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ABSTRACT 

 Glycerol is one of the by-products of transesterification of fatty acids for the 

production of bio-diesel. Value-added products such as hydrogen, wood stabilizers and 

liquid chemicals from catalytic treatment of glycerol can improve the economics of the 

bio-diesel production process. Catalytic conversion of glycerol can be used for 

production of value-added liquid chemicals. In this work, a systematic study has been 

conducted to evaluate the effects of operating conditions on glycerol conversion to 

liquid chemical products in the presence of acid catalysts.  

 Central composite design for response surface method was used to design the 

experimental plan. Experiments were performed in a fixed-bed reactor using HZSM-5, 

HY, silica-alumina and γ-alumina catalysts.  The temperature, carrier gas flow rate and 

weight hourly space velocity (WHSV) were maintained in the range of  350-500 oC, 20-

50 mL/min and 5.40-21.60 h -1, respectively.  

 The main liquid chemicals detected in liquid product were acetaldehyde, acrolein, 

formaldehyde and hydroxyacetone. Under all experimental conditions complete glycerol 

conversion was obtained over silica-alumina and γ-alumina. A maximum liquid product 

yield of approximately 83 g/100g feed was obtained with these two catalysts when the 

operating conditions were maintained at 380 oC, 26 mL/min and 8.68 h-1. Maximum 

glycerol conversions of 100 wt% and 78.8 wt% were obtained in the presence of HY 

and HZSM-5 at temperature, carrier gas flow rate and WHSV of 470 oC, 26 mL/min and 

8.68 h-1. HY and HZSM-5 produced maximum liquid product of 80.9 and 59.0 g/100 g 

feed at temperature of 425 and 470 oC, respectively. 

 Silica-alumina produced the maximum acetaldehyde (~24.5 g/100 g feed) whereas 

γ-alumina produced the maximum acrolein (~25 g/100 g feed). Also, silica-alumina 
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produced highest formaldehyde yield of 9g/100 g feed whereas HY produced highest 

acetol yield of 14.7 g/100 g feed. The effect of pore size of these catalysts was studied 

on optimum glycerol conversion and liquid product yield. Optimum conversion 

increased from 80 to 100 wt% and optimum liquid product increased from 59 to 83.3 

g/100 g feed when the pore size of catalyst was increased from 0.54 in case of HZSM-5 

to 0.74 nm in case of HY, after which the effect of pore size was minimal.  
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1 INTRODUCTION 

 Limited resources of conventional fuels such as petrodiesel have led to the search 

for alternative fuels. Recently, there has been a growing concern about the increasing air 

pollution caused by the combustion of petrodiesel. In addition, depleting resources of 

conventional fuels has caused an increase in its price. Biodiesel is an alternative fuel 

produced from renewable sources such as vegetable oil. It has a proven performance for 

air pollution reduction. However, the price of biodiesel is presently more as compared to 

petrodiesel (Haas, 2005).  

 Biodiesel is produced through transesterification reaction in which fatty acids 

present in vegetable or animal oil are reacted with alcohols. Glycerol is produced as a 

by-product in this reaction (Dalai et al., 2000). Higher cost of biodiesel is primarily due 

to the raw material cost (Zhang et al., 2003). The economics of biodiesel production may 

be improved if value-added products such as hydrogen, synthesis gas or liquid chemicals 

may be produced from by-product glycerol. Also, increased production of biodiesel 

could lead to glut of glycerol in the market. This may cause the price of glycerol to fall 

by as much as 50 percent (Claude, 1998).  

 The production of value-added chemicals from glycerol may lead to a decrease 

in biodiesel prices. Furthermore, it will improve glycerol market. Production of value 

added chemicals from glycerol is a cracking reaction. Possible methods for utilization of 

glycerol are pyrolysis, steam gasification and catalytic cracking. Pyrolysis is heating of 

glycerol to a high temperature in the absence of air. The high temperature makes 
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pyrolysis an energy intensive method of transforming glycerol. Stream gasification is the 

co-feeding glycerol with steam. This again needs energy for steam generation. Catalytic 

cracking has a unique advantage in that the reaction occurs at low temperatures. Thus, 

catalytic cracking is a less energy intensive process.  

 Thiruchitrambalam et al. (2004) reported that glycerol can be completely 

converted into H2 rich syn-gas using pyrolysis at 800 oC in a fixed bed reactor. Cortright 

et al. (2002) reported the production of H2 from aqueous phase carbohydrate reforming 

of glycerol over Pt/Al2O3 catalysts. H2 yield of 64.8 mol% from glycerol was reported in 

this work. Buhler et al. (2002) reported the production of allyl alcohol, acetaldehyde, 

acrolein, methanol CO, CO2 H2 from the treatment of glycerol under supercritical 

conditions. A low glycerol conversion (0.4-31 wt%) was reported in this work. An 

extensive review of literature has been done (see Chapter 2) for value-added products 

from glycerol and on the available cracking catalysts such as zeolites, silica-alumina and 

γ-alumina.  

It appears from literature that there has been no study on the production of liquid 

chemicals from catalytic conversion of glycerol at low temperature and atmospheric 

pressure. Thus there is a knowledge gap that needs to be filled. This has led to the 

following research objectives for the present work.  

1.1  Research objectives 
 

The main objective of this work was to study the potential of production of value-

added liquid chemicals such as acetaldehyde, acrolein, formaldehyde and acetol from 

glycerol via cracking reaction using HZSM-5, HY, silica-alumina and γ-alumina. These 

catalysts were chosen because of their wide range of pore size, total acidity and BET 

surface area. Furthermore, HZSM-5, HY and γ-alumina are crystalline whereas silica-
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alumina is non crystalline material. The overall objective was achieved in the various 

phases of research program as described below:  

1.1.1 Phase I : Catalyst character ization 

 The objective of this phase was to study the physiochemical properties of 

HZSM-5, HY, silica-alumina and γ-alumina. To achieve this objective, catalysts were 

characterized using different techniques such as temperature programmed desorption of 

NH3, X-ray diffraction, BET surface area analysis, SEM and FTIR.  

1.1.2 Phase I I : Catalyst per formance evaluation  

The objective of this research phase was to study the effects of operating 

parameters such as temperature, carrier gas flow rate and WHSV on glycerol 

conversion, liquid, gas and char yield using HZSM-5, HY, silica-alumina and γ-alumina 

catalysts. The operating conditions were optimized to maximize the glycerol conversion, 

liquid product yield and yields of liquid chemicals such as acetaldehyde, acrolein, 

formaldehyde and acetol for each of the above mentioned catalysts. 

1.1.3 Phase I I I : Effect of physiochemical proper ties on catalysts’  activity 

In this phase, the effects of catalysts’  physiochemical properties on optimum 

glycerol conversion, liquid product yield and yields of acetaldehyde, acrolein, 

formaldehyde and acetol were evaluated.  

 Chapter 2 presents a comprehensive literature review on glycerol uses and 

different acid catalysts used for cracking of glycerol. Experimental design and details of 

product identification and catalyst characterization are discussed in Chapter 3. Chapter 4 

presents the discussion on the experimental results. The conclusions and 

recommendations from this work are given in Chapter 5. 
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2 LITERATURE REVIEW 

The main aim of this work is to study the potential of production of value-added 

liquid chemicals from glycerol. Therefore, a review of the literature has been done to 

find out the reported processing methods of glycerol to value-added products. A detailed 

review of literature based on sources of glycerol, products obtained from glycerol and 

structure and catalytic properties of various acid catalysts is presented in this section. 

2.1 Glycerol production and consumption 

 Glycerol is produced in soap industry from direct saponification. Olechemical 

industry is a major source of glycerol production where it is obtained from fat splitting 

of glycerides and bio-fuels such as biodiesel. Claude (1998) has indicated various uses 

of glycerol in cosmetic, soap, pharmaceutical, food and tobacco industry as shown in 

Figure 2.1. The soap and cosmetic industry constituted 28 % whereas polyglycerols, 

esters, food and drinks and resale constituted up to 47 % of glycerol utilization. Glycerol 

is a topic of research recently and the researchers are keen to find out its alternate 

applications for fuels and chemicals (Garcia et al., 1995; Neher et al., 1995; Buhler et 

al., 2000; Cortright et al., 2002).  

2.2 Glycerol as by-product of biodiesel 

Glycerol is a by-product during transesterification of fatty acids to produce 

biodiesel (Dalai et al., 2000). Biodiesel is a mixture of fatty acid esters. Typical reaction 

to produce biodiesel is given by the following equation: 
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Others 10% 

Paper 1% 

Esters 13% 
 

Polyglycerols 12%  

Tobacco 3% 

Cellulose films 5% 

Food and drinks 8%  

Alkyd resins 6% 

Cosmetic/soap and 
pharmaceuticals 28% 

Resale 14% 

Figure 2.1: Distr ibution of glycerol uses as of 1995 (Claude, 1998)   



 6 

)1.2(GlycerolestersacidFattyAlcoholdesTriglyceri +→+  

Typical feed stocks for biodiesel production are canola and soy oil (Prakash, 1998). 

Alcohols used are methanol, ethanol or a mixture of these. During the trans-

esterification reaction about 10 wt% (of fatty acid) glycerol is produced. Production of 

glycerol is expected to increase with increase in production of biodiesel (Haas, 2005). 

2.2.1 Biodiesel potential in Canada  

 Prakash (1998) reported that the production of canola and soy oils in 1996 in 

Canada was 1,153 million tons and 166,000 tons, respectively. It was assumed that if 10 

wt% of canola and soy oil could be used for the production of biodiesel it would result in 

277 million liters of biodiesel per year. Furthermore, 108 million liters of biodiesel could 

be obtained from tall oil (a by-product from the treatment of pine pulp). This would add 

up to a total biodiesel production to 385 million liters per year which in turn would lead 

to the production of 38.5 million liters of glycerol per year in the Canadian glycerol 

market.  

The federal government of Canada has planned to produce 500 million liters of 

biodiesel per year by the year 2010 to meet the Kyoto protocol (Smith, 2004). With 10 

wt% production of glycerol, this would lead to ~50 million liters of glycerol/year in the 

Canadian market. Xu et al. (1996) reported that increasing demand for biodiesel may 

create a glut of glycerol, which could become available as a feedstock at low or negative 

cost. However, for biodiesel to economically compete with petrodiesel its price must 

come down. 
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2.2.2 Making biodiesel a competitive fuel 

A number of strategies have been proposed to improve the economics of 

biodiesel production and make it a viable fuel. Government subsidies could help to 

improve the economic competitiveness of biodiesel, however, it is desirable to minimize 

the dependence on such supports (Haas, 2005). Raw material cost leads to high price of 

biodiesel. The price of biodiesel is strongly influenced by the price of alcohol, one of the 

reactant in trans-esterification reaction (Bungay, 2004) and the purity of reactants 

(Barnwal, 2005). Use of less expensive feed stocks such as animal fat (Peterson et al., 

1997; Ma et al., 1998) and restaurant grease has been proposed for biodiesel production. 

Recently, soapstock, a byproduct of refining of vegetable oils has been used as a 

feedstock for biodiesel (Haas, 2005). In addition to that, glycerol can be processed to 

value added products. Value can be added to glycerol by utilizing it in existing 

applications and at the same time finding novel ways to utilize glycerol such as fuels 

(H2, syn-gas) and value-added liquid chemicals such as aldehydes and ketones. 

Utilization of glycerol to produce value-added secondary products would improve the 

economics of biodiesel. In the following sections a detailed study of the reported work 

on value-added products from glycerol is presented. 

2.3 Value-added products from glycerol  

Glycerol can be converted to value-added products by pyrolysis, steam 

gasification and catalytic treatment. The literature review on pyrolysis and steam 

gasification of glycerol with different process conditions such as temperature and steam 

to glycerol ratio is discussed in this section. Also, catalytic conversion of glycerol into 
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value-added chemicals using different catalyst such as nickel and platinum is discussed 

in this section.  

2.3.1 Production of hydrogen and syn-gas from glycerol  

The available literature on production of hydrogen and syn-gas from glycerol by 

pyrolyis and steam gasification is discussed in this section. 

Chaudhari and Bakhshi (2002) reported the production of hydrogen and syn-gas 

from pyrolysis of glycerol in a fixed bed reactor. Pyrolyis was performed with and 

without a carrier gas (nitrogen). One set of experiments was performed at 400 and      

500 oC and glycerol flow rate of 2.0 g/h without using any carrier gas. It was reported 

that the operation was quite difficult without using carrier gas because of char formation 

in the feed inlet.  

Another set of pyrolysis experiments was performed in a fixed bed reactor with 

the nitrogen flow rate of 50 mL/min over a temperature range from 350 to 700 oC and 

glycerol flow rate from 2.2 to 4.0 g/h. It was reported that complete conversion of 

glycerol occurred at 700 oC. Furthermore, gas yield obtained was 50 wt% but no liquid 

product was observed. The residue was 6.3 wt% whereas the remaining mass percent 

was char. 

Chaudhari and Bakhshi (2002) also performed steam gasification of glycerol 

with steam flow rate of 2.5, 5 and 10 g/h at 600 and 700 oC with glycerol flow rate of 4 

g/h. It was reported that approximately 80 wt% of glycerol was converted when steam 

flow rate of 10 g/h at 700 oC was used. Furthermore, 92.3 mol% syn-gas with H2/CO 

ratio of 2 was produced. Gaseous product was around 70 wt%. It was reported that syn-

gas can be further converted to hydrogen by water-gas shift reaction which can be used 
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in fuel cell applications. Syn-gas can also be converted to green diesel using Fischer-

Tropsch reaction (Chaudhari and Bakhshi, 2002).      

Steam gasification of glycerol was performed by Stein and Antal (1983) and 

Chaudhari and Bakhshi (2002). Results of Chaudhari and Bakhshi (2002) showed that 

steam gasification of glycerol does not produce liquid product at 600 and 700 oC in a 

fixed bed reactor. These results are in contrast with results of Stein and Antal (1983), 

who reported that steam gasification of glycerol produced liquid product consisting of 

acrolein and acetaldehyde at 600 to 675 oC in a laminar flow reactor.  

Xu et al. (1996) reported carbon catalyzed gasification of the organic feed stocks 

such as glycerol, glucose, whole biomass feed stocks (bagasse liquid extract and sewage 

sludge) and cellobiose using supercritical water. Catalysts used were spruce wood 

charcoal, macademia shell charcoal, coal activated carbon and coconut shell activated 

carbon. The range of parameters investigated for gasification was temperature from 500 

to 600 oC, WHSV 14.6 to 22.2 h -1 and pressure 251 to 340 MPa. It was reported that 

glycerol was easily and completely gasified to 54.3 mol% hydrogen rich gas with low (2 

mol%) yield of CO. The presence of catalyst had little effect on the gas composition.  

Cortright et al. (2002) reported the production of hydrogen from sorbitol, 

glycerol and ethylene glycol at temperatures of 227 oC and 225 oC and under high 

pressure in a single-reactor aqueous-phase reforming process. Platinum supported on γ-

alumina was used as catalyst. Hydrogen yield was reported to be higher using sorbitol, 

glycerol and ethylene glycol than that of glucose.  The hydrogen yields from glycerol 

reforming were 64.8 and 57 mol% at 225 and 265 oC, respectively. Liquid products 

consisted of ethanol, 1,2-propanediol, acetic acid, ethylene glycol, acetaldehyde, 2-

propanol, propionic acid, acetone, propionaldehyde and lactic acid. 
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Huber et al. (2003) reported the production of H2 from glycerol, sorbitol and 

ethylene glycol by aqueous phase reforming at temperature near 227 oC and pressures of 

2.58 and 5.14 MPa in presence of Sn promoted Raney-Ni catalyst. The feed 

concentration was 1 to 5 wt% in water. It was reported that addition of tin decreased the 

rate of methane formation. Gas composition was 66 mol% of H2 and 32 mol% CO2, 

when glycerol was used as feed. 

Czernik et al. (2000) reported catalytic steam reforming of bio-oil derived 

fraction and crude glycerol (a by-product from trans-esterification of vegetable oil with 

methanol) in a fluidized bed reactor to produce hydrogen. Commercial Ni catalyst was 

used. Superheated steam was used to fluidize the catalyst. The temperature of crude 

glycerol was maintained at 60-80 oC and it was reported that at lower viscosity in this 

temperature range it was easy to pump and atomize glycerol. Glycerol was fed at 78 g/h 

with a steam rate of 145 g/h and WHSV of 1600 h-1. Concentration of major gas 

products was found to be constant but methane production increased from 500 parts per 

million (ppm) to 2200 ppm when the run time was increased from 0 to 250 min. 

Hydrogen yield was around 77 wt% and it was suggested that hydrogen yield can be 

increased if higher amount of steam is used. The conversion of carbon monoxide in the 

gas through water-gas shift to CO2 and H2 would increase the hydrogen yield to 95 wt%. 

2.3.2 Production of liquid chemicals from glycerol 

In this section the available literature on production of liquid chemicals from 

glycerol is presented.  

Buhler et al. (2002) reported the production of value added chemical such as 

methanol, acetalydehyde, acrolein, allyl alcohol, acetone, ethanol, carbon dioxide, 
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carbon monoxide and hydrogen from glycerol under supercritical conditions. The 

temperature range investigated was 349 to 475 oC and pressure was maintained at 25, 35 

and 45 MPa. The reaction was carried out in tubular reactor with reaction time in the 

range from 32 to 165 s. It was reported that the decomposition of glycerol primarily 

followed ionic mechanism at low temperature and high pressure and free radical 

mechanism at high temperature and low pressure. The amount of acetaldehyde and 

formaldehyde decreased with increase in temperature whereas amount of allyl alcohol 

and methanol increased with increase in temperature. 

McMorn et al. (1999) reported oxidation of glycerol using hydrogen peroxide in 

liquid phase reaction at temperature of 20 and 70 oC. Products from this process 

included, formic acid esters of glycerol and mixture of acetals. In addition to that trace 

amounts of hydroxyacetone, glyceraldehyde and glyceric acid were also identified.  

Garcia et al. (1995) reported the oxidation of aqueous solution of glycerol at     

60 oC under atmospheric pressure and pH of 2, 7 and 11. The catalysts used in the study 

were Pd and Pt promoted with Bi on active charcoal. The glyceric acid yield of 30, 55 

and 77 wt% was obtained at pH of 7, 9 and 11, respectively using Pd catalyst. 70 wt% 

yield of glyceric acid was obtained at 90-100 wt% conversion of glycerol under basic 

conditions. It was reported that the selectivity towards oxidation of secondary alcohol 

group was improved by promoting Pt with metals such as Bi and resulted in 

dihydroxyacetone yield of 30 wt% at 60 wt% conversion. Fordham et al. (1995) reported 

further oxidation of glyceric acid to hydroxypyruvic and tartronic acids at 50 oC and 

atmospheric pressure. Pt promoted with Bi, supported on activated carbon, was used as 

catalyst. It was reported that oxidation of primary and secondary alcohol group resulted 

in formation of tartonic and hydroxypyruvic acid, respectively. The maximum yield of 
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83 wt% at 90 wt% conversion of glyceric acid was obtained for tartonic acid at pH of   

9-11.  

Neher et al. (1995) reported that acrolein can be produced from dehydration of 

glycerol in the liquid (temperature from 180 to 340 oC and pressure of 70 bar) as well as 

gas phase (temperature from 250 to 340 oC). HZSM-5 was used as catalyst for feed of 

glycerol-water mixture (glycerol content 10 to 40 wt%) was  Acrolein yield of  65% was 

reported at 15 to 25 wt% glycerol conversion. 

2.4 Chemistry of glycerol cracking  

Thermal cracking of the oxygenated compounds such as glycerol has complex 

chemistry (Wang et al., 1996). A large numbers of primary and secondary products were 

generated through many different pathways. It was also reported that the partial thermal 

cracking of oxygenated hydrocarbons would produce hydrogen, carbon monoxide, 

carbon dioxide, methane and coke by primary decomposition reactions. 

Antal et al. (1985) reported that the decomposition of glycerol in supercritical 

water follows two major pathways. At lower temperature, heterolytic acid catalyzed 

carbonium ion mechanism resulted in formation of acrolein by elimination of water from 

glycerol. At higher temperatures (above 600 oC) however, homolytic cleavage of C-C 

bond resulted in the formation of acetaldehyde. Experiments were performed using 

NaHSO4 as catalyst at 500 oC.  

Buhler et al. (2002) reported that the free radical reaction pathway dominated at 

lower pressure and high temperature. Formation of gaseous product was favoured at 

higher temperatures and it was as a result of free radical reaction pathway. The proposed 

reaction pathways by Buhler et al. (2002) for the formation of acetalydehyde and 

acrolein are shown in Figure 2.2. 
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Figure 2.2: Proposed reaction pathways for  acetaldehyde and acrolein yield dur ing 

supercr itical treatment of glycerol (Buhler  et al., 2002) 
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2.5 Selection of catalyst for  catalytic conversion of glycerol 

The role of acidic catalysts for deoxygenation, cracking and enhanced 

hydrocarbon formation is well reported in literature (Gates, 1979).  The production of 

value-added chemicals from glycerol is a cracking reaction where bigger glycerol 

molecule is broken down into smaller molecules. Cracking reactions catalyzed by acid 

surfaces proceed by carbonium ion intermediates. Some of the more common cracking 

catalysts are HZSM-5, HY, silica-alumina and γ-alumina. In this section the structure 

and catalytic properties of these catalysts are described. 

2.5.1 Structure and catalytic proper ties of HZSM-5 

Zeolites are porous crystalline aluminosilicates composed of AlO4 and SiO4 

tetrahedra which form three dimensional networks linked through oxygen atoms. The 

composition of zeolites can be represented by empirical formula expressed as  

Mn+
x/n(AlO2

-)x(SiO2)y.mH2O        

where, M is a cation with charge n+, m is the number of water molecules of 

crystallization, x+y is the number of tetrahedra in the unit cell. The basic tetrahedral 

units combine to form square and hexagonal plane faces, which combine further to form 

sodalite cages and hexagonal cubes (Bhatia, 1989).   

The basic unit of ZSM-5 zeolite is composed of 5 silica-alumina tetrahedra 

linked into a pentagon. These pentagons are linked together by the sharing of oxygen 

atoms. The basic units join together to form secondary building units (SBU) in the form 

of chain and sheet building unit. The sheet structure is repeated in the third dimension to 

form linear channels of slightly elliptical cross-section (0.56x0.54 nm). Further channels 

occur in the other two dimensions, one sinusoidal with cross-section (0.55x0.51 nm) and 

the other a tortuous system created by the overlapping of the first two (Bhatia, 1989).  
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Particular composition of given ZSM-5 zeolite (eg. type of cation M, the value of 

y/x) determine most of the properties of ZSM-5. For example, ion exchange capacity, 

catalytic activity and water sorption vary with the Al content (Olson et al., 1981). 

Hydrophobic nature of ZSM-5 is dependent on Si/Al ratio, however the properties such 

as X-ray diffraction pattern, framework density, pore size and pore volume are 

independent of the composition (Chen, 1976).   

The catalytic activity of ZSM-5 is attributed to strong acid sites and three 

dimensional intersecting channels (Bhatia, 1989). The acid sites in ZSM-5 lie on inter 

crystalline surface on the zeolite (Jacobs et al., 1981). The unique pore size and high 

surface area makes ZSM-5 useful as shape selective catalyst (Falamaki et al., 1997; 

Grieken et al., 2000). High silica to alumina ratio for ZSM-5 makes it stable under 

hydrothermal treatment (Kumar et al., 2002). The three dimensional structure remains 

intact at severe conditions of temperature. The catalyst pretreatment conditions have 

significant impact on acidity and acidic site distribution (Vedrine et al., 1982).  

ZSM-5 is altered by ion-exchange with various cations to increase its activity 

and selectivity. Examples include exchange of Na+ with H+ to yield HZSM-5. HZSM-5 

is also referred to as protonated form of ZSM-5. HZSM-5 has superior acidity as 

compared to other forms of ZSM-5 such as Na-ZSM-5, B-ZSM-5 or Mg-ZSM-5 (Furrer, 

1988). 

It has been reported that a wide variety of organic compounds could be 

transformed into hydrocarbons over zeolite catalyst typically over HZSM-5. HZSM-5 

was reported to be an effective catalyst for completely converting feeds such as alcohols 

and methanol to 42-45 mol% C6-C10 hydrocarbons at 371 oC and atmospheric pressure. 

Major deoxygenation route was reported to be dehydration (Derouane et al., 1978). 
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ZSM-5 with its intermediate pore size sorbs molecules as large as o- and m-xylene 

(~0.69 nm) while larger molecules such as 1,3,5-trimethylbenzene (~0.78 nm) are not 

able to penetrate the small pores. Also, larger molecules result in catalyst deactivation by 

forming coke and HZSM-5 catalyst resists coking by inhibiting larger molecules into the 

catalyst.  

2.5.2 Structure and catalytic proper ties of Y- zeolite 

Y-zeolite is a natural crystalline aluminosilicate zeolite with chemical 

composition [Na2Ca][Al2Si4O12].H2O. Y-zeolites is formed when the secondary building 

units combine through hexagonal faces forming a hexagonal ring. Pore diameter (0.74 

nm) of 12-membered ring Y-zeolite is large enough to allow access to bulky molecules 

such as (C4H9)3N, isoparaffins, cyclohexane and aromatics (Campbell, 1983). 

Microporous acidic Y-zeolite was reported to be an effective catalyst for transformation 

of m-xylene through disproportionation reaction which was attributed to the presence of 

strong Bronsted acid sites and higher micro pore volume (Molina et al., 1994). HY was 

selected in addition to HZSM-5 to investigate the effect of pore size and structure on the 

product yields from catalytic conversion of glycerol. 

The pore size and definite shape of zeolites imparts shape selective properties to 

them. The product selectivity occurs when the pore opening of the zeolite is such that it 

admits only certain molecules and large molecules are excluded. Also, product 

selectivity occurs if among all the product formed only those with proper dimension can 

diffuse out and appear as products. Larger molecules are retained inside the pores of 

catalyst and converted into smaller molecules or to carbonaceous deposits within the 

pores causing pore blockage.  
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2.5.3 Structure and catalytic proper ties of silica-alumina 

The structure of silica-alumina is silica tetrahedral lattice in which some of the 

silicon atoms have been replaced by aluminum atoms. The silicon atoms in silica are 

bonded to four oxygen atoms whereas in alumina, aluminum atoms are bonded to only 

three oxygen atoms. This imbalance is resolved forcibly by silica by accommodating 

each aluminum atom in its four fold coordination using hydrogen atom derived from 

residual water content. The two possible structures of silica-alumina are shown in Figure 

2.3. 

 Silica-alumina is amorphous solid and has both Bronsted and Lewis acidity 

(Katikaneni et al., 1995). Silica-alumina possesses cracking efficiencies for several 

reactions such as m-xylene isomerization, cumene cracking and heptane cracking (Sato 

et al., 2001). 

2.5.4 Structure and catalytic proper ties of γ-alumina 

 γ-alumina is an important industrial material and finds vast applications in 

refining and petrochemsitry. γ-alumina was used as catalyst in the dehydration of 

alcohols and in Clauss process (Digne et al., 2004). The precise crystallographic 

structure of γ- alumina is still under debate. Detailed review of literature on the structure 

of γ- alumina was done by Wolverton et al. (2000) and Gutiérrez et al. (2001). Surface 

properties of γ-alumina make it useful as microporous catalyst (Pinto et al., 2004). 
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2.6 Catalyst Deactivation 

 Catalytic conversion often leads to a number of undesirable side reactions. As a 

result of these reactions a carbonaceous deposit referred to as coke is produced on the 

catalyst (Nam et al., 1987). Coke reduces the catalytic activity for desired reaction and 

thus substantially reduces rate of conversion and/or selectivity of the catalyst. 

Deactivation of ZSM-5 occurs primarily due to fouling which is gradual covering of 

catalyst surface with coke. The catalyst activity is reduced due to decrease in active 

surface area and increased diffusion resistance which is due of physical coverage of 

active sites or plugging (full or partial) of the pores of the catalyst (Furrer, 1988). 

Formations of polyalkylaromatics such as polyethylbenzene, which are the reported coke 

precursors, have been inhibited over ZSM-5 (Chandrawar et al., 1982). 
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3 EXPERIMENTAL 

This chapter describes the design and construction of experimental setup for 

catalytic conversion of glycerol. Preparation of catalyst and experimental procedure are 

described in this section. Statistical design of experiments and the techniques used to 

analyze the liquid and gas products from the experiments are also described in detail in 

this section. 

3.1 Catalysts for  glycerol conversion 

In this work, four catalysts namely HZSM-5, HY, silica-alumina and γ-alumina 

were used for the production of value added liquids from glycerol. 

Y-zeolite was procured from Zeolyst International, Netherlands. Y-zeolite was 

treated with 1M solution of ammonium chloride at 80 oC, then dried at 110 oC and 

calcined at 550 oC for 4 hours to get the HY form. 

 Silica-alumina catalyst was procured from Aldrich St. Louis, MO, USA. Silica-

alumina was calcined at 550 oC for 4 hours prior to use in the experiments. 

γ-alumina was procured from Sud Chemicals, India. It was calcined at 550 oC for 

4 hours before use in the reactions. 

HZSM-5 was prepared by hydrothermal treatment of silica and alumina source in 

presence of an organic template in an autoclave (supplied by Parr Inc, IL, USA) 

according to method described in literature (Argauer and Landolt, 1972). The detailed 

synthesis procedure is reported elsewhere (Sang et al., 2004).  
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The chemicals used in the preparation were terta ethyl orthosilicate as silica 

source (Sigma-Aldrich St. Louis, MO, USA), sodium aluminate as aluminum source 

(Fisher Scientific Company, New Jersey, USA), tetra propyl ammonium bromide as 

organic template (Aldrich, St. Louise, MO, USA), NaOH to maintain pH and conc. 

H2SO4. 

3.2 Catalyst character ization 

Catalysts were characterized to measure the properties such as pore size, surface 

area, structure and acidity and thus understand the performance of the catalyst. The 

different techniques used included: temperature programmed desorption (TPD), powder 

X-ray diffraction (XRD), BET surface area analyis, scanning electron microscope and 

fourier transformed infrared (FTIR) spectroscopy. These techniques have been briefly 

described in the following sections. 

3.2.1 Temperature programmed desorption (TPD) 

 Temperature programmed desoption was used to determine the number and 

strength of acid sites of the catalysts. The catalyst was saturated under a flow of 

ammonia after which the temperature of the sample was gradually increased and the 

amount of ammonia desorbed was recorded as a function of time. The temperature at 

which ammonia desorbs is associated with a particular type of acid site.  

The TPD analysis was performed using CHEMBET 3000 (manufactured by 

Quantachrome Corporation, FL, USA). About 0.1 g of the catalyst sample was placed in 

U shaped quartz tube. The tube was then placed in an electrically heated furnace. The 

sample tube was heated from room temperature to 400 oC with heating rate of 10 oC per 



 22 

min under the flow (20 mL/min) of NH3 (1000 ppm NH3 in N2, supplied by Praxair, 

Mississauga, ON, Canada). The temperature was maintained at 400 oC for one hour after 

which the U tube was allowed to naturally cool down to 35 oC. Then the U tube was 

heated to 1050 oC at heating rate of 10 oC per min in argon gas (supplied by Praxair, 

Mississauga, ON, Canada) flow (20 mL/min). The TPD plot was logged using on-line 

data acquisition system. 

3.2.2 Powder X-ray diffraction (XRD) 

 X-ray diffraction was used to identify the structure of the zeolite catalysts. It is 

also useful to determine if the material under investigation was crystalline or amorphous. 

Powdered sample of the calcined catalyst was bombarded with x-rays at various angles. 

Intensity of the reflected x-rays depends on the relative arrangement of atoms in the 

crystal. The angle of x-rays reflected from crystal depends on the dimensional 

characteristics of the lattice. Each material has a unique x-ray diffraction pattern. In case 

of ZSM-5 ion exchange with other cations yields essentially the same pattern with minor 

shift in relative intensity (Argauer and Landolt, 1972).  

The XRD measurements were made with a Rigaku diffractometer (Rigaku 

Company, Tokyo, Japan) using Cu-K �  radiation filtered by a graphite monochromator at 

40 KeV and 123 mA. The powdered samples were smeared on a glass slide with 

methanol and dried at room temperature. The X-ray diffractograms were recorded from 

4o to 80o at a speed of 5o (2θ) per min. 
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3.2.3 BET surface area, pore size and pore volume 

 The BET surface area, pore size and pore volume measurements of the catalysts 

were done using a Micromeritics adsorption equipment (ASAP 2000, manufactured by 

Micromeritics Instruments Inc., Norcross, GA, USA) using N2 gas (99.995% pure, 

supplied by Praxair, Mississauga, ON, Canada). BET analysis was performed on 

calcined catalyst. Each analysis required about 0.5 to 1.0 g of catalyst sample. Before the 

analysis catalyst sample was treated for 4 hours at 200 oC at a pressure of 5x10-4 torr to 

ensure that there was no adsorbed moisture on the catalyst surface. The adsoption and 

desorption isotherms used in the evaluation of BET surface area were obtained at the 

boiling temperature of nitrogen (-195 oC). These values are characteristic of a given 

catalyst sample and are reproducible.  

3.2.4 Scanning electron microscopy (SEM) 

 Scanning electron microscope features of fresh and spent catalysts were studied 

by using a Phillips SEM 505 scanning electron microscope. The SEM instrument was 

operated at 300 KeV/SE and 50o inclination. Prior to analysis, all the samples were gold 

coated in a sputter coating unit (Edward Vacuum Components Ltd. Sussex, England). 

The micrographs were recorded using photographic techniques. The images were 

captured at magnification of 1:20,000. 

3.2.5 Four ier  transformed infrared spectroscopy (FTIR) 

 The IR measurements were made in the hydroxyl group and pyridine regions 

using Perkin Elmer Infrared spectrophotometer (Model spectrum GX). Pyridine vapors 

were adsorbed on the catalyst sample at 170 oC for 45 min, the sample was then allowed 
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to cool to room temperature and the spectra were recorded. All the spectra were obtained 

in the region 400-4000 cm-1 were differential absorption spectra with 2 cm-1 resolution. 

On the basis of the pyridine band between 1440 and 1640 cm-1, the presence of Bronsted 

and Lewis acid sites was identified. 

3.3 Exper imental program  

The scope of this experimental work was to study the potential of production of 

value-added liquid chemicals from the glycerol in a fixed bed micro reactor at 

atmospheric pressure. The effects of operating parameters such as temperature, carrier 

gas flow rate and weight hourly space velocity (WHSV) were investigated on glycerol 

conversion and liquid product yield. The operating parameters were optimized for 

maximum glycerol conversion and liquid product yield. The catalysts were characterized 

to understand the effect of fundamental properties such as pore size, surface area, 

crystallinity and acidity on the performance of catalysts in terms of glycerol conversion 

and total liquid product. 

3.3.1 Statistical design of exper iments 

 Design-Expert version 6.0.1, Stat-ease Inc., Minneapolis, USA was used for 

statistical design of experiments (DoE) and the same software was used for the analysis 

of experimental data. DoE is an organized approach that connects experiments in a 

rational manner giving more precise information in fewer experiments as compared to 

conventional design of experiments where one factor was varied at a time. One of the 

useful outcomes of DoE is response surface maps of experimental region.  
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 Response surface method (RSM) is a collection of statistical and mathematical 

techniques useful for empirical modeling and analysis of problems (Noordin et al., 

2004). RSM is especially useful when the response is influenced by several variables 

and the objective is to optimize the response. RSM also quantifies the relation among 

one or more measured response and the vital input factors (Thomas et al., 1997). Each 

factor is studied at a number of factor levels. In this research work, central composite 

inscribed (CCI) design was used to generate response surfaces.  

The phases of the DoE approach are listed below:  

1. Identification of the factors that may affect the outcome of the experiment or the 

response. 

2. Choice of an appropriate experimental design for response surface modeling. 

3. Determination of the experiments that need to be conducted.  

4. Performing the experiments and collection of the data. 

5. Data fitting and generation of plots that describe the trends of results and to draw 

conclusions. 

Factorial design of experiments is more popular than other types of experimental design 

such as crossed and mixture. The design region is represented as a cube with possible 

combinations of factors (low and high) at the corners of this cube. Central composite 

design types are based on this cube with experimental points at corners, centers of faces 

and center of edges. The cubic designs are popular because they are symmetrical and 

straight forward to model which in turn facilitates easy interpretation of the results. 

Choice of the design is finally a tradeoff between the information required and the 

number of experiments to be conducted. The number of experimental runs is determined 

by the following equation: 
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                           622 ++= kN k                    (3.1) 

Where, k is the number of factors in the design. 

For three factor design k = 3, thus the number of experiments is 20 (Design Expert 6.0.1 

manual). A template of design experiments is given in Table 3.1. In this design the 

effects of operating condition (factors) such as temperature, carrier gas flow rate and 

WHSV can be studied on the responses such as glycerol conversion and various liquid 

product, char and gas yields. 

Once the experiments have been conducted the collected data are analyzed to 

quantify the relationship between one or more of the measured response and the input 

factors. Steps to analyze the collected data are summarized as follows: 

1. Input of the response (eg. glycerol conversion in Table 3.1) to be analyzed into 

the design expert software 

2. Choice of a transformation if desired. 

3. Selection of the appropriate model to be used. The fit summary button displays 

the F-test, lack of fit test and other measures that could be helpful in selecting 

the appropriate model.  

4. Performing the analysis of variance (ANOVA), post-ANOVA analysis of 

individual coefficients and case statistics for analysis of residuals and outlier 

detection. 

5. Studying various diagnostic plots to statistically validate the model. 

6. Generation of model graphs such as 3D plots and contours for interpretation of 

the results. 
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Table 3.1: Design of exper iments obtained from Design Expert Software 6.0.1  

EXP # 
Temperature 

(oC ) 

Carrier gas flow 
rate 

(mL/min) 

WHSV 
(h -1) 

Glycerol conversion 
(wt%) 

1 380 26 8.68  

2 425 35 13.50  

3 425 35 13.50  

4 380 26 18.32  

5 500 35 13.50  

6 470 26 18.32  

7 470 44 18.32  

8 470 44 8.68  

9 350 35 13.50  

10 380 44 18.32  

11 425 35 13.50  

12 425 35 13.50  

13 470 26 8.68  

14 425 35 5.40  

15 380 44 8.68  

16 425 50 13.50  

17 425 35 13.50  

18 425 20 13.50  

19 425 35 13.50  

20 425 35 21.60  
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3.3.1.1 Test of significance of the model 

 Least square technique is used to fit a model equation containing the input 

variables (factors) by minimizing the residual errors. Residual error is measured as the 

sum of squares of deviations between the actual and estimated responses. Test of 

significance of the model is performed using ANOVA by calculating the F-ratio. F-ratio, 

also called the variance ratio, is the ratio of variance due to effect of model and variance 

due to error term. F-ratio is also described as the ratio of regression mean square and 

mean square error. A good model must be significant. The test of significance is 

performed with the help of P-values. If the P-value is less than 0.05, the model is 

significant and vice-versa. 

3.3.1.2 Test of significance of individual model coefficients 

 This test is performed by determination of probability value (P-value) for 

individual model coefficients. The insignificant model coefficients are deleted through 

backward elimination.  

3.4 Exper imental setup for  catalytic conversion of glycerol 

Catalytic conversion of glycerol was performed in a down flow fixed bed reactor 

at atmospheric pressure. A schematic diagram of the experimental setup is shown in 

Figure 3.1. The reactor consisted of an Inconel® 625 tube 530 mm in length with internal 

diameter of 9.5 mm, external diameter of 12.5 mm and fitted with Swagelok™ fittings at 

both ends. Feed was introduced through a 110 mm long feed line at feed inlet located at 

55 mm from top flange of reactor. Near the feed inlet a T- joint was provided to have 

carrier gas flow into the reactor. Nitrogen was used as carrier gas (supplied by Praxair, 

Mississauga, ON, Canada). The flow of carrier gas was controlled  
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Figure 3.1: Schematic diagram for  exper imental set up for  catalytic conversion of glycerol 
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using a needle valve and the flow meter (supplied by Sierra Instruments Inc, California, 

USA) was used to record the carrier gas flow rate. Calibration of the flow meter was 

done using a bubble flow meter. The calibration curve for the flow meter is shown in 

Appendix H1. Catalyst was loaded into the reactor over a stainless steel mesh covered 

with quartz wool inserted at 280 mm from top flange of reactor. The catalyst was diluted 

using silicon carbide (80 mesh) particles (supplied by Exolon-Esk, Tonawanda, New 

York, USA). Dilution was done to maintain a constant bed height of 70 mm for all the 

experiments. The reactor was vertically mounted into an electrically heated annular 

furnace. The reactor was fitted with K-type thermocouple (accuracy ± 2-3 oC) in contact 

with outer wall of reactor. Reactor temperature was controlled by series SR22 

microprocessor based tuning PID controller (supplied by Shimaden Co. Ltd., Tokyo, 

Japan). Another K-type thermocouple was buried into the catalyst bed using a stainless 

steel thermo-well.  

Feed was pumped using a programmable syringe pump, Genie (supplied by Kent 

Scientific Corporation). The calibration curve for the pump is given in Appendix H1. 

The pump was capable of dispensing the feed at uniform rate, accurate up to three 

decimal places. The reactor was fitted with ice cooled condenser at the exit where most 

of the liquid products were collected and gas products were collected over saturated 

brine solution in a gas collector.  

The setup was fitted with a gas sampler. It was used to continuously sample 

product gas when carrying out the deactivation studies of the catalysts. Initially, there 

was some problem with the syringe pump needle. The pump was fitted with 22 gage 

needle. It was found that there was high pressure drop in the needle of pump. This 

caused the pump to choke and it was not able to dispense any feed. Needles of bigger 
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opening were tried and finally 16 gage needle was found to be working satisfactorily to 

dispense desired flow rates of the feed. 

3.5 A typical exper imental run 

The reactor was cleaned, dried and then loaded with the catalyst and sealed with 

Swagelok™ fitting at both ends. An anti-seal (supplied by Kleen Flo Tumbler, Montreal, 

Canada) was used to prevent sealing of joints at high temperature. After recording the 

reactor weight it was mounted into the annular furnace and the feed line and condenser 

were connected. Carrier gas (nitrogen) flow was established through the reactor at 

desired flow rate. Set point temperature was reached in 30 to 50 min while the flow of 

nitrogen was maintained through the reactor. Once the set point temperature reached 

injection of feed was started at a constant flow rate of 5.4 g/h. The run time of each 

experiment was 60 min. Run time of 60 min for experiments was chosen based on the 

time on stream study of the catalyst when the feed was pumped continuously for 90 min 

and it was found that there was no significant change in glycerol conversion as measured 

by the analysis of liquid product. After the 60 min run time carrier gas flow rate was 

maintained for 2 more min to flush the entire products from the reactor. 

The liquid and gaseous products were passed through a Na-Cl - ice condenser 

where most of the liquid product was condensed and product gases were collected over a 

saturated brine solution. The amount of liquid and char produced was determined by the 

difference in weight of liquid collector and reactor before and after the reaction. The 

volume of produced gas was measured from the calibrated scale attached to the liquid 

collector. Samples calculations for mass balance are given in Appendix H3.  
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3.6 Analysis of products  

The gas products from the experiments were analyzed using gas chromatographs 

HP 5880 and HP 5890. Liquid products were analyzed using Varian 3400 and Fison 

GC/MS 8000 series. The detailed discussion on methodology for these analyses is 

described below. 

3.6.1 Gas product analysis 

The gas products were analyzed using two gas chromatographs (GCs). H2, CO 

and CO2 were analyzed using an HP 5890 fitted with a thermal conductivity detector 

(TCD) having Carbosive S II column (3000 m, i.d. 3.18mm) with helium (supplied by 

Praxair, Mississauga, ON, Canada) as carrier gas. The program conditions were: initial 

temperature of 40 oC, initial temperature hold time of one min, heating rate of 12 

oC/min, final temperature of 200 oC, final temperature hold time of one min and detector 

temperature of 250 oC.  

 Hydrocarbons such as CH4, C2+ were analyzed using HP 5880 GC. This GC was 

equipped with a flame ionization detector (FID) and Chromosorb 102 column (1.8 m, 

i.d. 3.18 mm). Helium was used as the carrier gas. Air and hydrogen (supplied by 

Praxair, Mississauga, ON, Canada) mixture was used to ignite the FID. HP 5880 was 

programmed using following conditions: initial temperature of 40 oC, initial temperature 

hold time of 3 min, column heating rate of 10 oC/min, final temperature of 200 oC,  final 

hold time of 2 min and detector temperature of 250 oC. The GCs were calibrated using 

the standard gas mixtures (see Appendix H2).  
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3.6.2 Typical gas product analysis 

 A gas sample of 700 µL was injected into the TCD of HP 5890 GC using 

Gastight # 1001 syringe (supplied by Hamilton Co. Reno, Nevada). It took 

approximately 15 min to detect hydrogen, nitrogen, carbon monoxide and carbon 

dioxide. The GC oven was then allowed to cool to its initial temperature of 40 oC before 

another injection was made. Also, a gas sample of 700 µL was injected into the FID of 

HP 5880 GC. The analysis of gas sample in HP 5880 took approximately 21 min where 

hydrocarbons including methane were analyzed. The peak areas from the GCs were used 

to calculate number of moles of each component present in gas mixture at standard 

temperature and pressure (STP). The volume of the gas and composition of gas were 

calculated on nitrogen free basis (see Appendix H3).  

3.6.3 Liquid product analysis  

The compounds present in the liquid product obtained from catalytic conversion 

of glycerol were identified using GC-MS and quantified using Varian 3400 GC. The GC 

was equipped with the stabilwax (cross bonded, 30 m long, i.d. 0.25mm) capillary 

column. The GC-MS was programmed using: initial temperature of 40 oC, initial 

temperature hold time of 5 min, heating rate of 5 oC/min, final temperature of 200
 
oC, 

final temperature hold time of 15 min and the detector temperature of  220 oC. Split ratio 

in the injector was 1:20 at 220 oC. The residence time of the compounds identified by 

GC-MS matched closely when pure compounds were injected into Varian 3400 GC. The 

standard solutions of pure compounds were prepared and calibration curves were plotted 

for each of the liquid compounds (see Appendix H2).  
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3.6.4 Typical liquid product analysis 

 The liquid product from the experiments contained low boiling point chemicals 

such as acetaldehyde and acrolien. Some of the compounds including acrolein were 

unstable at room temperature, so the product liquid from experiments was always kept 

refrigerated. The product liquid sample was diluted with 2 parts of water and mixed 

thoroughly. A sample of 0.4 µL of this mixture was injected using Microliter # 95 

syringe (supplied by Hamilton Co. Reno, Nevada) into the FID of Varian 3400 GC. The 

analysis of liquid product sample took approximately 52 min where compounds such as 

acetalydehyde, acrolien, acetone, acetol, allyl alcohol and formaldehyde etc. were 

identified. The peak areas were used to calculate the wt% of the components in the 

liquid product (see Appendix H3).  
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4 RESULTS AND DISCUSSION 

4.1 Catalyst character ization 

 The catalysts used in the present research work were HZSM-5, HY, silica-

alumina and γ-alumina. Physiochemical properties of these catalysts were studied using 

TPD, XRD, BET surface area, pore size, SEM and FTIR measurement techniques. 

Detailed results from catalyst characterization are described in the following section.   

4.1.1 Temperature programmed desorption (TPD) 

 Temperature programmed desorption was carried out to study the acidic 

properties of different catalysts (Figure 4.1). Ammonia as basic molecule was adsorbed 

on acid centers of the catalysts. The increase in temperature for ammonia desorption 

corresponds to increase in the strength of acidity of catalysts. From the literature it is 

seen that there are three ranges for the desorption of ammonia, namely, 20-200, 200-350 

and 350-550 oC, which correspond to weak, intermediate and strong acid centers, 

respectively (Lewandowski and Sarbak, 2000). If the desorption peak intensity is high 

then the number of acid sites is large and vice versa.  

 The TPD curve for HZSM-5 consists of two major peaks (see Figure 4.1). First 

peak at 250 oC corresponds to the intermediate acid sites whereas the peak beyond     

400 oC corresponds to strong acid centers. Also, the intensity of the peak at 250 oC was 

more as compared to the one beyond 450 oC. This indicates that in HZSM-5 the number 

of intermediate acid sites is more as compared to strong acid centers, which are
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Figure 4.1: Temperature programmed desorption (TPD) profiles of different 
catalysts 

 

 

 

 

 

 

 

 



 37 

similar to those reported in literature (Anderson et al., 1979; Katikaneni et al., 1998).  

 The TPD curve for HY has only one peak at temperature less than 200 oC, which 

indicates the presence of weak-intermediate acid sites. TPD curve for silica-alumina 

consisted of a peak at temperature less than 200 oC, however the intensity was more as 

compared to that for HY. This indicates that the number of weak acid sites present in 

silica-alumina was more as compared that of HY. This observation is similar to those 

reported in literature (Rajagopal et al., 1992; Rinaldi et al., 2004; Akpanudoh et al., 

2005). The TPD profile for γ-alumina shows the presence of weak acid centers (peak at 

~130 oC) as well as strong acid centers (peak at ~620 oC) in this catalyst.  

4.1.2 X-Ray diffraction (XRD) 

 X-ray diffraction was carried out to identify the crystalline structure of different 

catalysts. The X-ray patterns for HZSM-5, HY, silica-alumina and γ-alumina are shown 

in Figure 4.2. Presence of crystalline structure was observed in the case of HZSM-5, HY 

and γ-alumina whereas no crystalline structure was observed for silica-alumina (Szostak, 

1992; Zhong et al., 2001; Rinaldi et al., 2004).  

4.1.3 BET surface area and pore size 

 The results of BET analysis for different catalysts are shown in Table 4.1. BET 

surface area analysis with HY was repeated and the results were reproducible. The BET 

surface areas for HZSM-5 and silica-alumina are comparable as observed from Table 

4.1. The highest surface area (625 m2/g) was observed for HY whereas γ-alumina 

showed the lowest surface area (235 m2/g). The pore size of catalysts ranged from 0.54 

to 11.2 nm. HZSM-5 has the smallest pore size (0.54 nm) and γ-alumina has biggest 

pore size (11.2 nm) among the catalysts chosen. HZSM-5 and HY were microporous
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Figure 4.2: X-ray diffraction patterns for  different catalysts 
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Figure 4.3: Pore size distr ibution for  different catalysts 
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Table 4.1: BET sur face area, pore size and pore volume of different catalysts 

Catalyst BET surface area 
(m2/g) 

 

Average Pore size 
(nm) 

Pore volume          
(mL/g) 

HZSM-5 
 

319 0.54 0.16 

HY 
 

625 ± 11 0.74 ± 0.04 0.42 ± 0.03 

Silica-alumina 
 

321 3.15 0.77 

� -alumina 
 

235 11.2 0.67 
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materials (pore size < 2 nm) whereas, silica-alumina and γ-alumina were mesoporous 

materials with pore size from 2-50 nm (Katikaneni et al., 1998; Bhatia, 1989; Satterfield, 

1991).  The surface area for HY matched with as reported by supplier (655 m2/g). The 

surface area measurements for other catalysts also matched with those reported by the 

supplier. Figure 4.3 shows the pore size distribution for different catalysts. It was 

observed that HY, silica-alumina and γ-alumina have narrow pore size distribution as 

compared to HZSM-5.  

4.1.4 Four ier  transformed infrared spectroscopy (FTIR) 

 Pyridine adsorption was used to detect the presence of Bronsted and Lewis acid 

sites present in the catalysts (see Figure 4.4). HZSM-5 and HY have Bronsted (indicated 

by B in Figure 4.4) as well as Lewis acid sites (indicate by L) which are shown by the 

presence of peak at 1560 cm-1 and 1510 cm-1, respectively. Similar observations were 

made by Adjaye et al. (1996) and Anand et al. (2003). γ-alumina has mainly Lewis 

acidity as indicated by the presence of peak at 1650 cm-1 whereas silica-alumina mainly 

has Bronsted acidity as shown by the presence of peak at 1560 cm-1. These observations 

are in agreement with those reported in literature (Plyuto et al., 1999; Dabbagh et al., 

2005).
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 Figure 4.4: FTIR spectra of different catalysts in pyr idine region
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4.2 Catalyst per formance studies on glycerol conversion, liquid, gas and char 
yield and acetaldehyde, acrolein, formaldehyde and acetol yields   

 

In this work the performances of different catalysts such as HZSM-5, HY, silica-

alumina and γ-alumina in terms of glycerol conversion, liquid, gas and char yield and 

acetaldehyde, acrolein, formaldehyde and acetol yield are described.  

The preliminary experiments performed over HZSM-5 at 400 oC with 0.5 g of 

catalysts in a fixed bed reactor indicated that there is a potential to produce value added 

liquid chemicals from glycerol. Interestingly more that 90 wt% of the products were 

liquid with remarkably low yields of gas (4 to 6 wt%) and char.  The glycerol conversion 

was only 46 wt%. The compounds identified in the liquid product were acetaldehyde, 

acrolein, acetone, acetol, acetic acid, propanoic acid, phenol, formaldehyde, isopropyl 

alcohol, allyl alcohol, glycerol formal and water. The gas product consisted of CO, CO2, 

and hydrocarbons such as CH4. Furthermore, Thiruchitrambalam et al. (2004) reported 

that H2 rich syn-gas can be produced from pyrolysis of glycerol at 800 oC varying carrier 

gas flow rate from 30 to 70 mL/min. 

Based on these preliminary experiments and the work reported in literature 

(Thiruchitrambalam et al., 2004; Cortright et al., 2002; Buhler et al., 2002)  the 

temperature range of 350 to 500 oC, carrier gas flow rate of 20 to 50mL/min and WHSV 

of 5.40 to 21.60 h -1 were chosen for investigation in this research work. WHSV is 

defined as the ratio of glycerol feed flow rate (maintained constant at 5.40 g/h) to 

catalysts wt. The WHSV range of 5.40 to 21.60 h -1 corresponds to catalyst weight range 

from 1 to 0.25 g.  
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4.2.1 Statistical analysis of exper imental data for  glycerol conversion 

Glycerol conversion was calculated from the following equation: 

)1.4(100*1 


 −=
F

U
X  

Where,  X = Glycerol conversion, wt% 

U = Unconverted glycerol in liquid product, g  

F =  Glycerol fed, g 

The experimental results for glycerol conversion over different catalysts are given in 

Appendices A, B, C and D. 

The time-on-stream study was conducted with all catalysts. No significant 

decrease in glycerol conversion was observed for a run time of 90 min (see Figure 4.5). 

Based on this study a run time of 60 minutes was chosen for each experiment. Material 

balance for all experiments using different catalysts was in the range from 90 to 96 

percent. A few experiments were repeated for all catalysts under identical conditions. 

The results were reproducible within ± 4 %. Table 4.2 and 4.3 show the reproducibility 

of experimental results for liquid, gas and char yields and product yields of different 

liquid chemicals from glycerol conversion over HZSM-5. 

Based on the variance analysis (see Appendix G; Table G1) linear model 

(empirical) was used to predict glycerol conversion over HZSM-5 with R2 value of 0.96. 

The model coefficients to predict glycerol conversion (within the range of operating 

parameters) over this catalyst are given in Table 4.4. The coefficients of model terms 

would indicate if the corresponding factor has statistically significant effect on the 

glycerol conversion. For instance, in Table 4.4 the coefficients for interaction of 

temperature and carrier gas flow rate, temperature and WHSV and carrier gas flow rate 
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Figure 4.5: Time-on-stream study for  different catalysts
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Table 4.2: Reproducibility of exper imental results for  liquid, gas and char  yield from glycerol conversion over  HZSM-5 

Operating conditions 
Percentage of total Products 

(wt%) 
EXP #  

T  
(oC) 

CGF 
(mL/min) 

WHSV  
(h-1) 

Glycerol 
fed  
(g) 

Conversion 
(wt%) 

Total 
liquid 

product 
(g) 

Gas 
product 

(g)  

Char and 
residue 

(g) 

Total 
product 

(g) Gas  Liquid  
Char 
and 
residue 

Mass 
Balance 
(wt%) 

2 425 35 13.50 4.99 52.6 4.34 0.04 0.13 4.51 0.82 96.30 2.88 91.7 

3 425 35 13.50 5.10 46.3 4.37 0.03 0.22 4.62 0.84 94.50 4.66 94.8 

11 425 35 13.50 5.15 44.0 4.57 0.04 0.22 4.57 0.86 93.30 4.53 94.2 

 

Table 4.3: Reproducibility of exper imental results for  product yields of different liquid chemicals over  HZSM-5 

Experiment number  Compound 
wt %  2 3 11 

Acetaldehyde 7.59 8.51 8.72 

Acetone 0.47 0.53 0.21 

Acrolein 5.04 5.89 7.00 

Formaldehyde 7.47 8.51 7.72 

IPA 0.26 0.49 0.25 

Allyl Alcohol 8.32 6.77 6.42 

Acetol 16.80 15.21 14.94 

Acetic Acid 1.04 1.14 0.81 

propionic Acid 2.84 2.45 2.21 

Glycerol Formal 1.82 2.63 2.45 

Phenol 0.23 0.29 0.15 

Water 23.53 29.73 29.27 

Unknowns 24.59 17.86 19.84 

Total 100.00 100.00 100.00 
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Table 4.4: Significant model coefficients to predict glycerol conversion over   
HZSM-5 and HY 

 

 
 
 
*Glycerol conversion over HZSM-5,  
 

)2.4(*55.1*19.0*33.081.61 WCTX +−+−=
 
 
 
**Glycerol conversion over HY, 
 

)3.4(**0.03**0.01*03-8.27E - *0.13-

*0.01*03-2.04E-*46.4*51.2*07.232.406
2

22

WCWTT*CW

CTWCTX

++
+−++−=

 

              

Where,  X = glycerol conversion, wt% 

T = temperature, oC  

C =  carrier gas flow rate, mL/min 

W =  weight hourly space velocity, h -1 

 

 

Glycerol conversion 
(wt%) Factors 

HZSM-5* **HY 

Intercept -61.81 -406.32 

T 0.33 2.07 

C -0.19 2.51 

W 1.55 -4.46 

T2 0 -2.04E-03 

C2 0 0.01 

W2 0 -0.13 

T*C 0 -8.27E-03 

T*W 0 0.01 

C*W 0 0.03 
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Figure 4.6:  Sur face response for  glycerol conversion: (a) effect of temperature and 

WHSV at carr ier  gas flow rate of 35 mL/min using HZSM-5; (b) effect 
of temperature and car r ier  gas flow rate at WHSV of 13.50 h -1 using 
HZSM-5; (c) effect of carr ier  gas flow rate and temperature at WHSV 
of 13.50 h -1 using HY; (d) effect of WHSV and temperature at carr ier  
gas flow rate of 35 mL/min using HY 
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are zero. This indicates that the interaction of temperature and carrier gas flow rate, 

temperature and WHSV and carrier gas flow rate are statistically insignificant for 

glycerol conversion. In the following discussion, table of significant coefficients will be 

given to predict the corresponding response. The empirical equations are generated as 

shown in equations 4.2 and 4.3. 

The response surface to describe glycerol conversion over HZSM-5 is shown in 

Figure 4.6 (a) and (b). There was no significant change in glycerol conversion with 

change in the carrier gas flow rate within the range studied at a constant temperature as 

shown in Figure 4.6 (a). This was because HZSM-5 has intermediate and strong acid 

sites. Glycerol molecule would have strongly adsorbed on the acid surface to undergo 

cracking (Gates 1979). Thus, within the operating temperature range (350 to 500 oC), 

carrier gas flow rate and hence residence time would not affect glycerol conversion in 

case of HZSM-5. On the other hand, it would appear that the operating temperature has 

significant effect on glycerol conversion. For example, glycerol conversion increased 

from 13.6 to 86.1 wt% when the temperature was increased from 350 to 500 oC at 

WHSV of 5.40 h -1 when carrier gas flow rate was maintained constant at 35 mL/min as 

shown in Figure 4.6 (b). This could be due to diffusion limitations because of small pore 

size of HZSM-5. Therefore, glycerol conversion in this case was strongly dependent on 

temperature. 

A quadratic model (see Appendix G; Table G1) was used to predict the glycerol 

conversion over HY. The model coefficients are shown in Table 4.4. In this case 

temperature, carrier gas flow rate and WHSV have significant effect on glycerol 

conversion. The surface response to describe glycerol conversion over HY is shown in 

Figure 4.6 (c) and (d). Glycerol conversion increased from 59 to 98 wt% when the 
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temperature was increased from 350 to 500 oC at carrier gas flow rate of 20 mL/min and 

WHSV of 13.50 h -1. However, maximum conversion (100 wt%) was achieved at 470 oC 

and medium carrier gas flow rate of 26 mL/min. Glycerol conversion more than 100 

wt% was predicted at  500 oC and carrier gas flow rate of 20 mL/min from the model to 

maintain the continuity of the response surface as shown in Figure 4.6 (c). Glycerol 

conversion increased from 36.7 to 100 wt% with the increase in temperature from 350 to 

500 oC at WHSV of 5.40 h -1 and carrier gas flow rate of 35 mL/min as shown in 4.6 (d). 

Higher glycerol conversion was achieved with HY as compared to HZSM-5 which could 

be due to somewhat larger pore size of the HY catalyst. Complete conversion of glycerol 

was attained from silica-alumina and γ-alumina which indicates that in addition to pore 

size, total acidity of the catalyst played important role on glycerol conversion. 

Numerical optimization was performed to find out the optimum operating 

conditions for maximum glycerol conversion. Variable simplex was used as the 

optimization technique (Design Expert 6.0.1 manual). The optimum operating 

conditions for predicted and experimental maximum glycerol conversion are shown in 

Table 4.5. Low deviation between the predicted and experimental glycerol conversion 

confirmed that the model can predict the glycerol conversion accurately. It was observed 

that under similar operating conditions, higher glycerol conversion was obtained with 

HY than that with HZSM-5 as shown in Table 4.5. In the case of HY, complete 

conversion was attained in all experiments that were performed at temperatures greater 

than 470 oC. The minimum temperature giving the highest conversion was chosen for 

the optimization of operating conditions in case of HY.  
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Table 4.5: Predicted and exper imental maximum glycerol conversion over  HZSM-5 
and HY at optimum conditions 

 

 

Glycerol conversion (wt%) Catalyst Temperature    
(oC) 

Carrier gas flow 
rate  

(mL/min) 

WHSV      
(h -1) 

Predicted Experimental 

HZSM-5 470 26 8.68 77.2 78.8 

HY 470 26 8.68 100 100 
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4.2.2 Statistical analysis of exper imental data for  liquid product yield 

Liquid product yield (g/100 g feed) was calculated using the following equation:  

)4.4(100*
)1(





−−

=
F

XFL
L T  

Where,  L = Liquid product yield, g/100 g feed 

  LT = Total liquid (including unconverted glycerol), g 

  F = Glycerol fed, g  

  X = Fractional glycerol conversion   

Liquid product yield under experimental conditions using different catalysts was in the 

range from 11 to 85 g/100g feed (see Appendix E1). Experimental results showed that 

the liquid product yield was higher over silica-alumina and γ-alumina than that over 

HZSM-5 and HY.  

A possible reaction pathway for the catalytic conversion of glycerol is given in 

Figure 4.7. Free radical pathways dominate mainly at high temperature whereas ionic 

pathways dominate at low temperature (Buhler et al., 2002). It was proposed that liquid 

product (including acetaldehyde, acrolein, formaldehyde and acetol) was formed 

primarily through ionic pathways, which dominate over the free radical pathways at low 

temperature. Therefore liquid product yield should be favored at low temperature. 

However, in case of HZSM-5 and HY, in addition to reaction temperature, the pore size 

has significant effect on liquid product yield. Higher temperature was required to 

overcome the diffusion limitations imposed by smaller pore size of these catalysts. A 

trend of increasing glycerol conversion with increase in temperature was observed with 

these catalysts (see Figure 4.6). Liquid product yield is a function of glycerol conversion 
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Figure 4.7: Proposed reaction pathways for  catalytic conversion of glycerol  
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as shown Equation 4.4. Therefore, higher temperature seems to favor the liquid product 

yield with these catalysts with relatively large amount of micropores.  

The model coefficients to predict liquid product yield using different catalysts is 

given in Table 4.6. The surface response for liquid product yield in case of HZSM-5 and 

HY is shown in Figure 4.8. In case of HZSM-5, temperature, carrier gas flow rate and 

WHSV were significant parameters to predict liquid product yield (see Appendix G; 

Table G2).  Liquid product yield increased from 4.3 to 66.4 g/100 g feed with increase in 

temperature from 350 to 500 oC when carrier gas flow rate was maintained constant at 

20 mL/min as shown in Figure 4.8 (a). At WHSV of 5.40 h -1 liquid product yield 

increased from 1 to 69.6 g/100 g feed with increase in temperature from 350 to 500 oC 

as shown in Figure 4.8 (b).   

Reduced quadratic model was used to predict (R2 value of 0.95) liquid product 

yield using HY. In this case, temperature and WHSV were significant parameters to 

predict liquid product yield whereas the effect of carrier gas flow rate was insignificant 

(see Appendix G; Table G2). For example, as shown in Figure 4.8 (c) liquid product 

yield was around 46.8 g/100 g feed and did not change with variation in carrier gas flow 

rate from 20 to 50 mL/min at 350 oC. As shown in Table 4.6, large coefficient for 

temperature term accounts for the significant effect of temperature on liquid product 

yield. It was observed that at WHSV of 5.40 h -1, the liquid product yield increased to          

72 g/100 g feed at 463 oC and with further increase in temperature to 500 oC it decreased 

to 64.2 g/100 g feed as shown in Figure 4.8 (d). This decrease in liquid product yield at 

higher temperature was marked by increase in the gas product yield. 
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Table 4.6: Significant model coefficients to predict liquid product yield over  
different catalysts 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Liquid product yield  
(g/100 g feed) 

 

 
Factors 

HZSM-5 HY Silica-alumina � -alumina 

Intercept -81.25 -397.93 -256.85 105.49 

T 0.34 2.15 -0.42 -0.01 

C -0.37 0 -2.64 -0.02 

W -1.08 -2.33 -5.26 -0.84 

T2 0 -2.52E-03 0 -2.19E-04 

C2 0 0 0 -8.59E-03 

W2 0 -20 0 -0.02 

T*C 0 0 5.66E-03 2.67 E-03 

T*W 0 0.02 0.01 3.32 E-03 

C*W 0 0 0.03 -0.03 
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Figure 4.8: Response sur face for  liquid product yield (L): (a) effect of temperature 

and carr ier  gas flow rate at WHSV of 13.50 h -1 using HZSM-5; (b) 
effect of temperature and WHSV at car r ier  gas flow rate of 35 mL/min 
using HZSM-5; (c) effect of temperature and carr ier  gas flow rate at 
WHSV of 13.50 h -1 using HY; (d) effect of temperature and WHSV at 
carr ier  gas flow rate of 35 mL/min using HY 
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The response surface to predict (R2 value of 0.88) liquid product yield using 

silica-alumina is shown in Figure 4.9 (a) and (b). It was interesting to observe that at 

lower temperature of 350 oC increase in carrier gas flow rate from 20 to 50 mL/min 

liquid product yield was almost 78 g/ 100 g feed, while at higher temperature of 500 oC 

there was a sharp increase in liquid product yield from 65 g/ 100 g feed at 20 mL/min to 

82 g/100 g feed at 50 mL/min. With increase in carrier gas flow rate (decrease in 

residence time) higher liquid product yield is obtained because feed molecule would not 

get sufficient time to undergo cracking to produce gas products. Furthermore, at WHSV 

of 5.40 h -1 with the increase in temperature from 350 to 500 oC liquid product yield 

decreased from 79.9 to 62.1 g/100 g feed when carrier gas flow rate was maintained 

constant at 35 mL/min. It could be due to the cracking of liquid products to gas products 

at higher temperature as evident from the possible reaction pathways (see Figure 4.7).  

A quadratic model was significant to predict liquid product yield using γ-alumina 

with R2 value of 0.84 (see Appendix G; Table G2). In this case temperature and WHSV 

were statistically significant parameters whereas carrier gas flow rate was insignificant. 

Liquid product yield decreased from 84 to 75.8 g/100 g feed when the temperature was 

increased from 350 to 500 oC and WHSV was maintained constant at 5.40 h -1 as shown 

in Figure 4.9 (c). Also, the liquid product yield decreased from 80 to 73 g /100 g feed 

when temperature was increased from 350 to 500 oC at carrier gas flow rate of 50 

mL/min  and WHSV of 13.50 h -1 as shown in Figure 4.9 (d).  

In the case of silica-alumina and γ-alumina, the presence of large pore size offers 

negligible diffusional limitations to feed molecules. Therefore, liquid product yield with 

these catalysts was favored at low temperature as shown in Figure 4.9.
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Figure 4.9: Response sur face for  liquid product yield (L): (a) effect of temperature 

and carr ier  gas flow rate at WHSV of 13.50 h -1 using silica-alumina; 
(b) effect of  temperature and WHSV at carr ier  gas flow rate of 35 
mL/min using silica-alumina; (c) effect of temperature and carr ier  gas 
flow rate at WHSV of 13.50 h -1 using γ-alumina; (d) effect of 
temperature and WHSV at car r ier  gas flow rate of 35 mL/min using γ-
alumina 
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Numerical optimization was carried out to find the optimum conditions for 

maximum liquid product yield using different catalysts. The predicted and experimental 

liquid product yield at optimum operating conditions with different catalysts is shown in 

Table 4.7. It was interesting to observe that maximum liquid product yield was obtained 

at a lower temperature of 380 oC using silica-alumina and γ-alumina, whereas for 

HZSM-5 and HY higher temperature was required for liquid product yield. For example, 

liquid product yield  of 80.9 g/100 g feed was obtained in case of HY at 425 oC, 50 

mL/min and WHSV of 13.50 h-1 as compared to 64 g/ 100 g feed of liquid product yield 

at 470 oC, 26 mL/min and WHSV of 8.68 h-1 in case of HZSM-5.      

In summary, silica-alumina and γ-alumina were the best catalysts to obtain 

maximum liquid product yield (~83 g/100 g feed) at temperature as low as 380 oC. HY 

was the second best catalyst with comparable liquid product yield (~81 g/100 g feed) at 

higher temperature of 425 oC. Furthermore, liquid product yield using silica-alumina and 

γ-alumina varied between a narrow range from 71 to 84 and 78 to ~86 g/100 g feed, 

respectively (see Appendix E1). The product yield of individual liquid components such 

as acetaldehyde, acrolein, formaldehyde and acetol is further optimized and discussed in 

the following section. 
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Table 4.7: Predicted and exper imental maximum liquid product yield under 
optimum conditions over  different catalysts 

 
Liquid product yield               

(g/ 100g feed) 
Catalyst Temperature    

(oC) 
Carrier gas flow 

rate  
(mL/min) 

WHSV      
(h -1) 

Predicted Experimental 

HZSM-5 470 26 8.68 64.4 59.0 

HY 425 50 13.50 82.8 80.9 

Silica-alumina 380 26 8.68 83.4 83.5 

� -alumina 380 44 8.68 83.3 83.6 
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4.2.3 Statistical analysis of exper imental data for  product yield of liquid 
components  

 
Identification of the liquid product composition was a major challenge. Special 

efforts were made in order to develop a methodology for identification of the liquid 

product constituents. In this work up to 90 wt% of the liquid products were identified. It 

was interesting to observe that four major chemicals constituted up to as much as 60 wt% 

of the liquid product. These chemicals were acetaldehyde (ethanal), acrolein                 

(2-propenal), formaldehyde (methanal) and acetol (hydroxy acetone). Other chemicals 

present in the liquid product included acetone (di-methyl ketone), acetic acid (ethanoic 

acid), propionic acid, glycerol formal (mixture of 5-hydroxy-1,3-dioxane (60%) and 4-

hydroxymethyl-1,3-dioxolane (40%)), isopropyl alcohol (2-propanol) and phenol 

(hydroxybenzene). It was observed that water was one of the products as well. The 

composition of liquid product obtained from glycerol conversion over HZSM-5, HY, 

silica-alumina and γ-alumina is given in Appendices A, B, C and D, respectively. 

As acetaldehyde, acrolein, formaldehyde and acetol were the major chemicals 

present in the liquid product, it was of interest to study the effect of operating conditions 

on product yields of these chemicals over different catalysts. 

The proposed reaction pathways for production of these chemicals are shown in 

Figure 4.7. It was proposed that at lower temperature, liquid products such as 

acetaldehyde, acrolein, formaldehyde and acetol were formed predominantly by ionic 

pathways. It was also proposed that acetaldehyde and formaldehyde were formed by free 

radical pathways as well. Gaseous product such as CO, CO2, CH4 and C2+ hydrocarbons 

were formed through free radical pathways which dominate over the ionic pathways at 

higher temperature. Coke formation was the result of condensation and polymerization.  
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4.2.3.1 Acetaldehyde yield  
 

Acetaldehyde was one of the valuable chemical present in the liquid product. 

Acetaldehyde yield under experimental conditions is given in Appendix F1. As much as 

21 g/100 g feed of acetaldehyde was detected in liquid product. Model coefficients to 

predict acetaldehyde yield using different catalysts are given in Table 4.8. The effect of 

operating conditions on acetaldehyde yield with different catalysts is shown in Figure 

4.10.  

Buhler et al. (2002) proposed formation of acetaldehyde mainly through free 

radical pathways during supercritical treatment of glycerol. However, in this research 

work it is proposed that the formation of acetaldehyde takes place through free radical as 

well as ionic pathways. Therefore, the maximum acetaldehyde yield should occur at 

intermediate temperatures (425 to 470 oC). Furthermore, catalyst pore size and total 

acidity have important effect on acetaldehyde yield. HZSM-5 and HY have smaller pore 

sizes as compared to silica-alumina and γ-alumina. Therefore, in case of catalysts such 

as HZSM-5 and HY higher temperature was needed for maximum acetaldehyde yield. 

The higher temperature would increase the rate of mass transfer in the small pores. High 

temperature in case of these catalysts favored liquid product yield (see Figure 4.8) which 

lead to the higher acetaldehyde yield. 

In the case of HZSM-5, HY and γ-alumina, temperature and WHSV were 

significant whereas in the case of silica-alumina temperature and carrier gas flow rate 

were significant parameters to predict acetaldehyde yield (see Appendix G; Table G3). 

An increasing trend of acetaldehyde yield with the increase in temperature in cases of 

HZSM-5 and HY are shown in 4.10 (a) and (b). This observation is in line with the 

proposed reaction pathways as explained earlier.  
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Table 4.8: Significant model coefficients to predict acetaldehdye yield over  different 
catalysts 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acetaldehyde yield  
(g/100 g feed) 

 
Factors 

HZSM-5 HY Silica-alumina � -alumina 

Intercept -20.40 -79.83 10.24 98.93 

T 0.07 0.36 0.06 -0.49 

C -0.09 0 -1.07 0.36 

W 0.24 -0.57 0 -0.20 

T2 0 -3.73E-04 0 6.30E-04 

C2 0 0 0.02 -4.95E-03 

W2 0 -0.06 0 0 

T*C 0 0 0 0 

T*W 0 4.72E-03 0 0 

C*W 0 0 0 0 
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Figure 4.10: Response sur face for  acetaldehyde yield: (a) effect of temperature and 

WHSV at carr ier  gas flow rate at of 35 mL/min using HZSM-5; (b) 
effect of temperature and WHSV at carr ier  gas flow rate at of 35 
mL/min using HY; (c) effect of temperature and carr ier  gas flow rate 
at WHSV of 13.50 h -1 using silica-alumina; (d) effect of temperature 
and carr ier  gas flow rate at WHSV of 13.50 h -1 using γ-alumina
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 In the case of HY, high temperature and medium WHSV seem to favor 

acetaldehyde yield. For example, acetaldehyde yield has increasing trend with increase 

in temperature. Maximum acetaldehyde yield (17.9 g/100 g feed) occurred at 500 oC and 

WHSV of 13.50 h -1 as shown in Figure 4.10 (b). It was proposed that both acetaldehyde 

and formaldehyde formed through free radical as well as ionic pathways. In case of HY, 

it was observed that high temperature favored formation of acetaldehyde. This could be 

due to decrease in formaldehyde yield with increase in temperature of 425 oC (see 

Figure 4.12 (b)).  

In the case of silica-alumina, acetaldehyde yield increased from 13 to 23.2 g/100 

g feed with increase in temperature from 350 to 500 oC at carrier gas flow rate of 20 

mL/min. It was observed that maximum acetaldehyde yield (24.5 g/100 g feed) occurred 

at temperature of 470 oC, carrier gas flow rate 44 mL/min and WHSV of 18.32 h -1 as 

shown in Figure 4.10 (c). These observations support the proposed possible reaction 

pathways where acetaldehyde formation is favored at intermediate temperature. In case 

of silica-alumina (large pore size) there are less diffusion limitations as compared to 

HZSM-5 and HY and therefore acetaldehyde formation is favored at intermediate 

temperature.   

In the case of γ-alumina, it was observed that there was no significant change in 

acetaldehyde yield with increase in temperature from 350 to 425 oC at all WHSVs and 

acetaldehyde yield was constant at about 6 g/100 g feed as shown in Figure 4.10 (d). 

With further increase in temperature to 500 oC there was sharp increase in acetaldehyde 

yield and it was 16.4 g/100 g feed at WHSV of 5.40 h -1. Furthermore, with increase in 

WHSV from 5.40 to 21.60 h -1 at 500 oC, acetaldehyde yield decreased from 16.4 to 13.7 

g/100 g feed. Thus, it seemed that WHSV was a significant parameter only at higher 
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temperatures. It was observed that high temperature (500 oC) was needed for maximum 

acetaldehyde yield. This was because low temperature in this case seems to favor the  

formation of formaldehyde. For example, formaldehyde yield showed an increasing 

trend with increase in temperature up to 425 oC, however with further increase in 

temperature it showed a decreasing trend as shown in Figure 4.12 (d). 

The predicted and experimental maximum acetaldehyde yield at optimum 

conditions with different catalysts is shown in Table 4.9. It was observed that silica-

alumina produced maximum acetaldehyde (24 g/100 g feed) at 470 oC, carrier gas flow 

rate of 44 mL/min and WHSV of 18.32 h -1. HY produced 17.8 g/100 g feed 

acetaldehyde at temperature of 500 oC, carrier gas flow rate of 35 mL/min and WHSV of 

13.50 h -1. At this temperature γ-alumina produced ~15 g/100 g feed of acetaldehyde. 

Maximum acetaldehyde obtained using HZSM-5 was ~ 11g/100 g feed at 470 oC, carrier 

gas flow rate of 26 mL/min and WHSV of 8.68 h -1. 

To summarize, silica-alumina was the best catalyst for maximum acetaldehyde 

yield at temperature of 470 oC, carrier gas flow rate of 35 mL/min and WHSV of     

13.50  h -1. 
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Table 4.9: Optimum operating conditions for maximum acetaldehyde yield over  
different catalysts 

 
Acetaldehyde yield                

(g/ 100g feed) 
Catalyst Temperature    

(oC) 
Carrier gas flow 

rate  
(mL/min) 

WHSV      
(h -1) 

Predicted Experimental 

HZSM-5 470 26 8.68 8.9 11.2 

HY 500 35 13.50 17.6 17.8 
 

Silica-alumina 470 44 18.32 21.8 24.5 

� -alumina 500 35 13.50 14.8 15.1 
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4.2.3.2 Acrolein yield 
 

Acrolein was another major chemical detected in the liquid product. It is used as 

a fungicide in agriculture industry. Under the experimental conditions acrolein present in 

the liquid product ranged from 1 to 25 g/100 g feed (see Appendix F2). The model 

coefficients and response surface to predict acrolein yield are given in Table 4.10 and 

Figure 4.11, respectively. 

In this research work it is proposed that acrolein was formed through ionic 

pathways (see Figure 4.7). At lower temperature ionic pathways dominate over free 

radical pathways. Therefore, the formation of acrolein might be favored at low 

temperature. However, in the case of HZSM-5 and HY, due to small pore size as 

compared to silica-alumina and γ-alumina high temperature favors acrolein production. 

In case of silica-alumina and γ-alumina, large pore sizes offer negligible diffusion 

limitations and hence acrolein yield over these catalysts is favored at low temperatures 

as proposed by reaction pathways. The observed trends for acrolein yield using different 

catalysts are discussed in this section. 

A linear model was statistically significant to predict acrolein yield in case of 

HZSM-5. It was observed that temperature, carrier gas flow rate and WHSV have 

significant effect on acrolein yield (see Appendix G; Table G4). Acrolein yield increased 

gradually with increase in temperature and it was 8.8 g/100 g feed at 500 oC and WHSV 

of 5.4 h -1 as shown in Figure 4.11 (a). It was observed that at low WHSV of 5.40 h -1 

temperature has a strong effect as compared to that at WHSV of 21.60 h -1.  

In the case of HY, temperature and WHSV were major factors to predict acrolein 

yield over HY. In this case, high temperature seems to favor acrolein yield. For example,   
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Table 4.10: Significant model coefficients to predict acrolein yield over  different 
 catalysts 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acrolein yield  
(g/100 g feed) 

 
Factors 

HZSM-5 HY Silica-alumina � -alumina 

Intercept -11.25 -124.15 88.59 63.42 

T 0.05 0.65 0.19 -0.18 

C -0.09 0 -1.36 0.79 

W -0.27 -1.48 0.37 -2.62 

T2 0 -8.23E-04 0 0 

C2 0 0 0 0 

W2 0 -0.08 0 0 

T*C 0 0 -3.25 E-03 0 

T*W 0 -7.95 E-03 0 0.01 

C*W 0 0 0 -0.05 
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Figure 4.11: Response sur face for  acrolein yield: (a) effect of temperature and 

WHSV at carr ier  gas flow rate at of 35mL/min using HZSM-5; (b) 
effect of temperature and WHSV at car r ier  gas flow rate of 35 
mL/min using HY; (c) effect of temperature and WHSV at carr ier  
gas flow rate of 35 mL/min using silica-alumina; (d) effect of 
temperature and carr ier  gas flow rate at WHSV of 13.50 h -1 using γ-
alumina 
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at 500 oC with increase in WHSV from 5.40 to 21.60 h -1 acrolein yield increased from 4 

to 13.8 g/ 100 g feed as shown in Figure 4.11 (b). 

In the case of silica-alumina, temperature, WHSV and interaction of temperature 

and carrier gas flow rate were significant parameters to predict acrolein yield. It was 

observed that acrolein yield decreased from 8.1 to 3.7 g/100 g feed with increase in 

temperature from 350 to 500 oC at WHSV of 5.40 h -1 as shown in Figure 4.11 (c). 

Acrolein yield increased from 3.7 to 21.4 g/100 g feed at 350 oC with increase in WHSV 

from 5.40 to 21.60 h -1. Low temperature and high WHSV seems to favor acrolein yield 

in this case. For example, at 500 oC when WHSV was increased from 5.40 to 21.60 h -1 

acrolein yield increased from 4 to 9.5 g/100 g feed.  

In the case of γ-alumina, temperature, interaction of temperature and carrier gas 

flow rate, interaction of carrier gas flow rate and WHSV were significant factors to 

predict acrolein yield. It was observed that acrolein yield decreased from 17.6 to 12 

g/100 g feed with increase in temperature from 350 to 500 oC at carrier gas flow rate of 

50 mL/min as shown in Figure 4.11 (d). It was also observed that low temperature and 

high carrier gas flow rate seemed to favor acrolein yield in this case.  

The predicted and experimental maximum acrolein yield at optimum conditions 

with different catalysts is shown in Table 4.11. It was observed that maximum acrolein 

(~ 25 g/100 g feed) was produced with γ-alumina at 380 oC, WHSV of 8.68 h -1 and 

carrier gas flow rate of 44 mL/min. At the same temperature and high WHSV of      

18.32 h -1 and medium carrier gas flow rate (26 mL/min) acrolein produced was ~19 

g/100 g feed. However, with HY and HZSM-5 less acrolein was produced even at higher 

temperature of 470 oC as shown in Table 4.11. 
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Table 4.11: Optimum operating conditions for  maximum acrolein yield over 
different catalysts 

 
Acrolein yield 
(g/100 g feed) 

Catalyst Temperature    
(oC) 

Carrier gas flow 
rate  

(mL/min) 

WHSV      
(h -1) 

Predicted Experimental 

HZSM-5 470 26 8.68 7.3 9.8 

HY 470 44 18.32 13.4 15.4 

Silica-alumina 380 26 18.32 18.8 18.8 

� -alumina 380 44 8.68 23.8 25.3 
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To summarize, γ-alumina was the best catalyst to obtain maximum acrolein yield 

(25.3 g/100 g feed) at temperature of 380 oC, carrier gas flow rate of 44 mL/min and 

WHSV of 8.68 h-1. 

4.2.3.3 Formaldehyde yield 
 

Formaldehyde constituted up to 9 g/100 g feed of the liquid product (see 

Appendix F3). The model coefficients to predict formaldehyde yield with different 

catalysts are given in Table 4.12.  

It was proposed that formaldehyde was formed through ionic as well as free 

radical pathways. Similar to acetaldehyde yield, formation of formaldehyde was favored 

at intermediate temperature (from 425 to 470 oC). Interestingly, for the large pore size 

catalysts such as silica-alumina and γ-alumina optimum temperature for maximum 

formaldehyde formation was as low as 380 oC. It was because further increase in 

temperature favored formation of acetaldehyde as discussed in 4.2.3.1 and it caused 

decrease in formaldehyde yield with these catalysts. The proposed reaction pathways 

and the effect of pore size of different catalysts on formation of formaldehyde are 

discussed below. 

In the case of HZSM-5, temperature and carrier gas flow rate were significant 

parameters to predict formaldehyde yield (see Appendix G; Table G5). It was observed 

that formaldehyde yield increased with increase in temperature at all carrier gas flow 

rates and it was 4.3 g/100 g feed at 500 oC and 20 mL/min as shown in Figure 4.12 (a). It 

was because in case HZSM-5, liquid product yield has increasing trend with increase in 

temperature as shown in Figure 4.8 (a) and (b).  
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Table 4.12: Significant model coefficients to predict formaldehdye production over  
different catalysts 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Formaldehyde yield  
(g/100 g feed) 

 
Factors 

HZSM-5 HY Silica-alumina � -alumina 

Intercept -40.37 -137.57 -38.15 -8.23 

T 0.16 0 0.27 0 

C 0.03 0 0.15 0.60 

W 0.62 0.88 -2.03 0.41 

T2 -1.59E-04 -7.6E-04 -4.13E-04 0 

C2 0 0 0 -7.99E-03 

W2 -0.02 -0.03 0 -0.12 

T*C 0 0 0 0 

T*W 0 0 4.59E-03 0 

C*W 0 0 0 0 
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Figure 4.12: Response sur face for  formaldehyde yield: (a) effect of temperature 
and carr ier  gas flow rate at WHSV of 13.50 h -1 using HZSM-5; (b) 
effect of temperature and WHSV at car r ier  gas flow rate of 35 
mL/min using HY; (c) effect of temperature and carr ier  gas flow rate 
at WHSV of 13.50 h -1 using silica-alumina; (d) effect of temperature 
and WHSV at carr ier  gas flow rate of 35 mL/min using γ-alumina 
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In the case of HY, interaction of temperature and WHSV was significant 

parameter to predict formaldehyde yield (see Appendix G; Table G5). It was observed 

that intermediate temperature of 425 to 470 oC and WHSV from 13.50 to 17.55 h -1 

favored formaldehyde yield as shown in Figure 4.12 (b). In case of HY, glycerol 

conversion was as high as 98 wt% when the operating temperature was 425 oC. It seems 

that the diffusion limitations are overcome at this temperature. Therefore, with further 

increase in temperature formation of formaldehyde takes place as per the proposed 

reaction pathways. For example, it was observed that with increase in operating 

temperature up to 425 oC at WHSV of 5.40 h -1 and carrier gas flow rate of 35 mL/min 

formation of formaldehyde has increasing trend. However, with further increase in 

temperature formation of formaldehyde has a decreasing trend. This indicated that 

higher temperature would favor acetaldehyde formation in case of HY as observed in 

Figure 4.10 (b). 

In the case of silica-alumina, temperature and carrier gas flow rate were 

significant factors to predict formaldehyde yield. It was observed that at 350 oC 

formaldehyde yield increased from 0.6 to 8.1 g/100 g feed with increase in carrier gas 

flow rate from 20 to 50 mL/min as shown in Figure 4.12 (c). Furthermore, at 500 oC 

when the carrier gas flow rate was increased from 20 to 50 mL/min formaldehyde yield 

increased from 0.6 to 4.8 g/100 g feed. From the above observation it seems that 

temperature (from 350 to 425 oC) and high carrier gas flow rate (50 mL/min) favored 

formaldehyde yield in case of silica-alumina. Further increase in temperature favored 

acetaldehyde formation in this case as shown in Figure 4.12 (c).   

The response surface to predict formaldehyde yield in case of γ-alumina is 

shown in Figure 4.12 (d). Formaldehdye yield has an increasing trend with increase in 
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temperature up to 425 oC and carrier gas flow rate of 35 mL/min. However with further 

increase in temperature to 500 oC, formaldehyde yield has a decreasing trend. This could 

be due to increased production of acetaldehyde at higher temperature in case of γ-

alumina as shown in Figure 4.12 (d). 

The predicted and experimental maximum formaldehyde yield at optimum 

conditions with different catalysts is shown in Table 4.13. It was observed that 

maximum formaldehyde (~ 9 g/100 g feed) was produced with silica-alumina at 380 oC, 

WHSV of 8.68 h -1 and carrier gas flow rate of 44 mL/min. With HY and HZSM-5 

formaldehyde yield was less (from 3 to 7 g/100 g feed) even at temperature as high as 

470 oC. 
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Table 4.13: Optimum operating conditions for maximum formaldehyde yield over  
different catalyst 

 
Formaldehyde yield                 

(g/ 100g feed) 
Catalyst Temperature    

(oC) 
Carrier gas flow 

rate  
(mL/min) 

WHSV      
(h -1) 

Predicted Experimental 

HZSM-5 470 26 18.32 3.6 3.8 

HY 425 35 13.50 7.2 7.5 

Silica-alumina 380 44 8.68 9.2 8.9 

� -alumina 380 26 13.50 5.2 5.4 
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4.2.3.4 Acetol yield 
 

Acetol (hydroxyl-acetone) finds applications in cosmetic industry as skin tanning 

agent. Acetol detected in the liquid product ranged from 1 to 9 g/100 g feed (see 

Appendix F4). The model coefficients to predict acetol yield with different catalysts is 

shown in Table 4.14.  

It was proposed that acetol was formed through ionic pathways which are 

feasible at lower temperature. Therefore, the formation of acetol should be favored at 

low temperature.  

It was observed that temperature and WHSV were significant factors to predict 

acetol yield in case of HZSM-5 (see Appendix G; Table G6). Acetol yield increased 

with increase in temperature and it was 11.1 g/100 g feed at 500 oC at WHSV of 5.4 h -1 

as shown in Figure 4.13 (a). It was because the liquid product yield has an increasing 

trend with increase in temperature (see Figure 4.8 (a)) due to smaller pore size of 

HZSM-5 which would lead to higher acetol yield with increase in temperature. 

In the case of HY temperature and interaction of WHSV and temperature were 

significant parameters to predict acetol yield. It was observed that with simultaneous 

increase in temperature and WHSV acetol yield was 12 g/100 g feed at 500 oC and 

WHSV of 21.60 h -1 as shown in Figure 4.13 (b). 

In the case of silica-alumina, temperature and interaction of WHSV and carrier 

gas flow rate were significant parameters to predict acetol formation. It was observed 

that the acetol yield decreased from 8.2 to 0.5 g/100 g feed with increase in temperature 

from 350 to 500 oC at WHSV of 21.60 h -1 shown in Figure 4.13 (c). Also at WHSV of 
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Table 4.14: Significant model coefficients to predict acetol yield over  different catalysts 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Acetol yield 
(g/100 g feed) 

 
Factors 

HZSM-5 HY Silica-alumina � -alumina 

Intercept -19.57 -87.99 49.17 18.54 

T 0.06 +0.42 -0.05 -0.04 

C 0 0.16 0.74 0 

W -0.13 -0.57 -1.74 0.25 

T2 0 -5.68E-04 0 0 

C2 0 0 0 0 

W2 0 -0.09 0 0 

T*C 0 0 0 0 

T*W 0 7.20E-03 0 0 

C*W 0 0 0.05 0 
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Figure 4.13: Response sur face for  acetol yield: (a) effect of temperature and WHSV 

at car r ier  gas flow rate at of 35 mL/min using HZSM-5; (b) effect of 
temperature and WHSV at carr ier  gas flow rate of 35 mL/min using 
HY; (c) effect of temperature and WHSV at car r ier  gas flow rate of 35 
mL/ min using silica-alumina; (d) effect of temperature and WHSV at 
carr ier  gas flow rate of 35 mL/min using γ-alumina 
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5.40 h -1 acetol yield decreased from 6.3 to 0.6 g/100 g feed when temperature was 

increased from 350 to 500 oC.  

Temperature and WHSV were significant factors to predict acetol yield in the 

case of γ-alumina. It was observed that acetol yield decreased from 9.8 to 3 g/100 g feed 

with increase in temperature from 350 to 500 oC when WHSV was maintained constant 

at 21.60 h -1 as shown in Figure 4.13 (d).  

Observed trends for acetol formation in case of silica-alumina and γ-alumina are 

explained by the proposed reaction pathways. It was proposed that acetol was formed 

through ionic pathways which dominate at lower temperature. Thus, with the large pore 

size (absence of diffusion limitations) catalysts such as silica-alumina and γ-alumina, 

low temperature favored acetol formation.  

The predicted and experimental maximum acetol yield at optimum conditions 

with various catalysts is shown in Table 4.15. Maximum acetol (~ 15 g/100 g feed) was 

produced with HY at 470 oC and WHSV of 18.32 h -1. At the same temperature, carrier 

gas flow rate and WHSV of 8.68 h -1, ~9 g/100 g feed of acetol was produced in case of 

HZSM-5 Interestingly, with silica-alumina and γ-alumina acetol yield was comparable 

to that for HY at lower temperature of 380 oC, carrier gas flow rate 44 mL/min and 

WHSV of 18.32 h -1. 

 In conclusion, HY was the best catalyst for maximum acetol yield at temperature 

of 470 oC, carrier gas flow rate of 44 mL/min and WHSV of 18.32 h -1. 
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Table 4.15: Optimum operating conditions for  maximum acetol yield over  different 
catalysts 

 
Acetol yield                           

(g/ 100g feed) 
Catalyst Temperature    

(oC) 
Carrier gas flow 

rate  
(mL/min) 

WHSV      
(h -1) 

Predicted Experimental 

HZSM-5 470 44 8.68 8.8 8.9 
 

HY 470 44 18.32 14.2 14.7 

Silica-alumina 380 44 18.32 8.4 8.8 

� -alumina 380 35 18.32 8.8 8.5 
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4.2.4 Statistical analysis of exper imental data for  gas product yield 

The main objective of this research work was to maximize the liquid 

product yield, thus a lower range (350 to 500 oC) of temperature was chosen. 

However, it was observed that small amount of gas was produced along with 

liquid and char product. The gas product mainly consisted of CO, CO2, CH4 and 

C2+ hydrocarbons (see Appendix A, B, C and D). In this research, the gas 

product yield (g/100 g feed) was calculated as follows: 

)5.4(100*


=
F

G
G T  

Where,  G = Gas product yield, g/100 g feed 

  GT = Gas collected, g 

  F = Glycerol fed, g 

Gas product yields over different catalysts are given in Appendix E2. 

The model coefficients to predict gas product yield using different catalysts are 

given in Table 4.16. Temperature and WHSV were significant factors to predict gas 

production using different catalysts (see Appendix G; Table G7). It was proposed that 

gaseous products such as CO, CO2, CH4 and hydrocarbons were formed by free radical 

pathways (see Figure 4.7) which dominate at high temperature. A general trend of 

increased gas product yield at high temperature was observed for different catalysts. 

This is explained by the proposed reaction pathways where gaseous products are formed 

by predominantly free radical pathways. 

The surface response to predict gas product yield using HZSM-5 is shown in 

Figure 4.14 (a). Low amount of gas product (from 0.2 to 3 g/100 g feed) was obtained 

using HZSM-5. It was observed that at WHSV of 5.40 h -1 when the temperature was 
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Table 4.16: Significant model coefficients to predict gas product yield over  different 
catalysts 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gas product yield 
(g/100 g feed)  

Factors HZSM-5 HY Silica-alumina � -alumina 

Intercept -2.65 19.98 -156.67 -5.38 

T 0.01 -0.07 0.37 0.03 

C 0 0 2.73 0 

W -0.09 -1.25 4.23 -0.15 

T2 0 1.46E-04 0 0 

C2 0 0 0 0 

W2 0 0.04 0 0 

T*C 0 0 -5.53E-03 0 

T*W 0 -6.81E-04 -8.15 E-03 0 

C*W 0 0 -0.03 0 
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Figure 4.14: Response sur face for  gas production: (a) effect of temperature and 

WHSV at carr ier  gas flow rate at of 35 mL/min using HZSM-5; (b) 
effect of temperature and WHSV at carr ier  gas flow rate of 35 
mL/min using HY; (c) effect of temperature and WHSV at carr ier  
gas flow rate of 35 mL/ min silica-alumina; (d) effect of temperature 
and WHSV at carr ier  gas flow rate of 35 mL/min using γ-alumina 
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increased from 350 to 500 oC the gas product yield increased from 0.24 to 2.55 g/100 g 

feed and from 0.4 to 13.7 g/100 g feed for HZSM-5 and HY, respectively (see Figure 

4.14 (b). Also at 500 oC gas product yield was almost 7 g/100 g feed even with decrease 

in WHSV from 21.60 to 13.50 h -1 however with further increase in WHSV to 5.40 h -1 

gas product increased to 13.7 g/ 100 g feed. It would appear that temperature was the 

main parameter to predict gas product yield in case of HY.  

Surface responses for gas product yield in the case of silica-alumina and γ-

alumina are shown in Figure 4.14 (c) and (d). It was observed that at WHSV of 5.40 h -1 

when temperature was increased from 350 to 500 oC gas product yield increased from 

0.5 to 19.8 g/100 g feed and  from 3.0 to 10.4 g/100 g feed for silica-alumina and γ-

alumina, respectively. Furthermore, for γ-alumina the gas product decreased from 10.4 

to 7 g/100 g feed when WHSV was increased from 5.40 to 21.60 h -1 at 500 oC.  

 The predicted and experimental gas product yields at optimum conditions with 

different catalysts are shown in Table 4.17. Under optimum conditions to maximize the 

liquid product yield, gas product yield ranged from 2 to 6 g/100 g feed. Silica-alumina 

and γ-alumina produced higher gas product yield at low temperature of 380 oC as 

compared to HZSM-5 and HY.   
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Table 4.17: Optimum operating condition for  minimum gas product yield over  
different catalysts 

 
Gas product yield 

(g/ 100g feed) 
Catalyst Temperature    

(oC) 
Carrier gas flow 

rate  
(mL/min) 

WHSV      
(h -1) 

Predicted Experimental 

HZSM-5 470 26 8.68 1.9 1.8 

HY 425 50 13.50 3.4 5.9 

Silica-alumina 380 26 8.68 1.3 2.6 

� -alumina 380 44 8.68 6.0 6.3 
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4.2.5 Statistical analysis of exper imental data for  char  and residue product yield 

Char is one of the by-products of cracking reaction (Gates 1979). It was desired 

to minimize the char and residue in this research work. It was proposed that formation of 

coke could be the result of direct condensation followed by polymerization of glycerol 

molecule on the acidic surface (see Figure 4.7). In this research work char and residue 

yield (g/100 g feed) was calculated as follows: 

)6.4(100*
��

����
=

F

C
C T

R  

Where,  CR = Char and residue product yield, g/100 g feed 

  CT = Char and residue collected, g 

  F = Glycerol fed, g 

Char and residue product yield over different catalysts is given in Appendix E3. 

The model coefficients to predict char and residue yield in case of different 

catalysts are shown in Table 4.18. The response surfaces to predict char and residue 

yield using different catalysts are shown in Figure 4.15.  

  In the case of HZSM-5 it was observed that char and residue yield decreased 

from 8.0 to 1.2 g/100 g feed with decrease in WHSV from 5.40 to 21.60 h -1 at 500 oC as 

shown in Figure 4.15 (a). In case of HY, char and residue yield decreased from 10.4 to 7 

g/100 g feed when temperature was increased from 350 to 500 oC at WHSV of 21.60 h -1 

as shown in Figure 4.15 (b). More char and residue yield was obtained at high 

temperature in case of silica-alumina than HY. For example, at 500 oC with increase in 

WHSV from 5.40 to 21.60 h -1, the char and residue yield decreased from 10.1 to 4.2 

g/100 g feed as shown in Figure 4.15 (c). In the case of γ-alumina, at WHSV of 21.60 h -

1 char and residue yield increased from 3.8 to 7.1 g/100 g feed with increase in
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Table 4.18: Significant model coefficients*  to predict char  and residue over  
different catalysts 

 
 

*  see Appendix G; Table G8 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Char and residue  
(g/100 g feed)  

Factors HZSM-5 HY Silica-alumina � -alumina 

Intercept 82.23 37.34 13.14 12.69 

T -0.17 -0.02 3.90E-03 -0.03 

C -0.88 -0.62 0 -0.08 

W -3.60 -1.46 -0.33 -0.36 

T2 0 0 0 0 

C2 0 0 0 0 

W2 -0.05 0 0 0 

T*C 2.36E-03 0 0 4.31E-04 

T*W 4.97E-03 0 0 1.62E-03 

C*W 0 -0.05 0 -8.12E-03 
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Figure 4.15: Response sur face for  char  and residue: (a) effect of temperature and 

WHSV at car r ier  gas flow rate at of 35 mL/min using HZSM-5; (b) 
effect of temperature and WHSV at carr ier  gas flow rate of 35 
mL/min using HY; (c) effect of temperature and WHSV at carr ier  gas 
flow rate of 35 mL/min using silica-alumina; (d) effect of temperature 
and WHSV at carr ier  gas flow rate of 35 mL/min using γ-alumina
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temperature from 350 to 500 oC as shown in Figure 4.15 (d).  

 In the present research work, it was desirable to minimize char and residue yield 

while producing maximum liquid product. The optimum operating condition to 

minimize the char and residue using different catalyst is shown in Table 4.19.  

 In conclusion, HZSM-5 produced minimum char at higher temperature. This was 

because of it unique pore size which resist char production (Sang et al., 2004). 
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Table 4.19: Predicted and exper imental minimum char and residue yield under 
optimum conditions over  different catalysts 

 

 
 
 
 

Char and residue yield                    
(g/ 100g feed) 

Catalyst Temperature    
(oC) 

Carrier gas flow 
rate  

(mL/min) 

WHSV      
(h -1) 

Predicted Experimental 

HZSM-5 470 26 8.68 3.6 4.2 

HY 425 50 13.50 4.5 6.0 

Silica-alumina 380 26 18.32 5.7 6.2 

� -alumina 380 44 8.68 4.7 4.2 
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4.3 Effect of physiochemical proper ties of catalysts on optimum glycerol 
conversion, liquid product yield and acetaldehyde, acrolein, formaldehyde 
and acetol yields 

  

 In this section the effects of catalyst physiochemical properties on glycerol 

conversion, liquid product yield and acetaldehyde, acrolein, formaldehyde and acetol 

yields are discussed. 

4.3.1 Effect of catalyst acidity  

 Acidity of the catalysts has major effect on the glycerol conversion, liquid 

product yield and acetaldehyde, acrolein, formaldehyde and acetol yields. The observed 

trend of total acidity (see Table 4.20) from most to least acidic was HZSM-

5>HY>silica-alumina>γ-alumina. The effect of total acidity on glycerol conversion is 

given in Figure 4.16 (a). Glycerol conversion did not change significantly (~100 wt%) 

when the total acidity was increased from 1.7x10 4 to 5.5x10 4 a.u. However, it decreased 

to 78.8 wt% when total acidity was increased further to 7.0x10 4 a.u. (HZSM-5). It was 

because during the cracking reaction the glycerol molecules were adsorbed on the 

surface of catalysts. After the reaction the products were not easily desorbed from 

relatively strong acid sites. This resulted in lower glycerol conversion in case of   

HZSM-5.   

 A similar trend was observed for the liquid product yield (see Figure 4.16(b)). 

Liquid product yield varied in the range from 80.9 to 83.6 g/100 g feed when the total 

acidity increased from 1.7x10 4 to 5.5x10 4 a.u. Liquid product yield decreased 

significantly when the total acidity increased to 7.0x10 4 a.u. This was because liquid 

product yield was a function of glycerol conversion (see Equation 4.4). The decrease in 

glycerol conversion is responsible for decrease in liquid product yield at higher acidity. 
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Table 4.20: Total acidity and optimum production of acetaldehyde, acrolein, 
formaldehyde and acetol 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Optimum liquid components  
(g/100 g feed) 

 
 

Catalyst 
Total acidity 

(a.u.) Acetaldehyde Acrolein Formaldehdye Acetol 

HZSM-5 70248 11.2 9.8 3.8 8.9 

HY 55295 17.8 15.4 7.5 14.7 

Silica-alumina 21518 24.5 18.6 8.9 8.8 

� -alumina 17529 15.1 25.4 5.4 8.5 
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Figure 4.16: Effect of total acidity of catalysts on the optimum (a) glycerol conversion 
(b) optimum liquid product yield 
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straight forward trend was observed between formation of individual liquid components 

and total acidity. However, trend of increasing acetaldehyde, acrolein and formaldehyde 

yield with decrease in total acidity was observed (see Table 4.20). 

4.3.2 Effect of catalyst pore size 

 The effects of pore size on glycerol conversion and liquid product yield are given 

in Figure 4.17 As shown in this figure, glycerol conversion and liquid product yield 

depends not only on acidity but also on the pore sizes of the catalysts. However, 

excessive pore size does not have any significant effect on glycerol conversion and 

liquid product yield as evident from Figure 4.17 (a) and (b).  

 The effect of pore size on the production of acetaldehyde, acrolein, formaldehyde 

and acetol is shown in Figure 4.18. Pore size had different effects on individual liquid 

components. For example, maximum acetaldehyde yield was obtained at 3.15 nm 

(silica-alumina). On the other hand, maximum acrolein and acetol yield were obtained 

for catalysts with average pore sizes of 11.2 nm (γ-alumina) and 0.74 nm (HY), 

respectively (see Figure 4.18). Moreover maximum formaldehyde yield was obtained at 

0.74 nm and no significant change in formaldehyde yield was obtained with further 

increase in pore size.  

4.3.3 Scanning electron microscope (SEM) 

 Catalysts were characterized using SEM before the reaction. The images 

obtained for different catalysts before and after the reaction are shown in Figure 4.19 

and 4.20. It was observed that there was coke deposition and agglomeration of catalyst 

particles after the reaction. Interestingly, there was not much difference in surface 

texture in case of HZSM-5 before and after the reaction.    
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Figure 4.17: Effect of pore size on (a) optimum glycerol conversion (b) optimum 
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a) Fresh HZSM-5                                         b) Spent HZSM-5 
 
 
 
 
 

          
 
                         

    a) Fresh HY                                                b) Spent HY 
 
 
 
Figure 4.19: Scanning electron micrographs for  (a) fresh HZSM-5 (b) spent 

HZSM-5 (c) fresh HY (d) spent HY 
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                 (a) Fresh silica-alumina  (b) Spent silica-alumina 
 
 
 
 
 
 

       
 
 

(c) Fresh gamma alumina                          (d) Spent gamma alumina 
 

 
Figure 4.20: Scanning electron micrographs for  (a) fresh silica-alumina (b) spent 

silica-alumina (c) fresh γ-alumina (d) spent γ-alumina 
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4.4 Implication of exper imental results 

 The findings of this research indicate that glycerol can be used for the production 

of acetaldehyde, acrolein, formaldehyde and acetol. Main use of acetaldehyde is in 

silvering of mirrors. In addition, it is also used as intermediate in the synthesis of other 

chemicals such as acetic acid and n-butyl alcohol, perfumes and solvent in rubber 

industry. Acrolein is used primarily as intermediate in the manufacture of acrylic acid. 

Another important application of acrolein is as aquatic algaecide 

(http://www.inchem.org). Formaldehyde is used in plastic industry for the production of 

bakelite. In addition, it is widely used in manufacture of inks and wrinkle free clothing 

(http://www.the-innovation-group.com). Acetol (hydroxyl-acetone) is used in cosmetic 

industry as main constituent of skin tanning creams.  

 The separation of individual liquid components is important to impart market 

value to them. Individual liquid components can be separated using distillation column 

as the boiling point data for the components present in liquid product has wide range as 

shown in Table 4.21.  

 A study was also carried out to estimate (see Table 4.22) the possible value 

addition to glycerol by production of liquid chemicals. In this study price differential 

was calculated based on the bulk prices (Chemical Market Reporter, 2005) of glycerol 

and major components present in the liquid product, excluding the production and 

capital cost. It was interesting to observe that based on the optimum production of 

components for $100 input there was a potential to produce about $182 in return. Thus, 

there is strong potential to produce value added liquid chemicals from glycerol using 

catalytic treatment. 
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Table 4.21: Boiling points of different components present in liquid product 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Table 4.22: Estimation of possible value addition based on bulk pr ices of chemicals 

produced in catalytic treatment of glycerol 
 

  Basis: 100 Kg of glycerol 

 

 

Selling price of glycerol = 0.40*100 =   $40.00   

Selling price of products =  $112.61 
 
Value addition =  (112.61 – 40.00)/40.00*100 = 182 %  

Components  Boiling point  
(oC) 

Freezing Point 
(oC) 

Acetaldehyde 21 -40 
Acetic acid  117-118 40 
Acetol 145-146 56 
Acetone  56 -17 
Allyl alcohol  96-98 22 
Acrolein (2-propenal) 53 -29 
Formaldehyde  -19  -- 
Glycerol formal 192-193 93 
IPA  82 12 
Phenol  182 79 
Propionic acid  141 54 
Water  100 0 

Components 

Price, A 
($/Kg) 

Optimum production of 
components, B 

 (Kg) 

Price calculation for 
products,  

C = A*B/100*100  
($) 

Glycerol 0.40   
Acetaldehyde 1.30 24.50 31.85 
Acrolein 2.57 25.30 65.02 
Formaldehyde 0.60 8.90 5.35 
Acetol 0.72 14.44 10.40 

    Total = 73.14 
   

Total = 112.61 
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5 CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

1. Complete conversion of glycerol was obtained with silica-alumina and γ-alumina 

at all experimental conditions. The optimum operating conditions to obtain the 

maximum glycerol conversion over HZSM-5 (78.8 wt%) and HY (100 wt%) 

were 470 oC, 26 mL/min and WHSV of 8.68 h -1. 

2. Silica-alumina and γ-alumina produced the highest liquid product yield (~ 83 g/ 

100 g feed) at 380 oC, WHSV of 8.68 h -1 and carrier gas flow rate of 26 and 44 

mL/min respectively.  

3. The highest liquid product yields over HY (80.9 g/100 g feed) was obtained at 

temperature of 425 oC, carrier gas flow rate of 50 mL/min and WHSV of 13.50  

h -1 and over HZSM-5 (59.0 g/100 g feed) at temperature of 470 oC, carrier gas 

flow rate of 26 mL/min and WHSV of 8.68 h -1.   

4. The highest acetaldehyde yield (24.5 g/100 g feed) was obtained with silica-

alumina at the optimum conditions of temperature 470 oC, carrier gas flow rate 

44 mL/min and WHSV 18.32 h -1. 

5. The highest acrolein yield (25.3 g/100 g feed) was obtained with γ-alumina at the 

optimum conditions of temperature 380 oC, carrier gas flow rate 44 mL/min and 

WHSV 8.68 h -1. 
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6. The highest formaldehyde yield (~9 g/100 g feed) was obtained with silica-

alumina at the optimum conditions of temperature 380 oC, carrier gas flow rate 

44 mL/min and WHSV 8.68 h -1.  

7. The highest acetol yield (14.7 g/100 g feed) was obtained with HY at the 

optimum conditions of temperature 470 oC, carrier gas flow rate 44 mL/min and 

WHSV 18.32 h -1. 

8. The gas product yield obtained under optimum conditions for maximum liquid 

product yield ranged from 2 to 6 g/ 100 g feed.  

9. The char and residue yield obtained under optimum conditions for maximum 

liquid product ranged from 3 to 6g/ 100 g feed. 

10. Optimum conversion increased from 80 to 100 wt% and optimum liquid product 

increased from 59 to 83.3 g/100 g feed when the pore size of catalyst was 

increased from 0.54 in case of HZSM-5 to 0.74 nm in case of HY; beyond which 

the effect pore of size was minimal.  

5.2  Recommendations 

1. Crude glycerol should be used as feed under the optimized conditions for each 

catalyst. 

2. Catalyst such as H-mordenite (pore size 0.67 nm) with pore size in between   

HZSM-5 and HY should be used to evaluate the effects of pore size on optimum 

glycerol conversion as well as liquid product yield. 

3. Kinetic study should be performed to evaluate the rates of reactions for 

formation of acetaldehyde, acrolein, formaldehyde and acetol. 
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4. Process specific catalyst can be designed for the catalytic conversion of crude 

glycerol to selectively produce acetaldehyde, acrolein, formaldehyde and acetol.   

5. Pilot plant study of the catalytic treatment of glycerol should be performed. 

6. A process should be developed to separate individual components from the liquid 

product. 
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7 APPENDICES 

Appendix A: Exper imental results for  glycerol conversion over  HZSM-5 
 

Table A1: Compar ison of liquid, gas and char  product under different exper imental conditions for  glycerol conversion over  HZSM-5  
Experimental Conditions Wt% of total Products Exp # 

T     
(oC) 

CGF 
(mL/min) 

WHSV  
(h -1) 

Glycerol 
fed        
(g) 

Conversion 
(wt%) 

Total 
Liquid 
Product 

(g) 

Gas 
Product 

(g) 

Char 
and 

residue 
(g) 

Total 
Product 

(g) 
Gas Liquid  Char and 

residue 

Un- 
accounted 

(wt%) 

Mass 
balance 
(wt%) 

1 380 26 8.68 4.87 41.0 4.05 0.02 0.38 4.45 0.50 90.97 8.54 8.60 91.4 

2 425 35 13.50 4.92 52.6 4.34 0.04 0.13 4.51 0.82 96.30 2.88 8.30 91.7 

3 425 35 13.50 4.89 46.3 4.37 0.03 0.22 4.62 0.74 94.50 4.76 5.50 94.5 

4 380 26 18.32 4.53 27.0 3.84 0.01 0.25 4.1 0.27 93.63 6.10 9.50 90.5 

5 500 35 13.50 4.57 60.8 4.09 0.09 0.11 4.29 2.17 95.26 2.56 6.10 93.9 

6 470 26 18.32 4.40 56.8 3.92 0.05 0.12 4.09 1.20 95.87 2.93 7.00 93.0 

7 470 44 18.32 5.00 68.3 4.06 0.06 0.41 4.53 1.42 89.54 9.04 9.40 90.6 

8 470 44 8.68 4.61 67.6 3.85 0.08 0.28 4.21 1.81 91.53 6.66 8.70 91.3 

9 350 35 13.50 4.94 24.9 4.28 0.02 0.3 4.6 0.36 93.11 6.53 6.90 93.1 

10 380 44 18.32 4.89 28.2 4.32 0.02 0.18 4.52 0.45 95.57 3.98 7.60 92.4 

11 425 35 13.50 5.09 44.0 4.57 0.04 0.22 4.57 0.86 93.30 4.53 5.10 94.9 

13 470 26 8.68 4.65 78.8 3.98 0.08 0.2 4.26 1.93 93.40 4.70 8.40 91.6 

14 425 35 5.40 4.27 73.3 3.17 0.14 0.31 3.62 3.80 87.60 8.60 5.39 94.6 

15 380 44 8.68 4.05 37.2 3.21 0.02 0.38 3.61 0.62 88.86 10.52 10.80 89.2 

16 425 50 13.50 4.60 45.2 3.8 0.05 0.34 4.19 1.08 90.79 8.12 8.90 91.1 

18 425 20 13.50 4.57 57.7 4.07 0.04 0.11 4.22 0.97 96.42 2.61 7.70 92.3 

20 425 35 21.60 4.75 39.2 4.05 0.04 0.35 4.45 1.04 91.08 7.87 6.30 93.7 
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Table A2: Composition of liquid product from glycerol conversion over  HZSM-5 

Experiment number 
Compound              

(wt %)  1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 18 20 

Acetaldehyde 4.98 7.59 8.51 2.90 17.59 13.46 13.09 14.06 2.15 1.76 8.72 17.35 17.41 2.67 5.00 11.45 5.67 

Acetone 0.22 0.47 0.53 0.89 0.84 0.78 0.70 0.44 1.57 0.36 0.21 1.16 1.14 0.42 0.23 0.60 0.25 

Acrolein 4.80 5.04 5.89 2.43 10.10 7.46 10.33 10.91 1.65 1.05 7.00 15.24 14.12 2.63 2.40 11.33 3.99 

Formaldehyde 5.00 7.47 8.51 3.35 6.62 8.27 7.38 4.46 2.93 2.65 7.72 5.27 5.02 2.15 5.71 6.01 7.89 

IPA 0.20 0.26 0.49 0.46 0.23 0.34 0.25 0.24 0.82 0.20 0.25 0.26 0.16 0.23 0.20 0.25 0.45 

Allyl Alcohol 4.31 8.32 6.77 5.33 3.71 5.82 5.52 1.99 1.60 5.28 6.42 2.56 0.33 2.14 5.92 4.63 12.03 

Acetol 13.51 16.80 15.21 13.38 17.16 16.34 18.06 15.15 5.30 10.82 14.94 14.39 13.04 12.17 15.91 12.81 16.93 

Acetic Acid 1.19 1.04 1.14 0.96 0.49 0.85 0.48 0.55 0.62 0.83 0.81 0.61 0.19 0.93 0.96 0.82 0.90 

Propionic Acid 3.45 2.84 2.45 3.06 1.50 2.52 1.46 1.72 2.09 2.44 2.21 1.83 1.47 2.86 2.91 2.38 2.41 

Glycerol Formal 5.00 1.82 2.63 5.41 2.13 1.53 1.07 1.84 4.86 3.10 2.45 1.13 1.69 4.57 2.50 3.35 2.62 

Phenol 0.39 0.23 0.29 0.31 0.04 0.18 0.10 0.05 0.22 0.24 0.15 0.14 0.04 0.38 0.27 0.16 0.27 

Water 46.96 23.53 29.73 42.26 28.63 27.00 26.74 32.43 41.89 50.41 29.27 27.00 32.50 50.65 33.83 25.28 30.78 

Unknowns 10.00 24.59 17.86 19.24 10.96 15.48 14.81 16.16 34.30 20.86 19.84 13.06 12.90 18.21 24.17 20.94 15.81 

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
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Appendix B: Exper imental results for  glycerol conversion over  HY 
 
 
Table B1: Compar ison of liquid, gas and char  product under different exper imental conditions for  glycerol conversion over  HY  

 
Experimental Conditions Wt% of total Products 

Exp # T     
(oC) 

CGF 
(mL/min) 

WHSV 
(h -1) 

Glycerol 
fed        
(g) 

Conversion 
(wt%) 

Total 
Liquid 
Product    

(g) 

Gas 
Product 

(g) 

Char 
and 

residue 
(g) 

Total 
Product 

(g) 
Gas Liquid  Char and 

residue 

Un- 
accounted 

(wt%) 

Mass 
balance 
(wt%) 

1 380 26 8.68 5.18 79.1 4.17 0.21 0.51 4.88 4.2 85.4 10.4 5.8 94.2 

2 425 35 13.50 4.89 92.7 3.84 0.18 0.41 4.43 4.0 86.7 9.3 9.4 90.6 

3 425 35 13.50 5.5 95.3 4.47 0.18 0.32 4.97 3.6 89.9 6.4 9.6 90.4 

4 380 26 18.32 4.59 59.2 3.8 0.06 0.35 4.21 1.5 90.2 8.3 8.3 91.7 

5 500 35 13.50 4.91 98.0 3.69 0.37 0.43 4.49 8.3 82.1 9.6 8.6 91.4 

6 470 26 18.32 4.68 95.7 3.84 0.23 0.26 4.32 5.2 88.8 6.0 7.7 92.3 

7 470 44 18.32 5.04 95.8 3.86 0.28 0.41 4.55 6.1 84.9 9.0 9.7 90.3 

8 470 44 8.68 5.24 99.6 4.23 0.35 0.17 4.76 7.5 88.9 3.6 9.2 90.8 

9 350 35 13.50 5.29 66.7 4.5 0.06 0.41 4.97 1.2 90.5 8.2 6.0 94.0 

10 380 44 18.32 5.26 76.3 3.96 0.08 0.75 4.79 1.7 82.6 15.6 8.9 91.1 

13 470 26 8.68 4.61 100.0 3.57 0.43 0.35 4.35 9.9 82.1 8.0 5.6 94.4 

14 425 35 5.40 4.53 99.3 3.37 0.47 0.31 4.15 11.3 81.2 7.5 8.4 91.6 

15 380 44 8.68 4.79 88.0 3.82 0.17 0.38 4.37 3.9 87.4 8.7 8.8 91.2 

16 425 50 13.50 5.29 98.5 4.36 0.20 0.32 4.88 4.2 89.3 6.6 7.8 92.2 

18 425 20 13.50 4.78 95.1 3.89 0.15 0.42 4.47 3.5 87.1 9.4 6.5 93.5 

20 425 35 21.60 4.8 71.1 3.98 0.12 0.35 4.45 2.7 89.4 7.9 7.3 92.7 
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Table B2: Composition of liquid product from glycerol conversion over  HY 
 

Experiment number 
Compound              

(wt %)  1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 18 20 

Acetaldehyde 10.40 14.60 16.19 5.36 24.08 19.71 19.09 19.35 5.48 7.73 18.23 21.52 12.79 15.80 17.15 12.04 10.40 

Acetone 0.20 0.49 0.48 0.10 1.05 0.64 0.68 1.11 0.11 0.24 0.87 0.90 0.31 0.41 0.39 0.35 0.20 

Acrolein 15.68 17.08 17.73 7.76 16.27 18.46 17.10 16.38 11.78 9.26 15.05 13.88 15.41 17.01 19.10 12.26 15.68 

Formaldehyde 8.76 6.72 9.84 7.99 4.71 5.53 5.95 6.58 7.67 10.67 6.52 9.55 1.99 10.57 8.83 8.06 8.76 

IPA 0.33 0.29 0.41 0.28 0.20 0.24 0.34 0.26 0.11 0.41 0.32 0.68 0.52 0.40 0.34 0.30 0.33 

Allyl Alcohol 1.35 0.92 1.26 1.30 0.69 0.94 0.95 0.53 1.52 1.76 0.40 0.37 1.17 1.25 0.92 0.92 1.35 

Acetol 12.72 12.51 17.05 12.15 15.77 14.32 20.36 12.78 11.50 15.22 9.94 7.23 14.51 17.85 12.37 12.79 12.72 

Acetic Acid 0.66 0.14 0.08 0.62 0.04 0.09 0.09 0.64 0.88 0.89 0.69 1.39 0.42 0.66 0.50 0.46 0.66 

Propionic Acid 1.87 0.53 0.24 1.80 0.04 0.28 0.33 0.03 2.26 2.21 0.40 0.81 1.22 0.24 0.46 1.47 1.87 

Glycerol Formal 2.87 1.01 0.98 2.19 0.26 0.42 0.46 0.24 3.87 3.18 0.18 0.48 2.40 0.88 1.19 1.35 2.87 

Phenol 0.16 0.11 0.07 0.21 0.10 0.09 0.11 0.09 0.28 0.21 0.11 0.12 0.09 0.08 0.10 0.10 0.16 

Water 31.08 29.65 23.28 36.98 29.88 28.77 28.06 31.01 27.88 29.59 32.66 36.58 31.55 26.61 28.00 31.27 31.08 

Unknowns 13.92 15.96 12.40 23.24 6.92 10.48 6.50 11.00 26.64 18.61 14.62 6.49 17.63 8.25 10.66 18.63 13.92 

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
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Appendix C: Exper imental results for  glycerol conversion over  silica-alumina 
 

Table C1: Compar ison of liquid, gas and char  product under different exper imental conditions for  glycerol conversion over  silica-alumina  
 

Experimental Conditions Wt% of total Products 
Exp 
# T     

(oC) 
CGF 

(mL/min) 
WHSV 
(h -1) 

Glycerol 
fed        
(g) 

Conversion 
(wt%) 

Total 
Liquid 
Product    

(g) 

Gas 
Product 

(g) 

Char 
and 

residue 
(g) 

Total 
Product 

(g) 
Gas Liquid  Char and 

residue 

Un- 
accounted 

(wt%) 

Mass 
balance 
(wt%) 

1 380 26 8.68 5.42 99.9 4.53 0.15 0.31 4.99 3.0 90.8 6.2 8.0 92.0 

2 425 35 13.50 5.00 100.0 3.87 0.35 0.34 4.55 7.6 85.0 7.4 8.9 91.1 

4 380 26 18.32 5.27 100.0 4.37 0.21 0.3 4.88 4.2 89.6 6.2 7.5 92.5 

5 500 35 13.50 5.06 99.7 3.73 0.57 0.37 4.67 12.2 79.9 7.9 7.7 92.3 

6 470 26 18.32 5.32 100.0 4.03 0.60 0.29 4.92 12.3 81.9 5.9 7.5 92.5 

7 470 44 18.32 5.12 100.0 4.36 0.09 0.22 4.67 1.9 93.4 4.7 8.8 91.2 

8 470 44 8.68 4.61 99.7 3.3 0.60 0.44 4.24 14.2 77.8 8.0 7.9 92.1 

9 350 35 13.50 4.71 98.4 3.8 0.16 0.34 4.3 3.6 88.5 7.9 8.8 91.2 

10 380 44 18.32 4.94 100.0 4.13 0.18 0.25 4.56 4.0 90.5 5.5 7.7 92.3 

11 425 35 13.50 4.39 100.0 3.5 0.36 0.3 4.15 8.3 84.4 7.2 5.6 94.4 

13 470 26 8.68 5.23 100.0 3.47 0.87 0.5 4.84 17.9 71.8 10.3 7.5 92.5 

14 425 35 5.40 4.48 100.0 3.4 0.35 0.43 4.18 8.3 81.4 10.3 6.7 93.3 

15 380 44 8.68 5.05 100.0 4.00 0.38 0.33 4.65 6.8 86.1 7.1 8.0 92.0 

16 425 50 13.50 4.2 100.0 3.38 0.24 0.25 3.87 6.2 87.3 6.5 7.8 92.2 

18 425 20 13.50 4.71 100.0 3.63 0.25 0.47 4.35 5.7 83.5 10.8 7.7 92.3 

20 425 35 21.60 4.61 99.1 3.77 0.21 0.25 4.23 4.9 89.2 5.9 8.3 91.7 
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Table C2: Composition of liquid product from glycerol conversion over  silica-alumina 
 

Experiment number 
Compound              

(wt %)  1 2 4 5 6 7 8 9 10 11 13 14 15 16 18 20 

Acetaldehyde 17.71 25.59 23.68 27.64 28.05 28.75 29.54 12.44 17.96 21.47 24.59 27.80 19.61 27.47 26.57 20.82 

Acetone 0.28 1.22 0.69 7.90 8.09 1.79 2.09 0.79 1.21 1.12 0.66 2.15 1.32 2.19 2.30 1.74 

Acrolein 21.27 14.62 22.64 10.20 10.73 14.58 8.51 19.99 19.76 15.80 9.27 12.19 17.36 19.55 17.16 20.20 

Formaldehyde 8.09 10.39 2.41 4.45 4.74 8.01 7.23 7.47 9.52 8.01 4.70 8.36 11.27 11.41 7.77 6.76 

IPA 0.46 0.25 0.59 0.09 0.36 0.18 0.14 0.38 0.47 0.30 0.18 0.21 1.10 0.31 0.35 0.33 

Allyl Alcohol 0.75 0.24 5.11 0.22 0.21 0.25 0.23 0.90 0.73 0.38 0.23 0.21 0.01 0.06 0.07 0.57 

Acetol 12.44 2.88 1.00 0.43 0.92 3.07 0.54 9.69 10.53 6.88 4.04 0.34 5.45 2.56 6.37 9.56 

Acetic Acid 0.57 0.09 0.03 0.90 0.71 0.97 1.44 0.73 0.51 0.88 0.52 1.47 0.75 0.48 0.78 0.54 

Propionic Acid 0.31 0.20 0.69 0.04 0.04 0.02 0.04 0.46 0.07 0.02 0.01 0.02 0.01 0.02 0.02 0.07 

Glycerol Formal 1.73 0.19 0.55 0.22 0.15 0.13 0.16 2.08 0.81 0.87 0.51 0.48 0.19 0.14 0.59 1.18 

Phenol 0.11 0.17 0.00 0.13 0.11 0.16 0.11 0.22 0.14 0.19 0.11 0.16 0.19 0.11 0.14 0.16 

Water 21.80 35.05 25.84 34.63 32.46 32.82 40.70 31.16 28.50 35.14 37.32 37.18 31.83 31.44 29.65 26.72 

Unknowns 14.48 9.12 16.76 13.14 13.44 9.26 9.26 13.68 9.80 8.94 17.86 9.43 10.91 4.25 8.23 11.37 

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
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Table C3: Composition of gas product from glycerol conversion over  silica-alumina 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Experimental Conditions H2 CO CO2 CH4 C2+ 
EXP # T 

(oC) 
CGF 

(mL/min) 
WHSV 
(h -1) 

Gas 
product 

(g) 

Gas mL/g 
feed  mol %    

1 380 26 8.68 0.15 19.8 - 75.3 10.0 1.9 12.7 

2 425 35 13.50 0.35 49.7 - 69.5 11.6 3.2 15.7 

4 380 26 18.32 0.21 28.8 - 76.0 9.0 1.9 13.0 

5 500 35 13.50 0.57 86.5 - 62.2 4.4 10.4 18.9 

6 470 26 18.32 0.60 86.3 3.2 65.5 6.5 10.1 17.9 

7 470 44 18.32 0.09 12.5 - 66.5 9.5 6.2 16.9 

8 470 44 8.68 0.60 95.4 - 60.0 8.7 7.8 23.3 

9 350 35 13.50 0.16 22.9 - 69.5 18.6 0.9 11.0 

10 380 44 18.32 0.18 26.4 - 74.3 9.7 1.7 14.4 

11 425 35 13.50 0.35 56.9 - 69.3 11.6 3.3 15.8 

13 470 26 8.68 0.87 124.8 - 57.2 7.1 13.0 22.5 

14 425 35 5.40 0.35 56.1 - 69.3 11.6 3.2 15.8 

15 380 44 8.68 0.32 43.8 - 69.0 15.1 1.3 14.5 

16 425 50 13.50 0.24 41.4 - 71.8 9.8 2.4 16.0 

18 425 20 13.50 0.25 37.8 - 67.6 9.3 3.7 19.3 

20 425 35 21.60 0.21 31.3 - 65.4 14.2 2.4 17.9 
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Appendix D: Exper imental results for  glycerol conversion over  γ-alumina 
 

Table D1: Compar ison of liquid, gas and char  product under different exper imental conditions for  glycerol conversion over  γ-alumina 
 

Experimental Conditions Wt% of total Products 
Exp 
#   T     

(oC) 
CGF 

(mL/min) 
WHSV 
(h -1) 

Glycerol 
fed        
(g) 

Conversion 
(wt%) 

Total 
Liquid 
Product    

(g) 

Gas 
Product 

(g) 

Char 
and 

residue 
(g) 

Total 
Product 

(g) 
Gas  Liquid Char and 

residue 

Un- 
accounted 

(wt%) 

Mass 
balance 
(wt%) 

1 380 26 8.68 5.05 100.0 4.21 0.22 0.21 4.64 4.7 90.8 4.5 8.1 91.9 

2 425 35 13.50 4.74 100.0 3.82 0.30 0.26 4.31 6.9 87.1 5.9 7.5 92.5 

4 380 26 18.32 4.21 99.6 3.62 0.21 0.21 4.04 5.2 89.6 5.2 4.0 96.0 

5 500 35 13.50 5.19 100.0 3.9 0.61 0.28 4.79 12.7 81.5 5.8 7.8 92.2 

6 470 26 18.32 4.73 99.1 3.78 0.25 0.29 4.32 5.8 87.5 6.7 8.7 91.3 

7 470 44 18.32 4.55 100.0 3.59 0.34 0.28 4.21 8.1 85.3 6.7 7.5 92.5 

8 470 44 8.68 4.7 99.9 3.69 0.41 0.25 4.35 9.5 84.8 5.7 7.4 92.6 

9 350 35 13.50 4.64 99.7 3.9 0.23 0.2 4.33 5.2 90.1 4.6 6.8 93.2 

10 380 44 18.32 4.7 99.2 3.84 0.29 0.19 4.33 6.8 88.8 4.4 8.0 92.0 

11 425 35 13.50 4.71 100.0 3.84 0.31 0.24 4.39 7.1 87.4 5.5 6.8 93.3 

13 470 26 8.68 4.77 100.0 3.73 0.43 0.2 4.36 10.0 85.0 4.6 8.5 91.5 

14 425 35 5.40 4.3 100.0 3.5 0.31 0.21 4.02 7.8 87.0 5.2 6.5 93.5 

15 380 44 8.68 4.5 100.0 3.76 0.28 0.22 4.26 6.6 88.2 5.2 5.3 94.7 

16 425 50 13.50 4.55 100.0 3.57 0.38 0.21 4.16 9.2 85.7 5.0 8.5 91.5 

18 425 20 13.50 4.43 100.0 3.51 0.31 0.25 4.06 7.6 86.3 6.2 8.4 91.6 

20 425 35 21.60 4.88 100.0 4.02 0.20 0.25 4.45 4.4 90.0 5.6 8.9 91.1 
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Table D3: Composition of gas product from glycerol conversion over  γ-alumina 
 

 
 

 
 
 
 
 
 
 

Experimental Conditions CO CO2 CH4 C2+ 
EXP # T    

(oC) 
CGF     

 (mL/min) 
WHSV 
 (h -1) 

Gas Product 
(g) 

Gas mL/g feed 
mol % 

1 380 26 8.68 0.22 31.0 71.9 16.4 1.9 9.8 

2 425 35 13.50 0.30 45.4 66.4 16.1 3.3 14.3 

4 380 26 18.32 0.21 36.1 73.0 16.0 1.9 9.1 

5 500 35 13.50 0.61 88.0 65.8 9.9 9.0 15.2 

6 470 26 18.32 0.25 37.7 65.8 15.9 4.7 13.5 

7 470 44 18.32 0.34 54.4 67.6 13.2 5.4 13.7 

8 470 44 8.68 0.41 62.8 64.6 15.2 5.4 14.8 

9 350 35 13.50 0.23 34.9 72.7 15.5 2.0 9.8 

10 380 44 18.32 0.30 44.4 69.8 18.4 2.0 9.9 

11 425 35 13.50 0.31 46.9 66.4 15.8 3.4 14.4 

13 470 26 8.68 0.43 65.3 63.7 15.4 5.6 15.2 

14 425 35 5.40 0.31 51.0 65.4 16.4 3.2 14.8 

15 380 44 8.68 0.28 44.9 72.4 15.9 1.9 9.7 

16 425 50 13.50 0.38 59.9 67.5 15.0 2.9 14.6 

18 425 20 13.50 0.31 49.1 68.1 15.8 3.3 12.8 

20 425 35 21.60 0.20 28.6 69.8 14.8 3.0 12.4 
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Appendix E: L iquid, gas and char  product yield results 
 
 

Appendix E1: L iquid product yield under different exper imental conditions using different catalysts 
 

Experimental Conditions Liquid product (g/100 g feed)  
Exp # T          

(oC) 
CGF  

(mL/min) 
WHSV 
 (h -1) 

HZSM-5 HY Silica-alumina �-alumina 

1 380 26 8.68 24.2 59.6 83.5 83.4 

2 425 35 13.50 40.8 71.2 77.4 80.6 

3 425 35 13.50 35.6 76.6 -- -- 

4 380 26 18.32 11.8 42.0 82.9 85.6 

5 500 35 13.50 50.3 73.2 73.4 75.1 

6 470 26 18.32 45.9 77.8 75.8 79.0 

7 470 44 18.32 49.5 72.4 85.2 78.9 

8 470 44 8.68 51.1 80.3 71.3 78.4 

9 350 35 13.50 11.5 51.8 79.1 83.7 

10 380 44 18.32 16.5 51.6 83.6 80.9 

11 425 35 13.50 33.8 -- 79.7 81.5 

13 470 26 8.68 64.4 77.4 66.3 78.2 

14 425 35 5.40 47.5 73.7 75.9 81.4 

15 380 44 8.68 16.4 67.7 79.2 83.6 

16 425 50 13.50 27.8 80.9 80.5 78.4 

18 425 20 13.50 46.8 76.4 77.1 79.0 

20 425 35 21.60 24.5 54.0 80.9 82.0 
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Appendix E2: Gas product yield (g/100 g feed) under different exper imental conditions using different catalysts 
 

Experimental Conditions Gas product (g/100 g feed) Exp # 

T         
 (oC) 

CGF  
(mL/min) 

WHSV      
 (h -1) 

HZSM-5 HY Silica-alumina �-alumina 

1 380 26 8.68 0.49 3.96 2.71 4.34 

2 425 35 13.50 0.75 3.64 6.90 6.41 

3 425 35 13.50 0.70 3.27 -- -- 

4 380 26 18.32 0.22 1.41 3.93 5.04 

5 500 35 13.50 1.97 7.60 11.28 11.70 

6 470 26 18.32 1.09 4.81 11.30 5.26 

7 470 44 18.32 1.20 5.52 1.70 7.47 

8 470 44 8.68 1.65 6.68 13.10 8.74 

9 350 35 13.50 0.32 1.15 3.31 4.87 

10 380 44 18.32 0.41 1.59 3.64 6.17 

11 425 35 13.50 0.79 -- 8.11 6.62 

13 470 26 8.68 1.78 9.33 16.56 9.10 

14 425 35 5.40 3.28 10.38 7.79 7.21 

15 380 44 8.68 0.49 3.55 7.52 6.27 

16 425 50 13.50 0.98 3.84 5.74 8.44 

18 425 20 13.50 0.88 3.14 5.27 6.93 

20 425 35 21.60 0.84 2.50 4.45 4.02 
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Appendix E3: Char and residue yield (g/100 g feed) under different exper imental conditions using different catalysts 

 
Experimental Conditions Char and residue  

(g/100 g feed) 
Exp # 

T          
(oC) 

CGF  
(mL/min) 

WHSV     
(h -1) 

HZSM-5 HY Silica-alumina �-alumina 

1 380 26 8.68 7.80 9.85 5.72 4.16 

2 425 35 13.50 2.64 8.38 6.80 5.49 

3 425 35 13.50 4.50 5.82 -- -- 

4 380 26 18.32 5.52 7.63 5.69 4.99 

5 500 35 13.50 2.41 8.76 7.31 5.39 

6 470 26 18.32 2.73 5.56 5.45 6.13 

7 470 44 18.32 8.20 8.13 4.30 6.15 

8 470 44 8.68 6.07 3.24 9.54 5.32 

9 350 35 13.50 6.07 7.75 7.22 4.31 

10 380 44 18.32 3.68 14.26 5.06 4.04 

11 425 35 13.50 4.32 -- 6.83 5.10 

13 470 26 8.68 4.30 7.59 9.56 4.19 

14 425 35 5.40 7.26 6.84 9.60 4.88 

15 380 44 8.68 9.38 7.93 6.53 4.89 

16 425 50 13.50 7.39 6.05 5.95 4.62 

18 425 20 13.50 2.41 8.79 9.98 5.64 

20 425 35 21.60 7.37 7.29 5.42 5.12 
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Appendix F: Acetaldehyde, acrolein, formaldehyde and acetol yields over  different catalysts 
 

Appendix F1: Acetaldehyde yield (g/100 g feed) under different exper imental conditions using different catalysts   
 

Experimental Conditions Acetadehdye (g/100 g feed) Exp    # 

T            
(oC) 

CGF   
(mL/min) 

WHSV 
(h -1) 

HZSM-5 HY Silica-alumina �-alumina 

1 380 26 8.68 1.2 6.2 14.8 8.9 

2 425 35 13.50 3.1 10.4 19.8 7.4 

3 425 35 13.50 3.0 12.4 -- -- 

4 380 26 18.32 0.3 2.3 19.6 5.1 

5 500 35 13.50 8.8 17.6 20.3 15.1 

6 470 26 18.32 6.2 15.3 21.3 9.5 

7 470 44 18.32 6.5 13.8 24.5 9.7 

8 470 44 8.68 7.2 15.5 21.1 11.7 

9 350 35 13.50 0.2 2.8 9.8 8.4 

10 380 44 18.32 0.3 4.0 15.0 5.6 

11 425 35 13.50 2.9 -- 17.1 8.9 

13 470 26 8.68 11.2 14.1 16.3 11.4 

14 425 35 5.40 6.7 15.9 21.1 8.6 

15 380 44 8.68 0.4 8.7 15.5 7.7 

16 425 50 13.50 1.4 12.8 22.1 7.8 

18 425 20 13.50 5.4 13.1 20.5 6.4 

20 425 35 21.60 1.4 6.5 16.8 6.7 
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Appendix F2: Acrolein yield (g/100 g feed) under different exper imental conditions using different catalysts   
 

Experimental Conditions Acrolein (g/100 g feed) Exp    # 

T            
(oC) 

CGF   
(mL/min) 

WHSV         
(h -1) 

HZSM-5 HY Silica-alumina �-alumina 

1 380 26 8.68 1.2 9.4 17.8 16.6 

2 425 35 13.50 2.1 12.2 11.3 12.5 

3 425 35 13.50 2.1 13.6 -- -- 

4 380 26 18.32 0.3 3.3 18.8 15.6 

5 500 35 13.50 5.1 11.9 7.5 11.4 

6 470 26 18.32 3.4 14.4 8.1 14.2 

7 470 44 18.32 5.1 12.4 12.4 10.8 

8 470 44 8.68 5.6 13.2 6.1 12.1 

9 350 35 13.50 0.2 6.1 15.8 14.2 

10 380 44 18.32 0.2 4.8 16.5 9.8 

11 425 35 13.50 2.4 -- 12.6 13.6 

13 470 26 8.68 9.8 11.7 6.2 11.3 

14 425 35 5.40 6.8 10.2 9.3 9.4 

15 380 44 8.68 0.4 10.4 13.8 25.3 

16 425 50 13.50 0.7 13.8 15.7 17.0 

18 425 20 13.50 5.3 14.6 13.2 12.9 

20 425 35 21.60 1.0 6.62 16.3 17.3 
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Appendix F3: Formaldehyde yield (g/100 g feed) under different exper imental conditions using different catalysts   
 

Experimental Conditions Formaldehdye (g/100 g feed) Exp    # 

T            
(oC) 

CGF   
(mL/min) 

WHSV 
 (h -1) 

HZSM-5 HY Silica-alumina �-alumina 

1 380 26 8.68 1.2 5.2 6.8 5.5 

2 425 35 13.50 3.0 4.8 8.0 3.0 

3 425 35 13.50 3.0 7.5 -- -- 

4 380 26 18.32 0.4 3.4 2.0 4.0 

5 500 35 13.50 3.3 3.5 3.3 5.2 

6 470 26 18.32 3.8 4.3 3.6 3.1 

7 470 44 18.32 3.7 4.3 6.8 4.1 

8 470 44 8.68 2.3 5.3 5.2 4.7 

9 350 35 13.50 0.3 4.0 5.9 5.4 

10 380 44 18.32 0.4 5.5 8.0 3.9 

11 425 35 13.50 2.6 -- 6.4 5.6 

13 470 26 8.68 3.4 5.1 3.1 3.8 

14 425 35 5.40 0.7 7.0 6.3 3.9 

15 380 44 8.68 0.4 1.4 8.9 5.3 

16 425 50 13.50 1.6 8.6 9.2 4.1 

18 425 20 13.50 2.8 6.8 6.0 2.3 

20 425 35 21.60 1.9 4.4 5.5 3.8 
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Appendix G: ANOVA Table for  different responses 
 

Table G1: Analysis of var iance showing the effect of var iables on glycerol 
conversion over  HZSM-5 and HY  

 
Source Of 
Variation 

Sum Of 
Squares 

Degree Of 
Freedom 

Mean Square F Value Prob>F 

HZSM-5 
Model 3680.89 3 1226.96 27.77 < 0.0001 
T 2884.48 1 2884.48 65.29 < 0.0001 
C 39.83 1 39.83 0.90 0.3565 
W 756.58 1 756.58 17.21 0.0008 
Residual 706.9 16 44.18   
Pure Error 53.76 5 10.75   
Total 4387.90 19    

HY 
Model 2634.46 9 292.72 35.80 < 0.0001 
A 1458.65 1 1458.65 178.39 < 0.0001 
C 72.28 1 72.28 8.84 0.0140 
W 555.84 1 555.84 67.98 < 0.0001 
T2 238.40 1 238.40 29.16 0.0003 
C2 15.63 1 15.63 1.91 0.1968 
W2 134.91 1 134.91 16.50 0.0023 
T*C 86.46 1 86.46 10.57 0.0087 
T*W 69.03 1 69.03 8.44 0.0157 
C*W 9.46 1 9.46 1.16 0.3073 
Residual 81.77 10 8.18   
Pure Error 5.44 5 1.09   
Total 2716.23 19    
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Table G2: Analysis of var iance showing the effect of var iables on L iquid product 

yield over  different catalysts 
 

Source Of 
Variation 

Sum Of 
Squares 

Degree Of 
Freedom 

Mean Square F Value Prob>F 

HZSM-5 
Model 3661.86 3 1220.62 47.14 < 0.0001 
T 3145.24 1 3145.24 121.46 < 0.0001 
C 146.66 1 146.66 5.66 0.0301 
W 369.96 1 369.96 14.29 0.0016 
Residual 414.34 16 25.90   
Pure Error 27.19 5 5.44   
Total 4076.20 19    

HY 
Model 2208.34 5 441.67 28.46 < 0.0001 
T 1107.62 1 1107.62 71.38 < 0.0001 
W 404.57 1 404.57 26.07 0.0002 
T2 365.74 1 365.74 23.57 0.0003 
W2 299.41 1 299.41 19.29 0.0006 
T*W 85.81 1 85.81 5.53 0.0339 
Residual 217.25 14 15.52   
Pure Error 21.27 5 4.25   
Total 2425.59 19    

Silica-alumina 
Model 330.64 6 55.11 17.63 < 0.0001 
T 118.25 1 118.25 37.84 < 0.0001 
C 19.98 1 19.98 6.39 0.0252 
W 92.85 1 92.85 29.71 0.0001 
T*C 40.50 1 40.50 12.96 0.0032 
T*W 48.02 1 48.02 15.37 0.0018 
C*W 11.04 1 11.04 3.53 0.0827 
Residual 40.63 13 3.13   
Pure Error 2.87 5 0.57   
Total 371.27 19    

� -alumina 
Model 99.94 9 11.10 36.39 < 0.0001 
T 83.68 1 83.68 274.20 < 0.0001 
C 0.14 1 0.14 0.45 0.5211 
W 1.96 1 1.96 6.41 0.0322 
T2 2.65 1 2.65 8.69 0.0163 
C2 6.53 1 6.53 21.38 0.0012 
W2 1.99 1 1.99 6.54 0.0309 
T*C 6.56 1 6.56 21.48 0.0012 
T*W 2.95 1 2.95 9.66 0.0125 
C*W 7.51 1 7.51 24.62 0.0008 
Residual 2.75 9 0.31   
Pure Error 0.45 5 0.090   
Total 102.69 18    
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Table G3: Analysis of var iance showing the effect of var iables on acetaldehyde yield 
over  different catalysts 

 
Source Of 
Variation 

Sum Of 
Squares 

Degree Of 
Freedom 

Mean Square F Value Prob>F 

HZSM-5 
Model 164.74 3 54.91 41.40 < 0.0001 
T 137.62 1 137.62 103.76 < 0.0001 
C 9.25 1 9.25 6.97 0.0178 
W 17.87 1 17.87 13.48 0.0021 
Residual 21.22 16 1.33   
Pure Error 0.015 5 3.0E-03   
Total 185.97 19    

HY 
Model 346.09 5 69.22 77.15 < 0.0001 
T 286.30 1 286.30 319.12 < 0.0001 
W 11.10 1 11.10 12.37 0.0038 
T2 7.69 1 7.69 8.58 0.0117 
W2 17.37 1 17.37 19.37 0.0007 
T*W 8.22 1 8.22 9.16 0.0097 
Residual 11.66 13 0.90   
Pure Error 3.15 5 0.63   
Total 357.75 18    

Silica-alumina 
Model 120.92 3 40.31 7.97 0.0018 
T 93.40 1 93.40 18.46 0.0006 
C 3.45 1 3.45 0.68 0.4212 
C2 24.07 1 24.07 4.76 0.0444 
Residual 80.94 16 5.06   
Pure Error 4.78 5 0.96   
Total 201.85 19    

� -alumina 
Model 90.15 5 18.03 46.27 < 0.0001 
T 51.18 1 51.18 131.34 < 0.0001 
C 0.31 1 0.31 0.80 0.3854 
W 12.20 1 12.20 31.31 < 0.0001 
T2 22.69 1 22.69 58.22 < 0.0001 
C2 2.26 1 2.26 5.79 0.0305 
Residual 5.46 14 0.39   
Pure Error 1.24 5 0.25   
Total 95.60 19    
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Table G4: Analysis of var iance showing the effect of var iables on acrolein yield over  
different catalysts 

 
Source Of 
Variation 

Sum Of 
Squares 

Degree Of 
Freedom 

Mean Square F Value Prob>F 

HZSM-5 
Model 98.25 3 32.75 17.76 < 0.0001 
T 66.26 1 66.26 35.93 < 0.0001 
C 9.02 1 9.02 4.89 0.0419 
W 22.98 1 22.98 12.46 0.0028 
Residual 29.50 16 1.84   
Pure Error 0.088 5 0.018   
Total 127.75 19    

HY 
Model 204.97 5 40.99 43.28 < 0.0001 
T 82.05 1 82.05 86.63 < 0.0001 
W 18.54 1 18.54 19.57 0.0006 
T2 39.02 1 39.02 41.19 < 0.0001 
W2 49.31 1 49.31 52.06 < 0.0001 
T*W 23.32 1 23.32 24.63 0.0002 
Residual 204.97 5 40.99   
Pure Error 1.58 5 0.32   
Total 218.23 19    

Silica-alumina 
Model 224.33 4 56.08 25.17 < 0.0001 
T 167.74 1 167.74 75.29 < 0.0001 
C 0.39 1 0.39 0.18 0.6811 
W 42.86 1 42.86 19.24 0.0005 
T*C 13.34 1 13.34 5.99 0.0272 
Residual 33.42 15 2.23   
Pure Error 1.17 5 0.23   
Total 257.75 19    

� -alumina 
Model 128.89 5 25.78 3.63 0.0257 
T 40.23 1 40.23 5.67 0.0320 
C 3.74 1 3.74 0.53 0.4797 
W 0.18 1 0.18 0.025 0.8773 
T*W 41.22 1 41.22 5.81 0.0303 
C*W 43.52 1 43.52 6.14 0.0266 
Residual 99.32 14 7.09   
Pure Error 0.59 5 0.12   
Total 228.21 19    
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Table G5: Analysis of var iance showing the effect of var iables on formaldehyde 

yield over  different catalysts 
 

Source Of 
Variation 

Sum Of 
Squares 

Degree Of 
Freedom 

Mean Square F Value Prob>F 

HZSM-5 
Model 24.83 5 4.97 22.72 < 0.0001 
T 18.36 1 18.36 83.99 < 0.0001 
C 1.19 1 1.19 5.44 0.0352 
W 0.66 1 0.66 3.03 0.1036 
T2 1.46 1 1.46 6.66 0.0218 
W2 3.54 1 3.54 16.18 0.0013 
Residual 3.06 14 0.22   
Pure Error 0.12 5 0.024   
Total 27.89 19    

HY 
Model 41.62 4 10.40 5.18 0.0080 
T 0.51 1 0.51 0.26 0.6207 
W 1.15 1 1.15 0.57 0.4608 
T2 33.29 1 33.29 16.58 0.0010 
W2 9.56 1 9.56 4.76 0.0454 
T*W 41.62 4 10.40 5.18 0.0080 
Residual 30.12 15 2.01   
Pure Error 7.36 5 1.47   
Total 71.73 19    

Silica-alumina 
Model 54.77 5 10.95 12.10 0.0001 
T 9.49 1 9.49 10.49 0.0060 
C 25.73 1 25.73 28.43 0.0001 
W 1.88 1 1.88 2.07 0.1718 
T2 9.91 1 9.91 10.95 0.0052 
T*W 7.76 1 7.76 8.58 0.0110 
Residual 12.67 14 0.90   
Pure Error 2.24 5 0.45   
Total 67.44 19    

� -alumina 
Model 9.93 4 2.48 8.09 0.0013 
C 1.55 1 1.55 5.04 0.0414 
W 1.28 1 1.28 4.16 0.0608 
C2 5.63 1 5.63 18.35 0.0008 
W2 2.28 1 2.28 7.42 0.0165 
Residual 4.30 14 0.31   
Pure Error 0.63 4 0.16   
Total 14.23 18    
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Table G6: Analysis of var iance showing the effect of var iables on acetol yield over 
different catalysts 

 
Source Of 
Variation 

Sum Of 
Squares 

Degree Of 
Freedom 

Mean Square F Value Prob>F 

HZSM-5 
Model 112.08 2 56.04 75.76 < 0.0001 
T 106.76 1 106.76 144.32 < 0.0001 
W 5.32 1 5.32 7.19 0.0158 
Residual 12.58 17 0.74   
Pure Error 2.44 5 0.49   
Total 124.66 19    

HY 
Model 162.85 6 27.14 23.52 < 0.0001 
T 38.30 1 38.30 33.19 < 0.0001 
C 27.96 1 27.96 24.23 0.0003 
W 2.72 1 2.72 2.35 0.1490 
T2 18.55 1 18.55 16.07 0.0015 
W2 61.69 1 61.69 53.46 < 0.0001 
T*W 19.13 1 19.13 16.57 0.0013 
Residual 15.00 13 1.15   
Pure Error 13.54 5 2.71   
Total 177.86 19    

Silica-alumina 
Model 114.14 4 28.54 7.34 0.0018 
T 67.32 1 67.32 17.32 0.0008 
C 0.77 1 0.77 0.20 0.6616 
W 4.37 1 4.37 1.12 0.3059 
C*W 41.68 1 41.68 10.72 0.0051 
Residual 58.30 15 3.89   
Pure Error 8.02 5 1.60   
Total 172.44 19    

� -alumina 
Model      
T 64.59 2 32.30 6.85 0.0066 
W 44.46 1 44.46 9.43 0.0069 
Residual 80.15 17 4.71   
Pure Error 8.53 5 1.71   
Total 144.75 19    
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Table G7: Analysis of var iance showing the effect of var iables on gas product yield 
over  different catalysts 

 

 
 
 
 
 
 
 
 
 
 
 
 

Source Of 
Variation 

Sum Of 
Squares 

Degree Of 
Freedom 

Mean Square F Value Prob>F 

HZSM-5 
Model 5.76 2 2.88 12.95 0.0004 
T 3.47 1 3.47 15.61 0.0010 
W 2.29 1 2.29 10.30 0.0051 
Residual 3.78 17 0.22   
Pure Error 5.48E-03 5 1.09E-03   
Total 9.54 19    

HY 
Model 108.22 5 21.64 36.95 < 0.0001 
T 52.11 1 52.11 88.97 < 0.0001 
W 40.24 1 40.24 68.70 < 0.0001 
T2 1.22 1 1.22 2.08 0.1712 
W2 15.13 1 15.13 25.82 0.0002 
T*W 0.17 1 0.17 0.29 0.5973 
Residual 8.20 14 0.59   
Pure Error 0.092 5 0.018   
Total 116.42 19    

Silica-alumina 
Model 236.06 6 39.34 21.60 < 0.0001 
T 107.21 1 107.21 58.85 < 0.0001 
C 4.40 1 4.40 2.41 0.1443 
W 45.53 1 45.53 25.00 0.0002 
T*C 38.63 1 38.63 21.21 0.0005 
T*W 24.50 1 24.50 13.45 0.0028 
C*W 15.79 1 15.79 8.67 0.0114 
Residual 23.68 13 1.82   
Pure Error 1.43 5 0.29   
Total 259.75 19    

� -alumina 
Model 37.13 2 18.56 13.39 0.0003 
T 29.99 1 29.99 21.63 0.0002 
W 7.14 1 7.14 5.15 0.0365 
Residual 23.56 17 1.39   
Pure Error 0.058 5 0.012   
Total 60.69 19    
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Table G8: Analysis of var iance showing the effect of var iables on char  and residue 
yield over  different catalysts 

 

 
 
 
 
 

Source Of 
Variation 

Sum Of 
Squares 

Degree Of 
Freedom 

Mean Square F Value Prob>F 

HZSM-5 
Model 66.96 6 11.16 8.81 0.0006 
T 9.30 1 9.30 7.34 0.0179 
C 17.27 1 17.27 13.62 0.0027 
W 3.83 1 3.83 3.02 0.1056 
W2 20.41 1 20.41 16.11 0.0015 
T*C 7.03 1 7.03 5.55 0.0349 
T*W 9.12 1 9.12 7.19 0.0188 
Residual 16.47 13 1.27   
Pure Error 2.52 5 0.50   
Total 83.43 19    

HY 
Model 47.74 4 11.94 5.13 0.0083 
T 13.25 1 13.25 5.70 0.0306 
C 0.21 1 0.21 0.089 0.7699 
W 4.37 1 4.37 1.88 0.1904 
C*W 29.92 1 29.92 12.87 0.0027 
Residual 34.87 15 2.32   
Pure Error 4.49 5 0.90   
Total 82.61 19    

Silica-alumina 
Model 38.52 3 12.84 20.55 < 0.0001 
T 0.38 1 0.38 0.60 0.4498 
C 8.64 1 8.64 13.82 0.0021 
W 30.77 1 30.77 49.26 < 0.0001 
Residual 9.37 15 0.62   
Pure Error 0.010 5 2.01E-03   
Total 47.89 18    

� -alumina 
Model 5.19 6 0.87 7.41 0.0013 
T 2.24 1 2.24 19.17 0.0007 
C 0.045 1 0.045 0.39 0.5446 
W 0.73 1 0.73 6.24 0.0267 
T*C 0.23 1 0.23 2.01 0.1797 
T*W 0.97 1 0.97 8.34 0.0127 
C*W 0.97 1 0.97 8.34 0.0127 
Residual 1.52 13 0.12   
Pure Error 0.096 5 0.019   
Total 6.71 19    
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Appendix H1: Calibration curves for  flow meter  and syr inge pump 
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Figure: Calibration curve for flow meter 
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   Figure: Calibration curve for syringe pump
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Appendix H2: GC calibration curves for  gaseous and liquid products 
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Figure: GC calibration curve for hydrogen 
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Figure: GC calibration curve for nitrogen 
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   Figure: GC calibration curve for carbon di-oxide 
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Figure: GC calibration curve for carbon monooxide 
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Figure: GC calibration curve for methane 
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Figure: GC calibration curve for ethene 
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Figure: GC calibration curve for ethane 
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   Figure: GC calibration curve for ethyne 
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   Figure: GC calibration curve for propane 
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y = 9E-20x2 + 2E-12x

R2 = 0.9931

0.0E+00

5.0E-08

1.0E-07

1.5E-07

2.0E-07

2.5E-07

- 20,000 40,000 60,000 80,000 100,000

Average Peak Area, a.u.

C
3H

6,
 g

 m
ol

e

    Figure: GC calibration curve for propylene 
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   Figure: GC calibration curve for butane 
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    Figure: GC calibration curve for 1-butene 
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   Figure: GC calibration curve for n-butane 
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   Figure: GC calibration curve for 2-butene 
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   Figure: GC calibration curve for acetaldehyde 



 145 

y = 2E-10x

R2 = 0.98

0.0E+00

8.0E-07

1.6E-06

2.4E-06

3.2E-06

4.0E-06

- 5,000 10,000 15,000 20,000 25,000

Average Peak Area, a.u. 

ac
ro

le
in

, g
 

   Figure: GC calibration curve for acrolein 
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   Figure: GC calibration curve for formaldehyde 
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    Figure: GC calibration curve for acetol 



 146 

y = 2E-10x

R2 = 0.99

0.0E+00

8.0E-07

1.6E-06

2.4E-06

3.2E-06

4.0E-06

- 5,000 10,000 15,000 20,000 25,000
Average Peak Area, a.u.

A
lly

l a
lc

oh
ol

, g
 

 
Figure: GC calibration curve for allyl alcohol 
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Figure: GC calibration curve for acetone 
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   Figure: GC calibration curve for Isopropyl alcohol (IPA) 
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Figure: GC calibration curve for phenol  
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   Figure: GC calibration curve for Acetic Acid (AA) 
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   Figure: GC calibration curve for Propionic Acid (PA) 
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   Figure: GC calibration curve for glycerol 
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   Figure: GC calibration curve for glycerol formal (Glyc. Forml.) 
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Appendix H3: Sample calculations for  mass balance 
 

The calculations shown here are based on experiment 2 using HZSM-5 

Feed glycerol (input) = 4.92 g 

Mass balance calculations:  

Total liquid product collected (including unconverted glycerol) =  4.34 g 

Weight of gas        =  3.68E-2 g 

Weight of char and residue      = 0.20 g 

Total product (output)       = 4.58 g 

Mass balance = 100 - (input-output)/input*100  

= 100 - (4.92-4.58)/4.92*100 = 93.02 wt% 

Liquid product analysis: 

Moisture content in the liquid product = 11.98 wt% 

Table Calculation of liquid product composition 

Components Peak areas from GC 
(a.u.) 

Components 
(g) 

Acetaldehyde 7883 0.103 
Acetone 969 0.006 

Acrolein 10478 0.068 

Formaldehyde 3106 0.101 

IPA 547 0.004 

Allyl Alcohol 17286 0.113 

Acetol 17462 0.227 

Acetic Acid 1479 0.014 

Propionic Acid 5909 0.038 

Glycerol Formal 2524 0.025 

Phenol 941 0.003 

Glycerol 166219 1.623 

Total area (known) 234803  

     

Total area of all peaks from GC = 268425 
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Unknowns = (1- total known area/ total area of all peaks)*100 

  = (1- 234803/268425)*100 = 12.5 wt% 

 

Un-converted glycerol = 1.62 g 

Glycerol conversion  = (1- un-converted glycerol/glycerol fed)*100 

    = (1 - 1.62/4.92)*100 = 67.01 wt% 

 

Gas product analysis: 

Total volume of gas collected (excluding N2) = 0.02 L 

Volume of injection = 500 µL 

Table: Calculations for product gas composition and weight  

Component Peak areas 
from GC 

Moles in injected 
volume 

Moles in total 
gas volume 

Mole % 
excluding N2 

Weight 
(g) 

CO 11591 1.16E-07 5.79E-04 5.33E+01 1.62E-
02 CO2 8135 6.51E-08 3.25E-04 2.99E+01 1.43E-
02 CH4 1135 5.69E-09 2.84E-05 2.61E+00 4.55E-
04 C2H4 2902 8.70E-09 4.35E-05 3.99E+00 1.22E-
03 C2H6 546 1.64E-09 8.20E-06 7.54E-01 2.46E-
04 C3H6 10303 2.01E-08 1.03E-04 9.47E+00 4.33E-
03 N2 1742526 1.74E-05 8.71E-02 

 
  

Total wt = 3.68E-2 

 


