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ABSTRACT 
Using Canadian data we estimate the effects of monetary policy shocks on various real 

and nominal variables using a fully recursive VAR model.  We decompose the nominal 

interest rate into an ex-ante real interest rate and inflationary expectations using the 

Blanchard-Quah structural VAR model with the identifying restriction that ex-ante real 

interest rate shocks have but a temporary impact on the nominal interest rate. The 

inflationary expectations are then employed to estimate a policy reaction function that 

identifies monetary policy shocks.  We find that a positive shock introduced by raising 

the monetary aggregates raises inflationary expectations and temporarily lowers the ex-

ante real interest rate. As well, it depreciates the Canadian dollar and generates other 

macro effects consistent with conventional monetary theory although these effects are not 

statistically significant. Using the overnight target rate as the monetary policy instrument 

we find that a contractionary monetary policy shock lowers inflationary expectations and 

raises the ex-ante real interest. Such a contractionary monetary policy shock also 

appreciates the Canadian currency, decreases industrial output and increases the 

unemployment rate. We obtain qualitatively better results using the overnight target rate 

rather than a monetary aggregate as the monetary policy instrument.  Our estimated 

results are robust to various modifications of the basic VAR model and do not encounter 

empirical anomalies such as the liquidity and exchange rate puzzles found in some 

previous VAR studies of the effects of monetary policy shocks in an open economy. 
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1. INTRODUCTION 

 

Although there has been much research in the past decade on the effects of monetary 

policy shocks in various macro-economic variables, most of them encountered puzzling 

dynamic responses1. For example, the liquidity puzzle is the finding that an increase in a 

monetary aggregate (such as M0, M1 and M2) is associated with an increase rather than a 

decrease in nominal interest rates (Leeper and Gordon, 1991). The price puzzle is the 

finding that, when monetary policy shocks are identified as innovations in an interest rate, 

the monetary tightening is associated with an increase rather than a decrease in the price 

level (Sims, 1992). The exchange rate puzzle is the finding that while a positive 

innovation in the interest rates in the United States is accompanied by an appreciation of 

U. S dollar relative to other G-7 countries (Eichenbaum and Evans, 1995), such monetary 

contraction in the other G-7 countries is often associated with depreciation in their 

currencies (Grilli and Roubini, 1995; Sims, 1992). 

 
 

Empirical research involving both open and closed economies addressed these puzzles, 

and provided suggestions on how to explain those puzzles. According to Sims (1992), in 

the presence of money demand shocks, innovations in the monetary aggregates do not 

correctly represent exogenous changes in monetary policy. He, therefore, proposed 

innovations in the short-term interest rates as the indicator of a monetary policy change. 

Sims’ solution, however, was not widely accepted as it leads to the price puzzle: a 

monetary contraction is accompanied by a persistent increase in the price level. Some 

other authors (Strongin, 1995; Eichenbaum and Evans, 1995) then suggested identifying 

monetary policy shocks with innovations in the narrow monetary aggregates, such as 

non-borrowed reserves. 
 

 

 

 

One possible explanation of the price puzzle according to Sims is that interest rate 

innovations partly reflect inflationary pressures which in turn cause price increases. Grilli 

and Roubini (1995) provided evidence that this explanation of price puzzle also explains 

                                                           
1 For an extensive review of these puzzles and early attempts to resolve them, see Kim and Roubini (2000). 



the exchange rate puzzle. Later on, to test this explanation of price puzzle, Sims and Zha 

(1995) proposed a Structural VAR approach with contemporaneous restrictions that 

includes variables proxying for expected inflation.  The results obtained in this way were 

consistent with the theory of monetary policy contraction: a monetary policy contraction 

was accompanied by an increase in interest rates, a reduction in the money supply, a 

transitory fall in output and a persistent reduction in the price level. 
 

In a small open economy context, Cushman and Zha (1997) and Kim and Roubini (2000) 

argued to use the structural VAR method with contemporaneous restrictions on some 

variables to properly identify the policy reaction function. They believe that as the 

external shocks are also very important for domestic monetary policy in a small open 

economy, it is important to take those influences under consideration. By incorporating 

some foreign variables into the policy reaction function, they were able to solve the 

puzzles encountered by the previous studies.  
 

In a different approach to the same problem, Kahn et al. (2002) argued that if inflationary 

expectations are not observable, one can not infer from an observed increase in nominal 

interest rates that a commensurate increase in the real interest rate occurred. It is, 

therefore, difficult in studies that examine nominal interest rates to distinguish between 

the interaction of central bank policy with real interest rates and its interaction with 

inflationary expectations. Also these studies cannot examine the extent to which 

monetary policy leads or reacts to changes in inflation and inflationary expectations as 

they consider realized inflation rates rather than inflationary expectations. To address 

these problems, Kahn et al. (2002) used the Israeli data of real interest rates and 

inflationary expectations, calculated from the market prices of indexed- and nominal-

bonds, to measure the effects of monetary policy using the fully recursive VAR model. 

They found that monetary policy shocks, introduced by raising the overnight rate of the 

Bank of Israel, raises 1-year real interest rates, lowers inflationary expectations and 

appreciates the Israeli currency, effects which are consistent with economic theory. They 

also found that the monetary policy impacts are mainly concentrated on short-term real 

rates. 
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It can be, therefore, summarized that the puzzling responses of various macro-economic 

variables to monetary policy shocks originate either due to the lack of the consideration 

of inflationary expectations or due to the incorrect identification of monetary policy. In 

this thesis, to take into account of these facts, we proceed in two steps. First, we calculate 

inflationary expectations and ex-ante real interest rates using the Structural VAR method 

proposed by Blanchard and Quah (1989) with the identifying restrictions that real interest 

rate innovations have temporary effects while inflationary expectations innovations have 

permanent effects on nominal interest rates2. In the second step, using the data on real 

interest rates and inflationary expectations, we explicitly examine the separate reactions 

of both ex-ante real interest rates and inflationary expectations to monetary policy shocks. 

To do this, we use the fully recursive VAR model as used by Christiano et al. (1996), 

Edelberg and Marshall (1996), and Khan et al. (2002). We also examine the reaction of 

the central bank’s monetary policy to changes in investor inflationary expectations and 

how the short-term end and the long-term end of the term structures of real interest rates 

react to monetary policy shocks. In addition, to have a diagnostic check of our model, we 

augment our basic model to include some non-financial variables that may also impact 

real interest rates and inflationary expectations. The exclusion of these variables may 

give us some misleading results if they are related to central bank monetary policy. The 

additional variables in the augmented model are industrial output, the unemployment rate 

and the US dollar exchange rate of Canadian currency. 

 

Therefore, in sum, in our study, using a better set of data (inflationary expectations and 

ex-ante real interest rates) than was available in the previous studies, we are able answer 

the following questions: How do monetary policy shocks affect real interest rates and 

inflationary expectations? How differentially does the monetary policy impact on real 

rates of different maturities3? If the central bank’s monetary policy shocks affect these 

variables, is there any lag in the policy’s impact on these variables? How does the 

                                                           
2 Using the same identifying restrictions, St-Amant (1995) and Gottschalk (2001) calculated the inflation 
expectations and ex-ante real interest rates from nominal interest rates. St-Amant calculated these rates 
using the U.S.A data and Gottschalk calculated these rates using the data of Euro area.  
3 In our model, we will use real interest rates of different maturities: one-year ex-ante real interest rate, ex-
ante real forward rate of  year two and ex-ante real forward rate of year three to see the effects of the central 
bank monetary policy on them. 
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monetary policy shock affect the exchange rates and other variables in the economy such 

as the unemployment rate, output level etc.? What is the magnitude of the policy’s impact 

on these variables and how long does it last? Does the central bank’s monetary policy 

respond to changes in inflationary expectations and other variables in the economy? To 

search for the answers of these questions, we used Canadian data in our analysis. 

 

We find that a positive monetary policy shock introduced by increasing M1B (currency 

and all chequable deposits in chartered banks) temporarily lowers the ex-ante real interest 

rate and raises inflationary expectations. The effect of such a monetary policy shock on 

the nominal interest rate, which nets the effect of the shock on real interest rate and 

inflationary expectations, is a short-run decline in it which is smaller in magnitude than 

the ex-ante real rate. We find that the impact of a given monetary policy shock is smaller 

on long-term interest rate than on short-term interest rate. We also find that a positive 

monetary policy shock depreciates the Canadian currency and generates other macro 

effects consistent with the conventional monetary theory. To compare our results with 

previous studies, we also estimate our model using the overnight target rate as the 

monetary policy instrument. We find that a contractionary monetary policy shock 

introduced by raising the overnight target rate temporarily lowers inflationary 

expectations and increases the ex-ante real interest rate with statistically insignificant 

effect on the second and the third year ex-ante real forward rates. We also find that this 

type of monetary policy shock decreases output, increases the unemployment rate and 

appreciates the Canadian currency. Our results are qualitatively better using the overnight 

target rate instead of the monetary aggregate as the monetary policy instrument.  

 

The remainder of the thesis is organized as follows. Chapters 2 and 3 provide estimate of 

the ex-ante real interest rate and inflationary expectations. Chapter 2 discusses the theory 

behind the decomposition of the nominal interest rate into the ex-ante real interest rate 

and the inflationary expectations using the Blanchard-Quah Structural Vector Auto 

Regression (VAR) methodology. In Chapter 3, we report the suitability of our data for the 

Blanchard-Quah model, the estimated variance decomposition of the nominal interest rate, 

the estimated impulse responses of nominal interest rates to ex-ante real interest rate and 
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the inflationary expectation shocks, and we present the estimated series of inflationary 

expectations and the ex-ante real interest rate. In Chapter 4, we describe the fully 

recursive VAR model used to estimate the effects of monetary policy shocks on various 

macroeconomic variables, and we empirically identify the feedback rule and the 

exogenous monetary policy shocks. Chapter 5 presents the estimated results including the 

impulse response of various macroeconomic variables to monetary policy shocks and the 

analysis of their implications. Chapter 6 concludes.   
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CHAPTER 2 

 

2.1 The Theory behind the Decomposition of the Nominal Interest Rate 

into the Ex-ante Real Interest Rate and Inflationary Expectations 
 
We apply the structural VAR methodology developed by Blanchard and Quah (1989) to 

decompose the Canadian one-year, two-year and three-year nominal interest rates into the 

expected inflation and the ex-ante real interest rate components following the approach 

by St-Amant (1996) and Gottschalk (2001). The starting point of St. Amant is the Fisher 

equation that states that the nominal interest rate is the sum of the expected inflation and 

the ex-ante real interest rate: 

            n )( ,,, ktktkt Er π+=          (1) 
 

where is the  nominal interest at time t on a bond with k periods till maturity, is the 

corresponding ex-ante real rate and 

ktn , ktr ,

)( ,ktE π denotes inflationary expectations for the time 

from t to t+k. The inflation forecast error kt ,ε  can be defined as the difference between 

the actual inflation kt ,π  and the expected inflation )( ,ktE π : 
 

      kt ,ε  = kt ,π -  )( ,ktE π       (2) 
 

 

Now substituting (2) into (1), we get the following relation: 

   - ktn , kt ,π  = - ktr , kt ,ε        (3) 

 

Therefore, the ex-post real rate ( - ktn , kt ,π ) is the sum of the ex-ante real rate r  and the 

inflation forecast error 

kt ,

kt ,ε . Under the assumptions that both the nominal interest rate and 

the inflation rate are integrated of order one and they are co-integrated, and that the 

inflation forecast error kt ,ε  is integrated of order zero, assumptions we test and confirm in 

Section III, then the ex-ante real rate  must be stationary. kt ,r
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Gottschalk identifies three implications that flow from these assumptions. First, if the 

nominal interest rate is non-stationary, this variable can be decomposed into a non-

stationary component comprised of changes in the nominal interest rate with a permanent 

character and a stationary component comprised of the transitory fluctuations in the 

interest rate. Second, if the nominal interest rate and the actual inflation rate are co-

integrated, it implies that both variables share the common stochastic trend, and this 

stochastic trend is the source of the non-stationary of both variables. On the other hand, if 

the ex-ante real interest rate is stationary, the nominal trend has no long-run effect on this 

variable. Third, if the nominal interest rate and the actual inflation rate are co-integrated 

(1,1) and the inflation forecast error is integrated of order zero I(0), this implies that 

changes in inflationary expectations are the source of these permanent movements in the 

nominal interest rate. 
 

Therefore, the permanent movements of the nominal interest rate obtained by using the 

Blanchard-Quah methodology will be the nothing other than those inflationary 

expectations. Since the permanent component of the nominal interest rate corresponds to 

inflationary expectations, the stationary component must be the ex-ante real interest rate. 

Therefore, using the identifying restrictions that shocks to the ex-ante real rate have only 

a transitory effect on the nominal interest rate while shocks to inflationary expectations 

induce a permanent change in the nominal interest rate, we can calculate inflationary 

expectations and the ex-ante real rate of interest.  

 
 
2.2 The Blanchard-Quah Structural VAR Methodology4 
 

Assuming our data satisfies the stationarity assumption (assumption that we test and 

confirm in Chapter 3), we turn to the structural VAR model developed by Blanchard and 

Quah (1989) to decompose the nominal interest rate into the ex-ante real interest rate and 

inflationary expectations. As mentioned earlier, our key assumption is that nominal 

interest rate fluctuations are a function of two non-autocorrelated and orthogonal types of 

                                                           
4 The Blanchard-Quah VAR model of this chapter is based on Enders (2003). 
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shocks: inflationary expectations shocks ( pε ) and ex-ante real interest rate shocks ( rε ). 

Our objective is to identify these two shocks and thereafter compute the empirical 

measures of the ex-ante real interest rate and inflationary expectations components of the 

nominal interest rate. For this purpose, we use a bivariate model comprised of the first 

difference of the nominal interest rate ( ) and real interest rate ( )tn tr
5.Define the first 

difference of nominal interest rate as . Now assuming a lag-length of q, the simple 

bivariate Blanchard-Quah VAR model can be written as follows: 

ty

 

ptqtqttttt ryryrbby εββαα +++++−= −−−− 12111121111210 ............   (4) 

rtqtqttttt rryryybbr εββαα +++++−= −−−− 22211221212120 ............   (5) 

 
where   ptε  and rtε are uncorrelated white-noise disturbances with standard deviations of 

pσ  and rσ respectively. 

 

These equations are in structural-form and not in reduced-form as both variables have 

contemporaneous effects on each other. As we will estimate the reduced-form VAR 

rather than the structural-form VAR, our next job is to transform the structural equations 

into the reduced-form equations. To do that, let’s rewrite structural equations in matrix-

form in the following way: 
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1

1
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1211

20

10

21

12 ..........
1

1
    

 

 
and more compactly, we can write: 

 
tqtptt xxBx ε+Γ++Γ+Γ= −− ..............110      (6) 

 
 

                                                           
5 To use the Blanchard-Quah technique, both variables in the VAR model must be in a stationary form. 
Since the nominal interest rate is integrated of order one, we used it first differenced in our model. The 
second variable in the VAR model- the real interest rate- is already in a stationary form, and hence we 
don’t need to take its first difference. 
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where     







=

1
1

21

12

b
b

B

 

  







=Γ

20

10
0 b

b

  







=Γ

2221

1211
1 αα

αα

  

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1211
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ββ
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
=

t

t
t r
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  



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
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=

rt

pt
t ε

ε
ε

 

Therefore, pre multiplying both sides of (6) by 1−B , we get the VAR model in reduced-
form or in standard-form as follows: 
 

tqtptt exAxAAx ++++= −− ..............110     (7) 
 

where,     

tt

pp

Be

BA

BA

BA

ε1

1
1

1
1

0
1

0

−

−

−

−

=

Γ=

Γ=

Γ=

 

Defining  as the element i  of the vector ,  as the element in row i and column  
of the matrix ,  as the element in row i  and column

0ia 0A ija j

1A ijd j of the matrix , and e  as the 
element i of the vector , we can rewrite (7) into the following reduced-form VAR model: 

qA it

te

tqtqtttt erdydrayaay 1121111211110 .................. +++++= −−−−   (8) 
 

tqtqtttt erdydrayaar 2222112212120 .................. +++++= −−−−   (9) 
 
The error terms-  and of the above reduced-form equations are composites of the 
structural shocks-

te1

pt

te2

ε  and rtε .Since  (defined above), we can express e  and e  
in terms of 

tt Be ε1−= t1 t2

ptε  and rtε  as follows: 
 

)1/()( 2112121 bbbe rtptt −−= εε       (10) 
 

)1/()( 2112212 bbbe ptrtt −−= εε       (11) 
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According to the standard assumption of VAR, since ptε  and rtε are white-noise process, 
 and  must have zero means, constant variance, and are individually serially 

uncorrelated. The important point to note here is that although each e  and  have zero 
autocovariances, they are correlated with each other unless there is no contemporaneous 
effect of  on and on , that is, unless the coefficients

te1 te2

ty

t1

0

te2

tr tr ty 2112 == bb 6.  
 
Now if we ignore the intercept terms, following Enders (2003), the bivariate moving 

average (BMA) representation of { } and { } sequences can be written in the 

following form: 

ty tr

 

∑ ∑
∞

=

∞

=
−− +=

0 0
1211 )()(

k k
krtkptt kckcy εε      (12) 

 

∑ ∑
∞

=

∞

=
−− +=

0 0
2221 )()(

k k
krtkptt kckcr εε      (13) 

 
 

 
Using matrix notation, in a more compact form, we can rewrite the above equations as 

follows: 

 


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1211      (14) 

 

where the C  are polynomials in lag operator L such that the individual coefficient of 

 are denoted by c . For example, the second coefficient of is  and 

the third coefficient of C is . Let’s drop the time subscripts of the variance and 

the covariance terms and normalize the shocks for our convenience so that var(

)(Lij

)(LCij )(kij

)(21 L

)(12 LC )2(12c

)

)3(21c

1=pε  

and 1) =var( rε . If we name ∑  the variance-covariance matrix of the innovations 

(structural shocks), we end up as follows:  

ε

 

 

                                                           
6 A detailed discussion of the properties of the structural shocks- ptε  and rtε  and the composite errors 

terms of the reduced-form equations-  and e  are in Enders (2003). te1 t2
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







=∑

)var()cov(
),cov()var(

rrp

rpp

εεε
εεε

ε  

       =  







10
01

 

 

As mentioned earlier, the key to decompose the nominal interest rate  into its trend and 

irregular component is to assume that ex-ante real interest rate shocks 

tn

rtε  have a 

temporary effect on the { } sequence. In the long run, therefore, if the nominal interest 

rate n is to be unaffected by the ex-ante real interest rate shock

tn

t rtε , it must be the case 

that the cumulated effect of rtε shocks on the y  sequence must be zero. So the 

coefficients in (12) must be such that  

t

  

 

   = 0    (15) ∑
∞

=
−

0
12 )(

k
krtkc ε

 

 

 

 

 

 

 

Our next job is then to recover ex-ante real interest rate shocks rtε  and inflationary 

expectation shocks ptε  from the VAR estimation. The reduced-form equations (8) and 

(9), in lag operator, can be written in the following matrix form: 
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In a more compact notation, we can rewrite the above equations as follows: 
 

         ttt exLAx += −1)(        (17) 
 

where  = the column vector tx ),( ′tt ry  

           e  = the column vector t ),( 21 ′tt ee  

           A(L) = the  matrix with the elements equal to the polynomials and the      22Χ )(LAij
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  coefficients of  are denoted by . )(LAij )(kaij

 

As shown earlier, the VAR residuals in model (16) are composites of the pure 

innovations ptε  and rtε . Therefore, we can relate the VAR residuals and the pure 

innovations as follows. We know  is the one-step ahead forecast error of  i.e., 

. On the other hand, from the bivariate moving average (BMA) 

representation (equations (12) and (13)), one-step ahead forecast error can be defined as 

te ty

ty1−

12 )0(

ttt Eye1 −=

t cc 111 )0( t2εε + . Therefore, we can write  as follows: te1

 

                    = te1 rtpt cc εε )0()0( 1211 +      (18) 

 

Similarly, for we can write: te2

                   =  te2 rtpt cc εε )0()0( 2221 +                                   (19) 

 
 

Combining (18) and (19), we get the following relationship in matrix notation: 

 

















=









rt

pt

t

t

cc
cc

e
e

ε
ε

)0()0(
)0()0(

2221

1211

2

1       (20) 

 

It is now evident that once we have the values of , we can 

recover the pure innovations-

)0()0(),0(),0( 22211211 andcccc

ptε  and rtε from the regression residuals- e  and of our 

estimated VAR model. To do this, we follow the Blanchard-Quah VAR technique. 

Following them, we use the relationship between (16) and the BMA model (14) plus the 

long run restriction that nominal interest is unaffected by the ex-ante real interest rate i.e., 

the cumulative effect of 

t1 e t2

rtε  shock on { } sequence is zero (equation (15)).  We, 

therefore, end up with the following four restrictions from which we calculate the 

numerical values of the coefficients: c  which, in turn, we use 

to recover the pure innovations-

ty

), 12c )0()0( 2221 andcc),0(0(11

ptε  and rtε .  
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Restriction 1: 

 

Given (18) and using the assumption that the inflationary expectation shock ptε  and the 

ex-ante real interest rate shock rtε are uncorrelated i.e., 0=rtptE εε , we see that the 

normalization 1)()( == rp VarVar εε  means that the variance of is as followste1
7: 

                       Var                         (21) 2
12

2
111 )0()0()( cce +=

 

Restriction 2: 
 

 

Using the similar concept used in restriction 1, we get: 
 

                       Var     (22) 2
22

2
212 )0()0()( cce +=

Restriction 3: 
 

The product of e  and is  t1 te2

           [ c=tt ee 21 rtpt c εε )0()0( 1211 + ] [ rtpt cc εε )0()0( 2221 + ]     

Taking the expectation, the covariance of the VAR residuals is: 

                

                   )0()0()0()0( 2212211121 cccceEe tt +=                       (23) 
 

Restriction 4: 
 

The fourth restriction is the assumption that the ex-ante real interest rate shock rtε  has no 

long-run effect on the nominal interest rate sequence  which is equation (15). Now our tn

                                                           
7 We can easily figure out restriction 1 and restriction 2 using the following matrix algebra. Dropping the 
time subscripts of the variables in (20), we can write it more compactly as follows: 

























=









=′
′=′

=

)0()0(
)0()0(

10
01

)0()0(
)0()0(

)(0
0)(

.,.

.,.

.,.

2221

1211

2221

1211

2

1

cc
cc

cc
cc

eVar
eVar

ei

cIceEeei
cceeei

ce
εε

ε
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job is to transform this restriction into the VAR representation so that we can use this 

restriction to calculate the coefficients we need.  We will proceed as follows. 

 

We can rewrite the reduced form VAR, equation (17), as follows:  

                                                 (24) 
tt

tt

ttt

eLLAIxei

exLLAIei
eLxLAx

1])([.,.

])([.,.
)(

−−=

=−
+=

For notational convenience, let’s denote the determinant of [I – A(L)L] by D. Therefore, 

doing some algebra further equation (24) can be written as follows8: 

 

             















−

−
=









t

t

t

t

e
e

LLALLA
LLALLA

D
r
y

2

1

1121

1222

)(1)(
)()(1

)/1(

 

Using the definition of , we get: )(LAij

                

              















Σ−Σ

ΣΣ−
=









t

t

t

t

e
e

LLaLLa
LLaLLa

D
r
y

2

1

1121

1222

)(1)(
)()(1

)/1(

 

Now the solution for  in terms of the current and lagged values of { e } and { } is: ty t1 te2

 

                        (25) ∑ ∑
∞

=

∞

=

++ +−=
0 0

2
1

121
1

22 }])([])(1){[/1(
k k

t
k

t
k

t eLkaeLkaDy

 

 

 

Replacing  and  in the (25) withte1 te2 ptε  and rtε from equations (18) and (19), we get the 

following equation:     
 

 

 

 

∑ ∑
∞

=

∞

=

++ +++−=
0 0

2221
1

121211
1

22 })0()0(]()([))0()0(]()(1){[/1(
k k

rtpt
k

rtrt
k

t ccLkaccLkaDy εεεε     

                                                           
8 The details of the algebra are available in Enders (2003, p.334). 
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∑ ∑
∞

=

∞

=

++ ++−=
0 0

21
1

1211
1

22 )0(]()([)0(])(1){[/1(.,.
k k

pt
k

pt
k

t cLkacLkaDyei εε

∑ ∑
∞

=

∞

=

++ +−
0 0

22
1

1212
1

22 })0(])([)0(])(1[
k k

rt
k

rt
k cLkacLka εε     (26) 

 

 

Therefore, using (26), the restriction that the ex-ante real interest rate shock { rtε } has no 

long-run effect on the nominal interest rate n is: t

 

∑ ∑
∞

=

∞

=

++ =+−
0 0

21
1

1211
1

22 0)0(])([)0(])(1[
k k

rt
k

rt
k cLkacLka εε  

            

So our fourth restriction that for all possible realizations of the { rtε } sequence, ex-ante 

real interest rate shocks { rtε } will have only temporary effect on the y sequence (the 

first difference of nominal interest rate) and n itself (the nominal interest rate) is: 

t

t

 

∑ ∑
∞

=

∞

=

++ =+−
0 0

21
1

1211
1

22 0)0(])([)0(])(1[
k k

kk cLkacLka       (27) 

 

 

We now have four equations: (21), (22), (23) and (27) to get four unknown 

values: . Once we have these values of c  and the 

residuals of the VAR { } and { }, the entire {

)0()0(),0(),0( 22211211 andcccc

te1 e

)0(ij

t2 ptε } and { rtε } sequences can be 

identified using the following equations: 

 

 irtiptit cce −−− += εε )0()0( 12111        (28) 

and 

 irtiptit cce −−− += εε )0()0( 22212        (29) 

  
  

As our objective is to decompose the nominal interest into the ex-ante real interest rate 

and inflationary expectation, we will stop at this point. Since throughout the model we 

assume that the source of the change in the nominal interest rate is the inflationary 
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expectation shock { ptε } and the ex-ante real interest rate shock { rtε }, the cumulation of 

these effects yields the level of the nominal interest rate as a function of inflationary 

expectations and ex-ante real interest rate shocks. This means that the cumulation of the 

effects of these structural shocks give the permanent and the stationary components of the 

nominal interest rates. Adding the calculated stationary components to the mean of the 

ex-post real interest rate (mean of the difference between the observed nominal interest 

rate and the contemporaneous inflation rate), therefore, gives us the ex-ante real rate. 

Once we have the ex-ante real interest rate, inflationary expectations estimates can be 

obtained by subtracting the estimated ex-ante real interest rate from the nominal interest 

rate as the nominal interest rate is the sum of these two rates. 

 

2.3 Impulse Response Functions9 
 

 

The impulse response functions give us the opportunity to visually observe the behavior 

of the nominal interest rate in response to the inflationary expectation shock ptε  and the 

ex-ante real interest rate shock rtε . The practical way to derive the impulse response 

functions is to start with the reduced-form VAR model. Our two-variable VAR model in 

standard-form (reduced-form) with the nominal interest rate  and the real interest rate r  

in matrix notation can be written as follows:  

tn t

 


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
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
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
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

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e
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aa
aa

a
a

r
n

2

1

1

1

2221

1211

20

10                                        (30) 

 
 
Using the concept of Vector Moving Average Representation (VMA), (30) can be written 
as follows: 
 
 









=




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



t

t

t
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














+

−

−
∞

=
∑

12

1

0 2221

1211

t

it
i

i e
e

aa
aa

                              (31) 

 
 

                                                           
9 For this econometric presentation, we heavily depend on Enders (2003). 
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Now for our purpose, we will rewrite (31) in terms of ptε  and rtε sequences. From the 

relationship that , we find: tt Be ε1−=
 
           )1/()( 2112121 bbbe rtntt −−= εε  
 
            )1/()( 2112212 bbbe ntrtt −−= εε  
 In matrix notation, we can rewrite the above equations as follows: 

 

                          (32) 

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−=
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b
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e
e

ε
ε

1
1

)]1/(1[
21

12
2112

2

1

 

Combining (31) and (32), we get: 
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For notational convenience and simplification, as argued by Enders, (2003, p 305.), we 

can define the 2X2 matrix iφ  with elements :)(ijkφ  

       

               







−

−
−=

1
1

)]1/([
21

12
21121 b

b
bbAi

iφ

 

Therefore, the moving average representation (31) can be written in terms ptε  and 

rtε sequences as follows: 
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More compactly, we can write 

                                           (33) ∑
∞

=
−+=

0i
ititx εφµ
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The coefficients of iφ  shows the effects of inflationary expectations shocks, ptε , and ex-

ante real interest rate shocks, rtε , on the entire time paths of nominal interest rate 

sequences { } and real interest rate sequences { }. More precisely, the elements tn tr )(ijkφ  

are the impact multipliers of the shocks of int−ε  and irt−ε on { } and { } sequences. For 

example, the coefficient 

tn tr

)0(12φ  is the instantaneous impact of a one-unit change in the 

ex-ante real rate shock rtε on the nominal rate . In the same way, updating by one 

period, the elements 

tn

)1(11φ  and )1(22φ represents the effects of one unit change in the 

inflationary expectation shock ptε  on the nominal interest rate  and one unit change in 

the ex-ante real interest rate shock 

tn

rtε on the real interest rate  respectively.  tr

 

The cumulated effects of the impulses in ptε  and rtε  can be obtained by summing up the 

coefficients of the impulse response functions. For example, after m periods, the effect of 

the ex-ante real interest rate shock rtε on the nominal interest rate n  ismt+ )(12 mφ . 

Therefore, the cumulated sum of the effects of rtε on the { n } sequence is: t

 

                     ∑  
=

m

i
i

0
12 )(φ

 

 

As m approaches infinity, the above summation yields the long-run multiplier. Therefore, 

these four set of coefficients: )()(),(),( 22211211 iandiii φφφφ  are called the impulse response 

functions, and plotting these impulse response functions against time gives us the 

behavior of nominal interest rate series { n } and real interest rate series { r } in response 

to inflationary expectations and the ex-ante real interest rate shocks. 

t t

 

2.4 Variance Decomposition 
 

Variance decomposition is another very practical way to take a closer look at the 

behavior of the variables we used in the VAR model. In our model, with the knowledge 

of the variance decomposition, we will be able to figure out the proportion of the 
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movements in the nominal interest rate sequence { n } and the real interest rate sequence 

{ } due to the inflationary expectation shocks

t

pttr ε and the ex-ante real interest rate 

shocks rtε . To calculate the variance decomposition, we need to calculate the forecast 

errors of the VAR model in reduced-form. The standard-form VAR in (30) can be written 

more compactly as follows: 
 

                        ttt exAAx ++= −110

Updating the above equation by one period and taking the conditional expectation of , 

we get: 

1+tx

    

                      ttt xAAxE 101 +=+

 

One-step ahead forecast error, therefore, can be defined as: 

  

             11 ++ =− tttt exEx

 

Similarly, the two-step ahead forecast error is 112 ++ + tt eAe , and in the same way, the m-

step ahead forecast error is: 
 

             e                   (34) 1
1

12
2

111 ............... +
−

−+−++ ++++ t
n

mtmtmt eAeAeA

 

Next we will describe these forecast errors in terms of { }tε  sequences rather than{  

sequences. Using (33) to conditionally forecast , the one-step ahead forecast error 

is

}te

1+tx

10 +tεφ . In the same way, m-step ahead forecast error mtt xx ++ tm E−  is:  

                    =  mttmt xEx ++ − ∑
−

=
−+

1

0

m

i
imtiεφ

 

 Considering only on the {  sequence, the m-step ahead forecast error becomes: }tn
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1121121211111111 )1(.....)1()0()1(.....)1()0( +−+++−++++ −++++−+++=− ztmztmztytmytmytmttmt mmnEn εφεφεφεφεφεφ
 
 

Therefore, denoting the m-step forecast error variance of  by , we get: mty +
2)(mnσ

 

])1(...)1()0([)( 2
11

2
11

2
11

22 −+++= mm nn φφφσσ +  ])1(...)1()0([ 2
12

2
12

2
12

2 −+++ mr φφφσ

Since all the values of  are necessarily nonnegative, it is evident from the above 

equation that the variance of the forecast error increases as the forecast horizon m 

increases. Now decomposing the m-step ahead total forecast error  due to the 

inflationary expectation shocks 

2)(ijkφ

2)(mnσ

ptε  and the ex-ante real interest rate shocks rtε  

respectively, we get: 

 

Proportion of forecast error due to shocks in ptε sequence: 
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and the proportion of forecast error due to shocks in rtε sequence: 

                    

                 2
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2
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])1(.......)1()0([

m
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n

n

σ
φφφσ −+++  

 

If ex-ante real interest rate shocks rtε  explain none of the forecast error variance of the 

nominal interest rate {  at al forecast horizons, we can say that the {  sequence is 

exogenous to the ex-ante real rate. In such a situation, the nominal interest rate {  

sequence would evolve independently of the ex-ante real interest rate shock

}tn }tn

}tn

rtε and the 

real interest rate { } sequence. On the other hand, if tr rtε shocks explain all the forecast 

error variance in the {  sequence at all forecast horizons, the nominal interest rate {  

would be entirely endogenous. In our bivariate VAR model, since we assume that the ex-

}tn }tn

 20



ante real interest rate shock rtε  does not have a long-run effect on the nominal interest 

rate, it is expected that in later periods, the relative contribution of this shock on the 

nominal interest rate will be almost zero. On the other hand, the relative proportion of 

inflationary expectations shocks ptε  in explaining the fluctuation of the nominal interest 

rate in subsequent periods will tend to one.   
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CHAPTER 3 
 

3.1 The Stationarity Properties of the Data  
 

 

We use Canadian monthly data for the nominal interest rate ( n ) with one-year, two-year 

and three-years to maturity, and the seasonally adjusted consumer price index (CPI) from 

1980:1 to 2002:12. The inflation rate is calculated as the annualized monthly rate of 

change of the CPI. Our required assumptions are that the nominal interest rate and the 

inflation rate are both integrated of order one and that the two variables are co-integrated 

(1,-1). The stationary properties of the nominal interest rate, the real interest rate and the 

inflation rate are investigated using the Phillips-Perron test, the Augmented Dickey Fuller 

test (ADF), and the KPSS test. Both the ADF test and the Phillip-Perron tests have the 

null hypothesis of non-stationarity (unit-root) and the KPSS test has the null hypothesis 

of stationarity. The results of unit-root tests are reported in Table 1 and Table 2, and the 

results of co-integration test are reported in Table 3.  

t

 
 
Table 1: Unit-root tests of the CPI and the Inflation Rate. 
 

 
Unit Root Tests Variable 

ADF Test Phillips-Perron Test KPSS Test 
ln(CPI) 

 
∆ ln(CPI) 

 
2∆ ln(CPI) 

-2.4049(c, t, 14) 
 

-3.0238(c, t, 13) 
 

-6.8905(c,12 ) 
 
 
 

-4.8725(c, t, 15) 
 

-16.0516(c, t, 14) 
 

-60.8905(c,13 ) 
 
 

1.7265(15) 
 

1.1674(14) 
 

0.0344(13) 
 
 

 
∆ is the first difference operator and ∆2 is the second difference operator.  The bracket indicate the  
inclusion of a constant, c, trend, t, and lag length. Lag lengths for the ADF test are chosen by the Ng-
Perron(1995) recursive procedure and lag lengths for the Phillips-Perron and KPSS test are chosen by the 
Schwert (1989) formula .  
 

 

Consider the CPI first.  The Augmented Dickey Fuller (ADF) test cannot reject the null 

of unit root at 10 percent level but the Phillips-Perron (PP) test rejects the null hypothesis 

of unit root at 1% level of significance. The KPSS test rejects the null hypothesis of 

stationarity at 1% level of significance. Therefore, we conclude this variable is non-
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stationary. For the inflation rate, the ADF test cannot reject the null hypothesis of unit 

root at 10% level of significance and the KPSS test rejects the null hypothesis of 

stationarity at 1% level of significance. However, once again the Phillip-Perron test 

rejects the null of unit root at the 1% level. The stationarity of the first difference of the 

inflation rate is supported by all three test procedures. Given these mixed results, we do 

not reject the maintained hypothesis that the inflation rate is integrated of order one. To 

explore the stationary characteristic of the inflation rate, we also check its auto 

correlation functions.  We find that the auto correlation coefficient starts at a reasonably 

high value and it drops off as the lag length increases which suggests that this time series 

is non sationary. 

 

Table 2: Unit-root tests of Nominal and Real Interest Rates 
 

 
 

Unit Root Tests Variable 
ADF Test Phillips-Perron Test KPSS Test 

One Year Rates 
Nominal Rate (nt,1) 

 
∆ Nominal Rate 

Real Rate ( tktn π−, ) 

 
-3.2907 (c, t, 7) 

 
-6.7362(c, 6) 

 
-3.7108(c,  6) 

 
3.4373 (c, t, 7) 

 
-15.2798(c, 6) 

 
-14.1801(c,  6) 

 
2.7161 (7) 

 
0.0269 (6) 

 
1.2021 (6) 

Two- Year Rates  
Nominal Rate (nt,2)  

 
∆ Nominal Rate 

 
 ( tktn π−, ) 

 
 

-3.0030 (c, t, 7) 
 

-6.7067(c, 6) 
 

-4.1505(c, 4) 

 
 

-4. 4754 (c, t, 7) 
 

-13.4930(c, 6) 
 

-13.2895(c, 4) 

 
 

2.6805 (7) 
 

0.1040 (6) 
 

2.1101 (4) 

Three- Year Rates 
Nominal Rate (nt,3) 

 
∆ Nominal Rate 

 
Real Rate( n tkt π−, ) 

 
-3.1334 (c, t, 7) 

 
-6.9972(c, 6) 

 
-4.2688(c, 4) 

 
-4.7362 (c, t, 7) 

 
-13.3692(c, 6) 

 
-13.4652(c, 4) 

 
2.7207 (7) 

 
0.1062 (6) 

 
1.8612 (4) 

 
 
The brackets indicate the inclusion of a constant, c, trend, t, and lag length. The results are robust to the c 
nd t assumptions.  Lag lengths are chosen by the Ng-Perron(1995) recursive procedure.  a

   

 

 

Recall that it is assumed that there is a unit root in the nominal rate ( ). Table 2 

indicates that for the one- year nominal interest rate, neither the ADF test nor the Phillips-

ktn ,
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Perron (PP) test can reject the null hypothesis of unit root at 5% level of significance, and 

the KPSS test rejects the null hypothesis of stationarity at 1% level of significance. 

Therefore, we conclude this variable is non-stationary.  For the two-year nominal rate, the 

ADF cannot reject the null of unit root at 10 percent, but the PP rejects the null at 1 

percent. The KPSS test rejects the null hypothesis of stationarity at 1% level of 

significance.  For the three-year nominal rate, the ADF cannot reject the null hypothesis 

of unit root at 10% but the PP rejects at 1 percent while the KPSS rejects the null 

hypothesis of stationarity at 1 percent.  The test procedures also support the hypothesis 

that the first difference of the nominal interest rates is stationary for nominal interest rates 

of all maturities. As with the inflation data, given the mixed results we do not reject the 

hypothesis that the nominal interest rates are integrated of order one  
  
Finally consider the real rate of interest.  We test this assumption by testing the 

equivalent assumption that n tkt π−, is stationary. Both the ADF test and the Phillip-

Perron test reject the null hypothesis of unit root at 1% level of significance for real 

interest rates of all maturities although the KPSS test does not support the null hypothesis 

of stationarity for any of these real interest rates. Since both the ADF test and the Phillip-

Perron test strongly support the hypothesis of stationarity, we conclude that the real 

interest rate is stationary.  
 

 

From the above findings we can conclude that the nominal interest rate and the inflation 

rate are co-integrated. To double check our conclusion, however, we also confirm that the 

nominal interest rates of all maturities and the inflation rate are co-integrated in Table-3. 

We use the Johansen co-integration test for this purpose. The first row presents the 

likelihood ratio test for which the null hypothesis is that these variables are not co-

integrated. The second row presents the test that these variables share at most one co-

integrating equation.  Table-3 demonstrates that for all maturities, the likelihood ratio test 

statistic indicates the variables are co-integrated (1, -1).  
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Table 3: Cointegration tests of Nominal Interest Rates and Inflation rates 

 
 

Variables Eigen value Likelihood Ratio 5 Percent Critical 

Value 

1 Percent Critical 

Value 

0.763 
 

23.8655 
 

15.41 
 

20.04 Inflation Rate 

1 Year Nominal Rate 0.0095 2.5781 3.76 6.65 

0.1033 27.1494 15.41 20.04 Inflation Rate 

2 Year Nominal Rate 0.0040 0.9695 3.76 6.65 

0.0979 25.8440 15.41 20.04 Inflation Rate 

3 Year Nominal Rate 0.0045 1.1051 3.76 6.65 

 

 

3.2 Variance Decomposition and Impulse Responses 
 

 

 As we have confirmed the data satisfies all the required stationarity assumptions, our 

next step is to estimate the VAR model. We estimate three different reduced-form VAR 

models for 3 different nominal interest rates and corresponding real interest rates10. The 

two key outputs of VAR estimation that are of interest are the variance decompositions 

and impulse response functions. The decomposition of variance presented in Table 4 

allows us to measure the relative importance of inflationary expectations and the ex-ante 

real interest rate shocks that underlie nominal interest rate fluctuations over different time 

horizons. It is evident from Table 4 that the proportion of the variance of nominal interest 

rates of all maturities explained by ex-ante real interest rate shocks gradually approaches 

zero in the long-run which is the result of the restriction that ex-ante real interest rate 

shocks have no permanent effect on the nominal interest rate. As in St. Amant (1996), 

both types of shocks have been important sources of nominal interest rate fluctuations. 
  

                                                          

 

 

 

 
10 We used the RATS program (Doan, 2000) to estimate the VAR models. In all the models we use a lag-
length of 20 which was determined on the basis of Likelihood Ratio criterion and the Akaike Information 
criterion. 
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Table 4: Variance Decomposition of Nominal Interest Rates (in percent) 

 
 

One-Year Rate Two- Year Rate Three- Year Rate Horizons 

(Months) Inflationary 

Expectation 

shock 

Ex-ante Real 

Interest Rate 

shock 

Inflationary 

Expectation 

shock 

Ex-ante Real 

Interest Rate 

shock 

Inflationary 

Expectation 

shock 

Ex-ante Real 

Interest Rate 

shock 

1 12 88 5 95 10 90 

12 16 84 4 96 8 92 

24 20 80 7 93 14 86 

48 33 67 21 79 30 70 

96 56 44 50 50 58 42 

Long-term 100 0 100 0 100 0 

 

Next we present the impulse responses of nominal interest rates to the structural shocks in 

Figure 1 wherein the horizontal axis measures the number of months. Figure 1 

demonstrates that the effect of ex-ante real interest rate shocks disappear gradually while 

the effects of inflationary expectations shocks on nominal interest rates of all maturities 

are felt more dominantly in the later periods. This, as argued by St-Amant (1996, p.12) 

‘may reflect the dynamics of the adjustment of expectations to a change in the trend 

inflation’. Our impulse response functions are similar to those of Gottschalk (2001) and 

St-Amant (1996). 
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    [[                                                                 

   Figure 1: Impulse Responses of Nominal Interest Rates 

 

3.3 The Ex-ante Real Interest Rate and Inflationary Expectations 
 

 

 

 

To review, we estimate the ex-ante real interest rate and inflationary expectations by first 

computing the effects of ex-ante real rate shocks and inflationary expectations shocks on 

the nominal interest rate. The cumulation of these shocks provides the stationary and 

permanent components of nominal interest rates.  An estimate of the ex-ante real interest 

rate is then obtained by adding the stationary components to the mean of the difference 

between the observed nominal interest rate and the contemporaneous rate of inflation i.e., 
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the mean of the ex-post real interest rate. Then, the measure of inflationary expectations                
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Two-Year Nominal Rate and Expectations
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Three-Year Nominal Rate and Components
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  Figure 2: Nominal Interest Rate and Its Components 

is calculated by subtracting the ex-ante real interest rate from the nominal interest rate. 

The estimated ex-ante real interest rate and the inflationary expectations of one-year, 

two-year and three-year along with the corresponding nominal interest rates are shown in 

Figure 2. 

 

We also report the estimated series of the one-year inflationary expectation with the 

corresponding realized inflation rate in Figure 3. It is clear from the figure that the 
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estimated inflationary expectation series is less volatile than the realized inflation rate. It 

is also noticeable that expectations lag the turning points of actual inflation. 
 
 
[[ 
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   Figure 3: Inflationary Expectations and the Inflation Rate 

 
Recall that we assume that the inflation forecast errors are integrated of order zero I(0). 

As reported in Table 5, the ADF test statistic support this hypothesis at the one percent 

level of significance while the Phillips-Perron test support this hypothesis at the five 

percent level of significance respectively11. 
 

Table 5: Unit Root Test of  Inflation Forecast Errors 

Variable Unit Root Tests 

ADF Test Phillips-Perron Test Inflation Forecast Error 

-2.9148 -2.3582 

 

 

 

 

 

 

 

                                                           
11 We use a lag-length of 3 for the ADF and the Phillips-Perron tests of the inflation forecast error which 
was determined on the basis of the Ng-Perron(1995) recursive procedure. We did not add any constant or 
rend the regression. t
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CHAPTER 4 
 

4.1 A Framework for Analyzing the Effects of Monetary Policy Shocks  
 

We use a fully recursive VAR model to estimate the effects of monetary policy shocks on 

various macroeconomic variables. The first step is to identify policy shocks that are 

orthogonal to the other shocks in the model.  To do this, we follow the approach of Kahn 

et al. (2002) and Edelberg and Marshall (1996) to categorize all the variables in our 

model into three broad types.  
 
 

The first type of variable (Type I variable) is the monetary policy instrument. We use 

both the monetary aggregate, M1B, and the overnight target rate (OT) as the monetary 

policy instruments. The second type of variable (Type II variable) is the 

contemporaneous inputs to the monetary policy rule, that is, the variables the central bank 

observes when setting its policy. In the basic model, we will include only one variable- 

the measure of inflationary expectations (EI) as the contemporaneous input to the policy 

process. In the diagnostic model, however, in addition to EI, we will include other 

variables, such as output (Y), the exchange rate (E) and unemployment rate (UNPR) as 

contemporaneous inputs to monetary policy. The third type of variable (Type III variable) 

in the basic model is a variable that responds to the change in policy.  Since conventional 

theory treats the ex-ante real interest rate as the channel through which changes in policy 

are transmitted to policy targets, we use three alternative interest rates, , the one-year 

ex-ante real interest rate, F , the two-year forward ex-ante real interest rate and F , the 

three-year forward ex-ante real interest as our Type III variables

1R

2 3

12. 
 

 

                                                           
12 Assuming that R1 and R2 are the one-year and the two-year ex-ante real interest rates, and F2 is the ex-
ante real forward rate of year two, the relationship between them (Bodie et. al., 2003) will 
be . From this equation, the ex-ante real forward of year two can be 

calculated as 

)21)(11()21( 2 FRR ++=+

1
)11(
)21(2

2

−
+

+
=

R
RF . Using the similar technique, the ex-ante real forward rate of year three 

can be calculated as 1
)

2

−
21(
)31(3

+
+

=
R
RF , where R3 is the three-year ex-ante real interest. 
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Therefore our basic model includes three different variables:[ . We assume that 

the central bank’s feedback rule is a linear function of contemporaneous values of Type II 

variables (inflationary expectations) and lagged values of all types of variables in the 

economy. That means that time t’s change of monetary policy of the Bank of Canada is 

the sum of the following three things: 

RMEI ,, ]

 

 

• the response of the Bank of Canada’s policy to changes up to time t-1 in all variables 

in the model (i.e., lagged values of Type I, Type II and Type III variables), 

•  the response of the Bank of Canada’s policy to time t changes in the non-policy 

Type II variable (inflationary expectations in the basic model), and 

•  the monetary policy shock.  
 

Therefore, a monetary policy shock at time t is orthogonal to: changes in all variables in 

the model observed up to time t-1, and contemporaneous changes in the Type II non-

policy variable (inflationary expectations in the basic model). So, by construction, a time 

t monetary policy shock of the Bank of Canada affects contemporaneous values of Type 

III variables (i.e., the real ex-ante interest rates of different maturities in the basic model) 

as well as all variables in the later periods13. 
 

The next two sections of this chapter describe the details of the fully recursive VAR 

model, the technique of how to identify the two portions of monetary policy- the 

feedback rule and exogenous monetary policy shocks, and how to get the impulse 

responses of monetary policy shocks. 
 

4.2 The Recursive VAR Model to Estimate the Monetary Policy Shock 

 

Our basic VAR system consists of three equations, and each equation in the system takes 

one of the three variables- inflationary expectations (EI), money supply (M) and the ex-

ante real interest rate (R) to be its dependent variable. In the structural VAR system, for 

                                                           
13 This framework assumes that the central concern of the Bank of Canada in the setting of policy is 
inflationary expectations because of the lag between changes in its instrument and the impact on its 
objective. Unless the bank targets inflationary expectations directly, it cannot hope to control inflation 
effectively. 
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each equation, the independent variables are lagged values of all three variables and the 

contemporaneous values of other variables. Suppose, our basic structural VAR model is 

the following: 
 

itqtqtqttttttt RMEIRMEIRaMaaEI εδδδγγγ ++++++++−−= −−−−−− 131211113112111131210 ..    (35) 
 

mtqtqtqttttttt RMEIRMEIRaEIaaM εδδδγγγ ++++++++−−= −−−−−− 232221123122121232120 .. (36) 

rtqtqtqttttttt RMEIRMEIMaEIaaR εδδδγγγ +++++++−−= −−−−−− 333231133132131323130 ..         (37) 

Here itε , mtε  and rtε  are white-noise disturbances with standard deviations of 

rmi andσσσ , respectively. In the above equations, the coefficients a are the 

contemporaneous effects of an endogenous variable on two other endogenous variables. 

All other coefficients are effects on the lag variables. 

ij

 

To get the reduced-form version of the above structural equations, we transform them in 

matrix form as follows: 
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i.e., tqttt xAx ε+Γ++Γ+Γ= −− ...............110        (38) 
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Pre multiplying both sides of (38) by , we get the following reduced-form VAR model: 1−A
 

tqtqtt exBxBBx +++= −− ...........110        (39) 

 

where  

tt

qq
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The above reduced-form equation can be written into the following three reduced-form 

VAR model equations: 

 

tqtqtqttttt eRfMfEIfRbMbEIbbEI 113121111311211110 ..... ++++++++= −−−−−−  (40) 

tqtqtqttttt eRfMfEIfRbMbEIbbM 223222112312212120 ..... ++++++++= −−−−−−  (41) 

tqtqtqttttt eRfMfEIfRbMbEIbbR 333323113313213130 ..... ++++++++= −−−−−−  (42) 
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It is quite straightforward that the structural equations (35) through (37) are not directly 

estimable as these equations violate the standard assumption that regressors can not be 

correlated with the error terms. In each equations of the structural VAR system, the 

contemporaneous variables are correlated with the error terms which prohibit the 

structural systerm to estimate directly. However, we don’t have such problems in the 

reduced from VAR model as all the regressors in equations (40) through (42) are 

predetermined variables. Therefore, we can apply OLS to the reduced-form VAR system 

and can obtain the estimates of B  where  ranges from zero to q  and the variances of 

 and covarinces between them where  ranges from one to three.  

i i

ite i

 

Once we have the estimates of the reduced-from VAR equations our next job is to 

recover the parameters of the structural-form VAR equations from those of the reduced-

form system. The problem we encounter in recovering the structural parameters from the 

reduced-from parameters is the number of estimated parameters of the reduced-from 

model is less than the number of recoverable parameters in the structural-form model. 

More precisely, in the reduced-from VAR model, we estimate three intercept terms 

( ) and 9 coefficients of the lag variables along with the calculated values 

of , , ) and of covariances between them namely cov( , 

, cov( . Therefore, we have a total of (9+9 ) estimated parameters in 

the reduced-from VAR model. On the other hand, in the structural-form VAR system, we 

have a total of (12+ ) parameters where there are three intercept terms ( a ), 

six contemporaneous coefficients ( ), 9  lag coefficients and three 

variances- 

302010 ,, bbb

)var( 1te

),cov( 21 tt ee

q

2t

,1te

9

),

) var( 3te

)2te

q

),var( mt

var(e

var( it

), 21 tt ee

302010 ,, aa

q

q323123211312 ,,,,, aaaaaa

)var( rtεεε  or three standard deviations rmi σσσ ,, . Therefore, 

our structural system contains three more parameters than the reduced-form system that 

makes it under identified. Hence to make the structural system exactly identified we need 

three restrictions in it. 

 

As mentioned in before, to identify the model, we follow the recursive system of Sims 

(1980). In our three variable basic VAR model [ , we assume that money ],, 1 Tttt RMEI
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supply ( ) doesn’t have a contemporaneous effect on inflationary expectations ( ) 

impying that the contemporaneous coefficient a  is zero, and that the ex-ante real 

interest rate ( ) doesn’t have a contemporaneous effect on both inflationary 

expectations ( ) and money supply ( ) implying that the contemporaneous 

coefficients  and  are zero. After imposing these restrictions on the 

contemporaneous coefficients, our structural VAR system becomes as follows: 
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itqtqttttt REIRMaEI εδδ +++++= −−−− 131111310 ..                           (43) 

mtqtqtqttttt RMRMEIaM εδδγ +++++−= −−−−−− 2322123122120   (44) 

rtqtqtqtttttt RMEIMaaR εδδδγγ ++++++−= −−−−− 333231132130         (45) 
 

 

Our restrictions, therefore, made the structural system exactly identified and we can 

recover all the parameters of this system that we will use in further analysis from the 

reduced-form VAR system. Since the structural shocks tε  are white-noise process and 

the VAR disturbances e  are composites of the structural shocks, it follows that the  

also have zero means, constant variances, and are individually serially uncorrelated. If the 

reduced-from VAR disturbances vector  has a variance-covariance matrix V, we can 

write it as follows: 

te
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Since the variances and the covariances in V are time independent, we can rewrite it as 

follows: 
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 On the other hand, we supposed that the structural disturbances ( ),, rtmtit εεε  are serially 

uncorrelated shocks with a covariance matrix equal to the identity matrix. That is, if we 

define the variance-covariance matrix of the structural disturbances as  then we find it 

as follows: 

Λ

 

  















=Λ

)var(),cov(),cov(
),cov()var(),cov(
),cov(),cov()var(

rtmtrtitrt

rtmtmtitmt

rtitmtitit

εεεεε
εεεεε
εεεεε

     =  
















100
010
001

  

As defined earlier, the VAR disturbance vector e  is a linear function of the underlying 

economic shocks 

t

tε  as follows: 
 

          = te 1−A tε        (46) 
 

Since we assume that the coefficients ,  and  are all zero in matrix A, the 

structural disturbances (

12a 13a 23a

tε ) and the estimated reduced-from VAR errors ( ) are related 

as follows: 
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Assuming C = , we can rewrite (46) as follows: 1−A
 

  = Cte tε       (47) 
 

Because of our restrictions that monetary policy doesn’t have a contemporaneous effect 

on inflationary expectations and that the ex-ante real interest rate doesn’t have a 

contemporaneous effect on both inflationary expectations and money supply ( a =  12 13a
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= =0), the C in (47) will be a unique lower triangular matrix. Equation (47), therefore, 

can be written more precisely as follows: 

23a
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    (48) 

 

This implies that the j th element of e is correlated with the first j elements oft tε , but is 

orthogonal to the remaining elements of tε . In our three-variable basic model, we, 

therefore, have the following relationships between the reduced-form errors terms  and 

the

te

. 
 

itte ε=1  

mtitt ce εε += 212  

rtmtitt cce εεε ++= 32313  
 

Since the variance-covariance matrix of tε is an identity matrix, it follows from (47) that 

C and is uniquely determined by the following relationship: 
 

                     (49) VeeECC tt =′=′ ][
 

 

4.3 The Feedback Rule, Exogenous Monetary Policy Shock and Impulse Response 

Function 
 

 

 

Once the VAR model is estimated, our next job is estimate the responses of various 

macroeconomic variables due monetary policy shocks. Before estimating the impulse 

response functions we will first identify which portion of the monetary policy belongs to 

the feedback rule and which portion to the exogenous monetary policy shocks. We know 

while setting its monetary policy, the Bank of Canada both reacts to the economy as well 

as affects economic activity. It will be clear from the discussion of previous section and 

this section that we designed our VAR model to capture these cross-directional 

relationships between monetary policy and other macroeconomic variables. 
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Like previous research (for example, Khan et al., 2002, Edelberg and Marshall, 1996; 

Christiano et al. 1996 etc.), we define the feedback rule as a linear function ψ  of a vector 

 of variables observed at or before date t. As mentioned earlier, the variable of time t 

that is used as a function of monetary policy is inflationary expectations in the basic 

model. The other variables that are used as function of monetary policy are the lagged 

values of all the variables used in the model. So the monetary policy can be completely 

described by the equation: 

tΩ

 

                + )( ttM ΩΨ= 2,2c mtε           (50) 
 

where mtε  is the monetary policy shock and is the (2,2)th element of the matrix C. So 

in equation (50), is the feedback rule component of monetary policy and c

2,2c

)( tΩΨ 2,2 mtε is 

the exogenous monetary policy shock component of monetary policy where Ω  contains 

lagged values (dates t-1 and earlier) of all types of variables in the model, as well as the 

time t values of inflationary expectations. Therefore, in accordance with the assumption 

of the feedback rule, an exogenous shock 

t

mtε  to the monetary policy cannot 

contemporaneously affect time t values of the elements in tΩ although the lagged values 

of mtε  can affect the variables in Ω . t

 

Under the above assumptions and logical deductions, therefore, we can identify the first 

part of the right-hand side of equation (50) using the second equation of the reduced-form 

VAR model i.e., equation (41) as follows:  
 

  =ΩΨ )( t ++++++++ −−−−−− qtqtqtttt RfMfEIfRbMbEIbb 23222112312212120 ... itc ε21    (51) 
 

where c  is the (2,1) th element of  the matrix C and 21 itε is the first element of tε . Here 

is correlated with the first element of tM tε but is uncorrelated with the other element 

of tε 14. Therefore, by construction, the shock c 2,2 mtε to monetary policy is uncorrelated 

                                                           
14 AS we have only one variable ahead of the monetary policy variable in the basic model, we added 

itc ε21 with the lagged variables for the feedback rule equation )(ΩΨ . In the case of two variables ahead 

of the monetary policy variable we would add c itir c εε 2221 +  and three variables we would add 

itit ccirc εεε 2322 ++21  and so on. 
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with Ω . Therefore, the feedback rule consists of the fitted equation of (M) plus a linear 

combination of the residual from the equation for inflationary expectations, EI

t

15. The 

exogenous monetary policy shock is that portion of the residual in the (M) equation that 

is not correlated with this estimated feedback rule. 

                              

 

Our next job is to derive the impulse response functions. To derive the impulse response 

functions of our basic model we will start with transforming the reduced-from VAR 

model, taking only one lag for simplification, in the following matrix form: 
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The vector moving average representation (VMA) of the above equation is as follows: 
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Replacing reduced-form errors e for the structural disturbances t tε (using equation (46)) 

and doing the some more algebra, the moving average representation of (53) can be 

written as follows16: 

 

 

                             
15 Since in basic model, only inflation expectations variable (EI) is ahead of monetary policy variable (M), i.e., 
only EI is contemporaneous input (type II variable) to the monetary policy, we add the linear combination of the 
residual from the equation for EI with the fitted equation of M. In the extended model, however, in addition to 
EI, we will add some more variables, like the unemployment rate (UNPR), the exchange rate (E) etc as type II 
variable, we will add their linear combination of the residuals also to the fitted equation of M. 
 
16 We are shortening the description here as we already discussed the impulse response function in section 
2.3. 
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The sets of coefficients inside the summation matrix are the impulse response functions 

which are our main focus in estimating the effects of monetary policy shock. Since we 

have three variables in the basic VAR model and there are three impulse responses 

generated by each variable, there are a total of nine sets of impulse responses here. For 

example, in (54), )0(23ϕ  shows the instantaneous impact of one unit change in 

exogenous monetary policy shock mtε  on the ex-ante real interest rate(R). By the same 

token, )1(12ϕ is the effect on inflationary expectations (EI) after one period due to one 

unit change in monetary policy shock mtε . Similarly, )0(12ϕ is the instantaneous impact of 

one unit change in inflationary expectation shock itε on the money supply (M). 
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CHAPTER 5 
 

In this chapter we present the estimated results. As mentioned in the introduction, we will 

estimate both the impacts of the central bank monetary policy on real and nominal 

variables as well as how the central bank reacts to changes in various macro-economic 

variables. All our data is monthly ranging from 1980 to 2002. The nominal interest rates 

used in the decomposition described in Section 2 are the one-year Government of Canada 

Treasury bill rate and the two-year and three-year Government of Canada benchmark 

bond yields. From the latter we calculate the two and three year forward rates. The 

Cansim series numbers of all variables are provided in Appendix 3. 

  
 
 

5.1 The Impulse Responses of the Basic Model 
 

 
 

First we report the impulse response of the Bank of Canada’s monetary policy to a 

positive one standard deviation shock to inflationary expectations in Fig 4. With the 

increase in inflationary expectations under an inflation targeting regime, we anticipate the 

central bank’s response is to tighten the money supply and we observe this response in 

Figure 4, although the response is insignificant. To see how the overnight rate responds in 

response to a positive inflationary expectations shock, we also report the impulse 

response of the overnight rate due to a positive one standard deviation inflationary 

expectations shock in Fig 5. As with Kahn et. al. (2002), the overnight rate response is 

more immediate than the monetary aggregate and is significant.  This reinforces our view 

that our measure of inflationary expectations is a contemporaneous input to the policy 

process. 
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Figure 4: Impulse Response of M due to Inflationary Expectation Shocks 
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Figure 5:  Impulse Response of the Overnight Rate to Inflationary Expectation Shocks 

 

 

 

Second, we report the response of various macro-economic variables to a one standard 

deviation monetary policy shock from our VAR model17. We expect the innovation in the 

money supply to increase inflationary expectations and to reduce the real interest rate, 

although the degree of this impact on the real interest rate should vary depending on the 

maturity of the rate. In Figure 6 we report the reaction of inflationary expectations and 

the one-year ex-ante real interest rate to a positive monetary policy shock18. Observe 

from the impulse response functions that following a positive monetary policy shock, 

inflationary expectations increase (although the increase is not statistically significant) 

and the ex-ante real interest rate decreases. The effect on the ex-ante real interest rate 

remains statistically significant for eighteen months. Kahn et. al. (2002) also reported that 

for using monetary aggregate, M1, the effect on inflationary expectations is statistically 

insignificant while the effect on the one-year ex-ante real interest rate is statistically 

significant for about eight months. On the other hand, using the structural VAR model 

with contemporaneous restrictions and using a monetary aggregate (M1) as the monetary 

policy instrument, Cushman and Zha (1997) found that following a contractionary 

monetary policy shock the real interest rises and then declines, and the effect is 

significant for only the first two months. 

                                                           
17 In the basic model, we use a lag-length of two which was determined on the basis of the Akaike 
Information Criterion. We keep using the same lag-length when we replace the ex-ante real rate with the 
ex-ante forward rate second year, the ex-ante forward rate of third year and the nominal interest rate which 
is also supported by the Akaike Information Criterion. 
18 The Solid line is the impulse response and the dashed lines contain the 95 percent confidence interval. 
These boundaries are calculated by 10,000 Monte Carlo repetitions. 
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Figure 6:  Impulse Response of Inflationary Expectations and the 

Ex-ante Real Rate due to Monetary Policy Shock 
[[[[[[[[ 

 

 

 

 

Although the Bank of Canada’s policy impacts real interest rates at the short end of the 

maturity spectrum, we expect it may also impact real interest rates at longer horizons. 

Following Kahn et al. (2002), we use the forward ex-ante real interest rates of two- and 

three-years to estimate the longer-term impact of monetary shocks. We report the 

estimated impulse responses of the second- and third-year ex-ante forward rates in Figure 

7. We find that the impact of a given monetary policy shock is smaller on the forward ex-

ante real interest rate of the second year than on the ex-ante one-year real rate, and that 

the impact of this shock is smaller on the forward ex-ante real rate of the third year than 

on the ex-ante forward rate of second year. Therefore, we conclude that monetary policy 

shocks are more dominant on short-tem maturity interest rates. Edelberg and Marshall 

(1996) and Kahn et.al. (2002) also reported that monetary policy shocks have larger 

effects on short-term rates than on longer term rates. 
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Figure 7: Impulse Response of the Second and Third Year Forward Rates 
 
 

 

Most previous studies reported the response of nominal interest rates rather than ex-ante 

real interest rates to central bank monetary policy shocks 19 . To make our results 

comparable with these studies, we estimated the VAR model with nominal rates in place 

of real rates. It is important to note that the impact of monetary policy on nominal interest 

rates nets two opposite directional impacts-the impact on ex ante real interest rates and 

the impact on inflationary expectations. The shape and magnitude of the impact on 

nominal interest rates should, therefore, depend on the combined shape and magnitude of 

the impacts on the real interest rate and on inflationary expectations. We report the 

impact of a positive monetary policy shock on the nominal interest rate in Figure 8. As 

expected, the positive monetary policy shock lowers the one-year nominal interest rate, 

and it seems that this impact is a little smaller (0.10 percentage points) than the impact on 

the one year ex-ante real interest rate (0.13 percentage points). Kahn et al. (2002) also 

                                                           
19 Both Edelberg and Marshall (1996) and Khan et al. (2002) examined the effects of monetary policy shocks on 
nominal interest rate.  While Edelberg and Marshall used a proxy of inflation expectations in their model, Khan 
et al. used a market generated measure of the inflation expectations. Both studies reported relatively smaller 
effects on one-year nominal interest rate, and Edelberg and Marshall reported almost zero impact on longer-term 
nominal interest rates.   
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found a relatively smaller impact on the one-year nominal interest rate (0.30 percentage 

points) than on the one-year ex-ante real interest rate (0.40 percentage points). Using the 

overnight rate as the monetary policy instrument they found that a contractionary 

monetary policy shock raises the nominal interest rate which remains statistically 

significant for first four months. On the other hand, Cushman and Zha (1995), using the 

monetary aggregate as the monetary policy instrument, found that a contractionary 

monetary policy doesn’t have any statistically significant effect on the nominal interest 

rate. 
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Figure 8: Impulse Responses of Inflationary Expectations and the Nominal Interest Rate 

 

A criticism of the recursive VAR model is that its results crucially depend on the order of 

the variables in which they are estimated. We examine whether the change in the order of 

the variables impacts the estimates of the impulse response functions by re-estimating the 

model in the following order: M, EI and R. The estimated results are reported in Figure 9. 

It is clear from the figure that reversing the order of the variable doesn’t have any 

significant impact on the impulse response functions.  
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Figure 9: Impulse Responses for an Alternative Ordering of Variables 
 

5.2 The Augmented Model 
 

We augment the basic VAR model by incorporating some additional variables that may 

impact real interest rates and inflationary expectations. As suggested by prior research, if 

these variables are correlated with the monetary policy of the Bank of Canada, their 

omission may lead to erroneous conclusions about the impacts of monetary policy. The 

additional variables that we incorporate into the VAR model are the log of industrial 

production (Y), the unemployment rate (UNPR) and the log of Canadian/US dollar 

exchange rate (EXR) 20.  
 

In this augmented model, we use inflationary expectations as Type II variable and specify 

the ex-ante real interest rate, the exchange rate, industrial output and the unemployment 

rate as Type III variables. The estimated impulse responses of this augmented model are 

reported in Figure 10. In the augmented model of Fig 10 with the ordering of the 

variables [EI, M, R1, EXR, Y, UNPR], inflationary expectations increase following a 

positive monetary policy shock for first five months but this increase is not significant. 

Following a positive monetary shock, the ex-ante real interest rate also decreases and the 

decrease remains significant for ten months. As is evident from Fig 10, the positive 

monetary policy shock temporarily depreciates the Canadian dollar (although it 

                                                           
20 We use a lag-length of six in the augmented model which was determined on the basis of the Akaike 
Information criterion. The impulse responses do not change remarkably for using some other lags such as 
five, seven, eight or nine, and although we even get better impulse responses if we use lag-length of eight, 
we decided to use a lag-length of six as it was suggested by the Akaike Information Criterion.  
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appreciates in the first four months), increases industrial output (although it decreases in 

the first eight months) and lowers the unemployment rate (although it increases in the 

first four months) although these results are not statistically significant. Nevertheless, 
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 Figure 10: Impulse Responses of the Augmented Model. 
 

    

the direction of movement is in accordance with conventional theory. Kahn et.al. (2002) 

also found insignificant effect on the unemployment rate although they obtained 

significant effects on the exchange rate from the second month to the third month. On the 

other hand, Cushman and Zha (1997) reported significant and consistent effects on the 

exchange rate and output. They found that a positive monetary policy shock increases 

output which remains significant for seven months and depreciates the Canadian currency 

which remains significant for thirteen months. They also noted that the monetary policy 

transmission mechanism occurs through the exchange rate because of the very short-run 

effect on the real interest rate. 
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To explore the possibility that the Bank of Canada might take the exchange rate as a 

contemporaneous input to the monetary policy reaction function along with inflationary 

expectations, we report the impulse response functions of the augmented model 

considering both inflationary expectations and the exchange rate as type II variable i.e., 

with the ordering of the variables [EI, EXR, M, R1, Y, UNPR] and [EXR, EI, M, R1, Y, 

UNPR] in Fig. 11 and Fig 12 respectively. As evident from Fig.11 and Fig.12, the 

impulse response functions don not change significantly for these new ordering of the 

variables.  
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Figure 11: Impulse Responses with ordering [EI, EXR, M, Y, UNPR]. 
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Figure 12: Impulse Responses with ordering [EXR, EI, M, Y, UNPR]. 
 

 
 

We also estimated the augmented model with the industrial output (Y) and the 

unemployment rate (UNPR) as Type II variables but the impulse responses do not change 

significantly to the change of this ordering. These impulse responses for these ordering 

are reported in Appendix 1. One thing to notice from the impulse responses of Fig A1 an 

Fig A2 in Appendix 1 is when we take the industrial output in addition to inflationary 

expectations as the contemporaneous input to the monetary policy reaction function, the 

effect on the industrial output marginally improves in the sense that the impulse response 

never goes above the zero line although it still remains statistically insignificant. 

Similarly when the unemployment is also taken as a contemporaneous input to the 

monetary policy reaction function its impulse response functions marginally improve 

meaning that it does not show any puzzle although the effect remains statistically 

insignificant as shown in Fig A3 and Fig A4.  

 

Overall the impulse responses are not very satisfactory. This may reflect the fact that we 

use a monetary aggregate as the policy instrument and this variable may be affected by 
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other shocks in the model. Therefore, in the next section, we explore the overnight target 

rate as an alternative monetary policy instrument.  

 

5.3 Impulse Responses Using the Overnight Target Rate 

 

Many previous studies suggested that innovations in monetary aggregates might not truly 

represent the exogenous change in monetary policy. We, therefore, estimate our basic 

VAR model as well as the augmented VAR model using the overnight target rate as the 

monetary policy instrument21.  
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Figure 13: Impulse Responses of EI and R1 due to Overnight Target rate shocks. 
 

                                                           
21 For Canada, we do not have the data on overnight target rate (OT) prior to 1994, and therefore, the 
sample period for the overnight target rate starts from 1994:1. To test our results, we also tried using the 
overnight rate (O) prior to 1994 and the overnight target rate from 1994 for the same model in which case 
we get statistically insignificant results for most of the variables. We also estimated our models using the 
overnight rate from 1980:1 to 2002:12 and get insignificant results for most of the variables. It would 
appear that innovations in the overnight rate do not measure exogenous monetary shocks either.    
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We report the impulse responses of the basic model using the overnight target rate in Fig 

1322. It is evident from Fig 13 that a contractionary monetary policy shock introduced by 

increasing the overnight target rate (i.e., one standard deviation shock to the overnight 

target rate which is 0.2549 percentage points) lowers inflationary expectations by 0.04 

percentage point and raises the ex-ante real interest rate by 0.15 percentage point. The 

shocks to inflationary expectations remain significant for three months and the shocks to 

the ex-ante real interest rate are significant for four months. It is important to recall that 

the impulse response functions of inflationary expectations in the basic model as well as 

in the augmented model using a monetary aggregate as the monetary policy instrument 

were statistically insignificant. This result suggests that innovations to the overnight 

target rate are a better measure of monetary policy shocks. 

 

In Fig 14, we report the impulse responses of the second and the third year ex-ante real 

forward rates. As shown in Fig 14, the impulse responses of the second and the third year 

ex-ante real forward rates are insignificant using the overnight target rate while they were 

significant using the monetary aggregate. This result may reflect lags between changes in 

the overnight target rate and changes in the monetary aggregate.    
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22 We used a lag-length of four in the basic model of the fully recursive VAR model which was determined 
on the basis of the Akaike Information Criterion. The impulse response functions are invariant for choosing 
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Figure 14: Impulse Responses of F2 and F3 due to Over Night Target Rate Shocks 

 
 

Next we report the impulse response functions of the nominal interest rate due to a 

contractionary monetary policy shock introduced by a rise in the overnight target rate in 

Fig 15. 
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 Figure 15: Impulse Responses of EI and Nominal due to Overnight Rate 

 

As evident from Fig 15, the impact of the contractionary monetary policy shock (i.e., one 

standard deviation shock to the overnight target rate which is 0.2549 percentage points) 

on the one year nominal interest rate is smaller (0.10 percentage point) than its impact on 

the one year ex-ante real interest rate (0.15 percentage point). This result is quite 

consistent with our expectation as the effect on the nominal interest rate nets the opposite 

directional effects on inflationary expectations and on the ex-ante real interest rate. Kahn 

et.al. (2002) also found that the impact on the nominal interest rate (0.35 percentage point) 

is smaller than the impact on the ex-ante real interest rate (0.40 percentage point) using 

the overnight rate as the monetary policy instrument. 

 
 

                                                                                                                                                                             
other lag-lengths such as two, three or five. The solid line is the impulse response and the dashed lines 
contain the 95% confidence intervals which are calculated with 10,000 Monte Carlo repetitions. 
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Next we report the impulse response functions of the basic model using the ordering [OR, 

EI, R1] in Fig 16. We notice that the shape and the direction of the impulse response 

functions do not change for this ordering but the impulse response of inflationary 

expectations are not statistically significant whereas they are significant for the first three 

months using the ordering of the variables [EI, OT, R1]. This result suggests our 

identification scheme is valid. 
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Figure 16: Impulse Responses of EI and R1 for ordering [OT, EI, R1] 

    

The impulse responses of the augmented model with the overnight target rate are reported 

in Figure 17 with the ordering of [EI, OT, R1 EXR, Y, UNPR]23.  

                                                           
23 We used a lag-length of three in the augmented model which was determined on the basis of the Akaike 
Information Criterion. The impulse response functions are invariant for choosing other lag-lengths such as 
two or four. The solid line is the impulse response and the dashed lines contain the 95% confidence 
intervals which are calculated with 10,000 Monte Carlo repetitions. 
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Figure 17: Impulse Responses with ordering [EXPT, OT, R1, EXR, Y, UNPR]  

 

In the augmented model of Fig 17, we find that following a contractionary monetary 

policy shock (i.e., one standard deviation shock to the overnight target rate which is 

0.2549 percentage points) inflationary expectations declines by 0.04 percentage point 

(statistically significant for three months), the ex-ante real interest rate increases by 0.15 

percentage point (statistically significant for four months), the industrial output declines 

(statistically significant from month six to month sixteenth), exchange rate appreciates for 

first seven months (statistically insignificant) and the unemployment rate increases 

(statistically insignificant). We have two significant improvements in the augmented 

model using the overnight target rate as the monetary policy instrument over using a 

monetary aggregate. In the augmented model using the overnight target rate we have 

statistically significant effects both on inflationary expectations and on the industrial 

output while these effects were statistically insignificant using a monetary aggregate. 

Another thing that comes to attention in Fig 17 is when the shock on the industrial output 

reaches the peak in around month ten the shock on the unemployment rate also reaches 

its peak in the opposite direction. In other words, it implies that when the contractionary 

monetary policy reduces the industrial output it also increases the unemployment rate 

simultaneously.   
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Next we report the impulse response functions of the augmented model with the ordering 

of [EI, EXR, OT, R1, Y, UNPR] and [EXR, EI, OT, R1, Y, UNPR] in Fig 18 and Fig 19 

respectively. It seems from these figures that the impulse responses do not improves for 

this ordering.  
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Figure 18: Impulse Responses with ordering [EI, Y, OT, R1, EXR, UNPR] 
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Figure 19: Impulse Responses with ordering [EI, Y, OT, R1, EXR, UNPR] 
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We also estimate the augmented model with all other possible ordering of the variables 

the impulse responses of which are reported in Appendix 2. It seems from the impulse 

responses in Appendix 2 that the estimated results are robust to the change of the 

ordering of the variables. 
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6. CONCLUSIONS 

 
 

We estimated the impact of monetary policy on various real and nominal macroeconomic 

variables. Our approach of decomposing the nominal interest rate into the ex-ante real 

interest rate and inflationary expectations using the Blanchard-Quah VAR model made it 

possible to separately examine the reactions of these variables to monetary policy shocks. 

Using only inflationary expectations and/or inflationary expectations and other 

macroeconomic variables (industrial output, the exchange rate, and the unemployment 

rate) as contemporaneous input/inputs to the policy reaction function of the Bank of 

Canada, we don’t encounter anomalies such as the liquidity or exchange rate puzzles that 

plagued early VAR studies of monetary policy shocks.  

 

Our principal findings are that a positive one-standard-deviation monetary policy shock, 

identified as an innovation to M1B money, increases inflationary expectations by 0.02 

percentage points and lowers the ex-ante real interest rate by 0.12 percentage points. The 

response of inflationary expectations and the ex-ante real interest rate reach their peak in 

about three months after the shock. We also find that the impact on the one-year rate ex-

ante real interest rate is larger than the impact on the ex-ante forward rate of the second 

year which is 0.10 percentage points. On the other hand, the impact of this shock on the 

ex-ante forward rate of the third year 0.07 percentage points. The impact of a monetary 

policy shock on the one-year nominal interest rate which nets the impact on inflationary 

expectations and the ex-ante real interest rate is smaller (0.10 percentage point for a one-

standard deviation shock in M1B) than its impact on one-year ex-ante real interest rate. 

Our estimated VAR model is robust to a change in the number of variables.  We extended 

the model by including the exchange rate, industrial output and the unemployment rate 

and we find that a positive monetary policy shock temporarily depreciates the Canadian 

currency, increases real output and lower the unemployment rate although none of these 

effects are statistically significant. 

 

When we use the overnight target rate (OT) as the monetary policy instrument rather than 

a monetary aggregate, we end up with significantly better results in many aspects. We 
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find that the impulse response functions of inflationary expectations and industrial output 

become statistically significant using the overnight target rate as the monetary policy 

instrument while these effects are insignificant when we use the monetary aggregate. In 

the model with the overnight target rate, we find that a contractionary monetary policy 

shock (i.e., one standard deviation shock to the overnight target rate which is 0.2549 

percentage points) raises the one-year ex-ante real interest by 0.15 percentage point and 

lowers inflationary expectations by 0.04 percentage point. On the other hand, this 

monetary policy shock doesn’t have any significant effect on the ex-ante real forward rate 

of year two and year three. Such a contractionary monetary policy also raises the one-

year nominal interest rate which is smaller in magnitude (0.10 percentage point) than the 

one-year ex-ante real interest rate. 

 

The augmented model with the overnight target rate as the monetary policy instrument 

gives even more attractive results. In the augmented model with output, the 

unemployment rate and the exchange rate as additional variables, we find that a 

contractionary monetary policy lowers industrial output which is statistically significant, 

increases the unemployment rate and appreciates the Canadian currency. Our estimated 

VAR model is robust to the changes in the ordering of the variables.  

 

That we obtain significantly better results in recursive VAR model using the overnight 

target rate rather than a monetary aggregate likely follows because, unlike money, the 

overnight target rate cannot be influenced by private sector behavior except through the 

channel of an endogenous policy response of the central bank to changing economic 

conditions. Since our approach models this reaction function explicitly, we are able to 

estimate monetary policy shocks that are exogenous to other variables in the model.  We 

conclude it is better to model monetary policy shocks in a recursive VAR model with the 

overnight target rate. 

 

We believe that these results complement the work of Cushman and Zha (1997) in 

modeling the monetary policy in Canada. They demonstrate that to avoid anomalies that 

characterized previous attempts to estimate the effects of monetary policy shocks using a 
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monetary aggregate, it is necessary to impose identifying restrictions in a structural VAR 

model in order to separate the money demand function from the money supply (policy 

reaction) function and thereby estimate policy shocks that are exogenous. Since we are 

able to obtain qualitatively similar results with a more parsimonious specification using 

the overnight target rate as the policy instrument, we believe this approach could serve as 

a useful complement to that of Cushman and Zha (1997). Our results differ from 

Cushman and Zha (1997) in one important respect. They find that the transmission 

mechanism from monetary policy shocks to real output work primarily though an 

exchange rate effect. While we obtain this effect as well, we also obtain a significant role 

for the real interest rate channel. That is, we find that a positive one standard deviation 

shock to the overnight target rate (which is 0.2549 percentage points) raises the one-year 

ex-ante real interest rate by 0.15 percentage points. 
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Appendix 1: Impulse Response of the Augmented Model for Using Monetary 
Aggregate 
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Figure A1: Impulse Responses with the ordering of [EI, Y, M, R1, EXR, UNPR] 
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Figure A2: Impulse Responses with the ordering of [EI, Y, EXR, M, R1, UNPR] 
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 Figure A3: Impulse Responses with the ordering of [EI, Y, EXR, UNPR, M, R1] 
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Figure A4: Impulse Responses with the ordering of [EI, Y, M EXR, R1, UNPR] 
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APPENDIX 2: Impulse Responses of the Augmented Model for using Overnight 
Target Rate 

 
 

-0 .10

-0 .08

-0 .06

-0 .04

-0 .02

0 .00

0 .02

0 .04

0 .06

2 4 6 8 10 12 14 16 18 20

Response of EXPT to OT

-0 .004

-0 .003

-0 .002

-0 .001

0.00 0

0.00 1

2 4 6 8 10 12 14 16 18 20

Response of Y  to OT

-0 .2

-0 .1

0 .0

0 .1

0 .2

0 .3

0 .4

2 4 6 8 10 12 14 16 18 20

Response of OT to OT

-0.2

-0.1

0 .0

0 .1

0 .2

0 .3

2 4 6 8 10 12 14 16 18 20

Response of R1 to OT

-0.002

-0.001

0 .000

0 .001

0 .002

0 .003

2 4 6 8 10 12 14 16 18 20

Response of EXR to OT

-0.06

-0.04

-0.02

0 .00

0 .02

0 .04

0 .06

0 .08

0 .10

2 4 6 8 10 12 14 16 18 20

Response of UNPR to OT

Response to One S.D. Innovations ± 2 S.E.

 
  Figure A5: Impulse Responses with ordering [EI, Y, OT, R1, EXR, UNPR] 
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Figure A6: Impulse Responses with the ordering of [EI, Y, EXR, OT, R1, UNPR] 
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Figure A7: Impulse Responses with the ordering of [EI, Y, EXR, UNPR, OT, R1] 
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Figure A8: Impulse Responses with the ordering of [EI, Y, EXR, UNPR, OT, R1] 
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Appendix 3 
 
 

Data Sources 
 
 
Money Supply-M1B 
Source: Cansim, Series Level-V37199 
 
Overnight Rate 
Source: Cansim, Series Level-V122514 
 
One-year nominal interest rate- Government of Canada One-year Treasury Bills Rate 
Source: Cansim, Series Level-V122533 
 
Two-year nominal interest rate-Selected Government of Canada Benchmark Bond Yields 
Source: Cansim, Series Level-V122538 
 
Three-year nominal interest rate- Selected Government of Canada Benchmark Bond 
Yields 
Source: Cansim, Series Level-V122539 
 
Consumer Price Index (CPI) 
Source: Cansim, Series Level-V737311 
 
Exchange Rate-US dollar/Canadian dollar 
Source: Cansim, Series Level-V37426 
 
Industrial Production 
Source: Cansim, Series Level-V2044332 
 
Unemployment Rate 
Source: Cansim, Series Level-V2062815 
 
Overnight Target Rate 
Source: Bank of Canada (Summary of Key Monetary Policy Variables: 1996-2002) 
 : Cansim Series Level-B114039 (1994-1996)       
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