

PARALLEL COMPUTING ALGORITHMS FOR TANDEM

MASS SPECTRUM ANALYSIS

A Thesis Submitted to the College of

Graduate Studies and Research

In Partial Fulfillment of the Requirements

For the Degree of Master of Science

In the Division of Biomedical Engineering

University of Saskatchewan

Saskatoon

By

Jian Sun

 Copyright Jian Sun, July, 2013. All Rights Reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Saskatchewan's Research Archive

https://core.ac.uk/display/226121146?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

PERMISSION TO USE

 In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree
from the University of Saskatchewan, I agree that the Libraries of this University may make
it freely available for inspection. I further agree that permission for copying of this thesis in
any manner, in whole or in part, for scholarly purposes may be granted by the professor or
professors who supervised my thesis work or, in their absence, by the Head of the Division or
the Dean of the College in which my thesis work was done. It is understood that any copying
or publication or use of this thesis or parts thereof for financial gain shall not be allowed
without my written permission. It is also understood that due recognition shall be given to me
and to the University of Saskatchewan in any scholarly use which may be made of any
material in my thesis.

 Requests for permission to copy or to make other use of material in this thesis in whole
or part should be addressed to:

 Head of the Division of Biomedical Engineering

 57 Campus Drive

 University of Saskatchewan

 Saskatoon, Saskatchewan

 Canada

 S7N 5A9

ii

ABSTRACT

Tandem mass spectrometry, also known as MS/MS, is an analytical technique to measure the

mass-to-charge ratio of charged ions and widely used in genomics, proteomics and

metabolomics areas. There are two types of automatic ways to interpret tandem mass spectra:

de novo methods and database searching methods. Both of them need to use massive

computational resources and complicated comparison algorithms. The real-time

peptide-spectrum matching (RT-PSM) algorithm is a database searching method to interpret

tandem mass spectra with strict time constraints. Restricted by the hardware and architecture

of an individual workstation the RT-PSM algorithm has to sacrifice the level of accuracy in

order to provide prerequisite processing speed. The peptide-spectrum similarity scoring

module is the most time-consuming part out of four modules in the RT-PSM algorithm, which

is also the core of the algorithm.

In this study, a multi-core computing algorithm is developed for individual workstations.

Moreover, a distributed computing algorithm is designed for a cluster. The improved

algorithms can achieve the speed requirement of RT-PSM without sacrificing the accuracy.

With some expansion, this distributed computing algorithm can also support different PSM

algorithms. Simulation results show that compared with the original RT-PSM, the

parallelization version achieves 25 to 34 times speed-up based on different individual

workstations. A cluster with 240 CPU cores could accelerate the similarity score module 210

iii

times compare with the single-thread similarity score module and the whole peptide

identification process 85 times compare with the single-thread peptide identification process.

Keywords: real-time peptide-spectrum matching (RT-PSM) algorithm, tandem mass spectrum,

parallel computing algorithm, multi-core computing algorithm, distributed computing

algorithm, peptide identification

iv

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my supervisor Dr. FangXiang Wu for

supporting me over my study and research, and for their encouragement and guidance

throughout my M.Sc. program.

I would like to thank my advisory committee members Dr. Chris Zhang and Dr. Tony Kusalik

for their guidance and support.

I would like to specially thank my lab-mate Bolin Chen for his valuable comments,

suggestions, and discussions.

I would like to express my deepest gratitude to my family for all of their support and love.

v

CONTENTS

PERMISSION TO USE .. i

ABSTRACT ... ii

ACKNOWLEDGEMENTS .. iv

CONTENTS ... v

LIST OF TABLES ... vii

LIST OF FIGURES ... viii

LIST OF ABBREVIATIONS ... ix

CHAPTER 1 INTRODUCTION ... 1

1.1 Background .. 1

1.1.1 Tandem mass spectrometry ... 1
1.1.2 Peptide identification ... 2
1.1.2 De novo sequencing and database searching .. 5

1.2 Motivation and Objectives ... 8

1.2.1 Motivation ... 8
1.2.1 Objectives .. 9
1.2.3 Thesis overview ... 12

CHAPTER 2 RT-PSM: A REAL-TIME PEPTIDE-SPECTRUM MATCHING
ALGORITHM.. 13

2.1 Introduction .. 13

2.2 Function Modules of RT-PSM ... 15

2.2.1 Experimental spectrum processing module ... 15
2.2.2 Candidate peptides selection module .. 16
2.2.3 Similarity score module ... 17
2.2.4 Statistical significance computation module ... 20

2.3 Performance Analysis of RT-PSM ... 23

CHAPTER 3 RT-PSM WITH PARALLEL PROGRAMMING 26

3.1 Overall of Parallel Computing Technology ... 26

3.2 SIMD vs Multi-Core Computing ... 27

3.3 Database vs Datastore .. 32

3.3.1 The advantages of SQL database ... 32
3.3.2 The shortages of SQL database ... 34

3.4 Algorithm and Implementation .. 35

vi

3.4.1 Parallel programming design pattern .. 36
3.4.2 Parallel function selection ... 38
3.4.3 Thread affinity ... 40
3.4.4 General code optimization ... 41
3.4.5 Algorithm ... 42

CHAPTER 4 RT-PSM WITH DISTRIBUED PROGRAMMING 45

4.1 Introduction .. 45

4.1.1 Distributed computing and cluster .. 45
4.1.2 WINDOWS HPC library ... 46

4.2 Methodology .. 50

CHAPTER 5 MULTIDIMENSIONAL SEARCH: SPEED-UP PEPTIDE DATABASE
SEARCHING ... 54

CHAPTER 6 EXPERIMENTAL RESULTS AND DISCUSSION 57

6.1 Experimental Environment and Datasets ... 57

6.2 Verification ... 58

6.3 Peptide Database Search Speed-up .. 59

6.4 Multithread RT-PSM Performance .. 60

6.5 Distributed Computing RT-PSM (DC RT-PSM) Performance 62

6.5 Discussions .. 65

CHAPTER 7 CONCLUSIONS AND FUTURE WORK .. 67

7.1 Conclusions .. 67

7.2 Future Work ... 68

REFERENCES .. 69

vii

LIST OF TABLES

2.1 Types and 𝑚/𝑧 values of fragment ions .. 18

2.2 Profile report for RT-PSM .. 26

6.1 Cluster hardware specification ... 57

6.2 Result comparison between MT RT-PSM and original RT-PSM 58

6.3 Result comparison between linear search and 2-demensional search 59

6.4 Experiment hardware environment information .. 59

viii

LIST OF FIGURES

1.1 A typical proteomic mass spectrometric experiment can be divided into five steps 2

1.2 The fragmentation of a peptide by CID ... 3

1.3 A typical tandem mass spectrum consists of many peaks .. 4

2.1 The workflow illustrates the process of tandem mass spectrum identification in
 RT-PSM ... 23

2.2 Profiling results of RT-PSM indicates that the computation of the similarity scores
 consumes the most CPU time ... 25

3.1 SIMD: each processing can operate on a different data element with the same instruction
at any given clock cycle ... 29
3.2 General classifications of parallel algorithms .. 37
3.3 Windows scheduler simultaneously starts 4 threads of MT RT-PSM in 4 cores 41
3.4 The flowchart illustrates the process of a multi-core computing algorithm in MT
 RT-PSM ... 43

4.1 The flowchart illustrates Microsoft compute cluster architecture 47
4.2 The flowchart illustrates the job scheduler architecture... 48
4.3 The flowchart illustrates the job life cycle ... 49
4.4 The flowchart illustrates the process of a distributed computing algorithm in DC
 RT-PSM ... 52

5.1 2-Dimensional peptide database structures in contrast of original peptide database
 structure... 54

6.1 Speed-up of execution time for MT RT-PSM benchmark to original RT-PSM in 4
 experiment computers ... 59
6.2 Speed-up of execution time for MT RT-PSM benchmark to single thread MT RT-PSM
in 4 experiment computers ... 60
6.3 Speed-up of similarity scoring module execution time for DC RT-PSM benchmark to
single thread MT RT-PSM from experiment dataset A (blue line) and experiment dataset B
(red line) ... 62
6.4 Speed-up of execution time for DC RT-PSM benchmark to single thread MT RT-PSM
from experiment dataset A (blue line) and experiment dataset B (red line) 63

ix

LIST OF ABBREVIATIONS

CCP Compute Cluster Pack
CID Collision-Induced Dissociation
DC RT-PSM Distributed Computing Real-Time Peptide-Spectrum Matching
FIFO First In First Out
HT Hyper-Threading Technology
MFC Microsoft Foundation Class Library
MPI Message Passing Interface
MS Mass Spectrum
MS/MS Tandem Mass Spectrometry
MT RT-PSM Multiple Core Real-Time Peptide-Spectrum Matching
NNS Nearest Neighbor Search
PSM Peptide-Spectrum Matching
PVM Parallel Virtual Machine
RAM Random-Access Memory
RT-PSM Real-Time Peptide-Spectrum Matching
SIMD Single-Instruction Multiple-Data
SQL Structured Query Language
SSE Streaming SIMD Extension
UI User Interface

1

CHAPTER 1

INTRODUCTION

1.1 Background

1.1.1 Tandem mass spectrometry

Proteomics is a significant study field in the early detection of disease, chemical

analysis and the pharmaceutical industry. One of the most important goals in

proteomics is to identify and characterize the proteins and protein complexes present

in cells grown under various conditions. Tandem mass spectrometry (MS/MS) is a

very important tool for this purpose.

A mass spectrometer separates ions according to their mass-to-charge ratio (𝑚/𝑧), and

records the relative abundance of each ionic species present [1]. Tandem mass

spectrometry consists of two mass spectrometers connected in series. In proteomics,

MS/MS is particularly used in determining the protein components of complex

mixtures. The workflow of a proteomic mass spectrometric experiment mainly

contains the five following steps. In the first step, proteins which need to be identified

are extracted from experiment substances (cell/tissue) through biochemical

fractionation and the sample complexity is reduced via polyacrylamide gel

electrophoresis (1D- or 2D-PAGE). In the second step, the protein mixture is digested

into peptides with suitable sizes by using site-specific proteases. In the third step, the

2

peptides are separated by using reversed-phase high-performance liquid

chromatography (RP-HPLC) before being placed into the mass spectrometer. In the

fourth step, peptides are ionized via electrospray ionization. The first mass

spectrometer of MS/MS captures and detects the mass spectra of the peptide ions

(MS). Then the MS with highest relative intensity will be selected to process in next

step. In the last step, the selected peptides are fragmented again by collision-induced

dissociation (CID). The second mass spectrometer in the series scans the fragments

and collects the mass spectra of fragment ions, which are called tandem mass spectra

[2]. For more details about tandem mass spectrometers, please refer to [3].

Figure 1.1 A typical proteomic mass spectrometric experiment can be divided into
five steps [2]

1.1.2 Peptide identification

Generally, peptides can be identified through their small fragmentations in a mass

spectrometer. Peptides can be fragmented into pieces at their peptide bond. A piece

which contains information and which can be used to identify this peptide in a protein

Sample
cell/tissue

Step 1: 1D/
2D-PAGE

Step 2:
Site-specific
proteases

Step 3:
RP-HPLC

Step 4:
MS1

Step 5:
MS2

Computer

Protein mixture Peptides

MS spectrum Tandem mass
spectrum

3

database is called a peptide sequence tag. The common peptide fragment ions belong

to two different groups: N-terminal and C-terminal. The end of the polypeptide

terminated by an amino acid carboxyl group (-COOH) is called the C-terminal. The

start of the polypeptide terminated by an amino acid amine group (-NH2) is called the

N-terminal. Figure 1.2 represents the fragmentation of a precursor peptide ion by CID.

The breakages mainly occur in three different kinds of sites along the peptide

backbone: CH-CO, CO-NH and NH-CH bonds. Therefore, there are six types of

fragment ions in a fragment ion spectrum. If the N-terminal of a fragment ion keeps a

charge, this ion is classified as an a- ion, b- ion or c-ion; if the C-terminal of fragment

ion keeps a charge, this ion is classified as a x- ion, y- ion or z-ion [4].

Figure 1.2 The fragmentation of a peptide by CID [4]

These six kinds of ions might lose 𝑘 ammonia and/or water molecules. Hence, there

are (𝑘 + 1)(𝑘 + 2)/2 possible ions. 𝑘 represents the length of the peptide

fragmentation sequence. However, if the precursor ion carries multiple positive

charges, those ions could also carry more positive charges. Therefore, if a peptide

4

consists of 𝑛 amino acids and carries 𝑗 charges, its theoretical spectrum [5] might

have 3 × 𝑛 × 𝑗 × (𝑘 + 1)(𝑘 + 2) ion peaks [6, 7]. In practice, only a few of

those components are thermodynamically favored in CID reactions. In addition, due

to the limitation of resolution and sensitivity of mass spectrometers, some fragment

ions might be filtered. As a result, most (if not all) experimental spectra contain far

fewer ion peaks than their corresponding theoretical spectra.

Peptide-spectrum matching (PSM) is an operation involving an experimental

spectrum (Se) and the theoretic spectrum (Sp) of a peptide P. If a certain number of

𝑚/𝑧 values of an experimental spectrum are approximately similar with those of a

theoretical spectrum, then the experimental spectrum could be judged to have been

produced from the peptide corresponding to this theoretical spectrum.

Figure 1.3 A typical tandem mass spectrum consists of many peaks (modified from
[8])

5

1.1.2 De novo sequencing and database searching

The tandem mass spectral data is the elemental resource in a peptide identification

procedure. The identification procedure is mainly performed in computers through

peptide identification programs. There are two main ways in which tandem mass

spectra are used to identify peptides, known as database searching and de novo

(peptide) sequencing.

De novo (peptide) sequencing is a process that derives a peptide’s amino acid

sequence from its tandem mass spectrum without the assistance of a sequence

database [9]. The main idea of de novo sequencing is to compare the mass difference

between two fragment ions in order to calculate the mass of an amino acid residue on

the peptide backbone. In the spectrum, if either the y-ion or b-ion series could be

identified, the peptide sequence can be determined.

There are several different algorithms based on the de novo sequencing principle in

research and industrial fields, and most successful ones have three common factors.

Sequencing errors or nucleotide polymorphisms decrease the accurate rate of peptide

identification. The first factor is good sample preparation and high quality sequencing

machine. They can provide high quality experimental data to reduce the negative

effects of sequencing errors. The second factor is an efficient matching method which

is capable of quickly identifying the common part of two different fragments. The

third is an accurate assembly algorithm to process repeated sequences [10]. In

6

addition to the previous factors, the method can be negatively affected by factors such

as incorrect assignments of y-ions or b-ions, missing fragment ion information, the

noise peaks in the spectrum, etc. The biggest advantage of de novo sequencing is that

it does not need the assistance of a sequence database. Due to this unique

characteristic, de novo sequencing still is an efficient way to identify unknown

peptides. A number of algorithms and software packages have been developed using

this approach, such as PEAKS, PepNovo and Lutefisk [10].

The limitations of de novo sequencing methods are also obvious. It requires an

extraordinary amount of computation time to successfully solve for peptide

identification. Sometimes the peptide cannot be identified directly by de novo

methods. Then the calculated result needs to be analyzed by human experts.

Compared with de novo sequencing, database searching is a much quicker

methodology. In this method, the experimental spectra are compared to the theoretical

spectra of peptides in a database. The results are statistically analyzed to find the best

match. Although the database searching still requires massive computational resources,

compared to the de novo method, this methodology eliminates numerous computation

workloads and rapidly improves the matching speed. The obvious disadvantage of

database searching is that the peptide sequence to be identified has to be in the peptide

database, because otherwise the algorithm cannot identify it. Another problem is that

the risk of false positives increases with a smaller database. The peptide database is

7

derived from a protein database. There are research institutions such as UniProt [11],

which continuously publish immense and accuracy-verified protein databases in

different research fields. With those increasing gigantic protein databases, this

shortage could be remedied. In most circumstances, the unknown peptides can be

identified with these protein databases.

In the database searching methodology, the scoring function is the core module. It

represents the similarity between an experimental spectrum and a theoretical spectrum

which is derived from the peptide database. If a score is above a confidence threshold,

it is called a hit. Undoubtedly, a good scoring function can increase the identification

accuracy and is an important factor for peptide identification. There are several

commercial or open-source software packages using database searching algorithms,

notably SEQUEST [6], MASCOT [7], and X!tandem [12]. SEQUEST uses

cross-correlation to do further similarity comparisons to generate the output.

X!Tandem and MASCOT use probability-based scoring schemes.

With the improvement of database systems and the spectra quality filter algorithms,

researchers have developed and implemented a real-time control methodology for

efficiently identifying the peptide in the process of tandem mass spectral data

acquisition, called a real-time peptide-spectrum matching (RT-PSM) algorithm.

Machine learning methods and neural network could be employed to construct the

classifier (as the quality assessor) which discriminates the high quality spectra from

8

the poor ones. In addition, with the modern database searching algorithm, searching a

large size database is also very efficient. All these technologies present an opportunity

to improve RT-PSM algorithms and implementations.

1.2 Motivation and Objectives

1.2.1 Motivation

Over the past decades, there has been an explosion in the size of protein databases due

to the technological improvement of mass spectrometry [13]. Furthermore,

researchers in proteomics wish to implement a real-time peptide identification

algorithm to improve identification procedure performance.

Dr. Wu et al. proposed a new RT-PSM procedure and the key component is "Identify

Peptide by a fast algorithm" which is performed by a software application [5]. The

original PSM procedure does not include any external software controlling feature.

This new procedure uses the software controlling module to accelerate the peptide

identification procedure.

As a real-time system, the time window of each peptide identification procedure is

limited by the spectra acquiring time of mass spectrometers [5]. Practical experiments

indicate that Wu et al.’s RT-PSM algorithm cannot completely satisfy the real-time

system requirement. Using parallel computation to improve the speed of

9

peptide-spectrum matching can be an effective method to solve this problem. Duncan

et al. use a workstation cluster as a platform to develop the "Parallel Tandem" [12].

Parallel Tandem consists of the database search, X!Tandem, and a Linux cluster

environment with Parallel Virtual Machine (PVM) or Message Passing Interface (MPI)

installed. A second example is the parallel version of SEQUEST [14], which is also

based on a PVM in a cluster environment. Another design uses the SIMD instructions

of either modern CPUs or graphical processing units (GPUs) in a single workstation

as a platform [13, 15]. Use of the SIMD instructions can result in better performance

than original RT-PSM algorithm. Most systems leveraging SIMD processing are

based on the NVIDIA's CUDA environment [15].

No matter whether a cluster environment or CUDA is used, the principles of parallel

computing are identical: dividing a large sequential process into several independent

sub-processes and executing the sub-processes concurrently to reduce execution time.

However, the previous parallel computing methodologies for analyzing tandem mass

spectra all have shortcomings. X!Tandem and SEQUEST use peptide-spectrum

matching algorithms which are slower than the RT-PSM algorithm [5] for processing

a single spectrum. SIMD and CUDA have strict hardware restrictions. SIMD

instructions are restricted by the CPU L2 Cache [16] and CUDA can only support

NVIDIA's video card. As a result, the parallel matching programs based on CUDA

have to use a powerful graphics card from NVIDIA Company.

10

1.2.1 Objectives

It is not a trivial task to improve the performance of an existing system. All

improvements should be based on the existing system and not violate any assumptions

or affect system results. The ultimate goal of this study is to develop and implement

faster peptide-spectrum matching algorithms based on the existing RT-PSM by using

parallel computing techniques. The improved algorithms should not reduce the

identification accuracy. The main idea is to design a distributed computing platform

and using the platform to parallelize the existing RT-PSM algorithms, and rapidly

accelerate the peptide identification procedure by using multiple CPUs to calculate

concurrently. To achieve the ultimate goal, four specific objectives are defined as

follows.

Objective 1: Refactor the existing RT-PSM algorithm and reduce the redundancy and

inefficiencies. The original RT-PSM design and source code were developed several

years ago. With the improvement of design patterns and development environments,

the original design could be refactored to make it more robust. Replacing the obsolete

functions and adjusting the unnecessary or redundant functions can improve the

performance in certain level.

Objective 2: Develop and implement a multithread RT-PSM algorithm in a multi-core

CPU environment. The original RT-PSM was designed to work in a single-CPU

workstation, and there was no optimization for multithreaded computation. The

11

implementation of a parallel computing algorithm for the RT-PSM in a standalone

workstation is the fundamental step of this study. The speed-up of the multithread

version of RT-PSM also is one of the benchmarks performed in this study.

Objective 3: Develop and implement a distributed RT-PSM algorithm in a distributed

computing environment, i.e. a cluster. The structure of a distributed computer is

different from the standalone workstation, so the distributed computing algorithm also

needs to be redesigned by using a different design pattern. The distributed computing

platform should be able to manage a large number of computing tasks concurrently

and the distributed version of RT-PSM should provide great performance

improvement.

Objective 4: Improve the peptide database searching algorithm to perform the

searches in constant time independent of the size of the database. The original

RT-PSM employs a traditional linear database searching algorithm. The computational

complexity of the searching algorithm highly depends on the scale of the database.

With the continuously increasing protein database, the performance of this searching

algorithm could become a bottleneck of the whole system. In this study, an advanced

database searching algorithm will be involved and the time complexity of the new

searching algorithm should be independent of the size of the database. The

experimental results also will be provided to display whether the new searching

algorithm fits with the multithread system.

12

Though this study have been designed and developed on RT-PSM, they also can be

applied to other database searching software packages with limited modifications.

Alternatively, the distributed computing algorithm also can be applied to other peptide

matching methods. Hence, this study not only creates a high-speed version

of RT-PSM, but also establishes a generic distributed computing platform. This

platform should be compatible with different peptide identification algorithms and

provide them with speed-ups on clusters.

1.2.3 Thesis overview

In this thesis, the problems of the existing RT-PSM algorithm are described and a new

design by using parallel computing algorithms is proposed. As this implementation is

based on RT-PSM, an introduction of the design and workflow of RT-PSM are given

in Chapter 2. The performance profiling results and core function analysis are also

given in Chapter 2. Chapter 3 provides a method to parallelize the critical peptide

matching function by using a multi-core computing algorithm. This method is

implemented in a standalone workstation. The distributed computing algorithm for the

cluster is presented in the Chapter 4. Chapter 5 displays the multidimensional peptide

database searching algorithm while Chapter 6 lists all experimental results which

include the experimental environment, result verification, execution speed benchmark

and calibration. The conclusions of this study and the discussion about the directions

of future work are provided in Chapter 7.

13

CHAPTER 2

RT-PSM: A REAL-TIME PEPTIDE-SPECTRUM MATCHING

ALGORITHM

2.1 Introduction

The RT-PSM algorithm was designed for efficiently identifying and selecting peptide

ions in the real-time process of tandem mass spectral data acquisition. In the past

decade, with the development of database searching methodologies, proteomics

researchers began to design a quick protein identification algorithm to process

experimental tandem mass data while the tandem mass spectral data is acquiring by

the mass spectrometer.

The rough RT-PSM idea was first time proposed by Perkins et al. [7]. In 2004, Scherl

et al. [17] proposed a methodology by using an “exclusion list” after in silico

digestion to accelerate the identification procedure. Waters Corporation also presented

a design of real-time databank searching to improve the performance [5]. In 2006, the

design of Wu et al. combined ideas of “dynamic exclusion list” and peptide database

searching. The experimental results of this design were very close to expectation [5].

Generally, all those proposals happened upon the same problem: the software package

14

they used, such as MASCOT, can not satisfied the speed requirements of RT-PSM.

Based on practical experiments, the whole workflow of RT-PSM -- which includes

getting the result of analyzing a peptide mass spectrum, updating a dynamic exclusion

list and a dynamic inclusion list -- should finish in one second. This one second

window also includes the data communication, spectrometer adjustment time and

system initialization time. The actual time restriction of the RT-PSM program to

process one experimental spectrum is less than ½ second.

Comparing the consumed time of PSM programs in SEQUEST, MASCOT,

X!Tandem and Wu's RT-PSM, in single-spectrum processing mode X!Tandem is

slower than SEQUEST while Wu's RT-PSM can provide the best performance and

similar identification accuracy. Most existing software packages are developed for

off-line identification but not for real-time control. For those packages, the accuracy is

much more important than efficiency. However, the RT-PSM needs to take into

account both factors. This is the first reason why Wu’s RT-PSM algorithm is chosen to

be the foundation of this study. Another important reason is that RT-PSM is

implemented as a random-access memory (RAM)-resident MS-Windows service. The

peptide sequence database is loaded only once at the first launch of the program and

remains in RAM afterwards for online spectrum identification. Other common

spectral identification software, notably SEQUEST, MASCOT and X!Tandem are not

designed in this way. This design provides a large space to analyze and adjust the

RT-PSM algorithm to suit new design.

15

2.2 Function Modules of RT-PSM

The original RT-PSM program of Wu et al. is a single-thread program and it contains

four main modules: processing experimental spectrum, selecting candidate peptides,

computing similarity score and computing statistical significance.

2.2.1 Experimental spectrum processing module

The experimental tandem mass spectrum of a peptide is generated by a CID and it is

the original resource to use in the identification procedure. The quality of the

experimental spectrum can directly affect the accuracy of the identification

algorithm. There are two generally methods to process the original experimental

spectra. One is to remove the spectra which are classified as poor quality based on a

classification algorithm to evaluate the quality of spectra. Another method is to

preprocess the experimental spectra to improve the quality of spectra for downstream

procedures. A disadvantage of the first method is that the classification algorithm

could make false positive errors and potentially reduce the accuracy of the subsequent

identification procedure. Therefore, RT-PSM chooses the second method to

preprocess the experimental spectra.

The experimental tandem mass spectrum of a precursor ion with mass 𝑚(𝑆𝑒) is

represented by a peak array, i.e.,

16

𝑆𝑒 = {(𝑥𝑖,ℎ𝑖): 1 ≤ 𝑖 ≤ 𝑚}, (2.1)

where (𝑥𝑖, ℎ𝑖) denotes the fragment ion 𝑖 with 𝑚/𝑧 value 𝑥𝑖 and intensity ℎ𝑖. The

peak intensities could be affected by the several factors, for instance,

composition-dependent fragmentation kinetics, precursor ion activation parameters,

mass analyzer artifacts, and the collision energy [18]. Compared with high intensity

peaks, low intensity ones are more likely to be random noise and difficult to identify

and filter out. To select the most informative peaks and avoid random noise is the

fundamental principle for PSM identification, so the peaks with higher intensity are

more valuable.

The number N of most intense peaks that are selected for calculating the PSM score is

a user-defined value. With a small N, the identification accuracy could be decreased

due to the loss of informative peaks. A large N could involve more low intensity peaks

into processing and the accuracy could be affected by the included noisy peaks. The

computation time is also rapidly increased by including many noisy peaks. RT-PSM

does not include intensity values in the identification processing. It ignores the

intensity values of the selected ions when the low intensity peaks are filtered out. The

experimental spectrum of RT-PSM may be reduced to a set of 𝑚/𝑧 values. The

reason is that the ion intensities could be affected by unknown factors and are yet

difficult to utilize for peptide identifications.

17

2.2.2 Candidate peptides selection module

In theory, the peptide identification algorithm should traverse the whole peptide

sequence database to find the peptide sequence which can best match the

experimental tandem mass spectrum. The RT-PSM takes advantage of characteristics

of modern mass spectrometers to improve this procedure. Modern mass spectrometers

can provide both the spectrum and the mass of the precursor ion together. By

computing the masses of candidate peptide 𝐶𝑃 to satisfy the Equation 2.2, RT-PSM

can refine the candidate peptides to a smaller subset.

|𝑚(𝑆𝑒) − 𝑚(𝐶𝑃)| ≤ 𝜀 (2.2)

where 𝑚(𝑆𝑒) is the precursor mass of experimental spectrum 𝑆𝑒 and 𝜀 is the

tolerance value. The size of candidate peptide database is remarkably smaller than the

whole peptide database and undoubtedly the database searching time is significantly

reduced.

Table 2.1 Types and 𝑚/𝑧 value of fragment ions

Ion Type 𝑚/𝑧 Score weight
b+ b 1
b+ - H2O b -18 0.4
b+ - NH3 b - 17 0.4
b+ - CO(a) b - 28 0.4
y y 1
y - H2O y -18 0.4
y - NH3 y - 17 0.4
y - NH(z+) y - 15 0.4

18

2.2.3 Similarity score module

The similarity score is calculated based on the theoretical spectra and experimental

spectra. This score indicates the similarity between an experimental tandem mass

spectrum and a theoretical spectrum of a peptide sequence. Each theoretical spectrum

might contain all or part of the 8 types of ions listed in Table 2.1.

Table 2.1 also indicates the score weight for each ion type. The score weight

represents the importance of each ion type. Some spectral ions are considered to

provide stronger evidence in PSM procedure than other ions and these ions have

larger score weight. In the Table 2.1, y-ions and b-ions have the highest score weight

of 1 because they are the most favored ones in the process of peptide fragmentation.

Other ions have equal score weight of 0.4 and are considered “supporting ions”. The

score weights of every ion are also used in the PSM score calculation algorithm.

With the following Equation 2.3, 𝜀 is the maximum error tolerance of the instrument

in use. 𝑆𝑝 represents a predicted spectrum of peptide P. 𝑆𝐸𝑆𝑃 indicates the subset of

components in an experimental spectrum 𝑆𝑒 which are interpretable by 𝑆𝑝.

𝑆𝐸𝑆𝑃 = {𝑥𝑖 ∈ 𝑆𝑒 | 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑦 ∈ 𝑆𝑝 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 |𝑥𝑖 − 𝑦| ≤ 𝜀} (2.3)

The following Equation 2.4 interprets the PSM scores between an experimental

spectrum 𝑆𝑒 and a peptide P:

19

𝑆𝑐𝑜𝑟𝑒 (𝑆𝑒, 𝑆𝑝) = ∑ 𝑊(𝑥)𝑥∈𝑆𝐸𝑆𝑃 (2.4)

In Equation 2.4, 𝑊(𝑥) stands for the score weight of calculated ions with 𝑚/𝑧

value 𝑥. The PSM score indicates the similarity between an experimental spectrum

and a predicted spectrum of a peptide. However, based on the Equation 2.4, a longer

peptide sequence is more likely to be able to generate a higher PSM score because of

the larger number of predicted ions it may contain. Therefore, the shorter peptide

sequences would have lower scores and the algorithm would not have enough

sensitivity to process short peptides. In order to eliminate this side effect, the RT-PSM

introduces a normalization step: normalizing the PSM score by the length of peptide P

with the following Equation 2.6:

𝑁𝑜𝑟𝑚𝑠 (𝑆𝑒 ,𝑆𝑝) = 𝑆𝑐𝑜𝑟𝑒(𝑆𝑒, 𝑆𝑝)/𝑙𝑒𝑛𝑔𝑡ℎ(𝑃) (2.6)

where 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃) equals to the number of amino acids in peptide sequence 𝑃.

In the RT-PSM algorithm, by using candidate peptide searching and similarity score

normalization to set the error bounds, the peptide which corresponds to the highest

PSM score can be considered as the correct peptide for the experimental spectrum.

The algorithm of the similarity score module is shown in Algorithm 1.

Algorithm 1 similarity scoring algorithm of RT-PSM [5]

Input: spq[s]: // experimental spectrum with s items
 pep[p]: // peptide sequence with p items
 err: // error tolerance
Output: score: // similarity score value

score ← 0;
bion[1] ← mass(hydrogen) + mass(pep[1]);
 // Calculate the mass of b1 ion

20

for i ← 2 to p do
 bion[i] ← bion[i-1] + mass(pep[i]);
 // Calculate the mass of all bi ions
end for

for i ← 1 to p do
 pepmass ← mass(pep[i]) // Calculate the mass of pep[i]
 if BinarySearch(bion[i]; spq; pepmass;err) = true then
 score← score + score weight of b ion;
 end if

 if BinarySearch(bion[i] - mass(H2O); spq; pepmass;err) = true then
 score← score + score weight of b - H2O ion;
 end if

 if BinarySearch(bion[i] - mass(NH3); spq; pepmass;err) = true then
 score← score + score weight of b - NH3 ion;
 end if

 if BinarySearch(bion[i] - mass(CO); spq; pepmass;err) = true then
 score← score + score weight of a ion;
 end if

 // Start to process y ion group
 yion← pepmass - 2* mass(Hydrogen)* bion[i];

 if BinarySearch(yion; spq; pepmass;err) = true then
 score← score + score weight of y ion;
 end if

 if BinarySearch(yion - mass(H2O); spq; pepmass;err) = true then
 score← score + score weight of y - H2O ion;
 end if

 if BinarySearch(yion - mass(NH3); spq; pepmass;err) = true then
 score← score + score weight of y - NH3 ion;
 end if

 if BinarySearch(yion - mass(NH); spq; pepmass;err) = true then
 score← score + score weight of c ion;
 end if
end for

Normalize score

21

Return score

2.2.4 Statistical significance computation module

The similarity score algorithm of the RT-PSM makes sure that each experimental

spectrum has a “matched” peptide sequence in the peptide database based on the

highest score. That means even if the actual peptide is not in the database, the

algorithm still could choose a peptide with highest similarity score. So the existing

problem is how to make sure the result of RT-PSM peptide identification procedure is

a true positive, or how to confirm the peptide with highest similarity score which is

actually in the analyzed sample. To solve this problem, RT-PSM introduces the

expectation value (E-value). The E-value for a given similarity score ℎ accounts the

number of expected peptides with a score larger than ℎ.

The number of random PSMs with similarity score greater than h has been proven to

follow a Poisson distribution [19]. The following Equation 2.7 illustrates that the

probability of finding exactly t peptides with similarity score ≥ ℎ

𝑒−𝐸(ℎ) (𝐸(ℎ))−𝑡

𝑡!
 (2.7)

In the equation, 𝐸(ℎ) represents the expectation value of score ℎ and

𝑒−𝐸(ℎ) indicates the probability of having no peptide with similarity score greater than

or equal to h. The probability of obtaining at least one such PSM is:

𝑝 = 1 − 𝑒−𝐸(ℎ) (2.8)

For the PSM similarity score h, p is a p-value which gives the probability that the

match occurs merely by chance. For example, a p-value equal to 0.05, indicates that

22

there is a 5% probability that the spectra with a given similarity score is not a true

positive. A smaller p-value indicates a better chance to achieve the correct match, and

if E-value is less than 0.01, the p-value and E-value are nearly identical.

To calculate the p-value or E-value, the prerequisite is that the probability distribution

or the expectation distribution function must be known. However, in a standard PSM

algorithm, neither of them is available in a parameterized form for experimental

tandem mass spectral set. The common distribution calculation methods of PSM

similarity scores are time-consuming. RT-PSM introduces an approach to construct a

histogram of similarity scores. Because of the large scale of the peptide database,

most similarity scores will be considered as random matches, and only the highest

score would be processed as a valid match. Then the probability distributions of

p-value and the E-value can be estimated based on the histogram. The same method

also was used in several different studies, such as Beavis and co-workers for Sonar

[20] and GPM [21], and Havilio et al. [22] in their research.

The relationship between 𝑙𝑜𝑔(𝐸(ℎ)) and similarity score h fits a second-degree

polynomial function according to computational experiments. In order to avoid the

side effects of low-level noise and high-level fluctuation, the lowest and highest 10%

similarity scores are excluded from the identification procedure. Then RT-PSM uses

the filtered scores to estimate the E-value of the highest PSM scores and uses an

equation to calculate the p-value. The following Figure 2.1 illustrates the workflow of

23

RT-PSM algorithm.

 YES NO

Figure 2.1 The workflow illustrates the process of tandem mass spectrum
identification in RT-PSM [13]

Start the RT-PSM
procedure

Load a spectrum
and mass of its
precursor ion

Preprocess the spectrum

Select candidate peptides
based on the mass difference
between precursor ion and
peptides

Choose a candidate peptide

Calculate similarity score
and store the score value for
further use.

Is there another
candidate peptide
in queue?

Choose the highest
similarity score

Calculate the statistical
significance score for the
highest similarity score

Output the similarity
score and statistical
significance score

End of RT-PSM

24

2.3 Performance Analysis of RT-PSM

Before upgrading the design of RT-PSM algorithm to improve its performance, the

most time-consuming part of RT-PSM need be identified. As a real-time system, the

time-consumption for peptide identification cycle is more important than the total

time spent for overall processing. However, the computation time of different peptide

identification cycles varies. It depends on the length of peptide sequence and the size

of experimental spectra. The average percentage value will be used to indicate the

time spent for each module in RT-PSM.

The Microsoft’s development kit Visual Studio provides a powerful performance test

tool called Team System Profiler. This tool can provide a very high resolution counter,

because the tool counter has the same frequency as the CPU clock. The experimental

dataset was provided by the RT-PSM software package. This dataset contains 22577

peptides and the protein database is a subset of the UniRef100 database and contains

44278 human protein sequences [5].

Table 2.2 displays the top time-consuming functions of the profiling experiment. The

top 3 functions are used in the similarity score module; the fourth function is the

statistical significance computation module. The last function is mainly used in the

candidate peptide searching module. Figure 2.2 is generated based on the data of

Table 2.2 and illustrates each module’s time-consuming percentage in the RT-PSM

algorithm. The similarity scoring module could consume over 95% of the CPU time

25

according to the profiling experiment. This result is reasonable since each spectrum

has to compare with a group of all candidate peptides which could easily contain

thousands of peptide sequences.

Table 2.2 Profile Report for RT-PSM

% Time
Cumulative
seconds Self seconds Name

57.44 11.15 11.15 find(double, double*, int, int, double)
34.41 17.84 6.68 qkfind(double, double*, double)
4.17 18.65 0.81 ascore(double, double, double*, int)
2.16 19.07 0.42 pscore(Peptide, Spectr*, int, int)
0.26 19.37 0.05 sort(double*, int, int)

Figure 2.2 Profiling results of RT-PSM indicates that the computation of the similarity
scores consumes the most CPU time

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Preprocess Candidate
Selection

Scoring Statistical Scoring

R
el

at
iv

e
C

om
pu

ta
tio

n
W

ei
gh

t i
n

RT
-P

SM

Function Module of RT-PSM

26

CHAPTER 3

RT-PSM WITH PARALLEL PROGRAMMING

3.1 Overall of Parallel Computing Technology

Traditionally, computer software is designed for serial computation. A computer

program consists of a series of instructions to solve a problem. The CPU executes

them one by one and only one instruction can be executed at a time. Traditional serial

computing has its transmission speed limitations: the speed of serial computation is

dependent on the speed of data moving. Because of the limitation of hardware and

budget, sometimes serial computing cannot satisfy performance requirements.

Therefore, in order to save time and resources, solve larger problems, provide

concurrency or use non-local resources [23], the concept of parallel computing was

developed in early 60's by Gene Amdahl. Nowadays, according to the level of

hardware support for parallelism, parallel computing might be roughly classified

within following groups: multi-core computing, distributed computing, cluster

computing (symmetric multiprocessing computing), massive parallel processing, grid

computing, general-purpose computing on graphics processing units (GPGPU), vector

processors, etc. By the statistical result in 2011, about 40% of parallel computing

systems were used in academic and research settings, and the statistical trends

27

indicated that "parallelism is the future of computing"[24].

In this study, multi-core computing and cluster computation are used to create a new

algorithm to speed-up the RT-PSM procedure based on the existing laboratory

hardware. Based on Amdahl's law [25], the number of functions which could be

parallelized decides the speed-up of whole program. Hence, the speed of RT-PSM

could be rapidly progressed after it has been parallelized.

3.2 SIMD vs Multi-Core Computing

Multithreading technology has been implemented for decades. At least in 1992 when

Microsoft Foundation Class Library (MFC) was introduced with Microsoft's C/C++

7.0 compiler, it already contained the multithreading API to create and maintain

threads [26]. However, for most regular users, the early multithreading functions were

mostly used for data input/output or user interface (UI) design, not for computation

performance.

There are two types of computations classified by the hardware, CPU-bound

computation and I/O-bound computation. A CPU-bound computation is a computation

that spends most of its time keeping the CPU busy. I/O-bound computations are

computations that spend most of their time waiting for an I/O request to finish [27].

Reading files, downloading files or UI functions are typical I/O-bound computations.

28

In general, data transmission speed is far less than the CPU speed and that means that

the CPU spends most of its time on waiting for I/O requests. For CPU-bound

computation, CPU is always busy until the computation is over. Unless the computer

contains multiple CPUs, a CPU-bound computation cannot execute faster in multiple

threads than in a single thread. The reason is that for a single-core CPU, all

CPU-bound computations can only be executed in sequence. Before multi-core CPU

appeared, if a group of computations were executed in multiple threads, the

single-core CPU still can only execute them one by one and also needs time for

creating threads and switching the CPU between threads. The performance of

multithread CPU-bound computation could be slower than single thread one in a

single-core CPU. Therefore, multithreads cannot improve large scale computation

performance, such as matrix manipulations, operations on graphs with a single-core

CPU.

All this changed in 2002 when Intel introduced Hyper-Threading (HT) technology,

the first appearance of simultaneous multithreading technology in a consumer-grade

CPUs. With HT technology a physical CPU with single core can provide 2 logical

cores and execute two threads simultaneously. Then multithreading can be used in the

complex and/or large scale computations. Because with HT each logical core can

execute one CPU-bound computation concurrently, it can also be called multi-core

computing. In 2006, Intel released dual-core processer which was the first

consumer-grade CPU with multiple physical cores. Then the multi-core CPU became

29

the mainstream.

Single instruction multiple data (SIMD) is a type of parallel computing within all

processing units execute the same instruction at any given clock cycle and each

processing unit can operate on a different data element as shown in Figure 3.1 [23].

The SIMD technology was first used in 1970s. The first widely-deployed desktop

SIMD was Intel's Pentium MMX CPU. Actually, most CPU manufacturers, such as

HP, Sun, IBM or Sony all designed their own CPUs with SIMD technology. Although

all these SIMD technologies share common ideas and general operations, because of

differences in standards, the CPUs from different manufacturers have different

capabilities. For example, Sony's "Cell processor" can support from 8-bits to 128-bits

in size while Intel's AVX SIMD instructions now process 256 bits of data at once [15].

prev instruct prev instruct prev instruct time

 load A(1) load A(2) load A(n)

load B(1) load B(2) load B(n)

C(1)=A(1)*B(1) C(2)=A(2)*B(2) … C(n)=A(n)*B(n)

store C(1) store C(2) store C(n)

next instruct next instruct next instruct

P1 P2 … Pn

Figure 3.1 SIMD: each processing can operate on a different data element with the
same instruction at any given clock cycle

Before the HT technology was implemented in the consumer-grade CPUs, using

30

SIMD technology to implement parallelization for CPU-bound computation in

single-core CPUs was the mainstream. With SIMD at a given clock cycle, each

processing unit can execute the same instruction on different data. For the problems

that have a high degree of regularity, such as graphics or image processing, SIMD is a

good option for improving performance. It can also be used for complex computations,

such as data search or matrix manipulations. For the RT-PSM program, the peptide

database searching module and similarity scoring module can all be re-designed to

adapt SIMD to improve their performance [13, 28]. Without upgrading any hardware

to improve the computation performance, SIMD seems a suitable solution for this

study.

SIMD also has its disadvantages: lack of support in development environments,

unintended effects of changes in data precision and performance bottlenecks due to

cache misses. Most general software development kits include the multithreading

APIs. On the contrary, most SIMD APIs are directly facing to the registers and L2

cache, and can only work in C/C++ environments. Some of them even need use

assembly languages. All these restrictions make SIMD becoming a not

"developer-friendly" technology.

In order to achieve the best performance for Streaming SIMD Extensions (SSE) and

Streaming SIMD Extensions 2 (SSE2) instructions that operate on 128-bit registers,

data must be stored on 16-byte boundaries. Access to unaligned data with SSE

31

instructions is much slower than aligned access [29, 30]. The original RT-PSM

converts unaligned data to 32-bit single numbers. As a result, if each SSE register

(usually 128-bit) is divided into four 32-bit units, these 4 units can be operated upon

simultaneously. If the data precision of RT-PSM needs to be upgraded in the future,

using 64-bit double-precision number instead of 32-bit, each SSE register can only be

divided into 2 units. The computation performance will be reduced.

With SIMD technology, even though each processing unit can execute the same

instruction independently, the results are still stored in the same L2 cache. This means

that in a multi-core CPU, the size of L2 cache could become a bottleneck for SIMD

performance, to the point where the performance of a multithreading SIMD might not

be better than a single-core CPU. For example, consider a 2-core CPU with 1MB L2

cache and one single-core CPU also with 1MB L2 cache. They all have the same

128-bit SSE registers. In each core, each SSE register is divided into 4 32-bit units,

and each unit needs 250KB memory to store/transfer data. For the 2-core CPU, in

principle it should have a speed-up of 4*2 = 8 times. However, in the multithreading

model, the L2 cache does not have enough space to store the data from 2 threads

(250KB*4*2 = 2MB), which causes a higher rate of cache miss. On the other hand,

the L2 cache of the single-core CPU has enough space for the transmission data

(250KB*4 = 1MB), and the L2 cache miss rate is much lower. As a result, the SIMD

performance in the 2-Core CPU might be equal or even less than that in the

single-core CPU. So far, SIMD can achieve maximum performance for the original

32

RT-PSM program. Once the RT-PSM algorithm is updated and hits a specific memory

boundary, multithreading SIMD might not be able to satisfy the computation

requirements.

Generally speaking, in current circumstances, SIMD provides efficient parallel

computing performance, but it is more difficult to develop and maintain than

multi-core computing. The biggest disadvantage of SIMD is that its expandability is

quite limited. Therefore, in this study the parallel algorithm is based on the multi-core

computing technology on a multi-core CPU.

3.3 Database vs Datastore

Peptide database search is the first step of the similarity scoring module. There are

two factors affecting database search performance: the capabilities of the peptide

database and the similarity search algorithm. For the database, it is a dilemma whether

to choose a Structured Query Language (SQL) database or a data structure to store

data directly in memory. The most obvious choice is using the regular SQL database,

such as Oracle, Microsoft SQL server, MySQL, etc, since the SQL database is widely

used and has sufficient supports. In addition, it can be a supported by a separate

computation on its own thread(s). However, both database and datastore have their

cons and pros, and comparing them can help choose the most suitable one for this

study.

33

3.3.1 The advantages of SQL database

Queries: All SQL databases support standard SQL query language, and this makes

data search quite convenient. The SQL database is optimized for the search functions

and the user can also use "JOIN" to connect different tables to obtain complicated

information. The SQL language is easy-to-use and fully-functional. Given its high

level of abstraction, the user can pay more attention to how to create efficient query

statements instead of considering the performance of search algorithms or low-level

data structures. Another superiority of SQL is that if the peptide database needs to be

updated or moved to other SQL database in the future, the queries would be easy to

update and adapt the new database due to the SQL language standards.

Transactions: In order to support the multithread RT-PSM, the peptide database

should be able to support concurrent data transmission to reach the maximum

multithread RT-PSM performance. With correct configuration, the SQL database can

natively support concurrent transactions, while developers who use a datastore

approach have to design the concurrent connections and handle the data race directly.

Fortunately, in the original RT-PSM, the peptide database is only used to provide the

search results and does not need to consider the data race. If the peptide database

needs to expand the data store function in the future, it could be an issue which has to

be thought over.

Preload time: In most case, the SQL database should be active when the server is

34

turned on and the identification program should be able to access the database

anytime through database connections. On the other hand, a datastore needs to load

the data from storage files to main memory every time the program is executed.

Theoretically, for a 32-bit operating system, the maximum file load size is 4 GB and

the file size in 64-bit operating system is practically infinite. In practice, if the data

file is over 4 GB, the data preloading time is too long to affect the whole program

performance. When the file size is over the physical memory of the computer, the data

search performance could be dramatically decreased. That means the size of the data

files will affect the data preload time and the main memory of the computer will also

affect the inefficiency of the database loading into memory. All those factors could

lower program performance.

3.3.2 The shortages of SQL database

Management: To efficiently use a SQL database, the developer needs to have a certain

level of knowledge about database configuration, the SQL language and system

maintenance. If the data records or table structures need to be changed, the developer

cannot change them directly but has to use SQL languages. If a datastore is used on

the other hand, there is no configuration needed. Once the "table" needs to change, the

developer only needs to update the data structure. The data can also be changed by

directly changing the data store files.

Data transmission performance: In the cluster environment, the SQL database is

35

usually support by the head node where it is easy to manage for the developers.

Therefore, for each work node, the data has to transmit through the interconnection

fabric. Even if the cluster uses a low-latency/high-bandwidth network, the average

data transmission time from the head node's SQL database to a work node can be as

much as 0.3 second per task (based on local empirical tests). If a datastore is used,

because all data can be preloaded into each work node's memory, the data

transmission time is negligible.

Based on all these factors, the size of peptide database will decide which data store

methodology could provide best performance. The peptide database is derived from

the protein database and its size is about 4-6 times larger than the original protein

database. The complete UniRef100 protein database which is downloadable from

Universal Protein Resource is over 4 GB while the derived peptide database can

easily be over 10 GB. With this huge dataset, even though a computer can preload it

completely into its memory, the preloading time and peptide search time could be

unacceptable. In this case, using SQL database to manage the dataset and queries will

be the best choice. For those smaller peptide databases, if the user feels preloading

time does not affect the system performance, it may be better to use datastore because

the short data transmission time should be able to compensate for the performance

lost in the preload phase. In this study, both database and datastore interface are

provided to handle different needs. However, considering that the experiment dataset

is not very large (about 30 MB), all performance tests will be under datastore model.

36

3.4 Algorithm and Implementation

The original sequential RT-PSM program consists of four main functions which are

described previously. The similarity scoring function is a typical CPU-bound

computation function. That means the computing time of this function is dominated

by the speed of CPU. In order to achieve the best performance, one processor can

only execute one function at one time. The HT technology makes it possible to

execute multiple scoring functions concurrently in a single-CPU workstation [31].

That means the program can match multiple spectral groups simultaneously and

reduce the total execution time.

 3.4.1 Parallel programming design pattern

In parallel programming, the main design principle is to balance the load among

multiple processors and to reduce communication overheads between processors.

Different design patterns can help developers to adapt different conditions, and

choosing the correct design pattern can reduce potential deficiencies [32, 33].

Parallel algorithms are generally classified into four categories: divide-and-conquer

algorithms, processor farms, process networks and iterative transformation as shown

in Figure 3.2. In divide-and-conquer algorithms, a problem is divided into

sub-problems, which are themselves recursively solved by dividing further. In

processor farms, a problem is divided into a number of independent computations,

37

and the results of these computations are combined by the controller. Process

networks are a division of computation with the data flowing through the stages. In

iterative transformation, sub tasks are transformed until the termination conditions are

satisfied through several iteration steps [33].

Figure 3.2 General classifications of parallel algorithms [33]

In this study, there are two different algorithms based on the underlying hardware

38

environments, a distributed computing algorithm and a multi-core algorithm. The two

algorithms use different design patterns. The distributed algorithm is used in a cluster.

The cluster consists of one head node and multiple work nodes. The head node

manages tasks and traces procedures. Hence, the hardware structure of a cluster is

suitable for the master/slave pattern. A processor farm is the most suitable design

pattern for the distributed computing algorithm.

On the other hand, for the multi-core algorithm each logical core is identical and

independent. There is no master/slave structure in the CPU structure. Secondly, in a

cluster, most computation tasks are distributed into work nodes and the head note is

only used for controlling the work nodes. However, for the multi-core CPU, all

logical cores should be assigned computation tasks in order to achieve the maximum

performance [34]. Hence, the design pattern of the multi-core algorithm is more like a

combination of processor farm and iterative transformation. With this design, the

control (master) thread is abandoned and every threads of the multi-core RT-PSM

(MT RT-PSM) program become a calculation thread. Each logical core of the CPU is

used in the calculation functions of RT-PSM and the program should be able to

employ all the usable system resources. Each subtask assigned to a thread should also

be independent. As trade-off, each thread should be designed to handle data input,

with the exception of control and data collection functions which are handled by the

control thread. The algorithm of each thread is more complicated.

39

3.4.2 Parallel function selection

The similarity score function consumes over 95% CPU time according to the profiling

analysis. The parallelization of the similarity score function should be the core feature

of the multi-core algorithm. The time-consuming nature of the similarity score

function is due to the binary search for each amino acid residue since the similarity

score function executes the binary searches sequentially. One possible design is to use

parallel ion searching in the similarity score function. However, a preliminary

experiment indicated that the ion search is very efficient and each search only takes

less than 0.01 milliseconds. Parallelization also needs to consider the time necessary

for the overheads of creating, invoking and disposing of threads. Because of the latter

overheads the parallel ion search function could spend more time than the sequential

version, even if different ion search threads could be executed simultaneously.

Amdahl's law [25] states that the overall speed-up of a parallelized program is:

1
(1−𝑃)+𝑃𝑁

 (3.1)

Assume that the running time of the old computation was 1, 𝑃 is the proportion of a

program that can be made parallel, 𝑁 is the number of processors. The speed-up of a

program using multiple processors in parallel computing is limited by the sequential

fraction of the program. That means if not only the similarity score function can be

parallelized, but also other modules, such as candidate peptide selection, statistical

significance computation, then the performance of the whole program could be

40

maximized. Based on this idea, each thread of the MT RT-PSM was designed to

perform the complete RT-PSM processing. With this design, the maximum speed-up

of the MT RT-PSM depends on the number of threads invoked by the program. The

maximum number of threads that can be used in the MT RT-PSM is based on the

number of logical processors.

3.4.3 Thread affinity

"White Paper - Processor Affinity" defines that thread affinity enables binding or

un-binding of a thread to a physical CPU or a range of CPUs, so that the thread will

run only on the CPU or range of CPUs. In order to achieve the maximum performance,

one objective is to make each CPU 100% utilized when the program is executing.

Each logical core should perform one thread simultaneously. That means the MT

RT-PSM program should be able to distribute one and only one thread to each logical

core. In a Windows system, there is a system diagnostics library that enables

developers to interact with user processes. Developers can force a thread to run in a

specific CPU core by using the ProcessThread class in the system diagnostics library

to manually distribute each thread of a program. In addition, the Windows scheduler

also has the ability to dynamically distribute threads to different CPU cores to balance

the system load.

In the ideal situation, all threads are expected to begin at the same time to minimize

the time differences between different threads. Hence, if the Windows scheduler

41

causes a long delay between threads, all threads should be manually distributed and

triggered. Ayucar’s research [35] indicates that the windows scheduler can provide

efficient thread distribution and management performance. All his experiments have

implied that the Windows scheduler beats a manual thread affinity setup almost in

every case. Based on this result, all threads are automatically distributed and managed

by the Windows scheduler in this study. The CPU usage results of MT RT-PSM also

display the same conclusion. All threads start simultaneously and the Windows

scheduler achieves maximum CPU performance. Results are shown in Figure 3.3.

Figure 3.3 Windows scheduler simultaneously starts 4 threads of MT RT-PSM in 4
cores

3.4.4 General code optimization

The original RT-PSM source code was designed several years ago with VC++ 6.0.

VC++6.0 has been retired and as the successor C# can provide a better object-oriented

development environment. So C# is chosen to develop MT RT-PSM and refactor the

original VC++ source code. Some functions in the original source code are obsoleted.

With the support of .net 4.0 framework, the corresponding functions can provide

better performance. Those old functions are replaced.

After analyzed the workflow of the original source code, there were some function

42

redundancies that can potentially increase the computational complexity. For these

functions, the subroutines are needed to redesign or make some rearrangements to

ensure the maximum performance.

3.4.5 Algorithm

The similarity scoring function is a typical CPU-bound function. In order to achieve

the best performance, one processor can only execute one function at one time. That

means with a multi-core CPU, the program can match multiple spectral groups

simultaneously and reduce the total execution time as shown in Figure 3.4. The

maximum number of threads that can be used in the MT RT-PSM is based on the

number of logical processors. The pseudo code of MT RT-PSM algorithm is shown in

Algorithm 2.

Algorithm 2: Multi-core RT-PSM

Class PeptideIdentification
 Collection PeptideDB; //peptide database
 Collection ExperimentPeptideData; //experiment data

function PIF()
 PeptideDBLoading (DBfile, PeptideDB);
 //load peptide database
 ExperimentalPeptideDataLoading(DataFile, ExperimentPeptideData);
 //load experiment data
 MaxThreadNum ← Maximun number of CPU logical cores //obtain thread number
 InitMultiThreadCalc(MaxThreadNum, PeptideDB, ExperimentPeptideData);
 //initial each thread
 StartThreadList(MaxThreadNum, PeptideDB, ExperimentPeptideData);
 //run multithread RT-PSM
End function

function Pipid (PeptideDB,ExperimentPeptideData)
 //RT-PSM algorithm
 Tolerance← user-defined peptide search tolerance value;

43

 Collection score; // similarity score list

 for each OnePeptideGroup in ExperimentPeptideData do
 filter (OnePeptideGroup,PeptideDB);
 candidatePeptideData ← qkfind(OnePeptideGroup, PeptideDB, tolerance);
 //2-demensinal peptide search
 for each candidatePeptide in candidatePeptideData do
 msct ← cscore(OnePeptideGroup,candidatePeptideData);
 //similarity scoring function
 score.Add(msct + 1);
 Init Matrix evalue;
 if pscore(evalue, score) is true postive then display result;
 //statistical significance function
End function
End Class

Class MultiThreadCalc // Multithread control class
void function InitMultiThreadCalc(Thread, PeptideDB, ExperimentPeptideData)
//initial one thread
 for i← 0;i<Thread; i++ do
 InitOneThreadPip(PeptideDB, ExperimentPeptideData);
End function

void function StartThreadList(Thread,PeptideDB, ExperimentPeptideData)
// execute one thread
 for i← 0;i<Thread; i++ do
 ThreadList[i].Pipid(PeptideDB, ExperimentPeptideData);;
End function
End Class

Figure 3.4 The flowchart illustrates the process of a multi-core computing algorithm

44

in MT RT-PSM

45

CHAPTER 4

RT-PSM WITH DISTRIBUTED PROGRAMMING

4.1 Introduction

4.1.1 Distributed computing and cluster

A cluster consists of a set of connected computers that work together, so they can be

viewed as a single system. The nodes (computers used as servers) of a cluster are

usually connected through a low-latency/high-bandwidth network, in most cases a

local area network. A cluster has times of computation ability compared to each

individual node. Hence, the main purpose of cluster is to provide performance

computation through distributed computing algorithm.

The earliest cluster prototype appeared in 1960s and it mainly used to backup data.

Ten years after Gene Amdahl published his famous paper on parallel processing:

Amdahl's Law [25]. The first commercial clustering product was developed in 1977.

Nowadays, although the CPU frequency and the node number of a cluster have been

rapidly improved, the factors which affect the cluster performance never change:

processor performance, network, software infrastructure and development tools.

Early cluster system was more or less restricted by early networks since one of the

46

primary motivations for the development of a network was to link computing

resources. Modern cluster is more related on the CPU frequency and core numbers at

the hardware layer. The computational capability of modern clusters is far more better

the first generation ones.

The cluster software infrastructure develops more slowly than the hardware. Parallel

systems are useless without parallel software. Different with sequential program, the

control algorithm of parallel programming is much more complicated. So it is

impossible to generate parallel software automatically. In 1990s, there were still

dozens of parallel programming languages and most of them did not have a general

standard. In 1995 the Message Passing Interface (MPI) became the first development

standards [36] and it makes the parallel programming development easier than before.

An ideal cluster application development environment should include a stable

operation system and a set of development tools which can support the standard

parallel algorithm and libraries. The development environment for clusters must be

able to provide the tools that are currently available on cluster systems. The parallel

applications should be developed, debugged and tested on the cluster environment

through the development tools.

http://en.wikipedia.org/wiki/Object-oriented_programming

47

4.1.2 WINDOWS HPC library

The main cluster operating systems are either UNIX/Linux or windows. Not like

UNIX, Microsoft began to design their cluster OS after mid-90s based on Windows

NT Server 4.0 Enterprise Edition. In June 2006, Microsoft released Windows

Compute Cluster Server 2003 which was the first high-performance computing (HPC)

cluster technology offered by Microsoft. It also released the Windows HPC Server

2008 as the successor product. Windows HPC Server 2008 includes features unique to

HPC workloads: a new high-speed Network Direct RDMA, highly efficient and

scalable cluster management tools, a service-oriented architecture (SOA) job

scheduler, an MPI library based on open-source MPICH2, and cluster interoperability

through standards such as the High Performance Computing Basic Profile (HPCBP)

specification produced by the Open Grid Forum (OGF) [37].

Microsoft also provides cluster HPC SDK to help development cluster applications.

Compute Cluster Pack (CCP) has secure, scalable cluster resource management, a job

scheduler, and a MPI stack for parallel programming. Compared with Unix/Linux

system, Microsoft’s HPC Server + CCP + Visual Studio constitute an integrated,

efficient and user-friendly development environment.

With the definition of computer cluster for windows HPC system, it is a top-level

organizational unit. Each cluster consists of a set of nodes, queues, applications, and

jobs. The following Figure 4.1 shows the compute cluster architecture.

48

Figure 4.1 The flowchart illustrates Microsoft compute cluster architecture [37]

A node is a single computer that contains one or multiple CPUs. A cluster consists of

one head node and multiple work nodes. The head node manages the cluster resources

and distributes all jobs to work nodes. All nodes in a cluster are parts of the same

domain. Data sources, such as database or datastore systems are accessible from each

node. A cluster application can enumerate, approve, pause and resume nodes through

the ICluster interface. It is also able to query node properties through the INode

interface. There is an organizational unit in the cluster - job queue, which contains

queued, running and finished jobs.

The job scheduler service is the core scheduling service of the CCP. It controls

resource allocation, job execution and recovery on failure. It also manages the job

queue and removes the finished jobs periodically. The architecture is shown as the

49

following Figure 4.2.

Figure 4.2 The flowchart illustrates the job scheduler architecture [37]

As the core scheduling service, the job scheduler allocates the cluster resources by job

priority. This makes the high-priority jobs at the front of the queue. If jobs have

identical priority, resources are allocated to the job based on the first in first out (FIFO)

policy. There is no task priority within a job. All tasks are allocated in the order that

they are added to the job. The job scheduler selects the best available node to run each

job and the system administrator can also specify a list of nodes to run certain jobs.

The job scheduler supports backfill. This ensures a resource-intensive application will

not delay other applications when they are ready to run. If a high-priority job is

waiting for available resources, the job scheduler will execute the lower-priority job

50

with the available resources and not delay the start time of the higher-priority job.

The cluster service is a .Net remote service. It provides cluster-wide settings,

node-related operations, job-related operations, task-related operations and

resource-usage information. Applications let the cluster to execute program through

the cluster service.

A task represents the execution of a single or multiple CPUs on a computer node. A

job is the collection of a series of tasks to perform a computation procedure. Jobs are

used to reserve the resources required by tasks. The following Figure 4.3 illustrates

the life circle of job. In this study, each task represents one MT RT-PSM procedure. A

job manages all tasks and makes sure they can be executed simultaneously or with

certain conditions. Computation result collection, garbage collection and exception

handling are also the duties of a job.

Figure 4.3 The flowchart illustrates the job life cycle [37]

4.2 Methodology

The distributed computing algorithm is another type of parallel computing algorithms.

51

Similar to multi-core computing, it separates a large task into several sub-tasks and

executes them concurrently. The most critical difference between multi-core

computing and distributed computing is that in multi-core computing all processors

may access to a shared memory while in distributed computing each processor has its

own memory [35]. In this study, the whole identification procedure is divided into

several sub RT-PSM tasks. Then each sub-task runs in an individual node workstation

of the cluster. The head node's duty includes task creation, management and

synchronization instead of executing RT-PSM program. Those duties make the head

node a task controller.

In order to achieve the minimum execution time of the RT-PSM program, the head

node should have an algorithm to create, distribute, synchronize and monitor the tasks

of work nodes. The pseudo code of the distributed computing algorithm is shown in

Algorithm 3. This distributed computing RT-PSM (DC RT-PSM) algorithm contains

three main modules. The first module loads an experimental tandem mass spectra data

file and divides it into a user-defined number of small files. Then it points each small

file to a related work node. The second module creates the sub RT-PSM task in each

work node. Then it starts all tasks simultaneously. The third module monitors all tasks'

executions and collects the feedback information which includes the task status and

exceptions. After all tasks are accomplished, the DC RT-PSM collects the result of

work nodes and generates the final report. The Figure 4.4 shows the work flow of the

algorithm 3.

52

Algorithm 3 Distributed computing RT-PSM

Class DCRTPSM

int MaxNodeNum ←user-defined maximum number of work nodes;

function CreateHPCJob
 ICluster cluster ← new Cluster;
 cluster.connect();
 aJob ← cluster.CreateJob;
 for i← 0; i< MaxNodeNum; i++ do
 aTask ← cluster.CreateTask; // Create a new task
 set aTask.commandline;
 set aTask.Stdout;
 set aTask.Stderr;
 set aTask.RequirtNodes;
 set aTask.MaximumNumberOfProcessors;
 aJob.AddTask(aTask);
End function

function TrackHPCJob(jobID)
 while aJob is not finished do
 aJob ← cluster.GetJob(JobID);
 check aJob status;
 handle aJob exceptions;
End function //track node execution status

function HPCJobResultCollection()
//Collecting results from node i
End Class

53

Figure 4.4 The flowchart illustrates the process of a distributed computing algorithm
in DC RT-PSM

The time consumption of similarity scoring function in DC RT-PSM is:

𝑇𝑖 = 𝑀𝑎𝑥(𝐵𝑖 + 𝑆𝑖 + 𝐶𝑇𝑖) (4.1)

where 𝐶𝑇𝑖 is the message communication time and 𝑖 represents the number of

threads. The time consumption of message communication in each thread is fixed, so

when the program processes a large dataset, the database search time 𝐵𝑖 and scoring

time 𝑆𝑖 will be larger than a small dataset and the 𝐶𝑇𝑖 will less affect the total time

Ti than a small dataset. The total time consumption of the DC RT-PSM is:

𝑇𝑇𝑜𝑡𝑎𝑙 = 𝑇𝐼𝑛 + 𝑀𝑎𝑥(𝑇𝑛) + 𝑀𝑎𝑥(𝐶𝑁𝑇𝑛) (4.2)

where 𝑇𝐼𝑛 is the task initial time. 𝐶𝑁𝑇𝑛 is the node message communication time

and n is the number of nodes.

54

CHAPTER 5

MULTIDIMENSIONAL SEARCH: SPEED-UP PEPTIDE

DATABASE SEARCHING

In the similarity scoring module, the first step is to search the peptide database which

is derived from the protein database to obtain a suitable peptide as the start point of

the similarity scoring. The mass of match peptide Mm should be in the range of target

peptide mass Mt with a tolerance ε (𝑀𝑚 < 𝑀𝑡 ± 𝜀). That means the peptide database

search is a nearest neighbor search (NNS) [38, 39], also known as similarity search

instead of a regular search. The NNS describes the need to find the point among a

group of known positions which is closest to some randomly chosen probe position.

The original RT-PSM program uses a common linear search algorithm - binary search

to compute the distance from the query point to every point in database to obtain the

shortest distance. The time complexity of binary search equals to 𝑂(𝑙𝑜𝑔 𝑛), which is

related to the size of peptide database.

The regular database might contain random data, while the peptide database contains

the mass value of each peptide which is related to the peptide’s length and structure.

Two peptide sequences may have close mass values if their structures are similar. Two

different peptide sequences also can have the same mass value. From the

mathematical perspective, the peptide database can be viewed as a group of

consequent positive numbers.

55

Space partitioning which is an advanced NNS method might be able to take advantage

of this characteristic of peptide database. With this method the whole peptide database

can be divided into a series of small peptide groups (subsets) based on the candidate

peptide tolerance value instead of treading the whole peptide database as a large array

[40]. Each subset is indexed with the integer part of minor mass value and the integral

peptide database is a sorted collection that contains indexed sub-databases as shown

in Figure 5.1.

Original Peptide Database:
... 1811.0013 1811.0031 1811.0053 .. 1813.0333 1813.0421 1813.0466 ...

2-Dimentional Peptide Database:

Figure 5.1 2-Dimensional peptide database structures in contrast of original peptide
database structures

With this new 2- dimensional peptide database, the peptide searching consists of two

parts. The first step is to search if the integer part 𝑋 of the target peptide mass with

tolerance value 𝑇 is indexed by the peptide database (𝑋 ± 𝑇). If the value is found,

then the first record in the indexed sub-array is the match peptide. The time

complexity of this step is 𝑂(2𝑇). If the first step cannot find a match peptide and the

database also contains a subset with index (𝑋 − 1), then the second step is to use the

X

Index Sub-array
...
1811 1811.00134 1811.00313 1811.00537 1811.00584 1811.00715
1812 1812.0033 1812.01587 1812.01814 1812.02174 1812.02443
1813 1813.00374 1813.02552 1813.03091 1813.03339 1813.04665
...

Y

56

binary search method to find whether this subset contains match peptide. The time

complexity of the second step is 𝑂(𝑙𝑜𝑔(𝑠𝑢𝑏𝑠𝑒𝑡 𝑙𝑒𝑛𝑔𝑡ℎ)). The time complexity of

2-dimensinal peptide database search algorithm is much less than the original binary

search. The pseudo code of the algorithm is shown in Algorithm 4.

Algorithm 4 2-Dimensional Peptide Database Search
function integer qkfind(OnePeptideGroup, PeptideDB, tolerance)
 //Multidimensional Search:
 if OnePeptideGroup.mass > PeptideDB.lastRecord.Mass OR
 OnePeptideGroup.mass < PeptideDB.firstRecord.Mass then
 return -1;
 else

 lowBoundary ← (OnePeptideGroup.mass - tolerance) + 1 ;
 upBoundary ← (OnePeptideGroup.mass + tolerance);

 for i ← lowBoundary; i< upBoundary; i++ do
 if PeptideDB hasIndex (i) then
 subSet ← PeptideDB.item(i);
 return subSet.firstItem.Index;
 else if PeptideDB hasIndex(lowBounday -1) then
 subSet ← PeptideDB.item(lowBounday -1);
 Index ← BinarySearch(subSet, OnePeptideGroup.mass)
 Return Index;

End function

One advantage of 2-dimensional search is that its search speed is not directly

depending on the size of database but the density of indexed subsets in certain range.

The higher density brings higher hit-rate which helps to improve the speed of entire

peptide identification procedure. Another advantage is that this search algorithm does

not need supports from any third party databases. Compared with other parallelized

database search algorithms, this algorithm only need slightly change the peptide

database structures.

57

CHAPTER 6

EXPERIMENTAL RESULTS AND DISCUSSION

6.1 Experimental Environment and Datasets

The cluster experimental environment consists of 1 head node and 32 work nodes.

They are connected with 1 Gigabit Ethernet. The detail of the cluster specification is

shown as follows.

Table 6.1 Cluster hardware specification

Node Type Number of workstation Specification

Head Node 1

CPU Intel Xeon E5410 2.33GHz
Memory 8 G
Hard disk Dell PERC 6/i RAID 500G
Network 1 Gigabit Ethernet

Work Node 32

CPU Intel Xeon E5410 2.33GHz
Memory 4 G
Hard disk SEAGATE SCSI 73G
Network 1 Gigabit Ethernet

There are two datasets are used in this study. The dataset A is provided by the

RT-PSM package [5]. The experimental data source of tandem mass spectra includes

2058 groups of spectra. The protein database is a subset of the UniRef100 human

protein database and it contains over 2200 entries (over 180000 peptide sequences).

The dataset B includes 16463 groups of spectra. The protein database has over 3300

entries which is also queried from the UniRef100 [11] human protein database.

58

6.2 Verification

The verification of RT-PSM results is an essential part of this study. The purpose of

parallel computing algorithm is not only to reduce the peptide identification procedure

execution time, but also to keep the identification accuracy at the same time. The MT

RT-PSM does not use any trade off algorithm to gain better performance. Therefore,

the results of MT RT-PSM should be identical with the original RT-PSM. 10 groups of

experimental data are randomly chosen from the results of MT RT-PSM and original

RT-PSM. They are shown in the Table 6.2. Overall, the identification results are in

excellent agreement between MT RT-PSM and original RT-PSM.

Table 6.2 Result comparison between MT RT-PSM and original RT-PSM 5 columns
to compare, the charge of spectrum, the similarity score and the match (-1 for not
match, 1 for match)

Multithread
Spec Index Spec Sequence Charge msc match

141 TQETPSAQMEGFLNR 2 1.63 -1
256 DVSGPMPDSYSPR 2 2.41 -1
489 NLLHVTDTGVGMTR 3 1.29 -1
812 NALESYAFNMK 2 1.35 -1
904 ALEQFATVVEAK 2 1.52 -1
1010 AIADTGANVVVTGGK 2 1.91 -1
1149 ILLAELEQLK 2 1.61 -1
1551 SSGSPYGGGYGSGGGSGGYGSR 2 1.41 1
1619 CATSKPAFFAEK 3 2.05 1
1755 YLAEFATGNDR 2 2.16 1

Original
Spec Index Spec Sequence Charge msc match

141 TQETPSAQMEGFLNR 2 1.63 -1
256 DVSGPMPDSYSPR 2 2.41 -1
489 NLLHVTDTGVGMTR 3 1.29 -1
812 NALESYAFNMK 2 1.35 -1
904 ALEQFATVVEAK 2 1.52 -1

59

1010 AIADTGANVVVTGGK 2 1.91 -1
1149 ILLAELEQLK 2 1.61 -1
1551 SSGSPYGGGYGSGGGSGGYGSR 2 1.41 1
1619 CATSKPAFFAEK 3 2.05 1
1755 YLAEFATGNDR 2 2.16 1

6.3 Peptide Database Search Speed-up

Using experimental dataset A as an example, comparing similarity scoring time by

using linear search method and 2-dimensional search method, the new search

method makes similarity scoring module spent less than 6.7% execution time as

shown in the Table 6.3.

Table 6.3 Result comparison between linear search and 2-demensional search

 Groups of Spectra Average Similarity scoring time (ms)

linear search 2058 8.043

2-dimensional search 2058 7.668

This 2-dimensional search algorithm cannot improve the accuracy of candidate

peptide selection, but it can speed-up the procedure to a certain degree. RT-PSM is a

complicated computation system and there is no simple solution to speed-up the

whole system with one upgrade. The improvement of whole system must be

contributed by the improvement of each sub-system. Although, the 2-dimensional

search algorithm only brings less than 7% improvement, it might be able to inspire the

future developers to design a better algorithm to rapidly speed-up the NNS without

60

any accuracy trade-off.

6.4 Multithread RT-PSM Performance

The performance of multithread RT-PSM mainly depends on the speed of CPU

frequency and the maximum number of logical cores of CPU. MT RT-PSM is tested

in 4 different computers and the Table 6.4 displays the detail information of the CPUs.

Table 6.4 Experiment hardware environment information

Name CPU # of Physical Cores HT Usage
WS1 I7 3770 4 YES Personal server
WS2 I5 750 4 NO Development PC
WS3 XEON E5410 8 NO Work node of Cluster
WS4 I7 2720QM 4 YES Personal computer

Figure 6.1 Speed-up of execution time for MT RT-PSM benchmark to original
RT-PSM in 4 experiment computers

Figure 6.1 displays the speed-up between original RT-PSM program and MT RT-PSM

1

6

11

16

21

26

31

36

1 2 3 4 5 6 7 8

Sp
ee

du
p

Thread Number

Original RT-PSM vs MT RT-PSM

WS1

WS2

WS3

WS4

61

program with the same experiment dataset (dataset A). The result indicates several

improvements of MT RT-PSM compared with original program. Firstly, the

performance has been already progressed with refactoring and using .net framework

to optimize the original program. Even only using single-thread, the MT RT-PSM

achieves about 5 times speed-up than original RT-PSM program. Secondly, the

program execution time is continuously decreased when more threads are involved.

This result confirms the Amdahl's law that the program execution time should

decrease when the thread number increases. The last, for those CPUs which have 8

logical cores, the MT RT-PSM can achieve about 25 to 34 times speed-up when all

available cores were involved in the computing. The speed of peptide identification

procedure is promising.

Figure 6.2 displays the speed-up of MT RT-PSM program executing with multiple

threads against single-thread in 4 experiment computers. The result illustrates that the

disagreement between the theoretical speed-up and the practical performance

improvement can be massive due to different experimental environment. The

computer WS3 is one work node of the cluster. It represents the most stable

performance and reaches best speed-up when its maximum logical cores are assigned

in computing. On the contrary, WS1 and WS4 are regular standalone computers

which are mostly using for daily duties and application development. They need

spend a certain amount of resources to maintain the routine tasks. It is very difficult to

let a standalone workstation invoke all system resources to process the MT RT-PSM.

62

Figure 6.2 Speed-up of execution time for MT RT-PSM benchmark to single thread
MT RT-PSM in 4 experiment computers

Generally speaking, the CPU frequency and the number of logical core are the most

important part of the performance. Nevertheless, the MT RT-PSM can only reach the

best performance when the system distributes the maximum resource into the

computation.

6.5 Distributed Computing RT-PSM (DC RT-PSM) Performance

The similarity scoring of single-thread RT-PSM search of 2058 group spectra against

2200-entry protein database (experiment dataset A) spent about 53, 105 and 125 times

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Sp
ee

du
p

Thread Number

MT RT-PSM: Single thread vs multiple thread

WS1

WS2

WS3

WS4

63

than the similarity scoring of DC RT-PSM search in the same condition when it was

allocated into 80 threads (10 work nodes), 160 threads (20 work nodes) and 240

threads (30 nodes), respectively. The similarity scoring of single-thread RT-PSM

search of 16463 group spectra against 3200-entry protein database (experiment

dataset B) spent about 69, 155 and 127 times than the scoring of DC RT-PSM when

the task was allocated into 80, 160 and 240 threads. Figure 6.3 illustrates the

comparison results.

Figure 6.3 Speed-up of similarity scoring module execution time for DC RT-PSM
benchmark to single thread MT RT-PSM from experiment dataset A (blue line) and
experiment dataset B (red line)

No matter 80, 160 or 240 threads are allocated; the whole DC RT-PSM search is about

1.00

53.64

105.11

124.91

1.00

69.09

155.37

216.90

0

50

100

150

200

250

0 50 100 150 200 250

Sp
ee

du
p

Thread Number

Similarity Scoring Module Speedup

Experiment Dataset A Experiment Dataset B

64

11 times faster than the single-thread MT RT-PSM search with experiment dataset A.

With experiment dataset B, DC RT-PSM search execution time is 48 times speed-up

with 80 threads, 68 times speed-up with 160 threads and 85 times speed-up with 240

threads compared to single-thread MT RT-PSM search. This is shown in Figure 6.4.

Overall, the time benchmarks indicate a great performance upgraded by DC RT-PSM.

Figure 6.4 Speed-up of execution time for DC RT-PSM benchmark to single thread
MT RT-PSM from experiment dataset A (blue line) and experiment dataset B (red
line)

With 30 nodes and each nodes contains 8 logical processors, the DC RT-PSM

program should be able to gain 240-fold speed-up. Compared with experiment dataset

A and B in Figure 6.3, the performance is close to the theoretical performance when

DC RT-PSM processes large spectrum dataset against large database.

1.00
11.05 11.05 11.05

1.00

48.44

67.82

84.78

0

50

100

150

200

250

0 50 100 150 200 250

Sp
ee

du
p

Thread Number

DC RT-PSM Speedup

Experiment Dataset A Experiment Dataset B

65

In DC RT-PSM, the task initializing time and node message communication time are

fixed. Even the nodes are connected with 1 gigabit Ethernet, the time lost in those

processes are about 2.0 to 2.3 seconds. Therefore, if the experimental spectrum

dataset is too small, the number of nodes allocated in the task can barely affect the

total execution time, just like it shows experiment dataset A in Figure 6.4.

Compared Figure 6.3 to Figure 6.2 of MT RT-PSM, the performance of DC RT-PSM

is closer to the theoretical maximum value. The reason is that in the cluster, the

computation is preformed in the work nodes that are more focus on computational

tasks than other services. Therefore, the cluster is a more stable platform to process

large scale computational tasks than standalone workstations.

Generally, the performance of DC RT-PSM is related to the number of processors

allocated in the task and the size of experimental dataset. For small datasets, if the

total similarity scoring time is less than certain number, it is 500 milliseconds for this

study, adding more nodes in the task may not be able to reduce the total execution

time.

6.6 Discussions

In “Parallel Tandem”, Duncan et al. [12] developed a cluster system and achieved

18-fold faster with 20 processors and 36-fold faster with 40 processors for unrefined

searches. The speed-up for refined searches is about 10-fold with 40 processors.

66

Zhang et al.’s study [13] also uses Prof. Wu’s RT-PSM algorithm and consists with

two parts: SIMD in single CPU and CUDA in NVIDIA GPU. Their study achieves

about 18-fold speed-up for single CPU version. In CUDA version, a 190-fold

speed-up on the scoring module is achieved and 26-fold speed-up on the entire

process is obtained.

In this study, the MT RT-PSM achieves 25 to 34 folds speed-up for the entire process

with different single-CPU computers. The DC RT-PSM achieves about 217-fold with

240 processers for the similarity scoring and about 85-fold for the entire process. This

result shows that DC RT-PSM is about 90% scalable for the parallel portion of the

similarity scoring. The high percentage of scalable implies the better performance

with parallel computing. This value is similar with Duncan et al.’s speed-up of

parallel unrefined searches and better than their refined searches. The performance of

MT RT-PSM and DC RT-PSM are better than Zhang et al.’s SIMD version and CUDA

version programs. Generally, the performance improvements of this study are better

than the study of Duncan et al. and Zhang et al.

67

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In this study, a DC RT-PSM package is designed and consists of the multi-core

computing algorithm for standalone workstation and the distributed computing

algorithm for cluster. The multi-core computing algorithm is based on the original

single-thread RT-PSM. The distributed computing algorithm is used to allocate the

cluster nodes and manage the protein identification processing. This distributed

computing algorithm is designed not only for this RT-PSM algorithm but also for

other similar algorithms as a general parallel computing platform. It can support other

peptide identification programs with some configuration adjustments, such as

X!Tandem, CUDA version RT-PSM, etc.

The time required to match a large numbers of tandem mass spectra with peptides in a

database has been remarkably improved by performing searches concurrently with the

DC RT-PSM without sacrificing any matching accuracy. Overall, after upgraded with

the parallel computing algorithm, the DC RT-PSM program can achieve the

requirements of real-time peptide-spectrum matching processing. As a distributed

computing platform, the DC RT-PSM is a successfully implement in a highly

cost-effective parallel computing environment.

68

7.2 Future Work

There are still several parts of this study that could be improved in the future.

1. The distribution computing platform can only support the RT-PSM algorithm for

now. However, in the original design it should have the ability to handle different

programs and not just be limited to one particular peptide identification algorithm.

If there is any study related to large scale computation in cluster environment,

this platform could be a good start point.

2. In this algorithm, datastore is the main method to process the peptide database.

But in this study, the database connection interface is designed for both datastore

and database. Due to the time limitation, this study is not expended to use large

scale database in the RT-PSM algorithm. The optimization of large SQL database

also could be involved in the future work.

3. The DC RT-PSM has a graph user interface (GUI), but a crude one. A good GUI

can help user improve efficiency and reduce the erroneous operations. This gives

much room for design better GUI for the future.

69

REFERENCES
[1] O. D. Sparkman, "Mass spectrometry desk reference", Global View Pub,

Pittsburgh, 2000.

[2] K. Zaidi, "(GC05) General Chapters 05", USP29-NF24, pp. 2705, 2010.

[3] A. P. Snyder, "Interpreting Protein Mass Spectra: A Comprehensive Resource",

Oxford University Press, Oxford, New York, 2000.

[4] C. Dass, "Fundamentals of contemporary mass spectrometry", John Wiley & Sons,

2007.

[5] F. X. Wu, P. Gagne, A. Droit, G. G. Poirier, "RT-PSM, a real-time program for

peptide-spectrum matching with statistical significance", Rapid Commum. Mass
Spectrom, vol. 20, pp. 1199–1208, 2006.

[6] K. J. Eng, A. L. McCormack, J. R. Yates III, "An approach to correlate tandem

mass spectral data of peptides with amino acid sequences in a protein database",
Am. Soc. Mass Spectrom, vol.5, pp. 976-989, 1994.

[7] D. N. Perkins, D. J. Pappin, D. M. Creasy, J. S. Cottrell, "Probability-Based

Protein Identification by Searching Sequence Databases Using Mass Spectrometry
Data", Electrophoresis, vol.20, pp. 3551-3567, 1999.

[8] M. C. Damsten, J. N. M. Commandeur, A. Fidder, A. G. Hulst," Liquid

Chromatography/Tandem Mass Spectrometry Detection of Covalent Binding of
Acetaminophen to Human Serum Albumin", Drug Metabolism and Disposition,
vol. 35, No. 8, pp. 1408-1417, 2007.

[9] D. J. Rigden, "From Protein Structure to Function with Bioinformatics", Springer

Science, 2009.

[10] B. Ma, R. Johnson, "De Novo Sequencing and Homology Searching", Mol Cell

Proteomics, vol.11, doi: 10.1074/mcp.O111.014902, 2012.

[11] "Universal Protein Resource", http://www.uniprot.org.

[12] D. T. Duncan, R. Craig, A. J. Link, "Parallel Tandem: a program for parallel

processing of tandem mass spectra using PVM or MPI and X!Tandem", Journal of
Proteome Research, vol. 4, pp. 1842–1847, 2005.

70

[13] J. Zhang, I. McQuillan, F. X. Wu, "Parallelizing Peptide-Spectrum Scoring
Using Modern Graphics Processing Units", IEEE ICCABS, vol.11, pp. 208-213,
2011.

[14] R. G. Sadygov, J. Eng, E. Durr, A. Saraf, H. McDonald, M. J. MacCoss, "Code

Developments to Improve the Efficiency of Automated MS/MS Spectra
Interpretation", Journal of Proteome Research, vol.1, pp. 211–215, 2002.

[15] J. Zhang, I. McQuillan, F. X. Wu, "Speed Improvements of Peptide-Spectrum

Matching Using SIMD Instructions", Proteomics, vol. 11, Issue 19, pp.
3779–3785, 2011.

[16] G.S. Almasi, A. Gottlieb, "Highly Parallel Computing", Benjamin-Cummings

publishers, 1987.

[17] A.Scherl, C. G. Zimmermann-Ivol, J. D. Dio," Gold coating of non-conductive

membranes before matrix-assisted laser desorption/ionization tandem mass
spectrometric analysis prevents charging effect", Rapid Commum. Mass Spectrom,
vol.19, pp. 605-615, 2005.

[18] B. Ma, "Challenges in computational analysis of mass spectrometry data for

proteomics", Science and Technology, vol.25, pp. 107-123, 2010.

[19] S. Altschul, "The statistics of sequence similarity scores". NCBI: Cold Spring

Harbor, 2004, http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html.

[20] H. I. Field, D. Fenyo, R. C. Beavis, "Radars, a bioinformatics solution that

automates proteome mass spectral analysis, optimizes protein identification, and
archives data in a relational database", Proteomics, vol.2, pp. 36-47, 2002.

[21] D. Fenyo, R. C. Beavis, "A method for assessing the statistical significance of

mass spectrometry-based protein identifications using general scoring schemes",
Anal. Chem, vol. 75, pp. 768-774, 2003.

[22] M. Havilio, Y. Haddad, Z. Smilansky, "Intensity-based statistical scorer for

tandem mass spectrometry", Anal. Chem, vol. 75, pp. 435-444, 2003.

[23]B. Barney, "Introduction to Parallel Computing ", Lawrence Livermore National

Laboratory, 2012, https://computing.llnl.gov/tutorials/parallel_comp/.

[24] A, Krste, "The Landscape of Parallel Computing Research: A View from

Berkeley", University of California, Berkeley, Technical Report No.
UCB/EECS-2006-183, 2006.

71

[25] G. Amdahl, "Validity of the Single Processor Approach to Achieving Large-Scale
Computing Capabilities", AFIPS Conference Proceedings, vol.30, pp.483–485,
1967.

[26] Blogs.msdn.com, "Quick Tour of New MFC functionality", 2007,

http://blogs.msdn.com/b/vcblog/archive/2007/11/09/quick-tour-of-new-mfc-functi
onality.aspx.

[27] R. R. Asche, "Multithreading Performance", 1996,

http://msdn.microsoft.com/en-us/library/ms810437.aspx.

[28] T. Rognes, E. Seeberg, "Six-fold speed-up of Smith-Waterman sequence

database searches using parallel processing on common microprocessors",
Bioinformatics, vol.16, pp. 699–706, 2000.

[29] F. Song, S. Moore, J. Dongarra, "L2 Cache Modeling for Scientific Applications

on Chip Multi-Processors", Parallel Processing, ICPP 2007, 2007.

[30] D. Tarjan, J. Meng, K. Skadron, "Increasing Memory Miss Tolerance for SIMD

Cores", Proc. Supercomputing '09, 2009.

[31] M. Ben-Ari, "Principles of Concurrent and Distributed Programming", Prentice

Hall, 1990.

[32] S. Siu, M. D. Simone, D. Goswami, A. Singh, "Design Patterns for Parallel

Programming", in Proc. PDPTA, pp.230-240, 1996.

[33] K. Yamazaki, S. Ando, "A Case-Based Parallel Programming System", PDSE '98,

pp. 238-246, 1998.

[34] D. W. Holmes, J. R. Williams, P. Tilke, "An events based algorithm for

distributing concurrent tasks on multi-core architectures", Computer Physics
Communications, vol. 181, pp. 341–354, 2010.

[35] I. Ayucar, "Parallel computing and processor affinity. Never underestimate the

Windows Vista Scheduler", 2009,
http://www.codeproject.com/Articles/35679/Parallel-computing-and-processor-aff
inity-Never-un.

[36] D. A. Bader, R. Pennington, "Cluster Computing: Applications,'' The

International Journal of High Performance Computing, vol. 15(2), pp. 181-185,
2001.

[37] Microsoft, Microsoft HPC Pack 2008 SDK and HPC Pack 2008 R2 SDK, 2012,

72

http://msdn.microsoft.com/en-us/library/cc853440(v=vs.85).

[38] S. Rajasekaran, J. Reif, "Handbook of Parallel Computing Models, Algorithms

and Applications", Chapman & Hall/CRC, 2007.

[39] D. Dutta, T. Chen, "Speeding up tandem mass spectrometry database search:

metric embeddings and fast near neighbor search", Bioinformatics, vol.23,
pp.612– 618, 2007.

[40] L. Andrews, "A template for the nearest neighbor problem", C/C++ Users Journal,

vol. 19, pp. 40 - 49, 2001.

	PERMISSION TO USE
	ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER 1 INTRODUCTION
	1.1 Background
	1.1.1 Tandem mass spectrometry
	1.1.2 Peptide identification
	1.1.2 De novo sequencing and database searching

	1.2 Motivation and Objectives
	1.2.1 Motivation
	1.2.1 Objectives
	1.2.3 Thesis overview

	CHAPTER 2 RT-PSM: A REAL-TIME PEPTIDE-SPECTRUM MATCHING ALGORITHM
	2.1 Introduction
	2.2.1 Experimental spectrum processing module
	2.2.2 Candidate peptides selection module
	2.2.3 Similarity score module
	2.2.4 Statistical significance computation module

	2.3 Performance Analysis of RT-PSM
	CHAPTER 3 RT-PSM WITH PARALLEL PROGRAMMING
	3.1 Overall of Parallel Computing Technology
	3.2 SIMD vs Multi-Core Computing
	3.3 Database vs Datastore
	3.3.1 The advantages of SQL database
	3.3.2 The shortages of SQL database

	3.4 Algorithm and Implementation
	3.4.1 Parallel programming design pattern
	3.4.2 Parallel function selection
	3.4.3 Thread affinity
	3.4.4 General code optimization
	3.4.5 Algorithm

	CHAPTER 4 RT-PSM WITH DISTRIBUTED PROGRAMMING
	4.1 Introduction
	4.1.1 Distributed computing and cluster
	4.1.2 WINDOWS HPC library

	4.2 Methodology
	CHAPTER 5 MULTIDIMENSIONAL SEARCH: SPEED-UP PEPTIDE DATABASE SEARCHING
	CHAPTER 6 EXPERIMENTAL RESULTS AND DISCUSSION
	6.1 Experimental Environment and Datasets
	6.2 Verification
	6.3 Peptide Database Search Speed-up
	6.4 Multithread RT-PSM Performance
	6.5 Distributed Computing RT-PSM (DC RT-PSM) Performance
	6.6 Discussions
	CHAPTER 7 CONCLUSIONS AND FUTURE WORK
	7.1 Conclusions
	7.2 Future Work
	REFERENCES

