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Summary

Granger (1980) found that the aggregation of m short-memory AR(1) processes
yields a long-memory process. Thereby he assumed m → ∞, Gaussian shape and beta-
distributed AR(1) parameters over (0; 1). To test hypotheses that long memory in climate
time series comes from aggregation, the finding of Granger (1980) cannot be directly
applied. First, the number of “microclimatic” processes to be aggregated is finite. Second,
climatic processes often produce right-skewed data. Third, the AR(1) parameters of
the microclimatic processes could be restricted to a narrower interval than (0; 1). We
therefore perform Monte Carlo simulations to study aggregation in climate time series
under realistic conditions. The long-memory parameter, H, is estimated by fitting an
ARFIMA model to various types of aggregations. Our results are as follows. First, for
m above a few hundred, H approaches saturation. Second, the distributional shape has
little influence, as noted by Granger (1980). Third, the upper limit of the interval for
the AR(1) parameter has a strong influence on the saturation value of H, as noted by
Granger (1980).

Zusammenfassung

Granger (1980) fand heraus, dass die Summe von m schwach seriell abhängigen
AR(1)-Prozessen einen stark seriell abhängigen Prozess ergibt. Er nahm dabei an, dass
m →∞ geht, die Verteilungen Gaußsch sind und die AR(1)-Parameter beta-verteilt über
(0; 1) sind. Um die Hypothese zu testen, daß starke serielle Abhängigkeit in Klimazeitrei-
hen von dieser “Aggregation” rührt, kann das Ergebnis von Granger (1980) jedoch nicht
direkt angewendet werden. Erstens: die Anzahl “mikroklimatischer”, zu summierender
Prozesse is endlich. Zweitens: Klimaprozesse erzeugen oft rechtsschief verteilte Daten.
Drittens: die AR(1)-Parameter der mikroklimatischen Prozesse mögen auf ein engeres
Intervall begrenzt sein als (0; 1). Wir führen deshalb Monte-Carlo-Simulationen durch,
um die Aggregation in Klimazeitreihen für realistische Bedingungen zu studieren. Der
Parameter H, der die starke serielle Abhängigkeit beschreibt, wird geschätzt durch die
Anpassung eines ARFIMA-Modelles an unterschiedliche Aggregations-Typen. Unsere
Ergebnisse sind wie folgt. Erstens: für m oberhalb einiger hundert erreicht H Sättigung.
Zweitens: die Verteilungsform hat geringen Einfluß, wie von Granger (1980) bemerkt.
Drittens: die obere Grenze des Intervalles für den AR(1)-Parameter hat einen starken
Einfluß auf den Sättigungwert von H, wie von Granger (1980) bemerkt.
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1. Introduction

Runoff time series from rivers are an important contribution to the hydrological
database. Such records, measured since the early 19th century, document dry and wet
conditions in the catchment area of a particular river station. For example, one of the
longest records in the database of the Global Runoff Data Centre (Koblenz, Germany)
comes from the Rhine station Cologne, starting in 1807. Runoff (volume water per
time unit) is usually inferred from water stage measurements via calibration formulas
(Mudelsee et al. 2003: Fig. 1 therein). Although this introduces proxy error into the
data, runoff time series are considered to serve well in the evaluation of past precipitation
integrated over a considerable area (Milly et al. 2002). These hydrological records are
therefore essential to be studied also within the context of climatic changes during the
instrumental period (Houghton et al. 2001).

Persistence, also termed positive autocorrelation, serial dependence or memory, is a
property shared by most climatic processes. The ultimate reason lies within the physics
of the climate system. Nonzero lengths, masses and heat capacities let processes in the
atmosphere run at a finite speed. Extending the climate system to other compartments
such as the cryosphere, biosphere or hydrosphere likely increases the strength of the
persistence.

Consider as an example the collection of precipitation over a “microclimatic” unit
area. Rainfall has a high spatial variability (Liljequist and Cehak 1984: Chapter 15
therein), so the size of such an idealized unit is small, say, of the order of 100 km2. A
proportion is “lost” owing to interception and evapotranspiration, what remains goes into
the soil. The storage capacity of the soil varies spatially and temporally to some degree.
That means, this “microhydrological” storage unit may be of a similar size. If we now
assume that precipitation is a random process and the microhydrological storage unit
exhibits a simple linear release rule (the relation between input and output), then the
output (“microrunoff”) is an AR(1) process (see next paragraph), with an autocorrelation
parameter dependent on the release rule parameter (Klemeš 1983).

The simplest mathematical persistence model is the first-order autoregressive or
AR(1) process (Priestley 1981),

X(1) = EN(0, 1)(1),

X(i) = a ·X(i− 1) + EN(0, 1−a2)(i), i = 2, . . . , n.
(1)

Herein, X is a climate variable (e.g., runoff), i counts the time steps, n is the data
size, 0 ≤ a < 1 is a constant and EN(µ, σ2)(i) is a Gaussian random process with mean
µ, variance σ2 and no serial dependence, that means, E

[
EN(µ, σ2)(j) · EN(µ, σ2)(k)

]
= 0

for j 6= k. It readily follows that X(i) is a strictly stationary process with zero mean
and unity variance. The AR(1) model has an exponentially decreasing autocorrelation
function (Priestley 1981: Section 3.5 therein),

ρ(h) = a|h|, h = 0,±1,±2, . . . , (2)

where h is the time lag. This behaviour might be referred to as “exponentially decreasing
memory.” Because of the fast (exponential) decay, the AR(1) model is said to be of short
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memory or short-range dependence. Hasselmann (1976) showed theoretically that the
AR(1) model is a suitable description of climate processes.

Starting with Hurst (1951), who analysed water stage records from the River Nile,
a number of authors, including Mandelbrot and Wallis (1969), Hosking (1984) and Kan-
telhardt et al. (2003), have concluded that for hydrological runoff time series, instead of
the AR(1) persistence model a long-memory or long-range dependence model would be
appropriate. Such processes (Beran 1994; Robinson 2003) have the property

ρ(h) → C h2H−1 as h →∞, (3)

where C 6= 0 and H < 0.5. This decrease is slower than in the AR(1) case, hence
it is said to exhibit long-range serial dependence or long memory. If runoff records
exhibited long memory, the consequences would be far reaching. First, prediction of
hydrological extremes such as floods over longer timescales might, at least in principle,
become possible. Second, the noise property long-memory would have an impact on the
methodology to evaluate the accuracy of hydrological estimates. For example, bootstrap
methods belong to the most powerful approach to achieve this because they are not
distributionally restricted. The bootstrap can further be successfully adapted to the case
of serial dependence (Lahiri 2003). Long memory would therefore indicate how to carry
out the adaption.

Granger (1980) showed how the aggregation of short-memory AR(1) processes,

Y (i) =
m∑

j=1

Xj(i), i = 1, . . . , n, (4)

can produce a long-memory process, Y (i). The assumptions made thereby are:

1. large number of aggregated processes (m →∞),

2. processes Xj(i) of type Gaussian AR(1) and

3. beta-distributed AR(1) parameters aj over the interval (0; 1).

The natural question about long memory in hydrological time series arises whether
this may be the result of aggregation of individual microhydrological units over the catch-
ment area. A positive answer would mean a remarkably simple explanation and also cor-
roborate the empirical findings. However, a direct application of Granger’s (1980) result
is prohibited by the following points:

1. a limited number of aggregated processes,

2. right-skewed distributions and

3. a restricted range of the AR(1) parameter aj.

As regards point 1, it is a priori not clear whether for a given river station and its
catchment area the number of aggregated precipitation processes is large enough to apply
the limit value found by Granger (1980). This is the case especially for small catchment
areas and a lower spatial variability of precipitation. As regards point 2, it is generally
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known that runoff and precipitation data exhibit right-skewness. The heavy tails are
subject of extreme value analyses, return period estimation and climate risk analysis
(Embrechts et al. 1997; Mudelsee et al. 2003, 2004). Point 3 is rather difficult to assess.
There is certainly spatial precipitation variability over a large enough catchment area,
and there may also be spatial variability in soil and storage properties. That is, we can
safely assume that the AR(1) parameter a shows variation. But the upper bound of this
a distribution over the microhydrological units is rather difficult to quantify.

Because analytical results for the long-memory parameter seem not to be obtainable
in the “realistic case” (finite number of aggregated processes, right-skewed distributions,
bounds below 1 of the AR(1) parameter), we perform mathematical simulations. (We
remark that Linden (1999) obtained analytical results for n → ∞ and uniformly dis-
tributed aj.) These Monte Carlo experiments produce random numbers from AR(1) pro-
cesses (Gaussian and right-skewed), add those numbers and estimate the long-memory
parameter H from the sum. The results obtained are curves of estimated H versus the
number of aggregated processes, for a range of upper bounds of the AR(1) parameters,
aj.

This paper forms the first part of our study of long memory in hydrological time
series. Other parts analyse H for various, spatially distributed river stations.

2. Microhydrological processes

We analyse a time series from the catchment area of the station Dresden at the
River Elbe (Germany) to infer how good the assumption of randomness (Klemeš 1983)
is fulfilled. The data are monthly means from January 1900 to December 1998. They
come from an updated version of the gridded database of observations from Hulme et al.
(1998). The resolution is 2.5◦ latitude by 3.75◦ longitude. The box centred at 50◦ N,
15◦ E contains the major portion of the catchment area. The series itself was obtained
by averaging measurements of (maximum) seven stations. The series data, originally
strongly right-skewed, was logarithmically transformed and the strong annual signal (and
also its harmonic at a period of 0.5 years) subsequently removed by a harmonic analysis
tool (Schulz and Stattegger 1997). The resulting series is shown in Figure 1.

A fit of the AR(1) model to the series yielded an estimated autocorrelation parameter
of â = 0.06, corresponding to a persistence time (decay period of the autocorrelation
function) of 10.8 days (Mudelsee 2002). Note that at a daily resolution, this persistence
time value corresponds to an autocorrelation parameter of exp (−1 d/10.8 d) ≈ 0.91. The
AR(1) model fit gave a value for Akaike’s (1973) information criterion of AIC = 1707.4.

We also tried fitting an ARFIMA(1, δ, 0) model, which yielded δ̂ = 0.033, an estimated
AR(1) parameter of 0.024 and AIC = 1707.9. Because of the lower AIC, the AR(1) model
was preferred. The analysed precipitation series thus has no long-memory dependence
and only a small AR(1) parameter.

Note that the microclimatological process of precipitation is transformed into a mi-
crohydrological process by infiltration into the soil (see Introduction). Soil properties
regarding storage are rather unknown over the analysed time interval. It might well
be that the resulting microhydrological process has a severely stronger autocorrelation
(Klemeš 1983), but it appears not possible to give an upper bound.
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3. Simulation method

3.1. Aggregation

As first, simple distributional example, we take the strictly stationary Gaussian
AR(1) process (Eq. 1).

As second, right-skewed distribution we take the lognormal:

X ′
j(i) = exp [Xj(i)] , i = 1, . . . , n, j = 1, . . . ,m, (5)

where Xj(i) is the strictly stationary Gaussian AR(1) process (Eq. 1). The lognormal
is a distributional shape commonly found in data from the natural sciences (Aitchison
and Brown 1957). The autocorrelation parameter a of the process X(i) is drawn from a
uniform distribution over (0; amax) (exclusive of the bounds), with amax = 0.15, 0.2, 0.4,
0.6, 0.8, 0.9, 0.95 and 1.00. A data size of n = 1000 is used throughout, which is the
typical length of monthly time series covering the instrumental period. The number of
summands (Eq. 4) is varied from m = 1 in logarithmically spaced steps up to m = 10000.

The data generation part is written in Fortran 90 at a precision comparable to
FORTRAN 77’s double precision. We use the uniform random number generator of Park
and Miller (1988) and the routine gasdev from Press et al. (1996) to produce Gaussian
deviates.

3.2. Estimation of the long-memory parameter

The long-memory parameter is estimated by fitting a fractional autoregressive inte-
grated moving average or ARFIMA(p, δ, q) model. (In the case of lognormally distributed
X ′

j(i), we use the logarithmic transformation Y ′(i) = log [Y (i)] , i = 1, . . . , n.) Specifically,
we set the moving-average order q as zero and the autoregressive parameter p equal to
one. The relation between the ARFIMA(1, δ, 0) and the AR(1) model is as follows. δ de-
fines (Brockwell and Davis 1991) a fractional difference operator, (1−B)δ, where |δ| < 0.5
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Figure 1: Precipitation time series for the Dresden (Elbe) catchment area.
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and B is the backshift operator. The backshift operator shifts one step back in time, for
example, B Xj(i) = Xj(i− 1). The ARFIMA(1, δ, 0) model is then an AR(1) model (Eq.
1) where on the right-hand side Xj(i) is replaced by (1− B)δ Xj(i). For the trivial case
δ = 0, the ARFIMA(1, δ, 0) model reduces to the AR(1) model. The ARFIMA(p, δ, q)
model has H = δ (Brockwell and Davis 1991).

The logarithmic transformation of the Y (i) data is necessary to achieve a (roughly)
Gaussian shape of the simulation time series data. Fitting the ARFIMA(1, δ, 0) model is
achieved using an exact maximum likelihood criterion (Beran 1994). We use the software
module ARFIMA, written in the Ox statistical computer language (Doornik and Ooms
2001). The numerical implementation is described by Doornik and Ooms (2003).

3.3. Monte Carlo simulations

One simulation loop consists of the following steps.

1. generate data, Xj(i), X
′
j(i), Y (i) (lognormal distribution, Y ′(i));

2. standardize Y (i) (lognormal distribution, Y ′(i));

3. estimate H via the ARFIMA(1, δ, 0) model fitted to Y (i) (lognormal distribution,
Y ′(i)) as H = δ.

These steps are carried out nsim = 400 times. The average of H over the simulations with
its standard error is then plotted against m.

4. Results and conclusions

The first, major result is that H approaches saturation already for m above a few
hundred. This behaviour apparently does not depend on the distributional shape (Gaus-
sian, Fig. 2, versus lognormal, Fig. 3). This point on the m axis, from where saturation
behaviour occurs, does not depend on amax, as long as amax is above a value of about 0.4
to 0.6.

Second, the distributional shape has little influence, as noted already by Granger
(1980). Third, the upper limit of the interval for the AR(1) parameter has a strong
influence on the saturation value of H, as noted by Granger (1980). Below amax =0.6 or
0.4, the aggregated series seem not to exhibit a nonzero long-memory parameter H.
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Ĥ

Ĥ
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