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ABSTRACT 

 

Tandem mass spectrometry, also known as MS/MS, is an analytical technique to measure the 

mass-to-charge ratio of charged ions and widely used in genomics, proteomics and 

metabolomics areas. There are two types of automatic ways to interpret tandem mass spectra: 

de novo methods and database searching methods. Both of them need to use massive 

computational resources and complicated comparison algorithms. The real-time 

peptide-spectrum matching (RT-PSM) algorithm is a database searching method to interpret 

tandem mass spectra with strict time constraints. Restricted by the hardware and architecture 

of an individual workstation the RT-PSM algorithm has to sacrifice the level of accuracy in 

order to provide prerequisite processing speed. The peptide-spectrum similarity scoring 

module is the most time-consuming part out of four modules in the RT-PSM algorithm, which 

is also the core of the algorithm. 

 

In this study, a multi-core computing algorithm is developed for individual workstations. 

Moreover, a distributed computing algorithm is designed for a cluster. The improved 

algorithms can achieve the speed requirement of RT-PSM without sacrificing the accuracy. 

With some expansion, this distributed computing algorithm can also support different PSM 

algorithms. Simulation results show that compared with the original RT-PSM, the 

parallelization version achieves 25 to 34 times speed-up based on different individual 

workstations. A cluster with 240 CPU cores could accelerate the similarity score module 210 
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times compare with the single-thread similarity score module and the whole peptide 

identification process 85 times compare with the single-thread peptide identification process. 

 

Keywords: real-time peptide-spectrum matching (RT-PSM) algorithm, tandem mass spectrum, 

parallel computing algorithm, multi-core computing algorithm, distributed computing 

algorithm, peptide identification 
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CHAPTER 1 

INTRODUCTION 

1.1 Background  

1.1.1 Tandem mass spectrometry 

Proteomics is a significant study field in the early detection of disease, chemical 

analysis and the pharmaceutical industry. One of the most important goals in 

proteomics is to identify and characterize the proteins and protein complexes present 

in cells grown under various conditions. Tandem mass spectrometry (MS/MS) is a 

very important tool for this purpose. 

 

A mass spectrometer separates ions according to their mass-to-charge ratio (𝑚/𝑧), and 

records the relative abundance of each ionic species present [1]. Tandem mass 

spectrometry consists of two mass spectrometers connected in series. In proteomics, 

MS/MS is particularly used in determining the protein components of complex 

mixtures. The workflow of a proteomic mass spectrometric experiment mainly 

contains the five following steps. In the first step, proteins which need to be identified 

are extracted from experiment substances (cell/tissue) through biochemical 

fractionation and the sample complexity is reduced via polyacrylamide gel 

electrophoresis (1D- or 2D-PAGE). In the second step, the protein mixture is digested 

into peptides with suitable sizes by using site-specific proteases. In the third step, the 
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peptides are separated by using reversed-phase high-performance liquid 

chromatography (RP-HPLC) before being placed into the mass spectrometer. In the 

fourth step, peptides are ionized via electrospray ionization. The first mass 

spectrometer of MS/MS captures and detects the mass spectra of the peptide ions 

(MS). Then the MS with highest relative intensity will be selected to process in next 

step. In the last step, the selected peptides are fragmented again by collision-induced 

dissociation (CID). The second mass spectrometer in the series scans the fragments 

and collects the mass spectra of fragment ions, which are called tandem mass spectra 

[2]. For more details about tandem mass spectrometers, please refer to [3]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1 A typical proteomic mass spectrometric experiment can be divided into 
five steps [2] 
 

1.1.2 Peptide identification  

Generally, peptides can be identified through their small fragmentations in a mass 

spectrometer. Peptides can be fragmented into pieces at their peptide bond. A piece 

which contains information and which can be used to identify this peptide in a protein 
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database is called a peptide sequence tag. The common peptide fragment ions belong 

to two different groups: N-terminal and C-terminal. The end of the polypeptide 

terminated by an amino acid carboxyl group (-COOH) is called the C-terminal. The 

start of the polypeptide terminated by an amino acid amine group (-NH2) is called the 

N-terminal. Figure 1.2 represents the fragmentation of a precursor peptide ion by CID. 

The breakages mainly occur in three different kinds of sites along the peptide 

backbone: CH-CO, CO-NH and NH-CH bonds. Therefore, there are six types of 

fragment ions in a fragment ion spectrum. If the N-terminal of a fragment ion keeps a 

charge, this ion is classified as an a- ion, b- ion or c-ion; if the C-terminal of fragment 

ion keeps a charge, this ion is classified as a x- ion, y- ion or z-ion [4]. 
 

 

Figure 1.2 The fragmentation of a peptide by CID [4] 

 

These six kinds of ions might lose 𝑘 ammonia and/or water molecules. Hence, there 

are (𝑘 + 1)(𝑘 + 2)/2  possible ions. 𝑘  represents the length of the peptide 

fragmentation sequence. However, if the precursor ion carries multiple positive 

charges, those ions could also carry more positive charges. Therefore, if a peptide 
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consists of 𝑛 amino acids and carries 𝑗 charges, its theoretical spectrum [5] might 

have 3 ×  𝑛 ×  𝑗 ×  (𝑘 + 1)(𝑘 + 2) ion peaks [6, 7]. In practice, only a few of 

those components are thermodynamically favored in CID reactions. In addition, due 

to the limitation of resolution and sensitivity of mass spectrometers, some fragment 

ions might be filtered. As a result, most (if not all) experimental spectra contain far 

fewer ion peaks than their corresponding theoretical spectra.  

 

Peptide-spectrum matching (PSM) is an operation involving an experimental 

spectrum (Se) and the theoretic spectrum (Sp) of a peptide P. If a certain number of 

𝑚/𝑧 values of an experimental spectrum are approximately similar with those of a 

theoretical spectrum, then the experimental spectrum could be judged to have been 

produced from the peptide corresponding to this theoretical spectrum.  

 
Figure 1.3 A typical tandem mass spectrum consists of many peaks (modified from 
[8]) 
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1.1.2 De novo sequencing and database searching 

The tandem mass spectral data is the elemental resource in a peptide identification 

procedure. The identification procedure is mainly performed in computers through 

peptide identification programs. There are two main ways in which tandem mass 

spectra are used to identify peptides, known as database searching and de novo 

(peptide) sequencing. 

 

De novo (peptide) sequencing is a process that derives a peptide’s amino acid 

sequence from its tandem mass spectrum without the assistance of a sequence 

database [9]. The main idea of de novo sequencing is to compare the mass difference 

between two fragment ions in order to calculate the mass of an amino acid residue on 

the peptide backbone. In the spectrum, if either the y-ion or b-ion series could be 

identified, the peptide sequence can be determined.  

 

There are several different algorithms based on the de novo sequencing principle in 

research and industrial fields, and most successful ones have three common factors. 

Sequencing errors or nucleotide polymorphisms decrease the accurate rate of peptide 

identification. The first factor is good sample preparation and high quality sequencing 

machine. They can provide high quality experimental data to reduce the negative 

effects of sequencing errors. The second factor is an efficient matching method which 

is capable of quickly identifying the common part of two different fragments. The 

third is an accurate assembly algorithm to process repeated sequences [10]. In 
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addition to the previous factors, the method can be negatively affected by factors such 

as incorrect assignments of y-ions or b-ions, missing fragment ion information, the 

noise peaks in the spectrum, etc. The biggest advantage of de novo sequencing is that 

it does not need the assistance of a sequence database. Due to this unique 

characteristic, de novo sequencing still is an efficient way to identify unknown 

peptides. A number of algorithms and software packages have been developed using 

this approach, such as PEAKS, PepNovo and Lutefisk [10].  

 

The limitations of de novo sequencing methods are also obvious. It requires an 

extraordinary amount of computation time to successfully solve for peptide 

identification. Sometimes the peptide cannot be identified directly by de novo 

methods. Then the calculated result needs to be analyzed by human experts.  

 

Compared with de novo sequencing, database searching is a much quicker 

methodology. In this method, the experimental spectra are compared to the theoretical 

spectra of peptides in a database. The results are statistically analyzed to find the best 

match. Although the database searching still requires massive computational resources, 

compared to the de novo method, this methodology eliminates numerous computation 

workloads and rapidly improves the matching speed. The obvious disadvantage of 

database searching is that the peptide sequence to be identified has to be in the peptide 

database, because otherwise the algorithm cannot identify it. Another problem is that 

the risk of false positives increases with a smaller database. The peptide database is 
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derived from a protein database. There are research institutions such as UniProt [11], 

which continuously publish immense and accuracy-verified protein databases in 

different research fields. With those increasing gigantic protein databases, this 

shortage could be remedied. In most circumstances, the unknown peptides can be 

identified with these protein databases.  

 

In the database searching methodology, the scoring function is the core module. It 

represents the similarity between an experimental spectrum and a theoretical spectrum 

which is derived from the peptide database. If a score is above a confidence threshold, 

it is called a hit. Undoubtedly, a good scoring function can increase the identification 

accuracy and is an important factor for peptide identification. There are several 

commercial or open-source software packages using database searching algorithms, 

notably SEQUEST [6], MASCOT [7], and X!tandem [12]. SEQUEST uses 

cross-correlation to do further similarity comparisons to generate the output. 

X!Tandem and MASCOT use probability-based scoring schemes. 

 

With the improvement of database systems and the spectra quality filter algorithms, 

researchers have developed and implemented a real-time control methodology for 

efficiently identifying the peptide in the process of tandem mass spectral data 

acquisition, called a real-time peptide-spectrum matching (RT-PSM) algorithm. 

Machine learning methods and neural network could be employed to construct the 

classifier (as the quality assessor) which discriminates the high quality spectra from 
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the poor ones. In addition, with the modern database searching algorithm, searching a 

large size database is also very efficient. All these technologies present an opportunity 

to improve RT-PSM algorithms and implementations. 

 

1.2 Motivation and Objectives 

1.2.1 Motivation 

Over the past decades, there has been an explosion in the size of protein databases due 

to the technological improvement of mass spectrometry [13]. Furthermore, 

researchers in proteomics wish to implement a real-time peptide identification 

algorithm to improve identification procedure performance.  

 

Dr. Wu et al. proposed a new RT-PSM procedure and the key component is "Identify 

Peptide by a fast algorithm" which is performed by a software application [5]. The 

original PSM procedure does not include any external software controlling feature. 

This new procedure uses the software controlling module to accelerate the peptide 

identification procedure.  

 

As a real-time system, the time window of each peptide identification procedure is 

limited by the spectra acquiring time of mass spectrometers [5]. Practical experiments 

indicate that Wu et al.’s RT-PSM algorithm cannot completely satisfy the real-time 

system requirement. Using parallel computation to improve the speed of 
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peptide-spectrum matching can be an effective method to solve this problem. Duncan 

et al. use a workstation cluster as a platform to develop the "Parallel Tandem" [12]. 

Parallel Tandem consists of the database search, X!Tandem, and a Linux cluster 

environment with Parallel Virtual Machine (PVM) or Message Passing Interface (MPI) 

installed. A second example is the parallel version of SEQUEST [14], which is also 

based on a PVM in a cluster environment. Another design uses the SIMD instructions 

of either modern CPUs or graphical processing units (GPUs) in a single workstation 

as a platform [13, 15]. Use of the SIMD instructions can result in better performance 

than original RT-PSM algorithm. Most systems leveraging SIMD processing are 

based on the NVIDIA's CUDA environment [15]. 

 

No matter whether a cluster environment or CUDA is used, the principles of parallel 

computing are identical: dividing a large sequential process into several independent 

sub-processes and executing the sub-processes concurrently to reduce execution time. 

However, the previous parallel computing methodologies for analyzing tandem mass 

spectra all have shortcomings. X!Tandem and SEQUEST use peptide-spectrum 

matching algorithms which are slower than the RT-PSM algorithm [5] for processing 

a single spectrum. SIMD and CUDA have strict hardware restrictions. SIMD 

instructions are restricted by the CPU L2 Cache [16] and CUDA can only support 

NVIDIA's video card. As a result, the parallel matching programs based on CUDA 

have to use a powerful graphics card from NVIDIA Company. 
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1.2.1 Objectives  

It is not a trivial task to improve the performance of an existing system. All 

improvements should be based on the existing system and not violate any assumptions 

or affect system results. The ultimate goal of this study is to develop and implement 

faster peptide-spectrum matching algorithms based on the existing RT-PSM by using 

parallel computing techniques. The improved algorithms should not reduce the 

identification accuracy. The main idea is to design a distributed computing platform 

and using the platform to parallelize the existing RT-PSM algorithms, and rapidly 

accelerate the peptide identification procedure by using multiple CPUs to calculate 

concurrently. To achieve the ultimate goal, four specific objectives are defined as 

follows.  

 

Objective 1: Refactor the existing RT-PSM algorithm and reduce the redundancy and 

inefficiencies. The original RT-PSM design and source code were developed several 

years ago. With the improvement of design patterns and development environments, 

the original design could be refactored to make it more robust. Replacing the obsolete 

functions and adjusting the unnecessary or redundant functions can improve the 

performance in certain level. 

 

Objective 2: Develop and implement a multithread RT-PSM algorithm in a multi-core 

CPU environment. The original RT-PSM was designed to work in a single-CPU 

workstation, and there was no optimization for multithreaded computation. The 
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implementation of a parallel computing algorithm for the RT-PSM in a standalone 

workstation is the fundamental step of this study. The speed-up of the multithread 

version of RT-PSM also is one of the benchmarks performed in this study.  

 

Objective 3: Develop and implement a distributed RT-PSM algorithm in a distributed 

computing environment, i.e. a cluster. The structure of a distributed computer is 

different from the standalone workstation, so the distributed computing algorithm also 

needs to be redesigned by using a different design pattern. The distributed computing 

platform should be able to manage a large number of computing tasks concurrently 

and the distributed version of RT-PSM should provide great performance 

improvement. 

 

Objective 4: Improve the peptide database searching algorithm to perform the 

searches in constant time independent of the size of the database. The original 

RT-PSM employs a traditional linear database searching algorithm. The computational 

complexity of the searching algorithm highly depends on the scale of the database. 

With the continuously increasing protein database, the performance of this searching 

algorithm could become a bottleneck of the whole system. In this study, an advanced 

database searching algorithm will be involved and the time complexity of the new 

searching algorithm should be independent of the size of the database. The 

experimental results also will be provided to display whether the new searching 

algorithm fits with the multithread system. 
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Though this study have been designed and developed on RT-PSM, they also can be 

applied to other database searching software packages with limited modifications. 

Alternatively, the distributed computing algorithm also can be applied to other peptide 

matching methods. Hence, this study not only creates a high-speed version 

of RT-PSM, but also establishes a generic distributed computing platform. This 

platform should be compatible with different peptide identification algorithms and 

provide them with speed-ups on clusters. 

1.2.3 Thesis overview 

In this thesis, the problems of the existing RT-PSM algorithm are described and a new 

design by using parallel computing algorithms is proposed. As this implementation is 

based on RT-PSM, an introduction of the design and workflow of RT-PSM are given 

in Chapter 2. The performance profiling results and core function analysis are also 

given in Chapter 2. Chapter 3 provides a method to parallelize the critical peptide 

matching function by using a multi-core computing algorithm. This method is 

implemented in a standalone workstation. The distributed computing algorithm for the 

cluster is presented in the Chapter 4. Chapter 5 displays the multidimensional peptide 

database searching algorithm while Chapter 6 lists all experimental results which 

include the experimental environment, result verification, execution speed benchmark 

and calibration.  The conclusions of this study and the discussion about the directions 

of future work are provided in Chapter 7. 
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CHAPTER 2  

RT-PSM: A REAL-TIME PEPTIDE-SPECTRUM MATCHING 

ALGORITHM 
 

2.1 Introduction 

The RT-PSM algorithm was designed for efficiently identifying and selecting peptide 

ions in the real-time process of tandem mass spectral data acquisition. In the past 

decade, with the development of database searching methodologies, proteomics 

researchers began to design a quick protein identification algorithm to process 

experimental tandem mass data while the tandem mass spectral data is acquiring by 

the mass spectrometer.  

 

The rough RT-PSM idea was first time proposed by Perkins et al. [7]. In 2004, Scherl 

et al. [17] proposed a methodology by using an “exclusion list” after in silico 

digestion to accelerate the identification procedure. Waters Corporation also presented 

a design of real-time databank searching to improve the performance [5]. In 2006, the 

design of Wu et al. combined ideas of “dynamic exclusion list” and peptide database 

searching. The experimental results of this design were very close to expectation [5]. 

 

Generally, all those proposals happened upon the same problem: the software package 
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they used, such as MASCOT, can not satisfied the speed requirements of RT-PSM. 

Based on practical experiments, the whole workflow of RT-PSM -- which includes 

getting the result of analyzing a peptide mass spectrum, updating a dynamic exclusion 

list and a dynamic inclusion list -- should finish in one second. This one second 

window also includes the data communication, spectrometer adjustment time and 

system initialization time. The actual time restriction of the RT-PSM program to 

process one experimental spectrum is less than ½ second.  

 

Comparing the consumed time of PSM programs in SEQUEST, MASCOT, 

X!Tandem and Wu's RT-PSM, in single-spectrum processing mode X!Tandem is 

slower than SEQUEST while Wu's RT-PSM can provide the best performance and 

similar identification accuracy. Most existing software packages are developed for 

off-line identification but not for real-time control. For those packages, the accuracy is 

much more important than efficiency. However, the RT-PSM needs to take into 

account both factors. This is the first reason why Wu’s RT-PSM algorithm is chosen to 

be the foundation of this study. Another important reason is that RT-PSM is 

implemented as a random-access memory (RAM)-resident MS-Windows service. The 

peptide sequence database is loaded only once at the first launch of the program and 

remains in RAM afterwards for online spectrum identification. Other common 

spectral identification software, notably SEQUEST, MASCOT and X!Tandem are not 

designed in this way. This design provides a large space to analyze and adjust the 

RT-PSM algorithm to suit new design.  
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2.2 Function Modules of RT-PSM 

 

The original RT-PSM program of Wu et al. is a single-thread program and it contains 

four main modules: processing experimental spectrum, selecting candidate peptides, 

computing similarity score and computing statistical significance. 

 

2.2.1 Experimental spectrum processing module 

The experimental tandem mass spectrum of a peptide is generated by a CID and it is 

the original resource to use in the identification procedure. The quality of the 

experimental spectrum can directly affect the accuracy of the identification 

algorithm. There are two generally methods to process the original experimental 

spectra. One is to remove the spectra which are classified as poor quality based on a 

classification algorithm to evaluate the quality of spectra. Another method is to 

preprocess the experimental spectra to improve the quality of spectra for downstream 

procedures. A disadvantage of the first method is that the classification algorithm 

could make false positive errors and potentially reduce the accuracy of the subsequent 

identification procedure. Therefore, RT-PSM chooses the second method to 

preprocess the experimental spectra. 

 

The experimental tandem mass spectrum of a precursor ion with mass 𝑚(𝑆𝑒) is 

represented by a peak array, i.e., 
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𝑆𝑒 =  {(𝑥𝑖,ℎ𝑖): 1 ≤ 𝑖 ≤ 𝑚},                   (2.1) 
 

where (𝑥𝑖, ℎ𝑖) denotes the fragment ion 𝑖 with 𝑚/𝑧 value 𝑥𝑖 and intensity ℎ𝑖. The 

peak intensities could be affected by the several factors, for instance, 

composition-dependent fragmentation kinetics, precursor ion activation parameters, 

mass analyzer artifacts, and the collision energy [18]. Compared with high intensity 

peaks, low intensity ones are more likely to be random noise and difficult to identify 

and filter out. To select the most informative peaks and avoid random noise is the 

fundamental principle for PSM identification, so the peaks with higher intensity are 

more valuable.  

 

The number N of most intense peaks that are selected for calculating the PSM score is 

a user-defined value. With a small N, the identification accuracy could be decreased 

due to the loss of informative peaks. A large N could involve more low intensity peaks 

into processing and the accuracy could be affected by the included noisy peaks. The 

computation time is also rapidly increased by including many noisy peaks. RT-PSM 

does not include intensity values in the identification processing. It ignores the 

intensity values of the selected ions when the low intensity peaks are filtered out. The 

experimental spectrum of RT-PSM may be reduced to a set of 𝑚/𝑧 values. The 

reason is that the ion intensities could be affected by unknown factors and are yet 

difficult to utilize for peptide identifications.  
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2.2.2 Candidate peptides selection module 

In theory, the peptide identification algorithm should traverse the whole peptide 

sequence database to find the peptide sequence which can best match the 

experimental tandem mass spectrum. The RT-PSM takes advantage of characteristics 

of modern mass spectrometers to improve this procedure. Modern mass spectrometers 

can provide both the spectrum and the mass of the precursor ion together. By 

computing the masses of candidate peptide 𝐶𝑃 to satisfy the Equation 2.2, RT-PSM 

can refine the candidate peptides to a smaller subset.  

 

|𝑚(𝑆𝑒)  −  𝑚(𝐶𝑃)|  ≤  𝜀                      (2.2) 
 

where 𝑚(𝑆𝑒) is the precursor mass of experimental spectrum 𝑆𝑒  and 𝜀  is the 

tolerance value. The size of candidate peptide database is remarkably smaller than the 

whole peptide database and undoubtedly the database searching time is significantly 

reduced.  

Table 2.1 Types and 𝑚/𝑧 value of fragment ions 

Ion Type 𝑚/𝑧 Score weight 
b+ b 1 
b+ - H2O b -18 0.4 
b+ - NH3 b - 17 0.4 
b+ - CO(a) b - 28 0.4 
y y 1 
y - H2O y -18 0.4 
y - NH3 y - 17 0.4 
y - NH(z+) y - 15 0.4 
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2.2.3 Similarity score module 

The similarity score is calculated based on the theoretical spectra and experimental 

spectra. This score indicates the similarity between an experimental tandem mass 

spectrum and a theoretical spectrum of a peptide sequence. Each theoretical spectrum 

might contain all or part of the 8 types of ions listed in Table 2.1. 

 

Table 2.1 also indicates the score weight for each ion type. The score weight 

represents the importance of each ion type. Some spectral ions are considered to 

provide stronger evidence in PSM procedure than other ions and these ions have 

larger score weight. In the Table 2.1, y-ions and b-ions have the highest score weight 

of 1 because they are the most favored ones in the process of peptide fragmentation. 

Other ions have equal score weight of 0.4 and are considered “supporting ions”. The 

score weights of every ion are also used in the PSM score calculation algorithm.  

 

With the following Equation 2.3, 𝜀 is the maximum error tolerance of the instrument 

in use. 𝑆𝑝 represents a predicted spectrum of peptide P. 𝑆𝐸𝑆𝑃 indicates the subset of 

components in an experimental spectrum 𝑆𝑒 which are interpretable by 𝑆𝑝.  

 

𝑆𝐸𝑆𝑃  = {𝑥𝑖  ∈  𝑆𝑒 | 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑦 ∈  𝑆𝑝 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 |𝑥𝑖  −  𝑦| ≤ 𝜀}      (2.3) 

 

The following Equation 2.4 interprets the PSM scores between an experimental 

spectrum 𝑆𝑒 and a peptide P: 
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𝑆𝑐𝑜𝑟𝑒 (𝑆𝑒, 𝑆𝑝)  =   ∑ 𝑊(𝑥)𝑥∈𝑆𝐸𝑆𝑃                    (2.4) 

In Equation 2.4, 𝑊(𝑥) stands for the score weight of calculated ions with 𝑚/𝑧 

value 𝑥. The PSM score indicates the similarity between an experimental spectrum 

and a predicted spectrum of a peptide. However, based on the Equation 2.4, a longer 

peptide sequence is more likely to be able to generate a higher PSM score because of 

the larger number of predicted ions it may contain. Therefore, the shorter peptide 

sequences would have lower scores and the algorithm would not have enough 

sensitivity to process short peptides. In order to eliminate this side effect, the RT-PSM 

introduces a normalization step: normalizing the PSM score by the length of peptide P 

with the following Equation 2.6: 

𝑁𝑜𝑟𝑚𝑠 (𝑆𝑒 ,𝑆𝑝)  =  𝑆𝑐𝑜𝑟𝑒(𝑆𝑒, 𝑆𝑝)/𝑙𝑒𝑛𝑔𝑡ℎ(𝑃)           (2.6) 
 

where 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃) equals to the number of amino acids in peptide sequence 𝑃.  

 

In the RT-PSM algorithm, by using candidate peptide searching and similarity score 

normalization to set the error bounds, the peptide which corresponds to the highest 

PSM score can be considered as the correct peptide for the experimental spectrum. 

The algorithm of the similarity score module is shown in Algorithm 1.  

 
Algorithm 1 similarity scoring algorithm of RT-PSM [5] 

Input: spq[s]: // experimental spectrum with s items 
      pep[p]: // peptide sequence with p items 
      err: // error tolerance  
Output: score: // similarity score value 
 
score ← 0;  
bion[1] ← mass(hydrogen) + mass(pep[1]);  
    // Calculate the mass of b1 ion 
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for i ← 2 to p do 
   bion[i] ←  bion[i-1] + mass(pep[i]);  
      // Calculate the mass of all bi ions 
end for 
 
for i ← 1 to p do 
    pepmass ← mass(pep[i]) // Calculate the mass of pep[i] 
 if BinarySearch(bion[i]; spq; pepmass;err) = true then 
  score← score + score weight of b ion; 
 end if 
 
 if BinarySearch(bion[i] - mass(H2O); spq; pepmass;err) = true then 
  score← score + score weight of b - H2O ion; 
 end if 
 
 if BinarySearch(bion[i] - mass(NH3); spq; pepmass;err) = true then 
  score← score + score weight of b - NH3 ion; 
 end if 
 
 if BinarySearch(bion[i] - mass(CO); spq; pepmass;err) = true then 
  score← score + score weight of a ion; 
 end if 
 
 // Start to process y ion group 
 yion← pepmass - 2* mass(Hydrogen)* bion[i]; 
 
 if BinarySearch(yion; spq; pepmass;err) = true then 
  score← score + score weight of y ion; 
 end if 
 
 if BinarySearch(yion - mass(H2O); spq; pepmass;err) = true then 
  score← score + score weight of y - H2O ion; 
 end if 
 
 if BinarySearch(yion - mass(NH3); spq; pepmass;err) = true then 
  score← score + score weight of y - NH3 ion; 
 end if 
 
 if BinarySearch(yion - mass(NH); spq; pepmass;err) = true then 
  score← score + score weight of c ion; 
 end if 
end for 
 
Normalize score 
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Return score 
 

2.2.4 Statistical significance computation module   

The similarity score algorithm of the RT-PSM makes sure that each experimental 

spectrum has a “matched” peptide sequence in the peptide database based on the 

highest score. That means even if the actual peptide is not in the database, the 

algorithm still could choose a peptide with highest similarity score. So the existing 

problem is how to make sure the result of RT-PSM peptide identification procedure is 

a true positive, or how to confirm the peptide with highest similarity score which is 

actually in the analyzed sample. To solve this problem, RT-PSM introduces the 

expectation value (E-value). The E-value for a given similarity score ℎ accounts the 

number of expected peptides with a score larger than ℎ. 

 

The number of random PSMs with similarity score greater than h has been proven to 

follow a Poisson distribution [19]. The following Equation 2.7 illustrates that the 

probability of finding exactly t peptides with similarity score ≥ ℎ 

𝑒−𝐸(ℎ) (𝐸(ℎ))−𝑡

𝑡!
                           (2.7) 

In the equation, 𝐸(ℎ)  represents the expectation value of score ℎ and 

𝑒−𝐸(ℎ) indicates the probability of having no peptide with similarity score greater than 

or equal to h. The probability of obtaining at least one such PSM is: 

𝑝 = 1 −  𝑒−𝐸(ℎ)                         (2.8) 

For the PSM similarity score h, p is a p-value which gives the probability that the 

match occurs merely by chance. For example, a p-value equal to 0.05, indicates that 
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there is a 5% probability that the spectra with a given similarity score is not a true 

positive. A smaller p-value indicates a better chance to achieve the correct match, and 

if E-value is less than 0.01, the p-value and E-value are nearly identical.  

 

To calculate the p-value or E-value, the prerequisite is that the probability distribution 

or the expectation distribution function must be known. However, in a standard PSM 

algorithm, neither of them is available in a parameterized form for experimental 

tandem mass spectral set. The common distribution calculation methods of PSM 

similarity scores are time-consuming. RT-PSM introduces an approach to construct a 

histogram of similarity scores. Because of the large scale of the peptide database, 

most similarity scores will be considered as random matches, and only the highest 

score would be processed as a valid match. Then the probability distributions of 

p-value and the E-value can be estimated based on the histogram. The same method 

also was used in several different studies, such as Beavis and co-workers for Sonar 

[20] and GPM [21], and Havilio et al. [22] in their research.  

 

The relationship between 𝑙𝑜𝑔(𝐸(ℎ)) and similarity score h fits a second-degree 

polynomial function according to computational experiments. In order to avoid the 

side effects of low-level noise and high-level fluctuation, the lowest and highest 10% 

similarity scores are excluded from the identification procedure. Then RT-PSM uses 

the filtered scores to estimate the E-value of the highest PSM scores and uses an 

equation to calculate the p-value. The following Figure 2.1 illustrates the workflow of 
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RT-PSM algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   YES                      NO 
 
                                
 
 
 
 
Figure 2.1 The workflow illustrates the process of tandem mass spectrum 
identification in RT-PSM [13] 
 

Start the RT-PSM 
procedure 

Load a spectrum 
and mass of its 
precursor ion 

Preprocess the spectrum 

Select candidate peptides 
based on the mass difference 
between precursor ion and 
peptides 

Choose a candidate peptide  

Calculate similarity score 
and store the score value for 
further use. 

Is there another 
candidate peptide 
in queue? 

Choose the highest 
similarity score  

Calculate the statistical 
significance score for the 
highest similarity score  

Output the similarity 
score and statistical 
significance score 

End of RT-PSM 
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2.3 Performance Analysis of RT-PSM 

Before upgrading the design of RT-PSM algorithm to improve its performance, the 

most time-consuming part of RT-PSM need be identified. As a real-time system, the 

time-consumption for peptide identification cycle is more important than the total 

time spent for overall processing. However, the computation time of different peptide 

identification cycles varies. It depends on the length of peptide sequence and the size 

of experimental spectra. The average percentage value will be used to indicate the 

time spent for each module in RT-PSM.  

 

The Microsoft’s development kit Visual Studio provides a powerful performance test 

tool called Team System Profiler. This tool can provide a very high resolution counter, 

because the tool counter has the same frequency as the CPU clock. The experimental 

dataset was provided by the RT-PSM software package. This dataset contains 22577 

peptides and the protein database is a subset of the UniRef100 database and contains 

44278 human protein sequences [5].   

 

Table 2.2 displays the top time-consuming functions of the profiling experiment. The 

top 3 functions are used in the similarity score module; the fourth function is the 

statistical significance computation module. The last function is mainly used in the 

candidate peptide searching module. Figure 2.2 is generated based on the data of 

Table 2.2 and illustrates each module’s time-consuming percentage in the RT-PSM 

algorithm. The similarity scoring module could consume over 95% of the CPU time 
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according to the profiling experiment. This result is reasonable since each spectrum 

has to compare with a group of all candidate peptides which could easily contain 

thousands of peptide sequences. 

 

Table 2.2 Profile Report for RT-PSM 

% Time 
Cumulative 
seconds Self seconds Name 

57.44 11.15 11.15 find(double, double*, int, int, double) 
34.41 17.84 6.68 qkfind(double, double*, double) 
4.17 18.65 0.81 ascore(double, double, double*, int) 
2.16 19.07 0.42 pscore(Peptide, Spectr*, int, int) 
0.26 19.37 0.05 sort(double*, int, int) 

 

 
 

Figure 2.2 Profiling results of RT-PSM indicates that the computation of the similarity 
scores consumes the most CPU time 
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CHAPTER 3 

RT-PSM WITH PARALLEL PROGRAMMING 
 

3.1 Overall of Parallel Computing Technology 

 

Traditionally, computer software is designed for serial computation. A computer 

program consists of a series of instructions to solve a problem. The CPU executes 

them one by one and only one instruction can be executed at a time. Traditional serial 

computing has its transmission speed limitations: the speed of serial computation is 

dependent on the speed of data moving. Because of the limitation of hardware and 

budget, sometimes serial computing cannot satisfy performance requirements. 

 

Therefore, in order to save time and resources, solve larger problems, provide 

concurrency or use non-local resources [23], the concept of parallel computing was 

developed in early 60's by Gene Amdahl. Nowadays, according to the level of 

hardware support for parallelism, parallel computing might be roughly classified 

within following groups: multi-core computing, distributed computing, cluster 

computing (symmetric multiprocessing computing), massive parallel processing, grid 

computing, general-purpose computing on graphics processing units (GPGPU), vector 

processors, etc. By the statistical result in 2011, about 40% of parallel computing 

systems were used in academic and research settings, and the statistical trends 
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indicated that "parallelism is the future of computing"[24]. 

 

In this study, multi-core computing and cluster computation are used to create a new 

algorithm to speed-up the RT-PSM procedure based on the existing laboratory 

hardware. Based on Amdahl's law [25], the number of functions which could be 

parallelized decides the speed-up of whole program. Hence, the speed of RT-PSM 

could be rapidly progressed after it has been parallelized.   

 

3.2 SIMD vs Multi-Core Computing 

Multithreading technology has been implemented for decades. At least in 1992 when 

Microsoft Foundation Class Library (MFC) was introduced with Microsoft's C/C++ 

7.0 compiler, it already contained the multithreading API to create and maintain 

threads [26]. However, for most regular users, the early multithreading functions were 

mostly used for data input/output or user interface (UI) design, not for computation 

performance.  

 

There are two types of computations classified by the hardware, CPU-bound 

computation and I/O-bound computation. A CPU-bound computation is a computation 

that spends most of its time keeping the CPU busy. I/O-bound computations are 

computations that spend most of their time waiting for an I/O request to finish [27]. 

Reading files, downloading files or UI functions are typical I/O-bound computations. 
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In general, data transmission speed is far less than the CPU speed and that means that 

the CPU spends most of its time on waiting for I/O requests. For CPU-bound 

computation, CPU is always busy until the computation is over. Unless the computer 

contains multiple CPUs, a CPU-bound computation cannot execute faster in multiple 

threads than in a single thread. The reason is that for a single-core CPU, all 

CPU-bound computations can only be executed in sequence. Before multi-core CPU 

appeared, if a group of computations were executed in multiple threads, the 

single-core CPU still can only execute them one by one and also needs time for 

creating threads and switching the CPU between threads. The performance of 

multithread CPU-bound computation could be slower than single thread one in a 

single-core CPU. Therefore, multithreads cannot improve large scale computation 

performance, such as matrix manipulations, operations on graphs with a single-core 

CPU.  

 

All this changed in 2002 when Intel introduced Hyper-Threading (HT) technology, 

the first appearance of simultaneous multithreading technology in a consumer-grade 

CPUs. With HT technology a physical CPU with single core can provide 2 logical 

cores and execute two threads simultaneously. Then multithreading can be used in the 

complex and/or large scale computations. Because with HT each logical core can 

execute one CPU-bound computation concurrently, it can also be called multi-core 

computing. In 2006, Intel released dual-core processer which was the first 

consumer-grade CPU with multiple physical cores. Then the multi-core CPU became 
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the mainstream.   

 

Single instruction multiple data (SIMD) is a type of parallel computing within all 

processing units execute the same instruction at any given clock cycle and each 

processing unit can operate on a different data element as shown in Figure 3.1 [23]. 

The SIMD technology was first used in 1970s. The first widely-deployed desktop 

SIMD was Intel's Pentium MMX CPU. Actually, most CPU manufacturers, such as 

HP, Sun, IBM or Sony all designed their own CPUs with SIMD technology. Although 

all these SIMD technologies share common ideas and general operations, because of 

differences in standards, the CPUs from different manufacturers have different 

capabilities. For example, Sony's "Cell processor" can support from 8-bits to 128-bits 

in size while Intel's AVX SIMD instructions now process 256 bits of data at once [15]. 

prev instruct  prev instruct  prev instruct time 

 load A(1)  load A(2)  load A(n) 

load B(1)  load B(2)  load B(n) 

C(1)=A(1)*B(1)  C(2)=A(2)*B(2) … C(n)=A(n)*B(n) 

store C(1)  store C(2)  store C(n) 

next instruct  next instruct  next instruct 

P1  P2 … Pn  

 
Figure 3.1 SIMD: each processing can operate on a different data element with the 
same instruction at any given clock cycle 

 

Before the HT technology was implemented in the consumer-grade CPUs, using 
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SIMD technology to implement parallelization for CPU-bound computation in 

single-core CPUs was the mainstream. With SIMD at a given clock cycle, each 

processing unit can execute the same instruction on different data. For the problems 

that have a high degree of regularity, such as graphics or image processing, SIMD is a 

good option for improving performance. It can also be used for complex computations, 

such as data search or matrix manipulations. For the RT-PSM program, the peptide 

database searching module and similarity scoring module can all be re-designed to 

adapt SIMD to improve their performance [13, 28]. Without upgrading any hardware 

to improve the computation performance, SIMD seems a suitable solution for this 

study.  

 

SIMD also has its disadvantages: lack of support in development environments, 

unintended effects of changes in data precision and performance bottlenecks due to 

cache misses. Most general software development kits include the multithreading 

APIs. On the contrary, most SIMD APIs are directly facing to the registers and L2 

cache, and can only work in C/C++ environments. Some of them even need use 

assembly languages. All these restrictions make SIMD becoming a not 

"developer-friendly" technology. 

 

In order to achieve the best performance for Streaming SIMD Extensions (SSE) and 

Streaming SIMD Extensions 2 (SSE2) instructions that operate on 128-bit registers, 

data must be stored on 16-byte boundaries. Access to unaligned data with SSE 
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instructions is much slower than aligned access [29, 30]. The original RT-PSM 

converts unaligned data to 32-bit single numbers. As a result, if each SSE register 

(usually 128-bit) is divided into four 32-bit units, these 4 units can be operated upon 

simultaneously. If the data precision of RT-PSM needs to be upgraded in the future, 

using 64-bit double-precision number instead of 32-bit, each SSE register can only be 

divided into 2 units. The computation performance will be reduced.  

 

With SIMD technology, even though each processing unit can execute the same 

instruction independently, the results are still stored in the same L2 cache. This means 

that in a multi-core CPU, the size of L2 cache could become a bottleneck for SIMD 

performance, to the point where the performance of a multithreading SIMD might not 

be better than a single-core CPU. For example, consider a 2-core CPU with 1MB L2 

cache and one single-core CPU also with 1MB L2 cache. They all have the same 

128-bit SSE registers. In each core, each SSE register is divided into 4 32-bit units, 

and each unit needs 250KB memory to store/transfer data. For the 2-core CPU, in 

principle it should have a speed-up of 4*2 = 8 times. However, in the multithreading 

model, the L2 cache does not have enough space to store the data from 2 threads 

(250KB*4*2 = 2MB), which causes a higher rate of cache miss. On the other hand, 

the L2 cache of the single-core CPU has enough space for the transmission data 

(250KB*4 = 1MB), and the L2 cache miss rate is much lower. As a result, the SIMD 

performance in the 2-Core CPU might be equal or even less than that in the 

single-core CPU. So far, SIMD can achieve maximum performance for the original 
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RT-PSM program. Once the RT-PSM algorithm is updated and hits a specific memory 

boundary, multithreading SIMD might not be able to satisfy the computation 

requirements.       

 

Generally speaking, in current circumstances, SIMD provides efficient parallel 

computing performance, but it is more difficult to develop and maintain than 

multi-core computing. The biggest disadvantage of SIMD is that its expandability is 

quite limited. Therefore, in this study the parallel algorithm is based on the multi-core 

computing technology on a multi-core CPU. 

 

3.3 Database vs Datastore 

Peptide database search is the first step of the similarity scoring module. There are 

two factors affecting database search performance: the capabilities of the peptide 

database and the similarity search algorithm. For the database, it is a dilemma whether 

to choose a Structured Query Language (SQL) database or a data structure to store 

data directly in memory. The most obvious choice is using the regular SQL database, 

such as Oracle, Microsoft SQL server, MySQL, etc, since the SQL database is widely 

used and has sufficient supports. In addition, it can be a supported by a separate 

computation on its own thread(s). However, both database and datastore have their 

cons and pros, and comparing them can help choose the most suitable one for this 

study.  
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3.3.1 The advantages of SQL database 

Queries: All SQL databases support standard SQL query language, and this makes 

data search quite convenient. The SQL database is optimized for the search functions 

and the user can also use "JOIN" to connect different tables to obtain complicated 

information. The SQL language is easy-to-use and fully-functional. Given its high 

level of abstraction, the user can pay more attention to how to create efficient query 

statements instead of considering the performance of search algorithms or low-level 

data structures. Another superiority of SQL is that if the peptide database needs to be 

updated or moved to other SQL database in the future, the queries would be easy to 

update and adapt the new database due to the SQL language standards.  

 

Transactions: In order to support the multithread RT-PSM, the peptide database 

should be able to support concurrent data transmission to reach the maximum 

multithread RT-PSM performance. With correct configuration, the SQL database can 

natively support concurrent transactions, while developers who use a datastore 

approach have to design the concurrent connections and handle the data race directly. 

Fortunately, in the original RT-PSM, the peptide database is only used to provide the 

search results and does not need to consider the data race. If the peptide database 

needs to expand the data store function in the future, it could be an issue which has to 

be thought over.    

 

Preload time: In most case, the SQL database should be active when the server is 
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turned on and the identification program should be able to access the database 

anytime through database connections. On the other hand, a datastore needs to load 

the data from storage files to main memory every time the program is executed. 

Theoretically, for a 32-bit operating system, the maximum file load size is 4 GB and 

the file size in 64-bit operating system is practically infinite. In practice, if the data 

file is over 4 GB, the data preloading time is too long to affect the whole program 

performance. When the file size is over the physical memory of the computer, the data 

search performance could be dramatically decreased. That means the size of the data 

files will affect the data preload time and the main memory of the computer will also 

affect the inefficiency of the database loading into memory. All those factors could 

lower program performance.  

3.3.2 The shortages of SQL database 

Management: To efficiently use a SQL database, the developer needs to have a certain 

level of knowledge about database configuration, the SQL language and system 

maintenance. If the data records or table structures need to be changed, the developer 

cannot change them directly but has to use SQL languages. If a datastore is used on 

the other hand, there is no configuration needed. Once the "table" needs to change, the 

developer only needs to update the data structure. The data can also be changed by 

directly changing the data store files.   

 

Data transmission performance: In the cluster environment, the SQL database is 
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usually support by the head node where it is easy to manage for the developers. 

Therefore, for each work node, the data has to transmit through the interconnection 

fabric. Even if the cluster uses a low-latency/high-bandwidth network, the average 

data transmission time from the head node's SQL database to a work node can be as 

much as 0.3 second per task (based on local empirical tests). If a datastore is used, 

because all data can be preloaded into each work node's memory, the data 

transmission time is negligible.  

 

Based on all these factors, the size of peptide database will decide which data store 

methodology could provide best performance. The peptide database is derived from 

the protein database and its size is about 4-6 times larger than the original protein 

database. The complete UniRef100 protein database which is downloadable from 

Universal Protein Resource is over 4 GB while the derived peptide database can 

easily be over 10 GB. With this huge dataset, even though a computer can preload it 

completely into its memory, the preloading time and peptide search time could be 

unacceptable. In this case, using SQL database to manage the dataset and queries will 

be the best choice. For those smaller peptide databases, if the user feels preloading 

time does not affect the system performance, it may be better to use datastore because 

the short data transmission time should be able to compensate for the performance 

lost in the preload phase. In this study, both database and datastore interface are 

provided to handle different needs. However, considering that the experiment dataset 

is not very large (about 30 MB), all performance tests will be under datastore model. 
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3.4 Algorithm and Implementation 

 

The original sequential RT-PSM program consists of four main functions which are 

described previously. The similarity scoring function is a typical CPU-bound 

computation function. That means the computing time of this function is dominated 

by the speed of CPU. In order to achieve the best performance, one processor can 

only execute one function at one time. The HT technology makes it possible to 

execute multiple scoring functions concurrently in a single-CPU workstation [31]. 

That means the program can match multiple spectral groups simultaneously and 

reduce the total execution time. 

 3.4.1 Parallel programming design pattern  

In parallel programming, the main design principle is to balance the load among 

multiple processors and to reduce communication overheads between processors. 

Different design patterns can help developers to adapt different conditions, and 

choosing the correct design pattern can reduce potential deficiencies [32, 33]. 

 

Parallel algorithms are generally classified into four categories: divide-and-conquer 

algorithms, processor farms, process networks and iterative transformation as shown 

in Figure 3.2. In divide-and-conquer algorithms, a problem is divided into 

sub-problems, which are themselves recursively solved by dividing further. In 

processor farms, a problem is divided into a number of independent computations, 
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and the results of these computations are combined by the controller. Process 

networks are a division of computation with the data flowing through the stages. In 

iterative transformation, sub tasks are transformed until the termination conditions are 

satisfied through several iteration steps [33]. 

 

 
Figure 3.2 General classifications of parallel algorithms [33] 

 

In this study, there are two different algorithms based on the underlying hardware 
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environments, a distributed computing algorithm and a multi-core algorithm. The two 

algorithms use different design patterns. The distributed algorithm is used in a cluster. 

The cluster consists of one head node and multiple work nodes. The head node 

manages tasks and traces procedures. Hence, the hardware structure of a cluster is 

suitable for the master/slave pattern. A processor farm is the most suitable design 

pattern for the distributed computing algorithm. 

 

On the other hand, for the multi-core algorithm each logical core is identical and 

independent. There is no master/slave structure in the CPU structure. Secondly, in a 

cluster, most computation tasks are distributed into work nodes and the head note is 

only used for controlling the work nodes. However, for the multi-core CPU, all 

logical cores should be assigned computation tasks in order to achieve the maximum 

performance [34]. Hence, the design pattern of the multi-core algorithm is more like a 

combination of processor farm and iterative transformation. With this design, the 

control (master) thread is abandoned and every threads of the multi-core RT-PSM 

(MT RT-PSM) program become a calculation thread. Each logical core of the CPU is 

used in the calculation functions of RT-PSM and the program should be able to 

employ all the usable system resources. Each subtask assigned to a thread should also 

be independent. As trade-off, each thread should be designed to handle data input, 

with the exception of control and data collection functions which are handled by the 

control thread. The algorithm of each thread is more complicated.    
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3.4.2 Parallel function selection  

The similarity score function consumes over 95% CPU time according to the profiling 

analysis. The parallelization of the similarity score function should be the core feature 

of the multi-core algorithm. The time-consuming nature of the similarity score 

function is due to the binary search for each amino acid residue since the similarity 

score function executes the binary searches sequentially. One possible design is to use 

parallel ion searching in the similarity score function. However, a preliminary 

experiment indicated that the ion search is very efficient and each search only takes 

less than 0.01 milliseconds. Parallelization also needs to consider the time necessary 

for the overheads of creating, invoking and disposing of threads. Because of the latter 

overheads the parallel ion search function could spend more time than the sequential 

version, even if different ion search threads could be executed simultaneously. 

 

Amdahl's law [25] states that the overall speed-up of a parallelized program is: 

1
(1−𝑃)+𝑃𝑁

                          (3.1) 

Assume that the running time of the old computation was 1, 𝑃 is the proportion of a 

program that can be made parallel, 𝑁 is the number of processors. The speed-up of a 

program using multiple processors in parallel computing is limited by the sequential 

fraction of the program. That means if not only the similarity score function can be 

parallelized, but also other modules, such as candidate peptide selection, statistical 

significance computation, then the performance of the whole program could be 
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maximized. Based on this idea, each thread of the MT RT-PSM was designed to 

perform the complete RT-PSM processing. With this design, the maximum speed-up 

of the MT RT-PSM depends on the number of threads invoked by the program. The 

maximum number of threads that can be used in the MT RT-PSM is based on the 

number of logical processors. 

3.4.3 Thread affinity  

"White Paper - Processor Affinity" defines that thread affinity enables binding or 

un-binding of a thread to a physical CPU or a range of CPUs, so that the thread will 

run only on the CPU or range of CPUs. In order to achieve the maximum performance, 

one objective is to make each CPU 100% utilized when the program is executing. 

Each logical core should perform one thread simultaneously. That means the MT 

RT-PSM program should be able to distribute one and only one thread to each logical 

core. In a Windows system, there is a system diagnostics library that enables 

developers to interact with user processes. Developers can force a thread to run in a 

specific CPU core by using the ProcessThread class in the system diagnostics library 

to manually distribute each thread of a program. In addition, the Windows scheduler 

also has the ability to dynamically distribute threads to different CPU cores to balance 

the system load.  

 

In the ideal situation, all threads are expected to begin at the same time to minimize 

the time differences between different threads. Hence, if the Windows scheduler 
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causes a long delay between threads, all threads should be manually distributed and 

triggered. Ayucar’s research [35] indicates that the windows scheduler can provide 

efficient thread distribution and management performance. All his experiments have 

implied that the Windows scheduler beats a manual thread affinity setup almost in 

every case. Based on this result, all threads are automatically distributed and managed 

by the Windows scheduler in this study. The CPU usage results of MT RT-PSM also 

display the same conclusion. All threads start simultaneously and the Windows 

scheduler achieves maximum CPU performance. Results are shown in Figure 3.3.  

 
Figure 3.3 Windows scheduler simultaneously starts 4 threads of MT RT-PSM in 4 
cores  
 

3.4.4 General code optimization 

The original RT-PSM source code was designed several years ago with VC++ 6.0. 

VC++6.0 has been retired and as the successor C# can provide a better object-oriented 

development environment. So C# is chosen to develop MT RT-PSM and refactor the 

original VC++ source code. Some functions in the original source code are obsoleted. 

With the support of .net 4.0 framework, the corresponding functions can provide 

better performance. Those old functions are replaced.  

 

After analyzed the workflow of the original source code, there were some function 
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redundancies that can potentially increase the computational complexity. For these 

functions, the subroutines are needed to redesign or make some rearrangements to 

ensure the maximum performance.   

3.4.5 Algorithm 

The similarity scoring function is a typical CPU-bound function. In order to achieve 

the best performance, one processor can only execute one function at one time. That 

means with a multi-core CPU, the program can match multiple spectral groups 

simultaneously and reduce the total execution time as shown in Figure 3.4. The 

maximum number of threads that can be used in the MT RT-PSM is based on the 

number of logical processors. The pseudo code of MT RT-PSM algorithm is shown in 

Algorithm 2. 

 
Algorithm 2: Multi-core RT-PSM 

Class PeptideIdentification 
  Collection PeptideDB; //peptide database 
  Collection ExperimentPeptideData; //experiment data 
 
function PIF() 
  PeptideDBLoading (DBfile, PeptideDB); 
    //load peptide database 
  ExperimentalPeptideDataLoading(DataFile, ExperimentPeptideData); 
    //load experiment data 
  MaxThreadNum ←  Maximun number of CPU logical cores //obtain thread number 
  InitMultiThreadCalc(MaxThreadNum, PeptideDB, ExperimentPeptideData); 
    //initial each thread 
  StartThreadList(MaxThreadNum, PeptideDB, ExperimentPeptideData);  
    //run multithread RT-PSM 
End function 
 
function Pipid (PeptideDB,ExperimentPeptideData) 
    //RT-PSM algorithm 
  Tolerance←  user-defined peptide search tolerance value;  
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  Collection score;  // similarity score list 
 
  for each OnePeptideGroup in ExperimentPeptideData do 
    filter (OnePeptideGroup,PeptideDB); 
    candidatePeptideData ←  qkfind(OnePeptideGroup, PeptideDB, tolerance); 
       //2-demensinal peptide search 
  for each candidatePeptide in candidatePeptideData do 
     msct ←  cscore(OnePeptideGroup,candidatePeptideData);  
     //similarity scoring function 
     score.Add(msct + 1);  
     Init Matrix evalue;  
     if pscore(evalue, score) is true postive then display result;  
       //statistical significance function 
End function 
End Class 
 
Class MultiThreadCalc // Multithread control class 
void function InitMultiThreadCalc(Thread, PeptideDB, ExperimentPeptideData) 
//initial one thread 
  for i← 0;i<Thread; i++ do 
    InitOneThreadPip(PeptideDB, ExperimentPeptideData); 
End function 
 
void function StartThreadList(Thread,PeptideDB, ExperimentPeptideData)  
// execute one thread 
  for i← 0;i<Thread; i++ do  
       ThreadList[i].Pipid(PeptideDB, ExperimentPeptideData);; 
End function 
End Class 
 

 
Figure 3.4 The flowchart illustrates the process of a multi-core computing algorithm 
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in MT RT-PSM 
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CHAPTER 4 

RT-PSM WITH DISTRIBUTED PROGRAMMING 
 

4.1 Introduction 

4.1.1 Distributed computing and cluster 

 

A cluster consists of a set of connected computers that work together, so they can be 

viewed as a single system. The nodes (computers used as servers) of a cluster are 

usually connected through a low-latency/high-bandwidth network, in most cases a 

local area network. A cluster has times of computation ability compared to each 

individual node. Hence, the main purpose of cluster is to provide performance 

computation through distributed computing algorithm.  

 

The earliest cluster prototype appeared in 1960s and it mainly used to backup data. 

Ten years after Gene Amdahl published his famous paper on parallel processing: 

Amdahl's Law [25]. The first commercial clustering product was developed in 1977. 

Nowadays, although the CPU frequency and the node number of a cluster have been 

rapidly improved, the factors which affect the cluster performance never change: 

processor performance, network, software infrastructure and development tools.  

 

Early cluster system was more or less restricted by early networks since one of the 
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primary motivations for the development of a network was to link computing 

resources. Modern cluster is more related on the CPU frequency and core numbers at 

the hardware layer. The computational capability of modern clusters is far more better 

the first generation ones. 

 

The cluster software infrastructure develops more slowly than the hardware. Parallel 

systems are useless without parallel software. Different with sequential program, the 

control algorithm of parallel programming is much more complicated. So it is 

impossible to generate parallel software automatically. In 1990s, there were still 

dozens of parallel programming languages and most of them did not have a general 

standard. In 1995 the Message Passing Interface (MPI) became the first development 

standards [36] and it makes the parallel programming development easier than before.  

 

An ideal cluster application development environment should include a stable 

operation system and a set of development tools which can support the standard 

parallel algorithm and libraries. The development environment for clusters must be 

able to provide the tools that are currently available on cluster systems. The parallel 

applications should be developed, debugged and tested on the cluster environment 

through the development tools.  

 

http://en.wikipedia.org/wiki/Object-oriented_programming
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4.1.2 WINDOWS HPC library 

The main cluster operating systems are either UNIX/Linux or windows. Not like 

UNIX, Microsoft began to design their cluster OS after mid-90s based on Windows 

NT Server 4.0 Enterprise Edition. In June 2006, Microsoft released Windows 

Compute Cluster Server 2003 which was the first high-performance computing (HPC) 

cluster technology offered by Microsoft. It also released the Windows HPC Server 

2008 as the successor product. Windows HPC Server 2008 includes features unique to 

HPC workloads: a new high-speed Network Direct RDMA, highly efficient and 

scalable cluster management tools, a service-oriented architecture (SOA) job 

scheduler, an MPI library based on open-source MPICH2, and cluster interoperability 

through standards such as the High Performance Computing Basic Profile (HPCBP) 

specification produced by the Open Grid Forum (OGF) [37].  

 

Microsoft also provides cluster HPC SDK to help development cluster applications. 

Compute Cluster Pack (CCP) has secure, scalable cluster resource management, a job 

scheduler, and a MPI stack for parallel programming. Compared with Unix/Linux 

system, Microsoft’s HPC Server + CCP + Visual Studio constitute an integrated, 

efficient and user-friendly development environment. 

 

With the definition of computer cluster for windows HPC system, it is a top-level 

organizational unit. Each cluster consists of a set of nodes, queues, applications, and 

jobs. The following Figure 4.1 shows the compute cluster architecture. 
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Figure 4.1 The flowchart illustrates Microsoft compute cluster architecture [37] 

 

A node is a single computer that contains one or multiple CPUs. A cluster consists of 

one head node and multiple work nodes. The head node manages the cluster resources 

and distributes all jobs to work nodes. All nodes in a cluster are parts of the same 

domain. Data sources, such as database or datastore systems are accessible from each 

node. A cluster application can enumerate, approve, pause and resume nodes through 

the ICluster interface. It is also able to query node properties through the INode 

interface. There is an organizational unit in the cluster - job queue, which contains 

queued, running and finished jobs. 

 

The job scheduler service is the core scheduling service of the CCP. It controls 

resource allocation, job execution and recovery on failure. It also manages the job 

queue and removes the finished jobs periodically. The architecture is shown as the 
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following Figure 4.2. 

 
Figure 4.2 The flowchart illustrates the job scheduler architecture [37] 

 

As the core scheduling service, the job scheduler allocates the cluster resources by job 

priority. This makes the high-priority jobs at the front of the queue. If jobs have 

identical priority, resources are allocated to the job based on the first in first out (FIFO) 

policy. There is no task priority within a job. All tasks are allocated in the order that 

they are added to the job. The job scheduler selects the best available node to run each 

job and the system administrator can also specify a list of nodes to run certain jobs.  

 

The job scheduler supports backfill. This ensures a resource-intensive application will 

not delay other applications when they are ready to run. If a high-priority job is 

waiting for available resources, the job scheduler will execute the lower-priority job 
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with the available resources and not delay the start time of the higher-priority job.  

 

The cluster service is a .Net remote service. It provides cluster-wide settings, 

node-related operations, job-related operations, task-related operations and 

resource-usage information. Applications let the cluster to execute program through 

the cluster service.  

 

A task represents the execution of a single or multiple CPUs on a computer node. A 

job is the collection of a series of tasks to perform a computation procedure. Jobs are 

used to reserve the resources required by tasks. The following Figure 4.3 illustrates 

the life circle of job. In this study, each task represents one MT RT-PSM procedure. A 

job manages all tasks and makes sure they can be executed simultaneously or with 

certain conditions. Computation result collection, garbage collection and exception 

handling are also the duties of a job. 

 
Figure 4.3 The flowchart illustrates the job life cycle [37] 

4.2 Methodology 

The distributed computing algorithm is another type of parallel computing algorithms. 
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Similar to multi-core computing, it separates a large task into several sub-tasks and 

executes them concurrently. The most critical difference between multi-core 

computing and distributed computing is that in multi-core computing all processors 

may access to a shared memory while in distributed computing each processor has its 

own memory [35]. In this study, the whole identification procedure is divided into 

several sub RT-PSM tasks. Then each sub-task runs in an individual node workstation 

of the cluster. The head node's duty includes task creation, management and 

synchronization instead of executing RT-PSM program. Those duties make the head 

node a task controller. 

 

In order to achieve the minimum execution time of the RT-PSM program, the head 

node should have an algorithm to create, distribute, synchronize and monitor the tasks 

of work nodes. The pseudo code of the distributed computing algorithm is shown in 

Algorithm 3. This distributed computing RT-PSM (DC RT-PSM) algorithm contains 

three main modules. The first module loads an experimental tandem mass spectra data 

file and divides it into a user-defined number of small files. Then it points each small 

file to a related work node. The second module creates the sub RT-PSM task in each 

work node. Then it starts all tasks simultaneously. The third module monitors all tasks' 

executions and collects the feedback information which includes the task status and 

exceptions. After all tasks are accomplished, the DC RT-PSM collects the result of 

work nodes and generates the final report. The Figure 4.4 shows the work flow of the 

algorithm 3. 
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Algorithm 3 Distributed computing RT-PSM 
 
Class DCRTPSM 
 
int MaxNodeNum ←user-defined maximum number of work nodes; 
 
function CreateHPCJob 
    ICluster cluster ←  new Cluster; 
    cluster.connect(); 
    aJob ←  cluster.CreateJob; 
    for i← 0; i< MaxNodeNum; i++ do 
       aTask ← cluster.CreateTask; // Create a new task 
       set aTask.commandline; 
       set aTask.Stdout; 
       set aTask.Stderr; 
       set aTask.RequirtNodes; 
       set aTask.MaximumNumberOfProcessors; 
       aJob.AddTask(aTask); 
End function 
 
function TrackHPCJob(jobID) 
   while aJob is not finished do 
       aJob ← cluster.GetJob(JobID); 
       check aJob status; 
       handle aJob exceptions; 
End function //track node execution status 
 
function HPCJobResultCollection() 
//Collecting results from node i 
End Class 
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Figure 4.4 The flowchart illustrates the process of a distributed computing algorithm 
in DC RT-PSM 

 

The time consumption of similarity scoring function in DC RT-PSM is: 

𝑇𝑖  =  𝑀𝑎𝑥(𝐵𝑖  +  𝑆𝑖  +  𝐶𝑇𝑖)                  (4.1) 

where 𝐶𝑇𝑖  is the message communication time and 𝑖  represents the number of 

threads. The time consumption of message communication in each thread is fixed, so 

when the program processes a large dataset, the database search time 𝐵𝑖 and scoring 

time 𝑆𝑖 will be larger than a small dataset and the 𝐶𝑇𝑖 will less affect the total time 

Ti than a small dataset. The total time consumption of the DC RT-PSM is: 

𝑇𝑇𝑜𝑡𝑎𝑙  =  𝑇𝐼𝑛  +  𝑀𝑎𝑥(𝑇𝑛)  +  𝑀𝑎𝑥(𝐶𝑁𝑇𝑛)           (4.2) 

where  𝑇𝐼𝑛 is the task initial time. 𝐶𝑁𝑇𝑛 is the node message communication time 

and n is the number of nodes. 
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CHAPTER 5 

MULTIDIMENSIONAL SEARCH: SPEED-UP PEPTIDE 

DATABASE SEARCHING 
 

In the similarity scoring module, the first step is to search the peptide database which 

is derived from the protein database to obtain a suitable peptide as the start point of 

the similarity scoring. The mass of match peptide Mm should be in the range of target 

peptide mass Mt with a tolerance ε (𝑀𝑚 < 𝑀𝑡 ± 𝜀). That means the peptide database 

search is a nearest neighbor search (NNS) [38, 39], also known as similarity search 

instead of a regular search. The NNS describes the need to find the point among a 

group of known positions which is closest to some randomly chosen probe position. 

The original RT-PSM program uses a common linear search algorithm - binary search 

to compute the distance from the query point to every point in database to obtain the 

shortest distance. The time complexity of binary search equals to 𝑂(𝑙𝑜𝑔 𝑛), which is 

related to the size of peptide database.  

 

The regular database might contain random data, while the peptide database contains 

the mass value of each peptide which is related to the peptide’s length and structure. 

Two peptide sequences may have close mass values if their structures are similar. Two 

different peptide sequences also can have the same mass value. From the 

mathematical perspective, the peptide database can be viewed as a group of 

consequent positive numbers.  
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Space partitioning which is an advanced NNS method might be able to take advantage 

of this characteristic of peptide database. With this method the whole peptide database 

can be divided into a series of small peptide groups (subsets) based on the candidate 

peptide tolerance value instead of treading the whole peptide database as a large array 

[40]. Each subset is indexed with the integer part of minor mass value and the integral 

peptide database is a sorted collection that contains indexed sub-databases as shown 

in Figure 5.1. 

 
Original Peptide Database: 
... 1811.0013 1811.0031 1811.0053 .. 1813.0333 1813.0421 1813.0466 ... 
 
2-Dimentional Peptide Database:  

 
Figure 5.1 2-Dimensional peptide database structures in contrast of original peptide 
database structures 
 

With this new 2- dimensional peptide database, the peptide searching consists of two 

parts. The first step is to search if the integer part 𝑋 of the target peptide mass with 

tolerance value 𝑇 is indexed by the peptide database (𝑋 ± 𝑇). If the value is found, 

then the first record in the indexed sub-array is the match peptide. The time 

complexity of this step is 𝑂(2𝑇). If the first step cannot find a match peptide and the 

database also contains a subset with index (𝑋 − 1), then the second step is to use the 

 
 
 
X 

Index Sub-array 
...       
1811 1811.00134 1811.00313 1811.00537 1811.00584 1811.00715 .... 
1812 1812.0033 1812.01587 1812.01814 1812.02174 1812.02443 .... 
1813 1813.00374 1813.02552 1813.03091 1813.03339 1813.04665 .... 
...       

Y 
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binary search method to find whether this subset contains match peptide. The time 

complexity of the second step is 𝑂(𝑙𝑜𝑔(𝑠𝑢𝑏𝑠𝑒𝑡 𝑙𝑒𝑛𝑔𝑡ℎ)). The time complexity of 

2-dimensinal peptide database search algorithm is much less than the original binary 

search. The pseudo code of the algorithm is shown in Algorithm 4. 

Algorithm 4 2-Dimensional Peptide Database Search 
function integer qkfind(OnePeptideGroup, PeptideDB, tolerance) 
   //Multidimensional Search: 
      if OnePeptideGroup.mass > PeptideDB.lastRecord.Mass OR 
      OnePeptideGroup.mass < PeptideDB.firstRecord.Mass then 
         return -1; 
      else 
 
      lowBoundary ←  (OnePeptideGroup.mass - tolerance) + 1 ; 
      upBoundary ←  (OnePeptideGroup.mass + tolerance); 
 
      for i ←  lowBoundary; i< upBoundary; i++ do 
         if PeptideDB hasIndex (i) then 
            subSet ←  PeptideDB.item(i); 
               return subSet.firstItem.Index; 
         else if PeptideDB hasIndex(lowBounday -1) then 
            subSet ←  PeptideDB.item(lowBounday -1); 
            Index ←  BinarySearch(subSet, OnePeptideGroup.mass) 
      Return Index; 
 
End function 
 

One advantage of 2-dimensional search is that its search speed is not directly 

depending on the size of database but the density of indexed subsets in certain range. 

The higher density brings higher hit-rate which helps to improve the speed of entire 

peptide identification procedure. Another advantage is that this search algorithm does 

not need supports from any third party databases. Compared with other parallelized 

database search algorithms, this algorithm only need slightly change the peptide 

database structures.   
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CHAPTER 6 

EXPERIMENTAL RESULTS AND DISCUSSION 

6.1 Experimental Environment and Datasets 

The cluster experimental environment consists of 1 head node and 32 work nodes. 

They are connected with 1 Gigabit Ethernet. The detail of the cluster specification is 

shown as follows.  

Table 6.1 Cluster hardware specification 

Node Type Number of workstation Specification 

Head Node 1 

CPU Intel Xeon E5410 2.33GHz 
Memory 8 G 
Hard disk Dell PERC 6/i RAID 500G 
Network  1 Gigabit Ethernet 

Work Node 32 

CPU Intel Xeon E5410 2.33GHz 
Memory 4 G  
Hard disk SEAGATE SCSI 73G 
Network  1 Gigabit Ethernet 

  
 

There are two datasets are used in this study. The dataset A is provided by the 

RT-PSM package [5]. The experimental data source of tandem mass spectra includes 

2058 groups of spectra. The protein database is a subset of the UniRef100 human 

protein database and it contains over 2200 entries (over 180000 peptide sequences). 

The dataset B includes 16463 groups of spectra. The protein database has over 3300 

entries which is also queried from the UniRef100 [11] human protein database. 
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6.2 Verification 

The verification of RT-PSM results is an essential part of this study. The purpose of 

parallel computing algorithm is not only to reduce the peptide identification procedure 

execution time, but also to keep the identification accuracy at the same time. The MT 

RT-PSM does not use any trade off algorithm to gain better performance. Therefore, 

the results of MT RT-PSM should be identical with the original RT-PSM. 10 groups of 

experimental data are randomly chosen from the results of MT RT-PSM and original 

RT-PSM. They are shown in the Table 6.2. Overall, the identification results are in 

excellent agreement between MT RT-PSM and original RT-PSM. 

 

Table 6.2 Result comparison between MT RT-PSM and original RT-PSM 5 columns 
to compare, the charge of spectrum, the similarity score and the match (-1 for not 
match, 1 for match)  

Multithread 
Spec Index Spec Sequence Charge msc match 

141 TQETPSAQMEGFLNR 2 1.63 -1 
256 DVSGPMPDSYSPR 2 2.41 -1 
489 NLLHVTDTGVGMTR 3 1.29 -1 
812 NALESYAFNMK 2 1.35 -1 
904 ALEQFATVVEAK 2 1.52 -1 
1010 AIADTGANVVVTGGK 2 1.91 -1 
1149 ILLAELEQLK 2 1.61 -1 
1551 SSGSPYGGGYGSGGGSGGYGSR 2 1.41 1 
1619 CATSKPAFFAEK 3 2.05 1 
1755 YLAEFATGNDR 2 2.16 1 

Original 
Spec Index Spec Sequence Charge msc match 

141 TQETPSAQMEGFLNR 2 1.63 -1 
256 DVSGPMPDSYSPR 2 2.41 -1 
489 NLLHVTDTGVGMTR 3 1.29 -1 
812 NALESYAFNMK 2 1.35 -1 
904 ALEQFATVVEAK 2 1.52 -1 
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1010 AIADTGANVVVTGGK 2 1.91 -1 
1149 ILLAELEQLK 2 1.61 -1 
1551 SSGSPYGGGYGSGGGSGGYGSR 2 1.41 1 
1619 CATSKPAFFAEK 3 2.05 1 
1755 YLAEFATGNDR 2 2.16 1 

 

6.3 Peptide Database Search Speed-up 

Using experimental dataset A as an example, comparing similarity scoring time by 

using linear search method and 2-dimensional search method, the new search 

method makes similarity scoring module spent less than 6.7% execution time as 

shown in the Table 6.3. 

 

Table 6.3 Result comparison between linear search and 2-demensional search 

 Groups of Spectra Average Similarity scoring time (ms) 

linear search 2058 8.043 

2-dimensional search 2058 7.668 

 

This 2-dimensional search algorithm cannot improve the accuracy of candidate 

peptide selection, but it can speed-up the procedure to a certain degree. RT-PSM is a 

complicated computation system and there is no simple solution to speed-up the 

whole system with one upgrade. The improvement of whole system must be 

contributed by the improvement of each sub-system. Although, the 2-dimensional 

search algorithm only brings less than 7% improvement, it might be able to inspire the 

future developers to design a better algorithm to rapidly speed-up the NNS without 
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any accuracy trade-off. 

6.4 Multithread RT-PSM Performance 

The performance of multithread RT-PSM mainly depends on the speed of CPU 

frequency and the maximum number of logical cores of CPU. MT RT-PSM is tested 

in 4 different computers and the Table 6.4 displays the detail information of the CPUs.  

Table 6.4 Experiment hardware environment information 

Name CPU # of Physical Cores HT Usage 
WS1 I7 3770 4 YES Personal server 
WS2 I5 750 4 NO Development PC 
WS3 XEON E5410 8 NO Work node of Cluster 
WS4 I7 2720QM 4 YES Personal computer 

 

 
Figure 6.1 Speed-up of execution time for MT RT-PSM benchmark to original 
RT-PSM in 4 experiment computers 

 

Figure 6.1 displays the speed-up between original RT-PSM program and MT RT-PSM 
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program with the same experiment dataset (dataset A). The result indicates several 

improvements of MT RT-PSM compared with original program. Firstly, the 

performance has been already progressed with refactoring and using .net framework 

to optimize the original program. Even only using single-thread, the MT RT-PSM 

achieves about 5 times speed-up than original RT-PSM program. Secondly, the 

program execution time is continuously decreased when more threads are involved. 

This result confirms the Amdahl's law that the program execution time should 

decrease when the thread number increases. The last, for those CPUs which have 8 

logical cores, the MT RT-PSM can achieve about 25 to 34 times speed-up when all 

available cores were involved in the computing. The speed of peptide identification 

procedure is promising.  

 

Figure 6.2 displays the speed-up of MT RT-PSM program executing with multiple 

threads against single-thread in 4 experiment computers. The result illustrates that the 

disagreement between the theoretical speed-up and the practical performance 

improvement can be massive due to different experimental environment. The 

computer WS3 is one work node of the cluster. It represents the most stable 

performance and reaches best speed-up when its maximum logical cores are assigned 

in computing. On the contrary, WS1 and WS4 are regular standalone computers 

which are mostly using for daily duties and application development. They need 

spend a certain amount of resources to maintain the routine tasks. It is very difficult to 

let a standalone workstation invoke all system resources to process the MT RT-PSM.  
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Figure 6.2 Speed-up of execution time for MT RT-PSM benchmark to single thread 
MT RT-PSM in 4 experiment computers 

 

Generally speaking, the CPU frequency and the number of logical core are the most 

important part of the performance. Nevertheless, the MT RT-PSM can only reach the 

best performance when the system distributes the maximum resource into the 

computation.   

 

6.5 Distributed Computing RT-PSM (DC RT-PSM) Performance 

The similarity scoring of single-thread RT-PSM search of 2058 group spectra against 

2200-entry protein database (experiment dataset A) spent about 53, 105 and 125 times 
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than the similarity scoring of DC RT-PSM search in the same condition when it was 

allocated into 80 threads (10 work nodes), 160 threads (20 work nodes) and 240 

threads (30 nodes), respectively. The similarity scoring of single-thread RT-PSM 

search of 16463 group spectra against 3200-entry protein database (experiment 

dataset B) spent about 69, 155 and 127 times than the scoring of DC RT-PSM when 

the task was allocated into 80, 160 and 240 threads. Figure 6.3 illustrates the 

comparison results. 

 
Figure 6.3 Speed-up of similarity scoring module execution time for DC RT-PSM 
benchmark to single thread MT RT-PSM from experiment dataset A (blue line) and 
experiment dataset B (red line) 
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11 times faster than the single-thread MT RT-PSM search with experiment dataset A. 

With experiment dataset B, DC RT-PSM search execution time is 48 times speed-up 

with 80 threads, 68 times speed-up with 160 threads and 85 times speed-up with 240 

threads compared to single-thread MT RT-PSM search. This is shown in Figure 6.4. 

Overall, the time benchmarks indicate a great performance upgraded by DC RT-PSM.  

 
Figure 6.4 Speed-up of execution time for DC RT-PSM benchmark to single thread 
MT RT-PSM from experiment dataset A (blue line) and experiment dataset B (red 
line) 

 

With 30 nodes and each nodes contains 8 logical processors, the DC RT-PSM 

program should be able to gain 240-fold speed-up. Compared with experiment dataset 

A and B in Figure 6.3, the performance is close to the theoretical performance when 

DC RT-PSM processes large spectrum dataset against large database. 
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In DC RT-PSM, the task initializing time and node message communication time are 

fixed. Even the nodes are connected with 1 gigabit Ethernet, the time lost in those 

processes are about 2.0 to 2.3 seconds. Therefore, if the experimental spectrum 

dataset is too small, the number of nodes allocated in the task can barely affect the 

total execution time, just like it shows experiment dataset A in Figure 6.4. 

 

Compared Figure 6.3 to Figure 6.2 of MT RT-PSM, the performance of DC RT-PSM 

is closer to the theoretical maximum value. The reason is that in the cluster, the 

computation is preformed in the work nodes that are more focus on computational 

tasks than other services. Therefore, the cluster is a more stable platform to process 

large scale computational tasks than standalone workstations.  

 

Generally, the performance of DC RT-PSM is related to the number of processors 

allocated in the task and the size of experimental dataset. For small datasets, if the 

total similarity scoring time is less than certain number, it is 500 milliseconds for this 

study, adding more nodes in the task may not be able to reduce the total execution 

time. 

6.6 Discussions 

In “Parallel Tandem”, Duncan et al. [12] developed a cluster system and achieved 

18-fold faster with 20 processors and 36-fold faster with 40 processors for unrefined 

searches. The speed-up for refined searches is about 10-fold with 40 processors. 
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Zhang et al.’s study [13] also uses Prof. Wu’s RT-PSM algorithm and consists with 

two parts: SIMD in single CPU and CUDA in NVIDIA GPU. Their study achieves 

about 18-fold speed-up for single CPU version. In CUDA version, a 190-fold 

speed-up on the scoring module is achieved and 26-fold speed-up on the entire 

process is obtained.  

 

In this study, the MT RT-PSM achieves 25 to 34 folds speed-up for the entire process 

with different single-CPU computers. The DC RT-PSM achieves about 217-fold with 

240 processers for the similarity scoring and about 85-fold for the entire process. This 

result shows that DC RT-PSM is about 90% scalable for the parallel portion of the 

similarity scoring. The high percentage of scalable implies the better performance 

with parallel computing. This value is similar with Duncan et al.’s speed-up of 

parallel unrefined searches and better than their refined searches. The performance of 

MT RT-PSM and DC RT-PSM are better than Zhang et al.’s SIMD version and CUDA 

version programs. Generally, the performance improvements of this study are better 

than the study of Duncan et al. and Zhang et al. 

 

 

 

 



 

67 
 

 

CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

In this study, a DC RT-PSM package is designed and consists of the multi-core 

computing algorithm for standalone workstation and the distributed computing 

algorithm for cluster. The multi-core computing algorithm is based on the original 

single-thread RT-PSM. The distributed computing algorithm is used to allocate the 

cluster nodes and manage the protein identification processing. This distributed 

computing algorithm is designed not only for this RT-PSM algorithm but also for 

other similar algorithms as a general parallel computing platform. It can support other 

peptide identification programs with some configuration adjustments, such as 

X!Tandem, CUDA version RT-PSM, etc.  

 

The time required to match a large numbers of tandem mass spectra with peptides in a 

database has been remarkably improved by performing searches concurrently with the 

DC RT-PSM without sacrificing any matching accuracy. Overall, after upgraded with 

the parallel computing algorithm, the DC RT-PSM program can achieve the 

requirements of real-time peptide-spectrum matching processing. As a distributed 

computing platform, the DC RT-PSM is a successfully implement in a highly 

cost-effective parallel computing environment. 
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7.2 Future Work 

There are still several parts of this study that could be improved in the future.  

1. The distribution computing platform can only support the RT-PSM algorithm for 

now. However, in the original design it should have the ability to handle different 

programs and not just be limited to one particular peptide identification algorithm. 

If there is any study related to large scale computation in cluster environment, 

this platform could be a good start point.  

 

2. In this algorithm, datastore is the main method to process the peptide database. 

But in this study, the database connection interface is designed for both datastore 

and database. Due to the time limitation, this study is not expended to use large 

scale database in the RT-PSM algorithm. The optimization of large SQL database 

also could be involved in the future work.  

 

3. The DC RT-PSM has a graph user interface (GUI), but a crude one. A good GUI 

can help user improve efficiency and reduce the erroneous operations. This gives 

much room for design better GUI for the future. 
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