4.6 Summary

In this chapter, we have studied the problem of adaptive control for systems with SISO

OE models placed in a network environment subject to unknown model parameters and

68



0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10

15

20

25

30

k

µk = 0.65

µk=0.85

Figure 4.4: Comparison of relative parameter estimation errors for Example 1 and
Example 2: Blue solid line for Example 1; red dashed line for Example 2.

randomly missing output measurements. The missing output estimator, Kalman filter

based model parameter estimator, and adaptive controller have been designed to achieve

output tracking. Convergence performance of the proposed algorithms is analyzed under

the stochastic framework. Simulation examples verify the proposed methods. It is worth

mentioning that the proposed scheme is developed for SISO systems in this work, and

the extension to multi-input-multi-output (MIMO) systems is a subject worth further

researching.
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Figure 4.5: Example 1: Comparison between estimated and true outputs when
γ = 0.85 (The dashed line represents output missing).
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Figure 4.6: Example 2: Output response.
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Figure 4.7: Example 2: Comparison between estimated and true outputs when
γ = 0.65 (The dashed line represents output missing).
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Figure 4.8: Example 3: Output response subject to parameter variation: At time
k = 2500, all parameters are increased by 50%.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis explores three problems in the field of NCSs – state estimation, system identi-

fication and adaptive control. In the setting of NCSs, traditional methods addressing such

problems are not directly applicable. The reason is that NCSs are inevitably subject to

network-induced time delays and packet losses, which contribute to reduced information

availability. Since the network factors are unavoidable, it is natural to incorporate them

into the design.

In Chapter 2, we discussed the problem of state estimation in a network environment.

In fact, the main challenge comes from unknown input missing, so we approached the

problem using the strategy of simultaneous input and state estimation. We first started

from optimality analysis, aiming at minimizing the square estimation error and error vari-

ance. However, it was noted that the algorithm was not numerically stable, so the design

procedures were slightly modified. The obtained sub-optimal algorithm was then ana-

lyzed in detail to derive convergence properties. This was done by studying the solution

convergence of a Riccati-like equation. We found that, if certain conditions are satisfied,

the algorithm is convergent and the estimation error is upperbounded. This conclusion is

worth noting, because convergence analysis, due to its difficulties, has been seldom studied

in previous similar research.

In Chapter 3, we studied system identification for networked systems. The network was

assumed to be based on TCP protocol, which has a loss-retransmission mechanism. We

modeled the random input and output missing as Bernoulli processes. The input missing

was remedied by the TCP protocol, and the output missing was handled by a designed

output estimator. Furthermore, we modified the classical Kalman filter accordingly to

perform recursive parameter identification. The convergence properties were analyzed
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in a stochastic framework. It was found that the algorithm proposed has guaranteed

convergence under some assumptions.

In Chapter 4, we focused on the problem of adaptive control for networked systems.

Since NCSs run under randomly changing network conditions, adaptive control is a de-

sirable choice for NCSs. It was supposed that the controller and the plant are collocated

for ease of analysis. We studied Kalman filter based recursive plant parameter identifi-

cation with missing output measurements in the first place. The identification algorithm

proposed looked similar to that in Chapter 3 but was different for a different NCS setup

was considered. Next, we developed the model reference adaptive control law. Finally, we

analyzed convergence properties of the control law under the stochastic framework as well.

5.2 Future Work

Our research has thus far explored several significant problems and achieved meaningful

results. The exploration is still at its initial stage whereas NCS research is a vast world

with many areas worth further studying. It is believed that the challenges addressed in

this thesis need to be examined in future research.

We observe that Chapter 2 considered only unknown input missing. In fact, output

measurements are also subject to missing. Thus a problem closer to realistic setting is

simultaneous input and state estimation with missing output measurements. However,

this problem is very complex and our preliminary studies show that the unbiasedness of

input estimation cannot be achieved when output missing occurs. Further investigation is

required to tackle this problem.

Chapter 3 discussed system identification in a TCP-based network environment. Yet

how can parameter identification be carried out under other protocols such as UDP? The

UDP protocol employs a loss-no-retransmission mechanism, so identification becomes more

challenging. Research is undergoing —- we note that minimum component analysis (MCA)

can be used promisingly to approach this problem. Hopefully an algorithm will be devel-

oped in near future.

In Chapter 4, the plant and controller were assumed to be collocated but linked by

a network and an adaptive control law was developed. Yet how about if the plant and

controller are distributed? And how to develop adaptive control laws under different pro-
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tocols? These questions still necessitate further research.
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