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Abstract

Since the retinal blood vessel has been acknowledged as an indispensable element in

both ophthalmological and cardiovascular disease diagnosis, the accurate segmentation of the

retinal vessel tree has become the prerequisite step for automatic or computer-aided diagnosis

systems. In the attempt to fulfill the need of the accurate, robust, and fast automated

vessel segmentation method, this thesis, therefore, has investigated different works of image

segmentation algorithms and techniques, including unsupervised and supervised methods.

Further, the thesis has developed and implemented two systems of the accurate retinal vessel

segmentation.

The methodologies explained and analyzed in this thesis, have been selected as the most

efficient approaches to achieve higher precision, better robustness, and faster execution speed,

to meet the strict standard of the modern medical imaging. Based on the intensive inves-

tigation and experiments, this thesis has proposed two outstanding implementations of the

retinal blood vessel segmentation.

The first implementation focuses on the fast, accurate and robust extraction of the retinal

vessels using unsupervised techniques, by applying morphology-based global thresholding to

draw the retinal venule structure and centerline detection to extract the capillaries. Besides,

this system has been designed to minimize the computing complexity and to process multiple

independent procedures in parallel.

The second proposed system has especially focused on robustness and accuracy in re-

gardless of execution time. This method has utilized the full convolutional neural network

trained from a pre-trained semantic segmentation model, which is also called the transfer

deep learning. This proposed method has simplified the typical retinal vessel segmentation

problem from full-size image segmentation to regional vessel element recognition.

Both of the implementations have outperformed their related works and have presented

a remarkable scientific value for future computer-aided diagnosis applications. What’s more,

this thesis is also a research guide which provide readers with the comprehensive knowledge

on how to research on the task of retinal vessel segmentation.
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Who can number the clouds in wisdom

or who can stay the bottles of heaven

When the dust groweth into hardness

and the clods cleave fast together

(Job 38:37-38)
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Chapter 1

Introduction

The retinal blood vessel has been acknowledged as an indispensable element in both oph-

thalmological and cardiovascular disease diagnosis such as glaucoma and diabetic retinopathy.

The attributes of retinal vasculature including length, width, tortuosity, branching pattern

and angles will contribute to the diagnostic result. However, manual segmentation of retinal

blood vessels, although possible, is a time consuming and repetitive work, and it also requires

professional skills for even the thinnest vessel could contribute to the differential diagnosis

list. In order to assist ophthalmologists with this complex and tedious work, the demand for

the fast automated analysis of the retinal vessel images arises. Chapter 2 will further discuss

the clinic value of retinal blood vessel and how it will assist the automated diagnosis system.

Based on the demand, this thesis presents the author’s persistent efforts on fulfilling the need

of the accurate, robust, and fast automated vessel segmentation, from existing methods to

proposed implementations.

The main body of the thesis about retinal blood vessel segmentation is divided into two

parts: methods and implementation. Since the study of retinal blood vessel segmentation was

firstly published in 1989 [11], almost 30 years have passed, magnificent improvement has been

made to this study with the development of public retinal image databases, advanced image

processing algorithms, and supervised machine learning techniques. To understand how those

development has effectively contributed to the performance of retinal vessel segmentation,

in Chapter 3 the thesis has investigated their abilities to recognize the principle features of

the retinal blood vessel. In addition, this Chapter has also introduced the most cited public

retinal databases and performance evaluation metrics. All of the investigated resources and

methods have been applied to the proposed implementations, which are included in Chapter

4.
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More specifically, Chapter 4 has proposed two implementations for different medical

scenes. The first implementation has proposed a fast, accurate and robust retinal vessel

segmentation system, and this work has presented a novel approach to extract blood vessels

from the retinal fundus, by using morphology-based global thresholding to draw the retinal

venule structure and centerline detection method for capillaries. Meanwhile, the system has

been designed to minimize the computing complexity and has processed multiple indepen-

dent procedures in parallel, managing to shorten the execution time. This implementation

is designed for portable diagnosis systems with healthy retinal images as inputs. The second

implementation has utilized the fully convolutional neural networks and transfer learning,

training a vessel segmentation network based on a pre-trained semantic segmentation neural

network, which is trained by numerous divided retinal image grids to identify vessel elements

regionally. Therefore unlike other related works, this proposed method has simplified the typ-

ical retinal vessel segmentation problem from full-size image segmentation to regional vessel

element recognition. The results will be merged and restored back into the complete full-

sized binary images. Eventually, additional unsupervised image post-processing techniques

are applied to this proposed method so as to refine the final result. The second implemen-

tation, although requiring a long training process and execution time, is highly precise and

robust among both healthy and abnormal retinal images.

The performance evaluation has been analyzed in Chapter 5. There the proposed imple-

mentations have been compared with all the other outstanding related works through the

single-database test and cross-database test. In this way, the thesis has proven the proposed

works to be state of the art.

Finally, in Chapter 6, the thesis has discussed why the proposed way of utilizing deep

learning and transfer learning techniques in medical imaging should be encouraged, and the

research plans to be carried on in the next stage.

The implementation in Section 4.1, “A fast, accurate and robust retinal blood vessel

segmentation system”, has been published by Elsevier B.V. on Journal of Biocybernetics

and Biomedical Engineering in the year of 2017 [23].
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Chapter 2

Motivation: why retinal blood vessel seg-

mentation matters

2.1 The retinal blood vessels

The retinal blood vessels within the human eyeball include arteries and capillaries. The

central retinal artery enters the eye through the optic nerve and splits into the superior and

inferior branches. These branches then keep branching out more, like the branches of a tree,

until they form a very fine network of very thin blood vessels called capillaries (see Figure

2.1).

Figure 2.1: The retinal color image from the HRF database [25].

It is mainly at the capillaries that oxygen and nutrients leave the blood, entering the

retina, and then carbon dioxide with waste products leave the retina and pass into the blood

to be taken away. Most of the problems caused by conditions affecting retinal blood vessels
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do so by either blocking these capillaries or causing them to become leaky. The capillaries

join up to form branch veins and these then join at the optic nerve to form the central retinal

vein that dives into the optic nerve on its way towards the heart.

Because of the very close relationship between the retina and the artery, the eyeball

becomes a unique window to observe the health of the human in a direct and noninvasively

way. In other words, the retina is able to present the symptom of disorders right on the retinal

blood vessels. This section, therefore, will discuss the clinic value of the retinal blood vessels,

and the motivation for the development of the automated retinal blood vessel segmentation

algorithms. Besides, the section here will briefly introduce some popular applications of the

retinal blood vessel segmentation.

2.1.1 Indicator of retinal and systemic diseases

In the beginning, retinal imaging is primarily used in ophthalmic clinics for the detection

of diabetic retinopathy, age-related macular degeneration, glaucoma, retinal neoplasms, and

etc. Gradually, researchers have found that the appearance of the retinal blood vessels is

an important diagnostic indicator for much systemic pathology, including diabetes mellitus,

hypertension, cardiovascular and cerebrovascular disease, and atherosclerosis [15]. More and

more research is supporting the fact that the retinal blood vessel may provide a lifetime

summary measure of genetic and environmental exposure, and may, therefore act as a valuable

risk marker for future systemic diseases [12]. Furthermore, The use of the retinal vessel

characteristics provides early identification of people at risk due to diverse disease processes

[45].

The artery and capillary of the retinal blood vessel have many observable features, includ-

ing diameter, color, tortuosity, and transparency. To measure these features, the boundaries

of the blood vessels have to be precisely depicted, and then the measurements are to be pro-

vided to clinical diagnosis, treatment evaluation, and medical research. In order to be fully

engaged in measuring and studying the critical features, some researchers start to develop

the method of retinal blood vessel segmentation.
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2.1.2 Automated retinal blood vessel segmentation

Manual segmentation of retinal blood vessels, at first, although possible, is so time consuming

and repetitive, and it also requires professional skills. Especially for many diseases such as

diabetes and hypertension, patients are required to take regular ocular screening in order

to detect retinopathy in early stages. Manually segmentation of each patient’s retinal vessel

for each time is impossible for ophthalmologists. There has to be an automated way of

segmentation before retinal vessel segmentation could be practiced into real life. In order

to assist ophthalmologists with this complex and tedious work, the demand for the fast

automated analysis of the retinal vessel images arises.

In this thesis, the entire automated process of retinal vessel segmentation is unmanned,

with no initial point, no pre-setting, no adjustable threshold or any other human interaction.

The input is a retinal color image and the output will be a binary image of the vessel and

non-vessel pixels. Figure 2.2 gives an example of the automated process.

Figure 2.2: Example of the automated process with input on the left and output on
the right (images are from the DRIVE database [43]).

Unlike typical foreground and background segmentation in normal image processing, there

are three problems making the retinal vessel segmentation task even harder. First, the retinal

color image tends to be red everywhere, thus having a lower contrast than normal image seg-

mentation. Second, most retinal color images suffer from unbalanced illumination and make

it harder to recognize background. Third, the symptom for retinopathy has unexpected color

and shape, thus making it more difficult to separate vessel from noises. Under such circum-

stance, the research of the retinal blood vessel segmentation has brought much attention and
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been developed.

2.2 Applications for the retinal blood vessel segmenta-

tion

Most of the applications for the retinal blood vessel segmentation are the clinical application,

owing to the extraordinary diagnostic function. The computer aided diagnostic system is

one of the most popular application, and the diagnostic system of diabetic retinopathy is the

hottest topic because of the great number of people suffering from diabetics. This section will

talk about how the automated diagnosis techniques bring benefits. Besides, there are still

other applications for retinal vessel segmentation that are also popular, such as biometric

identification, and the thesis will briefly introduce this application as well. These applications

reflect demand of people, and the automated segmentation of the retinal blood vessels is a

prerequisite for these applications.

2.2.1 Computer aided diagnostic system of diabetic retinopathy

Diabetes is a disease that affects about 5.5% of the population worldwide. About 10% of all

diabetic patients have diabetic retinopathy [43]. Diabetic retinopathy is nowadays the most

frequent cause of vision loss among adults [16]. It is a progressive disease, beginning with

mild or nonexistent symptoms. Microaneurysms are often the first clinical sign of diabetic

retinopathy, appearing like small deep red dots. As the disease develops, increased tortuosity

of the retinal blood vessels may result in the weakening of the outer walls and precede the

formation of microaneurysms, which can leak fluid into the retina and cause swelling of

the macula [15]. This is why sometimes it will be too late once the symptom of diabetic

retinopathy is noticed. Therefore, comprehensive regular eye examinations are essential for

people with diabetes, and The World Health Organization has also advised yearly ocular

screening to patients [43] because if diabetic retinopathy is detected at an early stage, it can

be effectively treated with laser therapy.

However, the limited number of ophthalmologists can not meet the high demand for

6



the regular eye examination. Take Canada for example, according to the profile from the

Canadian Medical Association [1], there are only 1221 ophthalmologists available within the

country, and 3.4 ophthalmologists per 100,000 people on average. Hence, doctors and com-

puter scientists are working on an automated solution in order to cover the large diabetic

population while reducing the clinical burden on retinal specialists. The automated segmen-

tation of the retinal blood vessels is a prerequisite for the computer aided diagnostic system

of diabetic retinopathy. With the segmentation of the vessels, the system is able to interpret

the retinal image by study the diameter, tortuosity, and the history pattern of the vessel.

2.2.2 Biometric Security identification system

The retinal blood vessel can also serve as a biometric identifier. Since the biometric identi-

fiers, such as fingerprint, human face, DNA, iris, and retina are the unique and measurable

characteristics used to identify and describe individuals, they have been attempted or already

applied to automated personal recognition and identification systems. Especially when there

requires high-security assurance, biometric identifiers offer safer and more convenient ver-

ification than conventional ways of recognition. Since the retinal vessel tree was found to

be unique for each individual and can be used for biometric identification, retinal scanning

recognition has become one of the most well-known identification technologies.

The foundation of retinal recognition is the recognition of the pattern of the retinal blood

vessels. Usually, the retinal image is captured through the fundus camera. Once captured,

it will be analyzed by computer, and the pattern of the retinal blood vessel structure will be

extracted and stored as the identification. The automated segmentation of the retinal blood

vessels is a prerequisite before the computer could study the pattern of the vessel structure.

Some researchers have studied how to extract features from the retinal vessel for individual

authentication based on vessel ground truth images provided by public databases [13], while

others have utilized the existing automated retinal vessel segmentation algorithms to develop

their biometric authentication systems [37, 10].
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Chapter 3

Existing research: standing on the shoul-

ders of giants

3.1 Retinal blood vessel databases

Rome wasn’t built in a day. The development of the science and technology today is the

accumulation of wisdom since thousands of years ago. When people stand on the shoulders

of giants, they will surely be able to see further. It happens the same when scientists discover

truth by building on previous discoveries. Thanks to those who have contributed to the area

of retinal blood vessel segmentation, especially researchers who have established the publicly

available retinal blood vessel databases, scientists will start easier and will be able to compare

the performance with each other.

Normally the study of retinal blood vessel segmentation starts from importing public

retinal blood vessel database, where there offer researchers with retinal color images and the

corresponding information. Some of the databases provide vessel ground truth images, which

shows exactly where each vessel pixel is located. With those databases, researchers are able

to design their algorithms and compare their performances in the same criterion.

Currently there exist 9 publicly available retinal blood vessel databases, among which

CHASE DB1 [5], DRIVE [43], HRF [25], STARE [7] databases contain both retinal color

images and retinal blood vessel ground truth images, while DiaRetDB1 V2.1 [24], Messidor

[14], REVIEW [9], ROC [36], and VICAVR[6] databases just provide retinal color images but

without labeled images. Although the above databases are all decent in quality and contain

both normal and abnormal retinal images, however, as the study of vessel segmentation re-

quires the vessel ground truth as a golden standard, this section, therefore, will just introduce
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the following 4 databases that contain vessel ground truth images in section 3.1.1 ∼ 3.1.4.

Most of the retinal blood vessel segmentation methodologies are evaluated on DRIVE and

STARE databases.

3.1.1 DRIVE

The name of the DRIVE (Digital Retinal Images for Vessel Extraction) database has well

expressed its purpose – to enable comparative studies on segmentation of blood vessels in

retinal images. The DRIVE database consists of 40 color retinal images, obtained from a

diabetic retinopathy screening program in The Netherlands. The 40 images are randomly

selected from 400 diabetic subjects between 25-90 years of age, and 33 do not show any sign

of diabetic retinopathy while 7 show signs of mild early diabetic retinopathy. Each image

is JPEG compressed. The images have been acquired using a Canon CR5 non-mydriatic

camera with a 45-degree field of view. Each image has been captured using 8 bits per color

plane at 768 by 584 pixels. The field of the view of each image is circular with a diameter

of approximately 540 pixels, and each image has been cropped around the field of the view.

For each image, a mask image is provided that delineates the field of the view.

The set of 40 images has been divided into a training and a test set, both containing

20 images. For the training images, a single manual segmentation of the vasculature is

available. For the test cases, two manual segmentations are available; one is used as gold

standard, the other one can be used to compare computer-generated segmentations with

those of an independent human observer. All human observers that manually segmented the

vasculature were instructed and trained by an experienced ophthalmologist, and they were

asked to mark all pixels for which they were for at least 70% certain that they were the vessel.

In general, the image quality in DRIVE database is desirable and contains just 7 abnormal

retinal images with mild disease. It can represent the retinal conditions of the majority of

people.
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3.1.2 STARE

The STARE database belongs to the STARE (Structured Analysis of the Retina) Project,

which has been conceived and initiated at the University of California, San Diego, and it has

been funded by the U.S. National Institutes of Health. The STARE database contains 400

retinal color images. The images have been acquired using a Topcon TRV-50 fundus (bottom

of the eyeball) camera with a 35-degree field of view. Each image has been captured using 8

bits per color plane at 605 by 700 pixels, and the approximate diameter of the field of view

is 650 by 500. 20 of the images can be used for blood vessel segmentation because they are

with the vessel ground truth images. The 20 images have been manually segmented by two

different experts. The segmented results of the second expert have shown many more of the

thinner vessels than the results of the first expert. Usually, the performance is computed

with the segmentation of the first expert as the ground truth.

Among those 20 images with ground truth, only 9 images are healthy retinal images,

while the other 11 images show signs of 8 kinds of retinal diseases, mild or severe. 3 of the

images even suffer from decreased sharpness. Therefore, the STARE database is the most

complicated database among all the others, and it always tests the noise-resistance of an

algorithm.

3.1.3 CHASE DB1

The CHASE DB1 database is a subset of the CHASE (Child Heart and Health Study in

England) dataset, which contains retinal images of multiethnic children. CHASE DB1 is the

only subset in CHASE that has vessel ground truth images. The retinal images of both of the

eyes of each child were recorded with a handheld NM-200-D fundus camera made by Nidek

Co. Ltd., Gamagori, Japan. The images have been captured with a 35-degree field of view,

and each image has a resolution of 1280 × 960 pixels with tagged image file (TIF) format.

The images have been captured in subdued lighting using flash and illumination settings of

3, and levels have been adjusted by the operator in the event of perceived over or under

exposure. A fixation target has been used, and focused images have been captured centered

on the optic disc with full field illumination. To avoid poor quality, the images have been

10



displayed immediately on a color screen, allowing image capture to be repeated.

The CHASE DB1 database includes 28 images in total, which are collected from left and

right eyes of 14 children. The vessel ground truth images were manually segmented by two

human observers. There has no record of the symptom of the 28 retinal images, but they are

all in good quality and contrast.

3.1.4 HRF

The HRF (High-Resolution Fundus) image database has been established by a collaborative

research group to support comparative studies on automatic segmentation algorithms on

retinal fundus images. The images captured have used a Canon CR-1 fundus camera with a

field of view of 45 degree and different acquisition setting. The segmentation dataset of HRF

has 45 fundus images in total, including 15 images of healthy patients, 15 images of patients

with diabetic retinopathy, and another 15 images of glaucomatous patients. The ground

truth images for vessel segmentation are available for each image and have been generated

by a group of experts working in the field of retinal image analysis and clinicians from the

cooperated ophthalmology clinics. The images in HRF database has the resolution of 3504

by 2336, which is the highest among the other databases.

3.2 Performance measures

To describe the performance of the medical research, accuracy alone is not adequate enough

to present the features and drawbacks. Besides, the term “accuracy” has an ambiguous

meaning owing to the different experimental settings. This section will introduce how to

judge the performance of a method is good or not, by applying a few mathematical tools

which are commonly used to measure the performance of the retinal blood vessel segmenta-

tion algorithms, including accuracy, sensitivity, specificity, and also will discuss some other

factors that should be considered in the performance measure. In order to calculate accuracy,

sensitivity, and specificity, each result – the segmented binary vessel image, will be compared

pixel to pixel with its corresponding ground truth image from the database. If the pixel of

the result is labeled the same as the pixel of the ground truth image, it is labeled correctly.
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Otherwise, this pixel is labeled wrong.

3.2.1 Accuracy

Accuracy is a common standard which most related works have applied. It reflects the

proportion of pixels that are correctly classified as vessel or non-vessel (or background). There

used to be two existing methods of calculating accuracy; the first method only takes pixels

inside the field of view into account, or in another word, the outside “black ring” area will

not be counted, while the second method takes all the pixels into account. However, because

not all of the databases provide the field of view ground truth images, for instance, the field

of view ground truth images are not available in STARE and CHASE DB1 databases, the

first method of calculating accuracy cannot guarantee fair comparison on these databases.

In order to be generic for performance comparison, this work uses the second way to measure

accuracy (see Equation 3.1).

Accuracy =
Number of pixels that are correctly classified

Total number of pixels
(3.1)

3.2.2 Sensitivity and Specificity

Sensitivity (also called the true positive rate) and specificity (also called the true negative

rate) are statistical measures of the performance of a binary classification test. In this thesis,

the retinal blood vessel segmentation result is a pixel-based classification, and all pixels

are classified either as vessel or non-vessel. In this case, there will be four cases after the

segmentation/classification: i) the true positive where a pixel is identified as vessel in both

the ground truth and segmented image; ii) the true negative where a pixel is classified as

a non-vessel in the ground truth and the segmented image; iii) the false negative where a

pixel is classified as non-vessel in the segmented image but as a vessel pixel in the ground

truth image, iv) the false positive where a pixel is marked as vessel in the segmented image

but non-vessel in the ground truth image. In this theory, sensitivity and specificity can be

calculated through Equation (3.2) and Equation (3.3).

Sensitivity =
True positive

True positive + False negative
(3.2)
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Specificity =
True negative

True negative + False positive
(3.3)

Note that for databases with the field of view ground truth images, such as DRIVE and

HRF databases, the Sensitivity and Specificity are computed considering only pixels inside

the field of view. However, for databases do not include the feature of the field of view, like

DRIVE and HRF databases, the Sensitivity and Specificity are calculated based on the total

number of pixels. To sum up, sensitivity reflects the ability of the algorithm to detect the

vessel pixels, and specificity shows the ability to avoid noise pixels.

3.2.3 Other factors to consider

The last section has presented performance metrics that could be not measured or compared,

however, there are still some important factors that are somewhat mentioned in the related

works. These factors cannot be directly measured, such as robustness and execution com-

plexity, but are meanings to completely assess the capability of the algorithm. These metrics

are common in scientific research and very important for medical applications, especially

robustness. Hence, this section will discuss the importance of these metrics, the difficulty in

measuring these metrics, and how to effective compare these metrics with other published

work.

Robustness

In computer science, robustness is the ability of a computer system to cope with errors

during execution and cope with erroneous input. However, robustness in medical imaging

is the ability of an algorithm to deal with inputs of poor quality and new medical cases.

More specifically, robustness in the retinal blood vessel segmentation refers to the ability

to maintain the good performance when the input retinal image is of poor quality (e.g.

defocused, bad illumination), or the input image is taken by another camera, or even the

image contains symptoms that the algorithm has never dealt before. If an algorithm remains

about the same performance under such adverse conditions, the algorithm is robust. On the

contrary, if the algorithm performs worse after any of the above conditions takes place, the
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algorithm has a bad robustness.

The way of testing the robustness of a method of retinal blood vessel segmentation is

limited. Because retinal color images with vessel ground truth are scarce and expensive, for

most researchers, taking new retinal images is not possible. The only feasible solution is

conducting cross-database test among the given 4 public databases in Section 3.1. There is a

dilemma for researchers to prepare the cross-database test because the best way to make the

algorithm robust is to adapt the algorithm to as many databases as possible, especially the

resources are so limited. However, to prove the cross-database test objective, the tested algo-

rithm shall not know anything about the testing database while being developed. Researchers

must not be tempted to use the testing database when developing the algorithm.

No matter unsupervised or supervised method, the cross-database test shall provide at

least two datasets, one for training/developing, the other testing. Those two separate datasets

shall come from different databases because the different screening environment and groups

of patients can ensure the objectivity.

Execution complexity

It is common sense that to be precise and accurate is the most important thing for doctors

making the diagnosis. In some cases, diabetes and hypertension patients are required to take

regular ocular screening in order to detect retinopathy in early stages. However, patients

who are inconvenient to move or live distantly from the city will be less approachable for

the location-specific treatment. Hence, there are needs for a handy and portable automated

solution. A portable platform, in the current trend, means energy efficient and less computa-

tion, thus requesting the execution complexity of the automated retinal vessel segmentation

algorithm to be smaller.

It is not likely to analysis the complexity of the published algorithms, but the execution

complexity can be reflected if the execution time and the computation platform are provided

in the published works. And the fact is, owing to the extraction of vessels from retinal images

is truly a harsh task, most published works which perform well have appeared to have a long

execution time (presented in Section 3.3). As precision and computing complexity is always

a trade-off, some hardware implementations have managed to accelerate the execution speed
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in the price of accuracy lost. It is not to say the decreasing in accuracy has diminished the

value of the works, and in fact, they are great progress. This thesis wants to encourage more

researchers who devote in this subject to provide as much execution information as possible,

such as programming language, execution environment, execution platform, execution time,

and etc., in order to provide an intuitive way of comparing execution complexity and make

more progress.

3.3 Related works and methodology

3.3.1 Related works

The proposed systems from this thesis are enlightened by numerous previous works and based

on both classic image processing algorithms and cutting edge machine learning techniques. In

the past decades since 1989, hundreds of papers about retinal blood vessel segmentation have

been published, and plenty of methods have been proposed. According to Fraz’s survey [18]

in the year of 2012, the existing retinal segmentation techniques on 2-D retinal images can be

summarized into six categories, which are (i)supervised pattern recognition, (ii) mathematical

morphology, (iii) matched filtering, (iv) vessel tracking, (v) model based approaches and (vi)

parallel/hardware approach. Nowadays, since the hybrid methods, which combine several

different categories of methods together, have been more and more popular because of its

great performance, it is very hard to be categorized into specific groups. Therefore, in another

way of categorization which is more accepted these years, the existing works can be divided

into two big categories: supervised and unsupervised methods.

Supervised method

Supervised method use extracted feature vectors, in other words, the labeled training data,

to train a classifier, in order to automatically classify the retinal blood vessel and non-

vessel pixels from a retinal color image. Such algorithm will learn a set of rules of vessel

extraction on the basis of the training dataset. The labeled training dataset is very important

in supervised methods because the knowledge of vessel segmentation are directly gained
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from the manually segmented images by ophthalmologists. Hence, the performance of the

supervised methods in the single-database test usually appears to be better than that of

unsupervised ones. The most cited related works with supervised methods are the works

of [43, 41, 38, 33, 34]. The work of [43] has used kNN-classifier and sequential forward

feature selection to classify the feature vectors. The work of [41] has composed the feature

vectors with both the grayscale intensity and two-dimensional Gabor wavelet transform. The

work of [33] has even constructed 41-dimensional feature vector, based on the local intensity

structure, spatial properties, and geometry at multiple scales. The work of [34] has applied

neural network for pixel classification and has computed a 7-dimensional feature vector. The

work of [38] has utilized line operators and support vector machines and has achieved the

highest accuracy among the above-mentioned works in the single-database test. However, its

accuracy has dropped significantly in the cross-database test.

In recent 5 years, with the development of hardware support and the maturation of the

neural network techniques, deep learning has become a growing trend in general data analysis

and has been termed one of the 10 breakthrough technologies in MIT Technology Review in

2013 [3]. Some works have utilized the deep learning techniques in the retinal blood vessel

segmentation and have achieved surprisingly good results [44, 32, 20, 31]. The work of [44]

has combined two superior classifiers – using the convolutional neural network to perform

as a trainable hierarchical feature extractor and the random forest to work as a trainable

classifier. The work of [32] has also applied the convolutional neural network, trained by

a large amount of augmented and preprocessed images with global contrast normalization,

zero-phase whitening, geometric transformations and gamma corrections. The work of [20]

has remolded the task of segmentation as a problem of cross-modality data transformation

from retinal image to vessel map, using a wide and deep neural network with strong induction

ability.

Generally speaking, the supervised methods appeared to have a better result in com-

parison with the unsupervised methods, but the supervised methods shall not be compared

with the unsupervised methods directly until the cross-database tests have been conducted.

More specifically, the classifier shall be trained in one or more databases but tested in an-

other different database, which is also called the robustness test (introduced in Section 3.2.3).
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Some supervised methods have achieved a decent accuracy in the single-database test, but

perform badly during the cross-database test, such as the work of [38], while some works do

not perform the cross-database test, such as the works of [41, 32, 20].

Unsupervised method

The unsupervised classification methods intend to find inherent patterns of retinal vessels

directly from the retinal color images and decide whether the pixels are part of the vessel

or non-vessel. Unlike the supervised methods, unsupervised methods do not require training

data and the training process, and usually with, not necessarily, a higher robustness and

faster execution speed. As we mentioned earlier, the unsupervised methods can be further

categorized into four groups – mathematical morphology, matched filtering, vessel tracking,

and model-based approaches.

Mathematical morphology containing a set of image processing techniques is one of the

most famous approaches for image segmentation. It extracts image components that are

useful while smoothing the rest area. The morphological operation has the advantage of speed

and noise resistance in identifying specific shapes such as features, boundaries, skeletons and

convex hulls, by applying structuring elements to grayscale or binary images [35, 19, 17, 8].

Matched filtering techniques usually convolve a 2-D kernel (or a structural element) for

blood vessel cross-profile identification (typically a Gaussian or Gaussian-derivative profile).

The kernel is rotated into many different directions to model a feature in the image at some

unknown position and orientation, and the matched filter response indicates the presence of

this feature. Such techniques are very effective to detect vessel centerlines [35, 42, 17].

In most cases, vessel tracking algorithms are more effectively used in conjunction with

matched filters of the morphological operators, such as the works of [42] and [46]. Tracking

a vessel means to follow the vessel centerline guided by local information and try to find the

path which best matches a vessel profile model, through which not only the centerline but

also the widths of each individual vessel will be accurately extracted.

Model-based approaches such as vessel profile models in the work of [29], extracting retinal

vessels by using explicit vessel models, are designed to handle both normal and pathological

retinas with bright and dark lesions simultaneously. Some other methods using deformable
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models such as parametric models and geometric models are not as effective as the former

one.

3.3.2 Methodology

This section will introduce the methodologies that applied to the proposed two implementa-

tions. As the thesis in the next chapter will propose two retinal blood vessel segmentation

systems, in order to make it smoother to read, the principles of each methodology applied

will be introduced here as the preparation.

The first proposed system, belonging to the unsupervised method, has applied mathe-

matical morphology and matched filtering. During the processes, the retinal images shall

firstly be transformed into greyscale and then go through the top-hat transform, intensity

thresholding and centerline highlighting.

The second proposed system is a supervised method, which has applied the deep learning

techniques and the training of the fully convolutional neural network based on the pre-trained

neural network, which is also the application of transfer learning.

The above-mentioned methodologies will be introduced here in Section 3.3.2. The detailed

system design of the proposed two methods will be presented in Section 4.1 and Section 4.2.

Morphology processing

Two operations belonging to the mathematical morphology theory will be applied to the

proposed system, which is top-hat transform and morphology erosion. The top-hat method

is utilized to redistribute the greyscale intensity from a preprocessed greyscale retinal image,

in order to generate a characteristic feature for vessel/non-vessel classification, while the

erosion operation helps to de-noise the image and smooth the vessel edges in the final post-

processing stage.

The principle of morphology processing is to simplify the image data through retaining

their essential characteristics from a shape and removing other extraneous elements. The

basic operations in mathematical morphology processing are erosion, dilation, opening, and

closing, which deduce the top-hat transform – one of the most efficient way to do feature

extraction, background equalization, and image enhancement. The mathematical definitions
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of a white top-hat transform can be formulated as Equation (3.4),

TW (f) = f − f ◦ b (3.4)

where f is a greyscale image; b is a greyscale structuring element; the symbol ◦ denotes the

opening operation; TW denotes the white top-hat transform, where the object elements are

highlighted brighter than their surroundings.

Since the top-hat transform is sensitive to ridges and peaks (the sharp changes in greyscale

intensity values), when provided with a preprocessed greyscale retinal vessel image, it will be

capable of highlighting the vessel structure while smoothing the rest non-vessel background

in different illumination conditions, by considering the edges of vessels as peaks and the flat

fundus as the background. However, not just vessels but also noises (such as non-vessel

tissues) are likely to be introduced into the results during this process. To solve this, the

proposed solution will be discussed in Section 3.3.2.

Figure 3.1: Different greyscale distribution before (left) and after (right) the top-hat
transform.

Once top-hat transform is completed, the intensity is reconstructed into another distribu-

tion. A demonstration of intensity changes before and after the transform is given in Figure

3.1, where about 87% pixels have the intensity of 0 after redistribution. Meanwhile, a small

gap could be visually speculated in the right histogram between intensity value 0 and 25, im-

plying there exists a possible threshold to distinguish the vessel/non-vessel pixels. According
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to this, the greyscale intensity is selected as the characteristic feature for vessel classification,

assuming that most non-vessel pixels have intensity value close to 0.

Intensity thresholding

Image thresholding enjoys a central position in applications of image segmentation, because

of its intuitive properties, the simplicity of implementation and computational speed. The

proposed system will utilize global intensity thresholding after the top-hat reconstruction

of the greyscale image, through which a binary image will be generated according to the

Equations (3.5) and (3.6),

g(x, y) =

{
1, if f(x, y) > T (3.5)

0, if f(x, y) ≤ T (3.6)

where f(x, y) corresponds to the input image, g(x, y) represents the binary image after thresh-

olding, and T is the threshold. Any point (x, y) in the image at which f(x, y)> T is recognized

as an object point, or vessel element; otherwise, the point is regarded as a background point,

or non-vessel element. The threshold value T in this system is an empirical threshold, rather

than using approaches like Otsu’s method to generate one. The reason behind this mainly

owing to small vessels are very thin structures, and they usually present low local contrast and

hard to be distinguished with their surrounding noises (or non-vessel tissues). In this case,

the vessel segmentation process is divided into two phases: the venules structure extraction

and the capillary detection. For the venules segmentation, there will not require an optimal

threshold to classify the distribution, but a more “strict” threshold (larger than optimal) to

eliminate the noises while sacrificing some certain thin vessels, in order to achieve a higher

positive predictive value 1 As a complement, another different method will be specifically

utilized for capillary detection.

Centerline highlighting

Because both venules and capillaries are crucial for ophthalmological diagnosis, and the

venules segmentation process intends to have ignored most of the thin vessels, in this case,

1Positive predictive value: the probability that subjects with a positive screening test truly have the
disease. In this thesis, it reflects the ability of the system to identify pixels as part of the vessels which truly
belong to the vessel class.
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capillaries need to be retrieved through centerline detection. Because of the fineness of

capillaries, the centerline of a thin vessel can be used to approximate itself, thus completing

the function of a vessel extraction system.

Centerline highlighting is the preliminary but the most important step for capillaries

detection. It intends to highlight the candidate pixels which could possibly be the ridges of

the vessels, by applying a first-order derivative filter orthogonally to the main orientation

of the vessel. In this case, derivative values with opposite signs will be obtained on both

hillsides of the vessel. In other words, there will be positive values on one side of the vessel

cross section while negative values on the other, by which a sign matrix will be obtained.

Since the opposite signs indicate two hillsides of a vessel, the presence of centerline thus

can be reflected by just scanning for the sign formats. After the pixels of a centerline were

located, the intensity value of them will be replaced by the summation of the absolute values

of the two horizontal neighbor pixels, in order to highlight the centerline. A particular kernel

is proposed here which is the difference of offset Gaussians filters. The difference of offset

Gaussians filter is famous for its peak sensitivity and noise resistance, shown in Equation

(3.7). 
−1 −2 0 2 1

−2 −4 0 4 2

−1 −2 0 2 1

 (3.7)

However, because the above process only works for the vertical direction, the image itself

or the kernel must be rotated in order to be performed in all directions, and this will be

discussed in the next section. The idea of centerline highlighting is from the work of [35] and

[17].

Fully convolutional neural network

The fully convolutional neural network is one of the most famous application of deep learning,

which is an improvement of artificial neural networks, consisting of more layers that permit

higher levels of feature abstraction and improved predictions from data [30]. Especially, the

convolutional neural network has proven to be a powerful tool for various of computer vision

tasks such as image classification and segmentation. Recently, medical image analysis groups
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across the world are quickly entering this field and applying convolutional neural networks

and other deep learning methodologies to a wide variety of applications, and extraordinary

results are emerging continuously [21].

The convolutional neural network, inspired by the organization of the animal visual cortex,

is a feed-forward artificial neural network where the connectivity pattern is in between its

neurons. Individual cortical neurons respond to stimuli in a restricted region of space which

also known as the receptive field. The receptive fields of different neurons partially overlap

such that they tile the visual field. The response of an individual neuron to stimuli within

its receptive field can be approximated mathematically by a convolution operation [2].

The fully convolutional network, proposed by the computer vision group of the University

of California, Berkeley [40], is derived from the convolutional neural network, which, in theory,

is normally comprised of one or more convolutional layers (often with a subsampling step) and

then followed by one or more fully connected layers as in a standard multilayer neural network.

The major feature that makes a fully convolutional network different from the convolutional

neural network is the transformation of all fully connected layers into convolution layers (see

Figure 3.2), through which, a fully convolutional network is able to operate on an input of

any size, and produces an output of corresponding spatial dimensions. In this case, some

classification networks, such as the AlexNet [28], can be used for the end-to-end, pixels-to-

pixels for semantic segmentation, instead of outputting the classification prediction scores.

Normally each layer of data in a typical convolutional neural network is a three-dimensional

array of size h×w×d, where h and w are spatial dimensions, and d is the feature or channel

dimension. A normal convolutional neural network is built on translation invariance. A fully

convolutional neural network naturally operates on an input of any size, and produces an

output of corresponding (possibly resampled) spatial dimensions.

A real-valued loss function composed with an fully convolutional neural network defines a

task. If the loss function is a sum over the spatial dimensions of the final layer (see Equation

3.8, where xij is the data vector at location (i, j) in a particular layer),

l(x; θ) =
∑
ij

l′(xij; θ) (3.8)

its gradient will be a sum over the gradients of each of its spatial components. Thus stochastic
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Figure 3.2: By transforming the fully connected layers into convolutional convolution
layers, the fully convolutional network can make dense predictions for per-pixel tasks
like semantic segmentation

gradient descent on l computed on whole images will be the same as the stochastic gradient

descent on l′, taking all of the final layer receptive fields as a mini batch. When these receptive

fields overlap significantly, both feedforward computation and back-propagation are much

more efficient when computed layer-by-layer over an entire image instead of independently

patch-by-patch.

The work of [40] has defined and detailed the space of fully convolutional networks, and

have adapted contemporary classification networks, such as AlexNet, the VGG net, and

GoogLeNet, into fully convolutional networks and transfer their learned representations by

fine-tuning to the segmentation task. The documentation of [2] has defined a skip architecture

that combines semantic information from a deep, coarse layer with appearance information
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from a shallow, fine layer to produce accurate and detailed segmentations. With this fully

convolutional network architecture, the fully convolutional version of AlexNet proposed by

the work of [40] has proven to be state-of-the-art in semantic segmentation on PASCAL VOC

dataset (Pattern Analysis, Statistical Modelling and Computational Learning, Visual Object

Classes) [4]. Figure 3.3 shows two sample segmentation results comparison, where presenting

the ability of the fully convolutional network to separate the closely interacting objects and

to refine the edges of the structures.

Figure 3.3: Result comparison of the two PASCAL VOC [4] images segmentation
where the left column shows the segmentation result of the fully convolutional network;
the column in the middle is the ground truth image; the right column is the original
color image. (Results is generated by the work of [40].)

The fully convolutional version of AlexNet is the one to be applied in this thesis for vessel

segmentation, and the model having generated the results in Figure 3.3 will also be utilized

as a pre-trained model so as to continue to train the new network that works for the retinal

blood vessel segmentation. This innovative use of the neural network is also called transfer
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learning and is especially beneficial for medical imaging.

Transfer learning

The convolutional neural network is remarkably helpful in medical imaging. However, train-

ing a full convolutional neural network from scratch is a challenge. First, convolutional neural

networks require large numbers of labeled training data, which is somehow very difficult to

realize in the medical domain where the expert annotation is expensive and the diseases are

rare. Second, training a deep convolutional neural network requires large computational and

memory resources, without which the training process would be extremely time-consuming.

For a task such like the retinal blood vessel segmentation, the total number of the retinal color

images from all the four databases is 133, which is far away from the training requirement of

the fully convolutional neural network.

Transfer learning is the perfect solution when there have insufficient publicly available

datasets for training the network from scratch. With transfer learning, the convolutional

neural network models pre-trained from natural image dataset, such as ImageNet [39], can

be used for the new medical task at hand. The convolutional neural network models pre-

trained from natural image dataset or from a different medical domain are used for a new

medical task at hand. In one scheme, a pre-trained convolutional neural network is applied

to an input image and then the outputs are extracted from layers of the network. The

extracted outputs are considered features and are used to train a separate pattern classifier,

thus solving the training data insufficiency [21].
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Chapter 4

Implementation: proposed methods of reti-

nal blood vessel segmentation

4.1 Fast, accurate and robust retinal blood vessel seg-

mentation system

The first proposed implementation 1 of the retinal vessel segmentation system, entitled by

fast, accurate and robust, is a novel approach that combines the strength of matched filter and

mathematical morphological while avoiding their weaknesses. The proposed segmentation

system is schematically described by the functional block diagram as shown in Figure 4.1,

where we identify the four main processing phases. In the first preprocessing phase, the goal

is to transform the retinal color image into the greyscale image. The greyscale image then

becomes the input for both venules structure segmentation and capillaries detection phases.

These two phases are designed in parallel, which focuses on the different scale to segment

venules and capillaries separately. The venules structure segmentation phase has applied

morphology-based global thresholding to roughly draw the retinal venule structure, and at

the same time, the capillaries detection phase utilizes matched filter method to detect the

centerline of the thin vessels, which is just right the capillaries. Since these two processes

are independent, therefore once supported with multithread technology, the execution time

will be shortened. The last phase includes overlapping and de-noising the results from the

previous phases in order to create an image of a clear vascular structure with abundant thin

vessels.

1“A fast, accurate and robust retinal blood vessel segmentation system”, 2017 published by Elsevier B.V.
on Journal of Biocybernetics and Biomedical Engineering
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Figure 4.1: Functional diagram of the proposed unsupervised retinal vessel segmen-
tation system.

4.1.1 Preprocessing

To provide a greyscale output with greater contrast, the proposed preprocessing will firstly

remove the “black ring” and replace it with the color of the average value of the fundus

background (see Figure 4.2(b)). In order to get the average level of the background, three

random areas (each area is 50× 50) inside the field of the view will be selected. As the color

image is indeed a 3-dimension matrix, each selected area is actually a 50× 50× 3 matrix.

These matrixes are used to estimate the average value of the color within the field of the

view. This procedure creates the uniformity of the background and it is quite important for

the later top-hat transform because a more balanced background will improve the quality of

segmenting the object elements.

After replacing the black ring area with the color of the average value, the optimized color

image will be transformed into greyscale through green channel, which has been applied in

several works [43, 22], as it naturally presents a higher contrast between vessels and fundus

background. Finally, the greyscale image will be black-white inverted (see Figure 4.2(c)),

just to be in line with the output standard – vessel in white and background in black.

4.1.2 Venules structure extraction

The object for venules structure extraction is to extract large vessels as much as possible, but

leave the thin ones to capillaries detection. Based on the work of preprocessing, the first step

in this stage is to directly perform top-hat transform (see Figure 4.3(b)). However, many
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Figure 4.2: Preprocessing phase: (a) original color image, (b) color image after black
ring removal, (c) greyscale image after transform through green channel.

other retinal tissues such as the optic disc, macula, fovea, and posterior pole will become the

noises as they have a relatively close contrast to vessels. To eliminate these noises, the global

intensity thresholding is used here. It classifies vessel and non-vessel elements with minimum

computing complexity. Figure 4.3(c) shows a clear vessel skeleton after thresholding.

To find a proper threshold, there are various approaches such as adaptive thresholding and

Otsu’s method, but here the system proposes a fixed empirical threshold. Generally speaking,

the adaptive thresholding method usually generates a different threshold for each individual

image to best fit its own intensity distribution, but such methods simply increase computing

complexity because the system has to learn the strategy to analyze the image and to make

decisions. For approaches like Otsu’s method, aiming to find the best barrier to differentiate

the intersected intensity classes, is not ideal for segmenting retinal blood vessels. Because

the non-vessel tissues become very similar after being filtered by green channel during the

preprocessing phase. In this case, the Otsu’s method in retinal vessel segmentation will be

more likely to preserve those unwanted non-vessel tissues and preform similarly to a loose

threshold (see Figure 4.4(c)). Therefore, a more strict threshold than the Otsu’s optimal

one is proposed for this system, to reduce most noises while sacrificing thin vessels. Figure

4.3 shows the entire process of the current phase and Figure 4.4 provides the comparison of

results using three different thresholds.
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Figure 4.3: Venules structure extraction phase: (a) image after preprocessing, (b)
image after top-hat transform, (c) image after intensity thresholding.

4.1.3 Capillaries detection

While extracting venules structure, capillaries detection will also be running simultaneously

with the same input image. But the input image needs to be black-and-white reversed (see

Figure 4.5(b)) in order to maintain the consistency, for the result after this phase shall be

the vessel in white and background in black.

As mentioned previously, the most important step of detecting centerline pixels is applying

the first-order derivative filter (given in Equation (3.7)) orthogonally to the main orientation

of the vessel centerline in all directions. To enable the detection in all directions, the image

itself will be rotated instead of rotating the kernel in avoid of losing image information.

The results after each rotation will be combined into one to realize the complete coverage

of every direction. During the experiment, we found the best rotation step is 10 degrees

(therefore 18 directions in total) for preserving most capillaries while maintaining a good

running time. Thus, this entire process can be simply regarded as processing 18 different

images and overlapping their results, while the process of each iteration in detail has already

been explained in Section 3.3.2. Figure 4.5(c) shows the result of centerline highlighting.

The second part of capillaries detection is to eliminate the centerline candidates that have

low connectivities. The connectivity between the current pixel and every of its surrounding

neighbours will be examined. If connected, they will be categorized into the same group.
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Figure 4.4: Comparison with different thresholds: (a) intensity thresholding with very
a strict threshold, (b) intensity thresholding using proposed threshold, (c) intensity
thresholding with a loose threshold.

When the examination for every pixel is done, the groups with its member size smaller than

a fixed empirical threshold value will be removed. The smaller the threshold is, the more

details it preserves, but a smaller threshold also increases the risk of keeping noises, thus

pushing more pressure to the de-noising part. On the other hand, although larger threshold

may bring in the risk of removing necessary capillary fragments, but it will eliminate more

noises. Besides, capillary fragments can hardly have any scientific value in real situation

and that is why this system proposes a fairly larger threshold for connectivity check. Figure

4.5(d) shows the final result after connectivity test and Figure 4.5 presents the whole process

of capillaries detection.

4.1.4 Post-processing

The final stage of retinal vessel segmentation is post-processing, which contains image over-

lapping and morphology de-noising. The word “overlapping” here means to combine the

venules structure image (see Figure 4.3(c)) and capillaries image (see Figure 4.5(d)) into one,

by simply applying the logic OR operation to both of them. The result is shown in Figure

4.6(c)).

After overlapping, some noises which have been existing since venules structure extraction

was accomplished need to be removed. The reason to keep these noises until the overlapping
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phase is because the noises may be overlapped or reconnected with vessel centerlines to

enhance the vessels.

The overlapped image will be de-noised by applying erosion operation from the mathe-

matical morphology theory. Erosion operation has the ability to shrink the edge of the larger

object and remove small spots, and in this way, not just the coarse edges of the vessels will be

polished but also the scattering noises will be removed. Figure 4.6(d) shows the final result

after de-noising and Figure 4.6 presents the entire post-processing process.

4.2 Retinal blood vessel segmentation using fully con-

volutional network with transfer learning

The second proposed implementation of the retinal vessel segmentation system is enlightened

by transfer learning, which provides theoretical support to apply the fully convolutional

neural network decently in retinal blood vessel segmentation. As described in Section 3.3.2,

the original use of the fully convolutional version of AlexNet is semantic segmentation 2,

which is a very efficient way for the machine to visualize and understand the image. The

most difficult part in retinal blood vessel segmentation is to distinguish vessels and all the

other surrounding tissues / lesions, and the use of efficient semantic segmentation helps to

eliminate the noises. There are three innovative points which have eventually made this

proposed work successful. First, the proposed method has shifted, or in another word,

simplified the typical retinal vessel segmentation problem from full-size image segmentation

to regional vessel element recognition. This is to say, vessel pixels are to be recognized from

region to region and merged together in the end. Second, because of this problem shifting,

the training data, therefore, can be augmented from a hundred to a hundred thousand, which

guarantees the effectiveness of deep network training. Third, the proper method of fine tuning

the pre-trained semantic segmentation model has made the regional segmentation task much

easier. This pre-trained semantic segmentation model is the fully convolutional version of

2Semantic segmentation: the pixel-to-pixel and end-to-end segmentation which labels each pixel within
the image with a class of objects (e.g. car, person, cat, and etc.) and another class of non-objects (e.g.
ground, sky, water, etc.).
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AlexNet, which well performs the pixel-to-pixel and end-to-end segmentation.

Figure 4.7 presents the functional block diagram of the proposed segmentation system

and there are three stages of the system. Before processing, the data gathered from the

databases will be firstly assigned into the training group and testing group, which will be

discussed in Section 5.1.1. In both training and the testing phases, both of the original

training and testing datasets will be preprocessed to enhance the image contrast. Next,

every image in each dataset will be split into 50×50 image slice, which is the process of data

augmentation. The procedure of data augmentation is the essence of this proposed system,

not only because it will greatly increase the amount of the dataset, but also because this

simplifies the vessel segmentation task from global vascular tree segmentation into regional

vessel portion segmentation. After the preparation of image slices, the training data will be

utilized to fine tune the pre-trained fully convolutional AlexNet. Then the testing data will

be fed to the tuned network in order to test the performance of the tuned network. The

results generated by the network will be collected. In the last stage, the collected result slices

will be merged into full-size and post-processed with de-noising techniques. The following

sections will comprehensively discuss the three phases and each processing module.

4.2.1 Preprocessing

The retinal blood vessel color images, owing to the difficulties in taking photos through the

pupil, more or less have unbalanced illumination. Usually, the vessels in the dark are very

hard to tell because of the low contract. In another case, some images were taken under the

defocused condition, thus making the vessel appearing blurred. Figure 4.8 presents a retinal

image with unbalanced illumination and another image with the defocused camera.

To improve the image quality, all the images will be firstly removed from the “black

ring” area outside the field of the view, and then conducted the contrast enhancement.

When removing the “black ring”, the removed area will be replaced with the color of the

mean intensity from the red-green-blue channels respectively. In this way, the background

of the retinal image is balanced (see Figure 4.9(b)). Next, the Gaussian blur will be applied

particularly to the replaced area, in order to avoid the edge effect when conducting the

contrast enhancement. With the smoothed edge of the field of the view and the the balanced
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background, contrast enhancement serves a better purpose of highlighting vessels from the

fundus (see Figure 4.9(c)). At last, a new black background will be placed at where the

“black ring” used to be. This will prevent the edge effect during the training phase (see

Figure 4.9(d)). Figure 4.9 presents the entire process of preprocessing a retinal image.

4.2.2 Data augmentation

The typical data augmentation process in image deep learning including flipping, rotation,

scaling, and cropping, are used to boost the training performance, especially when there are

not sufficient dataset. Image cropping strategy is used here in this proposed implementation,

where one full-size image is going to be cropped into multiple image slices. However, cropping

the retinal color image and enlarge the size of the training dataset is not the original intention.

It is the fact that the fully convolutional AlexNet performs the best in regional vessel portion

segmentation that requires image cropping in order to prepare the training data. As a result,

this process of image cropping happens to benefit in increasing the size of the dataset.

During the process of data augmentation, each full-size image after preprocessing will be

cropped into 50× 50 image slices, and each image slice is half overlapped with its neighbors.

The 50×50 image slices will then be enlarged into 500×500, in order to magnify the details.

Figure 4.10 presents the general idea of this data augmentation process. Note that the full-

size ground truth images will also be divided into the 50 × 50 images slices in the same

rule.

In this way, the total number of the retinal blood vessel image has been increased from

133 full-size images to 84843 image slices. The purpose of training, in this case, becomes

generating a fully convolutional network that works for labeling vessel pixels from a small

region of the retinal color image. Technically speaking, this makes the segmentation task

easier because the features appearing within a small area of the retinal color are as simply as

the reddish and tubular object. Figure 4.11 shows a pair of image slice and its ground truth

image.
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4.2.3 Network architecture for training and testing

This section will mainly present the architecture of the fully convolutional network applied

in the proposed work. The entire procedure of the training process does not require human

interference after the network architecture has been designed and training strategy has been

set up. The training setup and strategy information including platform, solver type, learning

rate and etc. will be included in 5.1. The computer will do the rest of the work to output

the trained network, which will be utilized for testing and generating the binary vessel seg-

mentation results. Figure 4.12 shows some samples of the input and output images of the

testing process. These results will be recovered into full-size and post-processed in the last

step.

Figure 4.13 presents the architecture of the fully convolutional AlexNet applied in the

retinal vessel segmentation task, the framework is defined in the work of [40], where there

has combined layers of the feature hierarchy and refines the spatial precision of the output.

The input is a slice of 500× 500 RGB retinal color image, and the output is a 500× 500

binary image.

There are in total 8 convolution layers and 1 deconvolution layer in the network. Each con-

volution layer outputs a BLOBs (binary large object), depicted as white blocks in Figure 4.13,

is the input for the following next layer, and is labeled with their height× width× depth.

The kernel size of the first Convolution layer is 11, with the stride and padding value to be

4 and 100, while the kernel size of the second layer is 5, and its stride and padding value

are 1 and 2. These two layers are each followed by a max pooling layer and a local response

normalization layer. The kernel size of the pooling layer is 3 and the stride value is 2, and the

local size of the normalization layer is 5. The third, the forth, and the fifth convolution layer

have the same kernel sizes of 3, as well as the same stride and padding values of 1. Another

max pooling layer, same as the previous one, follows the fifth convolution layer. The sixth,

the seventh, and the eighth convolution layers do not do padding and their stride value are 1.

The kernel sizes of them are 6, 1, 1, respectively. For the last deconvolution layer, its kernel

size is 63 and stride is 32.
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4.2.4 Merging and overlapping

As previously mentioned, the training data will be used to fine tune this pre-trained network,

and the trained network will be utilized for generating the segmentation results. Shown in

Figure 4.12, these result pieces have to be recovered into the full-size binary segmentation

results. Since each segmentation slice has a reference number to identify its belonging and the

exact location of its belonged image, the results will be merged easily. When the overlapping

areas containing conflict pixels between the neighbor slices, the system performs OR operation

to determine whether the pixel belongs to the vessel class or not. Figure 4.14 (c) shows the

full-size result after the merge of the small image slices. The full-size results will be further

processed to be smoother and more accurate.

4.2.5 Post-processing

As the semantic segmentation of the retinal vessels appears to be wider than the vessel in

ground truth image, and there are noises after merging and overlapping. Therefore, the

post-processing step is expected in order to slightly increase the accuracy and look nicer.

To restore the actual width of the vessel, a small threshold window of 9×9 will be applied

to the image after merging and overlapping as shown in Figure 4.14 (c). This window works

with the pixels along the vessel edges. When an edge pixel is detected, this pixel becomes the

center of the 9 × 9 window, and the window area will be transformed into grayscale. Next,

based on the greyscale distribution of the window, a threshold will be generated using the

Otsu’s method. If the intensity of the centered pixel is lower than this threshold, this centered

pixel will be considered as the vessel, otherwise, this pixel will be classified as background.

Figure 4.14 (d) presents the final look of the image after post-processing. Compared with

the image before post-processing in Figure 4.14 (c), the noises have been eliminated and the

width of the vessels is more close to the ground truth in Figure 4.14 (b).
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Figure 4.5: Capillaries detection phase: (a) image after preprocessing, (b) image after
black-and-white inversion, (c) image after centerline highlighting, (d) the final result of
capillaries detection after connectivity test.
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Figure 4.6: Post-processing phase: (a) image after venules structure extraction, (b)
image after centerline detection, (c) image after overlapping, (d) the final result of
retinal vessel segmentation after de-noising.
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Figure 4.7: Functional diagram of the proposed supervised retinal vessel segmentation
system.

38



Figure 4.8: The retinal images taken with unbalanced illumination (left) and unfo-
cused camera (right).
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Figure 4.9: Preprocessing phase: (a) original color image, (b) image after “black ring”
replacement, (c) image after Gaussian smooth (only applied to the outer area), (d) final
look of the preprocessed image.
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Figure 4.10: A full-size image will be divided into multiple 50 × 50 image grids and
then be resized into 500× 500.
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Figure 4.11: The 500×500 retinal color image grids (first row) and their coresponding
ground truth images (second row).
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Figure 4.12: The input (first row) and output (second row) image slices of the testing
process
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Figure 4.13: The architecture of the fully convolutional AlexNet for retinal vessel
segmentation
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Figure 4.14: The comparison of the full-size results: (a) original color image, (b) the
ground truth image, (c) the image after merging and overlapping, (d) the final result
after post-processing.
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Chapter 5

Performance evaluation: which one is the

best

5.1 Experiment setup

Experimental settings for the retinal vessel segmentation are subtle but crucial, especially for

the data preparation of the supervised learning. This section will briefly introduce the prepa-

ration of categorizing training and testing data, configuration of training parameters, and

execution environment. With those information, this proposed research may be reproduced

by other researchers and compared fairly with other related works.

5.1.1 Data preparation

Unsupervised

The first implementation proposed in Section 4.1, is an unsupervised method, has been

designed based on the study of the databases from DRIVE and STARE. There will not be

the cross-database test, but we will investigate its robustness based on its performance on

CHASE DB1 and HRF databases. In the first stage, all the 133 retinal images from the four

databases will be used to evaluate the performance of this system.

Next, only healthy retinal images will be grouped and used to evaluate the performance

of the system again, and this will assess its practical usability for normal people. As STARE

and HRF databases provide the classification of healthy retinal images and their ground truth

images, we will use these two databases to test the proposed system one more time. STARE

database has in total 10 healthy retinal images, while HRF database has 15 healthy retinal
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images.

Supervised

. The second implementation proposed in Section 4.2, is a supervised method using deep

learning techniques. In this case, Single-database test and cross-database test are both

performed to fully and objectively evaluate its performance. The single-database test just

involves the DRIVE and the STARE databases, and the 60 full-size images from those two

databases will firstly be augmented into 33680 image slices, 50% of the images slices (16840

images) will be randomly selected as the training data. Then, all of the 33680 image slices

will be used for testing and processed into full-size for performance evaluation. The cross-

database test involves all the four databases, and their full-size images will also have to be

augmented into image slices in the beginning. Next, there will be four groups, and each

group is made up of three databases for training and another database for testing. Table 5.1

shows the training and testing strategy for the cross-database test.

Table 5.1: The arrangement of databases for the cross-database training and testing.

Group Training Dataset Testing Dataset

1 CHASE DB1 & DRIVE & HRF STARE

2 CHASE DB1 & DRIVE & STARE HRF

3 CHASE DB1 & HRF & STARE DRIVE

4 DRIVE & HRF & STARE CHASE DB1

5.1.2 Execution environment setup

Unsupervised

The first proposed system has been implemented on two platforms and two languages. One

is developed in MATLAB and executed on a personal computer with an Intel Core i7 CPU

4850HQ at 2.3 GHz and 16 GB 1600 MHz DDR3 RAM. We have performed both linear and

parallel execution model in MATLAB. The other implementation is written in Python and
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executed on a Raspberry Pi 3 Model B with a quad-core 64-bit ARM Cortex A53 at 1.2 GHz

and 1GB of LPDDR2-900 SDRAM. We only perform the linear execution on Raspberry Pi

because of the limitation of the hardware.

The second test of this unsupervised method is to investigate its performance when deal-

ing with just healthy retinal images. Since only STARE and HRF databases provide the

classification of healthy and abnormal retinal images, this test will just include these two

databases.

Supervised

The training process of the proposed method has been conducted on a Linux server with a

NVIDIA Tesla K40c GPU, an Intel Xeon CPU E5-2630 v2 at 2.60GHz and 32 GB 1333 MHz

DDR3 RAM. The training of the fully convolutional network is conducted on an interactive

deep learning GPU training system called DIGITS 1.

There are four groups of the training process in this work. Each training process has 30

training epochs. Since transfer learning is based on a pre-trained model, the initial learning

rate we set is 0.0001 and will be divided by 10 each time stepping down. The solver type we

use is Stochastic gradient descent. Generated by DIGITS, Figure 5.1 visualizes the training

process of one of the training groups. The upper subgraph in 5.1 presents the loss and

accuracy trend throughout the epochs from 1 to 30. The lower subgraph in 5.1 shows the

change of learning rate in three stages.

The testing process has been executed on the personal computer with a software frame-

work called Caffe, which is developed by Yangqing Jia as part of his Ph.D. at UC Berkeley

and supports many different types of deep learning architectures geared towards image clas-

sification and image segmentation, such as the fully convolutional network. Caffe supports

GPU based acceleration using CuDNN of NVIDIA. The new model generated by DIGITS

will be sent to this personal computer for image segmentation. The test program is written

in Python.

1DIGITS is a deep learning GPU training system developed by NVIDIA. It is a new system for developing,
training and visualizing deep neural networks, which brings deep learning closer and more friendly into the
hands of engineers and data scientists. DIGITS can be used to rapidly train the highly accurate deep neural
network for image classification, segmentation and object detection tasks
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The testing process has been executed on the personal computer with a software frame-

work called Caffe 2, which supports many different types of deep learning architectures geared

towards image classification and image segmentation, such as the fully convolutional neural

network. Caffe supports GPU based acceleration using CuDNN of Nvidia. The new model

generated by DIGITS will be sent to this personal computer for image segmentation. The

test program is written in Python.

5.2 Performance measurement

As previous mentioned, the proposed two implementations will be measured and compared

to the related ones with three metrics; accuracy, sensitivity, and specificity if provided. Ac-

curacy reflects the proportion of pixels that are correctly classified as vessel or non-vessel.

Sensitivity (true positive rate) and specificity (true negative rate) are statistical measures

of the performance of a binary classification test, where sensitivity reflects the ability of the

algorithm to detect the vessel pixels while specificity is the ability to detect non-vessel pixels

(or the ability to avoid noise pixels).

Unsupervised

Table 5.2 presents the performance of the proposed unsupervised implementation on DRIVE,

STARE, CHASE DB1, and HRF databases in terms of accuracy, sensitivity, and specificity.

These metrics have already been discussed in Section 3.1.

From Table 5.2, the system performs obviously better on DRIVE and STARE databases

than on CHASE DB1 and HRF databases. As previously introduced, this system has been

designed based on the data from STARE and DRIVE databases, therefore, even this is

an unsupervised implementation, the segmentation strategy still has a bias for the familiar

databases. Especially for the result of CHASE DB1 database, its sensitivity is the lowest

among the others, implying its ability to correctly identify vessels is not as good as the others.

Yet, the accuracy of CHASE DB1 and HRF databases is still high.

2Caffe is a deep learning framework, originally developed by Yangqing Jia as part of his Ph.D. at UC
Berkeley. It is open source, under a BSD license. It is written in C++, with a Python interface, and supports
GPU based acceleration using CuDNN of Nvidia.
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Table 5.2: Performance of the proposed unsupervised implementation on four
databases.

Database Accuracy Sensitivity Specificity

DRIVE 0.9597 0.8375 0.9694

STARE 0.9579 0.7767 0.9705

CHASE DB1 0.9443 0.6310 0.9650

HRF 0.9499 0.7953 0.9594

Next, this unsupervised method has been tested by only healthy retinal images. From

Table 5.3, the accuracy of STARE has increased to 0.9594 instead of the accuracy of 0.9579

in Table 5.2. Although The accuracy of HRF has dropped to 0.9465, yet there is a huge

increase in sensitivity from 0.7953 to 0.9463, which implies the high precision in vessel pixel

classification.

Table 5.3: Performance of the proposed unsupervised implementation on STARE and
HRF databases (only healthy retinal images included).

Database Accuracy Sensitivity Specificity

STARE 0.9594 0.7398 0.9833

HRF 0.9465 0.9463 0.9467

We have measured the average execution time for processing one image. Because this

proposed system has a parallel execution structure, therefore, we have provided both the

linear execution time and the parallel execution time. Table 5.4 shows both of the linear and

parallel execution time per image of the proposed unsupervised implementation on all four

databases. Because the image resolution from different databases differs from each other, the

execution time will increase as the image resolution gets larger.

Supervised

For the single-database test, Table 5.5 presents the performance of the proposed supervised

implementation on both DRIVE and STARE databases in terms of accuracy, sensitivity, and

specificity. It is clear that the accuracy of all the four databases is very high, especially that
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Table 5.4: Linear and parallel execution time per image of the proposed unsupervised
implementation on four databases.

Database (Image Resolution) Linear Execution Time Parallel Execution Time

DRIVE (565× 584) 3.79 s 1.68 s

STARE (700× 605) 4.67 s 2.17 s

CHASE DB1 (999× 960) 10.25 s 4.34 s

HRF (3504× 2336) 85.46 s 34.16 s

of the STARE database. Meanwhile, the CHASE DB1 has the highest sensitivity and the

STARE database also has the highest specificity.

Table 5.5: Performance of the proposed supervised implementation on four databases
(single-database test).

Database Accuracy Sensitivity Specificity

DRIVE 0.9624 0.7540 0.9825

STARE 0.9734 0.8352 0.9846

CHASE DB1 0.9668 0.8640 0.9745

HRF 0.9650 0.8010 0.8010

Figure 5.3 shows two set of result comparison from DRIVE and STARE database re-

spectively. The testing results in Figure 5.3 (c) and (f) are extremely close but just slightly

thicker than the ground truth presented in Figure 5.3 (b) and (e).

In order to further assess the robustness of the proposed system, we have also conducted

the cross-database test on those four databases. Table 5.6 shows the four groups of results re-

spectively on DRIVE, STARE, CHASE DB1, and HRF databases. Each result of a database

is generated from the network trained by the other three databases (this training strategy

has already been introduced in the previous Table5.1).

From Table 5.5, it is clear that the accuracy of DRIVE and STARE databases are in-

credibly high, which implies the success of the application of transfer learning and the design

of the proposed system. Figure 5.3 shows two set of result comparison from DRIVE and

STARE database respectively. The testing results in Figure 5.3 (c), (f) look very close to
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the ground truth in Figure 5.3 (b), (e). This great achievement proves the proper use of

the pre-trained semantic segmentation model – the fully convolutional AlexNet, and also the

transform/split of the segmentation task – from global to regional. To further prove the

correctness of the utilization of the fully convolutional neural network and the advantage of

the proposed system, we have conducted the cross-database test to assess its robustness.

In order to further assess the robustness of the proposed system, we have also conducted

the cross-database test on those four databases. Table 5.6 shows the four groups of results re-

spectively on DRIVE, STARE, CHASE DB1, and HRF databases. Each result of a database

is generated from the network trained by the other three databases (this training strategy

has already been introduced in the previous Table5.1).

Table 5.6: Performance of the supervised implementation on four databases (cross-
database test).

Database Accuracy Sensitivity Specificity

DRIVE 0.9593 0.7121 0.9832

STARE 0.9653 0.7820 0.9798

CHASE DB1 0.9591 0.7217 0.9770

HRF 0.9662 0.7686 0.9826

From Table 5.6, the accuracy of all the four databases except HRF has dropped a bit

in contrast to their single-database test results in Table 5.5. However, the sensitivity of

HRF has decreased. Yet, this cross database result remains to be excellent and stable in

comparison with other works, which will be discussed later in Section 5.3. Figure 5.4 shows

two set of result comparison from DRIVE and STARE databases respectively, while Figure

5.5 presents the comparison between the single and cross-database results from DRIVE and

STARE database. The cross-database result in Figure 5.4 (c) from DRIVE database presents

a minor difference in comparison with the ground truth image in Figure 5.4 (b). Also by

observing Figure 5.5 (b) and 5.5 (c), the difference between the single-database and the

cross-database results are small, even though the result in 5.5 (c) is generated by the fully

convolutional network trained by the other three irreverent databases. However, the cross-

database result from STARE database in Figure 5.5 (e) has a block of noise in the middle.
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This is caused by insufficient types of training data. From the original color image in Figure

5.4 (d), there exists a block of a yellow lesion in the middle. Such medical case is rare and

never exists elsewhere in databases other than STARE, therefore, the fully convolutional

network makes mistake because it has not been trained for such case. Aside from this, the

rest of vessel structure appears close to both the ground truth image in Figure 5.5 (d) and

the single-database result in Figure 5.5 (e).

5.3 Performance comparison and analysis

This section will present the performance comparison with the related state-of-the-art works

on DRIVE, STARE, and CHASE DB1 databases. Because no relevant result of HRF database

has been found from other’s work, the performance comparison of HRF database will be omit-

ted. Three tables are presented in this section. Within each table, the results are separated

into cross-database test and single-database test. As unsupervised methods do not have

training process at all, they do not necessarily have single or cross-database tests. In order

to fairly compare the performance between supervised and unsupervised methods, the results

from unsupervised methods can be compared with the results from the cross-database test of

the supervised methods. What’s more, the different works are categorized into three groups,

which are unsupervised, supervised, and supervised with deep learning. The best values of

the results from each group are marked with � and †.

Table 5.7 presents the performance comparison on DRIVE database. For the cross-

database test, the first proposed method has the highest accuracy in both the unsupervised

and supervised group, which surpasses the second proposed method just 0.0004. However,

with this tiny difference, we can say both the proposed implementations stay on the top

in terms of accuracy. Meanwhile, the second proposed method performs the best in the

supervised group in terms of accuracy and specificity. The shortage in sensitivity of the

second method, in contrast to the first one, is owing to the nature of the pre-trained semantic

segmentation not being sensitive to small objects, while the manually labeled ground truth

images of the DRIVE database contains rich capillaries. However, the specificity of our work

beats all the other works in both groups, which implies the highest noise resistance. Along
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with the outstanding performance on accuracy, the second proposed method is one of the

bests in the DRIVE cross-database test. For the single-database test, the proposed method

will be compared with only supervised methods. The accuracy and specificity of the second

proposed method stay on the top. Although the sensitivity of the work of [44] and [31] is

higher, their accuracy is much lower. Overall, both of the proposed methods outperforms

the others in the DRIVE single-database test.

Table 5.7: Performance comparison with the related state-of-the-art works on DRIVE
database.

Cross-database test

Algorithm Accuracy Sensitivity Specificity

Unsupervised

Abdurrazaq et al.[8] - 0.8214 0.9059

Fraz et al.[17] 0.9430 0.7152 0.9768

Lam et al.[29] 0.9472 - -

Mendonca et al.[35] 0.9463 0.7315 0.9781�

Zhang et al.[47] 0.9476 0.7743 0.9725

Proposed Method 1 0.9597� 0.8375� 0.9694

Supervised

Fraz et al.[19] 0.9456 0.7242 0.9792

Marin et al.[34] 0.9448 - -

Ricci et al.[38] 0.9266 - -

Supervised

(Deep Learning)

Wang et al.[44] 0.9428 0.8431† 0.9574

Li et al.[31] 0.9486 0.7273 0.9810

Proposed Method 2 0.9593† 0.7121 0.9832†

Single-database test

Algorithm Accuracy Sensitivity Specificity

Supervised

Fraz et al.[19] 0.9480 0.7406 0.9807

Marin et al.[34] 0.9452 0.7067 0.9801

Ricci et al.[38] 0.9595 - -

Supervised

(Deep Learning)

Wang et al.[44] 0.9533 0.8173† 0.9733

Li et al.[31] 0.9527 0.7569 0.9816

Proposed Method 2 0.9624† 0.7540 0.9825†

� represents the best values among all the unsupervised methods.
† represents the best values among all the supervised methods.

Table 5.8 presents the performance comparison on STARE database, which shows that the

performance of the second proposed method excels from all the other works. First, the first

proposed method still excels in terms of accuracy of the unsupervised group. In the cross-

database test, the second method performs the best on both accuracy and sensitivity, with
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its specificity slightly lower than the work of [31]. Indeed, because the STARE database is

the most complicated database which contains 8 kinds of retinal diseases and 3 of the images

are even defocused, the fully convolutional network would not have enough knowledge to deal

with those images perfectly if not being trained so. This is also the nature of deep learning.

However, in the single-database test, our second implementation outperforms all the others

in every three aspects. Especially, the advantage in accuracy of our second implementation

is much more superior than other works. Hence, our work is no doubt state-of-the-art on

STARE database.

Table 5.8: Performance comparison with the related state-of-the-art works on STARE
database.

Cross-database test

Algorithm Accuracy Sensitivity Specificity

Unsupervised

Fraz et al.[17] 0.9442 0.7311 0.9681

Lam et al.[29] 0.9567 - -

Mendonca et al.[35] 0.9479 0.7123 0.9758

Zhang et al.[47] 0.9554 0.7791� 0.9758�

Proposed Method 1 0.9579� 0.7767 0.9705

Supervised

Fraz et al.[19] 0.9493 0.7010 0.9770

Marin et al.[34] 0.9528 - -

Ricci et al.[38] 0.9452 - -

Supervised

(Deep Learning)

Wang et al.[44] 0.9413 0.7116 0.9675

Li et al.[31] 0.9545 0.7027 0.9828†

Proposed Method 2 0.9653† 0.7820† 0.9798

Single-database test

Algorithm Accuracy Sensitivity Specificity

Supervised

Fraz et al.[19] 0.9534 0.7548 0.9763

Marin et al.[34] 0.9526 0.6944 0.9819

Ricci et al.[38] 0.9646 - -

Supervised

(Deep Learning)

Wang et al.[44] 0.9621 0.8104 0.9791

Li et al.[31] 0.9628 0.7726 0.9844

Proposed Method 2 0.9734† 0.8352† 0.9846†

� represents the best values among all the unsupervised methods.
† represents the best values among all the supervised methods.

Table 5.9 presents the performance comparison on CHASE DB1 database. As previously

mentioned, the CHASE DB1 database is not as popular as DRIVE and STARE databases,

therefore there are fewer related works that have performed cross-database tested on this
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database. In the unsupervised group, the result of [47] has finally surpassed our work in

every aspect, but just a tiny bit. For the cross-database test, the accuracy and specificity of

the second proposed method have outperformed all the other works. Although the sensitivity

of the work of [47] is higher than the proposed second method, its much lower accuracy makes

his work much less competitive. For the single-database test, the work of [31] seems to have

threatened the predominant ranking of the proposed method, because its sensitivity and

specificity is higher than the second method, and its accuracy in the single-database test

is just a bit lower. However, when comparing its accuracy in the cross-database test, the

work of [31] shows its insufficiency in robustness, which also reflects the excellent overall

performance of the proposed work.

Table 5.9: Performance comparison with the related state-of-the-art works on
CHASE DB1 database.

Cross-database test

Algorithm Accuracy Sensitivity Specificity

Unsupervised
Zhang et al.[47] 0.9457� 0.7562� 0.9675�

Proposed Method 1 0.9443 0.6310 0.9650

Supervised Fraz et al.[19] 0.9415 0.7103 0.9665

Supervised

(Deep Learning)

Li et al.[31] 0.9429 0.7118 0.9791†

Proposed Method 2 0.9591† 0.7217† 0.9770

Single-database test

Algorithm Accuracy Sensitivity Specificity

Supervised Fraz et al.[19] 0.9469 0.7224 0.9711

Supervised

(Deep Learning)

Li et al.[31] 0.9581 0.7507 0.9793†

Proposed Method 2 0.9668† 0.8640† 0.9745

� represents the best values among all the unsupervised methods.
† represents the best values among all the supervised methods.

Table 5.10 shows the comparison of the execution time of the related works. The execution

time is collected and calculated using the image from DRIVE database. The execution

platforms are also provided along with each execution time. Take the factor of execution

platform into consideration, the execution time of the first proposed implementation is in the

third place in Table 5.10, and it has the shortest execution time on CPU platform. Although

the GPU and FPGA implementations of [27] and [26] have a very short execution, the average

accuracy of [27] and [26] is 0.9468 and 0.9234, respectively.
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Table 5.10: Execution time comparison with a single image from DRIVE database.

Algorithm Execution Time (per image) Platform

Koukounis et al.[26] 0.049 s
FPGA

Spartan 6

Krause et al.[27] 1.2 s
NVIDIA Geforce GPU

GTX680

Zhang et al.[47] 12 s
Intel Core i7 CPU @ 2.7 GHz

4 GB RAM

Marin et al.[34] 90 s
Intel Core 2 Duo CPU @ 2.13 GHz

4 GB RAM

Fraz et al.[19] 100 s
Intel Core 2 Duo CPU @ 2.27 GHz

4 GB RAM

Lupascu et al.[33] 125 s
Intel Core 2 Duo CPU @ 3.16 GHz

3.25 GB RAM

Lam et al.[29] 780 s
Intel Core 2 Duo CPU @ 1.83 GHz

2 GB RAM

Proposed Method 1 1.68 s
Intel Core i7 CPU @ 2.3 GHz

16 GB RAM

Proposed Method 2 324.8 s
Intel Core i7 CPU @ 2.3 GHz

16 GB RAM
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Figure 5.1: The trending chart of accuracy, loss, and learning rate during the training
process (generated by DIGITS).
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Figure 5.2: Single-database test result comparison of the image from DRIVE (first
row) and STARE (second row) databases: (a), (d) are original color images; (b), (e)
are ground truth images; (c), (f) are single-database testing results;
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Figure 5.3: Single-database test result comparison of the image from DRIVE (first
row) and STARE (second row) databases where (a), (d) are original color images; (b),
(e) are ground truth images; (c), (f) are single-database testing results.
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Figure 5.4: Cross-database test result comparison of the image from DRIVE (first
row) and STARE (second row) databases where (a), (d) are original color images; (b),
(e) are ground truth images; (c), (f) are cross-database testing results.

61



Figure 5.5: Comparison between single-database results and cross-database results
of the image from DRIVE (first row) and STARE (second row) databases where (a),
(d) are ground truth images; (b), (e) are single-database testing results; (c), (f) are
cross-database testing results.
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Chapter 6

Conclusion and apocalypse: why deep learn-

ing is the ultimate tool for medical image

applications

6.1 Final review

This thesis has fully investigated and introduced the research background of the retinal blood

vessel segmentation, including the motivation, the existing application, the publicly available

databases, several image segmentation algorithms, and many existing implementations of

retinal color image segmentation. Based on the investigation and understanding of the task,

the thesis has developed and implemented two outstanding methods of retinal vessel segmen-

tation.

The first implementation is a fast, accurate and robust retinal blood vessels segmenta-

tion system, which uses morphological processing technique to extract venules and applies

matched filter algorithm to detect capillaries. These procedures are executed separately but

simultaneously, in order to shorten the execution time while achieving a high accuracy.

The second implementation has proposed a supervised method to segment retinal blood

vessel from the retinal color images with the help of the fully convolutional network and

transfer learning. The proposed method has innovatively simplified and shifted a typical

retinal vessel segmentation problem into regional semantic vessel element segmentation tasks,

in this way the training data has been ideally augmented. Eventually, the cross-database

results of the proposed method have outperformed almost all the other works in every aspect

and prove to be state-of-the-art.
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In general, by studying this thesis, the reader will be able to understand the importance of

retinal blood vessels and how the proposed implementations will assist doctors and scientists

to achieve higher goals.

6.2 Medical imaging, deep learning, and transfer learn-

ing

In medical imaging, the accurate diagnosis and assessment of a disease depend on both image

acquisition and image interpretation. Image acquisition, over recent years, has improved

magnificently. However, the interpretation of medical images has only recently begun to

benefit from the development of computer technology. Most medical image interpretations

are performed by doctors. But the expert interpretation is always expensive and rare, large

variations across different interpreters. Many automated diagnostic tasks require an initial

search process to detect abnormalities, and to quantify measurements and changes over time.

Computerized tools, specifically image analysis and machine learning, are the key enablers

to improve diagnosis, by facilitating identification of the findings that require treatment and

to support the experts workflow. Among these tools, deep learning has developed rapidly

and proved to be the state-of-the-art foundation, leading to accuracy and robustness [21].

Deep learning is an extremely effective tool for object recognition and localization in

natural images. Medical image analysis researchers all over the world are quickly entering this

field and applying deep convolutional neural networks and other deep learning methodologies

to a wide variety of applications. Promising results are emerging, such as the one in this thesis.

The outstanding performance of the second implementation has confirmed a popular question

in the context of medical image analysis: Can the use of pre-trained deep convolutional neural

works, eliminate the need for training a deep convolutional neural network from scratch?

Our extensive training and testing experiments, having been conducted for half a year, have

demonstrated that through a proper transformation of the task, transfer learning and the

pre-trained deep convolutional neural network are very useful and functional for medical

image analysis.

Here is a funny analogy. Let’s say the process of deep learning is like the way of training
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a surgeon, who will be required to do large amounts of practice before holding a scalpel. The

more opportunity a surgeon practice, the more accurate he will be. Transfer learning is like

another mindset. Given the chances of practice are limited, another way to accelerating the

surgeon education is to train a butcher.

Transfer learning is such an effective solution when there have insufficient publicly avail-

able ground truth and expert interpretations. The convolutional neural network models

pre-trained from a different medical domain or even a natural image dataset can be used for

a new medical task, which, in the proposed work, has been verified. Since there are more and

more outstanding deep convolutional neural networks coming up, it can be predicted that

the researchers will benefit from the gradually sophisticated use of transfer learning.

6.3 Future work

In the future, our first plan is the hardware implementation of the unsupervised method.

As we mentioned previously in the introduction, in order to make eye examination more

accessible to patients, the automated retinal vessel segmentation system is expected to be

implemented on hardware, so as to be realized handy and portable in the future. Based

on our experiments, Raspberry Pi is more suitable and realistic to be the implementation

platform candidate. We have already implemented the proposed system on Raspberry Pi 3

Model B in python, and the current execution time takes 67.69 s per image (image from the

DRIVE database) without loosing accuracy. Next, we will continue to optimize the program

and shorten the execution time on Raspberry Pi.

The second plan is to conduct more experiments on transfer learning and try different

pre-trained models for retinal blood vessel applications, such as diabetic retinopathy. Since

we have presented that the pre-trained model for semantic segmentation truly works for

vessel segmentation, it will also worth trying to extract other retinal features such as lesion

and degeneration.
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