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ABSTRACT 

There is a growing demand for high-speed arithmetic co-processors for use in 

applications with computationally intensive tasks. For instance, Fast Fourier Transform (FFT) 

co-processors are used in real-time multimedia services and financial applications use decimal 

co-processors to perform large amounts of decimal computations. 

Using redundant number systems to eliminate word-wide carry propagation within 

interim operations  is a well-known technique to increase the speed of arithmetic hardware units. 

Redundant number systems are mostly useful in applications where many consecutive arithmetic 

operations are performed prior to the final result, making it advantageous for arithmetic co-

processors. This thesis discusses the implementation of two popular arithmetic co-processors 

based on redundant number systems: namely, the binary FFT co-processor and the decimal 

arithmetic co-processor. 

FFT co-processors consist of several consecutive multipliers and adders over complex 

numbers. FFT architectures are implemented based on fixed-point and floating-point arithmetic. 

The main advantage of floating-point over fixed-point arithmetic is the wide dynamic range it 

introduces. Moreover, it avoids numerical issues such as scaling and overflow/underflow 

concerns at the expense of higher cost. Furthermore, floating-point implementation allows for an 

FFT co-processor to collaborate with general purpose processors. This offloads computationally 

intensive tasks from the primary processor. 

The first part of this thesis, which is devoted to FFT co-processors, proposes a new FFT 

architecture that uses a new Binary-Signed Digit (BSD) carry-limited adder, a new floating-point 
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BSD multiplier and a new floating-point BSD three-operand adder. Finally, a new unit labeled as 

Fused-Dot-Product-Add (FDPA) is designed to compute �� ± �� ± � over floating-point BSD 

operands. 

The second part of the thesis discusses decimal arithmetic operations implemented in 

hardware using redundant number systems. These operations are popularly used in decimal 

floating-point co-processors. A new signed-digit decimal adder is proposed along with a 

sequential decimal multiplier that uses redundant number systems to increase the operational 

frequency of the multiplier. New redundant decimal division and square-root units are also 

proposed. 

The architectures proposed in this thesis were all implemented using Hardware-

Description-Language (Verilog) and synthesized using Synopsys Design Compiler. The 

evaluation results prove the speed improvement of the new arithmetic units over previous 

pertinent works. Consequently, the FFT and decimal co-processors designed in this thesis work 

with at least 10% higher speed than that of previous works. These architectures are meant to 

fulfill the demand for the high-speed co-processors required in various applications such as 

multimedia services and financial computations. 
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CHAPTER 1 

INTRODUCTION & BACKGROUNDS 

The need for high-speed processing greatly exceeds what general-purpose processors can 

handle. This is where, for instance, arithmetic co-processors can be used to offload 

computationally intensive tasks from the primary processor. Fast Fourier Transform (FFT) co-

processors are used in real-time multimedia services and financial applications use decimal co-

processors to perform large amounts of decimal computations. 

A co-processor receives data from a general-purpose processor to execute time-

consuming operations. After the co-processor is done processing the data, the results are sent 

back to the general-purpose processor. This approach saves time and offloads computationally 

intensive tasks from primary processors, therefore achieving higher overall performance. Of 

various available co-processors, the binary Fast Fourier Transform (FFT) co-processor and the 

decimal floating-point co-processor have received a lot of attention recently. 

FFT circuitry consists of several consecutive multipliers and adders over complex 

numbers. Until recently, most FFT architectures used fixed-point arithmetic only, before FFTs 

based on floating-point operations became prominent [1, 2]. Using the IEEE-754-2008 standard 

[3] for floating-point arithmetic allows FFT co-processors to collaborate with general purpose 

processors. 

Despite the fact that binary computer arithmetic improves processing speed and reduces 

hardware complexity, decimal computer arithmetic has recently been revived. The advantage of 

decimal computer arithmetic over its binary counterpart is that decimal arithmetic is capable of 

mirroring human computations (i.e., radix-10) and representing fractions precisely where binary 
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cannot (e.g., 0.2) [8]. Some applications, such as finance and banking, cannot tolerate a loss of 

precision; this is where decimal computer arithmetic is useful. 

Decimal computer arithmetic can be implemented in hardware or software. The software 

implementation of decimal arithmetic operations with binary logic devices was widely used until 

IBM revealed an all-hardware implementation of decimal processors such as the POWER6 

decimal processor [9]. Additionally, the IEEE 754-2008 [3] standard for floating-point arithmetic 

now supports the decimal hardware implementation. Hardware decimal arithmetic is used where 

high-speed computations are performed on large amounts of data. 

1.1 Fast Fourier Transform (FFT) 

N-point FFT computation is described in Eqn. 1.1, where �(�) is the input and �� =
�����/� is the complex twiddle factor. 

�[�] = � �(�) ∙ �� 

��!


"#
;    � = 0,1, … , * − 1                                                 (1.1) 

As a result of Eqn. 1.1, the outputs are as follows: 

�[0] = �(0)��# + �(1)��#×! + ⋯ + �(* − 1)��#×(��!)
 

�[1] = �(0)��# + �(1)��!×! + ⋯ + �(* − 1)��!×(��!)
 

:                 (1.2) 

�[�] = �(0)��# + �(1)��
×! + ⋯ + �(* − 1)��
×(��!)
 

: 
�[* − 1] = �(0)��# + �(1)��(��!)×! + ⋯ + �(* − 1)��(��!)×(��!)
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Consequently, implementation of Eqn. 1.1 requires *� complex multiplication plus 

*(* − 1) complex additions. Given that each complex multiplication (addition) includes four 

(zero) real multiplications and two (two) additions, in overall 4*� real multiplications and 

2*(2* − 1) real additions are required to implement Eqn. 1.1. 

Cooley and Tukey [10] proposed an efficient algorithm which makes hardware 

realization of Eqn. 1.1 much easier. This algorithm, as shown in Eqn. 1.3, decomposes Eqn. 1.1 

into even and odd indices. Therefore, the N-input FFT computation is simplified to the 

computation of two (N/2)-input FFT (see Fig. 1.1). Continuing this decomposition leads to 2-

input FFT block also known as “butterfly” unit. 

�[�] = � �(2�) ∙ ��� 

�� �!


"#
+ � �(2� + 1) ∙ �� (�
3!)

�� �!


"#
          

 

= � �(2�) ∙ ��� 

�� �!


"#
+ �� � �(2� + 1) ∙ ��� 


�� �!


"#
 

(1.3)  

45678"9:6;<5 678"9:6;<5 6⁄ 78"45/678>???????????????????????@ �[�] = � �(2�) ∙ ��/� 

�� �!


"#
+ �� � �(2� + 1) ∙ ��/� 


�� �!


"#
 

 

458A5/6"�458>?????????@ � B� + *2C = � �(2�) ∙ ��/� 

�� �!


"#
− �� � �(2� + 1) ∙ ��/� 


�� �!


"#
 

There are two FFT architectures, decimation in time (DIT) and decimation in frequency 

(DIF). The former, shown in Fig. 1.1, consists of a complex multiplication followed by complex 

add/sub operations, while the latter requires the add/sub operations prior to the multiplication. 

There are other FFT algorithms in the literature such as radix-3 [11], radix-4 [12], mixed 

radix [13], split radix [14], convolution-based (e.g., Winograd [15] and Bluestein [16]), to name 
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a few. However, the radix-2 Cooley-Tukey algorithm is known as the most efficient algorithm 

for hardware implementation due to its simplicity. 

 
Figure 1.1: Implementation of an N-point FFT 

Generally, N-point DIT FFT implementation using Cooley-Tukey algorithm can be 

summarized as: 

• Number of stages = log� * 

• Number of twiddle factors = */2 

• Number of butterfly units at each stage = */2 

• Difference between indices of the upper and lower leg of a butterfly unit = 

2GHIJ9�! 

As an example, Fig. 1.2 illustrates the implementation of an 8-input DIT FFT. 

1.2 Butterfly unit 

Butterfly unit is actually a fused-multiply-add/sub (FMA) over complex operands. Fig. 

1.3 depicts a DIT butterfly unit which consists of a complex multiplier, a complex adder and a 

complex subtractor. 
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Figure 1.2: 8-input FFT using DIT butterfly 

 
Figure 1.3: Butterfly Architecture (DIT) 

A complex number � consists of one real and one imaginary component such that 

� = �K9 + L�MN. Complex addition/subtraction 〈PK9, PMN〉 = 〈�K9 , �MN〉 ± 〈�K9, �MN〉 includes 

two additions/subtractions over the real and imaginary components i.e., PK9 = �K9 ± �K9 and 

PMN = �MN ± �MN. Complex multiplication 〈RK9 , RMN〉 = 〈�K9 , �MN〉 × 〈�K9 , �MN〉 is performed as 

shown in Eqn. 1.4. 

RK9 = �K9�K9 − �MN�MN;      RMN = �K9�MN + �MN�K9    (1.4)  
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According to Eqn. 1.4, a complex multiplication requires four multiplications and two 

additions/subtractions. However, Golub algorithm introduces another equation (Eqn. 1.5) for the 

computation of the real component RK9 which, in some cases, leads to lower cost [19]. 

RK9 = (�K9 + �MN)(�K9 − �MN) + �K9�MN − �MN�K9    (1.5)  

Given that �K9�MN and �MN�K9 are already computed for RMN, Golub algorithm requires 

three multiplications and five additions/subtractions. This leads to a lower cost than the 

conventional method, assuming a multiplier costs at least 3 times more than an adder. Therefore, 

there are two methods to implement a butterfly unit: 1) conventional 2) Golub's approach. 

Fig. 1.4 shows the implementation of a DIT butterfly with expanded complex numbers 

using the conventional approach. Accordingly, it consists of four multipliers and six 

adders/subtractors. It should be noted that, given the constant values of twiddle factors (W), the 

multipliers are constant and can be implemented via a series of shifters and adders in lieu of the 

multiplier tree. Fig. 1.5 shows the implementation of a DIT butterfly unit based on the Golub's 

approach. Accordingly, it consists of three multipliers and nine adders/subtractors. 

 
Figure 1.4: DIT Butterfly architecture using conventional approach 
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Figure 1.5: DIT Butterfly architecture using Golub's approach 

1.3 Floating-Point Arithmetic 

Floating-point arithmetic is being used, and preferred over fixed-point, in many 

applications due to the fact that it provides a large range of numbers and a high degree of 

precision. It is also common to be used in a variety of Digital Signal Processing (DSP) 

applications because it relieves the designer of numerical issues e.g., scaling, overflow, and 

underflow. A floating-point number, as represented in Eqn. 1.6, consists of four components; 

namely, sign, significand, base and exponent. 

(−1)G�J × SLT�LULVW�� × (XWS�)9YZ[ 9 H    (1.6)  

The above four components for a single precision floating-point number, according to 

IEEE 754-2008 standard [3], take values as follows: 
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• SLT� ∈ ]0,1^ 

• SLT�LULVW�� is a 24 bit number ∈ [1,2 − 2�_] 
• XWS� = 2 

• �`ab���c is an 8 bit integer ∈ [−126,127] 
Given that base is always equal to two, it is only required to store the other three 

components. With the intention of storing these components efficiently, the following 

modifications are done: 

1. It is always (�`ab���c + XLWS) stored. Given XLWS = 127, the stored value  

  belongs to [1,254]. The values 0 and 255 are reserved for special values. 

2. Keeping SLT�LULVW�� normalized (i.e., the most significant bit is always 1),  

  allows for storing only 23 bits of the significand. The most significant bit is  

  known  as a hidden bit. 

Therefore, a single precision floating-point number covers [2�!�g, 2!�h) and any number 

smaller than 2�!�g is a denormalized number. Consequently, 0 cannot be represented in a 

normalized range and a special code is assigned to represent 0 i.e., �`ab���c + XLWS = 0 and 

SLT�LULVW�� = 0. 

IEEE 754-2008 standard [3] imposes special codes for the following special values: 

• ±i:                                               �`ab���c + XLWS = 0      W�� SLT�LULVW�c = 0 

• jklmnopqrskt luovkn:  �`ab���c + XLWS = 0      W�� SLT�LULVW�� ≠ 0 

• ±∞:                                              �`ab���c + XLWS = 255 W�� SLT�LULVW�� = 0 

• xmy p xuovkn (xpx):        �`ab���c + XLWS = 255 W�� SLT�LULVW�c ≠ 0 

Floating-point addition/subtraction consists of the following: 

a) Exponent difference: Determine exponent difference Δ and the smaller exponent. 
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b) Alignment shift: Shift right (Δ positions) the significand of the number having a smaller 

exponent. The largest exponent is the result’s exponent. 

c) Addition/subtraction over significands: Determine and perform the actual operation; may 

need to swap the operands. 

d) Normalization shift: Shift right 1 bit, in case of addition overflow. Detect the number of 

leading zeros and shift left, in case of subtraction, such that there is a new hidden 1 to the 

left of the binary point. 

e) Rounding: Use extra bits (Round, Guard and Sticky) to round the result. This may lead to 

post normalization. 

f) Exponent adjustment: Adjust the exponent to compensate for the shifts in d) and e). 

In order to improve the speed of floating-point addition, dual-path architecture is usually 

used which separates the slow shifts (b and d) into different paths. This, however, requires 

parallel significand addition/subtraction modules. 

Floating-point multiplication consists of the following: 

a) Multiplication of the significands: fixed-point multiplication over the significands 

b) Addition of exponents: The exponent of the result is determined by this addition. 

c) Normalization: This involves leading-zero-detection (LZD) and shifting. 

d) Rounding: Round the significand of the product according to standard rounding methods. 

e) Exponent adjustment: The shifts in d) calls for this exponent adjustment 

In floating-point fused multiply add (FMA) operation, a and b of the multiplication can 

be performed in parallel with a and b of the addition. Consequently, there is no need to use dual 

path architecture [17]. Moreover, common steps of addition and multiplication (i.e., 

normalization, rounding and exponent adjustment) are usually combined to save area and time. 
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1.4 Redundant Number Systems 

Carry propagation is known as the main decelerator in digital arithmetic operations. 

Carry digits are the consequence of the fact that the value of the ith digit of the final result (e.g., 

sum in addition) can depend on the values of the operands in ith position and the less significant 

positions (0 to i–1). 

There are some techniques to reduce the carry propagating latency such as Residue 

Number Systems (RNS) [7] and redundant number systems. 

A number system, defined by radix r and digit-set [z, {], is redundant if and only if 

{ − z + 1 > } [7]. Moreover, the redundancy index of that digit-set is defined as ~ = { − z +
1 − }. Amongst available digit-sets for a specific redundant number system, minimally and 

maximally redundant digit-sets are the most popular ones due to their unique features. A 

minimally redundant digit-set is the one with ~ = 1; while a maximally redundant digit-set has 

the maximum cardinality represented with minimum number of bits. For example, the Binary 

signed-digit (BSD) representation with digit-set [-1, 1] is a redundant number system. 

In addition to radix and digit-set values, the encoding used to represent a digit-set has a 

great impact on the performance and efficiency of a redundant number system. For example, 

Table 1.1 shows some encodings for r=10 and digit-set [0,10]. 

Assuming that the transfer digits are c� ∈ [−�, �], the (� − z ≤ �� ≤ { − �) condition 

must be satisfied to guarantee no carry-propagation in Step c of Algorithm 1.1. In other words 

the maximum (minimum) value of a transfer digit plus interim sum must fit into digit-set [z, {]. 
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Table 1.1: Encodings for a Decimal Digit 

Encoding Weights Dot notation 

8-4-2-1  

8-4-2-1-1 

 

4-2-2-1-1 

 

 

Algorithm 1.1: Carry-free addition 

Inputs: Two redundant numbers �: ` �! ⋯ `!`# and �: � �! ⋯ �!�#. 

Output: Addition result represented in redundant format P: S S �! ⋯ S!S#. 

Perform followings for 0 ≤ L < �, in parallel. 

a) Compute position sums a� = `� + ��. 
b) Divide a� into a transfer digit c�3! and interim sum �� such that �� = a� − }c�3!. 

c) Compute the final result as S� = �� + c�. ■ 

Example 1.1: Carry-free addition as s = x + y, in redundant digit-set [-5, 9]. 

 

It is proven in [18] that carry-free addition is possible iff one of the following conditions 

is satisfied: 

• } ≥ 3, ~ ≥ 3 

• } ≥ 3, ~ = 2, z ≠ 1, { ≠ 1 

Therefore, carry-free addition is not applicable to binary signed-digit representation with 

digit-set [−1,1]. In this case a carry-limited addition is available [7]. 
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Algorithm 1.2: Carry-limited addition 

Inputs: Two redundant numbers �: ` �! ⋯ `!`# and �: � �! ⋯ �!�#. 

Output: Addition result represented in redundant format P: S S �! ⋯ S!S#. 

Perform following steps for 0 ≤ L < �, in parallel. 

a) Compute position sums a� = `� + ��. 
b) Compare a� to a constant to determine whether ��3! = �b� or ℎLTℎ (��3! is a  

  binary range estimate for c�3!). 

c) Given ��, divide a� into a transfer digit c�3! and interim sum �� such that   

  �� = a� − }c�3!. 

d) Compute the final result as S� = �� + c�. ■ 

Example 1.2: Carry-limited addition as s = x + y, in binary signed-digit [-1, 1]. 

 

It should  be noted that in Example 1.2 a = −1(1) is kept intact when the incoming carry 

is in [0,1] ([−1,0]), so as to guarantee no further carry-propagation. 

1.5 Motivation of Research 

Carry propagation decelerates digital arithmetic operations. Redundant number systems 

are the most popular technique to overcome this challenge. A number system, defined by radix r 

and digit-set [α, β], is redundant if and only if β − α + 1 > }. 
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Redundant number systems eliminate word-wide carry propagation within interim 

operations. However, the conversion from a redundant format to a non-redundant one requires 

carry-propagation. This makes redundant number systems mostly useful in applications where 

many consecutive arithmetic operations are performed prior to the final result making it a 

suitable technique to use in computer arithmetic co-processors. This thesis discusses the 

implementation of the binary floating-point FFT co-processor, and the decimal arithmetic co-

processor. 

Floating-point FFT circuitry consists of several consecutive multipliers and adders over 

complex numbers. The main advantage of floating-point over fixed-point arithmetic is the wide 

dynamic range it introduces. The main drawback of floating-point operations is their slowness 

compared with their fixed-point counterparts. One way to speed up floating-point arithmetic is 

merging several operations in a single floating-point unit to save delay, area and power 

consumption [2]. Previous works on floating-point FFT architectures have used this technique [1, 

4, 5] to design a dot-product unit, to compute (� + �) × (� + �), so as to gain performance 

improvement.  

Using redundant number systems [6] is another well-known way of improving the speed 

of floating-point arithmetic units, where there is no word-wide carry propagation within interim 

operations. The conversion from non-redundant to redundant format is a carry-free operation; 

however, the reverse conversion requires carry propagation [7]. 

Decimal computer arithmetic is inherently slower than its binary counterpart, since it is 

working based on a non-power-of-two radix. Likewise for the FFT co-processor, redundant 

number systems are very helpful in increasing the speed of the decimal arithmetic co-processor. 



 

14 

 

1.6 Objectives of the Thesis 

The main objective of this thesis is to design a high-speed co-processor based on 

redundant number systems. In particular, the architectures of the two of most commonly used co-

processors will be redesigned based on redundant number systems to achieve improved 

performance. 

The first part of this thesis investigates the advantages and costs of designing high-speed 

floating-point FFT architectures using redundant number systems. New architectures are 

proposed and compared to previous works. 

The second part is devoted to proposing decimal arithmetic co-processors with 

architectures based on redundant number systems comparing them with previous works. A 

complete decimal arithmetic unit is designed accordingly, with four basic decimal arithmetic 

operations: addition, subtraction, multiplication and division. An architecture based on redundant 

number systems is also proposed for computing decimal square-root. 

1.7 Novelties 

Although there are other works on the use of redundant floating-point number systems, 

they are not optimized for FFT architectures that require both a redundant floating-point 

multiplier and an adder. The novel techniques used in the new floating-point FFT architecture 

include: 

• All significands are represented in binary signed-digit (BSD) format and the 

corresponding carry-limited adder is designed. 

• Design of floating-point constant multipliers for operands with BSD significands. 

• Design of floating-point three-operand adders for operands with BSD 

significands. 
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• Design of floating-point Fused-Dot-Product-Add units (i.e., AB ± CD ± E) for 

operands with BSD significands. 

The novel techniques used in the new decimal floating-point arithmetic units include: 

• Design of a decimal redundant adder based on signed-digit and stored transfer 

encoding. 

• Design of a high-speed sequential decimal multiplier based on unconventional 

representations. 

• Design of a decimal divider with redundant representation of the quotient and 

partial remainders. 

• Design of a high-speed decimal square-root based on redundant number 

representation. 

1.8 Organization of the Thesis 

The rest of the thesis is divided into two main parts. Part I discusses the details of the new 

floating-point FFT co-processor designed based on redundant number systems. Previous works 

on floating-point FFT co-processors are presented in Chapter 2. In Chapter 3 (partially published 

in [63, 64]), the new FFT architectures are explained in detail. These architectures are designed 

based on the new floating-point redundant multiplier and the new Binary signed-digit (a 

redundant representation) three-operand adder. Chapter 4 includes the evaluation results of the 

new floating-point arithmetic units used in the new FFT co-processor. These results are 

compared with those of previous works. 

Part II of this thesis presents the details of the new decimal arithmetic units designed 

based on redundant number systems. Chapter 5 (partially published in [65]) presents the details 

of the new redundant decimal adder. The new sequential decimal multiplier, based on an 

unconventional redundant representation, is explained in Chapter 6 (partially published in [66, 
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67, 68]). In Chapter 7 (partially published in [69]), a new decimal divider that represents quotient 

and partial remainders in a redundant format is proposed. Chapter 8 (partially published in [70]) 

presents the new decimal square-root unit. Finally, Chapter 9 is devoted to the conclusions and 

future works. 
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Part I 

FFT Co-Processors 
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CHAPTER 2 

PREVIOUS WORKS ON FFT PROCESSORS 

This chapter discusses the previous works related to floating-point FFT processors which 

includes butterfly architectures and complex multipliers. 

2.1 Floating-Point Complex Multipliers [19] 

This work [19] focuses on the design of a floating-point complex multiplier with the help 

of fused floating-point arithmetic. 

Conventional and Golub's method are two approaches based on which the paper [19] 

designs floating-point complex multipliers. As is also mentioned in previous section, Golub's 

method requires fewer multipliers but more adders than the conventional approach. Authors opt 

for conventional method, due to the fact that the latency and cost of floating-point adders are 

close to those of floating-point multipliers. Consequently, Golub’s method is not recommended 

for floating-point implementations. 

The paper [19] proposes a fused-dot-product unit which performs two multiplications and 

then adds the products i.e., �� + ��. With this unit, efficiency is achieved due to the elimination 

of the interim rounding and normalization of the fused-dot-product unit [19]. A conventional 

complex multiplier is then designed using two fused-dot-product units. 

Floating-point fused-add-subtract is another unit designed in the paper [19]. This unit 

computes both floating-point sum and difference of two input operands. It combines the common 

parts of floating-point addition and subtraction and hence significantly lower power/area cost.  
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The third floating-point unit discussed in [19] is a fused-dot-product-add/subtract unit, 

which is a combination of the two previous units. This new unit has four inputs (�, �, �, �) and 

two outputs � = �� + �� and � = �� − ��. A Golub's complex multiplier is then designed 

using the latter two units. 

Taking advantage of the aforementioned fused units, the paper [19] concludes that 

"Golub’s method results in a modest increase in complexity and power consumption and a large 

increase in delay relative to the conventional method. This is true even when fused 

implementations are used" [19]. 

2.2 Floating-Point Fused Butterfly Arithmetic [1] 

This work [1] improves the performance of butterfly unit and hence FFT processors by 

proposing two fused floating-point operations, namely, Dot-Product (Fig. 2.1) and Add-Subtract 

(Fig. 2.2). 

The Dot-Product unit, compute AB+CD, consists of the following operations: 

• Two floating-point multipliers, perform in parallel 

• Alignment Shift 

• (4:2) Compressor 

• Carry-propagating adder, performs in parallel with Leading-Zero-Detector (LZD) 

• Normalization & Rounding 

The fused Add-Subtract unit, compute A±B, consists of the following operations: 

• Exponent difference block, perform in parallel with MUXes to select significands 

• Alignment Shift 

• A subtraction and an addition perform in parallel 

• Exponent adjustment, perform in parallel with rounding and normalization 

• MUXes to select Add/Subtract results 
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Figure 2.1: Floating-point Dot-Product unit [1]; Result = AB±CD 

Next a radix-2 (Fig. 2.3) butterfly (Decimation in Frequency) unit is designed using Dot-

Product and fused ADD-Subtract modules. It has been shown that the proposed radix-2 butterfly 

architecture requires 35% lower area cost and is 15% faster than its discrete (not fused) 

implementation. 
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Figure 2.2: Floating-point fused Add-Subtract unit [1] 

Moreover, a radix-4 butterfly (Decimation in Time) unit is designed using Dot-Product 

and fused Add-Subtract modules. It has been shown that the proposed radix-4 butterfly 

architecture requires 26% lower area cost and is 13% faster than its discrete (not fused) 

implementation. 
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Figure 2.3: Radix-2 floating-point DIF butterfly [1] 

In overall, the paper [1] shows that using fused operations to implement butterfly units 

(and FFT) leads to faster modules with lower area cost. This advantage is mainly achieved 

because of removing some extra rounding & normalization operations e.g., those of floating-

point multipliers. 

2.3 Floating-Point Fused Butterfly with Merged Multipliers [5] 

Use of merged constant multipliers increases the performance of floating-point fused 

butterfly units. As mentioned before, given the constant values of twiddle factors, the 

conventional multipliers can be replaced by simple shift-add operations. In [5], it has been shown 
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that (for a 1024-point FFT) more than 28% percent of shift-coefficients of the shifters between 

real and imaginary parts of the twiddle factors are the same. For example, the shift coefficients of 

��9��h are 1, 5, 8 and 11 while those of ��N��h are 0, 5, 9 and 11. Therefore, two coefficients, in 

this case (5 and 11), are the same [5]. Taking advantage of the same shift-coefficients reduces the 

power consumption of the butterfly units. Fig. 2.4 shows the butterfly unit of [5] using the 

merged multipliers. 

 

Figure 2.4: Butterfly unit using merged multipliers [5] 

2.4 Improved Floating-Point Dot-Product Unit [2] 

This work [2] is a modification to floating-point dot-product unit. The major 

improvements include: 

• Reducing the shift amount in the alignment step 

• Performing early normalization so as to reduce latency 

• A four-input Leading-Zero-Detector is used over redundant operands to reduce 

critical path delay 

• The dual path algorithm is also presented for speed improvement 
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Figs. 2.5 and 2.6 show the single path and dual path implementations of the enhanced 

dot-product of this work, respectively. 

 

Figure 2.5: Enhanced floating-point dot-product unit (Single path) [2] 
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It has been shown that the enhanced single (dual) path dot-product unit consumes 25% 

(19%) lower area and 16% (26%) lower latency compared to the conventional method. This dot-

product unit can be used in the design of a high-performance butterfly unit. Replacing the dot-

product unit of [1] with this faster one, leads to a high-speed butterfly unit. 

 
Figure 2.6: Enhanced floating-point dot-product unit (Dual path) [2] 
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2.5 Summary of Previous FFT Architectures 

The first paper [19] is just about complex multipliers which is used in butterfly units. It 

concludes that the conventional architecture is more suitable for floating-point operands than 

Golub's method. The reason lies within the fact that the latency and cost of floating-point adders 

are close to those of floating-point multipliers. Consequently, Golub’s method is not 

recommended for floating-point implementations. 

The two major works on floating-point FFT/butterfly architecture are [5, 1]. The former 

introduces architectures based on multiple-constant multipliers (MCM) and merged multiple-

constant multiplier (MMCM), amongst which the fastest design reported to have the latency of 

4.08ns with the area consumption of 97,302μm�, in 45nm CMOS technology. 

The other work [1] designs a floating-point butterfly unit using novel dot-product blocks. 

This work, simulated based on 45nm CMOS technology, has the latency of 4.00ns with area cost 

of about 47,489μm�. The dot-product unit of this design is reported to have a latency of about 

2.72ns with 16,104μm� area cost. 

The most recent work [2] has proposed a very fast floating-point dot-product unit which 

can be used in the design of a high-performance butterfly unit. Replacing the dot-product unit of 

[1] with this faster one, leads to a high-speed butterfly architecture. 

In a nutshell, a butterfly unit designed based on the combination of [1, 2] is the fastest 

architecture for both single-path and dual-path designs; while the architecture of [1] consumes 

the lowest area. 

  



 

27 

 

 

CHAPTER 3 

THE PROPOSED FFT ARCHITECTURE
1
 

The proposed FFT architecture is based on the Cooley-Tukey algorithm which is the 

most efficient FFT algorithm for hardware implementation. As is mentioned in the previous 

section, an N-point DIT FFT implementation using Cooley-Tukey algorithm has log� * stages, 

each of which consists of */2 butterfly units. Moreover, */2 twiddle factors are required, 

which can be pre-computed and stored a look-up table. 

Therefore, the butterfly unit is the major building block of an FFT processor. Having the 

butterfly architecture, one can design the N-point FFT block using log� * stages, each of which 

consists of */2 butterfly units working in parallel. Therefore, the latency of each stage is equal 

to that of a butterfly unit plus those of registers. Consequently, the details of the proposed 

butterfly architecture will be discussed in the following sub-sections. 

3.1 The Proposed Butterfly Architecture 

The proposed butterfly is actually a complex Fused-Multiply-Add followed by a complex 

addition with floating point operands. Expanding the complex numbers, Fig. 3.1 depicts the 

required modules for a butterfly unit. A naive approach to implement Fig. 3.1 is to cascade 

floating-point operations i.e., floating-point multiplication followed by two cascaded floating-

point addition/subtraction. A more efficient approach is to merge the floating-point 

multiplication with the first floating-point addition/subtraction. This method leads to a floating-

point Fused-Multiply-Add followed by a floating-point addition/subtraction. 

                                                 
1
 Published @ 1)  IEEE Transactions on VLSI, 2) ISCAS'14 
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Figure 3.1: Butterfly Architecture with Expanded Complex Numbers 

Using the floating-point Fused-Multiply-Add, as is discussed in Section 1.5, would save 

time, area and power. However, the butterfly function cannot be directly implemented by Fused-

Multiply-Add (i.e., A+BC). In order to circumvent this problem a Dot-Product unit is required, 

which is an extension to Fused-Multiply-Add operation. 

A Dot-Product unit computes AB+CD or AB˗CD. This unit is capable of saving more 

time, area and power than Fused-Multiply-Add. The reason lies in the fact that a Dot-Product 

unit combines more floating-point operands and hence eliminating more intermediate 

Normalization, Rounding and Leading-Zero-Detection. Combining floating-point operations, 

although seems interesting and an easy way of saving time, area and power, leads to precision 

loss which need to be taken care of, meticulously. 

For example, in a Fused-Multiply-Add unit the combination of the multiplication with the 

addition removes the intermediate Rounding, Normalization and Leading-Zero-Detection after 

the multiplication. However, it is important to pass wider operands (more number of bits) to the 

floating-point addition such that the required precision can be recovered at the end of the 

addition. 
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For a Dot-Product unit the loss of precision is more critical, given that the Rounding, 

Normalization and Leading-Zero-Detection of two multiplications are now removed and left to 

be dealt with at the end of the addition. Consequently, more bits have to be passed to the 

floating-point addition so as to be able to recover the required precision. Fig. 3.2 depicts a 

butterfly architecture implemented using Dot-Product units. 

 

Figure 3.2: Butterfly Architecture with Dot-Product Units 

According to Fig. 3.2, the constituent operations of a floating-point butterfly unit are a 

floating-point Dot-Product (e.g., ��9��N + ��N��9) followed by a floating-point 

addition/subtraction. Extending the concept of combining floating-point operations even further 

leads to the proposed Fused-Dot-Product-Add (FDPA) operation (e.g., ��9��N + ��N��9 +
��N) over floating-point operands. Fig. 3.3 shows the butterfly unit implemented using the 

Fused-Dot-Product-Add unit. 

It should be noted that in Fig. 3.3 the FDPA units provide two outputs (dubbed - and +). 

The - output computes  ��9��N + ��N��9 − ��N while the + output is the result of  ��9��N +
��N��9 + ��N. 
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Figure 3.3: Butterfly Architecture with Floating-point Fused-Dot-Product-Add 

It will be shown later that given the sign embedded representation of the floating-point 

operands of the FDPA, generating the second output is done with no extra latency and almost no 

extra area cost. 

The Fused-Dot-Product-Add unit can be implemented in two ways: 

a) Combining a floating-point Dot-Product unit with a floating-point addition. 

b) Combining a floating-point multiplication with a floating-point three-operand 

addition. 

Approach a) is a direct extension of Fig. 3.2 where the intermediate Rounding, 

Normalization and Leading-Zero-Detection (after Dot-Product) are eliminated and left to be 

dealt with after the addition. Fig. 3.4 illustrates the proposed floating-point FDPA unit 

implemented using Dot-Product units. This makes the required circuitry to guarantee the correct 

precision even more complicated, given that now three consecutive operations are combined 

(i.e., Multiplication and two additions). Moreover, even more number of bits are required to be 

passed between operations so as to reach the desired precision. 
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Figure 3.4: Floating-point Fused-Dot-Product-Add (FDPA) with Dot-Product Units 

 
Figure 3.5: Floating-point Fused-Dot-Product-Add (FDPA) with 3-Operand Adder 

Approach b) sees the floating-point fused-dot-product-add unit as a combination of a 

floating-point multiplier followed by a floating-point three operand addition. This eliminates the 

Rounding, Normalization and Leading-Zero-Detection after the multiplication as well as the one 

inside the floating-point three-operand adder. Fig. 3.5 illustrates the proposed floating-point 

fused-dot-product-add (FDPA) unit implemented using two floating-point multiplications 

followed by a three-operand floating-point addition. 
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3.1.1 Data Representation 

The representation of the floating-point operands has a significant impact on the number 

of bits (weighted positions) required to be passed to the next operation. There is a need to find 

the most efficient representation for the exponent and significands of the floating-point operands. 

Moreover, a redundant representation, at least for the significands, is desired so as to eliminate 

intermediate carry-propagation. 

Having a redundant representation for a floating-point operation creates some other 

challenges specially with the rounding and normalization. For instance, in a redundant floating-

point adder designed by Fahmy and Flynn [20] a radix-16 redundant representation is used. 

Assuming a maximally redundant radix-16 signed digit representation, with [-15, 15] as 

the digit set, each digit can be represented by a 5-bit 2's complement number. However, this 

leads to an invalid value (i.e., -16). Therefore, the first challenge would be designing the 

floating-point adder such that -16 cannot be generated in the output. 

Determining the rounding position is another challenge, because the binary position for 

inserting the round value should be determined based on the non-redundant value of the 

significand (i.e., IEEE format). In other words, rounding the redundant representation and then 

converting it to non-redundant format must lead to the same value if it is converted first and then 

the result is rounded. 

Leading-Zero-Detection is another challenge, which is somehow related to the rounding 

challenge. In the process of converting to non-redundant representation, a -1 value might be 

propagated to the most-significant position and turn it into zero. This would also change the 

correct rounding position. For higher radix-representations (e.g., radix-16) this may lead to a 

rounding position shifted as far as four digits. 
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In the proccess of choosing a redundant representation for the significand, it should be 

noted that higher radix representation leads to lower number of extra bit to store a significand; 

however, it leads to a small carry-propagation inside each digit. For example, radix-16 redundant 

representation requires a 4-bit carry-propagation inside a digit. Moreover, a higher radix 

representation requires a more complicated digit adder. 

According to the above discussion, the followings present the data representation that 

will be used for the proposed butterfly architecture. The exponents of all inputs are represented 

in two’s complement, after subtracting the bias. The value of the bias is determined by the IEEE 

format used. 

The significands of ��9 , ��N, ��9 and ��N are represented in binary signed digit (BSD). 

Within the BSD representation (shown in Fig. 3.6 for ��9) every binary position takes values of 

]−1,0,1^ represented by one negative-weighted bit (negabit) [6] and one positive-weighted bit 

(posibit). Negabits (Posibits) are shown in white (black) dots and capital (small) letters. 

 
Figure 3.6: Dot and symbolic notation of the significand of �nk 

The significand of � is stored in the modified Booth encoding [7] in which every binary 

position takes a value of ]−1,0,1^ where there is at least one 0 in two adjacent positions. 

Therefore, only multiples of ±� and ±2� are required which can be computed easily by shift 

and negation. This leads to a simpler partial product generation phase in the multiplier. The 

conversion to the modified Booth encoding is actually a radix-4 digit-set conversion i.e., from  

[0, 3] to [˗2, 2]. 
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For converting an n-bit binary number y (� �!� �� … �#) to a modified Booth 

representation z the first step is to put every 2 bits of y into a group such that 

�� = 2���3! + ���    � =  
� − 1, … ,0     (3.1) 

The second step is to divide ��  into a radix-4 transfer c�3! and an interim sum ��; such 

that 

�� = 4c�3! + ��     (3.2) 

Finally, the third step is to generate �� by adding the same weighted transfers and interim 

sums such that 

�� = c� + ��      (3.3) 

It should be noted that the third step has to be done in a carry-free manner i.e., the 

addition must not produce any further carry. This is guaranteed if the second step is performed 

such that 

−2 ≤ �� ≤ 1 W�� 0 ≤ c� ≤ 1    (3.4) 

This is achieved if the following rules hold during the conversion: 

�� = ���           LU �� ≤ 1�� − 4   LU �� ≥ 2�                       c�3! = �0   LU �� ≤ 11   LU �� ≥ 2�   (3.5) 

The details of the proposed redundant floating-point multiplier and the proposed 

redundant three-operand floating-point adder are presented below. 

3.2 The Proposed Redundant Floating-Point Multiplier 

Floating-point multiplication, as is discussed in Chapter 2, consists of operations on the 

exponents and those on the significands. The former is just a simple addition of the exponent; 

although, there may be a need for exponent adjustment in the normalization and rounding phase. 
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The latter, however, is the most time-consuming part of a floating-point multiplier. 

Multiplication over significands consists of three major steps called: 1) Partial Product 

Generation, 2) Partial Product Reduction and 3) Final Addition. 

The proposed multiplier, likewise other parallel multipliers, consists of two major steps, 

namely, partial product generation (PPG) and partial product reduction (PPR). However, 

contrary to conventional multipliers, the proposed multiplier keeps the product in redundant 

format and hence there is no need for the final carry-propagating adder. 

3.2.1 Partial Product Generation (PPG) 

The partial product generation, in a 2's complement representation of the multiplicand 

and multiplier, consists of arrays of AND operation such that each bit of the multiplier is ANDed 

to the whole bits of the multiplicand. This is not the case if the operands are represented in 

redundant format and/or Booth encoding. For example, if the multiplier is represented in the 

modified Booth encoding, the partial product generation looks like the circuitry shown in Fig. 

3.7 [17]. 

Partial product generation of a redundant multiplier is even more complicated, since the 

cardinality of the multiplier's digit-set is more than the radix. Generating the multiples of the 

multiplicand is easy (shift and negation) for ±2x and ±1x; however, ±3x and ±5x (if exists) 

involve an addition. Fig. 3.8 shows how these multiples are generated. Consequently, higher 

redundancy factor (see Chapter 2) leads to more complicated partial product generation; although 

it provides faster redundant addition. 
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Figure 3.7: Partial Product Generation of the modified Booth encoding 

 

Figure 3.8: Generating the Multiples of the Multiplicand 

The PPG step of the proposed multiplier is completely different from that of the 

conventional one because of the representation of the input operands (B, W, B', W'). Moreover, 

given that ��9 and ��N are constants, the multiplications over significands can be computed via 

a series of shifters and adders. 
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For example, multiplying B1 by 113 (1110001)2 can be done by the following shift and 

add steps [7]: 

Step a: B2     = Shift B1 left for 1 bit 

Step b: B3     = R2 + B1 

Step c: B6     = Shift B3 left for 1 bit 

Step d: B7     = B6 + B1 

Step e: B112 = Shift B7 left for 4 bits 

Step f: B113 = B112 + B1 

In order to speed-up the above operation one may use the following sets of operations; 

however, it requires a hardware to be able to perform shift and add, simultaneously. 

Step a: B3     = (Shift B1 left for 1 bit)  + B1 

Step b: B7     = (Shift B3 left for 1 bit)  + B1 

Step c: B113 = (Shift B7 left for 4 bits) + B1 

It should be noted that in order to perform the above steps, there is also a need for a barrel 

shifter to be able to shift an operand for various number of bits. For example, Steps a & b require 

1 bit shifts however, Step c requires a 4-bit shift. The other sequence would be the one shown 

below, where there is a need for both addition and subtraction. 

Step a: B8     = Shift B1 left for 3 bits 

Step b: B7     = B8 - B1 

Step c: B112 = Shift B7 left for 4 bits 

Step d: B113 = B112 + B1 

Having the ability of performing subtraction is mostly useful when the multiplier has a 

series of consecutive 1s in its binary representation. In this case one may need to perform lots of 

addition operations however, with a subtraction operation only one subtraction and one addition 

are required. 
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With the intention of reducing the number of adders, the significand of � is stored in 

modified Booth encoding [7] in which every binary position takes a value of ]−1,0,1^ where 

there is at least one 0 in two adjacent positions. Therefore, � 
�� add/sub is sufficient to compute an 

n-by-n multiplication. 

Given the modified Booth representation of ��9 and ��N one partial product (PP), 

selected from multiplicand B, is generated per two binary positions of the multiplier W, as shown 

in Table 3.1. Note that each binary position (e.g., ��) consists of two bits �����3 to represent 

−1, 0 or 1. 

Table 3.1: Generation of i
th

 partial product 

 r3¡�  r3¡3   r� r3 ‖ r3¡�  r3¡3  r� r3‖ ££r 
0     0 0     0 0 0 

0     0 0     1 1 B 

0     0 1     1 −1 −� 

0     1 0     0 2 2 × � 

1     1 0     0 −2 −2 × � 

 

 

Fig. 3.9 illustrates the required circuitry for the generation of RR� based on Table 3.1. It 

should be noted that given the binary-signed-digit (BSD) representation of multiplicand B, the 

value of –B (–2B) is generated through a simple NOT over all bits of B (2B). 

Moreover, 2B is generated via a 1-bit left shift over B. Note that each partial product 

consists of (n+1) digits (i.e., binary positions), each of which has a negabit and a posibit. 

3.2.2 Partial Product Reduction (PPR) 

Partial product reduction phase is actually a multi-operand addition of the partial products 

generated in the partial product generation phase. 
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Figure 3.9: Generation of the i
th

 partial product 

In general, there are two approaches to reduce the partial products; 1) reduction by rows 

and 2) reduction by columns. The former uses adders which could be either redundant adders or 

carry-propagating adders. Let's say 8 partial products are reduced using the adders (i.e., reduction 

by rows). Fig. 3.10 depicts the required steps. It takes 3 steps to reduce the 8 operands while each 

step has the latency of one adder. The total number of adders used in this reduction method is 

seven. 

Generalizing this approach for p operands (i.e., [p:1] reduction block) is described next. 

Reduction of p operands can be divided into two parts, each of which reduces p/2 operands (i.e., 

[p/2:1] reduction block); and then add the outputs together. 

Fig. 3.11 shows the reduction of p operands using reduction blocks for p/2 operands. 

Each of those [p/2:1] modules could be further divided into two sub modules. Continuing this 

approach leads to a [2:1] reduction block which is known as a carry-propagating adder. 

Consequently, log(p) steps are required to reduce p operands to 1. 

Reduction by columns is done by modules called counters or compressors. These 

modules take p bits, all at the same weighted position, and generate q bits of adjacent weights. In 
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other words, the number of 1s in p bits is counted and represented in a q-bit number. That is why 

these modules are called [p:q] counters. Therefore, the following relation between q and p holds 

[17]. 

2¤ − 1 ≥ a → ¦ = §log�(a + 1)¨     (3.6) 

 
Figure 3.10: Partial Product Reduction by Rows 

 
Figure 3.11: [p:1] reduction block based on [p/2:1] blocks 
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A [3:2] counter is simply a full-adder which is implemented using the following logical 

expressions: 

¦! = a�a! + a�a# + a!a#, ¦# = a� ⊕ a! ⊕ a#    (3.7) 

Larger counters can be built using full-adders and half-adders (i.e., [2:2] counter). For 

example, Fig. 3.12 depicts a [7:3] counter implemented by full-adders. The numbers next to each 

wire show the weight of that input/output. It should be noted that in a counter all same weighted 

outputs can be added together using a full-adder. The final output is a 3-bit number which counts 

the number of 1s in the input p. 

Having multiple counters working in parallel leads to a multi-column counter which can 

be used to reduce several columns. In a multi-column counter, there are multiple counters each 

of which performing on a single weighted position and passes the carries to the next higher 

weighted column. For example, Fig. 3.13 shows a [7:2] compressor which passes the carries to 

the next higher weighted position and receives input carries from the lower weighted position. It 

should be noted that this module is called [7:2] compressor, because 2 bits are not enough to 

count 7 bits. 

Therefore, partial product reduction phase of a multiplier can be taken care of by multi-

column compressors. These modules take p bits of a single column (same weights) and reduce it 

into two bits per column. For example, a 54-by-54 bit multiplier generates 54 partial products. In 

order to reduce these partial products one could design a [54:2] compressor to reduce them to 

only two operands. Then a carry-propagating adder, over the two operands, generates the final 

product. Large compressors/counters can be built based on smaller ones. For instance, Fig. 3.15 

shows a [16:2] compressor based on [4:2] compressors (Fig. 3.14). The PPR step of the proposed 
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multiplier is based on the reduction by row approach, however, it is completely different from 

that of the conventional method. 

 

Figure 3.12: [7:3] Counter by Full-Adders 

Given that partial products are all represented in a redundant encoding i.e., Binary-

Signed-Digit, there is a need for an adder/counter that works on BSD digits. This carry-limited 

addition circuitry is shown in Fig. 3.16, where capital (small) letters symbolize negabits 

(posibits). The white dots are logical NOT operators required over negabit signals [6]. The 

critical path delay of this adder consists of three full-adders. 
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Full-Adder Full-Adder

Full-Adder

Full-Adder

Full-Adder

C1

C2

C3

C4

C5

C1in

C2in

C3in

C4in

C5in

q1q0

p2 p1p3 p0p2 p1p3

 

Figure 3.13: [7:2] Compressor by Full-Adders 

Since the BSD adder is actually a carry-limited adder, reducing the partial product using 

this adder can be deemed as a reduction-by-column or reduction-by-row approach. In either case, 

the major constituent of the PPR step is the proposed carry-limited addition over the operands 

represented in BSD format.  
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Figure 3.14: [4:2] Compressor by Full-Adders 

 

Figure 3.15: [16:2] Compressor by [4:2] Compressors 



 

45 

 

 

Figure 3.16: The proposed BSD adder (two digit slice) 

Once the partial products are generated, in PPG step, carry-limited adders (Fig. 3.16) are 

used to generate the final product. Therefore, for an n-by-n multiplier, � 
�� + 1 (1 for the hidden 

bit of W encoded in modified Booth) partial products are generated and §log �¨ − 1 levels of 

BSD adders are required to produce the product. 

Since each partial product (RR�) is (n+1)-digit (n,…,0) which is either B (n-1,…,0) or 2B 

(n,…,1), the length of the final product may be more than 2n. For example, a 24-digit multiplier 

(compliant with IEEE single precision format) leads to a 51-digit product. Assuming that the 

sign-embedded significands of inputs A and B (24 bits) are represented in Binary-Signed-Digit; 

while that of W is represented in modified Booth encoding (25 bits). The last partial product has 

24-(binary position) width (instead of 25), given that the most significant bit of W is always 1 

(hidden bit).  

The multiplication over significands is implemented using the partial product generation 

(PPG) unit of Fig. 3.9 and BSD adders of Fig. 3.16. The reduction of the partial products is done 

in four levels, as shown in Fig. 3.17, using twelve BSD adders. 
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The numbers in the first row of Fig. 3.17 show the bit positions of each partial product. 

For example, P024 symbolizes bit position 24 of first partial product (PP0). Note that the last 

partial product has 24-(binary position) width (instead of 25), given that the 26th bit of W is 

always 1 (hidden bit). 

Now that the product is generated, it is required to determine how many bits are required 

to be passed to the three-operand adder so as to meet the precision requirements. As is shown in 

Fig. 3.17, the final product is a 51-bit number represented in Binary-Signed-Digit encoding. 

Given the normalized single precision formats of the inputs (B is in ±[1, 2) and W in [1, 2)), the 

final product is in ±[1, 4). 

If the multiplier's operands were represented in standard IEEE format (i.e., each with 24 

bits), the final product would fit into 48 binary positions (47…0). Consequently, positions 45 

down to 0 would be fractions (see Fig. 3.18). However, the product out of the proposed BSD 

multiplier has 51 binary positions. Given that the value of this number is the same as that of the 

standard product, the 45 least significant positions are fractions. 

 

Figure 3.18: Final Product Format with Standard Non-redundant Operands 

Similar to standard binary representation, Guard (G) and Round (R) positions are 

sufficient for correct rounding. Therefore, only 23+2 fractional binary positions of the final 

product are required to guarantee the final error less than 2��_ (required by IEEE Standard). 
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Selecting 25 binary positions out of 46 fractional positions of the final product dismisses 

positions 0 to 20. However, the addition of the next step would produce carries to Guard and 

Round positions. Nevertheless, because of the carry-limited BSD addition, contrary to standard 

binary addition, only positions 20 and 19 may produce such carries. 

It should be noted that each position of a BSD number has the value of {-1, 0, 1}, while 

converting this representation to the standard non-redundant format a -1 carry could be 

propagated to the most-significant digit (MSD) and may turn the MSD into 0. In this case, the 

rounding position (determined based on the number of detected zeros) might be one position to 

right of the least-significant digit. Therefore, again positions 20 and 19 are enough to be passed 

to the three-operand adder. 

In overall, positions 0 to 18 of the final product are not used and hence a simpler PPR 

tree is possible. Fig. 3.19 shows the required digits passed to the three-operand adder. Fig. 3.20 

illustrates the proposed redundant floating-point multiplier. 

 

Figure 3.19: Redundant Product of the Proposed Multiplier 

The exponents of the input operands are taken care of in the same way as is done in 

conventional floating-point multipliers; i.e., adding the exponents to get the product's exponent. 

However, normalization and rounding are left to be done in the next block of the butterfly 

architecture (i.e., three-operand adder). 
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Figure 3.20: The Proposed Redundant Floating-Point Multiplier 

3.3 The Proposed Three-Operand Redundant Floating-Point Adder 

The proposed three-operand floating-point adder (computing ª�S = � + � + �) accepts 

three operands as inputs: 

• X and Y: The products of the redundant floating-point multipliers, each of which 

with a 32-digit significand 

• A: The floating-point input with a 24-digit significand 

The straightforward approach to perform a three-operand floating-point addition is to 

cascade two floating-point adders, as shown in Fig. 3.21. 
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Figure 3.21: Straightforward Three-Operand Floating-Point Adder 

The followings discuss the details of each building block in the straightforward three-

operand floating-point adder: 
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• Exponent Comparison: It is a simple 8-bit subtractor. The output is the difference 

Δ (could be negative or positive) between the two exponents, passed to the 

significand alignment block and the exponent adjustment block. 

• Significand Alignment: This block consists of a multiplexer and a barrel shifter 

(shown in Fig. 3.22). The multiplexer selects the significand with the smaller 

exponent and passes it to the barrel shifter. The barrel shifter shifts the selected 

significand for Δ bits to the right. The other significand goes to the output intact. 

 

Figure 3.22: Significand Alignment Block 

• Carry-Propagating Adder: Any kind of carry-propagating adder (e.g., carry-look-

ahead, ripple-carry, carry-skip etc.) could be used here. 

• Sign Logic: This block determines the sign of the addition which consists of 

simple XOR gates. 

• Normalization: This block, as shown in Fig. 3.23, consists of two phases: 1) 

leading-zero-detection and 2) barrel shifter. The leading-zero-detector detect the 

most significant 1 and counts the number of leading 0s. This value is passed to the 

barrel shifter to shift the significand to the left. The amount of shift value is also 

passed to Exponent Adjustment. 
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Figure 3.23: Normalization Block 

• Exponent Adjustment: This block subtracts the amount left-shift bits (received 

from Normalization block) from the exponent. 

• Rounding: This block is responsible to round the significand according to the 

standard rounding modes [3]. Four rounding modes are described below assuming 

that the value x is between two floating-point values F1 and F2 (as shown in Fig. 

3.24). 

 
Figure 3.24: Value x between two floating-point values F1 and F2 

1. Round to nearest (tie to even): 

ªb«��(`) = ¬­1                       |` − ­1| < |` − ­2|­2                       |` − ­1| > |` − ­2|����(­1, ­2)   |` − ­1| = |` − ­2|� 
2. Round toward zero:  

ªb«��(`) = ¯­1                       ` ≥ 0­2                       ` < 0� 
3. Round toward +∞:  

ªb«��(`) = ­2 

4. Round toward −∞:  

ªb«��(`) = ­1 
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The straightforward three-operand floating-point adder suffers from high latency, power 

and area consumption. A better way to implement this module is to use fused three-operand 

floating-point adders [21, 22], shown in Fig. 3.25. 

 
Figure 3.25: Conventional Fused Three-Operand Floating-Point Adder 

The constituent blocks of this architecture are almost the same as those of the 

straightforward architecture, except for the extra carry-save adder. However, the functionality of 

some of these blocks are totally different from those of the straightforward approach. 

The differences are: 

• Exponent Comparison: This block is meant to determine the biggest exponent 

among the three inputs. Fig. 3.26 shows a straightforward implementation of this 

block. The biggest exponent is determined and the difference between the largest 
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exponent and other exponents (Δ1 and Δ2) is computed and sent to the significand 

alignment block. 

 

Figure 3.26: Exponent Comparison with Three Inputs 

• Significand Alignment: This block receives two Δ signals and two select signals 

from the exponent comparison block and shifts the selected significands 

accordingly. Fig. 3.27 depicts the details of the significand alignment block. 

 

Figure 3.27: Significand Alignment of the Fused Three-Operand Floating-Point Adder 
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• Carry-Save Adder: It consists of multiple full-adders working on parallel. So the 

overall latency of this block is equal to that of a single full-adder. 

The rest of the blocks in the conventional fused three-operand adder is the same as that of 

the straightforward approach. The normalization part, which consists of the leading-zero detector 

(LZD), produces the normalized significand; and the rounding block generates the final sum. The 

exponent of the final sum is the largest exponent, adjusted according to the amount of the  

normalization shift. 

In the proposed three-operand floating-point adder, a new alignment block is 

implemented and CSA-CPA are replaced by the proposed Binary Signed-Digit adders. 

Moreover, sign logic is eliminated. The details of the proposed three-operand floating-point 

adder are presented below. 

The exponent comparison and significand alignment of the proposed architecture is 

almost the same as that of the fused three-operand adder. The only difference is that the 

significand alignment block, in the proposed design, does not wait for the exponent comparison 

block to finish and part of significand alignment operation is overlapped with the exponent 

comparison. 

Moreover, the addition part also overlaps with the significand alignment and exponent 

comparison. The only blocks that wait for other blocks to finish before they start their operations 

are Normalization, Rounding and exponent adjustment. Therefore, having multiple blocks 

working partially in parallel makes the proposed three-operand floating-point adder faster than 

previous works. In essence, the exponent comparison, first, selects the bigger exponent between 

�° and �± (called �²�J) using a binary subtractor (∆= �° − �±); and the operand with the 
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smaller exponent (X or Y) is shifted ‖∆‖-bit to the right. Next, a Binary Signed-Digit adder 

computes the addition result (SUM = X + Y), using the aligned X and Y. 

Adding third operand (i.e., P³´ + �) requires another alignment. This second alignment 

is done in a different way of the previous one so as to reduce the critical path delay of the three-

operand adder. First, the value of ∆µ= �²�J − �µ + 30 is computed which shows the amount of 

right shifts required to be performed on A (with the initial position of 30 digits shifted to the left). 

This initial 30-digit wired shift (i.e., 30-digit extension) eliminates the need for any left shift of 

the third operand significand (A). This reduces the complexity of the second barrel shifter, 

thereby saving latency and area consumption. 

Fig. 3.28 illustrates the alignments implemented in the proposed three-operand floating-

point adder. In case that A is not shifted (i.e., the result after alignment is A), the two zero digits 

(shown in shaded in Fig. 3.28) are used as Guard and Round digits. 

 

Figure 3.28: The Proposed Three-Operand Alignment Scheme 
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Next, a BSD adder adds the aligned third significand (58-digit) to SUM (33-digit) 

generated from the first BSD adder. Since the input operands have different number of digits, 

this adder is a 58-digit BSD adder in which some positions consist of the digit adder with 

��, ��, ��3!, ��3! assigned to '0'. Fig. 3.29 depicts the Binary Signed-Digit adder with some inputs 

assigned to '0'. 

xiXixi+1
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00 00

xiXixi+1
Xi+1

FA

XOR

Si
sisi+1 Si+1

ci+2

Ci+2

ci

Ci

NOTAND

XNORAND

 

Figure 3.29: BSD Adder with some inputs assigned to zero 

The next steps are normalization and rounding which are done using conventional 

methods for BSD representation [23, 24]. Normalization of redundant operands is more 

complicated than that of non-redundant operands. The first step to normalize a redundant-

represented number is to detect and eliminate the leading non-zero digits of no significance [24]. 

In other words, there is a need to eliminate non-zero digits whose total values are zero. Fig. 3.30 

shows an example of this situation for Binary Signed-Digit representation. 
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Figure 3.30: Non-zero Digits of No Significance 

The next step is to detect the number of leading zeros and then shift the operand to the 

left accordingly. The leading-zero detector (LZD) can be implemented using a divide-and-

conquer approach in which, first, a 2-bit LZD is designed and then larger LZD is built using the 

basic 2-bit LZD. Detecting number of leading zeros is the same as detecting the leftmost 1 in the 

bit string. Table 3.2 shows the combinations of two bits and how the leading 1 is detected [25]. 

Table 3.2: 2-bit Leading-Zero Detection 

Pattern Position '1' is detected? 

1X 0 Yes 

01 1 Yes 

00 X No 

 

 

Table 3.2, basically, says if any '1' is detected and if so it is in position 0 or 1. This unit 

can be used to build larger LZD. Fig. 3.31 shows a 4-bit LZD implemented using 2-bit LZDs. D 

signals represent if any '1' is detected and P signals represent the position of the detected '1'. 

Using the same approach, 4-bit LZD detectors can be used to build an 8-bit LZD and so on. At 

the end, the value of P shows the number of leading zeros. This value is passed to the barrel 

shifter to perform left shifts on the operand. 
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Figure 3.31: 4-bit LZD Implemented Using 2-bit LZD 

It should be noted that one could replace the two-input LZD with a four-input leading-

zero-anticipation (LZA) [2] for speed-up; but at the cost of more area consumption. The concept 

behind this LZA is to anticipate the number of leading zeros even before performing the 

addition. Consequently, for a non-redundant representation, instead of performing LZD on a 

single number, LZA works on two numbers that are supposed to be added together. 

For the operands represented in redundant format, using LZA is more complicated, 

because the single redundant number consists of more bits. For example, a BSD representation is 

actually two numbers (one negative- and one positive-weighted). Therefore, LZA has to be 

performed on four numbers (two negative- and two positive-weighted). This increases the area 

and latency of the normalization block. That is why it is desired to use LZA and stick to the 

simpler LZD approach. The rounding part simply determines the round value, based on the 

Guard and Round positions, and adds it to the digit in the rounding position. 

As discussed before the rounding position is usually the least-significant position of the 

output operand; however, in redundant representation, this position might be moved 1 bit to the 

right due to the propagating of a -1 value during the conversion to non-redundant representation. 

It should be noted that adding the round value is a carry-limited operation, thanks to Binary 

Signed-Digit representation, and hence, can be done in constant time. 
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The proposed three-point floating-point adder is implemented as shown in Fig. 3.32 in 

which new alignment and addition blocks are introduced. Moreover, given the sign-embedded 

representation of the significands (i.e., BSD) there is no need for a sign logic. 

 
Figure 3.32: The proposed floating-point three-operand addition 

(critical path is shown in red line) 

A comparison of the proposed design with the conventional one is shown in Table 3.3. 

The critical path of the three-operand adder (as shown in Fig. 3.32) consists of: 

• Two 8-bit carry-propagating subtractors (0.25ns each) 

• A MUX (0.07ns) 
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• A +30 block (0.17ns) 

• A barrel shifter (0.29ns) 

• The final BSD adder (0.16ns) 

• Normalization and Rounding (0.75ns) 

• Registers (0.22ns). 

Table 3.3: Comparison of Floating-Point Three-Operand Adders 

 Conventional [21] Proposed 

Exponent Comparison 

& 

Significand Alignment 

3 × (8 XLc P«X) 

3 × ´³� 

3 × PℎLUc�} 

Combinational Logic 

2 × (8 XLc P«X) 

4 × ´³� 

2 × PℎLUc�} 

+30 Block 

Significand Addition CSA + CPA 2 × �P� ����} 

Critical Path 
Sub + MUX+ Shifter 

+ Comb. + CSA + CPA 

Sub + MUX + Sub  

+ (+30) + Shifter + BSD Adder 

Sign Logic Yes No 

Latency (90nm CMOS) 2.7�S 2.16�S 

 

3.4 Conversion to and from BSD Representation 

The conversion to / from BSD representation, and the way it influences the proposed 

butterfly architecture, are discussed in this sub-section. 

The conversion to any redundant format is a carry-free operation, however, the reverse 

conversion requires carry-propagation [7]. For binary signed-digit (BSD) representation, the 

forward conversion is straightforward. Assuming the non-redundant sign magnitude 

representation of a significand as ­: UGU �! … U!U#, where UG is the sign bit, the conversion to n-

digit BSD format (]ª �!} �!^ … ]ª!}!^]ª#}#^) is shown in Fig. 3.33. 
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Figure 3.33: Conversion to BSD representation 

The reverse conversion is a simple carry-propagating subtractor computing ­ = } − ª. 

Given that the proposed butterfly architecture is meant to be used in a Fast Fourier 

Transform (FFT) unit, the reverse conversion is done in the very last iteration of the FFT unit. 

There might be a need for one more step in the end to convert BSD result to non-redundant 

representation. This step (i.e., a carry-propagating addition), if not fused by other floating-point 

conversion operations, adds an extra cycle to the whole FFT unit. 

It should be noted that the output of the proposed butterfly unit is represented in 

redundant format and is fed to the next stage (in FFT) without being converted to non-redundant 

representation. 

Next chapter discusses the performance evaluation of the arithmetic units proposed in this 

section to be used in the FFT co-processor.  
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CHAPTER 4 

EVALUATIONS AND COMPARISON OF FFT ARCHITECTURES 

The evaluation results of the proposed architecture, in terms of latency and area, are 

presented and compared with previous pertinent works, in this chapter. The proposed design is 

synthesized by Synopsys Design Compiler using the STM 90nm CMOS standard library [26] 

for 1.00 VDD and 25°C temperature in which a FO4 latency is 45ps and the area of a NAND2 is 

4.4μm�. 

The critical path delay of the proposed butterfly architecture, equal to that of the Fused 

Dot-Product Add (FDPA), consists of a constant multiplier, a three-operand FP adder plus 

registers (Table 4.1). It is worth mentioning that the critical path delay of the three-operand adder 

(including those of the termination phase and register), shown in Table 3.3, is equal to 2.16ns. 

However, since the inputs X and Y, coming from multipliers, are in the critical path of the FDPA, 

a different path of the three-operand adder is shown in Table 4.1. 

Table 4.1: Critical Path Delay of the Proposed Floating-Point Butterfly Architecture 

Module Components Delay (ns) 

Multiplication 

(1.04 ns) 

PPG 0.19 

PPR (4 levels of BSD adders) 0.85 

Three-operand Addition 

(0.58 ns) 

Mux 0.04 

Barrel Shifter 0.20 

BSD Adder 1 0.18 

BSD Adder 2 0.16 

Termination 

(0.75 ns) 

LZD 0.21 

Normalization & Rounding 0.54 

Register 0.22 

Total 2.59 



 

64 

 

The total consumed area of the proposed butterfly unit is evaluated as 375,347�¸� of 

which 8,337�¸� is for registers. The dynamic and leakage power consumption of this design are 

about 90.6 ¸� and 7.6 ¸�, respectively. 

The two major works on floating-point butterfly architecture are in [1, 5]. The work in [5] 

introduces architectures based on multiple-constant multipliers (MCM) and merged multiple-

constant multiplier (MMCM), amongst which the fastest design reported to have the latency of 

4.08�S with the area consumption of 97,302�¸�, in 45�¸ CMOS technology. 

The other work [1] designs a FP butterfly unit using novel dot-product blocks. This work, 

simulated based on 45nm CMOS technology, has the latency of 4.00�S with the area cost of 

about 47,489�¸�. The dot-product unit of this design is reported to have a latency of about 

2.72ns with 16,104�¸� area cost. 

A recent work [2] has proposed a very fast FP dot-product unit which can be used in the 

design of a high-performance butterfly unit. Replacing the dot-product unit of [1] with this faster 

one, leads to a high-speed butterfly architecture. Table 4.2 shows the comparison of the proposed 

butterfly architecture with those of the previous works. As a result, the proposed design, 

simulated in 90�¸ (vs 45�¸), is yet much faster than those of previous works. Moreover, 

scaling the area of the proposed design to 45�¸ technology results in the value of about 

¹√_�» _¼�
� ½� = 93,836�¸� which is almost equal to that of [5]. 

For the sake of fair comparison the new design is also synthesized using 45nm Nangate 

Open Cell Library with 1.25 VDD. The area of the proposed design is 56,338μm� with wire 

load model: "5K_hvratio_1_1" and the delay constraint set to 3.15ns (i.e., equal to that of the 

fastest previous works). 
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Table 4.2: Comparison of the Floating-Point Butterfly Architectures 

 Technology Delay (ns) Area (¾o¿) 

[5] 45 nm 4.08 97,302 

[1] 45 nm 4.00 47,489 

[1] + [2] 
Single Path 45 nm 3.42 60,857 

Dual Path 45 nm 3.15 62,857 

Proposed 
90 nm 2.59 375,347 

Scaled Area 93,836 

 

Having the butterfly unit synthesized, the area and delay of an N-point FFT architecture 

based on the proposed butterfly unit is evaluated below. As discussed in Chapter two, an N-point 

FFT unit is implemented in log� * stages each of which consists of */2 butterfly units (working 

in parallel). Therefore, 

Latency (90nm technology): 2.59�S × �bT� * 

    (+1 cycle for the conversion to non-redundant format) 

Area (90nm technology): 375347�¸� × � ÀÁÂ6 �
�  

    (+LUT[32×N/2] for storing Twiddle factors) 

Although floating-point and fixed-point architectures are not meant to be compared 

together, a fixed-point butterfly architecture is also designed and synthesized based on the 

proposed Fused Dot-Product Add (FDPA) unit. Table 4.3 illustrates the critical path delay of the 

proposed fixed-point butterfly unit. 

Floating-point arithmetic has advantages over fixed-point among which, wider dynamic 

range is of interest in FFT implementation. Contrary to fixed-point representation, where 

dynamic range is linearly proportional to the number of bits, the dynamic range in floating-point 

representation grows exponentially with increasing bit width. For example, wider dynamic range 

increases SNQR (6dB per bit) with lower number of bits. 
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Table 4.3: Critical Path Delay of the Proposed Fixed-Point Butterfly Architecture (16-bit) 

Module Delay (ns) 

Multiplication 0.8 

Three Operand Adder 0.4 

Register 0.2 

Total 1.4 

 

One may increase the number of bits in fixed-point representation to cover the range 

provided by floating-point arithmetic. In this case, for example, 277 bits are required to cover the 

range of a single-precision floating-point representation (i.e., 2��� ≅ 2�_ × 2�»¼). Implementing 

a 277-bit multiplier using the proposed 16-bit multipliers, based on Karatsuba multiplication 

[27], would lead to a critical path delay of: 

16-bit multiplication + 4×(3-operand adder) = 0.8+1.6 = 2.4ns. 

The latency of the 277-bit carry-free adder is the same as that of a 16-bit and is equal to 

0.4ns. Therefore, overall latency of a 277-bit would be approximately equal to 2.4+0.4+0.2 = 

3.0ns VS 2.59ns of the proposed floating-point butterfly unit. Although the fixed-point and 

floating-point latencies are almost equal, a fixed-point FFT requires post processing operations 

such as scaling and overflow/underflow concerns. 

Furthermore, use of IEEE-754-2008 standard [3] for floating-point arithmetic allows for 

an FFT co-processor in collaboration with general purpose floating-point processors. This 

offloads computationally intensive tasks from the processors.  

In overall the proposed high-speed floating-point (FP) butterfly architecture is much 

faster than those of previous works but at the cost of higher area. In order to have a high-

performance butterfly unit a new three-operand redundant floating-point adder is developed, and 

modified Booth encoding is used to speed-up the proposed constant BSD multiplier. 
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Part II 

Decimal Co-Processors 

  



 

68 

 

 

CHAPTER 5 

DECIMAL ADDITION
2
 

Decimal addition is the most effective operation in a decimal processor, since all other 

operations are working based on the addition (or subtraction). Therefore, having an efficient 

decimal adder is of paramount importance in designing high-speed decimal arithmetic units. 

Decimal digits are typically represented in binary-coded-decimal (BCD) encoding; in 

which each digit is represented by four bits. Decimal addition over this representation, 

conventionally, involves the following challenges: 

• Over-9 detection: There is a need to detect the sum values over 9 to generate the 

output carry. 

• +6 Correction: Generating a decimal carry may lead to +6 correction of the sum 

digit. 

With the intention of overcoming the above difficulties, some alternative encodings can 

be used. For example, in the Excess-3 encoding [36], a decimal-digit d, represented in four bits, 

is stored as d + 3. Therefore, generating the decimal output carry does not require any over-9 

detection. 

A redundant representation of [30] with digit-set [˗8, 9] does not require over-9 detection, 

because the maximum represented value in this digit-set is 9. In this representation the transfer 

digit is stored (does not go through any further addition) in the next higher significant decimal 

position which leads to a carry-free addition. 

                                                 
2
 Published @ 26th Annual IEEE Canadian Conference on Electrical and Computer Engineering (CCECE'13) 
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Amongst other efforts on designing a redundant decimal adder e.g., [28, 29, 30], the work 

done by Gorgin and Jaberipur [31], using the so called partitioning method, shows advantages in 

terms of both area and delay. In this method the Decimal Septa Signed Digit (DSSD) set [−7,7], 
represented in four bits, used in the high-speed redundant decimal adder. The transfer bits c#�3! 

and Ä#�3! (−1 ≤ c#�3! + Ä#�3! ≤ 1) are generated by means of a fast combinational logic and then 

a semi-carry-propagating adder (i.e., two full-adders (FA), a half-adder (HA) and a NOR gate) 

produces the final sum. Typically, decimal redundant signed-digit addition (i.e., � + � + Ä� =
10Ä[ÅH + P) is implemented via the following main steps, for [−α, β] as the digit-set. 

• Generate the intermediate sum P and transfer set Ä[ÅH such that 

– z + 1 ≤ R ≤ { − 1;  � + � = R + 10Ä[ÅH. 

• Produce the final result as P = R + Ä� . 

It is an improved redundant decimal adder, based on the partitioning method, proposed 

here in this thesis in which [−9,7] is used as the digit-set so as to allow using stored-carry 

representation [32] of the operands and hence a faster design. 

5.1 The Proposed Redundant Decimal Adder 

The main specification of the proposed adder is the stored-carry representation of a digit 

which leads to [−9,7] as the digit-set of the proposed radix-10 adder. In the stored-carry 

representation, the carry is stored in the next higher digit and does not go through any further 

addition process. This leads to carry-free addition and increases the addition speed. Fig. 5.1 

depicts a digit representation of the operands used in the proposed adder where black (white) 

dots symbolize the positive- (negative-) value bits. 
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(a)    (b) 

Figure 5.1: Digit representation (a) Dot notation (b) Symbolic notation 

The proposed adder is designed based on Algorithm 5.1, reproduced from the 

conventional partitioning addition algorithm [31]. 

Algorithm 5.1 (The proposed addition): 

Inputs: Two n-digit numbers �: � �! … �!�#, �: � �! … �!�#, where a digit (e.g., i
th

) is 

 represented by five bits as ��: �_� `�� `!� `#� �#� . 

Output: One n-digit number P: P �! … P!P#, where a digit (e.g., ith) is represented by five bits 

 as P�: P_� S�� S!� S#� P#� ; and two transfer bits c# , Ä# . 

Perform the following steps, for 0 ≤ i ≤ � − 1 in parallel. 

a) Transfer bits c#�3!, Ä#�3! and high-portion of the interim sum È_� , È�� , �!�  are generated by a 

combinational logic F1(�_� , �_� , `�� , ��� , `!� ). 

b) Low-portion of the interim sum ��� , �!� , �#� is generated by a logic F2(�!� , �#� , �#� , `#� , �#� ). 

c) Generate the final sum as P_� S�� S!� S#� = È_� È�� �!� c#� + ��� �!��#� and P#� = Ä#�.  � 

Steps a and b, consist of combinational logics, are performed simultaneously to generate 

the whole interim sum and the transfer bits. Next, Step c computes the final sum through a fast 3-

bit Carry-Look-ahead Adder (CLA) and an OR gate. The dot notation, symbolic notation and 

block diagram of the proposed adder are shown in Fig. 5.2. The details of the constituent blocks 

of this figure are presented in the following. The main idea here is that the output carry bits are 

generated based on only the most significant bits of a decimal digit (i.e., five most significant 

bits in this case). The total value of the rest of the bits are not large enough to produce any carry 

to the next digit. This reduces the complexity of the carry-generation logic, since it is designed 

based on only five bits (instead of ten). 
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(a)    (b)     (c) 

Figure 5.2: The Proposed Adder (a) Symbolic Notation (b) Dot Notation (c) Block Diagram 

Moreover, the negative-weighted carry does not go through any further addition while the 

positive-weighted carry serves as the least significant bit of the carry-propagating adder. The F1 

and F2 blocks are responsible for Steps a and b of Algorithm 5.1. F1 is a five input five output 

logic and F2 generates three outputs from the five inputs. These blocks implement the logical 

expressions derived from the truth tables shown in Tables 5.1 and 5.2, respectively. 

The 3-bit CLA is a fast adder which adds two 3-bit operands without any input carry. The 

logical expressions of the outputs of this CLA are presented in Eqn. 5.1. It should be noted that 

the negative-weighted inputs must be negated prior to be injected into the adder. Likewise, the 

negative-weighted outputs must be negated to represent the correct value. 

S#� = W#⨁X# 

S!� = W!⨁X!⨁(W#X#)      (5.1) 

S�� = W�⨁X�⨁(W#X#W! + W#X#X! + W!X!) 

�[ÅH = W�X� + [(W� + X�)(W#X#W! + W#X#X! + W!X!)] 
Finally, an OR gate is used to generate the most significant bit of the final sum P_� . The 

OR gate is good enough here to produce the most significant digit, since at least one of �[ÅH or 
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È_�  must have zero value. It is worth mentioning that �[ÅH is needed to be a negabit; therefore, a 

negative-weighted carry must be propagated through the 3-bit CLA. Consequently, the least 

significant bit of the CLA must take a zero-value negative-weighted bit (represented as '1'). In 

this case, there are two negabits and one posibit in the least-significant position of the CLA. 

Adding these bits together generates a positive-weighted sum bit and a negative-weighted carry 

to the next position. It is the same situation for the next two positions of the CLA. This 

guarantees that �[ÅH is a negative-weighted bit. 
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Table 5.1: Truth Table of F1 

�_�  �_�  `��  ���  `!�  Value Ä#�3! c#�3! È_�  È��  �!�  

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 2 0 0 0 0 1 

0 0 0 1 0 4 0 1 1 0 1 

0 0 0 1 1 6 0 1 0 1 0 

0 0 1 0 0 4 0 1 1 0 1 

0 0 1 0 1 6 0 1 0 1 0 

0 0 1 1 0 8 0 1 0 1 1 

0 0 1 1 1 10 0 1 0 0 0 

0 1 0 0 0 –8 1 0 0 0 1 

0 1 0 0 1 –6 0 0 1 0 1 

0 1 0 1 0 –4 0 0 0 1 0 

0 1 0 1 1 –2 0 0 0 1 1 

0 1 1 0 0 –4 0 0 0 1 0 

0 1 1 0 1 –2 0 0 0 1 1 

0 1 1 1 0 0 0 0 0 0 0 

0 1 1 1 1 2 0 0 0 0 1 

1 0 0 0 0 –8 1 0 0 0 1 

1 0 0 0 1 –6 0 0 1 0 1 

1 0 0 1 0 –4 0 0 0 1 0 

1 0 0 1 1 –2 0 0 0 1 1 

1 0 1 0 0 –4 0 0 0 1 0 

1 0 1 0 1 –2 0 0 0 1 1 

1 0 1 1 0 0 0 0 0 0 0 

1 0 1 1 1 2 0 0 0 0 1 

1 1 0 0 0 –16 1 0 1 0 1 

1 1 0 0 1 –14 1 0 0 1 0 

1 1 0 1 0 –12 1 0 0 1 1 

1 1 0 1 1 –10 1 0 0 0 0 

1 1 1 0 0 –12 1 0 0 1 1 

1 1 1 0 1 –10 1 0 0 0 0 

1 1 1 1 0 –8 1 0 0 0 1 

1 1 1 1 1 –6 0 0 1 0 1 

 

  



 

74 

 

 

Table 5.2: Truth Table of F2 

�!�  �#�  �#�  `#�  �#�  Value ���  �!� �#� 
0 0 0 0 0 0 0 0 0 

0 0 0 0 1 –1 0 0 1 

0 0 0 1 0 1 1 1 1 

0 0 0 1 1 0 0 0 0 

0 0 1 0 0 –1 0 0 1 

0 0 1 0 1 –2 0 1 0 

0 0 1 1 0 0 0 0 0 

0 0 1 1 1 –1 0 0 1 

0 1 0 0 0 1 1 1 1 

0 1 0 0 1 0 0 0 0 

0 1 0 1 0 2 1 1 0 

0 1 0 1 1 1 1 1 1 

0 1 1 0 0 0 0 0 0 

0 1 1 0 1 –1 0 0 1 

0 1 1 1 0 1 1 1 1 

0 1 1 1 1 0 0 0 0 

1 0 0 0 0 2 1 1 0 

1 0 0 0 1 1 1 1 1 

1 0 0 1 0 3 1 0 1 

1 0 0 1 1 2 1 1 0 

1 0 1 0 0 1 1 1 1 

1 0 1 0 1 0 0 0 0 

1 0 1 1 0 2 1 1 0 

1 0 1 1 1 1 1 1 1 

1 1 0 0 0 3 1 0 1 

1 1 0 0 1 2 1 1 0 

1 1 0 1 0 4 1 0 0 

1 1 0 1 1 3 1 0 1 

1 1 1 0 0 2 1 1 0 

1 1 1 0 1 1 1 1 1 

1 1 1 1 0 3 1 0 1 

1 1 1 1 1 2 1 1 0 
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5.2 Evaluations and Comparisons of Decimal Redundant Adders 

The evaluation of the proposed design and the comparison with the fastest previous work 

[31] is presented in this section. Both the proposed design and that of [31] are simulated via 

Verilog codes and synthesized by Synopsys Design Compiler using the STM 90nm CMOS 

standard library [26] for 1.00 VDD and 25°C temperature, where the FO4 latency is 45ps and 

the area of a NAND2 gate is 4.4μm�. 

5.2.1 Decimal Redundant Adder of [31] 

The structure of this adder [31], shown in Fig. 5.3, is similar to that of Fig. 5.2. There are 

two critical paths for this adder as follows; 

1) The combinational logic which generates the negative-weighted transfer bit plus two 

FAs, one HA and the NOR gate. 

2) The combinational logic that generates Z plus an FA, an HA and the NOR gate. 

 

Figure 5.3: Decimal Redundant Adder of [31] 

It should be noted that in the critical path 1) the positive-weighted transfer bit is 

generated much faster than the negative-weighted one and hence out of the critical path. 
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One might be thinking of speeding up the critical path 1), by replacing the cascaded FAs 

and HA by a fast CLA. However, this would not reduce the latency since in this case path 2) 

would be the critical path. The synthesis results show 23ns as the minimum latency of this adder 

with the area of 1,665μm�. 

5.2.2 The Proposed Decimal Redundant Adder 

In this adder some techniques are used to speed up both of the critical paths of [31]. Path 

1) is improved by using a CLA and not feeding the negative-weighted transfer bit into this CLA 

(i.e., store it as the least significant negabit). Path 2) is improved by changing the representation 

of the intermediate sum and hence removing the FA of path 2) in [31]. However, the above 

improvements lead to the latency and area overhead to the combinational logic F2 which is not in 

the critical path delay. The evaluation results show 20ns as the minimum latency of this adder 

with the area of 2055μm�. The comparison of the proposed design with that of [31] is shown in 

Table 5.3, in terms of latency, area and power. According to Table 5.3 the proposed decimal 

signed-digit adder shows 15% delay advantage over the work of [31], but at the expense of 23% 

more area and 38% more power consumption. 

Table 5.3: Comparison of Decimal Redundant Adders 

 Delay (ns) Ratio Area (¾o¿) Ratio Power (¾Ì) Ratio 

Proposed 0.20 1 2055 1 600 1 

[31] 0.23 1.15 1665 0.81 435 0.72 

 

A decimal signed digit adder using the stored carry representation of the operands is 

proposed in this chapter. Using [−9,7] as the digit-set simplifies the final addition (CLA) by 

removing the input carry.  



 

77 

 

 

CHAPTER 6 

DECIMAL MULTIPLICATION
3
 

The complexity of decimal arithmetic makes more challenges to be dealt with during the 

hardware implementation, compared to the binary counterparts. One of these challenges is the 

high area cost of the decimal operations, due to inefficient decimal encodings (non-power-of-

two). Amongst the four basic operations i.e., addition, subtraction, multiplication and division; 

the latter two are considered as those with large area costs. 

With the intention of reducing the high cost of these decimal operations the processor 

industry has opted for sequential realization [9, 33, 34]. Sequential hardware realization is at a 

disadvantage due to its high latency. For reducing the impact of this drawback, one can 

manipulate the cycle time (i.e., increasing the frequency) or the number of iterations (moving 

toward semi-parallel and parallel implementations). Recalling that the latter solution leads to the 

higher area cost, which as mentioned is not of interest to the processor industry, focusing on the 

cycle time seems to be more efficient. 

This chapter focuses on the hardware realization of the decimal multiplication where a 

novel architecture is proposed to overcome the problem of slow sequential decimal multipliers 

via increasing the clock frequency. In this design, the cycle time is reduced to the latency of a 

binary half-adder (HA) plus that of a decimal multiply-by-two operation, which is in overall less 

than that of a decimal carry-save adder. The claimed improvement is supported by synthesizing 

and comparing the proposed design to those of the best previous pertinent works. 

The proposed design includes the following novelties, with respect to previous works: 

                                                 
3
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• Designing a novel selection block to select appropriate easy-multiples of the 

multiplicand as a partial product. 

• Proposing a novel approach for the partial product accumulation (PPA) with the 

intention of increasing the speed of this crucial step. The critical path delay of a 

conventional PPA consists of the delay of two decimal carry-save adders (CSA) 

while the latency of the proposed PPA is reduced to less than that of a mere 

decimal CSA by retiming the constituent parts of a decimal CSA. 

6.1 Decimal Multiplication Overview 

Decimal multiplication is a dyadic operation performed on two n-digit decimal numbers, 

called multiplicand X and multiplier Y, and computes the final 2n-digit product P; where X, Y and 

P (assumed to be represented in the standard BCD format) are shown in Eqn. 6.1. The capital 

(small) letters represent a decimal number (digit), while a subscript index indicates the position 

of the decimal number (digit). 

� = � `� × 10�
 �!

�"#
;      � = � �� × 10�

 �!

�"#
;      `�, �� , a� ∈ [0,9] 

(6.1) 

R = � a� × 10�
� �!

�"#
= � × � = � � �� × 10�

 �!

�"#
 

According to Eqn. 6.1, for computing the final product one requires to perform xÑ × yÓ ×
10Ñ3Ó, iteratively. The × 10Ñ3Ó operation is a mere (j + i)-digit left shift and xÑ × yÓ is known as 

the BCD digit multiplication [35], defined below. 
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Definition 6.1 (BCD digit multiplication): Given two BCD digits 0 ≤ xÑ, yÓ ≤ 9 as 

inputs, compute the digit-product (two BCD digits) as 10a�,�Õ + a�,�Ö = �� × �̀ and a�,�Õ ∈
[0,8],   a�,�Ö ∈ [0,9] ∎ 

Performing the BCD digit multiplication for all digits of the multiplicand (i.e., xÑ for 

0 ≤ j < n) with a single digit of the multiplier yÓ generates, according to Eqn. 6.1, PÓ = yÓ × X 

which is traditionally called the (i
th

) partial product. 

Definition 6.2 (Partial product generation): Given an n-digit BCD number X and a 

BCD digit 0 ≤ yÓ ≤ 9, generate the (n+1)-digit partial product PÓ as follows, where pÓ,�!Ø = 0. 

R� = � a�,� × 10�
 

�"#
= �� × � = � �� × �̀ × 10�

 �!

�"#
Ù9Ú.!>??@ 0 ≤ a�,� = a�,(��!)Õ + a�,�Ö ≤ 17               ∎ 

Observation 6.1: Regarding Definition 6.2, it is note that the cardinality of the digit-set 

of the partial products is greater than the radix (i.e., 18 > 10 in Definition 6.2) and hence 

redundant representations. Therefore, a carry-propagating digit-set conversion is required to have 

non-redundant partial products. � 

Computer arithmetic literature abounds with diverse hardware algorithms for decimal 

partial product generation (PPG), among which two algorithms have gained more popularity; 

namely PPG based on digit-multiplication (Algorithm 6.1) and PPG based on computing easy-

multiples of the multiplicand (Algorithm 6.2) [36]. 

Definition 6.3 (Easy-multiples of the multiplicand): Given the multiplicand X 

represented in the standard BCD format, the mX (m ∈ [0,9]) is considered as an easy-multiple if 

and only if ¸� 

i) is a non-redundant BCD number; 
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ii) can be computed from X in a constant time i.e., without the word-wide carry 

propagation.  � 

Algorithm 6.1 (PPG based on digit-multiplication): 

Inputs: A BCD digit yÓ and an n-digit BCD number X = ∑ xÓ × 10ÓÜ�!Ó"# . 

Output: A (n+1)-digit decimal number PÓ = yÓ × X = ∑ pÓ,Ñ × 10ÑÜÑ"# . 

Method: 

 For 0 ≤ j < n do 

  I. Compute 10pÓ,ÑØ + pÓ,ÑÀ = yÓ × xÑ via BCD digit multiplication (Definition 6.1). 

  II. Compute pÓ,Ñ = pÓ,(Ñ�!)Ø + pÓ,ÑÀ ; where pÓ,�!Ø = 0. 

  III. Assign pÓ,Ü = pÓ,(Ü�!)Ø .       � 

Algorithm 6.2 (PPG based on easy-multiples of the multiplicand): 

Inputs: A BCD digit yÓ and an n-digit BCD number X. 

Output: An (n+1)-digit decimal number PÓ = yÓ × X. 

Method: 

 I. Compute the required easy-multiples of the multiplicand in a constant time. 

 II. yÓ selects UÓ, VÓ ∈ ]easy multiples^ such that PÓ = UÓ + VÓ.  � 

In order to achieve the final product, according to Eqn. 6.1, one needs to generate and 

sum up the partial products for all digits of the multiplier (i.e., yÓ for 0 ≤ i < n). This is known 

as partial product accumulation defined below. 

Definition 6.4 (Partial product accumulation): Given n partial products (PÓ for 

0 ≤ i < n) as inputs, compute the 2n-digit final product R = ∑ R� × 10�� �!�"# . ∎ 

The sequential decimal multiplier, in essence, generates one partial product (e.g., PÓ) per 

iteration, using either Algorithm 6.1 or 6.2; next the recurrence of Eqn. 6.2, performed in the i
th

 

iteration, takes care of the PPA (P[0] = 0 and P = P[n]). In Eqn. 6.2, P[i] denotes the 

accumulated partial products after i iterations. 

R[L + 1] = R[L] + 10R�     (6.2)  
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6.2 The Proposed Sequential Decimal Multiplier 

The details of the proposed sequential decimal multiplier are presented in this section 

where the first part is devoted to elaborate on the architecture of the PPG step and next the 

proposed PPA architecture is described. 

6.2.1 Partial Product Generation 

The partial products, in the proposed design, are generated via Algorithm 6.2 with easy-

multiples of X, 2X, 4X, 5X. It should be noted that although there are other set of easy-multiples 

(e.g., −X, −2X and 10X [37, 38]), the mentioned easy-multiples are used to avoid dealing with 

negative numbers in the PPA. 

According to Algorithm 6.2, there is a need to compute the easy-multiples of the 

multiplicand. With the intention of lowering the area cost, the decimal 4-2-2-1 encoding is used 

for the multiples X, 2X, 4X, 5X as shown in Fig. 6.1, adapted from [38]. 

 

Figure 6.1: Generation of the easy-multiples in the proposed multiplier 

Given this figure, the PPG mostly consists of wired shifts and various recoders the same 

as done in [39]. However, the 4X is generated directly from X, not by cascading two 2X blocks, 
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as to manage to perform PPG in one cycle. Consequently, the area of the proposed PPG is 

slightly higher than the previous counterparts [38, 39]. 

According to Algorithm 6.2, the next step after computing the easy-multiples is to select 

values for UÓ, VÓ ∈ ]0, X, 2X, 4X, 5X^, regarding ��: ��_�����!��#, so as to generate the i
th

 partial 

product PÓ = UÓ + VÓ. This is done through the logical expressions of Eqn. 6.3 (bit slice) derived 

based on Table 6.1. 

Table 6.1: Selection of the easy-multiples 

ãr = 0 1 2 3 4 5 6 7 8 9 

är = 0 � 0 � 4� 5� 4� 5� 4� 5� år = 0 0 2� 2� 0 0 2� 2� 4� 4� 

 

æ� = 2���! ∨ 4���_ 

(6.3) ³� = �è �é_êêê �é�êêê��#ë ∨ 4�è(��� ∨ ��_)�é#êêêë ∨ 5�[(��� ∨ ��_)��#] 
It should be noted that the addition ³� + æ� is not actually performed and hence redundant 

partial remainder PÓ, represented by two 4-2-2-1 decimal numbers. 

6.2.2 Partial Product Accumulation 

Partial product accumulation is meant to realize Eqn. 6.2 for PÓ = UÓ + VÓ which leads to 

Eqn. 6.4 as the multiplication recurrence for 0 ≤ i < �. 

R[L + 1] = 0.1R[L] + ³� + æ�     (6.4) 

Given the 4-2-2-1 representation of UÓ and VÓ, one may implement Eqn. 6.4 in an 

straightforward approach in which P[i] is assumed to be represented in 4-2-2-1 encoding and 

hence a three-operand 4-2-2-1 addition. However, this causes carry-propagation per iteration 

which is not of interest for a high-frequency multiplier. 
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Using decimal carry-free adders (e.g., [30]) while keeping P[i] in a redundant 

representation is traditionally a solution for removing the carry-propagation per iteration. This 

modification typically calls for decimal (4:2)-compressors (i.e., two cascaded decimal CSAs) 

with 4-2-2-1 encodings [38]. Moreover, after n iterations a conversion from the redundant to 

non-redundant BCD format is required to generate the final product. 

Intending for a high-speed PPA, it is noted that Eqn. 6.4 can be divided into two 

recurrences (Eqn. 6.5) each of which executed, independently, per iteration. Finally, after n 

iterations the outcomes of these two recurrences should be merged together and converted into 

the non-redundant BCD format. 

Rì[L + 1] = 0.1Rì[L] + æ� 
(6.5) Rí[L + 1] = 0.1Rí[L] + ³� 

Fig. 6.2 highlights the differences of the proposed versus the conventional PPA approach 

[40]. 

    
(a)       (b) 

Figure 6.2: PPA (digit-slice) (a) Conventional (b) Proposed 

The proposed technique for the partial product accumulation is shown in Algorithm 6.3. 

Algorithm 6.3 (The proposed PPA): 

Inputs: Partial products PÓ = UÓ + VÓ for 0 ≤ i < �. 
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Output: The 2n-digit final product P = ∑ PÓ × 10Ó�Ü�!Ó"# . 

Method: 

I. Compute Eqn. 6.5, iteratively, for 0 ≤ i < � with Pî[0] = Pï[0] = 0. 

 II. R = Rí[�] + Rì[�].        � 

Step a of Algorithm 6.3 can be implemented via decimal CSAs with 4-2-2-1 encodings, 

assuming the redundant representation for Pï[i + 1] and Pî[i + 1]. The details of these CSAs are 

illustrated in Fig. 6.3, adapted from [38]. 

 

Figure 6.3: Implementation of Eqn. 6.5 via CSAs 

The latency of the circuitry of Fig. 6.3 (i.e., the cycle time of the multiplier) can be 

reduced by postponing the operation of × 2 until the next iteration. Consequently, the binary 

CSA and × 2 can be performed, partially, in parallel as shown in Fig. 6.4 where the dashed lines 

highlight the critical paths i.e., × 2 plus an HA. 

According to the implementation of Fig. 6.4, after n iterations there are four decimal 

numbers represented in 4-2-2-1 encoding which should be merged and converted to the standard 

BCD format in order to cope with Step b of Algorithm 6.3. This is done via two decimal CSAs 

and a BCD CPA [41]. 
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Figure 6.4: Modified Implementation of Eqn. 6.5 

The whole architecture of the proposed sequential multiplier (including the PPG and 

PPA) is shown in Fig. 6.5, where the (× 2∗) block performs both × 2 and conversion to BCD. 

6.3 Evaluation and Comparison of Decimal Sequential Multipliers 

The evaluation results of the proposed multiplier, in terms of latency and area, are 

presented in this section where previous works are also examined and compared with. The 

architectures are compared based on the required number of cycles for a single multiplication, 

the cycle time and area. The entire proposed design is synthesized by Synopsys Design Compiler 

using the STM 90nm CMOS standard library [26] for 1.00 VDD and 25°C temperature in which 

the FO4 latency is 45ps and the area of a NAND2 gate is 4.4μm�. 

The proposed architecture is simulated for both pipelined and word-serial 

implementations, where in the former the throughput is higher and the latter saves more area cost 

by reusing a hardware for most of the iterations [17]. However, the latter costs an extra 

multiplexer added to the critical path delay. 
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Figure 6.5: The Proposed Sequential Decimal Multiplier 
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6.3.1 The Proposed Architecture 

According to Fig. 6.5 the proposed multiplier consists of two main parts namely PPG and 

PPA. The PPG phase consumes one cycle for generating the easy-multiples (once in the whole 

multiplication) and one cycle per iteration for generating the partial products, iteratively. The 

PPA phase accumulates partial products iteratively in n cycles and then five cycles are required 

for merging and conversion to produce the final product. Therefore, the entire single 

multiplication can be performed in n+7 cycles while the next multiplication can be commenced 

every n+1 cycles. 

The cycle time, thus the clock frequency, is determined by the critical path of the iterative 

part in the PPA consists of the × 2 block and a binary half-adder. The details of the critical path 

are shown in Table 6.2 which imposes the clock frequency of 2.22 GHz for 90nm CMOS 

technology. 

Table 6.2: The Critical Path Delay of the Proposed Multiplier (ns) 

 Mux × ¿ HA Register Total 

Pipelined --- 0.14 0.11 0.2 0.45 

Word Serial 0.1 0.14 0.11 0.2 0.55 

 

The area consumption of the proposed 16-digit multiplier is evaluated as the sum of the 

area cost of various constituent parts tabulated in Table 6.3.4 

Table 6.3: Area Consumption of the Proposed 16-digit multiplier (¾o¿) 

 
Area 

Pipelined Word-serial 

PPG 2414 2414 

PPA 13263 9041 

Registers 7048 5443 

Total 22725 16898 
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6.3.2 Previous Works on Decimal Sequential Multiplier 

The multiplier in [40] is based on BCD compressors. It requires n+4 cycles for executing 

a single multiplication while the next operation can begin every n+1 cycles. The cycle time of 

this design is equal to the latency of a BCD (4:2)-compressor plus that of registers. The 

employed compressor is meant to add two BCD digits and two carry bits, per digit. According to 

[38] the cycle time of this design is evaluated to be equal to 16 FO4 with the area of about 

16,000 NAND2 for a 16-digit multiplication. 

It is the overloaded decimal representation used in [42] for representing the intermediate 

redundant operands which calls for a special decimal carry-free adder. This design strategy leads 

to a critical path consists of a (4:1) multiplexer, a +6 increment block, a binary full-adder plus 

registers. The latency of this path according to [38] is evaluated to be 12.7 FO4 where the 

number of cycles required for a single multiplication is n+8 with the initiation interval of n+1 

cycles. The area of this multiplier for 16-digit operands is reported as 31,500 NAND2. 

The multiplier in [43] takes advantage of the decimal signed-digit adder, introduced in 

[28], for the iterative portion of the PPA whose latency plus registers (i.e., 14.7 FO4) determines 

the cycle time. The number of required cycles is the same as [40] i.e., n+4 and the area cost is 

reported as 18,550 NAND2 for a 16-digit multiplication. 

In accordance with the above discussions, Table 6.4 illustrates the details of the 

evaluation results and compares the proposed design with others in terms of latency and area. 

Moreover, the simulation results of the proposed multiplier based on delay constraints are 

depicted in Fig. 6.6. It is shown that the proposed pipelined design, with the cycle time of 10 

FO4, is much faster than the previous works while the proposed word-serial implementation 

keeps the area as low as possible. It is concluded that the fastest previous design [34] works with 
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47% slower clock frequency, which leads to 27% slower multiplier, than the proposed pipelined 

architecture. 

Table 6.4: Comparison of Decimal Sequential Multipliers (16-digit multipliers) 

 
Cycle time 

(FO4) 

# of 

cycles 

Total Latency 

(FO4) 
Ratio 

Area 

(NAND2) 
Ratio 

Ours Proposed 
Pipelined 10.0 23 230 1 22 725 1 

Word Serial 12.2 23 281 1.22 16 898 0.74 

[40] 16.0 20 320 1.39 16 000 0.70 

[42] 12.7 24 305 1.32 31 500 1.38 

[43] 14.7 20 294 1.27 18 550 0.81 

 

The evaluation and comparison results of Table 6.4 reveal the undisputed advantage of 

the proposed sequential decimal multiplier over the previous designs. The advantage of the 

proposed architecture could be more highlighted by considering the 34-digit decimal 

multiplication. 

 
Figure 6.6: Delay Constrained Comparison 
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CHAPTER 7 

DECIMAL DIVISION
4
 

Implementing division algorithms in software (computer program) or hardware (digital 

circuit) is the most costly one of the four basic arithmetic operations. Decimal division 

algorithm, whose popularity gathered pace by the inclusion of decimal floating-point in the IEEE 

754-2008 standard [3], is even more costly. This algorithm is exemplified in Eqn. 7.1, where  

0.1 ≤ �, � < 1, 0 < Q < 10 and R are the normalized dividend, normalized divisor, quotient 

and remainder, respectively. 

� = ò × � + ª      (7.1) 

Division hardware is usually designed based on digit recurrence or functional algorithms. 

The former, having latency linearly dependent on the quotient length, leads to lower hardware 

complexity. The latter, however, due to the use of a sequence of multiplications, progressively 

produce an approximation of the quotient, where the number of required iterations is 

logarithmically proportional to the number of quotient digits. It is the digit-recurrence algorithms 

elaborated  here, due to their popularity and VLSI suitability. 

In digit-recurrence algorithms the quotient is computed progressively (digit-by-digit), via 

a selection function, based on some selection rules and conditions. This quotient digit selection 

(QDS) is one of the key issues on which updating the partial remainder, regarding the divisor, is 

based. Therefore, the representations of the quotient, the divisor and the partial remainder are of 

paramount importance in determining the complexity of the division algorithm. 

                                                 
4
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There are miscellaneous decimal digit-recurrence division algorithms all use symmetric 

signed-digit representation of the quotient so as to simplify QDS implementation (e.g., [37, 44, 

45, 46]). However, symmetric signed-digit representation of the quotient shows some drawbacks 

(is not optimal) in case of having not a symmetric error in QDS (e.g., in selection by truncation 

technique [47]). This justifies the need for a general investigation on the advantages and 

disadvantages of using diverse redundant quotient digit-sets. Moreover, not enough attention has 

been paid, in the literature, to the representations of the divisor and partial remainders and their 

significance in the division complexity, particularly QDS. Table 7.1 provides the notation used 

throughout this chapter. 

Table 7.1: Notations and abbreviations 0.1 ≤ � < 1 Dividend [−zó, {ó] Partial remainder digit-set 0.1 ≤ � < 1 Divisor ôó Error of truncated partial remainder ò Quotient [−zÙ, {Ù] Divisor digit-set ª Remainder ôÙ Error of truncated divisor 

QDS Quotient digit selection õ � Lower bound of partial remainder 

GSD Generalized signed-digit õZ� Upper bound of partial remainder 

WBP Weighted binary position ∗ö (∗) truncated into t fractional WBP 

ulp Unit in the least significant position c 
Minimum # of fractional WBP of 

the partial remainder required in QDS 

� # of fractional quotient digits ÷ 
Minimum # of fractional digits  of 

the partial remainder required in QDS 

¦� Quotient digit Røó , Røó 
Maximum, minimum truncation error of 

partial remainder in the digit of weight }�ø 

ò[L] Quotient in i
th

 iteration a�ó , a�ó 
Maximum, minimum value of binary position j 

of a partial remainder digit 

[−z¤ , {¤] Quotient digit-set � 
Minimum # of fractional WBP of 

the divisor required in QDS 

ô¤[L] Quotient error in i
th

 iteration ù 
Minimum # of fractional digits of 

the divisor required in QDS 

ℎ  Negative redundancy factor RúÙ , RúÙ 
Maximum, minimum truncation error of 

the divisor in the digit of weight }�ú  

ℎZ Positive redundancy factor a�Ù , a�Ù 
Maximum, minimum value of binary position j 

of a divisor digit �[L] Partial remainder in i
th

 iteration (û
 , ³
) The range of k
th

 selection interval ´
 Comparison multiple ∆
 Overlap region between k
th

 and (k–1)
th

 intervals 

 
Dot notation for a bit with 

positive weight  
Dot notation for a bit with 

negative weight 
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7.1 Decimal Digit-Recurrence Division Algorithm 

Decimal digit-recurrence division algorithms estimate the final quotient, with the error 

less than «�a = 10�  (where � is the number of fractional quotient digits). In these algorithms, 

one quotient digit ¦� (0 ≤ L ≤ �) is generated per iteration, such that the quotient in the i
th

 

iteration ò[L] is assumed to be as in Eqn. 7.2. 

ò[L] = ∑ ¦�10����"#       (7.2)  

Therefore, the error of the quotient estimation in the i
th

 iteration ô¤[L] is defined as in 

Eqn. 7.3. 

ô¤[L] = °
Ù − ò[L]      (7.3)  

The final error ô¤[�] = °
Ù − ò[�] < 10� = «�a imposes Eqn. 7.5 (based on Eqn. 7.4) as 

the required condition over the quotient estimation error, assuming a quotient digit with a 

redundant GSD representation i.e., ¦� ∈ [−z¤ , {¤] (z¤ ≥ 0, {¤ ≥ 0 and z¤ + {¤ + 1 > 10). 

ô¤[L] < � ü{¤ × 10��ý
 

�"�3!
+ «�a = {¤ × þ10�� − 10� 

9 �+ «�a 

(7.4)  

ô¤[L] > � ü−z¤ × 10��ý
 

�"�3!
− «�a = −z¤ × þ10�� − 10� 

9 � − «�a 

10�� ¹���� ½ − 10� ¹1 + ���� ½ < ô¤[L] < 10�� ¹��� ½ + 10� ¹1 − ��� ½  (7.5)  

The i
th

 partial remainder �[L] is defined as in Eqn. 7.6 by replacing the modified Eqn. 7.3 

(i.e., multiplied by 10� × �) into Eqn. 7.5, where ℎZ = ���  and ℎ = ����  are positive and 

negative redundancy factors, respectively. 

õ � = � × èℎ − 10�� (1 + ℎ )ë < �[L] = 10�(� − ò[L] × �)    (7.6)  

                                              < èℎZ + 10�� ü1 − ℎZýë × � = õZ� 
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The admissible range for the partial remainder, defined in Eqn. 7.6, is also known as the 

convergence condition of the decimal digit-recurrence division algorithm. It should be noted that 

for digit-sets with �ℎZ�, |ℎ | < 1 the range of the partial remainder can be deemed as simple as 

ℎ � ≤ �[L] ≤ ℎZ�. However, in case of using maximally-redundant or over-redundant quotient 

digit-sets [48] (i.e., �ℎZ�, |ℎ | ≥ 1) the range should be exactly as is in Eqn. 7.6. 

With the intention of having Eqn. 7.6 independent of i, one may use a range formulated 

with the tightest bound of all iterations (i.e., for L = 0). However, this simplification leads to an 

avoidable conservatism which imposes ranges tighter than what is strictly necessary for 

convergence (for L > 0). This point has been highlighted and elaborated on in [49] with an 

application example in [50], although not presenting a closed form formula. 

To cap it all, it is suggested to apply the exact general range in Eqn. 7.6 so as to allow for 

more efficient algorithms to find grounds. Moreover, in case of using over-redundant quotient 

digit-sets (i.e., �ℎZ�, |ℎ | > 1) a careful examination of the universal convergence condition 

(Eqn. 7.6) is in line, especially for large values of i. The recurrence equation of the decimal 

division algorithm is determined by substituting Eqn. 7.2 in Eqn. 7.6 for �[L + 1]. This is shown 

in Eqn. 7.7. 

  �[L + 1] = 10�3!(� − ò[L + 1] × �) 

       = 10�3!ü� − ò[L] × � − ¦�3! × 10�(�3!) × �ý    (7.7) 

       = 10�3!(� − ò[L] × �) − ¦�3! × � = 10�[L] − ¦�3! × � 

        ⟹ �[L + 1] = 10�[L] − ¦�3!� 

This recurrence equation should be performed such that Eqn. 7.6 satisfies for �[L + 1]. 
This imposes an appropriate selection of the quotient digit ¦�3!, regarding the values of 10�[L] 
and �. The redundant quotient digit-set allows for an imprecision in QDS such that the selection 
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function can be performed by manipulating the truncated version of 10�[L] and �; hence 

simpler QDS. This is going to be discussed in next section. 

7.2 Quotient Digit Selection (QDS) 

As mentioned in previous section QDS is one of the most important issues of the division 

hardware. This unit determines the next quotient digit ¦�3! based on the value of the shifted 

partial remainder  10�[L] and the divisor �. With the intention of simplifying QDS, it is 

desirable to perform all the computations with truncated operands (i.e., 10�[�]�  and �	) such that 

¦�3! is selected based on the divisor and the shifted partial remainder truncated into d and t 

fractional weighted-binary-positions (WBP) [51], respectively. The correct selection of quotient 

digit is guaranteed if computing Eqn. 7.7 (considering the truncation error) keeps the next partial 

remainder in the range shown by Eqn. 7.6.  

Containment i.e., bounded partial remainders as in Eqn. 7.6; and continuity i.e., for any 

value of the shifted partial remainder there exist at least one quotient digit; are the main 

fundamental conditions to be satisfied by the selection function [17]. Regarding the containment 

condition, selection intervals (û
, ³
) are defined in which it is possible to choose ¦�3! = � ∈
[−z¤ , {¤] if 10�[L] ∈ (û
, ³
), while keeping the next partial remainder in range. Therefore, 

according to Eqn. 7.6, boundaries of selection intervals are as shown in Eqn. 7.8 and selecting 

¦�3! = � is correct if (õ + �)� < 10�[L] < üõZ + �ý�. 

¦�3! = � ⟹ � û
 < 10�[L] < ³
                 õ � < 10�[L] − �� < õZ�� ⟹ 
³
 = üõZ + �ý�û
 = (õ + �)� �   (7.8)  

Regarding the continuity condition, selection intervals should overlap i.e., û
 < ³
�!; 

hence Eqn. 7.9. 
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û
 < ³
�! ⟹ õ + � < õZ + � − 1 ⟹ õ < õZ − 1   (7.9)  

The Robertson’s diagram (Fig. 7.1) illustrates the selection rules where the amount of the 

overlap ∆
 between two consecutive selection intervals is computed as in Eqn. 7.10. 

∆
= ³
�! − û
 = üõZ + � − 1ý� − (õ + �)� = üõZ − õ − 1ý�  (7.10)  

According to Eqn. 7.10 (and recalling Eqn. 7.6) the amount of the overlap region is 

determined by the quotient digit-set and the value of the divisor. 

 
Figure 7.1: The value of ∆� shown in Robertson’s Diagram 

In case of using truncated version of the divisor the corresponding error ôÙ, according to 

Eqn. 7.10, involves the overlap region as ∆
�= ∆
 − ôÙ. Moreover, the truncation error of the 

partial remainder defined as ôó = 10�[L] − 10�[�]�  should be taken into account. Theorem 7.1 

determines the maximum admissible value of these errors. 

Theorem 7.1: The universal convergence condition (Eqn. 7.6) holds for truncated partial 

remainder and divisor if and only if ]∀� ∈ [−z¤ , {¤]; |ôó + ôÙ| < ∆
^. 

Proof: The most critical case of QDS occurs for which 10�[L] = ³
�!, where the correct 

quotient digit is ¦�3! = �. In case of using truncated partial remainders, QDS works fine if Eqn. 

7.11 holds (see Fig. 7.1). 
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10�[�]� = 10�[L] − ôó > û
 ⟹ ³
�! − ôó > û
 ⟹ ôó < ³
�! − û
 = ∆
  (7.11)  

Considering the truncation error of the divisor, it must be ôó < ∆
�= ∆
 − ôÙ. The same 

approach can be done for negative partial remainders and hence |ôó + ôÙ| < ∆
. ∎ 

The next quotient digit is selected by determining the interval (considering the truncated 

divisor) in which the truncated shifted partial remainder is. The impact of partial remainder’s 

digit-set and that of the divisor, on QDS is discussed in next section. 

7.3 Representation of the Divisor and Partial Remainders 

It is shown in previous section that in case of using truncated divisor and partial 

remainders the correctness of QDS is not guaranteed unless |ôó + ôÙ| < ∆
, where ôó and ôÙ 

are the truncation errors and ∆
 indicates the amount of the overlap region between intervals. 

The amount of the truncation errors directly depends on the representation of the divisor and the 

partial remainder. Divisors usually take non-redundant representations so as to reduce the 

complexity of QDS while partial remainders are represented in redundant form so as to have 

carry-free computations and hence faster QDS [17]. 

Given that no advantage is recognized for using a redundant divisor, from now on, in this 

chapter, it is assumed that the divisor with a non-redundant representation with digit-set 

[−zÙ , {Ù] (zÙ ≥ 0, {Ù ≥ 0 and zÙ + {Ù + 1 = 10) and a redundant GSD representation for the 

partial remainder with digit-set [−zó, {ó] (zó ≥ 0, {ó ≥ 0 and zó + {ó + 1 > 10). 

Consequently, the error of truncating the shifted partial remainder into t fractional WBP is as in 

Eqn. 7.12a, where a�ó and a�ó symbolize the maximum and minimum value of the binary 

position j of each digit of the partial remainder, respectively, and ÷ = � H
ÀÁÂ6 !#�. 
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ôó < Røó10�ø + � {ó10��
∞

�"ø3!
= Røó10�ø + {ó × �10�ø

9 � ;             Røó = � a�ó2��
ø(ÀÁÂ6 !#)�H�!

�"#
 

(7.12a)  

ôó > Røó10�ø + � −zó10��
∞

�"ø3!
= Røó10�ø − zó × �10�ø

9 � ;          Røó = � a�ó2��
ø(ÀÁÂ6 !#)�H�!

�"#
 

The same can be considered for the divisor (Eqn. 7.12b), considering ôÙ as the error of 

truncating the divisor into d fractional WBP, where a�Ù and a�Ù symbolize the maximum and 

minimum value of the binary position j of each divisor digit, respectively, and ù = � �
ÀÁÂ6 !#�. 

ôÙ < RúÙ10�ú + � {Ù10��
∞

�"ú3!
= RúÙ10�ú + {Ù × þ10�ú

9 � ;             RúÙ = � a�Ù2��
ú(ÀÁÂ6 !#)��

�"#
 

(7.12b)  

ôÙ > RúÙ10�ú + � −zÙ10��
∞

�"ú3!
= RúÙ10�ú − zÙ × þ10�ú

9 � ;          RúÙ = � a�Ù2��
ú(ÀÁÂ6 !#)��

�"#
 

Applying Eqn. 7.12 (for ôó and ôÙ) into |ôó + ôÙ| < ∆
 leads to Eqn. 7.13, as the 

required condition for the correctness of the QDS operation with truncated divisor and partial 

remainder. 

þ{ó × �10�ø
9 �+ Rø10�ø + {Ù × þ10�ú

9 � + RúÙ10�ú < ∆
� 

W��      (7.13)  

þzó × �10�ø
9 �− Rø10�ø + zÙ × þ10�ú

9 �− RúÙ10�ú < ∆
� 

Various methods have been introduced in the literature to find the minimum required 

values of c and � (consequently ÷ and ù) [52, 53, 54]; which affect the QDS complexity. In 

addition to the latter parameters, it is inferred from Eqn. 7.13 that the digit-sets of the partial 

remainder, the divisor and the quotient (substituting ∆
 from Eqns. 7.10 and 7.6) have great 

impacts on the complexity of QDS, as are discussed below. 
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a) Quotient digit-set [−��,��]: According to Eqns. 7.6 and 7.10, quotient digit-set 

determines ∆
= �¹��3��� ½ + 10�� ¹2 − ��3��� ½ − 1��. Therefore, the higher the 

cardinality of this digit-set (i.e., z¤ + {¤ + 1), which influences its redundancy, the 

looser the condition of Eqn. 7.13. This allows for more imprecision in QDS computation; 

hence simpler QDS. However, this simplification linearly increases the complexity of the 

generation of the divisor multiples ¦�3!�, required for partial remainder computation 

(Eqn. 7.7) [17]. 

b) The digit-set of the divisor [−�j,�j] and partial remainder [−�Ì,�Ì]: According to 

Eqn. 7.13 max[(zó + zÙ), ({ó + {Ù)] has an impact on the complexity of QDS. The 

lower the value of the latter, the smaller ÷ and ù (consequently t and d) are required and 

hence simpler QDS. Therefore, it is important to keep max[(zó + zÙ), ({ó + {Ù)] as 

low as possible. 

According to issue b) above, there is a need to minimize max[(zó + zÙ), ({ó + {Ù)]. 
Recalling that the divisor usually takes a non-redundant representation while partial remainders 

are represented in redundant form, the followings are suggested. 

• Minimally redundant symmetric signed-digit [55] representation of the partial remainder 

i.e., zó = {ó = 5 for radix-10. Yet in case of using non-redundant partial remainders it 

is suggested to employ zó = 5 (4) and {ó = 4 (5). 

• Minimally asymmetric non-redundant signed-digit representation of the divisor i.e., 

zÙ = 5 (4) and {Ù = 4(5) for radix-10. 
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7.4 The Proposed Decimal Divider 

This section is meant to represent an architecture for the decimal division algorithm using 

the proposed divisor’s and partial remainders’ redundant representations (particularly their digit-

sets). For this purpose, one would assume the minimally redundant symmetric signed-digit 

representation of the partial remainders (digit-set is [−5,5]). However, partial remainders are 

generated in digit-set of [−6,5] to be able to utilize a carry-free addition in partial remainder 

computation (PRC) and use minimally asymmetric non-redundant signed-digit representation of 

the divisor (digit-set is [−4,5]). it is also assumed that the minimally redundant signed-digit 

quotient digit-set i.e., ¦�3! ∈ [−5,5]. This digit-set is used due to the fact that decimal dividers 

consume high area costs and there is no intention to add more cost by using a more redundant 

quotient. Therefore, the convergence condition, according to Eqn. 7.6, can be deemed as Eqn. 

7.14. 

|�[L]| ≤ »
� × �      (7.14)  

Moreover, according to Eqn. 7.10, the amount of the overlap is ∆
> Ù
� . Therefore, as a 

result of Theorem 7.1, |ôó + ôÙ| ≤ Ù
� guarantees the correctness of the algorithm in case of using 

the truncated shifted partial remainder and divisor in QDS, with the error of ôó and ô�, 

respectively. Given the range of the normalized divisor as 0.1 ≤ � < 1, Eqn. 7.15 must hold in 

all cases. 

|ôó + ôÙ| ≤ !
�#      (7.15)  

The proposed architecture is heavily based on the one introduced in [46] where the partial 

remainder is decomposed into the binary and decimal parts. The binary part is represented in 2’s 
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complement carry-save while the decimal part employs [−6,5] as the digit-set. The digit 

encoding of the decimal parts of the partial remainder and the divisor are illustrated in Fig. 7.2. 

 

Figure 7.2: Digit Encodings for the Decimal Parts of the Partial Remainder and Divisor 

The block diagram of the proposed architecture, adapted from [46], is shown in Fig. 7.3; 

where ´
 = (� − 0.5)�;   � ∈ [−4, 5] are the comparison multiples. Recalling the admissible 

error range, described by Eqn. 7.15, t and d (the minimum number of truncated fractional WBPs 

required in QDS) can be determined based on the methods discussed in [52, 54] where the actual 

ranges of ôó and ôÙ are computed based on Eqn. 7.12 and applied into Eqn. 7.15. The 

computations impose c = 8 and � = 8 (i.e., two fractional digits) as to have Eqn. 7.15 satisfied. 

It should be noted that according to Fig. 7.3 it is required to have 100�[L] and 10¦�3!� in QDS 

and hence two integer and two fractional digits are involved in QDS. Therefore, the range of the 

binary part is determined by Eqn. 7.16. This range of values, given that 2
12

 < 5555 < 2
13

, requires 

at most 14 bits in binary two’s complement. 

 
Figure 7.3: The Architecture including QDS and PRC 
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Besides, due to the comparison with ´
 = (� − 0.5)�, one extra rounding bit (an input 

carry to QDS) is required to determine whether the third fractional digit (weigh 10�_) is greater 

than or equal to 5. 

�100�[�]� � ≤ 100ρ� = »##
� � ≤ »##

� = 55.55    (7.16)  

Fig. 7.4, adapted from [46], depicts the abstract architecture of binary and decimal PRC 

and the QDS, where the symbols D* and w* (D and w), denoting binary (decimal) values. 

 

Figure 7.4: The Architecture including the Binary and Decimal QDS and PRC 

The QDS and Radix-2 PRC are exactly the same as those in [46] but for 14-bit operands 

(instead of 17 bits). This reduction in the number of bits has a great impact on the latency of the 

QDS due to the carry-propagation involved in it. 

The Radix-10 PRC is a simple redundant decimal adder whose details are illustrated in 

Fig. 7.5, where the Recoder block is a mere combinational logic with five input bits and six 

output bits. It should be noted that the Radix-10 PRC is not in the critical path and hence we 

strive for the minimum area of this block. The initialization phase of the proposed divider is the 

same as that of [46] except for the extra constant-time digit-set convertor which is responsible 

for the conversion from [0,9] to [−4,5] over the divisor multiples. 
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Given that the quotient representation in the proposed design is exactly the same as that 

of [46], the termination phase which is responsible for correction, conversion, normalization and 

rounding is equivalent in both designs. 

 
Figure 7.5: Radix-10 PRC (digit slice) 

7.5 Evaluations and Comparison of Decimal Dividers 

The overall latency and the critical path of the proposed decimal divider which 

determines the cycle time (i.e., the overall QDS delay) is compared to that of the fastest previous 

work [46] in Table 7.2 where the latency improvement of the proposed decimal divider is also 

illustrated. The evaluation data is reproduced from [46] where the delay of simple AND/OR 

gates with at most three inputs is denoted by ΔG and 1.5 ΔG is considered for an XOR gate. 

According to Table 7.2 the proposed decimal divider with the suggested representations 

of the divisor and partial remainders shows 10% improvement in the latency. This enhancement 

is achieved at the cost of minimum area overhead due to the fact that most of the constituent 

parts of the proposed divider are the same as those in [46]. The price of the extra digit-set 



 

103 

 

convertor in the initialization phase of the proposed design can be considered remunerated by the 

area reduction in the QDS i.e., manipulating 14 bits instead of 17 bits. 

For more accurate analysis the proposed divider is simulated by Synopsys Design 

Compiler using the STM 90�¸ CMOS standard library [26] for 1.00 VDD and 25°C 

temperature. This evaluation leads to 0.62�S as the cycle time and  56,468�¸� of area. 

Table 7.2: Critical Path of Decimal Dividers (16 digits) 
 Proposed [46] 

Critical Path 

The (4:2) compressors 4.5 ΔG 4.5 ΔG 

Sign-Detection 

(Parallel Prefix Network) 

9 ΔG 

(15-bit width) 

11 ΔG 

(18-bit width) 

Enable Signal Generator 1.5 ΔG 1.5 ΔG 

Selector 4 ΔG 4 ΔG 

Cycle Time (QDS Delay) 19 ΔG 21 ΔG 

Ratio 0.90 1.00 

 

The same simulation is done for the work in [46]. The outcomes show 0.68�S as the 

cycle time and  49,000�¸� of area. It should be noted that the latency and area of the registers 

are not included for simplicity. This does not make any changes in the comparison results given 

that both designs use the same size of registers. Table 7.3 compares the evaluation results of the 

proposed design with those of [46]. 

Table 7.3: Comparison based on the Synthesis Results 
 Cycle Time (ns) Ratio Area (¾o¿) Ratio 

Proposed 0.62 1.000 56,468 1.000 

[46] 0.68 1.096 49,000 0.867 
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CHAPTER 8 

DECIMAL SQUARE-ROOT
5
 

Beside the popular four dyadic decimal operations (i.e., addition, subtraction, 

multiplication, and division), the unary square-root operation can be implemented as an 

instruction, directly in hardware. This boosts up the performance of the decimal floating-point 

unit in the processors, particularly when the square-root is implemented sharing hardware with 

decimal divider. 

Decimal square-root units are usually implemented in hardware using functional 

algorithms such as Newton-Raphson [56, 57, 58]. However, these methods require a 

multiplication per iteration. Consequently, given the high cost of parallel decimal multipliers, the 

functional algorithms seem inadequate to be employed for decimal square-root. The digit-

recurrence algorithms, conversely, are conceptually simple and well suited for decimal square-

root due to their low hardware complexity. Moreover, using these algorithms paves the way for 

the shared decimal division/square root unit. 

The digit-recurrence square-root algorithm is exemplified in Eqn. 8.1, where 0.01 ≤ X <
1, 0.1 ≤ Q < 1 and 0 ≤ R < «�a = 10�Ü (where n is the number of fractional digits) are the 

normalized radicand, root and the remainder, respectively. It should be noted that for the 

floating-point representation the radicand should be scaled in a way to have an even exponent. 

√� = ò + ª       (8.1) 

                                                 
5
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The two recent pertinent works based on the Newton-Raphson algorithm are [56, 58], 

where the latter is the fastest available one in the literature. The former presents a hardware 

design for decimal floating-point square root in which the size of the required look-up table is 

reduced with respect to other similar designs. The most recent works [57, 58] have reduced the 

latency of the decimal square-root operation by taking advantage of a parallel fused-multiply-add 

(FMA), but at the expense of high area consumption. 

The work by Ercegovac and McIlhenny [59], which is based on the digit-recurrence 

algorithm, uses a look-up table to compute a rough approximation of the root and then correct 

the result via a division operation. Moreover, one may use the CORDIC algorithm to compute 

the decimal square root [60, 61]. 

A new digit-recurrence algorithm and the corresponding hardware architecture to 

compute the decimal square-root are discussed in this chapter. The main advantage of the 

proposed algorithm, over the previous works, is to remove the slow and costly look-up tables. 

This, however, entails generating inconstant comparison multiples to be used in the proposed 

SRT algorithm. 

8.1 Decimal Digit-Recurrence Square-Root 

Decimal digit-recurrence square-root estimates the root ò, with the error less than 

«�a = 10� . In this approach, one root digit ¦� (0 ≤ L ≤ �) is generated per iteration, such that 

the root in the i
th

 iteration ò[L] is assumed to be as in Eqn. 8.2. It should be noted that 

0.1 ≤ ò = √� − ª < 1 forces ¦# = 0, in case of non-redundant representation of ò. 

ò[L] = ∑ ¦�10����"#       (8.2)  

Therefore, the error of the root estimation in the i
th

 iteration ô¤[L] is 
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ô¤[L] = √� − ò[L]      (8.3)  

The bounds of error after n iteration  0 ≤ �ô¤[�]� = √� − ò[�] < 10� = «�a imposes 

(as a conclusion of Eqns. 8.2 and 8.3 for i+1) Eqn. 8.4 as the required condition over the root 

estimation error, assuming a root digit with a redundant representation i.e., ¦� ∈ [−z, {] (z, { ≥
0 and z + { + 1 > 10). 

10�� ¹��
� ½ < ô¤[L] < 10�� ¹��½    (8.4)  

Defining bounds õ [L] (õZ[L]) as the lower (upper) bounds of the i
th

 partial remainder 

�[L], it must satisfy Eqn. 8.5, derived by replacing Eqn. 8.3 into Eqn. 8.4. 

10�� −z9 < √� − ò[L] < 10�� {9 

⇓ 

ò[L]� + ¹10�� −z9 ½� + 2ò[L]10�� −z9 < � < ò[L]� + �10�� {9�
� + 2ò[L]10�� {9 

⇓ 

¹10�� −z9 ½� + 2ò[L]10�� −z9 < � − ò[L]� < �10�� {9�
� + 2ò[L]10�� {9 

⇓ 

õ [L] = 10�� ¹��
� ½� + �2 × ¹��

� ½ × ò[L]� < �[L] = 10�(� − ò[L]�)    (8.5)  

                                            < 10�� ¹��½� + �2 × ¹��½ × ò[L]� = õZ[L] 
The admissible range for the partial remainder, defined in Eqn. 8.5, is also known as the 

convergence condition of the decimal digit-recurrence square-root algorithm. 

The recurrence equation of the decimal square-root algorithm is determined, in Eqn. 8.6, 

by substituting Eqn. 8.2 in Eqn. 8.5 for �[L + 1]. 
 �[L + 1] = 10�3!(� − ò[L + 1]�) 

           = 10�3!ü� − ò[L]� − (¦�3!)� × 10��(�3!) − 2ò[L] × ¦�3! × 10�(�3!)ý (8.6) 

           = 10�[L] − 2ò[L] × ¦�3! − (¦�3!)� × 10�(�3!) 
        ⟹ �[L + 1] = 10�[L] −ℚ[L];         ℚ[L] = ò[L] × 2¦�3! + (¦�3!)� × 10�(�3!) 
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The recurrence equation should be performed such that �[L + 1] be bounded as in Eqn. 

8.5. This imposes a careful computation for ℚ[L] and hence a suitable selection of the ¦�3!, 

regarding the values of 10�[L] and ò[L] i.e, Root Digit Selection (RDS). The correct selection is 

guaranteed if computing Eqn. 8.6 satisfies Eqn. 8.5 for the next partial remainder. For this 

purpose, selection intervals (û
[L], ³
[L]) are defined such that if 10�[L] ∈ (û
[L], ³
[L]) with 

� ∈ [−z, {] then ¦�3! = � is admissible i.e., keeping the next partial remainder within the 

required bound. Therefore, according to Eqns. 8.5 and 8.6, boundaries of the selection intervals 

(³
[L] and û
[L]) are 

  ¦�3! = � ⟹ � û
[L] < 10�[L] < ³
[L]õ [L + 1] < 10�[L] −ℚ[L] < õZ[L + 1]� 
(8.7)  

⟹ 
³
[L] = õZ[L + 1] + ò[L] × 2� + �� × 10�(�3!)
û
[L] = õ [L + 1] + ò[L] × 2� + �� × 10�(�3!) � 

It is necessary that for any value of the shifted partial remainder 10�[L] there exist at 

least one root digit. Therefore, selection intervals must overlap i.e., û
[L] < ³
�![L]; hence Eqn. 

8.8 must hold in all iterations i.e., for 0 ≤ L ≤ �. 

û
[L] < ³
�![L] ⇓ õ [L + 1] + ò[L] × 2� + �� × 10�(�3!) < õZ[L + 1] + ò[L] × 2(� − 1) + (� − 1)� × 10�(�3!) 
     ⇓      (8.8)  2ò[L] + (2� − 1) × 10�(�3!) < õZ[L + 1] − õ [L + 1] 

To make RDS less costly it is common to select ¦�3! via comparing the truncated shifted 

partial remainder (10�[L])′ with comparison multiples ´
[L] for � ∈ (−α, β]. These comparison 

multiples should be bounded as in Eqn. 8.9 (also shown in Fig. 8.1) in order to be able to 

compensate for the error caused by using truncated operands. Therefore, the next quotient digit is 
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selected based on Eqn. 8.10 and hence the maximum absolute admissible selection error is equal 

to ¸L�[(´
[L] − û
[L]), (³
[L] − ´
[L])]. 
û
[L] < ´
[L] < ³
�![L] ⇓       (8.9)  õ [L + 1] + ò[L] × 2� + �� × 10�(�3!) < ´
[L]

< õZ[L + 1] + ò[L] × 2(� − 1) + (� − 1)� × 10�(�3!) 
¦�3! = � ,   LU  ´
[L]  ≤ (10�[L])′ < ´
3![L]   (8.10)  

 
Figure 8.1: The Selection Intervals and the Comparison Multiples 

8.2 The Proposed Decimal Square-Root Unit 

It is z = { = 5 for the proposed square-root algorithm for two reasons; First, to reduce 

the complexity of computing (¦�3!)�, required in Eqn. 8.6; second, for fewer comparison 

multiples. Consequently, the bounds of the partial remainder (according to Eqn. 8.5) are as Eqn. 

8.11. These bounds, according to Eqn. 8.8, require ò[L] > 0.05 which always hold given the 

assumed radicand and root i.e., 0.1 ≤ ò < 1. 

õ [L] = �»
h! × 10�� − !#

� ò[L] < �[L] < �»
h! × 10�� + !#

� ò[L] = õZ[L]  (8.11)  

The comparison multiples should be bounded as Eqn. 8.12, derived from Eqn. 8.9 by 

replacing H�[i + 1] from Eqn. 11 and Q[i + 1] = Q[i] + qÓ3! × 10�(Ó3!). 

¹2� − !#
� ½ ò[L] + 10�� �
6

!# − 

� + �»

h!#� < ´
[L] < ¹2� − h
�½ ò[L] + 10�� �(
�!)6

!# + 

� + �»

h!#� (8.12)  

Therefore, the comparison multiples ´
[L] are 
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´
[L] = �8[�]3í8:�[�]
� ⟹ ´
[L] = (2� − 1)ò[L] + 10�� �
63(
�!)6

�# + �»
h!#�   (8.13)  

In the RDS the truncated comparison multiples (´
[L])′ are subtracted from the truncated 

shifted partial remainder (10�[L])′, where the maximum admissible error, for all values of k, is 

defined as |ô[L]| < ¸L�[(´
[L] − û
[L]), (³
[L] − ´
[L])]. 
Given that ´
[L] − û
[L] = ³
[L] − ´
[L] =  [�]

� + 10�� ¹�
3�
!h# ½, |ô[L]| <  [�]

� +
10�� ¹�
3�

!h# ½. 

For L = 0 

LU ò[0] = 0 cℎ�� 1 ≤ ¦! = � ≤ 5 ⟹ |ô[0]| < 11180 = 0.0611 … 

LU ò[0] = 1 cℎ�� − 5 ≤ ¦! = � ≤ 0 ⟹ |ô[0]| < 19 − 1180 = 0.1055 … 

For L ≥ 1, regarding 0.1 ≤ ò[L] < 1, the admissible error of the RDS (ô[L]) is bounded as 

|ô[L]| < !
�# − ¹!#:<

!h# ½    �!!   >??@ |ô[L]| < 0.01055 …   (8.14)  

The initial values of the square root recurrence (Eqn. 6) are determined, given the minimally 

redundant root digit-set, as ò[0] = ¦# = � 0   LU    0.01 ≤ � < 0.31    LU          0.3 ≤ � < 1� and �[0] = � − ò[0]. The 

upper bound of X with ¦# = 0 is (0.55 … )� = ¹»
�½� = �»

h! ≈ 0.3. 

Initialization: r# � < 0.3 y$kl ò[0] = ¦# = 0 kq%k ò[0] = ¦# = 1;      �[0] = � − ò[0] 
Recurrence: 

For 0 ≤ L ≤ � do 

 1)    ´
[L] = (2� − 1)ò[L] + 10�� �
63(
�!)6
�# + �»

h!#� for −4 ≤ � ≤ 5. 

 2)    ¦�3! = ª�P[(10�[L])′, (´
[L])′] ⟹ ¦�3! = �   LU  (´
[L])′ ≤ (10�[L])′ < (´
3![L])′. 
 3)    ℚ[L] = ò[L] × 2¦�3! + (¦�3!)� × 10�(�3!);     ò[L + 1] = ò[L] + ¦�3! × 10�(�3!). 
 4)    �[L + 1] = 10�[L] −ℚ[L]. 
Termination: 

Perform the rounding and normalization and conversion of ò[� + 1] to BCD format. 

Figure 8.2: The proposed decimal square root algorithm 
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The proposed decimal square root algorithm is summarized in Fig. 8.2. Example 8.1 

presents the required steps, based on Fig. 8.2, to compute a decimal square-root. 

Example 8.1: Decimal Square-Root 
Initialization: & = i.'(¿¡)*+ ⇒  ò[0] = ¦# = 1    W��     �[0] = 0.3521986 − 1 = −0.6478014 

Recurrence: r = i: −7.00 = ´�¼[0] < (10�[0])- = −6.47 < ´�_[0] = −6 ⇒ �[1] = −0.078014; �¡ = −.. 

r = ¡: −1.80 = ´�![1] < (10�[1])- = −0.78 < ´#[1] = −0.6 ⇒ �[2] = 0.40986; �¿ = −¡. 

r = ¿: +2.95 = ´_[2] < (10�[2])- = 4.09 < ´¼[2] = 4.14      ⇒ �[3] = 0.5496; �' = '. 

r = ': −5.33 = ´»[3] < (10�[3])- = 5.49                                      ⇒ �[4] = −0.4365; �. = (. 

r = .: −5.34 = ´�¼[4] < (10�[4])- = −4.36 < ´�_[4] = −4.15 ⇒ �[5] = 0.38284; �( = −.. 

r = (: +2.96 = ´_[5] < (10�[5])- = 3.8284 < ´¼[5] = 4.15      ⇒ �[6] = 0.267631; �+ = '. 

r = +: +1.78 = ´�[6] < (10�[6])- = 2.67 < ´_[6] = 2.96           ⇒ �[7] = 0.302458; �/ = ¿. 

r = /: +2.96 = ´_[7] < (10�[7])- = 3.02 < ´¼[7] = 4.15          ⇒ �[8] = −0.536203; �* = '. 

Termination: 

ò[8] = 1. 4ê1ê354ê323 0[ 19�G�[ >???????@ ò[8] = 0.59346323 K[Å �� J>??????@2 = i.()'.+'¿ 

 

8.2.1 Proposed Architecture 

The most straight-forward architecture to implement the recurrence stage of Fig. 8.2, is 

shown in Fig. 8.3, where 3 = 
63(
�!)6
�# + �»

h!#. For a faster design, Fig. 8.3 can be modified as 

shown in Fig. 8.4 such that the next root digit is generated partially in parallel with the partial 

remainder computation. The details of each constituent block in Fig. 8.4 are presented in the 

following. 
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Figure 8.3: The Straight-Forward Architecture 

 
Figure 8.4: Block Diagram of the Proposed Architecture 
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Step 3) in Fig. 8.4, according to Fig. 8.2, is meant to compute ℚ[L] = ò[L] × 2¦�3! +
(¦�3!)� × 10�(�3!), which is performed in three parts. 

• Part I: Compute ò[L] × 2¦�3!, primarily, as two minimally redundant decimal 

numbers (i.e., ³ + æ = ò[L] × 2¦�3!). For this purpose, the required easy-

multiples of ò[L] (i.e., ±2ò[L], ±4ò[L] W�� ± 10ò[L]) are generated, next ¦�3! 

selects the appropriate multiples to be assigned as ³  and æ .  
• Part II: Compute (¦�3!)� via a simple combinational logic. Given the minimally 

redundant digit-set [−5,5], we have 0 ≤ 10� + P = (¦�3!)� ≤ 25; hence 

0 ≤ � ≤ 2 and −5 ≤ P ≤ 5. 

• Part III: Compute ³ + æ + � via a minimally redundant decimal adder [31, 

62] where � fits into the adder as the low-significant bits of æ¤ and ³¤, due to 

their even value. 

Fig. 8.5 shows how the aforementioned parts are connected together to generate ℚ[L]. 
The decimal redundant adder shown in Fig. 8.4, to generate the partial remainder, receives two 

inputs and generates an output all in [−6,6] digit-sets. The details of this (and other) redundant 

adders are extensively discussed in [31, 30, 62]. The comparison multiples generation block, 

according to Fig. 8.2, is responsible to generate 

´
[L + 1] = (2� − 1)ò[L + 1] + 10�(�3!)Κ; −4 ≤ � ≤ 5; where Κ = �
63(
�!)6
�# + �»

h!#�   (8.15) 

For this purpose, first (2� − 1)ò[L + 1] is generated by means of easy-multiples of 

ò[L + 1]. The required multiples are ±ò[L + 1], ±2ò[L + 1], ±3ò[L + 1] and ± 10ò[L + 1] to 

generate 10 interim sums �
[L + 1] as follows, where the addition is performed via a redundant 

adder whose inputs are in [−5,5] and [−6,6] and the output is [−6,6]. In essence, ±ò[L +
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1], ±2ò[L + 1] and ±10ò[L + 1] are generated in [−5,5] digit set while ±3ò[L + 1] is in 

[−6,6]. 

 
Figure 8.5: Details of Step 3) in Fig. 8.4 

��¼[L + 1] = −10ò[L + 1] + ò[L + 1];  ��_[L + 1] = −10ò[L + 1] + 3ò[L + 1] 
���[L + 1] = −3ò[L + 1] − 2ò[L + 1];  ��![L + 1] = −3ò[L + 1] 
�#[L + 1] = −ò[L + 1];    �![L + 1] = ò[L + 1]     (8.16) 

��[L + 1] = 3ò[L + 1];    �_[L + 1] = 2ò[L + 1] + 3ò[L + 1] 
�¼[L + 1] = 10ò[L + 1] + (−3ò[L + 1]);  �»[L + 1] = 10ò[L + 1] + (−ò[L + 1]) 

Next, each �
[L + 1] is added to the constant value 10�(�3!)Κ by a redundant decimal 

adder with [−6,6] as the digit set. 

Regarding the admissible error of the Root Digit Selection (RDS) (Eqn. 8.14) the four 

most significant digits of the comparison multiples and the shifted partial remainder are required 

to be involved in the RDS. This block is meant to generate the output carries (i.e., ∈ ]−1,0,1^) of 

the addition of 10�[L + 1] − ´
[L + 1]. 
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Figure 8.6: Comparison Multiples Generation 

With the purpose of reducing the latency and complexity of this carry-generation block, 

(10�[L + 1] − ´
[L + 1]) is represented as shown in Fig. 8.7, where white (black) dots 

symbolize negative- (positive-) weighted bits. Consequently, only 13 bits of each operand are 

required to meet the error bounds in Eqn. 8.14 (i.e., |ô[L]| < 0.01055 …). 

 
Figure 8.7: Bit representations used in RDS 
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Next, the comparing signal is produced, based on the values of the carry bits, to indicate 

whether 10�[L + 1] ≥ ´
[L + 1]. Finally, an encoder is used to generate ¦�3�, given the 10 

comparison signals. The architecture of the recurrence stage is shown in Fig. 8.8. 

 
Figure 8.8: The Proposed Architecture of the Recurrence Stage 

In the initialization stage, according to Fig. 8.2, there is a need to convert the BCD 

representation of the radicand to redundant decimal encoding ([−6,6]) and to compare the most 

significant digit of the radicand with 3. Next, based on this comparison result the most 

significant digit of the redundant radicand takes the value of ]−1,0,1^. In the termination stage, 

some operations are needed to convert the minimally redundant decimal root ò to the final BCD 

result, namely conversion to BCD, rounding and normalization. 

These operations are performed in the standard manner explained in division papers [37] 

where conversion and normalization are done on-the-fly and the rounding mode is 

RoundTiesToEven. 
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8.3 Evaluations and Comparisons of Decimal Square-Root Units 

The evaluation results of the proposed architecture, in terms of latency and area, are 

presented and compared with the fastest previous work, in this section. The proposed design is 

synthesized by Synopsys Design Compiler using the STM 90�¸ CMOS standard library [26] 

for 1.00 VDD and 25°C temperature in which an FO4 (i.e., the latency of an inverter driving 4 

similar inverters in the output) is 45aS and the area of a NAND2 is 4.4�¸�. 

According to Fig. 8.8 the recurrence stage of the proposed multiplier consists of three 

main parts namely comparison multiples generation, partial remainder computation and root digit 

selection. The simulation results show that the critical path delay consists of comparison 

multiples generation and root digit selection. Moreover, the number of cycles required for a 16-

digit root is 1+17+1=19. Table 8.1 illustrates the critical path delay, the number of cycles and the 

total latency of the 16-digit proposed decimal square-root architecture. 

Table 8.1: Critical Path Delay of the Proposed Design (16 digits) 

 Register x(-3) Adder 1 Adder 2 Comparator Encoder 
Cycle 

Time 

# of 

Cycles 

Total 

Latency 

Delay (ns) 0.17 0.22 0.51 0.54 0.26 0.10 1.80 19 34.2 

 

The area consumption of the proposed 16-digit architecture is evaluated as the sum of the 

area cost of various constituent parts tabulated in Table 8.2. The cycle time of the proposed 

decimal square root architecture is 40 FO4 and for the 16-digit root the total latency and area are 

760 FO4 and about 31,000 NAND2, respectively. 

Table 8.2: Area consumption of the proposed 16-digit architecture (NAND2) 

 Combinational Registers Total 

Initialization 276 441 717 

Recurrence 20,870 4,743 25,613 

Termination 3,662 1,000 4,662 

Whole Design 24,808 6,184 ≈ '¡6 

 



 

117 

 

The fastest previous pertinent works [57, 58] is based on the Newton-Raphson iterative 

method where a decimal FMA is the main building block. This is a floating-point decimal square 

root unit with cycle time of 62.22 FO4 [57] and requires 15 cycles to compute a 16-digit root; 

thus the total latency of 933.3 FO4. The area of this design is reported as 157,284 NAND2. 

For fair comparison the latency and area of the proposed design is estimated for the 

floating-point computation. In this case, a pre-processing unit is required to convert the radicand 

from Densely-Packed-Decimal (DPD) to BCD encoding, determine the number of leading zeros 

and normalize the radicand. This pre-processing unit adds one extra cycle to the proposed fixed-

point design and consumes about 2378 NAND2 of area [56]. Moreover, a post-processing unit is 

required to deal with the exponents, handle the exceptions and convert the BCD root back to the 

IEEE 754-2008 format. This can be performed in the termination stage with the extra area of 

3,027 NAND2 [56]. 

Consequently, using the proposed decimal square root architecture for the floating-point 

computation leads to the total latency of 40 × 20 = 800 FO4 and consume the area of about 

36,400 NAND2. Table 8.3 compares the proposed design with that of [57, 58] and the work 

based on the CORDIC algorithm [61], in terms of latency and area. There is also another work, 

based on the digit-recurrence algorithm [59], which uses look-up tables, small adders and 

multipliers. However, it is optimized and implemented on FPGA and hence no ASIC evaluation 

results are available to compare with. 

Table 8.3: Comparison of the FP architectures 

 Cycle time (FO4) # of cycles Total Latency (FO4) Ratio Area (NAND2) Ratio 

Proposed 40.00 20 800.0 1.00 36,400 1.00 

[57] 62.22 15 933.3 1.16 157,284 4.32 

[61] 34.63 35 1211 1.51 18,826 + 4.5KB --- 
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According to the comparison results the proposed design is about 14% faster than the 

fastest previous work with about a quarter of the area. This implies that, due to the high latency 

and area cost of decimal multipliers, using digit-recurrence algorithms for computing decimal 

square-root is more efficient. 
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CHAPTER 9 

CONCLUSIONS & FUTURE WORKS 

9.1 Conclusions 

Co-processors, working in parallel with primary processors, are meant to supplement the 

functions of general-purpose processors. Computationally intensive tasks are usually delegated 

to co-processors so as to offload heavy functions from the primary processor, which leads to 

higher overall performance. Since a co-processor, unlike a general-purpose processor, is 

designed for a specific application (e.g., floating-point, FFT, decimal arithmetic), it can be a 

custom-designed product that allows for use of unconventional methods and algorithms to 

increase the performance of the co-processor. 

One of the unconventional approaches to speeding up an arithmetic co-processor is using 

redundant number systems. This delays carry-propagation until the last phase of the whole 

operation and leads to a much faster architecture. However, using redundant number systems 

adds extra complexity to the arithmetic circuitries, which usually increases area. Therefore, the 

number system and the corresponding arithmetic units must be designed meticulously to reach 

the optimized balance between area and speed. 

In this thesis, new architectures for two co-processors (FFT and decimal) are presented 

and discussed. It is shown how redundant number systems improve the speed and performance 

of these co-processors. The first part is the proposal of a high-speed FFT architecture that is 

much faster than the best previous works at the cost of higher area. The reasons for this speed 

improvement are twofold: 
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• Using Binary-Signed-Digit (BSD) representation for the significands of the 

floating-point operands to eliminate carry-propagation. 

• The proposed Fused-Dot-Product-Add (FDPA) unit that combines the 

multiplications and additions required in a floating-point butterfly unit. Higher 

speed is achieved by eliminating extra leading-zero-detection (LZD), 

normalization and rounding units. 

High-speed floating-point FMAs performing over complex numbers are required in order 

to have a high-performance butterfly unit. This, in turn, requires floating-point multipliers along 

with high-speed three-operand floating-point adders. Floating-point multipliers are typically 

designed based on the conventional architecture or Golub's approach. It is shown that Golub's 

method does not have any advantage over the conventional one when being used over floating-

point operands. Therefore, a new redundant floating-point multiplier is designed based on the 

conventional architecture. A new three-operand redundant floating-point adder is developed. 

Modified Booth encoding is also used to speed up the proposed constant Binary-Signed-Digit 

multiplier. Also, operands are stored in registers and used in the next stage as a redundant 

representation; thus, carry-propagation is involved neither inside a butterfly unit nor between 

FFT stages. This results in a faster FFT processor, but a larger area due to the need for more 

registers to store redundant operands. 

For the second part, four of the most useful decimal operations (addition, multiplication, 

division and square-root) are implemented in hardware and it is shown that using redundant 

number systems improves the clock frequency of these decimal arithmetic units. A decimal 

signed digit adder that uses the stored carry representation of the operands is proposed. Using 

this representation requires [−9,7], as the digit-set. It is shown that this representation simplifies 
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the final addition by removing the input carry. The proposed adder consists of three main 

building blocks:  

1) Combinational logic F1 to generate the transfer bits and the high-portion of the 

intermediate sum 

2) Combinational logic F2 to generate the low-portion of the intermediate sum 

3) Three-bit CLA to generate the final sum 

The performance of the proposed redundant adder was compared with that of the fastest 

previous work. The results demonstrated that the proposed architecture is 15 % faster than the 

most latency efficient previous work while sacrificing some area and power. 

A high-frequency sequential decimal multiplier is also proposed where the easy-multiples 

(i.e.,�, 2�, 4�, 5�) are used to generate the partial products represented in 4-2-2-1 encoding. The 

cycle-time of the proposed sequential multiplier is minimized by using efficient decimal 

encodings and by retiming the constituent parts of a decimal carry-save adder. It is shown that 

the proposed pipelined design, with its cycle time of 10 FO4, is much faster than the previous 

works, while the proposed word-serial implementation keeps the area as low as possible. The 

fastest previous design [34] works with 47% slower clock frequency and consequently a 27% 

slower multiplier than the proposed pipelined architecture. 

For decimal division, firstly, the general rules and conditions for quotient digit selection 

(QDS) are presented in decimal digit-recurrence division algorithms with operands represented 

in generalized signed-digit (GSD) format. As a consequence of this generalization, the 

convergence condition usually used in division algorithms is unnecessarily strict and 

conservative, which might exclude some correct algorithms. Using the proposed general 

condition circumvents this problem and allows for more efficient dividers. Secondly, the 
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suggested representations were applied into the fastest decimal divider and gained about 10% 

speed improvement with almost the same area cost. 

Finally, a decimal square-root architecture is proposed based on the SRT algorithm in 

which the root is computed iteratively. A root digit is determined by comparing the partial 

remainder to ten inconstant comparison multiples. The radix-10 minimally redundant 

representation of the root (i.e., digit-set of [−5,5]) leads to a simple root digit selection unit. The 

partial remainder, however, is represented in the digit-set equal to [−6,6] so as to reduce the 

complexity of the intermediate redundant decimal adders. This endeavor leads to an architecture 

that is 14% faster than the fastest previous work (based on the Newton-Raphson algorithm) with 

about a quarter of the area. It is also suggested that implementing decimal square-root using digit 

recurrence algorithms is more efficient than the designs based on functional methods e.g., 

Newton-Raphson. The main reason lies within the fact that functional methods necessitate a 

decimal multiplication per iteration. 

9.2 Future Works 

There are two approaches which can be pursued in the future as an extension of the 

current work described in this thesis. 

• Conduct research on redundant number systems for other useful co-processors 

(e.g., for graphic and encryption applications). 

• Search for more efficient redundant number systems for each of the constituent 

blocks of the FFT and decimal co-processors discussed in this thesis. 

In the first approach, one may need to identify the performance bottleneck of the desired 

co-processor where multiple consecutive arithmetic operations are being performed. The next 
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step is finding an efficient redundant representation for the operands involved in the bottleneck. 

Finally, a high-speed algorithm and architecture are required to perform the corresponding 

redundant arithmetic operations. 

The second approach includes finding other redundant representations for FFT Butterfly 

units, decimal adders and subtractors, decimal sequential and parallel multipliers, fused-

multiply-add units, decimal dividers and decimal square-root units (both digit-recurrence and 

multiplicative-based algorithms). 

Furthermore, one could pursue the implementation of FFT co-processors based on range 

addressable look-up tables. Using this method, the FFT co-processor is expected to be faster. The 

cost of these look-up tables are lower than the conventional look-up tables and hence saves the 

area cost. 

Implementing redundant floating-point FFT co-processors based on CORDIC (COrdinate 

Rotation DIgital Computer) algorithms sounds a promising research topic to be worked on in the 

future. Using the CORDIC approach saves area cost but sacrifices the speed of the FFT co-

processor. 
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