
Bimorphism Machine Translation

Von der Fakultät für Mathematik und Informatik
der Universität Leipzig

angenommene

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

DOCTOR PHILOSOPHIAE
(Dr. phil.)

im Fachgebiet

Informatik

Vorgelegt

von Diplom-Sprachwissenschaftler Daniel Quernheim

geboren am 23. Februar 1985 in Soest

Die Annahme der Dissertation wurde empfohlen von

1. Professor Dr. Alexander Koller (Saarbrücken)
2. Professor Dr. Andreas Maletti (Leipzig)

Die Verleihung des akademischen Grades erfolgt mit Bestehen
der Verteidigung am 10. April 2017 mit dem Gesamtprädikat

magna cum laude

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226121867?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Contents

List of Figures v

List of Tables vii

List of Equations ix

1 Introduction 1

2 Preliminaries 11
2.1 Set theory . 11
2.2 Relations and mappings . 15
2.3 Probability theory . 16

3 Background 19
3.1 Strings, trees, languages . 19

3.1.1 Weighted languages and relations 23
3.1.2 Tree automata . 24

3.2 Linguistic techniques . 26
3.2.1 Morphology and morphosyntax 28
3.2.2 Syntactic parsing . 29

3.3 Translation as decoding . 31
3.3.1 Noisy channel model . 32
3.3.2 Log-linear models . 35

4 Theory 37
4.1 Bimorphism machine translation 37

4.1.1 From inference rules to bimorphisms 38
4.1.2 A generative story . 40

4.2 Synchronous grammar formalisms 44
4.2.1 Empirical adequacy . 47
4.2.2 Theoretical properties . 50
4.2.3 Related work . 53

iv

5 Implementation 55
5.1 Rule extraction . 55

5.1.1 From parallel corpus to bimorphism 60
5.1.2 Relative frequency estimation 67

5.2 Decoding . 69
5.2.1 Input and translation models 71
5.2.2 k-best derivations . 76

5.3 Language model scoring . 78
5.3.1 Syntactic language models 79
5.3.2 n-gram language models . 79
5.3.3 Integration by product construction 81
5.3.4 Exact rescoring . 81

5.4 Tuning, evaluation, model optimization 82
5.4.1 Evaluation metrics . 82
5.4.2 Minimum Error Rate Training 84
5.4.3 EM training . 85

6 Experiments 89
6.1 Common infrastructure . 90

6.1.1 Source data and preprocessing 90
6.1.2 Tokenization and parsing . 91
6.1.3 Word alignment and rule extraction 92
6.1.4 Language models . 92
6.1.5 Tuning . 93
6.1.6 Coverage . 93

6.2 Experiment A: Reasoning about models 93
6.3 Experiment B: Exactness and search errors 96

6.3.1 Search errors and model errors 96
6.3.2 Experimental setup . 97
6.3.3 Results and discussion . 99

6.4 Experiment C: Large scale decoding 100

References 103

List of Figures

1. Word alignment between e and g 2

2. Word alignment between e and g′ 4

3. Constituent parse trees for e and g with word alignment 6

4. A possible derivation for e and g 7

5. A possible derivation tree for e and g 7

6. Word alignment lifted to trees 8

7. Translational correspondence rules on trees 8

8. Graphical representation of a tree with positions annotated 22

9. Graphical representation of a tree with the root at bottom, growing
upwards 22

10. Parse tree with rich morphological annotations 30

11. The Vauquois triangle 32

12. Noisy channel model 34

13. Decoder bimorphism 41

14. Bimorphism tree and string translation 45

15. Example of a local rotation 48

16. Bilingual pair of parse trees with word alignment exhibiting a non-
contiguous alignment (red, dashdotted lines) 51

17. Bilingual pair of parse trees with word alignment (f, e, a) 57

18. Non-minimal rule 64

19. MBOT rule representation 65

20. Minimal, purely lexical rules 65

vi

21. Minimal, purely structural rules 66

22. Minimal, hybrid rule 67

23. Bimorphism decoding pipeline 70

24. Product construction 73

25. Run mapping 73

26. Transformation of a tree into a string 76

27. Enumeration of a k-best list 78

28. Travatar translation rule without lexical material 98

29. Travatar translation rule with lexical material 98

List of Tables

1. Notation used in this dissertation 12

2. Symbols used in this dissertation 13

3. Mappings and relations defined in this dissertation 14

4. Bimorphism decomposition of selected synchronous formalisms 47

5. Linguistic and theoretical properties of selected synchronous formalisms 53

6. Contractions and their long forms 92

7. Findings of Experiment A. The columns .stsg and .mbot indicate cov-
erage of the STSG and ln-XMBOT based systems, respectively. The row
Travatar indicates performance of the system trained in Section 6.3
(with default settings) for comparison. Starred values are significantly
better according to bootstrap resampling than values in rows above
them (p < 0.03). 95

8. Findings of Experiment B. Translation performance of Travatar and
runtime are given depending on pop limit (default: 2 000). 99

9. Comparison of WMT-14 and WMT-15 submissions 101

viii

List of Equations

(1) Translational correspondence, concatenation 3

(2) Translational correspondence, reordering 3

(3) Translational correspondence, discontiguity 4

(4) Translational correspondence, concatenation (with phrase labels) 5

(5) Translational correspondence, discontiguity (with phrase labels) 5

(6) Distribution of a random variable 16

(7) Joint probability 16

(8) Conditional probability 17

(9) Chain rule 17

(10) Bayes’ rule 17

(11) Computation of a parse forest 30

(12) Noisy channel model 33

(13) IBM Model 1 34

(14) Maximum entropy translation model 35

(15) Maximum entropy model after log transformation 36

(16) Maximum entropy model, feature functions 36

(17) Homomorphism 38

(18) Bimorphism 38

(19) Tree homomorphism 39

(20) Probabilistic model of bimorphism derivation 42

(21) Decoder bimorphism 43

x

(22) Decoder bimorphism, language cascade 43

(23) Best synchronous derivation 43

(24) Best output sentence 44

(25) Bimorphism decomposition of BOT 45

(26) Bimorphism decomposition of ln-BOT 45

(27) Bimorphism decomposition of ln-XTOP 45

(28) Tree m-morphism 46

(29) Bimorphism decomposition of ln-XMBOT 46

(30) Bimorphism decomposition of SFSG 46

(31) Span of a position 56

(32) Span of a position set 56

(33) Closure of a position set 56

(34) Consistently aligned position sets 59

(35) Tree automaton from extracted rules 63

(36) Relative-frequency estimation 68

(37) Lexical weighting 68

(38) Direct and inverse lexical weighting 69

(39) Viterbi derivation 69

(40) Translation model 71

(41) Derivation trees for given input 71

(42) Viterbi derivation, decomposed 71

(43) Input restriction 72

(44) Combined input and translation models 72

(45) Lazy feature scoring 75

(46) Derivations of a state 77

(47) Inside weight 79

(48) Probability of a sentence 80

(49) Probability of a sentence with end marker 80

(50) Markov assumption 80

xi

(51) Probability of a sentence, Markov approximated 80

(52) n-gram count collection 80

(53) Loss function optimization 82

(54) Multiset of n-grams 83

(55) Clipped precision 83

(56) Bleu evaluation metric 83

(57) Outside weight 85

(58) Outside weight normal form 86

(59) Importance of a production 86

(60) Corpus likelihood 86

(61) Weighted count 86

(62) Normalization 86

(63) Expectation-Maximization 87

(64) Probabilistic model of bimorphism derivation, repeated 95

(65) Probabilistic model of bimorphism derivation, maximum entropy
version 95

xii

Chapter 1

Introduction

The field of statistical machine translation has made tremendous progress due to
the rise of statistical methods, making it possible to obtain a translation system
automatically from a bilingual collection of text. Some approaches do not even
need any kind of linguistic annotation, and can infer translation rules from raw,
unannotated data. However, most state-of-the art systems do linguistic struc-
ture little justice, and moreover many approaches that have been put forward
use ad-hoc formalisms and algorithms. This inevitably leads to duplication of
effort, and a separation between theoretical researchers and practitioners.

In order to remedy the lack of motivation and rigor, the contributions of this
dissertation are threefold:

1. After laying out the historical background and context, as well as the
mathematical and linguistic foundations, a rigorous algebraic model of
machine translation is put forward. We use regular tree grammars and
bimorphisms as the backbone, introducing a modular architecture that
allows different input and output formalisms.

2. The challenges of implementing this bimorphism-based model in a machine
translation toolkit are then described, explaining in detail the algorithms
used for the core components.

3. Finally, experiments where the toolkit is applied on real-world data and
used for diagnostic purposes are described. We discuss how we use exact
decoding to reason about search errors and model errors in a popular
machine translation toolkit, and we compare output formalisms of different
generative capacity.

Let us motivate these three aspects using an example. Consider the English
sentence e:1

1Adapted from “A Conservative Europe” by Michael Howard (https://www.project-
syndicate.org/commentary/a-conservative-europe) with slight changes. The original
spelling is: “We’ve heard that empty promise before”. The German translation is: “Dieses
leere Versprechen haben wir schon einmal gehört.”

https://www.project-syndicate.org/commentary/a-conservative-europe
https://www.project-syndicate.org/commentary/a-conservative-europe

2 Chapter 1. Introduction

We have heard that empty promise before

Dieses leere Versprechen haben wir schon einmal gehört

Figure 1. Word alignment between e and g

(e) We have heard that empty promise before.

How does a machine translation algorithm obtain a German translation? In this
case, a professional human translator gave the rendering g, which is a perfectly
acceptable translation:

(g) Dieses leere Versprechen haben wir schon einmal gehört.

What if g was the original sentence, and e is a translation? Or maybe both g
and e are translations of a corresponding sentence in yet another third language?
For the moment, let us assume that these questions are irrelevant. Let us instead
assume that e and g came into existence simultaneously. This poses a number
of interesting questions.

The close relationship between e and g motivates the question how a process
generating the pair (e,g) at the same time might look. Imagine an abstract
thought t whose “meaning” is e or g, depending on which language t is to be
rendered in. Then we may want to write e(t) = e and g(t) = g to indicate that
e is the English rendering of t, and g is the German rendering of t.

However, sentences are not monolithic. In fact, not only is e a translation of
g, but also some parts of e are translations of parts of g. For instance, “promise”
clearly corresponds to “Versprechen”. Similarly, the string of words “that empty
promise” is a translation of “Dieses leere Versprechen”, and, of course, the entire
English sentence is a translation of the German sentence. Let us write a =̂ b
to indicate that a is a translation of b. In general, these correspondences can
be many-to-many words. Figure 1 illustrates the correspondences on the word
level.

We thus arrive at a word alignment (we might want to treat it like a set
of axioms), which can be generalized to a phrase alignment. We use the term
phrase to denote any contiguous string of words. For instance, “Dieses leere
Versprechen” is a translation of “that empty promise” because “Dieses” is a
translation of “that”, “leere” is a translation of “empty”, and “Versprechen” is
a translation of “promise”. We observe that words and phrases can be concate-
nated to form bigger phrases; we also call the structure of e and g a hierarchical

3

phrase structure (Chomsky, 1957). The formation of a translational correspon-
dence can be written like

that =̂ dieses empty =̂ leere promise =̂ Versprechen
that empty promise =̂ Dieses leere Versprechen .

(Here, and in the following, we write the translational correspondence rules in
the style of inference rules, with premises over the line, and the conclusion under
the line.)

However, this inference rule is very specific. Assuming that there is a pro-
ductive pattern, we may want to replace the words by variables, such as:

x1 =̂ y1 x2 =̂ y2 x3 =̂ y3
x1x2x3 =̂ y1y2y3

. (1)

Unfortunately, phrase alignment is not always linear like this. For instance,
“We have” is a translation of “haben wir” because “We” is aligned to “wir”,
and “have” is aligned to “haben”. This gives rise to another formation:

x1 =̂ y1 x2 =̂ y2
x1x2 =̂ y2y1

, (2)

where x1 was instantiated with “We”, x2 with “have”, y1 with “wir” and y2
with “haben”. Note how the order differs between languages. This is called a
reordering.

Using these translational correspondences, we can try to explain the genera-
tion of two corresponding sentences at the same time by assembling them from
smaller units that have been generated simultaneously, and doing so recursively
down to the word level.

However, things are more complicated. Unfortunately, rules like the above
do not generalize well. For instance, even though “Versprechen” =̂ “promise”
and “Dieses” =̂ “that”, arguably “Versprechen Dieses” is not a good translation
of “that promise” because it is not a well-formed string of words in German.
Clearly, Equation (2) cannot be applied in every context. Instead, reordering
has to take into account the environment. Systematic reordering is found across
many language pairs. For instance, in French, an adjective usually follows the
noun it modifies, whereas in English and German it is the other way around.
In German, the main verb of a subordinate clause is usually put at the end,
which is not the case in English. Furthermore, there is optional reordering as
exhibited in e and g. A version of g that more closely resembles e on the word
level would be:

(g′) Wir haben dieses leere Versprechen schon einmal gehört.

Note how a word alignment between e and g′ exhibits significantly fewer cross-
ings (compare Figures 1 and 2). Both g′ and g are valid translations of e; it is
a matter of personal preference to choose one.

Also consider the English phrase “we have heard” in e. Unless we assume
that it should not be translatable as a unit (and there is currently no reason to

4 Chapter 1. Introduction

We have heard that empty promise before

Wir haben dieses leere Versprechen schon einmal gehört

Figure 2. Word alignment between e and g′

assume so), we have to match it up with a discontiguous German phrase “haben
wir . . . gehört” in g. English–German translation exhibits a large number of
discontiguities. Unfortunately, when we try to formulate a translational cor-
respondence that only involves contiguous phrases, we run into a problem. In
order to match “we have heard” with “haben wir . . . gehört”, we also have to
incorporate “schon einmal” on the German side, making it necessary to include
“before” on the English side. This in turn requires to add “that empty promise”
to form a contiguous phrase. However, then we end up with a cumbersome rule:

x1 =̂ y1 x2 =̂ y2 x3 =̂ y3 x4 =̂ y4
x1x2x3x4 =̂ y3y1y4y2

,

inferred from the instantiation of x1 with “we have”, x2 with “heard”, x3 with
“that empty promise” and x4 with “before”, as well as y1 with “haben wir”, y2
with “gehört”, y3 with “Dieses leere Versprechen” and y4 with “schon einmal”.

Therefore, it seems natural to allow translational correspondence rules to
use discontiguous phrases, like so:

x1 =̂ y1 x2 =̂ y2
x1x2 =̂ (y1, y2)

. (3)

This rule can be instantiated more easily, e.g., x1 with “we have”, x2 with
“heard”, y1 with “haben wir” and y2 with “gehört”. We can furthermore instan-
tiate x3 with “before” and y3 with “schon einmal” in the following translational
correspondence rule to obtain a non-contiguity on the English side:

x1x2 =̂ (y1, y2) x3 =̂ y3

(x1x2, x3) =̂ y1y3y2
.

This shows how non-contiguity in the premise can lead to non-contiguity or
contiguity in the conclusion.

Another problem is that nothing stops us from using rules with phrases
for which they are not suitable. For instance, it is perfectly fine for auxiliary
verb and participle to be split in German, but less so for adjective and noun.
One possibility to remedy this is to restrict reordering and discontiguity to

5

be triggered only by specific words. This is the route chosen by word-based
and phrase-based machine translation models. However, these models do not
usually have a notion of hierarchical phrases as mentioned previously. In word-
and phrase-based machine translation, a sentence is simply a sequence of words
(or phrases).

In order to overcome this limitation, it seems natural to condition the type of
applicable translational correspondence rules on the types of phrases involved.
The grouping of phrases into categories should be neither too coarse nor too fine-
grained, so that we are able to generalize well without overgenerating, i.e., gen-
erating many bad or ungrammatical translations. Linguistic theory provides a
way to categorize phrases by type, namely constituency parsing. Figure 3 shows
constituency parse trees for e and g that visualize the hierarchical structure of
the sentences, along with the word alignment that we established already.2

We can now formulate translational correspondences by taking the phrase
labels into account. For instance, we may condition the above-mentioned con-
catenation correspondence (Equation (1)) on the root labels of the subtrees
involved, thereby treating phrases that are assigned the same label as equiva-
lent:

x1[DT] =̂ y1[PDAT] x2[JJ] =̂ y2[ADJA] x3[NN] =̂ y3[NN]

x1x2x3[NP] =̂ y1y2y3[NP-OA]
, (4)

and we also observe that x1x2x3 is of type NP, and y1y2y3 is of type NP-OA.
Formally, we introduce an equivalence relation ≡ with equivalence classes de-
fined by the root label of the subtree. We can also formulate a rule that uses
tree sequences to explain the above-mentioned discontiguous correspondence
(Equation (3)) conditioned on the labels involved:

x1[VBN] =̂ y1[VVPP] x2[NP] =̂ y2[NP-OA]

x1x2[VP] =̂ (y2[NP-OA], y1[VVPP])
. (5)

We might be tempted to only consider translational correspondence between
constituents. However, as we have seen, this may be too strict a restriction.
Many collocations, such as “there is”, are not constituents in the linguistic
sense, but translatable units.

Let us for the moment assume the restriction that we can only treat con-
stituents as basic units in the input sentence, but (possibly non-contiguous)
sequences of contituents in the output sentence. With this restriction, we can
try to derive both e and g in a possible generative process, as seen in the de-
duction diagram in Figure 4. Another way to visualize this process is in the
shape of a tree, as in Figure 5. Upon closer inspection, we note how this tree
mimics the shape of the parse tree associated with e (cf. Figure 3). Every node
in this derivation tree corresponds to a node in the parse tree of e, while this
is not true for the parse tree of g. In fact, there is exactly one derivation step
for every node in the parse tree of e that does not have exactly one child. We

2These parse trees have been generated using Egret and BitPar. See Section 3.2.2 for
details.

6 Chapter 1. Introduction

S

VP

ADVP

RB

before

VP

NP

NN

promise

JJ

empty

DT

that

VBN

heard

VBD

have

NP

PRP

We

S-TOP

PP-OC

VVPP

gehört

ADVP

ADV

einmal

ADV

schon

NP-SB

PPER

wir

VAFIN

haben

NP-OA

NN

Versprechen

ADJA

leere

PDAT

Dieses

Figure 3. Constituent parse trees for e and g with word alignment

7

We =̂
wir

have =̂
haben

heard =̂
gehört

that =̂
Dieses

empty =̂
leere

promise =̂
Versprechen

that empty promise =̂
Dieses leere Versprechen

heard that empty promise =̂
Dieses leere Versprechen … gehört

before =̂
schon einmal

have heard that empty promise before =̂
Dieses leere Versprechen haben … schon einmal gehört

We have heard that empty promise before =̂
Dieses leere Versprechen haben wir schon einmal gehört

Figure 4. A possible derivation for e and g

We have heard that empty promise before
Dieses leere Versprechen haben wir schon einmal gehört

We
wir

have heard that empty promise before
Dieses leere Versprechen haben … schon einmal gehört

have
haben

heard that empty promise
Dieses leere Versprechen … gehört

before
schon einmal

heard
gehört

that empty promise
Dieses leere Versprechen

that
Dieses

empty
leere

promise
Versprechen

Figure 5. A possible derivation tree for e and g

8 Chapter 1. Introduction

NN

promise
=̂

NN

Versprechen

ADVP

RB

before

=̂

ADVP

ADV

einmal

ADV

schon

Figure 6. Word alignment lifted to trees

x1[DT] =̂ y1[PDAT] x2[JJ] =̂ y2[ADJA] x3[NN] =̂ y3[NN]

NP

x3x2x1

=̂
NP-OA

y3y2y1

x1[VBN] =̂ y1[VVPP] x2[NP] =̂ y2[NP-OA]

VP

x2x1

=̂ (y2, y1)

Figure 7. Translational correspondence rules on trees

do not rule out alternative derivations yet, but we assume that this derivation
is the canonical one for the underlying parse trees.

This again exemplifies output discontiguities, which can be modeled by the
multi bottom-up tree transducer formalism (Engelfriet et al., 2009) that will play
a major role later in this dissertation. Furthermore, we use the notion of deriva-
tion trees to motivate the choice of bimorphisms (Arnold and Dauchet, 1982) as
the backbone of our translation framework. Bimorphisms allow us to separate
the constraints on how derivation steps can be combined, and how derivation
steps are realized in the input and output language. The formation of trans-
lational correspondences using concatenation can be seen as the precursor of a
bimorphism that uses concatenation for the input and output realization. Af-
ter we introduced parse trees, we can now lift the word alignments to trees, as
shown in Figure 6. We can also lift correspondence formation rules to work
on trees and sequences of trees, as a precursor of a bimorphism operating with
trees. An example is shown in Figure 7. In fact, these rules can also be extracted
automatically from bilingual data.

The stateful behavior of a bimorphism determines how rules can be com-
posed. In our example, this was determined by categories of phrases, motivated
by linguistic syntax. Using appropriate generalizations, translation rules ex-
tracted from a large bilingual corpus can be used to translate sentences that
have never been encountered.

9

With the theory of bimorphism machine translation in mind, we can identify
three major questions that we will deal with in this dissertation:

• Given translations f and e (or a bilingual dataset of translations), what is a
good formalism F that is suited to explain the observations? In particular,
how expressive do the input and output realization mappings have to
be? We already addressed some of the aspects that are relevant in this
introduction, and we will need to find a balance between expressiveness
and computational complexity.

• Given translations f and e, for a given formalism F , how can we find
a set of translational correspondences D that can be formulated in F
to explain the observations? Depending on the formalism that has been
chosen, starting from word alignments, admissible rules are extracted from
training data. Furthermore, rules can be scored according to their relative
usefulness, so that alternative derivations can be ranked.

• Given a sentence f and a set of translational correspondences D in a given
formalism F , how can we find the best output sentence e? This is the
actual translation problem. The approach advocated in this dissertation
is to compute the set of derivation trees such that for every derivation
tree t, the source evaluation of the inference rules in t yields f; this can be
achieved by reversing the input mapping. Then the target evaluation of
every such derivation tree t is a possible translation candidate.

More specific questions that arise from this theory of translation are manifold:

1. How should the generative process be modeled? This includes questions
such as:

• Do we need discontiguities on the input side as well as on the output
side? Should discontiguities be restricted, or should an arbitrary
number of components be allowed in the discontiguous constituents?

• Do we need operations that are more complicated than concatenation
and possibly reordering for the realization of translational correspon-
dences, and which operations do we need on parse trees?

• How do we restrict the way in which translational correspondences
can be combined? How fine-grained should the linguistic annotation
on the constituent labels be?

• How do we model the generative process in a probabilistic way, to
account for the fact that there is usually a choice in translation, but
some translations are more likely than others?

2. Given an input sentence and a translation model, how do we obtain a
translation? This includes questions such as:

• How can we efficiently compute the set of derivations that explain
the input sentence, and what is the output of these derivations?

10 Chapter 1. Introduction

• How can we incorporate other knowledge sources into this process?
• How can we restrict the possible derivations to those licenced by a

parse tree or a set of parse trees for the input sentence, i.e., how can
we incorporate a parser into the pipeline?

3. How does this theory hold up on real data?

• Is it possible to build a translation model automatically from parallel
data?

• Can training data in the order of millions of sentences and the re-
sulting models be handled?

• Can large amounts of input be handled in a reasonable amount of
time, and are the results competitive?

• Does the implementation allow us to identify weaknesses or offer
support for other theories?

We will turn to each of these questions in due time. The structure of this
dissertation is as follows:

In Chapter 2, we will recall mathematical preliminaries, mainly some basic
algebra and basic probability theory. In Chapter 3, we will introduce string and
tree language theory and recall some basic linguistic theory, mainly context-
free parsing, as well as the basic foundations of statistical machine translation,
including a historical overview.

In Chapter 4, we will replace the “noisy channel model” and the linguis-
tically uninformed non-hierarchical translation models by a unified theory of
tree-based bimorphism translation in Section 4.1.2. Intuitively speaking, a bi-
morphism allows us to specify exactly how translational correspondence rules
can be combined, and how they are realized in the input and output language.

In Chapter 5, we show how to obtain and to use a translation model. First,
in Section 5.1, we show how to infer translation rules “from scratch”, i.e., from
a parallel corpus that has been parsed and equipped with word alignments (cf.
Figure 3). In Section 5.2, we will address the problem of efficiently translating
using a bimorphism representation of the translation model, which essentially
involves the computation of an inverse mapping (to obtain the possible deriva-
tion trees) and the integration of a language model (Section 5.3). We will go
into detail about crucial aspects of the algorithms that we implemented. Fur-
thermore, in Section 5.4 we will explain how to set good rule and parameter
weights, and how to optimize these by tuning on real data.

In Chapter 6, we will present three experiments that illustrate different use
cases of the theory of this dissertation. The first experiment will investigate
questions of engineering versus theory, including a comparison of output mod-
els of different power. The second experiment will investigate shortcomings of
common approaches due to pruning (i.e., limiting the search space to speed up
decoding at the cost of exactness). Finally, the third experiment will study the
feasibility of our approach to decoding on realistic amounts of data.

Chapter 2

Preliminaries

Contents
2.1 Set theory . 11
2.2 Relations and mappings 15
2.3 Probability theory . 16

This chapter is entirely self-contained. It explains basic concepts that are used
throughout the remainder of this dissertation. In order to ease the cognitive
load on the reader’s mind, more advanced concepts will only be introduced
when they are needed for the first time. In particular, strings, trees, languages
over strings and trees, as well as automata are the subject of Section 3.1. Tree
homomorphisms and bimorphisms will be introduced in Section 4.1.1.

An overview of frequently used symbols can be found in Table 2 for reference.
These symbols are usually augmented by indices. For instance, t1 will in all
likelihood stand for a tree. An overview of frequently used notation can be found
in Table 1, and common mappings and relations defined in this dissertation can
be found in Table 3.

2.1 Set theory
We will use the standard logical connectors ∧ ‘and’, ∨ ‘or’, =⇒ ‘implies’ and
⇐⇒ ‘if and only if’, as well as the quantifiers ∃ ‘there exists’ and ∀ ‘for all’.

A set S is any (finite or infinite) unordered collection of distinguishable
objects, called elements. We write s ∈ S to say that s is an element of S, and
s ̸∈ S to say that s is not an element of S. We can define a set by listing its
items like

Suits = {♣,♠,♡,♢}

or by characterizing the property that its elements satisfy (set comprehension):

BlackSuits = {s ∈ Suits | s is black} = {♣,♠}.

12 Chapter 2. Preliminaries

notation type of object
A,B, . . . , S, T, . . . set
a, b, . . . , s, t, . . . element

i, j, k, . . . natural number
R relation

A,B, . . . alphabet
a, b, . . . symbol

u, v, w, . . . string
Σ,Γ,∆, . . . ranked alphabet
σ, γ, δ, . . . ranked symbol

t, u tree
p, w position in a tree
L (tree) language
F weighted forest (tree series)

ϑ, ζ, ξ substitution
G,D automaton (or grammar)
Q set of states

p, q, . . . state
P set of transitions (or productions)
Ω elementary events
F events

X,Y, Z random variables
L set of all natural languages
℧ alphabet of all Unicode® symbols

E,F, . . . alphabet (including tags) of natural language
E(0), F (0) alphabet (words only) of natural language
E,F, . . . natural languages, also as formal languages

f, e source (input) and target (output) sentence
f, e source (input) and target (output) tree
λ feature weight vector
ϕ feature function

Table 1. Notation used in this dissertation

2.1 Set theory 13

symbol meaning
a ∧ b, a ∨ b a and b, a or b

a =⇒ b, a ⇐⇒ b a implies b, a if and only if b
∃a there exists a
∀a for all a

{a, b, c} set with elements a, b, c
a ∈ A a is an element of A
A ⊆ B A is a subset of B

A ∪B, A ∩B union of A and B, intersection of A and B
A−B difference of A and B

∅ empty set
|S|, 2S cardinality of S, powerset of S

N,R natural numbers, real numbers
[n] {1, . . . , n}

A×B Cartesian product of A and B
A∗ sequences (or strings) over A
(), ε empty sequence, empty string

v ⊑ w v is a prefix of w
v ≤ w v precedes w lexicographically
πi(a) i-th element of sequence a
aji subsequence (or substring) from symbol i to j
S≤ set S as an ordered sequence

R ;S relation composition of R and S
(xj | j ∈ J) J-indexed family
f : A→ B mapping from A to B

BA set of mappings from A into B
[a]∼ equivalence class of a in ∼
L1L2 concatenation of L1 and L2

(Σ, rk) ranked alphabet
TΣ(V) V -indexed trees over Σ
t(w) label of t at position w
t|w subtree of t at position w

t[u]w tree obtained by inserting u at position w in t
ϑ(t) substitution ϑ applied to t

X : Ω → A random variable over A
Pr(X = x) probability of random variable X assuming value x

⊥ end-of-string marker
x =̂ y x and y are translational correspondences
x ≡ y x and y are (linguistically) interchangeable

P ▷◁ P ′ P and P ′ are consistently aligned
(B,C)⌣ (B′, C ′) (B,C) and (B′, C ′) define a unit of translation

Table 2. Symbols used in this dissertation

14 Chapter 2. Preliminaries

name type explanation
supp : RA → 2A support of F : A→ R
index : S → N index of symbol in ordered set

rk : Σ → N rank of symbol in (Σ, rk)
posL : TΣ(V) → 2N

∗ positions of a tree with label in L
max pos : TΣ(V) → 2N

∗ frontier positions of a tree
yield : TΣ(V) →

(
Σ(0) ∪ V

)∗ yield of a tree
lower : ℧ → ℧ lowercaser

tokenizeL : ℧∗ →
(
L(0)

)
∗ tokenizer

gramsn : A∗ → 2A
n set of n-grams

#b : A∗ → N number of occurrences of a string in b
precN : E∗ × E∗ → R clipped precision

bp : E∗ × E∗ → R brevity penalty
bleuN : E∗ × E∗ → R Bleu-N score∧

U
: 2U → maxU span of position seta

U : maxU → 2U closure of frontier position set
arg max : RS → S element of S maximizing the function

αG : QG → R outside weight
βG : QG → R inside weight
γG : PG → R contribution of production

Table 3. Mappings and relations defined in this dissertation

Let S and T be sets. We say that S is a subset of T , written S ⊆ T , if s ∈ T for
all s ∈ S. Two sets are equal, written S = T , if and only if S ⊆ T and T ⊆ S.
We define union, intersection and difference:

S ∪ T = {s | s ∈ S or s ∈ T} (union),
S ∩ T = {s | s ∈ S and s ∈ T} (intersection),

and S − T = {s | s ∈ S and s ̸∈ T} (difference).

The empty set is denoted by ∅; a ̸∈ ∅ for any a. Sets S and T are disjoint if
S ∩ T = ∅. We write 2S for the powerset of S, defined by 2S = {S′ | S′ ⊆ S}.
Note that ∅ ∈ 2S and S ∈ 2S for every S. If S is finite, the cardinality |S| of S
is the number of elements in S; the cardinality of 2S is 2|S|.

The set of natural numbers, i.e. nonnegative integers {0, 1, 2, . . . }, is denoted
by N. We write N+ for N − {0}. For every n ∈ N+, we define [n] = {i ∈ N+ |
1 ≤ i ≤ n}. The set of real numbers is denoted by R. We write R+ for
{r ∈ R | 0 ≤ r}, and [a, b] for {r ∈ R | a ≤ r ≤ b}.

Let A1, . . . , An be sets. We define the generalized Cartesian product
n×
i=1

Ai = {(a1, . . . , an) | ∀i ∈ [n] : ai ∈ Ai}.

The members of×n

i=1
Ai are called sequences, and we define the length of a

2.2 Relations and mappings 15

sequence a ∈×n

i=1
Ai to be |a| = n. We furthermore define the special case

A0 = {()}, i.e., the set containing only the empty sequence (), and |()| = 0.
Instead of×n

i=1
Ai, we can also write A1 × · · · × An. For a given set A, we

write An for×n

i=1
A and A∗ =

∪
n∈NA

n. Note that () ∈ A∗ for every set A.
Let a be a sequence, and i, j ∈ N. We write ai for the i-th item of a, i.e., a =

(a1, . . . , an). Then aji is shorthand notation for the sub-sequence (ai′ , . . . , aj′)
where i′ = i if i ≥ 1 and i′ = 1 otherwise, and j′ = j if j ≤ n and j′ = n
otherwise.

2.2 Relations and mappings
Let A,B,C be sets. A relation R from A into B is a subset of A × B. We
write a R b for (a, b) ∈ R, and we call dom(R) = {a | a R b} the domain and
ran(R) = {b | a R b} the range of R. For every subset A′ ⊆ A, the applica-
tion R(A′) is defined to be the set {b | ∃a ∈ A′ : a R b}. For every sequence
s = (a1, . . . , ak) ∈ A∗, the applicationR(s) is defined as (R(a1), . . . , R(ak)). The
inverse R−1 of R is the relation from B into A given by R−1 = {(a, b) | b R a}.

The relation R is a mapping (or function) if a R b ∧ a R b′ =⇒ b = b′

for every a ∈ A and b, b′ ∈ B. We denote a mapping R from A into B by
R : A → B (A → B is called the type of R), and write R(a) = b instead of
R({a}) = {b}. If a = (a1, . . . , ak) is a sequence, we may drop the parentheses
and write R(a1, . . . , ak) instead of R((a1, . . . , ak)). The set of mappings from
A into B is denoted by BA. A mapping R is injective if R(a) = R(a′) implies
a = a′ for every a, a′ ∈ A, and it is surjective if R−1({b}) ̸= ∅ for every b ∈ B.
It is bijective if it is injective and surjective.

Let R ⊆ A×B and R′ ⊆ B×C be relations. Then the composition R ;R′ of R
and R′ is a relation from A into C defined by R ;R′ = {(a, c) | ∃b : a R b∧b R′ c}.
We generalize composition to sets of relations by letting R ;R′ = {R ;R′ | R ∈
R, R′ ∈ R′}.

We identify a set A with its identity relation id(A) = {(a, a) | a ∈ A}.
A is countable if there exists an injective mapping m : A → N. A mapping
R : An → A can be called an n-ary operation on A. A subset A′ ⊆ A is said to
be closed under R if R(a′) ∈ A′ for every a′ ∈ (A′)n.

A binary relation R ⊆ A×A is reflexive if aRa for every a ∈ A, symmetric if
aR b implies bRa, antisymmetric if aR b and bRa implies a = b, and transitive
if a R b and b R c implies a R c for all a, b, c ∈ A. An equivalence relation on A
is a relation ∼ that is reflexive, symmetric and transitive. For every a ∈ A, we
call the set {b ∈ A | a ∼ b} the equivalence class of a, denoted [a]∼. The set of
equivalence classes of A is denoted A/∼. Every mapping f : A→ B induces an
equivalence relation ∼f on A, given by a ∼f b if f(a) = f(b). Hence, we have
[a]∼f

= f−1({f(a)}).
A partial order on A is a relation ≤ ⊆ A×A that is reflexive, antisymmetric

and transitive. If a ≤ b or b ≤ a, then a and b are comparable with regard to
≤. Every partial order ≤ has an inverse ≥ = ≤−1 that is also a partial order.
A linear order is a partial order that is total, i.e., all elements are comparable.

16 Chapter 2. Preliminaries

Every order ≤ on A can be turned into a strict order < = ≤− id(A). Let ≤
be a partial order on A. For a given subset S ⊆ A, we define the minimal and
maximal set by

min≤ S = {s ∈ S | ∀a ∈ A : a ≤ s =⇒ a = s} and
max≤ S = {s ∈ S | ∀a ∈ A : a ≥ s =⇒ a = s} .

We drop the subscript when the order is clear from the context.
Let ≤ be a linear order on A. For a given finite subset S ⊆ A, we write S≤

for the sequence (s1, . . . , sn) such that s1 < · · · < sn and S = {s1, . . . , sn}, and
index : S → [n], defined by index(si) = i for all i ∈ [n]. Furthermore, for S ̸= ∅,
|min≤ S| = |max≤ S| = 1, i.e., minimal and maximal elements are uniquely
defined.

Finally, let J and X be sets. A (J-indexed) family is a mapping f : J → X.
We may denote f(j) by xj and f by (xj | j ∈ J). J is called an index set.

2.3 Probability theory
A discrete probability space is a triple (Ω,F ,Pr) consisting of

• a non-empty countable set Ω, the set of elementary events;
• the set F = 2Ω, called events;
• a mapping Pr : F → [0, 1] such that:

◦ Pr(Ω) = 1; and
◦ for every mapping I : N → F such that I(i) ∩ I(j) = ∅ for every
i ̸= j, we have:

Pr
(∪
n∈N

I(n)

)
=
∑
n∈N

Pr(I(n)) .

We call Pr(ω) the probability of the event ω ∈ F occurring.
Let A be a non-empty countable set. A (discrete) random variable X over

A is a mapping X : Ω → A. For a ∈ A, we set

Pr(X = a) = Pr(X−1(a)) , (6)

i.e., the probability ofX assuming the value a is the probability of the associated
event X−1(a). Then Pr is called a probability distribution over A. When the
random variable is understood from context, we can write a instead of X = a,
and Pr(a) instead of Pr(X = a).

Let X,Y be random variables over A. We will write x for X = x, and y for
Y = y to simplify the presentation. The joint probability Pr(x, y) is defined by

Pr(x, y) = Pr(X−1(x) ∩ Y −1(y)) . (7)

2.3 Probability theory 17

In other words, it is the probability of an event occurring that satisfies both
X = x and Y = y. The conditional probability Pr(y|x) of Y = y given X = x is
defined by:

Pr(y|x) =
{

Pr(x,y)
Pr(x) if Pr(x) ̸= 0

0 otherwise.
(8)

Using a reformulation of Equation (8), the joint probability can be expressed
using conditional probabilities by the chain rule:

Pr(x, y) = Pr(x) · Pr(y|x) . (9)

Another useful equation is Bayes’ rule (after mathematician Thomas Bayes):

Pr(y|x) = Pr(x|y) · Pr(y)
Pr(x) . (10)

18 Chapter 2. Preliminaries

Chapter 3

Background

Contents
3.1 Strings, trees, languages 19

3.1.1 Weighted languages and relations 23
3.1.2 Tree automata . 24

3.2 Linguistic techniques 26
3.2.1 Morphology and morphosyntax 28
3.2.2 Syntactic parsing . 29

3.3 Translation as decoding 31
3.3.1 Noisy channel model 32
3.3.2 Log-linear models . 35

This chapter will explain the linguistic background needed in this dissertation,
as well as a formalization of strings, trees and languages. Some computational
linguistic techniques that are used for the processing of the linguistic data in the
experiments are introduced. Most notions of this chapter involving trees, tree
languages and tree automata are further explained in Engelfriet (2015), Gécseg
and Steinby (2015), and Comon et al. (2007).

3.1 Strings, trees, languages
An alphabet is any nonempty finite set. The elements of an alphabet are called
symbols. If A is an alphabet, we call elements of A∗ strings. For simplicity, we
will write a for the string (a) that consists of one symbol only, and a1 · · · an for
the string (a1, . . . , an). The empty string () will be denoted by ε. The concate-
nation of two strings v and w will be denoted by v.w or just by juxtaposition:
vw. It is defined by (v1, . . . , vk)(w1, . . . , wm) = (v1, . . . , vk, w1, . . . , wm).

Let a, b ∈ A∗. We call a an n-gram if |a| = n; if n = 1 (or 2, 3), we call a
a unigram (or bigram, trigram). We say that a is substring of b if there exist

20 Chapter 3. Background

c, d ∈ A∗ such that b = cad. If |a| = n, we may also say that a is an n-gram of
b. The substring count #b : A

∗ → N is defined by:

#b(v) = |{(u,w) ∈ A∗ ×A∗ | uvw = b}|.

Furthermore, a is a prefix of b, written a ⊑ b, if there exists c ∈ A∗ such that
ac = b. The relation ⊑ is a partial order.

A linear order ≤ on A extends to a linear order on A∗, called the lexicographic
order extending ≤ such that:

• ε ≤ w for all w ∈ A∗,
• v ≤ w implies av ≤ aw for every a ∈ A and v, w ∈ A∗, and
• a ≤ b implies av ≤ bw for every a, b ∈ A and v, w ∈ A∗.

It is also a linear order.
A subset L of A∗ is called a (string) language over A. A sequence T =

(t1, . . . , tk) of strings t1, . . . , tk ∈ L is called a text in L. We extend # to texts
such that #T (v) =

∑k
i=1 #ti(v). We extend concatenation to languages by

defining L1.L2 = {vw | v ∈ L1, w ∈ L2} for every L1, L2 ⊆ A∗.
String languages are commonly classified according to their expressivity. A

particularly well-known characterization is the Chomsky hierarchy (Hopcroft
and Ullman, 1979). In this dissertation, we will deal with Chomsky type 3
languages (regular languages) and Chomsky type 2 languages (context-free lan-
guages). In particular, a language L ⊆ A∗ is regular if and only if the equivalence
relation ≡ on A∗, given by x ≡ y if and only if xz ∈ L ⇐⇒ yz ∈ L for
every x, y, z ∈ A∗, has only finitely many equivalence classes. This fundamental
theorem is known as the Myhill-Nerode theorem (Hopcroft and Ullman, 1979).
Context-free string languages will briefly be mentioned again in Section 3.2.2.

A ranked alphabet is a pair (Σ, rk) where Σ is an alphabet and rk : Σ → N
assigns a rank (or arity) to every symbol. If rk(σ) = 0 (1, 2, 3), we call σ a
nullary (unary, binary, ternary) symbol. We define Σ(k) = {σ ∈ Σ | rk(σ) = k}.
To simplify presentation, we will often not explicitly mention the rank function
and only write Σ for the ranked alphabet. We will also sometimes introduce an
element σ ∈ Σ(k) together with its rank as σ(k). A string over a ranked alphabet
Σ is any element of (Σ(0))∗. In this way, every alphabet A can be extended to
a ranked alphabet (A,A× {0}).
Example 1 (Ranked alphabet.)
Let Σ = {S,NP,VP,PP,Det,N,V,P, the, cat, sat, on,mat} with rk : Σ → N
given by:

rk(S) = rk(NP) = rk(VP) = rk(PP) = 2,

rk(Det) = rk(N) = rk(V) = rk(P) = 1,

rk(the) = rk(cat) = rk(sat) = rk(on) = rk(mat) = 0.

Then (Σ, rk) is a ranked alphabet. The string “(the, cat, sat, on, the,mat)” (writ-
ten as a sequence) is a string over Σ.
Let Σ be a ranked alphabet and V a set. We define Σ(V) = {σ(k)(v1, . . . , vk) |
v1, . . . , vk ∈ V, σ ∈ Σ}. We write TΣ(V) for the set of V -indexed Σ-trees, defined

3.1 Strings, trees, languages 21

as the smallest set T such that V ⊆ T and Σ(T) ⊆ T . We then call elements of
V variables. We write TΣ for TΣ(∅), the set of ground Σ-trees, i.e., variable-free
Σ-trees. A tree language over Σ is any subset of TΣ.

For each tree t ∈ TΣ(V) we identify nodes by positions. Positions are strings
over N. The set of positions of a tree is inductively defined by the function
pos : TΣ(V) → 2N

∗ :

pos(t) =
{
{ε} if t ∈ V

{ε} ∪
∪

1≤i≤k ({i}. pos(ti)) if t = σ(t1, . . . , tk)

Note that the set of positions is prefix-closed, i.e., vw ∈ pos(t) with v, w ∈ N∗

implies v ∈ pos(t). The set of frontier positions of t is max⊑ pos(t), i.e., the set
of all positions that are not a prefix of any other position. We write t(w) for
the label (taken from Σ ∪ V) of t at position w ∈ pos(t), defined by:

t(w) =

t if w = ε and t ∈ V

σ if w = ε and t = σ(t1, . . . , tk)

ti(w
′) if w = iw′, i ∈ [k], w′ ∈ N∗ and t = σ(t1, . . . , tk)

Example 2
Let Σ be the ranked alphabet defined in Example 1. This is a Σ-tree:

t = S(NP(Det(the),N(cat)),
VP(V(sat),PP(P(on),NP(Det(the),N(mat))))).

Figure 8 shows the graphical representation of t, where positions have been
annotated at the nodes. For instance, t(11) = t(2221) = Det, and t(ε) = S.

We will use this kind of visualization (usually without position annotations)
throughout this dissertation, with the root of the tree at the top, and subtrees
sorted left-to-right. Occasionally, we might visualize trees with the root at the
bottom, growing upwards, as in Figure 9. Since trees have one unique root, this
should not cause any confusion.
We use t|w to address the subtree of t that is rooted in position w:

t|w =

{
t if w = ε

ti|w′ if w = iw′ and t = σ(t1, . . . , tk), i ∈ [k]

We write t[u]w to represent the tree that is obtained from replacing the subtree
t|w at w by u ∈ TΣ(V):

t[u]w =

{
u if w = ε

σ(t1, . . . , ti[u]w′ , . . . , tk) if w = iw′ and t = σ(t1, . . . , tk), i ∈ [k]

If (w1, . . . , wk) ∈ pos(t)k is a sequence of pairwise incomparable positions with
regard to ⊑, and (u1, . . . , uk) ∈ TΣ(V)k, then

t[(u1, . . . , uk)](w1,...,wk) = (· · · t[u1]w1
· · ·)[uk]wk

.

22 Chapter 3. Background

Sε

VP2

PP22

NP222

N2222

mat22221

Det2221

the22211

P221

on2211

V21

sat211

NP1

N12

cat121

Det11

the111

Figure 8. Graphical representation of a tree with positions annotated

S

VP

PP

NP

N

mat

Det

the

P

on

V

sat

NP

N

cat

Det

the

Figure 9. Graphical representation of a tree with the root at bottom, growing
upwards

3.1 Strings, trees, languages 23

Example 3
Recall t from Example 2. We have t = (t′[t1]1)[t2]222 with

t′ =

S

VP

PP

x2P

on

V

sat

x1

t1 =

NP

N

cat

Det

the

t2 =

NP

N

mat

Det

the

For a given set L ⊆ Σ ∪ V of labels, we let

posL(t) = {w ∈ pos(t) | t(w) ∈ L}

be the set of all positions labeled with a symbol or variable from L. Furthermore,
we define the (string) yield of a tree as the concatenation of its frontier symbols
and variables by yield : TΣ(V) →

(
Σ(0) ∪ V

)∗:
yield(t) =

{
t if t ∈ Σ(0) ∪ V
yield(t1) · · · yield(tk) if t = σ(t1, . . . , tk)

Example 4
The yield of the tree t in Example 2 is the string (written as a sequence)

yield(t) = (the, cat, sat, on, the,mat) .

A substitution is a function ϑ : V → TΣ(V). We extend ϑ to trees as follows:

ϑ(t) =

{
ϑ(t) if t ∈ V

σ(ϑ(t1), . . . , ϑ(tk)) if t = σ(t1, . . . , tk)

If T = (t1, . . . , tk) is a sequence of trees, then ϑ(T) = (ϑ(t1), . . . , ϑ(tk)). A
ground substitution is a function ϑ : V → TΣ.
Example 5
Recall t, t′, t1 and t2 from Example 3. With the substitution ϑ such that ϑ(x1) =
t1 and ϑ(x2) = t2, we have ϑ(t′) = t.

3.1.1 Weighted languages and relations
Let A be an alphabet, and Σ a ranked alphabet. A weighted language is any
mapping F : A∗ → R. A weighted tree language (or tree series, or weighted

24 Chapter 3. Background

forest) is a mapping F : TΣ → R. We then call the elements of R weights3. We
define the support of a weighted language F as supp(F) = F−1(R− {0}).

Let F1 and F2 be two weighted (tree) languages over Σ. We extend + and ·
in the natural way to weighted languages by:

• (F1 + F2) : TΣ → R with (F1 + F2)(s) = F1(s) + F2(s);
• (F1 · F2) : TΣ → R with (F1 · F2)(s) = F1(s) · F2(s).

We may also write F1 ∪ F2 for F1 + F2 and F1 ∩ F2 for F1 · F2. For every
F ⊆ TΣ, we may implicitly treat F like its characteristic function FR : TΣ → R
with FR(s) = 1 if s ∈ F and FR(s) = 0 otherwise.

Let A,B,C be sets. A weighted relation from A into B is a mapping R :
A × B → R. The inverse of R is R−1 : B × A → R with R−1(b, a) = R(a, b)
for all a ∈ A and b ∈ B. The weighted composition of two weighted relations
R1 : A×B → R and R2 : B × C → R is R1 ;R2 : A× C → R with

R1 ;R2(a, c) =
∑
b∈B

R1(a, b) ·R2(b, c) .

Please note that this summation might be infinite if {b ∈ B | R1(a, b) ̸= 0} is
infinite. Fortunately, we will generally only consider weighted relations where
any element is only related to finitely many elements with non-zero weight.
Like above, the characteristic functions of unweighted relations may be used,
and moreover, identity relations of sets or (weighted or unweighted) languages
may be used.

Let A and B be sets, F : A→ R, and h : A→ B. Then the application of h to
F is defined as the mapping h(F) : B → R such that h(F)(b) =

∑
a∈h−1(b) F (a)

for all b ∈ B. (Again, we will generally only consider cases where this summation
is finite.) The inverse application of h to G : B → R, written h−1(F) : A→ R,
is defined by h−1(G)(b) = G(h(a)) for all a ∈ A.

3.1.2 Tree automata
Let Σ be a ranked alphabet. Let X = (xi | i ∈ N) be a family of variables. A
weighted Σ-tree automaton G is a triple (Q, I, P) where4

• Q is a finite set of states,
• I : Q→ R is the initial weight mapping, and
• P : Q× Σ(Q) → R is a transition weight mapping.

We may define I and P partially, then I(q) = 0 and P (q, σ(q1, . . . , qk)) = 0
when not specified otherwise.

3In this dissertation, we will only consider weighted languages over R. Most of the con-
structions will work for any commutative semiring, i.e., a structure (S,⊕,⊗,0,1) such that
(S,⊕,0) and (S,⊗,1) are commutative monoids, 0 ⊗ s = s ⊗ 0 = 0 for all s ∈ S, and ⊗
distributes over ⊕. Definitions for these terms can be found in Droste and Kuich (2009), and
the theory of semiring-weighted languages can be found in Droste et al. (2009).

4Please note that tree automata are regular tree grammars in normal form. We will only
use tree automata and not general regular tree grammars in this dissertation.

3.1 Strings, trees, languages 25

Let t ∈ TΣ(X) be a tree. A run of G on t is a mapping r : pos(t) → Q. The
weight of a run r is

wt(r) =
∏

p∈posΣ(t)

P (r(p), r′(p)) ,

where r′(p) = t(p)(r(p1), . . . , r(pk)) with t(p) ∈ Σ(k). The set of all runs of G
on t is runsG(t). Note that runsG(t) is finite for every t ∈ TΣ. The weighted
tree language (also called formal tree series) recognized by G is LG : TΣ → A,
defined by

LG(t) =
∑

r∈runsG(t)

I(r(ε)) · wt(r) .

G is unambiguous if |{r ∈ runsG(t) | wt(r) ̸= 0}| ≤ 1 for every t ∈ TΣ. G is de-
terministic if P (q, σ(q1, . . . , qk)) ̸= 0 and P (q′, σ(q1, . . . , qk)) ̸= 0 implies q = q′.
If G is deterministic, then G is unambiguous. If P (q, σ(q1, . . . , qk)) ∈ {0, 1} and
I(q) ∈ {0, 1} for all σ(k) ∈ Σ and q, q1, . . . , qk ∈ Q, then G is a trivially weighted
or simply unweighted tree automaton. G is acyclic if there is no tree t ∈ TΣ and
run r : pos(t) → Q with r(p) = r(q) for p ⊑ q and p ̸= q such that wt(r) ̸= 0.

Example 6 (Tree automaton.)
Let Σ = {α(2), β(0)} be a ranked alphabet, and K = ({q}, I, P) a weighted
tree automaton with I(q) = 1 and P specified by: P (q, α(q, q)) = 1 and
P (q, β()) = 2. K is unambiguous and deterministic, but not acyclic. It com-
putes the function LK(t) = 2n for every tree t ∈ TΣ, where n = | pos{β}(t)|.
The class of weighted tree languages over Σ recognized by weighted Σ-tree au-
tomata is called the class of weighted regular tree languages over Σ, denoted
REC(Σ). Let L1, L2 ∈ REC(Σ). Then:

L1 ∪ L2 ∈ REC(Σ) (REC(Σ) is closed under union),
L1 ∩ L2 ∈ REC(Σ) (REC(Σ) is closed under intersection).

These closure properties can be used to reason about tree languages by build-
ing them up from simpler tree languages, thus simplifying proofs and facili-
tating modelling and engineering tasks. A well-known construction for inter-
section in the unweighted and weighted case is the product construction (see,
e.g., Berstel and Reutenauer (1982)). Let G1 = (Q1, I1, P1) and G2 = (Q2, I2, P2)
be weighted tree automata over the same ranked alphabet Σ. We construct
G1 ∩ G2 = (Q1 ×Q2, I∩, P∩) where

I∩(q, q
′) = I1(q) · I2(q) and

P∩((q, q
′), σ((q1, q

′
1), . . . , (qk, q

′
k))) = P1(q, σ(q1, . . . , qk))

· P2(q
′, σ(q′1, . . . , q

′
k)) .

Then LG1∩G2
= LG1

∩ LG2
.

26 Chapter 3. Background

3.2 Linguistic techniques
For the remainder of this dissertation, we will assume that L stands for the set of
natural languages, and identifiers of natural languages are written in boldface,
e.g., E for English, F for French, G for German etc. A natural language L
coincides with its extension, the set of all sentences in L. In this way, L denotes
a natural language, and its characterization as a formal language, i.e., a set of
strings over a yet to be defined alphabet.

Data-driven computational linguistics makes extensive use of annotated as
well as raw linguistic data. The most widely used linguistics resources are
corpora. A monolingual corpus is simply a text, i.e., a sequence of sentences.
However, we will continue to say corpus when we mean a resource, to distinguish
it from other types of text, such as input text to be translated, translation
output, test and development sets, etc. Monolingual corpora are widely used to
train n-gram language models.

A parallel corpus is a sequence of m-tuples (s1, . . . , sℓ) of length ℓ. It is un-
derstood that for every si = (a1, . . . , am), the sentences a1, . . . , am, are related,
i.e., translations of each other, so a1 ∈ L1, . . . , am ∈ Lm, for L1, . . . ,Lm ∈ L.
The most commonly used type of parallel corpus, and the only one used in the
remainder of this dissertation, is a bilingual parallel corpus (m = 2). Parallel
corpora are widely used to train translation models.

In the experiments in Section 6, the popular EuroParl (Koehn, 2005)
parallel corpus is used. It was extracted from parliament proceedings of the
European parliament translated into 21 European languages5. The proceedings
were stripped of formatting, timestamps and similar data, and then preprocessed
to determine sentence boundaries and to align them across languages.

Sentence alignment is not a trivial problem. While it is rather easy to split
a text into sentences, in a parallel corpus there might not be a 1-to-1 mapping,
as human translators sometimes sacrifice faithfulness for fluency. Heuristics
are needed to determine the most likely correspondence. For Europarl, the
algorithm of Gale and Church (1993) was used, which matches sentences by
length, merging them if needed. In the context of this thesis, we will neglect the
problem that a sentence in one language might map to two sentences in the other
language, or more complicated cases. We will always assume a 1-to-1-mapping.

Let us now discuss the alphabet of a natural language. Consider a sentence
like the following:

The cat sat on the mat.

Superficially, this looks like a string of letters, whitespace and punctuation sym-
bols, and indeed this is how it is represented. For simplicity, we will assume that
our raw textual data is stored as Unicode strings. Let ℧ be the alphabet of all
Unicode® symbols, that is letters in various scripts, whitespace, punctuation,

5Romanic (French, Italian, Spanish, Portuguese, Romanian), Germanic (English, Dutch,
German, Danish, Swedish), Slavic (Bulgarian, Czech, Polish, Slovak, Slovene), Finno-Ugric
(Finnish, Hungarian, Estonian), Baltic (Latvian, Lithuanian), and Greek. The corpus is
available at http://www.statmt.org/europarl/.

http://www.statmt.org/europarl/

3.2 Linguistic techniques 27

numbers, and other symbols as laid out by the Unicode® standard.6 Our text
is therefore a string t ∈ ℧∗:

t = The␣cat␣sat␣on␣the␣mat.

First, let us transform this string into lowercase. We define the function lower :
℧ → ℧ such that it maps every uppercase letter to its lowercase version and
every other symbol on itself. We can extend lower as usual to operate on strings.
Then we have:

lower(t) = the␣cat␣sat␣on␣the␣mat.
However, this is not what we intend when we write sentences in natural lan-
guage. Whitespace enables us to see that cat and sat are to be treated as
words, i.e., symbols of another alphabet E of words of the English language,
punctuation symbols, numbers etc. Whitespace, however, should not be a part
of this alphabet. We should thus represent this sentence as:

the · cat · sat · on · the · mat · .

To keep the presentation general and language-independent, we assume for every
language L a subset L(0) ⊆ ℧∗ of Unicode strings that represent its words, called
the lexicon. We assume that L(0) ⊆ L is the nullary part of a ranked alphabet L
that also contains non-nullary symbols called tags, defining the internal structure
of sentences. For instance, we write E for the set of words and tags of English
and E(0) for the set of words of English (or, for historical reasons, the target
language of machine translation). The exact nature of these alphabets can be
debated. It would not be unreasonable to represent natural language as strings
of morphemes instead of words, but this is a minor concern from a theoretical
point of view.

Tokenization is the task of transforming text in a language L, written as a
string over ℧ into a string over L(0), the lexicon of L, for further processing. In
other words, a tokenizer is an L-indexed family (tokenizeL | L ∈ L) of functions
tokenizeL : ℧∗ →

(
L(0)

)∗. Note that we make no restriction on the mapping. In
real-world scenarios, we will usually have a very close resemblancy of a sentence
t in a language L and the concatenation of tokenizeL(t). This, however, will be
considered an implementation detail. For instance, there is no reason a tokenizer
could not have a built-in transliteration component, e.g., mapping Cyrillic or
Arabic to Latin text representations. A tokenizer may also perform other tasks
such as normalization of punctuation symbols.

A closely related problem is segmentation for languages that do not usually
put whitespace between words, such as Chinese. We treat this as a special case
of tokenization, where word boundaries must be guessed. In order to keep the
presentation coherent, we will assume that tokenizeL is a weighted regular string
relation (also called rational string series, Droste and Kuich (2009)).

6Unicode is a registered trademark of Unicode, Inc. in the United States and other coun-
tries. “The Unicode Standard is a character coding system designed to support the worldwide
interchange, processing, and display of the written texts of the diverse languages and technical
disciplines of the modern world. In addition, it supports classical and historical texts of many
written languages.” (http://unicode.org/standard/standard.html)

http://unicode.org/standard/standard.html

28 Chapter 3. Background

3.2.1 Morphology and morphosyntax

Morphology is the study of the internal structure of words, and the relations
between the units that words are composed of. These units are commonly called
morphemes, and a word can be composed of one morpheme, or a string of mor-
phemes. For instance, the word “cat” is also a morpheme, while cats is composed
of the morphemes “cat” and “-s”, which indicates plural. In this case, “cat” is
a free morpheme, while “-s” is a bound morpheme because it cannot occur on
its own. Morphemes are generally acknowledged to be the smallest units of syn-
tax, i.e., the smallest units of language that have grammatical function or carry
meaning. For an introduction to morphology, see Aronoff and Fudeman (2005).

Words in natural languages are traditionally grouped into categories called
parts of speech. For instance, “awesome” is an adjective, while “in” is a preposi-
tion. The process of assigning words to these categories is called part-of-speech
tagging. We adopt the view that a part-of-speech tagger maps the tokenized
input to a simplified alphabet, e.g., the Penn treebank tagset7 or the STTS
tagset8. However, a word is not always the same part-of-speech. For instance,
“rock” can be either a noun or a verb.

Part-of-speech tagging can be implemented using weighted finite-state string
transducers (Knight and May, 2009). Thus, they can be easily integrated with
other finite-state or context-free tools, e.g., a parser that assumes part-of-speech
tagged input. We will skip a detailed description of part-of-speech tagging and
assume it is part of morphological preprocessing or parsing (see the following
section). The part-of-speech tags will then be treated as “pre-frontier”, unary
nodes of the parse tree.

Morphosyntax is the branch of morphology that is concerned with the in-
terplay of morphology and syntax. For instance, the subject “cats” requires a
plural verb since English exhibits agreement in number of subject and verb.
Languages have varying degrees of morphosyntax. For instance, in German de-
terminers have to agree in number, gender and case with nouns (see Figure 10).
A similar phenomenon cannot be found in English.

Morphological preprocessing is relevant because it allows to infer more gen-
eral rules than just on the surface. For languages with many bound morphemes,
it allows to infer translation rules for individual morphemes, rather than strings
of morphemes. Morphological preprocessing is often implemented using finite-
state string transducers, i.e., as a weighted regular string relation. This makes a
morphology component easy to integrate in our finite-state workflow. Again, we
will skip a detailed description of morphology and assume it is part of parsing.
We assume that morphological information will be encoded in the “pre-frontier”
nodes of the parse tree, by using a more fine-grained tagset.

7The Penn treebank tagset was used in the syntactic annotations of the Penn tree-
bank (Marcus et al., 1993) on which the Berkeley parser and Egret were trained (see Sec-
tion 3.2.2).

8The STTS tagset was used in the syntactic annotations of the Tiger treebank (Brants
et al., 2004) on which BitPar was trained (see Section 3.2.2).

3.2 Linguistic techniques 29

3.2.2 Syntactic parsing
The basic unit of a parallel corpus is a sentence pair9. Therefore, we end our
description of linguistic techniques at the sentence level. Parsing is the subdisci-
pline of computational linguistics that deals with assigning a structure to every
sentence of a given natural language.

Usually, parsing is preceded by tokenization (and possibly part-of-speech
tagging and/or morphological preprocessing). Therefore, we define a parser for
a language L to be a function that maps a string s ∈ L to a derivation tree. This
is a very broad definition, and we make a distinction between the derivation tree
(an abstract tree encoding the derivation process) and the derived tree, or parse
tree, which is obtained from the derivation tree by a mapping.10

There is no universal consensus on which formalism is best suited to describe
natural language. The research on the structure of natural language goes as far
back as Pāṇini, who formalized the rules of Vedic Sanskrit (around 500 BCE)11.
However, early efforts disregarded the complexity of human language, i.e., how
powerful the underlying formalism needs to be. The first rigorous treatment of
the complexity of natural language was published by Chomsky (1957), in which
he proves that some phenomena exhibited by English and other languages are
not regular languages.

This has lead to the widely accepted notion that context-free languages are
a natural fit, and a large number of formalization attempts have been made, as
well as many implementations. In particular, in the case of context-free pars-
ing, the derivation tree is the derived tree, and just called a parse tree. We
call subtrees of a parse tree constituents and assume a natural equivalence re-
lation t ≡ t′ if and only if t(ε) = t′(ε). This way, the ranked alphabet of every
language defines natural equivalence classes of constituents called categories,
including part-of-speech tags. For instance, we call all subtrees rooted in an
NP symbol “noun phrases” and assume that they are (to a certain degree) ex-
changeable, meaning that if u[t]w is well-formed, then u[t′]w is, and vice versa for
any tree u and position w ∈ pos(u). The equivalence relation of categories can
be made more fine-grained by adding morphological annotations and subcate-
gorization information, i.e., information about how a constituent may combine
with other constituents. Figure 10 shows a context-free parse tree generated by
BitPar12 (Schmid, 2004, 2006) that sports rich morphological annotations for
case, number and gender, as well as subcategorization information.

The equivalence relation ≡ naturally leads to a formulation of parsing using
tree automata. Formally, we will assume that for a given language E, there exists
a ranked alphabet E such that the input is a tokenized string over E(0). This

9This assumption is over-simplifying because it disregards supra-sentential phenomena such
as coreference. Sentences cannot usually be properly understood or translated without con-
text.

10For more on mappings between derivation trees and derived trees, see Section 4.2, where
a range of (synchronous) grammar formalisms is discussed.

11Pāṇini, Aṣṭādhyāyī .
12Courtesy of Helmut Schmid, freely available for research and education from http://www.

cis.uni-muenchen.de/~schmid/tools/BitPar/.

http://www.cis.uni-muenchen.de/~schmid/tools/BitPar/
http://www.cis.uni-muenchen.de/~schmid/tools/BitPar/

30 Chapter 3. Background

S-TOP

VP-OC/pp

VVPP-HD

gegangen

PP-MO/V

ADJD-HD-Pos/N

hause

APPR-AC

nach

VAFIN-HD-Sg

ist

NP-SB/Sg

PPER-HD
-Nom.Sg.Fem

sie

Figure 10. Parse tree with rich morphological annotations

entails that if any part-of-speech tagging is to be modeled, this will implicitly
be part of the parser. In the tree formulation of the Myhill-Nerode theorem, for
a language L ⊆ TE , and any two trees t, u ∈ TE , we have t ≡ u if and only if
c[t]w ∈ L ⇐⇒ c[u]w ∈ L for any c ∈ TE and w ∈ pos(c). This enables us to
represent categories in the stateset of a tree automaton.

A parser for E is then defined by a weighted regular tree language P : TE →
[0, 1], and parsing of a sentence e is the task of computing a parse forest

P ⟨e⟩ = yield−1(e) ∩ P . (11)

A notable exponent of this approach is the Berkeley Parser13, which employs
a technique called state splitting (Petrov et al., 2006; Petrov and Klein, 2007)
that makes it essentially a weighted regular tree language. The parse tree can
be obtained from the derivation tree by a simple delabeling (i.e., a function
mapping each symbol of a ranked alphabet to a symbol of the same rank in
another ranked alphabet) removing the state annotations. Unfortunately, the
Berkeley Parser only computes the highest-scoring tree(s), not the full parse
forest. A re-implementation of this system is Egret14, which can also output
parse forests.

Recent research suggests that some constructions in languages like Dutch and
Swiss German cannot be modelled by context-free languages either. Typically,
these counterexamples involve crossing dependencies between substrings. The
claim proceeds by arguing that lexical material that is generated in different
steps of the derivation should be independent (hence, context-free), and therefore
context-free grammars cannot account for certain structures (Shieber, 1985).
Some noteworthy non-context-free formalisms are dependency grammars (which

13Available from https://github.com/slavpetrov/berkeleyparser.
14Courtesy of Hui Zhang, available under the Apache 2.0 and LGPL 3.0 open source licences

from https://sites.google.com/site/zhangh1982/egret.

https://github.com/slavpetrov/berkeleyparser
https://sites.google.com/site/zhangh1982/egret

3.3 Translation as decoding 31

construct dependency trees that may not be trees in the way we defined trees,
since they may have crossing edges), and tree-adjoining grammars (TAG), which
are more powerful than context-free grammars. Both have successfully been
used in parsing and machine translation. Synchronous TAG will be discussed in
Section 4.2.

In this dissertation, while we acknowledge that context-free string struc-
ture is a crude approximation of natural language capacity, we will work with
context-free parsers and the resulting structures only. This allows for some
simplifying assumptions. The techniques described in this dissertation how-
ever might be also applicable to more powerful formalisms as long as the set of
derivation trees is a regular tree language. We will revisit this assumption in
Section 4.2.

3.3 Translation as decoding

Machine translation (MT) approaches can be roughly classified along two axes:
statistical versus hand-crafted, and by how much linguistic information they
incorporate in the translation process. The latter can be captured in the il-
lustration called Vauquois triangle (Vauquois, 1968) in Figure 11. Translation
of an input sentence (lower left) can proceed on a straight line to the output
sentence (lower right) on the string level. This approach is taken by word- or
phrase-based approaches. On the other hand, approaches that attempt to trans-
form the input into a language-independent representation are called Interlingua
approaches.

There is some middle ground, though. If the input sentence is parsed first
and then mapped to an output string, the approach is called tree-to-string trans-
lation. Similarly, mapping the input string to an output tree (and then reading
off the yield) is called string-to-tree translation. Parsing the input sentence, and
mapping the input parse tree to an output tree by a syntactic transfer is called
tree-to-tree translation. In this dissertation, we will not cover any representation
beyond syntactic parse trees, in particular no semantic representation.

Our principal approach is syntax-based, with an intermediate representation.
This intermediate, language-independent representation will be a regular tree
language, and we use a source and target mapping to obtain the input and
output trees (whose yields will be the input and output string). Together, this
will be formalized as a bimorphism. In the next section, we will introduce
statistical approaches to machine translation, culminating in our bimorphism
machine translation theory.

The first MT systems consisted of hand-crafted sets of rules. With the rise
of computing power in mind, and the successful application of cryptography in
World War II, the idea of translation as decoding was developed.

32 Chapter 3. Background

Interlingua

bimorphism

source target

syntax

semantics

direct

tree-to-stringstring
-to-tr

ee

Figure 11. The Vauquois triangle

When I look at an article in Russian, I say “This is really written
in English, but it has been coded in some strange symbols. I will
now proceed to decode.”

—Warren Weaver, in a letter to Norbert Wiener (1947)

This quote by one of the pioneers of statistical machine translation is remark-
able. It re-states the problem of translation as a decoding problem, implying
that:

1. There is a source text written in English;
2. This source text has been encrypted and is Russian on the surface;
3. The underlying English source can be recovered by reversing the encryp-

tion, i.e., breaking the cypher.

In particular, just like a cypher can be cracked if one has access to source and
target surface strings by studying the patterns, the idea was put forward that
translation could be automatically learned from large quantities of bilingual
data. However, it took almost half a century before these ideas were picked up
again.

3.3.1 Noisy channel model
The foundations of statistical machine translation (SMT) were established by an
IBM research group (Brown et al., 1990, 1993). The authors present successively
refined models that are therefore colloquially known as IBM Models 1, 2, 3, 4
and 5. We will present these models here not only for the historic perspective,

3.3 Translation as decoding 33

but also because many ideas are still in use or have been applied to other, more
sophisticated models. In particular, the IBM models revisit the ideas of Warren
Weaver and Claude Shannon. The basic assumptions are:

1. that every sentence in one language is a possible translation of any sentence
in the other;

2. that every pair of sentences (f, e) can be assigned a conditional probability
Pr(e|f) to be interpreted as the probability that a translator, when given
the source sentence f, produces the target sentence e.15

This process is formalized in the noisy channel model (Shannon, 1948) (also
called source-channel model, Och and Ney (2002)). The underlying assumption
is that the text was initially written in, say, English (we will denote the set of
English sentences by E), but distorted by transmission through a noisy channel,
i.e., translated into French (we will denote the set of French sentences by F). In
this way, we can only observe the distorted message f ∈ F, the French text. The
task is now to recover the most probable English text e ∈ E, i.e., to maximize
the probability Pr(e|f), of the underlying event e given the observation f.

We can now formulate the translation problem by assuming a probability
space (Ω, 2Ω,Pr) with Ω = F × E, and random variables SF : Ω → F and
SE : Ω → E, defined by SF(f, e) = f and SE(f, e) = e. For convenience, we will
write Pr(f) for Pr(SF = f) and Pr(e) for Pr(SE = e).

In order to stay consistent with existing literature, we define the arg max
operation as follows: Let S be a set. We define arg maxS : RS → S such that
arg maxS(f) ∈ f−1(max f(S)), and undefined if max f(S) = ∅. The specific
implementation (i.e., which member of S to choose in the case of a tie) does
not matter. We usually write arg maxs∈S f(s) instead of arg maxS(f), and
implicitly assume that it is defined.

We can rewrite the search for the best translation of f, using Bayes’ rule, as
follows:

ê = arg max
e∈E

Pr(e|f)

= arg max
e∈E

Pr(f|e) · Pr(e)
Pr(f)

= arg max
e∈E

(Pr(f|e) · Pr(e)) .

(12)

The last rewriting step is justified since Pr(f) is constant for all e. The task of
decoding is then to find the target language sentence ê that maximizes Pr(e) ·
Pr(f|e).

Decomposing the problem in this way allows us to model the noisy channel
using two distinct submodels, a model for Pr(f|e) which we call the translation
model, and a model for Pr(e) which we call the language model. Figure 12 gives
us an intuitive illustration of this decomposition. The sender generates e with

15We follow the traditional custom of using f for French or foreign to denote the source
or input language (i.e., the language from which we want to translate), and e for English to
denote the target or output language (i.e., the language into which we want to translate).

34 Chapter 3. Background

sender channel receiver

Pr(e) Pr(f|e)
text e text f

Figure 12. Noisy channel model

probability Pr(e). Then e is distorted by the noisy channel, and the receiver
will observe f with probability Pr(f|e).16

Brown et al. (1990) then proceed to explain how probabilities for Pr(e) and
Pr(f|e) can be estimated from a bilingual corpus. Note that the translation
model now models the probability of the source f given the target e. Language
models are usually implemented using n-gram models. Besides machine trans-
lation, they are (and were much earlier) used in speech recognition. We will
describe n-gram language models in Section 5.3.

For the translation model, a broad spectrum of different formalisms has been
put forward. The IBM models are word-based, i.e., the probability of Pr(f|e) is
estimated by relating single words (alignments), including parameters for words
that do not have a correspondence (that are left unaligned). These models are
rather crude, but they remain in wide use as a way to generate word alignments
that can be used to bootstrap more sophisticated models.

IBM model 1 can be characterized as follows: For a sentence pair (e, f)
with e = (e1, . . . , em) and f = (f1, . . . , fn), the lexical translation scores t(fi|ei)
can be obtained from the alignments between f and e (a mapping a : [n] →
[m]∪{0}). However, the alignments are also unknown. We could obtain the most
probable alignment for a given sentence pair from the lexical translation scores,
however, these are unknown. To overcome this “chicken and egg” problem, EM
(expectation-maximization) training can be used. We will revisit EM in our
experiment chapter, Section 5.4.3.

Then the translation probability of f given e with word alignment a is mod-
elled as:

Pr(f, a|e) = ε

(|e|+ 1)n
·
n∏
i=1

t(fi|ea(i)) . (13)

Higher-order IBM models successively refine Model 1. Model 2 adds an absolute
distortion model d(j|i, |f|, |e|), i.e., a probability that an English word at position
j translates to a foreign word at position i.

Model 3 adds a fertility model n(ϕ|ej) to model the probability that the
English word ej translates into ϕ foreign words. Model 4 remedies the sparse
and unreliable absolute distortion model by adding a relative reordering model,
while Model 5 fixes a deficiency problem. (A model is deficient if it assigns non-
zero probability to impossible outcomes. Models 3 and 4 are deficient because

16Compared to other applications of the noisy channel model (e.g., signal processing, speech
recognition, error correction), where the “noise” is rather random and the part of the model
that we would rather not want to model, in machine translation the noise is the interesting
part.

3.3 Translation as decoding 35

they can reorder all words to the same position, which should be disallowed.)
The usual training pipeline is to start with Model 1. After a few EM it-

erations, good lexical translation scores are obtained. These are transferred to
Model 2, which yields a good absolute reordering model after a few iterations.
Proceeding in this way, we will finally obtain a trained Model 5.

3.3.2 Log-linear models
Recall the rewritten Noisy channel model from Equation (12):

ê = arg max
e∈E

(Pr(f|e) · Pr(e)) .

The optimal translation ê is the translation that has the highest probability,
decomposed into Pr(f|e) for the translation model and Pr(e) for the language
model.

Unfortunately, while this is mathematically well-motivated, there are some
problems with this approach, as identified by Och and Ney (2002). In partic-
ular, the noisy channel model cannot easily accomodate additional sources of
information, and it cannot explain why replacing Pr(f|e) by Pr(e|f) or a differ-
ent weighting of language model and translation model can give comparable or
better results.

Motivated by these objections, Och and Ney (2002) propose to model Pr(e|f)
directly in the maximum entropy framework. In this framework, the translation
model is usually further decomposed into a number of feature functions (or fea-
tures for short) that score different aspects of the translation. We say “score”
because now we are deviating from probability theory. From now on, the scores
will not necessarily be probabilities. The hopeful assumption is that the scores
“behave like” the actual probabilities in a way that translations with higher
probabilities receive a better score; and that the translation with the highest
score will be the translation with the highest probability. Functions and scores
will not be mathematically well-founded, but motivated by engineering experi-
ence. In this sense, everything that follows will still be inspired by the noisy
channel model, but the analogy ends here.

Features may be represented as a family of m functions

(ϕi : F × E → R | i ∈ [m]) .

We associate with each feature function a parameter λi to model the relative
importance of this feature. Together, these parameters may be represented by
the parameter vector λ = (λ1, . . . , λm). Thus, the equation for the maximum
entropy model becomes:

Pr(e|f) ∝
m∏
i=1

ϕi(f, e)λi

= exp
(

m∑
i=1

λi · logϕi(f, e)
)
.

(14)

36 Chapter 3. Background

Note how we are “misusing” the symbol ∝ to denote the rather complex relation
“behaves like”.

The logarithmic transformation justifies the name log-linear model. Since
‘arg max’ can be defined so that it is not affected by logarithmic transformation,
we may in fact rewrite Equation (12) into:

ê = arg max
e∈E

Pr(e|f)

∝ arg max
e∈E

m∑
i=1

λi · logϕi(f, e) .
(15)

While the logarithmic transformation is preferable for numerical stability (and
applied in the toolkit discussed in the implementation section of this disserta-
tion), we will not use it in the theoretical discussion. We prefer the “original”
formulation:

ê ∝ arg max
e∈E

m∏
i=1

ϕi(f, e)λi . (16)

This choice is personal preference only, since the real numbers are arguably more
intuitive than logarithms. All of the following is equally true after a logarithmic
transformation.

In this symmetric formulation, features have access to both source and tar-
get even if they use only one of them. Source features are typically scores on
the parse trees of the input sentence, translation features are scores on the
translation rules, and target features are typically language model scores, sen-
tence length, and similar features. For instance, a typical phrase-based MT
system (Koehn et al., 2003) will consist of a phrase translation model, a re-
ordering model to account for the variation in syntax between the languages,
and a target language model. Note that the noisy channel model is a special
case of the maximum entropy model if the two features ϕ1(f, e) = Pr(e) and
ϕ2(f, e) = Pr(f|e), and λ1 = λ2 = 0.5 are used. To find good values for the
parameter vector λ, they are usually optimized with regard to an automatic
evaluation metric such as Bleu (cf. Section 5.4.1).

Phrase-based models (Koehn et al., 2003) extend word-based models by al-
lowing substrings of arbitrary (but usually bounded) length to be treated as
phrases and assigning phrase translation probabilities. Thus, the basic transla-
tion unit is a phrase pair, and a phrase decomposition probability distribution
is added to the model. The table of phrase pairs is obtained from alignments
obtained by training the IBM models. However, these alignments are map-
pings, i.e., one English word is always mapped to at most one foreign word. For
many-to-many alignments, the pipeline is usually run in both directions, and the
resulting alignments are then merged. A notable exponent of the phrase-based
approach is the alignment template system (Och and Ney, 2004). The align-
ment template system has also been implemented using a cascade of weighted
finite-state string transducers (Kumar and Byrne, 2003), proving the value of
automata and formal language theory for application use.

Chapter 4

Theory

Contents
4.1 Bimorphism machine translation 37

4.1.1 From inference rules to bimorphisms 38
4.1.2 A generative story . 40

4.2 Synchronous grammar formalisms 44
4.2.1 Empirical adequacy 47
4.2.2 Theoretical properties 50
4.2.3 Related work . 53

This chapter will develop a theory of bimorphism machine translation. We
move to hierarchical models and replace the noisy channel model and the log-
linear model by a symmetric generative process on the basis of bimorphisms,
motivated by inference rules. Towards the end of the chapter, a variety of
synchronous grammar formalisms are discussed, and our choice of multi bottom-
up tree transducers as the default formalism in the rest of this dissertation is
backed up.

4.1 Bimorphism machine translation
The models discussed so far are centered around the notion that sentences are
essentially sequences of words or phrases. However, it is widely accepted that
words can be grouped into phrases, phrases can be grouped into bigger phrases,
which in turn can be grouped in a hierarchical fashion until we arrive at a
“phrase” spanning the entire sentence. In this way, the internal structure of a
sentence can be represented by a parse tree (see Section 3.2.2). We will dis-
tinguish between “pseudo-syntax based” models that introduce a tree structure
that does not necessarily match linguistic analysis, and “syntax-based models”
whose input and output trees coincide with parse trees.

38 Chapter 4. Theory

Most hierarchical machine translation systems implement a synchronous
grammar formalism for the translation model. Synchronous grammars cap-
ture the intuition of a generative process that derives both the source and the
target sentence simultaneously, using the same set of production rules. Every
rule thus contains a source and a target part, as well as some kind of relation
between source and target part.

When hierarchical phrases are modelled without incorporating linguistic in-
formation, this is usually a string-based synchronous grammar. A common
choice is synchronous context-free grammar (SCFG, Satta and Peserico (2005)),
but restricted forms of SCFG are also widely used. Hiero (Chiang, 2007) uses
only one equivalence class X (and an additional equivalence class S for con-
catenation), while inversion transduction grammar (Wu, 1997) and inversion-
invariant transduction grammar (Wu, 1995) put restrictions on the form of the
production rules.

4.1.1 From inference rules to bimorphisms
We will formalize the intuitive notion of inference rules put forward in the
introduction. To this end, we will decouple the language-dependent realizations
from the mechanism that generates well-formed structures of inference rules. We
will use a weighted regular tree language to model the way in which inference
rules can be combined, and we will use functions that operate on derivation trees
to map into arbitrary structures (in particular, trees) instead of only strings.

To this end, let Σ be a ranked alphabet, and let A and B be sets. A family of
mappings (hk : Σ(k) → A(Ak) | k ∈ N) determines a homomorphism h : TΣ → A
by

h(t) = hk(σ)(h(t1), . . . , h(tk)) (17)

for every t = σ(k)(t1, . . . , tk) ∈ TΣ. Intuitively, hk assigns a k-ary operation over
A to every σ ∈ Σ(k).

A weighted bimorphism is a weighted relation of the form f−1 ;L ; g where
f : TΣ → A and g : TΣ → B are homomorphisms, and L ∈ REC(Σ). Note that L
is weighted, but f and g are unweighted. We may also write (f, L, g), especially
if we want to highlight the components instead of the resulting relation. For
given classes X,Y of homomorphisms on TΣ, we write

B(X,Y) = {f−1 ;L ; g | L ∈ REC(Σ), f ∈ X, g ∈ Y } . (18)

Bimorphisms were first defined by Arnold and Dauchet (1982). In particular,
we will now consider the case where Σ is a ranked alphabet of inference rules, L
is a weighted language that scores these inference rules and their combinations,
and f : TΣ → TF or f : TΣ → F, and g : TΣ → TE or g : TΣ → E. In this way,
we can reason about translation spaces TF × TE of trees, or mixed models for
tree-to-string (TF × E) or string-to-tree (F × TE) translation.
Example 7 (Bimorphism for an SCFG.)
In this example (adapted from Chiang (2006)), we specify an SCFG between

4.1 Bimorphism machine translation 39

English (E) and Japanese that was transliterated17 (J) as a bimorphism =̂ =
(in, LG, out), where G = (Q,P, I) is a (trivially) weighted tree automaton over
the ranked alphabet of inference rules Σ = {1(2), 2(2), 3(0), 4(0), 5(0)} with

Q = {S,NP,VP,V}

I(q) =

{
1 if q = S
0 otherwise

P = {(S, 1(NP,VP), 1), (VP, 2(V,NP), 1),
(NP, 3(), 1), (NP, 4(), 1), (V, 5(), 1)}

In addition to =̂, this implicitly specifies relations =̂V, =̂VP, =̂NP, and =̂S = =̂
because of the states in Q. Let in : TΣ → E and out : TΣ → J be defined by:

in(1)(x1, x2) = x1x2 out(1)(x1, x2) = x1x2

in(2)(x1, x2) = x1x2 out(2)(x1, x2) = x2x1

in(3)() = i out(3)() = watashi wa
in(4)() = the box out(4)() = hako wo
in(5)() = open out(5)() = akemasu

Note how the word order differs in rule 2. A synchronous application of in and
out to the derivation tree t = 1(3, 2(5, 4)) yields the following string pair in =̂:

i =̂NP watashi wa (3)
open =̂V akemasu (5) the box =̂NP hako wo (4)

open the box =̂VP hako wo akemasu (2)

i open the box =̂ watashi wa hako wo akemasu (1)

Let us introduce an important class of homomorphisms. To this end, let ∆
and Σ be ranked alphabets, and let Xn = {xi | i ∈ [n]} be a set of variables
for every n ∈ N. A family f of mappings

(
fk : ∆(k) → TΣ(Xk)

)
determines a

homomorphism hf : T∆ → TΣ, called tree homomorphism, given by

hf (δ(t1, . . . , tk)) = ξ(fk(∆)) (19)

for every δ ∈ ∆(k), where ξ : Xk → TΣ is the ground substitution defined by
ξ(xi) = hf (ti). If | pos{x}(fk(δ))| ≤ 1 for every x ∈ Xk and δ(k) ∈ ∆, then
h is linear. If | pos{x}(fk(δ))| ≥ 1 for every x ∈ Xk and δ(k) ∈ ∆, then h is
nondeleting (or complete). The class of tree homomorphisms will be denoted
HOM, and the class of linear and nondeleting tree homomorphisms, which coin-
cides in expressive power with the class lnh-BOT of tree transformations com-
puted by linear nondeleting homomorphic bottom-up tree transducers (Engel-
friet et al., 2009) will be denoted ln-HOM.

17The original spelling of the derived Japanese sentence is: 私は箱を開けます。

40 Chapter 4. Theory

Let h : T∆ → TΣ be a tree homomorphism. If L is a weighted regular tree
language over Σ, then h−1(L) is a weighted regular tree language over∆. A func-
tional relabeling (or delabeling) is a mapping r :

∪
k∈N ∆(k) → Σ(k). It defines a

tree homomorphism hr determined by the family
(
rk : ∆(k) → TΣ(Xk)

)
where

rk(δ) = r(δ)(x1, . . . , xk) for every δ(k) ∈ ∆. We denote the class of delabelings
by REL.
Example 8 (Tree homomorphisms)
Recall the bimorphism (in, LG, out) from Example 7. Let us now replace the
string concatenation operations by suitable tree-building operations. We define
tree homomorphisms in′ : T∆ → TE and out′ : T∆ → TJ :

in′(1)(x1, x2) = S(x1, x2) out′(1)(x1, x2) = S(x1, x2)
in′(2)(x1, x2) = VP(x1, x2) out′(2)(x1, x2) = VP(x2, x1)

in′(3)() = NP′(i) out′(3)() = NP(watashi, wa)
in′(4)() = NP(the, box) out′(4)() = NP(hako, wo)
in′(5)() = V(open) out′(5)() = V(akemasu)

Both in′ and out′ are linear and nondeleting. We obtain the following tree pair
(in′(t), out′(t)) ∈ (in′, LG, out′):

S

VP

NP

boxthe

V

open

NP′

i

=̂

S

VP

V

akemasu

NP

wohako

NP

wawatashi

(Note that we introduced NP′ to avoid rank conflicts.)

4.1.2 A generative story
In the previous section, we showed how to create a bimorphism translation model
based on intuitive inference rules for translational correspondence. The intuition
behind this was that we are using a bimorphism (in, L, out) with L : T∆ → [0, 1]
and homomorphisms in : T∆ → TF and out : T∆ → TE to model translation
between F and E. We will now make the connection to statistical machine
translation again. Let us go back to the original problem of modelling the
conditional probability (cf. Equation (12)):

ê = arg max
e∈E

Pr(e|f) .

We will now introduce trees to the probabilistic model. We still assume that
both f and e are generated simultaneously, but furthermore we assume that f

4.1 Bimorphism machine translation 41

in(t) ∈ TF t ∈ T∆ out(t) ∈ TE

L ∈ REC(∆)

weight L(t)

out : T∆ → TEin : T∆ → TF

Figure 13. Decoder bimorphism

and e are only the surface representation of a hidden derivation tree over some
ranked alphabet∆ of langugage-independent symbols by means of a bimorphism
D = (in, L, out). Then, for an observation of a string pair (f, e), there exists
t ∈ T∆ such that f = in(t) and e = out(t), and yield(f) = f and yield(e) = e. A
graphical representation of this generic bimorphism model is shown in Figure 13.

In the following, we assume a probability space (Ω, 2Ω,Pr) with Ω = T∆,
i.e., we assume that our elementary events are derivation trees. Furthermore,
we assume two tree homomorphisms in : T∆ → TF and out : T∆ → TE , and we
introduce four random variables TF : Ω → TF , TE : Ω → TE , SF : Ω → F and
SE : Ω → E such that

TF(t) = in(t) SF(t) = yield(in(t))
TE(t) = out(t) SE(t) = yield(out(t))

for every t ∈ Ω. For convenience, we will write Pr(f) for Pr(TF = f), Pr(e)
for Pr(TE = e), Pr(f) for Pr(SF = f) and Pr(e) for Pr(SE = e). Then
arg maxe∈E Pr(e|f) can be rewritten:

ê = arg max
e∈E

Pr(e|f)

= arg max
e∈E

Pr(f, e)
Pr(f)

= arg max
e∈E

Pr(f, e)

= arg max
e∈E

∑
t∈T∆

Pr(f, t, e) .

We note that Pr(f, t, e) = 0 if yield(in(t)) ̸= f or yield(out(t)) ̸= e. Therefore,
we can restrict t accordingly, and we can then simplify the joint probability as
follows:

ê = arg max
e∈E

∑
t∈T∆

Pr(f, t, e)

= arg max
e∈E

∑
yield(in(t))=f

yield(out(t))=e

Pr(t) .

42 Chapter 4. Theory

We will now split Pr(t) into three parts and introduce model weights. Let
λ1, λ2, λ3 ∈ [0, 1] such that λ1 + λ2 + λ3 = 1. Then

ê = arg max
e∈E

∑
yield(in(t))=f

yield(out(t))=e

Pr(t)λ1 · Pr(t)λ2 · Pr(t)λ3 .

Now we will decompose Pr(t) in two different ways. First, let in(t) = f and
yield(in(t)) = f. Note that T−1

F (f) ⊆ S−1
F (yield(f)), and therefore

Pr(t) = Pr(t, f)
= Pr(f) · Pr(t|f)
= Pr(f, f) · Pr(t|f) .

Second, let out(t) = e and yield(out(t)) = e. Since T−1
E (e) ⊆ S−1

E (yield(e)),

Pr(t) = Pr(t, e)
= Pr(t|e) · Pr(e)
= Pr(t|e) · Pr(e, e)

= Pr(t|e) · Pr(e, e)Pr(e) · Pr(e) .

We therefore obtain

Pr(t) = Pr(t)λ1 · Pr(t)λ2 · Pr(t)λ3

=
(
Pr(f, f)︸ ︷︷ ︸

parser

·Pr(t|f)︸ ︷︷ ︸
forward

)λ1 · Pr(t)︸ ︷︷ ︸
symm.

λ2 ·

(
Pr(t|e)︸ ︷︷ ︸
backward

· Pr(e, e)Pr(e)︸ ︷︷ ︸
synLM

·Pr(e)︸ ︷︷ ︸
LM

)λ3

. (20)

This decomposition allows us to model each of the six factors separately, in the
hopeful assumption that individual weaknesses of sub-models will be balanced
by other sub-models. Furthermore, the variation of λ1, λ2, λ3 allows us to give
the models different weight according to how well they approximate the actual
probability distributions. Again, this can be modeled as a specific instance of
the maximum entropy framework. We choose the following approximations to
model the individual factors:

• Pr(f, f) is the probability of the tree f and the sentence f occuring, or
simply the probability of the tree f . This is modeled by the score that a
parser PF : TF → [0, 1] assigns to f , assuming that PF models a probabil-
ity distribution on trees. We will refer to our approximation by a weighted
regular tree language F1.

• Pr(t|f) is the probability of derivation t given tree f . This is called forward
translation probability and can be modeled as an aspect of the generative
process by the weighted regular tree language T1.

4.1 Bimorphism machine translation 43

• Pr(t) is the probability of the elementary event t, i.e., the derivation t. It
corresponds to the symmetric translation probability and can be modeled
as part of the generative process. In the bimorphism formulation of the
generative process, it is modeled by the weighted regular tree language T2.

• Pr(t|e) is the probability of derivation t given tree e. This is called back-
ward translation probability and can be modeled as an aspect of the gen-
erative process by the weighted regular tree language T3.

• Pr(e, e) ·Pr(e)−1 is the probability of the tree e, divided by the probability
of the string e, i.e., all trees with yield e. The numerator can again be
modeled by a parser PE : TE → [0, 1], while the denominator can be
obtained as the language weight of PE ∩ yield−1(e). Together, this factor
may be interpreted as a syntactic language model, and is modeled by the
weighted regular tree language E1.

• Pr(e) is the probability of the string e. An alternative (and arguably more
reliable) way to estimate Pr(e) is to use an n-gram language model. We
will model it by the weighted regular tree language E2.

We can therefore write the generative process D in weighted bimorphism form,
i.e.,

D = (in, L, out) , (21)

where
L = (F1 · T1)

λ1 · Tλ2
2 · (T3 · E1 · E2)

λ3

= Fλ1
1︸︷︷︸

=F

·Tλ1
1 · Tλ2

2 · Tλ3
3︸ ︷︷ ︸

=T

·Eλ3
1 · Eλ3

2︸ ︷︷ ︸
=E

. (22)

The weighted regular tree language L = F · T · E will assign scores to the
derivation trees, i.e., L : T∆ → R. Since the derivation trees implicitly contain
all the information about the input and output sentence, the sub-models can be
evaluated directly on the derivation trees as well. In this way, we can score not
only the translation, but also incorporate the language model. Furthermore, we
are able to score syntactic annotations on the input language or use scores from
a probabilistic parser. In a similar way as explained in Section 3.3.2, we could
also deviate and formulate a maximum entropy model instead. See Section 6.2
for an experiment that compares this approach with a maximum entropy model.

The set of all derivation trees for a natural language tree pair (f, e) ∈ TE×TF
is

D(f, e) = {t ∈ T∆ | in(t) = f ∧ out(t) = e} .

Hence, the best translation tree e for an input tree f is approximated by:

ê ∝ arg max
e

∑
t∈D(f,e)

L(t) . (23)

44 Chapter 4. Theory

However, we have to account for the fact that the input is given as a string, and
the output should also be a string, thus:

ê ∝ arg max
e

∑
t∈D(f,e)

L(t) , (24)

where D(f, e) = {t ∈ T∆ | yield(in(t)) = f ∧ yield(out(t)) = e}.
Before we return to the question of how to compute ê, we will discuss what

kind of bimorphism, i.e., what kind of tree homomorphisms to use. Our task
now is to find a suitable formalism to model the tree transformations that appear
in natural language translation. It has been a subject of debate what formalism
is best suited. In the following sections, we will review some candidates from
the computational and the linguistic angle.

4.2 Synchronous grammar formalisms
Recall that our translation model assumes a bimorphism D = (in, L, out) with
L : T∆ → R, in : T∆ → TF and out : T∆ → TE . We can elegantly simulate the
mechanism of a synchronous grammar by identifying each rule ρ with a ranked
symbol in ∆, and the source and target rule components with the homomorphic
images in(ρ) and out(ρ), respectively.

Let us therefore describe a few common formalisms as bimorphisms. Recall
that the power of the relation computed by D = (in, L, out) depends on in and
out. By restricting the homomorphisms to certain classes, we can define classes
of bimorphisms. A broad range of synchronous grammars can be decomposed
by placing appropriate restrictions on the homomorphisms. The application of
bimorphisms in the context of synchronous grammars is not new; see for in-
stance Shieber (2006, 2014). Fortunately, the bimorphism decomposition saves
us the trouble of defining grammar formalisms, tree transducers or similar de-
vices for some types of synchronous grammars; we will now report some results
from the literature about relevant formalisms.

First, note that we usually assume in : T∆ → TF and out : T∆ → TE ,
i.e., both homomorphisms map derivations to trees. In addition to synchronous
grammars generating strings (building structure along the derivation but not
explicitly deriving trees), many formalisms have been proposed that generate
syntax trees on either the input or output side. For instance, a tree-to-string
system transforms parsed input sentences into strings in the output language,
while a string-to-tree system will take the input and build up a syntax tree in the
output language. In order to explain tree-to-string, string-to-tree and string-to-
string synchronous grammars, we can also define homomorphisms in′ : T∆ → F
or out′ : T∆ → E, i.e., string-generating homomorphisms. In particular, we can
consider the compositions in ; yield and out ; yield. The string relation yield(R)
associated with a tree relation R is {(yield(t), yield(u)) | (t, u) ∈ R}. For a
bimorphism B = (h,L, h′), this means that yield(B) = (h ; yield, L, h′ ; yield).
Figure 14 illustrates the relation between bimorphisms and the tree relations
and string relations they represent. We say that two formalisms are strongly

4.2 Synchronous grammar formalisms 45

t ∈ L

yield(in(t))

in(t)

yield(out(t))

out(t)

string translation

tree translation

outin

Figure 14. Bimorphism tree and string translation

equivalent if the classes of tree relations they define coincide. Two formalisms
are weakly equivalent if the classes of string relations associated with their tree
relations coincide.

Let us start with simple tree transducers, first introduced by Rounds (1970)
and Thatcher (1970). For unrestricted bottom-up tree transducers (defining the
class BOT), we find the following result (Engelfriet, 1975):

BOT = B(REL,HOM) . (25)

We can restrict the output homomorphism to be linear and non-deleting, and ob-
tain a bimorphism characterization of the linear non-deleting bottom-up trans-
ducer:

ln-BOT = B(REL, ln-HOM) . (26)

By lifting the relabeling restriction from the input side, the linear nondeleting
extended top-down tree transducer is obtained. We denote its class of trans-
formations by ln-XTOP, and note that it is equally powerful as the class of
transformations computed by linear nondeleting extended bottom-up tree trans-
ducers (Fülöp et al., 2011), written ln-XBOT. A decomposition result can be
found in Engelfriet et al. (2009):

ln-XTOP = ln-XBOT = B(ln-HOM, ln-HOM) . (27)

The attribute “extended” refers to the fact that when written as a transducer,
a device computing a relation in ln-XTOP can process more than one symbol
at a time, which corresponds to the inverse of the homomorphism that is used
on the input side, as opposed to a relabeling. The class ln-XTOP computes
the same relations as REL−1 ;STSG ;REL (Shieber, 2004; Fülöp et al., 2010),
i.e., a synchronous tree substitution grammar (Eisner, 2003) with relabelings
on both sides. Another way to describe this relationship is that ln-XTOP is
STSG with states (Fülöp et al., 2010). A weaker formalismus is SDTS which
can be decomposed using two quasi-alphabetic homomorphisms (qA) (Steinby
and Tîrnăucă, 2009).

46 Chapter 4. Theory

However, as already mentioned in the introduction, we find that tree homo-
morphisms cannot deal with discontiguities. We will therefore generalize tree
homomorphisms to sequences of trees. To this end, let ∆ and Σ be ranked al-
phabets, and m ∈ N+. Let Xm

n = {x(i,j) | i ∈ [n], j ∈ [m]} be a set of variables
for every n ∈ N. A family f of mappings

(
fk : ∆(k) → TΣ(X

m
k)m

)
determines a

homomorphism hf : T∆ → TmΣ , called tree m-morphism, given by

hf (δ(t1, . . . , tk)) = ξ(fk(δ)) (28)

for every δ ∈ ∆(k), where ξ : Xm
k → TΣ is the ground substitution defined by

ξ(x(i,j)) = (hf (ti))j .
Tree m-morphisms were initially defined by Arnold and Dauchet (1982).

We will write m -MM for the class of tree m-morphisms, and MM =
∪
k k -MM.

Let π1 be defined such that π1(s) is the first item of the sequence s. In this
way, {h ;π1 | h ∈ MM} (i.e., taking only the first tree of the multi-tree se-
quence) coincides with the class h-MBOT of tree transformations computed by
homomorphic multi bottom-up tree transducers (Engelfriet et al., 2009). We
note that HOM = 1-MM ;π1, which emphasizes the notion that m-morphisms
generalize homomorphisms.

Let h : T∆ → TΣ be a tree m-morphism. If L is a weighted regular tree lan-
guage over Σ, then h−1(L′) is a weighted regular tree language over ∆∪{⊥(0)},
where L′ = {(t,⊥, . . . ,⊥︸ ︷︷ ︸

m components

) | t ∈ L}. The main decomposition result using m-

morphisms used in this dissertation is the following decomposition (Engelfriet
et al., 2009):

ln-XMBOT = B(ln-HOM, h-MBOT)
= B(ln-HOM,MM ;π1) .

(29)

Note that h-MBOT = MM ;π1, i.e., h-MBOT computes tree m-morphisms, tak-
ing the first component of the m-tree sequence (Engelfriet et al., 2009). Fur-
thermore, ln-HOM ⊆ h-MBOT, and therefore ln-XTOP ⊆ ln-XMBOT. Moreover,
ln-XMBOT = l-XMBOT (Engelfriet et al., 2009), i.e., deletion does not give extra
power to this class.

When m-morphisms are also allowed on the input side, we obtain syn-
chronous forest-substitution grammars (Maletti, 2013), defining the class

SFSG = B(MM ;π1,MM ;π1) . (30)

The class SFSG is essentially the class of non-contiguous synchronous tree-
sequence substitution grammars (Zhang et al., 2008; Sun et al., 2009) with
states (Raoult, 1997; Radmacher, 2008; Maletti, 2013).

Another popular synchronous formalism is synchronous tree-adjoining gram-
mar (Shieber and Schabes, 1990; Büchse et al., 2011; Maletti, 2010a), which has
a bimorphism decomposition using a special class of tree transducers called em-
bedded transducers (ln-E). Nederhof and Vogler (2012) introduce synchronous
context-free tree grammars (SCFTG) that can simulate all the above-mentioned

4.2 Synchronous grammar formalisms 47

Formalism Bimorphism Source
ln-BOT = B(REL, ln-HOM) Fülöp et al. (2011)

BOT = B(REL,HOM) Fülöp et al. (2011)
SDTS = B(qA, qA) Steinby and Tîrnăucă (2009)

ln-XTOP = B(ln-HOM, ln-HOM) Engelfriet et al. (2009)
ln-XMBOT = B(ln-HOM,MM ;π1) Engelfriet et al. (2009)

SFSG = B(MM ;π1,MM ;π1) Raoult (1997)
STAG = B(ln-E, ln-E) Shieber (2006)

SCFTG = B(MAC,MAC) Nederhof and Vogler (2012)

Table 4. Bimorphism decomposition of selected synchronous formalisms

formalisms. Their bimorphism decomposition makes use of macro tree trans-
ducers (MAC). Table 4 summarizes bimorphism decompositions of selected for-
malisms.

We now turn our attention to string-generating synchronous grammars. Hi-
ero (Chiang et al., 2005; Chiang, 2007) extends phrase-based translation by
introducing linked variables. This implements a weaker version of the popular
synchronous context-free grammar (SCFG) formalism.

Another restriction of SCFG that has been proposed is inversion transduc-
tion grammar (Wu, 1995, 1997). For completeness, we also mention positive and
bottom-up non-erasing binary range concatenation grammars that, in turn, are
an extension of inversion transduction grammars, proposed by Søgaard (2008).
Unrestricted synchronous context-free grammar SCFG is weakly equivalent to
SDTS, STSG and ln-XTOP, despite their varying capabilities. The string-
generating power of ln-XMBOT has been studied by Gildea (2012), yielding
that ln-XMBOT is weakly equivalent to a restricted form of synchronous linear
context-free rewriting systems (SLCFRS, Kaeshammer (2013)). Furthermore,
SFSG is weakly equivalent to unrestricted SLCFRS as well as generalized multi-
text grammars (GMTG, Melamed et al. (2004)).

In the next sections, we will discuss desirable qualities of formalisms for
translation models, both from an empirical and algorithmic point of view, keep-
ing in mind the tradeoff between explanatory power and computational com-
plexity.

4.2.1 Empirical adequacy
Linguistic expressiveness is a crucial concern: can the model handle empirically
observed data, and can it do so in a straightforward, elegant manner? Moreover,
is it possible to efficiently represent patterns, and is the description succinct?
We will also report in this section whether the formalisms in question have
already been successfully applied to machine translation tasks.

In this section, we again assume a translation system from F into E, im-
plemented as a bimorphism D = (in, L, out) such that L : T∆ → R and
in : T∆ → TF and out : T∆ → TE are homomorphisms. Let f ∈ F and e ∈ E.

48 Chapter 4. Theory

t1 =̂ u1 t2 =̂ u2 t3 =̂ u3

S

VP

t3t2

t1

=̂

S

u3u1u2

Figure 15. Example of a local rotation

We will write f =̂ e if e is a possible translation of f, i.e., there exists a deriva-
tion t ∈ T∆ with L(t) ̸= 0 such that f = yield(in(t)) and e = yield(out(t)). We
will also write in(t) =̂ out(t) to indicate that the translation is possible on the
tree level. This enables us to study the capability of generalizing systematic
translation patterns.

Let us introduce a number of transformations that need to be handled.
We distinguish structural divergences that are purely syntactical, and lexical-
semantic divergences. The topic of lexical-semantic divergences in translation
has been extensively studied by Dorr (1994). She identifies a number of typical
divergences between English, Spanish and German. What the examples in her
classification have in common is that they require local reordering. Fox (2002)
studies reordering between English and French and concludes that few system-
atic reorderings can account for the majority of divergences.

Let t1, t2, t3 ∈ TF, and u1, u2, u3 ∈ TE such that t1 =̂ u1, t2 =̂ u2 and
t3 =̂ u3. Then Figure 15 shows a transformation that occurs in English-to-
Arabic translation practice (Knight, 2008) and should therefore be handled.

First, let us remark that this type of transformation can be called a local ro-
tation or reordering even though the size of the subtrees ti and ui is potentially
unbounded. However, only constituents that are separated by a bound degree
of parent and sibling relationships need to be reordered. This enables tree-based
translation models to handle rotations more easily than word-based or phrase-
based translation models, whose reordering capabilities are usually restricted.
In particular, word-based or phrase-based models with fixed reordering limit
cannot express these reorderings.

It turns out that a top-down tree transducer (a stateful tree homomor-
phism (Yamada and Knight, 2001, 2002)) can handle the local rotation in Fig-
ure 15 only if it is neither non-deleting nor linear. However, linearity and
non-deletion are two desirable properties. Moreover, the solution using deletion
and copying is rather cumbersome. Neither can Figure 15 be expressed by a
synchronous context-free grammar (SCFG). The class of transformations repre-
sented by this transformation is the class of flattenings. The property that is
needed to handle flattenings, and that both SCFG and top-down tree transduc-
ers are lacking is a property called deep attachment of variables, as pointed out

4.2 Synchronous grammar formalisms 49

by Maletti et al. (2009).
This inability to handle certain local rotations illustrates that top-down tree

transducers are not symmetric, and furthermore that they are generally inade-
quate for linguistic tasks (Shieber, 2004). Both the flattening and its inverse can
however be expressed by STSG and ln-XTOP. Mind that SCFG is only weakly
equivalent to these formalisms.

Moreover, SCFG is also weakly equivalent to SDTS, which is less powerful
than STSG because it does not have the power of deep attachment of variables.
It turns out that SDTS is also not able to handle the flattening of Figure 15.
We conclude this example by dismissing top-down tree transducers and SDTS,
and stating that STSG and more powerful formalisms have the ability to realize
local reorderings. Formalisms similar to ln-XTOP have been implemented in
tree-to-string and string-to-tree models (Huang et al., 2006; Graehl et al., 2008;
Galley et al., 2004; Neubig, 2014).

Next, let us turn to the question of non-contiguity. Recall that by assigning
a tree structure to an input sentence, a context-free parser also groups the
sentence into substrings that are the yields of the parse tree’s subtrees. We call
every subtree (and by extension its yield) a constituent of the input sentence,
with the intuition that every constituent forms a meaningful linguistic unit.
Constituents are usually classified by the label of their root.

Any constituent whose yield is a contiguous substring of the input sentence
is called a contiguous constituent, and any constituent whose yield is not a
contiguous substring of the input sentence is called a non-contiguous constituent.
We can represent non-contiguous constituents by sequences of subtrees of the
parse tree. Even though context-free parse trees, by definition, only exhibit
contiguous constituents, we can see evidence of non-contiguous constituents as
soon as we study parallel text. This has already been observed by Shieber and
Schabes (1990).

To illustrate this point, Figure 16 shows a sentence-aligned pair of En-
glish and German sentences. Both sentences have been parsed by Egret
and BitPar, respectively, and a word alignment has been generated. The
alignments between words are shown in dashed and dotted lines. We can see
that ‘went’ is aligned to ‘ist’ and ‘gegangen’, which are separated by ‘nach
hause’. This alignment is evidence that the English constituent ‘VBD(went)’
corresponds to the German non-contiguous constituent ‘(VAFIN-HD-Sg(ist),
(VVPP-HD(gegangen))’. We call this type of alignment a non-contiguous align-
ment, and we extend translational correspondence =̂ ⊆ (TF)

∗ × (TE)
∗ to se-

quences of trees between languages F and E such that we can write

(VBD(went)) =̂ (VAFIN-HD-Sg(ist),VVPP-HD(gegangen)) .

It is natural to also extend the notion of constituency to include sequences
of constituents. Like in Section 3.2.2, where we defined an equivalence re-
lation on constituents based on their root label, we can say that sequences
of constituents are in the same equivalence class whenever their root labels
match, i.e., (t1, . . . , tk) ≡ (t′1, . . . , t

′
k) if ti(ε) = t′i(ε) for every i ∈ [k] with trees

50 Chapter 4. Theory

t1, . . . , tk, t
′
1, . . . , t

′
k ∈ TL for some language L. Note how this connects to the

Myhill-Nerode theorem discussed earlier.
Other phenomena that exhibit non-contiguity appearing unbounded on the

string level, but local on the tree level are topicalization (Maletti, 2015) and
long-distance dependencies, such as agreement between constituents that are
separated by arbitrary material or German particle verbs. All of these can be
elegantly modelled in ln-XMBOT (see also Section 5.1 about rule extraction).
Other formalisms that are equipped to model non-contiguity are STAG (Shieber
and Schabes, 1990; Shieber, 2004, 2006, 2007; DeNeefe, 2011) and (the non-
contiguous variant of) synchronous tree-sequence substitution grammar (Sun
et al., 2009), or its stateful version SFSG (Maletti, 2013).

The importance of non-contiguous translation in tree-based translation has
been argued by (Sun et al., 2009), who show that allowing discontiguities in
either source or target has a beneficial effect on translation quality. In fact, their
results seem to indicate that it is enough to only allow discontiguities on one side.
In string-to-string translation, Kaeshammer (2015) implements a translation
system based on LCFRS (weakly equivalent to SFSG and GMTG). Moreover, a
variant of ln-XMBOT has been implemented in the popular Moses statistical
machine translation toolkit (Braune et al., 2013). This contribution adds shal-
low multi bottom-up tree transducers, i.e., devices that are effectively restricted
to local tree grammars. String-to-tree ln-XMBOT translation has been explored
by Seemann et al. (2015b) and produced good results. A systematic evaluation
of ln-XMBOT in machine translation can be found in (Seemann et al., 2015a).

4.2.2 Theoretical properties
In the previous section, we established that at least the power of ln-XTOP or
STSG is needed to handle most common transformations in natural language.
However, the ability to handle discontiguities is a strong argument in favor of
more powerful formalisms. We will now consider theoretical and algorithmic
properties of selected powerful formalisms, making sure to stay in the realm of
tractability.

First, let us summarize what requirements we have from the theoretical
point of view. For any given bimorphism class C of bimorphisms and for every
D = (in, L, out) such that in−1 ;L ; out ∈ C, we consider the following properties:

• L is a weighted regular tree language
We require L ∈ REC(∆), which in fact is true by the definition of bi-
morphisms. This property allows us to use closure properties along the
pipeline, and furthermore it allows us to easily use the EM algorithm to
optimize the weights of L. We will explain this in detail in Section 5.4.3.

• in−1 preserves regularity
We require that the inverse of the input homomorphism preserves regu-
larity, i.e., in−1(L) ∈ REC(∆) for every L ∈ REC(F). This is a desirable
property because the output of a parser PF will be a weighted regular

4.2 Synchronous grammar formalisms 51

S

VP

NP

NN

home

VBD

went

NP

PPER

she

S-TOP

VP-OC/pp

VVPP-HD

gegangen

PP-MO/V

ADJD-HD-Pos/N

hause

APPR-AC

nach

VAFIN-HD-Sg

ist

NP-SB/Sg

PPER-HD
-Nom.Sg.Fem

sie

Figure 16. Bilingual pair of parse trees with word alignment exhibiting a non-
contiguous alignment (red, dashdotted lines)

52 Chapter 4. Theory

tree language, and a regular representation of in−1(PF ⟨f⟩) allows us to use
closure properties, like closure under intersection, for the remaining part
of the pipeline. We will explain this in detail in Section 5.2.1. Both Equa-
tion (27) and (29) share the property that they use a tree homomorphism
as their first component. This has the algorithmic advantage that the in-
verse image of a regular tree language under a tree homomorphism is easy
to compute. Therefore, this makes a compelling argument for ln-XTOP
and ln-XMBOT, while the latter is preferred (Maletti, 2011b).

• in−1 ;L ; out preserves regularity
We deem this property (application of D preserves regularity) secondary,
as long as in−1 preserves regularity. While preservation of regularity
is a useful property because it enables bucket-brigade approaches (May
et al., 2010), this is more of a concern of individual parts of the pipeline,
not the full pipeline.

• out−1 preserves regularity
We require that the inverse of the output homomorphism preserves reg-
ularity, i.e., out−1(L) ∈ REC(∆) for every L ∈ REC(E). This allows us
to incorporate a string-based language model in a theoretically clean way.
We will explain this in detail in Section 5.3.

• out−1 ;L ; in preserves regularity
Again, we deem this property (inverse application of D preserves regular-
ity) secondary.

• C is closed under composition
In some settings, composition is useful because it allows to model a cas-
cade of components that can then be composed into a monolithic model.
Furthermore, a translation model D1 : TF → TE may be composed with
a translation model D2 : TE → TG to yield D1 ;D2 : TF → TG. In this
way, the language E serves as a pivot language for translation between
F and G. Unfortunately, the class B(ln-HOM, ln-HOM) is not closed un-
der composition. However, the class B(ln-HOM,MM ;π1) is closed under
composition and contains all compositions of B(ln-HOM, ln-HOM) which
provides a compelling argument for the use of ln-XMBOT over ln-XTOP.

• C is symmetric
This property is somewhat important from a practical point of view, as
it allows us to use the same set of algorithms for the inverse of any bi-
morphism in C. However, we deem this property secondary, since also
our probabilistic model (20) is not entirely symmetric due to the different
features for source and target.

Table 5 summarizes the relevant linguistic and theoretical properties of some
formalisms. Many of these can be found, e.g., in Maletti (2010b).

4.2 Synchronous grammar formalisms 53

ROT DIS TCH REG REG−1 CMP SYM
ln-TOP no no ? yes yes yes no

TOP yes no yes no yes no no
ln-XTOP yes no yes yes yes no yes

ln-XMBOT yes yes yes no yes yes no
SFSG yes yes yes no no no yes
STAG yes yes yes no no no yes

ROT = handles rotations
DIS = handles discontiguity

TCH = efficiently trainable
REG = preservation of regularity

REG−1 = preservation of regularity of the inverse
CMP = closure under composition
SYM = symmetry

Table 5. Linguistic and theoretical properties of selected synchronous for-
malisms

The formalism of choice in this dissertation is the linear nondeleting multi
bottom-up tree transducer (ln-XMBOT), which is the variant of multi bottom-
up tree transducer that has been deemed most suitable for machine trans-
lation (Engelfriet et al., 2009). It subsumes synchronous tree substitution
grammar and synchronous tree insertion grammar (Maletti, 2011b), but still
has some favorable properties from an algorithmic point of view. In particu-
lar, ln-XTOP ⊆ ln-XMBOT, and moreover every “sensible” transformation in
XTOP is also contained in ln-XMBOT (Maletti, 2012). In conclusion, we choose
ln-XMBOT as our default formalism because (1) its bimorphism decomposition
has favorable computational properties; and (2) it is expressive enough to handle
many syntactic phenomena elegantly.

It should be mentioned that ln-XTOP preserves regularity in both direc-
tions (Fülöp et al., 2010), while only the inverse of ln-XMBOT preserves regu-
larity. However, as long as the derivation tree language is recognizable, this does
not seem to constitute a drawback. For the expressive power of the regularity-
preserving subclass of XMBOT, see Maletti (2015).

4.2.3 Related work
The idea of using bimorphism formulations of synchronous grammar formalisms
in the context of machine translation was first discussed by Tîrnăucă (2016).
Moreover, this dissertation draws inspiration from, and has goals very similar
to the dissertation of Büchse (2015), who develops an algebraic specification of
a decoder. However, he limits the presentation to SCFG and STSG.

Many synchronous grammar formalisms can be explained in the overarching

54 Chapter 4. Theory

framework of interpreted regular tree grammars (Koller and Kuhlmann, 2011)
(iRTG). In this approach, a regular tree language models the permissible deriva-
tion trees (i.e., trees over the basic units of translation), and for both source and
target language, these trees are mapped to an algebra term via a tree homomor-
phism. Depending on the algebra, this term is then realized as a string, tree,
or other kind of structure. Our bimorphism approach is very similar. The dif-
ference is that we do not use intermediate homomorphisms, rather we map the
derivation trees to source and target objects directly using arbitrary homomor-
phisms. This way, the intermediate homorphism and the realization algebra can
be simulated by an appropriately chosen homomorphism. On the other hand,
by choosing an appropriate algebra, an iRTG can simulate any bimorphism. All
constructions in this dissertation using bimorphisms could be stated using iRTG
as well.

Chapter 5

Implementation

Contents
5.1 Rule extraction . 55

5.1.1 From parallel corpus to bimorphism 60
5.1.2 Relative frequency estimation 67

5.2 Decoding . 69
5.2.1 Input and translation models 71
5.2.2 k-best derivations . 76

5.3 Language model scoring 78
5.3.1 Syntactic language models 79
5.3.2 n-gram language models 79
5.3.3 Integration by product construction 81
5.3.4 Exact rescoring . 81

5.4 Tuning, evaluation, model optimization 82
5.4.1 Evaluation metrics . 82
5.4.2 Minimum Error Rate Training 84
5.4.3 EM training . 85

This chapter explains how to obtain a translation model and how to decode
using the models obtained this way.

5.1 Rule extraction
We will now describe how to obtain a weighted regular tree language of deriva-
tion trees as well as tree homomorphisms in and out from data. Rule extraction is
the task of automatically generating a set of translation rules, i.e., basic transla-
tion units, from a sentence-aligned, possibly word-aligned and bi-parsed parallel
corpus. Rule extraction algorithms have been described for various formalisms,
such as the extended tree-to-string transducer (Galley et al. (2004), followed up

56 Chapter 5. Implementation

by Galley et al. (2006)), where only one half of the parallel corpus is parsed.
The algorithm proposed in this section is essentially the rule extraction for SFSG
by Sun et al. (2009). A similar algorithm that extracts non-contiguous rules, but
for the string-generating SLCFRS, has been described by Kaeshammer (2015).
As a special case, we include the rule extraction algorithm for multi bottom-up
tree transducers put forward by Maletti (2011a). The rule extraction imple-
mentation included in our toolkit extracts basic translation units for the multi
bottom-up tree transducer formalism by default. This is, to the author’s knowl-
edge, the first implementation of the algorithm proposed by Maletti (2011a).
By restricting the target to contiguous constituents, basic translation units for
synchronous tree substitution grammar (Zhang et al., 2006) can be extracted.

Consider the word-aligned bilingual pair of parse trees (f, e, a) in Figure 17,
where f ∈ TF is the upper tree, e ∈ TE is the lower tree, and the word alignment
a ⊆ max pos(f)×max pos(e) is given by the dotted lines18. For convenience, and
following standard practice in natural language processing, we will use symbols
with implicit rank. For instance, e(3) and e(33) are both labeled NP but have
rank 3 and 2, respectively. This is in conflict with the definition of ranked
alphabets, but can easily be solved by replacing the symbols with NP-3 and
NP-2, making the rank explicit.

We now explain an extension of the rule extraction algorithms proposed
by Maletti (2011a), Zhang et al. (2008) and Sun et al. (2009). We will present a
two-step algorithm that first identifies in which way basic units of translations
might have been composed, and then deduces inference rules from there. We
use the intuition that whenever sequences of trees in f (or single trees for multi
bottom-up tree transducer rules) are consistently aligned to sequences of trees
in e, a translational correspondence can be established between them.

First, we need some definitions. Let U ⊆ N∗ be a finite prefix-closed position
set, i.e., pi ∈ U =⇒ p ∈ U for all p ∈ N∗ and i ∈ N. In particular, pos(t) is
such a set for every tree t. For every position p ∈ U , we define the span of p, by∧

U

p = {p′ ∈ maxU | p ⊑ p′} . (31)

If U = pos(t) for some tree t, the span of a position p is the set of all frontier
positions in the subtree rooted in p. We generalize

∧
U

in the obvious way to
subsets P ⊆ U by ∧

U

P =
∪
p∈P

∧
U

p . (32)

Furthermore, for a subset of frontier positions P ⊆ maxU , we define the closure
of P : i

U

P =
{
p ∈ U |

∧
U

p ⊆ P
}
. (33)

18Adapted from “A Failed Global Recovery” by Stephen S. Roach https://www.project-
syndicate.org/commentary/a-failed-global-recovery with slight changes. The original
phrasing is: “Most pundits dismiss the possibility of a double-dip recession”. The German
translation is: “Die meisten Beobachter schließen die Möglichkeit einer W-förmigen Rezession
aus.”

https://www.project-syndicate.org/commentary/a-failed-global-recovery
https://www.project-syndicate.org/commentary/a-failed-global-recovery

5.1 Rule extraction 57

ε

S

2

VP

22

NP

222

PP

2222

NP

22222

NN

222221

recession

22221

DT

222211

a

2221

IN

22211

of

221

NP

2212

NN

22121

possibility

2211

DT

22111

the

21

VB

211

dismiss

1

NP

12

NNS

121

pundits

11

JJS

111

most

S
ε

PTKVZ
4

aus
41

NP
3

NP
33

NN
332

Rezession
3321

ART
331

einer
3311

NN
32

Möglichkeit
321

ART
31

die
311

VVFIN
2

schließen
21

NP
1

NN
13

Experten
131

PIAT
12

meisten
121

ART
11

die
111

Figure 17. Bilingual pair of parse trees with word alignment (f, e, a)

58 Chapter 5. Implementation

Example 9
Consider f in Figure 17. We have

∧
pos(f)

{1} = {111, 121} and
∧

pos(f)

{21} = {211}.

Therefore,i
pos(f)

∧
pos(f)

{1, 21} =
i

pos(f)
{111, 121, 211} = {1, 11, 111, 12, 121, 21, 211} .

We will drop the subscript whenever it is clear from the context. Recall that ⊑
is a partial order on positions, therefore we can make use of the min operation
for a given subset P ⊆ U :

minP = {p ∈ P | ∀p′ ∈ P : p′ ⊑ p =⇒ p′ = p} .

Intuitively, this is the set of highest positions in P . For each subset of frontier
positions P ′ ⊆ maxU , the set min

a
U P

′ is called the minimal position set of
P ′.
Example 10
Consider f in Figure 17. We have

min
i

pos(f)

∧
pos(f)

{1, 21} = min{1, 11, 111, 12, 121, 21, 211} = {1, 21} and

min
i

pos(f)

∧
pos(f)

{11, 12} = min{1, 11, 111, 12, 121} = {1} .

Lemma 1
Let U ⊆ N∗ be a finite prefix-closed position set. For all P, P ′ ⊆ maxU , we
have

P = P ′ ⇐⇒
i
P =

i
P ′ ⇐⇒ min

i
P = min

i
P ′ .

Proof. P = P ′ trivially implies
a
P =

a
P ′, and

a
P =

a
P ′ trivially implies

min
a
P = min

a
P ′. To complete the circle, let p ∈ P . Then p ∈

a
P and

thus there exists p′ ∈ min
a
P such that p′ ⊑ p. Consequently, p′ ∈

a
P ′, which

yields that p ∈ P ′ because p ∈
∧
U
p′ ⊆ P ′. This proves P ⊆ P ′, and P ′ ⊆ P

can be proved in the same manner.
□

Now suppose we have (f, e, a) like in Figure 17, with the source tree f ∈ TF
and the target tree e ∈ TE , as well as an alignment relation a ⊆ max pos(f) ×
max pos(e). Let Uf = {p ∈ pos(f) | ∃p′ ∈ dom(a) : p ⊑ p′} and Ue = {p ∈
pos(e) | ∃p′ ∈ ran(a) : p ⊑ p′}. Intuitively, this removes unaligned frontier nodes
and positions that do not dominate at least one aligned frontier node.

We can now formalize the set of minimal consistently aligned position sets by
defining that B ⊆ Uf and B′ ⊆ Ue are consistently aligned, written B ▷◁(f,e,a)

5.1 Rule extraction 59

B′, if there exist P ⊆ dom(a) and P ′ ⊆ ran(a) such that

a(P) = P ′ and a−1(P ′) = P and

B = min
i
Uf

P and B′ = min
i
Ue

P ′ . (34)

We drop the subscript on ▷◁ whenever it is clear from the context. Intuitively,
B ▷◁ B′ defines a unit of translation, i.e., the tree sets {f |b | b ∈ B} and
{e|b′ | b′ ∈ B′} can be synchronously generated in one derivation step.

We can use a shortcut to check for a given position set B ⊆ Uf whether
there exists B′ ⊆ Ue such that B ▷◁ B′.

Lemma 2

min
i
Uf

a−1

a
∧
Uf

B

 = B =⇒ B ▷◁ min
i
Ue

a

∧
Uf

B

 and

min
i
Uf

a−1

a
∧
Uf

B

 ̸= B =⇒ B ̸∈ dom(▷◁) .

Proof. For clarity, we drop the subscript Uf . We observe that
∧
B ⊆ a−1(a(

∧
B)),

which yields min
a∧

B ⊆ min
a
a−1(a(

∧
B)) = B using the assumption. To-

gether with B ⊆
a∧

B and minB = B we obtain

min
i
a−1

(
a

(∧
B

))
= min

i∧
B

a−1

(
a

(∧
B

))
=
∧
B

a−1 (a (P)) = P .

by Lemma 1. For the second implication, B ∈ dom(▷◁) implies that there
exists P ⊆ dom(a) such that min

a
P = B, and furthermore P = a−1(P ′) =

a−1(a(P)), which implies min
a
a−1 (a (P)) = B. From min

a
P = B, it follows

that
∧
B = P , which implies min

a
a−1

(
a
(∧

B
))

= B.
□

Example 11
In Figure 17, Uf = pos(f) and Ue = pos(e) because a is total and surjective. All
positions p ∈ pos(f) such that min

a
a−1

(
a
(∧

{p}
))

= {p} have been marked
with a box. These are all singleton position sets in pos(f) that are consistently

60 Chapter 5. Implementation

aligned to position sets in pos(e). The relation ▷◁ is given by:

{ε} ▷◁ {ε} {1} ▷◁ {1} {11} ▷◁ {11, 12}
{12} ▷◁ {13} {2} ▷◁ {2, 3, 4} {21} ▷◁ {2, 4}
{22} ▷◁ {3} {221} ▷◁ {31, 32} {2211} ▷◁ {31}

{2212} ▷◁ {32} {222} ▷◁ {33} {22222} ▷◁ {332} .

Recall that the relation ▷◁ is the set of all pairs of consistently aligned position
sets. We extend the partial order ⊑ to dom(▷◁) such that:

B1 ⊑ B2 ⇐⇒ ∀b2 ∈ B2 : ∃b1 ∈ B1 : b1 ⊑ b2 .

Now let us define a relation ⌣ denoting units of translation by extending ▷◁ to
larger structures. Let B ∈ dom(▷◁), and C ⊆ dom(▷◁) such that B ▷◁ B′ and
C ▷◁ C ′. Then a unit of translation is given by (B,C)⌣ (B′, C ′) if

• B ⊏ Ci for all Ci ∈ C, and

• for all different Ci, Cj ∈ C, all bi ∈ Ci and bj ∈ Cj are incomparable with
regard to ⊑ (implying that for all different C ′

i, C
′
j ∈ C ′, all b′i ∈ C ′

i and
b′j ∈ C ′

j are incomparable with regard to ⊑).

(Note that this condition implies that all different Ci, Cj ∈ C (and C ′
i, C

′
j ∈

C ′) are disjoint, and furthermore that
∧
Ci and

∧
Cj , and

∧
C ′
i and

∧
C ′
j are

disjoint.)
Let M ⊆ ▷◁. The unit of translation (B,C) ⌣ (B′, C ′) is an M -unit of

translation if (B,B′) ∈M and (Ci, C
′
i) ∈M for every Ci ∈ C such that Ci ▷◁ C ′

i.
It is M -minimal if there are no M -units (B,C1) ⌣ (B′, C ′

1) and (B1, C2) ⌣
(B′

1, C
′
2) of translation such thatB1 ∈ C1 (andB′

1 ∈ C ′
1) and C = C1−{B1}∪C2.

5.1.1 From parallel corpus to bimorphism
We can now infer a bimorphism from units of translation found in a parallel
corpus. Our intuition is that units of translations can be composed if and only
if their nonterminal symbols in the root and frontier positions match. This is
otherwise known as locality, since the derivation tree language will be local. We
will be using pairs of sequences of labels as states, using the =̂ symbol to appeal
to the intuition about translational correspondences from the introduction.

Let (B,C)⌣ (B′, C ′) be a unit of translation. In order to extract a canoni-
cal production rule, we notice that the position sets in C can be ordered lexico-
graphically, and because Ci ∩Cj = ∅ for all different Ci, Cj ∈ C, we have either
C≤
i ≤ C≤

j or C≤
j ≤ C≤

i , and therefore this again defines a linear order. From
now on, for convenience, we assume that C≤ = (C1, . . . , Ck) and Ci ▷◁ C

′
i for

every i ∈ [k]. We define a way to turn sets of positions into sequences of symbols
in canonical order by letting t(P) = (t(p1), . . . , t(pn)) where P≤ = (p1, . . . , pn),
i.e., the sequence of labels in lexicographic order, for every tree t over any ranked
alphabet and P ⊆ pos(t). Similarly, we write t|P for (t|p1 , . . . , t|pn).

5.1 Rule extraction 61

In order to motivate the construction that follows, let us first examine the
intuitive inference rule described by (B,C)⌣ (B′, C ′) which can be represented
by:

f |C1 =̂ e|C′
1

· · · f |Ck
=̂ e|C′

k

f |B =̂ e|B′
.

Arguing that the type of a subtree is defined by its root position (recall the
argument about equivalence classes of trees from Section 3.2.2, and equivalence
classes of sequences of trees from Section 4.2.1), we will replace the positions
by symbols, and use sequences of symbols as states in the tree automaton that
we will construct. Then (B,C) ⌣ (B′, C ′) can be represented by a state and
a sequence of states (which for illustrative purposes will still be written in the
style of an inference rule)

f(C1) =̂ e(C ′
1) · · · f(Ck) =̂ e(C ′

k)

f(B) =̂ e(B′)
,

and partial mappings in : (T ∗
F)
k → T ∗

F and out : (T ∗
E)

k → T ∗
E such that

in(f |C1
, . . . , f |Ck

) = f |B and
out(e|C′

1
, . . . , e|C′

k
) = e|B′ .

Let X = {x(i,j) | i, j ∈ N} be a set of variables, and let us define two mappings
vf :

∪k
i=1 Ci → X and ve :

∪k
i=1 C

′
i → X such that:

index(Ci)(p) = j =⇒ vf (p) = x(i,j) for all p ∈
k∪
i=1

Ci and

index(C ′
i)(p

′) = j =⇒ ve(p
′) = x(i,j) for all p′ ∈

k∪
i=1

C ′
i .

These mappings are unambiguously defined because Ci∩Cj = ∅ and C ′
i∩C ′

j = ∅
for all i ̸= j. Now we can define in and out as follows:

in(f1, . . . , fk) = ξ(f ′|B) and
out(e1, . . . , ek) = ξ′(e′|B′) ,

where ξ(x(i,j)) = (fi)j and ξ′(x(i,j)) = (ei)j are ground substitutions, and f ′

and e′ are obtained by chained replacement of subtrees by variables as follows:

f ′ = (. . . f [vf (C
≤
1)]

C
≤
1
. . .)[vf (C

≤
k)]C≤

k
and

e′ = (. . . e[ve(C
′
1
≤)]C′

1
≤ . . .)[ve(C

′
k
≤)]C′

k
≤ .

Note that in and out are determined by f ′|B and e′|B′ , respectively.
Additionally, we may keep information about the lexical alignments by re-

stricting a to positions in
∧
B and

∧
B′ that are not covered by any position set

in
∧
C or

∧
C ′, adjusting the positions as needed. For every (bi, b

′
j) ∈ B×B′, let

((i, p), (j, p′)) ∈ a′ if (bi.p, b′j .p′) ∈ a and c ̸⊑ bi.p for any c ∈
∪
C and c′ ̸⊑ b′j .p

′

for any c′ ∈
∪
C ′.

62 Chapter 5. Implementation

Example 12 (Rule excision.)
Let us excise an inference rule for the unit of translation given by

({2}, {{21}, {221}, {222}})⌣ ({2, 3, 4} {{2, 4}, {31, 32}, {33}})
{2} ▷◁ {2, 3, 4}
{21} ▷◁ {2, 4}
{221} ▷◁ {31, 32}
{222} ▷◁ {33} .

The relevant sequences of symbols are:

f({2}) = (VP) e({2, 3, 4}) = (VVFIN,NP,PTKVZ)
f({21}) = (VB) e({2, 4}) = (VVFIN,PTKVZ)
f({221}) = (NP) e({31, 32}) = (ART,NN)

f({222}) = (PP) e({33}) = (NP) .

Then the state and state sequence are

(VB) =̂ (VVFIN,PTKVZ) (NP) =̂ (ART,NN) (PP) =̂ (NP)
(VP) =̂ (VVFIN,NP,PTKVZ)

.

The mappings vf and ve are defined by:

vf (21) = x(1,1) vf (221) = x(2,1) vf (222) = x(3,1)

ve(2) = x(1,1) ve(4) = x(1,2) ve(31) = x(2,1)

ve(32) = x(2,2) ve(33) = x(3,1) .

We use vf and ve to replace positions by variables in f and e as follows:

f ′ = f [x(1,1)︸ ︷︷ ︸
vf (21)

]21 [x(2,1)︸ ︷︷ ︸
vf (221)

]221 [x(3,1)︸ ︷︷ ︸
vf (222)

]222 and

e′ = e [x(1,1)]2︸ ︷︷ ︸
ve(2)

[x(1,2)︸ ︷︷ ︸
ve(4)

]4 [x(2,1)︸ ︷︷ ︸
ve(31)

]31 [x(2,2)︸ ︷︷ ︸
ve(32)

]32 [x(3,1)︸ ︷︷ ︸
ve(33)

]33 .

Then in(f1, f2, f3) = ξ(f ′|{2}), and out(e1, e2, e3) = ξ′(e′|{2,3,4}) because {2} ▷◁
{2, 3, 4}, with ξ and ξ′ defined as above. Figure 18 shows a graphical represen-
tation, with in given by f ′|{2} and out given by e′|{2,3,4}.
Now let C = ((f1, e1, a1), . . . , (fn, en, an)) be a parallel, parsed, word-aligned
corpus of length n where ai ⊆ max pos(fi)×max pos(ei). For every i ∈ [n], let
⌣i be the set of Mi-units of translation of (fi, ei, ai), where Mi ⊆ ▷◁(fi,ei,ai).
Recall that for every unit of translation (B,C) ⌣i (B′, C ′), we extracted a
quintuple (q, (q1, . . . , qk), f

′|B , e′|B′ , a′) of

• a state q ∈ Fm × En,
• a state sequence (q1, . . . , qk) ∈ (F ∗ × E∗)k,

5.1 Rule extraction 63

• a tree sequence f ′|B ∈ TF (X)m,
• a tree sequence e′|B′ ∈ TE(X)n, and
• a terminal alignment relation

a′ ⊆
(∪
i∈[m]

{i} ×max pos((f ′|B)i)
)
×
(∪
j∈[n]

{j} ×max pos((e′|B′)j)
)
.

Let us define a mapping ρ that maps every unit of translation in
∪
i∈[n] ⌣i

to such a quintuple by the procedure laid out above. Then let ∆ be a ranked
alphabet such that every ρ((B,C) ⌣i (B

′, C ′)) = (q, (q1, . . . , qk), f
′|B , e′|B′ , a′)

is a k-ary symbol in ∆. Now let C = (Q, I, P) be a weighted tree automaton
such that

Q = {q | (q, (q1, . . . , qk), f ′|B , e′|B′ , a′) ∈ ∆}

P (q, δ(q1, . . . , qk)) =

{
1 if δ = (q, (q1, . . . , qk), f

′|B , e′|B′ , a′) ∈ ∆

0 otherwise

I(q) =

{
1 if q = fi(ε) =̂ ei(ε) for some i ∈ [n]

0 otherwise.

(35)

Finally, we observe that in and out as defined above extend to a homomorphism
(more precisely, an m-morphism) over ∆, and therefore (in ;π1, LC, out ;π1) is a
bimorphism in the class B(MM ;π1,MM ;π1) = SFSG. This way, we subsume:

• Rule extraction for non-contiguous synchronous tree sequence substitution
grammar (STSSG, Sun et al. (2009)), where M = ▷◁, and m-morphisms
are used on both the source and the target side.

• Rule extraction for linear and nondeleting extended multi bottom-up tree
transducers (ln-XMBOT), where

M = ▷◁ ∩
({

{p} | p ∈ pos(f)
}
× 2pos(e)

)
,

such that only tree homomorphisms are needed on the source side. An
ln-XMBOT rule (q, (q1, . . . , qk)), f

′|B , e′|B′ , a′) is traditionally represented
by f ′′ → e′|B′ (where f ′′ is the only tree in f ′|B), with variables replaced
by the corresponding label. More precisely, a variable x(i,j) is replaced in
f ′′ by the j-th component of the left-hand side of qi, and in e′|B′ by the
j-th component of the right-hand side of qi. The states are implicitly rep-
resented by links between these symbols, and the variables can be easily
reconstructed using the lexicographic ordering of positions in f ′′. Dot-
ted lines indicate the terminal alignment a′. Figure 19 shows the more
common representation of the rule from Figure 18.

• Extraction of minimal rules for ln-XMBOT (Maletti (2011a)): like above,
but only extracting M -minimal rules. All minimal rules that can be ex-
tracted from the example (f, e, a) are given in Figures 20, 21 and 22.

64 Chapter 5. Implementation

(VB) =̂ (VVFIN,PTKVZ) (NP) =̂ (ART,NN) (PP) =̂ (NP)
(VP) =̂ (VVFIN,NP,PTKVZ)

in(f1, f2, f3) = ξ

(VP

NP

x(3,1)x(2,1)

x(1,1)

)

out(e1, e2, e3) = ξ′

(
x(1,1) ,

NP

x(3,1)x(2,2)x(2,1)

, x(1,2)

)

Figure 18. Non-minimal rule

Figure 20 shows all minimal rules that have no nonterminal leaves (“lexi-
cal” rules). Figure 21 shows all minimal rules that have no terminal leaves
(“structural” rules). Figure 22 shows a rule that has both terminal and
nonterminal leaves (“hybrid” rules). In practice, this distinction is not
important.

• Rule extraction for synchronous tree substitution grammar (STSG) or ex-
tended top-down tree transducers (ln-XTOP), where only homomorphisms
are allowed on the source and the target side:

M = ▷◁ ∩
({

{p} | p ∈ pos(f)} × {{p′} | p′ ∈ pos(e)
})

.

Extensions of this rule extraction algorithm come to mind. For instance, we
only explained rule extraction for context-free parse trees. Rules for grammar
formalisms that make a difference between derivation tree and derived tree (for
instance, tree-adjoining grammar) might be extracted from the derivation trees.
Word alignments should be put on the leaf symbols of the derived tree corre-
sponding to the production rules that introduced these words. The mapping
between derivation trees and derived trees will then be part of the input and
output homomorphisms. Furthermore, rule extraction from forests instead of
single trees has been suggested (Mi and Huang, 2008). We note that an exten-
sion of our rule extraction to forests (represented as weighted tree automata) is
possible, but not trivial because in the presence of discontiguities, it should be
ensured that any given sequence of states used in a rule can be obtained as part
of a non-zero run of the forest.

Another possibility to extend rule extraction are weighted alignments. As-
sume a weighted alignment relation max pos(f) × max pos(e) → R. Then a
weighted version of ▷◁ may be defined, licensing the extraction of rules whose

5.1 Rule extraction 65

VP

NP

PPNP

VB
VVFIN

NP

NPNNART
PTKVZ→

(
, ,

)

Figure 19. MBOT rule representation

JJS

most

ART

die

PIAT

meisten
→
(

,

) NNS

pundits

NN

Experten
→
()

VB

dismiss

VVFIN

schließen

PTKVZ

aus
→
(

,

) DT

the

ART

die
→
()

NN

possibility

NN

Möglichkeit
→
() NN

recession

NN

Rezession
→
()

Figure 20. Minimal, purely lexical rules

66 Chapter 5. Implementation

NP

NNSJJS

NP

NNPIATART
→

()

NP

NNDT
ART NN→

(
,

)

NP

PPNP

NP

NPNNART
→

()

VP

NPVB
VVFIN NP PTKVZ→

(
, ,

)

S

VPNP

S

PTKVZNPVVFINNP
→

()

Figure 21. Minimal, purely structural rules

5.1 Rule extraction 67

PP

NP

NNDT

a

IN

of

NP

NNART

einer

→
()

Figure 22. Minimal, hybrid rule

alignments have non-zero weight, but assigning to every extracted rule the
weight of its alignment for rule scoring purposes. We will not discuss this
method of assigning weights, however we will discuss how to assign weights
based on relative frequency of the extracted patterns.

5.1.2 Relative frequency estimation

Next, we will describe how to assign weights to the productions of the tree
automaton constructed in the previous section. Recall that, according to the
construction in Equation (35), there is exactly one non-zero production for every
symbol of the ranked alphabet ∆ of translation rules, and therefore we can
specify a weight function w : ∆ → R to define the production weights. This
extends to a feature function ϕw : T∆ → R in the natural way, i.e., ϕw(t) =∏
p∈pos(t) w(t(p)). (This means that ϕw can be written as a homomorphism.)
Recall the mapping ρ from the previous section, and let #(δ) = |ρ−1(δ)|.

This mapping associates to every translation rule its count, i.e., how often it was
extracted. We can normalize counts by grouping rules that share a feature, e.g.,
all rules that share the same left-hand (relative-frequency estimation), and we
can use lexical weighting. Relative-frequency estimation is a computationally
cheap way of obtaining rule scores. Essentially, we are making the simplifying
assumption that the sentence pair (f, e) has a canonical derivation, namely
the derivation that used exactly the rules that we obtained from it. Other
possible derivations are disregarded. In Section 5.4.3, we will discuss a method
of obtaining rule scores that takes into account all possible derivations that
explain (f, e).

To normalize counts among competing rules, we assume an equivalence re-

68 Chapter 5. Implementation

lation ∼ on ∆. Then for every δ ∈ ∆,

ϕ∼(δ) =
#(δ)∑

δ′∈[δ]∼
#(δ′)

(36)

is the score that a feature function ϕ∼ defined by ∼ assigns to δ. Assume
δ = (q, (q1, . . . , qk), f, e, a) and δ′ = (q′, (q′1, . . . , q

′
k′), f

′, e′, a′). Let q = ℓ =̂ r,
q′ = ℓ′ =̂ r′, and qi = ℓi =̂ ri as well as q′j = ℓ′j =̂ r′j for every i ∈ [k] and
j ∈ [k′]. Typical equivalence classes for feature functions are:

• δ ∼ δ′ if (q1, . . . , qk) = (q′1, . . . , q
′
k′), or if q = q′; this can be used to model

the symmetric translation probability.

• δ ∼ δ′ if ℓ = ℓ′, or k = k′ and ℓi = ℓ′i for every i ∈ [k], or if f = f ′; this
can be used to model the forward translation probability.

• δ ∼ δ′ if r = r′, or k = k′ and ri = r′i for every i ∈ [k], or if e = e′; this
can be used to model the backward translation probability.

All of these somehow convey the notion that δ and δ′ are “competitors”.
Example 13
Let ∆ be the set of rules in Figures 20, 21 and 22, and ∼ be an equivalence
relation on ∆ determined by the left-hand side component of their parent state.
We find the following equivalence classes:

∆/∼ = {JJS,NNS,VB,DT,NN,NP,VP,S,PP} .

All rules have been observed exactly once, and every root symbol has been
observed once, except NN which has been observed twice, and NP which has
been observed three times. Therefore, for every δ ∈ ∆, the relative frequency is

ϕ∼(δ) =

1/2 if δ ∈ NN
1/3 if δ ∈ NP
1 otherwise.

Bidirectional lexical weighting is a way to assign scores to rules based on the
lexical translation scores of their leaf nodes (Koehn et al., 2003). Let δ =
(q, (q1, . . . , qk), f

′, e′, a). Recall that a is a relation between F (0)-labeled leaves
in f ′ and E(0)-labeled leaves in e′. (In practice, a is augmented such that every
unaligned word is aligned to a special NULL token.) Suppose we have lexical
weights w(e|f) and w(f|e), e.g., from the IBM model parameters that generated
the word alignments (see Section 3.3.1) for all f ∈ F (0) and e ∈ E(0). We can
define the lexical weight for tree sequences f = (f1, . . . , fm) and e = (e1, . . . , en)
by:

lex(f |e, a) =
∏

(i,p)∈dom(a)

1

|a(i, p)|
∑

(j,p′)∈a(i,p)

w(fi(p)|ej(p′)) , (37)

5.2 Decoding 69

and we obtain the direct and inverse lexical weighting feature functions

ϕlex(δ) = lex(e′|f ′, a) and
ϕlex−1(δ) = lex(f ′|e′, a−1) .

(38)

Taking count feature functions and lexical weighting feature functions together,
we arrive at a family of mappings (ϕi : ∆ → R+ | i ∈ [n]) that scores each
rule according to feature functions, with the intuition that the feature score of
a derivation tree can be computed as the product of its rule scores. These can
be used to score productions in C to obtain a sequence of translation models
(Ti | i ∈ [n]), where each Ti is a weighted tree automaton over∆ that is obtained
as the product of an unweighted tree automaton T′ and the extension of ϕi to
trees. This will be explained in more detail in the next section.

5.2 Decoding
We have explained how translation can be decomposed into distinct components
that score various aspects of the translation, and how a translation model can be
obtained from data. It remains to implement the relevant automata-theoretic
constructions. Furthermore, a functioning decoder is necessary to implement
Mert tuning (see Section 5.4.2) or EM training (see Section 5.4.3).

In this chapter, let us assume that a translation model is given as a bimor-
phism D = (in, L, out), and the input text is given as a text T = (f1, . . . , fn),
i.e., a sequence of strings fi, and each string needs to be translated indepen-
dently. We parse T with a parser PF : TF → [0, 1] to obtain parse forests
PF ⟨f1⟩, . . . , PF ⟨fn⟩ as laid out in the linguistics section. We then apply the
translation model to each PF ⟨fi⟩ to obtain a weighted language of translation
candidates. We summarize the decoding pipeline in Figure 23 to illustrate the
steps carried out for every sentence fi.

Recall that decoding is the task of finding, for a given input sentence f, the
best output sentence ê, approximated by (cf. Equation (24))

ê ∝ arg max
e

∑
t∈D(f,e)

L(t) ,

where D(f, e) = {t ∈ T∆ | yield(in(t)) = f ∧ yield(out(t)) = e}. In practice, for
efficiency’s sake, we may approximate the summation over all derivations trees
by finding the single highest-scoring derivation (the Viterbi derivation), i.e.,

t̂ ∝ arg max
t∈D(f)

L(t) , (39)

where D(f) = in−1(yield−1(f)). Thus, ê is approximated by yield(out(t̂)). Recall
the decomposition of L = F · T · E into separate components, as laid out in
Equation (22), where

• F = Fλ1
1 scores aspects of the input only;

70 Chapter 5. Implementation

F (0)

string ∈ F

string parsing

F parse forest : TF → R

in−1 ;L

∆ admissible derivations : T∆ → R

out

E candidate forest : TE → R

yield

E(0) candidate translations : E → R

Figure 23. Bimorphism decoding pipeline

5.2 Decoding 71

• T = Tλ1
1 · Tλ2

2 · Tλ3
3 scores aspects of the translation (translation model);

and
• E = Eλ3

1 · Eλ3
2 scores aspects of the output only (language model).

In order to correctly use the weight vector λ, we introduce a family of scaling
operations (

·a : (R+)T∆ → (R+)T∆
)

with La(t) = L(t)a for every a ∈ R, t ∈ T∆ and L : T∆ → R+.
If L ∈ REC(∆) is represented by an unambiguous weighted tree automa-

ton, then La can be obtained by simply applying the exponentiation operation
to each transition weight, since exponentiation distributes over multiplication.
Thus, La ∈ REC(∆). We therefore assume that all Fi,Ti,Ei can be represented
by unambiguous weighted tree automata. We then obtain:

L = Fλ1
1︸︷︷︸

input

·Tλ1
1 · Tλ2

2 · Tλ3
3︸ ︷︷ ︸

translation

·Eλ3
1 · Eλ3

2︸ ︷︷ ︸
output

, (40)

and F,T,E, L ∈ REC(∆) because of closure under intersection.
The weighted forest of scored derivation trees for a given input sentence f

can thus be computed as:

D(f) · L = in−1(yield−1(f)) · L
= in−1(yield−1(f)) · (F · T · E)

=

in−1(yield−1(f)) · F︸ ︷︷ ︸

input

 · T

︸ ︷︷ ︸
input + translation

 · E

︸ ︷︷ ︸
input + translation + output

.

(41)

The last representation of D(f) · L allows us to model the bimorphism in a
cascade. In order to approximate ê by yield(out(t̂)), we will compute

t̂ = arg max
t∈D(f)

L(t)

= arg max
t∈D(f)

(F · T · E)(t)

= arg maxD(f) · F · T · E .

(42)

5.2.1 Input and translation models
First, we explain how to obtain D(f) · F = in−1(yield−1(f)) · F. Assume that
PF : TF → [0, 1] is a weighted regular tree language implementing a probabilistic
parser. Then F1 : T∆ → R+ is the corresponding weighted tree language scoring

72 Chapter 5. Implementation

derivation trees, defined by F1 = in−1(PF) = in ;PF , i.e., for every tree t ∈ T∆,
F1(t) = PF (in(t)). Then F1 is a weighted regular tree language because of
closure under inverse homomorphism.
Lemma 3
Suppose that the input sentence f was parsed, obtaining a forest PF ⟨f⟩. Then

in−1(yield−1(f)) · F1 = in−1(PF ⟨f⟩) . (43)

Proof. According to the definition of a parser in Equation (11), we can rewrite

in−1(PF ⟨f⟩) = in−1(yield−1(f) · PF)
= in−1(yield−1(f)) · in−1(PF)

= in−1(yield−1(f)) · F1 .

□

Essentially, we therefore want to compute in−1(PF ⟨f⟩), i.e., the F1-weighted set
of derivation trees in T∆ that map to a tree in the input parse forest. Let us
assume that F1 is the only input feature function, and there exists a scaling
parameter λ1 such that F = Fλ1

1 as mentioned above. We will directly compute

in−1(PF ⟨f⟩λ1) · T = in−1(yield−1(f)) · Fλ1
1 · T

= in−1(yield−1(f)) · F · T
= D(f) · F · T

(44)

by a product construction. Both the closure under inverse homomorphism and
intersection are well-known (Fülöp and Vogler, 2009). Translating packed forests
is beneficial (Liu et al., 2009; Mi et al., 2008; Mi and Huang, 2008; Neubig and
Duh, 2014). Parsers like BitPar and Egret can easily generate a packed
representation of all parse trees in an unambiguous regular tree grammar. The
set of derivations for a parse forest of the input sentence is then computed
according to the following product construction:

Let ∆ be the ruleset of the translation model. Recall that in ∈ HOM with
in : T∆ → TF and T = (QT, IT, PT) is a R-weighted tree automaton over ∆. Let
P = (QP, IP, PP) be a R-weighted tree automaton over F representing the input
parse forest, i.e., PF ⟨f⟩λ1 = LP. We construct the R-weighted tree automaton
A = (QT ×QP, I, P) over ∆ such that

• I((p, q)) = IP(q) · IT(p) for every q ∈ QP and p ∈ QT;

• for every
δ(k) ∈ ∆,

q, q1, . . . , qk ∈ QP and
p, p1, . . . , pk ∈ QT,

5.2 Decoding 73

q

qπ(1), . . . , qπ(k)

LP = P ⟨f⟩λ1 : TF → R

run r on in(δ)

in : T∆ → TF

in(δ) =

xπ(1), . . . , xπ(k)

LT : T∆ → R

PT(p, δ(p1, . . . , pk)) = a

Figure 24. Product construction

t(ε)

t(2)

t(22)t(21)

t(1)
in(t(ε))

in(t(1))
in(t(2))

in(t(21)) in(t(22))

Figure 25. Run mapping

let R be the set of all runs r of P on in(δ) such that r(ε) = q and for all
w ∈ pos(in(δ)) such that in(δ)(w) = xi, we have r(w) = qi. Then

P ((p, q), δ((p1, q1), . . . , (pk, qk))) =
∑
r∈R

wt(r) · PT(p, δ(p1, . . . , pk)) .

The construction is schematically depicted in Figure 24. The permutation π :
[k] → [k] is only needed in this illustration because the order of xi and pi need
not match.

Lemma 4
LA = in−1(LP) · LT = in−1(P ⟨f⟩λ1) · LT.

74 Chapter 5. Implementation

Proof. Let t ∈ T∆. We then have

LA(t) =
∑

r∈runsA(t)

I(r(ε)) · wt(r) =
∑

r∈runsA(t)
(p,q)=r(ε)

IT(p) · IP(q) · wt(r) .

First, note that in−1(LP)(t) = LP(in(t)) by definition. Also, there is a mapping
of positions ψ : pos(t) → pos(in(t)) such that ψ maps every position w to the
position of the root of the homomorphic image of t(w). An example is shown
in Figure 25. Let us define an equivalence relation ≡ on the runs of P on t such
that r ≡ r′ if r(w) = r′(w) for every w ∈ ran(ψ).

We now define two mappings ψT and ψP mapping runs of A to runs of
T, and to equivalence classes of runs of P, respectively. Then ϕ, defined by
ϕ(r) = (ψT(r), ψP(r)), will be a bijection. Let r ∈ runsA(t). Then we define
ψT(r) and ψP(r) such that for every position w ∈ pos(r) with r(w) = (p, q),
we have ψT(r)(w) = p and every run r′ ∈ ψP(r) has r′(ψ(w)) = q. With these
mappings in place, it remains to prove that

wt(r) = wt(ψT(r)) ·
∑

r′∈ψP(r)

wt(r′) ,

for every r ∈ runsA(t), which will yield

LA(t) =
∑

r∈runsA(t)
(p,q)=r(ε)

IT(p) · IP(q) · wt(r)

=
∑

r∈runsA(t)
(p,q)=r(ε)

IT(p) · IP(q) · wt(ψT(r)) ·
∑

r′∈ψP(r)

wt(r′)

=

∑
r∈runsT(t)

IT(r(ε)) · wt(r) ·
∑

r∈runsP(t)

IP(r(ε)) · wt(r)

= LT(t) · LP(t) .

Let RP(w) be the set of sub-runs r′ of P on in(t(w)) such that r′(ε) = π2(r(w))
and for all w′ ∈ pos(in(t(w))) such that in(t(w))(w′) = xi, we have r′(w′) =
π2(r(wi)). Then, for every run r ∈ runsA and run r′ ∈ ψP(r), we obtain

wt(r′) =
∏

wi∈pos(r)
wt(r′i)

such that r′i ∈ RP(wi) coincides with r′ on the segment covered by both, and
by applying the law of distributivity, we obtain∑

r′∈ψP(r)

wt(r′) =
∏

w∈pos(r)

∑
r′∈RP(w)

wt(r′) .

5.2 Decoding 75

Note that

wt(ψT(r)) =
∏

w∈pos(r)
k=rk(r(w))

PT(ψT(r)(w), t(w)(ψT(r)(w1), . . . , ψT(r)(wk))) .

We then obtain

wt(r) =
∏

w∈pos(r)
k=rk(r(w))

 ∑
r′∈RP(w)

wt(r′)

· PT(ψT(r)(w), t(w)(ψT(r)(w1), . . . , ψT(r)(wk)))

= wt(ψT(r)) ·
∏

w∈pos(r)

∑
r′∈RP(w)

wt(r′)

= wt(ψT(r)) ·
∑

r′∈ψP(r)

wt(r′)

by construction of A. □

In order to avoid computing the whole product automaton, we only explore
reachable, non-zero-weighted productions. Furthermore, we store the source
model of the translation rules in a hypertree structure (Zhang et al., 2009). In
this structure, trees are represented as strings, and prefixes are shared. This
allows us to compute the matching portions of the homomorphic tree images of
all translation rules simultaneously.

To this end, we define, for every in(δ), a monadic tree (string) over sequences
of strings over alphabet symbols via an intermediate representation that extends
the position set of in(δ) by filling short paths with ⊥ placeholders. We define
the extended position mapping P : N∗ → F ∪ X ∪ {⊥} as a partial mapping
such that P (p) = in(δ)(p) for all p ∈ pos(in(δ)); and for every p ∈ N∗, if P (p) is
defined and p1 ̸∈ pos(in(δ)), if there exists p′ ∈ pos(in(δ)) with |p′| > |p|, then
P (p1) = ⊥.

Then a string (w0, w1, . . . , wn) can be defined such that w0 = (P (ε)), n =
max{|p| | p ∈ dom(P)} and for all i ∈ [n], we let wi = (c(p1), . . . , c(pk)) where
(p1, . . . , pk) = {p ∈ dom(P) | |p| = i − 1}≤ and c(p) = P ({(p.j) | j ∈ N, p.j ∈
dom(P)}≤). Intuitively, this arranges labels with the same distance from the
root in a sequence, concatenating immediate siblings. Figure 26 shows an ex-
ample homomorphic tree image in(δ) and its conversion into a string depicted
as a monadic tree. We can then build a prefix-sharing tree (“trie”) from the
string representations of in(δ) for every δ ∈ ∆ to speed up matching.

We can further exploit the structure of T to delay assigning weights. Recall
the rule extraction and scoring procedure from Section 5.1.2. We obtained an
unweighted tree automaton T′ and a family of feature functions represented as
homomorphisms (ϕi | i ∈ [n]) given by (wi | i ∈ [n]) with wi : ∆ → R extended
to weighted languages ϕi : T∆ → R with ϕi(t) =

∏
p∈pos(t) wi(t(p)) such that

T = T′ · (ϕ1 · · ·ϕj)λ1 · (ϕj+1 · · ·ϕk)λ2 · (ϕk+1 · · ·ϕn)λ3 . (45)

76 Chapter 5. Implementation

PP

NP

x1DT

a

IN

of

PP

NP

x1

⊥

DT

a

IN

of

⊥

(PP)

(IN NP)

(of, DT x1)

(⊥, a, ⊥)

Figure 26. Transformation of a tree into a string

Instead of computing A such that LA = in−1(LP) · LT = D(f) · F · T, we can
compute A′ such that LA′ = in−1(LP) · T′, and compute LA′ · (ϕ1 · · · · · ϕj)λ1 ·
(ϕj+1 · · · · · ϕk)λ2 · (ϕk+1 · · · · · ϕn)λ3 later.

The advantage is that the derivation forest can be stored and evaluated
symbol by symbol, and does not need to be recomputed when production weights
or the parameter vector λ change. We will explain in Section 5.4 how to optimize
weights without changing the unweighted structure of T′.

5.2.2 k-best derivations
So far, we have shown how to compute D(f) ∩ F ∩ T. It remains to integrate E

to obtain Equation (42). At the heart of our implementation is a performant
algorithm to find the best-scoring trees in a weighted forest of derivations. While
finding the single best-scoring derivation tree is relatively easy, care has to be
taken to produce a correct list of k best-scoring derivation trees for a given k,
efficiently. Huang and Chiang (2005)19 present an algorithm that lazily computes
a k-best list, starting from the Viterbi derivation.

First, we need to define the notion of k-best list. We will define it generally
because it is a useful concept. Let S be a set and f : S → R be a mapping such
that max ran(f) exists. The mapping f may be partial, but f(n−1) needs to be
defined for every n > 1 if f(n) is defined. Then f≥ : N+ → S can be defined as
an injective mapping such that n ≤ n′ if and only if f(f≥(n)) ≥ f(f≥(n′)) for
every n, n′ ∈ N+. Intuitively, f≥ lists the elements of S according to the value
that f assigns them. Just like for ‘arg max’, the specific choice of mapping does
not matter. For every k ∈ N+, we call the sequence (f≥(1), . . . , f≥(k)) a k-best
list.

Let A = (Q, I, P) be an acyclic weighted tree automaton representing a
derivation forest, i.e., LA = in−1(LP) ∩ LT = D(f) ∩ F ∩ T. The set of deriva-
tions of A is the set DA of pairs (t, r) of a tree t ∈ T∆ and a run r : pos(t) → Q.

19The original paper contained a mistake which has been corrected. The revised version
can be obtained from the author’s homepage: http://www.cis.upenn.edu/~lhuang3/huang-
iwpt-correct.pdf.

http://www.cis.upenn.edu/~lhuang3/huang-iwpt-correct.pdf
http://www.cis.upenn.edu/~lhuang3/huang-iwpt-correct.pdf

5.2 Decoding 77

The set of derivations of a state q is

DA(q) = {(t, r) ∈ DA | r(ε) = q} . (46)

Since by construction of A, every ranked symbol δ ∈ ∆ has at most one corre-
sponding non-zero production, and therefore every tree t ∈ T∆ has at most one
non-zero run, finding the best tree can be replaced by finding the best deriva-
tion. Following Huang and Chiang (2005), we assume that for every state q,
the set of derivations is ordered by

(t, r) ≤ (t′, r′) ⇐⇒ wt(r) ≤ wt(r′) ,

and therefore we can define DA(q) such that DA(q) = f≥ for f : DA(q) → R
with f(t, r) = wt(r).

A derivation (t, r) with t = δ(0)(t1, . . . , tk) such that P (q, δ(q1, . . . , qk)) ̸= 0

can then be represented by a pair (δ, (j1, . . . , jk)) ∈ ∆ × (N+)
k such that

DA(qi)(ji) = (t|i, ri) for every i ∈ [k]. In the terminology of Huang and Chi-
ang (2005), this (recursive) representation is called a derivation with backpoint-
ers (each ji is a backpointer to the i-th best derivation of qi), and obviously the
set of derivations with backpointers is ordered by ≤ as well. Then the Viterbi
derivation of a state q can be given as a derivation with backpointers by:

VA(q) = DA(q)(1) ∈ max
{
(δ, (1, . . . , 1)︸ ︷︷ ︸

m components

) | δ ∈ ∆(m)
}
,

i.e., by choosing the optimal subderivations and then maximizing the root sym-
bol δ ∈ ∆. Similarly, the problem of finding the best k derivations can be
reduced to an operation that picks the maximum derivation from a set of can-
didates, and an operation that assembles these candidates from subderivations,
represented by backpointers. This strategy is correct as long as the optimal
substructure property is fulfilled (it is fulfilled here because of the properties of
R):

a1 ≤ b1, . . . , ak ≤ bk =⇒ f(a1, . . . , ak) ≤ f(b1, . . . , bk) .

Here, f is the operation that assembles candidates from subderivations, and it is
just multiplication of real numbers; as soon as we pick an inferior subderivation,
the entire derivation will become inferior. For the k-best case, we notice that
we can find the k-th best derivation by computing for all productions, and the
states involved, the k best derivations:

DA(q)(k) ∈
{
(δ, (j1, . . . , jk)) | δ ∈ ∆(m), j1, . . . , jk ∈ [k]

}
.

The authors then proceed how to use various optimization techniques to mini-
mize runtime, such as a lazy enumeration of k-best lists for individual symbols
δ ∈ ∆. As an example, consider Figure 27, depicting the lazy enumeration of
a k-best list in two dimensions, i.e., for a binary production. Starting from
the best derivation (marked with 1), the set of candidates, i.e., derivations that
should be explored next, is shown with dashed lines. In the first step, these are

78 Chapter 5. Implementation

1 1 2 1 2

3

1 2

3

4

Figure 27. Enumeration of a k-best list

only those derivations where one of the child derivations is replaced by the next
best derivation in that position. It is guaranteed that no other derivation is
better than the best among these. After identifying the next item on the k-best
list, it is replaced by its neighbors, yielding a new set of candidates. This is
continued whenever a new item needs to be generated.

For a more detailed presentation of the algorithm, the reader is referred
to Huang and Chiang (2005). The k-best list can then be mapped to trees
in the output language by applying the tree m-morphism. Obviously (since k
implies a finite set), the resulting tree language is again regular. It can therefore
be represented by a regular tree automaton. It has been shown (May and
Knight, 2006a) that alternative derivations representing the same tree should
be merged (and their scores added). This can be achieved by determinization of
the tree automaton, or by simple “crunching”, i.e., enumerating the trees and
adding the scores for each equivalence class. Furthermore, the yield language
(which is context-free) can be obtained for language model scoring. In addition,
this merges trees that have the same yield, i.e., alternative structures for the
same surface string.

5.3 Language model scoring

The language model’s task is to assign a score (probability) to a sentence in
the target language. Our forest approach enables us to estimate the probability
of a syntactic tree, but also allows the more popular n-gram language models.
Recall Equation (20):

Pr(u) = Pr(u)λ1 · Pr(u)λ2 · Pr(u)λ3

=
(
Pr(f, f)︸ ︷︷ ︸

parser

·Pr(u|f)︸ ︷︷ ︸
forward

)λ1 · Pr(u)︸ ︷︷ ︸
symm.

λ2 ·

(
Pr(u|e)︸ ︷︷ ︸
backward

· Pr(e, e)Pr(e)︸ ︷︷ ︸
synLM

·Pr(e)︸ ︷︷ ︸
LM

)λ3

.

5.3 Language model scoring 79

We consider two approximations:

E1(u) ≈
Pr(e, e)
Pr(e) and

E2(u) ≈ Pr(e) .

E1 is a syntactic language model because it makes use of the parse tree e, while
E2 only scores the sentence e, and is usually realized by an n-gram language
model.

5.3.1 Syntactic language models
Let us approximate Pr(e, e) · Pr(e)−1 using a parser PE : TE → [0, 1]. Recall
that PE⟨e⟩ = yield−1(e) ∩ PE , which is a good approximation of Pr(e, e) as
explained earlier. Furthermore, we can use the language weight of PE⟨e⟩ to
approximate Pr(e): ∑

t∈TE

PE⟨e⟩(t) ≈ Pr(e) .

The language weight of PE⟨e⟩ can be efficiently computed using the inside
weights of all states of PE⟨e⟩. Since the notion of inside weights is useful in
other contexts as well, we give a general description.

Let G = (Q, I, P) be a weighted tree automaton over ∆. Then the inside
weight βG(q) of a state q ∈ Q is defined by:

βG(q) =
∑

(q,δ(q1,...,qk))∈dom(P)

(
P (q, δ(q1, . . . , qk)) ·

k∏
i=1

βG(qi)

)
. (47)

Intuitively, βG(q) is the sum of all trees generated by state q, and therefore∑
q∈Q

I(q) · βG(q) =
∑
t∈T∆

LG(t) .

Note that the recursive definition does not cause any problems if G has no cycles,
i.e., for every non-zero weighted run r of G, r(p) = r(p′) and p ⊑ p′ implies p = p′

for all p, p′ ∈ pos(r). Even if G has cycles, as long as every cycle has a weight
less than 1, the inside weight is always well-defined (Graehl et al., 2008).

5.3.2 n-gram language models
Consider the probability space (E, 2E,Pr). The elementary events are English
sentences (i.e., strings of English words, whether “grammatical” or not). We are
interested in the probability of the event {w}, the occurrence of the sentence
w = w1 · · ·wm ∈ E. Let us assume a family of random variables Xn : E →
E ∪ {⊥} for all n ∈ N+. The symbol ⊥ is used to denote the end of w, i.e.,
Xi(w) = ⊥ for all i > m. The joint probability of w, i.e., the joint probability

80 Chapter 5. Implementation

of X1 = w1, X2 = w2, . . . , Xm = wm, can be decomposed, using conditional
probabilities, as follows:

Pr(w) = Pr(w1) · Pr(w2|w1) · Pr(w3|w1, w2) · . . . · Pr(wm|w1, . . . , wm−1)

= Pr(w1) ·
m∏
i=2

P
(
wi
∣∣wi−1

1

)
.

(48)

To account for the ⊥ symbol marking the end of the sentence, we decompose
the joint probability of w1, . . . , wm,⊥ in the same fashion:

Pr(w⊥) = Pr(w1) ·

(
m∏
i=2

P
(
wi
∣∣wi−1

1

))
· Pr(Xm+1 = ⊥ |w) . (49)

However, in practice, there is not enough data to estimate all the conditional
probabilities that are used in Equation (48). A common simplification is to
impose an upper bound n on the length of the history used in the conditional
probabilities. The underlying assumption, also called Markov assumption (after
mathematician Andrey Markov), is:

P
(
wi
∣∣wi−1

1

)
≈ P

(
wi

∣∣∣wi−1
i−(n−1)

)
. (50)

Using Equations (49) and (50), we can approximate the probability of a sentence
by multiplying n-gram probabilities as follows:

Pr(w⊥) ≈

(
m∏
i=1

P
(
wi

∣∣∣wi−1
i−(n−1)

))
· Pr(⊥|wmm−(n−1)). (51)

This means that the probabilities of infinitely many sentences can be approxi-
mated by a finite number of probabilities (since there are finitely many n-grams
over every alphabet), which can more easily be observed.

We can then proceed with maximum likelihood estimation. Let C be the
training corpus. Then

Pr(w|w′) ≈ #C(w
′w)

#C(w)
(52)

assigns the probabilities based on counting n-grams in C. To account for the
probability of n-grams that have not been observed, smoothing techniques are
used. This however is outside of the scope of this dissertation.

All of the above calculations can be realized in the realm of weighted regular
languages (Hanneforth and Würzner, 2009). Let us therefore assume that, even
if it is not typically represented as such, a language model is simply a R-weighted
regular language over E, in other words a function LM : E → [0, 1]. We will
present two methods for integrating a language model. Both are theoretically
sound and guarantee the optimal solution, but only one is currently feasible and
has been implemented.

5.3 Language model scoring 81

5.3.3 Integration by product construction
In the previous section, we concluded that a language model is essentially
a weighted regular string language LM : E → [0, 1]. It is well-known that
yield−1(L) is a regular tree language for every regular string language L, even in
the weighted case (Bar-Hillel construction, see Maletti and Satta (2009)). Given
that out is a linear and non-deletingm-morphism, it is also an input-ε-free multi
bottom-up tree transducer, and therefore its inverse application preserves recog-
nizability (Maletti, 2011b). We can therefore represent out−1(yield−1(LM)) = E2

as a regular tree language, and thus integrate the language model seamlessly.
However, due to the size of typical language models (trained on millions, or

even billions of sentences), the product construction D(f) ·F ·T ·Eλ3
1 ·Eλ3

2 is not
feasible because of combinatorial explosion. In the next section, we present an
approximation method where we can sometimes establish a guarantee that the
solution is exact, and can iterate until an exact solution has been found.

5.3.4 Exact rescoring
The computational cost of the product construction can be avoided by switching
the order of the k -best and the LM function applications. However, it is easy
to see that this sacrifices exactness if the best candidate is worse than the k-th
candidate using translation model scores only. Let F = D(f) · F · T · Eλ3

1 be a
cycle-free forest of translation candidates. Note that F induces an ordering on
TΣ, and we can define an injective mapping F : N+ → TΣ such that n ≤ n′

implies F (F(n)) ≥ F (F(n′)). Then for every k ∈ N+, the set F([k]) is a k-best
list (which can be obtained using the algorithms discussed in Section 5.2.2).
Assuming that

E2(t) = LM(yield(out(t)))
for every t ∈ F([k]), the best candidate in the reordered k-best list is

t̂ = arg max
t∈F([k])

F (t) · LM(yield(out(t)))λ3

= arg max
t∈F([k])

(F · T · Eλ3
1)(t) · Eλ3

2 (t)

= arg max
t∈F([k])

L(t)

which is what we expect from decoding (recall the Viterbi approximation in
Equation (42)). However, F([k]) ⊆ D(f), and therefore

t̂ = arg max
t∈F([k])

L(t) does not imply t̂ = arg max
t∈D(f)

L(t)

i.e., we do not have any guarantee that t̂ is optimal.
Lemma 5
There is n′ ∈ N such that for every n ≥ n′,

arg max
t∈F([n])

L(t) = arg max
t∈D(f)

L(t) .

82 Chapter 5. Implementation

Proof. Let t̂ = arg maxt∈D(f) L(t). Since both ran(LM) ⊆ [0, 1] and ran(F) ⊆
[0, 1], we know that

L(t) = F (t) · Eλ3
2 (t) ≤ F (t)

for every tree t ∈ T∆ (because ab ≤ a for every a, b ∈ [0, 1]). Therefore,
F (t) < L(t̂) implies L(t) < L(t̂), and because F is cycle-free, there exists n such
that F (t′) < L(t̂) for all t′ ̸∈ F([n]).

□
Intuitively, this means that we can increase the size of the k-best list until the
worst item on the k-best list before factoring in the language model is already
worse than the best item after factoring in the language model. From then
on, no candidate can ever become better, because scores always get worse by
factoring in the language model.

5.4 Tuning, evaluation, model optimization
Recall that the parameters of a log-linear model (Section 3.3.2), and therefore
also the parameters of the models obtained by the methods described in the
previous section of this chapter, greatly influence the decoding outcome. We
can optimize translation results by optimizing the parameter vector. Let us
assume we have a source language text S = (s1, . . . , sℓ) ∈ F∗ and a reference
translation T = (t1, . . . , tℓ) ∈ E∗. We choose20

λ̂ = arg min
λ

ℓ∑
i=1

Λ(Dλ(si), ti) (53)

where Dλ(si) is the best-scoring translation of si with parameter vector λ, to
optimize the parameter vector according to the loss function Λ : E∗ × E∗ → R.
For instance, we can use a loss function based on the Bleu metric, explained
in the next section.

5.4.1 Evaluation metrics
Evaluation of machine translation is the task of assessing the quality of the
translations proposed by a given MT system in terms of aspects like adequacy
and fluency. A translation is adequate if it conveys the same meaning as the
source text. It is not adequate if information was added, lost, or distorted in the
translation process. A translation is fluent if it is grammatical and idiomatic in
the target language. Another way to measure the quality of machine translation
is in terms of the post-editing effort needed when used in CAT (computer-
aided translation). The evaluation scores can be used to compare the quality
of different MT systems, or to track and optimize the quality of an MT system
during development.

20We define ‘arg min’ analogously to ‘arg max’.

5.4 Tuning, evaluation, model optimization 83

An automatic evaluation metric is a function that assigns a score to a can-
didate translation measuring its quality. Depending on the metric, a lower
score can mean higher quality, or vice versa. There are several reasons to use
automatic evaluation of machine translation:

• Efficiency: Automatic evaluation can be performed in very short time.
• Cost: Automatic evaluation is cheap.
• Easy integration: Evaluation can easily be integrated in workflows, e.g.,

parameter tuning (see Section 5.4.2). Depending on the properties of the
metric, a local maximum may or may not be reached.

However, there are also drawbacks. In particular, there is no guarantee that an
automatic evaluation metric will correlate with human judgment. Optimizing
for automatic evaluation scores might or might not improve translation quality.

The most widely used metric is Bleu (Bilingual Evaluation Understudy),
proposed by Papineni et al. (2002). We will limit ourselves to Bleu as it
is simple to present, easy to implement and gives good correlation with human
evaluation. However, we will briefly discuss shortcomings of Bleu and suggested
improvements at the end of this section. Bleu measures n-gram precision, i.e.,
how many of the n-grams of a given candidate translation appear in the refer-
ence translation. Bleu was originally designed to be used with multiple reference
translations, but can also be used with a single reference translation. As this is
the most common usage, we describe only the single-reference variant.

We now formalize Bleu. To this end, let A be an alphabet. The set of
n-grams of a ∈ A∗ is defined by:

gramsn(a) = {v ∈ An | ∃u,w ∈ A∗ such that uvw = a} (54)

Let T = (T1, . . . , Tm) be a text of length m called input text. Let C =
(C1, . . . , Cm) be a text of candidate translations and R = (R1, . . . , Rm) a text
of reference translations. We define the clipped n-gram precision of a candidate
translation as follows:

precn(C,R) =
m∑
i=1

∑
w∈gramsn(Ci)∩gramsn(Ri)

min{#Ci
(w),#Ri

(w)}∑
w∈gramsn(Ci)

#Ci
(w)

. (55)

The precision measure is “clipped” in the sense that a candidate translation
cannot be awarded for the same n-gram more often than it appears in the
reference translation. We define bp(C,R), the brevity penalty which punishes
translations that are shorter than the reference21, and a N-indexed family of
functions (bleuN (C,R) | N ∈ N), as follows:

bp(C,R) = min
{
1, exp

(
1− |R|

|C|

)}
bleuN (C,R) = bp(C,R) ·

∏
n∈[N]

precn(C,R)
1/N

(56)

21The brevity penalty is introduced to avoid extremely short translations that contain very
frequent n-grams to obtain a high precision score.

84 Chapter 5. Implementation

Essentially, bleuN computes the geometric mean of the n-gram scores for n =
{1, . . . , N}. A common choice for N is 4, when the resulting metric is also
called Bleu-4. More sophisticated metrics can be obtained by replacing the
uniform n-gram parameter 1/N by different parameters to assign different weight
to different types of n-grams, but this is the most widely used formulation.
Example 14 (Calculating Bleu-4.)
Let us assume the following reference translation and two candidate translations:
Reference translation the cat sat on the mat .

Candidate translation A this cat sat upon a mat .

Candidate translation B the cat on the mat .

The maximal n-grams matching the reference translation are highlighted. Since
every bigram match implies two unigram matches, every trigram match implies
two bigram matches and three unigram matches, and every 4-gram match im-
plies two trigram matches, three bigram matches and four unigram matches, we
arrive at the following numbers:

1-grams 2-grams 3-grams 4-grams BP Bleu-4
A 4 out of 7 2 out of 6 0 out of 5 0 out of 4 e1−7/7 = 1 0
B 6 out of 6 4 out of 5 2 out of 4 1 out of 3 e1−7/6 ≈ .85 ≈ .512

Candidate translation A has a Bleu-4 score of 0 because it does not contain
any 4-gram match. Candidate translation B scores a geometric mean of n-gram
matches of

(6/6 · 4/5 · 2/4 · 1/3)1/4 ≈ .604.

Taking the brevity penalty of e1−7/6 into account, its Bleu-4 is approximately
.512, or 51.2 %.
Bleu has been criticized on the grounds that “recall plays a more important
role than precision in obtaining high-levels of correlation with human judg-
ments” (Banerjee and Lavie, 2005), but a detailed discussion is out of the scope
of this dissertation. Other automated metrics have been proposed that take into
account aspects like lexical variation, paraphrases and inflected word forms. For
a comparison of automated metrics and their correlation with the assessment of
translation quality using human judgment, see Stanojević et al. (2015).

5.4.2 Minimum Error Rate Training
A common optimization technique is Minimum Error Rate Training (Mert),
introduced by Och (2003). The idea of Mert is simple: An initial parameter
vector is chosen. A predefined set of source language sentences is translated. For
each sentence, a k-best list of translation candidates with their feature function
scores is stored.

5.4 Tuning, evaluation, model optimization 85

When the parameter vector is changed, the k-best lists will be reordered.
Thus, the parameter vector can be optimized such that the resulting Bleu score
achieved by the translations on top of the k-best lists is the highest. This process
is then repeated with the newly obtained parameter vector until convergence.

Kumar et al. (2009) describe a method to perform parameter tuning on
hypergraphs. In their setting, hypergraphs encode the hypotheses of an SCFG
SMT system. A hypergraph is a pair H = (V,E) consisting of a vertex set V
and a set of hyperedges E ⊆ V ∗ × V . Thus, each hyperedge connects a head
vertex with a sequence of tail vertices. Furthermore, hyperedges are labeled
with rules from the SCFG ruleset. In this way, the rules used in the derivation
of a hyperpath can be recovered, and the hyperpath can be scored. On this
representation of the hypothesis space instead of just k-best lists, algorithms
like Mert and MBR (Minimum Bayes-Risk, Kumar and Byrne (2004)) can be
used.

It is easy to see that hypergraphs are just regular tree grammars, and each
hyperpath in the hypergraph is a derivation tree in our terminology. Therefore,
it should be trivial to adapt hypergraph tuning algorithms to our framework.

5.4.3 EM training
So far, we have assigned weights to rules purely based on their shape by using
relative frequency counts. Now, we will assign weights to rules based on their
relative usefulness in explaining a test corpus. (Graehl et al., 2008) describe
how to train an extended top-down tree transducer using the Expectation-Max-
imization (EM) algorithm. In principle, this can be done for any formalism
whose derivation languages are weighted regular tree languages, in particular
every bimorphism. EM training (Dempster et al., 1977) maximizes the corpus
likelihood by repeatedly estimating all possible ways of generating the training
corpus given the current parameters and assigning values based on counts to
the parameters, and then renormalizing. Each iteration increases the corpus
likelihood until a local maximum is reached.

Let G = (Q, I, P) be a weighted tree automaton over ∆. Recall the inside
weight of a state q ∈ Q, repeated from Equation (47):

βG(q) =
∑

(q,δ(q1,...,qk))∈dom(P)

(
P (q, δ(q1, . . . , qk)) ·

k∏
i=1

βG(qi)

)
.

The outside weight αG(q) of a state q ∈ Q is defined by:

αG(q) = I(q) +
∑

(p,δ(p1,...,pk))∈dom(P)
w=P (p,δ(p1,...,pk))

w · αG(p) ·
∑
j∈[k]
q=pj

∏
i∈[k]
i ̸=j

βG(pi) . (57)

Since R has multiplicative inverses, division may be used instead of excluding
i ̸= j. Intuitively speaking, αG(q) is the weight of trees that embed q, without
the weight of that particular q-generated subtree.

86 Chapter 5. Implementation

If G is acyclic, computation of α and β is straightforward using the recur-
sive definition and memoization to prevent re-computation, or by establishing
a topological order on Q. If G is acyclic, and I(q0) = 1 and I(Q− {q0}) ⊆ {0},
then Equation (57) can be rewritten to αG(q0) = 1 and

αG(q) =
∑

(p,δ(p1,...,pk))∈dom(P)

P (p, δ(p1, . . . , pk)) · αG(p) ·
∑
j∈[k]
q=pj

∏
i∈[k]
i ̸=j

βG(pi) . (58)

Finally, we can define the sum of weights of trees using a particular production
ρ = (p, δ(p1, . . . , pk)) ∈ dom(P) where w = P (ρ) as follows:

γG(ρ) = αG(p) · w ·
k∏
i=1

βG(pi) . (59)

Recall our translation bimorphism D = (in, L, out). Let us now assume that
D = (Di | i ∈ [m]) is a family of derivation forests over ∆ for a parallel
corpus C = ((fi, ei) | i ∈ [m]), i.e., every Di can be represented as a weighted
tree automaton (Qi, Ii, Pi) over ∆ that explains the sentence pair (fi, ei), i.e.,
t ∈ supp(Di) implies yield(in(t)) = fi and yield(out(t)) = ei. (That means that
Di = D(fi,ei)).

Recall the equivalence relations ∼ defined on ∆ in Section 5.1.2. In partic-
ular, consider the equivalence relation defined by δ ∼ δ′ if and only if q = q′ for
every δ = (q, (q1, . . . , qk), f, e, a) and δ′ = (q′, (q′1, . . . , q

′
k′), f

′, e′, a′). However,
the technique explained below is applicable to any equivalence relation on ∆.

Furthermore, note that the production weights in every Di only depend on
the symbol δ generated because there is at most one non-zero production for
every δ ∈ ∆ in L. Therefore, Pi(q, δ(q1, . . . , qk)) = PL(δ). We will use the EM
algorithm to optimize PL in order to maximize the corpus likelihood

m∑
i=1

∑
t∈T∆

LDi
(t) . (60)

We will now compute the weighted count of every symbol in ∆ by summing
fractional counts. Let us therefore define

ex(D)(δ) =

m∑
i=1

∑
ρ=(p,δ(p1,...,pk))

γDi
(ρ)∑

q∈Q I(q) · βDi
(q)

(61)

for every δ ∈ ∆. This is called the expectation step. The maximization step is
defined as a straightforward normalization, for any P : ∆ → R, by norm(P) :
∆ → R such that

norm(P)(δ) =
P (δ)∑

δ′∼δ P (δ
′)

(62)

for every δ ∈ T∆. Putting both steps after each other, ex ; norm is an expectation-
maximization step that maps a sequence of weighted forests to an optimized
weight function.

5.4 Tuning, evaluation, model optimization 87

For a family of derivation forests D = (Di | i ∈ [m]) with every Di repre-
sented as a weighted tree automaton (Qi, Ii, Pi), let D(P) = (D′

i | i ∈ [m]) be
the family of derivation forests where the weight function has been replaced by
P , i.e., every Di can be represented as a weighted tree automaton (Qi, Ii, P

′
i)

with P ′
i (q, δ(q1, . . . , qk)) = P (δ) for every (q, δ(q1, . . . , qk)) ∈ domPi. Obviously,

D = D(PL).
Let us now define a family of sequences of derivation forests (D(0) | i ∈ N)

as well as a family of weight functions (P (i) : ∆ → R | i ∈ N) such that

P (0) = PL

D(n) = D(P (n))

P (n+1) = (ex ; norm)
(
D(n)

) (63)

for every n ∈ N. Then the corpus likelihood increases in every step until a local
maximum is reached:

j ≤ j′ =⇒
m∑
i=1

∑
t∈T∆

LD(j)
i
(t) ≤

m∑
i=1

∑
t∈T∆

LD(j′)
i

(t) .

88 Chapter 5. Implementation

Chapter 6

Experiments

Contents
6.1 Common infrastructure 90

6.1.1 Source data and preprocessing 90
6.1.2 Tokenization and parsing 91
6.1.3 Word alignment and rule extraction 92
6.1.4 Language models . 92
6.1.5 Tuning . 93
6.1.6 Coverage . 93

6.2 Experiment A: Reasoning about models 93
6.3 Experiment B: Exactness and search errors 96

6.3.1 Search errors and model errors 96
6.3.2 Experimental setup 97
6.3.3 Results and discussion 99

6.4 Experiment C: Large scale decoding 100

After laying out the theoretical foundations, and explaining the algorithms
needed to implement the theory, we will now put the framework to a test.
To this end, we will present three experiments in this chapter, serving various
objectives.

1. Experiment A (Section 6.2) explores two theoretical questions of model-
ing. When we approximated the probability distribution P (e|f), there was
a certain lack of theoretical motivation when the log-linear models were
introduced. The purpose of this experiment is to show whether or not
additional model parameters are reasonable from a practical point of view
even if they are not theoretically justifiable. Furthermore, we will exam-
ine the difference between an STSG translation model and an ln-XMBOT
translation model.

90 Chapter 6. Experiments

2. Experiment B (Section 6.3) will serve as an example on how to use the
toolkit for diagnostic purposes. We will replicate the workings of another
machine translation toolkit to reason about the exactness of its results.

3. Experiment C (Section 6.4) will prove that the toolkit described in Sec-
tion 5.2 can handle large-scale data. While not achieving state-of-the art
results, we participated twice in the annual WMT shared task.

6.1 Common infrastructure
The decoding framework has been implemented in the programming language
Python. Looking back, this might not have been the most fortunate choice,
as many of the algorithms are rather computation-heavy, but the project ini-
tially started as a proof-of-concept diagnostic tool, not to replace full machine
translation pipeline. While the toolkit has been used more or less successfully
in large-scale machine translation campaigns (see Section 6.4), the focus re-
mains on education and diagnostics. On the other hand, there may still be
big potential for improvement. In the remainder of our section, we will call
the framework presented in the previous chapters, and its implementation, the
ExEx (for “experimental exact”) decoder.

Weighted regular tree grammars have been implemented in a format that is
compatible with the popular Tiburon22 toolkit (May and Knight, 2006b). For
convenience, we implemented the intersection of structurally similar weighted
regular tree grammars as needed for the translation model by allowing vectors
of weights. After fixing a parameter vector λ, these can be converted to a single
weight, if needed.

Rules are represented as triples of rule identifier (making up the ranked
alphabet ∆ used for derivation trees), input structure (a tree with variables
by default) and output structure (a tree sequence with variables by default).
Interpretation functions for tree homomorphisms and tree k-morphisms have
been implemented, but interpretation functions for other types of input and
output structure can easily be added. In particular, for efficiency, both tree
homomorphisms and tree k-morphisms use string representations of trees and
can therefore without any change be used for string homomorphisms and string
k-morphisms.

In the remainder of this chapter, particular resources that were used or
obtained in the pipeline (such as corpora, translation models, language models
etc.) will be written in boldface.

6.1.1 Source data and preprocessing
For all our experiments, we picked the language pair English–German because
German exhibits a high degree of discontiguities. The use of discontiguous rules
has proven beneficial (Seemann et al. (2015b); Seemann et al. (2015a)). As our

22Courtesy of Jonathan May, available from https://github.com/isi-nlp/tiburon.

https://github.com/isi-nlp/tiburon

6.1 Common infrastructure 91

source data, we chose the freely available data used for the WMT shared task
(see Section 6.4). Parallel data is made available from three sources:

• Europarl, the proceedings of the European parliament;

• News, a collection of newswire text;

• CommonCrawl, a collection of parallel text obtained by crawling the
Internet.

In all experiments, Europarl and News were used. The English–German part
of these will be referred to as the resource euronews. CommonCrawl was only
used in Section 6.4. The concatenation of euronews and the English–German
part of CommonCrawl will be referred to as the resource euronewscrawl.
Furthermore, WMT makes available large quantities of monolingual text for
language model training. We used this data to a varying degree. For testing,
i.e., evaluation, we used official test sets from WMT. For development and
parameter tuning, older test sets from WMT were used, as is common practice.
All Bleu scores reported in this chapter are lowercase Bleu-4 scores, and given
as percentages.

Effort has been made not to duplicate existing infrastructure. Therefore, we
make extensive use of the data preprocessing scripts that are supplied by the
popular Moses23 toolkit (Koehn et al., 2007).

As for the actual preprocessing, it was made sure that all the input data was
encoded in UTF-8. Portions of the data that could not be interpreted, as well as
data that did not match the source or target language, were removed. This was
achieved by using the n-gram based language guesser TextCat24, which imple-
ments the algorithm by Cavnar and Trenkle (1994). We also removed data from
the CommonCrawl sub-corpus that was obviously not parallel by manually
inspecting the documents it is composed of. Systems were built on lowercased
data, and if necessary, capitalization was recovered in a post-processing step
(this will be indicated).

6.1.2 Tokenization and parsing
Tokenization of the parallel and monolingual data was carried out using the
Stanford Tokenizer25 with the preserve_lines option, and the BitPar tok-
enizer which has been adapted to preserve linebreaks. Keeping line breaks is
crucial to ensure sentence alignment between both sides of the parallel corpus.

Both sides of the parallel corpus were then parsed. For rule extraction,
generally only the best parse tree was kept for each sentence. For the English
data, Egret was used, for the German data, BitPar was used.

23Available from http://statmt.org/moses/ under the LGPL open source licence.
24Available from http://odur.let.rug.nl/~vannoord/TextCat/.
25Available from http://nlp.stanford.edu/software/ under the GPL 3.0 open source li-

cence.

http://statmt.org/moses/
http://odur.let.rug.nl/~vannoord/TextCat/
http://nlp.stanford.edu/software/

92 Chapter 6. Experiments

RB(n’t) RB(not)
VBP(’m) VBP(am)
VBP(’re) VBP(are)
VPZ(’s) VBZ(is)
VBP(’ve) VBP(have)
VBD(’d) VBD(had)
MD(’ll) MD(will)
MD(’d) MD(would)
MD(wo) MD(will)
MD(ca) MD(can)

Table 6. Contractions and their long forms

Subsequently, parse failures were filtered out. We normalized contractions
(“is not” vs. “isn’t”) by carrying out the following replacements in the En-
glish data to recover the full form, using part-of-speech tags to disambiguate
between different uses of “’s” (the possessive marker cannot be replaced by
“is”). This was done to prevent data sparsity. Table 6 lists all the contractions
that were recovered. Thus, we obtained the resources euronews.parsed and
euronewscrawl.parsed as bilingual, bi-parsed parallel corpora.

6.1.3 Word alignment and rule extraction
Word alignment in these experiments was carried out on lowercased versions of
the training data with two different tools:

• Giza++26 which is an implementation of the IBM models 1 through 5,
as well as HMM alignment (Och and Ney, 2003);

• fast_align27, which is an improved variant of IBM model 2 which is
faster than Giza++ and yields comparable results (Dyer et al., 2013).

The resulting word alignments were symmetrized and used together with the
parse trees to extract rules in the ln-XMBOT and STSG formalisms.

In addition to the resulting word alignments, the lexical translation proba-
bilities that are obtained along with them were kept for lexical scoring of the
translation rules (see Section 5.1.2).

6.1.4 Language models
We generally used KenLM (Heafield, 2011) to build n-gram language models
(unless otherwise indicated, n = 5). In addition to the German side of the
parallel data, we occasionally used additional, monolingual data. KenLM offers

26Available from https://github.com/moses-smt/giza-pp under the GPL open source li-
cence.

27Available from https://github.com/clab/fast_align under the Apache 2.0 open source
licence.

https://github.com/moses-smt/giza-pp
https://github.com/clab/fast_align

6.2 Experiment A: Reasoning about models 93

a command-line interface that can be conveniently queried; it is not necessary
to embed KenLM or any libraries.

6.1.5 Tuning
We use Z-Mert (Zaidan, 2009) as a “black box”. Z-Mert takes as its input
k-best lists with scores for the individual features and optimizes for Bleu. It
should be noted as an advantage of our framework that decoding has to happen
only once. In each iteration, only the k-best algorithm has to be re-run because
the weight vector will have changed.

6.1.6 Coverage
One drawback of our strict adherence to theory is the fact that Df may be
empty. In this case, no translation can be generated for f. We call the set
C = {c ∈ F | Dc ̸= ∅} the coverage of D. Any sentence c′ ∈ F−C is out of cov-
erage. Taking into account the very specific nature of our ln-XMBOT or STSG
translation rules, coverage is limited. Syntax-based translation systems usually
increase coverage with the help of glue rules (Chiang, 2007) and/or identity
translation rules.

6.2 Experiment A: Reasoning about models
We now describe an experiment that is concerned with the effect of different
model restrictions on translation performance. First, we will explore the differ-
ence between m-morphisms and 1-morphisms. Then, we will try to answer the
question whether the generic log-linear model can be replaced by a model with
fewer degrees of freedom, closer to theory.

The data chosen for this experiment was the resource euronews. It was
parsed using Egret and BitPar to obtain the resource euronews.parsed
(only the best parse tree for each sentence was kept). Parse failures were filtered
out to obtain the resource euronews.filtered. The lowercase version resource
was used to generate lexical translation probabilities euronews.lex as well as
word alignments euronews.gdfa by running fast_align in both directions
and using the grow-diag-final heuristic for combining the word alignments of
both directions.

We then built two distinct translation models: an STSG translation model
euronews.stsg and an ln-XMBOT translation model euronews.mbot by us-
ing the appropriate rule extraction algorithms on euronews.parsed and eu-
ronews.gdfa. Recall that the difference between these is essentially the output
morphism. This way, we can study the difference between m-morphisms and
1-morphisms on the output side. Given that ln-XMBOT rule extraction enables
us to extract more, and also more generic rules, and that German exhibits a
high degree of discontiguity in its syntactic structure, we expect ln-XMBOT to
perform better than STSG.

94 Chapter 6. Experiments

For the first part of the experiment, the STSG translation model was com-
pared to the ln-XMBOT translation model. The rules of both models were
equipped with the following weights (see Section 5.1.2 for details on the rule
scoring):

• forward translation probability, modeled by an equivalence relation defined
by the root label of the source-side tree;

• backward translation probability, modeled by an equivalence relation de-
fined by the root label(s) of the target-side tree(s);

• symmetric translation probability, modeled by an equivalence relation de-
fined by the root labels of the source-side tree and the target-side tree(s);

• forward and backward lexical weights, obtained from lexical translation
probabilities during word alignment.

In addition, the input parse forests were weighted. To this end, we created
the resources newstest2014.forests and newstest2015.forests by parsing
the WMT test sets of the 2014 and 2015 shared tasks using Egret. After
decoding, two additional weights for each candidate on the k-best list were
introduced:

• n-gram based language model sentence score;

• syntactic language model tree score.

The syntactic language model tree score was obtained by using the Berkeley
Parser in “tree scoring” mode after recasing the tree (assigning uppercase to
the first word in each sentence as well as all nouns, as is required in German).
Whenever a tree was assigned a “−∞” score by the parser (which corresponds
to 0 because the parser returns log probabilities), we instead assigned it the
worst score of any tree for the respective input sentence.

Each of these 8 scores was assigned a parameter λi, and the resulting log-
linear models were tuned using Z-Mert for Minimum Error Rate Training, ob-
taining the parameter vectors stsg.mert and mbot.mert. The parallel corpora
used for tuning were the subsets of newstest2014.forests, restricted to the
coverage of the STSG or ln-XMBOT translation model, respectively. These re-
sources, newstest2014.stsg and newstest2014.mbot contain 1 071 and 1 190
sentences, respectively, out of the original 2 736 sentences.

The systems were then evaluated by translating the subsets of the test set
newstest2015.forests that were in coverage. These subsets, named news-
test2015.stsg and newstest2015.mbot, contain 927 and 1 042 sentences, re-
spectively, out of the original 2 169 sentences. The intersection of these subsets
is exactly the set newstest2015.stsg because the STSG system is subsumed
by the ln-XMBOT system. Table 7 summarizes the results. In particular, the
ln-XMBOT based system outperforms the STSG based system on the intersection

6.2 Experiment A: Reasoning about models 95

newstest2014 (tuning) newstest2015 (test)
.stsg .mbot all .stsg .mbot all

Travatar 13.68 13.45 13.48 15.95 15.89 14.65

STSG 12.60 n/a n/a 14.07 n/a n/a
ln-XMBOT restricted 12.63 12.12 n/a 17.15 16.34 n/a
ln-XMBOT 13.52 12.89 n/a 18.17∗ 17.29∗ n/a

Table 7. Findings of Experiment A. The columns .stsg and .mbot indicate
coverage of the STSG and ln-XMBOT based systems, respectively. The row Tra-
vatar indicates performance of the system trained in Section 6.3 (with default
settings) for comparison. Starred values are significantly better according to
bootstrap resampling than values in rows above them (p < 0.03).

coverage by a wide margin. This was confirmed using the Moses implemen-
tation of bootstrap resampling (Koehn, 2004; Riezler and Maxwell, 2005) with
p < 0.03.

For the second part of the experiment, recall our bimorphism-based trans-
lation system, repeated from Equation (20):

Pr(t) = Pr(t)λ1 · Pr(t)λ2 · Pr(t)λ3

=
(
Pr(f, f)︸ ︷︷ ︸

parser

·Pr(t|f)︸ ︷︷ ︸
forward

)λ1 · Pr(t)︸ ︷︷ ︸
symm.

λ2 ·

(
Pr(t|e)︸ ︷︷ ︸
backward

· Pr(e, e)Pr(e)︸ ︷︷ ︸
synLM

·Pr(e)︸ ︷︷ ︸
LM

)λ3

. (64)

Although deviating from the strict probabilistic model, it is generally accepted
that this is approximated by choosing a different weight vector µ = (µ1, . . . , µ6),
in the style of a maximum entropy (Och and Ney, 2002) or log-linear model (cf.
Equation (16)):

Pr(t) ≈ Pr(f, f)µ1 · Pr(t|f)µ2 · Pr(t)µ3 · Pr(t|e)µ4 ·
(
Pr(e, e)
Pr(e)

)µ5

· Pr(e)µ6

≈
6∏
i=1

ϕ(t)µi ,

(65)

with (ϕi | 1 ≤ i ≤ 6) modeling aspects of u accordingly. In this experiment, we
investigate whether these additional degrees of freedom in Equation (65) lead to
better translation quality as compared to Equation (64) after Minimum Error
Rate Training. Accordingly, we performed another round of Minimum Error
Rate Training for the ln-XMBOT translation model euronews.mbot, this time
only using three parameters µ1, µ2, µ3, thereby obtaining a parameter vector
mbot-restricted.mert. Table 7 summarizes the results obtained from both
tuning rounds.

We conclude that the maximum entropy model, using arbitrary feature func-
tions, does indeed perform better than the model with fewer degrees of freedom

96 Chapter 6. Experiments

that is closest to the idealized theoretical formulation. Again, this could be
confirmed using bootstrap resampling (p < 0.03).

6.3 Experiment B: Exactness and search errors
In this experiment, we will examine whether translation quality can be improved
by staying closer to the theoretical foundations. We will measure the number of
search errors committed by a system that employs pruning, and we will examine
if pruning is justified or not.

6.3.1 Search errors and model errors
As hinted in the previous sections, translation models as well as the grammars
and automata that represent the models and the input can easily be of a size
that is close to unmanageable. Most current MT systems use at least some
form of pruning, i.e., they will sacrifice exactness for efficiency. Usually, this
involves cutting off branches of the computation that are deemed unsuccessful
or unlikely to succeed, e.g., by restricting the number of hypotheses that are
explored. This number is called the beam size or pop limit. In addition to fixed
limits, variable beams (depending on the score of the best partial hypothesis)
have been used. While the pruning decisions are justified most of the time, and
usually strongly guided by the language model, it is not guaranteed that the
result will be the same with and without pruning. Exact decoding on the other
hand does not make any decisions that alter the result of the computation. The
result is guaranteed to be the result predicted by theory.

We usually evaluate the output of a machine translation system in terms of
translation quality. Section 5.4.1 explains human and automatic evaluation in
detail. However, while these evaluations target the quality of the actual output
of the MT system in question, there is another question to be asked. Given
that the implementation of a translation model might only yield an approximate
solution, does this approximation hurt translation quality? Or, in other words,
would the system benefit from a better approximation or even an exact, faithful
application of the translation model?

When an MT system returns a translation that is not optimal according to
the translation model, this is called a search error. However, when the opti-
mal translation according to the translation model is not a good translation,
this is called a model error. It is far from self-evident that avoiding search er-
rors improves translation quality because evaluation should target model errors
instead.

Lagrangian relaxation and Integer Linear Programming have been used for
exact decoding. Chang and Collins (2011) compare exact decoding of a phrase-
based MT system with a reference implementation of Moses. They report
between 4.12% and 18.32% search errors, depending on the beam size systems
(between 100 and 10 000). However, Moses commonly places a constraint on
the shape of derivations, and when the same restriction is applied to the exact

6.3 Experiment B: Exactness and search errors 97

decoder, no search errors can be observed for beam sizes of 200 and larger.
Moreover, when comparing the Bleu scores, exact decoding does not produce
a significant increase in translation quality. Rush and Collins (2011) compare
exact decoding of an SCFG MT system with Hiero (Chiang, 2007). They
report 13.7% search errors even at a large beam size of 1 000. However, they do
not present Bleu scores or any kind of qualitative analysis.

6.3.2 Experimental setup
For comparison, we picked the Travatar MT toolkit28 (Neubig, 2013, 2014;
Neubig and Duh, 2014). Travatar is a syntax-based forest-to-string toolkit.
The decoder takes as input a parsed sentence or parse forest (Mi et al., 2008),
and outputs a string (or k-best list of strings). Rule extraction from aligned par-
allel corpora where the source is parsed and the output is not parsed is included
in the toolkit, implementing the algorithm by Galley et al. (2006). Notably,
Travatar can extract composed rules. An extension of the rule extraction
algorithm to forests (Mi and Huang, 2008) has also been implemented. The un-
derlying formalism is the extended tree-to-string transducer (Galley et al., 2004).

Rules are scored using relative frequency (see Section 5.1.2). For tuning,
Travatar comes with an implementation of Mert (Och, 2003) and its exten-
sion to hypergraphs (Kumar et al., 2009), explained in Section 5.4.2.

Like in the experiments above, we used Egret to parse the English part of
euronews. The German data was only tokenized. Extended top-down tree-to-
string transducer rules were then extracted from the lowercased data using the
Travatar toolkit, and transformed into ln-XTOP rules by using a string con-
catenation homomorphism (similar to Example 7). The equivalence relation on
output objects is trivially a ≡ b for all a, b ∈ G, and therefore stateful behavior
is restricted to the input side. In this way, a bijection was achieved between
derivations in Travatar and ExEx, which was also empirically validated by
inspection of the translation scores.

Figures 28 and 29 show some rules extracted by Travatar and their bi-
morphism representation. A rule representation in the Travatar rule format29

consists of five components, divided by |||:

• source: The source side tree, containing variable:state pairs;

• target: The target side string, containing variables with no state infor-
mation;

• features: A list of name=value pairs;

• counts: The occurrence counts of source-target, source, and target, re-
spectively;

28Courtesy of Graham Neubig, available under the LGPL 3.0 open source licence from
https://github.com/neubig/travatar.

29http://www.phontron.com/travatar/model-format.html

https://github.com/neubig/travatar
http://www.phontron.com/travatar/model-format.html

98 Chapter 6. Experiments

np (x0:dt x1:nn) |||
x0 x1 |||
p=1 egfl=0.0 egfp=-0.042974 fgel=0.0 fgep=-2.648340 |||
608232 634940 8594661 |||

DT NN
NP in(f1, f2) =

NP

f2f1

out(e1, e2) = e1e2

Figure 28. Travatar translation rule without lexical material

adjp (adjp (jjr ("lower")) pp (in ("than") x0:pp)) |||
"niedriger" "als" x0 |||
p=1 egfl=-4.740122 w=2 egfp=0.0 fgel=-4.166465 fgep=-2.639057 |||
1 1 14 |||
0-0 1-0 1-1

PP
ADJP in(f1) =

ADJP

PP

f1IN

than

ADJP

JJR

lower

out(e1) = niedriger als e1

Figure 29. Travatar translation rule with lexical material

• alignment: The lexical alignment (for lexical scoring purposes, see Sec-
tion 5.1.2).

Standard feature functions used by Travatar are:

• egfp, fgep: conditional probabilities logPr(e|f) and logPr(f |e);

• egfl, fgel: lexical probabilities (see Section 5.1.2);

• w: the number of words on the target side;

• p: phrase count feature, always 1.

We used KenLM (Heafield, 2011) to train a 5-gram language model on the
German side of the bilingual resource euronews. KenLM is integrated into
Travatar, but was used in ExEx too, by calling it from the command line.

We tuned the Travatar translation model using Mert on the test set
of the WMT-14 translation task (2 736 sentences). However, the parameter

6.3 Experiment B: Exactness and search errors 99

pop limit search errors percentage Bleu runtime (sec)
10 1 957 90.2% 12.74 1 216.5
20 1 866 86.0% 13.36 1 201.9
50 1 735 80.0% 13.72 1 160.4

100 1 634 75.3% 13.86 1 159.8
200 1 512 69.7% 14.13 957.6
500 1 329 61.3% 14.49 1 170.8

1 000 1 187 54.7% 14.56 1 221.2

2 000 1 058 48.8% 14.65 1 275.8
5 000 861 39.7% 14.69 1 422.6
10 000 738 34.0% 14.67 1 671.5
20 000 625 28.8% 14.66 2 260.1
50 000 458 21.1% 14.65 5 327.6
100 000 366 16.9% 14.64 10 829.8
200 000 295 13.6% 14.58 24 317.8
500 000 168 7.7% 14.54 33 076.6

1 000 000 96 4.4% 14.49 35 903.6
2 000 000 3 0.14% 14.49 38 762.6
5 000 000 n/a n/a n/a dnf

Table 8. Findings of Experiment B. Translation performance of Travatar
and runtime are given depending on pop limit (default: 2 000).

for glue rules and default handling of unknown rules (which are not part of
the above-mentioned translation model) were set to an arbitrary high value of
10 000 because ExEx is not able to use them, and we do not want to use them
in Travatar when there are viable alternatives. We then used the optimized
parameter vector for decoding using both Travatar and ExEx.

6.3.3 Results and discussion
We evaluated the number of search errors, as well as translation quality using
Bleu-4 on the test set from the WMT-15 translation task (2, 169 sentences).
We decoded this test set using different pop limits in Travatar, directly influ-
encing the number of hypotheses explored (“popped”) in the k-best search (see
Section 5.2.2). The method used by Travatar is cube pruning (Chiang, 2007).
Even with a pop limit of 2 000 000, we still identified search errors. We can
confirm a search error if a better scoring translation can be found using ExEx
or Travatar with a higher pop limit. The Travatar experiment with a pop
limit of 5 000 000 did not finish because of lack of memory. Using ExEx, we
were able to still identify 3 search errors for a pop limit of 2 000 000. However,
the number of search errors reported is only a lower bound because even ExEx
was not always able to guarantee optimality due to runtime constraints (see
Section 5.3.4 for details on the exact rescoring algorithm).

As can be seen in Table 8, with the default pop limit of 2 000 we commit

100 Chapter 6. Experiments

at least 48.8% search errors. However, this does not impact translation quality.
Even with a pop limit of 5 000 where we report the highest Bleu score, the
percentage of search errors is still 39.7%. In fact, the Bleu score drops slightly
when decoding is even more accurate, and the higher runtime does not seem
to justify the faithfulness to the model. The Bleu score of Travatar at pop
limit 2 000 000 combined with ExEx, fixing 3 search errors, is 14.50, still well
below the highest Bleu score at pop limit 5 000. We conclude that the default
pop limit is indeed a good tradeoff between runtime and accuracy, and while
not entirely convincing from a theoretical point of view, it can be justified by
the high Bleu score.

6.4 Experiment C: Large scale decoding
WMT is a yearly conference (previously workshop) on statistical machine trans-
lation30. In addition to peer-reviewed technical papers, participants can build
and compare MT systems on a predefined set of data. The systems are then
scored automatically and by human annotators (cf. Section 5.4.1).

Both our submissions have been described in system papers in the pro-
ceedings of WMT. Our submission to the 9th Workshop on Statistical Ma-
chine Translation (WMT-14, Bojar et al. (2014)) is described in Quernheim
and Cap (2014). Our submission to the 10th Workshop on Statistical Machine
Translation (WMT-15, Bojar et al. (2015)) is described in Quernheim (2015).

As explained in the previous section, we deviated from the theoretical for-
mulation and designed an ad-hoc maximum entropy model using the following
feature functions:

1. Translation weight normalized by source root symbol
2. Translation weight normalized by all root symbols
3. Translation weight normalized by leaves on the source side (*)
4. Lexical translation weight target given source
5. Lexical translation weight source given target
6. Target side language model
7. Number of words in output string (*)
8. Number of rules used in the derivation (*)
9. Number of gaps in the target side sequences (*)
10. Penalty for rules that have more lexical material on the source side than

on the target side or vice versa (absolute value) (*)
11. Probability of the rule in the input parse forest

Feature functions marked with (*) were only used in the WMT-14 submissions.
Furthermore, the WMT-14 and WMT-15 submissions differed in two critical
aspects:

1. For WMT-14, morphological preprocessing was carried out to combat
30The relevant websites for this experiment are http://statmt.org/wmt14/ and http://

statmt.org/wmt15/.

http://statmt.org/wmt14/
http://statmt.org/wmt15/
http://statmt.org/wmt15/

6.4 Experiment C: Large scale decoding 101

feature WMT-14 system WMT-15 system
fallback phrase-based, full sentence word-based, subtree
morphology compound splitting none
additional features yes no
en parser Egret Egret
de parser BitPar BitPar
word alignment Giza++ fast_align
Mert Z-Mert Z-Mert
language model 5-gram KenLM 5-gram KenLM
Bleu-4 17.0 15.3
in-coverage unknown 16.7
description Quernheim and Cap (2014) Quernheim (2015)

Table 9. Comparison of WMT-14 and WMT-15 submissions

data sparsity. German noun compounds were split into their components
to allow for better word alignment and more useful compositional rules.
For WMT-15, no morphological preprocessing, in particular no compound
splitting was carried out.

2. For WMT-14, sentences that could not be translated using the lnXMBOT-
based system were translated by a phrase-based fallback system.
For WMT-15, instead of an external phrase-based fallback system, a sim-
ple word-based system was used to translate subtrees in the input parse
forest that could not be handled, instead of handling the whole sentence
externally. This was achieved by adding dummy identity translation rules
on the fly with a very low score. Thus, only in the absence of a derivation
in the original model, a derivation involving a dummy rule would be cho-
sen. Furthermore, scores were modelled at runtime such that the overall
lexical material translated by dummy rules would be minimized.

For both submissions, a 5-gram language model was trained using KenLM
on all the German monolingual data provided. Word alignment was performed
using Giza++ (WMT-14 submission) and fast_align (WMT-15 submission).
For Mert tuning, we used Z-Mert on the WMT-13 test set. Both systems
are compared in Table 9.

Coverage was limited because of data sparsity, especially since fine-grained
morphological annotation was used in the German data. This causes highly
specific rules that do not generalize well. Furthermore, only minimal rules were
extracted, and only one parse tree per sentence was used for rule extraction.

Runtime is another problem. The full training pipeline takes about a week
including parsing, word alignment, rule extraction and tuning. However, decod-
ing takes approximately 5 minutes per sentence. Decoding can be trivially par-
allelized, though, and the full test set of 10 000 sentences (WMT-14) and 3 000
sentences (WMT-15) could be successfully translated within a week. However,

102 Chapter 6. Experiments

it might be worth to implement an algorithm like A∗, where the completion cost
of a partial hypothesis is estimated to explore promising hypotheses first, while
keeping optimality. A useful heuristic to estimate the completion cost might
be an n-gram language model. A∗ has been described for k-best extraction
by Pauls and Klein (2009).

References

André Arnold and Max Dauchet. Morphismes et bimorphismes d’arbres. Theo-
retical Computer Science, 20 (1): 33–93, 1982. doi:10.1016/0304-3975(82)90098-
6.

Mark Aronoff and Kirsten Fudeman. What is Morphology? Blackwell Publish-
ing, 2005.

Satanjeev Banerjee and Alon Lavie. METEOR: An automatic metric for MT
evaluation with improved correlation with human judgments. In Proceedings of
the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine
Translation and/or Summarization, pages 65–72, 2005. URL http://aclweb.
org/anthology/W05-0909.

Jean Berstel and Christophe Reutenauer. Recognizable formal power series on
trees. Theor. Comput. Sci., 18: 115–148, 1982. doi:10.1016/0304-3975(82)90019-
6.

Ondrej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp
Koehn, Johannes Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve
Saint-Amand, Radu Soricut, Lucia Specia, and Ales̆ Tamchyna. Findings of
the 2014 Workshop on Statistical Machine Translation. In Proceedings of the
9th Workshop on Statistical Machine Translation, pages 12–58, 2014. URL
http://aclweb.org/anthology/W14-3302.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Barry Haddow, Matthias
Huck, Chris Hokamp, Philipp Koehn, Varvara Logacheva, Christof Monz, Mat-
teo Negri, Matt Post, Carolina Scarton, Lucia Specia, and Marco Turchi. Find-
ings of the 2015 Workshop on Statistical Machine Translation. In Proceedings of
the 10th Workshop on Statistical Machine Translation, pages 1–46, 2015. URL
http://aclweb.org/anthology/W15-3001.

Sabine Brants, Stefanie Dipper, Peter Eisenberg, Silvia Hansen Hansen, Esther
König, Wolfgang Lezius, Christian Rohrer, George Smith, and Hans Uszkoreit.
TIGER: Linguistic interpretation of a German corpus. Research on Language
and Computation, 2 (4): 597–620, 2004. doi:10.1007/s11168-004-7431-3.

http://dx.doi.org/10.1016/0304-3975%252882%252990098-6
http://dx.doi.org/10.1016/0304-3975%252882%252990098-6
http://aclweb.org/anthology/W05-0909
http://aclweb.org/anthology/W05-0909
http://dx.doi.org/10.1016/0304-3975%252882%252990019-6
http://dx.doi.org/10.1016/0304-3975%252882%252990019-6
http://aclweb.org/anthology/W14-3302
http://aclweb.org/anthology/W15-3001
http://dx.doi.org/10.1007/s11168-004-7431-3

104 References

Fabienne Braune, Nina Seemann, Daniel Quernheim, and Andreas Maletti.
Shallow local multi-bottom-up tree transducers in statistical machine transla-
tion. In Proceedings of the 51st Annual Meeting of the Association for Computa-
tional Linguistics, pages 811–821, 2013. URL http://aclweb.org/anthology/
P13-1080.

Peter F. Brown, John Cocke, Stephen A. Della Pietra, Vincent J. Della Pietra,
Fredrick Jelinek, John D. Lafferty, Robert L. Mercer, and Paul S. Roossin. A
statistical approach to machine translation. Computational Linguistics, 16 (2):
79–85, 1990. URL http://aclweb.org/anthology/J90-2002.

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, and Robert L.
Mercer. The mathematics of statistical machine translation: Parameter estima-
tion. Computational Linguistics, 19 (2): 263–311, 1993. URL http://aclweb.
org/anthology/J93-2003.

Matthias Büchse, Mark-Jan Nederhof, and Heiko Vogler. Tree parsing with
synchronous tree-adjoining grammars. In Proceedings of the 12th International
Conference on Parsing Technologies, pages 14–25, 2011. URL http://aclweb.
org/anthology/W11-2903.

Matthias Büchse. Algebraic decoder specification: coupling formal-language the-
ory and statistical machine translation. PhD thesis, TU Dresden, 2015. URL
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-159266.

William B. Cavnar and John M. Trenkle. N-gram-based text categorization. In
Proceedings of SDAIR-94, 3rd Annual Symposium on Document Analysis and
Information Retrieval, pages 161–175, 1994.

Yin-Wen Chang and Michael Collins. Exact decoding of phrase-based transla-
tion models through Lagrangian relaxation. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing, pages 26–37, 2011. URL
http://aclweb.org/anthology/D11-1003.

David Chiang. An introduction to synchronous grammars, 2006. URL http://
www3.nd.edu/~dchiang/papers/synchtut.pdf.

David Chiang. Hierarchical phrase-based translation. Computational Linguis-
tics, 33 (2): 201–228, 2007. URL http://aclweb.org/anthology/J07-2003.

David Chiang, Adam Lopez, Nitin Madnani, Christof Monz, Philip Resnik, and
Michael Subotin. The hiero machine translation system: Extensions, evaluation,
and analysis. In Proceedings of Human Language Technology Conference and
Conference on Empirical Methods in Natural Language Processing, 2005. URL
http://aclweb.org/anthology/H05-1098.

Noam Chomsky. Syntactic Structures. Mouton de Gruyter, 1957.

http://aclweb.org/anthology/P13-1080
http://aclweb.org/anthology/P13-1080
http://aclweb.org/anthology/J90-2002
http://aclweb.org/anthology/J93-2003
http://aclweb.org/anthology/J93-2003
http://aclweb.org/anthology/W11-2903
http://aclweb.org/anthology/W11-2903
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-159266
http://aclweb.org/anthology/D11-1003
http://www3.nd.edu/~dchiang/papers/synchtut.pdf
http://www3.nd.edu/~dchiang/papers/synchtut.pdf
http://aclweb.org/anthology/J07-2003
http://aclweb.org/anthology/H05-1098

References 105

Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis
Lugiez, Christof Löding, Sophie Tison, and Marc Tommasi. Tree automata
techniques and applications, 2007. URL http://tata.gforge.inria.fr/.

Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal Statistical
Society, Series B, 39 (1): 1–38, 1977.

Steve DeNeefe. Tree-Adjoining Machine Translation. PhD thesis, University of
Southern California, 2011.

Bonnie J. Dorr. Machine translation divergences: A formal description and
proposed solution. Computational Linguistics, 20 (4), 1994. URL http://
aclweb.org/anthology/J94-4004.

Manfred Droste and Werner Kuich. Semirings and formal power series. In
Manfred Droste, Werner Kuich, and Heiko Vogler, editors, Handbook of Weighted
Automata, EATCS Monographs on Theoretical Computer Science, chapter 1,
pages 3–28. Springer, 2009.

Manfred Droste, Werner Kuich, and Heiko Vogler, editors. Handbook of Weighted
Automata. EATCS Monographs on Theoretical Computer Science. Springer,
2009.

Chris Dyer, Victor Chahuneau, and A. Noah Smith. A simple, fast, and effective
reparameterization of IBM Model 2. In Proceedings of the Annual Conference of
the North American Chapter of the Association for Computational Linguistics,
pages 644–648, 2013. URL http://aclweb.org/anthology/N13-1073.

Jason Eisner. Learning non-isomorphic tree mappings for machine translation.
In Proceedings of the 41st Annual Meeting of the Association for Computational
Linguistics, pages 205–208, 2003. URL http://aclweb.org/anthology/P03-
2041.

Joost Engelfriet. Bottom-up and top-down tree transformations - A comparison.
Mathematical Systems Theory, 9 (3): 198–231, 1975. doi:10.1007/BF01704020.

Joost Engelfriet. Tree automata and tree grammars. CoRR, abs/1510.02036,
2015. URL http://arxiv.org/abs/1510.02036. Slightly revised version of
lecture notes from 1975.

Joost Engelfriet, Eric Lilin, and Andreas Maletti. Extended multi bottom-up
tree transducers: Composition and decomposition. Acta Informatica, 46 (8):
561–590, 2009. doi:10.1007/s00236-009-0105-8.

Heidi Fox. Phrasal cohesion and statistical machine translation. In Proceedings
of the Conference on Empirical Methods in Natural Language Processing, pages
304–311, 2002. URL http://www.aclweb.org/anthology/W02-1039.

http://tata.gforge.inria.fr/
http://aclweb.org/anthology/J94-4004
http://aclweb.org/anthology/J94-4004
http://aclweb.org/anthology/N13-1073
http://aclweb.org/anthology/P03-2041
http://aclweb.org/anthology/P03-2041
http://dx.doi.org/10.1007/BF01704020
http://arxiv.org/abs/1510.02036
http://dx.doi.org/10.1007/s00236-009-0105-8
http://www.aclweb.org/anthology/W02-1039

106 References

Zoltán Fülöp, Andreas Maletti, and Heiko Vogler. Preservation of recogniz-
ability for synchronous tree substitution grammars. In Proceedings of the 2010
Workshop on Applications of Tree Automata in Natural Language Processing,
pages 1–9, 2010. URL http://aclweb.org/anthology/W10-2501.

Zoltán Fülöp, Andreas Maletti, and Heiko Vogler. Weighted extended tree
transducers. Fundamenta Informaticae, 111 (2): 163–202, 2011.

Zoltán Fülöp and Heiko Vogler. Weighted tree automata and tree transducers. In
Manfred Droste, Werner Kuich, and Heiko Vogler, editors, Handbook of Weighted
Automata, EATCS Monographs on Theoretical Computer Science, chapter 9,
pages 313–403. Springer, 2009.

William A. Gale and Kenneth W. Church. A program for aligning sentences
in bilingual corpora. Computational Linguistics, 19 (1): 75–102, 1993. URL
http://aclweb.org/anthology/J93-1004.

Michel Galley, Mark Hopkins, Kevin Knight, and Daniel Marcu. What’s in a
translation rule? In Proceedings of the Annual Conference of the North American
Chapter of the Association for Computational Linguistics, pages 273–280, 2004.
URL http://aclweb.org/anthology/N04-1035.

Michel Galley, Jonathan Graehl, Kevin Knight, Daniel Marcu, Steve DeNeefe,
Wei Wang, and Ignacio Thayer. Scalable inference and training of context-rich
syntactic translation models. In Proceedings of the 21st International Conference
on Computational Linguistics and the 44th Annual Meeting of the Association
for Computational Linguistics, pages 961–968, 2006. URL http://aclweb.org/
anthology/P06-1121.

Ferenc Gécseg and Magnus Steinby. Tree automata. CoRR, abs/1509.06233,
2015. URL http://arxiv.org/abs/1509.06233. This is a reissue of the book
Tree Automata by F. Gécseg and M. Steinby originally published in 1984 by
Akadémiai Kiadó, Budapest.

Daniel Gildea. On the string translations produced by multi bottom-up tree
transducers. Computational Linguistics, 38, 2012. URL http://aclweb.org/
anthology/J12-3008.

Jonathan Graehl, Kevin Knight, and Jonathan May. Training tree transducers.
Computational Linguistics, 34 (3), 2008. URL http://aclweb.org/anthology/
J08-3004.

Thomas Hanneforth and Kay-Michael Würzner. Statistical language models
within the algebra of weighted rational languages. Acta Cybernetica, 19 (2):
313–356, 2009.

Kenneth Heafield. KenLM: Faster and smaller language model queries. In
Proceedings of the 6th Workshop on Statistical Machine Translation, pages 187–
197, 2011. URL http://aclweb.org/anthology/W11-2123.

http://aclweb.org/anthology/W10-2501
http://aclweb.org/anthology/J93-1004
http://aclweb.org/anthology/N04-1035
http://aclweb.org/anthology/P06-1121
http://aclweb.org/anthology/P06-1121
http://arxiv.org/abs/1509.06233
http://aclweb.org/anthology/J12-3008
http://aclweb.org/anthology/J12-3008
http://aclweb.org/anthology/J08-3004
http://aclweb.org/anthology/J08-3004
http://aclweb.org/anthology/W11-2123

References 107

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

Liang Huang and David Chiang. Better k-best parsing. In Proceedings of
the 9th International Workshop on Parsing Technology, pages 53–64, 2005.
URL http://aclweb.org/anthology/W05-1506. Revised version available at
http://www.cis.upenn.edu/~lhuang3/huang-iwpt-correct.pdf.

Liang Huang, Kevin Knight, and Aravind Joshi. Statistical syntax-directed
translation with extended domain of locality. In Proceedings of the 7th Biennial
Conference of the Association for Machine Translation in the Americas, 2006.

Miriam Kaeshammer. Synchronous linear context-free rewriting systems for
machine translation. In Proceedings of the 7th Workshop on Syntax and Struc-
ture in Statistical Translation, pages 68–77, 2013. URL http://aclweb.org/
anthology/W13-0808.

Miriam Kaeshammer. Hierarchical machine translation with discontinuous
phrases. In Proceedings of the 10th Workshop on Statistical Machine Trans-
lation, pages 228–238, 2015. URL http://aclweb.org/anthology/W15-3028.

Kevin Knight. Capturing practical natural language transformations. Machine
Translation, 21 (2): 121–133, 2008. doi:10.1007/s10590-008-9039-0.

Kevin Knight and Jonathan May. Applications of weighted automata in natural
language processing. In Manfred Droste, Werner Kuich, and Heiko Vogler,
editors, Handbook of Weighted Automata, EATCS Monographs on Theoretical
Computer Science, chapter 14, pages 571–596. Springer, 2009.

Philipp Koehn. Statistical significance tests for machine translation evaluation.
In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, 2004. URL http://aclweb.org/anthology/W04-3250.

Philipp Koehn. Europarl: A parallel corpus for statistical machine translation.
In Proceedings of the 10th Machine Translation Summit, pages 79–86, 2005.

Philipp Koehn, Franz J. Och, and Daniel Marcu. Statistical phrase-based trans-
lation. In Proceedings of the Annual Conference of the North American Chapter
of the Association for Computational Linguistics, pages 127–133, 2003. URL
http://aclweb.org/anthology/N03-1017.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello
Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondrej Bojar, Alexandra Constantin, and Evan Herbst.
Moses: Open source toolkit for statistical machine translation. In Proceedings
of the 45th Annual Meeting of the Association for Computational Linguistics,
pages 177–180, 2007. URL http://aclweb.org/anthology/P07-2045.

http://aclweb.org/anthology/W05-1506
http://www.cis.upenn.edu/~lhuang3/huang-iwpt-correct.pdf
http://aclweb.org/anthology/W13-0808
http://aclweb.org/anthology/W13-0808
http://aclweb.org/anthology/W15-3028
http://dx.doi.org/10.1007/s10590-008-9039-0
http://aclweb.org/anthology/W04-3250
http://aclweb.org/anthology/N03-1017
http://aclweb.org/anthology/P07-2045

108 References

Alexander Koller and Marco Kuhlmann. A generalized view on parsing and
translation. In Proceedings of the 12th International Conference on Parsing
Technologies, pages 2–13, 2011. URL http://aclweb.org/anthology/W11-
2902.

Shankar Kumar and William Byrne. A weighted finite state transducer imple-
mentation of the alignment template model for statistical machine translation.
In Proceedings of the Annual Conference of the North American Chapter of the
Association for Computational Linguistics, pages 63–70, 2003. URL http://
aclweb.org/anthology/N03-1019.

Shankar Kumar and William Byrne. Minimum Bayes-risk decoding for statis-
tical machine translation. In Proceedings of the Human Language Technology
Conference of the North American Chapter of the Association for Computational
Linguistics, pages 169–176, 2004. URL http://aclweb.org/anthology/N04-
1022.

Shankar Kumar, Wolfgang Macherey, Chris Dyer, and Franz Och. Efficient
minimum error rate training and minimum Bayes-risk decoding for translation
hypergraphs and lattices. In Proceedings of the 47th Annual Meeting of the
Association for Computational Linguistics, pages 163–171, 2009. URL http://
aclweb.org/anthology/P09-1019.

Yang Liu, Yajuan Lü, and Qun Liu. Improving tree-to-tree translation with
packed forests. In Proceedings of the Joint Conference of the 47th Annual Meet-
ing of the Association for Computational Linguistics and the 4th International
Joint Conference on Natural Language Processing of the AFNLP, pages 558–
566, 2009. URL http://aclweb.org/anthology/P09-1063.

Andreas Maletti. A tree transducer model for synchronous tree-adjoining gram-
mars. In Proceedings of the 48th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1067–1076, 2010a. URL http://www.aclweb.org/
anthology/P10-1109.

Andreas Maletti. Survey: Tree transducers in machine translation. In Proceed-
ings of the 2nd International Workshop on Non-Classical Models of Automata
and Applications, volume 263 of books@ocg.at, pages 11–32. Österreichische
Computer Gesellschaft, 2010b.

Andreas Maletti. How to train your multi bottom-up tree transducer. In
Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics, pages 825–834, 2011a. URL http://aclweb.org/anthology/P11-
1083.

Andreas Maletti. An alternative to synchronous tree substitution
grammars. Natural Language Engineering, 17: 221–242, 2011b.
doi:10.1017/S1351324911000027.

http://aclweb.org/anthology/W11-2902
http://aclweb.org/anthology/W11-2902
http://aclweb.org/anthology/N03-1019
http://aclweb.org/anthology/N03-1019
http://aclweb.org/anthology/N04-1022
http://aclweb.org/anthology/N04-1022
http://aclweb.org/anthology/P09-1019
http://aclweb.org/anthology/P09-1019
http://aclweb.org/anthology/P09-1063
http://www.aclweb.org/anthology/P10-1109
http://www.aclweb.org/anthology/P10-1109
mailto:books@ocg.at
http://aclweb.org/anthology/P11-1083
http://aclweb.org/anthology/P11-1083
http://dx.doi.org/10.1017/S1351324911000027

References 109

Andreas Maletti. Every sensible extended top-down tree transducer is a multi
bottom-up tree transducer. In Proceedings of the 12th Annual Conference of
the North American Chapter of the Association for Computational Linguistics,
pages 263–273, 2012. URL http://aclweb.org/anthology/N12-1027.

Andreas Maletti. Synchronous forest substitution grammars. In Proceedings
of the 5th International Conference on Algebraic Informatics, pages 235–246.
Springer, 2013. doi:10.1007/978-3-642-40663-8_22.

Andreas Maletti. The power of weighted regularity-preserving multi bottom-up
tree transducers. Int. J. Found. Comput. Sci., 26 (7): 987–1005, 2015.

Andreas Maletti and Giorgio Satta. Parsing algorithms based on tree automata.
In Proceedings of the 11th International Workshop on Parsing Technology, pages
1–12, 2009. URL http://aclweb.org/anthology/W09-3801.

Andreas Maletti, Jonathan Graehl, Mark Hopkins, and Kevin Knight. The
power of extended top-down tree transducers. SIAM Journal on Computing, 39
(2): 410–430, 2009.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Build-
ing a large annotated corpus of English: The Penn treebank. Computational
Linguistics, 19 (2): 313–330, 1993.

Jonathan May and Kevin Knight. A better n-best list: Practical determinization
of weighted finite tree automata. In Proceedings of the Annual Conference of
the North American Chapter of the Association for Computational Linguistics,
pages 351–358, 2006a. URL http://aclweb.org/anthology/N06-1045.

Jonathan May and Kevin Knight. Tiburon: A weighted tree automata
toolkit. In Proceedings of the 11th International Conference on Imple-
mentation and Application of Automata, pages 102–113. Springer, 2006b.
doi:10.1007/11812128_11.

Jonathan May, Kevin Knight, and Heiko Vogler. Efficient inference through
cascades of weighted tree transducers. In Proceedings of the 48th Annual Meeting
of the Association for Computational Linguistics, pages 1058–1066, 2010. URL
http://www.aclweb.org/anthology/P10-1108.

Dan I. Melamed, Giorgio Satta, and Benjamin Wellington. Generalized multi-
text grammars. In Proceedings of the 42nd Annual Meeting of the Association
for Computational Linguistics, pages 661–668, 2004. URL http://aclweb.org/
anthology/P04-1084.

Haitao Mi and Liang Huang. Forest-based translation rule extraction. In Pro-
ceedings of the 2008 Conference on Empirical Methods in Natural Language
Processing, pages 206–214, 2008. URL http://aclweb.org/anthology/D08-
1022.

http://aclweb.org/anthology/N12-1027
http://dx.doi.org/10.1007/978-3-642-40663-8_22
http://aclweb.org/anthology/W09-3801
http://aclweb.org/anthology/N06-1045
http://dx.doi.org/10.1007/11812128_11
http://www.aclweb.org/anthology/P10-1108
http://aclweb.org/anthology/P04-1084
http://aclweb.org/anthology/P04-1084
http://aclweb.org/anthology/D08-1022
http://aclweb.org/anthology/D08-1022

110 References

Haitao Mi, Liang Huang, and Qun Liu. Forest-based translation. In Proceedings
of the 46th Annual Meeting of the Association for Computational Linguistics,
pages 192–199, 2008. URL http://aclweb.org/anthology/P08-1023.

Mark-Jan Nederhof and Heiko Vogler. Synchronous context-free tree grammars.
In Proceedings of the 11th International Workshop on Tree Adjoining Grammars
and Related Formalisms (TAG+11), pages 55–63, 2012.

Graham Neubig. Travatar: A forest-to-string machine translation engine based
on tree transducers. In Proceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics: System Demonstrations, pages 91–96, 2013.
URL http://aclweb.org/anthology/P13-4016.

Graham Neubig. Forest-to-string SMT for Asian language translation: NAIST
at WAT 2014. In Proceedings of the 1st Workshop on Asian Translation, pages
20–25, 2014. URL http://aclweb.org/anthology/W14-7002.

Graham Neubig and Kevin Duh. On the elements of an accurate tree-to-string
machine translation system. In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics, volume 2, pages 143–149, 2014. URL
http://aclweb.org/anthology/P14-2024.

Franz Josef Och. Minimum error rate training in statistical machine translation.
In Proceedings of the 41st Annual Meeting of the Association for Computational
Linguistics, pages 160–167, 2003. URL http://aclweb.org/anthology/P03-
1021.

Franz Josef Och and Hermann Ney. Discriminative training and maximum
entropy models for statistical machine translation. In Proceedings of the 40th
Annual Meeting of the Association for Computational Linguistics, pages 295–
302, 2002. URL http://www.aclweb.org/anthology/P02-1038.

Franz Josef Och and Hermann Ney. A systematic comparison of various statis-
tical alignment models. Computational Linguistics, 29 (1): 19–51, 2003.

Franz Josef Och and Hermann Ney. The alignment template approach to sta-
tistical machine translation. Computational Linguistics, 30 (4): 417–449, 2004.
URL http://www.aclweb.org/anthology/J04-4002.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a
method for automatic evaluation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Computational Linguistics, pages
311–318, 2002. URL http://aclweb.org/anthology/P02-1040.

Adam Pauls and Dan Klein. K-best A* parsing. In Proceedings of the 47th
Annual Meeting of the Association for Computational Linguistics, pages 958–
966, 2009. URL http://aclweb.org/anthology/P09-1108.

http://aclweb.org/anthology/P08-1023
http://aclweb.org/anthology/P13-4016
http://aclweb.org/anthology/W14-7002
http://aclweb.org/anthology/P14-2024
http://aclweb.org/anthology/P03-1021
http://aclweb.org/anthology/P03-1021
http://www.aclweb.org/anthology/P02-1038
http://www.aclweb.org/anthology/J04-4002
http://aclweb.org/anthology/P02-1040
http://aclweb.org/anthology/P09-1108

References 111

Slav Petrov and Dan Klein. Improved inference for unlexicalized parsing. In
Proceedings of the Annual Conference of the North American Chapter of the
Association for Computational Linguistics, pages 404–411, 2007. URL http://
aclweb.org/anthology/N07-1051.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. Learning accurate,
compact, and interpretable tree annotation. In Proceedings of the 21st Interna-
tional Conference on Computational Linguistics and 44th Annual Meeting of the
Association for Computational Linguistics, pages 433–440, 2006. URL http://
aclweb.org/anthology/P06-1055.

Daniel Quernheim. Exact decoding with multi bottom-up tree transducers. In
Proceedings of the 10th Workshop on Statistical Machine Translation, pages
164–171, 2015. URL http://aclweb.org/anthology/W15-3019.

Daniel Quernheim and Fabienne Cap. Large-scale exact decoding: The IMS-
TTT submission to WMT14. In Proceedings of the 10th Workshop on Statis-
tical Machine Translation, pages 163–170, 2014. URL http://aclweb.org/
anthology/W14-3318.

Frank G. Radmacher. An automata theoretic approach to rational tree relations.
In Proceedings of the 34th Conference on Current Trends in Theory and Practice
of Computer Science, pages 424–435. Springer, 2008. doi:10.1007/978-3-540-
77566-9_37.

Jean-Claude Raoult. Rational tree relations. Bulletin of the Belgian Mathemat-
ical Society – Simon Stevin, 4 (1): 149–176, 1997. URL http://eudml.org/
doc/119808.

Stefan Riezler and T. John Maxwell. On some pitfalls in automatic evaluation
and significance testing for MT. In Proceedings of the ACL Workshop on Intrin-
sic and Extrinsic Evaluation Measures for Machine Translation and/or Summa-
rization, pages 57–64, 2005. URL http://aclweb.org/anthology/W05-0908.

William C. Rounds. Mappings and grammars on trees. Mathematical Systems
Theory, 4 (3): 257–287, 1970. doi:10.1007/BF01695769.

Alexander M. Rush and Michael Collins. Exact decoding of syntactic transla-
tion models through Lagrangian relaxation. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics, pages 72–82, 2011.
URL http://aclweb.org/anthology/P11-1008.

Giorgio Satta and Enoch Peserico. Some computational complexity results for
synchronous context-free grammars. In Proceedings of Human Language Tech-
nology Conference and Conference on Empirical Methods in Natural Language
Processing, pages 803–810, 2005. URL http://www.aclweb.org/anthology/
H05-1101.

http://aclweb.org/anthology/N07-1051
http://aclweb.org/anthology/N07-1051
http://aclweb.org/anthology/P06-1055
http://aclweb.org/anthology/P06-1055
http://aclweb.org/anthology/W15-3019
http://aclweb.org/anthology/W14-3318
http://aclweb.org/anthology/W14-3318
http://dx.doi.org/10.1007/978-3-540-77566-9_37
http://dx.doi.org/10.1007/978-3-540-77566-9_37
http://eudml.org/doc/119808
http://eudml.org/doc/119808
http://aclweb.org/anthology/W05-0908
http://dx.doi.org/10.1007/BF01695769
http://aclweb.org/anthology/P11-1008
http://www.aclweb.org/anthology/H05-1101
http://www.aclweb.org/anthology/H05-1101

112 References

Helmut Schmid. Efficient parsing of highly ambiguous context-free grammars
with bit vectors. In Proceedings of the 20th International Conference on
Computational Linguistics, pages 162–168, 2004. URL http://aclweb.org/
anthology/C04-1024.

Helmut Schmid. Trace prediction and recovery with unlexicalized PCFGs and
slash features. In Proceedings of the 44th Annual Meeting of the Association for
Computational Linguistics, pages 177–184, 2006. URL http://aclweb.org/
anthology/P06-1023.

Nina Seemann, Fabienne Braune, and Andreas Maletti. A systematic evalua-
tion of MBOT in statistical machine translation. In Proceedings of the 15th
MT-Summit, pages 200–214. Association for Machine Translation in the Amer-
icas, 2015a. URL http://www.amtaweb.org/wp-content/uploads/2015/10/
MTSummitXV_ResearchTrack.pdf.

Nina Seemann, Fabienne Braune, and Andreas Maletti. String-to-tree multi
bottom-up tree transducers. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics, pages 815–824, 2015b. URL http://
aclweb.org/anthology/P15-1079.

Claude E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27: 379–423, 1948.

Stuart M. Shieber. Evidence against the context-freeness of natural language.
Linguistics and Philosophy, 8 (3): 333–343, 1985.

Stuart M. Shieber. Synchronous grammars as tree transducers. In Proceedings
of the 7th International Workshop on Tree Adjoining Grammar and Related
Formalisms, pages 88–95, 2004.

Stuart M. Shieber. Unifying synchronous tree adjoining grammars and tree
transducers via bimorphisms. In Proceedings of the 11th Conference of the
European Chapter of the Association for Computational Linguistics, 2006. URL
http://aclweb.org/anthology/E06-1048.

Stuart M. Shieber. Probabilistic synchronous tree-adjoining grammars for ma-
chine translation: The argument from bilingual dictionaries. In Proceedings of
the Workshop on Syntax and Structure in Statistical Translation, pages 88–95,
2007. URL http://www.aclweb.org/anthology/W07-0412.

Stuart M. Shieber. Bimorphisms and synchronous grammars. Journal of Lan-
guage Modelling, 2 (1): 51–104, 2014. doi:10.15398/jlm.v2i1.84.

Stuart M. Shieber and Yves Schabes. Synchronous tree-adjoining grammars. In
Proceedings of the 13th International Conference on Computational Linguistics,
pages 253–258, 1990.

http://aclweb.org/anthology/C04-1024
http://aclweb.org/anthology/C04-1024
http://aclweb.org/anthology/P06-1023
http://aclweb.org/anthology/P06-1023
http://www.amtaweb.org/wp-content/uploads/2015/10/MTSummitXV_ResearchTrack.pdf
http://www.amtaweb.org/wp-content/uploads/2015/10/MTSummitXV_ResearchTrack.pdf
http://aclweb.org/anthology/P15-1079
http://aclweb.org/anthology/P15-1079
http://aclweb.org/anthology/E06-1048
http://www.aclweb.org/anthology/W07-0412
http://dx.doi.org/10.15398/jlm.v2i1.84

References 113

Anders Søgaard. Range concatenation grammars for translation. In Proceedings
of the 22nd International Conference on Computational Linguistics, pages 103–
106, 2008. URL http://aclweb.org/anthology/C08-2026.

Miloš Stanojević, Amir Kamran, Philipp Koehn, and Ondřej Bojar. Results
of the WMT15 metrics shared task. In Proceedings of the 10th Workshop on
Statistical Machine Translation, pages 256–273, 2015. URL http://aclweb.
org/anthology/W15-3031.

Magnus Steinby and Cătălin Ionuţ Tîrnăucă. Defining syntax-directed transla-
tions by tree bimorphisms. Theoretical Computer Science, 410 (37): 3495–3503,
2009. doi:10.1016/j.tcs.2009.03.009.

Jun Sun, Min Zhang, and Lim Chew Tan. A non-contiguous tree sequence
alignment-based model for statistical machine translation. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the Association for Computa-
tional Linguistics and the 4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP, pages 914–922, 2009. URL http://aclweb.
org/anthology/P09-1103.

James W. Thatcher. Generalized2 sequential machine maps. Journal of
Computer and System Sciences, 4 (4): 339 – 367, 1970. doi:10.1016/S0022-
0000(70)80017-4.

Cătălin Ionuţ Tîrnăucă. Syntax-directed translations, tree transformations and
bimorphisms. PhD thesis, Universitat Rovira i Virgili, 2016. URL http://hdl.
handle.net/10803/381246.

Bernard Vauquois. A survey of formal grammars and algorithms for recognition
and transformation in machine translation. In Proceedings of the IFIP Congress,
pages 1114–1122, 1968.

Dekai Wu. An algorithm for simultaneously bracketing parallel texts by align-
ing words. In Proceedings of the 33rd Annual Meeting of the Association for
Computational Linguistics, pages 244–251, 1995. URL http://aclweb.org/
anthology/P95-1033.

Dekai Wu. Stochastic inversion transduction grammars and bilingual parsing
of parallel corpora. Computational Linguistics, 23 (3): 377–403, 1997. URL
http://aclweb.org/anthology/J97-3002.

Kenji Yamada and Kevin Knight. A syntax-based statistical translation model.
In Proceedings of the 39th Annual Meeting of the Association for Computational
Linguistics, pages 523–530, 2001. URL http://aclweb.org/anthology/P01-
1067.

Kenji Yamada and Kevin Knight. A decoder for syntax-based statistical MT.
In Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics, pages 303–310, 2002. URL http://aclweb.org/anthology/P02-
1039.

http://aclweb.org/anthology/C08-2026
http://aclweb.org/anthology/W15-3031
http://aclweb.org/anthology/W15-3031
http://dx.doi.org/10.1016/j.tcs.2009.03.009
http://aclweb.org/anthology/P09-1103
http://aclweb.org/anthology/P09-1103
http://dx.doi.org/10.1016/S0022-0000%252870%252980017-4
http://dx.doi.org/10.1016/S0022-0000%252870%252980017-4
http://hdl.handle.net/10803/381246
http://hdl.handle.net/10803/381246
http://aclweb.org/anthology/P95-1033
http://aclweb.org/anthology/P95-1033
http://aclweb.org/anthology/J97-3002
http://aclweb.org/anthology/P01-1067
http://aclweb.org/anthology/P01-1067
http://aclweb.org/anthology/P02-1039
http://aclweb.org/anthology/P02-1039

114 References

Omar F. Zaidan. Z-MERT: A fully configurable open source tool for minimum
error rate training of machine translation systems. The Prague Bulletin of
Mathematical Linguistics, 91: 79–88, 2009.

Hao Zhang, Liang Huang, Daniel Gildea, and Kevin Knight. Synchronous bi-
narization for machine translation. In Proceedings of the Annual Conference of
the North American Chapter of the Association for Computational Linguistics,
pages 256–263, 2006. URL http://aclweb.org/anthology/N06-1033.

Hui Zhang, Min Zhang, Haizhou Li, and Lim Chew Tan. Fast translation rule
matching for syntax-based statistical machine translation. In Proceedings of the
2009 Conference on Empirical Methods in Natural Language Processing, pages
1037–1045, 2009. URL http://aclweb.org/anthology/D09-1108.

Min Zhang, Hongfei Jiang, Aiti Aw, Haizhou Li, Lim Chew Tan, and Sheng Li.
A tree sequence alignment-based tree-to-tree translation model. In Proceedings
of the 46th Annual Meeting of the Association for Computational Linguistics,
pages 559–567, 2008. URL http://aclweb.org/anthology/P08-1064.

http://aclweb.org/anthology/N06-1033
http://aclweb.org/anthology/D09-1108
http://aclweb.org/anthology/P08-1064

Index

V -indexed Σ-trees, 20
k-best list, 76
n-gram, 19

acyclic, 25
adequacy, 82
alignments, 34
alphabet, 19
antisymmetric, 15
application, 15, 24
arity, 20
automatic evaluation metric, 83

backward translation probability, 43
Bayes’ rule, 17
beam size, 96
bigram, 19
bijective, 15
bimorphisms, 8
binary, 20
Bleu, 83
bootstrap resampling, 95
bottom-up tree transducers, 45
brevity penalty, 83

cardinality, 14
Cartesian product, 14
categories, 29
chain rule, 17
characteristic function, 24
Chomsky hierarchy, 20
clipped n-gram precision, 83
closed, 15
closure, 56
closure properties, 25
comparable, 15
complete, 39

composition, 15
concatenation, 19
conditional probability, 17
consistently aligned, 58
constituency parsing, 5
constituent, 49
constituents, 29
context-free languages, 20
corpora, 26
corpus likelihood, 86
count, 67
countable, 15
coverage, 93
cube pruning, 99

decoding, 33
derivation tree, 29
derivation with backpointers, 77
derivations, 76
derived tree, 29
deterministic, 25
difference, 14
disjoint, 14
domain, 15

element, 11
elementary events, 16
empty sequence, 15
empty set, 14
empty string, 19
equivalence class, 15
equivalence relation, 15
evaluation, 82
events, 16
expectation step, 86
Expectation-Maximization, 85

116 Index

extended bottom-up tree transducers,
45

extended top-down tree transducer, 45

family, 16
features, 35
flattenings, 48
fluency, 82
formal tree series, 25
forward translation probability, 42
frontier, 21
function, 15
functional relabeling, 40

generalized multitext grammars, 47
glue rules, 93
ground Σ-trees, 21
ground substitution, 23

hierarchical phrase structure, 3
homomorphism, 38
human judgment, 84
hypergraphs, 85

IBM Models 1, 2, 3, 4 and 5, 32
identity relation, 15
index set, 16
initial weight, 24
injective, 15
inside weight, 79
Interlingua, 31
intersection, 14
inverse, 15
inverse application, 24
inversion transduction grammar, 38, 47
inversion-invariant transduction gram-

mar, 38

joint probability, 16

label, 21
language, 20
language model, 33, 43
length, 14
lexicographic order, 20
lexicon, 27
linear, 39

linear order, 15
local rotation, 48
locality, 60
log-linear model, 36
loss function, 82

macro tree transducers, 47
mapping, 15
Markov assumption, 80
maximal, 16
maximization step, 86
maximum entropy, 35
minimal, 16, 58, 60
Minimum Error Rate Training, 84
morphemes, 28
multi bottom-up tree transducer, 8
Myhill-Nerode theorem, 20

natural numbers, 14
nodes, 21
noisy channel model, 33
non-contiguity, 49
non-contiguous alignment, 49
non-contiguous synchronous tree-sequence

substitution grammars, 46
nondeleting, 39
nullary, 20

operation, 15
out of coverage, 93
outside weight, 85

parallel corpus, 26
parse tree, 29
parser, 29
partial order, 15
parts of speech, 28
phrase, 2
phrase alignment, 2
phrase-based machine translation, 36
phrases, 36
pivot, 52
pop limit, 96
positions, 21
powerset, 14
prefix, 20

Index 117

probability, 16
probability distribution, 16
probability space, 16
product construction, 25

random variable, 16
range, 15
range concatenation grammars, 47
rank, 20
ranked alphabet, 20
real numbers, 14
reference translation, 83
reflexive, 15
regular languages, 20
relation, 15
reordering, 3
run, 25

segmentation, 27
sequences, 14
set, 11
set comprehension, 11
shallow multi bottom-up tree transduc-

ers, 50
span, 56
states, 24
strict order, 16
string-to-tree, 31
strings, 19
strongly equivalent, 45
sub-sequence, 15
subset, 14
substitution, 23
substring, 19
substring count, 20
subtree, 21
support, 24
surjective, 15
symbols, 19
symmetric, 15
symmetric translation probability, 43
synchronous context-free grammar, 38,

47
synchronous context-free tree grammars,

46

synchronous forest-substitution gram-
mars, 46

synchronous grammar, 38
synchronous linear context-free rewrit-

ing systems, 47
synchronous tree substitution grammar,

45
synchronous tree-adjoining grammar, 46
syntactic language model, 43

tags, 27
ternary, 20
text, 20
transition weight, 24
transitive, 15
translation as decoding, 31
translation model, 33
tree m-morphism, 46
tree homomorphism, 39
tree language, 21
tree series, 23
tree-to-string, 31
tree-to-tree, 31
trigram, 19
type, 15

unambiguous, 25
unary, 20
unigram, 19
union, 14
units of translation, 60
unweighted tree automaton, 25

variables, 21
Vauquois triangle, 31
Viterbi derivation, 76

weakly equivalent, 45
weighted Σ-tree automaton, 24
weighted bimorphism, 38
weighted forest, 24
weighted language, 23
weighted regular tree languages, 25
weighted relation, 24
weighted tree language, 23, 25
word alignment, 2

118 Index

word alignments, 34
word-based, 34

yield, 23

Wissenschaftlicher
Werdegang

• Februar 2011 bis Juli 2016: Akademischer Mitarbeiter am Institut für
Maschinelle Sprachverarbeitung der Universität Stuttgart

◦ Mitarbeit im Projekt “Tree Transducers in Machine Translation” un-
ter der Leitung von Dr. Andreas Maletti

◦ Arbeit an der vorliegenden Dissertation unter der Betreuung von
Dr. Andreas Maletti

• Oktober 2005 bis November 2010: Studium der Computerlinguistik an der
Universität Potsdam

◦ Abschluss als Diplom-Sprachwissenschaftler mit Auszeichnung (Ge-
samtnote 1,1)

◦ Titel der Abschlussarbeit: “Hyper-minimisation of weighted finite au-
tomata”

• Juni 2004: Abitur am Archigymnasium Soest (Gesamtnote 1,1)

Bibliographische Daten

Autor: Daniel Quernheim
Titel: Bimorphism Machine Translation
135 Seiten, 29 Abbildungen, 9 Tabellen

Zusammenfassung
Maschinelle Übersetzung (MÜ) hat bedeutenden Fortschritt dank der Anwen-
dung statistischer Methoden gemacht, welche es ermöglichen, MÜ-Systeme auto-
matisch aus einer zweisprachigen Textsammlung zu gewinnen. Manche Ansätze
benötigen nicht einmal linguistische Annotationen, um Übersetzungsregeln aus
Rohdaten abzuleiten. Viele heutige MÜ-Systeme beachten linguistische Struktur
kaum, oder nutzen Ad-hoc-Formalismen und Algorithmen. Dies führt zu ver-
meidbarem mehrfachem Aufwand, und nicht zuletzt zu einem unnötigen Zwie-
spalt zwischen Theoretikern und Praktikern.

Um diesem Mangel an Motivation und Stringenz zu begegnen, trägt diese
Dissertation folgendes bei:

1. Nach einer Darstellung des historischen Hintergrundes und Kontextes so-
wie der mathematischen und linguistischen Grundlagen, wird ein rigoros
algebraisches Modell der MÜ vorgestellt. Reguläre Baumgrammatiken und
Bimorphismen bilden das Rückgrat dieses Ansatzes, der eine modulare
Architektur mit vielen verschiedenen möglichen Eingabe- und Ausgabe-
formalismen darstellt.

2. Die Herausforderungen der Implementierung dieses auf Bimorphismen ba-
sierenden Modelles in einem MÜ-Toolkit werden beschrieben, und die nö-
tigen Algorithmen für die Kernkomponenten werden im Detail erklärt.

3. Schließlich werden Experimente vorgestellt, in denen das Toolkit auf pra-
xisgerechte Daten angewandt und für diagnostische Zwecke verwandt wird.
Wir diskutieren, wie exakte Übersetzungsmodelle es ermöglichen, Suchfeh-
ler und Modellfehler in einem beliebten anderen MÜ-Toolkit aufzuspüren,
und wir vergleichen Ausgabeformalismen verschiedener Mächtigkeit.

Selbständigkeitserklärung

Hiermit erkläre ich, die vorliegende Dissertation selbständig und ohne unzuläs-
sige fremde Hilfe angefertigt zu haben. Ich habe keine anderen als die ange-
führten Quellen und Hilfsmittel benutzt und sämtliche Textstellen, die wörtlich
oder sinngemäß aus veröffentlichten oder unveröffentlichten Schriften entnom-
men wurden, und alle Angaben, die auf mündlichen Auskünften beruhen, als
solche kenntlich gemacht. Ebenfalls sind alle von anderen Personen bereitge-
stellten Materialen oder erbrachten Dienstleistungen als solche gekennzeichnet.

(Ort, Datum)

(Unterschrift)

	Introduction
	Preliminaries
	2.1 Set theory
	2.2 Relations and mappings
	2.3 Probability theory

	Background
	3.1 Strings, trees, languages
	3.1.1 Weighted languages and relations
	3.1.2 Tree automata

	3.2 Linguistic techniques
	3.2.1 Morphology and morphosyntax
	3.2.2 Syntactic parsing

	3.3 Translation as decoding
	3.3.1 Noisy channel model
	3.3.2 Log-linear models

	Theory
	4.1 Bimorphism machine translation
	4.1.1 From inference rules to bimorphisms
	4.1.2 A generative story

	4.2 Synchronous grammar formalisms
	4.2.1 Empirical adequacy
	4.2.2 Theoretical properties
	4.2.3 Related work

	Implementation
	5.1 Rule extraction
	5.1.1 From parallel corpus to bimorphism
	5.1.2 Relative frequency estimation

	5.2 Decoding
	5.2.1 Input and translation models
	5.2.2 k-best derivations

	5.3 Language model scoring
	5.3.1 Syntactic language models
	5.3.2 n-gram language models
	5.3.3 Integration by product construction
	5.3.4 Exact rescoring

	5.4 Tuning, evaluation, model optimization
	5.4.1 Evaluation metrics
	5.4.2 Minimum Error Rate Training
	5.4.3 EM training

	Experiments
	6.1 Common infrastructure
	6.1.1 Source data and preprocessing
	6.1.2 Tokenization and parsing
	6.1.3 Word alignment and rule extraction
	6.1.4 Language models
	6.1.5 Tuning
	6.1.6 Coverage

	6.2 Experiment A: Reasoning about models
	6.3 Experiment B: Exactness and search errors
	6.3.1 Search errors and model errors
	6.3.2 Experimental setup
	6.3.3 Results and discussion

	6.4 Experiment C: Large scale decoding

