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Abstract 

Computer Animation is a sub-field of computer graphics with an emphasis on the time- 

dependent description of events of interest. It has been used in many disciplines such as 

entertainment, scientific visualization, industrial design, multimedia, etc. Modeling of 

deformable objects in a dynamic interaction andfor fracture process has been an active 

research topic in the past decade. The main objective of this thesis is to provide a new 

effective approach to address dynamic interaction and fracture simulation. 

With respect to dynamic interaction between deformable objects. this thesis proposes 

a new semi-explicit local collision response analysis (CRA) algorithm which is better 

than most previous approaches in three aspects: computational efficiency, accuracy and 

generality. The computational cost of the semi-explicit local CRA algorithm is 

guaranteed to be O(n) for each time step, which is especially desirable for the collision 

response analysis of complex systems. With the use of the Lagrange multiplier method, 

the semi-explicit local CRA dgorithm avoids shortcomings associated with the penalty 

method and provides an accurate description of detailed local deformation during a 

collision process. The generic geometric constraint and the Gauss-Seidel iteration for 

enforcing a Loading constraint such as the Coulomb friction law make the semiexplicit 

local CRA algorithm general enough to handle arbitrary oblique collisions. The 

experimental results indicate that the semi-explicit local CRA approach is capable of 

capturing all the key features during a collision of deformable objects and matches 

closely with the theoretical solution of a classic collision problem in solid mechanics. 

For fracture simulation, a new element-split method is proposed, which has a sounder 

mechanical basis than previous approaches in computer graphics and is more flexible so 

as to accommodate different material fracture criteria such that different failure patterns 

are obtained accordingly. Quantitative simulation results show that the element-split 

approach is consistent with the theoretical Mohr's circle analysis and the slip-Iine theory 

in plasticity. while quaiimive results indicate its visual effectiveness. 
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Chapter 1 

Introduction 

1.1 An Overview of Computer Animation 

Computer animation is a sub-field of computer graphics with a special consideration of the 

dimension of time such that a vast amount of information can be presented in a sequential 

manner. The basic idea of such presentation is to display a sequence of still frames of images 

at a certain fast speed to create an iIIusion of motion. The typical display rate is 24 frames per 

second (fps) for film or at least 30 fps on a raster display device. 

The visual effect of animation relies on the characteristics of human visud system, The 

human eye consists of millions of receptors which function as sensors to sample fgbt from 

the environment. Because of a certain time lag in the reaction time of these sensors and some 

mechanical [imitations of the human visual system such as blinking and tracking, the entire 

human visual system could not sense changes from the environment at a rate higher than a 

cutoff frequency, f, . If a sequence of still image frames are disptayed at a rate greater than 



f, , then the receptors are not able to respond quickly enough to convey the content change 

of each frame to the brain. As a result, an illusion of continuous transition through image 

frames is produced. This property of the visual system is commonly known as visual 

retention. 

Computer animation has been used in many fields such as television, video, film, 

gaming, scientific visualization, etc. since the 1960's. Early applications such as MSGEN 

[12,13] are characterized as computer-assisted animation systems because they primarily deal 

with in-between calculation of 2-D key frames involved in conventional animation. More 

recent systems such as Maya from Alias/WaveFront, Flame from Softimage, and 3-D Studio 

Max from Kinetics are categorized as Full 3-D computer-generated animation systems in 

which a sequence of images are generated by computers. 

Computer-generated animation techniques can be categorized into kinematic and 

dynamic approaches. The basic idea of the first approach is to specify the motion of objects 

with a choice of forward or inverse schemes. In the forward kinematic scheme, the values of 

parameters corresponding to the degrees of freedom in the system are specified to produce 

the desired movement. It is a time-consuming and triaI-and-error process. In contrast, the 

inverse kinematic scheme is the reverse process. 

The kinematic approach is not constrained by basic principles in physics, especially in 

mechanics. For instance, inertia and acceieration of objects are not considered in determining 

their motions. As a result, the resulting animation. especially with deformable objects, does 

not obey the basic physical laws, and therefore is usually less realistic. Such problems lead to 

the development of the dynamic approach which is based upon the principles of physics, 

especially mechanics. The dynamic approach is also called physics-based animation. It offers 



unsurpassed realism over the kinematic approach because the former actively reacts to 

applied forces (e-g. surface loads), to constraints (e.g. prescribed trajectories), to ambient 

media (e.g. viscous fluids), or to impenetrable obstacles (e.g. supporting rigid objects). This 

thesis work is an extension to existing physics-based approaches for the modeling of 

deformable objects. 

A typical development cycle of animation includes five stages: (1) creation of a layout: 

(2) generation of objects; (3) rendering of objects; (4) incorporation of motion and (5) post- 

production. This thesis work is related only to stage (4) without addressing issues in other 

steps. 

1.2 Motivation of this Study 

Visualization of the dynamic interaction and fracture among deformable objects can be 

applied in both the entertainment and engineering industries. In entertainment industries, 

realistic computer animation of deformable objects is an appealing feature of all computer 

animation software packages. In engineering, the simulation of such dynamic interaction 

would give engineers a better understanding of the interaction process. In particular, the 

dynamic load during such a process is usually much larger than the static counterpart, so a 

dynamic failure estimation should be more accurate than the more typical usage of static 

stress analysis. 

To develop a visualization system for deformable objects, three major parts are required 

in a visualization pipeline, as shown in Figure 1.1. The main focus of this thesis is on the 



second part of the pipeline. Within this part, two areas, collision response analysis and 

fracture simulation, are particularly addressed, 

Figure I. 1 : A visualization pipeline. 

Collision response analysis is the kernel component in the dynamic modeling of 

deformable objects. A considerable amount of research work has been devoted to the 

colIision response analysis of deformable objects in the past I5 yem. Many of the existing 

approaches focus on a computationally efficient solution which is essential to applications in 

computer animation. However, these approaches are accompanied by some shortcomings or 

limitations in their accuracy and/or generality (the details wilt be described in Section 2.1). 

This thesis focuses on a noveI, accurate, general-purpose, and yet efficient solution to the 

response analysis of arbitrary collisions between deformable objects. 

Dynamic fracture simulation is an active research area in computer animation. A series 

of studies have been conducted so far with details described in Section 2.2. However, only 

tensile failure criterion is used in those studies. In this thesis work, shear failure criteria are 

also incorporated into a new eIement-split scheme such that more control flexibility can be 

achieved in adopting different failure criteria to generate different failure patterns. 



1.3 Outline of this Thesis Work 

This thesis work consists of two major parts addressing two main issues: dynamic interaction 

and fracture simulation of deformable objects, In the simulation of dynamic interaction, t 

space-time relationship among objects is classified into the following stages. 

(1) Non-collision stage: Each object moves in space without interference from other objects. 

(2) Beginning of collision stage: The moment at which an object just touches another one. 

(3) Collision stage: Period during which two colliding objects interact with each other with a 

non-negative normal stress built up in the contact area Two objects might stick to each 

other or slide relative to each other. 

(4)  End of collision stage: The moment at which an object is just about to leave the other 

one, i.e., the normal suess at the contact area turns to zero or negative. 

An illustration of the four stages is shown in Figure 1.2. The overall strategy in handling 

the dynamic interaction between deformable objects is the combination of the constraint 

method and the global-rotation-local-deformation. The constraint method is used to enforce 

the correctness of the simulation of the collision process. The Lagrangian dynamics is used to 

describe the global rotation of each object with the merits of simplicity and time efficiency, 

while the finite element method (FEW is employed to simulate the local contact between 

colliding objects with the advantages of flexibility and ease in handling an arbitrary contact 

surface and domain. 



Non-collision stage 

= 
.. . -- - p~ I Beginning of collision 

Collision stage 

I I 

End ofco[Iision a 
Figure 1.2: Four stages of the space-time rdationsbip between objects. 



In this thesis, a new semi-explicit local cobion response analysis algorithm is proposed 

to achieve three goals: computationd efficiency, accuracy and generality. Its computational 

cost at each time step is guaranteed to be O(n) in dl cases leading to a solution which is 

faster than most previous approaches if the same number of domain nodes are used. Since 

the Lagrange multiplier method is used, the semi-explicit local collision response analysis 

algorithm provides better accuracy than the penalty method used in many previous 

approaches. The geometric and loading constraints are handed in a general way such that the 

algorithm can be used to describe any ahitrary complex collision between deformable 

objects. 

A typical relationship between collision response analysis and collision detection is 

shown in Figure 1.3 in which the result of collision detection determines the use of the non- 

collision analysis module or the collision analysis module. 

Fracture simulation is tackled by a new eIement-split scheme which is based upon the 

stress information within each element It has the flexibility of incorporating a variety of 

material failure criteria including both tensile and shear types, while in previous approaches 

in computer graphics, only tensile failure criterion coutd be handled. 

The evaluation strategy used in this thesis work is to compare the numerical results of 

the proposed algorithms with existing andyticd soIutions in solid mechanics. No real-world 

experiment is conducted and no comparison between the numerical results and the real-world 

experimental data is carried out due to the following considerations: 

(1) The main focus of this thesis work is on the numerical efficiency and accuracy of the 

proposed algorithms rather than on the demoas&ation of the consistency between the 

numerical results and real-wodd test data 



(2) Even though the realistic representation of dynamic interaction is the final goal of any 

physics-based approach, numerical accuracy is one of the most important necessary 

conditions for such a representation. In this thesis, a series of evaluations are performed 

to verify the numerical accuracy of the proposed algorithms. 

(3) As long as the proposed approach is algorithmically or numerically correct, a right choice 

of material parameters would produce a natural representation of dynamic interaction and 

an arbitrary choice of material parameters might generate super-natural or exaggerating 

deformation of objects. It should be noted that physics laws can be preserved in both 

cases. How to choose correct material parameters is the responsibility of application 

animators and is not studied in this thesis. 

The effectiveness of the semi-explicit local collision response analysis algorithm 

proposed in this thesis is quantitatively evaluated by comparing the results of the numerical 

calculation with the analytical solutions of classic collision problems in solid mechanics. In 

this way, the numerical accuracy in predicting the collision length and in maintaining the 

momentum conservation, energy conservation and impulse-momentum equality can be 

determined such that there is no need for verifying the algorithm with the results in real 

experimental tests. 

The element-split fracture simulation scheme is evaluated with the common shear failure 

pattern in triaxial tests in civil engineering. The orientation of the failure plane in numericd 

examples is verified by the analytical prediction which is obtained by using the Mohr's circle 

method. The shear failure pattern of a broken pIate is compared with Nadai's experimental 

result which is related to the slipline theory of plasticity [Sl]. 



Collision Detection 
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Figure 1.3: Outline of a main flowchart for analysing the dynamic interaction between 

objects. 

1.4 Contributions 

The major contributions of this thesis work include: 

This is the first time that the forward Tagrange multiplier method is appIied in computer 

graphics. In addition, the combination of the semiexplicit time integration, Lagrangian 

dynamics. a fast iterative method for friction and a generic geometric constraint matrix, 

leads to an accurate, fast and general-purpose solution to collision response analysis of 



deformable objects. The undesired shortcomings associated with the penaIty coefficient 

of the penalty method are overcome. 

The local finite element method, a new variation to the conventional finite element 

method is proposed. All the calculations are conducted at the element level (i.e., local 

finite element level) such that no expensive computation in the factorization, inversion 

and assembly of global matrices is needed, leading to an O(n) semi-explicit local 

collision response analysis (CRA) algorithm. Semi-explicit time integration with a fast 

iterative method for contact friction makes the semi-explicit local CRA algorithm simple 

and fast. A generic geometric contact constraint matrix allows the semi-explicit local 

CRA algorithm to be capable of handling arbitrary collision between deformable objects. 

The numericd experiments indicate that the results using the semi-explicit local CRA 

algorithm match with the analytical solution of a classic collision problem in solid 

mechanics and the algorithm is able to accurately estimate the time duration of collision 

leading to: 

+ the correct prediction of stresses inside the object during the collision period which is 

crucial for the analysis of separation or fracture of different parts of the object. 

+ the correct prediction of deformation inside the object caused by a given impact, 

especially the propagation of elastic waves inside the object due to the collision. 

+ less trial-and-error for animators in determining the appropriate incremental time 

interval for the collision period. 

The element-split scheme for fracture simulation is advanced to handIe the cases of 

arbitrary orientation of a splitting plane within each element with the flexibility to 

incorporate different material failure criteria into this scheme because it is based on 



element stress rather than nodal force as in previous approaches. Different failure patterns 

can be obtained by using different material failure criteria, This gives the element-split 

approach more control potential than existing ones in computer graphics. 

1.5 Organization 

The organization of this thesis is as follows. Chapter 2 introduces an overview of previous 

studies in the area of modeling defonnable objects as well as the objectives of this thesis 

work. Chapter 3 presents a brief introduction to one of the most powerful numerical analysis 

tools, the finite element method, and a comparison with other methods. Chapter 4 describes 

some special treatments to the collision detection of arbitrarily-shaped objects covered by 

triangular surface patches on the basis of existing approaches. Chapter 5 proposes a new 

semi-explicit local collision response algorithm for modeling dynamic interaction of 

deforrnnble objects. The results of numerical experiments are also given. Chapter 6 presents 

a new element-split scheme for fracture simulation, failure criteria of material, and 

experimental demonstrations. Chapter 7 summarizes the findings of this thesis work and 

points out possible future work. [n appendix A through G, the detailed algorithms, 

nomenclature and glossary are given. 



Chapter 2 

Previous Work, Problems, and Objectives 

In this chapter, previous research studies in two main issues in physics-based approaches: 

collision response analysis and fracture simulation, are reviewed and the existing problems 

are identified. The objectives of this thesis study are also stated- 

2.1 Collision Response Analysis 

Collision response analysis is one of the most crucial parts in computer animation of 

deformable objects. In this section, the existing approaches in collision response analysis are 

compared with the new approach developed in this thesis in terms of three important factors: 

computational efficiency, accuracy and generality- Such comparison differentiates the new 

approach with existing ones. 



En the past 15 years, researches have proposed many solutions to this task. However, 

there is still plenty room for better approaches in terms of computational efficiency, 

accuracy and generality. The main purpose of this work is to propose a new semi-explicit 

local collision response analysis algorithm, which is accurate in terms of description of 

collision response. general-purpose in terms of no extra assumptions on geometric constraint 

formula. nodd connection at contact surface, deformation zones, etc.. and yet fast in terms of 

guaranteed O(n) time cost. 

2.1.1 Computational Efficiency 

In this thesis. a new semi-explicit local collision response analysis algorithm is proposed. Its 

computational cost is guaranteed to be O(n) time in all cases, where n is the tokI number of 

domain nodes. The details of the algorithms will be explained in Section 5.4. In the 

conventional tinite element approach [48.69-711, since a narrow non-zem diagonal band in 

the motion equations is not guaranteed to be formed when a system becomes complex, the 

profile solver likely takes more than O(n) to solve the system motion equations. Even if a 

sparse matrix solver is used, extra procedures are needed to take care of zero entries within 

the diagonal band [59]. The total cost stilI IikeIy ends up higher than O(n). Similarly, in the 

deforrnabIe models developed by Baraff and Desbrun [4,26] the computational cost can not 

be paranteed as O(n), especially when the total number of domain nodes becomes large. 

Even though the boundary element approach [39] claims that its time cost without 

incIuding the pre-computation can be reduced to O(m), where rn is the total number of 

surface nodes and s is the maximum of the number of boundary condition changes and the 

number of boundary value changes, it should be kept in mind that this concIusion is based 



upon an assumption that the boundary values and conditions change only at very few surface 

nodes. This assumption may be acceptable in static or quasi-static cases but absolutely not in 

dynamic cases. In dynamic cases such as a collision process, the inertia forces of all surface 

nodes (a part of boundary value) usually change simultaneousIy. This forces the approach to 

take at least O( m' ) time. It is difficult to say that O ( m 2 )  must be higher than O(n) consumed 

by tfie semi-explicit local collision response analysis approach where n is the total number of 

domain nodes. However. consideration of the limitations of the boundary element approach 

as explained in Section 2.1.3 eliminates it as a candidate for a general-purpose solution. So 

far the approach reported in [391 handles only the simplest static analysis like the volumetric 

deformable model in [24], which is not the topic focused in this research work. 

It should be stated that the global deformation approaches [2956,7T are normally faster 

than the semi-explicit local collision response analysis approach because in the former only 

very few domain nodes are considered. However, what is sacrificed in the global 

deformation approaches is the realistic representation of collision response which is one 

focus of this research work as explained in Section 2.1.2. 

2.12 Accuracy 

Penaltv vs Larmn~e Multi~lier Method 

An essentid component of colIision response analysis is to impose constraints at the interface 

between two or more colliding objects. Geometric constraints are imposed on the nodal 

displacement variables. while force constraints are imposed on the nodaI force variables. The 

constraints can be a user-specified value or a certain condition between solution variables. 



The Lagrange rndtiplier method and the penalty method are two widely used procedures to 

impose the consmints [ l  11. 

Let's consider the following variational forrnuiation of a discrete system model for 

steady-stare analysis: 

with the condition 

where U, K and R are the displacement vector, stiffness matrix (order nx n ) and load vector, 

respectively. ll is the totaI potential energy of the system which is the sum of the strain 

energy and the potentiai energy of the appIied toads, Equation (2.2) represents the principle 

of minimum total potential energy f60]. 

If m linearly independent discrete constraints BU = V are imposed onto the solution 

using the Lagrange rndtiptier method we have [81 



where A is a vector of m additional variables, the Lagrange multipliers. B is a matrix of 

dimension m x n . By invoking 6n ' = 0 and considering that dU and d). are arbitrary, m 

extra equations are introduced into the original system of equations as follows 

In the penalty method. an additional constant, the penalty coeficient (a), of relatively 

large magnitude is added to the system as follows 

By invoking dl- = 0 and considering that 6U is ahiuary, the following equation results 

Comparison between equations (2.4) and (2.6) indicates that the advantage of the 

penalty method is that it is easy to implement because no extra equation is introduced. 

However, some drawbacks of the penalty method for coIIision response analysis include the 

following: 

( 1) The penalty term leads to an inaccurate sotution 1751. 



(2) It increases the stiffness of the equation of motion resuIting in an undesirable requirement 

for a smaller time step in integration [75]. 

(3) The penalty coefficient may need to be adjusted manually on a trial-anderror basis and is 

problem dependent. 

(4) Some penalty methods use the penetration depth or the like as input to determine the 

repulsive force. Since the penetration depth is dependent on the size of time step, 

different size of time steps may result in different collision responses. In other words, 

they are sensitive to the size of time step. 

On the contrary, the Lagrange multiplier mehod can be used to avoid most of the above 

shortcomings with the price of extra equations to be solved. Since the number of contact 

nodes in a system is normally much smaller than the totaI number of nodes in the system, 

such extra computation or memory cost is tolerable. Hence, in this thesis, the Lagrange 

multiplier method is adopted. 

In the past 15 years, some researchers use the penalty method for the sake of simplicity, 

while others adopt it simply because the collision response analysis is not the major issue in 

f (rt - 
their studies. Terzopoulos et aI. [7I] add a potential energy [76], c, e , around each 

object, where f is an insideloutside function of an object and r is the position vector of a 

particle. c, and E are constants which determine the shape of the potential, and are chosen to 

prevent the penetration between objects. The resulting coIIision force is determined by the 

gradient of the potential. One potentid problem w i h  this approach is that it is 

computationally expensive to construct the insideloutside function for complex arbitrarily- 

shaped objects. As well, the lack of relationship between these two constants and material 



parameters of objects causes difficulty in using material parameters directly as an input for 

the collision response analysis. TerzopouIos and Witkin [72] propose a hybrid formulation of 

rigid dynamics and nonrigid linear elasticity. However, their motion equation still does not 

contain any collision constraint components as independent variables to be solved, resulting 

in an inaccurate solution in the collision response analysis. Some other similar approaches of 

using the penalty method include [4,29], even though their main focus may not be on the 

accurate collision response analysis. 

Several researchers have conducted research related to the Lagrange multiplier method 

in computer graphics. Baraff [3] uses the Lagrange multiplier method to handle the 

interconnection of different parts of articulated figures. Metaxas and Terzopoufos [48.49] use 

the Lagrange multiplier method to describe point-to-point interconnections [7] between 

defomable parts in a self-assembly modeling process. The use of point-to-point constraints 

poses a strict requirement for the dignment of surface nodes of deformable parts to be 

assembled. Even though the equation of motion with Lagrange multiplier is used in 

collision response analysis, the Lagrange multipliers are used only for computing the 

interconnecting forces between deformable parts, while the collision forces between the 

assembled deformable complex and the environment are determined simply by the reaction 

constraints [5n. The Lagrange multiphers for point-to-point interconnections are essentially 

internal contact forces between defomable subparts which are not separable after the seIf- 

assembly process. In the sense of collision response, their approach uses the reaction 

constraint. Even though it is simp[e and requires no extra differential equations, the reaction 

constraint approach has the following sttortcomings: 



(1) Only one reaction constraint is allowed at each node at any time. This limits the scope of 

the approach. 

(2) It is difficult to accurately determine the frictional force between two colliding 

deformable objects which are separable. 

Plan et al. [57] give an excellent summary on different types of constraints. They use 

augmented hgrangian constraints for constructing deformable objects which are 

incompressible and moldable, Witkin and Welch [77] use the Lagrange multiplier method to 

formulate constrained dynamics of non-rigid structures, similar to that of [%I. Their 

formulation focuses on the case when the constraint is known in advance, e.g. in motion 

control or in path control. In other words, their approach is not designed for handling cases 

where the constraint is not known before a simulation, i.e., the cases of arbitrary collision. 

Baraff and Witkin [S] combine Witkin's constraint dynamics [77l and Baraff s analytic 

contact force model for rigid bodies [12] to form a scheme for the dynamic simulation of 

non-penetrating flexible bodies. They propose a two-phase model of coftision response of 

flexible bodies, which requires the determination of impulse at collision points in phase 1 and 

the enforcement of the acceleration constraint of the gap function between two colliding 

objects in phase 2. The possible limitation of this two-phase model is that the acceleration 

inequality constraint usually requires complex quadratic programming E1.21. 

Global vs Local Deformation 

Global deformation means that the deformation of an object is approximated by a linear 

combination of a set of basis shape or mode vectors. Its original idea comes from the 

concept of super element and mode superposition in engineering andysis [8,34] and similar 



ideas have been used in computer graphics since 1989 (561. The advantage of the global 

deformation approach is the reduction of computational cost, while the disadvantage is the 

loss of local deformation detaiIs. 

For the first time in computer graphics, Pentland and Williams [56] achieve the goal of 

separate representation of dynamic behavior and geometric form by using the global 

deformation technique f6]. A system is built using polynomial deformation mappings to 

couple a vibration-mode ("modal") representation of object dynamics together with 

volumetric models of object geometry. The collision response is treated from a sort of 

artistic point of view by using different vibration modes. The calculation of the true contact 

surface in a non-zero-length collision stage for deformable objects is not performed. 

Consequently, deformation of objects looks interesting, but not quite physically realistic. For 

instance, the deformation of the baIl in Figure 2 in reference [56] should be asymmetrical 

when it collides with the beam, because the part of the ball which is in contact with the beam 

should deform the most. 

Witkin and Welch [773, Banff and Witkin [5j use the concept of global deformation to 

describe flexible objects. It is a compromise between the extremes of the nodal and rigid 

fomulations. The changes in the shape of objects are approximated by the global 

deformation which is simply a parametric "space warp" of a l I  the discretized nodes of the 

objects. Since fewer nodes are used in calculating the global deformation as compared to the 

nodal approach, this scheme is fast. In addition, the stiffness problem due to locd 

interactions is eliminzted because the shape parameters are gIobd in their effect 



Faloutsos et al. [29] extend Witkin and Welch's approach to accommodate a hierarchy 

of deformation of objects in a nonlinear fashion with respect to the state panmeters. The 

approach has a similar shortcoming as Pentland and Williams' approach. 

Using the locd deformation approach means that a reasonable number of domain nodes 

are used to partition each object domain into a finite number of sub-domains such that the 

local detailed deformation can be sufficiently described. For some cases like dynamic 

fracture simulation or realistic representation of asymmetric deformation due to oblique 

complex collision, the local deformation approach probably is one of most suitable 

candidates. Since generality is one of the three goals to be achieved in this work, the local 

deformation approach is adopted in this thesis. To address the requirement of computational 

efficiency, one of the most efficient solutions for the local deformation approach is described 

in Section 5.1. 

2.13 Generality 

Boundarv Element vs Finite Element Method 

The collision response analysis could be performed by using the finite difference method, the 

boundary eiement method [9] or the finite eIement method [S]. Since the finite difference 

method usually requires special modifications to define irregular boundaries and complex 

boundary conditions, it is not used to solve motion equations in this research work. Even 

though the computationd mesh for the BEM is simpler than hat for the finite element 

method, the boundary element method has the following disadvantages: 

(1) The difficulties associated with singular integrals in the boundary element method are 

significant and are often highly underestimated [91. 



(2) It is difficult to use the boundary element method to handle heterogeneous domains [9]. 

(3) It is difficult, if not impossible, to use the boundary element method to conduct an 

effective dynamic fracture simulation as shown in Figure 2.1. 

Since the main focus of this research work is to propose an accurate, fast and general- 

purpose solution to the collision response analysis, the boundary eiement method is 

eliminated because of its limitations. One major disadvantage of the conventional finite 

element method is its higher computational cost, compared to the boundary element method. 

This shortcoming is overcome by introducing a new variation of the conventional finite 

element method in this thesis such that no factorization, inversion and assembly of gIobal 

matrices are required, and in the meantime all advantages of the finite element method 

compared to the boundary element method, are retained. 

Figure 2.1 : Dynamic fracture simulation of a plate caused by a falling cube with the scmi- 

explicit local collision response analysis approach used in this thesis. 



Partitioned local deformation means that the deformation field of a deformable object is 

partitioned or simplified into several different types of deformation zones each of which is 

handled differently, while the arbitrary local deformation does not impose such 

simplification. 

Cani-Gascuel and Desbrun [IS] propose a unique approach to handle collision response 

between deformable objects by a combination of global and local deformation. An implicit 

isopotential surface is statically used to coat each base structure, an internal physically based 

model. The implicit layer performs collision detection and generates the local deformations 

due to contact, while the base structure controls the global scale behavior. The implicit 

surface is generated by a set of skeletons si ( i =1, ..., n) with associated field functions J as 

follows: 

( P E  'H3 1 f (f) =cI}, 

where c, denotes an isovalue. f is called the "field function" which is the summation of J, 

the implicit contribution of the i-th skeleton. Skeletons can be any geometric primitives, 

points. curves. parametric surfaces, simple volumes, etc., which admit a well defined distance 

function- Contact between objects is dealt with in two steps: (1) A negative field g modeling 

compression is added in the interpenetration region, as shown in Figure 2.2, in order to 



generate a contact surface with the other object; (2) A positive field p modeling the 

transverse propagation of deformations is added in the propagation region. These two 

treatments lead to the vanishing of interpenetration region in the Ieft subfigure of Figure 2.2, 

as illustrated in the right subfigure of Figure 2.2, 

This approach is able to generate a relatively accurate contact surface without increasing 

computation cost. However, one possible problem is that the interpenetration region in Figure 

2.2 is not necessarily the area with the greatest deformation during a collision. For instance, 

consider the situation where the right subpart of object 1 is much stiffer than its left subpart, 

In such a case, probabty no deformation is generated by the modet because the right sub-part 

is stiff and the left sub-part is not in the interpenetration and propagation regions. Another 

problem is that no experimental evduation has been conducted with respect to the length of 

the collision period which is the most important factor to determine the deformation with a 

specific stiffness for the coiliding objects. Furthermore, how to divide into these three 

regions remains quite arbitrary. The approach proposed in this thesis focuses on the general 

treatment of arbitrary local deformation. 



Object 1 Object t 

Tmsvene 
fi=fJ propagation 

E'ropaption region 

Figure 2.2: Modeling contact consists of different deformation fields in the interpenetration 

region and in the propagation regions [15]. 

2.1.4 Comments on Constraint Methods 

Common to all constraint methods is that the interaction between objects is considered as a 

kind of constraint to the entire system. To impose the constraint, options include: ( 1) to insert 

a specid type of interface etement at the colIision point; (2) to mathematically calculate the 

interface force at the contact area and consider such interface force as external loading to the 

cotIiding objects. The first option represents some old approaches which are associated with 

the penalty method, while the second option corresponds to the Lagrange muItipfier 

approaches in Section 2 - 1 2  For the sake of completeness of the literature review, the 

variations of the first option are introduced M o w .  



+ Spring 

Inserting a spring dynarnicdly (i.e., during a simulation) at the collision point is the most 

intuitive way to handle colIisions 1501. The precondition for using a spring is that the 

simulation system should aUow for applying the spring forces as external forces to the 

colliding objects. Whenever a collision occurs, a spring is tempoMlily inserted at the 

collision point. The stiffness of the spring should be large enough to withstand the impact 

between the two objecrs. After the colIision, the spring is eliminated from the system. This 

constraint is easy to understand and implement. 

One major problem with this approach is that it is concepruaIIy supposed to pass only the 

force dong the axis of the spring without considering the forces perpendicular to it. When 

sliding exists at the interface between the two objects, the skewed spring hardly functions 

properly, as shown in Figure 2.3. Another probIem is the connection between the spring and 

the surface node on the surface of each colliding object. Most often, the surface nodes of the 

two colIiding objects are not contiguous to each other, as shown in Figure 2.4(a). That is. the 

surface nodes of the two objects are not lined up horizontdly and the number of surface 

nodes of both objects is not the same. As a resuIt, it is difficult to use rectangular elements to 

connect the surface nodes of the two objects directly. One possible solution is that a 

transition layer is developed which consists of the projections of the nodes of surfaces of two 

colliding objects A and B. as shown in Figure 2.4(b) [64. 



Sliding 

Figure 2.3: A spring connecting two objects. (a) before sliding; (b) after sliding. 

Transition layer 
Object h Object A - - 
Object B Object B 

Figure 2.4: Surface noncontiguous nodes and a transition layer proposed by Simo et al. 

1671. 



One drawback associated with this technique is the extra layer of nodes which is difficult 

to locate on curved surfaces. Another shortcoming is the high computational cost when the 

stiffness of the spring has to be given a large magnitude [I], because a large value of stiffness 

requires a small time step for accurate numerical integration. 

+ Pinball 

Pinbdis are statically used ( i t . .  pre-allocated before a simulation) to form an interface layer 

for each object in the system, as shown in Figure 2.5 [lo]. Each pinball is embedded in one 

finite element at the surface of the object. Then, the collision detection is simplified to check 

only the penetration between surface pinballs of different objects. The penemtion depth is 

calculated by using the coordinates of the center of each pinball. On the basis of that depth. 

the reaction force can be calculated in a similar way as in calculating the spring force. 

One problem with the pinball approach is that the time step before collision can not be 

large. Otherwise, the two colliding pinballs could entirely pass over each other in a single 

time step. resulting in no collision between these two pinbdls. Another problem is that 

handling the friction between pinballs is still not well solved. Since the surface of the object 

is simulated by pinbalts. the resulting surface is not even such that when one pinball roll over 

another row of pinbdls. the normal at the contact point varies or oscilIates with time. But h s  

should not exist. 



Pinbail interface layer 

Figure 2.5: A pinball interface layer shown in two dimensions. 

Point-to-point and point-to-surface elements 

The interface or contact surface formed by adjacent objects can be generally classified as 

point-to-point. point-to-surface and surface-to-surface 1631. In two dimensions, the second 

and third cases degenerate into point-to-edge and edge-to-edge, as shown in Figures 2.6 and 

2.7. A framework for contact interface between objects is proposed using two types of 

elements. point-to-point (pto-p) and point-to-surface (p-to+). The pto-p element is a two- 

node rod-like element. Its length is usually set to be relatively smaller than the size of the 

object with which it is associated. Like the pinball approach [lo], the p-to-p element is 

statically allocated to the surface of each object prior to numerical andysis or simulation, 

resulting in efficient coltision detection (Figure 2.6(a)). The pto-s element is used as a bridge 

connecting a pto-p element with another object to which the gto-p element is penetrating, as 



shown in Figure 2.6(b). It is assumed that the surface of the penetrated object can be 

approximately discretized into mangular divisions. Under this assumption, the pto-s element 

is defined as a tetrahedron with four nodes, three of which are connected to the penetrated 

object and the remaining one is linked to a pto-p element, which penetrates the object. Like 

the spring, the p-to-s is dynamically allocated and deallocated at the interface behveen 

objects during the analysis. 

Object A Object A 

Object B Object B 

Object A 

Object B 

Figure 2.6: Three types of contact interfaces between objects in two dimensions. (a) point- 

to-point: (b) point-to-surface: (c) surface-to-surface. 
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.* Object A . 

P-to-r eIement of object A 

Cm-5 element of object B 

8- P-tep element of object A or B 

Figure 2.7: A fmework for interface contact using (a) point-to-point element and (b) point- 

to-surface element. 

The combined usage of pto-p and pto-s elements can avoid the shortcoming associated 

with the spring approach (Fig. 2.3) and the requirement for small time step with the pinball 

approach. However. this approach can not elegantly hande cases where there is sliding at the 

interface. Regenemion of p-to-p and p-tc+s elements at the interface after each time step 

could cope with the friction cases. but the computation cost would be tw high to be of 

practical use. 



4 Problems with interface components 

Overall, the problem with this type of interface component is that it does not deal with 

friction very well. In addition, many investigators indicated the problem of high stiffness of 

differential equations, if the penalty method is used [1,57,75]. The high stiffness forces users 

to use a smdl time step which adds a big computation cost. 

Witkin [751 indicates that the penalty method refated to spring is not a good 

comrnunicacion way or linkage between the penetration depth and the reaction forces. He 

advocates the direct calculation of reaction force. 

2.2 Fracture Simulation 

Fracture is a common phenomenon in the natural world. Dynamic fracture. i.e. the fracture in 

a dynamic collision process. is difficult to describe in a realistic way. If we further consider 

the dynamic fracture of deformable objects, the task becomes more challenging because of 

the coupling of the large dynamic deformation and fracture, which requires a good collision 

detection scheme. a good collision response analyzer and a good fracnue simulator. 

In computer graphics. several studies have been conducted in the past with respect to 

Fracnue (static or dynamic). Terzopoulos and Fleischer [69,70] compare the distance 

between two adjacent nodes with respect to a given threshold. If the distance exceeds the 

threshold, the occurrence of the failure is assumed. Norton et al. [53] use a similar strategy 

to study the dynamic fracture of 3D solid objects. Mazarak et d. [47] apply this type of 

faiIure criteria in modeling the fracture of rigid objects in an explosion process. Smith et al. 



[68] use this type of failure criteria in a mass-node system. In essence. the approaches used 

by all of the above indude a brute force tension failure criterion which has the following 

drawbacks: ( 1) It can only handIe the tensional failure but not shear failure: (2) It is unable to 

,gracefully handle the failure in a general orientation rather than in the direction connecting 

two adjacent nodes. 

O'Brien and Hodgins [54] advance a step from previous studies by using a node-split 

scheme in which the forces at a given node are compared with the threshold to determine if 

the node needs to be split in two. One major shortcoming of ?his approach is that it limits the 

potential possibility of using other more complex failure criteria which are based upon the 

element stresses. Only the basic tensile failure criterion is used. 

Some other related studies include the static fracture generation by Hirota et al. [37] and 

in-plane fracture by Neff and Fiume [El. Static crack patterns are created by using a mass 

and spring system. Only tensile failure criterion is eligible to be used in such a type of 

system. The propagation dgorithm proposed by Neff and Fiume is developed for in-plane 2- 

112 D cases and involves some heuristic treatments which are beyond the principle of a 

physics-based approach. 

This thesis also addresses the issue of realistic computer animation of dynamic fracture of 

deformable objects with the following features: 

( I )  The clement-split scheme which is originally proposed by Shen and Yang [65] for 

hexahedron elements will be extended to tetrahedron elements to handle fractures in 

ahiuary orientarions. 



(2) Beside the simplest tension failure criteria, shear type criteria such as Tresca's criterion 

(no friction) and Coulomb-Mohr's criterion (with friction) are investigated to identify 

their influence on the fracture pattern and their potential application in computer 

animation. 



Chapter 3 

A Numerical Tool: Finite Element Method 

A brief introduction to the history of the finite element method is given in this chapter and 

the reasons to choose it as a numerical tool in this study are also provided. 

3.1 Introduction 

The finite element method (FEM) is a variational procedure in which the approximating 

functions such as algebraic polynomials are used to approximate the solution variables in 

simple subdomains (called finite elements) into which a given domain is divided. Modem 

computer architecture and computing techniques promote the devetopment and apptication of 

such method. 

The basic idea of the FEM originated from m a w  analysis of airplane structures in 

aerospace in the 1950s [46]. According to the structure matrix analysis method, an entire 



structure can be approximated by an assembly of a finite number of mechanical elements in 

finite sizes such that the function of each element is analogous to the role of a brick in a 

buiIding. 

The concept of the structure mamx method was extended to the solution of plane stress 

problems in elastic mechanics in 1960 and the terminology of "finite element method" was 

adopted [20]. Any continuous medium has to be discretized in the following way in order to 

be analyzed by the FEM: 

The continuum is divided into a finite number of blocks (or elements), each of which is 

linked to its adjacent elements only at certain specified points (or nodes). 

Within each element, the displacement is approximated by a simple function such as a 

linear or higher-order polynomial. The reIationship between nodal force and nodal 

displacement is determined by the variational principle. Here, the nodal force and nodal 

displacement represent the force and displacement at each node of an eIement. 

Assembling the nodal force-displacement relation of all elements leads to a set of linear 

algebraic equations in which nodal displacements are unknowns. Solving such a set of 

equations provides the displacement information at a finite number of nodes within the 

continuum. i.e.. an approximate solution to the problem. 

Nowadays, the FEM has already obtained a dominant position in solid mechanics and is 

in a position of competing with the finite difference method in fluid dynamics. 



3.2 Comparison between Finite Element Method and Other 

Methods 

In general, at least four approaches exist in describing the deformation of objects: 

( 1 ) Classic analytical methods [19] 

In the classic analytical methods, a continuum is assumed to contain an infinite number of 

micro-blocks with infinitesimal size. By letting the size of the micro-block tend to zero, a set 

of differential equations describing the mechanical behavior of the continuum are obtained. 

Solving such a set of equations leads to an analytical solution of unknowns at any point 

within the continuum. However, when non-linear and non-uniform material properties or 

irregular geomeuy are encountered, an analyticd solution is difficult, if not impossible, to 

find. 

(2) Particle system and node-mass system13 1.6 1,62,66] 

Particle systems were developed to address the cases in which the continuum mechanics and 

the finite element method are not suitable. One example is modeling a system which contains 

a significant number of complex elements and/or events in a randomized manner. The basic 

idea of particle system is to model these eiernents andlor events directly rather than bIending 

them into some kind of continuum. 

in a particle system, the material is represented as  a large collection of microscopic particles 

which interact with each other by obeying simple physicd laws at the microscopic 1eveI. The 



disadvantage of particle system is that normdly hundreds of thousan& of particles are 

involved in a system such that its computation cost is huge. Since the focus of this study is 

on structured deformable objects, the particle system does not offer an advantage over the 

following three approaches. 

Node-mass system is a simple way to model the structured deformable objects 

[47,53,76]. However, one potentid shortcoming is that when it is used in fracture simulation. 

arbitrary fracture orientation is not possible except the direction in which two adjacent nodes 

are connected. 

(3) Finite difference method [30j 

The basic idea of the finite difference method is to replace continuous derivatives in 

differential equations with the ratio of changes in the variables over small. but finite 

increments. For example. a first-order derivative a%x is substiruted by With such 

type of substitutions. a differentid equation can be transformed to a finite difference 

equation. 

Taylor series or interpolation plynornids can be used to approximate various 

derivatives. Forward, backward. and centriddifference approximations to the first derivative 

are defined by the following three equations, respectively: 



where u refers to a function of x and y; i and j are the indexes of a node in a finite difference 

mesh, as illustrated in Figure 3.1. 

One advantage of the finite difference method is its simplicity of concept and 

implementation. For instance. the combination of iterative soIution technique and the finite 

difference formulation can achieve a fast solution of thousands or more nodes in 2-4 cases. 

One big disadvantage of the finite difference method is that special procedures are required 

to handle irregular boundaries which introduce uneven meshes. With the finite element 

method, such special procedures are not needed. 

Figure 3.1: A finite difference mesh. 



(4) Boundary element method [9] 

The boundary element method (BEM) transforms the differential operator defined in the 

domain to intern operators defined on the boundary, In the BEM, only the boundary is 

discretized for the Laplace equation. Even though the computational mesh for the BEM is 

simpler than that for the finite element method (FEM), the BEM has the following 

disadvan cages: 

The difficulties associated with singular integrals in the BEM are significant and are 

often highly underestimated. 

It is difficult to use the BEM to handle heterogeneous domains. 

It is difficult, if not impossible, to use the BEM to conduct an effective dynamic fracture 

simulation. 

Besides. with the BEM long narrow objects also has to be broken into assemblies of 

boundary elements because of numetical instabilities. 

Since one main focus of this research work is to propose an accunte, fast and gened- 

purpose solution to the collision response analysis, the BEM is eliminated because of its 

limitations. 

(5) Finite eiement method [46] 

In the FEM, each element can be assigned different m a t e d  properties to simulate the 

material non-uniformity; iterative and incremental methods may be used to solve non-linear 

problems: arbitmy mesh generation eliminates the difficulty in modeling irregular geometric 

shapes. The main advantages of the FEM over the first four methods indude: 



It is applicable to solving all continuum problems such as stress analysis of non-uniform 

materials, anisotropic materials, non-linear stress-strain relations, and complex boundary 

conditions, heat transfer, fluid dynamics and elecuo-magnetism, to name a few. 

With the availabiIity of different types of elements, it is expected that FEM provides a 

higher accuracy of solution than the finite difference method. 

With a piecewise polynomial approximation of weak forms of boundary- or initial-value 

problems over a domain partition of the solution to the system, the FEM is easily used in 

handling irregular domain and in selecting coordinate hnctions which are independent of 

the geometry of the domain. 

With the consideration of the above facts, the E M  is chosen as a numerical tool to 

facilitate the modeling of deformable objects. One major disadvantage of the conventional 

FEM is its higher computationd cost, compared to the BEM. This shortcoming is overcome 

by introducing a new variation of the FEM in this thesis work such that no factorization and 

assembiy of global mamces are required, and in the meantime all advantages over the BEM 

are kept intact. 

The FEM can be implemented in three different ways: displacement-based, equilibrium- 

based and hybrid approach, With the displacement-based method, the displacements within 

elements are considered as unknowns, while in the equilibrium-based approach stresses are 

assumed to be unknown. In the hybrid method. both stresses and displacement are viewed as 

unknowns. In this thesis work, the displacernent-based approach is used. which is actually 

the most widely-used approach due to its simplicity and good numerical properties. 



Chapter 4 

Collision Detection 

A brief summary of existing collision detection methods is given in this chapter. Since 

collision detection is not the main focus in this thesis work, existing methods are adopted for 

the new semi-explicit local collision response analysis algorithm described in the next 

chapter. 

4.1 Existing Methods 

Collision detection is to detect where and when two objects contact each other. It has been 

extensively investigated in the past [21]. The simplest approach is to use the bounding 

volume and spatial decomposition techniques. When two objects are far away, the bounding 

volume method works very well [14,16,21,381. The spatial decomposition technique is used 

to deal with the probIem when the objects are close to each other. The computational cost of 

this approach is high, because of the recursive subdivisions involved 



Baraff [2] uses the principle of geometric coherence to devise algorithms on the basis 

of Iocal features. This improves the performance of collision detection in a dynamic 

environment. Cohen et al. [21] further generalize the idea of coherence leading to the I- 

COLLIDE system which can sirnuiate hundreds of objects undergoing rigid motion. 

Herzen et al. [35] develop a general algorithm for dealing with curved objects with time 

dependent parmetric surfaces. Since subdivision is used, the computation cost is high. A 

similar method is presented by Duff [28]. 

Pentland and William [55] use implicit functions to represent shape and the 'inside- 

outside' tinctions for collision detection. However, it is found not to be robust by Duff [28]. 

Lin and Manocha [44  develop algorithms for curved objects with spline surfaces and 

algebraic surfaces in rigid motion. Baraff and Witkin [ S ]  use polygonal approximation of the 

objects and the resulting polygons are checked for collision. 

Some other algorithms have been developed to address the collision and self-collision 

detection in the modeling of cloth and hair [i7.42,43,78]. In this thesis, the simple detection 

method proposed by Moore and Wilhetms [SO] is extended to detect the collision between 

defonnable objects with triangular surface patches. 

To facilitate the co1Iision detection of arbitrary dynamic interaction among defomable 

objects with discretized surface trianguIar patches, the following special treatments are used 

in this work. They are not complete in terms of collision detection and should be used in 

conjunction with existing schemes such as the space-time bounding volume method 

[13,16,38] and the geometry coherence method [2] to achieve computation efficiency. 



4.2 Collision Detection of Arbitrarily-Shaped Object 

During dynamic interaction among objects, it is possibte that no coIIision happens for a 

period of time. Hence, it is more efficient to use a large time step, D,, during such a period. 

A smaller time step, D, , , should be used when coIIision occurs. - 

The collision between two arbiuariIy-shaped objects can be decomposed into many 

atomic collision processes in each of which one node of the penetrating object penetrates 

through a triangular surface patch of the penetrated object. The assembly of this type of 

atomic collision processes allows us to describe compIex situations in which in some contact 

regions the first object penetrates the second object whiIe in other contact regions the second 

penetrates the first. 

Let us consider such an atomic collision process of a node of one object penetrating a 

triangular patch of another object. The starting and ending position of the penetrating node in 

a time step is designated by e and5 respectively, while the starting and ending position of 

the penetrated triangular patch are represented by three nodes a, -b, -c, and a-b-c, 

respectively. as shown in Figure 4.1. If the [en,@ of each time step in the transition stage 

from noncollision to collision is adapted to be small, the path from e to f can be 

approximated by a suaight line. The normal vector of the penetrated triangular patch pointing 

to the outside of the penetrated object is denoted by n, . The intersection between vector ef 

and triangular patch a, -b, -co is represented by point do, whiIe the intersection with 

mangular patch a-6-c is denoted by point d. 



Figure 4.1: An atomic collision process of a node ( e & fl on a penetrating object and a 

triangular patch ( a-b-c & a, - b, -co ) of a penetrated object. 

The calculation of position of points d and do is performed by solving the intersection 

point between the rrianguIar patch (a-b-c or a, -bo -c,, ) and the line determined by points e 

and$ For instance, the vector corresponding to the intersection point d formed by triangular 

patch a-b-c and Line e-fcan be expressed by 

where r ,  and t, are the barycentric coordinates of mangle patch a-b-c. r,  is the barycenuic 

coordinate of line e$ 

In the Cartesian coordinate system, equation (4.1) is rewritten as 



where x,, y ,  and :, are the Cartesian coordinates of node i in directions X, Y and 2, 

respectively, A similar equation can be written for the intersection point d ,  formed by the 

triangular patch a,-bo-c, and line e-f. Equation (4.2) has a unique solution if the following 

determinant is not equal to zero 

The different range values of r, , r,, and r, correspond to different spatial relationships 

between the penetrating node and the penetrated triangular patch, as illustrated in Table 4.1. 

The arbitrary spatial relationship between vector ef and n, leads to the following three 

categorized situations for collision detection: 

(a) &*a, < O  

In this category of situations. the movement of the penetrating node is in the opposite 

direction of the surface outward normal n, . Depending on the location of points d and do 

relative to points e andf, the following sub-cases exist: 



( a l )  d is between e and f 

Figure 4.2 (a) shows that in this sub-case a collision certainly happens. 

Table 4.1 Parametric range values and the corresponding spatid relationship 

Condition 

I b-c. Otherwise. d is outside the patch. 

Meaning 

0 I ,  1 ,  I ,  I 1, t ,  + t  1 

I 

O I t ,  I1 I The intersection point d is between points e and f. 

- 
The intersection point d is within the triangular patch a- 

t ,  C O  

(a2) d is beyond e 

d is beyond e. 

t ,  > I  

There are three variations for this sub-case. If do is between e andf, a coilision definitely 

d is beyondf. 

occurs, as  illustrated in Figure 4.2(b). When 4 is beyondJ a collision will happen. If do is 

beyond e. the collision status depends upon whether or not the penetrating node is already in 

the collision node list. That is if the penetrating node has already penetrated the triangular 

patch in the last time step, then the collision is still kept in the current time step. Otherwise, 

no collision is assumed in the current time step. 

(a.3) d is beyond f 

There are dso three variations and no collision occurs in alI these variations. Figure 4.2(c) 

shows the case where do is also beyond f. 



(b) ef an, = O  

This is a critical situation which is at the transition point between collision and noncolIision, 

as shown in Figure 4.2(d). The status of collision at the previous step determines that at the 

current step. 

In this category of situations, ef is in the same direction as the surface outward normal of the 

penemted triangular patch. Three subcases follow. 

(c. I )  d is between e and f 

No matter what relative spatial relationship is between do and ef . no collision happens, as 

illustrated in Figure 4.2(e). because n, dways represents the outward normal of the object. 

(c.2) d is beyond e 

In this sub-case. no collision occurs. as iIlusmted in Figure 4.210. 

(c.3) d is beyond f 

No matter what spatial relationship between 6, and ef is, the collision status inherits the 

collision status in the last time step between the penetrating node and the penetrated 

triangular patch. as shown in Fi-pre 4.2(g). 

If rotation is coupIed with transIarion, the time marching step should not be chosen to be 

large because the curved pat6 of the peneuating node or the penetrated triangular patches 



causes the errors in determining the collision point by using the intersection between ef and 

the penetrated triangular patch. 

Figure 4.2: Different cases for collision detection of deformabIe objects. 



Figure 4.3: Pattern 1 for calculating the beginning of the collision. 

Two specid cases need to be handled in a different way. In case 1, e coincides with f 

and the penetrated triangular patch does not move either. Under such circumstance, the 

collision mode (i.e., stants flag being in collision or non-collision stage) of the object remains 

unchanged. compared to that a previous step. In case 2. e stiIl coincides with f but the 

penetrated triangular patch is moving during the current time step. The siped distance 

between the stationary point (e orf) and the moving triangular patch is used in such case to 

determine the collision status. The sign of the distance is determined by the sign of the dot 

product of vector ef and the normal of the triangular patch. 



4.3 Determining the Beginning Instant of Collision 

The length of the collision period between two objects depends on their stiffness. Usually, 

the entire length is quite short relative to the time of free travel of objects in space. Transition 

from the non-collision stage to the collision stage should be considered carefully if the 

developed algorithm is to be able to be applied to a wide spectrum of material property. 

One basic strategy in the semi-explicit local collision response analysis approach is to 

use two different stepping time intervals for the non-collision and collision stages. Since the 

time interval for the non-collision stage, Dr. is much greater than that for the collision stage, 

D,-, . the time intervai between the end of the last time step of free travel and the exact 

beginning instant of a collision. Dr-, , is a fraction of Dr. 

A brute-force approach of looking for D, - is the bisection method which is simple and 

robust, but is not efficient computationally [SO]. In this study, a one-step analytical method is 

used to estimate D,-f l  which provides enough information to the coIlision response analyzer 

due to the nature of the prediction-correction procedure in the semi-explicit local collision 

response analysis algorithm proposed in the next section. 

Depending on whether or not the penetrated triangular patch is movable, there are two 

basic patterns for the determination of the beginning of a collision. In pattern I, the 

penetrated patch is not movable, as shown in Figure 42(e). The beginning of coIlision is 

represented by point d as follows: 



where li I, and u I, refer to the velocity and acceleration of the penetrating node at position e, 

respectively. When rotation is coupled with translation, equation (4.3) should be modified to 

where rl is the vector from the rotation center o to e, where o is the center of mass of the 

object associated with e. r'l is obtained by rotating by A 0  = 01 

81, refer to the angular velocity and acceleration of the penetrating node at position e. 

respectively 

For pattern 2 where the penetrated triangular patch is movable as shown in Figure 4.3, 

the beginning of a collision is determined by solving for t from the folIowing equations: 

where m refers to the location of the collision. d and do are the intersection points between 

ef and uiangular patches a-b-c and a, - 6, -co , respectively- Again, if rotation is involved, 

only an approximate estimation can be obtained by 



The approximate solution provided by equations (4.4) and (4.6) may not be accurate 

enough for other collision response analyzers without a predictioncorrection process. To 

improve on the accuracy, the approach introduced in this section should be used in 

conjunction with the bisection method. 

Similar to the collision detection process described in Section 4.2, different spatial 

relationships between ef and n, correspond to different cases as shown in Table 4.2. In the 

table. none means the situation where there is no need to cdculate the beginning of a 

collision, and arbitrary refers to no limitation on the variation of a parameter. t, and r , _ ,  

correspond to the location of d and do on vector ef , respectively. 

4.4 Static Contact 

Static contact can be viewed as a special case of dynamic collision. The unique 

characteristic of static contact is that objects remain in contact in a fixed relative position for 

an unlimited period of time until some new external forces disturb this static equilibrium. In 

this thesis, quasi-static contact is also categorized as static contact, in which both contacting 

objects may be moving in space but are stationary with respect to each other. It is important 



to distinguish between static contact and dynamic collision, because the time step used in the 

corresponding collision response analysis may be different. 

Table 4.2 Calculation of the beginning of collision 

if collision happens 

otherwise 

is do is beyond e r 
d is between e lk f 

do is between e & f 1 

do is arbitrary 

1 

d is beyond f 

d is arbiuary 

is beyond do is beyond e r 

do is arbitrary 

do is arbitrary 

d is between e & f 

do is between e & f r 

do is arbitrary 

d is beyond f l is 

pattern 1 

none 

pattem 2 

pattem 2 

none 

pattern 2 

none 

none 

none 

pattem 2 

none 

pattern 2 

none 



The criterion to identify a static contact in an atomic collision process (Figure 4.1) is the 

so-called three-time-step principle in which the kinematic variables of nodes at contact m a s  

in three contiguous time steps are examined to determine if a static contact occurs. Basically 

the static contact is determined by checking the Cotlowing two conditions: 

(1) fixed position between the penetrating node and the penetrated triangular patch 

Let P denote the projection of the penetration distance of the penetrating node in the normal 

direction of the penetrated triangular patch at the end of each time step of the prediction- 

correction collision response analysis. Its backward finite difference in the time domain is 

written as 

where h is the time interval. The left superscript of P refers to the time step and the dot on 

top of P denotes the derivative w.r,t. time. If " P = "'P = ""P = 0, then " P = "'P = 0 and 

" P =O via equations (4.7) and (4.Q respectively. Like P, the linear interpolation 

parameters t,(r) and t,(t) in equation (4.1) also have similar reIationships as in 

equations (4.7) and (4.8). " P . "6 ( r )  and "f:(t) signify the inertia property of the pair of 

n" penetrating node and penetrated triangular patch in contact. If ' P  = "((r) = tz(r) = 0 and 

no additional new external forces exert on the pair of penetrating node and penetrated 

triangular patch or there is no change in existing external forces, then 



n+i p - n+i" n+r" - ri ( t )  = t,(t) = 0 (i 2 I). This further implies that 

n + 4 p  = n+i+lil ( t )  - - n+l+Li, (f) = 0 and n + i + I p  - - n+i+Lrl ( t )  - - n"*2t2(t) = 0 (i 2 I) , i.e., a 

temporarily fixed position between the penetrating node and the penetrated triangular patch 

is formed. 

(2) fixed distance between two objects 

In the course of a dynamic collision between objects, the relative position between the 

penetrating node and the penetrated triangular patch may be fixed, but the distance between 

the centers of mass of two colliding objects is continuously changing. Ln order to distinguish 

between static contact and dynamic coIIision, let D denote the distance function between the 

centers of mass of objects associated with the penetrating node and the penetrated triangle 

patch. Its finite difference approximation in the time domain is of the similar form as in 

equations (4.7) and (4.Q" signifies the inertial property of the pair of objects in contact. 

If "b =O and no new externd forces exert on the pair of objects or there is no change in 

existing external forces, then ""b = O  ( i 2 l ) .  This in turn means that 

"""b = "% = 0 ( i  2 I ) ,  i.e., the distance between the two objects is temporarily fixed. 

The combined check of the above two conditions should be enough to detect a static 

contact in most cases. 



4.5 Self-Collision Detection 

Since the approach in this thesis is based upon the decomposition of the entire collision 

process into many atomic collision processes each of which is very primitive (Figure 4.1) and 

therefore poses no limitation to the problem to be solved, self-collision detection can be 

readily conducted if we admit the case where the penetrating node and the penetrated 

triangular patch could be from the same object. However, the penetrating node is not allowed 

to be one of three nodes defining the penetrated triangular patch. Inclusion of the self- 

collision detection obviously increases the total time cost for the coIlision detection. 



Chapter 5 

Collision Response 

Collision response analysis is to describe the dynamic behavior of objects after a collision 

occurs. In this chapter. a new semi-explicit local collision response analysis algorithm is 

proposed. It contains two key components: the forward Lagrange multiplier method and the 

local finite eIement method. The advantage of the semiexplicit local colIision response 

analysis algorithm is to provide a combination of realistic representation and fast solution 

(guaranteed O(n) time) for arbitrary coliision response. 

As to the notation. left superscripts refer to the geometric configuration of objects and 

left subscripts to the reference geometric configuration. A comma in right subscripts is used 

to represent a partial differentiation with respect to a certain coordinate. e.g., u,, = du,/dx, . 

A dot on top of a variable means the differentiation w.r.t. time, i.e., i = drldt . 



Object Modeling 

In order to obtain a continuous solution of the mechanics problem concerned in this thesis, 

variational methods of approximation can be used. They include Rayleigh and Ritz, Galerkin, 

Peuov-Galerkin (Weighted-residuals). Kantorovitch, Trefftz, and the finite element method 

[a]. All these methods except the last one are traditional variational approaches which have 

three main shortcomings: 1) difficulty in handling irregular domain: 2) difficulty in selecting 

coordinate functions; 3) dependence of coordinate hnctions on the geometry of the domain. 

These limitations can be overcome by the finite element method which is a piecewise 

polpomiai approximation of weak forms of boundary- or initial-value problems over a 

domain partition of the solution to the system. Locally, the finite element method represents 

a function as a polynomial in much the same spirit as the classical Lagange and Hermite 

interpolation methods. 

5.1.1 Spatial and Time Discretization 

In the 3-D Euclidean space, the geometry of the domain is partitioned into a finite number of 

subdomains each of which is called a finite element. Independent pokynomials are defined 

and their linear combination forms an approximation to the soIution within each element. In 

the domain of time. solution variables are discretized by using finite difference. 



5.13 Description of Deformation and Stress 

Let ".xi and O x ,  be the spatial coordinate system of the deformed configuration at time step n 

and the material coordinate system of the undefomed configuration, respectively. Folbwing 

the notation in classical continuum mechanics [32], the Lagrangian-Green svain tensor is 

used to describe finite strains, 

where ,"u,="~,-~ .r ,  refers to the component of a displacement vector in direction i. To be 

compatible with the Lagrangian-Green strain tensor, the second Piola-Kirchhoff stress 

tensor. S,, , is adopted to describe the stress state of deformed objects, 

where is the Eulerian-Cauchy stress tensor which is measured in the deformed 

configuration at time step n. W is the material deformation gradient defined as 



where the left superscripts n and 0 refer to the deformed configuration at time step n and the 

original configuration at time step 0, respectively. det W in equation (5.2) is the determinant 

of the deformation gradient W and basicdly denotes the change in volume due to the 

deformation. 

5.13 Material Abstraction 

For the sake of simplicity, only isotropic, eIastic materials are considered in this thesis. The 

relationship between stress and strain can be expressed as 

where s,, and e, are stress and strain components, respectively- g,, gz and g, are 

dependent upon material parameters as foltows: 



where E is Young's modulus and p is Poisson's ratio. They are two eIastic material 

parameters. 

5.1.4 Partition of the Change in Geametric Configuration of Objects 
The change in geometric confi-guration of objects can be decomposed into rotation and 

translation both of which can be hrther divided into local and global components. Global 

translation and rotation are called rigid-body movement, while local translation and rotation 

contribute to local deformation. Even though it is possible to include the local rotational 

degrees of freedom in an analysis [23,791, they are not used in this thesis because of their 

high computation cost. For elastic continuum material, we can use different magnitude of 

mslatory displacements of nodes to approximate any moderate amount of Iocal rotation. In 

the case of huge local rotation. the object is partitioned into two sub-objects. Thus, in this 

thesis the change in geometric configuration is partitioned into global rotation, global 

translation and local translation. 

5.1.5 Treatment of F i t e  Rotation 

It is more difficult to describe the rotation of objects as compared with translation because 

vector addition is not suitable in this case. Two typical ways to handIe giobd rotation are as 

follows. 

Gimbal angle approach: The basic concept of the gimbal angle approach is that the rotation 

of an object is interpreted as a prefixed order of successive sub-rotations corresponding to 

three components of the rotation (0 9 , B  -) which refer to the rotations about axes x, y and 
. - 



,-. respectively. Anorher choice to specify the orientation is the Euler angles [29]. More 

accurately, there are at least ten versions of Euler angles that have been used. 

Even though this approach guarantees the uniqueness of the computed orientation of the 

object. it does not necessarily mean that the solution is correct because different order of 

successive sub-rotations gives different orientations. In general, an assumption of small 

rotation increment is required. The singularity problem, gimbal lock, wiIl occur if one 

specific rotation component is equal to 90'. because a denominator in the calculation of 

incremental gimbal angles will become zero. 

Rotation vector approach: The underlying idea of the rotation vector approach is to describe 

an arbitrary rotation of an object by using a specific rotation about a corresponding axis. One 

common practice is to use the incremental rotation matrix [33], 

where ("A8, .  "A@,,  "A@- ) are the increment of rotation angles w.r.t. x, y, and I axes, 

respectively. The precondition for the comcmess of this matrix is infinitesimal rotation. 

However. the requirement for infinitesimal rotation wiIl increase the total number of 

incremental steps tremendously. If the rotation in one time step is finite rather than 

infinitesimal, it is easy to prove that "dR no longer preserves the salient properties of an 



onhonormat transformation. One remedy is to reorthonormalize the rotated basis in an affine 

space to avoid the loss of orthogonality and unity. 

In this thesis work, the Hamilton's quaternion is used as a representation of finite 

rotation such hat  no re-orthonormalization and no restriction on infinitesimal rotation and 

gimbal lock are required. During each time step, the sub-rotations ("49,. "dB,, "AdB, ) 

around three Cartesian coordinate axes can be transformed to a single rotation "A8 according 

to Theorem 1 which is proved in Appendix A. If three sub-rotations do not happen 

simultaneously in one time step, then the time interval needs to be divided into finer ones 

such that the sub-rotations occur simultaneously in each new time interval. 

Theorem 1 tf (n8r. "0,, '8: ) refers to the average angular velocities of the sub-rotations 

about the global Cartesian coordinate axes x. y, and z in time step n and these sub-rotations 

take place simuItaneously in this time interval (= h )  with the rotation angles varying 

continuously from 0 to "At?, ( j = x ,  y,:) . then the combination of these sub-rotations is 

equivalent to a single rotation about the axis p "8,, '8. ) with the rotation angle 

The Hamilton's quaternion compactly represents an arbitrary rotation about an xis passing 

"A6 "A6 
through the origin. By means of quaternion (cos-, sin - n) . the rotation matrix of 

2 2 

an arbitrary rotation in time step n can be derived as 



eos "A$ + +(" n , (L - cos "A@) -"n, sin "AB+"n, 'n, (1 - cos "At?) 

"n,sin"i19+"nr"n,(l-cosnA8) cos"A$+("n,~(~-cosnAB) 

-"n, sin %B+"n, "n- (I - cos "Ae) "n, sin "A$+"n, "n- (I - cos "dB) 

"n, sin "AB+"n, "n. (1 - cos "At?) 

-"n, sin "Ae+"n, "n. (1 - cos 36) 

cos + ("n, )I (1 - cor 20) 

where " n =(" nr. "n, , "n. ) refers to a unit vector of the rotation axis and "A8 is the 

incremental rotation angle about "n in time step n. "AR is the incremental rotation matrix. 

Since a rotation matrix corresponds to a specific type of orthogonal transformation in an 

affine space. it is easy to derive " R="AR "-'R (Appendix B), where " R and "" R are 

rotation mauices in time steps n and n-1. respectively. In an incremental analysis, the entries 

in "AR can be calculated according to Theorem 1 and then " R is computed by 

" R="AR "-'R . The initial rotation matrix.' R , equals the unity matrix. 

5.2 Governing Equations of System 

As a compromise between efficiency and functionality, the L a p g i a n  dynamics is used to 

describe globid rotation because of its simplicity and the finite element method is used to 

describe translation because of its flexibility. On the basis of D'Alembert's principle and the 



principle of virtual displacement, the semi-discrete system governing equations thar describe 

the equilibrium of a system is approximated by 

M "ii, +C "u, + "'K "u,="R, 

where the global mass matrix M and damping matrix C are assumed to be constant. "M, is 

the inertia tensor. "-'I( refers to the global stiffness matrix at step n- I .  " R is the external 

load vector and "Q the torque vectors caused by external forces. "u,, "u,, 'ii, are 

translatory displacement, velocity, acceleration, respectively, and determined by central 

difference as follows 

" .. 1 
u, =- I Flu, - 2 "u, + "-lu, ,, 

h' 

where h is the interval in each time step. 



5.3 Geometric and Loading Constraints due to Contact 

There are two types of constraints which must be considered during a collision. The first one 

is the geometric constraint which imposes the requirement of geometric coherence to the 

displacement of two colliding objects, such as the prevention of inter-penetration between 

objects and the allowance of sliding between objects if the tangentid force exceeds che 

fictional capacity at the interface. The giobaI geometric constraint at time step n+l can be 

expressed by 

where " X  and ""X are coordinate vectors at time step n and n+l, respectively. 

"~'AU = ""u- "u . "'I u is the total displacement vector at time step n+ t with two 

components, ""u=""u,+""u,, where " L ~ ,  and '+"ur are the linear displacement vector 

contributed by translation and rotation, respectively. 

For the atomic process in Figure 5.1, the interpolation of coordinates within each 

triangular patch is linear. The parameters t , .  r,. and t ,  are calculated by equation (4.2). Let 

the sub-matrix ""G"' of ""G represent part of the geometric constraint matrix 

corresponding to the contribution of the penetrating node j whose starting and ending 

position is e andf. respectively. in time step n+I. The local geometric consmint with respect 



to penetrating node j can be expressed in the following generic way (here, 'generic' means 

that the constraint matrix is independent of the geometric format of the surface of the object): 

where 

The global geometric constraint ""G is formed by assembling the local geometric 

constraint ""G'" over aII penetrating nodes similar to assembling the element stiffness 

matrices into the global stiffness matrix. 

The second type of constraint is the loading constraint. It is assumed that the contact 

force at each penetrating node is transferred to the three nodes of the penetrated triangular 

patch through a linear interpolation which is the same as the interpolation of coordinates in 

equation (5.1 1b). The contact forces at both the peneuating node and the nodes of the 

penetrated triangular patches are considered as external loading to the system. Such extra 

loading contributed by the penetrating node j is calcuIated  by(""^'" )r "A'" , where 

= [n 1, 11) " A  " A Y ' : " ~  contains the components of contact force at node j in 



directions x. y, and 2. It should be noted that only the contact forces at the penetrating nodes 

are independent unknowns, while those at the nodes of the penetrated triangular parches are 

dependent through the Newtonian action-reaction law and the hea r  interpolation. Such type 

of linear interpolation of the penetrating force among three nodes of the penetrated mangdar 

patch guarantees the equilibrium of translatory forces but not rotational forces in the system. 

In order to conserve angular momentum for the contact, algorithmic moment arms 

(numerically-corrected moment arms) should be used. In computer animation, this numerical 

correction may not be needed depending upon the desired accuracy imposed by the users. 

The assembly of the extra loading caused by all penetrating nodes leads to the global contact 

force vector (" IG)~ ' A  which will be used in a set of modified system governing 

equations. 

Another aspect of the loading constraint is that the contact forces should obey the basic 

friction law. In this thesis, the basic Coulomb law is adopted and the static friction coefficient 

is assumed to be the same as the dynamic one. Let us consider the penetrating node j with a 

contact force vector ( FC, . FC, , FC. ), i-e., 

If the normal vector of the penetrated triangdar patch is expressed by ( XI, Y, , 2, ), the 

norrnal force FC, and the norm of the tangotid force I F C , ~  in Figure 5.1 are expressed as 



and 

respectively. If FC, is along the direction -n,, then a tension mode is reached. In such 

case, both the normal and tangential contact forces at the penetrating node are set to be zero. 

Let # be the friction angle between two objects. The Coulomb friction law, 

IFC, I = IFC, 1. tan 8 , is enforced by using a Gauss-Seidel iterative algorithm (Appendix C) in 

which the tangential contact force is updated at each step. 

Figure 5.1: Normal and tangential components of the contact force. 



5.4 A New Semi-Explicit Local Collision Response Analysis 

Algorithm 

Before the new dgorithrn is presented, the conventional Lagrange multiplier method and its 

relationship with time integration are introduced first. 

Conventional Laerame Multi~lier Method 

For arbiuary collision between deformable objects, Lagrange muItipliers may be introduced 

into the equation of motion as follows: 

where M, K and R are the mass vector, stiffness matrix and external load vector. 

respectively. Damping matrix C is omitted here simply for the sake of concise description 

and will be added later. Left superscript, n+l, refers to time step n+l. )cis the Lagrange 

multiplier vector which represents the surface contact forces. G is a geometric constraint 

matrix to prevent any penetration between colliding objects and its order likely varies during 

a dynamic contact process. ""u, "'li, ""ii and X are the nodal displacement, velocity, 

acceleration vectors at time step n+l and nodal coordinate vector at step 0, respectively. 

Mathematically, equation (5.13) represents a set of Iinear differential equations of second 

order and, in principle, we should be able to solve it using standard procedures for 



differential equations [22]. However, the procedures for the solution of general differential 

equations could become computationally expensive if the matrices are large. unless some 

special methods are used by taking advantage of the characteristics of the matrices K, C and 

M [8]. Let's take a took at one of the very few effective methods for the solutions of 

dynamic analysis, the Beta-m direct integration method proposed by Katona and 

Zienkiewin [41]. Here the term 'direct' means that prior to the numerical integration, no 

transformation of the equations into a different form is conducted. 'm' implies the highest 

derivative to be retained. For the sake of efficiency, the second order Beta-2 method is used 

as follows 

'-'u = q0 + bo .A("-'ii) , 

"*lu = qI +bl~(nf ' i i )  , 

""ii = q2 +bz~("*'  ii) , 

where A is a finite difference opentor and 

1 q, = " u + h  "u+-h' "ii, 
2 

and 



where "'It and "t are time instant at step n+l and n, respectively. 

Two weIl-known Beta-2 methods are the constant-average-acceleration method, also 

known as the trapezoidal rule ( Po =PI = 0.5 ) and a single step version of the central 

difference method ( Po = 0. /Il = 0.5 ). If Po = 0 ,  the time integration is explicit. 

Otherwise, it is referred to as implicit. i.e., ""u is dependent upon ""u as specified in 

equation (5.14a). 

Substitution of equation (5.14) into equation (5.13)- which corresponds to the 

conventional Lagrange multiplier method. leads to 

where the rows of geometric constraint matrix ""G are linearly independent. If b, = 0.  then 

the above system of equations is singular. According to equation (5.14h), bo = 0 corresponds 

to /lo = 0, i-e.. the explicit time integration. Therefore, explicit time integration will cause the 

singuhrity problem of motion equation (5.15). One intuitive explanation is that in the 



explicit time integration, the timedependent variables are approximated by only known 

variables at the previous time step leading to inaccurate or singular solutions. To avoid this 

singularity problem, the forward Lagrange multipIier method is introduced below. 

Forward Laprange Multi~lier Method 

The basic concept of the forward Lagrange multiplier method is that displacement constraints 

at time step "It  are correlated with Lagrange multipliers at time step "t  . It was origindly 

proposed in numerical analysis in a simple 2-D format [IS]. In this thesis, to the best 

knowiedge of the author. it is applied for the first time to computer graphics and extended to 

3-D format as folIows: 

where "A is the Lagrange multiplier vector which basically consists of the contact forces at 

the interface between objects. ( " + I G ~  is the transposed constraint matrix which is one time 

step ahead of the other terns in equation (5.16). The right subscript t denotes translation. 

Compared with equation (5.13), a special characteristics of equation (5.16) is that the 

geometric constraint matrix is one step ahead of the L a p g e  multiplier vector. Substitution 

of equation (5. i4) with fi, = 0 and j?, = 0.5 into equation (5.16) leads to 



The right-hand side of equation (5.18) can be divided into two components: 

M C -I M C n-I 
"+IU; =(F+--! [ " ~ + ~ ( 2  nut - '-'ur)+- ut - "K "u, 1 , (5.19a) 

2h 
/ 

where ""u: refers to the transtatory displacement vector without considering contact forces 

in step n+l in the prediction stage. '+'uf is the translatory displacement vectors due to 

contact forces in the correction stage. The displacement vector after the prediction- 

correction process becomes 

The combination of equations (5.  I?), (5.19b). (5.20) and "'I u = "'u, + "'u, gives 

-1 

M C 
nn= [-Ic(,+,r' ('G y ] n+[~(.-'u.+~~u, + ox]. 



where ""u, is the linear displacement vector contributed by rotation and can be further 

divided into two components, 

where ~(""u:) is determined by the incremental rotation matrix A("*R:) which corresponds 

to the rotation angle h "8 and AP uf ) is dependent on the incremental A("' R:) caused 

h 
by rhe mrarion angle ;(""6-"6). h is the time interval of step n+ l .  - 

Local Finite Element Method 

In this section, a new variation of the conventional finite element method, the local finite 

element method, is described. Here. 'local' means that no factorization, inversion or 

assembly of any global matrix is required, i.e., dl caiculations are performed at the locd 

element level. Actually, there is even no need for storing any global matrix in this approach. 

In the local finite eiement method the first step is to let matrices M and C be in lumped 

forms. In the next step, 6node tetrahedron constant-strain elements are used in the system. 

Since the stress and strain within each element are constant, the values of stress and strain of 

each element need to be calculated once for each time step. In addition, the calculation of 

stress and strain in such an eIement is uivial, 

For the translatory displacement, the following inner loop proceeds as foIlows: 



In the prediction stage, the displacement at current time step n+l is calculated by using 

equation (5.18). The calculation reflects the initial estimate without considering the 

contribution from contact surface forces. Since matrices M and C are in lumped forms 

and more importantly the calculation of the term "K 'u requires only the information of 

last time step n which is known at the current time step n+L, the calculation of equation 

(5.18) can proceed element by element without using global matrices. In addition. 

because the primitive bnode tetrahedron elements are used, element-wise calculation of 

each sub-part of " K "u becomes trivial, 

In the correction stage, the contribution of contact surface forces to the displacement at 

current time step n+l is calculated by using equacion (5.19). The term "A refers to the 

contact surface forces at last time step n, which is known at the current time step. The 

term ""G is the generic geometric constraint matrix at the current time step n+l. Before 

the beginning of the inner loop, ""G is estimated by using the coordinates at the last 

time step. After one or more passes of the inner loop. it is updated by using the 

coordinates at the current time step. In either way. the calculation of equation (5.19) 

proceeds element by element by replacing ""G with its sub-matrix ""G"' which is 

associated with each element at contact surface and defined in equation (5.1 Ib). 

In the loading constraint stage, the Coulomb friction law is enforced. The contact surface 

forces at last time srep n are updated by using equation (521). The terms ""G, ""n, 

and ""u, are calculated by using the most upto-date information at the current time 

step. Similarly. the calculation of equation (5.21) is performed on an element basis by 



replacing ""G with its sub-matrix ""G"' which is associated with each element at 

contact surface. 

An outer loop, a Gauss-Seidel iteration, is used to comrly impose the loading constraint 

at the contact surface, is., the CouIomb fiction law which is explained in Section 3.3. 

Numerical experiments indicate that the contact surface forces subject to the Coulomb 

friction law converge in about 3 passes of the outer loop. In this work, the number of 

iteration for the outer loop is set to 3. Therefore, the overdl computationai cost of this two- 

layer loop is guaranteed to be O(n) . where n is the totd number of domain nodes. 

As to the global rotation, in favor of computational efficiency the Lagrangian dynamics 

equation for angular state variables in the collision stage is approximately transformed to 

where "Q' and "Q are the torque vectors caused by contact and external forces, 

respectively. "M, is the inertia tensor. From this relationship, the increment of angular 

velocity is approximated by 

From the resuIt of the left-hand-side of the above equation, ""dR; and "'ARf can be 

calculated and used for the calculation of equation (5.22). The computationd cost for the 

object rotation is bound by O(b), where b is the total number of objects in the systems and is 



usually much smaller than the total number of domain nodes. Therefore, it is negligible. The 

computational cost of equation (5.22) is O(n). Thus, at each time step the total computational 

cost for calcuIating both translation and rotation is still O(n). The algorithmic outline of the 

above scheme is given in Appendix D. 

It should be noted that in the outer loop described above, "*'u"n equation (5.19b) and 

"A in equation (5.21) are calculated by using the updated geometric configuration ( "'G . 
n 4  u,, "*'u,) at time step n+l in the manner of Gauss-Seidel iteration, even though only 

three passes are normally required for the purpose of computer animation. Therefore, the 

integration used here is not merely an explicit time integration method except that the pure 

explicit time integration is used in the first Gauss-Seidel iteration to obtain the first 

estimation. More accurately. the author calls it as a semi-explicit time integration method 

which avoids the stability problem of time steps associated with the pure explicit time 

integration. in addition, the use of Lagrange multipliers does not require decreasing h e  stable 

time step. in contrast to the addition of the penalty in the penalty method [lo]. Overall, the 

approach described in this section is called semi-explicit local collision response analysis 

method. 

5.5 Adaptive Time Integration 

By considering the difference in the time length in free-travel and collision, a two-time- 

interval scheme is used here. The basic idea is to use a big time interval for free-travel in 



space and to use a small time interval for collision. In this way, the total computation cost 

would not increase dramatically and in the meantime all key behaviors of object interaction 

and movement are captured. 

The outline of the scheme is itIustrated in Appendix E. Before an incremental stepby- 

step integration analysis, the displacement vector at time step n is estimated as 

where u, and 6 refer to translatory displacement and rotational angle vectors, respectively. 

h is the time interval between step n and n+ I .  

The mass at each node is assumed to be constant during a collision process. Considering 

the time efficiency of the algorithm. lumped mass is adopted such that onIy diagonal entries 

of the mass matrix are non-zero and the calculation of the inverse mass matrix becomes 

trivial. 

A linked list, CollisionLisr, is used to contain the information of all penetrating nodes 

and the corresponding nodes of the penetrated triangular patches as well as the information of 

the intersection points. A boolean flag, CollisionMode, is used to store the result of collision 

detection. In each time step, the status of Collisodisr and CollisionMode is checked and the 

resulting space-time stage, which is defmed in Section 1-3, is inferred according to Table 5.1. 

For the collision among multiple objects, this method can be easily extended 



Special maanent is needed for the transition stage from the noncollision to collision. 

Since the time interval of the previous steps is D, which is usually much larger than the time 

interval in a collision process, D,-, , we need to calculate a corrected time interval for the 

transition stage. D,- , ,  which is usually a fraction of D, . The basic procedure 

determine D, - , is to obtain the minimum of the real roots of t in either equations (4.5) 

(4.6) with respect to all penetrating nodes. 

Table 5. I Space-time stage determined by Collisiodist and ColfisionMode 

Coflisiodisr I CollisionMode I Space-time stage 

Noncollision Empty 

Empty at the beginning 

No 

Empty at the end 

5.6 Numerical Experiments 

Yes 

Not empty 

The semi-explicit Iocal colIision response analysis approach is implemented using MS Visual 

C u  5.0 under Windows NT 4.0. The animation results in animated gif format can be found 

under feanim package of projects at h t t p J / ~ ~ ~ . c s . u s a s k . c a / r e s e a t c N ~ s e a r c h ~ ~  

The approach is verified both qualitatively aud quantitatively below. 

Beginning of collision 

Yes End of collision 

arbitrary collision 



5.6.1 Qualitative Evaluation 

The qualitative evaluation is carried out by conducting a number of simulation tests. If the 

objects in these tests move in the expected manner after collision, then the simulation is 

accepted. 

Fipre 5.2 shows an example of an oblique collision between an elastic hammer and the 

hard ground. The hammer is designed in such a way that the length of its head is different in 

two directions. The asymrneuicd dancing (deformation) of the hammer is caused by the 

oblique collision and asymmetrical parts of the hammer head Figure 5.2(f) shows how the 

ground limits and supports the deformation of the hammer when its head and rail touch the 

ground. 

The second example (Figure 5.3) demonstrates the impact process of a hammer dropping 

onto a flexible table. Figure 5.3 (a) is the initial state, while (b) and (c) are different views of 

the moment of impact. Both the hammer and the table deform in a free style as expected. 

The third example shows the oblique impact of a flying hammer with a lamp which sits 

on a table as illustrated in Figure 5.4. Two objects (lamp and table) are initially in static 

contact mode and the hammer is moving in space due to gravity and the initial speed. The 

collision between the hammer and the lamp is illustrated by three frames in (a), (b) and (c), 

Both rotation and sliding contact are involved in this example. 

The fourth example is an eiastic cup colhding with a rigid wall obliquely as iIIustrated in 

Figure 5.5 which demonstrates the asymmetrical local deformation of the cup. This delicate 

detail is difficult. if not impossible, to be produced by using the gIobal deformation approach. 



Figure 5.2: Images illustrating an oblique collision between a flexible hammer and a rigid 

plate. (nodes: 64. elements: 70, CRA time cost: 0.48 sedframe) 



Figure 5.2: Images illustrating an oblique collision between a flexible hammer and a rigid 

plate. (nodes: 64. elements: 70. time cost of collision response analysis: 0.48 &frame) 



Figure 5.2: Images illustrating an oblique collision between a flexible hammer and a rigid 

plate. (nodes: 64. elements: 70, CRA time cost: 0.48 sedfrarne) 



Figure 5.3: Images iliusuating the collision between a flexibIe hammer and a flexible table. 

(nodes: 156. elements: 180, time cost of collision response analysis: 2 2  sdframe) 
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Figure 5.3: Images illustrating the collision between a flexible hammer and a flexible table. 

Figure 5.4: Images illustrating the coIlision between a flexible hammer and a flexible Iarnp 

on a table. (nodes: 156, elements: 180. time cost of collision response analysis: 3.4 

sedfrarne) 



Figure 5 .4  lmages illustrating the collision between a flexible hammer and a flexible tamp 

on a table. (nodes: 156, elements: 180, time cost of colLision response analysis: 3.4 

seclframe) 



Figure 5.5: Images illustrating oblique collision of an elastic cup with a rigid wall. (nodes: 

34 1 .  elements: 923, time cost of colIision response analysis: 8.6 sedframe) 



Figure 5.5: Images illustrating oblique colIision of an elastic cup with a rigid wall. (nodes: 

34 1. elements: 923, time cost coIlision response anaIysis: 8.6 sedfme)  



Figure 5.5: Images iIlustnting oblique coIlision of an elastic cup with a rigid wall. (nodes: 

34i .  elements: 923. time cost of colIision response analysis: 8.6 seclfnme) 



Figure 5.5: images iilustrating obIique collision of an elastic cup with a rigid wall. (nodes: 

341. elements: 923, time cost of colIision response analysis: 8.6 sedframe) 



5.63 Quantitative Evaluation 
The experiments to extensively test the a1goritb.m described in this chapter are presented in 

this section, The numerical accuracy is obtained by comparing the simulation result with the 

theoretical solution. For dynamic interactions between objects, the aspects which are 

evaluated include a) the time length of the collision period; b) momentum conservation; c) 

energy conservation; and d) the impulse-momentum relationship. 

It is difficult to find a theoretical solution for the collision between complex-shaped 

objects. One possibility is to choose some simple cases where theoreticd solutions exist in 

solid mechanics. Let us consider a classic collision example in solid mechanics shown in 

Figure 5.6 in which each of the two prismatic rods is divided into ten equal length elements. 

5.6.2.1 Length of Collision Period 

The time length of a colIision process is one of the most important factors which needs to be 

evaluated, because it directly affects how Iarge the contact force could be if the contact 

impulse is given. Consequently, it influences the accuracy in predicting whether or not a 

falling object will be broken by comparing the suess caused by the contact force with the 

tensile strength of the material. If the time length of collision could not be predicted 

accurately, an algorithm could still give a correct prediction about the movement of the 

coIliding object after the collision by using the principk of momentum conservation. But the 

deformation of the colliding objects can not be predicted in a physically correct way and one 

potential probIem is in predicting the separation of two objects sticking together. 



Figure 5.6: Impact problem between two prismatic rods. ( L, = L, = 0.254 rn, 

6, = 6, =0.0254m. h, = 0.0254 m. h, = 0.0224 rn, g = 2.54x10"m. v,, = 5.1359 d s .  

v ,  = -5.1359 rnls. p = 7844 k g d .  E = 206.82~ lo9 ~/m' . This is a typical setting of 

material parameters which can be found in Reference (951) 

Figure 5.7 shows the numerical results of simulation of the problem in Figure 5.6 using 

the algorithm introduced in this chapter. The theoretical solution for the length of the 

collision period is [18] 

where L is the length of the rod. p and E are the density and the elastic modulus. 

respectively. The theoretical time length of coIlision. according to solid mechanics, is 



9.9~10" sec, while the numerical time length is 10.125~10~~sec which covers the range of 

non-zero impact force in Figure 5.7. The relative error is 227%. 

Figure 5.7: hpact-force relationship for the problem in Figure 5.6. 

5.6.2.2 Momentum Conservation 

The conservation of momentum means that the total momentum of the colliding objects is 

kept unchanged after a colIision. For the case shown in Figure 5.6, we have 

where r n ~  and r n ~  are the mass of rods I and 2, respectively. u,, and ti, are the velocity of 

rods 1 and 2 before the collision, and u,, are the veIocities idler the collision. The 

numerical resuIt is expressed by 



The relative error for the momentum conservation is 139%. One intuitive check is to 

consider two colliding objects with different mass and opposite directions of velocity. If the 

magnitude of velocity of the objects before the collision is the same, then the lighter object 

will obtain a higher speed than the heavier object after the collision. The numerical result 

reflects this tendency by the fact that Ivlf 1 (= 6.3936 ) is larger than iv,, 1 (= 3.6870). 

5.6.2.3 Energy Conservation 
Energy exists in many forms such as mechanical, thermal, chemical, and nuclear energy. In 

this thesis, only mechanical energy is considered which includes kinematic and potential 

energy as well as dissipative frictional energy. In elastic collisions both momentum and 

mechanical energy are conserved. while in inelastic collisions only momentum is conserved. 

For the case shown in Figure 5.6. the energy conservation means 

The numerical result gives 



Equation (5.3 I )  indicates that the relative error for energy conservation is 3.67%. 

5.62.4 Impulse-Momentum Equality 
The impulse-momentum relationship states that the impuIse in a collision process equds the 

change in the momentum of the colliding objects. For the case shown in Figwe 5.6, 

The integration of the calculated impact force (diamond-symboI line) in Figure 5.7 gives 

'F dt = 11.075 N . s . while the change in the mornennun of the two rods is 

Therefore, the dative errors for rods 1 and 2 are 2.35% and 2-168, respectively. 



5.625 Convergence of GaussSeidel Iteration for Contact Forces 
In each time step, an iteration is needed by most algorithms to correct the calculation of the 

contact forces with respect to enforcing the geometric and loading constmints Figure 5.8 

gives an example of convergence when the friction capacity is not reached. In such a case, 

only the geometric constraint needs to be considered. The figure shows that the caIcuIated 

contact forces converge quickly and at most three iterations are required to achieve a 

reasonable accuracy ( error < 0.01%). 

If the friction capacity is reached during a time step, then the tangentid contact force 

needs to be adjusted according to the chosen friction law, i.e., the loading constraint also 

needs to be considered. Figure 5.9 illustrates the convergence of the algorithm in the time 

step where the loading constraint is required to take into account. Similarly, three iterations 

are sufficient for the convergence with an error of less than 0.01 $6, 

5.7 Comparisons with Other Methods 

The semiexplicit local collision response analysis approach and other existing methods are 

compared as foik~ws. 

Complexity analysis indicates that the proposed semi-explicit iocd colIision response 

analysis algorithm is of O(n) time complexity, where n is the total number of domain nodes. 

This makes the algorithm faster than most existing ones [426,48,69,70,71] if the same 

number of domain nodes are used for comparison. The O(n) nature makes this algorithm 



preferable in the simulation of complex systems when the total number of domain nodes is 

Figure 5.8: The convergence of contact forces when frictional forces do not exceed the 

friction capacity. (a) beginning of the collision period; (b) middle of the collision period, (c) 

end of the collision period 



Figure 5.9: The convergence of contact forces when frictional forces exceed the friction 

capacity. (a) beginning of the collision period; (b) middIe of the collision period; (c) end of 

the coIlision period. 



One major difference between the semiexplicit local collision response analysis 

approach and existing methods is that the semi-expIicit local co1lision response analysis 

approach is able to give an accurate prediction about the time len,gh of the collision process. 

Without the correct calculation of this information, it is very difficult, if not impossible, to 

correctly estimate the magnitude of impact force for a given collision. There is no 

experimental evaluation of the calculated time length of collision in the methods proposed by 

Cani-Gaxuel and Desbnrn [IS], Baraff and Witkin [53. 

Another benefit of the semi-explicit Iocat collision response andysis approach is that no 

major assumption is made except in using the well-known dVAlarnben principle for the 

motion equation of the finite element method and Lagrangian Dynamics. tn the method 

proposed by Cani-Gascuel and Desbrun [lq, three different regions (interpenetration, 

propagation and the remaining) need to be set up for each colliding object. No clear rule is 

introduced as to how to partition an object into these different regions. Even though some 

appeding visual animations are generated with this assumption, the generality of the 

approach is in doubt. For instance. the approach is not well-suited to the case when the 

colliding objects have non-uniform stiffness, especialIy when the portion in the 

interpenetration region happens to be much stiffer than the remaining region, which leads to 

no deformation in such a case. In addition, since the different deformation fields are applied 

in the interpenetration and propagation regions. the ability of the approach to predict the 

correct wave movement inside the colliding objects during a collision is in doubt. 

In the method proposed by Baraff and Witkin [q and Witkin and Welch pq a concept 

of the global deformation that applies a parametric "space warp" to dl points in the body is 

used This avoids the increase in the stiffness of system motion equations due to Iocd 



interactions, but also constrains its ability to generate a realistic local contact surface during a 

collision. 

The approaches developed by Pendand and Williams [56] and FaIoutsos et al. 1291 

actually do not address the problem of collision response. A sort of artistic or heuristic 

representation is used to describe the behavior of deformable objects after a colIision. The 

semi-explicit local collision response analysis approach focuses on the other end of the 

spectrum, namely, realistic physical representation of the coiIision response. 

The boundary element method approach used by James and Pai [39] is a real time 

solution to static elastic problems. However, it does not possess the capability of handling the 

dynamic collision response anaiysis and fracture simulation. Besides, the singular integrals 

in the BEM impose numerical difficulties. This thesis work focuses on a general-purpose 

solution which is also computationally efficient by using a new variation of the conventional 

finite element method. 

It is welt known that the addition of penalty in the penalty method will dways decrease 

the stable time step while the addition of Lagrange multipliers in the Lagrange multiplier 

method does not [ 101. The semi-explicit local collision response and ysis algorithm avoids 

the stability problem caused by the penalty. In addition, the semiexplicit scheme used in this 

thesis is different from the pure explicit time integration, because a GaussSeidet iteration is 

used to calculate the displacement unknowns at time step n+I by using the updated geometric 

configuration at time step n+l instead of time step n. Therefore, the semi-expIicit local 

collision response analysis algorithm avoids the stability problem associated with the pure 

explicit time integration. 



The differences between the proposed approach with some engineering commercial 

packages include: 

+ Stifhess matrix is always considered as constant to reduce computational cost. This is 

not acceptable in engineering analysis. 

Simplest Cnode tern elements are used in favor of computational efficiency. This is 

likely not accurate enough in engineering analysis. 

+ Collision detection scheme used in this thesis is more general than that used in 

engineering analysis. 

+ The treatment of finite rotation is also more general than that used in engineering 

analysis. 



Chapter 6 

Fracture Simulation 

Fracture can be caused by the propagation of cracks in the continuum. In this chapter, a new 

fracture simulation approach is introduced, 

6.1 Concept of Stresses and Principal Stresses 

Fig. 6.1 shows a threedimensiond state of stresses on an infinitesimal parallelepiped 

element of a larger continuous body, without counting the variation of stress with position 

inside this element. These stresses can be described in terms of either a stress tensor 

ff ,, (i, j = x, y, Z )  or a matrix form shown by the foIIowing equation 1641: 



Figure 6. I: A three-dimensional state of stresses. 

The stress a in an oridnai .r-y-z coordinate system can be transformed into a' in another 

x'-y'-z' system by 



where T is a rotation matrix consisting of diction cosines between two coordinare systems, 

.r-y-z and x'-yk '. The angle between two arbitrary coordinates is represented by parentheses 

enclosing the corresponding coordinate labels separated by a comma. 

According to the theory of matrices, a specific set of rotations of coordinates exists such 

that G' becomes: 

where a, . a:, a, = principal stresses which are the solutions of the following equations: 

where I,, I, and I, are caIIed the first, second and third invariants of the stress, respectively, 

The principal stresses and their directions can be determined by soiving the following 

eigenvalue probIern: 



6 -w~)U=o, (6.9) 

where wand u are the eigenvalues and eigenvectors, respectively. I is the unity matrix. 

6.2 Failure Criteria of Material 

A failure criterion f (o,, )of a certain type of material is a bnction of stress. strain. and ocher 

parameters such that when f (I,,) < ko material failure does nor occur and when f (oi, )= kg 

, the material is in a failure state where its plastic deformation becomes unlimited. Here. kg is 

a failure constant depending on material properties. The failure function fb,, ) corresponds 

to a failure surface in stress space which is the bound or limit to the failure surface. 

There are two main types of failure criteria for various types of materials: tensile and 

shear. 

6.2.1 Tensile Failure Criterion 

Tensile failure criterion means that tensile stresses are compared to certain thresho[d to 

determine if a materid fails. One of the most common tensile failure criteria is 



where a, is the major principal stress inside an object and F, is the tensile strength of the 

material. In previous studies on fracture simulation in computer animation, a kind of 

equivalent nodal tensile strength or string tensile strength was used to simulate the fracture 

due to tension inside an object. However, tensile failure is only one of the simplest form of 

failure in reality. In this thesis, a new element-split scheme is proposed to incorporate not 

only tensile but also shear failure criterion with an aim of being capable in simulating 

different failure patterns. 

62.2 Shear-Type Failure Criteria 

Shear-type failure criteria mean that shear stresses are checked against certain threshold to 

determine if a material fails. The existing shear-type yield and failure criteria can be 

classified into two categories: non-frictional and frictional models. according to whether or 

not the models take into account the frictional components in the shear strengths. 

Non-frictional models 

+ Tresca's yield criterion [36] 

This criterion states that plastic strain occurs when the maximum shear stress reaches a 

certain value k (shear strength), as shown in the following equation: 



where f (a,) is a function of shear stresses. i-e.. difference between principal stresses. When 

its value is greater than or equal to shear strength k, the m a t e d  fails. Equation (6.1 I) 

represents a prism with a hexagonal cross-section, centred on the hydrostatic axis 

('I = ': = '9)  in the principal stress space, as shown in Fig. 6.2(a). The terminology 

'hydrostatic' originally comes from hydrology, If one object is put under water at a cenain 

depth, the object is subject to a uniform hydrostatic pressure in three Cartesian coordinates. 

Later, people use this terminology in solid mechanics to represent a special type of stress 

state in which the principal stresses of the object are equal (i.e.. 'I = *: = '1). Graphically, if 

we construct a principal stress space in which the three orthogonal coordinates are 

respectively o,, a: and a,, each point on the hydrostatic axis refers to a cenain stress state 

in which all principal stresses of the object are equal with the magnitude being the distance 

between the origin and the point on the hydrostatic axis. 

+ von Mises's yield criterion [36] 

It states that plastic strain occurs when the maximum strain energy due to shearing equds a 

critical value k which depends on material properties. This criterion takes into account the 

contribution of the intermediate principal stress and is more easily handled mathematically as 

compared with Tresca's criterion. The detailed algebraic form is 



This equation corresponds to a cylindrical surface centred on the hydrostatic axis in 

principal stress space as illustrated in Fig. 6.2(b). 

Frictional models 

Mohr-Coulomb failure criterion 

It is based on the following Mohr-Coulomb law [25]: 

where r is the shear strength and a is normal stress at the interested point inside the object. 

c is material cohesion strength and 4 is material friction angle. Here. cohesion means the 

material strength without the contribution of internal friction. Equation (6.13) can be 

transformed into the following form in the three-dimensional stress space by considering 

where ko is the failure threshold (4) which means thaf when f (a,) is greater than or 

equal to 0, the material fails. Equation (6.14) is equivalent to an irregular hexagonal pyramid 

surface centered on the hydrostatic axis in principal stress space shown in fig. 6.2(c). 



+ Drucker-Prager's yield criterion 

Drucker and Prager [27] use a conical surface to round off the hexagonal pyramid surface for 

the mathematical convenience as shown in Fig. 6.2(d). and propose using the following 

modified form of the Mohr-Coulomb law that takes into account alI the principal stresses: 

where 

FrictionaI models are more general than the non-frictional ones because they include the 

frictional component. In this thesis, Tresca's criterion and Mohr-Coufomb criterion are 

adopted to show the difference between shear and tensile failure criteria. Due to the 

flexibility of the element-split scheme, which will be described in the next section, any 

material failure criterion written in element stress format, can be easily incorporated into the 

fracture simuIation. This is a crucial advantage of the dement-split approach in this thesis 

over previous work in computer graphics. 

Figure 6.2 is a graphical representation of different failure criteria in principal stress 

space. The surfaces in this figure are essentially equivdent to the mathematical 

representation in Equations (6.1 1) through (6.16). 



Figure 6.2: Graphical representation of shear-type yield and failure. (a) Tresca's yield 

surface; (b) von Mises's yield surface; (c) Mohr-Coulomb failure surface; (d) Drucker- 

Ekqer's yield surface. 



6.3 Element-Split Scheme 

Even though the node-split scheme of O'Brien and Hodgins [54] is an advance from previous 

string-split schemes [53,68,70] in which the distance between two adjacent nodes is 

compared with a threshold to determine when a failure occurs between these two nodes, it 

has a serious limitation on the failure criterion of material. in particular, onIy tensile failure 

criterion is altowed in their approach. 

By considering that most existing material failure criteria are expressed in the format of 

element stress. a new element-split scheme is proposed on the basis of the author's original 

approach [65] to overcome the shortcomings of previous schemes. 

63.1 Geometric Representation of Objects 

Theoretically. no geometric information is needed for the finite element simulation of 

fracture except the information of volume mesh which divides the objects of interest into a 

finite number of elements such as tetrahedra or hexahedra. The volume mesh can be 

produced by using commercial automatic mesher [73] or existing meshing algorithm such as 

the advanced-front method [45]. 

In this thesis work, a four-node tetrahedron element is adopted as the basic unit for the 

structure of objects because of its simplicity in element stress and strain caIcuIation. 

Actudly, the stress and strain are constant within each tetrahedron element such that their 

calculation is needed only once for each element. Some pans of the objects may be easily 

represented by hexahedron elements. In such a case, rhese hexahedron elements are internally 



convened to tetrahedron elements in a way as illustrated in Figure 6.3. It should be noted 

that the subdivision is not unique. 

Figure 6.3: Subdivision of a hexahedron into six tetrahedra. 

63.2 Normal of Element Cutting Plane 
Since the four-node tetrahedron element is used in this thesis work for the sake of efficiency, 

the stress and strain are constant within each element. Therefore. it is reasonable to assume 

that the normal of a potential split surface within each element is constant, i.e., a single 

element cutting plane is used to approximate the real split surface. 

In the case of tensile failure criterion, the normal of the element cutting plane is in the 

direction of major principal stress within the element, white in the case of shear failure 

criterion, the normal of the element cutting plane is between the directions of the major and 

minor principal stresses. To better understand the shear failure case, Iet's consider the 

equilibrium of a micro rectangular block which is subject to a vettical and horizontal force 

F, and F3, respectively, as shown in Figure 6.4. 



Figure 6.4: EquiIibrium of a micro rectangular block within an object. 

The interface force F, and F, in figure 6.4 represent the forces exerting on the lower 

part of the block. The equiIibrium of this rectangular block is given by: 

where F, and F, are the normal and shear forces on an inclined plane within the block. On 

the basis of equation (6.13, normal stress on the inclined plane can be expressed as 



F, F, cosy F, sin tp a, =-- - + =a, cos' y+a3 sin' v, 
A A,/cosy A,/siny 

where A, and A, are the surface area on which F, and F3 are applied, respectively. A is the 

area of the inclined plane. a, and a, refer to the major and minor principal stresses, 

respectively. By considering the following double angle identities 

1 + cos 249 
cos 2p = 

7 - 
sin 2p 

sin Zy =- 
1 .  

equation (6.19) can be rewrinen as 

= I  + = 3  where , and - -03 are the mean and deviatoric stresses, respectively. (u is the - 7 - 
angle between the major principai stress and the normal to the inclined plane. 

The shear stress acting on the inclined plane is expressed as 



Using sin ry cosy, = sin 21y 12 , we have 

From equation (6.24). it can be concluded that shear suess, a,, reaches its maximum 

where y=45 ' .  i.e., the normal of the inclined plane is 45' from the direction of major 

principal stress. This defines the orientation of the element cutting plane in the case of shear 

failure criterion. Currently, only isotropic material is considered. But the scheme in this 

thesis can be easily extended to anisotropic material. 

6.33 Element Split Scheme 

After the normal of the element cutting plane is determined, ideally a cutting plane equation 

can be constructed by letting the plane pass through the centroid of the element. However. 

this method causes the problem in dividing the two split parts of the originaI eIement into two 

sets of tetrahedron elements, because the orientation of the cutting plane and geometric 

configuration of the element could be arbitrary leading to a variety of subcases to be 

considered. 

To simplify the problem. the folIowing scheme is used to approximate the real cumng 

plane within each element: 



(1) Construct a cuning plane which passes through the centroid of the element with its 

normal being the direction of major principal stress in the case of tensile failure criterion 

or the direction between the major and minor principal stresses in the case of shear failure 

criterion. 

(2) Calculate the distance of the four nodes of the teuahedron element to the cutting plane 

constructed in step ( I )  and identify node m which has the minimum value in terms of the 

distance to the cutting plane. 

(3) Translate the cutting plane such that it passes through node m identified in step (2). The 

resulting plane is an approximate cutting plane which leads to a limited number of split 

patterns of any arbitrary tetrahedron element and cutting plane, as enumerated in Figure 

6.5. 

(4) Calculate the intersection between the cutting plane and the other three element edges 

which do not have node rn as their edge node. 

(5) Create new nodes at the edge intersection and split the original element into two sets. One 

set is just a tetrahedron, while the second set consists of two tetrahedra. as shown in 

Figure 6.5(b) and (c). 

Beside the genera1 case shown in Figure 6.5, there are two special cases in which the 

approximate cutting plane passes through two or three nodes of the eIement, leading to two 

or one split tetrahedron element, respectively. 



Cutting plane 

(a) 

Cutting plane 

Cutting plane 

Figure 6.5: Split of an arbitrary tetrahedron element by an approximate cutting plant. (a) 

original element which is split into two parts represented by (b) and (c); (b) upper right part 

of the original element divided by the cutting plane; (c) lower left part of the original element 

divided by the cutting plane. 

63.4 Fracture Propagation 

Fracture propagation means a process by which fracture cracks traverse within an object 

simultaneously or sequentially. One basic precondition for fracture propagation is that two 



adjacent elements have reached their material failure criterion. UsualIy, the normals of the 

cutting planes of two adjacent elements are not in the same direction. This makes the 

geometric handling of fracture propagation a difficult task. 

In order to simplify the fracture propagation process, the following averaging element- 

cutting-plane-normal scheme is proposed. 

(1) Loop over each element and calculate stress information within each element. Check the 

material failure criterion to determine the status of element failure. 

(2) For each failed element, construct an approximate cutting plane as explained in Section 

6.3.3 and associate the plane with the corresponding node m as defined in Section 6.3.3. 

(3) Loop over every node and establish node-element relationship and node-fracture-element 

relationship which specify which element or failed element is associated with the current 

node. 

(4) For each node which is associated with two or more failed elements, calculate the 

average of normals of the cutting pIanes of these failed elements. Create a new cutting 

plane which passes through the current node with the averaged normal. 

(5) Use the new cutting plane to cut any element which possesses the current node and has a 

valid intersection with the new cutting plane calculated in step (4). A valid intersection 

means that the cutting plane has an intersection with at least one element edge (not 

counting the intersection with the end nodes of the edge), as shown in Figure 6.5(a). 

(6) Use the new cutting plane to arrange any element which possesses the current node and 

does not have a valid intersection with the new cutting plane, Here, the word "'arrange" 

means a possible replacement of the nodal connection of the element by replacing the 

current node with a newly-generated mirror node which is at a shon distance from the 



current node, as illustrated in Figure 6.6. The detailed procedures of such type of 

arrangement are as follows: 

On the new approximate cutting plane constructed in step (2), construct a vector in 

the surface normal direction at the location of the current node. The length of the 

vector is very small and a new mirror node is created at the other end point of this 

vector. 

Use the new cutting plane as a boundary, loop over all elements which possess the 

current node and do not have a valid intersection with the new cutting plane. If the 

centroid of an element is at the same side as the new mirror node w.r.t. the cutting 

plane, then the current node in the nodd connection of the element is replaced by the 

new mirror node, as shown by element E2 in Figure 6.6(b). Otherwise, the nodal 

connection of the element is kept intact, as illustrated by element El  in Figure 6.6(b). 

6.4 Numerical Experiments 

The e[ement-split approach is implemented usin g MS Visual C u  5.0 u mder Windows NT 

4.0. The effectiveness of the approach is verified both quditatively and quantitatively below. 

6.4.1 Quantitative Evaluation 

The evaluation of fracture propagation is generally difl5cuit because very few andyticd 

solutions are available to describe an entire fracture propagation process- A partial evaluation 

is to use the formula in material mechanics for the estimation of the place where the fracture 



of an object is likely to happen first. Such evaluation can be accomplished ody in the cases 

where the analyticd solution of stresses inside the object is available, because various types 

of failure criteria can be determined on the basis of stress information. 

Test Case 1: Fracture of a bent beam 

Figure 6.7 shows fracture propagation in a bent beam. The beam is fixed at its left end and an 

incremental vertical load is applied downwards at its right end. Since there is a U-shaped cut 

at the middle of the beam, high stress is likely to occur in the area around the cut. 

Furthermore, the stress at the left comer of the cut should be higher than that at the right 

comer, because the larger bending moment exists at the left comer. The geometric 

configuration of the beam is shown in Figure 6.8. On the basis of equation (57) in 1741, the 

norma1 stress in the cross section of the beam is calculated by 

where a ,  is the normal stress in the cross section. M is the bending moment and I -  is the 

area moment of inertia with respect to the neutral axis Z where the bending stress is zero. 

For the rectangular beam, I , .  is given by 



. node 

(b) 

Figure 6.6: Arrangement of elements to either current node or its mirror node. (a) element 

connection before spk and anangement; (b) eIement connection after split and arrangement 



Figure 6.7: Frames of images illustrating the fracture of a beam bent from its Ieft-hand side 

with tensile failure criterion- (a) initiai state; (b) occurrence of cracks. (nodes: 24. elements: 

25, time cost: 0.42 sdframe) 



I Cross section 1 
Cross section I 

Figure 6.8: Geometric size of the test beam (unit = I meter). 

where b and h are the width and height of the bean, respectively. The maximum normal 

suess in cross section 1 in Figure 6.8 is 

where P is a vertical external Ioad exerting at the right end of the beam, as shown in Figure 

6.8. As to cross section 2, the maximum normal stress is 



Since the maximum normal stress in cross section 2 is larger than that in cross section 1, 

fracture shouId happen first in cross section 2 if the material property is considered uniform 

inside the beam. This is supported by Figure 6.7 (b). Therefore, it is reasonable for cracks to 

be generated first around the left corner. 

Test Case 2: Fracture o f  a compressed recfanmlar pile 

A rectangular pile is put on a flat surface and is compressed from its top surface, as shown in 

Figures 6.9 in which the results by using tensile and Mohr-Coulomb shear failure criteria are 

presented. The tensile and shear failure patterns are quite different. With the tensile failure 

criterion, the normal of crack surface has a smaII angle with the vertical axis of the pile. as 

shown in Figure 6.9(b), while in the case of the shear failure criterion, the normal of crack 

surface has an approximate 45 degrees with the vertical axis of the pile, as illustrated in 

Figure 6.9(c). It is interesting to note that the shear failure pattern provided by the numerical 

simulation is consistent with the commonly-encountered failure patterns of test specimens in 

unconfined triaxial tests in civil engineering [40]. 

According to Karafiath [40], a failure state exists at a point in a material if at any plane 

through hat  point the shear stress equals the shear strength. A graphical construction, Mohr's 

circle representation. can be used to show the orientation of the failure plane inside a test 

specimen, as in Figure 6.10. The Mohr's circle is an intuitive representation of stress as well 

as material failure conditions, especialIy in 2D cases. Let us consider stresses first. The 



stresses at a point vary in different orientations just like the stress matrix in equation (6.1) is 

mathematically rotated by using equation (6.2). We can use a circle to fully represent the 

stresses at the point in different orientation. This circle is called the Mohr's circle with the 

horizontal axis as nomd stress and the vertical axis as shear stress. Material failure criteria, 

such as the Mohr-Coulomb criterion, are usually obtained by a series of tests in which the 

normal stress is applied at different magnitudes and accordingly different shear failure 

stresses are measured. On the basis of these test data, a material failure line in 2D cases and a 

failure surface in 3D cases can be constructed by least-squares fitting or other numericd 

methods. The Mohr-CouIomb criterion can be expressed as a straight line in the coordinate 

system of the Mohr's circIe as shown in Figure 6.10. The angle a which the failure plane 

encloses with the plane of the major principal stress in a triaxiaI test specimen is 

where # is the material friction angle as in Equation (6.13). In the numerical analysis related 

to Figure 6.9(c), # equals L O "  leading to a= 50' which is close to the orientation of the 

failure plane in Figure 6.9(c). in Figure 6.9(c), the failure plane is represented by the dark 

line segments and is located from the upper left-hand side to the lower right-hand side. If you 

replace these Iine segments by a straight line, the angle between this straight Iine and 

horizontal axis is close to the theoretical vdue 50'. 



Fipre 6.9: Images illustrating the fracture of a rectangular pile compressed from its top 

surface. (a) initial state; (b) tensile failure; (c) shear failure. (nodes: 36, elements: 60, time 

cost: 2 3  sedfrarne) 



Figure 6.9: Images illustrating the fracture of a rectangular pile compressed from its top 

surface. (a) initial state: (b) tensile failure: (c) shear failure. (nodes: 36. elements: 60, time 

cost: 2.3 seclfrarne) 

6.42 Qualitative Evaluation 
Test Case 3: smash in^ a cube a~uinst a wall 

A cube (gold color) is thrown obliquely onto a vertical wall at a certain height, as shown in 

Figure 6.1 I .  The wall is still and rigid, while the cube is fracturable and deformable. After 

the cube hits the wdI. it is smashed into several pieces which then fall toward the ground. 

Tensile failure criterion is used in this example. Even though the cube itself is a very simple 

geometric object. an oblique collision does show the capability of the approach in handling 

the fracture in an arbitrary dynamic collision and the combination of fracture and 

deformation. 



Figure 6.10: Mohr's circle representation of failure conditions in uiaxially loaded sample 

WI - 

Test Case 4: Fracture of a bare caused bv a faflint? cube 

A cube is otignaiIy located at a certain height above a fracnrrable pIate. After the falIing 

cube hits the plate. dynamic fracture occurs inside the @ate. Alt nodes on the bottom face of 

the plate are fixed and those nodes on the top face of the plate are Free to move. No extra 

loading condition is introduced except gravity acting on the mass of the falling cube. Three 

types of faiIure criteria (tensile. Mohr-Coulomb and Tresca) are used to show the Werent 

failure patterns under the same dynamic loading conditions, as illustrated in Figures 6-12, 



6.13 and 6. L4. From them, it can be seen that the tensile and shear failure criteria produce 

different failure panerns which will be useful for end users to simulate the fracture of 

different materials. In the case of tensile failure criterion, the failure pattern resembles stack- 

like paralleI cracks, while in the case of shear failure, the failure pattern is similar to slipline 

pattern in plasticity, as shown in Figure 6.15 [51]. The tangents of slip lines are in the 

directions along which the principal shearing stress acts. The principal shearing stress is 

defined by one half of the difference between the major and minor principal stresses. 

One distinction of the element-split approach from previous ones is that with the 

element-split approach, there is a flexibility to choose different failure criteria such as tensile 

and shear or any valid formula in the element stress format such that end-users have more 

control power to generate different failure patterns. 

The current version of element-split approach fails in the following cases: 

+ Anisotropic material 

If the material has a preferred failure orientation, the current approach will fail. 

+ Plastic failure 

The current approach can not handle with the plastic fracrure where the plastic energy is 

consumed at the fncture tip. 



Figure 6.1 1: Images illustrating an oblique crashing of a cube onto a still wall. (nodes: 24. 

elements: 15. time cost: 1.7 dframe) 



Figure 6.1 1 : Images illustrating an oblique crashing of a cube onto a still wall. (nodes: 24. 

elements: 1 5. time cost: 1.7 sedfnme) 



Figure 6.12: h a g s  illustrating the fracture of a plate hit by a falling cube with tensile 

failure criterion. (nodes: 58. elements: 85. time cost: 3 1.6 &frame) 



Figure 6.12: Images illusuating the fracture of a plate hit by a idling cube with tensile 

failure criterion. 

Figure 6.13: Images iIlusuating the fracture of a plate hit by a falling cube with Mohr- 

Colomb's shear failure criterion. (nodes: 58, eIements: 85, time cost: 129 sedframe) 



Figure 6.13: Images illusmting the fracture of a plate hit by a falling cube with Mohr- 

Colomb's shear failure criterion. (nodes: 58, elements: 85. time cost: 129 sedframe) 



Figure 6.14: Images illustrating the Fracture of a plate hit by a falling cube with Tresca's 

shear failure criterion. (nodes: 58, etements: 85, time cost: 13 1.3 sec/frame) 



Figure 6.14: Images illustrating the fncture of a plate hit by a falling cube with Tresca's 

shear failure criterion. (nodes: 58, elements: 85, time cost: 13 1.3 sedfnme) 

Figure 6.15: Experimental failure pattern on a polished marble cylinder which illustrates the 

dip line pattern [S 1 1. 



Chapter 7 

Conclusions 

In this thesis, the author presents an accurate, general and fast approach to handle arbitrary 

collision between deformable objects. The following conclusions can be drawn from 

analyzing the experimental simulations introduced in Sections 5.6 and 6.4: 

The prediction accuracy of collision length is acceptable with 2.27% of error for the test 

case given in Section 5.6.2.1. 

The relative error for the momentum conservation is 1.39% for the test case in Section 

5.6.2.2 and should be acceptable for solution (i-e., less than 5% for analysis solutions). 

The relative errors for energy conservation and impulse-momentum equality are 3.67% 

and 2.25%, respectively for the test case in Section 5.62. 

The calculated contact forces converge quickly and at most three iterations are required 

to achieve an acceptable accuracy (fluctuation = 0.01% which is less than 1% for 

convergence check). 



The simulated fracture of the kam in test case 1 in Section 6.4 is supported by an 

approximate analysis on the basis of material mechanics. 

0 The failure pattern of the compressed rectangular pie is consistent with the failure 

pattern of unconfined triaxial test specimens as weII as the siip-tine theory of plasticity. 

The failure patterns predicted by different failure criteria are different. 

The major contributions to collision response andysis include the following: 

(1 )  The forward Lagrange mulcipiier method is used for the first time in computer graphics to 

solve the collision response problem between arbitrarily-shaped deformable objects or 

between objects and arbitrarily-shaped environment in cases of static contact (or quasi- 

static contact) and dynamic collision. This approach overcomes most of the shottcomings 

associated with the penalty methods and she singularity problem of the conventional 

Lagrange multiplier mehod with the semi-explicit direct time integration (Sections 1 and 

3.4). 

(2) A new local finite eIement method is introduced to reduce computational cost All 

calculations are performed at the locd element level such that no globaI matrix 

factorization. inversion and assembly are needed, leading to a fast solution (guaranteed 

O(n) time complexity). The contact consmint in the collision response andysis is 

imposed in a generic way such that there is no assumption made w,r.t, the connectivity of 

nodes associated with different deformable objects, the formuIation of constraint, the 

geometric format of surface, and the deformation zones or the distribution of deformation 

in each object. 



(3) The quantitative numeric4 experiment indicates that the semiexplicit local colision 

response analysis approach matches very closdy with the analytical solution of a classic 

colhion exampie in solid mechanics, which numerically proves its effectiveness as a 

physics-based approach. The qualitative experiments show that the semiexplicit Iocal 

collision response analysis approach can describe the local detaiIed deformation in any 

oblique complex collision without the need for "tweaking" the penalty coeficient or any 

other human intervention. 

Overall, the semi-explicit Iocd cottision response analysis solution to collision response 

analysis is accurate, general-purpose and yet fast, which represents a new compromise 

between efficiency and functionality. It overcomes the shortcoming of the conventional 

finite eiement method for being cornputationalIy expensive [48,69-711 and the limitations 

associated with the boundary element method as explained in Section 2.1.3 [39]. It also 

provides more realistic contact deformation than the globaI deformation approaches 

[29,56.77], avoids the undesired properties associated with the penalty method [7 1,761, and 

avoids additional assumptions on deformation zones made in the globd-local approach [t53. 

A new element-split scheme is proposed to simulate the fracture propagation, Since it is 

developed in the format of element stress, it is in principle compatible with most material 

failure criteria As a result, the element-split approach is able to handle both tensile and shear 

faiiure which usually generate different fdure patterns, while previous approaches in 

computer animation field are capable of describing only the tensile failure. 



7.1 Future work 

The animation system developed in this thesis has several limitations or shortcomings. The 

deformable object in this thesis is limited to structured material such as solids. One possible 

future extension to the current system is to handle the interaction between fluid and solid 

objects. 

The fracture simulation scheme may be incorporated in an explosion simulation system 

which requires realistic representation of dynamic fracture in dynamic interaction between 

fluids and solids. 

One limitation to the current fracture simulation scheme is that the material is assumed 

to be isotropic. Incorporation of anisotropic material properties will enhance the system to 

handle the fracture simulation of layered objects. The proposed element-split scheme 

provides a very good base for such type of enhancement. 

in this thesis work, the simulation results are compared with the analytical solution of 

classic problems in solid mechanics. Another better way is to compare them with what redly 

happens in the "real worId" situation. 
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Appendix A 

Proof of Theorem 1 

Theorem 1 If (8;. 8:'. e:)) respectively refer to the average angular velocities of 

the sub-rotations about the global Cartesian coordinate axes x, y, and z in time step i and 

these rotations take place simultaneously in this time interval with the rotation angles 

varying continuously from 0 to AB:" ( j  = x, y, r )  , then the combination of these 

rotations is equivalent to a single rotation about the axis vector p = (8;'. 8:". 8;'') with 

Figure A. 1 A rotation axis P and an arbitrary point Q 



Let (@', 8;'. 8!") be average angular velocity about axes x. y, and z. respectivdy, 

in time step i. Then we can approximate the continuous transformation in step i by 

constant speeds of sub-rotations (8;'. by', 8:). If the three sub-rotations are equivalent 

to the single rotation about P axis at any moment in time step i. then the theorem is 

proved. 

At an arbitrary time instant r, let P = 8]"i + 8:'j, +6:k be the rotation axis for the 

single rotation and Q = qri + q ,  j + q,k be an arbitrary point in the global Cartesian 

coordinate system. The uanslatory velocity caused by three sub-rotations is 

The translatory vehcity at Point Q caused by the single rotation about axis P is given 

V, = PxPQ 

= ~ ~ , i + ~ , j + ~ , k ) x ~ q ,  -Bc) i+ (q ,  -8,)j+(q: -6:)k] 

=cerq, -8,q,)i+@:q, -8.q:1j+(6~q, -$:q,)k 

Comparison between equations ( ) and ( ) indicates that two types of rotation are 

equivalent because they produce the same uans1atory velocity at any point of the object 



Since we approximate the angular velocities of ($:'. 8:'. 8;') to be constant in each 

time step. the single rotation axis P is then fixed and the incremental rotation angle about 

P is 

where h is the length of time step i. Therefore, the theorem is proved. 



Appendix B 

Incremental Rotation Matrix 

Rotation of an object is basically an orthogonal transformation. To derive the incremental 

rotation matrix IR, , let us assume that (e, .e2.e,) is a base of the linear space which 

corresponds to the Cartesian coordinate system @,',fi,fj) and (f;.f~,f;) are respectively 

a set of vectors at two time steps, n-1 and n, as shown in Figure B.1. These two sets of 

vectors can be expressed by the multiplication of a rotation matrix and the base 

(e, ,e,.e, ) as follows 

The combination of above two equations leads to 

k f i  <]=R;(R;~' k,' fi f,] (B3) 

Therefore, the iterative form of the incremental rotation matrix can be expressed by 

'IR,='R, ("'~~7 (B .4) 



where mIR, refers to the incremental rotation matrix from time step n-1 to n. 

Figure B. 1: A set of vectors at two time steps, n-1 and n. 



Appendix C 

Enforcement of the Coulomb Law 

F, = ( X , F ,  +qF, + Z , F : )  

if Fn < 0 // tension mode 

F' =o 

remove the penetrating node from Collisiodisr 

else I/ compression mode 

r l+o 

F. = Fn 

eke 

> Fn tan 6 11 exceed the Friction capacity qq 1 - 1  



Appendix D 

An Incremental Scheme for Collision Response 

with Gauss-Seidel Iteration 

Step 1 calculate the displacement component due to non-collision factors 

Seep 2 Gauss-Seidel iteration calculates the contact forces and the displacement 

component due to collision factor 

Step 2.1 hitidization 

A ~ ) = O ,  ' A = O .  A(""u:)=o 

calculate parameters 1:'' . 12' , and ti1' for all penetrating node j [=I , .  . ., N, ) 

Step 2.2 Gauss-Seidel iteration for i = I  ,2,. . .. N ,  
2.2.1 update the coordinates of contact nodes 

2.2.2 calculate the penetration components of node j 

2.2.3 calculate the increment of contact forces 



2.2.4 enforce the Coulomb law using Appendix I 

insert Appendix 1 here 

2.2.5 update contact forces n A  

2.2.6 update the rotation displacement component due to colIision factor 

A('" uf 8, '+'8 c Q: c n A  

2.2.7 update the translation displacement component due to coilision factor 



2.2.8 convergence test for the GaussSeidel iteration 

otherwise, return to Step 2.2. 

Step 3 Calculate displacements in the current time step 

A?UJ= A ~ ~ U : ) + A ( W ~ ~ ~ )  



Step 4 Calculate velocities and accelerations 

I l  -- I 
u, = - p u t  - 2  "u,+"'u,} 

h' 

A(.+'d)= h n ~ ~ f ~ - a ~ * )  

n - i b n b  - + a('db ) 

Step 5 tncrement the time step n t n + 1 ,  return to step 1 



Appendix E 

An Two-time-interval Scheme for Dynamic 

Interaction between Deformable Objects 

Step 1 lnitialization 

Ou,=lu, - D, ' ~ i ,  t0.5~3 lii, 

O8='8 - D, 'e + 0.5~: '8 

Step 2 Incremental step-by-step integration for i (=I, ..., N,,) 

2.2 calculate the reference force vector TF (=" K "u ) equivalent to element stress 

2.3 calculate the displacement component due to non-collision factors 

( h = D, if CoiiisionMode = FALSE; h = D,-, , otherwise. ) 

2.4 (CollisionMode, Collisiodist) t result of coltision detection 

2.5 if ( CollisionMode is FALSE & CoIlisionList is empty) N non-collision stage 

use the Lagrange Dynamics to describe the global movement of objects 

2.6 else if (CollisionMode is TRUE & CollisionList is empty) // beginning of 

collision 



*+IU; + n + l ~ * ,  ng 

( h  = D,-, which corresponds to the exact beginning of the collision) 

2.7 else I/ coilision stage 

insert Appendix D (except Step 1) here 

2.8 return to Step 2 



Appendix F 

Nomenclature 

Q penalty coefficient. 

4 internal friction angle of a material. 

A Lagrange mdtiplier vector. 

R Lagrange multiplier. 

6 rotation angle. 

P density. 

B Poison's ratio. 

0 stress. 

0 , .  bZ, O ,  principal stresses. 

shear stress or strength. 

total potentid energy of the system. 

damping rnauix. 

cohesion of a material. 

elastic modulus. 

normal force. 

tangential force. 

geometric constraint matrix, 

time interval- 



I , ,  IlandI, first, second and third invariants of the stress, respectively. 

incremental rotation matrix (Appendix B). 

stiffness matrix. 

failure threshold. 

mass matrix. 

inertia tensor. 

projection of the penetration distance of a penetrating node. 

external torque vector. 

vector of torques caused by contact forces 

external load vector. 

time. 

rotational matrix. 

displacement matrix. 

displacement vector. 

velocity vector. 

acceleration vector. 

rotational displacement vector. 

translatory displacement vector. 

material deformation gradient- 

coordinate vector. 



Appendix G 

Glossary 

Collision detection the act of detecting where and when a collision occurs. 

Collision response the behavior of objects after a collision happens. 

Computeranimation a technique to add the dimension of time into computer 

graphics. 

Continuum mechanics mechanics of continuum media by which an object may be 

divided infinitely and the problem is defined using the mathematical fiction of an 

infinitesimal. 

Deformable object an object which is allowed to deform. 

Failure stress the stress at which an object starts to fail, 

Elasticity the property by which an object returns to its initial geomeuic configuration 

after removal of external loads. 

Finite difference method a technique to replace continuous derivatives in equations 

governing a system with the ratio of changes in the variables over small, but finite 

increments. 

Finite element method a variational procedure in which the approximating functions 

such as algebraic polynomials are used to approximate the solution variables in 

simple subdomains (called finite elements) into which a given domain is divided. 

Failure criterion a binary standard used to identify whether or not a material fails. 

Fracture the breaking of an object into two or more parts. 



N o d  stress the stress perpendicular to the cross section of an object. 

Particle system a system consisting of many particles each of which is controlled by a 

specific birth and death mechanism. 

Plasticity the property by which an object remains at its deformed shape after removal 

of external loads. 

Principal stress the normal stress on the plane where shear stresses do not exist. 

Rigid object an object which is not allowed to deform. 

Shear stress the stress tangential to or inside the cross section of an object, 

Strain the deformation per unit length. 

Stress che intensity of force. i-e.. the force per unit area. 




