

HIGH-SPEED CO-PROCESSORS

BASED ON REDUNDANT NUMBER SYSTEMS

A Thesis Submitted to the College of

Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

in the Department of Electrical and Computer Engineering

University of Saskatchewan

Saskatoon, Saskatchewan, Canada

By

AMIR KAIVANI

Amir Kaivani, February/2015. All rights reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Saskatchewan's Research Archive

https://core.ac.uk/display/226120383?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

PERMISSION TO USE

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate

degree from the University of Saskatchewan, I agree that the Libraries of this University may

make it freely available for inspection. I further agree that permission for copying of this thesis

in any manner, in whole or in part, for scholarly purposes may be granted by the professor or

professors who supervised my thesis work or, in their absence, by the Head of the Department or

the Dean of the College in which my thesis work was done. It is understood that any copying or

publication or use of this thesis or parts thereof for financial gain shall not be allowed without

my written permission. It is also understood that due recognition shall be given to me and to the

University of Saskatchewan in any scholarly use which may be made of any material in my

thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or

part should be addressed to:

Head of the Department of Electrical and Computer Engineering

University of Saskatchewan

57 Campus Drive

Saskatoon, Saskatchewan

Canada

S7N 5A9

ii

ABSTRACT

There is a growing demand for high-speed arithmetic co-processors for use in

applications with computationally intensive tasks. For instance, Fast Fourier Transform (FFT)

co-processors are used in real-time multimedia services and financial applications use decimal

co-processors to perform large amounts of decimal computations.

Using redundant number systems to eliminate word-wide carry propagation within

interim operations is a well-known technique to increase the speed of arithmetic hardware units.

Redundant number systems are mostly useful in applications where many consecutive arithmetic

operations are performed prior to the final result, making it advantageous for arithmetic co-

processors. This thesis discusses the implementation of two popular arithmetic co-processors

based on redundant number systems: namely, the binary FFT co-processor and the decimal

arithmetic co-processor.

FFT co-processors consist of several consecutive multipliers and adders over complex

numbers. FFT architectures are implemented based on fixed-point and floating-point arithmetic.

The main advantage of floating-point over fixed-point arithmetic is the wide dynamic range it

introduces. Moreover, it avoids numerical issues such as scaling and overflow/underflow

concerns at the expense of higher cost. Furthermore, floating-point implementation allows for an

FFT co-processor to collaborate with general purpose processors. This offloads computationally

intensive tasks from the primary processor.

The first part of this thesis, which is devoted to FFT co-processors, proposes a new FFT

architecture that uses a new Binary-Signed Digit (BSD) carry-limited adder, a new floating-point

iii

BSD multiplier and a new floating-point BSD three-operand adder. Finally, a new unit labeled as

Fused-Dot-Product-Add (FDPA) is designed to compute �� ± �� ± � over floating-point BSD

operands.

The second part of the thesis discusses decimal arithmetic operations implemented in

hardware using redundant number systems. These operations are popularly used in decimal

floating-point co-processors. A new signed-digit decimal adder is proposed along with a

sequential decimal multiplier that uses redundant number systems to increase the operational

frequency of the multiplier. New redundant decimal division and square-root units are also

proposed.

The architectures proposed in this thesis were all implemented using Hardware-

Description-Language (Verilog) and synthesized using Synopsys Design Compiler. The

evaluation results prove the speed improvement of the new arithmetic units over previous

pertinent works. Consequently, the FFT and decimal co-processors designed in this thesis work

with at least 10% higher speed than that of previous works. These architectures are meant to

fulfill the demand for the high-speed co-processors required in various applications such as

multimedia services and financial computations.

iv

ACKNOWLEDGMENTS

All research was sponsored by the Electrical and Computer Engineering department at

the University of Saskatchewan and the Natural Science and Engineering Research Council

(NSERC) of Canada. All the toolkits and standard cell libraries used in this research were

provided by CMC Microsystems, Canada.

I would like to thank my supervisor Dr. Seok-Bum Ko, who provided inspiration and

advice during my PhD program at the University of Saskatchewan. I would also like to thank Dr.

Li Chen with whom I had my VLSI course in the first year of my PhD program. Special thanks

to the committee members, Dr. Joseph E. Salt, Dr. Francis M. Bui and Dr. FangXiang Wu who

helped improve the quality of the research and the thesis. In the end, I would like to thank my

friends in the lab, specially L. Han who helped me a lot during the first two years of my PhD

program.

v

CONTENTS

Permission to Use i

Abstract ii

Acknowledgments iv

Contents v

List of Tables viii

List of Figures ix

List of Algorithms xi

List of Abbreviations xii

List of Publications xiii

1 INTRODUCTION & BACKGROUNDS ... 1

1.1 Fast Fourier Transform (FFT) ... 2

1.2 Butterfly unit ... 4

1.3 Floating-Point Arithmetic ... 7

1.4 Redundant Number Systems ... 10

1.5 Motivation of Research ... 12

1.6 Objectives of the Thesis .. 14

vi

1.7 Novelties ... 14

1.8 Organization of the Thesis .. 15

Part I

2 PREVIOUS WORKS ON FFT PROCESSORS ... 18

2.1 Floating-Point Complex Multipliers [19] ... 18

2.2 Floating-Point Fused Butterfly Arithmetic [1] .. 19

2.3 Floating-Point Fused Butterfly with Merged Multipliers [5] .. 22

2.4 Improved Floating-Point Dot-Product Unit [2]... 23

2.5 Summary of Previous FFT Architectures ... 26

3 THE PROPOSED FFT ARCHITECTURE .. 27

3.1 The Proposed Butterfly Architecture .. 27

3.1.1 Data Representation ... 32

3.2 The Proposed Redundant Floating-Point Multiplier ... 34

3.2.1 Partial Product Generation (PPG) .. 35

3.2.2 Partial Product Reduction (PPR) .. 38

3.3 The Proposed Three-Operand Redundant Floating-Point Adder .. 49

3.4 Conversion to and from BSD Representation ... 61

4 EVALUATIONS AND COMPARISON OF FFT ARCHITECTURES 63

Part II

5 DECIMAL ADDITION ... 68

5.1 The Proposed Redundant Decimal Adder ... 69

5.2 Evaluations and Comparisons of Decimal Redundant Adders ... 75

5.2.1 Decimal Redundant Adder of [31] .. 75

5.2.2 The Proposed Decimal Redundant Adder ... 76

6 DECIMAL MULTIPLICATION ... 77

6.1 Decimal Multiplication Overview .. 78

6.2 The Proposed Sequential Decimal Multiplier ... 81

6.2.1 Partial Product Generation .. 81

vii

6.2.2 Partial Product Accumulation ... 82

6.3 Evaluation and Comparison of Decimal Sequential Multipliers ... 85

6.3.1 The Proposed Architecture .. 87

6.3.2 Previous Works on Decimal Sequential Multiplier .. 88

7 DECIMAL DIVISION... 90

7.1 Decimal Digit-Recurrence Division Algorithm .. 92

7.2 Quotient Digit Selection (QDS) .. 94

7.3 Representation of the Divisor and Partial Remainders ... 96

7.4 The Proposed Decimal Divider ... 99

7.5 Evaluations and Comparison of Decimal Dividers ... 102

8 DECIMAL SQUARE-ROOT ... 104

8.1 Decimal Digit-Recurrence Square-Root ... 105

8.2 The Proposed Decimal Square-Root Unit ... 108

8.2.1 Proposed Architecture ... 110

8.3 Evaluations and Comparisons of Decimal Square-Root Units ... 116

9 CONCLUSIONS & FUTURE WORKS .. 119

9.1 Conclusions ... 119

9.2 Future Works .. 122

REFERENCES .. 124

viii

LIST OF TABLES

1.1 Encodings for a Decimal Digit 11

3.1 Generation of i
th

 partial product 38

3.2 2-bit Leading-Zero Detection 58

3.3 Comparison of Floating-Point Three-Operand Adder 61

4.1 Critical Path Delay of the Proposed Floating-Point Butterfly Architecture 63

4.2 Comparison of the Floating-Point Butterfly Architectures 65

4.3 Critical Path Delay of the Proposed Fixed-Point Butterfly Architecture (16-bit) 66

5.1 Truth Table of F1 73

5.2 Truth Table of F2 74

5.3 Comparison of Decimal Redundant Adders 76

6.1 Selection of the easy-multiples 82

6.2 The Critical Path Delay of the Proposed Multiplier (ns) 87

6.3 Area Consumption of the Proposed 16-digit multiplier (μm�) 87

6.4 Comparison of Decimal Sequential Multipliers (16-digit multipliers) 89

7.1 Notations and abbreviations 91

7.2 Critical Path of Decimal Dividers (16 digits) 103

7.3 Comparison based on the Synthesis Results 103

8.1 Critical Path Delay of the Proposed Design (16 digits) 116

8.2 Area consumption of the proposed 16-digit architecture (NAND2) 116

8.3 Comparison of the FP architectures 117

ix

LIST OF FIGURES

1.1 Implementation of an N-point FFT 4

1.2 8-input FFT using DIT butterfly 5

1.3 Butterfly Architecture (DIT) 5

1.4 DIT Butterfly architecture using conventional approach 6

1.5 DIT Butterfly architecture using Golub's approach 7

2.1 Floating-point Dot-Product unit 20

2.2 Floating-point fused Add-Subtract unit 21

2.3 Radix-2 floating-point DIF butterfly 22

2.4 Butterfly unit using merged multipliers 23

2.5 Enhanced floating-point dot-product unit (Single path) 24

2.6 Enhanced floating-point dot-product unit (Dual path) 25

3.1 Butterfly Architecture with Expanded Complex Numbers 28

3.2 Butterfly Architecture with Dot-Product Units 29

3.3 Butterfly Architecture with Floating-point Fused-Dot-Product-Add 30

3.4 Floating-point Fused-Dot-Product-Add (FDPA) with Dot-Product Units 31

3.5 Floating-point Fused-Dot-Product-Add (FDPA) with 3-Operand Adder 31

3.6 Dot and symbolic notation of the significand of A
� 33

3.7 Partial Product Generation of the modified Booth encoding 36

3.8 Generating the Multiples of the Multiplicand 36

3.9 Generation of the i
th

 partial product 39

3.10 Partial Product Reduction by Rows 40

3.11 [p:1] reduction block based on [p/2:1] blocks 40

3.12 [7:3] Counter by Full-Adders 42

3.13 [7:2] Compressor by Full-Adders 43

3.14 [4:2] Compressor by Full-Adders 44

3.15 [16:2] Compressor by [4:2] Compressors 44

3.16 The proposed BSD adder (two digit slice) 45

3.17 Partial Product Reduction Tree 46

3.18 Final Product Format with Standard Non-redundant Operands 47

3.19 Redundant Product of the Proposed Multiplier 48

3.20 The Proposed Redundant Floating-Point Multiplier 49

3.21 Straightforward Three-Operand Floating-Point Adder 50

x

3.22 Significand Alignment Block 51

3.23 Normalization Block 52

3.24 Value x between two floating-point values F1 and F2 52

3.25 Conventional Fused Three-Operand Floating-Point Adder 53

3.26 Exponent Comparison with Three Inputs 54

3.27 Significand Alignment of the Fused Three-Operand Floating-Point Adder 54

3.28 The Proposed Three-Operand Alignment Scheme 56

3.29 BSD Adder with some inputs assigned to zero 57

3.30 Non-zero Digits of No Significance 58

3.31 4-bit LZD Implemented Using 2-bit LZD 59

3.32 The proposed floating-point three-operand addition 60

3.33 Conversion to BSD representation 62

5.1 Digit representation (a) Dot notation (b) Symbolic notation 70

5.2 The Proposed Adder (a) Symbolic Notation (b) Dot Notation (c) Block Diagram 71

5.3 Decimal Redundant Adder of [31] 75

6.1 Generation of the easy-multiples in the proposed multiplier 81

6.2 PPA (digit-slice) (a) Conventional (b) Proposed 83

6.3 Implementation of Eqn. 6.5 via CSAs 84

6.4 Modified Implementation of Eqn. 6.5 85

6.5 The Proposed Sequential Decimal Multiplier 86

6.6 Delay Constrained Comparison 89

7.1 The value of ∆
 shown in Robertson’s Diagram 95

7.2 Digit Encodings for the Decimal Parts of the Partial Remainder and Divisor 100

7.3 The Architecture including QDS and PRC 100

7.4 The Architecture including the Binary and Decimal QDS and PRC 101

7.5 Radix-10 PRC (digit slice) 102

8.1 The Selection Intervals and the Comparison Multiples 108

8.2 The proposed decimal square root algorithm 109

8.3 The Straight-Forward Architecture 111

8.4 Block Diagram of the Proposed Architecture 111

8.5 Details of Step 3) 113

8.6 Comparison Multiples Generation 114

8.7 Bit representations used in RDS 114

8.8 The Proposed Architecture of the Recurrence Stage 115

xi

LIST OF ALGORITHMS

1.1 Carry-free addition 11

1.2 Carry-limited addition 12

5.1 The proposed decimal addition 70

6.1 PPG based on digit-multiplication 79

6.2 PPG based on easy-multiples of the multiplicand 80

6.3 The proposed PPA 83

xii

LIST OF ABBREVIATIONS

 BCD Binary Coded Decimal

 BSD Binary Signed Digit

 CLA Carry Look-ahead Adder

 CSA Carry Save Adder

 DIF Decimation in Frequency

 DIT Decimation in Time

 DSP Digital Signal Processing

 DSSD Decimal Septa Signed Digit

 FA Full Adder

 FDPA Fused Dot Product Add

 FFT Fast Fourier Transform

 FMA Fused Multiply Add

 GSD Generalized Signed Digit

 HA Half Adder

 LZA Leading Zero Anticipation

 LZD Leading Zero Detection

 MCM Multiple Constant Multiplier

 MMCM Merged Multiple Constant Multiplier

 MSD Most Significant Digit

 PP Partial Product

 PPA Partial Product Accumulation

 PPG Partial Product Generation

 PPR Partial Product Reduction

 PRC Partial Remainder Computation

 QDS Quotient Digit Selection

 RDS Root Digit Selection

 RNS Residue Number System

 WBP Weighted Binary Position

xiii

LIST OF PUBLICATIONS

Journals:

1. Kaivani, A. and S. Ko, "Floating-Point Butterfly Architecture Based on Binary Signed-

Digit Representation," IEEE Transactions on Very Large Scale Integration, to appear, 2015.

2. Kaivani, A., L. Han and S. Ko, "Improved design of high-frequency sequential decimal

multipliers," IET Electronics Letters, Vol. 50, No. 7, pp. 558-560, 2014.

3. Han, L., A. Kaivani and S. Ko, "Area Efficient Sequential Decimal Fixed-point

Multiplier," Journal of Signal Processing Systems, Vol. 75, No. 1, pp. 39-46, 2014.

4. Kaivani, A. and S. Ko, "Decimal Division Algorithms: The Issue of Partial Remainders,"

Journal of Signal Processing Systems, Vol. 73, No. 2, pp. 181-188, 2013.

5. Kaivani, A. and S. Ko, "Decimal SRT Square Root: Algorithm and Architecture,"

Circuits, Systems and Signal Processing, Vol. 32, No. 5, pp.2137-2150, 2013.

Conferences:

1. Kaivani, A. and S. Ko, "High-Speed FFT Processors Based on Redundant Number

Systems," IEEE International Symposium on Circuits and Systems (ISCAS'14), pp. 2237-2240,

2014.

2. Kaivani, A. and S. Ko, "Decimal signed digit addition using stored transfer encoding,"

26th Annual IEEE Canadian Conference on Electrical and Computer Engineering (CCECE'13),

pp.1-4, 2013.

3. Kaivani, A., L. Chen and S. Ko, "High-frequency sequential decimal multipliers," IEEE

International Symposium on Circuits and Systems (ISCAS'12), pp. 3045-3048, 2012.

1

CHAPTER 1

INTRODUCTION & BACKGROUNDS

The need for high-speed processing greatly exceeds what general-purpose processors can

handle. This is where, for instance, arithmetic co-processors can be used to offload

computationally intensive tasks from the primary processor. Fast Fourier Transform (FFT) co-

processors are used in real-time multimedia services and financial applications use decimal co-

processors to perform large amounts of decimal computations.

A co-processor receives data from a general-purpose processor to execute time-

consuming operations. After the co-processor is done processing the data, the results are sent

back to the general-purpose processor. This approach saves time and offloads computationally

intensive tasks from primary processors, therefore achieving higher overall performance. Of

various available co-processors, the binary Fast Fourier Transform (FFT) co-processor and the

decimal floating-point co-processor have received a lot of attention recently.

FFT circuitry consists of several consecutive multipliers and adders over complex

numbers. Until recently, most FFT architectures used fixed-point arithmetic only, before FFTs

based on floating-point operations became prominent [1, 2]. Using the IEEE-754-2008 standard

[3] for floating-point arithmetic allows FFT co-processors to collaborate with general purpose

processors.

Despite the fact that binary computer arithmetic improves processing speed and reduces

hardware complexity, decimal computer arithmetic has recently been revived. The advantage of

decimal computer arithmetic over its binary counterpart is that decimal arithmetic is capable of

mirroring human computations (i.e., radix-10) and representing fractions precisely where binary

2

cannot (e.g., 0.2) [8]. Some applications, such as finance and banking, cannot tolerate a loss of

precision; this is where decimal computer arithmetic is useful.

Decimal computer arithmetic can be implemented in hardware or software. The software

implementation of decimal arithmetic operations with binary logic devices was widely used until

IBM revealed an all-hardware implementation of decimal processors such as the POWER6

decimal processor [9]. Additionally, the IEEE 754-2008 [3] standard for floating-point arithmetic

now supports the decimal hardware implementation. Hardware decimal arithmetic is used where

high-speed computations are performed on large amounts of data.

1.1 Fast Fourier Transform (FFT)

N-point FFT computation is described in Eqn. 1.1, where �(�) is the input and �� =
�����/� is the complex twiddle factor.

�[�] = � �(�) ∙ ��

��!

"#
; � = 0,1, … , * − 1 (1.1)

As a result of Eqn. 1.1, the outputs are as follows:

�[0] = �(0)��# + �(1)��#×! + ⋯ + �(* − 1)��#×(��!)

�[1] = �(0)��# + �(1)��!×! + ⋯ + �(* − 1)��!×(��!)

: (1.2)

�[�] = �(0)��# + �(1)��
×! + ⋯ + �(* − 1)��
×(��!)

:
�[* − 1] = �(0)��# + �(1)��(��!)×! + ⋯ + �(* − 1)��(��!)×(��!)

3

Consequently, implementation of Eqn. 1.1 requires *� complex multiplication plus

(− 1) complex additions. Given that each complex multiplication (addition) includes four

(zero) real multiplications and two (two) additions, in overall 4*� real multiplications and

2*(2* − 1) real additions are required to implement Eqn. 1.1.

Cooley and Tukey [10] proposed an efficient algorithm which makes hardware

realization of Eqn. 1.1 much easier. This algorithm, as shown in Eqn. 1.3, decomposes Eqn. 1.1

into even and odd indices. Therefore, the N-input FFT computation is simplified to the

computation of two (N/2)-input FFT (see Fig. 1.1). Continuing this decomposition leads to 2-

input FFT block also known as “butterfly” unit.

�[�] = � �(2�) ∙ ���

�� �!

"#
+ � �(2� + 1) ∙ �� (�
3!)

�� �!

"#

= � �(2�) ∙ ���

�� �!

"#
+ �� � �(2� + 1) ∙ ���

�� �!

"#

(1.3)

45678"9:6;<5 678"9:6;<5 6⁄ 78"45/678>???????????????????????@ �[�] = � �(2�) ∙ ��/�

�� �!

"#
+ �� � �(2� + 1) ∙ ��/�

�� �!

"#

458A5/6"�458>?????????@ � B� + *2C = � �(2�) ∙ ��/�

�� �!

"#
− �� � �(2� + 1) ∙ ��/�

�� �!

"#

There are two FFT architectures, decimation in time (DIT) and decimation in frequency

(DIF). The former, shown in Fig. 1.1, consists of a complex multiplication followed by complex

add/sub operations, while the latter requires the add/sub operations prior to the multiplication.

There are other FFT algorithms in the literature such as radix-3 [11], radix-4 [12], mixed

radix [13], split radix [14], convolution-based (e.g., Winograd [15] and Bluestein [16]), to name

4

a few. However, the radix-2 Cooley-Tukey algorithm is known as the most efficient algorithm

for hardware implementation due to its simplicity.

Figure 1.1: Implementation of an N-point FFT

Generally, N-point DIT FFT implementation using Cooley-Tukey algorithm can be

summarized as:

• Number of stages = log� *

• Number of twiddle factors = */2

• Number of butterfly units at each stage = */2

• Difference between indices of the upper and lower leg of a butterfly unit =

2GHIJ9�!

As an example, Fig. 1.2 illustrates the implementation of an 8-input DIT FFT.

1.2 Butterfly unit

Butterfly unit is actually a fused-multiply-add/sub (FMA) over complex operands. Fig.

1.3 depicts a DIT butterfly unit which consists of a complex multiplier, a complex adder and a

complex subtractor.

5

Figure 1.2: 8-input FFT using DIT butterfly

Figure 1.3: Butterfly Architecture (DIT)

A complex number � consists of one real and one imaginary component such that

� = �K9 + L�MN. Complex addition/subtraction 〈PK9, PMN〉 = 〈�K9 , �MN〉 ± 〈�K9, �MN〉 includes

two additions/subtractions over the real and imaginary components i.e., PK9 = �K9 ± �K9 and

PMN = �MN ± �MN. Complex multiplication 〈RK9 , RMN〉 = 〈�K9 , �MN〉 × 〈�K9 , �MN〉 is performed as

shown in Eqn. 1.4.

RK9 = �K9�K9 − �MN�MN; RMN = �K9�MN + �MN�K9 (1.4)

6

According to Eqn. 1.4, a complex multiplication requires four multiplications and two

additions/subtractions. However, Golub algorithm introduces another equation (Eqn. 1.5) for the

computation of the real component RK9 which, in some cases, leads to lower cost [19].

RK9 = (�K9 + �MN)(�K9 − �MN) + �K9�MN − �MN�K9 (1.5)

Given that �K9�MN and �MN�K9 are already computed for RMN, Golub algorithm requires

three multiplications and five additions/subtractions. This leads to a lower cost than the

conventional method, assuming a multiplier costs at least 3 times more than an adder. Therefore,

there are two methods to implement a butterfly unit: 1) conventional 2) Golub's approach.

Fig. 1.4 shows the implementation of a DIT butterfly with expanded complex numbers

using the conventional approach. Accordingly, it consists of four multipliers and six

adders/subtractors. It should be noted that, given the constant values of twiddle factors (W), the

multipliers are constant and can be implemented via a series of shifters and adders in lieu of the

multiplier tree. Fig. 1.5 shows the implementation of a DIT butterfly unit based on the Golub's

approach. Accordingly, it consists of three multipliers and nine adders/subtractors.

Figure 1.4: DIT Butterfly architecture using conventional approach

7

Figure 1.5: DIT Butterfly architecture using Golub's approach

1.3 Floating-Point Arithmetic

Floating-point arithmetic is being used, and preferred over fixed-point, in many

applications due to the fact that it provides a large range of numbers and a high degree of

precision. It is also common to be used in a variety of Digital Signal Processing (DSP)

applications because it relieves the designer of numerical issues e.g., scaling, overflow, and

underflow. A floating-point number, as represented in Eqn. 1.6, consists of four components;

namely, sign, significand, base and exponent.

(−1)G�J × SLT�LULVW�� × (XWS�)9YZ[9 H (1.6)

The above four components for a single precision floating-point number, according to

IEEE 754-2008 standard [3], take values as follows:

8

• SLT� ∈]0,1^

• SLT�LULVW�� is a 24 bit number ∈ [1,2 − 2�_]
• XWS� = 2

• �`ab���c is an 8 bit integer ∈ [−126,127]
Given that base is always equal to two, it is only required to store the other three

components. With the intention of storing these components efficiently, the following

modifications are done:

1. It is always (�`ab���c + XLWS) stored. Given XLWS = 127, the stored value

 belongs to [1,254]. The values 0 and 255 are reserved for special values.

2. Keeping SLT�LULVW�� normalized (i.e., the most significant bit is always 1),

 allows for storing only 23 bits of the significand. The most significant bit is

 known as a hidden bit.

Therefore, a single precision floating-point number covers [2�!�g, 2!�h) and any number

smaller than 2�!�g is a denormalized number. Consequently, 0 cannot be represented in a

normalized range and a special code is assigned to represent 0 i.e., �`ab���c + XLWS = 0 and

SLT�LULVW�� = 0.

IEEE 754-2008 standard [3] imposes special codes for the following special values:

• ±i: �`ab���c + XLWS = 0 W�� SLT�LULVW�c = 0

• jklmnopqrskt luovkn: �`ab���c + XLWS = 0 W�� SLT�LULVW�� ≠ 0

• ±∞: �`ab���c + XLWS = 255 W�� SLT�LULVW�� = 0

• xmy p xuovkn (xpx): �`ab���c + XLWS = 255 W�� SLT�LULVW�c ≠ 0

Floating-point addition/subtraction consists of the following:

a) Exponent difference: Determine exponent difference Δ and the smaller exponent.

9

b) Alignment shift: Shift right (Δ positions) the significand of the number having a smaller

exponent. The largest exponent is the result’s exponent.

c) Addition/subtraction over significands: Determine and perform the actual operation; may

need to swap the operands.

d) Normalization shift: Shift right 1 bit, in case of addition overflow. Detect the number of

leading zeros and shift left, in case of subtraction, such that there is a new hidden 1 to the

left of the binary point.

e) Rounding: Use extra bits (Round, Guard and Sticky) to round the result. This may lead to

post normalization.

f) Exponent adjustment: Adjust the exponent to compensate for the shifts in d) and e).

In order to improve the speed of floating-point addition, dual-path architecture is usually

used which separates the slow shifts (b and d) into different paths. This, however, requires

parallel significand addition/subtraction modules.

Floating-point multiplication consists of the following:

a) Multiplication of the significands: fixed-point multiplication over the significands

b) Addition of exponents: The exponent of the result is determined by this addition.

c) Normalization: This involves leading-zero-detection (LZD) and shifting.

d) Rounding: Round the significand of the product according to standard rounding methods.

e) Exponent adjustment: The shifts in d) calls for this exponent adjustment

In floating-point fused multiply add (FMA) operation, a and b of the multiplication can

be performed in parallel with a and b of the addition. Consequently, there is no need to use dual

path architecture [17]. Moreover, common steps of addition and multiplication (i.e.,

normalization, rounding and exponent adjustment) are usually combined to save area and time.

10

1.4 Redundant Number Systems

Carry propagation is known as the main decelerator in digital arithmetic operations.

Carry digits are the consequence of the fact that the value of the ith digit of the final result (e.g.,

sum in addition) can depend on the values of the operands in ith position and the less significant

positions (0 to i–1).

There are some techniques to reduce the carry propagating latency such as Residue

Number Systems (RNS) [7] and redundant number systems.

A number system, defined by radix r and digit-set [z, {], is redundant if and only if

{ − z + 1 > } [7]. Moreover, the redundancy index of that digit-set is defined as ~ = { − z +
1 − }. Amongst available digit-sets for a specific redundant number system, minimally and

maximally redundant digit-sets are the most popular ones due to their unique features. A

minimally redundant digit-set is the one with ~ = 1; while a maximally redundant digit-set has

the maximum cardinality represented with minimum number of bits. For example, the Binary

signed-digit (BSD) representation with digit-set [-1, 1] is a redundant number system.

In addition to radix and digit-set values, the encoding used to represent a digit-set has a

great impact on the performance and efficiency of a redundant number system. For example,

Table 1.1 shows some encodings for r=10 and digit-set [0,10].

Assuming that the transfer digits are c� ∈ [−�, �], the (� − z ≤ �� ≤ { − �) condition

must be satisfied to guarantee no carry-propagation in Step c of Algorithm 1.1. In other words

the maximum (minimum) value of a transfer digit plus interim sum must fit into digit-set [z, {].

11

Table 1.1: Encodings for a Decimal Digit

Encoding Weights Dot notation

8-4-2-1

8-4-2-1-1

4-2-2-1-1

Algorithm 1.1: Carry-free addition

Inputs: Two redundant numbers �: ` �! ⋯ `!`# and �: � �! ⋯ �!�#.

Output: Addition result represented in redundant format P: S S �! ⋯ S!S#.

Perform followings for 0 ≤ L < �, in parallel.

a) Compute position sums a� = `� + ��.
b) Divide a� into a transfer digit c�3! and interim sum �� such that �� = a� − }c�3!.

c) Compute the final result as S� = �� + c�. ■

Example 1.1: Carry-free addition as s = x + y, in redundant digit-set [-5, 9].

It is proven in [18] that carry-free addition is possible iff one of the following conditions

is satisfied:

• } ≥ 3, ~ ≥ 3

• } ≥ 3, ~ = 2, z ≠ 1, { ≠ 1

Therefore, carry-free addition is not applicable to binary signed-digit representation with

digit-set [−1,1]. In this case a carry-limited addition is available [7].

12

Algorithm 1.2: Carry-limited addition

Inputs: Two redundant numbers �: ` �! ⋯ `!`# and �: � �! ⋯ �!�#.

Output: Addition result represented in redundant format P: S S �! ⋯ S!S#.

Perform following steps for 0 ≤ L < �, in parallel.

a) Compute position sums a� = `� + ��.
b) Compare a� to a constant to determine whether ��3! = �b� or ℎLTℎ (��3! is a

 binary range estimate for c�3!).

c) Given ��, divide a� into a transfer digit c�3! and interim sum �� such that

 �� = a� − }c�3!.

d) Compute the final result as S� = �� + c�. ■

Example 1.2: Carry-limited addition as s = x + y, in binary signed-digit [-1, 1].

It should be noted that in Example 1.2 a = −1(1) is kept intact when the incoming carry

is in [0,1] ([−1,0]), so as to guarantee no further carry-propagation.

1.5 Motivation of Research

Carry propagation decelerates digital arithmetic operations. Redundant number systems

are the most popular technique to overcome this challenge. A number system, defined by radix r

and digit-set [α, β], is redundant if and only if β − α + 1 > }.

13

Redundant number systems eliminate word-wide carry propagation within interim

operations. However, the conversion from a redundant format to a non-redundant one requires

carry-propagation. This makes redundant number systems mostly useful in applications where

many consecutive arithmetic operations are performed prior to the final result making it a

suitable technique to use in computer arithmetic co-processors. This thesis discusses the

implementation of the binary floating-point FFT co-processor, and the decimal arithmetic co-

processor.

Floating-point FFT circuitry consists of several consecutive multipliers and adders over

complex numbers. The main advantage of floating-point over fixed-point arithmetic is the wide

dynamic range it introduces. The main drawback of floating-point operations is their slowness

compared with their fixed-point counterparts. One way to speed up floating-point arithmetic is

merging several operations in a single floating-point unit to save delay, area and power

consumption [2]. Previous works on floating-point FFT architectures have used this technique [1,

4, 5] to design a dot-product unit, to compute (� + �) × (� + �), so as to gain performance

improvement.

Using redundant number systems [6] is another well-known way of improving the speed

of floating-point arithmetic units, where there is no word-wide carry propagation within interim

operations. The conversion from non-redundant to redundant format is a carry-free operation;

however, the reverse conversion requires carry propagation [7].

Decimal computer arithmetic is inherently slower than its binary counterpart, since it is

working based on a non-power-of-two radix. Likewise for the FFT co-processor, redundant

number systems are very helpful in increasing the speed of the decimal arithmetic co-processor.

14

1.6 Objectives of the Thesis

The main objective of this thesis is to design a high-speed co-processor based on

redundant number systems. In particular, the architectures of the two of most commonly used co-

processors will be redesigned based on redundant number systems to achieve improved

performance.

The first part of this thesis investigates the advantages and costs of designing high-speed

floating-point FFT architectures using redundant number systems. New architectures are

proposed and compared to previous works.

The second part is devoted to proposing decimal arithmetic co-processors with

architectures based on redundant number systems comparing them with previous works. A

complete decimal arithmetic unit is designed accordingly, with four basic decimal arithmetic

operations: addition, subtraction, multiplication and division. An architecture based on redundant

number systems is also proposed for computing decimal square-root.

1.7 Novelties

Although there are other works on the use of redundant floating-point number systems,

they are not optimized for FFT architectures that require both a redundant floating-point

multiplier and an adder. The novel techniques used in the new floating-point FFT architecture

include:

• All significands are represented in binary signed-digit (BSD) format and the

corresponding carry-limited adder is designed.

• Design of floating-point constant multipliers for operands with BSD significands.

• Design of floating-point three-operand adders for operands with BSD

significands.

15

• Design of floating-point Fused-Dot-Product-Add units (i.e., AB ± CD ± E) for

operands with BSD significands.

The novel techniques used in the new decimal floating-point arithmetic units include:

• Design of a decimal redundant adder based on signed-digit and stored transfer

encoding.

• Design of a high-speed sequential decimal multiplier based on unconventional

representations.

• Design of a decimal divider with redundant representation of the quotient and

partial remainders.

• Design of a high-speed decimal square-root based on redundant number

representation.

1.8 Organization of the Thesis

The rest of the thesis is divided into two main parts. Part I discusses the details of the new

floating-point FFT co-processor designed based on redundant number systems. Previous works

on floating-point FFT co-processors are presented in Chapter 2. In Chapter 3 (partially published

in [63, 64]), the new FFT architectures are explained in detail. These architectures are designed

based on the new floating-point redundant multiplier and the new Binary signed-digit (a

redundant representation) three-operand adder. Chapter 4 includes the evaluation results of the

new floating-point arithmetic units used in the new FFT co-processor. These results are

compared with those of previous works.

Part II of this thesis presents the details of the new decimal arithmetic units designed

based on redundant number systems. Chapter 5 (partially published in [65]) presents the details

of the new redundant decimal adder. The new sequential decimal multiplier, based on an

unconventional redundant representation, is explained in Chapter 6 (partially published in [66,

16

67, 68]). In Chapter 7 (partially published in [69]), a new decimal divider that represents quotient

and partial remainders in a redundant format is proposed. Chapter 8 (partially published in [70])

presents the new decimal square-root unit. Finally, Chapter 9 is devoted to the conclusions and

future works.

17

Part I

FFT Co-Processors

18

CHAPTER 2

PREVIOUS WORKS ON FFT PROCESSORS

This chapter discusses the previous works related to floating-point FFT processors which

includes butterfly architectures and complex multipliers.

2.1 Floating-Point Complex Multipliers [19]

This work [19] focuses on the design of a floating-point complex multiplier with the help

of fused floating-point arithmetic.

Conventional and Golub's method are two approaches based on which the paper [19]

designs floating-point complex multipliers. As is also mentioned in previous section, Golub's

method requires fewer multipliers but more adders than the conventional approach. Authors opt

for conventional method, due to the fact that the latency and cost of floating-point adders are

close to those of floating-point multipliers. Consequently, Golub’s method is not recommended

for floating-point implementations.

The paper [19] proposes a fused-dot-product unit which performs two multiplications and

then adds the products i.e., �� + ��. With this unit, efficiency is achieved due to the elimination

of the interim rounding and normalization of the fused-dot-product unit [19]. A conventional

complex multiplier is then designed using two fused-dot-product units.

Floating-point fused-add-subtract is another unit designed in the paper [19]. This unit

computes both floating-point sum and difference of two input operands. It combines the common

parts of floating-point addition and subtraction and hence significantly lower power/area cost.

19

The third floating-point unit discussed in [19] is a fused-dot-product-add/subtract unit,

which is a combination of the two previous units. This new unit has four inputs (�, �, �, �) and

two outputs � = �� + �� and � = �� − ��. A Golub's complex multiplier is then designed

using the latter two units.

Taking advantage of the aforementioned fused units, the paper [19] concludes that

"Golub’s method results in a modest increase in complexity and power consumption and a large

increase in delay relative to the conventional method. This is true even when fused

implementations are used" [19].

2.2 Floating-Point Fused Butterfly Arithmetic [1]

This work [1] improves the performance of butterfly unit and hence FFT processors by

proposing two fused floating-point operations, namely, Dot-Product (Fig. 2.1) and Add-Subtract

(Fig. 2.2).

The Dot-Product unit, compute AB+CD, consists of the following operations:

• Two floating-point multipliers, perform in parallel

• Alignment Shift

• (4:2) Compressor

• Carry-propagating adder, performs in parallel with Leading-Zero-Detector (LZD)

• Normalization & Rounding

The fused Add-Subtract unit, compute A±B, consists of the following operations:

• Exponent difference block, perform in parallel with MUXes to select significands

• Alignment Shift

• A subtraction and an addition perform in parallel

• Exponent adjustment, perform in parallel with rounding and normalization

• MUXes to select Add/Subtract results

20

Figure 2.1: Floating-point Dot-Product unit [1]; Result = AB±CD

Next a radix-2 (Fig. 2.3) butterfly (Decimation in Frequency) unit is designed using Dot-

Product and fused ADD-Subtract modules. It has been shown that the proposed radix-2 butterfly

architecture requires 35% lower area cost and is 15% faster than its discrete (not fused)

implementation.

21

Figure 2.2: Floating-point fused Add-Subtract unit [1]

Moreover, a radix-4 butterfly (Decimation in Time) unit is designed using Dot-Product

and fused Add-Subtract modules. It has been shown that the proposed radix-4 butterfly

architecture requires 26% lower area cost and is 13% faster than its discrete (not fused)

implementation.

22

Figure 2.3: Radix-2 floating-point DIF butterfly [1]

In overall, the paper [1] shows that using fused operations to implement butterfly units

(and FFT) leads to faster modules with lower area cost. This advantage is mainly achieved

because of removing some extra rounding & normalization operations e.g., those of floating-

point multipliers.

2.3 Floating-Point Fused Butterfly with Merged Multipliers [5]

Use of merged constant multipliers increases the performance of floating-point fused

butterfly units. As mentioned before, given the constant values of twiddle factors, the

conventional multipliers can be replaced by simple shift-add operations. In [5], it has been shown

23

that (for a 1024-point FFT) more than 28% percent of shift-coefficients of the shifters between

real and imaginary parts of the twiddle factors are the same. For example, the shift coefficients of

��9��h are 1, 5, 8 and 11 while those of ��N��h are 0, 5, 9 and 11. Therefore, two coefficients, in

this case (5 and 11), are the same [5]. Taking advantage of the same shift-coefficients reduces the

power consumption of the butterfly units. Fig. 2.4 shows the butterfly unit of [5] using the

merged multipliers.

Figure 2.4: Butterfly unit using merged multipliers [5]

2.4 Improved Floating-Point Dot-Product Unit [2]

This work [2] is a modification to floating-point dot-product unit. The major

improvements include:

• Reducing the shift amount in the alignment step

• Performing early normalization so as to reduce latency

• A four-input Leading-Zero-Detector is used over redundant operands to reduce

critical path delay

• The dual path algorithm is also presented for speed improvement

24

Figs. 2.5 and 2.6 show the single path and dual path implementations of the enhanced

dot-product of this work, respectively.

Figure 2.5: Enhanced floating-point dot-product unit (Single path) [2]

25

It has been shown that the enhanced single (dual) path dot-product unit consumes 25%

(19%) lower area and 16% (26%) lower latency compared to the conventional method. This dot-

product unit can be used in the design of a high-performance butterfly unit. Replacing the dot-

product unit of [1] with this faster one, leads to a high-speed butterfly unit.

Figure 2.6: Enhanced floating-point dot-product unit (Dual path) [2]

26

2.5 Summary of Previous FFT Architectures

The first paper [19] is just about complex multipliers which is used in butterfly units. It

concludes that the conventional architecture is more suitable for floating-point operands than

Golub's method. The reason lies within the fact that the latency and cost of floating-point adders

are close to those of floating-point multipliers. Consequently, Golub’s method is not

recommended for floating-point implementations.

The two major works on floating-point FFT/butterfly architecture are [5, 1]. The former

introduces architectures based on multiple-constant multipliers (MCM) and merged multiple-

constant multiplier (MMCM), amongst which the fastest design reported to have the latency of

4.08ns with the area consumption of 97,302μm�, in 45nm CMOS technology.

The other work [1] designs a floating-point butterfly unit using novel dot-product blocks.

This work, simulated based on 45nm CMOS technology, has the latency of 4.00ns with area cost

of about 47,489μm�. The dot-product unit of this design is reported to have a latency of about

2.72ns with 16,104μm� area cost.

The most recent work [2] has proposed a very fast floating-point dot-product unit which

can be used in the design of a high-performance butterfly unit. Replacing the dot-product unit of

[1] with this faster one, leads to a high-speed butterfly architecture.

In a nutshell, a butterfly unit designed based on the combination of [1, 2] is the fastest

architecture for both single-path and dual-path designs; while the architecture of [1] consumes

the lowest area.

27

CHAPTER 3

THE PROPOSED FFT ARCHITECTURE
1

The proposed FFT architecture is based on the Cooley-Tukey algorithm which is the

most efficient FFT algorithm for hardware implementation. As is mentioned in the previous

section, an N-point DIT FFT implementation using Cooley-Tukey algorithm has log� * stages,

each of which consists of */2 butterfly units. Moreover, */2 twiddle factors are required,

which can be pre-computed and stored a look-up table.

Therefore, the butterfly unit is the major building block of an FFT processor. Having the

butterfly architecture, one can design the N-point FFT block using log� * stages, each of which

consists of */2 butterfly units working in parallel. Therefore, the latency of each stage is equal

to that of a butterfly unit plus those of registers. Consequently, the details of the proposed

butterfly architecture will be discussed in the following sub-sections.

3.1 The Proposed Butterfly Architecture

The proposed butterfly is actually a complex Fused-Multiply-Add followed by a complex

addition with floating point operands. Expanding the complex numbers, Fig. 3.1 depicts the

required modules for a butterfly unit. A naive approach to implement Fig. 3.1 is to cascade

floating-point operations i.e., floating-point multiplication followed by two cascaded floating-

point addition/subtraction. A more efficient approach is to merge the floating-point

multiplication with the first floating-point addition/subtraction. This method leads to a floating-

point Fused-Multiply-Add followed by a floating-point addition/subtraction.

1
 Published @ 1) IEEE Transactions on VLSI, 2) ISCAS'14

28

Figure 3.1: Butterfly Architecture with Expanded Complex Numbers

Using the floating-point Fused-Multiply-Add, as is discussed in Section 1.5, would save

time, area and power. However, the butterfly function cannot be directly implemented by Fused-

Multiply-Add (i.e., A+BC). In order to circumvent this problem a Dot-Product unit is required,

which is an extension to Fused-Multiply-Add operation.

A Dot-Product unit computes AB+CD or AB˗CD. This unit is capable of saving more

time, area and power than Fused-Multiply-Add. The reason lies in the fact that a Dot-Product

unit combines more floating-point operands and hence eliminating more intermediate

Normalization, Rounding and Leading-Zero-Detection. Combining floating-point operations,

although seems interesting and an easy way of saving time, area and power, leads to precision

loss which need to be taken care of, meticulously.

For example, in a Fused-Multiply-Add unit the combination of the multiplication with the

addition removes the intermediate Rounding, Normalization and Leading-Zero-Detection after

the multiplication. However, it is important to pass wider operands (more number of bits) to the

floating-point addition such that the required precision can be recovered at the end of the

addition.

29

For a Dot-Product unit the loss of precision is more critical, given that the Rounding,

Normalization and Leading-Zero-Detection of two multiplications are now removed and left to

be dealt with at the end of the addition. Consequently, more bits have to be passed to the

floating-point addition so as to be able to recover the required precision. Fig. 3.2 depicts a

butterfly architecture implemented using Dot-Product units.

Figure 3.2: Butterfly Architecture with Dot-Product Units

According to Fig. 3.2, the constituent operations of a floating-point butterfly unit are a

floating-point Dot-Product (e.g., ��9��N + ��N��9) followed by a floating-point

addition/subtraction. Extending the concept of combining floating-point operations even further

leads to the proposed Fused-Dot-Product-Add (FDPA) operation (e.g., ��9��N + ��N��9 +
��N) over floating-point operands. Fig. 3.3 shows the butterfly unit implemented using the

Fused-Dot-Product-Add unit.

It should be noted that in Fig. 3.3 the FDPA units provide two outputs (dubbed - and +).

The - output computes ��9��N + ��N��9 − ��N while the + output is the result of ��9��N +
��N��9 + ��N.

30

Figure 3.3: Butterfly Architecture with Floating-point Fused-Dot-Product-Add

It will be shown later that given the sign embedded representation of the floating-point

operands of the FDPA, generating the second output is done with no extra latency and almost no

extra area cost.

The Fused-Dot-Product-Add unit can be implemented in two ways:

a) Combining a floating-point Dot-Product unit with a floating-point addition.

b) Combining a floating-point multiplication with a floating-point three-operand

addition.

Approach a) is a direct extension of Fig. 3.2 where the intermediate Rounding,

Normalization and Leading-Zero-Detection (after Dot-Product) are eliminated and left to be

dealt with after the addition. Fig. 3.4 illustrates the proposed floating-point FDPA unit

implemented using Dot-Product units. This makes the required circuitry to guarantee the correct

precision even more complicated, given that now three consecutive operations are combined

(i.e., Multiplication and two additions). Moreover, even more number of bits are required to be

passed between operations so as to reach the desired precision.

31

Figure 3.4: Floating-point Fused-Dot-Product-Add (FDPA) with Dot-Product Units

Figure 3.5: Floating-point Fused-Dot-Product-Add (FDPA) with 3-Operand Adder

Approach b) sees the floating-point fused-dot-product-add unit as a combination of a

floating-point multiplier followed by a floating-point three operand addition. This eliminates the

Rounding, Normalization and Leading-Zero-Detection after the multiplication as well as the one

inside the floating-point three-operand adder. Fig. 3.5 illustrates the proposed floating-point

fused-dot-product-add (FDPA) unit implemented using two floating-point multiplications

followed by a three-operand floating-point addition.

32

3.1.1 Data Representation

The representation of the floating-point operands has a significant impact on the number

of bits (weighted positions) required to be passed to the next operation. There is a need to find

the most efficient representation for the exponent and significands of the floating-point operands.

Moreover, a redundant representation, at least for the significands, is desired so as to eliminate

intermediate carry-propagation.

Having a redundant representation for a floating-point operation creates some other

challenges specially with the rounding and normalization. For instance, in a redundant floating-

point adder designed by Fahmy and Flynn [20] a radix-16 redundant representation is used.

Assuming a maximally redundant radix-16 signed digit representation, with [-15, 15] as

the digit set, each digit can be represented by a 5-bit 2's complement number. However, this

leads to an invalid value (i.e., -16). Therefore, the first challenge would be designing the

floating-point adder such that -16 cannot be generated in the output.

Determining the rounding position is another challenge, because the binary position for

inserting the round value should be determined based on the non-redundant value of the

significand (i.e., IEEE format). In other words, rounding the redundant representation and then

converting it to non-redundant format must lead to the same value if it is converted first and then

the result is rounded.

Leading-Zero-Detection is another challenge, which is somehow related to the rounding

challenge. In the process of converting to non-redundant representation, a -1 value might be

propagated to the most-significant position and turn it into zero. This would also change the

correct rounding position. For higher radix-representations (e.g., radix-16) this may lead to a

rounding position shifted as far as four digits.

33

In the proccess of choosing a redundant representation for the significand, it should be

noted that higher radix representation leads to lower number of extra bit to store a significand;

however, it leads to a small carry-propagation inside each digit. For example, radix-16 redundant

representation requires a 4-bit carry-propagation inside a digit. Moreover, a higher radix

representation requires a more complicated digit adder.

According to the above discussion, the followings present the data representation that

will be used for the proposed butterfly architecture. The exponents of all inputs are represented

in two’s complement, after subtracting the bias. The value of the bias is determined by the IEEE

format used.

The significands of ��9 , ��N, ��9 and ��N are represented in binary signed digit (BSD).

Within the BSD representation (shown in Fig. 3.6 for ��9) every binary position takes values of

]−1,0,1^ represented by one negative-weighted bit (negabit) [6] and one positive-weighted bit

(posibit). Negabits (Posibits) are shown in white (black) dots and capital (small) letters.

Figure 3.6: Dot and symbolic notation of the significand of �nk

The significand of � is stored in the modified Booth encoding [7] in which every binary

position takes a value of]−1,0,1^ where there is at least one 0 in two adjacent positions.

Therefore, only multiples of ±� and ±2� are required which can be computed easily by shift

and negation. This leads to a simpler partial product generation phase in the multiplier. The

conversion to the modified Booth encoding is actually a radix-4 digit-set conversion i.e., from

[0, 3] to [˗2, 2].

34

For converting an n-bit binary number y (� �!� �� … �#) to a modified Booth

representation z the first step is to put every 2 bits of y into a group such that

�� = 2���3! + ��� � =
� − 1, … ,0 (3.1)

The second step is to divide �� into a radix-4 transfer c�3! and an interim sum ��; such

that

�� = 4c�3! + �� (3.2)

Finally, the third step is to generate �� by adding the same weighted transfers and interim

sums such that

�� = c� + �� (3.3)

It should be noted that the third step has to be done in a carry-free manner i.e., the

addition must not produce any further carry. This is guaranteed if the second step is performed

such that

−2 ≤ �� ≤ 1 W�� 0 ≤ c� ≤ 1 (3.4)

This is achieved if the following rules hold during the conversion:

�� = ��� LU �� ≤ 1�� − 4 LU �� ≥ 2� c�3! = �0 LU �� ≤ 11 LU �� ≥ 2� (3.5)

The details of the proposed redundant floating-point multiplier and the proposed

redundant three-operand floating-point adder are presented below.

3.2 The Proposed Redundant Floating-Point Multiplier

Floating-point multiplication, as is discussed in Chapter 2, consists of operations on the

exponents and those on the significands. The former is just a simple addition of the exponent;

although, there may be a need for exponent adjustment in the normalization and rounding phase.

35

The latter, however, is the most time-consuming part of a floating-point multiplier.

Multiplication over significands consists of three major steps called: 1) Partial Product

Generation, 2) Partial Product Reduction and 3) Final Addition.

The proposed multiplier, likewise other parallel multipliers, consists of two major steps,

namely, partial product generation (PPG) and partial product reduction (PPR). However,

contrary to conventional multipliers, the proposed multiplier keeps the product in redundant

format and hence there is no need for the final carry-propagating adder.

3.2.1 Partial Product Generation (PPG)

The partial product generation, in a 2's complement representation of the multiplicand

and multiplier, consists of arrays of AND operation such that each bit of the multiplier is ANDed

to the whole bits of the multiplicand. This is not the case if the operands are represented in

redundant format and/or Booth encoding. For example, if the multiplier is represented in the

modified Booth encoding, the partial product generation looks like the circuitry shown in Fig.

3.7 [17].

Partial product generation of a redundant multiplier is even more complicated, since the

cardinality of the multiplier's digit-set is more than the radix. Generating the multiples of the

multiplicand is easy (shift and negation) for ±2x and ±1x; however, ±3x and ±5x (if exists)

involve an addition. Fig. 3.8 shows how these multiples are generated. Consequently, higher

redundancy factor (see Chapter 2) leads to more complicated partial product generation; although

it provides faster redundant addition.

36

Figure 3.7: Partial Product Generation of the modified Booth encoding

Figure 3.8: Generating the Multiples of the Multiplicand

The PPG step of the proposed multiplier is completely different from that of the

conventional one because of the representation of the input operands (B, W, B', W'). Moreover,

given that ��9 and ��N are constants, the multiplications over significands can be computed via

a series of shifters and adders.

37

For example, multiplying B1 by 113 (1110001)2 can be done by the following shift and

add steps [7]:

Step a: B2 = Shift B1 left for 1 bit

Step b: B3 = R2 + B1

Step c: B6 = Shift B3 left for 1 bit

Step d: B7 = B6 + B1

Step e: B112 = Shift B7 left for 4 bits

Step f: B113 = B112 + B1

In order to speed-up the above operation one may use the following sets of operations;

however, it requires a hardware to be able to perform shift and add, simultaneously.

Step a: B3 = (Shift B1 left for 1 bit) + B1

Step b: B7 = (Shift B3 left for 1 bit) + B1

Step c: B113 = (Shift B7 left for 4 bits) + B1

It should be noted that in order to perform the above steps, there is also a need for a barrel

shifter to be able to shift an operand for various number of bits. For example, Steps a & b require

1 bit shifts however, Step c requires a 4-bit shift. The other sequence would be the one shown

below, where there is a need for both addition and subtraction.

Step a: B8 = Shift B1 left for 3 bits

Step b: B7 = B8 - B1

Step c: B112 = Shift B7 left for 4 bits

Step d: B113 = B112 + B1

Having the ability of performing subtraction is mostly useful when the multiplier has a

series of consecutive 1s in its binary representation. In this case one may need to perform lots of

addition operations however, with a subtraction operation only one subtraction and one addition

are required.

38

With the intention of reducing the number of adders, the significand of � is stored in

modified Booth encoding [7] in which every binary position takes a value of]−1,0,1^ where

there is at least one 0 in two adjacent positions. Therefore, �
�� add/sub is sufficient to compute an

n-by-n multiplication.

Given the modified Booth representation of ��9 and ��N one partial product (PP),

selected from multiplicand B, is generated per two binary positions of the multiplier W, as shown

in Table 3.1. Note that each binary position (e.g., ��) consists of two bits �����3 to represent

−1, 0 or 1.

Table 3.1: Generation of i
th

 partial product

 r3¡� r3¡3 r� r3 ‖ r3¡� r3¡3 r� r3‖ ££r
0 0 0 0 0 0

0 0 0 1 1 B

0 0 1 1 −1 −�

0 1 0 0 2 2 × �

1 1 0 0 −2 −2 × �

Fig. 3.9 illustrates the required circuitry for the generation of RR� based on Table 3.1. It

should be noted that given the binary-signed-digit (BSD) representation of multiplicand B, the

value of –B (–2B) is generated through a simple NOT over all bits of B (2B).

Moreover, 2B is generated via a 1-bit left shift over B. Note that each partial product

consists of (n+1) digits (i.e., binary positions), each of which has a negabit and a posibit.

3.2.2 Partial Product Reduction (PPR)

Partial product reduction phase is actually a multi-operand addition of the partial products

generated in the partial product generation phase.

39

Figure 3.9: Generation of the i
th

 partial product

In general, there are two approaches to reduce the partial products; 1) reduction by rows

and 2) reduction by columns. The former uses adders which could be either redundant adders or

carry-propagating adders. Let's say 8 partial products are reduced using the adders (i.e., reduction

by rows). Fig. 3.10 depicts the required steps. It takes 3 steps to reduce the 8 operands while each

step has the latency of one adder. The total number of adders used in this reduction method is

seven.

Generalizing this approach for p operands (i.e., [p:1] reduction block) is described next.

Reduction of p operands can be divided into two parts, each of which reduces p/2 operands (i.e.,

[p/2:1] reduction block); and then add the outputs together.

Fig. 3.11 shows the reduction of p operands using reduction blocks for p/2 operands.

Each of those [p/2:1] modules could be further divided into two sub modules. Continuing this

approach leads to a [2:1] reduction block which is known as a carry-propagating adder.

Consequently, log(p) steps are required to reduce p operands to 1.

Reduction by columns is done by modules called counters or compressors. These

modules take p bits, all at the same weighted position, and generate q bits of adjacent weights. In

40

other words, the number of 1s in p bits is counted and represented in a q-bit number. That is why

these modules are called [p:q] counters. Therefore, the following relation between q and p holds

[17].

2¤ − 1 ≥ a → ¦ = §log�(a + 1)¨ (3.6)

Figure 3.10: Partial Product Reduction by Rows

Figure 3.11: [p:1] reduction block based on [p/2:1] blocks

41

A [3:2] counter is simply a full-adder which is implemented using the following logical

expressions:

¦! = a�a! + a�a# + a!a#, ¦# = a� ⊕ a! ⊕ a# (3.7)

Larger counters can be built using full-adders and half-adders (i.e., [2:2] counter). For

example, Fig. 3.12 depicts a [7:3] counter implemented by full-adders. The numbers next to each

wire show the weight of that input/output. It should be noted that in a counter all same weighted

outputs can be added together using a full-adder. The final output is a 3-bit number which counts

the number of 1s in the input p.

Having multiple counters working in parallel leads to a multi-column counter which can

be used to reduce several columns. In a multi-column counter, there are multiple counters each

of which performing on a single weighted position and passes the carries to the next higher

weighted column. For example, Fig. 3.13 shows a [7:2] compressor which passes the carries to

the next higher weighted position and receives input carries from the lower weighted position. It

should be noted that this module is called [7:2] compressor, because 2 bits are not enough to

count 7 bits.

Therefore, partial product reduction phase of a multiplier can be taken care of by multi-

column compressors. These modules take p bits of a single column (same weights) and reduce it

into two bits per column. For example, a 54-by-54 bit multiplier generates 54 partial products. In

order to reduce these partial products one could design a [54:2] compressor to reduce them to

only two operands. Then a carry-propagating adder, over the two operands, generates the final

product. Large compressors/counters can be built based on smaller ones. For instance, Fig. 3.15

shows a [16:2] compressor based on [4:2] compressors (Fig. 3.14). The PPR step of the proposed

42

multiplier is based on the reduction by row approach, however, it is completely different from

that of the conventional method.

Figure 3.12: [7:3] Counter by Full-Adders

Given that partial products are all represented in a redundant encoding i.e., Binary-

Signed-Digit, there is a need for an adder/counter that works on BSD digits. This carry-limited

addition circuitry is shown in Fig. 3.16, where capital (small) letters symbolize negabits

(posibits). The white dots are logical NOT operators required over negabit signals [6]. The

critical path delay of this adder consists of three full-adders.

43

Full-Adder Full-Adder

Full-Adder

Full-Adder

Full-Adder

C1

C2

C3

C4

C5

C1in

C2in

C3in

C4in

C5in

q1q0

p2 p1p3 p0p2 p1p3

Figure 3.13: [7:2] Compressor by Full-Adders

Since the BSD adder is actually a carry-limited adder, reducing the partial product using

this adder can be deemed as a reduction-by-column or reduction-by-row approach. In either case,

the major constituent of the PPR step is the proposed carry-limited addition over the operands

represented in BSD format.

44

Figure 3.14: [4:2] Compressor by Full-Adders

Figure 3.15: [16:2] Compressor by [4:2] Compressors

45

Figure 3.16: The proposed BSD adder (two digit slice)

Once the partial products are generated, in PPG step, carry-limited adders (Fig. 3.16) are

used to generate the final product. Therefore, for an n-by-n multiplier, �
�� + 1 (1 for the hidden

bit of W encoded in modified Booth) partial products are generated and §log �¨ − 1 levels of

BSD adders are required to produce the product.

Since each partial product (RR�) is (n+1)-digit (n,…,0) which is either B (n-1,…,0) or 2B

(n,…,1), the length of the final product may be more than 2n. For example, a 24-digit multiplier

(compliant with IEEE single precision format) leads to a 51-digit product. Assuming that the

sign-embedded significands of inputs A and B (24 bits) are represented in Binary-Signed-Digit;

while that of W is represented in modified Booth encoding (25 bits). The last partial product has

24-(binary position) width (instead of 25), given that the most significant bit of W is always 1

(hidden bit).

The multiplication over significands is implemented using the partial product generation

(PPG) unit of Fig. 3.9 and BSD adders of Fig. 3.16. The reduction of the partial products is done

in four levels, as shown in Fig. 3.17, using twelve BSD adders.

46

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3

4

3

3

3

2

3

1

3

0
 2

9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

P
0
2
4
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

..
.…

…
.P

0
0

P
1
2
6
…

…
…

…
…

…
…

…
…

…
…

…
…

…
..
.…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

..
.…

…
.P

1
2

P
2
2
8
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

..
…

…
…

…
…

…
…

…
…

…
…

…
…

…
..
…

..
.…

…
.P

2
4

P
3
3
0
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

..
…

…
…

…
…

…
…

…
…

…
…

…
…

…
..
…

…
..
…

…
.P

3
6

P
4
3
2
…

…
…

…
…

…
…

…
…

…
…

..
…

…
.…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

..
.…

…
.P

4
8

P
5
3
4
…

…
..

…
…

.…
…

…
…

.…
…

…
…

…
…

.…
..

…
..

.…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
..
.…

…
.P

5
1

0

P
6
3
6
…

…
..

…
…

.…
…

…
…

.…
…

…
…

…
…

.…
..

…
..

.…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
..
.…

…
.P

6
1

2

P
7
3
8
…

…
..

…
…

.…
…

…
…

.…
…

…
…

…
…

.…
..

…
..
.…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

..
.…

…
.P

7
1

4

P
8
4
0
…

…
..

…
…

.…
…

…
…

.…
…

…
…

…
…

.…
..

…
..

.…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
..

.…
…

.P
8

1
6

P
9
4
2
…

…
..

…
…

.…
…

…
…

.…
…

…
…

…
…

.…
..

…
..

.…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
..
.…

…
.P

9
1
8

P
1
0
4
4

…
…

..
…

.…
…

…
…

.…
…

…
…

…
…

.…
..

…
..

.…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
..

.…
…

.P
1
0
2
0

P
1
1
4
6
…

…
..

…
.…

…
…

…
.…

…
…

…
…

…
.…

..
…

..
.…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

..
.…

…
.P

1
1
2
2

P
1
2
4
7
…

…
.…

…
…

…
.…

…
…

…
…

…
.…

..
…

..
.…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

..
.…

…
.P

1
2
2
4

(P
1
1
 +

 P
1
0
)4

7
…

…
…

…
.…

…
…

.…
…

.…
..

…
…

.…
…

…
…

…
…

..
.…

…
.…

…
…

…
…

…
…

…
…

…
…

..
(P

1
1
 +

 P
1
0
)2

0

(P
9
 +

 P
8
)4

3
…

…
.…

…
…

…
.…

…
…

…
…

…
.…

..
…

..
.…

…
…

…
…

…
..

.…
…

.…
…

…
…

.…
…

…
…

…
…

..
(P

9
 +

 P
8

)1
6

(P
7
 +

 P
6
)3

9
…

…
.…

…
…

…
.…

…
…

…
…

…
.…

..
…

..
.…

…
…

…
…

…
..

.…
…

.…
…

…
…

.…
…

…
…

…
…

..
(P

7
 +

 P
6

)1
2

(P
5
 +

 P
4
)3

5
…

…
.…

…
…

…
.…

…
…

…
…

…
.…

..
…

..
.…

…
…

…
…

…
..

.…
…

.…
…

…
…

.…
…

…
…

…
…

..
(P

5
 +

 P
4

)8

(P
3
 +

 P
2
)3

1
…

…
.…

…
..

…
…

.…
…

…
…

…
…

.…
..

…
..

.…
…

…
…

…
…

..
.…

…
.…

…
…

..
.…

…
…

..
(P

3
 +

 P
2
)4

(P
1
 +

 P
0
)2

7
…

…
.…

…
..

…
…

.…
…

…
…

…
…

.…
..
…

..
.…

…
…

…
…

…
..
.…

…
.…

…
…

..
.…

..
.(

P
1

 +
 P

0
)0

P
1
2
4
7
…

…
.…

…
…

…
.…

…
…

…
…

…
.…

..
…

..
.…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

..
.…

…
.P

1
2
2
4

(P
3
 +

 P
2
 +

 P
1
 +

 P
0
)3

2
…

…
.…

…
..

…
…

.…
…

…
…

…
..

.…
..

…
..
.…

…
…

…
…

…
..
.…

…
.…

…
…

..
.…

..
.(

P
3

 +
 P

2
 +

 P
1

 +
 P

0
)0

(P
7
 +

 P
6
 +

 P
5
 +

 P
4
)4

0
…

…
.…

…
..
…

…
.…

…
…

…
…

..
.…

..
…

..
.…

…
…

…
…

…
..

.…
…

.…
..

.…
..
…

…
…

.…
..
.…

..
.(

P
7

 +
 P

6
 +

 P
5

 +
 P

4
)8

(P
1
1
 +

 P
1
0
 +

 P
9
 +

 P
8
)4

8
…

…
.…

…
..

…
…

.…
…

…
…

…
…

..
.…

…
…

…
…

…
..

.…
…

.…
…

..
…

.…
…

…
..
.…

..
.…

..
.(

P
1
1
 +

 P
1
0
 +

 P
9
 +

 P
8

)1
6

P
1
2
4
7
…

…
.…

…
…

…
.…

…
…

…
…

…
.…

..
…

..
.…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

..
.…

…
.P

1
2
2
4

(P
1
2
 +

 P
1
1
 +

 P
1
0
 +

 P
9
 +

 P
8
)4

9
…

…
.…

…
…

…
…

..
.…

…
.…

…
…

…
…

…
…

…
…

..
…

..
…

.…
…

…
.…

…
..

…
..

.(
P

1
2
 +

 P
1
1
 +

 P
1
0
 +

 P
9
 +

 P
8

)1
6

(P
7
 +

 P
6
 +

 P
5
 +

 P
4
 +

 P
3
 +

 P
2
 +

 P
1
 +

 P
0
)4

1
…

…
.…

…
..

…
…

.…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

..
…

..
…

.…
..
.(

P
7

 +
 P

6
 +

 P
5

 +
 P

4
 +

 P
3

 +
 P

2
 +

 P
1

 +
 P

0
)0

(P
1
2
 +

 P
1
1
 +

 P
1
0
 +

 P
9
 +

 P
8
 +

 P
7
 +

 P
6
 +

 P
5
 +

 P
4
 +

 P
3
 +

 P
2
 +

 P
1
 +

 P
0
)5

0
…

…
.…

…
…

…
…

..
.…

…
.…

…
…

..
.…

.…
..

…
..

.(
P

1
2
 +

 P
1
1
 +

 P
1

0
 +

 P
9

 +
 P

8
 +

 P
7

 +
 P

6
 +

 P
5

 +
 P

4
 +

 P
3
 +

 P
2

 +
 P

1
 +

 P
0

)0

F
ig

u
re

 3
.1

7
:

P
a

rt
ia

l
P

ro
d

u
ct

 R
ed

u
ct

io
n

 T
re

e

47

The numbers in the first row of Fig. 3.17 show the bit positions of each partial product.

For example, P024 symbolizes bit position 24 of first partial product (PP0). Note that the last

partial product has 24-(binary position) width (instead of 25), given that the 26th bit of W is

always 1 (hidden bit).

Now that the product is generated, it is required to determine how many bits are required

to be passed to the three-operand adder so as to meet the precision requirements. As is shown in

Fig. 3.17, the final product is a 51-bit number represented in Binary-Signed-Digit encoding.

Given the normalized single precision formats of the inputs (B is in ±[1, 2) and W in [1, 2)), the

final product is in ±[1, 4).

If the multiplier's operands were represented in standard IEEE format (i.e., each with 24

bits), the final product would fit into 48 binary positions (47…0). Consequently, positions 45

down to 0 would be fractions (see Fig. 3.18). However, the product out of the proposed BSD

multiplier has 51 binary positions. Given that the value of this number is the same as that of the

standard product, the 45 least significant positions are fractions.

Figure 3.18: Final Product Format with Standard Non-redundant Operands

Similar to standard binary representation, Guard (G) and Round (R) positions are

sufficient for correct rounding. Therefore, only 23+2 fractional binary positions of the final

product are required to guarantee the final error less than 2��_ (required by IEEE Standard).

48

Selecting 25 binary positions out of 46 fractional positions of the final product dismisses

positions 0 to 20. However, the addition of the next step would produce carries to Guard and

Round positions. Nevertheless, because of the carry-limited BSD addition, contrary to standard

binary addition, only positions 20 and 19 may produce such carries.

It should be noted that each position of a BSD number has the value of {-1, 0, 1}, while

converting this representation to the standard non-redundant format a -1 carry could be

propagated to the most-significant digit (MSD) and may turn the MSD into 0. In this case, the

rounding position (determined based on the number of detected zeros) might be one position to

right of the least-significant digit. Therefore, again positions 20 and 19 are enough to be passed

to the three-operand adder.

In overall, positions 0 to 18 of the final product are not used and hence a simpler PPR

tree is possible. Fig. 3.19 shows the required digits passed to the three-operand adder. Fig. 3.20

illustrates the proposed redundant floating-point multiplier.

Figure 3.19: Redundant Product of the Proposed Multiplier

The exponents of the input operands are taken care of in the same way as is done in

conventional floating-point multipliers; i.e., adding the exponents to get the product's exponent.

However, normalization and rounding are left to be done in the next block of the butterfly

architecture (i.e., three-operand adder).

49

Figure 3.20: The Proposed Redundant Floating-Point Multiplier

3.3 The Proposed Three-Operand Redundant Floating-Point Adder

The proposed three-operand floating-point adder (computing ª�S = � + � + �) accepts

three operands as inputs:

• X and Y: The products of the redundant floating-point multipliers, each of which

with a 32-digit significand

• A: The floating-point input with a 24-digit significand

The straightforward approach to perform a three-operand floating-point addition is to

cascade two floating-point adders, as shown in Fig. 3.21.

50

Exponent

Comparison

EX EY

Significand Allignment

X Y

Carry-Propagating Adder

Normalization

Rounding

Res

Exponent

Adjustment

Sign Logic

SX SY

EResSRes

Exponent

Comparison

EA

Significand Allignment

A

Carry-Propagating Adder

Normalization

Rounding
Exponent

Adjustment

Sign Logic

SA

Figure 3.21: Straightforward Three-Operand Floating-Point Adder

The followings discuss the details of each building block in the straightforward three-

operand floating-point adder:

51

• Exponent Comparison: It is a simple 8-bit subtractor. The output is the difference

Δ (could be negative or positive) between the two exponents, passed to the

significand alignment block and the exponent adjustment block.

• Significand Alignment: This block consists of a multiplexer and a barrel shifter

(shown in Fig. 3.22). The multiplexer selects the significand with the smaller

exponent and passes it to the barrel shifter. The barrel shifter shifts the selected

significand for Δ bits to the right. The other significand goes to the output intact.

Figure 3.22: Significand Alignment Block

• Carry-Propagating Adder: Any kind of carry-propagating adder (e.g., carry-look-

ahead, ripple-carry, carry-skip etc.) could be used here.

• Sign Logic: This block determines the sign of the addition which consists of

simple XOR gates.

• Normalization: This block, as shown in Fig. 3.23, consists of two phases: 1)

leading-zero-detection and 2) barrel shifter. The leading-zero-detector detect the

most significant 1 and counts the number of leading 0s. This value is passed to the

barrel shifter to shift the significand to the left. The amount of shift value is also

passed to Exponent Adjustment.

52

Figure 3.23: Normalization Block

• Exponent Adjustment: This block subtracts the amount left-shift bits (received

from Normalization block) from the exponent.

• Rounding: This block is responsible to round the significand according to the

standard rounding modes [3]. Four rounding modes are described below assuming

that the value x is between two floating-point values F1 and F2 (as shown in Fig.

3.24).

Figure 3.24: Value x between two floating-point values F1 and F2

1. Round to nearest (tie to even):

ªb«��(`) = ¬­1 |` − ­1| < |` − ­2|­2 |` − ­1| > |` − ­2|����(­1, ­2) |` − ­1| = |` − ­2|�
2. Round toward zero:

ªb«��(`) = ¯­1 ` ≥ 0­2 ` < 0�
3. Round toward +∞:

ªb«��(`) = ­2

4. Round toward −∞:

ªb«��(`) = ­1

53

The straightforward three-operand floating-point adder suffers from high latency, power

and area consumption. A better way to implement this module is to use fused three-operand

floating-point adders [21, 22], shown in Fig. 3.25.

Figure 3.25: Conventional Fused Three-Operand Floating-Point Adder

The constituent blocks of this architecture are almost the same as those of the

straightforward architecture, except for the extra carry-save adder. However, the functionality of

some of these blocks are totally different from those of the straightforward approach.

The differences are:

• Exponent Comparison: This block is meant to determine the biggest exponent

among the three inputs. Fig. 3.26 shows a straightforward implementation of this

block. The biggest exponent is determined and the difference between the largest

54

exponent and other exponents (Δ1 and Δ2) is computed and sent to the significand

alignment block.

Figure 3.26: Exponent Comparison with Three Inputs

• Significand Alignment: This block receives two Δ signals and two select signals

from the exponent comparison block and shifts the selected significands

accordingly. Fig. 3.27 depicts the details of the significand alignment block.

Figure 3.27: Significand Alignment of the Fused Three-Operand Floating-Point Adder

55

• Carry-Save Adder: It consists of multiple full-adders working on parallel. So the

overall latency of this block is equal to that of a single full-adder.

The rest of the blocks in the conventional fused three-operand adder is the same as that of

the straightforward approach. The normalization part, which consists of the leading-zero detector

(LZD), produces the normalized significand; and the rounding block generates the final sum. The

exponent of the final sum is the largest exponent, adjusted according to the amount of the

normalization shift.

In the proposed three-operand floating-point adder, a new alignment block is

implemented and CSA-CPA are replaced by the proposed Binary Signed-Digit adders.

Moreover, sign logic is eliminated. The details of the proposed three-operand floating-point

adder are presented below.

The exponent comparison and significand alignment of the proposed architecture is

almost the same as that of the fused three-operand adder. The only difference is that the

significand alignment block, in the proposed design, does not wait for the exponent comparison

block to finish and part of significand alignment operation is overlapped with the exponent

comparison.

Moreover, the addition part also overlaps with the significand alignment and exponent

comparison. The only blocks that wait for other blocks to finish before they start their operations

are Normalization, Rounding and exponent adjustment. Therefore, having multiple blocks

working partially in parallel makes the proposed three-operand floating-point adder faster than

previous works. In essence, the exponent comparison, first, selects the bigger exponent between

�° and �± (called �²�J) using a binary subtractor (∆= �° − �±); and the operand with the

56

smaller exponent (X or Y) is shifted ‖∆‖-bit to the right. Next, a Binary Signed-Digit adder

computes the addition result (SUM = X + Y), using the aligned X and Y.

Adding third operand (i.e., P³´ + �) requires another alignment. This second alignment

is done in a different way of the previous one so as to reduce the critical path delay of the three-

operand adder. First, the value of ∆µ= �²�J − �µ + 30 is computed which shows the amount of

right shifts required to be performed on A (with the initial position of 30 digits shifted to the left).

This initial 30-digit wired shift (i.e., 30-digit extension) eliminates the need for any left shift of

the third operand significand (A). This reduces the complexity of the second barrel shifter,

thereby saving latency and area consumption.

Fig. 3.28 illustrates the alignments implemented in the proposed three-operand floating-

point adder. In case that A is not shifted (i.e., the result after alignment is A), the two zero digits

(shown in shaded in Fig. 3.28) are used as Guard and Round digits.

Figure 3.28: The Proposed Three-Operand Alignment Scheme

57

Next, a BSD adder adds the aligned third significand (58-digit) to SUM (33-digit)

generated from the first BSD adder. Since the input operands have different number of digits,

this adder is a 58-digit BSD adder in which some positions consist of the digit adder with

��, ��, ��3!, ��3! assigned to '0'. Fig. 3.29 depicts the Binary Signed-Digit adder with some inputs

assigned to '0'.

xiXixi+1
Xi+1

FA

FA

FA

FA

Si
sisi+1 Si+1

ci+2

Ci+2

ci

Ci

00 00

xiXixi+1
Xi+1

FA

XOR

Si
sisi+1 Si+1

ci+2

Ci+2

ci

Ci

NOTAND

XNORAND

Figure 3.29: BSD Adder with some inputs assigned to zero

The next steps are normalization and rounding which are done using conventional

methods for BSD representation [23, 24]. Normalization of redundant operands is more

complicated than that of non-redundant operands. The first step to normalize a redundant-

represented number is to detect and eliminate the leading non-zero digits of no significance [24].

In other words, there is a need to eliminate non-zero digits whose total values are zero. Fig. 3.30

shows an example of this situation for Binary Signed-Digit representation.

58

Figure 3.30: Non-zero Digits of No Significance

The next step is to detect the number of leading zeros and then shift the operand to the

left accordingly. The leading-zero detector (LZD) can be implemented using a divide-and-

conquer approach in which, first, a 2-bit LZD is designed and then larger LZD is built using the

basic 2-bit LZD. Detecting number of leading zeros is the same as detecting the leftmost 1 in the

bit string. Table 3.2 shows the combinations of two bits and how the leading 1 is detected [25].

Table 3.2: 2-bit Leading-Zero Detection

Pattern Position '1' is detected?

1X 0 Yes

01 1 Yes

00 X No

Table 3.2, basically, says if any '1' is detected and if so it is in position 0 or 1. This unit

can be used to build larger LZD. Fig. 3.31 shows a 4-bit LZD implemented using 2-bit LZDs. D

signals represent if any '1' is detected and P signals represent the position of the detected '1'.

Using the same approach, 4-bit LZD detectors can be used to build an 8-bit LZD and so on. At

the end, the value of P shows the number of leading zeros. This value is passed to the barrel

shifter to perform left shifts on the operand.

59

Figure 3.31: 4-bit LZD Implemented Using 2-bit LZD

It should be noted that one could replace the two-input LZD with a four-input leading-

zero-anticipation (LZA) [2] for speed-up; but at the cost of more area consumption. The concept

behind this LZA is to anticipate the number of leading zeros even before performing the

addition. Consequently, for a non-redundant representation, instead of performing LZD on a

single number, LZA works on two numbers that are supposed to be added together.

For the operands represented in redundant format, using LZA is more complicated,

because the single redundant number consists of more bits. For example, a BSD representation is

actually two numbers (one negative- and one positive-weighted). Therefore, LZA has to be

performed on four numbers (two negative- and two positive-weighted). This increases the area

and latency of the normalization block. That is why it is desired to use LZA and stick to the

simpler LZD approach. The rounding part simply determines the round value, based on the

Guard and Round positions, and adds it to the digit in the rounding position.

As discussed before the rounding position is usually the least-significant position of the

output operand; however, in redundant representation, this position might be moved 1 bit to the

right due to the propagating of a -1 value during the conversion to non-redundant representation.

It should be noted that adding the round value is a carry-limited operation, thanks to Binary

Signed-Digit representation, and hence, can be done in constant time.

60

The proposed three-point floating-point adder is implemented as shown in Fig. 3.32 in

which new alignment and addition blocks are introduced. Moreover, given the sign-embedded

representation of the significands (i.e., BSD) there is no need for a sign logic.

Figure 3.32: The proposed floating-point three-operand addition

(critical path is shown in red line)

A comparison of the proposed design with the conventional one is shown in Table 3.3.

The critical path of the three-operand adder (as shown in Fig. 3.32) consists of:

• Two 8-bit carry-propagating subtractors (0.25ns each)

• A MUX (0.07ns)

61

• A +30 block (0.17ns)

• A barrel shifter (0.29ns)

• The final BSD adder (0.16ns)

• Normalization and Rounding (0.75ns)

• Registers (0.22ns).

Table 3.3: Comparison of Floating-Point Three-Operand Adders

 Conventional [21] Proposed

Exponent Comparison

&

Significand Alignment

3 × (8 XLc P«X)

3 × ´³�

3 × PℎLUc�}

Combinational Logic

2 × (8 XLc P«X)

4 × ´³�

2 × PℎLUc�}

+30 Block

Significand Addition CSA + CPA 2 × �P� ����}

Critical Path
Sub + MUX+ Shifter

+ Comb. + CSA + CPA

Sub + MUX + Sub

+ (+30) + Shifter + BSD Adder

Sign Logic Yes No

Latency (90nm CMOS) 2.7�S 2.16�S

3.4 Conversion to and from BSD Representation

The conversion to / from BSD representation, and the way it influences the proposed

butterfly architecture, are discussed in this sub-section.

The conversion to any redundant format is a carry-free operation, however, the reverse

conversion requires carry-propagation [7]. For binary signed-digit (BSD) representation, the

forward conversion is straightforward. Assuming the non-redundant sign magnitude

representation of a significand as ­: UGU �! … U!U#, where UG is the sign bit, the conversion to n-

digit BSD format (]ª �!} �!^ …]ª!}!^]ª#}#^) is shown in Fig. 3.33.

62

Figure 3.33: Conversion to BSD representation

The reverse conversion is a simple carry-propagating subtractor computing ­ = } − ª.

Given that the proposed butterfly architecture is meant to be used in a Fast Fourier

Transform (FFT) unit, the reverse conversion is done in the very last iteration of the FFT unit.

There might be a need for one more step in the end to convert BSD result to non-redundant

representation. This step (i.e., a carry-propagating addition), if not fused by other floating-point

conversion operations, adds an extra cycle to the whole FFT unit.

It should be noted that the output of the proposed butterfly unit is represented in

redundant format and is fed to the next stage (in FFT) without being converted to non-redundant

representation.

Next chapter discusses the performance evaluation of the arithmetic units proposed in this

section to be used in the FFT co-processor.

63

CHAPTER 4

EVALUATIONS AND COMPARISON OF FFT ARCHITECTURES

The evaluation results of the proposed architecture, in terms of latency and area, are

presented and compared with previous pertinent works, in this chapter. The proposed design is

synthesized by Synopsys Design Compiler using the STM 90nm CMOS standard library [26]

for 1.00 VDD and 25°C temperature in which a FO4 latency is 45ps and the area of a NAND2 is

4.4μm�.

The critical path delay of the proposed butterfly architecture, equal to that of the Fused

Dot-Product Add (FDPA), consists of a constant multiplier, a three-operand FP adder plus

registers (Table 4.1). It is worth mentioning that the critical path delay of the three-operand adder

(including those of the termination phase and register), shown in Table 3.3, is equal to 2.16ns.

However, since the inputs X and Y, coming from multipliers, are in the critical path of the FDPA,

a different path of the three-operand adder is shown in Table 4.1.

Table 4.1: Critical Path Delay of the Proposed Floating-Point Butterfly Architecture

Module Components Delay (ns)

Multiplication

(1.04 ns)

PPG 0.19

PPR (4 levels of BSD adders) 0.85

Three-operand Addition

(0.58 ns)

Mux 0.04

Barrel Shifter 0.20

BSD Adder 1 0.18

BSD Adder 2 0.16

Termination

(0.75 ns)

LZD 0.21

Normalization & Rounding 0.54

Register 0.22

Total 2.59

64

The total consumed area of the proposed butterfly unit is evaluated as 375,347�¸� of

which 8,337�¸� is for registers. The dynamic and leakage power consumption of this design are

about 90.6 ¸� and 7.6 ¸�, respectively.

The two major works on floating-point butterfly architecture are in [1, 5]. The work in [5]

introduces architectures based on multiple-constant multipliers (MCM) and merged multiple-

constant multiplier (MMCM), amongst which the fastest design reported to have the latency of

4.08�S with the area consumption of 97,302�¸�, in 45�¸ CMOS technology.

The other work [1] designs a FP butterfly unit using novel dot-product blocks. This work,

simulated based on 45nm CMOS technology, has the latency of 4.00�S with the area cost of

about 47,489�¸�. The dot-product unit of this design is reported to have a latency of about

2.72ns with 16,104�¸� area cost.

A recent work [2] has proposed a very fast FP dot-product unit which can be used in the

design of a high-performance butterfly unit. Replacing the dot-product unit of [1] with this faster

one, leads to a high-speed butterfly architecture. Table 4.2 shows the comparison of the proposed

butterfly architecture with those of the previous works. As a result, the proposed design,

simulated in 90�¸ (vs 45�¸), is yet much faster than those of previous works. Moreover,

scaling the area of the proposed design to 45�¸ technology results in the value of about

¹√_�» _¼�
� ½� = 93,836�¸� which is almost equal to that of [5].

For the sake of fair comparison the new design is also synthesized using 45nm Nangate

Open Cell Library with 1.25 VDD. The area of the proposed design is 56,338μm� with wire

load model: "5K_hvratio_1_1" and the delay constraint set to 3.15ns (i.e., equal to that of the

fastest previous works).

65

Table 4.2: Comparison of the Floating-Point Butterfly Architectures

 Technology Delay (ns) Area (¾o¿)

[5] 45 nm 4.08 97,302

[1] 45 nm 4.00 47,489

[1] + [2]
Single Path 45 nm 3.42 60,857

Dual Path 45 nm 3.15 62,857

Proposed
90 nm 2.59 375,347

Scaled Area 93,836

Having the butterfly unit synthesized, the area and delay of an N-point FFT architecture

based on the proposed butterfly unit is evaluated below. As discussed in Chapter two, an N-point

FFT unit is implemented in log� * stages each of which consists of */2 butterfly units (working

in parallel). Therefore,

Latency (90nm technology): 2.59�S × �bT� *

 (+1 cycle for the conversion to non-redundant format)

Area (90nm technology): 375347�¸� × � ÀÁÂ6 �
�

 (+LUT[32×N/2] for storing Twiddle factors)

Although floating-point and fixed-point architectures are not meant to be compared

together, a fixed-point butterfly architecture is also designed and synthesized based on the

proposed Fused Dot-Product Add (FDPA) unit. Table 4.3 illustrates the critical path delay of the

proposed fixed-point butterfly unit.

Floating-point arithmetic has advantages over fixed-point among which, wider dynamic

range is of interest in FFT implementation. Contrary to fixed-point representation, where

dynamic range is linearly proportional to the number of bits, the dynamic range in floating-point

representation grows exponentially with increasing bit width. For example, wider dynamic range

increases SNQR (6dB per bit) with lower number of bits.

66

Table 4.3: Critical Path Delay of the Proposed Fixed-Point Butterfly Architecture (16-bit)

Module Delay (ns)

Multiplication 0.8

Three Operand Adder 0.4

Register 0.2

Total 1.4

One may increase the number of bits in fixed-point representation to cover the range

provided by floating-point arithmetic. In this case, for example, 277 bits are required to cover the

range of a single-precision floating-point representation (i.e., 2��� ≅ 2�_ × 2�»¼). Implementing

a 277-bit multiplier using the proposed 16-bit multipliers, based on Karatsuba multiplication

[27], would lead to a critical path delay of:

16-bit multiplication + 4×(3-operand adder) = 0.8+1.6 = 2.4ns.

The latency of the 277-bit carry-free adder is the same as that of a 16-bit and is equal to

0.4ns. Therefore, overall latency of a 277-bit would be approximately equal to 2.4+0.4+0.2 =

3.0ns VS 2.59ns of the proposed floating-point butterfly unit. Although the fixed-point and

floating-point latencies are almost equal, a fixed-point FFT requires post processing operations

such as scaling and overflow/underflow concerns.

Furthermore, use of IEEE-754-2008 standard [3] for floating-point arithmetic allows for

an FFT co-processor in collaboration with general purpose floating-point processors. This

offloads computationally intensive tasks from the processors.

In overall the proposed high-speed floating-point (FP) butterfly architecture is much

faster than those of previous works but at the cost of higher area. In order to have a high-

performance butterfly unit a new three-operand redundant floating-point adder is developed, and

modified Booth encoding is used to speed-up the proposed constant BSD multiplier.

67

Part II

Decimal Co-Processors

68

CHAPTER 5

DECIMAL ADDITION
2

Decimal addition is the most effective operation in a decimal processor, since all other

operations are working based on the addition (or subtraction). Therefore, having an efficient

decimal adder is of paramount importance in designing high-speed decimal arithmetic units.

Decimal digits are typically represented in binary-coded-decimal (BCD) encoding; in

which each digit is represented by four bits. Decimal addition over this representation,

conventionally, involves the following challenges:

• Over-9 detection: There is a need to detect the sum values over 9 to generate the

output carry.

• +6 Correction: Generating a decimal carry may lead to +6 correction of the sum

digit.

With the intention of overcoming the above difficulties, some alternative encodings can

be used. For example, in the Excess-3 encoding [36], a decimal-digit d, represented in four bits,

is stored as d + 3. Therefore, generating the decimal output carry does not require any over-9

detection.

A redundant representation of [30] with digit-set [˗8, 9] does not require over-9 detection,

because the maximum represented value in this digit-set is 9. In this representation the transfer

digit is stored (does not go through any further addition) in the next higher significant decimal

position which leads to a carry-free addition.

2
 Published @ 26th Annual IEEE Canadian Conference on Electrical and Computer Engineering (CCECE'13)

69

Amongst other efforts on designing a redundant decimal adder e.g., [28, 29, 30], the work

done by Gorgin and Jaberipur [31], using the so called partitioning method, shows advantages in

terms of both area and delay. In this method the Decimal Septa Signed Digit (DSSD) set [−7,7],
represented in four bits, used in the high-speed redundant decimal adder. The transfer bits c#�3!

and Ä#�3! (−1 ≤ c#�3! + Ä#�3! ≤ 1) are generated by means of a fast combinational logic and then

a semi-carry-propagating adder (i.e., two full-adders (FA), a half-adder (HA) and a NOR gate)

produces the final sum. Typically, decimal redundant signed-digit addition (i.e., � + � + Ä� =
10Ä[ÅH + P) is implemented via the following main steps, for [−α, β] as the digit-set.

• Generate the intermediate sum P and transfer set Ä[ÅH such that

– z + 1 ≤ R ≤ { − 1; � + � = R + 10Ä[ÅH.

• Produce the final result as P = R + Ä� .

It is an improved redundant decimal adder, based on the partitioning method, proposed

here in this thesis in which [−9,7] is used as the digit-set so as to allow using stored-carry

representation [32] of the operands and hence a faster design.

5.1 The Proposed Redundant Decimal Adder

The main specification of the proposed adder is the stored-carry representation of a digit

which leads to [−9,7] as the digit-set of the proposed radix-10 adder. In the stored-carry

representation, the carry is stored in the next higher digit and does not go through any further

addition process. This leads to carry-free addition and increases the addition speed. Fig. 5.1

depicts a digit representation of the operands used in the proposed adder where black (white)

dots symbolize the positive- (negative-) value bits.

70

(a) (b)

Figure 5.1: Digit representation (a) Dot notation (b) Symbolic notation

The proposed adder is designed based on Algorithm 5.1, reproduced from the

conventional partitioning addition algorithm [31].

Algorithm 5.1 (The proposed addition):

Inputs: Two n-digit numbers �: � �! … �!�#, �: � �! … �!�#, where a digit (e.g., i
th

) is

 represented by five bits as ��: �_� `�� `!� `#� �#� .

Output: One n-digit number P: P �! … P!P#, where a digit (e.g., ith) is represented by five bits

 as P�: P_� S�� S!� S#� P#� ; and two transfer bits c# , Ä# .

Perform the following steps, for 0 ≤ i ≤ � − 1 in parallel.

a) Transfer bits c#�3!, Ä#�3! and high-portion of the interim sum È_� , È�� , �!� are generated by a

combinational logic F1(�_� , �_� , `�� , ��� , `!�).

b) Low-portion of the interim sum ��� , �!� , �#� is generated by a logic F2(�!� , �#� , �#� , `#� , �#�).

c) Generate the final sum as P_� S�� S!� S#� = È_� È�� �!� c#� + ��� �!��#� and P#� = Ä#�. �

Steps a and b, consist of combinational logics, are performed simultaneously to generate

the whole interim sum and the transfer bits. Next, Step c computes the final sum through a fast 3-

bit Carry-Look-ahead Adder (CLA) and an OR gate. The dot notation, symbolic notation and

block diagram of the proposed adder are shown in Fig. 5.2. The details of the constituent blocks

of this figure are presented in the following. The main idea here is that the output carry bits are

generated based on only the most significant bits of a decimal digit (i.e., five most significant

bits in this case). The total value of the rest of the bits are not large enough to produce any carry

to the next digit. This reduces the complexity of the carry-generation logic, since it is designed

based on only five bits (instead of ten).

71

(a) (b) (c)

Figure 5.2: The Proposed Adder (a) Symbolic Notation (b) Dot Notation (c) Block Diagram

Moreover, the negative-weighted carry does not go through any further addition while the

positive-weighted carry serves as the least significant bit of the carry-propagating adder. The F1

and F2 blocks are responsible for Steps a and b of Algorithm 5.1. F1 is a five input five output

logic and F2 generates three outputs from the five inputs. These blocks implement the logical

expressions derived from the truth tables shown in Tables 5.1 and 5.2, respectively.

The 3-bit CLA is a fast adder which adds two 3-bit operands without any input carry. The

logical expressions of the outputs of this CLA are presented in Eqn. 5.1. It should be noted that

the negative-weighted inputs must be negated prior to be injected into the adder. Likewise, the

negative-weighted outputs must be negated to represent the correct value.

S#� = W#⨁X#

S!� = W!⨁X!⨁(W#X#) (5.1)

S�� = W�⨁X�⨁(W#X#W! + W#X#X! + W!X!)

�[ÅH = W�X� + [(W� + X�)(W#X#W! + W#X#X! + W!X!)]
Finally, an OR gate is used to generate the most significant bit of the final sum P_� . The

OR gate is good enough here to produce the most significant digit, since at least one of �[ÅH or

72

È_� must have zero value. It is worth mentioning that �[ÅH is needed to be a negabit; therefore, a

negative-weighted carry must be propagated through the 3-bit CLA. Consequently, the least

significant bit of the CLA must take a zero-value negative-weighted bit (represented as '1'). In

this case, there are two negabits and one posibit in the least-significant position of the CLA.

Adding these bits together generates a positive-weighted sum bit and a negative-weighted carry

to the next position. It is the same situation for the next two positions of the CLA. This

guarantees that �[ÅH is a negative-weighted bit.

73

Table 5.1: Truth Table of F1

�_� �_� `�� ��� `!� Value Ä#�3! c#�3! È_� È�� �!�

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 2 0 0 0 0 1

0 0 0 1 0 4 0 1 1 0 1

0 0 0 1 1 6 0 1 0 1 0

0 0 1 0 0 4 0 1 1 0 1

0 0 1 0 1 6 0 1 0 1 0

0 0 1 1 0 8 0 1 0 1 1

0 0 1 1 1 10 0 1 0 0 0

0 1 0 0 0 –8 1 0 0 0 1

0 1 0 0 1 –6 0 0 1 0 1

0 1 0 1 0 –4 0 0 0 1 0

0 1 0 1 1 –2 0 0 0 1 1

0 1 1 0 0 –4 0 0 0 1 0

0 1 1 0 1 –2 0 0 0 1 1

0 1 1 1 0 0 0 0 0 0 0

0 1 1 1 1 2 0 0 0 0 1

1 0 0 0 0 –8 1 0 0 0 1

1 0 0 0 1 –6 0 0 1 0 1

1 0 0 1 0 –4 0 0 0 1 0

1 0 0 1 1 –2 0 0 0 1 1

1 0 1 0 0 –4 0 0 0 1 0

1 0 1 0 1 –2 0 0 0 1 1

1 0 1 1 0 0 0 0 0 0 0

1 0 1 1 1 2 0 0 0 0 1

1 1 0 0 0 –16 1 0 1 0 1

1 1 0 0 1 –14 1 0 0 1 0

1 1 0 1 0 –12 1 0 0 1 1

1 1 0 1 1 –10 1 0 0 0 0

1 1 1 0 0 –12 1 0 0 1 1

1 1 1 0 1 –10 1 0 0 0 0

1 1 1 1 0 –8 1 0 0 0 1

1 1 1 1 1 –6 0 0 1 0 1

74

Table 5.2: Truth Table of F2

�!� �#� �#� `#� �#� Value ��� �!� �#�
0 0 0 0 0 0 0 0 0

0 0 0 0 1 –1 0 0 1

0 0 0 1 0 1 1 1 1

0 0 0 1 1 0 0 0 0

0 0 1 0 0 –1 0 0 1

0 0 1 0 1 –2 0 1 0

0 0 1 1 0 0 0 0 0

0 0 1 1 1 –1 0 0 1

0 1 0 0 0 1 1 1 1

0 1 0 0 1 0 0 0 0

0 1 0 1 0 2 1 1 0

0 1 0 1 1 1 1 1 1

0 1 1 0 0 0 0 0 0

0 1 1 0 1 –1 0 0 1

0 1 1 1 0 1 1 1 1

0 1 1 1 1 0 0 0 0

1 0 0 0 0 2 1 1 0

1 0 0 0 1 1 1 1 1

1 0 0 1 0 3 1 0 1

1 0 0 1 1 2 1 1 0

1 0 1 0 0 1 1 1 1

1 0 1 0 1 0 0 0 0

1 0 1 1 0 2 1 1 0

1 0 1 1 1 1 1 1 1

1 1 0 0 0 3 1 0 1

1 1 0 0 1 2 1 1 0

1 1 0 1 0 4 1 0 0

1 1 0 1 1 3 1 0 1

1 1 1 0 0 2 1 1 0

1 1 1 0 1 1 1 1 1

1 1 1 1 0 3 1 0 1

1 1 1 1 1 2 1 1 0

75

5.2 Evaluations and Comparisons of Decimal Redundant Adders

The evaluation of the proposed design and the comparison with the fastest previous work

[31] is presented in this section. Both the proposed design and that of [31] are simulated via

Verilog codes and synthesized by Synopsys Design Compiler using the STM 90nm CMOS

standard library [26] for 1.00 VDD and 25°C temperature, where the FO4 latency is 45ps and

the area of a NAND2 gate is 4.4μm�.

5.2.1 Decimal Redundant Adder of [31]

The structure of this adder [31], shown in Fig. 5.3, is similar to that of Fig. 5.2. There are

two critical paths for this adder as follows;

1) The combinational logic which generates the negative-weighted transfer bit plus two

FAs, one HA and the NOR gate.

2) The combinational logic that generates Z plus an FA, an HA and the NOR gate.

Figure 5.3: Decimal Redundant Adder of [31]

It should be noted that in the critical path 1) the positive-weighted transfer bit is

generated much faster than the negative-weighted one and hence out of the critical path.

76

One might be thinking of speeding up the critical path 1), by replacing the cascaded FAs

and HA by a fast CLA. However, this would not reduce the latency since in this case path 2)

would be the critical path. The synthesis results show 23ns as the minimum latency of this adder

with the area of 1,665μm�.

5.2.2 The Proposed Decimal Redundant Adder

In this adder some techniques are used to speed up both of the critical paths of [31]. Path

1) is improved by using a CLA and not feeding the negative-weighted transfer bit into this CLA

(i.e., store it as the least significant negabit). Path 2) is improved by changing the representation

of the intermediate sum and hence removing the FA of path 2) in [31]. However, the above

improvements lead to the latency and area overhead to the combinational logic F2 which is not in

the critical path delay. The evaluation results show 20ns as the minimum latency of this adder

with the area of 2055μm�. The comparison of the proposed design with that of [31] is shown in

Table 5.3, in terms of latency, area and power. According to Table 5.3 the proposed decimal

signed-digit adder shows 15% delay advantage over the work of [31], but at the expense of 23%

more area and 38% more power consumption.

Table 5.3: Comparison of Decimal Redundant Adders

 Delay (ns) Ratio Area (¾o¿) Ratio Power (¾Ì) Ratio

Proposed 0.20 1 2055 1 600 1

[31] 0.23 1.15 1665 0.81 435 0.72

A decimal signed digit adder using the stored carry representation of the operands is

proposed in this chapter. Using [−9,7] as the digit-set simplifies the final addition (CLA) by

removing the input carry.

77

CHAPTER 6

DECIMAL MULTIPLICATION
3

The complexity of decimal arithmetic makes more challenges to be dealt with during the

hardware implementation, compared to the binary counterparts. One of these challenges is the

high area cost of the decimal operations, due to inefficient decimal encodings (non-power-of-

two). Amongst the four basic operations i.e., addition, subtraction, multiplication and division;

the latter two are considered as those with large area costs.

With the intention of reducing the high cost of these decimal operations the processor

industry has opted for sequential realization [9, 33, 34]. Sequential hardware realization is at a

disadvantage due to its high latency. For reducing the impact of this drawback, one can

manipulate the cycle time (i.e., increasing the frequency) or the number of iterations (moving

toward semi-parallel and parallel implementations). Recalling that the latter solution leads to the

higher area cost, which as mentioned is not of interest to the processor industry, focusing on the

cycle time seems to be more efficient.

This chapter focuses on the hardware realization of the decimal multiplication where a

novel architecture is proposed to overcome the problem of slow sequential decimal multipliers

via increasing the clock frequency. In this design, the cycle time is reduced to the latency of a

binary half-adder (HA) plus that of a decimal multiply-by-two operation, which is in overall less

than that of a decimal carry-save adder. The claimed improvement is supported by synthesizing

and comparing the proposed design to those of the best previous pertinent works.

The proposed design includes the following novelties, with respect to previous works:

3
 Published @ 1) IET Electronics Letters, 2) ISCAS'12

78

• Designing a novel selection block to select appropriate easy-multiples of the

multiplicand as a partial product.

• Proposing a novel approach for the partial product accumulation (PPA) with the

intention of increasing the speed of this crucial step. The critical path delay of a

conventional PPA consists of the delay of two decimal carry-save adders (CSA)

while the latency of the proposed PPA is reduced to less than that of a mere

decimal CSA by retiming the constituent parts of a decimal CSA.

6.1 Decimal Multiplication Overview

Decimal multiplication is a dyadic operation performed on two n-digit decimal numbers,

called multiplicand X and multiplier Y, and computes the final 2n-digit product P; where X, Y and

P (assumed to be represented in the standard BCD format) are shown in Eqn. 6.1. The capital

(small) letters represent a decimal number (digit), while a subscript index indicates the position

of the decimal number (digit).

� = � `� × 10�
 �!

�"#
; � = � �� × 10�

 �!

�"#
; `�, �� , a� ∈ [0,9]

(6.1)

R = � a� × 10�
� �!

�"#
= � × � = � � �� × 10�

 �!

�"#

According to Eqn. 6.1, for computing the final product one requires to perform xÑ × yÓ ×
10Ñ3Ó, iteratively. The × 10Ñ3Ó operation is a mere (j + i)-digit left shift and xÑ × yÓ is known as

the BCD digit multiplication [35], defined below.

79

Definition 6.1 (BCD digit multiplication): Given two BCD digits 0 ≤ xÑ, yÓ ≤ 9 as

inputs, compute the digit-product (two BCD digits) as 10a�,�Õ + a�,�Ö = �� × �̀ and a�,�Õ ∈
[0,8], a�,�Ö ∈ [0,9] ∎

Performing the BCD digit multiplication for all digits of the multiplicand (i.e., xÑ for

0 ≤ j < n) with a single digit of the multiplier yÓ generates, according to Eqn. 6.1, PÓ = yÓ × X

which is traditionally called the (i
th

) partial product.

Definition 6.2 (Partial product generation): Given an n-digit BCD number X and a

BCD digit 0 ≤ yÓ ≤ 9, generate the (n+1)-digit partial product PÓ as follows, where pÓ,�!Ø = 0.

R� = � a�,� × 10�

�"#
= �� × � = � �� × �̀ × 10�

 �!

�"#
Ù9Ú.!>??@ 0 ≤ a�,� = a�,(��!)Õ + a�,�Ö ≤ 17 ∎

Observation 6.1: Regarding Definition 6.2, it is note that the cardinality of the digit-set

of the partial products is greater than the radix (i.e., 18 > 10 in Definition 6.2) and hence

redundant representations. Therefore, a carry-propagating digit-set conversion is required to have

non-redundant partial products. �

Computer arithmetic literature abounds with diverse hardware algorithms for decimal

partial product generation (PPG), among which two algorithms have gained more popularity;

namely PPG based on digit-multiplication (Algorithm 6.1) and PPG based on computing easy-

multiples of the multiplicand (Algorithm 6.2) [36].

Definition 6.3 (Easy-multiples of the multiplicand): Given the multiplicand X

represented in the standard BCD format, the mX (m ∈ [0,9]) is considered as an easy-multiple if

and only if ¸�

i) is a non-redundant BCD number;

80

ii) can be computed from X in a constant time i.e., without the word-wide carry

propagation. �

Algorithm 6.1 (PPG based on digit-multiplication):

Inputs: A BCD digit yÓ and an n-digit BCD number X = ∑ xÓ × 10ÓÜ�!Ó"# .

Output: A (n+1)-digit decimal number PÓ = yÓ × X = ∑ pÓ,Ñ × 10ÑÜÑ"# .

Method:

 For 0 ≤ j < n do

 I. Compute 10pÓ,ÑØ + pÓ,ÑÀ = yÓ × xÑ via BCD digit multiplication (Definition 6.1).

 II. Compute pÓ,Ñ = pÓ,(Ñ�!)Ø + pÓ,ÑÀ ; where pÓ,�!Ø = 0.

 III. Assign pÓ,Ü = pÓ,(Ü�!)Ø . �

Algorithm 6.2 (PPG based on easy-multiples of the multiplicand):

Inputs: A BCD digit yÓ and an n-digit BCD number X.

Output: An (n+1)-digit decimal number PÓ = yÓ × X.

Method:

 I. Compute the required easy-multiples of the multiplicand in a constant time.

 II. yÓ selects UÓ, VÓ ∈]easy multiples^ such that PÓ = UÓ + VÓ. �

In order to achieve the final product, according to Eqn. 6.1, one needs to generate and

sum up the partial products for all digits of the multiplier (i.e., yÓ for 0 ≤ i < n). This is known

as partial product accumulation defined below.

Definition 6.4 (Partial product accumulation): Given n partial products (PÓ for

0 ≤ i < n) as inputs, compute the 2n-digit final product R = ∑ R� × 10�� �!�"# . ∎

The sequential decimal multiplier, in essence, generates one partial product (e.g., PÓ) per

iteration, using either Algorithm 6.1 or 6.2; next the recurrence of Eqn. 6.2, performed in the i
th

iteration, takes care of the PPA (P[0] = 0 and P = P[n]). In Eqn. 6.2, P[i] denotes the

accumulated partial products after i iterations.

R[L + 1] = R[L] + 10R� (6.2)

81

6.2 The Proposed Sequential Decimal Multiplier

The details of the proposed sequential decimal multiplier are presented in this section

where the first part is devoted to elaborate on the architecture of the PPG step and next the

proposed PPA architecture is described.

6.2.1 Partial Product Generation

The partial products, in the proposed design, are generated via Algorithm 6.2 with easy-

multiples of X, 2X, 4X, 5X. It should be noted that although there are other set of easy-multiples

(e.g., −X, −2X and 10X [37, 38]), the mentioned easy-multiples are used to avoid dealing with

negative numbers in the PPA.

According to Algorithm 6.2, there is a need to compute the easy-multiples of the

multiplicand. With the intention of lowering the area cost, the decimal 4-2-2-1 encoding is used

for the multiples X, 2X, 4X, 5X as shown in Fig. 6.1, adapted from [38].

Figure 6.1: Generation of the easy-multiples in the proposed multiplier

Given this figure, the PPG mostly consists of wired shifts and various recoders the same

as done in [39]. However, the 4X is generated directly from X, not by cascading two 2X blocks,

82

as to manage to perform PPG in one cycle. Consequently, the area of the proposed PPG is

slightly higher than the previous counterparts [38, 39].

According to Algorithm 6.2, the next step after computing the easy-multiples is to select

values for UÓ, VÓ ∈]0, X, 2X, 4X, 5X^, regarding ��: ��_�����!��#, so as to generate the i
th

 partial

product PÓ = UÓ + VÓ. This is done through the logical expressions of Eqn. 6.3 (bit slice) derived

based on Table 6.1.

Table 6.1: Selection of the easy-multiples

ãr = 0 1 2 3 4 5 6 7 8 9

är = 0 � 0 � 4� 5� 4� 5� 4� 5� år = 0 0 2� 2� 0 0 2� 2� 4� 4�

æ� = 2���! ∨ 4���_

(6.3) ³� = �è �é_êêê �é�êêê��#ë ∨ 4�è(��� ∨ ��_)�é#êêêë ∨ 5�[(��� ∨ ��_)��#]
It should be noted that the addition ³� + æ� is not actually performed and hence redundant

partial remainder PÓ, represented by two 4-2-2-1 decimal numbers.

6.2.2 Partial Product Accumulation

Partial product accumulation is meant to realize Eqn. 6.2 for PÓ = UÓ + VÓ which leads to

Eqn. 6.4 as the multiplication recurrence for 0 ≤ i < �.

R[L + 1] = 0.1R[L] + ³� + æ� (6.4)

Given the 4-2-2-1 representation of UÓ and VÓ, one may implement Eqn. 6.4 in an

straightforward approach in which P[i] is assumed to be represented in 4-2-2-1 encoding and

hence a three-operand 4-2-2-1 addition. However, this causes carry-propagation per iteration

which is not of interest for a high-frequency multiplier.

83

Using decimal carry-free adders (e.g., [30]) while keeping P[i] in a redundant

representation is traditionally a solution for removing the carry-propagation per iteration. This

modification typically calls for decimal (4:2)-compressors (i.e., two cascaded decimal CSAs)

with 4-2-2-1 encodings [38]. Moreover, after n iterations a conversion from the redundant to

non-redundant BCD format is required to generate the final product.

Intending for a high-speed PPA, it is noted that Eqn. 6.4 can be divided into two

recurrences (Eqn. 6.5) each of which executed, independently, per iteration. Finally, after n

iterations the outcomes of these two recurrences should be merged together and converted into

the non-redundant BCD format.

Rì[L + 1] = 0.1Rì[L] + æ�
(6.5) Rí[L + 1] = 0.1Rí[L] + ³�

Fig. 6.2 highlights the differences of the proposed versus the conventional PPA approach

[40].

(a) (b)

Figure 6.2: PPA (digit-slice) (a) Conventional (b) Proposed

The proposed technique for the partial product accumulation is shown in Algorithm 6.3.

Algorithm 6.3 (The proposed PPA):

Inputs: Partial products PÓ = UÓ + VÓ for 0 ≤ i < �.

84

Output: The 2n-digit final product P = ∑ PÓ × 10Ó�Ü�!Ó"# .

Method:

I. Compute Eqn. 6.5, iteratively, for 0 ≤ i < � with Pî[0] = Pï[0] = 0.

 II. R = Rí[�] + Rì[�]. �

Step a of Algorithm 6.3 can be implemented via decimal CSAs with 4-2-2-1 encodings,

assuming the redundant representation for Pï[i + 1] and Pî[i + 1]. The details of these CSAs are

illustrated in Fig. 6.3, adapted from [38].

Figure 6.3: Implementation of Eqn. 6.5 via CSAs

The latency of the circuitry of Fig. 6.3 (i.e., the cycle time of the multiplier) can be

reduced by postponing the operation of × 2 until the next iteration. Consequently, the binary

CSA and × 2 can be performed, partially, in parallel as shown in Fig. 6.4 where the dashed lines

highlight the critical paths i.e., × 2 plus an HA.

According to the implementation of Fig. 6.4, after n iterations there are four decimal

numbers represented in 4-2-2-1 encoding which should be merged and converted to the standard

BCD format in order to cope with Step b of Algorithm 6.3. This is done via two decimal CSAs

and a BCD CPA [41].

85

Figure 6.4: Modified Implementation of Eqn. 6.5

The whole architecture of the proposed sequential multiplier (including the PPG and

PPA) is shown in Fig. 6.5, where the (× 2∗) block performs both × 2 and conversion to BCD.

6.3 Evaluation and Comparison of Decimal Sequential Multipliers

The evaluation results of the proposed multiplier, in terms of latency and area, are

presented in this section where previous works are also examined and compared with. The

architectures are compared based on the required number of cycles for a single multiplication,

the cycle time and area. The entire proposed design is synthesized by Synopsys Design Compiler

using the STM 90nm CMOS standard library [26] for 1.00 VDD and 25°C temperature in which

the FO4 latency is 45ps and the area of a NAND2 gate is 4.4μm�.

The proposed architecture is simulated for both pipelined and word-serial

implementations, where in the former the throughput is higher and the latter saves more area cost

by reusing a hardware for most of the iterations [17]. However, the latter costs an extra

multiplexer added to the critical path delay.

86

Figure 6.5: The Proposed Sequential Decimal Multiplier

87

6.3.1 The Proposed Architecture

According to Fig. 6.5 the proposed multiplier consists of two main parts namely PPG and

PPA. The PPG phase consumes one cycle for generating the easy-multiples (once in the whole

multiplication) and one cycle per iteration for generating the partial products, iteratively. The

PPA phase accumulates partial products iteratively in n cycles and then five cycles are required

for merging and conversion to produce the final product. Therefore, the entire single

multiplication can be performed in n+7 cycles while the next multiplication can be commenced

every n+1 cycles.

The cycle time, thus the clock frequency, is determined by the critical path of the iterative

part in the PPA consists of the × 2 block and a binary half-adder. The details of the critical path

are shown in Table 6.2 which imposes the clock frequency of 2.22 GHz for 90nm CMOS

technology.

Table 6.2: The Critical Path Delay of the Proposed Multiplier (ns)

 Mux × ¿ HA Register Total

Pipelined --- 0.14 0.11 0.2 0.45

Word Serial 0.1 0.14 0.11 0.2 0.55

The area consumption of the proposed 16-digit multiplier is evaluated as the sum of the

area cost of various constituent parts tabulated in Table 6.3.4

Table 6.3: Area Consumption of the Proposed 16-digit multiplier (¾o¿)

Area

Pipelined Word-serial

PPG 2414 2414

PPA 13263 9041

Registers 7048 5443

Total 22725 16898

88

6.3.2 Previous Works on Decimal Sequential Multiplier

The multiplier in [40] is based on BCD compressors. It requires n+4 cycles for executing

a single multiplication while the next operation can begin every n+1 cycles. The cycle time of

this design is equal to the latency of a BCD (4:2)-compressor plus that of registers. The

employed compressor is meant to add two BCD digits and two carry bits, per digit. According to

[38] the cycle time of this design is evaluated to be equal to 16 FO4 with the area of about

16,000 NAND2 for a 16-digit multiplication.

It is the overloaded decimal representation used in [42] for representing the intermediate

redundant operands which calls for a special decimal carry-free adder. This design strategy leads

to a critical path consists of a (4:1) multiplexer, a +6 increment block, a binary full-adder plus

registers. The latency of this path according to [38] is evaluated to be 12.7 FO4 where the

number of cycles required for a single multiplication is n+8 with the initiation interval of n+1

cycles. The area of this multiplier for 16-digit operands is reported as 31,500 NAND2.

The multiplier in [43] takes advantage of the decimal signed-digit adder, introduced in

[28], for the iterative portion of the PPA whose latency plus registers (i.e., 14.7 FO4) determines

the cycle time. The number of required cycles is the same as [40] i.e., n+4 and the area cost is

reported as 18,550 NAND2 for a 16-digit multiplication.

In accordance with the above discussions, Table 6.4 illustrates the details of the

evaluation results and compares the proposed design with others in terms of latency and area.

Moreover, the simulation results of the proposed multiplier based on delay constraints are

depicted in Fig. 6.6. It is shown that the proposed pipelined design, with the cycle time of 10

FO4, is much faster than the previous works while the proposed word-serial implementation

keeps the area as low as possible. It is concluded that the fastest previous design [34] works with

89

47% slower clock frequency, which leads to 27% slower multiplier, than the proposed pipelined

architecture.

Table 6.4: Comparison of Decimal Sequential Multipliers (16-digit multipliers)

Cycle time

(FO4)

of

cycles

Total Latency

(FO4)
Ratio

Area

(NAND2)
Ratio

Ours Proposed
Pipelined 10.0 23 230 1 22 725 1

Word Serial 12.2 23 281 1.22 16 898 0.74

[40] 16.0 20 320 1.39 16 000 0.70

[42] 12.7 24 305 1.32 31 500 1.38

[43] 14.7 20 294 1.27 18 550 0.81

The evaluation and comparison results of Table 6.4 reveal the undisputed advantage of

the proposed sequential decimal multiplier over the previous designs. The advantage of the

proposed architecture could be more highlighted by considering the 34-digit decimal

multiplication.

Figure 6.6: Delay Constrained Comparison

10

13

16

19

22

25

28

31

2 2.25 2.5 2.75 3 3.25 3.5

A
re

a
 (

N
A

N
D

2
)

X
1

0
0

0

Latency (FO4) X100

Proposed (Pipelined)

Proposed (Word-Serial)

[40]

[42]

[43]

90

CHAPTER 7

DECIMAL DIVISION
4

Implementing division algorithms in software (computer program) or hardware (digital

circuit) is the most costly one of the four basic arithmetic operations. Decimal division

algorithm, whose popularity gathered pace by the inclusion of decimal floating-point in the IEEE

754-2008 standard [3], is even more costly. This algorithm is exemplified in Eqn. 7.1, where

0.1 ≤ �, � < 1, 0 < Q < 10 and R are the normalized dividend, normalized divisor, quotient

and remainder, respectively.

� = ò × � + ª (7.1)

Division hardware is usually designed based on digit recurrence or functional algorithms.

The former, having latency linearly dependent on the quotient length, leads to lower hardware

complexity. The latter, however, due to the use of a sequence of multiplications, progressively

produce an approximation of the quotient, where the number of required iterations is

logarithmically proportional to the number of quotient digits. It is the digit-recurrence algorithms

elaborated here, due to their popularity and VLSI suitability.

In digit-recurrence algorithms the quotient is computed progressively (digit-by-digit), via

a selection function, based on some selection rules and conditions. This quotient digit selection

(QDS) is one of the key issues on which updating the partial remainder, regarding the divisor, is

based. Therefore, the representations of the quotient, the divisor and the partial remainder are of

paramount importance in determining the complexity of the division algorithm.

4
 Published @ Journal of Signal Processing Systems

91

There are miscellaneous decimal digit-recurrence division algorithms all use symmetric

signed-digit representation of the quotient so as to simplify QDS implementation (e.g., [37, 44,

45, 46]). However, symmetric signed-digit representation of the quotient shows some drawbacks

(is not optimal) in case of having not a symmetric error in QDS (e.g., in selection by truncation

technique [47]). This justifies the need for a general investigation on the advantages and

disadvantages of using diverse redundant quotient digit-sets. Moreover, not enough attention has

been paid, in the literature, to the representations of the divisor and partial remainders and their

significance in the division complexity, particularly QDS. Table 7.1 provides the notation used

throughout this chapter.

Table 7.1: Notations and abbreviations 0.1 ≤ � < 1 Dividend [−zó, {ó] Partial remainder digit-set 0.1 ≤ � < 1 Divisor ôó Error of truncated partial remainder ò Quotient [−zÙ, {Ù] Divisor digit-set ª Remainder ôÙ Error of truncated divisor

QDS Quotient digit selection õ � Lower bound of partial remainder

GSD Generalized signed-digit õZ� Upper bound of partial remainder

WBP Weighted binary position ∗ö (∗) truncated into t fractional WBP

ulp Unit in the least significant position c
Minimum # of fractional WBP of

the partial remainder required in QDS

� # of fractional quotient digits ÷
Minimum # of fractional digits of

the partial remainder required in QDS

¦� Quotient digit Røó , Røó
Maximum, minimum truncation error of

partial remainder in the digit of weight }�ø

ò[L] Quotient in i
th

 iteration a�ó , a�ó
Maximum, minimum value of binary position j

of a partial remainder digit

[−z¤ , {¤] Quotient digit-set �
Minimum # of fractional WBP of

the divisor required in QDS

ô¤[L] Quotient error in i
th

 iteration ù
Minimum # of fractional digits of

the divisor required in QDS

ℎ Negative redundancy factor RúÙ , RúÙ
Maximum, minimum truncation error of

the divisor in the digit of weight }�ú

ℎZ Positive redundancy factor a�Ù , a�Ù
Maximum, minimum value of binary position j

of a divisor digit �[L] Partial remainder in i
th

 iteration (û
 , ³
) The range of k
th

 selection interval ´
 Comparison multiple ∆
 Overlap region between k
th

 and (k–1)
th

 intervals

Dot notation for a bit with

positive weight
Dot notation for a bit with

negative weight

92

7.1 Decimal Digit-Recurrence Division Algorithm

Decimal digit-recurrence division algorithms estimate the final quotient, with the error

less than «�a = 10� (where � is the number of fractional quotient digits). In these algorithms,

one quotient digit ¦� (0 ≤ L ≤ �) is generated per iteration, such that the quotient in the i
th

iteration ò[L] is assumed to be as in Eqn. 7.2.

ò[L] = ∑ ¦�10����"# (7.2)

Therefore, the error of the quotient estimation in the i
th

 iteration ô¤[L] is defined as in

Eqn. 7.3.

ô¤[L] = °
Ù − ò[L] (7.3)

The final error ô¤[�] = °
Ù − ò[�] < 10� = «�a imposes Eqn. 7.5 (based on Eqn. 7.4) as

the required condition over the quotient estimation error, assuming a quotient digit with a

redundant GSD representation i.e., ¦� ∈ [−z¤ , {¤] (z¤ ≥ 0, {¤ ≥ 0 and z¤ + {¤ + 1 > 10).

ô¤[L] < � ü{¤ × 10��ý

�"�3!
+ «�a = {¤ × þ10�� − 10�

9 �+ «�a

(7.4)

ô¤[L] > � ü−z¤ × 10��ý

�"�3!
− «�a = −z¤ × þ10�� − 10�

9 � − «�a

10�� ¹���� ½ − 10� ¹1 + ���� ½ < ô¤[L] < 10�� ¹��� ½ + 10� ¹1 − ��� ½ (7.5)

The i
th

 partial remainder �[L] is defined as in Eqn. 7.6 by replacing the modified Eqn. 7.3

(i.e., multiplied by 10� × �) into Eqn. 7.5, where ℎZ = ��� and ℎ = ���� are positive and

negative redundancy factors, respectively.

õ � = � × èℎ − 10�� (1 + ℎ)ë < �[L] = 10�(� − ò[L] × �) (7.6)

 < èℎZ + 10�� ü1 − ℎZýë × � = õZ�

93

The admissible range for the partial remainder, defined in Eqn. 7.6, is also known as the

convergence condition of the decimal digit-recurrence division algorithm. It should be noted that

for digit-sets with �ℎZ�, |ℎ | < 1 the range of the partial remainder can be deemed as simple as

ℎ � ≤ �[L] ≤ ℎZ�. However, in case of using maximally-redundant or over-redundant quotient

digit-sets [48] (i.e., �ℎZ�, |ℎ | ≥ 1) the range should be exactly as is in Eqn. 7.6.

With the intention of having Eqn. 7.6 independent of i, one may use a range formulated

with the tightest bound of all iterations (i.e., for L = 0). However, this simplification leads to an

avoidable conservatism which imposes ranges tighter than what is strictly necessary for

convergence (for L > 0). This point has been highlighted and elaborated on in [49] with an

application example in [50], although not presenting a closed form formula.

To cap it all, it is suggested to apply the exact general range in Eqn. 7.6 so as to allow for

more efficient algorithms to find grounds. Moreover, in case of using over-redundant quotient

digit-sets (i.e., �ℎZ�, |ℎ | > 1) a careful examination of the universal convergence condition

(Eqn. 7.6) is in line, especially for large values of i. The recurrence equation of the decimal

division algorithm is determined by substituting Eqn. 7.2 in Eqn. 7.6 for �[L + 1]. This is shown

in Eqn. 7.7.

 �[L + 1] = 10�3!(� − ò[L + 1] × �)

 = 10�3!ü� − ò[L] × � − ¦�3! × 10�(�3!) × �ý (7.7)

 = 10�3!(� − ò[L] × �) − ¦�3! × � = 10�[L] − ¦�3! × �

 ⟹ �[L + 1] = 10�[L] − ¦�3!�

This recurrence equation should be performed such that Eqn. 7.6 satisfies for �[L + 1].
This imposes an appropriate selection of the quotient digit ¦�3!, regarding the values of 10�[L]
and �. The redundant quotient digit-set allows for an imprecision in QDS such that the selection

94

function can be performed by manipulating the truncated version of 10�[L] and �; hence

simpler QDS. This is going to be discussed in next section.

7.2 Quotient Digit Selection (QDS)

As mentioned in previous section QDS is one of the most important issues of the division

hardware. This unit determines the next quotient digit ¦�3! based on the value of the shifted

partial remainder 10�[L] and the divisor �. With the intention of simplifying QDS, it is

desirable to perform all the computations with truncated operands (i.e., 10�[�]� and �) such that

¦�3! is selected based on the divisor and the shifted partial remainder truncated into d and t

fractional weighted-binary-positions (WBP) [51], respectively. The correct selection of quotient

digit is guaranteed if computing Eqn. 7.7 (considering the truncation error) keeps the next partial

remainder in the range shown by Eqn. 7.6.

Containment i.e., bounded partial remainders as in Eqn. 7.6; and continuity i.e., for any

value of the shifted partial remainder there exist at least one quotient digit; are the main

fundamental conditions to be satisfied by the selection function [17]. Regarding the containment

condition, selection intervals (û
, ³
) are defined in which it is possible to choose ¦�3! = � ∈
[−z¤ , {¤] if 10�[L] ∈ (û
, ³
), while keeping the next partial remainder in range. Therefore,

according to Eqn. 7.6, boundaries of selection intervals are as shown in Eqn. 7.8 and selecting

¦�3! = � is correct if (õ + �)� < 10�[L] < üõZ + �ý�.

¦�3! = � ⟹ � û
 < 10�[L] < ³
 õ � < 10�[L] − �� < õZ�� ⟹
³
 = üõZ + �ý�û
 = (õ + �)� � (7.8)

Regarding the continuity condition, selection intervals should overlap i.e., û
 < ³
�!;

hence Eqn. 7.9.

95

û
 < ³
�! ⟹ õ + � < õZ + � − 1 ⟹ õ < õZ − 1 (7.9)

The Robertson’s diagram (Fig. 7.1) illustrates the selection rules where the amount of the

overlap ∆
 between two consecutive selection intervals is computed as in Eqn. 7.10.

∆
= ³
�! − û
 = üõZ + � − 1ý� − (õ + �)� = üõZ − õ − 1ý� (7.10)

According to Eqn. 7.10 (and recalling Eqn. 7.6) the amount of the overlap region is

determined by the quotient digit-set and the value of the divisor.

Figure 7.1: The value of ∆� shown in Robertson’s Diagram

In case of using truncated version of the divisor the corresponding error ôÙ, according to

Eqn. 7.10, involves the overlap region as ∆
�= ∆
 − ôÙ. Moreover, the truncation error of the

partial remainder defined as ôó = 10�[L] − 10�[�]� should be taken into account. Theorem 7.1

determines the maximum admissible value of these errors.

Theorem 7.1: The universal convergence condition (Eqn. 7.6) holds for truncated partial

remainder and divisor if and only if]∀� ∈ [−z¤ , {¤]; |ôó + ôÙ| < ∆
^.

Proof: The most critical case of QDS occurs for which 10�[L] = ³
�!, where the correct

quotient digit is ¦�3! = �. In case of using truncated partial remainders, QDS works fine if Eqn.

7.11 holds (see Fig. 7.1).

96

10�[�]� = 10�[L] − ôó > û
 ⟹ ³
�! − ôó > û
 ⟹ ôó < ³
�! − û
 = ∆
 (7.11)

Considering the truncation error of the divisor, it must be ôó < ∆
�= ∆
 − ôÙ. The same

approach can be done for negative partial remainders and hence |ôó + ôÙ| < ∆
. ∎

The next quotient digit is selected by determining the interval (considering the truncated

divisor) in which the truncated shifted partial remainder is. The impact of partial remainder’s

digit-set and that of the divisor, on QDS is discussed in next section.

7.3 Representation of the Divisor and Partial Remainders

It is shown in previous section that in case of using truncated divisor and partial

remainders the correctness of QDS is not guaranteed unless |ôó + ôÙ| < ∆
, where ôó and ôÙ

are the truncation errors and ∆
 indicates the amount of the overlap region between intervals.

The amount of the truncation errors directly depends on the representation of the divisor and the

partial remainder. Divisors usually take non-redundant representations so as to reduce the

complexity of QDS while partial remainders are represented in redundant form so as to have

carry-free computations and hence faster QDS [17].

Given that no advantage is recognized for using a redundant divisor, from now on, in this

chapter, it is assumed that the divisor with a non-redundant representation with digit-set

[−zÙ , {Ù] (zÙ ≥ 0, {Ù ≥ 0 and zÙ + {Ù + 1 = 10) and a redundant GSD representation for the

partial remainder with digit-set [−zó, {ó] (zó ≥ 0, {ó ≥ 0 and zó + {ó + 1 > 10).

Consequently, the error of truncating the shifted partial remainder into t fractional WBP is as in

Eqn. 7.12a, where a�ó and a�ó symbolize the maximum and minimum value of the binary

position j of each digit of the partial remainder, respectively, and ÷ = � H
ÀÁÂ6 !#�.

97

ôó < Røó10�ø + � {ó10��
∞

�"ø3!
= Røó10�ø + {ó × �10�ø

9 � ; Røó = � a�ó2��
ø(ÀÁÂ6 !#)�H�!

�"#

(7.12a)

ôó > Røó10�ø + � −zó10��
∞

�"ø3!
= Røó10�ø − zó × �10�ø

9 � ; Røó = � a�ó2��
ø(ÀÁÂ6 !#)�H�!

�"#

The same can be considered for the divisor (Eqn. 7.12b), considering ôÙ as the error of

truncating the divisor into d fractional WBP, where a�Ù and a�Ù symbolize the maximum and

minimum value of the binary position j of each divisor digit, respectively, and ù = � �
ÀÁÂ6 !#�.

ôÙ < RúÙ10�ú + � {Ù10��
∞

�"ú3!
= RúÙ10�ú + {Ù × þ10�ú

9 � ; RúÙ = � a�Ù2��
ú(ÀÁÂ6 !#)��

�"#

(7.12b)

ôÙ > RúÙ10�ú + � −zÙ10��
∞

�"ú3!
= RúÙ10�ú − zÙ × þ10�ú

9 � ; RúÙ = � a�Ù2��
ú(ÀÁÂ6 !#)��

�"#

Applying Eqn. 7.12 (for ôó and ôÙ) into |ôó + ôÙ| < ∆
 leads to Eqn. 7.13, as the

required condition for the correctness of the QDS operation with truncated divisor and partial

remainder.

þ{ó × �10�ø
9 �+ Rø10�ø + {Ù × þ10�ú

9 � + RúÙ10�ú < ∆
�

W�� (7.13)

þzó × �10�ø
9 �− Rø10�ø + zÙ × þ10�ú

9 �− RúÙ10�ú < ∆
�

Various methods have been introduced in the literature to find the minimum required

values of c and � (consequently ÷ and ù) [52, 53, 54]; which affect the QDS complexity. In

addition to the latter parameters, it is inferred from Eqn. 7.13 that the digit-sets of the partial

remainder, the divisor and the quotient (substituting ∆
 from Eqns. 7.10 and 7.6) have great

impacts on the complexity of QDS, as are discussed below.

98

a) Quotient digit-set [−��,��]: According to Eqns. 7.6 and 7.10, quotient digit-set

determines ∆
= �¹��3��� ½ + 10�� ¹2 − ��3��� ½ − 1��. Therefore, the higher the

cardinality of this digit-set (i.e., z¤ + {¤ + 1), which influences its redundancy, the

looser the condition of Eqn. 7.13. This allows for more imprecision in QDS computation;

hence simpler QDS. However, this simplification linearly increases the complexity of the

generation of the divisor multiples ¦�3!�, required for partial remainder computation

(Eqn. 7.7) [17].

b) The digit-set of the divisor [−�j,�j] and partial remainder [−�Ì,�Ì]: According to

Eqn. 7.13 max[(zó + zÙ), ({ó + {Ù)] has an impact on the complexity of QDS. The

lower the value of the latter, the smaller ÷ and ù (consequently t and d) are required and

hence simpler QDS. Therefore, it is important to keep max[(zó + zÙ), ({ó + {Ù)] as

low as possible.

According to issue b) above, there is a need to minimize max[(zó + zÙ), ({ó + {Ù)].
Recalling that the divisor usually takes a non-redundant representation while partial remainders

are represented in redundant form, the followings are suggested.

• Minimally redundant symmetric signed-digit [55] representation of the partial remainder

i.e., zó = {ó = 5 for radix-10. Yet in case of using non-redundant partial remainders it

is suggested to employ zó = 5 (4) and {ó = 4 (5).

• Minimally asymmetric non-redundant signed-digit representation of the divisor i.e.,

zÙ = 5 (4) and {Ù = 4(5) for radix-10.

99

7.4 The Proposed Decimal Divider

This section is meant to represent an architecture for the decimal division algorithm using

the proposed divisor’s and partial remainders’ redundant representations (particularly their digit-

sets). For this purpose, one would assume the minimally redundant symmetric signed-digit

representation of the partial remainders (digit-set is [−5,5]). However, partial remainders are

generated in digit-set of [−6,5] to be able to utilize a carry-free addition in partial remainder

computation (PRC) and use minimally asymmetric non-redundant signed-digit representation of

the divisor (digit-set is [−4,5]). it is also assumed that the minimally redundant signed-digit

quotient digit-set i.e., ¦�3! ∈ [−5,5]. This digit-set is used due to the fact that decimal dividers

consume high area costs and there is no intention to add more cost by using a more redundant

quotient. Therefore, the convergence condition, according to Eqn. 7.6, can be deemed as Eqn.

7.14.

|�[L]| ≤ »
� × � (7.14)

Moreover, according to Eqn. 7.10, the amount of the overlap is ∆
> Ù
� . Therefore, as a

result of Theorem 7.1, |ôó + ôÙ| ≤ Ù
� guarantees the correctness of the algorithm in case of using

the truncated shifted partial remainder and divisor in QDS, with the error of ôó and ô�,

respectively. Given the range of the normalized divisor as 0.1 ≤ � < 1, Eqn. 7.15 must hold in

all cases.

|ôó + ôÙ| ≤ !
�# (7.15)

The proposed architecture is heavily based on the one introduced in [46] where the partial

remainder is decomposed into the binary and decimal parts. The binary part is represented in 2’s

100

complement carry-save while the decimal part employs [−6,5] as the digit-set. The digit

encoding of the decimal parts of the partial remainder and the divisor are illustrated in Fig. 7.2.

Figure 7.2: Digit Encodings for the Decimal Parts of the Partial Remainder and Divisor

The block diagram of the proposed architecture, adapted from [46], is shown in Fig. 7.3;

where ´
 = (� − 0.5)�; � ∈ [−4, 5] are the comparison multiples. Recalling the admissible

error range, described by Eqn. 7.15, t and d (the minimum number of truncated fractional WBPs

required in QDS) can be determined based on the methods discussed in [52, 54] where the actual

ranges of ôó and ôÙ are computed based on Eqn. 7.12 and applied into Eqn. 7.15. The

computations impose c = 8 and � = 8 (i.e., two fractional digits) as to have Eqn. 7.15 satisfied.

It should be noted that according to Fig. 7.3 it is required to have 100�[L] and 10¦�3!� in QDS

and hence two integer and two fractional digits are involved in QDS. Therefore, the range of the

binary part is determined by Eqn. 7.16. This range of values, given that 2
12

 < 5555 < 2
13

, requires

at most 14 bits in binary two’s complement.

Figure 7.3: The Architecture including QDS and PRC

101

Besides, due to the comparison with ´
 = (� − 0.5)�, one extra rounding bit (an input

carry to QDS) is required to determine whether the third fractional digit (weigh 10�_) is greater

than or equal to 5.

�100�[�]� � ≤ 100ρ� = »##
� � ≤ »##

� = 55.55 (7.16)

Fig. 7.4, adapted from [46], depicts the abstract architecture of binary and decimal PRC

and the QDS, where the symbols D* and w* (D and w), denoting binary (decimal) values.

Figure 7.4: The Architecture including the Binary and Decimal QDS and PRC

The QDS and Radix-2 PRC are exactly the same as those in [46] but for 14-bit operands

(instead of 17 bits). This reduction in the number of bits has a great impact on the latency of the

QDS due to the carry-propagation involved in it.

The Radix-10 PRC is a simple redundant decimal adder whose details are illustrated in

Fig. 7.5, where the Recoder block is a mere combinational logic with five input bits and six

output bits. It should be noted that the Radix-10 PRC is not in the critical path and hence we

strive for the minimum area of this block. The initialization phase of the proposed divider is the

same as that of [46] except for the extra constant-time digit-set convertor which is responsible

for the conversion from [0,9] to [−4,5] over the divisor multiples.

102

Given that the quotient representation in the proposed design is exactly the same as that

of [46], the termination phase which is responsible for correction, conversion, normalization and

rounding is equivalent in both designs.

Figure 7.5: Radix-10 PRC (digit slice)

7.5 Evaluations and Comparison of Decimal Dividers

The overall latency and the critical path of the proposed decimal divider which

determines the cycle time (i.e., the overall QDS delay) is compared to that of the fastest previous

work [46] in Table 7.2 where the latency improvement of the proposed decimal divider is also

illustrated. The evaluation data is reproduced from [46] where the delay of simple AND/OR

gates with at most three inputs is denoted by ΔG and 1.5 ΔG is considered for an XOR gate.

According to Table 7.2 the proposed decimal divider with the suggested representations

of the divisor and partial remainders shows 10% improvement in the latency. This enhancement

is achieved at the cost of minimum area overhead due to the fact that most of the constituent

parts of the proposed divider are the same as those in [46]. The price of the extra digit-set

103

convertor in the initialization phase of the proposed design can be considered remunerated by the

area reduction in the QDS i.e., manipulating 14 bits instead of 17 bits.

For more accurate analysis the proposed divider is simulated by Synopsys Design

Compiler using the STM 90�¸ CMOS standard library [26] for 1.00 VDD and 25°C

temperature. This evaluation leads to 0.62�S as the cycle time and 56,468�¸� of area.

Table 7.2: Critical Path of Decimal Dividers (16 digits)
 Proposed [46]

Critical Path

The (4:2) compressors 4.5 ΔG 4.5 ΔG

Sign-Detection

(Parallel Prefix Network)

9 ΔG

(15-bit width)

11 ΔG

(18-bit width)

Enable Signal Generator 1.5 ΔG 1.5 ΔG

Selector 4 ΔG 4 ΔG

Cycle Time (QDS Delay) 19 ΔG 21 ΔG

Ratio 0.90 1.00

The same simulation is done for the work in [46]. The outcomes show 0.68�S as the

cycle time and 49,000�¸� of area. It should be noted that the latency and area of the registers

are not included for simplicity. This does not make any changes in the comparison results given

that both designs use the same size of registers. Table 7.3 compares the evaluation results of the

proposed design with those of [46].

Table 7.3: Comparison based on the Synthesis Results
 Cycle Time (ns) Ratio Area (¾o¿) Ratio

Proposed 0.62 1.000 56,468 1.000

[46] 0.68 1.096 49,000 0.867

104

CHAPTER 8

DECIMAL SQUARE-ROOT
5

Beside the popular four dyadic decimal operations (i.e., addition, subtraction,

multiplication, and division), the unary square-root operation can be implemented as an

instruction, directly in hardware. This boosts up the performance of the decimal floating-point

unit in the processors, particularly when the square-root is implemented sharing hardware with

decimal divider.

Decimal square-root units are usually implemented in hardware using functional

algorithms such as Newton-Raphson [56, 57, 58]. However, these methods require a

multiplication per iteration. Consequently, given the high cost of parallel decimal multipliers, the

functional algorithms seem inadequate to be employed for decimal square-root. The digit-

recurrence algorithms, conversely, are conceptually simple and well suited for decimal square-

root due to their low hardware complexity. Moreover, using these algorithms paves the way for

the shared decimal division/square root unit.

The digit-recurrence square-root algorithm is exemplified in Eqn. 8.1, where 0.01 ≤ X <
1, 0.1 ≤ Q < 1 and 0 ≤ R < «�a = 10�Ü (where n is the number of fractional digits) are the

normalized radicand, root and the remainder, respectively. It should be noted that for the

floating-point representation the radicand should be scaled in a way to have an even exponent.

√� = ò + ª (8.1)

5
 Published @ Journal of Circuits, Systems and Signal Processing

105

The two recent pertinent works based on the Newton-Raphson algorithm are [56, 58],

where the latter is the fastest available one in the literature. The former presents a hardware

design for decimal floating-point square root in which the size of the required look-up table is

reduced with respect to other similar designs. The most recent works [57, 58] have reduced the

latency of the decimal square-root operation by taking advantage of a parallel fused-multiply-add

(FMA), but at the expense of high area consumption.

The work by Ercegovac and McIlhenny [59], which is based on the digit-recurrence

algorithm, uses a look-up table to compute a rough approximation of the root and then correct

the result via a division operation. Moreover, one may use the CORDIC algorithm to compute

the decimal square root [60, 61].

A new digit-recurrence algorithm and the corresponding hardware architecture to

compute the decimal square-root are discussed in this chapter. The main advantage of the

proposed algorithm, over the previous works, is to remove the slow and costly look-up tables.

This, however, entails generating inconstant comparison multiples to be used in the proposed

SRT algorithm.

8.1 Decimal Digit-Recurrence Square-Root

Decimal digit-recurrence square-root estimates the root ò, with the error less than

«�a = 10� . In this approach, one root digit ¦� (0 ≤ L ≤ �) is generated per iteration, such that

the root in the i
th

 iteration ò[L] is assumed to be as in Eqn. 8.2. It should be noted that

0.1 ≤ ò = √� − ª < 1 forces ¦# = 0, in case of non-redundant representation of ò.

ò[L] = ∑ ¦�10����"# (8.2)

Therefore, the error of the root estimation in the i
th

 iteration ô¤[L] is

106

ô¤[L] = √� − ò[L] (8.3)

The bounds of error after n iteration 0 ≤ �ô¤[�]� = √� − ò[�] < 10� = «�a imposes

(as a conclusion of Eqns. 8.2 and 8.3 for i+1) Eqn. 8.4 as the required condition over the root

estimation error, assuming a root digit with a redundant representation i.e., ¦� ∈ [−z, {] (z, { ≥
0 and z + { + 1 > 10).

10�� ¹��
� ½ < ô¤[L] < 10�� ¹��½ (8.4)

Defining bounds õ [L] (õZ[L]) as the lower (upper) bounds of the i
th

 partial remainder

�[L], it must satisfy Eqn. 8.5, derived by replacing Eqn. 8.3 into Eqn. 8.4.

10�� −z9 < √� − ò[L] < 10�� {9

⇓

ò[L]� + ¹10�� −z9 ½� + 2ò[L]10�� −z9 < � < ò[L]� + �10�� {9�
� + 2ò[L]10�� {9

⇓

¹10�� −z9 ½� + 2ò[L]10�� −z9 < � − ò[L]� < �10�� {9�
� + 2ò[L]10�� {9

⇓

õ [L] = 10�� ¹��
� ½� + �2 × ¹��

� ½ × ò[L]� < �[L] = 10�(� − ò[L]�) (8.5)

 < 10�� ¹��½� + �2 × ¹��½ × ò[L]� = õZ[L]
The admissible range for the partial remainder, defined in Eqn. 8.5, is also known as the

convergence condition of the decimal digit-recurrence square-root algorithm.

The recurrence equation of the decimal square-root algorithm is determined, in Eqn. 8.6,

by substituting Eqn. 8.2 in Eqn. 8.5 for �[L + 1].
 �[L + 1] = 10�3!(� − ò[L + 1]�)

 = 10�3!ü� − ò[L]� − (¦�3!)� × 10��(�3!) − 2ò[L] × ¦�3! × 10�(�3!)ý (8.6)

 = 10�[L] − 2ò[L] × ¦�3! − (¦�3!)� × 10�(�3!)
 ⟹ �[L + 1] = 10�[L] −ℚ[L]; ℚ[L] = ò[L] × 2¦�3! + (¦�3!)� × 10�(�3!)

107

The recurrence equation should be performed such that �[L + 1] be bounded as in Eqn.

8.5. This imposes a careful computation for ℚ[L] and hence a suitable selection of the ¦�3!,

regarding the values of 10�[L] and ò[L] i.e, Root Digit Selection (RDS). The correct selection is

guaranteed if computing Eqn. 8.6 satisfies Eqn. 8.5 for the next partial remainder. For this

purpose, selection intervals (û
[L], ³
[L]) are defined such that if 10�[L] ∈ (û
[L], ³
[L]) with

� ∈ [−z, {] then ¦�3! = � is admissible i.e., keeping the next partial remainder within the

required bound. Therefore, according to Eqns. 8.5 and 8.6, boundaries of the selection intervals

(³
[L] and û
[L]) are

 ¦�3! = � ⟹ � û
[L] < 10�[L] < ³
[L]õ [L + 1] < 10�[L] −ℚ[L] < õZ[L + 1]�
(8.7)

⟹
³
[L] = õZ[L + 1] + ò[L] × 2� + �� × 10�(�3!)
û
[L] = õ [L + 1] + ò[L] × 2� + �� × 10�(�3!) �

It is necessary that for any value of the shifted partial remainder 10�[L] there exist at

least one root digit. Therefore, selection intervals must overlap i.e., û
[L] < ³
�![L]; hence Eqn.

8.8 must hold in all iterations i.e., for 0 ≤ L ≤ �.

û
[L] < ³
�![L] ⇓ õ [L + 1] + ò[L] × 2� + �� × 10�(�3!) < õZ[L + 1] + ò[L] × 2(� − 1) + (� − 1)� × 10�(�3!)
 ⇓ (8.8) 2ò[L] + (2� − 1) × 10�(�3!) < õZ[L + 1] − õ [L + 1]

To make RDS less costly it is common to select ¦�3! via comparing the truncated shifted

partial remainder (10�[L])′ with comparison multiples ´
[L] for � ∈ (−α, β]. These comparison

multiples should be bounded as in Eqn. 8.9 (also shown in Fig. 8.1) in order to be able to

compensate for the error caused by using truncated operands. Therefore, the next quotient digit is

108

selected based on Eqn. 8.10 and hence the maximum absolute admissible selection error is equal

to ¸L�[(´
[L] − û
[L]), (³
[L] − ´
[L])].
û
[L] < ´
[L] < ³
�![L] ⇓ (8.9) õ [L + 1] + ò[L] × 2� + �� × 10�(�3!) < ´
[L]

< õZ[L + 1] + ò[L] × 2(� − 1) + (� − 1)� × 10�(�3!)
¦�3! = � , LU ´
[L] ≤ (10�[L])′ < ´
3![L] (8.10)

Figure 8.1: The Selection Intervals and the Comparison Multiples

8.2 The Proposed Decimal Square-Root Unit

It is z = { = 5 for the proposed square-root algorithm for two reasons; First, to reduce

the complexity of computing (¦�3!)�, required in Eqn. 8.6; second, for fewer comparison

multiples. Consequently, the bounds of the partial remainder (according to Eqn. 8.5) are as Eqn.

8.11. These bounds, according to Eqn. 8.8, require ò[L] > 0.05 which always hold given the

assumed radicand and root i.e., 0.1 ≤ ò < 1.

õ [L] = �»
h! × 10�� − !#

� ò[L] < �[L] < �»
h! × 10�� + !#

� ò[L] = õZ[L] (8.11)

The comparison multiples should be bounded as Eqn. 8.12, derived from Eqn. 8.9 by

replacing H�[i + 1] from Eqn. 11 and Q[i + 1] = Q[i] + qÓ3! × 10�(Ó3!).

¹2� − !#
� ½ ò[L] + 10�� �
6

!# −

� + �»

h!#� < ´
[L] < ¹2� − h
�½ ò[L] + 10�� �(
�!)6

!# +

� + �»

h!#� (8.12)

Therefore, the comparison multiples ´
[L] are

109

´
[L] = �8[�]3í8:�[�]
� ⟹ ´
[L] = (2� − 1)ò[L] + 10�� �
63(
�!)6

�# + �»
h!#� (8.13)

In the RDS the truncated comparison multiples (´
[L])′ are subtracted from the truncated

shifted partial remainder (10�[L])′, where the maximum admissible error, for all values of k, is

defined as |ô[L]| < ¸L�[(´
[L] − û
[L]), (³
[L] − ´
[L])].
Given that ´
[L] − û
[L] = ³
[L] − ´
[L] = [�]

� + 10�� ¹�
3�
!h# ½, |ô[L]| < [�]

� +
10�� ¹�
3�

!h# ½.

For L = 0

LU ò[0] = 0 cℎ�� 1 ≤ ¦! = � ≤ 5 ⟹ |ô[0]| < 11180 = 0.0611 …

LU ò[0] = 1 cℎ�� − 5 ≤ ¦! = � ≤ 0 ⟹ |ô[0]| < 19 − 1180 = 0.1055 …

For L ≥ 1, regarding 0.1 ≤ ò[L] < 1, the admissible error of the RDS (ô[L]) is bounded as

|ô[L]| < !
�# − ¹!#:<

!h# ½ �!! >??@ |ô[L]| < 0.01055 … (8.14)

The initial values of the square root recurrence (Eqn. 6) are determined, given the minimally

redundant root digit-set, as ò[0] = ¦# = � 0 LU 0.01 ≤ � < 0.31 LU 0.3 ≤ � < 1� and �[0] = � − ò[0]. The

upper bound of X with ¦# = 0 is (0.55 …)� = ¹»
�½� = �»

h! ≈ 0.3.

Initialization: r# � < 0.3 y$kl ò[0] = ¦# = 0 kq%k ò[0] = ¦# = 1; �[0] = � − ò[0]
Recurrence:

For 0 ≤ L ≤ � do

 1) ´
[L] = (2� − 1)ò[L] + 10�� �
63(
�!)6
�# + �»

h!#� for −4 ≤ � ≤ 5.

 2) ¦�3! = ª�P[(10�[L])′, (´
[L])′] ⟹ ¦�3! = � LU (´
[L])′ ≤ (10�[L])′ < (´
3![L])′.
 3) ℚ[L] = ò[L] × 2¦�3! + (¦�3!)� × 10�(�3!); ò[L + 1] = ò[L] + ¦�3! × 10�(�3!).
 4) �[L + 1] = 10�[L] −ℚ[L].
Termination:

Perform the rounding and normalization and conversion of ò[� + 1] to BCD format.

Figure 8.2: The proposed decimal square root algorithm

110

The proposed decimal square root algorithm is summarized in Fig. 8.2. Example 8.1

presents the required steps, based on Fig. 8.2, to compute a decimal square-root.

Example 8.1: Decimal Square-Root
Initialization: & = i.'(¿¡)*+ ⇒ ò[0] = ¦# = 1 W�� �[0] = 0.3521986 − 1 = −0.6478014

Recurrence: r = i: −7.00 = ´�¼[0] < (10�[0])- = −6.47 < ´�_[0] = −6 ⇒ �[1] = −0.078014; �¡ = −..

r = ¡: −1.80 = ´�![1] < (10�[1])- = −0.78 < ´#[1] = −0.6 ⇒ �[2] = 0.40986; �¿ = −¡.

r = ¿: +2.95 = ´_[2] < (10�[2])- = 4.09 < ´¼[2] = 4.14 ⇒ �[3] = 0.5496; �' = '.

r = ': −5.33 = ´»[3] < (10�[3])- = 5.49 ⇒ �[4] = −0.4365; �. = (.

r = .: −5.34 = ´�¼[4] < (10�[4])- = −4.36 < ´�_[4] = −4.15 ⇒ �[5] = 0.38284; �(= −..

r = (: +2.96 = ´_[5] < (10�[5])- = 3.8284 < ´¼[5] = 4.15 ⇒ �[6] = 0.267631; �+ = '.

r = +: +1.78 = ´�[6] < (10�[6])- = 2.67 < ´_[6] = 2.96 ⇒ �[7] = 0.302458; �/ = ¿.

r = /: +2.96 = ´_[7] < (10�[7])- = 3.02 < ´¼[7] = 4.15 ⇒ �[8] = −0.536203; �* = '.

Termination:

ò[8] = 1. 4ê1ê354ê323 0[19�G�[>???????@ ò[8] = 0.59346323 K[Å �� J>??????@2 = i.()'.+'¿

8.2.1 Proposed Architecture

The most straight-forward architecture to implement the recurrence stage of Fig. 8.2, is

shown in Fig. 8.3, where 3 =
63(
�!)6
�# + �»

h!#. For a faster design, Fig. 8.3 can be modified as

shown in Fig. 8.4 such that the next root digit is generated partially in parallel with the partial

remainder computation. The details of each constituent block in Fig. 8.4 are presented in the

following.

111

Figure 8.3: The Straight-Forward Architecture

Figure 8.4: Block Diagram of the Proposed Architecture

112

Step 3) in Fig. 8.4, according to Fig. 8.2, is meant to compute ℚ[L] = ò[L] × 2¦�3! +
(¦�3!)� × 10�(�3!), which is performed in three parts.

• Part I: Compute ò[L] × 2¦�3!, primarily, as two minimally redundant decimal

numbers (i.e., ³ + æ = ò[L] × 2¦�3!). For this purpose, the required easy-

multiples of ò[L] (i.e., ±2ò[L], ±4ò[L] W�� ± 10ò[L]) are generated, next ¦�3!

selects the appropriate multiples to be assigned as ³ and æ .
• Part II: Compute (¦�3!)� via a simple combinational logic. Given the minimally

redundant digit-set [−5,5], we have 0 ≤ 10� + P = (¦�3!)� ≤ 25; hence

0 ≤ � ≤ 2 and −5 ≤ P ≤ 5.

• Part III: Compute ³ + æ + � via a minimally redundant decimal adder [31,

62] where � fits into the adder as the low-significant bits of æ¤ and ³¤, due to

their even value.

Fig. 8.5 shows how the aforementioned parts are connected together to generate ℚ[L].
The decimal redundant adder shown in Fig. 8.4, to generate the partial remainder, receives two

inputs and generates an output all in [−6,6] digit-sets. The details of this (and other) redundant

adders are extensively discussed in [31, 30, 62]. The comparison multiples generation block,

according to Fig. 8.2, is responsible to generate

´
[L + 1] = (2� − 1)ò[L + 1] + 10�(�3!)Κ; −4 ≤ � ≤ 5; where Κ = �
63(
�!)6
�# + �»

h!#� (8.15)

For this purpose, first (2� − 1)ò[L + 1] is generated by means of easy-multiples of

ò[L + 1]. The required multiples are ±ò[L + 1], ±2ò[L + 1], ±3ò[L + 1] and ± 10ò[L + 1] to

generate 10 interim sums �
[L + 1] as follows, where the addition is performed via a redundant

adder whose inputs are in [−5,5] and [−6,6] and the output is [−6,6]. In essence, ±ò[L +

113

1], ±2ò[L + 1] and ±10ò[L + 1] are generated in [−5,5] digit set while ±3ò[L + 1] is in

[−6,6].

Figure 8.5: Details of Step 3) in Fig. 8.4

��¼[L + 1] = −10ò[L + 1] + ò[L + 1]; ��_[L + 1] = −10ò[L + 1] + 3ò[L + 1]
���[L + 1] = −3ò[L + 1] − 2ò[L + 1]; ��![L + 1] = −3ò[L + 1]
�#[L + 1] = −ò[L + 1]; �![L + 1] = ò[L + 1] (8.16)

��[L + 1] = 3ò[L + 1]; �_[L + 1] = 2ò[L + 1] + 3ò[L + 1]
�¼[L + 1] = 10ò[L + 1] + (−3ò[L + 1]); �»[L + 1] = 10ò[L + 1] + (−ò[L + 1])

Next, each �
[L + 1] is added to the constant value 10�(�3!)Κ by a redundant decimal

adder with [−6,6] as the digit set.

Regarding the admissible error of the Root Digit Selection (RDS) (Eqn. 8.14) the four

most significant digits of the comparison multiples and the shifted partial remainder are required

to be involved in the RDS. This block is meant to generate the output carries (i.e., ∈]−1,0,1^) of

the addition of 10�[L + 1] − ´
[L + 1].

114

Figure 8.6: Comparison Multiples Generation

With the purpose of reducing the latency and complexity of this carry-generation block,

(10�[L + 1] − ´
[L + 1]) is represented as shown in Fig. 8.7, where white (black) dots

symbolize negative- (positive-) weighted bits. Consequently, only 13 bits of each operand are

required to meet the error bounds in Eqn. 8.14 (i.e., |ô[L]| < 0.01055 …).

Figure 8.7: Bit representations used in RDS

115

Next, the comparing signal is produced, based on the values of the carry bits, to indicate

whether 10�[L + 1] ≥ ´
[L + 1]. Finally, an encoder is used to generate ¦�3�, given the 10

comparison signals. The architecture of the recurrence stage is shown in Fig. 8.8.

Figure 8.8: The Proposed Architecture of the Recurrence Stage

In the initialization stage, according to Fig. 8.2, there is a need to convert the BCD

representation of the radicand to redundant decimal encoding ([−6,6]) and to compare the most

significant digit of the radicand with 3. Next, based on this comparison result the most

significant digit of the redundant radicand takes the value of]−1,0,1^. In the termination stage,

some operations are needed to convert the minimally redundant decimal root ò to the final BCD

result, namely conversion to BCD, rounding and normalization.

These operations are performed in the standard manner explained in division papers [37]

where conversion and normalization are done on-the-fly and the rounding mode is

RoundTiesToEven.

116

8.3 Evaluations and Comparisons of Decimal Square-Root Units

The evaluation results of the proposed architecture, in terms of latency and area, are

presented and compared with the fastest previous work, in this section. The proposed design is

synthesized by Synopsys Design Compiler using the STM 90�¸ CMOS standard library [26]

for 1.00 VDD and 25°C temperature in which an FO4 (i.e., the latency of an inverter driving 4

similar inverters in the output) is 45aS and the area of a NAND2 is 4.4�¸�.

According to Fig. 8.8 the recurrence stage of the proposed multiplier consists of three

main parts namely comparison multiples generation, partial remainder computation and root digit

selection. The simulation results show that the critical path delay consists of comparison

multiples generation and root digit selection. Moreover, the number of cycles required for a 16-

digit root is 1+17+1=19. Table 8.1 illustrates the critical path delay, the number of cycles and the

total latency of the 16-digit proposed decimal square-root architecture.

Table 8.1: Critical Path Delay of the Proposed Design (16 digits)

 Register x(-3) Adder 1 Adder 2 Comparator Encoder
Cycle

Time

of

Cycles

Total

Latency

Delay (ns) 0.17 0.22 0.51 0.54 0.26 0.10 1.80 19 34.2

The area consumption of the proposed 16-digit architecture is evaluated as the sum of the

area cost of various constituent parts tabulated in Table 8.2. The cycle time of the proposed

decimal square root architecture is 40 FO4 and for the 16-digit root the total latency and area are

760 FO4 and about 31,000 NAND2, respectively.

Table 8.2: Area consumption of the proposed 16-digit architecture (NAND2)

 Combinational Registers Total

Initialization 276 441 717

Recurrence 20,870 4,743 25,613

Termination 3,662 1,000 4,662

Whole Design 24,808 6,184 ≈ '¡6

117

The fastest previous pertinent works [57, 58] is based on the Newton-Raphson iterative

method where a decimal FMA is the main building block. This is a floating-point decimal square

root unit with cycle time of 62.22 FO4 [57] and requires 15 cycles to compute a 16-digit root;

thus the total latency of 933.3 FO4. The area of this design is reported as 157,284 NAND2.

For fair comparison the latency and area of the proposed design is estimated for the

floating-point computation. In this case, a pre-processing unit is required to convert the radicand

from Densely-Packed-Decimal (DPD) to BCD encoding, determine the number of leading zeros

and normalize the radicand. This pre-processing unit adds one extra cycle to the proposed fixed-

point design and consumes about 2378 NAND2 of area [56]. Moreover, a post-processing unit is

required to deal with the exponents, handle the exceptions and convert the BCD root back to the

IEEE 754-2008 format. This can be performed in the termination stage with the extra area of

3,027 NAND2 [56].

Consequently, using the proposed decimal square root architecture for the floating-point

computation leads to the total latency of 40 × 20 = 800 FO4 and consume the area of about

36,400 NAND2. Table 8.3 compares the proposed design with that of [57, 58] and the work

based on the CORDIC algorithm [61], in terms of latency and area. There is also another work,

based on the digit-recurrence algorithm [59], which uses look-up tables, small adders and

multipliers. However, it is optimized and implemented on FPGA and hence no ASIC evaluation

results are available to compare with.

Table 8.3: Comparison of the FP architectures

 Cycle time (FO4) # of cycles Total Latency (FO4) Ratio Area (NAND2) Ratio

Proposed 40.00 20 800.0 1.00 36,400 1.00

[57] 62.22 15 933.3 1.16 157,284 4.32

[61] 34.63 35 1211 1.51 18,826 + 4.5KB ---

118

According to the comparison results the proposed design is about 14% faster than the

fastest previous work with about a quarter of the area. This implies that, due to the high latency

and area cost of decimal multipliers, using digit-recurrence algorithms for computing decimal

square-root is more efficient.

119

CHAPTER 9

CONCLUSIONS & FUTURE WORKS

9.1 Conclusions

Co-processors, working in parallel with primary processors, are meant to supplement the

functions of general-purpose processors. Computationally intensive tasks are usually delegated

to co-processors so as to offload heavy functions from the primary processor, which leads to

higher overall performance. Since a co-processor, unlike a general-purpose processor, is

designed for a specific application (e.g., floating-point, FFT, decimal arithmetic), it can be a

custom-designed product that allows for use of unconventional methods and algorithms to

increase the performance of the co-processor.

One of the unconventional approaches to speeding up an arithmetic co-processor is using

redundant number systems. This delays carry-propagation until the last phase of the whole

operation and leads to a much faster architecture. However, using redundant number systems

adds extra complexity to the arithmetic circuitries, which usually increases area. Therefore, the

number system and the corresponding arithmetic units must be designed meticulously to reach

the optimized balance between area and speed.

In this thesis, new architectures for two co-processors (FFT and decimal) are presented

and discussed. It is shown how redundant number systems improve the speed and performance

of these co-processors. The first part is the proposal of a high-speed FFT architecture that is

much faster than the best previous works at the cost of higher area. The reasons for this speed

improvement are twofold:

120

• Using Binary-Signed-Digit (BSD) representation for the significands of the

floating-point operands to eliminate carry-propagation.

• The proposed Fused-Dot-Product-Add (FDPA) unit that combines the

multiplications and additions required in a floating-point butterfly unit. Higher

speed is achieved by eliminating extra leading-zero-detection (LZD),

normalization and rounding units.

High-speed floating-point FMAs performing over complex numbers are required in order

to have a high-performance butterfly unit. This, in turn, requires floating-point multipliers along

with high-speed three-operand floating-point adders. Floating-point multipliers are typically

designed based on the conventional architecture or Golub's approach. It is shown that Golub's

method does not have any advantage over the conventional one when being used over floating-

point operands. Therefore, a new redundant floating-point multiplier is designed based on the

conventional architecture. A new three-operand redundant floating-point adder is developed.

Modified Booth encoding is also used to speed up the proposed constant Binary-Signed-Digit

multiplier. Also, operands are stored in registers and used in the next stage as a redundant

representation; thus, carry-propagation is involved neither inside a butterfly unit nor between

FFT stages. This results in a faster FFT processor, but a larger area due to the need for more

registers to store redundant operands.

For the second part, four of the most useful decimal operations (addition, multiplication,

division and square-root) are implemented in hardware and it is shown that using redundant

number systems improves the clock frequency of these decimal arithmetic units. A decimal

signed digit adder that uses the stored carry representation of the operands is proposed. Using

this representation requires [−9,7], as the digit-set. It is shown that this representation simplifies

121

the final addition by removing the input carry. The proposed adder consists of three main

building blocks:

1) Combinational logic F1 to generate the transfer bits and the high-portion of the

intermediate sum

2) Combinational logic F2 to generate the low-portion of the intermediate sum

3) Three-bit CLA to generate the final sum

The performance of the proposed redundant adder was compared with that of the fastest

previous work. The results demonstrated that the proposed architecture is 15 % faster than the

most latency efficient previous work while sacrificing some area and power.

A high-frequency sequential decimal multiplier is also proposed where the easy-multiples

(i.e.,�, 2�, 4�, 5�) are used to generate the partial products represented in 4-2-2-1 encoding. The

cycle-time of the proposed sequential multiplier is minimized by using efficient decimal

encodings and by retiming the constituent parts of a decimal carry-save adder. It is shown that

the proposed pipelined design, with its cycle time of 10 FO4, is much faster than the previous

works, while the proposed word-serial implementation keeps the area as low as possible. The

fastest previous design [34] works with 47% slower clock frequency and consequently a 27%

slower multiplier than the proposed pipelined architecture.

For decimal division, firstly, the general rules and conditions for quotient digit selection

(QDS) are presented in decimal digit-recurrence division algorithms with operands represented

in generalized signed-digit (GSD) format. As a consequence of this generalization, the

convergence condition usually used in division algorithms is unnecessarily strict and

conservative, which might exclude some correct algorithms. Using the proposed general

condition circumvents this problem and allows for more efficient dividers. Secondly, the

122

suggested representations were applied into the fastest decimal divider and gained about 10%

speed improvement with almost the same area cost.

Finally, a decimal square-root architecture is proposed based on the SRT algorithm in

which the root is computed iteratively. A root digit is determined by comparing the partial

remainder to ten inconstant comparison multiples. The radix-10 minimally redundant

representation of the root (i.e., digit-set of [−5,5]) leads to a simple root digit selection unit. The

partial remainder, however, is represented in the digit-set equal to [−6,6] so as to reduce the

complexity of the intermediate redundant decimal adders. This endeavor leads to an architecture

that is 14% faster than the fastest previous work (based on the Newton-Raphson algorithm) with

about a quarter of the area. It is also suggested that implementing decimal square-root using digit

recurrence algorithms is more efficient than the designs based on functional methods e.g.,

Newton-Raphson. The main reason lies within the fact that functional methods necessitate a

decimal multiplication per iteration.

9.2 Future Works

There are two approaches which can be pursued in the future as an extension of the

current work described in this thesis.

• Conduct research on redundant number systems for other useful co-processors

(e.g., for graphic and encryption applications).

• Search for more efficient redundant number systems for each of the constituent

blocks of the FFT and decimal co-processors discussed in this thesis.

In the first approach, one may need to identify the performance bottleneck of the desired

co-processor where multiple consecutive arithmetic operations are being performed. The next

123

step is finding an efficient redundant representation for the operands involved in the bottleneck.

Finally, a high-speed algorithm and architecture are required to perform the corresponding

redundant arithmetic operations.

The second approach includes finding other redundant representations for FFT Butterfly

units, decimal adders and subtractors, decimal sequential and parallel multipliers, fused-

multiply-add units, decimal dividers and decimal square-root units (both digit-recurrence and

multiplicative-based algorithms).

Furthermore, one could pursue the implementation of FFT co-processors based on range

addressable look-up tables. Using this method, the FFT co-processor is expected to be faster. The

cost of these look-up tables are lower than the conventional look-up tables and hence saves the

area cost.

Implementing redundant floating-point FFT co-processors based on CORDIC (COrdinate

Rotation DIgital Computer) algorithms sounds a promising research topic to be worked on in the

future. Using the CORDIC approach saves area cost but sacrifices the speed of the FFT co-

processor.

124

REFERENCES

[1] Swartzlander, E. E. Jr. and H. H. Saleh, "FFT Implementation with Fused Floating-

Point Operations," IEEE Transactions on Computers, Vol. 61, No. 2, pp. 284-288,

2012.

[2] Sohn, J. and E. E. Swartzlander, Jr., "Improved Architectures for Floating-Point Fused

Dot Product Unit," Proceedings of IEEE 21st Symposium on Computer Arithmetic, pp.

38-41, 2013.

[3] IEEE Standards Committee, “754-2008 IEEE Standard for Floating-Point Arithmetic,”

pp. 1-58, August 2008.

[4] Swartzlander, E. E. Jr. and H. H. Saleh, "Fused Floating-Point Arithmetic for DSP,"

Proceedings of the 42nd Asilomar Conference on Signals, Systems and Computers, pp.

767-771, 2008.

[5] Min, J. H, S. W. Kim and E. E. Swartzlander, Jr., "A Floating-Point Fused FFT

Butterfly Arithmetic Unit with Merged Multiple-Constant Multipliers," Proceedings of

the 45th Asilomar Conference on Signals, Systems and Computers, pp. 520-524, 2011.

[6] Jaberipur, G, B. Parhami and M. Ghodsi, "Weighted Bit-Set Encodings for Redundant

Digit Sets: Theory and Applications," Proceedings of the 36th Asilomar Conference on

Signals Systems and Computers, pp. 1629-1633, 2002.

[7] Parhami, B., “Computer Arithmetic: Algorithms and Hardware Designs,” 2nd Edition,

Oxford University Press, New York, 2010.

[8] Cowlishaw, M. F., "Decimal Floating-Point: Algorithm for Computers," Proceedings of

the 16th IEEE Symposium on Computer Arithmetic, pp. 104-111, 2003.

[9] Eisen et al. "IBM POWER6 Accelerators: VMX and DFU," IBM Journal of Research

and Development, Vol. 51, No. 6, pp. 663-684, 2007.

[10] Cooley, J. W. and J. W. Tukey, "An Algorithm for the Machine Calculation of Complex

Fourier Series," Mathematics of Computations, Vol. 19, No. 90, pp. 297-301, 1965.

[11] Dubois, E. and A. Venetsanopoulos "A New Algorithm for the Radix-3 FFT," IEEE

Transactions on Acoustics, Speech and Signal Processing, Vol. 26, No. 3, pp. 222-225,

1978.

125

[12] Taylor, F. J., G. Papadourakis, A. Skavantzos and A. Stouraitis, "A Radix-4 FFT Using

Complex RNS Arithmetic," IEEE Transactions on Computers, Vol. C-34, No. 6, pp.

573-576, 1985.

[13] Singleton, R. C. "An algorithm for computing the mixed radix fast Fourier transform,"

IEEE Transactions on Audio and Electroacoustics, Vol. 17, No. 2, pp. 93-103, 1969.

[14] Duhamel, P. and H. Hollmann, "Split-Radix FFT Algorithm," IET Electronics Letters,

Vol. 20, No. 1, pp. 14-16, 1984.

[15] Winograd, S., "On computing the discrete Fourier transform" Mathematics of

Computation, Vol. 32, pp. 175–199, 1978.

[16] Bluestien, L. I, "A linear filtering approach to the computation of the discrete Fourier

transform," IEEE Transactions on Audio and Electroacoustics, Vol. 18, No. 4, pp. 451-

455, 1970.

[17] Ercegovac, M. D. and Lang, T. “Digital Arithmetic,” Morgan Kaufmann Publishers,

2004.

[18] Parhami, B., "Generalized Signed-Digit Number Systems: A Unifying Framework for

Redundant Number Representations," IEEE Transactions on Computers, Vol. 39, No. 1,

pp. 89-98, 1990.

[19] Swartzlander, E. E. Jr. and H. H. Saleh, "Floating-Point Implementation of Complex

Multiplication," Proceedings of the 43rd Asilomar Conference on Signals, Systems and

Computers, pp. 926-929, 2009.

[20] Fahmy, A. H. and M. Flynn, "The Case for a Redundant Format in Floating-Point

Arithmetic," Proceedings of IEEE 16th Symposium on Computer Arithmetic, pp.95-102,

2003.

[21] Tenca, A. F. "Multi-Operand Floating-Point Addition," Proceedings of IEEE 19th

Symposium on Computer Arithmetic, pp. 161-168, 2009.

[22] Tao, Y., g. Deyuan, F. Xiaoya and R. Xianglong, "Three-Operand Floating-Point

Adder," Proceedings of the 12th IEEE International Conference on Computer and

Information Technology, pp. 1920196, 2012.

[23] Nielsen, A. M., D. W. Matula, C. N. Lyu and G. Even, "An IEEE Compliant Floating-

Point Adder that Conforms with the Pipelined Packet-Forwarding Paradigm," IEEE

Transactions on Computers, Vol. 49, No. 1, pp. 33-47, 2000.

[24] Kornerup, P., "Correcting the Normalization Shift of Redundant Binary

Representations," IEEE Transactions on Computers, Vol. 58, No. 10, pp. 1435-1439,

2009.

126

[25] Oklobdzija, V. G., "An Algorithmic and Novel Design of a Leading Zero Detector

Circuit: Comparison with Logic Synthesis," IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, Vol. 2, No. 1, pp. 124-128, 1994.

[26] STMicroelectronics, 90nm CMOS090 Design Platform, 2007.

[27] Karatsuba, A. and Y. Ofman, "Multiplication of Many-Digital Numbers by Automatic

Computers," academic journal Physics-Doklady, Vol. 7, pp. 595–596, 1963.

[28] Svoboda, A. “Decimal Adder with Signed Digit Arithmetic,” IEEE Transactions on

Computers, Vol. C-18, No. 3, pp. 212-215, 1969.

[29] Shirazi, B., D.Y. Yun and C.N. Zhang, “RBCD: Redundant Binary Coded Decimal

Adder,” IEE Proc. Computer & Digital Techniques (CDT), Vol.36, No.2, 1989.

[30] Kaivani, A. and G. Jaberipur, " Fully redundant decimal addition and subtraction using

stored-unibit encoding," Integration, the VLSI Journal, Vol. 43, No. 1, pp. 34-41, 2010.

[31] Gorgin, S. and G. Jaberipur, “Fully Redundant Decimal Arithmetic,” Proceedings of the

19th IEEE Symposium on Computer Arithmetic, pp. 145-152, 2009.

[32] Jaberipur, G., B. Parhami and M. Ghodsi, “A Class of Stored-Transfer Representations

for Redundant Number Systems,” Proceedings of 35th Asilomar Conf. Signals Systems

and Computers, pp. 1304-1308, 2001.

[33] Schwarz, E., M., J. S. Kapernick and M. F. Cowlishaw, “Decimal Floating-Point

Support on the IBM System z10 Processor,” IBM Journal of Research and

Development, Vol. 53, No. 1, pp. 4:1-4:10, 2009.

[34] Carlough, S., A. Collura, S. Mueller and M. Kroener, “The IBM Zenterprise-196

Decimal Floating-Point Accelerator,” Proceedings of the 20th IEEE Symposium on

Computer Arithmetic, pp. 139-146, 2011.

[35] Jaberipur, G. and A. Kaivani, “Binary-Coded Decimal Digit Multipliers,” IET

Computers & Digital Techniques, Vol. 1, No. 4, pp. 377-381, July 2007.

[36] Richards, R. K., “Arithmetic Operations in Digital Computers,” Van Nostrand, New

York, 1955.

[37] Lang, T. and A. Nannarelli, "A Radix-10 Digit-Recurrence Division Unit: Algorithm

and Architecture," IEEE Transactions on Computers, Vol. 56, No. 6, pp. 727-739, 2007.

[38] Vazquez, A., E. Antelo and P. Montuschi, “Improved Design of High-Performance

Parallel Decimal Multipliers,” IEEE Transactions on Computers, Vol. 59, No. 5, pp.

679-693, 2010.

127

[39] Vazquez, A., E. Antelo, and P. Montuschi, “A New Family of High-Performance

Parallel Decimal Multipliers,” Proceedings of 18
th

 IEEE Symposium on Computer

Arithmetic, pp. 195-204, 2007.

[40] Erle, M. A. and M. J. Schulte, “Decimal Multiplication via Carry-Save Addition,”

Proceedings of the IEEE International Conference on Application-Specific Systems,

Architectures, and Processors, pp. 348–358, 2003.

[41] Vazquez, A. and E. Antelo, “Conditional Speculative Decimal Addition,” Proceedings

of the 7th Conference on Real Numbers and Computers (RNC7), pp. 47–57, 2006.

[42] Kenney, R. D., M. J. Schulte and M. A. Erle, “A High-Frequency Decimal Multiplier,”

Proceedings of the IEEE International Conference on Computer Design, pp. 26-29,

2004.

[43] Erle, M. A., E. M. Schwarz and M. J. Schulte, “Decimal Multiplication with Efficient

Partial Product Generation,” Proceedings of 17th IEEE Symposium on Computer

Arithmetic, pp. 21-28, 2005.

[44] Vazquez, A. Antelo and E. P.Montuschi, "A Radix-10 SRT Divider Based on

Alternative BCD Codings", 25th IEEE International Conference on Computer Design

(ICCD 2007), pp. 280-287, 2007.

[45] Schwarz, E. M., and S. R. Carlough, “Power6 Decimal Divide,” Proceedings of IEEE

International Conference on Application-Specific Systems, Architecture, Processors

(ASAP), pp. 128-133, 2007.

[46] Kaivani, A., A. Hosseiny, G. Jaberipur, “Improving the Speed of Decimal Division,”

IET Computer & Digital Techniques, Vol. 5, No. 5, pp. 393-404, September 2011.

[47] Ercegovac, M. D., “A higher-radix division with simple selection of quotient digits,” in

Proceedings of 6
th

 IEEE Symposium on Computer Arithmetic (ARITH6), pp. 94-98,

1983.

[48] Montuschi, P. and L. Ciminiera, “Over-Redundant Digit Sets and the Design of Digit-

by-Digit Division Units,” IEEE Transactions on Computers, Vol. 43, No. 3, pp. 269-

277, 1994.

[49] Tang, P. T. P., J. A. Butts, R. O. Dror and D. E. Shaw, “Tight Certification Techniques

for Digit-by-Rounding Algorithms with Application to a New
!

√Y Design,” in

Proceedings of 20
th

 IEEE Symposium on Computer Arithmetic (ARITH20), pp. 159-168,

2011.

[50] Butts, J. A., P. T. P. Tang, R. O. Dror and D. E. Shaw, “Radix-8 Digit-by-Rounding:

Achieving High-Performance Reciprocals, Square Roots, and Reciprocal Square

128

Roots,” in Proceedings of 20
th

 IEEE Symposium on Computer Arithmetic (ARITH20),

pp. 149-158, July 2011.

[51] Jaberipur, G., B. Parhami and M. Ghodsi, “Weighted Two-Valued Digit-Set Encodings:

Unifying Efficient Hardware Representation Schemes for Redundant Number Systems,”

IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 52, No. 7, pp.

1348-1357, 2005.

[52] Parhami, B., “Precision Requirements for Quotient Digit Selection in High-Radix

Division,” Proceedings of 35
th

 Asilomar Conference on Circuits, Systems, and

Computers, pp. 1670-1673, 2001.

[53] Parhami, B., “Tight Upper Bounds on the Minimum Precision Required of the Divisor

and the Partial Remainder in High-Radix Division,” IEEE Transactions on Computers,

Vol. 52, No. 11, pp. 1509-1514, 2003.

[54] Kornerup, P., “Digit Selection for SRT Division and Square Root,” IEEE Transactions

on Computers, Vol. 54, No. 3, pp. 294-303, 2005.

[55] Parhami, B., “On the implementation of arithmetic support functions for generalized

signed-digit number systems,” IEEE Transactions on Computers, Vol. 42, No. 3, pp.

379-384, 1993.

[56] Wang, L. K. and M. J. Schulte, “Decimal Floating-Point Square Root Using Newton-

Raphson Iteration,” Proceedings of the 16
th

 International Conference on Application

Specific Systems, Architecture and Processors, pp. 309-315, 2005.

[57] SilMinds, “DFP Newton-Raphson Square Root Units,” IP Core Product Data Sheet,

NRDecDiv64/128.

[58] Raafat, Ramy et al., “Decimal Floating-Point Square-Root Unit Using Newton-Raphson

Iterations,” US Patent Application Publication, US 2012/0011182, 2012.

[59] Ercegovac, M. D. and R. McIlhenny, “Design and FPGA Implementation of Radix-10

Algorithm for Square Root with Limited Precision Premitives,” Proceedings of the 43
rd

Asilomar Conference on Signals, Systems and Computers, pp. 935-939, 2009.

[60] Vazquez, A., J. Villalba and E. Antelo, "Computation of Decimal Transcendental

Functions Using the CORDIC Algorithm," Proceedings of the 19th IEEE Symposium on

Computer Arithmetic, pp. 179-186, 2009.

[61] Kaivani, A. and G. Jaberipur, “Decimal CORDIC Rotation based on Selection by

Rounding,” The Computer Journal, Vol. 54, No. 11, pp. 1798-1809, 2011.

[62] Gorgin, S. and G. Jaberipur, “A Family of Signed Digit Adders,” Proceedings of the

20
th

 IEEE Symposium on Computer Arithmetic, pp. 112-120, 2011.

129

[63] Kaivani, A. and S. Ko, "Floating-Point Butterfly Architecture Based on Binary Signed-

Digit Representation," IEEE Transactions on Very Large Scale Integration, to appear.

[64] Kaivani, A. and S. Ko, "High-Speed FFT Processors Based on Redundant Number

Systems," IEEE International Symposium on Circuits and Systems (ISCAS'14), pp.

2237-2240, 2014.

[65] Kaivani, A. and S. Ko, "Decimal signed digit addition using stored transfer encoding,"

26th Annual IEEE Canadian Conference on Electrical and Computer Engineering

(CCECE'13), pp.1-4, 2013.

[66] Kaivani, A., L. Han and S. Ko, "Improved design of high-frequency sequential decimal

multipliers," IET Electronics Letters, Vol. 50, No. 7, pp. 558-560, 2014.

[67] Kaivani, A., L. Chen and S. Ko, "High-frequency sequential decimal multipliers," IEEE

International Symposium on Circuits and Systems (ISCAS'12), pp. 3045-3048, 2012.

[68] Han, L., A. Kaivani and S. Ko, "Area Efficient Sequential Decimal Fixed-point

Multiplier," Journal of Signal Processing Systems, Vol. 75, No. 1, pp. 39-46, 2014.

[69] Kaivani, A. and S. Ko, "Decimal Division Algorithms: The Issue of Partial

Remainders," Journal of Signal Processing Systems, Vol. 73, No. 2, pp. 181-188, 2013.

[70] Kaivani, A. and S. Ko, "Decimal SRT Square Root: Algorithm and Architecture,"

Circuits, Systems and Signal Processing, Vol. 32, No. 5, pp.2137-2150, 2013.

