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Abstract 

          Durum wheat (Triticum turgidum L. var. durum, 2n = 4x = 28, AABB genomes) is 

used predominantly for semolina and pasta products, but there is increasing interest in 

using durum for bread-making to provide alternative markets during periods of 

overproduction. The goal of this study was to characterize the bread-making quality of 

durum wheat cultivars and emmer (Triticum turgidum L. var. dicoccum, 2n = 4x = 28) 

derived breeding lines derived from crosses of durum wheat with an Emmer land race 

‘97Emmer19’ from Iran. Emmer-derived breeding lines were evaluated along with three 

high quality bread wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD genomes) 

cultivars and seven durum wheat cultivars across three environments in replicated yield 

trials in the 2005 and 2006 growing seasons. Four 1AS.1AL-1DL translocation lines 

which carry the Glu-D1d allele [high molecular weight glutenin subunit (HMW-GS) pair 

1Dx5+1Dy10] from chromosome 1D of bread wheat were also evaluated. In general, 

durum wheat cultivars with elevated gluten strength and/or increased dough extensibility 

were noted to have higher loaf volume (LV) than those with weaker gluten. The 

1AS.1AL-1DL translocation line ‘L252’ carrying the LMW-1 banding pattern had better 

dough mixing stability and LV than the translocation lines with the LMW-2 banding 

pattern. The 1AS.1AL-1DL translocation lines had higher grain protein concentrations 

(GPC), but the lowest loaf volumes of all the lines tested. These translocation lines also 

exhibited unappealing external loaf quality (loaf shape and appearance) and poor internal 

loaf quality (crumb structure). Variation in bread-making quality attributes were observed 

among durum genotypes. ‘97Emmer19’ exhibited higher LV than all the durum wheats 

evaluated and approached the loaf volume achieved with the bread wheat cultivar ‘AC 

Superb’. Breeding lines derived from crosses of ‘97Emmer19’ to strong gluten durum 

cultivars (‘WB881’ or ‘AC Navigator’) had higher LV than those of the durum checks. 

‘97Emmer19’ carried Glu-A1a* (HMW-GS 1Ax1) and the progeny carrying that allele 

generally exhibited higher loaf volumes. Durum wheat genotypes expressing the Glu-B1d 

(HMW-GS pair Bx6+By8) allele exhibited better overall bread-making quality compared 

with those expressing the Glu-B1b (HMW-GS pair Bx7+By8) allele. The durum cultivar 

‘Arcola’ and the emmer-derived breeding line ‘2000EB4’, showed higher alveograph 
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extensibility (L) values than did the bread wheat check ‘AC Barrie’. The durum wheat 

genotypes (with the exception of ‘Stewart-63’) and emmer-derived breeding lines 

exhibited better dough extensibility than the USDA-ARS 1AS.1AL-1DL translocation 

lines. These results indicate that there is potential to select for genotypes with improved 

baking quality in durum breeding programs. 
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1. Introduction 

          Durum wheat (Triticum turgidum L. var. durum) is an important crop in Canada 

with 10-year (1993 - 2003) average annual production of 4.5 million tonnes (FAO, 2006). 

The majority of the durum wheat crop is produced in Saskatchewan, with 3.01 million 

tonnes produced in the 2007 crop year (Statistics Canada, 2008). Historically, durum 

production and consumption has been concentrated in the hot dry regions of North 

Africa, Southern Europe, Turkey and Syria, but production has expanded into North 

America, where a suitable climate is found in the major growing regions of western 

North Dakota and Montana in the United States, and southern Saskatchewan and Alberta 

in Canada (Market Analysis Division, AAFC, 2005). The trend worldwide is increased 

consumption of durum wheat products, including bread made from durum wheat 

semolina. 

          The poor bread-making quality of durum wheat has limited its wider use for bread 

production (Elias, 1995). The differences between common wheat and durum wheat can 

be attributed largely to their gluten protein properties, with durum wheat normally having 

weaker and less extensible gluten characteristics than bread wheat (Quaglia, 1988; 

Ammar et al., 2000; Edwards et al., 2001; Rao et al., 2001). However, the development 

of strong gluten durum cultivars has improved not only the cooking quality of pasta 

products, but has also resulted in improved bread-making quality (Liu et al., 1996; Dexter 

and Marchylo, 1996, 2000). Durum wheat baking quality does not appear to be linked to 

pasta cooking quality (Dexter and Marchylo, 2000), allowing for the development of 

durum wheat varieties suitable for both pasta-making and bread-making. The 

development of durum wheat with satisfactory bread baking characteristics and 

acceptable pasta quality would be beneficial, considering the potential benefit in the 

international market. Quick and Crawford (1983) reported that a dual-purpose durum 

wheat would have distinct advantages in situations where a processor could purchase one 

source of raw material for both bread flour and pasta semolina or when weather and 

disease caused a shortage of hexaploid wheat. 

          Although durum wheat is mostly used for pasta production, its use for the 

preparation of different kinds of bread is widespread in many Mediterranean countries 
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(Williams et al., 1984; Williams, 1985) and is increasing in North American countries 

(Faridi and Faubion, 1995; Dexter et al., 1998). Depending on the country and the 

amount of blending with other wheat flour, several types of bread are made from durum 

wheat (Elias, 1995). Only recently have investigations of durum wheat end-use for bread-

making been undertaken. Hence, reported studies on durum wheat baking quality are few 

in number and only a limited number of genotypes have been investigated. The objective 

of this research was to develop a better understanding of the physical, chemical and 

rheological factors that influence the bread-making quality of durum wheat. 
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2. Literature Review 

2.1. Durum Wheat and Its Uses  

          Durum wheat is an economically important cereal crop grown throughout the 

world, although not as extensively as bread wheat. Durum is grown on approximately 18 

million hectares worldwide, with production averaging 30 million metric tonnes 

(International Grains Council, 2002; CFIA, 2006). The major durum producing countries 

are the European Union (Italy, Turkey, Spain, France, and Portugal), Canada, Syria, 

USA, Algeria and Morocco, while minor production areas include Russia, Tunisia, 

Mexico and India (Pasquale et al., 2007). Canada is the second largest producer (4.6 

million metric tonnes per year), followed by Turkey (4 million metric tonnes) and the 

USA (3.5 million metric tonnes) (International Grains Council, 2002; CFIA, 2006). In 

Canada, durum wheat production occurs in the drier, south central regions of the prairie 

provinces of Manitoba (2% of Canadian production), Saskatchewan (84% of Canadian 

production) and Alberta (14% of Canadian production) (CFIA, 2006). In the Canadian 

wheat classification system, two sub-classes of durum wheat are recognized; 

conventional varieties with moderate gluten strength and extra-strong varieties with 

strong gluten properties similar to the USA desert durum varieties (Clarke et al., 2005). 

          Durum grain possesses unique quality characteristics (high yellow pigment content 

and hard vitreous kernels that will typically yield excellent quality semolina) that 

differentiate Canadian Western Amber Durum (CWAD) wheat from other Canadian 

wheat classes. Common or bread wheat is used for bread (leavened, flat, and steamed), 

noodles, biscuits, and cakes. In contrast, durum wheat is used predominantly for pasta 

and couscous (paste durum wheat products) and for bulgur and frekeh (non-paste durum 

wheat products) in the Middle East and North Africa. The use of durum wheat in flat and 

specialty breads is also common in Mediterranean countries, the Middle East, and North 

Africa (Quaglia, 1988; Boyacioglu and D’Appolonia, 1994; Boggini et al., 1995) and in 

recent years, its use in preparation of breads of all types is increasing (Palumbo et al., 

2000). Durum wheat that combines pasta and baking quality (dual-purpose durum wheat) 

is a desirable goal as such cultivars would have alternative markets in years of high 

production, by being used in place of bread wheat, either alone or in blends with bread 
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wheat flour (Boggini and Pogna, 1989; Boggini et al., 1995). In bread wheat, the high 

molecular weight glutenin subunit pair (HMW-GS) 1Dx5+1Dy10 encoded by Glu-D1d 

allele is considered responsible for good bread-making quality, and in durum wheat, the 

low molecular weight glutenin subunits (LMW-GS) encoded by Glu-B3 genes are 

responsible for good pasta cooking quality. Since different genes impart good pasta and 

bread-making qualities, it may be possible to improve the bread-making quality of durum 

wheat without negatively affecting pasta cooking quality (Marchylo et al., 2001). 

2.2 Wheat Quality Factors 

          Wheat quality can be broadly defined into physical quality, chemical quality, and 

rheological and processing characteristics. Physical grain quality traits include kernel 

hardness, vitreousness of the grain, kernel weight, hectoliter weight, kernel size and 

shape, all of which can influence rheological and/or processing characteristics. Chemical 

quality traits include protein content and composition of gluten subunits and these two 

factors largely influence the rheological properties of dough including dough mixing 

characteristics and visco-elastic properties (Faridi, 1985; Bushuk, 1985; Menjivar, 1990; 

Kovacs et al., 1997; El-Khayat et al., 2006). 

2.2.1 Physical Quality 

2.2.1.1 Test Weight and Kernel Weight 

          Test weight is a measure of grain density, and is widely utilized as a wheat grading 

factor. Test weight is influenced by genetic factors and the environment with heritability 

estimates ranging from 0.44 to 0.83 (Bhatt and Derera, 1975). Grain that is badly 

shriveled as a result of disease or drought is usually low in test weight. Test weight has 

been suggested as a measure to predict milling potential, but there is no consensus on its 

true value as a milling yield predictor (Hook, 1984). Dexter et al. (1987) found a strong 

relationship between semolina yield and test weight for durum wheat. Watson et al. 

(1977) also concluded that test weight was an effective indicator of milling potential for 

durum wheat. However, different wheat classes and different varieties within a wheat 

class exhibit different relationships between test weight and milling yield (Dexter and 

Edwards, 1999). With lower test weights, the milling yield usually falls rapidly. 

          Thousand-kernel weight is a measure of average kernel size. Seed weight is under 

genetic control with quantitative trait loci (QTL) being reported on chromosomes 3D and 
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4A in hexaploid wheat (McCartney et al., 2005). There is also a strong environmental 

influence with heritability estimates in the range of 0.37 to 0.69 (Sharma and Knott, 

1964; Jochum et al., 2001; Collaku and Harrison, 2005). Matsuo and Dexter (1980) 

reported a high correlation between milling yield and grain size in durum wheat. With 

large kernels a greater milling yield is generally expected due to a greater ratio of 

endosperm to bran. Larger kernels (kernel weight and volume) show a negative 

association with protein and gluten content (Khattak et al., 2005). 

2.2.1.2 Kernel Hardness 

          Kernel hardness is an important factor in determining the end-use suitability of 

wheat. Soft wheats are more friable, require less energy to mill and produce flours and 

whole wheat meals with reduced particle-size, including many free starch granules 

(Cutler and Brinson, 1935; Devaux et al., 1998) which makes soft wheats useful for 

cookies, cakes, and pastries (Peña,1997). In contrast, the protein and starch matrices are 

tightly bound in the endosperm of hard wheats (Donelson and Yamazaki, 1962). 

Hardness of the grain affects the manner in which the endosperm and starch granules are 

fractured during the milling process, and hard wheat flours generally have more broken 

and damaged starch granules. Damaged starch absorbs more water than intact starch 

granules during dough mixing (Evans and Stevens, 1985), thus hard wheat flours exhibit 

increased farinograph water absorption (FAB) (Tipples, 1969; Bass, 1988). 

          In hexaploid wheat, the genetic control of kernel hardness is well understood, and 

is largely controlled by the action of two tightly linked puroindoline a (Pina-D1) and 

puroindoline b (Pinb-D1) genes at the Hardness (Ha) locus on the distal end of the short 

arm of chromosome 5D (Bhave and Morris, 2007). Soft texture is the wild type (Pina-

D1a/Pinb-D1a) with hard texture being determined by mutations in either Pina-D1 or 

Pinb-D1. Absence of Pina-D1 and Pinb-D1 mRNA transcripts in durum wheat are 

consistent with its lack of the hexaploid wheat D genome, and results in very hard 

endosperm texture (Giroux et al., 2000). While the Pina-D1 and Pinb-D1 genes are major 

genetic factors responsible for grain hardness, they do not appear to account for the 

differences in wheat grain texture among wheat varieties or within crosses of the same 

textural class (Pickering and Bhave, 2007). Grain softness proteins (GSPs) are closely 

related to puroindolines (Gautier et al., 2000) and the grain softness protein-1 gene (Gsp-
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D1) is closely linked to the Ha locus in wheat (Jolly et al., 1996) and einkorn wheat (T. 

monococcum L.) (Gsp-Am1) (Chantret et al., 2004), where Pina-D1 is positioned between 

Pinb-D1 and Gsp-1 (Tranquilli et al., 1999; Turnbull et al., 2003). Despite the close 

relationship among these three genes, there is no clear evidence of the role of the Gsp-1 

gene in grain kernel hardness (Tranquilli et al., 2002). 

2.2.2 Protein Quality and Quantity 

          The ability of wheat flour to be processed into different products is largely 

determined by the gluten proteins (Weegels et al., 1996). The gluten proteins have been 

studied intensively to determine their structural properties and to provide a basis for 

manipulating and improving end-use quality (Shewry et al., 1995). Wheat grain proteins 

can be classified on the basis of their solubility in different solvents: albumins (soluble in 

water), globulins (salt), and prolamins [gliadins (alcohol) and glutenins (dilute acid or 

alkali)] (Miflin et al., 1983; Shewry et al., 1986). The largest portion of the wheat storage 

proteins are the prolamins which are characterized by further repeated regions, rich in 

proline and glutamine. Wheat prolamins have been classified into two groups, the 

gliadins and glutenins, according to their solubility in aqueous/alcohol solutions 

(Kasarda, 1989; Shewry and Tatham, 1990). Gliadins are a mixture of monomeric 

polypeptides (Sapirstein and Fu, 1998) and glutenins consist of polypeptides aggregated 

by disulphide bonds (Shewry and Tatham, 1990; Singh and MacRitchie, 2001). The 

gliadins and glutenins constitute up to 80 to 85% of the total flour protein, and confer 

elasticity and extensibility properties that are essential for functionality of wheat flours 

(Branlard and Dardevet, 1985a, b; Shewry et al., 1995).  

2.2.2.1 Albumins and Globulins 

          Water-soluble albumins and salt-soluble globulins constitute from 10 to 22% of the 

total flour protein (Singh and MacRitchie, 2001). Albumins such as α-amylase/trypsin 

inhibitors (Shewry et al., 1984; Buonocore et al., 1985), serpins (Østergaard et al., 2000) 

and purotionins (Garcia- Olmedo et al., 2002) may have dual roles as nutrient reserves for 

the germinating embryo and as inhibitors of insects and fungal pathogens prior to 

germination. The puroindolines are included in this group and influence grain hardness 

(see section 2.2.1.2). Generally, albumins and globulins do not have a direct impact on 

dough rheology, although  a  minor influence on bread-making quality has been reported  
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(Schofield and Booth, 1983). 

2.2.2.2 Glutenins 

          The glutenins are polymeric proteins stabilized by disulfide bonds (Kasarda, 1989) 

that, when treated with a reducing agent, release high molecular weight glutenin subunits 

(HMW-GS; 90 to 140 KDa) and low molecular weight glutenin subunits (LMW-GS; 30 

to 75 KDa). The HMW-GS and LMW-GS are considered the major factors that 

determine the visco-elastic properties of gluten (Payne et al., 1984; Klindworth et al., 

2005). The HMW-GS are minor components in terms of quantity (5-10% of total protein; 

Payne, 1987), but they are key factors in the process of bread-making because they are 

major determinants of gluten elasticity (Tatham et al., 1985) allowing efficient trapping 

of gas for dough to rise (Cornish et al., 2006). The HMW-GS are encoded by genes at 

three loci, Glu-A1, Glu-B1 and Glu-D1, located on the long arms of homoeologous group 

1 chromosomes (Payne et al., 1981; Payne and Lawrence, 1983). Molecular studies have 

shown that each locus contains two tightly linked genes which encode two types of 

HMW-GS, one of higher molecular weight, designated the x-type, and the other of lower 

molecular weight, designated the y-type (Harberd et al., 1986). Alleles coding for 

different subunits occur at all three loci (Lawrence and Shepherd, 1981; Payne et al., 

1981) and are manifested as one or more subunit combinations, resulting in a high degree 

of subunit polymorphism in both bread and durum wheat cultivars (Payne and Lawrence, 

1983; Branlard et al., 1989). The polymorphisms of glutenin coding alleles have been 

well described (Payne and Lawrence, 1983; Payne et al., 1987; Rogers et al., 1989; Gupta 

and Shepherd, 1990; Carillo et al., 1990; Metakovsky, 1991) and these are known to 

account for a part of the range in bread-making ability and pasta quality, depending on 

the fraction involved (Gupta et al., 1989; Khelifi and Branlard, 1992; Nieto-Taladriz et 

al., 1994). Glutenin proteins are responsible in part for the quality differences between 

durum and bread wheat (Vazquez et al., 1996).  

          Numerous studies have defined the molecular basis of bread-making and pasta 

quality in relation to specific polypeptides of the gluten protein complex, especially the 

HMW-GS (Payne et al., 1984; MacRitchie et al., 1990). Working with near-isogenic lines 

of common wheat, Redaelli et al. (1997) established that allelic variation at the Glu-D1 

locus had a greater influence on bread-making quality than the variation at the Glu-A1 
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and Glu-B1 loci. In bread wheat, the HMW-GS 1Dx5 + 1Dy10 encoded by the Glu-D1d 

locus are associated with good bread-making quality and increased dough strength, while 

1Dx2 + 1Dy12 encoded by Glu-D1a are associated with poor bread-making quality and 

weak dough (Payne et al., 1984, 1987, Shewry et al., 1992). As a result, Glu-D1d 

predominates in high-quality wheats, whereas allele Glu-D1a usually occurs in feed 

wheats with low bread-making quality (Rogers et al.; 1989; Groeger et al., 1997). The 

superior quality of the Glu-D1d allele is generally attributed to the difference in amino 

acid primary structures of 1Dx2 and 1Dx5. According to Shewry et al. (1997), 1Dx5 has 

one additional cysteine residue and therefore can form longer polymer chains, resulting in 

higher elasticity of the dough.  

          The low molecular weight glutenin subunits (LMW-GS) represent approximately 

40% of the total wheat gluten fraction (Payne, 1987; Gupta et al., 1989; Ciaffi et al., 

1999), and most closely resemble γ-gliadins in sequence (Muller et al., 1998). The LMW-

GS are encoded by genes at the Glu-A3, Glu-B3 and Glu-D3 loci on the short arms of 

chromosomes 1A, 1B and 1D, respectively (Gupta and Shepherd, 1990). Features of 

these proteins, such as the distribution of the cysteine residues available for 

intermolecular disulphide bonds (Shewry and Tatham, 1997), as well as their overall 

amino acid compositions involved in noncovalent bonds (Bloksma and Bushuk, 1988; 

Pomeranz, 1988), are important in determining the rheological properties of dough. The 

LMW-GS function as chain terminators or extenders according to the number of cysteine 

residues available for disulfide bonding (Greenfield et al., 1998). Those LMW-GS 

associated with branch extension, in conjunction with HMW-GS, are thought to increase 

the polymer size and confer dough strength (Pogna et al., 1996; Lafiandra et al., 1999) 

and largely influence dough-mixing time (Gupta and Shepherd, 1988; Gupta et al., 1989; 

Pogna et al., 1990; Gupta et al., 1991; Nieto-Taladriz et al., 1994; Sissons et al., 1998).  

          As LMW-GS are present in greater amounts than HMW-GS, effort has been made 

to establish their role in bread-making quality (Payne, 1987; Gupta and Shepherd, 1987, 

1988; Boggini and Pogna, 1989; Gupta et al., 1989; Metakovsky et al., 1990; Pogna et al., 

1990). The LMW-GS are less well characterized than the HMW-GS, because large 

numbers of the LMW-GS subunits with similar mobility in SDS-PAGE analysis makes 

characterization difficult (D`Ovidio and Masci, 2004). In general, the LMW-GS are 
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associated with dough resistance and extensibility (Metakovsky et al., 1990; Andrews et 

al., 1994; Cornish et al., 2001), and some allelic forms show greater effects on these 

properties than HMW-GS (Payne et al., 1987; Gupta et al., 1989, 1994). The LMW-GS 

gene family has been studied in related wild wheat species and in several common wheat 

and durum wheat cultivars (Ciaffi et al., 1999; Lee et al., 1999; Masci et al., 2000; Ikeda 

et al., 2002; Wicker et al., 2003). Differences in the expression of LMW-GS, associated 

with specific allelic forms, have been reported to be important in conferring quality 

differences in bread wheat (Gupta and Shepherd, 1990). Boggini and Pogna (1989) have 

confirmed that γ-gliadin 45 has a strongly favorable influence on the bread-making 

quality of durum wheat as well. Redaelli et al. (1997) have shown strong positive effects 

on dough extensibility by Gli-D1 (gliadins)/Glu-D3 (LMW-GS) alleles. 

          In durum wheat, the LMW-GS encoded by the Glu-B3 genes on chromosome 1BS 

(Joppa et al., 1983) are most responsible for good pasta quality (Ciaffi et al., 1991; Brites 

and Carrillio, 2001). Two LMW-GS patterns, LMW-1 and LMW-2, explain a large part 

of the quality differences between some durum wheat genotypes where the presence of 

LMW-2 glutenin subunits confers stronger gluten and better pasta-making quality than 

cultivars possessing LMW-1 (D’Ovidio, 1993; Vazquez et al., 1996). Durum wheat 

cultivars with LMW-2 have a greater amount of LMW-GS than LMW-1 type durum 

wheats (Autran et al., 1987; Masci et al., 1995). The Glu-B3 locus is tightly linked to the 

Gli-B1 loci that encode γ and ω- gliadins (Brown and Flavell, 1981) (see section 2.2.2.3). 

The LMW-1 group is linked to γ-gliadin 42 and to the three ω-gliadin subunits 33, 35, 

and 38, whereas the LMW-2 group is linked to γ-gliadin 45 and ω-gliadin 35, and these 

gliadins have been used as effective genetic markers for LMW-1 and LMW-2 (Payne et 

al., 1984, 1987). 

          At present, most of the durum wheat breeding programs have fixed the LMW-2/γ-

45/ω-gliadin 35 loci because of their positive effect on pasta performance. However, 

large differences in pasta quality are still evident, suggesting other factors like the 

negative influence of the intermediate-molecular-weight group (IMWG) (albumins, 

globulins, some glutenins and omega gliadins) on pasta quality (Galterio et al., 1993).  

2.2.2.3 Gliadins 

          The  gliadins  are divided into four groups, alpha- (α-), beta- (β-), gamma- (γ-), and 
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omega- (ω-) gliadins, based on their electrophoretic mobility at low pH (Woychik et al., 

1961). The amino acid compositions of the α- , β- , γ- and ω- gliadins are similar (Tatham 

et al., 1990), although the ω-gliadins contain little or no cysteine or methionine residues 

and only small amounts of glutamine, proline and phenylalanine (Tatham and Shewry, 

1995). Thus, all gliadins are monomers with either no disulphide bonds (ω-gliadins) or 

intra-chain disulphide bonds (α-, β- and γ- gliadins) (Muller and Wieser, 1995, 1997). 

Gliadins are encoded by six Gli loci mapped to the short arms of homoeologous group 1 

(Gli-A1, Gli-B1 and Gli-D1) and 6 (Gli-A2, Gli-B2 and Gli-D2) chromosomes (Wrigley 

and Shepherd, 1973; Payne et al., 1982). The significance of gliadin subgroups in the 

functionality of wheat flour has been debated in the literature. In durum wheat, a highly 

significant correlation between specific γ-gliadin components and gluten visco-elasticity 

has been demonstrated (Damidaux et al., 1978; Kosmolak et al., 1980). However, as 

indicated in section 2.2.2.2, the γ-42 and γ-45 gliadins are allelic variants whose coding 

genes at the Gli-B1 locus (Joppa et al., 1983) are linked to genes at the Glu-B3 locus 

(Gupta and Shepherd, 1987), making it difficult to determine the individual effects of the 

γ-gliadins.  

          There exist several references on the relationship of gliadin alleles to dough quality 

(Sozinov and Poperelya, 1982; Wrigley et al., 1981; Pogna et al., 1982; Dachkevitch et 

al., 1993). In dough formation, the gliadins do not become covalently-linked into large 

elastic networks, but act as a ‘plasticiser’, promoting viscous flow and extensibility which 

are important rheological characteristics of dough. Gliadins have been postulated to 

interact with other proteins through a disulphide interchanging, and through hydrophobic 

and hydrogen bonding (Beitz and Wall, 1980; Khatkar et al., 2002). In addition, the ratio 

of monomeric gliadins to polymeric glutenin proteins (Gupta et al., 1992; Sapirstein and 

Fu, 1998) and the amount and size distribution of polymeric proteins (Gupta et al., 1993; 

MacRitchie, 1999; Johansson et al., 2001) determine protein quality. Fu and Sapirstein 

(1996) confirmed that most of the variation in dough strength parameters was explained 

by the relative proportions of soluble and insoluble glutenins. 

2.2.3 Durum Wheat Quality 

2.2.3.1 Semolina milling 

          The  process  of  wheat  milling  separates  the  starchy  endosperm  (83%  of wheat 
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kernel) from the bran (pericarp, testa, aleurone, nucellus, some starch endosperm) (14.5% 

of wheat kernel) and the embryo (germ) (2.5% of wheat kernel). The separation should 

ideally occur at the level of the endosperm/aleurone layer interface if aleurone, which is 

high in ash content, is to be excluded from the semolina. According to Chaurand et al. 

(1999), semolina milling potential depends on three main factors: external factors related 

to growing and harvesting conditions; internal factors such as the endosperm/bran ratio 

and the mechanical resistance or friability of the endosperm (semolina/flour ratio); and 

the ease of separating the endosperm from the bran, which is a function of kernel 

hardness. Semolina milling yield is highly dependent on the cultivar and the agronomic 

conditions within which the cultivar was grown (Clarke et al., 1998; Troccoli et al., 

2000). Commercial semolina extraction rates range from 65 to 72% (Matz, 1991; Blazek 

et al., 2005; Hruskova et al., 2006). Semolina purification remains the most important 

process of durum wheat milling (Dexter and Marchylo, 2000). 

          The hardness of starchy endosperm has been the subject of many studies and is 

identified as a major factor influencing durum wheat semolina milling behavior 

(Lempereur et al., 1997; Chaurand et al., 1999). The physical characteristics of durum 

wheat, such as test weight, kernel weight, kernel size and degree of vitreousness have 

also been known to influence the milling performance of durum wheat (Dexter et al., 

1987; Dexter et al., 1988; Troccoli et al., 2000). Grain conditioning/tempering induces an 

increase in bran extensibility, while preserving the hardness of the starchy endosperm 

(Peyron et al., 2002), and is a common practice prior to milling. 

2.2.3.2 Semolina and pasta colour 

          The yellow colour of the semolina and pasta is an important end-use quality trait in 

the international market (Troccoli et al., 2000; Marchylo et al., 2001). The colour of 

semolina and pasta products is often expressed using CIELab colour scale [L* 

(brightness) a* (redness) b* (yellowness)]. The bright yellow colour of durum pasta is a 

function of the concentration of carotenoid pigments, mainly lutein in free ester form, 

present in the grain (Irvine and Anderson, 1953; Laignelet, 1983; Mann et al., 1998; 

Borrelli et al., 1999). However, Hentschel et al. (2002), applying more sophisticated 

separation techniques, found that the chemical nature of the yellow pigment in semolina 

is quite complex and concluded that the carotenoids fraction accounted for only 30-50% 
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of the total yellow pigment, while the rest were unidentified compounds. However, the 

authors did not determine whether these unknown compounds are forms of lutein 

modified during the extraction process.  

          The genetics of yellow pigment are well understood in durum wheat. The trait is 

highly heritable (Elouafi et al., 2001; Clarke et al., 2006) and quantitative trait loci (QTL) 

have been identified on most chromosomes. However, a QTL with a large effect on 

yellow pigment in the distal region of the long arm of chromosome 7B has been 

identified in numerous mapping populations (Elouafi et al., 2001; Pozniak et al., 2007). A 

QTL with a smaller effect has also been reported in the distal region of chromosome arm 

7AL (Elouafi et al., 2001). A gene coding for phytoene synthase, the first enzyme 

involved in the carotenoid biosynthesis pathway, was shown to co-segregate with the 7B 

QTL, and has been suggested as a gene to be targeted for marker assisted selection to 

enhance yellow pigment (Pozniak et al., 2007). Additional QTL have been identified on 

chromosomes 5A (Hessler et al., 2002), 1B and 6A (Zhang et al., 2005), and 

chromosomes 2A, 4B, and 6B (Pozniak et al., 2007). 

          Pasta colour loss during processing is common and is largely the result of LOX 

(EC 1.13.11.12) enzyme activity (Borrelli et al., 1999). Lipoxygenases catalyze the 

breakdown of polyunsaturated fatty acids in plants (Prigge et al., 1996), and in durum 

wheat are responsible for degradation of the yellow colour in pasta by oxidation (Joppa 

and Williams, 1988b). Carotenoid pigment degradation is particularly high at the 

beginning of dough mixing when oxygen and lipid, the primary substrates of LOX, are 

present in the highest amounts and the mixing enhances the incorporation of oxygen in 

the dough (Delcros et al., 1998; Rakotozafy et al., 1999).  

          Using nulli-tetrasomic lines, Hart and Langston (1977) assigned wheat LOX 

isoenzymes to chromosomes 4A (Lpx-A1), 4D (Lpx-D1), 5A (Lpx-A2), 5B (Lpx-B2) and 

5D (Lpx-D2). Two linked copies of Lpx-B1, Lpx-B1.1 and Lpx-B1.2, (van Mechelen et 

al., 1999; Ramakrishna et al., 2002) exist on 4B. The Lpx-B1.1 locus was concluded to be 

a valuable breeding target for durum wheat breeding programs aimed at improving pasta 

colour as that locus alone explained 54% of the variation in LOX activity (P < 0.0001) 

(Carrera et al., 2007). Although other enzymes, such as peroxidases and polphenol 

oxidases, contribute to semolina bleaching (Taha and Sagi, 1987), LOX plays a major 
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role, which catalyses the hydro-peroxidation of the polyunsaturated fattyacids containing 

1,4-cis, cis pentadiene structures (Gradner, 1988; Siedow, 1991); in particular, free 

linoleate in durum wheat semolina is oxidised (Matsuo et al., 1970), thus causing 

semolina bleaching (Trono et al., 1999). Hence, reducing lipoxygenase activity in 

varieties possessing other high quality attributes is highly desirable to maintain yellow 

pasta colour. 

 2.2.3.3 Alpha-amylase enzyme activity and falling number 

          Alpha-amylase activity in pre-harvest sprouted wheat grain results in the 

degradation of starch into simple sugars (Kruger, 1972). Screening for resistance to pre-

harvest sprouting is a high priority in wheat breeding programs, because the majority of 

end products are negatively influenced by this enzyme. Several methods exist to evaluate 

the effects of α-amylase (Hagberg, 1960). The Falling Number (FN) method is widely 

used commercially and in breeding programs. Although the FN test does not measure α-

amylase enzyme levels directly, it measures changes in the physical properties of starch 

that result from α-amylase activity and is sufficiently accurate for most quality tasks 

(Blackman and Payne, 1987; Every et al., 2002; Lessard, 2002). The amylograph (C.W. 

Brabender Instruments, Inc.) and the Rapid Visco Analyser (Newport Scientific, 

Warriewood, Australia) can also be used to assess starch properties and the negative 

effects of α-amylase on starch (Atwell, 2001). 

          Pre-harvest sprouting can affect the end product made from wheat in many ways 

(Roozeboom et al., 1999). Increased levels of amylases in wheat have deleterious effects 

on processing quality and on the bread-making quality of flour and dough (Lessard, 

2002). Alpha-amylase hydrolyses starch during mixing and fermentation, reducing the 

water holding capacity of starch and lowering baking absorption. This results in a sticky 

dough that is difficult to handle (Blackman and Payne, 1987; Dexter and Edwards, 1999). 

Studies (Matsuo et al., 1982; Dick et al., 1974) have found that sprout damage has little 

effect on pasta texture. Selection for wheat lines with low levels of resistance to 

premature germination is difficult because of the large environmental influence on 

expression of sprouting and α-amylase production (Derera et al., 1977; Bassoi et al., 

2006), but progress has been made in characterization of QTL controlling genetic 

variation for pre-harvest sprouting (Zanetti et al., 2000; Imtiaz et al., 2008).  
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2.2.3.4 Pasta cooking quality of durum wheat 

          Breeding for pasta quality is a major objective of Canadian durum breeding 

programs (Clarke et al., 1998). High quality durum pasta maintains a firm texture when 

cooked, and its natural amber colour is associated with good quality pasta. Durum protein 

quantity and gluten quality have an important effect on pasta-making characteristics and 

resistance to overcooking. Pasta-making quality generally is measured interms of pasta 

stickiness, firmness, cooking tolerance and water absorption (Pogna et al., 1994). A 

number of workers have developed successful methods for estimating cooked spaghetti 

firmness and resilience (e.g., Dexter et al., 1985) and have associated cooking quality 

with protein content, gluten composition and solubility, farinograph mixing 

characteristics, SDS-sedimentation volume and mixograph characteristics (Matsuo et al., 

1982). Kovacs et al. (1997) showed that pasta disc viscoelasticity, mixograph parameters 

such as peak height and total energy, and alveograph curve parameters were highly 

correlated with chewiness and firmness, as determined by sensory analysis. 

          High protein content or, rather, a high content of all nitrogenous substances (Dexter 

and Marchylo, 1996; Clarke et al., 1998) as well as high gluten strength and elasticity 

(Clarke et al., 1998; Edwards et al., 2001; Bechere et al., 2002) influence pasta resistence 

to overcooking. Pasta resistance to overcooking is also influenced by pasta drying 

temperature (Guler et al., 2002; Villeneuve and Gelinas, 2007). 

2.2.3.5 Bread baking quality of durum wheat 

          Genetically, durum wheats are tetraploids (AABB), and lack the D genome found 

in hexaploid (AABBDD) bread wheats. Removal of the D genome from hexaploid bread 

wheat greatly reduces its baking potential (Kerber and Tipples, 1969) and is considered at 

least partly responsible for the relatively poor baking quality of durum wheat (Joppa and 

Williams, 1988a). Quaglia (1988) identified inextensible dough characteristics as the 

major factor limiting loaf volume potential of strong Italian durum wheat cultivars. 

Ammar et al. (2000) suggested that inadequate dough extensibility, i.e., lower alveograph 

extensibility (L) and greater tenacity to extensibility ratio (P/L), prevents durum wheat 

from achieving loaf volumes equivalent to those of bread wheat. The baking performance 

of durum wheat increases as gluten becomes stronger (Quick and Crawford, 1983; 

Josephides et al., 1987; Boggini and Pogna, 1989; Lopez-Ahumada et al., 1991; Dexter et 
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al., 1981, 1994; Boyacioglu and D’Appolonia, 1994; Peña et al., 1994; Boggini et al., 

1995; Hareland and Puhr, 1999; Sapirstein et al., 2007; Edwards et al., 2007). However, 

very strong gluten durum wheat has a tendency to exhibit tenacious gluten, imparting 

inextensible dough and lower loaf volume due to reduced oven response (Quaglia, 1988; 

Ammar et al., 2000; Edwards et al., 2001; Rao et al., 2001). Together, these results 

suggest that to develop durum wheat cultivars with loaf volumes (LV) approaching that 

of bread wheat, it may be necessary to achieve an appropriate balance of resistance to 

extension (i.e., alveograph P or tenacity) and extensibility (alveograph L) in conjunction 

with increased alveograph W values or overall strength (Dexter et al., 1994). 

          There is general agreement that durum wheat baking performance improves as 

gluten becomes stronger, but remains inferior to bread wheat. However, the type of 

baking process used to evaluate baking potential will influence the relative differences in 

baking performance among durum cultivars (Dexter and Marchylo, 2000; Sapirstein et 

al., 2007; Edwards et al., 2007). Longer fermentation baking methods, such as the remix-

to-peak process and the sponge-and-dough procedure, are commonly used to assess 

durum wheat baking potential (Dexter et al. 1998). When baked by the remix-to-peak 

process, weaker durum cultivars show reduced loaf volume compared to stronger 

cultivars and stronger durum wheat genotypes exhibit bread attributes and loaf volume 

comparable to what would be expected from a standard bread wheat variety (Rao et al., 

2001; Sapirstein et al., 2007). In contrast, Dexter et al. (1994) and Marchylo et al. (2001) 

showed that Canadian durum wheat of moderate strength produced good bread when 

baked by a short process, whereas baking quality of moderate strength durum wheat was 

poor when using long fermentation times. Sapirstein et al. (2007) further confirmed that 

the short fermentation time (when reduced from the standard 165 to 90 min to 15 min) is 

advantageous for durum wheat bread quality, likely because durum wheat genotypes tend 

to possess inferior fermentation tolerance compared to the bread wheat flour (Edwards et 

al., 2007). A factor associated with the lack of fermentation tolerance in durum wheats is 

the absence of HMW-GS encoded by Glu-D1 loci (Sapirstein et al., 2007). The lack of 

fermentation tolerance could also be attributed to the degree of protein quality in durum 

wheat, although there is no literature published on the relationship between lack of 

fermentation tolerance and protein quality in durum wheat.  
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          Transfer of the Glu-D1d alleles coding for 1Dx5+1Dy10 (responsible for good 

baking quality) from common wheat to durum wheat has been examined as a means to 

enhance the bread-making quality of durum wheat (Pogna et al., 1996; Ceoloni et al., 

1996; Joppa et al., 1998; Lafiandra et al., 2000). Joppa et al. (1998) successfully 

transferred the segment of chromosome 1D coding for 1Dx5+1Dy10 from hexaploid 

wheat cultivar ‘Len’ to durum wheat cultivars ‘Renville’ and ‘Langdon’. Detailed 

cytogenetic and molecular studies have confirmed that the 1DL substitution spans 

approximately 31% of the long arm of the 1AS chromosome (Xu et al., 2005). Blanco et 

al., (2002) and Lukaszewksi, (2003) backcrossed a 1AS.1DL translocation from triticale 

(×Triticosecale Wittmack) into durum genetic backgrounds. Vitellozzi et al. (1997) also 

produced a durum 1AS.1AL-1DL translocation, induced through ph1-mediated 

homoeologous pairing. Preliminary bake tests conducted by Joppa et al. (1998) suggested 

that the 1AS.1DL translocation lines had improved loaf volumes compared to near 

isogenic lines lacking the translocation. However, detailed studies conducted by 

Klindworth et al. (2005) have shown that the 1AS.1DL translocation did not significantly 

improve loaf volume compared to its isogenic parent “Renville”. Also, they did note that 

translocation lines carrying LMW-1 had better mixing and baking characteristics than 

lines carrying the strong gluten LMW-2 banding patterns (Klindworth et al., 2005). In 

contrast, Liu et al. (1995) reported improvement in baking quality in ‘Langdon’ 

substitution lines carrying the Glu-D1a allele. ‘Langdon’ carries the LMW-1 glutenin 

subunit pattern (Joppa et al., 1998). 

          Another possibility for improving the bread-making quality of durum wheat is to 

identify wild relatives that exhibit variation for enhanced baking quality. Emmer wheat 

(Triticum turgidium var. dicoccum), a tetraploid (AABB) wheat, is the evolutionary 

precursor to durum wheat. Numerous studies have examined the potential for emmer 

wheat as a source of genetic variation to improve the baking quality of durum wheat. 

Baking studies conducted as early as 1918 indicated that some emmer lines had baking 

qualities superior to that observed in durum wheat cultivars (LeClerc et al., 1918). Peña 

et al. (1993) evaluated approximately 150 emmer accessions using gel electrophoresis 

and identified some accessions with glutenin subunits known to contribute to enhanced 

bread quality. Similarly, Blum et al. (1984) evaluated over 800 wild emmer lines, 
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resulting in the identification of lines which had high protein and high molecular weight 

subunits associated with good bread baking quality. Schlichting et al. (2002) reported the 

identification of Emmer wheat ‘97Emmer19’ which displayed improved baking quality 

over several Canadian durum wheat cultivars. Preliminary evaluation of breeding lines 

derived from crossing ‘97Emmer19’ to strong durum wheat cultivars indicated that most 

lines had improved baking quality while retaining the good pasta cooking quality of the 

durum wheat parents (Schlichting et al., 2002). Furthermore, ‘97Emmer19’ has since 

been crossed to adapted durum wheat cultivars, and there is a need for further research to 

evaluate the potential of ‘97Emmer19’-durum derivatives for enhanced baking quality 

and to characterize factors that are contributing to improved baking quality. 

2.3 Research Hypothesis 

1. ‘97Emmer19’ has shown improved baking quality relative to commercial durum 

wheat cultivars. This research was designed to test the hypothesis that 

‘97Emmer19’ contains factors contributing to physical, chemical and rheological 

properties that enhance baking quality, and in particular improved dough 

extensibility. Progeny from crosses of ‘97Emmer19’ to strong gluten durum 

cultivars were included to test the hypothesis that these factors were heritable.  

2. Variation at gliadin and glutenin subunits is known to influence bread-making 

quality of wheat. An additional hypothesis of this research is that ‘97Emmer19’ 

possesses unique gliadin and glutenin subunits that contribute to its enhanced 

baking quality. If this hypothesis is true, progeny from ‘97Emmer19’ with similar 

subunit composition should display enhanced baking quality over commercial 

durum wheat cultivars. 

2.4 Objectives 

The objectives of this study were:  

1. To determine the inter-relationships between physical quality traits, chemical 

quality traits and rheological properties and enhanced bread-making quality of 

durum and ‘97Emmer19’-derived genotypes.  
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2. To identify gliadins and glutenins from ‘97Emmer19’ and other emmer derived 

lines which may be associated with enhanced baking quality.  
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3. Materials and Methods 

3.1 Plant Material and Experimental Design 

          Twenty-nine genotypes (Table 1) were used in this study. ‘97Emmer19’, a hulled 

Emmer wheat, with good baking quality (Schlichting et al., 2002) was evaluated along 

with seven durum wheat varieties and breeding lines developed by crossing 

‘97Emmer19’ with strong durum cultivars (‘WB881’ or ‘AC Navigator’). Three 

Canadian Western Red Spring (CWRS) varieties ‘CDC Teal’, ‘AC Barrie’, and ‘AC 

Superb’, which represent the baking quality of current bread wheat varieties grown in 

Canada, were included as positive controls and bread-making standards. ‘Commander’ 

and ‘WB881’ are semi-dwarf durum cultivars with extra-strong gluten properties. 

‘DT724’, developed by Agriculture and Agri-Food Canada Semiarid Prairie Agricultural 

Research Centre (AAFC-SPARC) also possesses extra-strong gluten. ‘Strongfield’ and 

‘AC Navigator’ possess moderate gluten strength. ‘Arcola’ was included in this study as 

it possesses the HMW-GS pair Bx7+By8 (Ng et al., 1988b). ‘L092’, ‘L252’, ‘S99B33’, 

and ‘S99B34’ are 1AS.1AL-1DL translocation lines and were obtained from United 

States Department of Agriculture - Agricultural Research Service (USDA-ARS), North 

Dakota. ‘04EDUYT-42’, ‘04EDUYT-43’, ‘04IDSN-107’, and ‘04IDSN-111’ lines were 

obtained from the International Maize and Wheat Improvement Center (CIMMYT), 

Mexico and at the time of evaluation these lines were believed to carry 1AS.1AL-1DL 

translocation. Twenty-five genotypes were tested in 2005 growing season and twenty-

four genotypes in 2006 (Table 1). Genotypes were grown in 1.2 m x 3.6 m plots arranged 

in a randomized complete block design (RCBD) with three replicates at each of three 

locations [Kernen (KER), Goodale (GDL), and Seed Farm (SF); Saskatoon] in 2005 and 

were repeated at the same testing sites in 2006 growing season. Seeding rates were 250 

seeds per m-2 plot with a spacing of 20 cm between rows. Plots were sown on 3 May 

(GDL), 14 May (KER), and 6 May (SF) in 2005 and 18 May (GDL), 16 May (KER), and 

2 May (SF) in 2006. Data from ‘S99B33’ was lost from SF location for 2006 growing 

season because of a seeding error. At maturity, plots were harvested with a small plot 

combine and samples were dried to approx. 9% moisture. 
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Table 1. Pedigree classification and country of origin of the bread wheat checks (AC Barrie, CDC Teal, and AC Superb) and tetraploid wheats 
(durum, emmer, 1AS.1AL-1DL translocation, and emmer-derived breeding lines) used for this study.  
Genotype Pedigree Source/Origin 2005a 2006b 

BREAD WHEAT CHECK CULTIVARS 
AC Barrie Neepawa/Columbus//BW90 Canada Grown Grown 
CDC Teal BW514/Benito//BW38 Canada Grown Grown 
AC Superb Grandin2*/AC Domain Canada Grown Grown 

1AS.1AL-1DL TRANSLOCATION LINES 
04EDUYT-42 1A.1D 5+10-6/2*WB881//1A.1D 5+10-6/3*Mojo/Bisu_1/Patka CIMMYTc- Mexico Grown     - 
04EDUYT-43 1A.1D 5+10-6/2*WB881//1A.1D 5+10-6/3*Mojo/Bisu_1/Patka CIMMYT- Mexico Grown     - 
04IDSN-107 1A.1D 5+10-6/2*WB881//1A.1D 5+10-6/3*Mojo/Bisu_1/Patka CIMMYT- Mexico Grown     - 
04IDSN-111 1A.1D 5+10-6/2*WB881//1A.1D 5+10-6/3*Mojo/Bisu_1/Patka CIMMYT- Mexico Grown     - 
L092 1A.1D/Len//Langdon/3/2*Renville USDA-ARSd North Dakota Grown Grown 
L252 1A.1D/Len//Langdon/3/2*Renville USDA-ARS North Dakota Grown Grown 
S99B33 1A.1D/Len//Langdon/3/2*Renville USDA-ARS North Dakota Grown Grown 
S99B34 1A.1D/Len//Langdon/3/2*Renville USDA-ARS North Dakota Grown Grown 

DURUM WHEAT CULTIVARS 
Strongfield AC Avonlea//Kyle/Nile Canada Grown Grown 
WB881 PI 483458 Iran Grown Grown 
Commander W9260-BK03/AC Navigator//AC Pathfinder Canada Grown Grown 
AC Navigator Kyle/Westbred 881 Canada Grown Grown 
DT724 DT666/DT665 Canada Grown Grown 
Stewart-63 ST464/8*Stewart Canada Grown Grown 
Arcola Wascana/Hercules Canada Grown Grown 

‘97EMMER19’ AND EMMER-DERIVED BREEDING LINES 
97Emmer19 PI 195721 Iran Grown Grown 
2000EB4 WB881/97Emmer19 Canada Grown Grown 
X.98.142.17 WB881*2/97Emmer19 Canada Grown Grown 
X.98.142.18 WB881*2/97Emmer19 Canada Grown     - 
P.01.64.31 AC Navigator//2000EB4/AC Navigator Canada Grown Grown 
P.01.64.39 AC Navigator//2000EB4/AC Navigator Canada Grown Grown 
P.01.64.62 AC Navigator//2000EB4/AC Navigator Canada Grown Grown 
05Emmereg-01 2000EB4/AC Navigator Canada     - Grown 
05Emmereg-03 2000EB4/AC Avonlea Canada     - Grown 
05Emmereg-10 2000EB4/AC Avonlea Canada     - Grown 
05Emmereg-26 2000EB4/AC Navigator Canada     - Grown 

a2005 = Genotypes grown in 2005 growing season   b2006 = Genotypes grown in 2006 growing season   cCIMMYT = International Maize and Wheat 
Improvement Center   dUSDA-ARS = United States Department of Agriculture – Agricultural Research Service 
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3.2 Quality Evaluation of Non-composite Samples (Whole Grain Quality Measures) 

3.2.1 Physical Grain Quality 

          Following harvest, wheat samples were cleaned using a Carter-Day dockage tester 

(Simon-Carter Company, Minneapolis, MN, USA). Hulled emmer wheat ‘97Emmer19’ 

and partially hulled line ‘2000EB4’ were de-hulled using an Agriculex SD-2 Spelt de-

huller (Agriculex Inc., Guelph, Ontario, Canada) and later cleaned using the Carter-Day 

dockage tester, prior to further quality analysis. 

          Test weight (kg hL-1) was determined on a plot basis using the AACC method 55-

10 (AACC, 2000), using a Schopper chondrometer. Thousand-kernel weight was 

measured on cleaned grain sample as the weight (g) of 1000 seeds, following counting 

with an electronic seed counter (Agriculex Inc., Guelph, Ontario, Canada). 

          The Single Kernel Characterization System, SKCS Model 4100 (Perten 

Instruments North America, Springfield, IL, USA), was used to determine single kernel 

hardness index (SK-HI) (AACC method 55-31). The SKCS 4100 provides a rapid, 

objective measurement of the crushing force required to break kernels and was measured 

on 300 individual kernels (Sissons et al., 2000). 

3.2.2 Grain Protein Concentration and SDS Sedimentation Volumes 

          Seed samples (60 g) from each plot were ground into whole wheat meal using a 

Udy Cyclone sample mill (Udy Corporation., Fort Collins, CO) fit with a 1-mm 

screen/mesh. Moisture content of ground meal were determined by the approved AACC 

method 44-15A (AACC, 2000). The protein concentration (%) of whole wheat meal was 

determined as 5.7 x total nitrogen on a LECO Model FP-528 combustion nitrogen 

analysis analyzer (LECO Instruments Corp., St Joseph, MI, USA) and reported on a 

13.5% moisture basis (mb). For durum wheats, sodium dodecyl sulfate (SDS) 

sedimentation volumes (mL) were determined using a modification of AACC method 56-

70 (AACC, 2000), using 3% SDS on whole wheat meal (14.0% mb). The use of the 3% 

SDS is not recommended for hexaploid wheat (Morris et al., 2007), hence 2% SDS 

solution was used for the bread wheat checks as recommended by Axford et al (1979).  

3.2.3 Hagberg Falling Number and Yellow Pigment Concentration 

          The Hagberg Falling Number (Falling Number 1700 System, Perten Instruments, 

Sweden) was determined on whole wheat meal sample (14.0% mb) using the approved 
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AACC method 56-81B (AACC, 2000). Yellow pigment content (ppm or mg kg-1) of 

whole wheat meal (14.0% mb) was assessed using a modification of AACC Method 14-

50 (AACC, 2000). Instead of water-saturated n-butanol, 80% ethanol was used as a 

solvent. Yellow pigment concentration was calculated using absorbance values taken at 

435 nm (Johnston et al., 1980) and was converted into mg kg-1 using OD (Optical 

Density) x 20.79 (average extraction coefficient of lutein, zeathin and β-carotene in 80% 

ethanol). 

3.3 Quality Evaluation of Composite Samples 

3.3.1 Wheat Milling 

          For each year of the study, a composite sample of each genotype was prepared by 

combining equal portions of grain from each of the nine replications (three replications 

from each environment). To provide sufficient sample for multiple quality tests, three 

millings were performed on 600 g samples. Semolina/flour from replicate millings of 

each composite sample was combined (blended) prior to quality testing.  

3.3.1.1 Durum wheat experimental milling and purification 

          The durum wheat milling protocol used in this research was developed by Connie 

Briggs (Crop Development Centre, University of Saskatchewan) and is used routinely to 

determine semolina milling yield and to produce semolina for quality screening for the 

CDC’s durum wheat breeding program. The seed moisture of the durum wheat samples 

was determined following AACC Method 44-15A (AACC, 2000), using approx. 5 g of 

seed ground using a Thomas-Wiley laboratory grinder (model 4, Arthur H. Thomas Co., 

Philadelphia, PA). Based on seed moisture, the durum wheat samples were tempered to 

16% moisture for approx. 18 h prior to begining the milling process. Durum wheat 

milling was done over three days (tempering, milling and purification on first, second and 

third days, respectively).  

          The durum wheat samples were milled into semolina using two Brabender 

Quadrumat Junior mills (C.W. Brabender Instruments, Inc., South Hackensack, NJ, USA) 

and purified using a CD2 semolina laboratory purifier (Chopin SA, Villeneuve-la-

Garenne, France). A flow chart of the durum wheat milling procedure followed for this 

study is presented in Figure 1. The first Brabender Quadrumat Junior mill was equipped 

with semolina rolls (break cycle) to generate course semolina while the second Brabender  
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Figure 1. Flow chart of durum wheat milling and purification procedure followed for this study. 
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Quadrumat Junior mill was equipped with flour mill rolls to reduce particle size of the 

course semolina (Sizing cycle). Following the break cycle, the bran weight was recorded 

and discarded. The semolina between 180-425 µm from all the millings [S1 (Step II), S2 

(Step IV), and S3 (Step VI); Figure 1] was purified, as explained in Figure 1. The purified 

semolina was combined with the fine semolina [< 180 µm from reduction milling i.e., F1 

(StepII), F2 (Step IV), and F3 (Step VI); Figure 1] to give final semolina product. The 

semolina yield combined with break flour yield was considered as the total extraction 

(%).  

3.3.1.2 Bread wheat experimental milling 

          The three bread wheat samples were milled in triplicate (600 g each) on the same 

day. The seed moisture of the bread wheat samples was determined as per durum wheat 

(section 3.3.1.1). Based on seed moisture, bread wheat samples were 

tempered/conditioned to 14.5% moisture for approx. 18 h prior to milling. The samples 

were milled into flour using a Brabender Quadrumat Junior mill equipped with flour mill 

rolls according to AACC Method 26-21A (AACC, 2000). For the 2005 samples, the 

recovered bran from the mill was sifted for an extra 2 min using a Retsch Sieve Shaker 

fitted with a 250 µm sieve to recover any flour adhered to the bran. In 2006, a new 

Brabender Quadrumat Jr. flour mill was purchased and extra sifting of the bran was not 

necessary. Flour from replicate millings of each composite sample was combined 

(blended) prior to further testing. 

3.3.2 Quality Tests Conducted on Semolina/Flour 

          Moisture content was measured on the flour/semolina (AACC method 44-15A; 

AACC, 2000) before conducting any of the quality tests and all data is reported on a 

14.0% mb. Protein concentration of semolina/flour was estimated as 5.7 x total nitrogen 

as determined on a LECO Model FP-528 combustion nitrogen analysis analyzer (LECO 

Instruments Corp., St Joseph, MI, USA).  

          Bread wheat flour and durum wheat semolina colour was determined using an 

Agtron reflectance color meter (M-45 Agtron Process Analyzer, AGTRON INC, Reno, 

Nevada) according to AACC Method No. 14-30 (AACC, 2000). The colour of 

flour/semolina slurry from the Agtron test was also assessed using the CIELab colour 

scale with a D65 illuminant on a HunterLab Miniscan spectrophotometer. After obtaining 
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the Agtron value, the dish was immediately placed on the colormeter opening and the L* 

a* b* measurements were taken. L* gives a measure of lightness/brightness (0 = black 

and 100 = white); a* measures greenness (-) to redness (+); and b* measures blueness (-) 

to yellowness (+). Each flour/semolina sample was evaluated twice for agtron and L* a* 

b* values. 

          The gluten index (GI) test was performed using AACC Method 38-12A (AACC, 

2000). Repeated flooding of some semolina samples was experienced for the 1AS.1AL-

1DL translocation lines. For those lines, the 2% sodium chloride (NaCl) solution was 

reduced from 4.8 mL to either 4.2 or 4.0 mL as recommended in the Glutomatic manual. 

Wet gluten content was determined following AACC Standard Method 38-12 (AACC, 

2000) and dry gluten content was determined using AACC Standard Method 38-12A 

(AACC, 2000).  

3.3.3 Rheological Properties of Semolina/Flour and Bake Test  

3.3.3.1 Farinograph and Alveograph  

          Farinograph curves (C.W. Brabender Instruments, Inc., South Hackensack, NJ, 

USA) were generated according to AACC method 54-21 (AACC, 2000). The 50 g 

mixing bowl was used, in conjunction with the standard operating speed of 63 rpm. The 

curves were read manually and several parameters were recorded: farinograph water 

absorption (FAB, 14.0% mb), the amount of water required to centre the curve on the 500 

BU line; stability (STA), the difference in time from when the top of the curve first 

reaches the 500 BU line (arrival time) to when it first leaves the 500 BU line (departure 

time); mixing tolerance index (MTI), the drop in the curve five minutes after peak 

development, measured in BU units; dough development time (DDT), the time required 

to reach peak dough development; and time to breakdown (TTB), the time from the start 

of mixing to the time at which the consistency decreases 30 BU from the peak. 

          Alveograph curves were obtained following AACC Method 54-30A (AACC, 2000) 

using a Chopin Alveograph (Model MA82, Chopin SA, Villeneuve-la-Garenne, France). 

Average values for five dough pieces per composite sample were obtained for 

overpressure or resistance to extension (P), abscissas at rupture or extensibility (L), 

configuration ratios (P/L) and deformation energy (W). 
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3.3.3.2 Canadian Short Process (CSP) bake test 

          The CSP bake method (a short fermentation method) (Preston et al., 1982) was 

used for this study. The formulation (14.0% mb) contained 100 g semolina/flour, 2.4 g 

salt, 4.0 g sugar, 3.0 g shortening (Crisco all-vegetable shortening), 0.6 g malt powder 

(Dover Industries limited, Saskatoon), 4.0 g whey powder (Dover Industries Limited, 

Saskatoon), 150 ppm ascorbic acid (BDH Merck Analar grade) as oxidant, fresh 

compressed yeast (Fleishman compressed yeast), and optimum water (based on 

farinograph water absorption). 

          In both 2005 and 2006 baking trials, semolina/flour was baked in three replications 

(triplicate) on different days. For 2005 baking trials, each replication was baked over two 

days, whereas for 2006 baking trials, each replication (all samples) was baked on the 

same day. Ingredients were mixed to slightly past peak in a GRL 200 Mixer (Muzeen and 

Blythe Ltd. Winnipeg, Manitoba) at 165 rpm, and peak mixing time (PMT, min) and the 

mixing energy (Wh/kg) were recorded. After mixing, the dough was rounded by hand 

and placed in fermentation cabinet controlled at 34°C and 85% relative humidity. The 

dough was punched by hand at 15 min, allowed to proof a further 15 min and panned at 

30 min. Panned dough was proofed for 70 min and baked at 400°C for 25 min. After 

baking, the loaves were cooled at room temperature for 30 min and loaf volumes were 

measured by rapeseed displacement using a National Loaf Volumeter (National 

Manufacturing Company, Lincoln, NB, USA) (Cathcart and Cole, 1938). Loaves were 

scored (0-5 scale) for general loaf shape and appearance i.e., external loaf quality (Table 

2). The loaves were then sliced and visually assessed (0-5 scale) for internal loaf quality 

i.e., crumb colour and crumb structure (Table 2).  

3.4 Electrophoresis Procedures 

3.4.1 Sodium Dodecyl Sulfate – Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

          For  all  cultivars  and  breeding  lines,  allelic  composition  at glutenin loci 

(HMW-GS and LMW-GS)  were  determined by Sodium dodecyl sulfate-polyacrylamide 

gel electrophoresis (SDS-PAGE), using 10% separating gel / 4% stacking gel and 12% 

separating gel / 4% stacking gel (Singh et al. 1991). For 12% separating gels / 4% 

stacking gels, bread wheat cultivar ‘Neepawa’ and Bio-Rad protein size standards (HMW 

and LMW-size standards) were used as standards to identify glutenin subunits. 
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Table 2. Guidelines for scoring the Experimental Loaves 

Score External loaf quality                                    Internal loaf quality 

Loaf Shape and Appearance  Crumb Colour Crumb Structure 

0 No rise, the loaf resembles a square brick  Bright yellow Very coarse, thick cell walls, open structure, may have 

large holes, and with uneven, irregular cell size 

1 Very little oven rise, may have uneven or 

irregular shape, bumpy top, coarse side 

walls, no break and shreda 

 Very yellow Very coarse, thick cell walls and open structure, cell 

size distribution appears more regular 

2 Small or dwarf appearance, irregular shape, 

possibly flat topped, minimal or rough break 

and shred 

 Slightly yellow Coarse but with somewhat even cell size distribution, 

or very open with large, uneven cell size or very fine 

textured with small, round cells 

3 Normal appearance with rounded top and 

some break and shred 
 Creamy Even textured, may be slightly open with fairly thin 

cell wall, cell size distribution somewhat uneven 

4 Very good loaf with rounded top, high break 

and shred, smooth side walls 
 White, maybe slightly 

creamy 
Fine and even, thin cell walls, slightly open in centre, 

cells around the outside are elongated and fine  

5 Large pup loaf with very high break and 

shred, yet retaining a straight, upright 

appearance 

 Bright white Cell walls are very thin, elongated around the outside, 

with cell size distribution very even, no larger cells 

noticeable in the centre 
aBreak and shred = The portion of the loaf between the top and the sides that shreds during baking.
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          Twelve percent separating gels / 4% stacking gels were used for all the genotypes 

except for the ‘Chinook’, ‘Marquis’, ‘97Emmer19’, and emmer-derived breeding lines. 

For these lines 10% separating gels / 4% stacking gels were used, since the separation of 

Bx14 and By15 (at Glu-B1 locus) glutenin subunits of some emmer and emmer breeding 

lines was not distinct (difficult to characterize) with 12% separating gels / 4% stacking 

gels. For 10% separating gels / 4% stacking gels, bread wheat cultivars ‘Chinook’ and 

‘Marquis’ were used as standards to identify glutenin subunits. 

3.4.1.1 Glutenin protein extraction 

          Two or three seeds were ground by hand using a mortar and pestle and for each 

sample, a separate cleaned mortar and pestle were used to avoid cross-contamination. 

One mL of freshly made extraction buffer solution [prepared by mixing 24 mL water, 

10.2 mL extracting buffer stock solution (prepared by mixing 20 mL glycerol, 12.5 mL 

stacking-gel buffer solution i.e., 1.0 M Tris with pH 6.8 adjusted with Hydrochloric acid 

by a pH meter, 24.1 mL water, 4 g SDS, and 20 mg bromophenol blue), and 1.8 mL β-

mercaptoethanol] was added to 40 mg of ground sample. The mixture was allowed to 

stand at room temperature for 2 h with occasional shaking on a vortex mixer. The mixture 

was then heated for 2.5 min in a boiling water bath, then centrifuged for 15 min at 13,000 

rpm, and was allowed to cool to room temperature. The mixture was allowed to settle and 

an aliquot of clear supernatant was used as the experimental protein extract. 

3.4.1.2 SDS-PAGE gel preparation and electrophoresis run 

          A vertical slab electrophoresis instrument (PROTEAN II xi Cell, Bio-Rad 

Laboratories, Hercules, CA, USA) which accommodates gels that are 140 mm wide x 

160 mm high x 1.5 mm thick was used. Each gel accommodates 15 samples and a 15 

well comb of 1.5 mm thickness was used. The glass plates were washed with de-ionized 

water thoroughly, were coated with 1:200 Kodak photofluor, and allowed to dry. The 

glass plates were positioned in the gel-forming cassette. The 4% stacking gel [3.3 mL of 

30% acrylamide / bisacrylamide solution, 250 µl of 10% SDS, 6.3 mL of 0.5 M Tris-HCl 

at pH 6.8, 15 mL distilled deionized water, 125 µl of 10% APS (Ammonium 

persulphate), and 25 µl of TEMED (N,N,N`,N`- tetramethyl ethylene diamine) was 

mixed to prepare 25 mL of 4% stacking gel solution], 12% separating gel [40 mL of 30% 

acrylamide/bisacrylamide solution, 25 mL of 1.5 M Tris-Hcl at pH 7.8, 1 mL of 10% 
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SDS, 33.5 mL distilled deionized water, 500 µl of 10% Ammonium persulphate, and 50 

µl of TEMED (N,N,N,N-tetramethyl ethylene diamine) was mixed to prepare 100 mL of 

12% separating gel solution], and/or 10% separating gel [33 mL of 30% 

acrylamide/bisacrylamide solution, 25 mL of 1.5 M Tris-Hcl at pH 7.8, 1 mL of 10% 

SDS, 40.5 mL distilled deionized water, 500 µl of 10% Ammonium persulphate, and 50 

µl of TEMED (N,N,N,N-tetramethyl ethylene diamine) was mixed to prepare 100 mL of 

10% separating gel solution] were prepared as explained above. 

          Ten µl of protein extract was loaded and electrophoresis carried out at 20°C 

temperature (regulated by water bath at 20 ± 1°C) at a constant current of 20 mA for 21 

h, per gel.  

3.4.1.3 Glutenin protein detection by Silver Staining 

          Following electrophoresis, the gels were removed from the glass plates, placed into 

a gel staining container and immersed in de-ionized water. Proteins were fixed by adding 

300 mL of fixing solution (prepared by mixing 150 mL of methanol, 30 mL of glacial 

acetic acid, and 120 mL of de-ionized water) and gently shaken for 30 min at 24°C. After 

discarding the fixing solution, the gels were incubated (for 30 min at 24°C temperature 

with gentle shaking) with 300 mL of the second fixing solution, prepared by mixing 16.5 

mL of methanol, 22.5 mL of glacial acetic acid, and 261 mL of de-ionized water. The 

gels were then rinsed twice with 300 mL of de-ionized water for 10 min. After discarding 

the water, 300 mL of freshly prepared 0.0005% DTT (Dithiothreitol) solution was used to 

incubate the gels for 30 min with gentle shaking. The DTT solution was discarded and 

300 mL of 0.1% AgNO3 (Silver nitrate) was used to stain the gels for 30 min with gentle 

shaking. The gels were rinsed for 20 sec with de-ionized water. 150 mL of developing 

solution (prepared by using 13.2 g sodium carbonate and 0.061 mL of formaldehyde to 

300 mL of de-ionized water) was added and gently hand agitated for 30 sec. The gels 

were rinsed for a second time with 150 mL of developing solution and 150 mL of 

developing solution was again added for final band development. Once the bands reached 

the desired intensity (after 15-30 min), 5 mL of 72% citric acid solution was added to 

terminate the reaction. The glutenin protein subunits were scored based on their 

molecular weights, according to Payne and Lawrence (1983) and Ng et al. (1988b). 

3.4.2 Acid - Polyacrylamide Gel Electrophoresis (A-PAGE) 
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          For all cultivars and breeding lines, allelic compositions at gliadin loci (α, β, γ, and 

ω-gliadins) were fractionated by acid (pH 3.1) polyacrylamide gel electrophoresis (A-

PAGE) (Bushuk and Zillman, 1978).  

3.4.2.1 Gliadin protein extraction 

          Two or three seeds were ground by hand using a mortar and pestle and for each 

sample, a separate cleaned mortar and pestle were used to avoid cross-contamination. 500 

µl of 70% ethanol (prepared by mixing 36.85 mL of 95% ethanol and de-ionized water 

was added to make the final volume to 50 mL) was added to 100 mg of ground sample 

and mixed for 3 h. The mixture was centrifuged at 13,000 rpm for 15 min and 200 µl of 

GMG (Methylene Green) solution (prepared by dissolving 10 mg methylene green in 8 

mL aluminum lactate buffer and by adding 6 mL glycerol) was added to the 200 µl of the 

diluents. The mixture (gliadin protein extract) was stirred and stored at 4°C.  

3.4.2.2 Acid-PAGE gel preparation and electrophoresis run 

          A vertical slab electrophoresis instrument (PROTEAN II xi Cell, Bio-Rad 

Laboratories, Hercules, CA, USA) was used for Acid-PAGE. Prior to pouring the gel, the 

glass plates were washed with 1% SDS solution and rinsed with de-ionized water 

thoroughly. Later, the glass plates were coated with 1:200 Kodak photofluor and allowed 

to dry. The gel solution was prepared by weighing 20 g acrylamide, 750 mg bis-

acrylamide, and 250 mg ascorbic acid dissolved in 50 mL of Aluminium lactate buffer 

(prepared by dissolving 20 g aluminum lactate in 1 L of de-ionized water, later adjusting 

the pH to 3.1 with lactic acid and finally making up the volume to 8 L). To this solution 1 

mL of FeSO4 (Ferrous sulphate) solution (prepared by dissolving 20 mg FeSO4 in 1 mL 

aluminum lactate buffer and volume made to 5 mL with aluminum lactate buffer) was 

added. The volume was made to 250 mL in the volumetric flask with de-ionized water. 

The gel solution was stored in glass bottle was stable up to one week at 4°C. To prepare 

the gel, 500 µl of 1% H2O2 (Hydrogen peroxide) solution was added to 50 mL of gel 

solution, while stirring for 5 sec. The gels were poured immediately between the glass 

plates and a 15 well comb was inserted. 

          Ten µl of protein extract was loaded and electrophoresis carried out at 20°C 

(regulated by water bath at 20 ± 1°C) at a constant current of 25 mA for 4 h, per gel. 

3.4.2.3 Gliadin protein detection by Coomassie Brilliant Blue (CBB-R 250) solution 
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          The gels were removed from the glass plates by placing the gels in a gel staining 

container, immersing in de-ionized water. The gels were washed with 12% TCA 

(Trichloroacetic acid) for 5 min with gentle shaking. After discarding the TCA solution, 

the gels were washed with de-ionized water and 240 mL of CBB-R 250 staining solution 

(prepared by dissolving 400 mg CBB-R 250 in 100 mL 95% ethanol and later pipetting 

10 mL of Coomassie brilliant blue solution to 250 mL 10% trichloroacetic acid solution) 

was poured over the gels and allowed to stand overnight with gentle shaking. After 16 h, 

the CBB-R 250 staining solution was discarded and the gels were washed twice with de-

ionized water. The gliadin protein subunits were scored based on their relative mobility 

(RM) values (Xu et al., 2005). 

          Durum wheat genotype ‘Stewart-63’ and 1AS.1AL-1DL translocation line ‘L252’ 

were used as reference cultivars to calculate the relative mobility of the gliadin band(s) 

(Ng et al., 1988b). Both the reference samples contain the γ-42 gliadin band (Ng et al., 

1988b; Klindworth et al., 2005).  

3.5 Statistical Analysis 

3.5.1 Non-composite Samples 

          For each location and year, statistical analyses were conducted using SAS Institute 

Inc. Software, version 9.1 (SAS Institute, 2001). Replication was considered as random 

and genotype as fixed effect. Least square (LS) means and Least Significant Difference 

(LSD at 5 % significance level) were generated using the SAS PROC MIXED procedure. 

       Combined data from both years were subjected to analysis of variance using the SAS 

PROC MIXED procedure with year, location, year*location, replication(year*location), 

genotype*location, genotype*year, and genotype*location*year  as  random effects and 

genotypes as fixed effect. LSD (P = 0.05) was reported for genotype LS means 

comparison. 

3.5.2 Composite Samples 

          The average and standard deviation (of triplicate measures for milling yield, loaf 

volume, loaf shape, crumb colour, crumb structure, and peak mixing time and duplicate 

measures for Agtron, L*, a*, b*, gluten index, wet gluten content, dry gluten content, and 

flour/semolina protein concentration) of quality tests conducted on flour/semolina, for 

individual year’s composite samples, were calculated using Excel (Microsoft 



 32

Corporation, Microsoft Office Excel 2007). The combined composite data from 2005 and 

2006 were subjected to ANOVA (SAS PROC MIXED procedure) with year and 

genotype*year as random effects and genotypes as fixed effect. LSD (P = 0.05) was 

reported for genotype LS means comparison. 

          The average and standard deviation for alveograph curves (for five dough pieces 

per composite sample) were calculated in Excel for P, L, W and P/L. The farinograph 

(FAB, DDT, MTI, TTB and STA) combined composite data (2005 and 2006) were 

subjected to ANOVA (SAS PROC MIXED procedure) with year as random effect and 

genotypes as fixed effect. LSD (P = 0.05) was reported for genotype LS means 

comparison. The alveograph (P, L, P/L and W) combined composite data (2005 and 

2006) were subjected to ANOVA (SAS PROC MIXED procedure) with year and 

year*genotype as random effects and genotypes as fixed effect. LSD (P = 0.05) was 

reported for genotype LS means comparison. 

3.5.3 Correlation Coefficients among Inter-related Quality Traits 

          Genotypic LS means were used to estimate the Pearson correlation coefficients 

(SAS Proc Corr statement) among inter-related quality traits, once with data only from 

tetraploid wheats (durum wheats, ‘97Emmer19’, emmer-derived breeding lines, and 

1AS.1AL-1DL translocation lines) and once by excluding the USDA-ARS 1AS.1AL-

1DL translocation lines.  

3.5.4 Contrast analyses between Protein Subunits and Loaf Volume 

          The genotypic classes with different protein subunits and their corresponding loaf 

volumes were compared using contrast (single degree of freedom) statement in SAS 

PROC MIXED procedure. The difference in loaf volume estimates and standard error of 

the difference (SED) were generated for LV of genotypic classes with different protein 

subunits. 
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4. Results 
4.1 Quality Evaluation of Non-composite Samples (Whole Grain Quality Measures) 

4.1.1. Test Weight (TWT) 

          For individual environments across years, the replication effect was non-significant 

and the genotypic effect was statistically significant for TWT (Appendix A1). Averaged 

over all environments and years (combined ANOVA), genotypes differed in TWT. The 

variance estimates for the two-way interactions between location and year, and location 

and genotype, were not statistically different from zero (P<0.05). However, the genotype 

x year and genotype x year x location interaction variance estimates were significantly 

greater than zero (P<0.05), although the three-way interaction estimate was small 

(Appendix A1). 

          All of the genotypes showed higher TWT in the 2006 growing season compared to 

the 2005 growing season (Table 3). ‘97Emmer19’ showed significantly lower TWT than 

bread wheat and durum wheat varieties in all testing environments (Table 3). In contrast, 

the majority of emmer-derived breeding lines had similar TWT to the durum and bread 

wheat varieties evaluated (Table 3). In most environments, ‘X.98.142.17’ showed 

significantly lower TWT than the durum wheat checks ‘Commander’, ‘AC Navigator’ 

and ‘Strongfield’, and ‘AC Barrie’, the bread wheat variety with the highest TWT (Table 

3). The CIMMYT 1AS.1AL-1DL translocation lines, grown only during the 2005 

growing season, showed no statistical differences in TWT in the individual environments, 

except at GDL (Table 3). The USDA-ARS 1AS.1AL-1DL translocation lines showed no 

significant difference in TWT in the individual environments except at GDL during the 

2005 growing season (Table 3). However, averaged over all environments, no significant 

differences in TWT were observed (Table 3). 

          The durum wheat check cultivars ‘Strongfield’, ‘Commander’, and ‘AC Navigator’ 

all had high TWT, similar to the bread wheat checks ‘AC Barrie’, ‘CDC Teal’ and ‘AC 

Superb’, regardless of environment (Table 3). ‘Stewart-63’ consistently displayed greater 

TWT than all bread wheat checks, although ‘AC Superb’ at SF (2005) and ‘AC Barrie’ at 

GDL (2005) and SF (2005) showed statistically similar TWT to ‘Stewart-63’. ‘Arcola’ 

had poor TWT compared to other durum genotypes except ‘WB881’ and ‘Commander’ 

(Table 3).  
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Table 3. Least square means for Test Weight (kg hL-1), 1000 Kernel Weight (g), and Grain Hardness Index of bread wheat checks (AC Barrie, 
CDC Teal, and AC Superb) and tetraploid wheats (durum, emmer, 1AS.1AL-1AD translocation, and emmer-derived breeding lines) planted 
during the 2005 and 2006 growing seasons at Goodale (GDL), Kernen (KER) and Seed Farm (SF) locations.  

Genotype 
Test weight (kg hL-1) 1000-Kernel weight (g) Grain Hardness Index 

GDL KER      SF    
  Cd 

GDL KER       SF    
  C 

GDL KER SF  
 C ’05a   ’06b  ’05    ’06   ’05   ‘06 ’05   ’06 ’05   ‘06 ’05    ‘06 ’05  ’06 ’05  ’06 ’05  ’06 

BREAD WHEAT CHECK CULTIVARS 
AC Barrie 79.9   81.2 78.1   81.5 78.5   81.7 80.2 39.0   37.9 37.1   37.9 33.9   37.1 37.2 53    50 55    47 54    53 52 
CDC Teal 79.3   79.8 77.1   81.1 77.5   80.5 79.2 38.3   37.1 36.0   36.2 37.7   36.0 36.9 51    51 52    49 49    56 51 
AC Superb 79.5   81.1 76.8   81.6 78.6   80.9 79.8 43.5   43.0 38.3   40.9 38.3   40.6 40.8 55    45 56    48 58    49 52 

1AS.1AL-1DL TRANSLOCATION LINES 
04EDUYT-42 79.2     -     76.9     -     78.7    -   - 41.1    -     37.4     -    39.8      -   - 80     -   77      -  77     -   - 
04EDUYT-43 80.7     -     77.1     -     77.9    -   - 42.2    -     39.7     -    39.3      -   - 80     -   78      -  82     -   - 
04IDSN-107 79.8     -     77.3     -     78.3    -   - 39.1    -     40.5     -    39.1      -   - 82     -   78      -  78     -   - 
04IDSN-111 79.2     -     76.6     -     77.6    -   - 39.6    -     38.8     -    39.1      -   - 81     -   78      -  83     -   - 
L092 78.9   80.8 78.1   81.2 79.2   80.4 79.1 39.4   42.1 36.0   43.1 40.5   44.2 40.9 78    64  82    68 72    71 73 
L252 77.8   79.9 78.0   80.6 77.7   80.7 79.8 42.2   42.9 38.6   41.8 42.3   44.3 42.0 76    60 80    68 75    69 71 
S99B33 78.7   80.5 77.8   80.7 78.6     -   - 40.8   41.1 36.9   42.2 39.3     -   - 77    67 84    72 75    -   - 
S99B34 78.9   80.1 77.8   81.4 79.4   80.5 79.7 40.0   41.0 36.1   41.1 40.3   40.6 39.9 78    67 82    71 74    65 73 

DURUM WHEAT CULTIVARS 
Strongfield 80.4   81.7 79.1   82.3 79.7   82.4 80.9 47.9   44.6 43.7   48.4 46.6   48.0 46.5 71    69 74    63 72    67 69 
WB881 78.6   80.2 75.1   80.7 77.9   80.7 78.9 47.5   45.2 42.1   48.5 44.0   48.2 45.9 72    69 76    63 72    68 70 
Commander 79.3   80.7 77.3   82.0 79.5   81.7 80.1 49.2   47.8 46.2   51.4 48.8   50.4 49.0 74    69 76    66 74    68 71 
AC Navigator 80.4   81.3 78.3   82.6 79.6   82.3 80.8 48.9   50.6 46.4   49.7 48.0   50.0 48.9 72    68 74    63 72    68 70 
DT724 79.9   82.3 78.8   82.0 80.1   82.1 80.9 46.7   45.2 43.4   45.3 44.3   48.2 45.5 75    72 78    70 76    69 73 
Stewart-63 80.7   84.9 80.0   84.3 80.6   82.9 82.2 51.7   51.8 46.8   50.4 44.9   52.4 49.7 74    71 74    69 74    65 71 
Arcola 77.5   79.3 75.5   80.3 77.5   78.8 78.1 44.3   46.1 42.3   48.1 47.0   47.1 45.8 71    62 73    62 66    66 67 

‘97EMMER19’ AND EMMER-DERIVED BREEDING LINES 
97Emmer19 71.6   75.4 71.1   78.6 68.6   77.5 73.8 30.7   25.6 32.1   35.5 29.4   33.3 31.1 70    53 71    52 66    59 62 
2000EB4 77.1   79.4 76.7   80.8 77.6   81.5 78.9 37.0   40.7 36.0   44.1 35.2   45.1 39.7 72    61 75    59 72    62 67 
X.98.142.17 76.3   79.6 72.1   80.8 73.2   79.5 76.9 41.7   44.9 38.8   50.3 40.1   46.4 43.7 76    69 76    63 74    69 71 
X.98.142.18 74.6     -    72.4     -     74.6     -   - 39.6    -      39.4     -    39.4    -   - 72      -  75     -   72     -   - 
P.01.64.31 79.9   81.6 76.2   81.7 80.3   81.5 80.2 48.8   46.0 44.4   48.5 47.2   48.2 47.2 72    69 75    64 71    68 70 
P.01.64.39 79.4   81.4 77.5   82.8 78.3   82.5 80.3 44.9   43.8 40.1   46.8 44.3   46.8 44.4 74    71 79    68 74    72 73 
P.01.64.62 77.1   80.1 74.8   81.5 75.6   81.0 78.3 43.0   40.6 39.0   43.2 42.1   41.7 41.6 77    69 80    69 75    74 74 
05Emmereg-01   -      79.1   -      79.7   -      79.5   -   -      41.8 -         41.9    -      42.7   -   -     65   -     63  -     69   - 
05Emmereg-03   -      79.0   -      79.3   -      78.7   -   -      43.5 -         48.4    -      44.0   -   -     71   -     64  -     72   - 
05Emmereg-10   -      79.6   -      80.3   -      79.9   -   -      44.4 -         44.9    -      44.7   -   -     72   -     67  -     70   - 
05Emmereg-26   -      77.6   -      79.5   -      78.5   -   -      49.1 -         54.0    -      50.5   -   -     61   -     56  -     63   - 
LSDc

0.05  1.0    1.2  1.2      1.0  2.2      1.1  1.9  2.8    2.2 2.2      2.8 3.2      4.0 3.3  3      5 2       2 5       6   5 
a’05 = 2005 growing season      b’06 = 2006 growing season   cLSD = Least significant difference      
dC = Combined data across environments (GDL, KER, and SF) and/or growing seasons (2005 and 2006). 
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4.1.2 Thousand Kernel Weight (KWT)  

          For individual environments across years, the replication effect was non-significant 

and the genotype effect was statistically significant for KWT (Appendix A1). For the 

combined ANOVA, the variance estimates for the two-way interactions between location 

and year, and location and genotype were not statistically different from zero (P<0.05). 

The genotype x year x location interaction variance estimates were significantly greater 

than zero (P<0.05), although the three-way interaction estimate was small (Appendix 

A1).  

          Averaged over environments, the KWT ranged from 31.1 g for ‘97Emmer19’ to 

49.7 for ‘Stewart-63’ (Table 3). ‘97Emmer19’ consistently showed significantly lower 

KWT than the durum and bread wheat checks (P<0.05), except at KER (2006) and SF 

(2006) (Table 3). At these environments, ‘97Emmer19’ showed no significant difference 

for KWT from ‘AC Barrie’ and ‘CDC Teal’ bread wheat checks (Table 3). All of the 

emmer-derived breeding lines displayed improved test weight over ‘97Emmer19’, but 

over two years of testing, only ‘P.01.64.31’ showed KWT similar to the durum wheat 

checks (Table 3). ‘05Emmereg-26’, evaluated only in 2006, showed significantly higher 

KWT than other emmer-derived breeding lines and bread wheat checks (P<0.05) (Table 

3). The CIMMYT and 1AS.1AL-1DL translocation lines showed reduced KWT 

compared to durum wheat checks ‘Strongfield’, ‘Commander’, and ‘AC Navigator’ 

(Table 3). As expected, the durum wheat checks had significantly higher KWT than the 

bread wheat varieties (P<0.05) (Table 3). At GDL (2006), ‘Strongfield’ (44.6 g) showed 

significantly lower KWT than most durum genotypes (P<0.05), but no significant 

difference was seen between ‘Commander’ (47.8 g) and ‘Arcola’ (46.1 g) (Table 3).  

4.1.3 Grain Hardness (HI) 

          The combined ANOVA across all environments revealed significant differences 

among genotypes (Appendix A2). Averaged over all environments, ‘97Emmer19’ 

showed a significantly softer kernel than the durum checks (P<0.05), and was similar to 

‘Arcola’ and ‘2000EB4’ in kernel texture at the GDL (2005) and SF (2006) 

environments. In individual environments, the emmer-derived breeding lines had 

significantly higher HI than ‘97Emmer19’ (P<0.05) (Table 3). Averaged over all 

environments, ‘P.01.64.62’ showed significant higher HI than most emmer-derived 
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breeding lines (P<0.05) (Table 3). USDA-ARS 1AS.1AL-1DL translocation line ‘L252’ 

showed significantly lower HI than other USDA-ARS 1AS.1AL-1DL translocation lines 

(P<0.05) only in the GDL (2006) and KER (both the growing seasons) environments 

(Table 3). 

          Averaged over all environments, the HI values for bread wheat ranged from 51 to 

52, with durum checks having HI values of 69 or greater (Table 3). Among the durum 

wheat genotypes, ‘Arcola’ showed significantly softer (P<0.05) grain than most durum 

genotypes (Table 3). As expected, the bread wheat checks showed softer endosperm, 

owing to the presence of the puroindoline a (Pina-D1) and puroindoline b (Pinb-D1) 

genes on the short arm of chromosome 5D (Gautier et al., 2000; Tranquilli et al., 2002). 

4.1.4 Grain Protein Concentration (GPC) 

          The combined ANOVA across environments revealed a significant genotype x 

environment interaction for GPC as the genotype x year x location interaction variance 

estimate was significantly greater than zero (Appendix A2). Averaged over all genotypes, 

GPC was highest at the KER and SF environments in 2005 (Table 4). In all 

environments, significant genotypic effects (P < 0.01) were detected for GPC (Appendix 

A2). Data for GPC at the SF in both years was highly variable, with LSD (0.05) estimates 

of 1.3 and 2.1% for 2005 and 2006, respectively (Table 3). Highly variable GPC data was 

also seen in the GDL environment in the 2006 growing season with an LSD estimate of 

1.7%. Data was tested for outliers using a standardized Student’s t-test and no outliers 

were detected for any of the locations (Data not shown). The largest range in GPC was at 

SF in 2005 with LS means ranging from 10.7% - 16.1%. 

          Averaged over environments, ‘97Emmer19’ had high GPC, similar to ‘CDC Teal’ 

and ‘AC Barrie’, but not significantly different (P < 0.05) from ‘Strongfield’ (Table 4). 

Averaged over environments, ‘97Emmer19’ (14.6%) and ‘P.01.64.39’ (14.6%) showed 

statistically significant higher GPC than other emmer-derived breeding lines (P<0.05) 

(Table 4). In most environments, ‘2000EB4’ had numerically lower GPC than 

‘97Emmer19’, but the differences were not significant. ‘05Emmereg-03’ showed 

significantly higher GPC than other emmer-derived breeding lines at the GDL (13.8%), 

KER (16.5%), and SF (15.8%) locations in 2006 (P<0.05) (Table 4). In most 

environments, the USDA-ARS 1AS.1AL-1DL translocation lines ‘L092’ and ‘L252’, the  
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Table 4. Least square means for Grain Protein Concentration (13.5% mb) and SDS 
Sedimentation volumes (mL) of bread wheat checks (AC Barrie, CDC Teal, and AC 
Superb) and tetraploid wheats (durum, emmer, 1AS.1AL-1DL translocation, and 
emmer-derived breeding lines) planted during the 2005 and 2006 growing seasons at 
Goodale (GDL), Kernen (KER) and Seed Farm (SF) locations.  
 

 
Genotype 

Grain Protein concentration (%)  SDS Sedimentation volumes  (mL) 
GDL KER SF    

Cd 
GDL KER SF   

C ’05a    ’06b  ’05    ’06  ’05    ’06 ’05 ’06 ’05  ’06 ’05 ’06 
BREAD WHEAT CHECK CULTIVARS 

AC Barrie 14.8  13.3 15.2  15.4 13.8  15.9 14.7 73   59 86   73 69   64 71 
CDC Teal 15.0  12.8 15.6  15.3 14.2  14.6 14.6 86   68 90   77 81   68 78 
AC Superb 14.2  13.7 14.7  15.8 13.8  13.3 14.2 73   61 83   69 72   57 69 

1AS.1AL-1DL TRANSLOCATION LINES 
04EDUYT-42 11.2     -   11.7    -    10.9    -   - 18    -  17    -  17    -   - 
04EDUYT-43 11.1     -   11.8    -    11.5    -   - 19    -  17    -  18    -  - 
04IDSN-107 10.8     -   11.7    -    10.7    -   - 18    -  17    -  17    -   - 
04IDSN-111 11.3     -   11.7    -    11.4    -   - 19    -  17    -  18    -  - 
L092 14.8  12.1 14.5  14.1 13.6  15.0 14.0 53   47 57   53 55   48 52 
L252 15.7  11.8 14.6  14.9 16.1  15.2 14.7 42   37 44   43 44   39 41 
S99B33 15.1  12.6 14.8  14.8 14.8     -   - 53   46 52   50 57    -  - 
S99B34 15.7  12.9 14.4  14.7 14.5  13.0 14.2 56   49 53   52 53   42 51 

DURUM WHEAT CULTIVARS 
Strongfield 15.2  13.3 14.5  14.4 14.9  13.3 14.3 42   41 41   46 42   41 42 
WB881  12.9  11.3 14.5  13.7 13.4  13.5 13.2 54   40 50   51 54   47 49 
Commander 13.4  11.0 13.3  14.4 12.4  13.6 13.0 49   42 44   55 46   47 47 
AC Navigator 13.2  12.4 13.4  14.3 12.8  14.3 13.4 40   36 36   47 36   39 39 
DT724 14.3  12.5 13.8  14.5 13.5  13.7 13.7 40   40 44   45 38   39 41 
Stewart-63 13.9  11.1 13.8  13.6 13.5  13.6 13.2 20   18 20   21 17   18 19 
Arcola 14.3  11.9 14.9  13.6 13.5  14.0 13.7 43   32 32   38 38   41 37 

‘97EMMER19’ AND EMMER-DERIVED BREEDING LINES 
97Emmer19 14.7  13.7 15.6  14.1 14.2  15.2 14.6 57   42 39   50 48   50 47 
2000EB4 14.5  13.4 15.5  14.2 14.0  14.0 14.3 67   58 62   67 68   57 63 
X.98.142.17 12.7  11.9 13.2  14.5 13.2  13.2 13.1 60   54 62   64 53   52 58 
X.98.142.18 12.3     -    13.4    -   13.1    -   - 51    -  50    -  59    -  - 
P.01.64.31 13.1  11.4 13.9  13.8 13.2  13.1 13.0 55   39 49   53 53   49 50 
P.01.64.39 14.3  13.1 14.8  14.6 15.1  15.5 14.6 48   43 46   51 49   45 47 
P.01.64.62 13.6  11.7 13.6  12.7 12.9  13.9 13.0 52   44 51   51 50   48 49 
05Emmereg-01   -      10.3 -        12.9 -        12.9   -  -     33 -      54 -      50  - 
05Emmereg-03   -      13.8    -     16.5 -        15.8   -  -     35 -      42 -      40  - 
05Emmereg-10   -      12.3 -        14.1 -        14.0   -  -     46 -      58 -      53  - 
05Emmereg-26   -      12.3     -    14.0 -        13.5   -  -     43 -      51 -      49  - 
LSDc

0.05  0.6    1.7 0.6     0.6 1.3     2.1 0.8 5      6 4      3 5      7  8 
 

a’05 = 2005 growing season 
b’06 = 2006 growing season    
cLSD = Least significant difference      
dC = Combined data across environments (GDL, KER, and SF) and/or growing   
         seasons (2005 and 2006) 



 38

GPC were not significantly different from ‘Strongfield’ (Table 4). 

          Averaged over environments, ‘Strongfield’ showed significantly higher GPC than 

‘Commander’, ‘AC Navigator’ and ‘WB881’ (P<0.05), and displayed similar GPC to 

‘AC Superb’ (Table 4). At the GDL location in the 2005, ‘WB881’ (12.9%) had 

significantly lower GPC than other durum genotypes (P<0.05) although no significant 

difference was detected between ‘WB881’, ‘Commander’ and ‘AC Navigator’ when 

averaged over all environments (Table 4).  

4.1.5 SDS Sedimentation Volumes 

          For individual environments, the replication effect was non-significant and the 

genotype effect was statistically significant for SDS sedimentation volume (Appendix 

A3). For the combined analyses of variance across environments, genotypes differed in 

SDS sedimentation volume (Appendix A3). The variance estimates for the genotype x 

year (P < 0.05) and genotype x year x location (P < 0.01) interaction variance estimates 

were greater than zero, indicating a significant genotype x environment interaction.  

However, the correlation coefficients between LS means of SDS sedimentation volumes 

ranged from 0.89 (P < 0.001) to 0.98 (P < 0.001), indicating relative differences between 

genotypes were consistent from environment to environment.  

          ‘2000EB4’ is derived from a cross between ‘WB881’ and ‘97Emmer19’ (Table 1). 

In most environments, SDS sedimentation volumes of the two parental lines were similar, 

despite varying GPC (Table 4). However, ‘2000EB4’ showed significantly higher SDS 

sedimentation volumes (P<0.05) than both of its parents in all environments (Table 4). 

‘2000EB4’ was selected for high SDS sedimentation volume during the development of 

that line (P. Hucl, personal communication), which may indicate that transgressive 

segregation was present in the segregating breeding population. The presence of 

transgressive segregation would imply that both ‘WB881’ and ‘97Emmer19’ are 

contributing alleles to elevated SDS sedimentation. Alternatively, ‘2000EB4’ has 

significantly higher GPC than ‘WB881’, which may also explain the higher SDS 

sedimentations observed in ‘2000EB4’ as SDS sedimentation values are influenced by 

GPC (Fowler and De La Roche, 1975; Autran and Galterio, 1989; Galterio et al., 1993; 

Novaro et al., 1997; Porceddu et al., 1998). However, ‘X98.142.17’ had significantly 

lower GPC (P<0.05) than ‘2000EB4’, and similar SDS sedimentation volumes (Table 4). 
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‘X98.142.17’ was selected from the cross ‘WB881’ *2/ ‘97Emmer19’, supporting the 

hypothesis that ‘97Emmer19’ does contain some alleles that when recombined with those 

from ‘WB881’, result in elevated SDS sedimentation. 

          Among the durum wheat cultivars, large variation in SDS sedimentation values 

was evident. ‘Stewart-63’ and the CIMMYT translocation lines had very weak gluten, 

with SDS values below 21 mL in all environments. ‘Stewart-63’ possesses the LMW-1 

glutenin subunit, which is known to have a negative effect on gluten strength in durum 

wheat (see Literature Review section 2.2.2.2). Interestingly, USDA-ARS 1AS.1AL-1DL 

translocation line ‘L252’ also carries the LMW-1 type glutenin subunit, but the SDS 

sedimentation volumes of ‘L252’ were significantly higher than those of ‘Stewart-63’, 

and similar to the remaining 1AS.1AL-1DL translocation lines which possess the LMW-

2 banding pattern (Table 4). ‘L252’ carries the 1AS.1AL-1DL translocation which is 

known to improve gluten strength in hexaploid wheat (see Literature Review section 

2.2.2.2), which appears to compensate for the negative effect of the LMW-1 type glutenin 

subunit. No significant differences in SDS sedimentation volume were noted between 

‘Strongfield’, ‘AC Navigator’ and ‘WB881’. In all environments, the bread wheat checks 

had significantly higher SDS sedimentation volumes than all other genotypes evaluated 

(Table 4). This indicates that the bread wheat varieties had stronger gluten properties than 

the durum wheat genotypes used in this study.  

4.1.6 Hagberg Falling Number (FN) 

          The combined analyses of variance (ANOVA) of means across environments 

detected significant differences in FN among the genotypes evaluated (Appendix A3). 

Averaged over all environments, the FN of ‘97Emmer19’ was similar to that of 

‘Strongfield’ (Table 5). In contrast, ‘2000EB4’ showed significantly higher (P<0.05) FN 

values than ‘97Emmer19’ and the majority of emmer-derived breeding lines in all 

environments across years (Table 5). Averaged over all environments, no statistical 

differences (P>0.05) between ‘2000EB4’ and ‘WB881’ was noted (Table 5). In 2006, 

‘05Emmereg-03’ and ‘05Emmereg-26’ consistently displayed higher FN than the other 

emmer-derived breeding lines (P<0.05), and were similar to ‘2000EB4’ (Table 5). In 

contrast, ‘05Emmereg-10’ had lower FN at the GDL and SF locations (P<0.05). 

          In 2005, the CIMMYT 1AS.1AL-1DL translocation lines had low FN compared to  
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Table 5. Least square means for Falling Number (sec) and Yellow Pigment 
Concentration (mg kg-1) of bread wheat checks (AC Barrie, CDC Teal, and AC 
Superb) and tetraploid wheats (durum, emmer, 1AS.1AL-1DL translocation, and 
emmer-derived breeding lines) planted during the 2005 and 2006 growing seasons at 
Goodale (GDL), Kernen (KER) and Seed Farm (SF) locations.  
 

 
Genotype 

Falling number  
(seconds) 

Yellow pigment concentration  
(mg kg-1) 

GDL KER SF    
Cd 

GDL KER SF   
C ’05a     ’06b ’05    ’06  ’05    ’06 ’05 ’06 ’05  ’06 ’05 ’06 

BREAD WHEAT CHECK CULTIVARS 
AC Barrie 414    416 416   438 426   486 433 3.3 3.1 2.7  2.5 4.0  2.4 3.0 
CDC Teal 412    412 356   440 426   491 423 3.4 3.0 2.9  2.7 3.9  2.5 3.1 
AC Superb 396    382 388   392 398   407 394 3.3 3.1 3.0  2.7 4.2  2.7 3.2 

1AS.1AL-1DL TRANSLOCATION LINES 
04EDUYT-42 296       -  189     -    272    -   - 7.9    - 7.8    -  8.6    -   - 
04EDUYT-43 331       -  153     -    287    -   - 7.7    - 7.4    -  8.6    -   - 
04IDSN-107 304       -  189     -    278    -   - 8.1    - 7.6    -  8.7    -   - 
04IDSN-111 330       -  145     -    292    -   - 8.1    - 7.6    -  8.9    -   - 
L092 299    369 308   368 350   458 359 5.9 5.5 5.2  5.6 6.2  5.0 5.6 
L252 248    336 287   356 314   398 323 5.7 5.3 4.8  5.3 6.1  4.5 5.3 
S99B33 271    359 318   369 350     -   - 6.6 5.4 5.1  5.4 6.2      -   - 
S99B34 275    363 327   364 352   384 344 6.1 5.6 5.1  5.4 6.2  4.8 5.5 

DURUM WHEAT CULTIVARS 
Strongfield 289    405 299   433 329   435 365 7.8 7.7 6.9  7.0 8.5  6.4 7.4 
WB881  351    434 360   480 411   533 428 6.7 6.8 5.9  6.4 7.6  6.0 6.6 
Commander 308   431 280   456 421   539 406 7.9 7.9 7.4  7.3 8.9  7.2 7.8 
AC Navigator 274   421 275   442 377   480 378 7.4 7.3 6.9  7.2 8.2  6.8 7.3 
DT724 422   430 337   496 417   464 428 7.3 6.9 6.5  6.4 8.1  5.9 6.9 
Stewart-63 275   332 196   380 350   388 320 5.4 4.8 5.1  4.5 6.1  4.5 5.1 
Arcola 321   411 399   446 399   512 415 6.4 6.6 5.2  6.3 7.1  6.0 6.3 

‘97EMMER19’ AND EMMER-DERIVED BREEDING LINES 
97Emmer19 326   446 271   444 228   531 374 4.8 5.2 4.1  4.4 5.4  4.1 4.7 
2000EB4 446   474 401   493 433   571 470 5.9 5.9 4.9  5.4 6.6  5.1 5.7 
X.98.142.17 360   360 308   403 342   405 363 7.4 5.9 5.9  5.2 7.3  5.2 6.1 
X.98.142.18 341    -     333    -     382    -   - 5.7  -   5.0    -    6.8    -   - 
P.01.64.31 247   388 233   449 334   455 351 6.8 6.5 5.9  6.3 7.2  5.7 6.4 
P.01.64.39 254   403 280   476 372   537 387 7.4 7.3 6.7  7.3 8.1  6.5 7.2 
P.01.64.62 275   399 310   441 339   497 377 7.8 7.7 7.1  7.3 7.1  7.3 7.5 
05Emmereg-01   -      368 -        427   -     469   -  -    7.2 -      7.2 -      6.5   - 
05Emmereg-03   -      434 -        500 -       554   -  -    7.0 -      6.2 -      6.1   - 
05Emmereg-10   -      345 -        402 -       391   -  -    6.9 -      6.3 -      6.1   - 
05Emmereg-26   -      394 -        454 -       634   -  -    7.1 -      7.0 -      6.7   - 
LSDc

0.05 55      43 42      36 43      62  76 0.8 0.4 0.4  0.3 0.5  0.4 0.5 
 

a’05 = 2005 growing season 
b’06 = 2006 growing season    
cLSD = Least significant difference      
dC = Combined data across environments (GDL, KER, and SF) and/or growing 
seasons (2005 and 2006) 
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the bread wheat and durum wheat check cultivars (P<0.05) (Table 5). At the KER 

location, ‘04IDSN-111’ (145 sec) showed significantly lower FN value than ‘04EDUYT-

42’ and ‘04IDSN-107’ (P<0.05), although no significant difference was observed 

between ‘04IDSN-111’ and ‘04EDUYT-43’ (Table 5). The FN of ‘Stewart-63’ was 

similar to that of the CIMMYT translocation lines at GDL and KER in 2005, and 

significantly lower (P<0.05) than ‘Strongfield’ in 2006 (Table 5). The USDA-ARS 

translocation lines had significantly lower FN than the bread wheat checks (P<0.05), and 

among these lines, no significant differences were noted except at the SF location in 2006 

(Table 5). At the SF in 2006, ‘S99B34’ showed a significantly lower FN value (384 sec) 

than ‘L092’ (458 sec) (P<0.05), although no significant difference was observed between 

‘S99B34’ and ‘L252’ (398 sec) (Table 5). 

          Compared to ‘AC Barrie’ and ‘CDC Teal’, ‘Strongfield’ had lower FN in all 

environments, but the differences were only significant (P<0.05) in 2005. With the 

exception of the KER (2005) environment, ‘AC Superb’ showed consistently lower FN 

than ‘AC Barrie’ and ‘CDC Teal’, but differences were only significant (P<0.05) at KER 

(2006) and SF (2006) (Table 5). Of the durum wheat checks, ‘WB881’ and ‘DT724’ had 

the highest FN (P<0.05), and were similar to ‘AC Barrie’ and ‘CDC Teal’. However at 

GDL and KER in 2005, where FN differences were most manifested (as evidenced by a 

larger range in FN), only ‘DT724’ was similar to ‘CDC Teal’ and ‘AC Barrie’ (Table 5). 

4.1.7 Yellow Pigment Concentration (YPC) 

          For individual environments, the ANOVA revealed the genotype effect was 

statistically significant (P<0.01) for YPC (Appendix A4). The variance estimate for the 

genotype x year x location interaction was not statistically significant (P<0.05) Appendix 

A5). Correlations between YPC LS means among environments were high, and ranged 

from 0.94 (P<0.001) to 0.98 (P<0.001).  

          ‘97Emmer19’ had low YPC and emmer breeding line ‘2000EB4’ had lower YPC 

compared to the durum wheat checks (P<0.05), including ‘WB881’ (Table 5). In contrast, 

emmer derived breeding lines ‘P.01.64.39’ and ‘P.01.64.62’ had similar YPC to 

‘Strongfield’, which is the result of the breeding effort to increase YPC in these lines. 

Likewise, ‘05Emmereg-01’ and ‘05Emmereg-26’ had elevated YPC (Table 5) compared 

to their parent ‘2000EB4’ (P<0.05) (Table 1). 
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          All of the USDA-ARS translocation lines had significantly lower (P<0.05) YPC 

than the durum wheat checks in all environments. In contrast, in 2005, the CIMMYT 

translocation lines had similar YPCs to ‘Commander’ in all three environments (Table 5). 

Averaged over all environments, ‘WB881’, ‘DT724’, ‘Stewart-63’ and ‘Arcola’ had 

significantly lower YP than ‘Strongfield’, ‘Commander’ and ‘AC Navigator’ (P<0.05). 

Of the durum wheat checks, ‘Commander’ had the highest YPC (P<0.05), but was not 

significantly different from ‘AC Navigator’ and ‘Strongfield’ (Table 5). The higher YPCs 

of these newer varieties is due to the strong selection pressure for elevated pigment levels 

in Canadian durum wheat breeding programs (Clarke et al., 1998). As expected, the bread 

wheat varieties had lower yellow pigment than all of the durum wheat check cultivars 

(P<0.05) in all environments.  

4.2 Quality Evaluation of Composite Samples 

          CIMMYT lines had significantly higher YPC`s than most of the tetraploid wheats 

tested (P<0.05), but showed poor SDS Sedimentation volumes and lower GPC`s 

(P<0.05). Hence the best CIMMYT line (04EDUYT-43) out of four was considered for 

further milling and rheological quality tests, to compare the baking performance with 

other tetraploid genotypes included in this study.  

          Because of the large sample sizes required for triplicate analysis of rheological and 

baking quality tests, composite samples were produced within years. As such, years are 

the effective replication measuring environmental variation, and means comparisons 

between varieties is restricted to the combined analysis. Because repeated analyses of the 

composite samples (subsamples) were evaluated, the genotype x year x subsample 

interaction could be considered in the statistical model as the residual variation to test the 

variance estimate of the genotype x year interaction. Data is presented for each year, 

along with standard deviations of duplicate tests, providing a measure of precision for 

each quality assessment. As such, comparisons of genotypes within each year should be 

interpreted with caution, especially if the year x genotype interaction effect is significant. 

4.2.1 Flour/Semolina Milling Yield and Flour/Semolina Protein Concentration 

(FP/SP) 

          Within years, triplicate millings were variable, with average standard deviations of 

1.3% (range 0.3 - 2.8% for 2005) and 1.4% (range 0.3 - 3.2% for 2006) which was higher 
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Table 6. Mean and standard deviation of bread wheat checks (AC Barrie, CDC Teal, and 
AC Superb) and tetraploid wheats (durum, emmer, 1AS.1AL-1DL translocation, and 
emmer-derived breeding lines) for flour/semolina milling yield (%), flour/semolina protein 
concentration (14.0% mb), and agtron colour (%).  
 

Genotype FY/SYa FP/SPb Agtronc 
    2005d      2006e   Cf 2005 2006 C 2005 2006 C 

BREAD WHEAT CHECK CULTIVARS 
AC Barrie 72.6 ± 1.2 74.0 ± 0.6 73.3 13.9 ± 0.0 14.5 ± 0.0 14.2 65 ± 2 54 ± 1 59 
CDC Teal 71.8±0.9 73.5 ± 0.3 72.7 14.4 ± 0.0 14.5 ± 0.2 14.5 65 ± 2 55 ± 1 60 
AC Superb 70.8 ± 0.9 73.9 ± 0.5 72.3 13.4 ± 0.0 13.7 ± 0.0 13.6 54 ± 3 49 ± 2 52 

1AS.1AL-1DL TRANSLOCATION LINES 
04EDUYT-43 64.3 ± 2.5        -   - 9.8   ± 0.0         -   - 72 ± 1     -  - 
L092 64.0 ± 2.8 64.5 ± 3.2 64.2 12.7 ± 0.0 12.3 ± 0.0 12.5 74 ± 2 79 ± 2 76 
L252 63.5 ± 1.9 65.0 ± 1.9 64.3 13.6 ± 0.1 13.1 ± 0.0 13.4 66 ± 2 70 ± 2 68 
S99B33 65.3 ± 1.1 64.4 ± 2.3 64.8 13.1 ± 0.0 12.7 ± 0.1 12.9 70 ± 1 77 ± 2 74 
S99B34 63.9 ± 1.9 64.6 ± 1.2 64.3 13.0 ± 0.0 12.3 ± 0.0 12.7 74 ± 1 76 ± 2 75 

DURUM WHEAT CULTIVARS 
Strongfield 63.5 ± 1.3 64.2 ± 0.8 63.8 13.0 ± 0.0 12.3 ± 0.1 12.6 70 ± 2 70 ± 2 70 
WB881 65.0 ± 1.5 65.2 ± 1.2 65.1 12.1 ± 0.0 11.8 ± 0.0 11.9 74 ± 4 79 ± 2 76 
Commander 64.2 ± 1.7 65.2 ± 2.0 64.7 11.4 ± 0.0 11.7 ± 0.0 11.6 67 ± 2 72 ± 2 69 
AC Navigator 65.1 ± 0.6 65.7 ± 2.5 65.4 11.6 ± 0.0 12.1 ± 0.0 11.9 69 ± 1 74 ± 3 71 
DT724 65.0 ± 1.3 64.2 ± 1.6 64.7 12.1 ± 0.0 12.1 ± 0.0 12.1 66 ± 2 74 ± 2 70 
Stewart-63 64.5 ± 1.2 65.2 ± 0.9 64.9 11.9 ± 0.0 11.4 ± 0.0 11.7 79 ± 2 85 ± 2 82 
Arcola 65.7 ± 0.3 65.6 ± 0.5 65.6 12.4 ± 0.0 11.9 ± 0.2 12.2 72 ± 2 78 ± 3 75 

‘97EMMER19’ AND EMMER-DERIVED BREEDING LINES 
97Emmer19 62.3 ±1.5 67.5 ± 1.5 64.9 13.2 ± 0.0 12.9 ± 0.0 13.0 48 ± 3 58 ± 2 53 
2000EB4 64.6 ± 1.4 66.2 ± 1.0 65.4 12.9 ± 0.0 12.5 ± 0.0 12.7 62 ± 2 71 ± 2 67 
X.98.142.17 65.7 ± 1.6 67.2 ± 0.9 66.4 11.7 ± 0.0 11.8 ± 0.1 11.8 67 ± 3 72 ± 1 69 
X.98.142.18 66.4 ± 0.5        -   - 11.5 ± 0.1        -   - 74 ± 1     -  - 
P.01.64.31 66.2 ± 1.7 66.6 ± 2.1 66.4 11.6 ± 0.0 11.4 ± 0.0 11.5 72 ± 2 82 ± 2 77 
P.01.64.39 66.1 ± 0.7 65.2 ± 0.7 65.7 13.0 ± 0.0 13.0 ± 0.1 13.0 61 ± 2 74 ± 2 68 
P.01.64.62 65.1 ± 1.0 65.3 ± 1.8 65.2 11.6 ± 0.0 11.3 ± 0.0 11.4 62 ± 1 70 ± 1 66 
05Emmereg-01        - 64.7 ± 1.9   -     - 10.6 ± 0.0   -     - 81 ± 2  - 
05Emmereg-03        - 62.6 ± 1.1   -     - 13.8 ± 0.0   -     - 76 ± 2  - 
05Emmereg-10        - 65.7 ± 2.6   -     - 12.1 ± 0.0   -     - 71 ± 2  - 
05Emmereg-26        - 66.5 ± 2.1   -     - 12.2 ± 0.0   -     - 76 ± 1  - 
LSDg

0.05   2.1   0.6   9 
 

Values represent mean ± standard deviation of triplicate (FY/SY) or duplicate (FP/SP 
and Agtron) determinations             

aFY/SY = flour/semolina milling yield (%)       
bFP/SP = Flour/Semolina protein concentration (14.0% moisture basis)         
cAgtron = Agtron colour (%)     
d 2005 = 2005 growing season       
e 2006 = 2006 growing season     
fC = Combined composite samples data across years (2005 and 2006)      
gLSD = Least Significant Difference 
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than expected. Generally, there was less variation in triplicate millings of bread wheats 

compared to durum wheat genotypes (Table 6). The durum wheat milling method 

described in this thesis, however, is not a four stand Allis-Chalmers mill (used for durum 

milling at GRL, Winnipeg, Manitoba) for determining semolina yield, and uses 

considerably less sample than does the GRL, which could explain the larger variation 

observed in triplicate millings. The emmer-derived breeding lines ‘X.98.142.17’ and 

‘P.01.64.31’ showed significantly higher semolina yield than did the durum wheat check 

‘Strongfield’ (P<0.05) (Table 6). Averaged over both years, the bread wheat check 

cultivars had higher milling yields than all of the durum wheat varieties evaluated 

(P<0.05).  

          For FP/SP, ANOVA revealed significant genotypic effects (Appendix A5). 

Analyses of FP/SP were highly reproducible as evidenced by the low standard deviations 

of duplicate samples (Table 6). In both 2005 and 2006 composite samples, the majority of 

emmer-derived breeding lines had lower SP than ‘Strongfield’, and was numerically 

similar to ‘Commander’. Only ‘2000EB4’ and ‘P.01.64.39’ had SP similar to 

‘Strongfield’, which was consistent with the whole meal GPC data (Table 6). ‘L252’ had 

significantly higher SP than the other USDA-ARS translocation lines (P<0.05) evaluated 

and statistically higher SP than ‘Strongfield’ (P<0.05) (Table 6). Averaged over both 

years, ‘Strongfield’ had higher SP than ‘WB881’, ‘Commander’ and ‘AC Navigator’ 

(P<0.05), but was similar to ‘97Emmer19’. Based on repeated evaluation in registration 

trials conducted in western Canada, ‘Commander’ and ‘AC Navigator’ are known to have 

approx. 0.5% - 1% less protein than ‘Strongfield’ (Clarke et al., 2006a; Clarke et al., 

2001a; Clarke et al., 2006b). Similar to whole meal protein analysis (Results section 

4.1.4), the FP was higher in bread wheats than in durum wheat varieties, ‘97Emmer19’ 

and the emmer-derived breeding lines.  

          Comparison of the LS means from the combined analysis for whole meal (Table 4) 

and FP/SP (Table 6) revealed protein losses were greater in durum vs. bread wheat 

varieties (P<0.05). This is likely due to the lower semolina extraction rates observed for 

durum wheats compared to the flour extraction rates for the bread wheats (Table 6). 

Lower extraction rates are expected to result in increased protein losses due primarily to 
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greater loss of peripheral, higher protein endosperm, and to a lesser degree, more 

complete removal of high protein aleurone tissue. 

4.2.2 Flour/Semolina Colour  

          The colour of flour and semolina is an important criterion for both pasta and bread 

quality. Colour of the flour and semolina was assessed using both an Agtron and a 

Hunterlab Miniscan (CIELab colour space) colorimeter, two commonly used methods for 

colour assessment in breeding programs and in the milling industry. 

          For combined analyses of variance (ANOVA) of both 2005- and 2006- grown 

genotypes, genotypes differed in flour/semolina Agtron colour (Appendix A5). Excluding 

bread wheat checks, the Agtron colour values of 2006 composite samples were higher 

than those of 2005 composite samples and the results were reproducible given the low 

duplicate sample standard deviations (Table 6). The Agtron colour of ‘97Emmer19’ was 

not statistically different (P<0.05) from the bread wheat checks, and significantly lower 

than all durum wheat genotypes tested (P<0.05). All of the emmer-derived breeding lines 

evaluated in both 2005 and 2006, had significantly higher (P<0.05) Agtron colour values 

than ‘97Emmer19’ and were similar to ‘Strongfield’ and ‘Commander’ (Table 6). In 

2006, ‘P.01.64.31’ and ‘05Emmereg-01’ had numerically (statistically non-significant) 

higher Agtron colour than ‘Strongfield’ and were similar to ‘WB881’ and ‘Stewart-63’ 

(Table 6). Among the durum and emmer-derived breeding lines, semolina Agtron values 

were similar for the Canadian varieties ‘Strongfield’, ‘Commander’ and ‘AC Navigator’. 

‘Stewart-63’ had a significantly higher Agtron value than most durum wheat genotypes 

evaluated (P<0.05). Averaged over both composite samples, the bread wheat checks ‘AC 

Barrie’, ‘CDC Teal’, and ‘AC Superb’ had lower Agtron scores compared to the durum 

wheat genotypes evaluated (P<0.05) (Table 6). ‘AC Superb’ showed numerically lower 

Agtron value than ‘CDC Teal’ and ‘AC Barrie’, suggesting poorer colour relative to the 

other two bread wheat checks.  
          The ANOVA for CIELab data for L*, a* and b* is presented in Appendix A5. For 

all three measurements, significant (P<0.05) genotypic effects were detected for L* and 

a*, although the variance estimates for the two-way interaction between genotype and 

year was not significantly different from zero (P>0.05) (Appendix A5). These results 

suggest that the relative differences between genotypes were consistent between yearly  
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Table 7. Mean and standard deviation of bread wheat checks (AC Barrie, CDC Teal, and AC 
Superb) and tetraploid wheats (durum, emmer, 1AS.1AL-1DL translocation, and emmer-
derived breeding lines) for flour/semolina brightness (L*), redness (a*), and yellowness 
(b*).  
 

Genotype L* a a* b b* c 
    2005d      2006e   Cf 2005 2006   C 2005 2006   C 

BREAD WHEAT CHECK CULTIVRS 
AC Barrie 85.1 ± 0.2 85.7 ± 0.2 85.4 1.21 ± 0.01 1.49 ± 0.02 1.35 12.9 ± 0.0 14.5 ± 0.0 13.7 
CDC Teal 85.2 ± 0.4 85.9 ± 0.1 85.5 1.04 ± 0.02 1.28 ± 0.01 1.16 12.6 ± 0.0 14.8 ± 0.0 13.7 
AC Superb 84.1 ± 0.4 85.1 ± 0.2 84.6 1.39 ± 0.06 1.60 ± 0.05 1.49 12.8 ± 0.0 14.6 ± 0.1 13.7 

1AS.1AL-1DL TRANSLOCATION LINES 
04EDUYT-43 86.1 ± 0.3        -   - 0.90 ± 0.05         -    - 24.4 ± 0.1        -   - 
L092 86.2 ± 0.2 86.5 ± 0.3 86.3 0.73 ± 0.03 0.87 ± 0.04 0.80 21.9 ± 0.0 23.6 ± 0.1 22.8 
L252 85.7 ± 0.3 86.1 ± 0.2 85.9 0.61 ± 0.04 0.83 ± 0.06 0.72 20.6 ± 0.0 22.1 ± 0.1 21.3 
S99B33 85.9 ± 0.3 86.4 ± 0.2 86.2 0.74 ± 0.06 0.91 ± 0.07 0.82 21.8 ± 0.1 23.4 ± 0.1 22.6 
S99B34 86.2 ± 0.2 86.5 ± 0.2 86.3 0.73 ± 0.01 0.89 ± 0.04 0.81 21.9 ± 0.1 23.5 ± 0.1 22.7 

DURUM WHEAT CULTIVARS 
Strongfield 85.5 ± 0.2 85.9 ± 0.3 85.7 1.08 ± 0.03 1.18 ± 0.06 1.13 24.7 ± 0.4 26.0 ± 0.0 25.3 
WB881 86.1 ± 0.3 86.5 ± 0.3 86.3 0.77 ± 0.06 0.91 ± 0.06 0.84 23.6 ± 0.0 25.4 ± 0.1 24.5 
Commander 85.3 ± 0.2 85.7 ± 0.3 85.5 1.18 ± 0.06 1.29 ± 0.08 1.24 27.1 ± 0.1 28.4 ± 0.0 27.8 
AC Navigator 85.5 ± 0.2 86.0 ± 0.3 85.8 1.04 ± 0.04 1.23 ± 0.06 1.13 25.2 ± 0.1 26.1 ± 0.1 25.7 
DT724 85.5 ± 0.3 86.0 ± 0.3 85.8 0.87 ± 0.06 0.93 ± 0.09 0.90 23.8 ± 0.1 24.6 ± 0.2 24.2 
Stewart-63 87.2 ± 0.1 87.6 ± 0.2 87.4 0.62 ± 0.02 0.71 ± 0.04 0.66 17.3 ± 0.4 18.1 ± 0.2 17.7 
Arcola 86.3 ± 0.3 86.7 ± 0.3 86.5 0.70 ± 0.06 0.87 ± 0.10 0.79 21.5 ± 0.0 22.9 ± 0.0 22.2 

‘97EMMER19’ AND EMMER-DERIVED BREEDING LINES 
97Emmer19 84.9 ± 0.2 85.7 ± 0.3 85.3 1.37 ± 0.05 1.51 ± 0.04 1.44 15.1 ± 0.0 15.1 ± 0.1 15.1 
2000EB4 85.4 ± 0.2 86.2 ± 0.2 85.8 0.72 ± 0.04 0.93 ± 0.06 0.82 20.7 ± 0.0 21.4 ± 0.0 21.1 
X.98.142.17 85.5 ± 0.4 86.3 ± 0.2 85.9 1.04 ± 0.08 1.06 ± 0.02 1.05 20.5 ± 0.3 21.5 ± 0.1 21.0 
X.98.142.18 86.3 ± 0.2        -   - 0.69 ± 0.08         -   - 21.2 ± 0.2        -   - 
P.01.64.31 85.9 ± 0.2 86.7 ± 0.2 86.3 0.82 ± 0.07 0.81 ± 0.06 0.81 22.8 ± 0.0 24.6 ± 0.0 23.7 
P.01.64.39 84.9 ± 0.3 85.9 ± 0.2 85.4 1.03 ± 0.08 1.24 ± 0.07 1.14 24.2 ± 0.0 26.6 ± 0.0 25.4 
P.01.64.62 84.8 ± 0.2 85.5 ± 0.2 85.2 1.21 ± 0.06 1.31 ± 0.05 1.26 25.9 ± 0.0 27.6 ± 0.1 26.7 
05Emmereg-01       - 86.8 ± 0.2   -         - 0.87 ± 0.05   -        - 25.5 ± 0.0   - 
05Emmereg-03       - 86.5 ± 0.2   -         - 0.84 ± 0.01   -        - 23.9 ± 0.4   - 
05Emmereg-10       - 85.7 ± 0.2   -         - 1.02 ± 0.11   -        - 25.9 ± 0.1   - 
05Emmereg-26       - 86.1 ± 0.2   -         - 1.07 ± 0.01   -        - 25.1 ± 0.2   - 
LSDg

0.05    0.4   0.11     0.9 
 

Values represent mean ± standard deviation of duplicate determinations             

aL* = flour/semolina brightness       
ba* = flour/semolina redness         
cb* = flour/semolina yellowness     
d 2005 = 2005 growing season       
e 2006 = 2006 growing season     
fC = Combined composite samples data across years (2005 and 2006)      
gLSD = Least Significant Difference
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composite samples and that for duplicate samples, the L* and a* values were 

reproducible. The direct comparisons of CIELab measurements L*, a* and b* between 

bread wheat and durum genotypes are not appropriate since the emmer-derived breeding 

lines were selected for superior semolina yellowness (b*) compared to their durum 

parents.  

          The flour/semolina L* values of 2006 composite samples were greater than those 

of 2005 composite samples (Table 7). Of the emmer-derived breeding lines, ‘P.01.64.31’ 

had a significantly higher (P<0.05) L* (86.3) than all other emmer-derived breeding 

lines, although no significant difference was seen between ‘P.01.64.31’ and 

‘X.98.142.17’ (85.9) (Table 7). The USDA-ARS 1AS.1AL-1DL translocation lines 

showed no significant flour/semolina brightness (L*) differences with the data averaged 

over yearly composite samples (Table 7). ‘Stewart-63’ (87.4) showed significantly higher 

semolina brightness than other durum genotypes (P<0.05) (Table 7). ‘Commander’ (85.5) 

showed significantly lower semolina brightness than ‘WB881’ (86.3) and ‘Arcola’ (86.5) 

(P<0.05), although no significant difference was detected between ‘Commander’, 

‘Strongfield’ (85.7), ‘AC Navigator’ (85.8) and ‘DT 724’ (85.8) (Table 7).  

          The semolina redness values (a*) were higher in 2006 composite samples (Table 

7). ‘97Emmer19’ had the highest a* of all genotypes tested, but ‘2000EB4’ had a 

significantly lower a* (P<0.05), similar to its parent ‘WB881’ (Table 7). ‘P.01.64.39’ and 

‘P.01.64.62’ had a* values statistically (P>0.05) similar to ‘AC Navigator’. These results 

were not surprising given that these lines are derived from a backcross of ‘AC Navigator’ 

to ‘2000EB4’ (Table 1). All of the 05Emmereg series lines evaluated in 2006 also 

displayed lower a* values than ‘97Emmer19’ and ‘Commander’ (Table 7). The combined 

analysis revealed that ‘Commander’ has a significantly higher a* than the other durum 

wheat genotypes except ‘AC Navigator’ (P<0.05) which is consistent with previously 

reported results (Clarke et al., 2006a). There were no significant differences (P<0.05) 

between the remaining durum wheat checks. When comparing bread wheat check 

cultivars, ‘AC Superb’ had statistically higher a* than ‘CDC Teal’ and ‘AC Barrie’ 

(P<0.05). ‘CDC Teal’ was also noted to have reduced a* compared to ‘AC Barrie’ 

(P<0.05), and these results were consistent between yearly composite samples (Table 7).  
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          Semolina b* values were highly variable, and ranged from 15.1 for ‘97Emmer19’, 

to 27.8 for ‘Commander’ (Table 7). Of the emmer-derived breeding lines, ‘P.01.64.39’ 

and ‘P.01.64.62’ had b* value similar to their parent ‘AC Navigator’, and this similarity 

was consistent across yearly composite samples (Table 7). The USDA-ARS translocation 

lines had significantly higher b* than ‘97Emmer19’ (P<0.05), and were statistically 

similar to ‘Arcola’ (Table 7). Statistically, ‘Commander’ had the highest semolina b* of 

the durum wheat genotypes with the exception of emmer-derived breeding line 

‘P.01.64.62’ (Table 7). ‘Stewart-63’ displayed poor semolina yellowness compared to the 

durum wheat check cultivars. Correlation coefficients for composite sample b* versus LS 

means for YP (Table 5) were 0.96 (P<0.01) and 0.95 (P<0.01) for 2005 and 2006, 

respectively, indicating that YPC is a good predictor of semolina colour in durum wheat. 

4.2.3 Flour/Semolina Gluten Index (GI) 
          The ANOVA for GI indicated that the genotype and year effects were significant 

(P<0.05) with a strong genotypic effect (Appendix A5). ‘97Emmer19’ had a GI 

significantly lower than that of ‘Strongfield’ (P<0.05). In contrast, four of the five 

emmer-derived breeding lines evaluated over both years had GI values greater than 

‘Commander’, but only ‘2000EB4’ was statistically higher (P<0.05). ‘Commander’ is 

classified as an extra-strong gluten type (Clarke et al., 2006a), and the higher SDS 

sedimentation volumes relative to ‘Strongfield’ are likely associated with increased 

gluten strength (Table 8) as SDS sedimentation volume is an effective indicator of gluten 

strength (Dexter et al., 1981; Dessalegn et al., 2006). In this study, the GI data was 

positively correlated (r = 0.81; P<0.01) with SDS Sedimentation volumes (Tables 14 and 

15). All of the USDA-ARS substitution lines had GI values >98% (Table 8), which was 

statistically greater than ‘AC Superb’, ‘Commander’ and ‘WB881’ (P<0.05). ‘L252’ is 

known to carry the LWM-1 glutenin subunit (Klindworth et al., 2005) like ‘Stewart-63’. 

However, the GI of ‘Stewart-63’ was only 1%, and confirms the results of SDS 

sedimentation volumes (Table 4) that the 1AS.1AL-1DL substitution compensates for the 

reduced gluten strength conferred by the LMW-1 glutenin subunit.  

          The durum wheats ‘Commander’ and ‘WB881’, both extra-strong gluten types, had 

high GI values which were not significantly different from the bread  wheat checks 

(Table 7). ‘DT724’ (P>0.05) showed  lower  GI  than  the bread wheats (P<0.05), but was  
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Table 8. Mean and standard deviation of bread wheat checks (AC Barrie, CDC Teal, and 
AC Superb) and tetraploid wheats (durum, emmer, 1AS.1AL-1DL translocation, and 
emmer-derived breeding lines) for flour/semolina gluten index (%), wet gluten content 
(%), and dry gluten content (%).  
 
Genotype GI a WG b DG c 

2005d 2006e  Cf 2005 2006   C 2005 2006   C 
BREAD WHEAT CHECK CULTIVARS 

AC Barrie 98 ± 0.0 89 ± 1.3 94 38.5 ± 0.4 41.7 ± 0.4 40.1 13.6 ± 0.3 14.5 ± 0.2 14.0 
CDC Teal 96 ± 1.7 93 ± 2.8 95 39.0 ± 0.4 39.8 ± 0.6 39.4 13.6 ± 0.1 13.8 ± 0.2 13.7 
AC Superb 97 ± 2.2 89 ± 0.2 93 36.0 ± 2.0 37.5 ± 0.7 36.8 12.6 ± 0.8 13.0 ± 0.3 12.8 

1AS.1AL-1DL TRANSLOCATION LINES 
04EDUYT-43 21 ± 1.7      -   - 21.7 ± 0.4        -   - 7.7   ± 0.3         -   - 
L092 98 ± 1.2 98 ± 0.2 98 28.9 ± 0.1 30.2 ± 0.5 29.5 10.6 ± 0.0 10.9 ± 0.4 10.7 
L252 98 ± 0.6 98 ± 1.2 98 33.8 ± 0.1 33.8 ± 0.1 33.8 11.9 ± 0.0 11.6 ± 0.1 11.7 
S99B33 98 ± 0.6 100 ±0.1 99 29.8 ± 0.4 32.1 ± 0.2 30.9 11.0 ± 0.4 11.1 ± 0.1 11.1 
S99B34 99 ± 0.2 99 ± 0.0 99 29.2 ± 0.1 30.7 ± 1.0 30.0 11.2 ± 0.1 11.1 ± 0.5 11.1 

DURUM WHEAT CULTIVARS 
Strongfield 61 ± 0.4 62 ± 1.2 62 36.8 ± 0.0 36.5 ± 0.0 36.7 13.2 ± 0.2 13.0 ± 0.1 13.1 
WB881 94 ± 3.3 84 ± 1.4 89 33.7 ± 0.4 34.6 ± 0.1 34.2 12.0 ± 0.1 12.2 ± 0.1 12.1 
Commander 92 ± 2.9 86 ± 2.8 89 31.8 ± 0.3 34.0 ± 0.0 32.9 11.3 ± 0.3 11.8 ± 0.1 11.6 
AC Navigator 67 ± 3.4 64 ± 1.2 65 33.5 ± 0.3 37.7 ± 0.3 35.6 11.8 ± 0.1 13.4 ± 0.3 12.6 
DT724 81 ± 0.1 83 ± 0.2 82 38.6 ± 0.6 35.4 ± 0.4 37.0 12.0 ± 0.1 12.5 ± 0.2 12.2 
Stewart-63 1   ± 0.3 1  ±   0.2 1 29.0 ± 2.9 36.4 ± 0.8 32.7 10.5 ± 1.1 10.4 ± 0.1 10.5 
Arcola 64 ± 1.7 55 ± 0.2 59 37.1 ± 0.8 37.0 ± 0.3 37.1 13.8 ± 0.6 13.4 ± 0.3 13.6 

‘97EMMER19’ AND EMMER-DERIVED BREEDING LINES 
97Emmer19 46 ± 1.5 42 ± 0.0 44 39.4 ± 0.7 41.7 ± 0.6 40.5 14.1 ± 0.1 14.6 ± 0.3 14.4 
2000EB4 98 ± 0.4 94 ± 3.3 96 35.2 ± 0.3 36.3 ± 0.4 35.8 12.4 ± 0.0 12.8 ± 0.1 12.6 
X.98.142.17 97 ± 1.4 93 ± 2.2 95 33.1 ± 0.4 35.3 ± 0.1 34.2 11.9 ± 0.1 12.5 ± 0.1  12.2 
X.98.142.18 95 ± 2.2      -   - 32.0 ± 0.9        -   - 11.6 ± 0.7         -   - 
P.01.64.31 92 ± 3.6 92 ± 1.3 92 33.7 ± 0.7 33.3 ± 0.1 33.5 11.9 ± 0.4 11.7 ± 0.0 11.8 
P.01.64.39 80 ± 3.6 74 ± 4.1 77 36.9 ± 0.1 39.2 ± 0.2 38.0 13.1 ± 0.1 13.7 ± 0.0 13.4 
P.01.64.62 97 ± 0.3 86 ± 0.6 92 32.6 ± 0.4 34.1 ± 0.1 33.3 11.5 ± 0.1 11.8 ± 0.3 11.6 
05Emmereg-01      - 70 ± 1.3   -        - 31.8 ± 0.1   -         - 11.2 ± 0.1   - 
05Emmereg-03      - 59 ± 0.2   -        - 41.5 ± 0.1   -         - 14.8 ± 0.1   - 
05Emmereg-10      - 85 ± 1.9   -        - 35.5 ± 0.1   -         - 12.4 ± 0.1   - 
05Emmereg-26      - 83 ± 4.1   -        - 36.1 ± 0.1   -         - 12.6 ± 0.0   - 
LSDg

0.05    6   3.1   0.7 
 

Values represent mean ± standard deviation of duplicate determinations             

aGI = flour/semolina gluten index       
bWG = flour/semolina wet gluten content         
cDG = flour/semolina dry gluten content     
d 2005 = 2005 growing season       
e 2006 = 2006 growing season     
fC = Combined composite samples data across years (2005 and 2006)      
gLSD = Least Significant Difference 
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not statistically different from ‘Commander’ or ‘WB881’. ‘Strongfield’ and ‘AC 

Navigator’ are both considered conventional strength durum wheat varieties (Clarke et 

al., 2006b; Clarke et al., 2001a), and exhibited (P>0.05) GI values of 62% and 65%, 

respectively. The bread wheat checks possessed high GI, averaging 94% (Table 8). 

4.2.4 Flour/Semolina Wet (WG) and Dry (DG) Gluten 
          The ANOVA of 2005 and 2006 grown genotypes revealed significant differences 

among genotypes for both WG and DG (Appendix A5). The WG variance estimates for 

genotype x year were not statistically different from zero (Appendix A5), suggesting 

relative ranking of genotypes was consistent between yearly composite samples.  

          The WG content of ‘97Emmer19’ was significantly higher than that of the current 

durum wheat varieties ‘Strongfield’, ‘Commander’ and ‘AC Navigator’ (P<0.05) (Table 

8). Of the emmer-derived breeding lines, only ‘P.01.64.39’ had WG similar to 

‘97Emmer19’ with the WG of the remaining lines being similar to ‘Commander’, ‘AC 

Navigator’ and ‘WB881’ (Table 8). The USDA-ARS translocation lines had WG content 

ranging from 29.5% to 33.8% (Table 8). The WG content of bread wheat cultivars was 

higher than that of the majority of durum wheat cultivars (Table 8), and is consistent with 

earlier results (Pasha et al., 2007). However, ‘Strongfield’, ‘DT724’ and ‘Arcola’ had 

elevated WG content, similar to the bread wheat check ‘CDC Teal’. 

Table 9. Correlation coefficients between LS means of flour/semolina protein 
concentration (%) and wet and dry gluten (%). 

Quality Parameter Wet Gluten (%) Dry Gluten (%) 

Flour/Semolina Protein (%) 0.50* 0.52* 

Dry Gluten (%) 0.94**  

* P < 0.05         ** P < 0.01 

          Pasha et al (2007) found that both WG and DG traits were correlated with FP/SP, 

with correlation coefficients ranging from 0.68 (P<0.01) to 0.69 (P<0.01), confirming 

that these variables are dependent on protein concentration. The correlation between WG 

(%) and DG (%) was 0.94 (P<0.01) (Table 9). However, examination of the deviation of 

genotype LS means from the covariance estimate revealed that ‘Stewart-63’ explained a 

large portion of the covariance deviation, with lower than expected DG relative to its WG  
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Table 10. Farinograph quality parameters (calculated from farinograph curves) of bread wheat checks (AC Barrie, CDC Teal, and AC 
Superb) and tetraploid wheats (durum, emmer, 1AS.1AL-1DL translocation, and emmer-derived breeding lines).  

Genotype FABa STAb MTIc DDTd TTBe 
’05f ‘06g Ch ’05 ‘06 C ’05 ‘06 C ’05 ‘06 C ’05 ‘06 C 

BREAD WHEAT CHECK CULTIVARS 
AC Barrie 63.0 62.4 62.7 13.5 23.8 18.7 30 20 25 7.0 7.5 7.3 13.0 11.5 12.3 
CDC Teal 64.2 63.2 63.7 22.0 37.0 29.5 20 10 15 10.0 7.5 8.8 18.0 17.0 17.5 
AC Superb 65.0 63.6 64.3 20.0 19.2 19.6 25 30 28 6.5 5.2 5.9 10.0 8.5 9.3 

1AS.1AL-1DL TRANSLOCATION LINES 
04EDUYT-43 60.4 - - 3.5 - - 105 - - 2.0 - - 4.5 - - 
L092 60.0 58.4 59.2 26.0 50.0 38.0 15 10 13 18.5 17.5 18.0 21.0 43.0 32.0 
L252 62.2 59.8 61.0 29.0 26.0 27.5 20 30 25 12.0 10.5 11.3 22.0 15.5 18.8 
S99B33 62.0 60.0 61.0 34.5 50.2 42.4 10 5 8 15.5 14.0 14.8 26.5 29.0 27.8 
S99B34 61.2 58.2 59.7 41.5 36.3 38.9 20 10 15 15.0 11.0 13.0 27.0 38.0 32.5 

DURUM WHEAT CULTIVARS 
Strongfield 60.0 55.8 57.9 7.2 6.2 6.7 55 40 48 1.8 2.2 2.0 4.0 5.0 4.5 
WB881 60.0 57.2 58.6 10.0 6.7 8.4 40 45 43 4.5 3.2 3.9 7.0 6.5 6.8 
Commander 61.6 59.4 60.5 6.2 7.3 6.8 40 40 40 2.5 3.7 3.1 5.0 5.5 5.3 
AC Navigator 62.4 59.8 61.1 5.0 3.6 4.3 40 50 45 3.0 2.5 2.8 4.0 4.3 4.2 
DT724 61.8 59.6 60.7 7.0 6.8 6.9 40 35 38 4.5 3.2 3.9 6.5 7.0 6.8 
Stewart-63 60.6 57.6 59.1 2.5 1.4 2.0 90 105 98 2.0 1.6 1.8 4.5 2.5 3.5 
Arcola 58.0 55.2 56.6 3.7 3.5 3.6 60 60 60 3.5 2.7 3.1 5.0 4.5 4.8 

‘97EMMER19’ AND EMMER-DERIVED BREEDING LINES 
97Emmer19 57.8 54.8 56.3 3.7 3.1 3.4 80 85 83 2.8 2.3 2.6 3.5 3.2 3.4 
2000EB4 60.0 57.6 58.8 25.0 22.0 23.5 20 30 25 8.0 6.0 7.0 15.0 10.0 12.5 
X.98.142.17 58.6 57.2 57.9 8.5 8.2 8.4 40 40 40 5.0 4.5 4.8 8.5 8.0 8.3 
X.98.142.18 59.6 - - 11.0 - - 30 - - 6.0 - - 9.0 - - 
P.01.64.31 61.2 56.8 59.0 8.5 7.5 8.0 40 30 35 3.5 5.0 4.3 7.0 9.5 8.3 
P.01.64.39 63.6 60.0 61.8 6.5 7.9 7.2 40 55 48 3.0 3.0 3.0 7.0 5.0 6.0 
P.01.64.62 60.6 57.4 59.0 13.8 19.4 16.6 30 25 28 5.5 3.5 4.5 9.0 9.0 9.0 
05Emmereg-01 - 55.2 - - 6.7 - - 60 - - 3.0 - - 5.0 - 
05Emmereg-03 - 61.2 - - 11.2 - - 50 - - 3.5 - - 5.0 - 
05Emmereg-10 - 58.6 - - 11.0 - - 30 - - 4.7 - - 8.5 - 
05Emmereg-26 - 57.2 - - 7.7 - - 40 - - 3.5 - - 6.5 - 
LSDi

0.05   1.5   11.3   13   1.9   8.7 
aFAB = Farinograph water absorption (%)   bSTA = Farinograph stability (min)    cMTI = Farinograph Mixing Tolerance Index (B.U.)  dDDT  = 
Farinograph dough development time (min)   eTTB = Farinograph time to breakdown (min)      f ’05 = 2005 growing season    g ’06 = 2006 growing 
season   hC = Combined composite samples data across years (2005 and 2006)     iLSD = Least Significant Difference  
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content (Table 9). This could imply that the gluten of ‘Stewart-63’ has greater water 

hydration capacity, perhaps due to the presence of the LMW-1 glutenin subunit.  

4.3 Rheological Properties of Semolina/Flour and Bake Test 

4.3.1 Farinograph Assessment of Rheological Properties 

          The farinograph is used world-wide as a tool to determine water absorption 

potential of flour and semolina, and to assess dough rheological properties. For 

farinograph water absorption (FAB), farinograph stability (STA), farinograph mixing 

tolerance index (MTI), farinograph dough development time (DDT) and farinograph time 

to breakdown (TTB). Significant differences were detected among genotypes (Appendix 

A6). 

          ‘97Emmer19’ had the lowest FAB (56.3%), and was statistically lower than 

‘Strongfield’ (P<0.05) but similar to ‘Arcola’ (Table 10). The emmer-derived genotypes 

evaluated over both years had similar FAB to ‘Stewart-63’ and were not statistically 

different from ‘Commander’ (P>0.05). In 2006 composite samples, ‘05Emmereg-01’ had 

the lowest FAB compared to other emmer-derived breeding lines evaluated. On average, 

the durum wheat genotypes tested had statistically lower (P<0.05) FAB than the bread 

wheat checks. ‘Strongfield’ and ‘Arcola’ had lower FAB than ‘Commander’, ‘AC 

Navigator’ and ‘DT724’ (P<0.05) (Table 10). The FAB of hexaploid wheat entries 

ranged from 62.7% for ‘AC Barrie’ to 64.3% for ‘AC Superb’ (Table 10), but no 

significant differences were noted (P>0.05) between the three genotypes. Apart from the 

high starch damage (Evans and Stevens, 1985; Tipples, 1969; Bass, 1988) and high flour 

protein concentration (Hruskova et al., 2006), the intrinsic differences in protein quantity 

and quality (Edwards et al., 1996) also results in greater water absorption during dough 

mixing and in this study the protein quality rather than quantity appears to be the reason 

for the increased FAB in bread wheat checks as compared to durum and emmer wheats.  

          Farinograph stability (STA) and the mixing tolerance index (MTI) are measures of 

the tolerance of a flour/semolina to mixing, and are related to the gluten properties of the 

flour/semolina. ‘97Emmer19’ showed a high MTI, not statistically different from 

‘Stewart-63’. The STA (23.5 min) and MTI (25 B.U.) of ‘2000EB4’ was similar to those 

of the bread wheat checks and ‘L252’ (Table 10), although no significant difference was 

seen between ‘2000EB4’ and ‘P.01.64.62’ for STA and MTI parameters. Dough from the 
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USDA-ARS translocation lines, except ‘L252’, displayed STA above the bread wheat 

and durum wheat genotypes, with values ranging from 27.5 minutes to 42.4 minutes 

(Table 10), indicating very strong gluten. A corresponding low MTI was also noted for 

these lines (Table 10). ‘Stewart-63’, which carries the LMW-1 glutenin subunit, has a 

low STA, and statistically higher MTI than all other durum wheat genotypes (P<0.05), 

indicating dough had poor tolerance to mixing (weak gluten). Among the bread wheat 

checks, the STA of ‘CDC Teal’ was higher than those of ‘AC Barrie’ and ‘AC Superb’ in 

both 2005 and 2006 composite samples, but the differences were not statistically 

significant (Table 10). 

          Farinograph dough development time (DDT), which measures relative strength 

(gluten strength) of the flour/semolina (Zounis and Quail, 1997), ranged from 1.8 min 

(‘Stewart-63’) to 18.0 min (‘L092’) in the genotypes evaluated (Table 10). The 

farinograph time to breakdown (TTB) values showed a similar trend as DDT (Table 10) 

with a correlation coefficient of 0.97 (P<0.001) with DDT. All USDA-ARS translocation 

lines, except ‘L252’, displayed DDT and TTB values above the bread wheat and durum 

wheat genotypes (Table 10). ‘Stewart-63’, which carries the LMW-1 glutein subunit, 

showed a statistically shorter (P<0.05) DDT than most of the durum wheat genotypes, 

indicating weak dough strength.  

4.3.2 Alveograph Assessment of Dough Rheology 

          The ANOVA for alveograph dough tenacity (P), alveograph extensibility (L), 

alveograph curve configuration ratio (P/L) and alveograph strength (W) for both the 

2005- and 2006- grown genotypes are presented in Appendix A6. Significant genotypic 

effects were detected for all four alveograph parameters. Alveograph parameters are 

influenced by the extent of starch damage after milling and the water absorption capacity 

of the flour/semolina, with increasing starch damage resulting in reduced dough 

extensibility (L) and increased pressure (P) (Edwards and Dexter, 1987). Given the 

differences in hardness (and thus starch damage) between bread wheat and durum wheat 

(Table 3) and the differences in FAB (Table 10), comparison between bread wheat and 

durum wheat genotypes should be interpreted with caution. 

          Alveograph P values of tetraploid wheat genotypes were high, with a range of 39 

mm to 161 mm (Table 11). The  P  value of ‘97Emmer19’ was 39 mm, statistically lower 
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Table 11. Alveograph quality parameters (mean and standard deviation) of bread wheat checks, AC Barrie, CDC Teal, 
and AC Superb, and tetraploid wheats (durum, emmer, 1AS.1AL-1DL translocation, and emmer-derived breeding 
lines).  

Genotype Pa Lb P/Lc Wd 
 2005e  2006f  Cg   2005  2006  C     2005     2006   C   2005   2006  C 

BREAD WHEAT CHECK CULTIVARS 
AC Barrie 91 ± 4 99 ± 6 95 130 ± 26 82 ± 9 106 0.74 ± 0.23 1.22 ± 0.11 0.98 419 ± 52 325 ± 32 372 
CDC Teal 86 ± 9 89 ± 6 88 123 ± 27 110 ± 12 117 0.75 ± 0.29 0.82 ± 0.13 0.78 369 ± 59 343 ± 22 356 
AC Superb 97 ± 3 85 ± 6 91 141 ± 11 88 ± 23 114 0.69 ± 0.06 1.01 ± 0.24 0.85 431 ± 25 259 ± 34 345 

1AS.1AL-1DL TRANSLOCATION LINES 
04EDUYT-43 63 ± 1    - - 48 ± 29      - - 1.87 ± 1.25         - - 67 ± 12        - - 
L092 164 ± 21 125 ± 12 145 30 ± 5 46 ± 7 38 5.65 ± 1.41 2.78 ± 0.56 4.21 194 ± 37 269 ± 41 231 
L252 172 ± 9 109 ± 4 141 49 ± 6 62 ± 6 55 3.56 ± 0.57 1.79 ± 0.24 2.67 371 ± 36 293 ± 16 332 
S99B33 185 ± 20 138 ± 2 161 29 ± 3 52 ± 7 41 6.38 ± 0.99 2.72 ± 0.48 4.55 243 ± 31 325 ± 38 284 
S99B34 160 ± 19 132 ± 10 146 34 ± 9 46 ± 8 40 4.95 ± 1.35 2.92 ± 0.46 3.94 245 ± 84 286 ± 51 266 

DURUM WHEAT CULTIVARS 
Strongfield 110 ± 3 80 ± 4 95 74 ± 5 67 ± 8 70 1.49 ± 0.12 1.21 ± 0.15 1.35 282 ± 12 189 ± 22 236 
WB881 151 ± 6 85 ± 4 118 69 ± 8 89 ± 4 79 2.22 ± 0.32 0.96 ± 0.09 1.59 392 ± 32 252 ± 8 322 
Commander 168 ± 4 126 ± 4 147 36 ± 2 53 ± 6 45 4.61 ± 0.20 2.39 ± 0.36 3.50 263 ± 15 263 ± 17 263 
AC Navigator 138 ± 4 93 ± 2 116 40 ± 8 66 ± 5 53 3.60 ± 0.73 1.42 ± 0.10 2.51 222 ± 39 205 ± 12 214 
DT724 157 ± 2 117 ± 4 137 51 ± 9 60 ± 6 56 3.15 ± 0.57 1.96 ± 0.22 2.56 311 ± 41 260 ± 16 286 
Stewart-63 54 ± 1 34 ± 17 44 36 ± 7 27 ± 7 31 1.56 ± 0.32 1.21 ± 0.59 1.38 62 ± 10 27 ± 15 44 
Arcola 76 ± 4 52 ± 2 64 115 ± 16 99 ± 9 107 0.67 ± 0.13 0.53 ± 0.05 0.60 237 ± 16 138 ± 8 188 

‘97EMMER19’ AND EMMER-DERIVED BREEDING LINES 
97Emmer19 43 ± 6 34 ± 3 39 97 ± 16 73 ± 25 85 0.45 ± 0.08 0.52 ± 0.19 0.48 114 ± 26 75 ± 12 95 
2000EB4 116 ± 9 78 ± 4 97 109 ± 18 113 ± 35 111 1.10 ± 0.25 0.78 ± 0.36 0.94 459 ± 52 305 ± 77 382 
X.98.142.17 113 ± 8 88 ± 2 101 89 ± 11 90 ± 12 90 1.29 ± 0.20 0.99 ± 0.13 1.14 324 ± 43 259 ± 25 292 
X.98.142.18 145 ± 3    - - 58 ± 5      - - 2.50 ± 0.19         - - 329 ± 25        - - 
P.01.64.31 144 ± 2 94 ± 4 119 54 ± 5 80 ± 8 67 2.66 ± 0.25 1.18 ± 0.15 1.92 308 ± 17 262 ± 17 285 
P.01.64.39 159 ± 5 106 ± 2 133 53 ± 4 65 ± 6 59 3.04 ± 0.26 1.64 ± 0.15 2.34 323 ± 18 254 ± 13 289 
P.01.64.62 155 ± 9 95 ± 3 125 47 ± 10 73 ± 6 60 3.45 ± 0.81 1.30 ± 0.14  2.38 298 ± 54 245 ± 8 272 
05Emmereg-01      - 61 ± 2 -    - 71 ± 13 -         - 0.88 ± 0.15 -       - 142 ± 15 - 
05Emmereg-03      - 79 ± 4 -    - 53 ± 13 -         - 1.59 ± 0.48 -       - 150 ± 17 - 
05Emmereg-10      - 90 ± 5 -    - 100 ± 10 -         - 0.92 ± 0.13 -       - 287 ± 24 - 
05Emmereg-26      - 70 ± 4 -    - 95 ± 21 -         - 0.76 ± 0.18 -       - 218 ± 19 - 
LSDh

0.05   31   34   1.71   100 
Values represent mean ± standard deviation of five dough pieces per composite sample    aP = Alveograph tenacity (1.1 x height) 
(mm)    bL = Alveograph extensibility (mm)    cP/L = Alveograph curve configuration ratio  dW = Alveograph strength (J x 10-4)  e 

2005 = 2005 growing season      f 2006 = 2006 growing season    gC = Combined composite samples data across years (2005 and 
2006)     hLSD = Least Significant Difference   
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than the durum wheat checks ‘Commander’ and ‘Strongfield’ (P<0.05) (Table 11). Of the 

emmer-derived breeding lines, ‘P.01.64.39’ and ‘P.01.64.62’ had P values similar to 

‘Commander’ (Table 11). All of the USDA-ARS translocation lines had high P values 

that were statistically higher (P<0.05) than ‘Strongfield’ (Table 11). As expected, 

‘Commander’ (an extra-strong gluten durum; Clarke et al., 2006a) showed a higher P 

than ‘Strongfield’.  

          Although the dough extensibility of ‘97Emmer19’ was similar to ‘Strongfield’, its 

progeny ‘2000EB4’ had a significantly higher (P<0.05) alveograph L values. All of the 

emmer-derived breeding lines tested in 2006 had similar L values to ‘Strongfield’, with 

the exception of ‘05Emmereg-10’ and ‘2000EB4’ which had L values similar to ‘AC 

Barrie’ and ‘AC Superb’ (Table 11). Doughs from ‘Strongfield’ and ‘WB881’ were more 

extensible (P<0.05) than that of ‘Commander’, but no significant differences in L were 

detected between ‘Commander’, ‘AC Navigator’, ‘DT724’ and ‘Stewart-63’ (Table 11). 

The L value of ‘Arcola’ was 107 mm, significantly higher (P<0.05) than all other durum 

wheat varieties evaluated (Table 11). Alveograph extensibilities (L) were substantially 

higher in bread wheat checks relative to the durum wheat varieties evaluated. 

          The genotype ‘2000EB4’ displayed a statistically lower P/L (P<0.05) compared to 

USDA-ARS translocation lines, due to low P values and extensible dough, much like the 

bread wheat checks (Table 11). The P/L ratios for the remaining emmer-derived 

breeding lines that were evaluated over two composite samples were similar to ‘WB881’ 

and ‘AC Navigator’. The P/L ratio was high in the USDA-ARS translocation lines 

because of the high P and low dough extensibility observed in these lines, particularly 

‘S99B33’ (Table 11). ‘2000EB4’ showed a numerically higher W value than did the 

bread wheat checks (Table 11). No other statistical differences were observed between 

durum wheat genotypes for alveograph W, including the emmer-derived breeding lines. 

Alveograph W values were lowest for ‘Stewart-63’, but no statistical difference was 

detected relative to ‘97Emmer19’ (Table 11). 

4.3.3 Canadian Short Process Baking Results 

          For bake tests, the Canadian Short Process (CSP) bake test was used as the short 

fermentation process is best suited for comparing durum lines variable in gluten strength 

(Sapirstein et al. 2007) and starch damage (Dexter et al., 1994 and Marchylo et al., 2001).
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Table 12. CSPa Baking parameters (mean ± standard deviation) of bread wheat checks (AC Barrie, CDC 
Teal, and AC Superb) and tetraploid wheats (durum, emmer, 1AS.1AL-1DL translocation, and emmer-
derived breeding lines), for 2005, 2006 and combined composite data. 

Genotype Peak Mixing Time (min) Loaf Volume (cc) Loaf Shape (0-5 scale) 
 2005 2006 Cb 2005 2006 C 2005 2006 C 

BREAD WHEAT CHECK CULTIVARS 
AC Barrie 7.1 ± 0.7 6.2 ± 0.4 6.7 913 ± 48 844 ± 59 876 3.0 ± 0.1 3.0 ± 0.2 3.0 
CDC Teal 6.8 ± 0.6 6.5 ± 0.6 6.7 968 ± 29 891 ± 72 927 3.1 ± 0.1 3.0 ± 0.1 3.1 
AC Superb 5.6 ± 0.3 5.0 ± 0.3 5.3 897 ± 50 803 ± 42 850 2.9 ± 0.3 2.9 ± 0.2 2.9 

1AS.1AL-1DL TRANSLOCATION LINES 
04EDUYT-43 3.1 ± 0.3 - - 538 ± 32 -   - 1.1 ± 0.1       -  - 
L092 6.4 ± 1.4 4.4 ± 0.9 5.4 423 ± 59 468 ± 47 447 1.4 ± 0.5 1.0 ± 0.0 1.2 
L252 5.0 ± 2.8 7.3 ± 1.3 6.2 513 ± 18 498 ± 103 505 1.7 ± 0.9 1.8 ± 0.8 1.7 
S99B33 3.8 ± 1.0 3.0 ± 0.0 3.5 423 ± 13 435 ± 14 428 1.0 ± 0.0 1.0 ± 0.0 1.0 
S99B34 2.7 ± 0.5 2.7 ± 0.1 2.8 437 ± 55 463 ± 39 445 1.0 ± 0.0 1.0 ± 0.0 1.0 

DURUM WHEAT CULTIVARS 
Strongfield 5.9 ± 0.4 5.3 ± 0.3 5.6 725 ± 26 723 ± 31 724 2.1 ± 0.6 2.6 ± 0.1 2.4 
WB881 7.6 ± 0.4 5.9 ± 0.3 6.7 765 ± 33 773 ± 34 769 2.4 ± 0.5 2.7 ± 0.0 2.6 
Commander 6.7 ± 0.2 5.6 ± 0.3 6.1 722 ± 29 726 ± 39 724 2.4 ± 0.3 2.5 ± 0.1 2.5 
AC Navigator 5.6 ± 0.6 4.6 ± 0.4 5.1 742 ± 40 746 ± 37 744 2.4 ± 0.4 2.6 ± 0.1 2.5 
DT724 6.8 ± 0.3 5.7 ± 0.3 6.2 757 ± 45 749 ± 38 753 2.6 ± 0.2 2.5 ± 0.1 2.5 
Stewart-63 2.7 ± 0.1 2.1 ± 0.1 2.4 645 ± 53 680 ± 29 664 1.5 ± 0.3 1.3 ± 0.2 1.4 
Arcola 5.8 ± 1.4 4.0 ± 0.1 4.9 763 ± 23 728 ± 25 744 2.3 ± 0.7 2.5 ± 0.1 2.4 

‘97EMMER19’ AND EMMER-DERIVED BREEDING LINES 
97Emmer19 3.7 ± 1.0 3.1 ± 0.4 3.4 862 ± 16 764 ± 31 810 2.8 ± 0.1 2.6 ± 0.0 2.7 
2000EB4 9.0 ± 2.3 6.2 ± 0.3 7.6 793 ± 6 785 ± 28 789 2.4 ± 0.6 2.7 ± 0.2 2.5 
X.98.142.17 7.3 ± 1.1 6.0 ± 0.3 6.6 783 ± 53 810 ± 44 798 2.4 ± 0.7 2.8 ± 0.1 2.6 
X.98.142.18 8.3 ± 0.5 - - 772 ± 31 -   - 2.6 ± 0.2       -  - 
P.01.64.31 7.0 ± 1.1 5.9 ± 0.6 6.4 812 ± 32 773 ± 35 791 2.6 ± 0.1 2.8 ± 0.1 2.7 
P.01.64.39 6.4 ± 1.1 5.5 ± 0.1 5.9 778 ± 24 783 ± 33 781 2.3 ± 0.7 2.7 ± 0.1 2.5 
P.01.64.62 9.8 ± 1.7 7.1 ± 0.4 8.4 767 ± 8 754 ± 40 760 2.5 ± 0.6 2.7 ± 0.1 2.6 
05Emmereg-01 - 4.3 ± 0.1 - - 780 ± 26   -      - 2.8 ± 0.1  - 
05Emmerg-03 - 4.5 ± 0.5 - - 815 ± 53   -      - 2.7 ± 0.2  - 
05Emmereg-10 - 5.3 ± 0.3 - - 738 ± 38   -      - 2.7 ± 0.1  - 
05Emmereg-26 - 4.6 ± 0.3 - - 800 ± 40   -      - 2.7 ± 0.2  - 
LSDc

0.05   2.0   63   0.4 
aCSP = Canadian Short Process   bC = Combined composite samples data across years (2005 and 2006)     
cLSD = Least significant difference   
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For the genotypes evaluated in both 2005 and 2006, the ANOVA for peak mixing time 

(min), loaf volumes (cc), loaf shape, crumb colour, and crumb structure are presented in 

Appendix A7. 

4.3.3.1 Peak Mixing Time (PMT)  

          For bake tests, composite samples were mixed in a GRL mixer to “fully develop” 

the dough. Peak Mixing Time (PMT, min) was variable between lines, ranging from as 

low as 2.4 minutes for the weak gluten genotype ‘Stewart-63’ to 8.4 minutes for 

‘P.01.64.62’. The PMT of ‘97Emmer19’ was not statistically different from ‘Stewart 63’, 

but lower than ‘Strongfield’, ‘WB881’ and ‘Commander’. The PMT of ‘2000EB4’ was 

twice as long as that of ‘97Emmer19’, one of its parents. Averaged over both years 

composite samples, ‘P.01.64.62’ displayed statistically higher (P<0.05) PMT than the 

current durum varieties ‘Strongfield’, ‘Commander’ and ‘AC Navigator’ (Table 12). The 

USDA-ARS translocation lines were statistically similar to ‘Strongfield’, ‘Commander’ 

and ‘AC Navigator’, but large variation in PMT was evident between yearly composite 

samples. The standard deviation (SD) of triplicate mixings of USDA-ARS translocation 

lines was considerably higher (P<0.05) than the SD of samples from other genotypes 

evaluated, especially in 2005 (Table 12). In contrast, the PMT of ‘S99B33’ and ‘S99B34’ 

in the 2006 composite samples were lower (P<0.05) than most durum wheat genotypes 

evaluated (Table 12). The PMTs of bread wheat checks were statistically similar to the 

durum wheat genotypes (P>0.05), with the exception of ‘Stewart-63’ (Table 12). 

4.3.3.2 Loaf Volume (LV)  

          Averaged over yearly composite samples, the LV of ‘97Emmer19’ was 810 cc, 

which was not statistically different from the bread wheat check ‘AC Superb’ and was 

statistically higher (P<0.05) than all durum wheat checks with the exception of ‘WB881’ 

and ‘DT724’ (Table 12). The emmer-derived breeding lines ‘2000EB4’, ‘X98.142.17’, 

‘P01.64.31’ and ‘P01.64.39’ had LV 20-30 cc greater (P<0.05) than ‘WB881’ and 

significantly greater (P<0.05) LV than ‘Strongfield’ and ‘Commander’. In 2006, 

‘X.98.142.17’, ‘05Emmereg-03’ and ‘05Emmereg-26’ had LV similar to ‘AC Superb’ 

(Table 12). These results confirm those of Schlichting et al. (2002) who reported that 

emmer-derived breeding lines produced bread with superior LV than the durum wheat 

check ‘WB881’. Despite carrying the 1AS.1Al-1DL translocation, the LV of the USDA-  
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Table 13. CSPa Baking parameters (mean ± standard deviation) of bread wheat 
checks, AC Barrie, CDC Teal, and AC Superb, and tetraploid wheats (durum, 
emmer, 1AS.1AL-1DL translocation, and emmer-derived breeding lines), for 
2005, 2006 and combined composite data. 
Genotype Crumb Structure (0-5 scale) Crumb Colour (0-5 scale) 
 2005 2006 Cb 2005 2006 C 

BREAD WHEAT CHECK CULTIVARS 
AC Barrie 3.0 ± 0.1 3.0 ± 0.2 3.0 2.9 ± 0.1 3.0 ± 0.1 2.9 
CDC Teal 3.1 ± 0.1 3.0 ± 0.1 3.0 3.0 ± 0.0 3.0 ± 0.0 3.0 
AC Superb 3.0 ± 0.2 3.0 ± 0.1 3.0 3.0 ± 0.1 3.0 ± 0.1 3.0 

1AS.1AL-1DL TRANSLOCATION LINES 
04EDUYT-43 1.0 ± 0.0       - - 1.0 ± 0.0       - - 
L092 0.8 ± 0.3 1.1 ± 0.1 1.0 1.1 ± 0.1 1.3 ± 0.7 1.2 
L252 1.4 ± 1.2 1.6 ± 0.6 1.5 1.3 ± 0.4 2.5 ± 0.1 1.9 
S99B33 1.1 ± 0.7 1.0 ± 0.0 1.1 1.1 ± 0.2 1.0 ± 0.0 1.0 
S99B34 1.2 ± 0.9 1.1 ± 0.1 1.2 1.2 ± 0.3 1.4 ± 0.8 1.3 

DURUM WHEAT CULTIVARS 
Strongfield 2.4 ± 0.1 2.5 ± 0.1 2.4 1.5 ± 0.0 2.3 ± 0.4 1.9 
WB881 2.4 ± 0.1 2.6 ± 0.1 2.5 1.3 ± 0.2 2.2 ± 0.4 1.8 
Commander 2.5 ± 0.0 2.5 ± 0.0 2.5 1.1 ± 0.2 1.5 ± 0.4 1.3 
AC Navigator 2.5 ± 0.0 2.5 ± 0.0 2.5 1.7 ± 0.5 2.1 ± 0.4 1.9 
DT724 2.6 ± 0.1 2.5 ± 0.1 2.5 1.6 ± 0.2 2.3 ± 0.4 2.0 
Stewart-63 1.8 ± 0.6 1.3 ± 0.1 1.5 1.8 ± 0.5 2.6 ± 0.1 2.2 
Arcola 2.5 ± 0.1 2.4 ± 0.1 2.4 1.5 ± 0.0 2.5 ± 0.0 2.0 

‘97EMMER19’ AND EMMER-DERIVED BREEDING LINES 
97Emmer19 2.3 ± 0.1 2.4 ± 0.1 2.3 2.5 ± 0.1 2.7 ± 0.1 2.6 
2000EB4 2.6 ± 0.1 2.5 ± 0.2 2.6 2.2 ± 0.5 2.6 ± 0.1 2.4 
X.98.142.17 2.5 ± 0.2    2.7 ± 0.0 2.6 1.5 ± 0.0 2.3 ± 0.3 1.9 
X.98.142.18 2.6 ± 0.1      - - 2.0 ± 0.0       - - 
P.01.64.31 2.6 ± 0.0 2.5 ± 0.1 2.6 1.5 ± 0.1 2.3 ± 0.4 1.9 
P.01.64.39 2.5 ± 0.2 2.7 ± 0.1 2.6 1.5 ± 0.0 2.1 ± 0.4 1.8 
P.01.64.62 2.5 ± 0.2 2.5 ± 0.1 2.5 1.4 ± 0.2 2.1 ± 0.4 1.8 
05Emmereg-01      - 2.5 ± 0.2  -      - 2.1 ± 0.4  - 
05Emmerg-03      - 2.8 ± 0.1  -      - 2.3 ± 0.5  - 
05Emmereg-10      - 2.4 ± 0.1  -      - 2.2 ± 0.6  - 
05Emmereg-26      - 2.6 ± 0.2  -      - 2.2 ± 0.5  - 
LSDc

0.05   0.3   0.5 
 

aCSP = Canadian Short Process    
bC = Combined data over two years (2005 and 2006)          
cLSD = Least significant difference     
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ARS translocation lines were nearly 50% lower than the bread wheat  checks, and 

statistically lower (P<0.05) than all durum wheat varieties evaluated, including ‘Stewart-

63’. 

          Of the durum wheat genotypes, ‘Stewart-63’ had the lowest LV (664 cc) of the 

durum wheat genotypes averaging over yearly composite samples (Table 12). Of the 

durum wheat check cultivars, ‘WB881’ had the highest LV of the durum wheat checks, 

averaging 769 cc, but no statistical differences were noted between ‘WB881’, 

‘Strongfield’, ‘Commander’, ‘AC Navigator’, ‘Arcola’ and ‘DT724’. Averaged over 

composite samples, the LV of bread wheat checks ranged from 850 cc for ‘AC Superb’ to 

927 cc for ‘CDC Teal’ (Table 12). ‘CDC Teal’ was included in the bake tests as it 

consistently displays superior baking performance in local baking tests and as a check 

cultivar in co-operative registration trials (P. Hucl, personal communication).  

4.3.3.3 Loaf Shape (LS), Crumb Structure (CS), and Crumb Colour (CC) 

          All of the emmer-derived breeding lines (including the 05Emmereg series lines 

evaluated in 2006) and durum genotypes with the exception of ‘Strongfield’ and 

‘Arcola’, showed no significant differences in LS compared to the bread wheat check 

‘AC Superb’ (Table 12). Overall the USDA-ARS translocation lines exhibited 

unappealing loaf shape and crumb structure. In both years of testing, the USDA-ARS 

translocation lines exhibited very little oven rise and had uneven loaf shape with coarse 

side walls and had no break and shred (Table 13). ‘Stewart-63’ was not significantly 

different from USDA-ARS translocation lines in LS and CS scorings, although it showed 

significantly higher (P<0.05) LV than USDA-ARS translocation lines (Tables 12 and 13).  

          As expected, the durum wheat checks had a lower CC scores than the bread wheat 

check cultivars (Table 13). In this case, the lower CC score of durum wheat checks and 

some emmer-derived breeding lines does not mean “of poorer quality”, but indicating a 

“more yellow” appearance of bread crumb. ‘Commander’, which had the highest 

semolina b* (Table 7), had the lowest CC score (Table 13). The correlation between LS 

means of CC and flour/semolina yellowness (b*) (see results section 4.2.2; Table 7) was -

0.79 (P<0.001).  

4.4 Correlation Coefficients between Bread-making Quality-related Characteristics 

          Given the genetic differences in LV potential observed among durum wheat check  
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Table 14. Correlation Coefficients (from combined least square means of only tetraploid genotypes grown in both the 2005 and 2006 
growing seasons) between bread-making quality-related characteristics. 

 
 HIa SDSb GPCc FNd GIe WGf DGg F/SPh FABi DDTj MTIk TTBl STAm Pn Lo P/Lp Wq LVr 
SDS ns                  
GPC ns ns                 
FN ns ns ns                
GI ns .81** ns ns               
WG -.68** ns ns ns ns              
DG -.72** ns ns ns ns .93**             
F/SP ns ns .98** ns ns ns ns            
FAB .71** ns ns ns ns ns ns ns           
DDT ns ns ns ns .57* -.71** -.56* ns ns          
MTI -.58* -.67** ns ns -.93** .57* ns ns ns -.74**         
TTB .49* ns ns ns .56* -.74** -.58* ns ns .98** -.74**        
STA .48* ns ns ns .60** -.70** -.54* .47* ns .96** -.79** .97**       
P .77** ns ns ns .81** -.56* ns ns .74** .59* -.87** .60** .61**      
L -.67** ns ns .63** ns .61** .70** ns -.63** ns ns ns ns -.47*     
P/L .77** ns ns ns .51* -.74** -.66** ns .69** .73** -.69** .75** .73** .85** -.77**    
W ns .71** ns ns .88** ns ns ns ns ns -.79** ns ns .69** ns ns   
LV -.51* ns ns .57* ns .74** .64** ns ns -.89** .53* -.90** -.86** -.51* .62** -.78** ns  
PMTs ns .49* ns .53* .54* ns ns ns ns ns ns ns ns   ns ns ns .70** ns 

 
* P < 0.05       ** P < 0.01       ns non significant at P = 0.05 

 
aHI = Hardness Index   bSDS = SDS sedimentation volumes (cc)    cGPC = Grain Protein Concentration (13.5% moisture basis)    
dFN = Falling Number (sec)     eGI = semolina Gluten Index (%)         fWG = semolina Wet Gluten (%)       
gDG = semolina Dry Gluten (%)      hF/SP = flour protein/semolina protein concentration (14.0% moisture basis)           
iFAB = Farinograph Water Absorption (%)    jDDT = Farinograph Dough Development Time (min)       
kMTI =  Farinograph Mixing Tolerance Index (B.U)   lTTB = Farinograph Time To Breakdown (min)     
mSTA = Farinograph Stability (min)      nP = Alveograph tenacity  (1.1xheight) (mm)        oL  = Alveograph extensibility (mm)          
pP/L = Alveograph curve configuration ratio     qW = Alveograph baking strength (Jx10 -4 )   rLV = Loaf Volume (cc)           
sPMT = Peak Mixing Time 
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Table 15. Correlation Coefficients (from combined least square means of tetraploid genotypes excluding USDA-ARS translocation 
lines grown in both the 2005 and 2006 growing seasons) between bread-making quality-related characteristics. 

 
 HIa SDSb GPCc FNd GIe WGf DGg F/SPh FABi DDTj MTIk TTBl STAm Pn Lo P/Lp Wq LVr 
SDS ns                  
GPC ns ns                 
FN ns ns ns                
GI ns .85** ns .55*               
WG -.57* ns .88** ns ns              
DG -.64* ns .78** ns ns .92**             
F/SP ns ns .99** ns ns .88** .81**            
FAB .71** ns ns ns ns ns ns ns           
DDT ns .80** ns .61* .72** ns ns ns ns          
MTI ns -.74** ns ns -.95** ns ns ns ns -.71**         
TTB ns .76** ns ns .73** ns ns ns ns .97** -.76**        
STA ns .71** ns .56* .62* ns ns ns ns .87** -.70** .92**       
P .70** ns ns ns .76** ns ns ns .73** ns -.80** ns ns      
L -.58* .60* ns .55* ns ns .59* ns -.63* .57* ns ns ns ns     
P/L .72** ns ns ns ns ns ns ns .84** ns ns ns ns .83** -.71**    
W ns .79** ns .65* .93** ns ns ns ns .76** -.94** .80** .71** .75** ns ns   
LV ns .82** ns ns .62* ns .55* ns ns .57* ns ns ns ns .62* ns ns  
PMTs ns .76** ns ns .92** ns ns ns ns .75** -.95** .82** .79** .72** ns ns .91** ns 

 
* P < 0.05       ** P < 0.01       ns non significant at P = 0.05 

 
aHI = Hardness Index   bSDS = SDS sedimentation volumes (cc)    cGPC = Grain Protein Concentration (13.5% moisture basis)    
dFN = Falling Number (sec)     eGI = semolina Gluten Index (%)         fWG = semolina Wet Gluten (%)       
gDG = semolina Dry Gluten (%)      hF/SP = flour protein/semolina protein concentration (14.0% moisture basis)           
iFAB = Farinograph Water Absorption (%)    jDDT = Farinograph Dough Development Time (min)       
kMTI =  Farinograph Mixing Tolerance Index (B.U)   lTTB = Farinograph Time To Breakdown (min)     
mSTA = Farinograph Stability (min)      nP = Alveograph tenacity  (1.1xheight) (mm)        oL  = Alveograph extensibility (mm)          
pP/L = Alveograph curve configuration ratio     qW = Alveograph baking strength (Jx10 -4 )   rLV = Loaf Volume (cc)           
sPMT = Peak Mixing Time 
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cultivars, ‘97Emmer19’  and  the  emmer-derived breeding lines  in  two  years  of testing 

(Section 4.3.3), correlation coefficients were estimated to determine the chemical and 

rheological properties most associated with variation in LV (Table 14). Since the 

objective of this research was to assess rheological properties associated with enhanced 

baking in durum wheats, data from the bread wheat checks were excluded from the 

correlation analyses (Table 14). Because the USDA-ARS 1AS.1AL-1DL translocation 

lines exhibited distinct rheological properties (very strong, inextensible gluten) compared 

to other durum wheat lines, correlations were also assessed with these data removed 

(Table 15). 

          Significant correlations were observed among the farinograph and alveograph 

parameters measured in this study, with the exception of alveograph L, which only 

correlated with FAB (Table 14). Alveograph W and tenacity (P, an indicator of dough 

elasticity) were strongly correlated (P<0.01) to GI (r = 0.88; P<0.01 and 0.81; P<0.01, 

respectively) (Table 14), which are in agreement with the study by Sapirstein et al. 

(2007). A significant, positive correlation was seen between GI and SDS sedimentation 

volumes and is in agreement with the studies by Dexter et al. (1981) and Dessalegn et al. 

(2006) (Table 14). Positive correlations between GI and alveograph P and W were 

observed (Table 14), which are in agreement with the study by Edwards et al. (2007). 

          Variation in LV of all durum wheat genotypes, including the USDA-ARS 

translocation lines, was positively correlated with semolina wet gluten and dry gluten 

content (r = 0.74; P<0.01; r=0.64; P<0.01, respectively) and falling number (r = 0.57; 

P<0.05) (Table 14). A significant positive correlation was also observed between LV and 

alveograph extensibility L (r = 0.62; P<0.01) and farinograph mixing tolerance index 

(MTI; r = 0.53; P<0.05). In contrast, significant (P<0.05) negative correlations with LV 

were observed for farinograph time to breakdown (TTB; r = - 0.90; P<0.01), farinograph 

dough development time DDT (r = - 0.89; P<0.01), farinograph stability STA (r = -0.86; 

P<0.01), alveograph curve configuration ratio P/L (r = -0.78; P<0.01), alveograph 

tenacity P (r = -0.51; P<0.05) and grain hardness (r = -0.51; P<0.05) (Table 14). 

However, when the data from the USDA-ARS translocation lines were removed, only 

SDS (r = 0.82; P<0.01), GI (0.62; P<0.05), DDT (0.57; P<0.05) and alveograph 

extensibility L (0.62; P<0.05) were significantly (P<0.05) associated with LV (Table 15), 
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suggesting that both increased dough extensibility (L) and increased gluten strength are 

important to improved LV in durum wheats. No significant correlation was observed 

between LV and GPC (Table 14 and Table 15). However, loaf volumes showed 

significant correlation (r = 0.55; P<0.05) with the dry gluten content (Table 15). 

4.5 Electrophoresis Results 

          The high molecular weight glutenin subunits (Glu-A1, Glu-B1, and Glu-D1 alleles) 

and gliadins (Gli loci) were identified based on SDS (Figures 2.1, 2.2, and 2.3) and Acid-

PAGE gels (Figure 3.1 and 3.2), respectively. All genotypes evaluated in 2005 and 2006 

field trials were included in the analysis. In addition, the bread wheat checks ‘Neepawa’, 

‘Chinook’ and ‘Marquis’ have been well characterized for their subunit composition 

(Payne and Lawrence, 1983; Ng et al., 1988b) and were included to aid in identification 

of HMW-GS in ‘97Emmer19’ and the emmer-derived breeding lines. The allelic 

compositions of each of the genotypes evaluated are summarized in Table 16. 

          The HMW-GS ‘1Ax1’ (at Glu-A1 locus) was identified in ‘97Emmer19’ and the 

emmer-derived breeding lines ‘2000EB4’, X.98.142.17’, ‘P.01.64.31’, ‘P.01.64.62’, 

‘05Emmereg-01’, ‘05Emmereg-10’ and ‘05Emmereg-26’ (Figure 2.1 and Table 16). At 

Glu-B1 locus, ‘97Emmer19’, ‘2000EB4’, and ‘05Emmereg-03’ carried the ‘Bx14+By15’ 

allelic combination with 9* protein subunit (Figure 2.1 and Table 16). The remaining 

emmer-derived breeding lines carried ‘Bx6+By8’ (Figure 2.1 and Table 16). At Glu-B1 

locus, ‘05Emmereg-10’ was heterogenous carrying both Glu-B1a (Bx7) and Glu-B1d 

(Bx6+By8) alleles (Figure 2.1 and Table 16).  

          Similar to previous results (Klindworth et al., 2005), the four 1AS.1AL-1DL 

translocation lines ‘L092’, ‘L252’, ‘S99B33’ and ‘S99B34’, had the null allele at the 

Glu-A1 locus and Bx6+By8 allele at Glu-B1 locus, but carried the translocated 

Dx5+Dy10 alleles from the D genome at Glu-D1 locus (Figure 2.2). At the beginning of 

this study, the CIMMYT lines evaluated were believed to carry the 1AS.1AL-1DL 

translocation carrying the Dx5+Dy10 alleles at the Glu-D1 locus, but electrophoresis 

confirmed that these lines lacked the translocation (Figure 2.3 and Table 16). As such, 

the CIMMYT lines were excluded from 2006 testing. CIMMYT translocation lines had a 

null allele at Glu-A1 locus, Bx7+By8 allele at Glu-B1 locus (Figure 2.3 and Table 16). 

All of the durum genotypes included in this study carried the null allele at Glu-A1 locus
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Figure 2.1. SDS–PAGE (Sodium dodecyl sulphate – Polyacrylamide gel electrophoresis) profiles of 97Emmer19, 2000EB4, and 
emmer derived breeding lines – localization of HMW-GS. The bread wheat cultivars Chinook (Lane 1 and 2) and Marquis (Lane 
14) are used as check cultivars to determine the specific molecular weights of HMW-GS seen in emmer accessions. 
 
Lane 01 and 02 – Chinook; Lane 03 – 97Emmer19; Lane 04 – 2000EB4; Lane 05 – 05Emmereg-01; Lane 06 – 05Emmereg-03;  
Lane 07 – 05Emmereg-10; Lane 08 – 05Emmereg-26; Lane 09 – X.98.142.17; Lane 10 – X.98.142.18; Lane 11 – P.01.64.31;  
Lane 12 – P.01.64.39; Lane 13 – P.01.64.62; Lane 14 – Marquis 
 
Molecular weight of protein subunits in KDa (Refer Appendix C1):  
Subunit 1 = 149 KDa; 1/2* = 141; 5 = 128; 6 = 121; 7 = 115; 14 = 112; 15 = 107; 8 = 101; 9 = 95.7; 10 = 92.1  
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Figure 2.2. SDS–PAGE (Sodium dodecyl sulphate – Polyacrylamide gel electrophoresis) profiles of bread wheat checks and 
USDA translocation lines – localization of HMW-GS. The bread wheat cultivar Neepawa (Lane 1) and HMW-STD (Lane 2) 
are used as controls to determine the specific molecular weights of HMW-GS. 
 
Lane 01 – HMW standard; Lane 02 – Neepawa; Lane 03 – AC Barrie; Lane 04 – CDC Teal; Lane 05 – AC Superb; Lane 06 – 
L092; Lane 07 – L252; Lane 08 – S99B33; Lane 09 – S99B34 
 
Molecular weight of protein subunits in KDa (Appendix C1):  
Subunit 2* = 136 KDa; 5 = 128; 6 = 121; 7 = 115; 8 = 101; 9 = 95.7; 10 = 92.1  
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Figure 2.3. SDS–PAGE (Sodium dodecyl sulphate – Polyacrylamide gel electrophoresis) profiles of durum genotypes and 
CIMMYT translocation lines – localization of HMW-GS. The HMW-STD (Lane 1) was used as standard marker to determine the 
specific molecular weights of HMW-GS. 
 
Lane 01 – HMW standard; Lane 02 – Strongfield; Lane 03 – WB881; Lane 04 – Commander; Lane 05 – AC Navigator; Lane 06 – 
DT 724; Lane 07 – Stewart-63; Lane 08 – Arcola; Lane 09 – 04EDUYT-42; Lane 10 – 04EDUYT-43; Lane 11 – 04IDSN-107; 
Lane 12 – 04IDSN-111 
 
Molecular weight of protein subunits in KDa (Refer Appendix C1):  
Subunit 6 = 121 KDa; 7 = 115; 8 = 101  
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Figure 3.1. A-PAGE (Acid – Polyacrylamide gel electrophoresis) profiles of wheat gliadins: localization of 42-γ and 45-γ gliadins. The 
numbers on the left are the relative mobility (RM) values of the genotypes, calculated based on Lane 7 (Stewart-63).  
Lane 01 – Strongfield; Lane 02 – WB881; Lane 03 – Commander; Lane 04 – AC Navigator; Lane 05 – DT724; Lane 06 – Arcola; Lane 07 – 
Stewart-63; Lane 08 – AC Superb; Lane 09 – CDC Teal; Lane 10 – AC Barrie; Lane 11 – 04EDUYT-42; Lane 12 – 04EDUYT-43; Lane 13 – 
04IDSN-107; Lane 14 – 04IDSN-111
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Figure 3.2. A-PAGE (Acid – Polyacrylamide gel electrophoresis) profiles of wheat gliadins: localization of 42-γ and 45-γ gliadins. The numbers 
on the left are the relative mobility (RM) values of the genotypes, calculated based on Lane 2 (L252). 
Lane 01 – L092; Lane 02 – L252; Lane 03 – S99B33; Lane 04 – S99B34; Lane 05 – 97Emmer19; Lane 06 – 2000EB4; Lane 07 – 05Emmereg-
01; Lane 08 – 05Emmereg-03; Lane 09 – 05Emmereg-10; Lane 10 – 05Emmereg-26; Lane 11 – X.98.142.17; Lane 12 – X.98.142.18; Lane 13 – 
P.01.64.31; Lane 14 – P.01.64.39; Lane 15 – P.01.64.62  
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Table 16. Summary of HMW-GSa and Gliadin protein subunits detected in bread wheat checks (AC Barrie, CDC Teal, AC Superb, Neepawa, Chinook, 
and Marquis), and tetraploid wheats (durum, emmer, 1AS.1AL-1DL translocation and emmer-derived breeding lines).  

Genotype HMWGS  Gliadins LMWb 
Glu-A1 Glu-B1 Glu-D1  ωf γe βd αc  

BREAD WHEAT CHECK CULTIVARS 
Neepawa 1Ax2* Bx7+By9 Dx5+Dy10       
Chinook 1Ax1/2* Bx7+By9 Dx5+Dy10       
Marquis 1Ax1 Bx7+By9 Dx5+Dy10       
AC Barrie 1Ax2* Bx7+By9 Dx5+Dy10  25,30 46,48 52,56 67,75  
CDC Teal 1Ax2* Bx7+By8 Dx5+Dy10  25,30 46,48 52,56 67,75  
AC Superb 1Ax2* Bx7+By9 Dx5+Dy10  19,30 46,48 56 67,75  

1AS.1AL-1DL TRANSLOCATION LINES 
04-EDUYT-42 Null Bx7+By8   19,25,30 45,46 56  2 
04-EDUYT-43 Null Bx7+By8   19,25,30 45,46 56  2 
04-IDSN-107 Null Bx7+By8   19,25,30 45,46 56  2 
04-IDSN-111 Null Bx7+By8   19,25,30 45,46 56  2 
L092 Null Bx6+By8 Dx5+Dy10  35 45,48 52,56 65,67 2 
L252 Null Bx6+By8 Dx5+Dy10  19,22,33,35,38 42,48 52,56 65,67 1 
S99B33 Null Bx6+By8 Dx5+Dy10  35 45,48 52,56 65,67 2 
S99B34 Null Bx6+By8 Dx5+Dy10  35 45,48 52,56 65,67 2 

DURUM WHEAT CULTIVARS 
Strongfield Null Bx6+By8   19,35 45,48 52,56 65,67 2 
WB881 Null Bx6+By8   19,35 45,48 52,56 65 2 
Commander Null Bx6+By8   19,35 45,48 52,56 65 2 
AC Navigator Null Bx6+By8   19,35 45,48 52,56 65 2 
DT 724 Null Bx6+By8   19,35 45,48 52,56 65 2 
Stewart-63 Null Bx7+By8   19,22,33,35,38 42,48 52,56 65,67 1 
Arcola Null Bx7+By8   19,35 45,48 52,56 65 2 

‘97EMMER19’ AND EMMER-DERIVED BREEDING LINES 
97Emmer19 1Ax1 Bx14+By15;9*   30,33 44,46,48 58   
2000EB4 1Ax1 Bx14+By15;9*   35 45,46,48 58  2 
X.98.142.17 1Ax1 Bx6+By8   35 45,48 58  2 
X.98.142.18 Null Bx6+By8   35 45,48 58  2 
P.01.64.31 1Ax1 Bx6+By8   35 45,48 58  2 
P.01.64.39 Null Bx6+By8   35 45,46 58  2 
P.01.64.62 1Ax1 Bx6+By8   35 45,46 58  2 
05Emmereg-01 1Ax1 Bx6+By8   35 45,46 58 65 2 
05Emmereg-03 Null Bx14+By15;9*   22,35 45,48 58 65 2 
05Emmereg-10 1Ax1 Bx6+By8;7   22,35 45,48 58 65 2 
05Emmereg-26 1Ax1 Bx6+By8   22,35 45,48 58 65 2 

aHMW-GS = High Molecular Weight Glutenin Subunit     bLMW = Low Molecular Weight group    cα-gliadins = alpha gliadins     dβ-gliadins = beta 
gliadins  eγ-gliadins = gamma-gliaidns    fω-gliadins = omega gliadins 
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and HMW-GS pair (alleles) Bx6+By8 at Glu-B1 locus, with the exception of ‘Stewart-

63’ and ‘Arcola’ which carried Bx7+By8 at the Glu-B1 locus (Figure 2.3 and Table 16). 

          The bread wheat checks used for electrophoresis experiments included ‘Neepawa’ 

(‘1Ax2*’ at Glu-A1 locus,  Bx7+By9 at Glu-B1 locus,  and  Dx5+Dy10 at Glu-D1 locus), 

‘Chinook’ (‘1Ax1/2*’ at Glu-A1 locus, Bx7+By9 at Glu-B1 locus, and Dx5+Dy10 at 

Glu-D1 locus) and ‘Marquis’ (‘1Ax1’ at Glu-A1 locus, Bx7+By9 at Glu-B1 locus, and 

Dx5+Dy10 at Glu-D1 locus) (Figures 2.1 and 2.2; Table 16). The ‘1Ax1/2*’ band (at 

Glu-A1 locus) identified in ‘Chinook’ had electrophoretic mobility in between ‘1Ax1’ 

and ‘1Ax2*’ subunits (Figure 2.1) (Ng et al., 1988b). Like ‘Neepawa’, the bread wheat 

checks ‘AC Superb’, ‘AC Barrie’ and ‘CDC Teal’ showed the ‘1Ax2*’ allele at the Glu-

A1 locus (Figure 2.2 and Table 16). ‘AC Superb’ and ‘AC Barrie’ carried Bx7+By9 at 

Glu-B1 locus and Dx5+Dy10 alleles at the Glu-D1 locus. In contrast, ‘CDC Teal’ had 

the Bx7+By8 allele at the Glu-B1 locus (Figure 2.2 and Table 16).  

          ‘97Emmer19’ showed ω-gliadins 30 and 33, γ-gliadins 44, 46 and 48, and β-

gliadin 58 (Figure 3.2 and Table 16). ‘2000EB4’ showed ω-gliadin 35, γ-gliadins 45, 46 

and 48, and β-gliadin 58 (Figure 3.2 and Table 16) and ‘X.98.142.17’, ‘X.98.142.18’, 

and ‘P.01.64.31’ showed similar gliadin bands as seen in the ‘2000EB4’ parent with the 

absence of γ-gliadin 46 (Figure 3.2 and Table 16). All the emmer-derived breeding lines 

showed the absence of α-gliadins, except ‘05Emmereg’ series lines which showed α-

gliadin 65 (Figure 3.2 and Table 16), derived from the parent ‘AC Navigator’ (Table 16). 

‘05Emmereg-03’, ‘05Emmereg-10 and ‘05Emmereg-26’ lines showed ω-gliadins 22 and 

35, γ-gliadins 45 and 48, and β-gliadin 58 (Figure 3.2 and Table 16), whereas 

‘05Emmereg-01’ showed ω-gliadin 35, γ-gliadins 45 and 46, and β-gliadin 58 (Figure 

3.2 and Table 16). CIMMYT translocation lines had LMW-2 banding pattern with 

associated γ-gliadin 45 bands (Figure 3.1 and Table 16). The LMW-2 banding pattern (γ-

gliadin 45) was seen in all the durum wheats tested, with the exception of ‘Stewart-63’ 

and the USDA-ARS translocation line ‘L252’, which had the LMW-1 banding pattern 

(γ-gliadin 42 – Figures 3.1 and 3.2; Table 16). All the durum genotypes had ω-gliadins 

19 and 35, and γ-gliadins 45 and 48, and with the exception of Stewart-63, which had ω-

gliadins 22, 33 and 38 in addition to 19 and 35 and γ-gliadin 42 instead of 45 (Figure 3.1 

and Table 16). All the durum genotypes had β-gliadins 52 and 56 (Figure 3.1 and Table 
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Table 17. Contrast (single degree of freedom) between loaf volumes (genotypes evaluated in 2005) and protein subunit(s) detected in 
tetraploid wheats (durum, emmer, 1AS.1AL-1DL translocation lines and emmer-derived breeding lines. 
 
 Glu-A1  Glu-B1  Beta-

gliadins 
 Difference in 

LVa estimate 
SEDb 

Tetraploid wheatsd 1Ax1 vs. Null        83* 34.0 
Null vs. Dx5+Dy10c        272** 36.7 
1Ax1 vs. Dx5+Dy10        354** 41.6 

Tetraploid wheats   Bx14+By15, 9* vs. Bx6+By8     155 ns 
  Bx14+By15, 9* vs. Bx7+By8     179 ns 
  Bx6+By8 vs. Bx7+By8     24 ns 

Excluding USDA-ARS 
translocation linese 

  Bx14+By15, 9* vs. Bx6+By8     65 ns 
  Bx14+By15, 9* vs. Bx7+By8     179** 48.9 
  Bx6+By8 vs. Bx7+By8     114** 35.3 

Tetraploid wheats      58 vs. 52,56  167** 57.4 
     52,56 vs. 56  91 ns 
     58 vs. 56  257 ns 

Excluding USDA-ARS 
translocation lines 

     58 vs. 52,56  64** 20.1 
     52,56 vs. 56  193** 40.3 
     58 vs. 56  257** 40.3 

 
* P < 0.05       ** P < 0.01       ns non significant at P = 0.05 

 

aLV = Loaf Volume   
bSED = Standard Error of the Difference    
cTranslocation of Dx5+Dy10 from 1D chromosome of  hexaploid wheat into 1A chromosome of durum wheat      
dTetraploid wheats = Analysis of all tetraploid genotypes grown during 2005 growing season.    
eExcluding USDA-ARS translocation lines = Analysis of all genotypes grown during 2005 growing season, except USDA-
ARS 1AS.1AL-1DL translocation lines     

 
 

71 

 



 72

Table 18. Contrast (single degree of freedom) between loaf volumes (genotypes evaluated in 2006) and protein subunit(s) detected in 
tetraploid wheats (durum, emmer, 1AS.1AL-1DL translocation lines and emmer-derived breeding lines. 
 
 Glu-A1  Glu-B1  Beta-

gliadins 
 Difference in 

LVa estimate 
SEDb 

Tetraploid wheatsd 1Ax1 vs. Null        34* 15.8 
Null vs. Dx5+Dy10c        281** 18.9 
1Ax1 vs. Dx5+Dy10        315** 19.7 

Excluding USDA-ARS 
translocation linese 

1Ax1 vs. Null        34* 16.4 
Null vs. Dx5+Dy10        - - 
1Ax1 vs. Dx5+Dy10        - - 

Tetraploid wheats   Bx14+By15, 9* vs. Bx6+By8     103 ns 
  Bx14+By15, 9* vs. Bx7+By8     84 ns 
  Bx6+By8 vs. Bx7+By8     -19 ns 

Excluding USDA-ARS 
translocation linese 

  Bx14+By15, 9* vs. Bx6+By8     23 ns 
  Bx14+By15, 9* vs. Bx7+By8     84** 25.8 
  Bx6+By8 vs. Bx7+By8     61* 21.8 

Tetraploid wheats      58 vs. 52,56  150** 46.3 
Excluding USDA-ARS 
translocation lines 

     
58 vs. 52,56 

 
53** 12.3 

 

* P < 0.05       ** P < 0.01       ns non significant at P = 0.05 
 

aLV = Loaf Volume   
bSED = Standard Error of the Difference    
cTranslocation of Dx5+Dy10 from 1D chromosome of  hexaploid wheat into 1A chromosome of durum wheat      
dTetraploid wheats = Analysis of all tetraploid genotypes grown during 2005 growing season.    
eExcluding USDA translocation lines = Analysis of all genotypes grown during 2005 growing season, except USDA-ARS  
                                                             1AS.1AL-1DL translocation lines     
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Table 19. Contrast (single degree of freedom) between loaf volumes (combined data from both the 2005 and 2006 years) and protein 
subunit(s) detected in tetraploid wheats (durum, emmer, 1AS.1AL-1DL translocation lines and emmer-derived breeding lines. 

 
 Glu-A1  Glu-B1  Beta-

gliadins 
 Difference in 

LVa estimate 
SEDb 

Tetraploid wheatsd 1Ax1 vs. Null        52** 17.9 
Null vs. Dx5+Dy10c        282** 19.2 
1Ax1 vs. Dx5+Dy10        333** 21.0 

Excluding USDA-ARS 
translocation linese 

1Ax1 vs. Null        52** 17.5 
Null vs. Dx5+Dy10        - - 
1Ax1 vs. Dx5+Dy10        - - 

Tetraploid wheats   Bx14+By15, 9* vs. Bx6+By8     133 ns 
  Bx14+By15, 9* vs. Bx7+By8     96 ns 
  Bx6+By8 vs. Bx7+By8     -37 ns 

Excluding USDA-ARS 
translocation linese 

  Bx14+By15, 9* vs. Bx6+By8     39 ns 
  Bx14+By15, 9* vs. Bx7+By8     96** 30.4 
  Bx6+By8 vs. Bx7+By8     56* 23.8 

Tetraploid wheats      58 vs. 52,56  157* 59.3 
Excluding USDA-ARS 
translocation lines 

     
58 vs. 52,56 

 
57** 15.3 

 

* P < 0.05       ** P < 0.01       ns non significant at P = 0.05 
 

aLV = Loaf Volume   
bSED = Standard Error of the Difference    
cTranslocation of Dx5+Dy10 from 1D chromosome of  hexaploid wheat into 1A chromosome of durum wheat      
dTetraploid wheats = Analysis of all tetraploid genotypes grown during 2005 growing season.    
eExcluding USDA translocation lines = Analysis of all genotypes grown during 2005 growing season, except USDA-ARS  
                                                             1AS.1AL-1DL translocation lines     
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16). ‘AC Superb’ differed in ω- and β-gliadins from the other two bread wheat checks, 

carrying ω-gliadins 19, 30 and β-gliadin 56 (Figure 3.1 and Table 16). 

4.6 Contrast Analysis of Loaf Volumes and Protein Subunit(s) 

          The  correlations  between  loaf  volume  and  rheological properties suggested that 

gluten strength and dough extensibility were most associated with variation in LV among 

the durum and ‘97Emmer19’ and the emmer-derived breeding lines (Tables 14 and 15) 

and variation in the gluten subunits was largely responsible for differences in rheological 

properties (see sections 4.3and 4.5). Using single degree of freedom, contrasts (ANOVA) 

for the 2005- (Table 17) and 2006- (Table 18) grown genotypes and for the combined 

analysis of composite samples (Table 19) were conducted to determine whether variation 

in gliadin and glutenin subunit(s) composition between lines (Table 16) could explain 

differences in LV potential. 

          Contrast analysis revealed that allelic variation at Glu-A1 was significantly 

associated with variation in LV (P<0.01) (Tables 17, 18, and 19). The null allele, present 

in all of the durum wheat checks, produced LVs 83 and 34 cc smaller than genotypes 

carrying the 1Ax1 allele at Glu-A1 locus in 2005 and 2006, respectively (Tables 17, 18 

and 19). Averaged over genotypes evaluated in both years, the difference was 52 cc 

(Table 19). This indicates that the 1Ax1 allele seen in some of the emmer-derived 

breeding lines had a significant effect on increasing loaf volumes as compared to the null 

allele seen in durum wheat checks. 

          When the USDA-ARS translocation lines were considered for the contrast analysis, 

none of the protein subunits seen at the Glu-B1 locus showed a significant association 

with loaf volume (Tables 17, 18, and 19). However, exclusion of USDA-ARS 

translocation lines from the contrast analysis revealed that genotypes carrying 

Bx14+By15 in combination with 9* (Table 16) produced greater LV than genotypes 

carrying Bx6+By8 or Bx7+By8 in 2005 and 2006 (Tables 17 and 18). This suggests that 

the Bx14+By15 alleles in combination with 9* present in ‘97Emmer19’ and in some of 

the emmer-derived breeding lines (Table 16) had a positive effect on LV. The contrast 

was significant in 2005 (P<0.01; Table 17), 2006 (P<0.05; Table 18), and with the 

combined analysis (P<0.05; Table 19). 
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          The effect of gliadins on dough rheological properties is less understood in durum 

wheat (Joppa et al., 1983; Gupta and Shepherd, 1987). In 2005, the contrast analysis with 

the USDA-ARS translocation lines removed from the data set showed that β-gliadin-58 

(seen in some emmer-derived breeding lines) had a significant, positive effect on LV 

compared to genotypes carrying β-gliadin 52 and 56 (Tables 17, 18, and 19). The 

CIMMYT lines were only evaluated in 2005 and these lines carried only β-gliadin 56 

(Table 16). Contrasts between β-gliadin 52 and 56 and β-gliadin 56 carrying genotypes 

revealed that, on average, genotypes carrying β-gliadin 52 and 56 had 193 cc higher LV 

than those only carrying β-gliadin 56. These results suggest that β-gliadin 56 has a 

negative effect on LV in durum wheat, but this effect can be masked by the presence of 

β-gliadin 52.  
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5. General Discussion and Conclusions 

          Durum wheat grain quality is complex and is a function of its end-use (Troccoli et 

al., 2000). Although durum wheat is used predominantly for pasta products, its use for 

bread-making is increasing, particularly in Mediterranean countries. The bread-making 

properties of wheat depend on several factors including wheat variety (Shoup et al., 

1966), environmental and soil conditions (Lloveras et al., 2001), the process used to mill 

the wheat into flour/semolina (Pomeranz et al., 1970), and the chemical composition of 

the flour/semolina (David and Ainsworth, 1994; Peña et al., 1995; Raciti et al., 2003). A 

clear understanding of the physical, chemical and rheological factors that influence the 

bread-making quality of durum wheat would allow for breeding and development of 

durum wheat varieties with improved bread-making quality. The objective of this thesis 

was to assess the rheological factors contributing to enhanced baking quality in durum 

wheat. In addition, physical (test weight, kernel weight and grain hardness) and chemical 

properties (grain and flour/semolina protein concentration, SDS sedimentation volume, 

falling number, yellow pigment concentration and gluten strength) were also assessed as 

durum wheat cultivars with better bread-making quality must also possess quality 

attributes important to pasta production, recognizing that a compromise between pasta 

and bread-making quality factors may be required. 

          In general, the breeding targets for high baking quality wheat include a balance 

between dough elasticity and extensibility to ensure good sheeting properties, and the 

ability to expand and hold gas during the baking process (Dexter, 1993; Edwards et al., 

2001). Unlike bread, pasta is an extruded product and stronger gluten produces a better 

quality pasta product (Edwards et al., 2001). In addition dough extensibility is not a pre-

requisite for good pasta (Feillet and Dexter, 1996), and breeding efforts to develop 

stronger, inextensible gluten for pasta end-use have resulted in durum genotypes that 

contain tenacious, inextensible gluten (Quaglia, 1988; Rao et al., 2000; Ammar et al., 

2000; Edwards et al., 2001). Unfortunately, tenacious inextensible gluten contributes to 

poor bread-making quality (Redaelli et al., 1997; Liu et al., 1996; Ammar et al., 2000; 

Edwards et al., 2001, 2007; Sapirstein et al., 2007) and suggests that an appropriate 
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balance of gluten strength and dough extensibility will be required to achieve durum 

wheat cultivars with good pasta and bread baking quality. 

          A number of strategies have been suggested to improve the bread-making quality 

of durum wheat. The Dx5+Dy10 HMW glutenin subunits on chromosome 1D are known 

to contribute to enhanced baking quality in hexaploid wheats (Payne et al., 1984, 1987, 

Shewry et al., 1992, 1997) and transfer of these subunits into tetraploid wheat genetic 

backgrounds has been pursued as one strategy to improve the bread-making quality of 

durum wheat (Vitellozzi et al., 1997; Joppa et al., 1998; Blanco et al., 2002; 

Lukaszewksi, 2003). The USDA-ARS 1AS.1AL-1DL translocation lines used in this 

study were confirmed to carry the Dx5+Dy10 subunits (Figure 2.2). Of these, ‘L252’ had 

the LMW-1 (γ-42) banding pattern derived from its recurrent parent ‘Langdon’, whereas 

the 1B-encoded gliadins seen in ‘L092’, ‘S99B33’, and ‘S99B34’ (γ-45) are from 

‘Renville’ (Xu et al., 2005). Consistent with a previous study (Klindworth et al., 2005), 

the addition of the Dx5+Dy10 subunits resulted in very strong, inextensible gluten as 

evidenced by high alveograph P values and low alveograph L values (Table 11). The 

USDA-ARS translocation lines tested in this study did not exhibit improved loaf volumes 

and dough mixing characteristics compared to the durum wheat check varieties (Table 

12), and had lower loaf volumes than ‘Stewart-63’ which was included as a negative 

control in this study. Contrast analysis (Tables 17-19) revealed that, on average, these 

lines produced loaf volumes 280 cc lower than the remaining tetraploid wheat genotypes 

(durum and emmer-derived wheats) evaluated. In addition, these lines produced poor 

loaves, with unappealing loaf shape and crumb structure. The poor baking quality was 

likely due to the inextensible dough, obtained from these lines (Table 11) which would 

have limited dough expansion during the fermentation stage of the baking process. These 

lines displayed very tight dough with no elasticity and as a result the dough handling 

properties during the baking process were poor. The USDA-ARS translocation lines, 

might, because of the very strong gluten require mixing at higher speeds than that 

possible in the GRL 200 mixer used in this study for effective dough development. 

However, the data presented here suggests that inextensible dough in combination with 

high gluten strength in these lines limits their use for bread-making. Alternative dough 
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additives like L-cysteine hydrochloride (acts as reducing agent) may act to improve the 

mixing characteristics and loaf volumes of USDA-ARS translocation lines.  

          Various researchers (D'Ovidio, 1993; Ruiz and Carrillo, 1995; Vazquez et al., 

1996; Porceddu et al., 1998; Masci et al., 1998; Sissons et al., 2005; Edwards et al., 

2007a) have reported that the LMW-2 (γ-45) banding pattern is responsible for endowing 

semolina with better rheological properties. In this study, the genotypes carrying the 

LMW-2 banding pattern exhibited greater gluten strength and superior dough rheological 

properties than those carrying the LMW-1 (γ-42) banding pattern. Interestingly, ‘L252’, 

which carried the LMW-1 (γ-42) banding pattern, showed consistently better mixing 

characteristics (longer mixing time) and higher LV than ‘L092’, which carried the LMW-

2 (γ-45) banding pattern (Tables 12 and 16), suggesting that γ-42 may have compensated 

for negative effect of Dx5+Dy10 translocation. ‘L252’ displayed greater dough 

extensibility (higher alveograph L) in both composite samples (Table 11) and the highest 

alveograph W values in both years of composite testing (Table 11), both factors reported 

to be important to the bread-making quality of durum wheat (Nash et al., 2006; Edwards 

et al., 2007). Alternatively, ‘L252’ had higher grain and semolina protein concentrations 

and higher dry gluten content compared to ‘L092’ (Tables 4, 6, and 8), which could be 

the reason for the higher loaf volumes, despite no significant correlations being detected 

in this study between loaf volume and the two traits (Tables 14 and 15). However, 

elevated protein concentration has been associated with elevated LV in durum wheat in 

other studies, using both short fermentation (Dexter et al., 1994, 1998; Marchylo et al., 

2001; Sapirstein et al., 2007) and long fermentation processes (Boyacioglu and 

D’Appolonia, 1994; Boggini et al., 1995; Peña, 2000; Palumbo et al., 2000; Sapirstein et 

al., 2007). 

          A second strategy to improve the bread-making quality of durum wheat is to 

identify wild relatives of durum wheat that may contain variation for enhanced baking 

quality. In this study, ‘97Emmer19’, a wild relative of durum wheat, displayed improved 

loaf volume over Canadian durum wheat check cultivars (Table 12), confirming earlier 

results (Schlichting et al., 2002). In this research, we evaluated breeding lines derived 

from crossing ‘97Emmer19’ to adapted durum wheat germplasm, and some of the 

emmer-derived breeding lines (‘2000EB4’, ‘X.98.142.17’, ‘P.01.64.31’, ‘05Emmereg-
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03’, and ‘05Emmereg-26’) exhibited baking performance similar to the ‘97Emmer19’ 

(Table 12). These results suggest that factors responsible for the superior bread-making 

quality in ‘97Emmer19’ are heritable and could be the target of breeding programs to 

develop dual-purpose durum cultivars. However, despite having improved loaf volumes, 

the majority of emmer-derived breeding lines possessed dough rheological properties 

different than ‘97Emmer19’ in terms of gluten strength, farinograph and alveograph 

parameters (Tables 8, 10, and 11), suggesting that an appropriate balance of these factors 

is more critical to improving bread-making quality. There is general agreement on the 

poor gluten quality (i.e., weak gluten strength and low dough extensibility) of wild 

emmer accessions as a consequence of the absence of gliadin fractions γ-42 and γ-45 

(Galterio et al., 1994, 1998, 2000; Fares et al., 2002). In this study, the LMW-1 (γ-42) 

and LMW-2 (γ-45) banding patterns are lacking in ‘97Emmer19’ (Figure 2.1, Table 16). 

The absence of γ-42 and γ-45 in wild emmer accession ‘97Emmer19’ is in accordance 

with earlier observations by Galterio et al. (1994) and Oak et al. (2002a) in Italian and 

Indian dicoccum germplasms, respectively. As suggested by Galterios et al. (2001), the 

improved gluten strength and high dough extensibility (L) seen in genotypes such as 

some ‘97emmer19’-derived breeding lines seems to be related to the presence of the 

LMW-2 subunits associated with the ω-35 and γ-45 gliadin fractions derived from the 

durum parent (in this study either ‘WB881’ or ‘AC Navigator’) used in the breeding 

program. 

          In the present study, dough extensibility (L) was essentially unrelated to gluten 

strength as evidenced by the lack of correlation with either gluten index (GI) or 

alveograph deformation energy (W), although dough extensibility L was correlated with 

SDS sedimentation volumes when USDA-ARS translocation lines were not included in 

the correlation analysis (Tables 14 and 15). These results suggest that gluten strength and 

dough extensibility (L) are the most important traits responsible for the enhanced baking 

quality seen in emmer-derived breeding lines. Ammar et al. (2000), Edwards et al. (2001) 

and Rao et al. (2001) also suggested that these two factors were most important to the 

enhanced baking quality of durum wheat. For bread-making, high dough extensibility (L) 

is favored and is related to the need for gas cells within the fermenting dough to be 



 80

extended without rupture or with minimal rupture during the proofing and early stages of 

baking (Larroque et al., 1999; Anderssen et al., 2004).  

          Although correlation analysis confirmed that strong gluten and more extensible 

dough were important to LV potential in durum wheat, ‘97Emmer19’ displayed both 

poor gluten strength and little dough extensibility. These results suggest that an 

appropriate balance of gluten strength and extensibility are important to achieve higher 

loaf volumes in durum wheat since both factors indirectly characterize the extent of the 

expansion that will occur during the expansion of the gas bubbles (Bloksma, 1990; 

Eliasson and Larsson, 1993; Kokelaar, 1994). The fact that ‘97Emmer19’ possessed low 

alveograph P and L (Table 11), but high loaf volume (Table 12) may suggest that with 

weaker gluten, extensible dough is not a requirement for dough expansion during 

proofing. In contrast, ‘Arcola’ displayed a higher alveograph P than ‘97Emmer19’ 

coupled with high alveograph L and the dough exhibited relatively poor dough handling 

properties and poor loaf volume when compared to ‘97Emmer19’. These results suggest 

that at higher P values, more extensible dough is required to achieve elevated loaf 

volume. In support of this hypothesis, the durum wheat checks, ‘Commander’, ‘AC 

Navigator’ and ‘DT724’ had high P values, but inextensible dough (Table 11). In 

addition, ‘WB881’ and ‘2000EB4’ showed higher gluten strength coupled with more 

extensible dough and both lines produced higher loaf volumes compared to the durum 

wheat checks (Tables 11 and 12). Although these lines did not produce loaf volumes 

similar to that of ‘97Emmer19’, both lines did have lower semolina protein and 

significantly lower dry gluten (Table 8). Perhaps if compared at equivalent protein 

concentrations, ‘2000EB4’ and ‘WB881’ may have performed as well as ‘97Emmer19’. 

          Of the emmer-derived breeding lines, only ‘05Emmereg-03’ produced loaf 

volumes statistically equivalent to the bread wheat check ‘AC Superb’ (Table 12). 

However, the bread wheats possessed lower resistance to extension (P) combined with 

high extensibility (L), both factors which prevent gas cells from collapsing under the 

weight of the dough during proofing (Larroque et al., 1999). Nash et al. (2006) reported 

that in durum, the Glu-3/Gli-1 complex on chromosome 1B has a positive effect on 

dough strength (alveograph P) but a corresponding negative effect on dough extensibility 

(alveograph L). Thus, it appears that the same locus that confers tolerance to mixing 
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(dough strength) also causes low dough extensibility. In the durum wheat lines evaluated 

in this study, extensibility was negatively correlated (r = -0.47; P<0.05) with alveograph 

P (Table 14). This presents a challenge for breeding durum wheat cultivars suitable for 

bread-making, in that selection for strength may equate to selection for poor dough 

extensibility (L). This is particularly true since most durum breeding programs are 

selecting for the high alveograph P values in demand by the pasta industry (Dexter and 

Marchylo, 1996). However, the linkage between P and L is not perfect, as ‘2000EB4’ and 

‘WB881’ showed good gluten strength, and extensible dough. Since ‘WB881’ is a 

registered variety in the USA, the extensibility of dough produced by this variety must 

not negatively influence pasta quality. Samaan et al. (2006) have shown that the higher 

extensibility readings (using the Extensograph) in Syrian spring durum wheat genotypes 

were associated with increased pasta firmness (P<0.05) and optimum-cooking time of 

pasta. However, reports on the negative or positive relationship between high dough 

extensibility and pasta quality are lacking, as most of the registered Canadian durum 

cultivars are not extensible.  

          Since differences in rheological properties were associated with variation in loaf 

volume, the gluten subunits present in each of the lines was determined and correlated to 

variation in loaf volume. ‘97Emmer19’ and the majority of its progeny expressed the 

1Ax1 allele at the Glu-A1 locus. Contrast analysis (after exclusion of the USDA-ARS 

translocation lines) revealed that, on average, lines carrying the 1Ax1 allele had loaf 

volumes 52 cc higher than those lacking the 1Ax1 allele (Table 19). In previous studies 

that evaluated alleles at the Glu-A1 locus, genotypes carrying Glu-A1a* allele (1Ax1) or 

Glu-A1b allele (1Ax2*) were noted to have better loaf volumes compared to genotypes 

carrying the Glu-A1c (null) allele (Halford et al., 1992; Branlard and Dardevet, 1985a, 

1985b; Payne, 1987; Nieto-Taladriz et al., 1994; Sontag-Strohm et al., 1996). Nearly all 

of the durum wheat checks, including ‘05Emmereg-03’ carried the null allele at Glu-A1 

locus (Table 16) which has been associated with inextensible dough and poor bread-

making quality in bread wheat (Payne, 1987; Nieto-Taladriz et al., 1994; Sontag-Strohm 

et al., 1996). However, in 2006 testing, ‘05Emmereg-03’ had the highest LV of the 

tetraploid wheats and was numerically similar to ‘AC Superb’ (Table 12), despite 

carrying the null allele at Glu-A1. However, ‘97Emmer19’, ‘2000EB4’ and ‘05Emmereg-
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03’ carried the Bx14+By15 allele in combination with the 9* allele at Glu-B1 (Table 16), 

suggesting that this allele may also be contributing to the elevated loaf volumes seen in 

those lines. Contrast analysis revealed that the differences in loaf volume among 

genotypes carrying Bx14+By15 in combination with 9* allele vs. those carrying the Bx6 

+By8 (the majority of durum wheat checks; Table 16) was 39 cc, but this difference was 

not statistically significant (Table 19). However, this analysis did not account for the fact 

that many of the emmer-derived breeding lines carried 1Ax1 at the Glu-A1 locus, which 

was associated with increased loaf volume. Unfortunately, contrast analysis to determine 

which locus (either Glu-A1 locus carrying 1Ax1 allele or Glu-B1 locus carrying 

Bx14+By15 in combination with 9*) was showing greater association with increased loaf 

volume could not be conducted due to the lack of degrees of freedom (i.e. too few 

genotypes with appropriate combinations of 1Ax1 and Bx14+By15 in combination with 

9* were evaluated over both years). Given the inconsistency among the emmer-derived 

breeding lines, the influence of these subunits on the rheological properties of the dough 

could not be determined. 

          In this study, for ‘97Emmer19’ and all of the emmer-derived breeding lines carried 

β-gliadin 58, contrast analysis revealed that averaged over composite samples, genotypes 

carrying this allele had loaf volumes 157 cc larger than the durum wheat genotypes 

lacking the allele (Table 19). All of the emmer-derived breeding lines chosen for this 

study were selected from breeding populations developed from crossing ‘97Emmer19’ to 

‘AC Navigator’, ‘WB881’ or ‘AC Avonlea’ (Table 1), and both ‘AC Navigator’ and 

‘WB881’ carry β-gliadins 52 and 56 (Table 16). ‘AC Avonlea’ is a parent of 

‘Strongfield’ (Clarke et al., 2006b), and the latter also carries β-gliadins 52 and 56. The 

emmer-derived breeding lines were developed with elevated loaf volume as a selection 

criterion, and the fact that all of these lines carried the β-gliadin 58 allele suggests that 

this gliadin subunit may be associated with elevated LV, and could be the target for 

indirect selection for breeding programs improving durum wheat for bread-making 

quality. 

          This study focused on assessing the bread-making quality of durum wheat. 

However, for development of a dual-purpose cultivar, traits important to the pasta 

industry must not be compromised. Durum wheat breeders targeting cultivars for pasta 
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must ensure that cultivars possess high test weight (TWT), high kernel weight (KWT), 

high falling number (FN), high grain and semolina protein concentrations, high yellow 

pigment concentration (YPC) and semolina milling yield, and good pasta making and 

cooking quality. Obviously, ‘97Emmer19’ is not a good candidate for dual-purpose end-

use as it showed low TWT and KWT, poor FN and low YPC (Tables 3 and 5). Although 

‘97Emmer19’ consistently expressed high grain and semolina protein concentrations 

(Tables 4 and 6), it is likely the elevated protein is due to its small seed size (Table 3). In 

contrast, improved quality for many of these pasta-related quality traits are seen in some 

of the emmer-derived breeding lines:  

a. ‘2000EB4’ showed high average GPC (14.3%; Table 4), high average FN (470 

sec; Table 5), high average TWT (78.9 kg hL-1; Table 3) and high average KWT 

(39.7 g; Table 3).  

b. ‘X.98.142.17’ showed high average GPC (13.1%; Table 4), high average milling 

yield (66.4%; Table 6) and high average KWT (43.7 g; Table 3). 

c. ‘P.01.64.31’ showed high average GPC (13.0%; Table 4), high average milling 

yield (66.4%; Table 6), high average YPC (6.4 mg kg-1; Table 5), high average 

TWT (80.2 kg hL-1; Table 3) and high average KWT (47.2 g; Table 3). 

d. ‘P.01.64.39’ showed high average GPC (14.0%; Table 4), high average YPC (7.2 

mg kg-1; Table 5), high average TWT (80.3 kg hL-1; Table 3) and high average 

KWT (44.2 g; Table 3). 

e.  ‘05Emmereg-03’ showed high average GPC (15.4%; Table 4), high average FN 

(496 sec; Table 5) and high average KWT (45.3 g; Table 3). 

f. ‘05Emmereg-26’ showed high average GPC (13.3%; Table 4), high average FN 

(494 sec; Table 5), high average milling yield (66.5%; Table 6), high average 

YPC (6.9 mg kg-1; Table 5) and high average KWT (51.2 g; Table 3). 

          These results suggest that the heritable variation for loaf volume is independent of 

these traits and breeding efforts can be continued to further improve pasta-related quality 
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traits. However, only pasta quality predictors were assessed in this study, and the material 

generated in this thesis should be used to study pasta quality in more detail to ensure no 

negative effects of improved bread-making on pasta quality. The data presented in this 

thesis also support the possibility of introgressing economically important durum traits 

like gluten strength into the emmer genotypes while preserving the morphological, 

functional and botanical characteristics of emmer. The emmer-derived breeding lines in 

this study have shown agronomically superior performance over the emmer parent (data 

not shown). 
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Conclusions 

1. ‘97Emmer19’ has superior baking quality (loaf volume) over the durum wheat 

checks ‘Strongfield’, ‘WB881’, and ‘AC Navigator’ and performed similar to the 

Canadian Western Red Spring (CWRS) bread wheat check ‘AC Superb’. The 

variation for bread-making quality is heritable. 

2. A balance of gluten strength and dough extensibility (L) is an important 

requirement when breeding durum wheats for improved baking quality. Data 

presented here suggest that strong gluten genotypes, a current breeding target for 

durum made into pasta, will require more extensible dough to achieve higher loaf 

volumes. However, this balance may be difficult to achieve and could imply that 

the loaf volumes of durum wheats could be increased, but the loaf volume 

potential as seen in CWRS bread wheats may not be achieved.  

3. The superior baking quality seen in ‘97Emmer19’ and some of the emmer-derived 

breeding lines can be attributed to the gliadin and glutenin protein subunits. 

Results suggest that the HMW-GS 1Ax1 at the Glu-A1 locus and Bx14+By15, 9* 

at the Glu-B1 locus and β-gliadin 58 are associated with elevated LV in the 

emmer-derived breeding lines. These subunits could potentially be used as protein 

markers to indirectly select for improved baking quality, although our results 

suggest that these markers would not be perfect and bake tests would still be 

required to assess phenotypic worth. 

4. Despite carrying the Glu-D1d (HMW-GS pair 1Dx5+1Dy10) allele, USDA-ARS 

1AS.1AL-1DL translocation lines exhibited poor baking quality compared to 

durum wheat checks and emmer-derived breeding lines. To enhance tha baking 

quality of durum wheat, the use of 1AS.1AL-1DL translocation lines from 

‘Renville’ and ‘Langdon’ tetraploid wheats background is not recommended. 

5. Breeding to combine bread-making quality with traits important to the pasta 

industry appears to be feasible, but more work is needed to properly assess the 

pasta quality of some emmer-derived breeding lines, particularly the AC 
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Navigator//2000EB4/AC Navigator and 2000EB4/AC Avonlea derived breeding 

lines. 
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6. Future Work 

1. More work is required to determine the pasta quality of those emmer-derived 

breeding lines exhibiting improved baking quality (‘2000EB4’, ‘X.98.124.17’, 

‘P.01.64.31’, ‘05Emmereg-03’, and ‘05Emmereg-26’). This is required to 

determine if the pasta quality of these lines is negatively influenced by the factors 

contributing to improved loaf volume. 

 

2. In the present study, the association of increased loaf volumes with 1Ax1 (Glu-

A1), Bx14+By15 in combination with 9* (Glu-B1) and β-gliadin 58, was based on 

a small sample size. A large, segregating population derived from crossing lines 

with and without these subunits (e.g., ‘2000EB4’ x ‘AC Navigator’; Table 16) 

should be evaluated in multiple environments to determine the effects of each of 

these subunits alone and in combination on loaf volume. 
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8. Appendices 
Appendix A1. Summary of ANOVA for Test Weight (kg hL-1) and Kernel Weight (g) for 2005 and 2006 grown 
genotypes at Goodale, Kernen, and Seed Farm environments and data averaged over environments. 

Quality             Location             Year            ANOVA 
parameter 

Random effect variance 
estimate (α = 0.05) 

Fixed Effect F-value 

 
 
 
 
 
 
 
 
 
 
Test weight 
(kg hL-1) 

 
 
GDLa 

2005 
 

Genotype - 31.72** 
Replication 0.06 ns     - 
Residual 0.40** - 

2006 
 

Genotype - 17.96** 
Replication 0.04 ns      - 
Residual 0.52**       - 

 
 
KERb 

2005 
 

Genotype - 26.27** 
Replication 0.00 - 
Residual 0.53**       - 

2006 
 

Genotype - 13.57** 
Replication 0.12ns       - 
Residual 0.34**      - 

 
 
SFc 

2005 
 

Genotype - 11.48** 
Replication 0.01 ns     - 
Residual 1.72**       - 

2006 
 

Genotype - 13.52** 
Replication 0.04 ns     - 
Residual 0.46**      - 

 
 
Data 
averaged 
over 
environments 

 
 
 
 

Genotype -       7.57** 
Year  5.20 ns       - 
Location 0.00       - 
Location*Year 0.47 ns      - 
Replication(location*year) 0.05 ns     - 
Location*Genotype 0.00 - 
Genotype*Year 0.68**       - 
Location*Genotype*Year 0.32**      - 
Residual 0.58**      - 

 
 
 
 
 
 
 
 
 
 
 
1000 
Kernel 
Weight (g) 

 
 
GDL 

2005 
 

Genotype - 22.73** 
Replication 0.00 - 
Residual 2.98**       - 

2006 
 

Genotype - 43.21** 
Replication 0.26 ns       - 
Residual 1.86**       - 

 
 
KER 

2005 
 

Genotype - 23.64** 
Replication 0.04 ns      - 
Residual 1.80** - 

2006 
 

Genotype - 23.94** 
Replication 0.30 ns      - 
Residual 2.98**       - 

 
 
SF 

2005 
 

Genotype - 17.54** 
Replication 0.30 ns      - 
Residual 3.69**       - 

2006 
 

Genotype - 11.93** 
Replication 0.25 ns      - 
Residual 6.05**       - 

 
 
Data 
averaged 
over 
environments 

 
 
 
 

Genotype - 18.23** 
Year 2.07ns       - 
Location 0.00       - 
Location*Year 1.70ns       - 
Replication(location*year) 0.09 ns      - 
Location*Genotype 0.59 ns       - 
Genotype*Year 1.52*       - 
Location*Genotype*Year 0.86*       - 
Residual 3.14**       - 

aGDL = goodale location  bKER = kernen location  cSF = seed farm location  * P < 0.05    ** P < 0.01    ns non significant at P = 0.05 
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Appendix A2. Summary of ANOVA for Grain Hardness and Grain Protein Concentration (GPC) for 2005 and 
2006 grown genotypes at Goodale, Kernen, and Seed Farm environments and data averaged over environments. 

 
Quality               Location             Year            ANOVA 
parameter 

Random effect variance 
estimate (α = 0.05) 

Fixed Effect F-value 

 
 
 
 
 
 
 
 
Hardness 
Index 

 
 
GDLa 

2005 
 

Genotype - 85.27**     
Replication 0.22 ns      - 
Residual 2.33**       - 

2006 
 

Genotype - 19.57** 
Replication 0.40 ns      - 
Residual 9.01**       - 

 
 
KERb 

2005 
 

Genotype - 113.90** 
Replication 0.06 ns      - 
Residual 1.74**       - 

2006 
 

Genotype - 80.95** 
Replication 0.00 - 
Residual 2.01**       - 

 
 
SFc 

2005 
 

Genotype - 22.41** 
Replication 1.89 ns      - 
Residual 8.07**       - 

2006 
 

Genotype - 10.36** 
Replication 1.97 ns      - 
Residual 11.33**       - 

 
 
Data 
averaged 
over 
environments 

 
 
 
 

Genotype - 19.87** 
Year 25.92 ns     - 
Location 0.00     - 
Location*Year 2.15 ns      - 
Replication(location*year) 0.74*       - 
Location*Genotype 0.00 - 
Genotype*Year 4.02*       - 
Location*Genotype*Year 3.03**       - 
Residual 5.96**       - 

 
 
 
 
 
 
 
 
 
Grain protein 
concentration 
(13.5% mb) 

 
 
GDL 

2005 
 

Genotype - 48.78** 
Replication 0.00 - 
Residual 0.13**      - 

2006 
 

Genotype - 2.64**   
Replication 0.21 ns      - 
Residual 1.02**       - 

 
 
KER 

2005 
 

Genotype - 38.20** 
Replication 0.00    - 
Residual 0.12**      - 

2006 
 

Genotype - 14.34** 
Replication 0.03 ns     - 
Residual 0.15**      - 

 
 
SF 

2005 
 

Genotype - 7.77** 
Replication 0.21 ns      - 
Residual 0.64**       - 

2006 
 

Genotype - 1.66 ns   
Replication 1.11 ns      - 
Residual 1.58**       - 

 
 
Data 
averaged 
over 
environments 

 
 
 
 

Genotype - 5.23** 
Year  0.00 - 
Location 0.00 - 
Location*Year 0.48ns       - 
Replication(location*year) 0.26*       - 
Location*Genotype 0.00 - 
Genotype*Year 0.04 ns     - 
Location*Genotype*Year 0.14**      - 
Residual 0.61**      - 

aGDL = goodale location        bKER = kernen location        cSF = seed farm location    
* P < 0.05              ** P < 0.01                  ns non significant at P = 0.05 
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Appendix A3. Summary of ANOVA for SDS Sedimentation volumes (mL) and Falling Number (sec) for 2005 
and 2006 grown genotypes at Goodale, Kernen, and Seed Farm environments and data averaged over 
environments. 

 
Quality                  Location             Year            ANOVA 
parameter 

Random effect variance 
estimate (α = 0.05) 

Fixed Effect F-value 

 
 
 
 
 
 
 
 
SDS 
Sedimentation 
volumes (mL) 

 
 
GDLa 

2005 
 

Genotype - 115.27** 
Replication 0.00 - 
Residual 8.63**       - 

2006 
 

Genotype - 25.47** 
Replication 0.80ns       - 
Residual 13.27**       - 

 
 
KERb 

2005 
 

Genotype - 244.15** 
Replication 1.08 ns      - 
Residual 5.16**       - 

2006 
 

Genotype - 123.45** 
Replication 0.30 ns      - 
Residual 3.41**       - 

 
 
SFc 

2005 
 

Genotype - 135.18** 
Replication 0.73 ns      - 
Residual 7.38**       - 

2006 
 

Genotype - 16.15** 
Replication 9.11 ns      - 
Residual 18.82**       - 

 
 
Data 
averaged 
over 
environments 

 
 
 
 

Genotype - 25.80** 
Year 3.63 ns     - 
Location 0.00     - 
Location*Year 8.19 ns      - 
Replication(location*year) 1.53*       - 
Location*Genotype 2.20ns       - 
Genotype*Year 9.40*       - 
Location*Genotype*Year 7.02**       - 
Residual 9.72**       - 

 
 
 
 
 
 
 
 
 
 
Falling number 
(sec) 

 
 
GDL 

2005 
 

Genotype - 8.89** 
Replication 0.00 - 
Residual 1129.41**       - 

2006 
 

Genotype - 5.87** 
Replication 0.00 - 
Residual 697.92**       - 

 
 
KER 

2005 
 

Genotype - 26.67** 
Replication 0.00 - 
Residual 649.72**       - 

2006 
 

Genotype - 11.49** 
Replication 0.00 - 
Residual 489.57**      - 

 
 
SF 

2005 
 

Genotype - 13.57** 
Replication 22.25ns      - 
Residual 677.39**       - 

2006 
 

Genotype - 9.43** 
Replication 153.31 ns      - 
Residual 1413.08**       - 

 
 
Data 
averaged 
over 
environments 

 
 
 
 

Genotype 0.00 2.42* 
Year 4594.49 ns     - 
Location 830.38 ns       
Location*Year 152.41 ns      - 
Replication(location*year) 22.17 ns     - 
Location*Genotype 0.00 - 
Genotype*Year 1032.89**       - 
Location*Genotype*Year 579.73**       - 
Residual 775.64**      - 

aGDL = goodale location        bKER = kernen location        cSF = seed farm location      * P < 0.05    ** P < 0.01    ns non significant at P = 0.05 
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Appendix A4. Summary of ANOVA for Yellow Pigment Concentration (mg kg-1) for 
2005 and 2006 grown genotypes at Goodale, Kernen, and Seed Farm environments and 
data averaged over environments. 
 
Quality                 Location             Year            ANOVA 
parameter 

Random effect 
variance estimate 
(alpha = 0.05) 

Fixed Effect F-
value 

 
 
 
 
 
 
 
 
 
Yellow 
pigment 
concentration 
(mg kg-1) 

 
 
GDLa 

2005 
 

Genotype - 27.83** 
Replication 0.14ns       - 
Residual 0.24**      - 

2006 
 

Genotype - 98.95** 
Replication 0.00 ns    - 
Residual 0.06**      - 

 
 
KERb 

2005 
 

Genotype - 142.10** 
Replication 0.00 - 
Residual 0.05**     - 

2006 
 

Genotype - 202.14** 
Replication 0.01 ns     - 
Residual 0.03**     - 

 
 
SFc 

2005 
 

Genotype - 66.06** 
Replication 0.02 ns     - 
Residual 0.11**      - 

2006 
 

Genotype - 105.55** 
Replication 0.00     - 
Residual 0.06**      - 

 
 
Data 
averaged over 
environments 

 
 
 
 

Genotype - 82.76** 
Year 0.05 ns      - 
Location 0.00 - 
Location*Year 0.29 ns      - 
Replication(location*year) 0.03*      - 
Location*Genotype 0.00    - 
Genotype*Year 0.04**      - 
Location*Genotype*Year 0.01 ns    - 
Residual 0.08**     - 

aGDL = goodale location        bKER = kernen location        cSF = seed farm location     
* P < 0.05                  ** P < 0.01                  ns non significant at P = 0.05 
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Appendix A5. Summary of ANOVA (combined composite samples data for the 2005 and 2006 
growing seasons) for Flour/Semolina Milling Yield (%), Agtron colour (%), Brightness (L*), Redness 
(a*), Yellowness (b*), Gluten Index (GI), Wet Gluten (WG), Dry Gluten (DG), and Flour/Semolina 
Protein Concentration. 
 

Quality                          Year                           ANOVA 
parameter 

Random effect 
variance estimate 
(alpha = 0.05) 

Fixed Effect F-
value 

 
 
Flour/Semolina 
Milling Yield (%) 
              

 
Data averaged 
over years 
 

Genotype - 17.27** 
Year 0.60ns  
Year*Genotype 0.34ns  
Residual 0.37**  

 
 
Agtron 
              

 
Data averaged 
over years 
 

Genotype - 6.14** 
Year 7.47ns  
Year*Genotype 18.10**  
Residual 4.21**  

 
 
L* 
              

 
Data averaged 
over years 
 

Genotype - 21.21** 
Year 0.17ns  
Year*Genotype 0.00  
Residual 0.07**  

 
 
a* 
              

 
Data averaged 
over years 
 

Genotype - 45.31** 
Year 0.01ns  
Year*Genotype 0.00  
Residual 0.003**  

 
 
b* 
              

 
Data averaged 
over years 
 

Genotype - 239.68** 
Year 0.95ns  
Year*Genotype 0.16**  
Residual 0.01**  

 
 
Gluten Index 

 
Data averaged 
over years 
 

Genotype - 141.11** 
Year 5.88ns  
Year*Genotype 5.21*  
Residual 6.55**  

 
 
Wet Gluten 
 

 
Data averaged 
over years 
 

Genotype - 9.19** 
Year 1.06ns  
Year*Genotype 0.17ns  
Residual 4.01**  

 
 
Dry Gluten 
 

 
Data averaged 
over years 
 

Genotype - 21.93** 
Year 0.04ns  
Year*Genotype 0.07*  
Residual 0.10**  

 
Flour/Semolina 
Protein 
concentration 

 
Data averaged 
over years 
 

Genotype - 20.57** 
Year 0.01ns  
Year*Genotype 0.07**  
Residual 0.004**  

* P < 0.05    ** P < 0.01    ns non significant at P = 0.05 
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Appendix A6. Summary of ANOVA (combined composite data from 2005 and 2006) for 
farinograph and alveograph quality parameters. 
 
Quality                           Year                          ANOVA 
parameter 

Random effect variance 
estimate (alpha = 0.05) 

Fixed Effect F-
value 

              
FABa 

 
Data averaged 
over years 
 

Genotype - 18.76** 
Year 3.08ns  - 
Residual 0.49**  - 

              
MTIb 

 
Data averaged 
over years 
 

Genotype - 26.18** 
Year 0.00  - 
Residual 38.75**  - 

 
DDTc 

 
Data averaged 
over years 
 

Genotype - 51.85** 
Year 0.34ns   - 
Residual 0.82**   - 

 
TTBd 

 
Data averaged 
over years 
 

Genotype - 9.86** 
Year 0.00  - 
Residual 17.52**  - 

 
STAe 

 
Data averaged 
over years 
 

Genotype - 11.67** 
Year 1.91ns  - 
Residual 29.35**             - 

 
Pf 

 
Data averaged 
over years 
 

Genotype - 11.02** 
Year 568.36ns   - 
Year*Genotype 200.74**  
Residual 62.23**   - 

 
Lg 
 

 
Data averaged 
over years 
 

Genotype - 6.11** 
Year 0.00   - 
Year*Genotype 226.63**  
Residual 160.41**   - 

 
P/Lh 

 

 
Data averaged 
over years 
 

Genotype - 4.67** 
Year 0.61ns   - 
Year*Genotype 0.62**  
Residual 0.23**   - 

 
Wi 

 

 
Data averaged 
over years 
 

Genotype - 6.34** 
Year 1212.98ns   - 
Year*Genotype 2050.47**  
Residual 1216.49**   - 

 

* P < 0.05    ** P < 0.01    ns non significant at P = 0.05 
 

aFAB = Farinograph water absorption (%)         bMTI = Farinograph Mixing Tolerance Index (B.U.) 
cDDT  = Farinograph dough development time (min)   dTTB = Farinograph time to breakdown (min) 
eSTA = Farinograph stability (min)    fP = Alveograph tenacity (1.1 x height) (mm) 
gL = Alveograph extensibility (mm)    hP/L = Alveograph curve configuration ratio 
iW = Alveograph deformation energy (J x 10-4)   
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Appendix A7. Summary of ANOVA (combined composite samples data for the 2005 
and 2006 growing seasons) for Loaf Volume (cc), Loaf Shape, Crumb Colour, Crumb 
Structure, and Peak Mixing Time (min). 
 
Quality                            Year                           ANOVA 
parameter 

Random effect 
variance estimate 
(alpha = 0.05) 

Fixed Effect F-
value 

 
 
Loaf volume 
(cc) 
              

 
Data averaged 
over years 
 

Genotype - 40.26** 
Year 35.21ns  
Year*Genotype 511.07ns  
Residual 1565.53**  

 
Loaf shape 
(measured on 0-
5 scale) 

 
Data averaged 
over years 
 

Genotype - 27.20** 
Year 0.003ns  
Year*Genotype 0  
Residual 0.10**  

 
Crumb Colour 
(measured on 0-
5 scale) 

 
Data averaged 
over years 
 

Genotype - 9.53** 
Year 0.12ns  
Year*Genotype 0.04ns  
Residual 0.10**  

 
Crumb 
Structure  
(measured on 0-
5 scale)     

 
Data averaged 
over years 
 

Genotype - 42.62** 
Year 0.00  
Year*Genotype 0.00  
Residual 0.06**  

 
Peak Mixing 
Time (min) 

 
Data averaged 
over years 
 

Genotype - 9.84** 
Year 0.47ns  
Year*Genotype 0.30*  
Residual 0.63**  

 

* P < 0.05    ** P < 0.01    ns non significant at P = 0.05 
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Appendix A8. Summary of Contrast analysis for loaf volumes (genotypes evaluated 
in 2005) based on protein subunit(s) detected in tetraploid wheats 
 Glu-A1 Glu-B1 Beta-gliadin LVa 

Estimate  
F-value

 
Tetraploid 
wheatsc 

1Ax1   803  
Null   721  
Dx5+Dy10b   449  
Type III test of 
Fixed Effects 

   39.74**

 
Tetraploid 
wheats 

 Bx14+By15, 9*  828  
 Bx6+By8  673  
 Bx7+By8  649  
 Type III test of 

Fixed Effects
  1.16ns

Excluding 
USDA-ARS 
translocation 
linesd 

 Bx14+By15, 9*  828  
 Bx6+By8  762  
 Bx7+By8  649  
 Type III test of 

Fixed Effects
  7.72**

 
Tetraploid 
wheats 

  58 795  
  52,56 629  
  56 538  
  Type III test of 

Fixed Effects
 5.03*

Excluding 
USDA-ARS 
translocation 
lines 

  58 795  
  52,56 731  
  56 538  
  Type III test of 

Fixed Effects
 21.76**

 

* P < 0.05    ** P < 0.01    ns non significant at P = 0.05 
 

aLV = Loaf Volume   
bTranslocation of Dx5+Dy10 from 1D chromosome of  hexaploid wheat into 1A 
chromosome of durum wheat 
cTetraploid wheats = Analysis of all tetraploid genotypes grown during 2005 growing 
season.    
dExcluding USDA translocation lines = Analysis of all genotypes grown during 2005 
growing season, except USDA-ARS 1AS.1AL-1DL translocation lines 
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Appendix A9. Summary of Contrast analysis for loaf volumes (genotypes evaluated 
in 2006) based on protein subunit(s) detected in tetraploid wheats. 
 Glu-A1 Glu-B1 Beta-gliadin LVa 

Estimate  
F-value

 
Tetraploid 
wheatsc 

1Ax1   781  
Null   747  
Dx5+Dy10b   466  
Type III test of 
Fixed Effects 

   144.24**

 
Tetraploid 
wheats 

 Bx14+By15, 9*  788  
 Bx6+By8  685  
 Bx7+By8  704  
 Type III test of 

Fixed Effects
  0.81ns

Excluding 
USDA-ARS 
translocation 
linesd 

 Bx14+By15, 9*  788  
 Bx6+By8  765  
 Bx7+By8  704  
 Type III test of 

Fixed Effects
  5.53*

 
Tetraploid 
wheats 

  58 785  
  52,56 635  
  Type III test of 

Fixed Effects
 10.45**

Excluding 
USDA-ARS 
translocation 
lines 

  58 785  
  52,56 732  
  Type III test of 

Fixed Effects
 18.42**

 

* P < 0.05    ** P < 0.01    ns non significant at P = 0.05 
 

aLV = Loaf Volume   
bTranslocation of Dx5+Dy10 from 1D chromosome of  hexaploid wheat into 1A 
chromosome of durum wheat 
cTetraploid wheats = Analysis of all tetraploid genotypes grown during 2005 growing 
season.    
dExcluding USDA translocation lines = Analysis of all genotypes grown during 2005 
growing season, except USDA-ARS 1AS.1AL-1DL translocation lines 
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Appendix A10. Summary of Contrast analysis for loaf volumes (combined data from 
2005 and 2006) based on protein subunit(s) detected in tetraploid wheats. 
 Glu-A1 Glu-B1 Beta-gliadin LVa 

Estimate  
F-value

 
Tetraploid 
wheatsc 

1Ax1   790  
Null   738  
Dx5+Dy10b   456  
Type III test of 
Fixed Effects 

   146.01**

 
Tetraploid 
wheats 

 Bx14+By15, 9*  800  
 Bx6+By8  667  
 Bx7+By8  704  
 Type III test of 

Fixed Effects
  0.81ns

Excluding 
USDA-ARS 
translocation 
linesd 

 Bx14+By15, 9*  800  
 Bx6+By8  760  
 Bx7+By8  704  
 Type III test of 

Fixed Effects
  5.05*

 
Tetraploid 
wheats 

  58 788  
  52,56 632  
  Type III test of 

Fixed Effects
 6.97*

Excluding 
USDA-ARS 
translocation 
lines 

  58 788  
  52,56 732  
  Type III test of 

Fixed Effects
 13.68**

 

* P < 0.05    ** P < 0.01    ns non significant at P = 0.05 
 

aLV = Loaf Volume   
bTranslocation of Dx5+Dy10 from 1D chromosome of  hexaploid wheat into 1A 
chromosome of durum wheat 
cTetraploid wheats = Analysis of all tetraploid genotypes grown during 2005 growing 
season.    
dExcluding USDA translocation lines = Analysis of all genotypes grown during 2005 
growing season, except USDA-ARS 1AS.1AL-1DL translocation lines 

 
 
 
 
 
 
 
 
 
 



 116

Appendix B1. Nomenclature of HMW-GS alleles in bread and durum wheat, proposed by 
Payne and Lawrence (1983). 

Locus Allele Subunit(s)
Bread wheat   
Glu-A1 Glu-A1a* 1
 Glu-A1b 2*
 Glu-A1c Null
Glu-B1 Glu-B1b 7+8
 Glu-B1c 7+9
 Glu-B1d 6+8
 Glu-B1f 13+16
 Glu-B1i 17+18
Glu-D1 Glu-D1a 2+12
 Glu-D1d 5+10
Durum wheat   
 Glu-B1a 7
 Glu-B1b 7+8
 Glu-B1d 6+8
Glu-B1 Glu-B1e 20
 Glu-B1f 13+16
 Glu-B1h 14+15

 
 
Appendix C1. Molecular weight of high molecular weight protein subunits (in KDa) of 
Canadian registered wheat cultivars (proposed by Ng and Bushuk, 1988b). 
 

Protein 
subunit 

Molecular weight in KDa 

1 149 
½* 141 
2* 136 
2 134 
5 128 
6 121 
7 115 
20 113 
14 112 
15 107 
8 101 
9 95.7 
10 92.1 
12 91.2 

 
 
 
 
 


