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ABSTRACT 

 

Lung dysfunction due to exposure to air in high intensity livestock barn operations is a 

common problem for workers in these facilities. Exposure to this air has been linked to disorders 

such as chronic bronchitis, occupational asthma, organic dust toxic syndrome, and chronic cough 

and phlegm. These symptoms have been linked to higher levels of endotoxins in air in chicken 

and swine barns. However, there are many other toxic molecules such as bacterial DNA and 

gases capable of inducing respiratory inflammation. Bacterial molecules are recognized through 

highly conserved pattern recognition molecules called Toll-like receptors (TLR). While 

lipopolysaccharides are recognized by TLR4, bacterial unmethylated DNA binds to and signals 

through TLR9. As a prelude to understanding the biology of TLR9 in lung inflammation, it is 

important to precisely clarify their in situ expression in the lung.  

I determined expression of TLR9 in intact lungs from cattle, pigs, dogs, horses, mice, and 

humans. Two samples from normal lungs of cattle, pigs, dogs, three from horses, and two from 

inflamed calf lungs were tested. Five normal mouse and three normal human lungs were 

similarly tested as well as 5 human lungs with diagnosis of asthma. The expression was 

determined with multiple methods such as Western blots, immunohistology, immunogold 

electron microscopy and in situ hybridization. Lungs from all the species showed TLR9 

expression in the bronchial epithelium, vascular endothelium, alveolar septa, alveolar 

macrophages, and type-II alveolar epithelial cells. Immuno-electron microscopy detected TLR9 

on the plasma membrane, cytoplasm and the nucleus of various cells including macrophages. In 

situ hybridization demonstrated TLR9 mRNA in the bronchial epithelium, vascular endothelium, 

alveolar septa, alveolar macrophages, and type-II alveolar epithelial cells of mouse and human. 

Asthmatic human lungs showed many more inflammatory cells expressing TLR9 compared to 

healthy lungs. In cattle and horses, pulmonary intravascular macrophages showed robust 

expression of TLR9. Depletion of pulmonary intravascular macrophages in horses resulted in 

significant reduction in total TLR9 mRNA in the lungs. Having determined that TLR9 

expression is similarly expressed on many lung cell types in mice and humans, I determined the 

role of TLR9 in barn air induced lung inflammation by exposing  TLR9
-/- 

and wild-type mice (6 

per group) to single or multiple days (5 and 20) in a chicken barn. Each exposure was of 8 

hours/day duration. The TLR9
-/-

 mice exposed 5 and 20 times showed significant reductions in 

TNF- and IFN- expression in lung lavages as well as cellular changes consistent with reduced 

lung inflammation such as reductions in the number of lung neutrophils. This suggests that barn 

dust DNA, acting through TLR9, contributes to lung inflammation seen in response to exposure 

to chicken barn air.  

These fundamental data advance our knowledge on the cell-specific expression of TLR9 

across a range of species including the humans and demonstrate that TLR9
-/-

 partially regulates 

lung inflammation induced following exposure to chicken barn air.
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CHAPTER1: REVIEW OF LITERATURE 

  

1.1. Introduction 

The shift in livestock production from single family farms to high-intensity feed and 

growth operations housed in large barn environments has led to improved efficiency in the 

industry. However, with this move have come health problems, particularly for farm workers in 

such operations (Simpson et al., 1998), though there are also concerns for the local environment 

as well as nearby settlements (Radon et al., 2007). Many of the lung problems faced by barn 

workers are believed to be caused by organic dust, and in particular on levels of microbial 

molecules in these facilities (Donham et al., 2000; Larsson et al., 1999; Reynolds et al., 1994; 

Thelin et al., 1984; Zejda et al., 1994). Although there are many inflammatory molecules in the 

barn air, endotoxin which binds to Toll-like receptor (TLR)- 4 has been studied the most, and has 

been shown to contribute to lung inflammation and airway hyperresponsiveness in the workers 

(Dosman et al., 2006; Zejda et al., 1994). Among other molecules, unmethylated DNA 

recognized by TLR9  (Hemmi et al., 2000) may also impact lung physiology in barn workers.  

 

1.2 Worker Illness 

 Workers in high-intensity livestock operations have a higher prevalence of lower and 

upper respiratory problems compared to other agricultural fields (Simpson et al., 1998).  Of these 

groups chicken barn workers appear to be the most susceptible to respiratory problems such as 

upper respiratory problems and lower respiratory lung dysfunction and chronic bronchitis 

(Kirychuk et al., 2006; Radon et al., 2001; Rylander & Carvalheiro, 2006). Some symptoms 

mentioned include chest tightness, chronic cough, phlegm, wheezing, dyspnea, irritation of the 
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eyes and other symptoms (Just et al., 2009). Workers may experience diseases of the lung such 

as organic dust toxic syndrome, hypersensitivity pneumonitis (Farmer’s Lung), toxin fever, as 

well as allergic and non-allergic forms of rhinitis or asthma (Iversen et al., 2000; Just et al., 

2009; Kimbell-Dunn et al., 1999). Lung function in general was lower in poultry barn workers 

(Donham et al., 1990; Morris et al., 1991; Rees et al., 1998; Reynolds et al., 1993; Zuskin et al., 

1995). A number of these changes were associated with dust and/or LPS levels in these facilities 

(Donham et al., 2000; Kirychuk et al., 2006). This is in keeping with work that has shown ODTS 

to be caused by LPS (Hagmar et al., 1990; Zejda et al., 1994). While much work has established 

the role of LPS in this and other lung dysfunction conditions, the question is do other receptors 

also play a role?  

 

1.3. Barn Environment 

 The barn environment is highly complex containing many elements such as dust, noxious 

gases and microbial molecules that could potentially affect lung physiology. Surveys of high 

intensity livestock operations have shown that several gasses such as carbon dioxide (CO2), 

hydrogen sulfide (H2S), and ammonia (NH3) may be elevated (Koerkamp et al., 1998; Liang et 

al., 2005).  

CO2 produced from animal respiration and manure is more an indicator of ventilation 

problems than a specific health problem and can induce mild symptoms at levels above 

10000ppm (Liang et al., 2005 ; Carbon dioxide as a fire suppressant: Examining the risks ; 

Chemical sampling information ). Current AIKA 8hr TWA exposure levels are 5000ppm 

(ACGIH, 2010). 
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H2S is produced from reduction of sulfur-containing compounds by bacteria under 

anaerobic conditions and is a particular problem with pig operations (Arogo et al., 2000). 

Chemically H2S is heavier than air, soluble in water, and detectable by smell at about 30ppb 

(Chemical sampling information: Hydrogen sulfide). Although H2S is most often found at low 

levels in confined animal operations, certain activities such as manure manipulation can produce 

lethal levels (Zhu et al., 2000). Current 8hr TWA exposure levels are 100ppm with 15ppm short 

term exposure levels (ACGIH, 2010). 

 

NH3 has been shown to have deleterious effects on both humans as well as animals 

(Kirkhorn & Garry, 2000; Portejoie et al., 2002). Early studies linking NH3 with reduced appetite 

as well as reduced immune resistance to infections (Anderson et al., 1966; Charles & Payne, 

1966) have been disputed and more rigorous studies have not shown any effects (Doig & 

Willoughby, 1971). Current National Institute for Occupational Safety and Health (NIOSH) 

recommendations are for 25ppm weighted 8hr average and short term limits of 35ppm (Safety 

and health topics: Ammonia ). The high solubility of ammonia in water means that much of it 

will be dissolved in excretions of the upper respiratory tract, and possibly does not even reach 

the bronchi or alveoli. Even if absorbed through the system, estimates are that it would take 

about 500ppm to see a significant increase in blood ammonia levels (Ryer-Powder, 1991). 

However acute exposures of 100-400ppm are reported to be irritating to eyes and throat with 

higher levels of 1750-2500ppm induce coughing, bronchospasm and chest pain and shortness of 

breath, fluid in the lungs, chest pains and airway spasms with 2500-5000ppm (Ryer-Powder, 

1991). Lower levels however are possible, with chicken barns being the worst of the high 

intensity livestock facilities for ammonia. 
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1.3.1. Dust Particulate Size and Composition 

Dust particles can induce cell damage directly through their own size and composition or 

through combined delivery with other toxic molecules such as LPS. The shape and size of the 

particles determine their delivery and localization in the lungs (Vincent & Mark, 1981). 

Therefore, it is important to consider total dust and well as inhalable/respirable dust.  

  In humans, inhalable particles are those smaller than 100m (ACGIH, 2010) and are 

defined as those particles deposited anywhere in the respiratory tract. Particles of less than 10m 

are called respirable and can deposit anywhere in the trachea, bronchi, or bronchiolar region 

while those in the range of 5-0.1mm enter the alveoli (Whyte, 1993, Ruzer & Harley, 2005). The 

particles are deposited by impaction in the nasopharyngeal region, sedimentation at the bronchial 

level, and diffusion at the alveolar level (Sanchez et al., 2009). These distinctions of size can be 

crucial, particularly if there are characteristics of one particle size that differ from another. For 

example, in cage housed chicken barns a greater percentage of total recovered LPS from dust is 

present in the respirable fraction compared to floor housed chicken barn facilities (Kirychuk et 

al., 2010). Another study had previously concluded that some symptoms such as current and 

chronic phlegm were significantly higher in cage barn workers (Kirychuk et al., 2006), 

suggesting that these differences in LPS loading onto respirable particles may lead to clinical 

differences in workers. 

 Chemical composition of dust particles may also play a role in their capacity to stimulate 

cells of the lung (Fubini & Areán, 1999). In the barns the primary source of dust will be organic 

materials. While this can be a complex mixture, some constituents can include dried fecal matter, 

skin flakes, dried urine, pollens, feed material, housing litter, feathers, mites and spores 
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(Oppliger et al., 2008; Ellen et al., 2000). These items may act to carry a wide variety of 

microorganisms such as bacteria, viruses, mould, and the chemical remnants of these organisms 

(Just et al., 2009; Merchant & Ross, 2002). The dust solids can further act as a transport vector 

not only for microorganisms but also for noxious gasses (Pedersen et al., 2000). Chicken barn 

dusts consists of 900 g/kg dry matter, 95 g/kg ash, 150 g/kg nitrogen, 6.5g/kg phosphorus, 30 

g/kg potassium, 4 g/kg chlorine, and 3 g/kg sodium (Ellen et al., 2000). 

 Dust concentration in the air will depend on several other physical factors such as 

aersolization velocity, settling velocity, and resuspension rate, factors which can be influenced 

by a number of choices made by the individual producer (Davis & Morishita, 2005; Just et al., 

2009; Oppliger et al., 2008; Pedersen et al., 2000). Such choices include facility ventilation, 

relative humidity, stage of feed and methods of feeding, sources/locations of dust, animal density 

and general facility management and cleanliness. Variables can also be due to the animals 

themselves, such as age, weight, and size (Ellen et al., 2000; Oppliger et al., 2008; Whyte, 1993). 

 Methods to mitigate dust, dust movement, or the microbial population are not always 

easy, and may counter each other. For example, circulation of air within a barn is vital, however, 

this will resuspend dust in the barn environment (Pedersen et al., 2000). Relative humidity as 

well poses several challenges. While at a certain level (75%) humidity can reduce inhalable dust, 

it does little for respirable dust, and increases to moisture on the litter can increase ammonia 

production and presumably microbial growth (Ellen et al., 2000). Similarly, steps to reduce 

airborne dust by spraying with water or oil (Pedersen et al., 2000; Senthilselvan et al., 1997) can 

run into similar problems of altering microbial growth by adding moisture or providing better 

conditions for anaerobic organisms, or by encouraging ammonia production (Whyte, 1993). 

 



 

6  

1.3.2. Microbial population 

 The microbial ecology in animal barns is influenced by the construction, animal 

composition, feed composition, heat, humidity, farming practices, and other such possible 

variables. Chicken barns most commonly have aerobes such as Micrococcus, Proteus, 

Pseudomonas, Escherichia coli, and Staphylococcus species (Just et al., 2009). Interestingly, 

despite the importance of LPS in many worker health studies, only about 7-17% of the bacteria 

in chicken barns were gram negative bacteria capable of producing LPS (Just et al., 2009). 

Studies have also revealed significant differences between cage and floor-based chicken barns 

dusts (Kirychuk et al., 2006; Kirychuk et al., 2010), as well as between barn and house dust 

(Alenius et al., 2009). Further, differences in the collection site of samples has shown the 

presence of microenvironments that can differ greatly in bacterial composition within the same 

facility (Just et al., 2009). For example, litter constitutes a lower oxygen environment than 

airborne dusts, so coliform bacteria can better survive in the litter (Whyte, 1993). The impact of 

such lower oxygen, anaerobic, and more fastidious species of bacteria may have been 

underplayed in the past, as modern PCR and epifluorescence techniques have given estimates of 

bacterial numbers in the range of 10
8
 or 10

9
 bacteria/m

3
 air compared to culture techniques 

which yielded in the range of 10
5
 CFU/m

3
 (S. A. Lee et al., 2006; Nehme et al., 2008; Oppliger 

et al., 2008; Radon et al., 2001). Likewise fungal spores may have also been under-estimated, 

showing 10
7
 spores/m

3
 via epifluorescence compared to 10

4
 CFU/m

3
 (S. A. Lee et al., 2006; 

Radon et al., 2001). Recently high levels of Archaeobacteria species have been recorded within 

these facilities (Nehme et al., 2009). While the role of barn LPS has been well studied (Donham 

et al., 2000; Kirychuk et al., 2006; Larsson et al., 1999; Thelin et al., 1984; Zejda et al., 1994), it 

is important that other bacterial components are also studied (Roy et al., 2003; Rylander & 

Carvalheiro, 2006). This is becoming especially important because of prevalence of spores of 
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moulds and fungi such as Cladosporium, Aspergillus, Penicillium, Alternaria, Fusarium, 

Geotrichum, and Streptomyces (Just et al., 2009; S. A. Lee et al., 2006; Sauter et al., 1981).  

 

1.3.3. Lipopolysaccharides 

 Given the number of papers that have linked LPS to lung dysfunction, special mention 

should be given to this bacterial product. LPS is produced by gram negative bacteria that is 

ubiquitous in the environment (Rylander, 2002). The molecule is composed of a hydrophilic 

polysaccharide and a biologically active lipid A segment. LPS is a strongly pro-inflammatory 

molecule, and a causative agent of septic shock (Suffredini et al., 1989). In the discussion of barn 

air quality LPS is important because often lung function decline can be linked to the levels of 

this molecule (Dosman et al., 2006; Kirychuk et al., 2006; Senthilselvan et al., 2009), or to its 

receptor, TLR4 (Senthilselvan et al., 2009). DNA isolated from settled barn dust was found to 

stimulate monocytes in culture (Roy et al., 2003), but no information exists on exposure to DNA 

in the barn, or the role of its receptor, TLR9 in lung dysfunction.  

 

1.4. Facility Construction 

 The type and construction of a particular facility bears a lot on the types of gasses 

generated. First, chicken production doesn’t have to deal with production of H2S that pig 

production has. Other changes however are more subtle, but nonetheless of importance. For 

example, in one study there was a significant gradient of NH3 and CO2 that followed the 

direction of manure belts in a cage barn (Chai et al., 2010). Likewise, there has been much study 

on cage compared to floor chicken barns which has shown significant differences in the levels of 

dust and LPS, as well as LPS loading onto different particle sizes (Kirychuk et al., 2006; 

Kirychuk et al., 2010; Senthilselvan et al., 2011) depending on the type of chicken barn. This is 
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accompanied, as might be expected, by differences in worker illness in different barns (Kirychuk 

et al., 2006). Animal age will also affect conditions as well, such as increases in ammonia, dust, 

and LPS in barns with older chickens, possibly the result of older litter and more active birds 

(Jones et al., 1984; Senthilselvan et al., 2011). 

 

1.5. Toll-like Receptors 

TLRs are cell receptors of the innate immune system that can detect molecules that are 

associated with microbial pathogens (Kumar et al., 2009). First found in Drosophila, these 

receptors were soon found to have a role in resistance to fungal infection (Lemaitre et al., 1996). 

Since then, analogous receptors have been found in many species with similar roles, initiating 

cell signaling cascades which in turn initiate innate immunity. In mammals TLR signaling can 

induce inflammation, or augment ongoing immune responses.  

TLR4, one of the first recognized TLRs in mammals binds to LPS and can induce strong 

pro-inflammatory responses. Work by many groups has identified TLR4 and environmental LPS 

as critical factors in lung dysfunction seen in barn workers (Charavaryamath et al., 2008; 

Dosman et al., 2006; Kirychuk et al., 2006; Zejda et al., 1994). As more TLR receptors have 

been discovered however, questions have been raised about the contribution of these other 

receptors to overall immune responses to barn air.  

 

1.6. Toll-Like Receptor 9 (TLR9) 

TLR9 is a receptor that binds microbial DNA and induces cytokines, many similar to 

those seen with LPS ligation of TLR4. TLR9, along with TLR3, TLR7, and TLR8, is restricted 

to the endosome. Early studies established that blocking of endosomal acidification with 

chloroquine or bafilomycin A could block CpG stimulation (Hacker et al., 1998; Yi et al., 1998), 
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and immobilization on a surface also prevented CpG activity by not allowing internalization of 

DNA (Krieg et al., 1995; Manzel & Macfarlane, 1999). When TLR9 was later discovered, it 

wasn’t surprising that confocal studies showed clear endosomal localization of TLR9 activation 

(Ahmad-Nejad et al., 2002). Work in macrophages and dendritic cells (Latz et al., 2004) clearly 

showed that TLR9 was synthesized and located in the endoplasmic reticulum, a result soon 

confirmed by others (Leifer et al., 2004). TLR9 expression was not seen at the cell surface, the 

Golgi apparatus, and early endosomes of unstimulated cells. Labeled CpG DNA was taken up 

into large motile vesicular structures known as tubular lysosomes that extended towards the 

nucleus and stained for an early endosomal marker. Clathrin-dependent endocytosis moves DNA 

into TLR9-containing endosomes/lysosomes. TLR9 recruitment into endosomes was through 

fusion of endoplasmic reticulum with the endosomal plasma membrane (Latz et al., 2004).  

 While endosomal localization of TLR9 is well established, the receptor may also be 

expressed at other cellular sites. For example, gut and tonsil epithelia show clear signs of surface 

expression (Ewaschuk et al., 2007; Rumio et al., 2004), and in the gut, apical versus basolateral 

expression appears to even lead to very different results in cell signaling by yet to be understood 

means of differentiation (Lee et al., 2006). There are also signs of surface expression in human 

monocytes (Saikh et al., 2004), and possibly on bronchial epithelium and alveolar macrophages 

in some species (Schneberger et al., 2009; Schneberger et al., 2011). Indeed it appears from cell 

culture studies that the only restriction to signaling through TLR9 at these sites is the appropriate 

acidic pH (Hu et al., 2003).  

 

1.6.1. CpG TLR9 Binding 

 The initial binding of the receptor, though not completely dependent on acidification (pH 

5.5 to 6.5 tested), is very weak, and DNA readily dissociates from the receptor (Rutz et al., 
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2004). Similarly, binding of DNA was found to be more non-specific at physiological pH. 

Sequence specificity for the well-established unmethylated CpG motif was returned with 

acidification to a pH of 6.4 (Hu et al., 2003). Interestingly, in another study, DNA plasmids or 

oligonucleotides that were non-stimulatory were shown to enhance CpG plasmid DNA binding 

in a way that didn’t result in either remaining bound to the receptor-CpG-DNA complex. There 

were indications that this DNA may help in the formation of TLR9 dimers. So, even non-

stimulatory DNA may enhance the effects of stimulatory DNA on TLR9. Therefore, it is 

proposed that while there may be some degree of binding with non-CpG DNA, signaling is very 

sequence specific (Kindrachuk et al., 2007). There is also a threshold TLR9 concentration 

required for signaling, as it has been shown that cell cultures with varying TLR9 concentrations 

may be either sensitive or insensitive to CpG oligonucleotides based on receptor concentration 

(Assaf et al., 2009).  

 

1.7. CpG Structure and Form 

 The other critical aspect of TLR9 binding is its ligand. TLR9 binds un-methylated DNA 

with a CpG dimer preceded optimally by two purines and followed by two pyrimidines (Krieg et 

al., 1995). It must be noted that a cytosine preceding the CpG, or a guanidine immediately 

following it has been shown to be cis-inhibitory  (Stunz et al., 2002, Lenert et al., 2001). The 

stability of free DNA is very short in circulation. It has been estimated that DNA has a half-life 

of approximately 10 minutes (Kawabata et al, 1995), yet many studies have verified the necessity 

of TLR9 in the control of many infections such as Brucella spp, Leishmania major, Lysteria 

monocytogonese and Streptococcus pneumonia (Copin et al., 2007; Krieg et al., 1998; K. S. Lee 

et al., 2007; Lipford et al., 1997). Some of these infections however localize to the alveolar space 
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such as Mycobacterium tuberculosis and Klebsiella pneumoniae (Bafica et al., 2005; Bhan et al., 

2007), where the stability of such DNA remains unknown. 

 The use of synthetic ODNs has revealed that changes to the chemical composition of the 

DNA backbone can significantly alter not only the half-life of the DNA and cellular uptake, but 

also the type of response generated (Zhao et al., 1993). For example, CpG-B/K, where the entire 

backbone is thiolated is quite stable and produces responses such as the production of IL-6, IL-

12, TNF-, and B and DC cell maturation. In contrast CpG-A/D, in which only the poly G ends 

are thiolated induces IFN- production in large quantities in plasmacytoid DC (Hemmi et al., 

2003; Klinman, 2004) though monocyte derived DCs have also been stimulated by them (Hoene 

et al., 2006). Several other modified forms of ODN have been discovered such as CpG-C, which 

is a hybrid CpG-/CpG- ODN (Hartmann et al., 2003; Marshall et al., 2003) and can stimulate 

all CpG responsive cell types. More recently CpG-P has been described which is 

phosphothiolated and can form multi-ODN cocatameric structures that exhibit CpG-C like 

stimulation, but with increased cytokine production, particularly of type-1 interferons 

(Samulowitz et al., 2010). Further, there is some indication that backbone thiolation may itself be 

somewhat TLR9-stimulatory (Roberts et al., 2005). Therefore, studies using synthetic ODNs 

must be taken with some degree of caution as none of the synthetic ODNs are particularly good 

mimics for natural DNA. 

 The specifics of the binding of DNA ODN to TLR9 are still not fully determined. For 

example, data show altered response and binding preferences to different sequences flanking the 

CpG sequence (Pisetsky & Reich, 1998; Rankin et al., 2001; Yu et al., 2000). In this last case 

however the species differences may only apply to phosphorothioate-modified ODNs, and not 

natural phosphodiester ODNs (Roberts et al., 2005). Further, TLR9 signaling is enhanced to 
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DNA from pathogenic bacteria compared to non-pathogenic species (Ewaschuk et al., 2007; 

Hoppstadter et al., 2010), though to date no particular sequence or threshold of CpG sequence 

has been credited with making this distinction. Certainly different bacterial species have 

differing abilities to stimulate TLR9 (Neujahr et al., 1999). 

While much of the work with oligonucleotides has used single stranded DNA, double 

stranded plasmids have also been effective (Cornelie et al., 2004), but not double stranded 

oligonucleotides (Rutz et al., 2004). There have been conflicting reports on the ability of these 

types of DNA to induce TLR9 signaling, though it has been suggested that supercoiling of 

double stranded DNA may be the critical factor in resolving a number of these conflicting results 

(Kindrachuk et al., 2007). This suggests that tertiary DNA structure also influences TLR9 

signaling. 

Indeed, work on required levels of CpG for TLR9 signaling can be difficult to 

understand. While several of the lower-dose cell cultures and mouse challenge systems have 

used a stimulatory ODN dose of around 10g or 10g/ml CpG-oligonucleotide treatment 

(Fernandez et al., 2004; J. Li et al., 2004; Roy et al., 2003; Schwartz et al., 1997), studies which 

elucidated the immunogenicity of the sequence in regards to DNA vaccines were conducted with 

plasmid DNA, containing changes of only one or two CpG sites in a plasmid (Y. Sato et al., 

1996). Such a change in CpG concentration is quite low to total DNA administered, so the 

sensitivity of the receptor to CpG encountered in different forms can be hard to predict. A more 

recent finding has been that mitochondrial DNA can activate TLR9 (Q. Zhang et al., 2010). This 

is to be expected given the different properties of mitochondrial DNA, particularly lack of 

methylase (Cardon et al., 1994), and does point to TLR9 possibly playing a role in the detection 

of cellular trauma and necrosis.  
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 Interestingly, there is only one report on differences in immune stimulation by purified 

environmental DNA samples. Roy et al. (Roy et al., 2003) showed differences in immune 

response from human PBMCs to DNA from barn dust as compared to house dust. This is quite 

interesting as it suggests that this DNA, a mixture of DNA from numerous eukaryotic and 

prokaryotic sources in a variety of sizes can induce detectable immunological changes. 

 

1.8. Intracellular Signaling  

The binding of TLR9 is believed to induce dimerization of the receptor, bringing the TIR 

domains of each receptor monomer into close association, altering their conformation and 

allowing for recruitment of adapter protein MyD88 to the receptor (Ahmad-Nejad et al., 2002). 

MyD88 in turn allows for recruitment of IRAK1 and IRAK4 to the complex via the N-terminal 

death domain followed by sequential phosphorylation and dissociation (Chen, 2005; Janssens & 

Beyaert, 2003; N. Suzuki et al., 2002). IRAK1 and 4 possess kinase activity, whereas the other 

forms, IRAK-2 and M don't have the kinase activity (Janssens & Beyaert, 2003; N. Suzuki et al., 

2002). These last two may help to reduce signaling in some situations (Janssens & Beyaert, 

2003; Kobayashi et al., 2002). IRAK is responsible for subsequent TRAF6 activation (Chen, 

2005). This activation allows for TRAF6 to activate transforming growth factor--activated 

protein kinase (TAK1), an association with subunits TAB1, TAB2, and TAB3, which result in 

TAK1 phosphorylation (Z. J. Chen, 2005). This phosphorylation results in the subsequent 

phosphorylation and activation of Ikappa-kinases α and β (Shambharkar et al., 2007). These 

kinases in turn phosphorylate IB- and IB- resulting in ubiquitination and degradation of 

these proteins, freeing NF-B dimers to translocate to the nucleus and bind to their respective 
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promoter sequences to initiate transcription of genes associated with inflammation and immunity 

(Hoffmann & Baltimore, 2006).  

The TAK1 phosphorylation also leads to phosphorylation of MKK3 and MKK6 that can 

activate transcription factors JNK and p38 (S. Sato et al., 2005). A note should be made of 

plasmacytoid dendritic cells that produce large quantities of the transcription factor IRF7 (Coccia 

et al., 2004; Dai et al., 2004), which translocates to the nucleus upon TLR9 stimulation to induce 

the strong IFN- production seen in this cell type (Honda et al., 2005; Kawai et al., 2004). 

While signaling through the IL-1 pathway is the primary means of signaling from TLR9, 

there are indications of one or more alternate pathways through which signaling occurs. For 

example, phosphoinositide 3-kinase (PI3K) pathway activation is seen in neutrophils (Hoarau et 

al., 2007). One such example shows initiation of a tyrosine-phosphorylation signaling cascade, 

resulting in changes to the cellular actin cytoskeleton and motility, which was MyD88 

independent and chloroquine insensitive (Sanjuan et al., 2006), while another shows a PI3K 

pathway activation that was only partly inhibited by TLR9 removal (Dragoi et al., 2005). 

 

1.9. TLR9 Cellular Expression 

1.9.1. Dendritic Cells 

 Dendritic cells are perhaps the most studied cells with relation to TLR9 expression and 

responses to CpG signaling. As these cells play a key role in the identification and presentation 

of antigens to the specific immune system they express a broad range of receptors to potential 

innate immune triggers, which act as a second signal. The potential to use CpGs as Th1-biased 

adjuvants on these professional antigen presenting cells has also played a role in interest in these 

cells (Takeda et al., 2003). 
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 Expression of TLR9 between dendritic subtypes and between species can be quite varied. 

In mice it is known that expression of TLR9 occurs in both myeloid as well as plasmacytoid 

dendritic cells in the liver, while it is restricted to only plasmacytoid cells in the lung (L. Chen et 

al., 2006). In humans only plasmacytoid dendritic cells express TLR9 (Jarrossay et al., & 

Lanzavecchia, 2001; Kadowaki et al., 2001). There is evidence, however, of TLR9 expression 

and response to CpG ODN in human myeloid dendritic cells (Hoene et al., 2006). The expression 

patterns remain to be determined in other animal species. As these are perhaps two of the best 

studied populations that exist in the lung, I will concentrate on them alone. 

 There are many studies on the production of cytokines, chemokines, and induction of cell 

receptors in dendritic cells exposed to unmethylated DNA. Plasmacytoid dendritic cells (pDC) 

appear to be particularly responsive to unmethylated DNA, producing large quantities of IFN-

 in response to CpG or unmodified unmethylated DNA (Hemmi et al., 2003; Klinman, 2004). 

In addition pDC also produce IL-6, IL-8, TNF-, IP-10, and IL-12 (Boonstra et al., 2006; Krug 

et al., 2001). There is also up-regulation of surface receptors CD40, CD80, CD83, CD86, 

MHCII, CCR7 (Jarrossay et al., 2001; Krug et al., 2001) and down regulation of CXCR3 

(Jarrossay et al., 2001). Survival, activation, and maturation also occurred as a result of CpG 

ODN stimulation (Krug et al., 2001).  

Myeloid dendritic cells produce IL-6, 10, 12, 15, and TNF- (Boonstra et al., 2006; 

Hoene et al., 2006; Kuwajima et al., 2006; Sparwasser et al., 1998). Interestingly in mice, co-

operation between mDC and pDCs to CpG results in mDC IL-12 production somewhat similar to 

what is seen in pDC in humans (Krug et al., 2001). Mouse mDCs produce IL-15, inducing 

CD40L surface expression on pDC that then binds CD40 on pDCs to induce mDC to produce IL-

12 (Kuwajima et al., 2006). They also produced small amounts of IFN-, but not IFN- (21). 
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There is also increased expression of CD86 and MHCII but not CD80 [in mice] (Sparwasser et 

al., 1998), indicative of dendritic cell maturation. 

 

1.9.2. Macrophages 

 Macrophages are an important part of both the innate and adaptive immune system, 

serving to clear debris and microorganisms as well as provide critical immune signaling to other 

cells. These cells are thus often specialized to the needs of a particular tissue, and several 

different sub-populations may work together to tailor responses. 

 Macrophages are often categorized according to their origin as well as their location. 

Lung has interstitial macrophages, which exist in the lung parenchyma and alveolar macrophages 

that reside in the alveolar space. While both populations may secrete a variety of factors, alveolar 

macrophages appear better at cytokine production, whereas interstitial macrophage are geared 

more to presentation of antigen, accessory function, (Bedoret et al., 2009; Fathi et al., 2001; 

Lohmann-Matthes et al., 1994), and possibly tissue remodeling (Ferrari-Lacraz et al., 2001). This 

said, interstitial macrophages had higher constitutive production of IL-10, IL-1ra and IL-6 

(Hoppstadter et al., 2010). Interstitial macrophages suppress immune responses by inhibiting 

migration of dendritic cell (Bedoret et al 2009). Both populations of macrophages express TLR9, 

though there has been some dispute about this in human alveolar macrophages (Fernandez et al., 

2004; Hoppstadter et al., 2010; Kiemer et al., 2008; K. Suzuki et al., 2005). The cytokine profiles 

for both types of macrophages, however, are quite different. In alveolar macrophages there was a 

greater production of TNF- to Mycobacterium bovis bacterial DNA, but interstitial 

macrophages showed strong induction of IL-6, and IL-10. This last cytokine was absent from the 

alveolar macrophages challenged (Hoppstadter et al., 2010). 
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 Macrophages in response to CpG express cytokines such as IL-6, 10, 12, TNF-, IFN-

, MIP-, MIP-2, JE/MCP-1, IP-10, and RANTES (Boonstra et al., 2006; Kiemer et al., 

2008; Lipford et al., 1997; Qiao et al., 2005; Takeshita et al., 2000; Yao et al., 2009; Yeo et al., 

2003). Functionally CpG also increases MHC-I, CD40, CD80, ICAM-1 and CD16/32 on the cell 

surface, increase cell cytotoxicity, and survival (Martin-Orozco et al., 1999; Sester et al., 2006). 

However, the pattern of expression is likely to vary depending on the population of macrophages 

in question. In addition CpG ODN can synergize with IFN- to induce nitric oxide synthase in 

macrophages (Sweet et al., 1998), and enhances IL-12p40 production (Cowdery et al., 1999). 

PGE2 is also produced, which can inhibit IFN- production (Y. Chen et al., 2001). 

A notable change in receptor signaling in response to TLR2, 4, and 9 ligation in alveolar 

macrophages is inhibition of IL-10R signaling (Fernandez et al., 2004). IL-10 is constitutively 

expressed in many lung cells presumably to maintain an anti-inflammatory homeostasis. TLR 

ligation reduces ability of macrophages to respond to IL-10 (Bonfield et al., 1995; Fernandez et 

al., 2004). This may be a critical point as alveolar macrophages produce a variety of anti-

inflammatory cytokines, including IL-10 (Bingisser & Holt, 2001). 

It should be noted that within certain species, particularly hoofed mammals, there is a 

population of specialized macrophages known as pulmonary intravascular macrophages (PIMs) 

(Staub, 1994). These appear to serve a function similar to vascular macrophages in the liver of 

other species, being very active in removing particulates from circulation, but also contribute to 

lung inflammation (Parbhakar et al., 2005; Singh et al., 2004). While no work has been done on 

the expression of TLR9 in PIMs, it is known that macrophages express TLR9 in at least several 

species (Burgener & Jungi, 2008; Dar et al., 2010; Griebel et al., 2005; Hashimoto et al., 2005; 

Shimosato et al., 2005; Tohno et al., 2006; Y. W. Zhang et al., 2008). 
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1.9.3. Monocytes 

 Monocytes have been studied significantly less than the cells that differentiate from them. 

Both human and mouse monocytes express TLR9 (Juarez et al., 2010; Saikh et al., 2004). 

Human monocytes were shown to express TNF- and IL-6 in response to bacterial DNA (Juarez 

et al., 2010) despite earlier work by others that suggested these cells were non-responsive to CpG 

ODN (Hornung et al., 2002). Beyond this not much has been written on their responses to 

stimulation through the receptor. 

 

1.9.4. B Cells 

 B cells were the first cell types to be recognized to respond to unmethylated DNA, as the 

molecule acts as a strong mitogen on these cells (Krieg et al 1995) and may be sufficient to 

induce proliferation, inhibit apoptosis, and cytokine secretion (Hanten et al 2008, Krieg and 

Vollmer 2007, Jiang et al 2007 Malaspina et al 2008, Wang et al 1997). Studies have shown 

expression of TLR9 on these cells in mice, humans, and some veterinary species (Cognasse et al 

2008, Nalubamba et al 2007). The expression levels of TLR9 are also altered depending on the 

type of B cell in question. For example, naïve human B cells show low expression of a host of 

TLRs including TLR9 (Bernasconi et al., 2003; Booth et al., 2011). These cells appear to be non-

reactive to CpG in humans, unless there is simultaneous B cell receptor engagement, resulting in 

increased TLR9 expression, a process which could act as a check on generation of self-reactive B 

cells (Bernasconi et al., 2003). In contrast, memory B cells in humans have much elevated levels 

of several receptors, including TLR9, and have been shown to differentiate into plasma cells 

upon TLR ligand stimulation alone (Booth et al., 2011). Location can also play a role, where 

tonsil B cells express TLRs at heightened levels in naïve, memory, or germinal cell populations 
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(J. Booth et al., 2011). Contrast this with regulatory B cells of Payer’s Patches that appear to not 

respond to CpG-ODN due to inactivation of the TLR9 signaling pathway (Booth et al., 2010). 

 CpG-ODN administration to B cells has been known to increase proliferation (Krieg et 

al., 1995) and induce antibody production, particularly those antibodies associated with Th1 type 

responses such as IgG2a/b and IgG3 in mice, and IgG and IgM in humans. They can also induce 

class switching to these antibody types from other types such as IgE (Hanten et al., 2008; He et 

al., 2004; Jegerlehner et al., 2007; Lin et al., 2004; N. Liu et al., 2003), though other cytokine 

mediations are necessary (Krieg, 2002). 

B cells also express a variety of cytokines upon CpG-ODN stimulation such as MIP-1 

(CCL3), MIP-1 (CCL4), IL-1, IL-2, IL-2r, IL-10, and IL-6 (Cognasse et al., 2008; Hanten et 

al., 2008; Lampropoulou et al., 2008; Marshall-Clarke et al., 2003). Cell surface markers are also 

increased for MHC-I, MHC-II, IL-2R, CD23, CD40, CD58, CD80, CD86, and down regulation 

of CD32 in one system but not another (Hanten et al., 2008; Martin-Orozco et al., 1999). 

 

1.9.5. T Cells 

 T cells have been shown to express TLR9 in mice, rats, and humans (Chiffoleau et al., 

2007; Gelman et al., 2004; Hammond et al., 2010). Both activated and memory (CD45RO+) 

CD4+ and CD8+ T cells in humans have been shown to express TLR9 but not naïve T cells 

(Babu et al., 2006).  

What appears common to many of these subtypes is that TLR9 may enhance some 

responses, but cannot initiate responses in purified T cell populations (Hornung et al., 2002). 

Upon T cell activation, however, TLR9 has been shown to enhance survival (Gelman et al 2004) 

and/or proliferation (Chiffoleau et al., 2007). Also, while CD4+NKT cells are responsive to CpG 
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ODN, this activity appears to be as a secondary enhancement of response to Kupffer cell TLR9 

activation (Jiang et al., 2009). 

Regulatory T cells (Treg) cells have been shown to play crucial roles in attenuation of 

immune responses, and prevention of autoimmunity (van Maren et al 2008). Interestingly, while 

TLR9 expression was low on effectors T cells and natural Treg cells, IL-10 secreting Tregs 

(inducible Tregs) generated in the presence of vitamin D produced higher TLR9 levels. These 

adaptive Tregs also produced IL-4, while production of IL-10 and IFN- was reduced, abrogating 

their regulatory function (Urry et al., 2009). Therefore, CpG/TLR9 may work in concert with 

other molecules to enhance immune responses by interrupting signals that reduce such responses. 

TLR9 signaling appears able to also block Treg conversion in the gut (Hall et al., 2008). 

 

1.9.6. Natural Killer (NK) Cells 

 Natural killer cells were shown to express TLR9 in mice and humans (Roda et al., 2005). 

Natural killer cells are cytotoxic cells that kill by targeting cells deficient in MHC-I receptor and 

releasing perforins and granzymes that lyse the cell. They also detect antibody-coated cells via 

the CD16 (human) receptor. In response to CpG stimulation with CD16 ligation they have been 

shown to produce larger quantities of IFN-, MIP-1, IL-8, macrophage-derived chemokine 

(MDC), and an increase in cell cytotoxicity (Roda et al., 2005). This may explain why an earlier 

study showed these cells to be non-responsive to CpG ODN (Hornung et al., 2002), as there is a 

requirement for additional stimulation. 
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1.9.7. Neutrophils 

 As an early responding cell to infections, neutrophils are equipped with a wide range of 

TLR receptors, including TLR9 (Hayashi et al., 2003). Ligation of TLR9 results in production of 

IL-6, IL-8 and TNF- (Jozsef et al., 2006). Up-regulation of CD11b/CD18 on the cell surface 

was seen (Trevani et al., 2003), but this could be achieved to some degree in TLR9-negative 

mice as well suggesting a role for other DNA sensing mechanisms (Alvarez et al., 2006). 

Bacterial DNA prevents apoptosis of these short-lived cells (Jozsef et al., 2004). Interestingly, L-

selectin shedding, a marker for neutrophil activation, and phagocytosis were not altered (Hayashi 

et al., 2003). However, in another study L-selectin shedding (Trevani et al., 2003), phagocytosis 

and superoxide production in neutrophils were increased (Hayashi et al., 2003; Wheeler et al., 

1997). Also, it appears that while the cytokine response relies on the classical TLR to NF-B 

pathway, other aspects such as apoptosis were conducted through the MAPK pathway (Hoarau et 

al., 2007; Jozsef et al., 2004). This expression of TLR9 occurs across a number of species such 

as human (Hayashi et al., 2003) and mouse/rat (Jozsef et al., 2004). 

 

1.9.8. Eosinophils and Basophils 

 Eosinophils appear to constitutively express TLR9 (Nagase et al 2003, Mänsson and 

Cardell 2009). Stimulation of isolated human eosinophils with CpG-ODN caused the up-

regulation of CD11b, CD69, down-regulation of L-selectin, and enhanced cell survival. Further, 

these eosinophils secreted IL-8 and eosinophil-derived neurotoxin, the latter a marker for 

degranulation. Interestingly, the release of these two mediators was enhanced in allergic patients, 

suggesting an enhanced effect of CpG in those prone to allergy (Mansson & Cardell, 2009). 
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While basophil expression of TLR9 has been shown (Fransson et al., 2007), there are no 

papers published to date on response of these cells to TLR9 stimulation. 

 

1.9.9. Mast Cells 

 Bone marrow derived mouse mast cells have been shown to express TLR9, but CpG-

ODN appeared to have no effect on proliferation or degranulation. There was however an 

increase in the expression of IL-6 by these cells (Ikeda et al., 2003). In another study of mouse 

bone marrow and fetal skin derived mast cells a similar failure to induce degranulation with 

CpG-ODN occurred, but these cells were still induced to express TNF-, IL-6, RANTES, MIP-

1, and MIP-2 (Matsushima et al., 2004). 

 

1.9.10. Platelets 

 An interesting observation has been made that human and mouse platelets express a 

number of TLR receptors, including TLR9 (Cognasse et al., 2005). Given that signaling from 

TLRs has always been thought to be about activation of transcription factors, this brings up the 

question of what pathways are used by these receptors and what function do they play in these 

anucleated cells. TLR9 expression could be increased in human platelets by treatment with 

thrombin suggesting that expression levels of the receptor are subject to being increased. LPS 

treatment of these cells showed that TLR4 played a significant role in the induction of TNF- to 

LPS in mice (Aslam et al., 2006). While TLR9 was not tested, the possibility exists for a 

functional role for TLR9 on these cells. 
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1.9.11. Non-immune cells 

 While many papers stress the expression of TLR9 on immune cells, it is becoming clearer 

that TLR9 expression is much broader than initially suspected. This is particularly true of studies 

along mucosal surfaces, with other cell types being added as time goes on. Epithelial cells of the 

gut (Schmausser et al., 2004), nose (Fransson et al., 2007), tonsils (Rumio et al., 2004), and the 

bronchus (Platz et al., 2004) clearly express the receptor. Bronchial epithelial cells in culture, 

when exposed to bacteria DNA or CpG ODNs expressed IL-6, IL-8, and -defensin 2 (Platz et 

al., 2004). Similar in some ways to epithelial cells, conjunctival cells also express TLR9 (Bonini 

et al., 2005). Other tissues included the monocyte related astrocytes and microglial cells in the 

brain (Deng et al., 2001; Schluesener et al., 2001). 

Vascular endothelium has been shown to express TLR9 across a number of tested species 

(J. Li et al., 2004). Stimulation of these cells with CpG ODN also showed that vascular 

endothelium is good at producing IL-8 and ICAM-1 two pro-inflammatory proteins (Li et al., 

2004). Similar results have been seen in the nose as far as expression of TLR9 is concerned 

(Fransson et al., 2007). 

 

1.10. Lung Inflammation 

 The lung is a complex and vital organ that is faced with a number of unique challenges in 

order to function properly. It must carry out gas exchange over a large mucosal surface area, 

while at the same time managing to remove particulates as well as prevent infection and invasion 

of the body by microorganisms. Inflammation must therefore be activated and subsequently 

deactivated in a very controlled fashion in order to prevent loss of function either through 

unrestrained inflammation, or bacterial invasion by insufficient response. 
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 Inflammation is usually divided along the lines of acute versus chronic inflammation. In 

brief, acute inflammation of short duration is typically rapidly induced without any long term 

changes to the tissues involved. In contrast, chronic inflammation is often more slowly induced, 

but leads to persistent inflammation with significant tissue damage and airway remodeling. This 

persistence can often (but not always) be caused by failure to eliminate the antigenic “irritant”, 

but lasting changes to the tissue as a result of inflammation may also play a role in maintaining 

this irritation. 

 

1.11. Basics of Lung Inflammation: Shared early features of inflammation  

 A critical aspect of inflammation is the migration of immune cells to the site of injury or 

infection. This occurs in both acute as well as chronic inflammation. First, there is signaling from 

the site of infection. Cells within the area such as DCs, epithelial cells, or macrophages respond 

to a local insult by sensing “danger signals” (Medzhitov & Janeway, 2000) which can be quite 

varied, all of which may not yet be known. Some examples include TLR and NOD receptors for 

microbial molecular motifs (Chen et al 2009, Aharonson-Raz & Singh, 2010). These in turn can 

cause changes such as the expression of new surface markers as well as cytokine and chemokine 

production which can signal cells more distal to the site of injury or infection, as well as set up a 

chemotactic concentration gradient to signal cells to the site. 

 Another method is to induce migration in mobile cell types such as macrophages and 

DCs. DCs present a very good example of this. Prior to activation these cells are specialized to 

detect and gather antigen, expressing a number of pattern recognition receptors such as TLRs, 

and a strong ability to phagocytose microbes (de Heer et al., 2005; Hornung et al., 2002).  Upon 

contact with an antigen, presumably in the context of a second danger or inflammatory signal of 

some kind, these cells undergo maturation. In this process pattern recognition receptors are down 
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regulated and antigen presentation and co-stimulatory molecules such as MHC-II, CD80, and 

CD86 are up-regulated. The cells also now migrate by up-regulating CCR7 and then following 

CCL21 to regional lymph nodes to present antigen to cells of the specific immune system such as 

T-helper cells (Forster et al., 1999; Saeki et al., 1999). As the activation of specific immunity is a 

prolonged event, such specific immune cells are often not seen in cases of acute inflammation, 

but forms a critical aspect of chronic inflammatory responses. 

 Within tissue the next level of change is the induction of changes to the local vasculature. 

In response to factors such as histamine, bradykinins, vascular endothelial growth factor 

(VEGF), and platelet-activating factor (PAF) vasodilation occurs, allowing for easier migration 

of inflammatory cells into tissue (Theoharides et al., 2007). This also results in increased leakage 

of fluids and the redness that are characteristic of inflammation. At the same time endothelial 

cells are induced to increase the expression of several cell surface receptors and ligands of the 

selectin and integrin families to attract appropriate cell populations based on the type of surface 

protein induced. For example, P-selectin is expressed on endothelial cell surfaces in response to 

acute inflammation signals such as histamine to attract monocytes and neutrophils whereas E-

selectin is induced by IL-1 or TNF- (Springer, 1994).  These signals allow for the attachment, 

rolling, and final migration out of circulation (Carlos & Harlan, 1994; Lawrence & Springer, 

1991; Springer, 1994). At the same time, lymphocytes express different selectins and integrins 

such as Mac-1 or LFA-1 that can bind intercellular adhesion molecules (ICAM) (Springer, 

1990). A precisely coordinated sequence of such interactions is required for proper migration of 

neutrophils. Selectins first mediate tethering and rolling, but chemoattractant signaling is 

required for firm attachment to ICAM followed by migration out of circulation (Lawrence & 

Springer, 1991; Springer, 1994). These chemokines also impart directional signaling to guide 
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different populations of immune cells to the site of inflammation, as well as signal cells at or 

near the site to produce other mediators (Carlos & Harlan, 1994; Hechtman et al., 1991; Huber et 

al., 1991; Springer, 1994). 

 The first cells that migrate to the site of inflammation make up members of the innate 

immune system, but migration to the site continues throughout infection. Neutrophils often 

comprise the greatest number of cells initially (Tsushima et al., 2009). Neutrophils produce 

numerous cytokines, including IL-6 and IL-6 soluble receptor leading to increased movement of 

macrophages to the area with subsequent decreased neutrophil migration (Bellingan et al., 1996; 

Hurst et al., 2001). If inflammation is not resolved and a more chronic inflammation occurs there 

can be additional migration of B and T cells to the area. Alveolar macrophages, already resident 

in the alveoli are already at the site of many lung infections and secrete a range of pro-

inflammatory cytokines including IL-1, 6, 8, and TNF- (Ware & Matthay, 2000). 

 Resolution of inflammation is likewise a controlled and regulated process that extends 

beyond simple removal of chemotactic and inflammatory signals. Neutrophil accumulation is 

resolved through apoptosis of these cells (Abraham, 2003; Matute-Bello & Martin, 2003), while 

alveolar macrophage clear debris, proteins, and apoptotic neutrophils (Ware & Matthay, 2000). 

Edema and fluid in the alveoli is resolved through active transport of fluid into the lung 

interstitium by water channels such as aquaporins, and proteins by diffusion between cells 

(Dobbs et al., 1998; Matthay et al., 1996; Tsushima et al., 2009). Fluid is then carried away by 

the lung lymphatic system (Brigham et al., 1974; Ohkuda et al., 1978). Damage of the alveolar 

epithelium is repaired by proliferation of Type-II cells, with differentiation into Type-I cells 

(Adamson & Bowden, 1974). 
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1.12. Acute Lung Injury (ALI) 

 Acute lung injury is perhaps the most common type of lung inflammation for most 

people. A microbial infection, or presence of bacterial components such as LPS cause an 

inflammatory response, which subsequently resolves itself after the antigen is removed. This 

resolution typically proceeds with removal of excess cells, debris and fluids and cellular repair of 

nearby tissues, resulting in few if any permanent changes to the tissue. 

 To build on the previously mentioned basic description of inflammation, cases of ALI are 

seen to produce large quantities of macrophage migration inhibitory factor (MIF) in lavage 

samples. This cytokine is known to induce IL-8 and TNF- production from resident 

macrophages, which have been shown to lead to neutrophil chemotaxis (Donnelly et al., 1997). It 

also has a role in the up-regulation of receptors such as TLR4 (Roger et al., 2001) and improves 

survival of macrophages (Goodman et al., 2003).  MIF production is in keeping with the early 

signs of ALI, which includes diffuse neutrophilic infiltration of the lung, haemorrhage, and 

edema (Wheeler & Bernard, 2007). IL-1 appears to also be critical to the disease and found in 

the BAL as well (Goodman et al., 1996). 

 Recruitment of neutrophils is a common feature yet there has been some controversy 

about whether the number of neutrophils in the lung is sufficient for activation (Goodman et al., 

2003). However, most studies have shown more reactive neutrophils in acute respiratory distress 

syndrome (ARDS) patients. The release of cytokines such as IL-1, TNF- and IL-8 strongly 

suggest activated neutrophil involvement is a critical part of this inflammation (Abraham, 2003). 

Interestingly, apoptosis of these same neutrophils can induce macrophages to inhibit their 

production of a number of pro-inflammatory cytokines (Fadok et al., 1998; Huynh et al., 2002). 

B and T cells are typically not a feature of ARDS (Goodman et al., 2003). The action of these 
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immune cells results in increased local oxidant stress and protease action, resulting in reduced 

production and breakdown of surfactant, inhibiting gas exchange. Local production of elastases 

can further damage alveolar capillary and epithelial cells (Wheeler & Bernard, 2007). 

 Containment of inflammatory processes appears to occur in conjunction with 

inflammation, as levels of antagonists such as IL-1ra or anti-inflammatory cytokines such as IL-

10 are produced (Bogdan et al., 1991; Fiorentino et al., 1989; Fiorentino et al., 1991; Goodman 

et al., 1996). The latter in particular is known to inhibit macrophage cytokine production 

(Fiorentino et al., 1989; Fiorentino et al., 1991). This can lead to anti-inflammatory conditions 

over time (Goodman et al., 2003). 

 It is of note that patients can have different outcomes to ALI. For some there is simple 

resolution, whereas others may have fibrosing alveolitis that seems to start early in inflammation, 

and is characterized by mesenchymal cells appearing in the alveoli. This leads to fibrosis and 

angiogenesis, characteristic of more prolonged or chronic lung disorders (Ware & Matthay, 

2000). Interestingly this outcome has been induced with adenoviral gene delivery of IL-1 gene 

into the lung, suggesting that this cytokine may be responsible for this fibrosis (Kolb et al., 

2001). This was further confirmed in that those with lower IL-1ra, an IL-1 antagonist showed 

this persistent ARDS (Goodman et al., 1996). 

 

1.13. Asthma, an Example of Chronic Inflammation 

 One of the most common types of inflammation of the lung is asthma. It is estimated 

there are 300 million people around the world with asthma, and 10% of the North American 

population (Braman, 2006). Airway obstruction is caused by constriction of the smooth muscle 

cells surrounding the bronchi, and diagnosis is done by inducing irritation of the bronchial 
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epithelial cells with an agent such as methacholine, and measuring drop in the forced expiratory 

volume at different concentrations of irritant (AARC clinical practice guideline. bronchial 

provocation. american association for respiratory care.1992). 

 While asthma is typically associated with a specific allergen(s) called atopic or extrinsic 

asthma, not all cases of asthma have a recognizable allergen. These non-atopic or intrinsic cases 

proceed similar to asthma, but may be induced by physical triggers such as cold air and exercise 

(Humbert et al., 1999; Wenzel, 2006) though there are some that suggest an infection may be 

responsible in some or most of these cases (Barnes, 2009). Likewise, a number of people may 

have allergies but not asthma, so the specifics of asthma formation are as yet not easy to discern. 

However, most work on asthma does assume a specific response to an environmental allergen. 

One key feature of asthma is the induction and accumulation of inflammatory helper T cells of 

the antibody mediated, or Th2 subtype in the lung. These cells in turn secrete cytokines such as 

IL-4, 5, 9 and 13, instructing B cells to produce IgE antibodies, which in turn bind to FcRI on 

mast cells attracted by the same cytokines (Barnes, 2008; Cyphert et al., 2009; Gould et al., 

2000; Kay, 2006; Robinson et al., 1992). Upon binding allergen, which results in IgE cross-

linking, these mast cells release a number of pro-inflammatory mediators such as histamine, 

leukotrienes, prostaglandin D2, IL-4, IL-5, IL-13, and TSLP (Barnes, 2008; Galli et al., 2005; 

Ying et al., 2005) that induce inflammation and bronchoconstriction, the hallmarks of the disease 

(Cyphert et al., 2009). Mast cells may be found in smooth muscle, a situation linked to airway 

hyperresponsiveness, or also recruited to the mucosal surface by stem-cell factor (Brightling et 

al., 2002; Reber et al., 2006).  

 The other cell type associated with inflammation is the bronchial epithelial cell. In 

promotion of inflammation they produce a number of factors including CCL11 (eotaxin-1) which  
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induces eosinophil migration (Gonzalo et al., 1996), and thymic stromal lymphopoietin (TSLP) 

(Allakhverdi et al., 2007). This last factor has been shown to play a role in myeloid DC 

maturation, and inducing release of CCL17, and CCL22, which both bind CCR4 that is 

selectively expressed on Th2 cells ( Liu, 2006). TSLP can also directly activate DCs to prime T 

cells to produce Th2 cytokines (Ito et al., 2005; Wang et al., 2006). The epithelial layer acts as a 

barrier with the cells connected by tight junctions and zonula occludens proteins (Hammad & 

Lambrecht, 2008). It may also act as a barrier to allergen entry. Indeed, a number of more 

common and clinically relevant allergens such as Aspergillus species and ragweed pollen have 

cysteine and serine protease activities that can disrupt cell junction proteins (Runswick et al., 

2007; Tai et al., 2006). 

Basolateral to the epithelial barrier are mucosal DCs that extend processes between the 

cell junctions in order to sample antigens (Chieppa et al., 2006; Jahnsen et al., 2006). The 

epithelial cell barrier limits access to other DC subtypes. In many cases it is believed that 

insufficient stimulation of DCs results in abortive or insufficient stimulatory DCs, which can 

induce tolerance (Akbari et al., 2002; de Heer et al., 2004), a situation that can be overcome by 

addition of additional stimuli such as LPS (Eisenbarth et al., 2002; Piggott et al., 2005). Given 

that epithelial cells are well armed with TLR and PAR receptors (Kauffman, 2006) these may 

provide secondary signals for full activation of DCs. 

 Control or avoidance of asthma has been hard to deduce. It has been shown that naturally 

occurring populations of macrophages such as interstitial and alveolar macrophages (AM) may 

play a role. AMs though critical to inflammatory responses and clearance of many pathogens 

from the alveoli are often not mentioned in regards to asthma. However, there are some 

indications that they may exert anti-inflammatory effects. This is through several mechanisms. 



 

31  

First, they have been shown to inhibit antigen presentation by resident DCs (Holt et al., 1993). 

Second, AMs in standard OVA airway hyperresponsiveness challenge systems appear to 

preferentially produce IFN-, IL-12, and IL-18, and inhibit IL-4 and IL-5 (Ho et al., 2002; 

Plummeridge et al., 2000; Thepen et al., 1991), polarizing responses towards a Th1-type 

response, inhibiting Th2 responses. Many such factors in the right context however can be pro-

inflammatory (Peters-Golden, 2004). They also produce anti-inflammatory cytokines IL-10 and 

TGF-ay. Another interesting feature is that AMs produce prostiglandin-E2, TGF-, 

and platelet-activating factor upon phagocytosis of apoptotic cells (Fadok et al., 1998), but pro-

inflammatory cytokines in response to bacteria that are ingested. In the case of asthma, where 

epithelial cells are readily lost and more susceptible to apoptosis (Barnes, 2008; Jeffery, 2001), it 

is possible that AMs provide negative feedback to asthmatic symptoms. There is even some 

evidence to suggest that they can tolerize CD4+ T cells in an antigen-specific manner 

(Blumenthal et al., 2001). 

Others have shown a role for the development of Tregs (CD4+ FoxP3+) in limiting 

responses and maintaining lung homeostasis (Holt et al., 2008). Upon stimulation they secrete 

cytokines known to play roles in limiting inflammation such as IL-10 and TGF- (Li et al., 2006; 

O'Garra et al., 2008). They also express CTLA4 and PD-1 that can inhibit responses through 

direct contact with other cells (Vignali et al., 2008). Tregs may also compete with other T cells 

for growth factors (Barthlott et al., 2003). 

Indeed repeated low dose exposure to inhaled allergen induced tolerance that could be 

transferred to naïve mice through Treg adoptive transfer (Ostroukhova et al., 2004). 

Atopic individuals may be less susceptible to Treg control though as in vitro studies have shown 

CD4+CD25- cells from atopic patients were inhibited less by these cells. Further, they may play 
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a role more in prevention of atopy as non-atopic volunteers depleted of Tregs exhibited Th2 

responses to allergens similar to those that were atopic (Ling et al., 2004). Certainly they seem to 

limit airway hyperresponsiveness (Lewkowich et al., 2005). Another thought is that DCs 

exposed to antigen without sufficient co-stimulation drive the production of Tregs, as non-atopic 

OVA challenge still drives T cell proliferation (Holt et al., 1981). It is likely that antigen 

presenting cells such as DC are important in this generation, as DCs that produced IL-10 in 

response to an allergen were able to induce Tregs, and DC transfer could re-create this in naïve 

mice (Akbari et al., 2002).  

 Persistent changes are a hallmark of chronic inflammation. These are mainly associated 

with the bronchial epithelium and surrounding tissues. Given the more fragile nature of asthmatic 

epithelial cells there is evidence of epithelial growth and dedifferentiation (Jeffery, 2001), 

mucous/goblet cell metaplasia and changes to submucosal glands leading in increased mucus 

plugging of airways (Aikawa et al., 1992; Shimura et al., 1996), and sloughing of epithelial cells 

in asthmatic sputum is common (Beasley et al., 1989; Jeffery et al., 1989; Laitinen et al., 1985). 

This may induce further responses such as platelet aggregation and fibrin deposition (Jeffery et 

al., 1989). These changes may only exacerbate symptoms as increased epithelial loss is 

associated with greater hyperresponsiveness (Jeffery et al., 1989). This persistent damage may 

result in a level of persistent secretion of cytokines and growth factors associated with 

angiogenesis (Orsida et al., 1999; Vrugt et al., 2000), repair, and chemotaxis, affecting nearby 

cells including fibroblasts, leading to other tissue changes and altering mucus and immune cell 

composition (Jeffery, 2001). Mediators of epithelial repair such as CD44, epidermal growth 

factor receptor, and TGF- can be found at the site, however, these mediators may in turn reduce 

e-cadherin making the cellular barrier more permeable to antigen (Boxall et al., 2006; Knight & 
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Holgate, 2003; Puddicombe et al., 2000; Silverman et al., 2004). Molecular study of the 

bronchial epithelium has shown persistent changes in cytoplasmic and nuclear levels of NF-B 

dimers in these cells between challenges (Hart et al., 1998), suggesting some persistent activation 

of these cells. NF-B is a transcription factor that is strongly associated with induction of a wide 

array of pro-inflammatory genes (Ghosh et al., 1998), suggesting asthmatic epithelial cells are 

primed towards inflammation between challenges. This was confirmed in studies of NF-B 

activation in OVA challenged mice (Poynter et al., 2002). 

 Another change characteristic of asthma is a thickening of the reticular basement 

membrane (Jeffery, 2001). This change occurs fairly early in asthma, and appears unaffected by 

duration or severity of symptoms (Jeffery, 2001; Payne et al., 2003). This thickening is often 

called subepithelial fibrosis, and the membrane may see increases in reticulin (Laitinen et al., 

1997). Collage deposition also accompanies the thickening of the basement membrane (Minshall 

et al., 1997). 

In addition there is also an increase in smooth muscle mass (Jeffery, 2001). This increase 

may be due to muscle hyperplasia (Heard & Hossain, 1973) and hypertrophy (Ebina et al., 1990; 

Ebina, Takahashi et al., 1993). Theories also exist for fibroblast transformation to myofibroblasts 

(Jeffery, 2001) and smooth muscle change to fibromyocytes (Gizycki et al., 1997). Others have 

reported a qualitative increase in smooth muscle coverage of the bronchi (Bai, 1990; Benayoun 

et al., 2003; Dunnill et al., 1969). While increase in smooth muscle component of the airways 

and cytokine stimulation may account for some of the bronchoconstriction seen in asthma, there 

are other contributors as well. Changes in rigidity of the airway, through increased collagen 

deposition, edema, or basement membrane thickening with opposed muscle constriction that 
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shortens the airways also occur, redirecting this tension towards airway constriction (Jeffery, 

2001). 

The end result is an inflammation that is based largely around a Th2 antibody-mediated 

response that induces IgE, and production of pro-inflammatory mediators. This results in 

episodic bronchoconstriction, but also in long term irreversible changes to several tissues such as 

smooth muscle, epithelial cells, and the epithelial basement membrane. Some of these changes, 

particularly to the epithelial cell layer may result in persisting changes that can ensure some level 

of immune response to tissue damage or leakage of antigens across the epithelial layer. 

 

1.14. Chronic Obstructive Pulmonary Disease (COPD) 

To briefly contrast with this we should also consider COPD. COPD has at times been 

considered another form of asthma (Barnes, 2008) but has been shown to have several distinct 

features. Increase severity of each disorder has a greater overlap of immune response (Barnes, 

2008; Jeffery, 2001). COPD appears to originate from chronic exposure to lung irritants, the 

most studied being tobacco smoke (Barnes, 2008). There is however question about the antigen, 

a feature which also sets it apart from atopic asthma. Suggestions have been made for bacterial 

or viral antigens, but a recent model system suggests the possibility of induced autoimmunity to 

elastase, which could explain some of the observed symptoms of emphysema (Barnes, 2008; S. 

H. Lee et al., 2007).  

Similar to asthma there is obstruction of breathing due to inflammation and remodeling 

of the bronchus (Barnes, 2000; Jeffery, 2000). In COPD inflammation also extends to a greater 

degree into small airways and lung parenchyma (Barnes, 2008; Jeffery, 2001) and airway 

hyperreactivity is absent (Barnes, 2000). While asthma can be characterized with episodic 

attacks of airway hypersensitivity in response to exposures to relevant environmental 
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antigens/stimuli COPD symptoms are persistent, exacerbated by general chemical irritants as 

opposed to a known specific antigen (Barnes, 2008). 

While COPD and asthma both are chronic diseases, the type of inflammation between the 

two is significantly different. There is no indication of mast cell activation in COPD and 

infiltrates are often dominated by neutrophils in the airway lumen, not the eosinophils found in 

asthma, and this correlates with severity of disease (Hogg et al., 2004; Keatings, et al., 1996). 

There is also increased macrophage infiltration compared to asthma, and these cells may be 

responsible for attracting neutrophils (Barnes, 2004). Interestingly, alveolar macrophages from 

smokers appear to produce reduced levels of inflammatory cytokines, suggesting they may be 

less reactive than those from normal lungs (Dandrea et al., 1997). 

The most striking difference to asthma is that COPD CD4+ T cells exhibit a Th1 or cell-

mediated immune response phenotype (Barnes, 2008; Grumelli et al., 2004). This means that the 

cytokine milieu will be quite different to asthma, favoring production of TNF-, IL-12, 

RANTES, and IFN- (Barnes, 2008; Costa et al., 2008), and a cell-mediated response. This is 

evident in the increases of neutrophils, macrophages, and CD8+ T cells (AKA cytotoxic T cells) 

in COPD patients, the last of which can out-number CD4+ T cells (Barnes, 2008; Saetta et al., 

1998). 

Unlike in asthma there is no increase of the reticular basement membrane in the bronchi. 

Epithelial cell shedding is also absent, though squamous and goblet cell metaplasia still occur, as 

well as submucosal gland hypertrophy, with goblet metaplasia in the peripheral airways. 

Likewise no angiogenesis is evident. Smooth muscle enlargement still occurs, but only in distal 

airways (Beasley et al., 1989; Dunnill et al., 1969; Jeffery et al., 1989; Jeffery, 2001; Kuwano et 

al., 1993; Laitinen et al., 1985; Saetta et al., 2000). Most changes are seen the small airways and 
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lung parenchyma. Fibrosis can occur around these small airways (Hogg, 2004). A key feature of 

COPD is destruction of alveolar walls due to apoptosis of type-1 epithelial cells and protease-

degradation of connective tissue leading to emphysema (Majo et al., 2001; Taraseviciene-

Stewart et al., 2006). 

  

 This highlights that the lung is well-armed to respond to a number of infectious as well as 

environmental insults. These responses may not always be appropriate however, such as in cases 

of chronic inflammation like asthma and COPD. 
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CHAPTER 2: HYPOTHESIS AND OBJECTIVES 

 

2.1. Hypotheses 

1. TLR9 expression in whole lung tissue is similar across different species. 

2. TLR9 modulates lung inflammation induced following exposure to poultry barn air.  

 

2.2. Objectives 

1. Characterize TLR9 expression in whole lung in cattle, pigs, dogs, horses, mice, and 

humans. 

2. Determine if TLR9 expression is altered in cases of lung inflammation, such as LPS 

(horses), Mannheimia hemolytica infection (cattle), asthma (humans), or barn air 

exposure (mice). 

3. Determine if removal of pulmonary intravascular macrophages in horse lung alters 

levels of lung TLR9 expression. 

4. Determine the contribution of TLR9 to lung inflammation due to poultry barn air 

exposure in mice. 

 

2.3. Rationale 

Several studies have clearly shown an association between endotoxin exposure and lung 

dysfunction in workers in high-intensity barn operations (Donham et al., 2000, Dosman et al., 

2006). Endotoxin is a component of bacterial cells walls which binds TLR4, and induces an 

inflammatory response (Medzhitov et al., 1997).  
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The microbial content of barn facilities is diverse, and many organisms express inflammatory 

molecules other than endotoxin (Just et al., 2009). Toll-like receptor-9 (TLR9) detects 

unmethylated DNA motifs that are present in all bacteria, some viruses, and moulds (Merchant & 

Ross, 2002). To date very few studies have used environmental DNA (Roy et al., 2003), and to 

our knowledge none have attempted to look at the contribution of TLR9 in an environmental 

exposure model. 

Before studying such exposure, a clear idea of the extent of the expression of TLR9 in the 

lung is necessary. While there have been many cell culture and cell isolates studied, little work 

has been done to image TLR9 in whole lung. In the case of veterinary species even less is 

known. As a number of species are subject to organic dusts, imaging TLR9 in their lungs may 

provide some clues to lung problems they encounter, and provide a basis for cross-species 

comparisons, as it has been long established that there are species-specific TLR9 ligand 

preferences (Rankin et al., 2001). 
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CHAPTER 3: EXPRESSION OF TOLL-LIKE RECEPTOR 9 IN NORMAL LUNGS OF 

PIGS, DOGS, AND CATTLE

 

 

3.1. Abstract 

Toll-like receptors are important components of the innate immune system. Compared to 

other TLRs such as TLR4, there is less data on the expression and function of TLR9, which 

binds to bacterial DNA. Currently no data exists on the cell-specific protein expression of TLR9 

in lungs of cattle, dog and pigs. Given that a number of immune cells present in the lungs of 

mice and humans can express TLR9, and the similarity of the protein sequence we surmised that 

the same would be true for other species, and that they should be detectable using existing 

antibodies. Using light and electron microscopic techniques we show expression of TLR9 in 

airway epithelium, vascular endothelium, and intravascular monocytes in all three species. TLR9 

was also localized in pulmonary intravascular macrophages of cattle and pigs. 

 

3.2. Introduction 

Toll-like receptors are highly-conserved cell receptors that form a critical component of the 

innate immune system (Rankin et al., 2001; Roach et al., 2005). These receptors are vital in the 

detection and subsequent containment, and eventual clearance of a number of diseases (Bhan et 

al., 2008; Rutz et al., 2004), and are being studied for their impact on the induction of Th1 versus 

Th2 responses of the specific immune system (Dorn & Kippenberger, 2008; Kline et al., 1998). 

Further, as bacterial products may be problematic beyond the scope of infections, significant 

work is now underway into the impact of TLR agonists such as lipopolysaccharide (LPS) and 

                                                 

 Portions from International Journal of Experimental Pathology (Schneberger et al 2011) 
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their effect on such conditions as COPD and lung dysfunction (Frieri, 2005; Senthilselvan et al., 

2009). Some of these receptors, such as TLR9, are being tested as possible targets for 

oligonucleotide adjuvants which holds promise for the development of new classes of immune 

modulators (Kline et al., 1998; Rankin et al., 2001; Rankin et al., 2002). 

TLR9 is a cell membrane receptor that detects non-methylated CpG motifs. The CpG 

sequences are typically methylated and genetically repressed in vertebrates, but can be found 

unmethylated in viruses, bacteria, and moulds (Hemmi et al., 2000; Krieg et al., 1995; Kuramoto 

et al., 1992; Ramirez-Ortiz et al., 2008). TLR9 is predominantly localized in the lysosomes, 

where the low pH promotes specific TLR9 binding to unmethylated DNA (Latz et al., 2004; 

Macfarlane & Manzel, 1998; Rutz et al., 2004). Several groups however have shown cell surface 

expression of TLR9 (Eaton-Bassiri et al., 2004; Ewaschuk et al., 2007; Hu et al., 2003).  

The cell-specific pattern of TLR9 expression varies between species. The most notable 

example of this has been plasmacytoid dendritic cells in human lungs but not in mouse lungs 

express TLR9 and this difference may be important in species-specific immune response 

(Banchereau et al., 2000; Chen et al., 2006; Demedts et al., 2006). In contrast TLR9 is expressed 

in pulmonary intravascular macrophages which are present in the horse but not in humans and 

mice, (Aharonson-Raz & Singh, 2010; Schneberger et al., 2009). These differences in TLR9 

expression macrophages could result in significantly different outcomes to stimulatory DNA 

exposure and point to a need to develop better understanding of TLR9 expression in each of the 

species. 

Domestic animal species such as cattle, dog and pigs suffer from many bacterial lung 

diseases. In cattle, Mannheimia hemolytica causes significant morbidity and mortality, which 

translates into nearly $1 billion economic loss to cattle industry in the USA alone (Morsey et al., 
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1999). Lung inflammation associated with Actinobacillus pleuropneumoniae can be endemic in 

pigs and cause significant financial losses (Chiers et al., 2002). Finally, Bordetella 

bronchiseptica infections and subsequent lung disease is commonly seen in dogs (Goodnow, 

1980). While little is known of the interactions of TLR9 with any of these pathogens, we know 

that the expression of TLR4 can be altered in lungs of cattle with M. hemolytica (Singh et al., 

2004). The expression of TLR9 in horse lungs was increased following treatment with E. coli 

lipopolysaccharide (Schneberger et al., 2009). Given that the LPS from these bacteria can 

potentially alter TLR9 expression and that TLR9 signaling may impact the TLR4 response 

(Hong et al., 2004; Yeo et al., 2003), it is important to study the expression of TLR9 in normal 

and inflamed lungs.  

Our objectives therefore were to examine expression of TLR9 in whole lungs of cattle, pigs, 

and sheep, both at the tissue as well as subcellular levels. With cattle we further looked to see if 

there were differences in expression due to immune stimulation in cattle infected with M. 

hemolytica. 

There are very limited data on the expression of TLR9 in cattle, pig and dog in general and 

virtually none in the lungs of these species. TLR9 mRNA is expressed in many tissues such as 

the thymus, lymph nodes, spleen and lung to name a few within the pig (Shimosato et al., 2005). 

TLR9 protein expression was detected in pig gut (Shimosato et al., 2005; Tohno et al., 2006) by 

western blot and PCR. In the dog, to date detection of TLR9 has been limited to leukocytes and 

lymph nodes (Burgener & Jungi, 2008; Hashimoto et al., 2005). However, expression within 

multiple tissues has been shown to be the case in humans, mice (Eaton-Bassiri et al., 2004; 

Ewaschuk et al., 2007), pigs (Shimosato et al. 2005), and horses (Zhang et al., 2008), suggesting 

expression may be broader than indicated in these studies. We therefore set out to determine the 
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expression of TLR9 in whole lung tissue sections in pigs, cattle, and dogs, and to also examine 

the expression at the subcellular level. We examined cell-specific protein expression of TLR9 in 

intact normal lungs of cattle, pig and dog, and inflamed lungs from cattle with immunohistology 

and immuno-electron microscopy. The data show expression of TLR9 within the bronchial 

epithelium, vascular endothelium, alveolar macrophages, and cells within the alveolar septa in all 

species, and pulmonary intravascular macrophages (PIMs) of the pig and cow. 

 

3.3. Materials and Methods 

3.3.1. Animals 

Animals used for this experiment have been previously described (Wassef et al. 2004). 

Briefly, untreated dogs, pigs, and calves (n=2) and mouse lungs were taken and tissue was 

preserved and mounted in paraffin or LR White for light or EM immunohistochemical staining 

respectively (Parbhakar et al., 2004). Frozen lung tissue was also used for western blot protein 

extraction. Two mouse spleens (C57BL/6) were kindly provided to us by Dr. Sylvia van Den 

Hurk to use for mouse protein extracts. 

 

3.3.2. Western Blotting 

Dog, pig, calf and mouse lung samples were lysed in 200μl of freshly prepared lysis buffer 

(150 mM sodium chloride, 1% NP-40, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate 

(SDS), 50mM Tris (pH 8.0), 5mM ethylenediaminetetraacetic acid (EDTA), and protease 

inhibitor cocktail (100μl/10ml; Sigma-Aldrich).  Proteins were separated on a 10% 

polyacrylamide gel and transferred on to Hybond-ECL nitrocellulose membrane (GE Bioscience, 

Germany). Membranes were blocked with 5% skim milk in phosphate buffer saline (PBS ; pH 

7.4) and incubated with TLR9 antibody (IMG-305A, Imgenex, San Diego, CA, USA) for 2 hours 
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at room temperature before washing and incubation for 1 hour with goat anti-mouse HRP 

(P0447, Dako, Ontario, Canada). Blots were developed using the EC Western Blotting Detection 

kit (GE Bioscience, UK) and exposed to Hyperfilm ECL (GE Bioscience, UK) film. 

 

3.3.3. Immunohistology and Immuno-electron Microscopy 

Immunohistology was done with mouse anti-human TLR9 antibody on dog, pig, and calf lung 

tissue. Briefly, after de-paraffinization, re-hydration, tissue peroxidase quenching (0.5% 

hydrogen peroxide in methanol), and antigen unmasking with pepsin (2mg/ml 0.01N 

hydrochloric acid), the tissue sections were blocked with 1% BSA to block non-specific binding 

for 1 hour.  Sections were treated with TLR9 antibody (1:50 dilution) and incubated overnight at 

4
o
C. The next day horseradish peroxidase-conjugated goat anti-mouse antibody was added at 

1:75 dilution to sections for 1hr at 37
o
C (P0447, Dako, Ontario, Canada). Color was developed 

using a color developing kit (Vector Laboratories, Ontario, Canada). Slides were counterstained 

with methyl green (Vector Laboratories) prior to mounting. A control was similarly run with 

omission of the primary antibody or the secondary antibody. 

For immuno-electronmicroscopy 100nm lung sections were placed on nickel grids and floated 

in blocking buffer for 30min prior to 1hr incubation with TLR9 antibody at 1:5 dilution. Sections 

were rinsed 3 times in Tris-buffered saline for 5 minutes before addition and incubation with 

20nm gold-conjugated anti-mouse secondary antibody (1:100 dilution goat anti-mouse IgG 

EMGAM20, Fitzgerald Industries International, Concord, MA, USA) for 1hr. A control with 

omission of the primary antibody was also run.  
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3.4. Results 

3.4.1. Sequence Alignment and Western Blotting 

 As the number of species for which commercial TLR9 antibodies exist is limited, we first 

had to compare the amino acid sequence of peptides against the human epitope the mouse anti-

human TLR9 antibody was raised to TLR9 amino acid sequence from cattle, dog and pig. 

Information from the manufacturer stated that the peptide used to raise the anti-human TLR9 

antibody was a KLH-conjugated synthetic peptide to amino acid 268-284 of TLR9 isoform A 

(GenBank accession No. AAF78037.1). This sequence was aligned against a similarly filed 

TLR9 sequence for mouse (GenBank accession No. NP 112455), dog (GenBank accession No. 

NP 001002998), domestic pig (GenBank accession No. NP 999123), and bovine  (GenBank 

accession No. CAD52054), using Clustal-W. The results show 53%, 71% (dog and pig), and 

82% homology, respectively, with mouse, dog and pig, and cattle (Figure 3.1). Western blotting 

of lung protein extracts showed a band of approximately 110-115kDa, which corresponds to 

TLR9 band detected in lung extracts from mouse (Figure 3.1).  
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Figure 3.1: Western blot of TLR9 from several species. 

Comparison of amino acid sequences corresponding to that detected by the antibody used. 

Human (GenBank assention # AAF78037.1) was compared to mouse (GenBank assention # 

AAU04981.1), canine (GenBank assention # NP_001002998), pig (GenBank assention # 

AAP43691), and equine TLR 9 (GenBank assention # ABD36388) at amino acids 268-284. 10 

out of 17 mouse (58%), 12 out of 17 pig (71%), and 14 out of 17 equine, and canine (82%) 

amino acids were shown to match. Protein extracts were isolated from mouse spleen and horse, 

dog, cow, and pig lung tissue and run on a 10% polyacry-lamide gel followed by staining with 

human anti-mouse TLR9 antibody which detected a 110kD band in mouse and horse tissues. 
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3.4.2 Light and Electron Microscopic Immunocytochemistry 

Lung sections from calf (Figure 3.2a) pig and dog (data not shown) stained with only 

secondary antibody lacked staining while von Willebrand Factor antibody reacted with vascular 

endothelium in pig (Figure 3.2b), cattle and dog (data not shown).  

TLR9 staining of cells within the alveolar septa was readily apparent in calf (Figure 3.2a, 

3.2b), dog (Figure 3.2c, 3.2d) and pig (Figure 3.2e, 3.2f), although staining appeared to be more 

intense in lung sections from the pig and dog compared to calf. Immuno-electron microscopy 

resolved TLR9 staining to be in pulmonary intravascular macrophages in the septum of calves 

(Figure 3.3), and alveolar macrophage in all (Figure 3.4). TLR9 was localized in the cytoplasm 

and nuclei of various cells in the lung. TLR9 antibody also showed reaction with vascular 

endothelium in the lung (Figure 3.5a-c) but the expression was not uniform across species.  

Bronchiolar epithelium from all the species showed TLR9 expression (Figure 3.6a-c). Dog 

bronchiolar epithelium showed pronounced apical staining compared to the other species (Figure 

3.6b). Immuno-EM confirmed the TLR9 staining on the surface membrane and the cytoplasm 

airway epithelial cells (Figure 3.6d).  
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Figure 3.2 TLR9 immunohistochemistry.  

Sections stained with only a secondary antibody (A, calf) lacks staining (arrow) in the alveolar 

septa whereas those stained with vWF antibody (B, pig) shows staining in endothelium (single 

arrows) but not in bronchiolar epithelium (double arrows). Lung sections from normal pig (C) 

and normal calf (D) show TLR9 staining in alveolar septa (arrows). High magnification views 

show large mononuclear phagocytes in the alveolar septum of pig (E) and the calf (F). Calf lung 

also has shows Monastral blue (F; double arrows) which was injected before euthanasia and is 

phagocytosed by macrophages. Inflamed lung section (G and inset) has increased TLR9 staining 

(arrows) compared to the normal calf lung (D). Original magnification A-C,E,J: 100X, D,F,H: 

400X, D,G,I,K: 1000X. Bars are 0.1mm for 100X and 0.01mm for 400X and 100X. 
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Figure 3.3: TLR9 staining in alveolar septal macrophages. 

TLR9 staining (A) observed in alveolar septa of dog lung. Serial sections were stained with 

macrophage specific antibody (B) to show TLR9 staining occurs in macrophage within the septa. 

Arrows denote staining in the same cell with both antibodies. Original magnification 400X. Bars 

0.01mm. 
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Figure 3.4: TLR9 staining in a calf pulmonary intravascular macrophage. 

TLR9 staining (arrows) observed in a pulmonary intravascular macrophage (PIM). Endothelium 

(E) also shows TLR9 staining (arrowheads). AS: Alveolar Space;  Original magnification  

15200X. 
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Figure 3.5: TLR9 staining in a dog alveolar macrophage. 

TLR9 staining (arrows) observed in an alveolar macrophage. Original magnification 10000X. 
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Figure 3.6: TLR9 staining in vascular endothelium. 

TLR9 staining (arrows) observed in vascular endothelium of calf (A), dog (B), and pig (C) lung 

vascular endothelium. Original magnification  A-C: 400X. Bars 0.01mm. 
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Figure 3.7: TLR9 staining in alveolar epithelium. 

TLR9 staining (arrows) is observed in type II (AE-II; arrows), type I (arrowheads) epithelial 

cells in a calf lung. Endothelium (E) also shows staining (arrows) for TLR9. AS: Alveolar space. 

Original magnification 13000X. 

 



 

53  

 

Figure 3.8: TLR9 staining in a bronchiolar epithelium. 

TLR9 staining (arrows) observed in vascular epithelium of calf (A, D), dog (B), and pig (C). 

Staining was seen to be much lighter and more restricted to the bronchiolar surface within the 

dog. Immuno-gold micrograph (D) shows TLR9 is seen in the cytoplasm, cell surface and also 

cilia of the airway epithelium in a calf lung. Original magnification A-C: 400X, D: 13000X. Bars 

0.01mm. 
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3.5. Discussion 

We report data on TLR9 protein expression from normal intact lungs of cattle, pig and dog, 

and inflamed lungs from cattle. To our knowledge, these are the first cell specific in situ data on 

the expression of TLR9 lungs of these species. We show that TLR9 is expressed in airway 

epithelium, vascular endothelium and macrophages in the lungs of cattle, pig and dog. In 

addition, PIMs of cattle show TLR9. We also report characterization of a mouse TLR9 antibody 

for use in cattle, pig and dog. Because bacterial infections remain major causes of morbidity, 

mortality and economic losses in domestic animal species, these data on the cell-specific 

expression of TLR9 will provide a better understanding of cell specific responses to bacterial 

components in these species.  

Disease, mortality and economic losses caused by bacterial infection are major problems in 

many veterinary species. As has been shown TLRs can play a role in proper bacterial clearance 

(Bafica et al., 2005) as well inflammation (Singh et al., 2004), so the presence and localization of 

these receptors may significantly impact how different species respond to such infections. 

Furthermore, since distinct cell types may play dominant and differing roles in lung 

inflammation, it is important to know cell-specific expression of TLR9. So far, most of the data 

on TLR9 expression has come from isolated and cultured cells (Demedts et al., 2006; Jozsef et 

al., 2004; Platz et al., 2004; Schwartz et al., 1997; Yeo et al., 2003). Recently, we reported TLR9 

expression in normal and inflamed horse lungs and showed that endotoxin treatment significantly 

increased TLR9 (Schneberger et al., 2009). 

 First, western blotting was done to confirm that the commercial IMG-305a mouse anti-

human TLR9 antibody detects a band of approximately 110kD which corresponds to the known 

molecular weight of TLR9. The sequence of the peptide against which the human TLR9 
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antibody was raised also showed 53% to 82% homology with the amino acid sequence of TLR9 

in cattle, pig, dog and mouse. This same antibody was used by us to detect TLR9 in horse lung 

(Schneberger et al., 2009), and by others in dog (Burgener & Jungi, 2008). 

 Light and electron microscopic immunocytochemistry showed TLR9 staining in alveolar 

septa of all three species. The role of septal vasculature in the lung in the engagement of blood-

borne bacteria and their products such as endotoxins and engendering of subsequent 

inflammatory response is well established (Andonegui et al., 2003). The localization of TLR9 in 

lung capillary endothelium will enable these cells to induce responses to circulating CpG in 

bacterial DNA (Li et al., 2004). Prior to entry of bacteria and their products into the blood, 

inhalation is the most common route of entry of microbes such as M. hemolytica into the lungs of 

animals. Therefore, presence of innate immune receptors such as TLRs is critical in evoking an 

anti-microbial defense response. In this context, the mucosal TLR9 will assume an important 

role in protection of lungs. Similar to the epithelium in the airways, the mucosal barrier of the 

gut and oral cavity expresses TLR9 (Eaton-Bassiri et al., 2004; Ewaschuk et al., 2007; Shimosato 

et al., 2005). Therefore, airway epithelial and vascular endothelial TLR9 in cattle, pig and lung 

may have important roles in protection and may serve as targets for CpG-based immune 

modulation (Kline et al., 1998). 

Macrophages play a central role in orchestration of immune responses. Alveolar macrophages 

phagocytose inhaled bacteria and other particulate matter to keep the alveolar epithelium clean. 

Although alveolar macrophages also express TLRs, their responses may be anti or pro-

inflammatory dependant on a variety of factors. Some animal species such as horse, cattle, and 

goat contain a unique population of resident vascular macrophages called pulmonary 

intravascular macrophages, which express TLR4 and generally play pro-inflammatory roles in 
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lung inflammation (Aharonson-Raz & Singh, 2010; Singh et al., 2004). From our work in horses 

we have determined that these cells express TLR9 and that gadolinium chloride depletion of 

them abrogates all increases in TLR9 expression in the lung in response to LPS (Schneberger et 

al., 2009). This is predicted to be due to a combination of reduction of TLR9-positive cell 

migration as well as depletion of TLR9-positive PIMs. We would expect a similar outcome in 

cattle as both have significant PIM populations within their lungs, and show expression of TLR4 

and TLR9 within these cells (Singh et al., 2004; Wassef et al., 2004). 
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CHAPTER 4: EXPRESSION OF TOLL-LIKE RECEPTOR 9 IN HORSE LUNGS

 

 

4.1. Abstract 

Toll-like receptor 9 has been found to be the main receptor used for responding to bacterial 

DNA in a wide variety of species. Recent work has shown that this receptor is further expressed 

in a diverse set of cells within the lung. However, much of this data has been centered on human 

and mouse cell culture lines or primary cultures and very little is known of TLR9 expression in 

intact lung especially that of the horse. We hypothesized that expression would be similar across 

other mammalian species. Here we show that TLR9 is expressed in the lungs of horses in a wide 

variety of cells. In particular we note expression in pulmonary intravascular macrophages 

(PIMs), alveolar macrophages, bronchial epithelial cells, and type-II cells amongst others. The 

data also show E. coli lipopolysaccharide increased expression of TLR9 mRNA in lungs as well 

as protein expression in airway epithelium, vascular endothelium and inflammatory cells in 

blood vessels. Immunogold electron microscopy localized TLR9 in nuclei, cytoplasm and 

plasma membrane of various lung cells. We conclude that TLR9 is expressed in lung cells 

including PIMs and that LPS treatment increases TLR9 expression.  

 

4.2. Introduction 

In recent years bacterial DNA has been deduced to be an important non-specific immune 

activating molecule. While most work has centered around use of bacterial DNA as a immune 

system adjuvant to vaccines (Rankin et al., 2002; Zimmermann et al., 2008) it has also been 
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shown to be critical in containment of infections such as Mycobacterium tuberculosis (Bafica et 

al., 2005; Rutz et al., 2004), Propionibacterium acnes (Kalis et al., 2005), and Legionella 

pneumonia (Bhan et al., 2008). Detection of this bacterial DNA is mediated through TLR9 

(Hemmi et al., 2000).  

TLR9 is a member of the Toll-like receptor family which has been described in a wide-variety 

of animal species (Rankin et al., 2001; Roach et al., 2005). The receptor binds a particular C-G 

DNA sequence which is methylated in vertebrate DNA but not in bacteria or viruses (Hemmi et 

al., 2000; Krieg et al., 1995; Krieg, 2002; Kuramoto et al., 1992). Ligation and signaling through 

the receptor results in expression of NF-κB and consequent expression of a range of cytokines, 

many associated with what could be considered TH1-like responses (Krieg, 2002). Much work 

has been done to develop CpG oligonucleotides for vaccines, adjuvants, and therapy for 

conditions such as asthma or endotoxemia (Kline et al., 1998; Rankin et al., 2001; Schwartz et 

al., 1999). Only recently has the receptor been examined as a possible factor in environmental 

bacterial exposure (Roy et al., 2003). The role of TLR9 in lung inflammation is not clear as the 

receptor has been implicated in lung inflammation (Knuefermann et al., 2007; Schwartz et al., 

1997), prevention of inflammation (Parilla et al., 2006), and modifying inflammatory responses 

to LPS (Schwartz et al., 1999) and asthma (Kline et al., 1998).  

Innate receptors such as TLR9 can determine the role of specific cells in engendering immune 

response in an organ and are promoted as novel targets for drugs and vaccines (Barrat et al., 

2007; Dorn & Kippenberger, 2008; Kitagaki et al., 2006; Yasuda et al., 2008). Therefore, it is 

important to have a precise and detailed description of expression of TLRs in normal organs. 

Much of the data on TLR9 expression has been obtained in mouse and human systems and cell 

                                                                                                                                                             

 Portions from The Anatomical Record (Schneberger et al 2009) 
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cultures from the same. The data from these experiments shows that TLR9 is expressed in a wide 

variety of cells such as B-cells (Krieg et al., 1995) eosinophils (Wong et al., 2007), neutrophils 

(Jozsef et al., 2004; O'Mahony et al., 2008; Schwartz et al., 1997), dendritic cells (Demedts et al., 

2006), macrophage (O'Mahony et al., 2008; Yeo et al., 2003), bronchial epithelial cells (Platz et 

al., 2004), and type-I and type-II lung cells (Li et al., 2004), amongst others. In fact, it appears 

that many cells of the lung express TLR9 to some degree, though for alveolar macrophage the 

evidence is mixed (Fernandez et al., 2004; Suzuki et al., 2005). Although the receptor is highly 

conserved (Rankin et al., 2001; Roach et al., 2005), there are a number of differences between 

species with regards to optimal CpG signaling (Demedts et al., 2006; Rankin et al., 2001) and 

expression. One of the most notable of these is expression of TLR9 on plasmacytoid but not 

myeloid dendritic cells in humans, whereas mouse lung dendritic cells do not express the 

receptor at all (Chen et al., 2006; Demedts et al., 2006). Therefore it is important to determine 

the expression characteristics of TLR9 in each species. 

To our knowledge there are no data on the expression of TLR9 in the horse lung other than a 

basic comparison of mRNA in tissue versus other organs (Zhang et al., 2008). Given the 

susceptibility of horses to LPS-induced cardiopulmonary distress and lung inflammation (Morris, 

1991) it is apparent that they are sensitive to bacterial infection of the lung, and have already 

been shown to express TLR2 and TLR4 (Singh Suri et al., 2006). The horse also has an unique 

population of pulmonary intravascular macrophages (PIMs) which have significant expression of 

TLR4 (Singh Suri et al., 2006). Therefore we set out to examine the expression of TLR9 in 

whole horse lung sections to survey which cells express TLR9, and to also look at its subcellular 

expression. Further, we wanted to look at if the expression levels of TLR9 were altered upon 

challenge with LPS or after depletion of the pulmonary intravascular macrophage to see if this 
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unique population of macrophages contributed to potential TLR9-mediated responses. Now, we 

report TLR9 mRNA and protein expression in lungs of normal and LPS-treated horses. 

 

4.3. Materials and Methods 

4.3.1.  Animals 

Animals used for this experiment have been previously described (Singh Suri et al., 2006). 

Briefly, horses were treated either with saline, saline with Escherichia coli lipopolysaccharide 

(LPS) or pretreated with gadolinium chloride before LPS treatment or gadolinium chloride alone. 

At the end of this time horses were euthanized and the lungs were processed for light and 

electron microscopy as described elsewhere (Parbhakar et al., 2004).  

Two mouse spleens (C57BL/6) were kindly provided to us by Dr. Sylvia vanDen Hurk to use 

for mouse protein extracts.  

 

4.3.2. Western Blotting 

Horse lung and mouse spleen samples were lysed in 200μl of freshly prepared lysis buffer 

(150mM sodium chloride, 1% NP-40, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate 

(SDS), 50 mM Tris (pH 8.0), 5 mM ethylenediaminetetraacetic acid (EDTA), and protease 

inhibitor cocktail (100μl/10ml; Sigma-Aldrich).  Proteins were separated on a 10% 

polyacrylamide gel and transferred on to Hybond-ECL nitrocellulose membrane (GE Bioscience, 

Germany). Membranes were blocked with 5% skim milk in phosphate buffer saline (PBS ; pH 

7.4) and incubated with TLR9 antibody (IMG-305A, Imgenex, San Diego, CA, USA) for 2 hours 

at room temperature before washing and incubation for 1 hour with goat anti-mouse HRP 
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(P0447, Dako, Ontario, Canada). Blots were developed using the EC Western Blotting Detection 

kit (GE Bioscience, UK) and exposed to Hyperfilm ECL (GE Bioscience, UK) film. 

 

4.3.3. Immunohistology and Immuno-electron Microscopy 

Immunohistology was done with mouse anti-human TLR9 antibody on both LPS and saline 

treated horse lung tissue. Briefly, after de-paraffinization, re-hydration, tissue peroxidase 

quenching (0.5% hydrogen peroxide in methanol), and antigen unmasking with pepsin (2mg/ml 

0.01N hydrochloric acid), the tissue sections were blocked with 1% BSA to block non-specific 

binding for 1 hour.  Sections were treated with TLR9 antibody (1:50 dilution) and incubated 

overnight at 4
o
C. The next day horseradish peroxidase-conjugated goat anti-mouse antibody was 

added at 1:75 dilution to sections for 1hr at 37
o
C (P0447, Dako, Ontario, Canada). Color was 

developed using a color developing kit (Vector Laboratories, Ontario, Canada). Slides were 

counterstained with methyl green (Vector Laboratories) prior to mounting. A control was 

similarly run with omission of the primary antibody or the secondary antibody. 

For immuno-electronmicroscopy thin lung sections were placed on nickel grids and floated in 

blocking buffer for 30min prior to 1hr incubation with TLR9 antibody at 1:10 dilution. Sections 

were rinsed 3 times in Tris-buffered saline for 5 minutes before addition and incubation with 

20nm gold-conjugated anti-mouse secondary antibody (1:100 dilution goat anti-mouse IgG 

EMGAM20, Fitzgerald Industries International, Concord, MA, USA) for 1hr. A control with 

omission of the primary antibody was also run.  
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4.3.4. Real Time Reverse-transcriptase Polymerase Chain Reaction  

Quantitative real time reverse-transcriptase polymerase chain reaction (RtPCR) was 

performed on purified horse lung mRNA from animals treated with LPS, gadolinium chloride, 

gadolinium chloride plus LPS, or left untreated as described earlier. RNA was purified using the 

RNease mini kit followed by RNase-free DNase (Qiagen, Mississauga, ON, Canada). RNA 

integrity was confirmed by agarose gel electrophoresis and quantified Nano drop 

spectrophotometery (Thermo Fisher Scientific, Ottawan ON). The mRNA was reverse 

transcribed using the QuantiTect reverse transcription kit (Qiagen) with a mixture of universal 

oligo dT and random primers as per manufacturer’s instructions. The cDNA generated by this 

methods was used for RtPCR analysis of the expression of TLR9 (GenBank Accession No. 

DQ157779) using QuantiFast SYBR Green PCR kit (Qiagen, Canada). The glyceraldehyde-3-

phosphate dehydrogenase gene (GAPDH; GenBank Accession No. AF157626) was used as the 

reference housekeeping gene. The reactions were performed using the primer pairs; 5’-

ATTACCTGGCCTTCTTCAATTG-3’ and 5’-CTGCCATTGCTCAGAGCCTTC-3’ for TLR9, 

and 5’-TCACCATCTTCCAGGAG-3’ and 5’-GTCTTCTGGGTGGCAG-3’ for GAPDH.  The 

negative control consisted of all the components of the reaction mixture excepting RNA. Real-

Time PCR analysis was performed using the MX3005P LightCycler (Stratagene, La Jolla, CA, 

USA) as per manufacturer’s instruction. The cDNA was denatured at 5 minutes at 95°C, 

followed by amplification of target DNA through 45 cycles of denaturation at 95°C for 30 

seconds, annealing at 55°C for 30 seconds and elongation at 60°C for 45 seconds. Relative 

expression levels were calculated after correction for expression of GAPDH using MxPro 

software. 
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4.3.5. Statistical Analysis 

All values presented were given as the mean ± standard deviation. We performed a one-way 

ANOVA to determine significance between control, gadolinium chloride, LPS, and gadolinium 

chloride plus LPS treated lung tissue mRNA levels. 

 

4.4. Results 

4.4.1. Sequence Alignment and Western Blot 

 Information from the manufacturer stated that the peptide used to raise the mouse anti-

human TLR9 antibody was a KLH-conjugated synthetic peptide to amino acid 268-284 of TLR9 

isoform A (GenBank assention No. AAF78037.1). This sequence was aligned against a similarly 

filed TLR9 sequence for mouse and equine TLR9 (GenBank assention No.AAU04981.1 and 

ABD36388 respectively) using Clustal-W. These results show 58% and 82% homology across 

the region for mouse and equine TLR9 respectively. (Fig. 4.1).  Western blotting of horse lung 

protein extracts showed a band of approximately 110kDa weight which corresponds to that of 

extracts from mouse spleen (Fig. 4.1) and results as provided by the manufacturer. Mouse spleen 

showed a secondary band around 60kDa similar to that shown by the manufacturer. 
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Figure 4.1. Western blot of TLR9 from mouse and horse tissue. 

Comparison of amino acid sequences corresponding to that detected by the antibody used. 

Human (GenBank assention #AAF78037.1) was compared to mouse (GenBank assention # 

AAU04981.1) and equine TLR 9 (GenBank assention # ABD36388) at amino acids 268-284. 10 

out of 14 mouse (58%) and 14 out of 17 (82%) amino acids were shown to match. Protein 

extracts were isolated from mouse spleen and horse lung tissue and run on a 10% polyacrylamide 

gel followed by staining with human anti-mouse TLR9 antibody which detected a 110kD band in 

mouse and horse tissues.
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4.4.2. Light and Electron Microscopic Immunocytochemistry 

Lung sections stained with only secondary antibody lacked staining (Fig. 4.2A) while von 

Willebrand Factor antibody stained vascular endothelium but not bronchiolar epithelium (Fig. 

4.2B). Lung sections from control (Fig. 4.2C) and LPS-treated (Fig. 4.2D) horses showed TLR9 

staining in cells in alveolar septa and the staining was more intense in LPS-treated horses. These 

septal cells were large mononuclear cells (Fig. 4.2E) and were confirmed to be TLR9 expressing 

pulmonary intravascular macrophages (PIMs) with electron microscopy (Fig. 4.3). PIMs showed 

TLR9 labeling in their cytoplasm and nucleus. Alveolar septal endothelial cells (Fig. 4.3), 

neutrophils in lung capillaries and type-II epithelial cells of alveolar septa (Fig. 4.4) also showed 

TLR9 expression. 

TLR9 staining was observed in vascular endothelium in lung sections from control (Fig. 

4.5A) and LPS-treated (Fig. 4.5B) horses. One of the dramatic finding was accumulation of 

TLR9-positive inflammatory cells in pulmonary blood vessels of LPS-treated horses (Fig. 4.5B). 

Immuno-electron microscopy confirmed TLR9 staining of lung vascular endothelium as well as 

presence of TLR9 in the nucleus of endothelial cells (Fig. 4.5C).  

Airway epithelium in control horses (Fig. 4.6A) showed light staining for TLR9 compared to 

the intense reaction in the airway epithelium of LPS-treated horses (Fig. 4.6B). Immuno-electron 

microscopy localized TLR9 staining to the surface, cytoplasm and nucleus of airway epithelial 

cells (Fig. 4.6C). Alveolar macrophages showed TLR9 expression in their cytoplasm and nucleus 

(Fig. 4.7).  



 

66  

 

Figure 4.2. TLR9 immunohistochemistry. 

Lung section from a control horse stained with only a secondary antibody (A) lacks staining 

(arrows) in alveolar septa whereas the one stained with vWF antibody (B) shows staining in 

endothelium (single arrows) but in bronchiolar epithelium (double arrows). Lung sections from  

control (Figure C) and an LPS-treated (D) horses shows TLR9 staining (arrows). High 

magnification view (E) shows staining in large macrophage-like (arrows) in alveolar septa of 

LPS-treated horse. Original magnification A,B: 100X, C-D: 400X, E: 1000X. 
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Figure 4.3. TLR9 staining in a pulmonary intravascular macrophage. 

TLR9 staining (arrows) observed in the cytoplasm (Cy) and nucleus (N) of a PIM. E: 

Epithelium; AS: Alveolar Space. Original magnification A-C: 10000X; D 7500X. 
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Figure 4.4: TLR9 staining in a neutrophil and type II alveolar epithelial cell. 

TLR9 staining (arrows) is seen in cytoplasm but not in lamellar bodies (LB) of type-II alveolar 

epithelial cell (T-II). Neutrophil (Nt) in alveolar capillary is also positive for TLR9 (arrows). AS: 

alveolar space; En: endothelium. Original magnification 10000X. 



 

69  

 

Figure 4.5: TLR9 vascular immunostaining. 

TLR9 staining was vascular endothelium in lungs of control (A) and LPS-treated horses (B). 

Immuno-electron microscopy (C) showed TLR9 staining in nucleus (N) of capillary endothelial 

cells in the lung. . Note accumulation of inflammatory cells (double arrows) positive for TLR9 in 

the lumen of blood vessel in lung section from the LPS-treated horse (B). Original magnification 

A-B: 400X, C: 10000X. 
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Figure 4.6: TLR9 staining in an airway epithelium. 

TLR9 staining (arrows) is seen on bronchiolar epithelium in lung section from control (A) and 

LPS-treated (B) horses. Staining is more intense in lung section from LPS-treated horse. 

Immuno-EM shows TLR9 labeling on the surface (double arrows) as well as in cytoplasm and 

nucleus (single arrows) of a bronchiolar epithelial cell in a lung section from LPS-treated horse. 

Original magnification 10000X. 
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Figure 4.7. TLR9 staining in an alveolar macrophage. 

TLR9 staining (arrows) is seen in cytoplasm and nucleus (N) of an alveolar macrophage. 

Original magnification 10000X. 
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4.4.3. Real Time Reverse-transcriptase Polymerase Chain Reaction 

Our results showed that LPS treatment increased TLR9 mRNA expression in the lung 

compared to that observed in normal horses without (p<0.001) or with treatment with 

gadolinium chloride (p=0.007). However, pre-treatment with gadolinium chloride before LPS 

treatment  reduced TLR9 mRNA expression compared to LPS-treated horses (p<0.001) and 

brought the expression to a level below that of the control group (Fig. 4.8). 
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Figure 4.8: TLR9 mRNA of LPS and gadolinium chloride treated horse lungs. 

mRNA was isolated from horses treated with saline (Control),  gadolinium chloride (GC), 

LPS (LPS), or gadolinium chloride plus LPS (GC+LPS) (n=3, all groups) . Results are 

standardized to saline treated animals and given as fold increase over saline mRNA levels. All 

results are given as averages ± standard deviation. Statistical analysis was done using one-way 

ANOVA to determine significance (*= p≤0.05, **= p<0.001).
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4.5. Discussion 

We previously reported expression of TLR4 and TLR2 in horse lungs to understand 

mechanisms of their higher sensitivity to bacterial lung diseases (Singh Suri et al., 2006). Lung 

infections caused by any virus or bacterium however will be expected to introduce non-

methylated DNA into the lung, making the identification of TLR9 in the lung an important factor 

in our understanding of early non-specific immunity to various challenges in the horse. To our 

knowledge, we report the first in situ data on the protein expression of TLR9 in the normal and 

LPS-treated horse lung. These data have added broader significance because much of the data 

available for the more studied mouse and human systems has been derived from cell lines and 

primary cell cultures and there is a paucity of in situ cell-specific data on TLR9 expression. 

First, we selected and characterized an antibody to recognize the equine TLR9. TLR9 is 

highly conserved between species and the epitope to which the antibody has been raised was 

found to be only 58% homologous between human and mouse and 82% homologous between 

human and equine, with matches of 14 out of 17 amino acids using a Clustal-W comparison of 

the human and horse amino acid sequences. Since beginning our study, Zhang and colleagues 

have published their findings confirming that the mouse anti-human antibody clone employed in 

our work does cross-react with equine TLR9 (Zhang et al., 2008), and can recognize TLR9 on 

cells such as macrophages and neutrophils, which is consistent with our findings. Western blots 

of protein extracts from mouse spleen show that the antibody binds to a protein of approximately 

110kDa, which corresponds to the size of the TLR9 receptor. Protein extracts from horse lung 

showed a band slightly lower than that from mouse spleen (about 113kDa), well within the range 

expected for this protein depending on the species and tissue used (Tran et al., 2007). These data 

show that anti-human antibody used in our experiment cross reacts with the equine TLR9. 
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 Light and electron microscopic immunocytochemistry showed strong expression of 

TLR9 in PIMs, alveolar macrophages, neutrophils, bronchial epithelial cells, and alveolar 

epithelial cells. It appeared that type-I epithelial cells showed low level of TLR9 protein 

expression. These first results from horse lung are similar to those seen in mouse and human 

cells including neutrophils (Jozsef et al., 2004; O'Mahony et al., 2008; Schwartz et al., 1997), 

macrophage (O'Mahony et al., 2008; Yeo et al., 2003), monocytes (O'Mahony et al., 2008), 

epithelial cells (Li et al., 2004) and columnar epithelial cells (Platz et al., 2004). Our use of 

immuno-EM to study TLR9 expression in intact lung resulted in localization of TLR9 in type-II 

epithelial cells and alveolar macrophages of the horse. There has been a controversy regarding 

TLR9 expression in alveolar macrophages in mice (Fernandez et al., 2004; Suzuki et al., 2005). 

The reasons for these differences are not apparent but could be an outcome of exposure to 

environmental dust and endotoxin present in stables (Berndt et al., 2007). While TLR9 

expression in alveolar macrophages may point to a greater susceptibility or ability of horses to 

respond to bacterial DNA, the function of TLR9 in type-II alveolar epithelial cells is open to 

speculation.  

 One of the interesting findings was TLR9 staining in PIMs and robust contributions of 

PIMs to total TLR9 expression in the lung. PIMs are present in septal capillaries of horses, 

ruminants and pigs (Berndt et al., 2007; Chitko-McKown et al., 1991; Parbhakar et al., 2004; 

Parbhakar et al., 2005; Singh Suri et al., 2006; Singh et al., 2004; Staub, 1994). Equine PIMs 

express TLR4 and TLR2, endocytose LPS and express proinflammatory cytokines (Singh Suri et 

al., 2006). In fact, PIM depletion results in reduced amounts of TLR4 and TLR2 mRNA as well 

as inhibition of lung inflammation in horses upon challenge with endotoxin (Parbhakar et al., 

2004). The expression of TLR9 in PIMs is unique and highly intriguing. First, TLR9 is generally 
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observed in epithelial cells such as those in the airways and the intestine (Ewaschuk et al., 2007; 

Schwartz et al., 1997). Second, PIMs are a population of fixed macrophages in lung capillaries 

which express TLR4 to handle bacterial endotoxins (Singh Suri et al., 2006). The presence of 

TLR9 in the same cells will enable them to respond to bacterial DNA released upon their 

degradation in lysosomes. This scenario creates tantalizing possibilities of targeting PIMs with 

CpG adjuvants or inhibitors to reduce, enhance, or modulate immune responses of these cells, 

and overall lung response. Although it is generally believed that humans do not have PIMs but 

these assumptions are based on only a couple of studies and require further investigations in 

lungs of normal or those suffering from respiratory diseases such as asthma or acute respiratory 

distress syndrome (Staub, 1994). Nevertheless, the biology of TLR9 in horse lungs needs further 

investigation. 

The immuno-EM also helped in precise subcellular localization of TLR9 in various lung cells. 

Work by others in mice has shown that TLR9 in the cytoplasm, on the endoplasmic reticulum, 

and associated with lysosomes, where it is believed to interact with the receptor’s ligand (Latz et 

al., 2004; Macfarlane & Manzel, 1998; Parbhakar et al., 2005). More recent work however has 

shown cell surface expression of TLR9, especially in gut epithelial cells (Ewaschuk et al., 2007) 

and some human peripheral mononuclear cells (Eaton-Bassiri et al., 2004). We thus confirm our 

immunohistologic results showing TLR9 can be found in the cytoplasm of these cells, and show 

the receptor in the nucleus as well as the cell surface. Expression within the cytoplasm is in 

keeping with reports by others (Latz et al., 2004; Zhang et al., 2008). TLR9 association with the 

lysosome is often highlighted due to the requirement for acidification of the DNA (pH 6.5) in 

order to activate TLR9 signaling (Parbhakar et al., 2005; Rutz et al., 2004), and to increase 

receptor binding and specificity for non-methylated DNA (Rutz et al., 2004). However, robust 
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presence of TLR9 in the cytoplasm (lysosomes) may be an outcome of membrane endocytosis. 

Further, under some conditions airway mucus pH may become more acidic, allowing for these 

conditions to be met on the cell surface similar to the observations made in cell cultures (Hu, 

Sun, & Zhou, 2003). Expression of TLR9 within the cell has been shown to localize to the 

endoplasmic reticulum, lysosomes, and cell surface (Eaton-Bassiri et al., 2004; Ewaschuk et al., 

2007; Latz et al., 2004) but to our knowledge these are the first results documenting nuclear 

expression of TLR9. 

We examined TLR9 mRNA expression with RtPCR on the lungs of gadolinium chloride and 

LPS treated horses to determine if the expression of TLR9 is susceptible to PIM depletion 

(gadolinium chloride) or vascular treatment with LPS. We have previously reported significant 

reduction in PIM numbers with gadolinium chloride treatment (Parbhakar et al., 2004). As 

expected, LPS treatment resulted in a significant increase in the level of expressed mRNA as 

well as TLR9 in airway epithelium, vascular endothelium and inflammatory cells. Our results are 

consistent with the findings of other investigators showing that TLR4 engagement by LPS is 

capable of inducing TLR9 expression in mice (An et al., 2002). We believe that increased TLR9 

mRNA in LPS-treated horse lungs may be partially due to recruitment of inflammatory cells into 

inflamed lungs as well as increased expression in resident lung cells. Zhang and colleagues also 

explained low expression of TLR9 mRNA in horse lungs compared to lymphoid organs as a 

result of more leukocytes in lymphoid organs compared to the lung (Zhang et al., 2008). 

Although gadolinium chloride treatment of normal horses did not affect TLR9 mRNA 

expression, pretreatment with this chemical blocked LPS-induced increase in TLR9 mRNA 

expression and resulted in TLR9 mRNA expression similar to observed in normal horses. 

Considering that TLR9 is expressed in many cells including PIMs in the lungs, it is novel that 
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PIMs alone are major contributors to the amount of TLR9 mRNA present in the lungs. We have 

previously shown that depletion of PIMs with gadolinium chloride causes significant reduction 

in the amount of TLR4 as well as recruitment of neutrophils in LPS-treated horses to underscore  

robust contributions of PIMs to TLR4 expression (Parbhakar et al., 2005; Singh Suri et al., 

2006). Because we are reporting TLR9 in neutrophils in horse, it is possible that reduced 

recruitment of these cells in PIM-depleted LPS-treated horses would have contributed to reduced 

TLR9 mRNA expression. Taken together, these data show that LPS treatment increases TLR9 

expression and that PIMs are major contributors to TLR9 expression in the lung. 

In conclusion we show TLR9 expression in the lungs of horses that would enable them to deal 

with and respond to bacterial DNA. In particular we show that PIMs may be important cells in 

the response of horses to inhaled bacteria and bacterial products, and that indeed the expression 

of TLR9 is linked in part to LPS. Other groups have shown complex links in other animal 

species between severity and character of lung inflammation and co-ordinated TLR4 and TLR9 

induction (Fernandez et al., 2004; Hemmi et al., 2000; Yeo et al., 2003). Therefore elucidating 

the role of TLR9 in horse lung inflammation will be vital to our understanding of how the lung 

responds to bacterial challenge. 
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CHAPTER 5: EXPRESSION OF TLR9 IN MOUSE AND HUMAN LUNGS 

 

5.1. Abstract 

Toll-like receptors recognize conserved molecular motifs of microorganisms, and constitute 

an important part of the innate immune system.  Numerous studies have shown the importance of 

these receptors in establishing effective immune responses to a broad range of infections. TLRs 

have also been implicated in disorders such as COPD. TLR9, responsible for detection of 

unmethylated DNA, is expressed in a wide range of immune cells in mice, humans, as well as 

other species. However, much of this work has centered on cell cultures, and isolated cell 

populations. We hypothesized that expression pattern for TLR9 in human and mouse lungs 

would be similar to that seen in the lungs of other species tested so far. We determined the in situ 

expression of TLR9 in whole mouse and human lungs. We used immunohistochemical, in situ 

hybridization (ISH), and immunoelectron microscopy to localize TLR9 in bronchial epithelium, 

vascular endothelium, alveolar septal cells and alveolar macrophages in both species. We further 

show that in cases of asthma in humans there is an apparent influx of TLR9-positive cells to the 

lung. We conclude that both immune and non-immune cells in the lung express TLR9 which 

may contribute to pulmonary immune responses. 

 

5.2 Introduction 

The innate immune system plays important role in protecting mucosal surfaces. The TLRs are 

one of the most studied members of the innate immune system. The TLRs expressed on 

endothelium, epithelium and immune cells regulate the induction of inflammation and protection 
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against pathogens. In tissues such as the lung TLR4 has been implicated in reduced airway 

response in farm workers (Senthilselvan et al., 2009), and in the clearance of numerous 

pathogens (Bhan et al., 2008; Kalis et al., 2005; Rutz et al., 2004). While TLR4 in relation to  

endotoxin-induced inflammation has been studied the most, other receptors such as TLR2 and 

TLR9 are also potentially important molecules. Interestingly, the effects of such receptors on 

lung inflammation have not been fully understood. For example, TLR9 has been shown in 

various studies to induce (Knuefermann et al., 2007; Schwartz et al., 1997), prevent (Parilla et 

al., 2006), or modify (Schwartz et al., 1999) lung inflammatory responses. 

TLR9 is a membrane-bound receptor found primarily associated with endosomes (Rutz et al., 

2004). It binds non-methylated CpG sequences of DNA of a given structure (Krieg, 2002). The 

effects of non-methylated DNA were first observed in mice (Kuramoto et al., 1992), and TLR9 

as the receptor responsible for much of the immune response to this ligand was first elucidated in 

mice as well (Hemmi et al., 2000). Since then much work has been done to determine the effects 

of non-methylated CpG oligonucleotides on TLR9 as well as its expression and localization. 

Experiments into localization of the TLR9 have focused primarily on cultured isolated 

immune cells. These studies established TLR9 expression in B cells (Hornung et al., 2002; Krieg 

et al., 1995), neutrophils (Jozsef et al., 2004; Schwartz et al., 1997), and eosinophils (Wong et 

al., 2007). The information on the expression of TLR9 even in immune cells is far from complete 

as indicated by the complexity of its expression in monocytes and macrophages. While mice 

show expression of TLR9 in macrophages (An et al., 2002), the expression in humans was 

observed only in professional antigen presenting cells such as dendritic cells (Hoene et al., 2006; 

Kadowaki et al., 2001; O'Mahony et al., 2008) in the lung. Interestingly, TLR9 was absent in 

lung but not splenic dendritic cells of mice (Chen et al., 2006).  Alveolar macrophages are vital 
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in the clearance of a variety of pathogens as well as inflammatory debris from the alveolar space 

(Bowden, 1984). These cells typically express a larger panel of innate immune receptors 

(Schneberger et al., 2011). There is controversy over the expression of TLR9 in mouse and 

human alveolar macrophages (Fernandez et al., 2004; Suzuki et al., 2005). 

Much of the data on TLR9 expression in the lung has been derived from either cell lines or 

isolated and cultured cell populations. Intriguingly, to our knowledge, with the exception of one 

study on neoplastic lungs (Droemann et al., 2005) there are no data on TLR9 expression in intact 

lungs of mouse or human. The study of receptor expression in intact lungs is important because 

of the role of intercellular communication and spatial arrangement of receptor expression in 

inflammatory responses. Further, we can observe expression of a particular receptor on various 

lung cells in a single view. Therefore, we set out to examine the expression and subcellular 

localization of TLR9 in the mouse and human lung with the use of immunohistochemistry, 

immunoelectron microscopy, and ISH. We further expanded this work to compare TLR9 

expression in normal human lung versus that of asthmatic lung. We show TLR9 mRNA and 

protein expression in various cells of the lung.  

 

5.3. Materials and Methods 

5.3.1. Lung Tissues 

 Six to eight week old C3HeB/FeJ mice (n=5) were purchased from Jackson Laboratories, 

(Bar Harbor, ME) and housed at the Animal Care Unit of the Western College of Veterinary 

Medicine for one week prior to their euthanasia. The animals were used following approval by 

the institution in accordance with the Canadian Council on Animal Care guidelines. Lungs from 

euthanized animals were processed and embedded in paraffin as described previously (Parbhakar 

et al., 2004). 
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 Paraffin-embedded human lung samples from patients with (n=5) and without asthma 

(n=3) were obtained following consent from the archives of the Department of Pathology in the 

College of Medicine at the University of Saskatchewan. The sections were prepared and placed 

on coated glass slides.  

 

5.3.2. Immunohistology  

Lung sections were stained with mouse anti-human TLR9 antibody (IMG-305a, Imgenex, San 

Diego, CA) following protocols described previously (Schneberger et al., 2009). Briefly, after 

de-paraffinization, re-hydration, tissue peroxidase quenching (0.5% hydrogen peroxide in 

methanol), and antigen unmasking with pepsin (2mg/ml 0.01N hydrochloric acid), the tissue 

sections were blocked with 1% bovine serum albumin to block non-specific binding for 1 hour.  

Sections were treated with TLR9 antibody (1:50 dilution) and incubated at 4
o
C for 16 hours 

followed by incubation with horseradish peroxidase-conjugated goat anti-mouse antibody (1:75) 

for 1hr at room temperature (P0447, Dako, Ontario, Canada). Color was developed using a color 

development kit (Vector Laboratories, Ontario, Canada). Slides were counterstained with methyl 

green (Vector Laboratories) prior to mounting. Immunohistochemical controls included omission 

of the primary antibody or the secondary antibody or staining with anti-von Willebrand factor 

antibody. 

 

5.3.3. Immuno-electron Microscopy 

For immuno-electronmicroscopy 100nm lung sections were placed on nickel grids and floated 

in blocking buffer for 30min prior to 1hr incubation with TLR9 antibody at 1:50 dilution. 

Sections were rinsed 3 times in Tris-buffered saline for 5 minutes each before addition and 

incubation with 20nm gold-conjugated anti-mouse secondary antibody (1:100; Fitzgerald 
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Industries International, Concord, MA, USA) for 1hr. A control with omission of the primary 

antibody was also run. 

 

5.3.4. In-situ Hybridization 

5.3.4.1. Probe generation 

Human TLR9 sequence obtained from Invivogen (pUNO1-hTLR9a) was cut with HindIII and 

SmaI and ligated with T4 DNA ligase (NEB, Pikering ON Canada) into pSPT18 (Roche, Laval 

QC, Canada). This plasmid was then transfected and expanded in HIT-DH5α competent cells 

(Real Biotech Corp., Taipei, Taiwan) as per manufacturer’s specifications. Mouse TLR9 in 

vector pCR II-TOPO (Letiembre et al 2007) was kindly provided by Dr. Serge Rivest from Laval 

University, Quebec City. Plasmids were purified using GelElute DNA purification kit (Sigma, 

Oakville, ON, Canada). Purified human plasmid insert was confirmed by cutting with HindIII 

and SmaI and looking for insert fragment on ethydium bromide acrylamide gel.  DIG-labeled 

probes for TLR9 were generated using the Roche DIG RNA Labeling Kit (Roche, Laval QC, 

Canada) according to manufacturer’s instructions. Probe concentration was determined using the 

Roche DIG Luminescent Detection Kit (Roche, Laval QC, Canada) protocol. 

 

5.3.4.2. Tissue Probing 

Fresh sections were prepared and allowed to adhere to the slides for 2 hours at 60
o
C followed 

by de-paraffinization and re-hydration described in (Parbhakar et al., 2004). Sections were 

treated thereafter as per manufacturer’s protocol (Biochain, Hayward CA). Briefly, tissue was 

fixed with 4% paraformaldehyde, washed with DEPC-H2O prior to incubation with pre-

hybridization solution for 4 hours at 50
o
C in a humidified chamber. The sections were incubated 

with 2ng/ml DIG-labeled probe for 16hr at 45
o
C followed by washes through reducing 
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concentrations of saline-sodium citrate buffer before blocking with 1X block buffer in phosphate 

buffered saline for 1hr. Then, the sections were treated with AP-conjugated anti-DIG antibody in 

1X blocking buffer (1:500) for 4hr at room temperature, washed with 1X alkaline phosphatase 

buffer before incubation for 4 hours with BCIP-NBT. Control sections were fixed and treated 

without addition of probe. 

 

5.3.5. Cell field Count 

TLR9-positivly stained cells were counted in randomly selected fields of asthma/COPD lungs 

(n=4) and those from patients with no identified lung problems (N=4). Five fields were counted 

at 400X magnification. 

 

5.3.6. Statistical Analysis 

All values presented were given as the mean +/- standard deviation. P values less than 0.05 

were considered significant. We performed a one-way Mann-Whitney test to determine 

significance between normal and asthmatic/COPD lungs. 

 

5.4. Results 

5.4.1. Mouse Lung 

First, we determined TLR9 protein expression and distribution with immunohistochemistry. 

Lung sections stained without primary (Figure 5.1A) or secondary antibody (data not shown) 

lacked staining while VWF antibody stained vascular endothelium but not the airway epithelium 

(Figure 5.1B). Lungs showed TLR9 protein in bronchiolar epithelium (Figure 5.1C, 5.1D), 

vascular endothelium (Figure 5.1C, 5.1E) and cells in the alveolar space and the septa (Figure 

5.1C, 5.1F).  
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TLR9 mRNA was detected in mouse lungs with in-situ hybridization. Staining without probe 

showed no background staining (Figure 5.2B). While negative control lung sections lacked any 

staining, TLR9 mRNA was localized in vascular endothelium (Figure 5.2C), airway epithelium 

(Figure 5.2A, 5.2E), alveolar macrophages and sepal cells (Figure 5.2A, 5.2D).  

We confirmed the identity of the cells and the subcellular localization of TLR9 with immuno-

gold electron microscopy. TLR9 staining was observed in the alveolar macrophages (Figure 5.3), 

neutrophils (Figure 5.4), and type-2 endothelial cells (Figure 5.5). While nuclear and cytoplasmic 

staining for TLR9 was noticed in alveolar macrophages and type-2 cells, only cytoplasmic 

staining was present in neutrophils.  
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Figure 5.1. TLR9 Immunohistochemistry on Mouse Lungs  

Lung sections from mice stained with only a secondary antibody (A) lack staining in alveolar 

septa, whereas those stained with vWF antibody (B) shows staining in endothelium (arrowhead) 

alone. Lung sections stained using TLR9 antibody show staining in several tissues (arrows) (C). 

High magnification shows staining in bronchial epithelium (double arrow) (D), vascular 

endothelium (arrowhead) (E), and septal (arrow) as well as alveolar macrophages (chevron) (F). 

Original magnification A,B,C 100X; E,F 400X; D 1000X. 
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Figure 5.2. TLR9 In-Situ Hybridization on Mouse Lungs 

Lung sections stained using TLR9 DIG-labeled RNA show staining (arrows) in several cell 

types (A). Lung sections from mice stained without a specific probe (B) lacks staining in any 

tissue. High magnification shows staining in vascular endothelium (arrowhead) (C), septal  

(arrow) as well as alveolar macrophages (chevron) (D), and bronchial epithelium (double arrow) 

(E). Original magnification  A 100X; B,C,D,E 400X. 
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Figure 5.3. TLR9 staining in mouse alveolar macrophage. 

TLR9 staining (arrows) observed in mouse alveolar macrophage. N: Nucleus; AS: Alveolar 

Space. Original magnification 10000X. 
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Figure 5.4. TLR9 staining in mouse neutrophil. 

TLR9 staining (arrows) observed in a mouse lung neutrophil and alveolar septa (double arrows). 

N: Nucleus; AS: Alveolar Space. Original magnification 10000X. 
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Figure 5.5. TLR9 staining in mouse type-II cell. 

TLR9 staining (arrows) observed in a mouse lung type-II cell. N: Nucleus; AS: Alveolar Space. 

Original magnification 10000X. 
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5.4.2. Human Lung 

Immunohistochemistry of lungs without primary (Figure 5.6A) or secondary antibody (data 

not shown) lacked staining whereas vWF stained vascular endothelium (Figure 5.6B). TLR9 

antibody reacted with alveolar septal cells and alveolar macrophages in healthy (Figure 5.6C) 

and asthmatic (Figure 5.6D) lungs. The number of TLR9 positive septal cells was increased in 

the asthmatic lungs (Figure 5.6I). Lungs showed TLR9 protein expression in vascular 

endothelium (Figure 5.6E), bronchiolar epithelium (Figure 5.6F), alveolar septal cells (Figure 

5.6G), and alveolar macrophages (Figure 5.6H).  

In-situ hybridization showed TLR9 mRNA in lungs from healthy (Figure 5.7A) and asthmatic 

(Figure 5.7B) humans. Asthmatic lungs appeared to show more intense staining for TLR9 

mRNA in the resident as well as recruited cells (Figure 5.7A-B). The negative control lacked 

positive reaction (Figure 5.7C). Large and small lung vessels showed TLR9 mRNA expression 

in their endothelium (Figure 5.7D-E). Large septal cells most likely macrophages and alveolar 

macrophages were also positive for TLR9 mRNA (Figure 5.7F).  

Human lungs subjected to immuno-electronmicroscopy delineated TLR9 expression in 

cytoplasm, nucleus and the plasma membrane of alveolar macrophages (Figure  5.8). Type-II 

alveolar epithelial cells showed TLR9 expression in their cytoplasm (Figure 5.9). 
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Figure 5.6. Human Lung TLR9 Immunohistochemistry.  

Lung sections from human patients stained with only a secondary antibody (A) lacks staining in 

alveolar septa, whereas the those stained with vWF antibody (B) shows staining in endothelium 

(arrowhead) alone. Lung sections stained using TLR9 antibody show staining (arrows) in several 

cell types in both normal (C) as well as asthmatic patients (D). High magnification shows 

staining in bronchial epithelium (double arrow) (E), vascular endothelium (arrowhead) (F), and 

septal (G) as well as alveolar macrophages (chevron) (H). Original magnification A,C,D 40X; B 

100X; E,F,H 400X; G 1000X. Bars represent 0.2mm. Field counts of control and Asthma/COPD 

patients (I) showed a greater density of TLR9 positive cells in those with Asthma/COPD 

(p<0.01). 
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Figure 5.7. Human Lung TLR9 In-Situ Hybridization. 

Lung sections from normal (A) or asthmatic (B) human patients stained using TLR9 DIG-labeled 

RNA probe show staining (arrows) in several cell types with a clear influx of TLR9 positive cells 

in the bronchus of asthmatics. Staining without a RNA probe shows lack of staining in any tissue 

(C). High magnification shows staining in bronchial epithelium (double arrow) (E), vascular 

endothelium (arrowhead) (F), and septal (arrow) as well as alveolar (chevron) macrophages (G). 

Original magnification  A,B,D 40X; C 100X; E,F 400X. 
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Figure 5.8. TLR9 staining in human alveolar macrophage. 

TLR9 staining (arrows) observed in a human alveolar macrophage. N: Nucleus; AS: Alveolar 

Space. Original magnification 13000X. 
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Figure 5.9. TLR9 staining in human type-II cell. 

TLR9 staining (arrows) observed in a human lung type-II cell. N: Nucleus; AS: Alveolar Space. 

Original magnification 13000X. 
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5.5. Discussion 

We provide data on in situ expression of TLR9 protein and mRNA in intact lungs of mice and 

humans through the use of multiple morphological methods. These data are important because of 

very limited information available on TLR9 expression in intact lungs and the potential role of 

TLR9 in various respiratory diseases. The lung is comprised of many types of resident and 

transiting cells that make specific contributions to physiological responses in the lung. Cell 

responses are largely governed by the type and amount of expression of immune receptors such 

as TLR9, and inter-cellular communications. Therefore, it is very important to understand 

precise cell-specific expression of receptors such as TLR9 in intact organs. The data reported 

here show TLR9 mRNA and protein expression in vascular endothelium, bronchiolar epithelium, 

alveolar septal cells, and alveolar macrophages in lungs of both mice and humans.  

We used a combination of methods to detect TLR9 mRNA and protein expression in mouse 

and human lungs. The reason for studying both human and mouse lungs is that mice are the most 

commonly used animal model to study human lung physiology but the basal expression of 

proteins may not be similar between the two. Because the mRNA may not always be translated 

into its protein, we studied TLR9 protein and mRNA expression in situ in intact lungs of both 

species. Lastly, we employed immuno-gold electron microscopy to clarify the sub-cellular 

expression of TLR9 protein.   

Innate immune receptors such as TLR9 recognize microbial motifs and their expression on 

epithelia and alveolar macrophage forms the first line of defense in the lung.  Interestingly, there 

is controversy regarding the expression of TLR9 in monocytes and macrophages. The data from 

isolated cells show that expression of TLR 9 appears to be primarily restricted to certain human 

dendritic cells particularly plasmacytoid dendritic cells and alveolar macrophages (Hoene et al., 

2006; Hornung et al., 2002; Kadowaki et al., 2001; O'Mahony et al., 2008), whereas in mice, 
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macrophages and alveolar macrophages express the receptor, but dendritic cells do not. This 

pattern is more restricted in mouse lung than in other tissues as these dendritic cells do express 

TLR9 in the mouse spleen (Chen et al., 2006). Further, some species such as cattle and horses 

have a highly phagocytic lung macrophage population known as pulmonary intravascular 

macrophages, which bind to and reside in lung capillaries (Staub, 1994). These cells have such a 

strong expression of TLR9, that depletion of these cells can greatly reduce overall TLR9 mRNA 

in lungs of these animals (Schneberger et al., 2009; Schneberger et al., 2011). There has been 

some dispute over expression of TLR9 in alveolar macrophages within both human as well as 

mouse lungs. While some found functional inhibition of IL-10R in alveolar macrophages 

stimulated with CpG-DNA (Fernandez et al., 2004), others found no mRNA expression in 

lavaged mouse alveolar macrophages (Suzuki et al., 2005). However Kiemer and colleagues 

(Kiemer et al., 2008) showed that expression of TLR9 mRNA and protein does in fact occur in 

these cells in vitro. Our data are the first to confirm TLR9 protein and mRNA in alveolar 

macrophages in intact lung. 

 This information on TLR9 expression in alveolar macrophages is of particular use as the 

location of a receptor within the lung can greatly alter its ability to detect its ligand. For example, 

particulate size has a clear role in where inhaled debris is likely to deposit (Bowden, 1984). 

Thus, expression of TLR9 in the bronchial epithelium allows for sensing unmethylated DNA on 

particles much larger than would be encountered in the alveolar space. Additionally, as the half 

life of naked DNA in circulation is only a matter of minutes (Kawabata et al., 1995), local tissue 

receptor interaction may be more important than DNA reaching circulating cells. 

There have been studies that proposed TLR9 expression in a number of lung cell types.  Platz 

and colleagues (Platz et al., 2004) showed expression in lung epithelial cell line CALU-3, and 
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induction of cytokines in response to CpG stimulation. While ISH and immunohistochemical 

staining was not as good for these cells, we do show immune-electronmicroscopic evidence for 

expression in type-2 alveolar epithelial cells (Figure 5.5 and 5.9), consistent with their findings. 

Li and colleagues (Li et al., 2004) showed that not only do pulmonary endothelial cells express 

TLR9, but in cultures stimulated with CpG DNA resulted in expression of proinflammatory 

proteins such as IL-8 and ICAM-1. 

In patients diagnosed with asthma we see a large influx of cells into the lung (Fig 5.6d), many 

of which show expression of TLR9. While we did not seek to identify these specific cells, work 

by others has suggested that these cells could include myeloid dendritic cells (Schaumann et al., 

2008), eosinophils (Ilmarinen et al., 2009), and neutrophils (Jozsef et al., 2004) all of which 

express TLR9 and may account for the positive staining we see of cells in the vascular space. 

The influx of inflammatory cells into an organ would increase the total amount of TLR9 protein 

and result in more robust inflammatory signaling in the organ.  

It should be noted however that Assaf and colleagues (Assaf et al., 2009) found in tumor cell 

lines that the expression of TLR9 is no guarantee of signaling. Indeed, there appears to be a 

threshold amount of receptor required for effective signaling upon encounter of ligand. While 

our study does not address this issue directly we do note that staining intensity both for protein 

and mRNA in the stated tissues was of an intensity similar to that found in macrophages, 

suggesting that they may have sufficient expression of TLR9 for immune signaling upon 

ligation.
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CHAPTER 6: ROLE OF TLR9 IN EXPOSURE OF MICE TO CHICKEN BARN AIR 

 

6.1. Abstract 

Exposure to animal barn air is an occupational hazard that causes lung dysfunction in barn 

workers. Respiratory symptoms experienced by workers are typically associated with endotoxin, 

but within these environments gram negative bacteria constitute only a portion of the total 

microbial population. In contrast, unmethylated DNA can be found in all bacteria, some viruses, 

and mould. We hypothesized that in such environments TLR9 contributes to the overall immune 

response seen in the lung. Therefore we investigated the role of TLR9, which binds 

unmethylated DNA, in barn air induced inflammation. Using a mouse model, wild-type and 

TLR9
-/-

 mice were exposed to chicken barn air for 1, 5, or 20 days. Examination of blood serum 

and bronchiolar lavage against a panel of six TLR9-induced cytokines (IL-1, IL-6, IL-10, IL-

12, TNF-, and IFN-) showed no significant differences after a single day exposure. TNF-α and 

IFN-γ levels in TLR9-/- mice were reduced after exposure at 5 days in lavage, and TNF-α was 

also reduced in serum at this point.  After 20 days of exposure IFN-γ was significantly reduced in 

lavage of TLR9
-/-

 mice. Neutrophil accumulation in the lung as measured by myeloperoxidase 

was also reduced at 20 days of exposure in TLR9-/- mice, as was total lavage cell counts. 

However, Masson’s staining revealed no apparent histological differences between any of the 

treatment groups. Taken together our data show TLR9 contribute to lung inflammation induced 

following exposure to chicken barn air potentially through binding of unmethylated DNA. 
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6.2. Introduction 

Workers in high-intensity livestock operations have been recognized to be at risk for a 

number of chronic respiratory problems including bronchitis, rhinitis, chronic cough and phlegm, 

occupational asthma, and organic dust toxic syndrome (ODTS) to name a few (Donham et al., 

2000; Kirychuk et al., 2003; Kirychuk et al., 2006; Radon et al., 2001; Whyte, 1993). Workers in 

such facilities are exposed to a wide variety of agents such as ammonia, hydrogen sulfide, dust 

particles, and LPS (Just et al., 2009; Kirychuk et al., 2006). Single exposures to such facilities 

have been shown to elevate a number of pro-inflammatory cytokines in nasal lavages and serum 

of animal models (Senthilselvan et al., 1997; Charavaryamath et al., 2008; Rylander, 2002; Smit 

et al., 2009). 

Endotoxin has been targeted as a critical component responsible for many of the lung 

problems seen to exposure to barn air (Charavaryamath et al., 2008; Donham et al., 2000; Thelin 

et al., 1984; Zejda et al., 1994). More recent work however suggests that within chicken barns 

endotoxin-producing gram-negative bacteria make up only a small number of the bacterial 

species within the barn, and that these bacteria may be in the minority as far as total numbers are 

concerned (Just et al., 2009; Whyte, 1993). In contrast, all bacteria and some viruses and mold 

contain unmethylated DNA in their genomes, which has been shown to induce a variety of 

cytokines through binding the TLR9 receptor. Many of these cytokines are similar to those 

induced by endotoxin, which binds the related TLR4 receptor (Klinman, 2006; Medzhitov et al., 

1997). Previous work had shown that DNA from barn dust extracts could induce IL-10 and IL-

12p40 (Roy et al., 2003). This system however uses purified DNA given to peripheral blood 

mononuclear cells in vitro, which may not be the best reflection of barn conditions, where 

significant production of cytokines may occur in the lung from a variety of cell types. Further, 

such a system doesn’t account for effects of numerous other components in the air that may 
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synergize or counter responses through TLR9. Therefore, we exposed TLR9-/- and wild-type  

mice to chicken barn air for 1, 5, or 20 days to determine the contribution of TLR-9 to lung 

inflammation. We examined cytokines, immune cells, and histology in the lungs of normal and 

exposed wild-type and TLR-9 deficient mice. Our data show that TLR9 plays a role in lung 

inflammation induced following exposure to chicken barn air. 

 

6.3. Materials and Methods 

6.3.1. Animals 

The experimental protocols were approved by the University of Saskatchewan Committee on 

Animal Care Assurance and all experiments conducted according to guidelines of the Canadian 

Council on Animal Care. Breeding pairs of TLR9-deficient mice (C57BL/6 background) were a 

gift from Dr. Heather Davis and obtained from Taconic. Mice were raised at the Western College 

of Veterinary Medicine Animal Care Unit. C57BL/6 mice where obtained from the Animal 

Resource Centre at the University of Saskatchewan. 

 

6.3.2. Experimental Exposure 

Mice were transported in sealed cages with vents and driven to a cage-based chicken barn in 

the morning and placed on a shelf approximately 1.8 meters (6 feet) off of ground. Mice were 

kept in barn for 8 hours and then returned to animal care facilities at the University of 

Saskatchewan where they were transferred out of their cages for the evening. Mice were taken to 

the barn for 1, 5, or 20 days. The 20 day exposure animals were rested for 2 days after each cycle 

of 5 exposures to more closely approximate a 5 day work week exposure. Parallel control groups 

of mice that were transported but not exposed to barn air were transported with exposed mice in 

separate cages. 
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6.3.3. Tissue, Blood, and Lavage Collection 

At the end of exposure time mice were euthanized (100mg/kg ketamine + 20mg/kg xylazine, 

intraperitonial injection), and blood was collected by cardiac puncture with 0.01ml heparin 

(Sandoz, Boucherville, QC, Canada). BAL fluid was collected by flushing lungs with 3ml of 

cold HEPES buffer and centrifuged at 400Xg, and stored at -80
o
C for later use, while the cell 

pellet was resuspended in 100μl HEPES and counted with a haemocytometer (Hausser Scientific, 

Horsham, PA). Cells were resuspended to 800μl and cytospun onto microscope slides, and dried 

overnight before staining.  

Lung sections were divided in two and one half snap-frozen in liquid nitrogen and stored at -

80
o
C. The other lung was fixed in 4% paraformaldehyde overnight before dehydration and 

polymerization and embedding in white resin (London resin company, USA).  

 

6.3.4. Immunohistochemistry 

Immunohistology was done on lung tissue, cut on a microtome to a thickness 5 microns. 

Briefly, after de-paraffinization, rehydration, tissue peroxidase quenching (0.5% hydrogen 

peroxide in methanol), and antigen unmasking with pepsin (2 mg/mL 0.01 N hydrochloric acid), 

the tissue sections were blocked with 1% BSA to block nonspecific binding for 1 hour. Sections 

were treated with F4/80 (1:75 dilution) and incubated overnight at 4
o
C. The next day horseradish 

peroxidase-conjugated goat anti-rabbit antibody (ab6845, Abcam) was added at 1:100 dilution 

for 1 hour at 37
o
C. Color was developed using a color developing kit (Vector Laboratories, 

Ontario, Canada). Slides were counterstained with methyl green (Vector Laboratories) before 

mounting. A control was similarly run with omission of the primary antibody or the secondary 

antibody. We counted F4/80 positive cells in the alveolar septa of lungs to quantify number of 
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septal macrophages. The counts were made in three fields in 3-4  mice randomly selected from 

each group in the study at 100X magnification. 

 

6.3.5. Histochemical Staining 

Cytospins of BAL cell were stained using a Hemacolor kit (EMD Chemicals, Mississauga, 

ON, Canada) according to manufacturer’s protocol. Lung tissue sections were stained using 

Masson’s trichrome stain. Tissue was deparaffinized and placed in Bouin’s fixitive overnight 

prior to staining.  Slides were dehydrated and mounted after staining. 

 

6.3.6. Cytokine Bio-Plex Enzyme Linked Immunosorbent Assay 

Cytokines IL-1β, IL-6, IL-10, IL-12, IFN-γ, and TNF-α were measured using bead-conjugated 

antibodies and recombinant standards with the Bio-Plex multiplex ELISA assay system (Bio-

Rad, Mississauga ON, Canada). Assay was carried out as per manufacturer’s instructions for 

magnetic bead ELISA. Lavage fluid and serum were centrifuged prior to use as described earlier. 

 

6.3.7. Protein and RNA Extraction 

Frozen lung tissue was homogenized in microcentrifuge tubes using a pestle (Bel-art, 

Pequannock, NJ, USA). Protein and RNA was extracted using an AllPrep DNA/RNA/Protein 

purification kit (Qiagen, Mississauga, ON, Canada) as per manufacturer’s instructions. Protein 

and RNA fractions were saved, quantified, and stored at -80
o
C until used. 

 

6.3.8. Myeloperoxidase assay 

Briefly, protein samples were placed on a 96-well plate at several concentrations in phosphate 

citrate buffer (0.2M Na2HPO4 – 7H2O, 0.1M citric acid, pH 5.0) in duplicate along with a 
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recombinant standard. TMB substrate was added to all wells and developed for 2 minutes at 

room temperature before reaction was stopped with 1M H2SO4 and read at a450.  

 

6.4. Results 

6.4.1 Histological Examination 

Lung tissue sections were stained with Masson’s stain to determine if there were any apparent 

histological changes (Figure 6.1). No changes were apparent across times, exposure times, or 

species.  

 

6.4.2. Neutrophil myeloperoxidase 

Myeloperoxidase levels were similar across all groups, with no significant differences 

between exposed and non-exposed animals at 1 and 5 days of exposure to barn air (Figure 6.2). 

However, as shown in Figure 6.2, at 20 days there is a significant reduction in myeloperoxidase 

(p≤ 0.05) in the lungs of TLR9-deficient animals compared to similarly exposed normal mice. 

 

6.4.3. Septal macrophage cell counts 

Tissue sections were cut of lungs from all mice and stained for macrophages using F4/80 

antibody to determine numbers of septal macrophages at various exposures. Single exposure to 

barn air induced a significant decrease  in both wild-type and knockout mice compared to the 

unexposed mice (p≤ 0.01 and 0.05 respectively) (Figure 6.3). The numbers of F4/80 septal 

macrophages were higher after 5 exposures compared to single exposure mice (p≤ 0.05). At 20 

days exposure, the numbers of septal macrophages once again dropped significantly (p≤ 0.05) 

for the WT mice compared to the knockout mice, resulting in a significant difference in septal 

macrophages between WT and TLR9 knockout exposed mice (p≤ 0.01). 
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6.4.4. BAL Cell Counts 

After a single day exposure there were no significant changes to BAL cell counts to barn air 

either between TLR9-/- and WT animals, or between exposed animals and their transport 

controls. There was however a significant decrease in number of cells in the BAL of both WT 

and knockout mice at 5 days exposure compared to similar 1 day exposed animals (p≤ 0.05 

between TLR9-/- 1 vs 5 days exposed and p≤ 0.01 between WT 1 vs 5 days exposed) (Figure 

6.4). BAL cell numbers increased once more when examined in 20 days exposed animals 

compared to 5 day exposed animals, however, at this time the number of cells in the TLR9-/- 20 

day exposed BAL fluid were significantly lower than similarly exposed WT mice (p≤ 0.05). Cell 

staining and counting of cell types showed a predominance of alveolar macrophage in all BAL 

fluids from all exposure conditions and times with no significant differences between any 

treatment groups. Therefore, the changes in BAL cell counts are a reflection primarily of changes 

in numbers of alveolar macrophages. 

 

6.4.5. Expression and Quantification of Cytokines in Lung BAL and Serum 

A panel of cytokines (IL-1β, IL-6, IL-10, IL-12, IFN-γ, and TNF-α) were examined in blood 

serum and BAL. Of these cytokines significant differences were detected in IFN-and TNF- in 

serum (Figure 6.5) and BAL (Figure 6.6). We do note however that no IL-12 was detected in any 

samples, indicative of a problem with this particular antibody. 
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At 1 day exposure, while there were no significant differences in lavage cytokines, there was 

a reduction in serum TNF- in the TLR9-/- animals compared to normal wild type (WT) animals 

(p≤ 0.05). 

At 5 days of exposure to barn air TLR9-/- animals now showed continued significant 

reduction in serum TNF- (p≤ 0.05) compared to similarly exposed WT animals, but now BAL 

also showed significant reductions of both TNF- and IFN- in these same animals. (p≤ 0.06).  

After 20 days of exposure to barn air, while serum cytokines levels were no longer 

significantly different between WT and TLR9-/- exposed mice, BAL IFN- remained reduced in 

the knockout mice (p≤ 0.05).  
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Figure 6.1. Lung histology: Masson’s Trichrome staining 

Tissue sections from animals (n=3 per group) were mounted and stained with Masson’s 

trichrome and examined. No significant changes were noted between barn exposed WT and 

TLR9- animals at 1 day (A and B respectively) or 20 days (C and D respectively). 20 day 

exposure controls for WT (E) and TLR9- (F) were similarly indistinguishable. Original 

magnification 40X. 
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Figure 6.2. Myeloperoxidase activity assay for lung neutrophil quantitation. 

TMB substrate was added to protein extracts of whole lung tissue from exposed and unexposed 

WT and TLR9-deficient (TLR9-) mice and read at a450 after 2 minutes. Activity was assessed 

by comparison to a standard curve. (*= p≤ 0.05). 
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Figure 6.3. Septal macrophage staining and quantification. 

Immunohistochemistry with F4/80 antibody was done on lung sections from exposed and 

unexposed WT and TLR9-deficient (TLR9-) mice. Blinded counts of macrophages were done on 

5 400X magnification fields on 2 separate lung sections from each animal and averages of these 

counts used. (*= p≤ 0.05 **= p≤ 0.01). 
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Figure 6.4. BAL cell counts. 

BAL from exposed and unexposed WT and TLR9-deficient (TLR9-) mice was spun briefly at 

400Xg, supernatant removed, and cells resuspended to 100l for counting with hemocytometer 

(shown). (*= p≤ 0.05, **=p≤ 0.01). 
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Figure 6.5. Bio-plex ELISA of mouse serum. 

Blood was collected by cardiac puncture from exposed and unexposed WT and TLR9-deficient 

(TLR9-) mice. Samples were centrifuged briefly to remove cells and serum decanted. ELISA 

was done with antibodies to IL-1, IL-6, IL-10, IL-12, IFN-, and TNF-. (*** = p≤ 0.01). 
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Figure 6.6. Bio-plex ELISA of mouse BAL. 

BAL was collected by washing lungs 3 times with cold HEPES buffer from exposed and 

unexposed WT and TLR9-deficient (TLR9-) mice. Samples were centrifuged briefly to remove 

cells and fluid decanted. ELISA was done with antibodies to IL-1, IL-6, IL-10, IL-12, IFN-, 

and TNF-. (*= p≤ 0.06, ** = p≤ 0.05). 
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6.5. Discussion 

Previous work on barn dust DNA has been valuable in suggesting a role for this nucleic acid 

in lung immune responses (Roy et al., 2003). However, it was limited by the use of purified 

DNA and challenging of PBMCs in vitro. The lung is a complex organ with a number of cell 

types that all contribute to the overall response seen to exposure to a host of lung irritants and 

infectious organisms. Therefore, an animal challenge model is needed to closely mimic whole 

organ and whole barn air complexity when attempting to address the possible role of TLR-9 in 

barn air induced lung dysfunction. Therefore, we used a challenge model established in our 

previous studies (Charavaryamath et al., 2008). 

We first examined cellular differences in the lungs of mice. Lung tissue protein extracts were 

tested for myeloperoxidase to quantify lung neutrophil levels. While no differences were 

apparent after 1 or 5 exposures, TLR9-deficient mice showed a significant reduction in lung 

neutrophils after 20 exposures compared to the WT exposure matched group. Neutrophils are 

critical for lung defense in response to variety of challenges (Abraham, 2003). Although 

neutrophils migrate during early phase of acute lung inflammation, their migration may continue 

over a longer period of time in chronic inflammation (Stockley, 2002). Deficiency of TLR9 may 

be an indirect regulator of neutrophil migration into inflamed lungs. Interestingly, we observed 

lower levels of TNF- in TLR9-deficient mice at 20 days, which could be one of the causes of 

this reduction as TNF- is critical for neutrophil migration (Smart & Casale, 1994). These data 

indicate that TLR9 may partially regulate lung inflammation in mice exposed to chicken barn air. 

There was a significant reduction in the number of BAL cells obtained after 5 days of 

exposure compared to single day exposures for both WT and TLR9-/- animals. By 20 days of 

exposure, the number of cells in BAL had increased for both exposure groups, but the increase 
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was much greater in the WT mice. At the 20 day exposure time point there was now significantly 

fewer lavage cells in the knockout mice compared to WT. The primary cell type found in all 

BAL samples were alveolar macrophages, with over 90% of cells typically belonging to this 

group.  

Finally, lung tissue was stained for macrophage F4/80 to resolve septal macrophages. Results 

showed that there was an initial significant decrease in septal macrophages after the first day of 

exposure in both exposed mouse strains, but that these numbers increased after five exposures. 

Interestingly, by 20 days the WT exposed mice had a reduction in these macrophages, however, 

the knockout mice remained at levels similar to those seen at 5 days exposure. This was an 

unexpected result, particularly in light of BAL cell counts that show a near mirror-opposite 

pattern over these time points. 

When compared to a previous barn exposure experiment with TLR4 knockout mice 

(Charavaryamath et al., 2008) these changes are much weaker. Changes to BAL cell types were 

present after a single day exposure in that experiment whereas TLR9 knockout showed changes 

in total cell numbers by 20 days exposure. Similarly, there were more pronounced changes in 

histology, and airway hyperresponsiveness in the previous experiment. Interestingly, cytokine 

changes between TLR knockout and wild-type mice were seen in BAL in our experiment 

whereas the previous study showed changes only in serum. The greater impact of TLR4 

knockout on response of mice to barn air was expected given the number of papers that have 

shown how important the TLR4 ligand LPS is to barn air induced lung inflammation (Dosman et 

al., 2006; Kirychuk et al., 2006; Senthilselvan et al., 2009). However, use of different mouse 

strains and type of barn (pig versus chicken) may account for some of the other differences seen. 
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One possible explanation for both BAL and septal macrophage results is that the septal 

macrophages exert an anti-inflammatory effect on the lung, leading to fewer BAL cells. There is 

evidence for this in a recent study that showed that signaling through TLR4 and TLR9 in septal 

macrophages induced expression of cytokines such as IL-10 and generally induced an anti-

inflammatory response (Hoppstadter et al., 2010). Yet another possibility is that migration of 

macrophages into the alveolar space requires a transition through the alveolar septa (Landsman 

& Jung, 2007). If this is the case then a reduction in macrophages at one time point in the septa 

being mirrored by an increase in the BAL could be a reflection of the increased movement of 

these cells into the alveoli. This however still raises the question of the reason for such an 

increased migration. 

Finally, we examined a panel of cytokines known to be produced by DNA binding TLR9 

(Klinman, 2006) with the expectation of a reduction in one or more of these in the knockout 

animals. Indeed after a single day exposure there was a significant drop in serum TNF- in 

knockout mice compared to WT. After five exposures, we saw a significant reduction in TNF- 

and IFN- in lung BAL and TNF- in serum. After 20 exposures only IFN- remained 

significantly reduced in knockout mice, with none of the animals producing detectable levels of 

the cytokine in their lungs. It should be noted that the reduction in IFN- at 20 exposures was 

below levels of unexposed animals. This would suggest that exposure of TLR9-deficient mice to 

barn air result in specific inhibition of this cytokines that requires further work to address this 

issue. 

Further considerations exist for the phenomenon of induced tolerance to repeated exposure to 

immune-stimulatory molecules such as LPS and CpG DNA (De Nardo et al., 2009; West & 

Heagy, 2002). As a wide variety of exposure systems have been employed, it can be hard to draw 
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firm comparisons, particularly as many do not extend beyond one to two days exposure. 

Similarly, while many point to a decrease in cellularity and TNF- (West & Heagy, 2002), 

others note that these differences are less apparent in systems employing organic particulates 

(Schwartz et al., 1994). One possibility is that unmethylated DNA in these organic dusts may be 

acting to increase TNF- levels that would otherwise drop due to LPS tolerization. 

Barn air is a complex mix of dust and numerous microbial components that can induce lung 

inflammation. This study was conducted to determine the role of TLR9 and indirectly that of 

unmethylated DNA in lung inflammation induced following exposure chicken barn air. Because 

TLR9 signaling can induce expression of TLR4 and TL2 (Luyer et al., 2007), both of which may 

be critical in responding to bacterial components in barn air, part of the responses seen in TLR9-

deficient mice may be due to effects on TLR2 and TLR4 signaling. The same also applies for 

TLR4, which can increase expression of TLR9 (An et al., 2002). Therefore only a true 

environmental exposure can really begin to fully reflect the total lung response.  

Lung responses to bacterial DNA will depend on the amount of inhaled DNA. Attempts to 

purify DNA from barn dust from a previous experiment typically produced 1-2g of DNA from 

a filter kept in a similar barn for 8 hours (unpublished observations). Of this, a portion of 

recovered DNA will be methylated eukaryotic DNA, further reducing the amount of stimulatory 

DNA. Although some differences between WT and TLR9-deficient mice were noticed after 

single exposure, the divergence in immune responses between mouse populations at 5 days may 

indicate a requirement for exposure to a sufficient dose of stimulatory DNA that the mice do not 

see in a single day. Indeed, as Roy and colleagues found, 10g of barn dust were where 

responses were detectable (Roy et al., 2003), which corresponds to approximately the dose 

encountered by the mice after 5 exposures. This accumulated effect though would have to result 
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from continued exposure, not an accumulation of DNA within the tissue, as other studies have 

shown that internalized DNA is rapidly degraded (Kawabata et al., 1995). 

Recent work has shown that HMGB1 can bind bacterial DNA and increase responses to this 

DNA (Ivanov et al., 2007; Tian et al., 2007). Still other work has shown that the RAGE can bind 

HMGB1 coated DNA and greatly increases responses to this DNA (Tian et al., 2007). Because 

of robust expression of RAGE in the lung including type-I and type-II cells, this receptor could 

be of particular importance in bacterial DNA induced lung inflammation (Brett et al., 1993; 

Fehrenbach et al., 1998; Katsuoka et al., 1997). The possibility also exists for expression in 

vascular endothelium, monocytes/macrophages, and alveolar macrophages (Brett et al., 1993; 

Schmidt et al., 1993). It is possible that RAGE and HMGB1 may participate in TLR9-mediated 

lung responses to low doses of bacterial DNA (Abraham et al., 2000). 

Thus, we conclude that immune responses seen on single and multiple exposures to poultry 

barn air are probably complex involving signaling through a number of receptors and to a variety 

of microbial components. While others have shown endotoxin and TLR4 to be a major part of 

this immune response, we provide first evidence of TLR9’s role in the regulation of lung 

inflammation following exposure to poultry barn air.  
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CHAPTER 7: GENERAL DISCUSSION AND FUTURE DIRECTIONS 

 

The main focus of my research was to investigate the role of TLR9, and by extension 

unmethylated DNA, in the lung in response to barn air. Because the role of an immune receptor 

in inflammation is largely a function of its cellular expression, I first documented the expression 

of TLR9 in intact lungs from various species including humans. Having established expression 

of the receptor, I proceeded to examine cytokine and cellular changes in normal as well as  

TLR9
-/-

 mice exposed to chicken barn air. 

In the first experiment, I characterized TLR9 expression in dog, pig, cattle and horse with the 

use of multiple methods. Very little information exists on the expression of TLR9 in any of these 

species, and that little information largely comes from mRNA expression studies on tissue 

homogenates. First, I adapted and characterized a TLR9 antibody for use in these species 

because no antibodies are available that were specifically raised for use in these species. The data 

showed a similarity in TLR9 expression in the lung of these four species. TLR9 was detected in 

bronchial epithelium, vascular endothelium, alveolar septal cells, and alveolar macrophages. I 

deliberately used immuno-electron microscopy to resolve sub-cellular localization of TLR9 and 

to precisely distinguish the alveolar septal cells. Electron microscopy confirmed the identity of 

many of these cells, and further showed subcellular localization not just in the cytoplasm as has 

been more widely reported (Ahmad-Nejad et al., 2002; Latz et al., 2004), but also in the nucleus 

as well as the plasma membrane. Examination of the septal cells showed that type-II cells as well 

as macrophages expressed TLR9. TLR9 expression was also noticed in pulmonary intravascular 

macrophages which are a unique highly phagocytic population of macrophages in cattle, pig and 

horses. It is interesting to note that depletion of PIMs in horses led to a significant decline in the 

total lung TLR9 mRNA to underscore the extent of TLR9 expression in these cells. This decline 
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in total TLR9 is similar to that observed for TLR4 in horses following depletion of PIMs (Singh 

Suri et al., 2006). Interestingly, horses treated with E. coli LPS showed an increased expression 

of TLR9 (Schneberger et al., 2009). This suggested that the PIMs are major contributors of 

TLR9 expression in the lung and may also play a crucial role in the lungs of horses and cattle, 

which are housed in barns. The data on TLR9 expression in PIMs are even more relevant 

considering that PIMs may be recruited into lungs of humans under physiological stress 

(Thenappan et al., 2011). 

 Second, mouse and human lungs were assessed for TLR9 protein and mRNA expression. 

Similar to all domestic species studied, TLR9 was seen in the bronchial epithelium, vascular 

endothelium, alveolar septa, alveolar macrophages, and type-II cells. Similar subcellular 

localization was also seen. Protein expression data were further confirmed in both species by in 

situ hybridization for TLR9 mRNA. This further confirmed TLR9 expression in alveolar 

macrophages, a fact which has been disputed (Fernandez et al., 2004; Kiemer et al., 2008; Suzuki 

et al., 2005). An examination of asthmatic lungs showed an increase in TLR9 expressing cells in 

the septa, probably due to influx of known TLR9-positive cell types such as neutrophils, 

macrophages, eosinophils, and expansion of mast cell population (Hoppstadter et al., 2010; Ikeda 

et al., 2003; Jozsef et al., 2004; Mansson & Cardell, 2009). The influx of many cells expressing 

TLR9 would increase the lung burden of TLR9 and make it more sensitive to environmental 

unmethylated DNA. 

 Nuclear localization of TLR9 shown here in many cell types has not previously been 

reported. This may be that to our knowledge immuno-electron microscopy has not been tried 

with TLR9 previously. Most data on TLR9 localization is from confocal microscopy (Ahmad-

Nejad et al., 2002; Latz et al., 2004), where low nuclear fluorescence may not be seen, or 
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discounted due to higher cytoplasmic expression. While more work needs to be done to test these 

possibilities,  it should be noted that MyD88 has been shown in other studies to be present in the 

nucleus (Jaunin et al., 1998), suggesting that parts of the MyD88 pathway may occur within this 

space. Alternate signaling pathways may also exist. While the function of TLR9 nuclear 

surveillance is unknown, it is possible that monitoring for viruses such as herpesvirus may be 

accomplished in part by a TLR9-mediated mechanism (Paludan et al., 2011). 

 Having established the expression of TLR9 in whole lung tissues, I then exposed wild-

type as well as TLR9-deficient mice to barn air for 1, 5, or 20 days. Several cytokines were 

chosen that were consistent with a Th1 mediated response, which unmethylated DNA was 

known to induce, as well as IL-10, a known TLR9 induced inflammation inhibitory cytokine 

(Ramaprakash and Hogaboam, 2010). While few cytokines showed any notable differences, 

TLR9 deficient mice showed reduced TNF- and IFN- expression at 5 days and reduced IFN- 

at 20 days compared to their exposed wild type counterpart. Examination of cellular changes 

revealed that by 20 days there were significant reductions of neutrophils and BAL cells in the 

TLR9-deficient animals along with an increase in septal macrophages. Septal macrophages, 

which may include both interstitial and intravascular macrophages, are a cell population shown 

to have anti-inflammatory effects in response to several innate immune receptor ligands 

(Hoppstädter et al. 2010). The data shows a reduction in the number of type-II cells in TLR9 

deficient mice exposed for 5 or 20 days compared to wild type (Sethi and Schneberger, 

submitted). This is the first study to examine the role of TLR9, and by extension unmethylated 

DNA in a real environmental exposure setting compared to studies using cultured cells and 

purified DNA (Roy et al., 2003). The culture and purified DNA system does not account for 
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stimulation and possible synergism from other microbial components, nor particular features of 

the lung that may enhance or inhibit such. 

 In summary, there is a significant amount of similarity among species in the types of lung 

cells that express TLR9 and are capable of responding to unmethylated DNA. It is reasonable to 

suspect, therefore, that the changes in immune response seen in response to TLR9 knockout mice 

exposed to barn air may not only be an issue for human barn worker health, but also for animals 

housed in such facilities that may have elevated dust and bacterial levels. 

  Having just established that TLR9, and by extension bacterial DNA play a role in lung 

inflammation due to barn air exposure there are many aspects which now need to be explored. 

First, what are the mechanisms responsible for decreased IFN- and TNF- levels? One theory is 

that lack of direct TLR9 signaling may be responsible. Alternately, a reduction in TLR9 

signaling may result in reduction of levels of expression of other TLRs (An et al., 2002; Luyer et 

al., 2007). Second, if TLR9-expressing type-II cells are altered by exposure to chicken barn air 

(Sethi and Schneberger, submitted) leading to changes to the surfactant, is there an effect on  

immunity or breathing? Third, we have only examined a few cytokines, but are there changes to 

other cytokines and chemokines such as IFN-/, IP-10 and CXCL1? There also is a need to 

examine the mechanisms through which TLR9 regulates migration of neutrophils and also the 

response of animals to secondary challenges after recruitment of inflammatory cells expressing 

TLR9. Lastly, the horse data showing increased expression of TLR9 following administration of 

LPS raises the question of if there are alterations in expression of multiple TLRs in animals 

deficient in a single TLR? 

 Another set of questions revolves around DNA dose. As mentioned in Chapter 6, the 

suspected daily dose of unmethylated DNA stimulatory motifs is quite small. An experiment 
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using isolated dusts re-aerosolized in water with increasing concentrations of eukaryotic (non-

stimulatory) and non-eukaryotic DNA (stimulatory) could be given over 5 days to approximate 

increased or decreased DNA input from different sources. This may also suggest means for 

reducing responses to bacterial DNA if non-stimulatory or inhibitory DNA could be used to 

reduce such pro-inflammatory DNA responses. 

 Additionally, work by others (Senthilselvan et al., 2009) has shown that polymorphisms 

in the TLR4 gene have been linked to increased inflammation in response to barn air. By 

showing that TLR9 knockout mice show reduced indicators of inflammation over time, it is 

reasonable to conclude that TLR9 mutations may have similar effects on lung response in barn 

workers and should be tracked. That these changes to TLR9 knockout were apparent over 

prolonged exposure further suggests that such studies of worker illness in response to barn air 

will need to be conducted over longer time periods, and that these responses undergo an 

evolution of response that may rely on some receptors earlier in exposure, but on others over 

time. 

 Finally, recent work with HMGB1 and RAGE have posed new questions about their role 

in such lung responses. Double knockout mice for TLR9 and RAGE could be examined for their 

response to barn dusts or aerosolized DNA from different sources.  

 Our results in mice suggest that humans exposed to environments containing elevated 

levels of bacterial molecules, such as unmethylated DNA may see an increase in lung 

inflammation. This has been shown in the past to be the case with LPS and TLR4 (Senthilselvan 

et al., 2009; Dosman et al., 2006), but we show that knockout of TLR9 can reduce cytokines as 

well as influx of neutrophils into the lung over longer periods of exposure. Similarly, these 

findings point to the possibility of TLR9 receptor mutations contributing to or hindering 
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responses to environmental bacterial products, possibly similar to what is seen with TLR4 

(Senthilselvan et al., 2009). Finally, the expression of TLR9 in a number of cell types in the 

lungs of mice, humans, and veterinary species suggest that a number of cell types may be 

sensitive to bacterial DNA and thus may contribute to inflammation due to exposure to this 

ligand. The similar expression across multiple species further suggests that TLR9 may play a 

role in lung inflammation in a number of veterinary species as well.

 Taken together these findings confirm that there is a degree of similarity of TLR9 

expression across different species. Further, when TLR9 was knocked out in mice exposed to 

barn, there were several changes in their immune responses such as altered cellular and cytokine 

levels, showing that TLR9 signaling does play some role in the lung immune responses seen 

when mice are exposed to barn air.
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