
 

 

Integrating Peer-to-Peer into Web Services 

 

A Thesis Submitted to the College of 

Graduate Studies and Research 

In Partial Fulfillment of the Requirements 

For the Degree of Master of Science 

In the Department of Computer Science 

University of Saskatchewan 

Saskatoon 

 

By 

 

Weidong Han 

 

 

 

 

 Copyright Weidong Han, August, 2006. All rights reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Saskatchewan's Research Archive

https://core.ac.uk/display/226120253?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 I 

 

 

Permission to Use 

In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree 

from the University of Saskatchewan, I agree that the Libraries of this University may make it 

freely available for inspection. I further agree that permission for copying of this thesis in any 

manner, in whole or in part, for scholarly purposes may be granted by the professor or professors 

who supervised my thesis work or, in their absence, by the Head of the Department or the Dean 

of the College in which my thesis work was done. It is understood that any copying or publication 

or use of this thesis or parts thereof for financial gain shall not be allowed without my written 

permission. It is also understood that due recognition shall be given to me and to the University 

of Saskatchewan in any scholarly use which may be made of any material in my thesis. 

Requests for permission to copy or to make other use of material in this thesis in whole or 

part should be addressed to: 

 

Head of the Department of Computer Science 

176 Thorvaldson Building 

110 Science Place 

University of Saskatchewan 

Saskatoon, Saskatchewan  

Canada 

S7N 5C9



 II 

 

 

Abstract 

The Service Oriented Architecture (SOA) is emerging as a new standard for building large 

loosely coupled systems. Web Services, the dominant implementation platform for SOA, use a 

server-centric approach to manage all components. This limits the deployment of Web Services to 

static domains, since a service invocation will fail if the server component changes its availability 

or location. 

      This research focuses on the possibilities of integrating P2P technology into the Web Services 

environment as a means of increasing its robustness. A P2P-Web Services architecture is 

presented that enables service discovery and service invocations in dynamic environments. The 

corresponding experiments on the reference system and the simulation system present the 

characteristics and improvements of the hybrid system. 



 III 

 

 

Acknowledgements 

First of all, I would like to sincerely thank my supervisor, Dr. Ralph Deters, for his persistent 

support, guidance, help, and encourage during the whole process of my study and my thesis. 

I would like to thank the members of my advisory committee: Dr. Julita Vassileva, Dr. John 

Cooke, and Dr. Chris Zhang (external) for their valuable suggestions and comments. 

I would also like to thank the students, staff and faculty of the Computer Science Department and 

especially to the students of MADMUC lab for their support. Also thank you to Ms. Jan 

Thompson for her help and support. 

Finally, I would like to thank my wife and daughter for their support and love all the time. I 

would like to dedicate my thesis to them. 



 IV 

TABLE OF CONTENTS 
 

PERMISSION TO USE ............................................................................................................i 

ABSTRACT ............................................................................................................................. ii 

ACKNOWLEDGEMENTS ................................................................................................... iii 

TABLE OF CONTENTS ........................................................................................................iv 

LIST OF FIGURES ................................................................................................................vi 

LIST OF TABLES ............................................................................................................... viii 

LIST OF ABBREVIATIONS .................................................................................................ix 

CHAPTER 1 INTRODUCTION ..............................................................................................1 

CHAPTER 2 WEB SERVICES AND P2P ...............................................................................4 

2.1 Web Services .....................................................................................................................4 

2.1.1 SOAP ..........................................................................................................................5 

2.1.2 WSDL..........................................................................................................................6 

2.1.3 UDDI ..........................................................................................................................7 

2.1.3.1 The UDDI Publication API....................................................................................9 

2.1.3.2 The UDDI Inquiry API..........................................................................................9 

2.1.4 Drawbacks of Web Services .......................................................................................10 

2.2 P2P..................................................................................................................................11 

2.2.1 Gnutella ....................................................................................................................11 

2.3 Linking P2P and Web Services ........................................................................................13 

CHAPTER 3 LITERATURE REVIEW.................................................................................14 

3.1 Web Services ...................................................................................................................14 

3.1.1 Use of UDDI .............................................................................................................14 

3.2 P2P..................................................................................................................................15 

3.2.1 The Centralized Directory Model...............................................................................15 

3.2.2 The Flooded Requests Model .....................................................................................16 

3.2.3 The Distributed Hash Table Model (DHT) .................................................................17 

3.3 Integrating P2P and Web Services....................................................................................19 

3.4 Service Discovery............................................................................................................20 

3.5 Service Selection .............................................................................................................22 

3.6 Conclusions .....................................................................................................................26 



 V 

CHAPTER 4 P2P-WEB SERVICES ARCHITECTURE......................................................28 

4.1 The P2P-Web Services Framework (PWSF).....................................................................29 

4.2 The Distributed P2P UDDI (PUDDI) ...............................................................................32 

4.3 The P2P-Web Services Gateway (PWSG) ........................................................................33 

4.4 Usage of PUDDI and PWSG............................................................................................34 

4.5 The QoS Based Selection .................................................................................................36 

4.6 Deployment .....................................................................................................................39 

CHAPTER 5 EXPERIMENT 1: OVERHEAD AND PERFORMANCE OF PUDDI AND 

PWSG ......................................................................................................................................41 

5.1 Experimental Setup..........................................................................................................41 

5.2 CPU Usage of PUDDI .....................................................................................................44 

5.3 CPU Usage of PWSG ......................................................................................................46 

5.4 Bandwidth Consumption of PUDDI .................................................................................48 

5.5 Bandwidth consumption of PWSG...................................................................................50 

5.6 Throughput and Response Time of PUDDI ......................................................................51 

5.7 Throughput and Response Time of PWSG .......................................................................54 

5.7 Conclusions .....................................................................................................................55 

CHAPTER 6 CALIBRATING THE SIMULATION SYSTEM............................................56 

6.1 Design of the Simulation System......................................................................................57 

6.2 Choice of System Parameters ...........................................................................................59 

6.3 Calibration.......................................................................................................................60 

6.4 Conclusions .....................................................................................................................62 

CHAPTER 7 EXPERIMENT 2: EFFECTS OF P2P PARAMETERS .................................64 

7.1 Effects of TTL .................................................................................................................64 

7.2 Effects of the Number of Neighbors .................................................................................67 

7.3 Conclusions .....................................................................................................................69 

CHAPTER 8 EXPERIMENT 3: EXAMINING QOS SELECTION ....................................70 

8.1 Experimental Setup..........................................................................................................70 

8.2 Experimental Results .......................................................................................................73 

8.3 Conclusions .....................................................................................................................76 

CHAPTER 9 CONCLUSIONS AND FUTURE WORK .......................................................77 

REFERENCES........................................................................................................................82 

 



 VI 

LIST OF FIGURES 

 
Figure 1.1: Topology of Web Services ........................................................................................1 

Figure 2.1: The Web Services development/deployment scenario ................................................4 

Figure 2.2: Service invocation .....................................................................................................6 

Figure 2.3: SOAP message..........................................................................................................7 

Figure 2.4: A WSDL document ...................................................................................................8 

Figure 2.5: An example of the Gnutella network........................................................................11 

Figure 2.6: Integrating P2P into Web Services...........................................................................13 

Figure 3.1: A centralized directory network...............................................................................16 

Figure 3.2: DHT network ..........................................................................................................18 

Figure 3.3: Service selection......................................................................................................23 

Figure 4.1: Using the proxy to manipulate communication ........................................................29 

Figure 4.2: A working scenario using PWSF .............................................................................29 

Figure 4.3: The Software Structure of PWSF.............................................................................30 

Figure 4.4: Using PWSF as the base of PUDDI and PWSG .......................................................31 

Figure 4.5: Using PUDDI in the proposed architecture to substitute UDDI ................................32 

Figure 4.6: Using PWSG in the proposed architecture ...............................................................33 

Figure 4.7: Difference between two WSDL documents..............................................................35 

Figure 4.8: The QoS Based Selection ........................................................................................36 

Figure 4.9: The deployment scenario of the proposed architecture .............................................39 

Figure 5.1: Two-peer networking topology................................................................................42 

Figure 5.2: Topology used for examining the PUDDI Publication API.......................................42 

Figure 5.3: Four-peer networking topology................................................................................43 

Figure 5.4: CPU usage of the PUDDI Publication API...............................................................45 

Figure 5.5: CPU usage of the PUDDI Inquiry API using two-peer topology ..............................45 

Figure 5.6: CPU usage of the PUDDI Inquiry API using four-peer topology..............................46 

Figure 5.7: CPU usage of PWSG using two-peer topology ........................................................47 

Figure 5.8: CPU usage of PWSG using four-peer topology........................................................47 

Figure 5.9: PUDDI bandwidth consumption on the consumer side using two-peer topology ......48 

 Figure 5.10: PUDDI bandwidth consumption on the provider side using two-peer topology......48 

Figure 5.11: PUDDI bandwidth consumption on the consumer side using four-peer topology....49 

Figure 5.12: PUDDI bandwidth consumption on the provider side using four-peer topology......49 

Figure 5.13: PWSG bandwidth consumption using two-peer topology.......................................50 

Figure 5.14: PWSG bandwidth consumption using four-peer topology ......................................50 

Figure 5.15: Throughput of the PUDDI Publication API............................................................51 

Figure 5.16: Response time of the PUDDI Publication API .......................................................52 



 VII 

Figure 5.17: Throughput of the PUDDI Inquiry API using two-peer topology............................52 

Figure 5.18: Response time of the PUDDI Inquiry API using two-peer topology .......................53 

Figure 5.19: Throughput of the PUDDI Inquiry API using four-peer topology...........................53 

Figure 5.20: Response time of the PUDDI Inquiry API using four-peer topology.......................54 

Figure 5.21: Response time of PWSG........................................................................................54 

Figure 5.22: Throughput of PWSG............................................................................................55 

Figure 6.1: The simulation system.............................................................................................57 

Figure 6.2: Execution of the action ............................................................................................58 

Figure 6.3: Decomposing a request process ...............................................................................59 

Figure 6.4: Two-peer topology ..................................................................................................60 

Figure 6.5: Performance comparison using the two-peer topology .............................................61 

Figure 6.6: Three-peer topology ................................................................................................61 

Figure 6.7: Performance comparison using the three-peer topology ...........................................61 

Figure 6.8: Four-peer topology..................................................................................................61 

Figure 6.9: Performance comparison using the four-peer topology.............................................62 

Figure 7.1: Number of reachable peers V.S. TTLs .....................................................................65 

Figure 7.2: Search time duration V.S. TTLs...............................................................................66 

Figure 7.3: Number of packages V.S. TTLs...............................................................................66 

Figure 7.4: Reachable peers V.S. #Neighbors ............................................................................67 

Figure 7.5: Search time V.S. #Neighbors...................................................................................68 

Figure 7.6: #Packages V.S. #Neighbors.....................................................................................68 

Figure 8.1: Experimental result of Setting 1...............................................................................74 

Figure 8.2: Experimental result of Setting 2...............................................................................74 

Figure 8.3: Experimental result of Setting 3...............................................................................75 

Figure 8.4: Experimental result of Setting 4...............................................................................76 

 



 VIII 

LIST OF TABLES 

 
Table 4.1: The parameters of QoS feedback...............................................................................37 

Table 4.2: The parameters used in runtime context information .................................................37 

Table 4.3: The notation of parameters........................................................................................38 

Table 5.1: Hardware configuration of experimental machines....................................................43 

Table 5.2: Web Service provided by each peer ..........................................................................44 

Table 7.1: Experimental configuration.......................................................................................65 

Table 7.2: Experimental configuration.......................................................................................67 

Table 8.1: Local-area network setting........................................................................................71 

Table 8.2: Wide-area network setting ........................................................................................71 

Table 8.3: WAN with mixed servers setting...............................................................................72 

Table 8.4: Heavy load WAN with mixed servers setting ............................................................72 

 



 IX 

LIST OF ABBREVIATIONS 

 
CORBA Common Object Request Broker Architecture 

DCOM Distributed Component Object Model  

DHT Distributed Hash Table  

HTTP Hypertext Transfer Protocol 

IP Internet Protocol 

LAN Local-area Network 

P2P Peer-to-Peer  

PUDDI Distributed P2P UDDI 

PWSF P2P-Web Services Framework  

PWSG P2P-Web Services Gateway  

QoS Quality of Service  

RDF Resource Description Framework  

SOA Service Oriented Architecture  

SOAP Simple Object Access Protocol  

TTL Time to Live  

UDDI Universal Description, Discovery and Integration  

URL  Uniform Resource Locator 

WAN Wide-area Network 

WS consumer  Web Service consumer  

WS provider Web Service provider  

WSDL Web Services Description Language  

XML Extensible Markup Language  

 



 1 

 

CHAPTER 1 

INTRODUCTION 

Web Services [28] are a distributed computing technology that allow applications to 

interact with each other over networks using Extensible Markup Language (XML, [7]) 

messaging. They are defined as a set of standards, including XML, Simple Object Access 

Protocol (SOAP, [27]), Web Services Description Language (WSDL, [11]), and 

Universal Description, Discovery and Integration (UDDI, [2]). Compared to other 

approaches, e.g., the Common Object Request Broker Architecture (CORBA, [29]) and 

the Distributed Component Object Model (DCOM, [25]), Web Services differ with 

respect to meta-data and platform independence. The service provider offers meta-data 

(WSDL document) for the potential client to examine its functionality at runtime. This 

self-describing feature of Web Services enables the automatic generation of support code 

that ensures a seamless interaction between the provider and the consumer.  

      Since Web Services use XML messaging, true platform and programming language 

independence is achieved, which in turn greatly simplifies the deployment of Web 

Services.  

Service ConsumerService Provider

Registry (UDDI Server in Web Services)

P
ub

lis
he

s

D
iscovers

Accesses

 

Figure 1.1: Topology of Web Services 

      Web Services are an implementation of the Service Oriented Architecture (SOA), an 

“architecture that represents software functionality as discoverable services on the 



 2 

network” [9]. SOA enables loose coupling [30] among applications. Applications are not 

tightly bound together and can be developed and deployed separately. The message based 

interactions and standardized service definition schemas of SOA also give applications 

significant flexibility. SOA defines three essential components (Figure 1.1), i.e., the 

central registry, the service provider, and the service consumer.  

      The central registry provides a “yellow page” service. The service provider publishes 

its service information and network location in the registry. The service consumer 

discovers the service information from the registry. It then directly accesses the service of 

the provider using the discovered information.  

      The triangle structure of SOA (Figure 1.1) is server-centric and the servers are single 

points of failure. For the central registry and the service provider, any change in their 

availability or locations will incur an access failure for the service consumer. This failure 

can not be avoided in SOA because the service consumer always assumes that server 

components are available. Moreover, the information in the registry may be outdated due 

to this weakness of SOA. Therefore, SOA is not suited for dynamic environments in 

which all participants can enter and depart at any time without notice (e.g. wireless 

networks).  

      This thesis focuses on improving Web Services as an implementation of SOA to 

enable their deployment in dynamic environments. While Web Services support the 

integration of distributed components in a truly platform independent manner, they suffer 

from the brittleness of their server-centric design. P2P technologies exhibit remarkable 

robustness and are message based like Web Services; making a blend of Web Services 

and P2P an interesting option. If it were possible to integrate the P2P concepts 

transparently into the already established Web Services architecture, one would expect a 

more robust architecture enabling a more widespread deployment of Web Services. 

      This work will focus on evaluating the hypothesis that by transparently integrating 

P2P concepts (P2P, [26]) into Web Services, it will become possible to deploy them in 

dynamic environments like wireless networks without sacrificing any interoperability 

benefits. The remainder of this thesis is organized as follows. Chapter two provides 

background knowledge and a problem description. This is followed by the literature 



 3 

review. Chapter four presents an architecture for solving the problems defined in Chapter 

two. Chapters five to eight give a set of experiments to evaluate the overhead, 

performance, and improvements of the architecture. Chapter nine presents a conclusion 

and outlook on future work. 



 4 

 

CHAPTER 2 

WEB SERVICES AND P2P 

Web Services and P2P are two kinds of distributed computing technologies. Web 

Services adopt a triangle structure to manage all components. To support all functions, 

The server component must keep its availability and location immutable. P2P eliminates 

the need for the server component, and performs dynamic discovery to filter out 

unavailable resources. Integrating P2P into Web Services provides a means to improve 

system robustness. 

2.1 Web Services 

UDDI Server

D
iscovers (D

esign tim
e)

D
isco

ve
rs (R

u
n
 tim

e
)

Invokes

UDDI ClientUDDI Client

WS ConsumerWS Provider

Deploys/

Manages

Administrator

R
eg

is
te

rs
 

(D
ep

lo
ym

en
t t

im
e)

R
e
g
is

te
rs

 (
R

u
n
ti
m

e
)

Developer

Implements

Retrieves WSDL

1

23 6

4 4

5

 

Figure 2.1: The Web Services development/deployment scenario 

Figure 2.1 shows a standard Web Services development/deployment scenario, which 

consists of six elements.  

1) The UDDI server, which is a central registry providing the yellow page service. 

2) The Web Service provider (WS provider), which hosts the service. 



 5 

3) The Administrator, who deploys and manages the WS provider. 

4) The UDDI client, which provides an easy-to-use interface for users to manipulate 

data in the UDDI server. 

5) The Web Service consumer (WS consumer), which invokes the service of the WS 

provider. 

6) The Developer, who is responsible for developing the WS consumer. 

      The elements are related as follows: 

• The administrator deploys the WS provider on a physical machine and uses a 

UDDI client to publish the information about the service to the UDDI server. The 

WS provider can also update its existing service information in the UDDI server 

after its state is changed.  

• Typically, the developer performs a lookup operation through a UDDI client 

(design-time discovery) to find a desirable service from the UDDI server. After 

finding a suitable service, the interface definition (WSDL document) can be 

retrieved from the WS provider. 

• The developer implements a WS consumer based on the retrieved interface 

definition. The WS consumer interacts with the WS provider directly to invoke 

the service. 

• If the WS consumer fails to invoke the service of the provider, it tries to obtain 

updated information about the provider from the UDDI server again (run-time 

discovery). The WS consumer can arrange the next request according to the 

newly fetched information.  

      SOAP, WSDL, and UDDI provide the core functionality of Web Services and will be 

explained in the following sections.  

2.1.1 SOAP 

The most important feature of Web Services is interoperability between heterogeneous 

applications. Web Service applications can easily publish and invoke services no matter 



 6 

what programming languages they are written in, and what platforms they are running on 

due to the XML-based SOAP protocol.   

      Figure 2.2 shows a service invocation occurring between a WS provider and a WS 

consumer. The WS consumer sends a SOAP request to the WS provider through an 

HTTP connection. The provider processes the request and returns a SOAP message as the 

reply to the consumer. Then, the provider closes the HTTP connection to finalize the 

invocation. 

SOAP Request

SOAP Reply

ConsumerProvider

HTTP Connection

  

Figure 2.2: Service invocation 

      Figure 2.3 shows a SOAP request and a SOAP reply used in a service invocation. The 

SOAP request carries a call to the method “getResponse” with an input argument 

“Service1 Test”. The SOAP reply carries a response “Service1 Reply” to the call. To 

maximize the compatibility, SOAP hides all language and platform specific information 

and presents the message in a universal way, so any application can parse the information 

without any ambiguity. Since SOAP is a textual protocol, it can be enveloped by any 

other protocol. 

2.1.2 WSDL 

Self-description is an important feature of Web Services. Most distributed computing 

environments prior to Web Services, e.g., CORBA and DCOM, do not provide a truly 

platform independent means to publish the interface definitions of services. In Web 

Services, WSDL standardizes the service description using XML. A WSDL document, as 

shown in Figure 2.4, describes the following aspects of a service: 

• message: defines the data type of the input/output message used by the service 

• portType: defines all operations of the service, each of which contains an input 

and an output messages 



 7 

SOAP RequestSOAP RequestSOAP RequestSOAP Request
<SOAP-ENV:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
                                       xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

                                       xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/" 

                                       xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" 
                                       xmlns:clr="http://schemas.microsoft.com/soap/encoding/clr/1.0" 

                                       SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
    <SOAP-ENV:Body>

        <i2:getResponse id="ref-1" xmlns:i2="http://schemas.microsoft.com/clr/nsassem/Service1">
            <input id="ref-3">Service1 Test</input>

        </i2:getResponse>
    </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

SOAP ReplySOAP ReplySOAP ReplySOAP Reply
<SOAP-ENV:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

                                       xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
                                       xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/" 

                                       xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" 
                                       xmlns:clr="http://schemas.microsoft.com/soap/encoding/clr/1.0" 

                                       SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

    <SOAP-ENV:Body>
        <i2:getResponseResponse id="ref-1"

          xmlns:i2="http://schemas.microsoft.com/clr/nsassem/Service1">
            <return id="ref-3">Service1 Reply</return>

        </i2:getResponseResponse>
    </SOAP-ENV:Body>

</SOAP-ENV:Envelope>
 

Figure 2.3: SOAP message 

• binding: defines the protocol used to invoke the service 

• service: defines the name and the port (see below) of the service 

• port: defines the address of the service 

      After obtaining the WSDL document describing the service, a developer can build a 

WS consumer immediately because the WSDL document contains sufficient information 

for service invocation.   

2.1.3 UDDI 

The UDDI server is the key component connecting WS consumers and WS providers, 

and is itself a set of Web Services supporting the description and discovery of services on 

three meta-data levels: 



 8 

<definitions name='WSProvider' targetNamespace='http://…' xmlns='http://…'
    <message name='WSProvider.getResponseInput'>
        <part name='a' type='xsd:int'/>
    </message>
    <message name='WSProvider.getResponseOutput'>
    </message>

    <portType name='WSProviderPortType'>
        <operation name='getResponse' parameterOrder='a'>
            <input name='getResponseRequest' message='tns:WSProvider.getResponseInput'/>
            <output name='getResponseResponse' message='tns:WSProvider.getResponseOutput'/>
        </operation>
    </portType>

    <binding name='WSProviderBinding' type='tns:WSProviderPortType'>
        <soap:binding style='rpc' transport='http://schemas.xmlsoap.org/soap/http'/>
        <operation name='getResponse'>
            <soap:operation soapAction='http://…'/>
            <input name='getResponseRequest'>
                <soap:body use='encoded' encodingStyle='http://…' namespace='http://…'/>
            </input>
            <output name='getResponseResponse'>
                <soap:body use='encoded' encodingStyle='http://…' namespace='http://…'/>
            </output>
        </operation>
    </binding>

    <service name='WSProviderService'>
        <port name='WSProviderPort' binding='tns:WSProviderBinding'>
            <soap:address location='http://192.168.0.1/service1'/>
        </port>
    </service>
</definitions>

 

Figure 2.4: A WSDL document 

1) businesses, organizations, and other units, which are represented by the 

businessEntity data structure, 

2)  service abstracts describing the functionalities of services, which are represented 

by the businessService data structure, and 

3)  technical information defining the location of the provider, which is represented 

by the bindingTemplate data structure. 

      The UDDI server organizes all data structures hierarchically. Each data structure has 

a unique ID representing the business key, the service key, or the binding key.  

      The latest version of UDDI (V3, [3]) provides six API sets, i.e., Inquiry, Publication, 

Security, Custody and Ownership Transfer, Subscription, and Replication. The Inquiry 



 9 

and Publication APIs are essential, as they enable a WS consumer to discover a WS 

provider. 

2.1.3.1 The UDDI Publication API 

The UDDI Publication API provides the UDDI client and the WS provider with a method 

to publish and update information according to the formats of businessEntity, 

businessService, and bindingTemplate.  

      The most important methods in the API are save_business, save_service, and 

save_binding. They all have a parameter carrying a unique ID representing the business 

key, the service key, or the binding key respectively. According to the value of the ID, 

the UDDI server performs either a publishing or an updating operation. If the UDDI 

client invokes one of the three methods with an empty ID, the UDDI server will perform 

a publishing operation to create a new record in its repository. A new ID will be assigned 

to the record and returned to the client as the reference of the record. If the UDDI client 

invokes one of the three methods with a pre-fetched ID, the UDDI server will update the 

existing record using the ID as the index. 

2.1.3.2 The UDDI Inquiry API 

The UDDI inquiry API allows the UDDI client and the WS consumer to browse the 

UDDI server and discover meta-data from it. The most essential methods of the API are 

find_business, get_businessDetail, find_service, get_serviceDetail, find_binding, and 

get_bindingDetail. The “find” methods browse or query information in the repository by 

specifying keywords. The “get” methods obtain certain information by specifying record 

IDs (index key). The Inquiry API supports three patterns to access the repository, namely, 

the browse pattern, the drill-down pattern, and the invocation pattern. 

• The browse pattern  

The UDDI client uses “find” methods and specified keywords to look for records 

about businesses, services, and bindings. It obtains information about the provider 

and the service from retrieved records.  

 



 10 

• The drill-down pattern 

The client uses “get” methods and a specified record ID to obtain detailed 

information about a business, service, or binding from the UDDI repository. 

• The invocation pattern 

If the WS consumer fails to fulfill a service invocation, it should use the 

get_bindingDetail method to fetch fresh bindingTemplate information. Then, it can 

rearrange the service invocation according to the fetched information. 

The differences between the drill-down pattern and the invocation pattern are:  

• The drill-down pattern is the activity following the browse pattern, while the 

invocation pattern is an independent activity and only works with the 

get_bindingDetail method. 

• The drill-down pattern is used in the design-time discovery by the UDDI client, 

while the invocation pattern is used in the run-time discovery by the WS 

consumer. 

2.1.4 Drawbacks of Web Services 

Web Services still adopt a server-centric approach to organize components. The WS 

consumer assumes that the states of all server components, i.e., the WS provider and the 

UDDI server, are immutable, because it has been bound in the design time with a service 

definition (WSDL) which finally maps to a specific WS provider after deployment. If 

there is any change in the provider’s IP address or service definition, the consumer will 

fail to perform the service invocation. This assumption prevents Web Services from 

being used in a dynamic networking environment, in which all participants can 

autonomously enter and depart at any time without notice. An example is a wireless ad 

hoc network consisting of a number of mobile devices that communicate with each other 

through wireless connections. All participants may change their availability or network 

locations at any time due to changes in their physical positions. 

      The UDDI server aims to assist the WS consumer in locating server components at 

run-time. However, it does not solve the problem perfectly because it is also a single 



 11 

point of failure. Moreover, the information in the UDDI server may be outdated because 

the UDDI server is unable to probe the change in the provider. If, for instance, a WS 

provider has crashed due to a hardware error, it will still be listed as a valid service 

provider by the UDDI server until the provider itself refreshes the information. 

Consequently, any WS consumer having discovered the provider from the UDDI server 

will fail to perform the invocation.   

2.2 P2P 

P2P is a technology that does not suffer the above problem since it eliminates the need 

for central servers to sustain the whole system. A P2P network only consists of peers that 

all provide common services and differ only in the resources they own. The peer 

providing a resource to others is the provider peer, while the peer consuming the resource 

is the consumer peer. All peers in a P2P network are organized by themselves using a 

specific protocol, by which they can publish and find resources in a cooperative pattern. 

Since P2P performs dynamic discovery to filter out unavailable resources, it is very 

robust in a dynamic networking environment.  

      The rest of the section presents the Gnutella protocol to explain the working 

mechanism of a P2P network. Gnutella is also implemented in the proposed architecture 

(Chapter four) and examined in the experiments (Chapter five and seven) due to its high 

flexibility and robustness (Chapter three). 

2.2.1 Gnutella 

` `

` `

Peer 1
Peer 2

1

`

2

2
2

3

Peer 3 Peer 4 Peer 5  
Figure 2.5: An example of the Gnutella network 



 12 

Each Gnutella peer has four basic operations, Ping, Pong, Query, and QHit. Ping and 

Pong are used to find existing peers in the network, and Query and QHit are used to find 

desirable resources.  

      A Gnutella peer should propagate an incoming request (Ping, Query) to those peers 

that it has direct connections with (those peers are usually called as its neighbors), and 

send back the response (Pong, QHit) to the peer issuing the request. Based on Figure 2.5, 

the working mechanism of Gnutella can be explained in the following four steps. 

1. If Peer 1 wants to join a P2P network, it will first connect to a known peer, e.g., 

Peer 2 in Figure 2.5. 

2. After a connection to Peer 2 is established, Peer 1 will send a Ping request to Peer 

2 to find other peers. Peer 2 responds with a Pong message to Peer 1. The Ping 

request is also propagated to Peer 2’s neighbors (e.g., Peer 3, 4, 5). All neighbors 

respond the Ping and send Pong messages back to Peer 1 through Peer 2. At this 

stage, Peer 1 knows Peer 2 – Peer 5 and vice versa. 

3. Since a Gnutella peer always keeps a certain number of active connections 

(usually ≥ 5) to other peers, Peer 1 will try to establish more connections. For 

instance, Peer 1 may connect to Peer 3. 

4. Peer 1 sends Peer 2 a Query request to find a desirable resource. In addition, Peer 

2 propagates the Query request to its neighbors. If a peer has the requested 

resource, it sends a QHit message back to Peer 1 along the incoming path.  In this 

way, Peer 1 knows all peers owning the requested resource. How Peer 1 accesses 

the resource of other peers depends on different implementations. For most 

systems, exchanging resources will use a dedicated connection instead of the one 

transferring requests. 

      The Ping-Pong mechanism of Gnutella keeps detecting any change in the peer while 

the Query-QHit mechanism ensures dynamic lookups. 

 

 



 13 

2.3 Linking P2P and Web Services 

Web Services do not work properly in a dynamic networking environment even when a 

UDDI server is present. By contrast, P2P works effectively in the dynamic networking 

environment. This raises the question if it is possible to integrate P2P into Web Services 

to form a hybrid system, which is able to perform service discovery and service 

invocations?  

P2P Network

UDDI Server

Service ConsumerService Provider

Web 

Services

Provider Peer

Web Service

Provider Peer

UDDI Service

Consumer Peer

WS 
Consumer

Feasibility?

 

Figure 2.6: Integrating P2P into Web Services 

      As mentioned in section 2.2, peers in the P2P network have the same functionality. 

They differ in whether or not they provide resources. To utilize P2P in Web Services, 

each service of the WS provider must be treated as a service resource of the P2P network. 

Then, a WS consumer can be transformed into a peer inquiring the service resource in the 

P2P network (consumer peer), and a WS provider to a peer providing the service resource 

in the P2P network (provider peer). Figure 2.6 illustrates this transformation on a concept 

level.  

      The XML-based SOAP message enables easy manipulation. It can be enveloped by a 

P2P protocol and then transmitted over a P2P network. Therefore, the provider peer and 

the consumer peer are able to communicate with each other in the P2P network. This 

significantly improves the feasibility of integrating P2P into Web Services. Moreover,      

the provider/consumer peer can be augmented to support more functionality because they 

are not constrained by Web Services standards. 



 14 

 

CHAPTER 3 

LITERATURE REVIEW 

Integrating P2P into Web Services is a means to improve the dependability and flexibility 

of Web Services. Some studies in this area have presented methodologies of integration 

on a concept level. Most studies focus on specific aspects of integration, e.g., distributed 

discovery and autonomic selection.   

3.1 Web Services 

By far, most efforts in Web Services focus on improving the functionality of the core 

standards that mainly include SOAP, WSDL and UDDI. The first version of SOAP [6], 

v1.1, was released in May of 2000 and was upgraded to the version 1.2 [27] in June of 

2003. WSDL was originally released in March of 2001 (version 1.1, [11]). The working 

draft of its successor, WSDL 2.0 [4], was released in March of 2004, which involves 

many substantial changes from WSDL 1.1, e.g., supporting interface inheritance. The 

first version of UDDI, 1.0 [5], was released in June of 2002. Shortly afterwards in July of 

2002, the most widely used version, UDDI 2 [2], was published. UDDI 3.0.2 [3] was 

drafted in October of 2004, adding support for multi-registry environments, digital 

signatures, and a new subscription API.  

      These improvements do not solve the inherent questions of Web Services, e.g., poor 

reliability in the dynamic networking environment and outdated information provided by 

UDDI. This is because these improvements and additions still use the server-centric 

structure that potentially causes these questions.   

3.1.1 Use of UDDI 

IBM, Microsoft, and Oracle all have public UDDI servers running for commercial 

purposes. There are also many organizations developing third party servers for users to 

establish their private UDDI servers. jUDDI [16] is such one open source Java 



 15 

implementation of the UDDI server and uses a relational database as the backend 

repository.  

      The UDDI client offers two approaches to access the UDDI server: either through a 

standalone application providing an easy-to-use interface for developers; or through a 

software library working with the WS consumer or provider. UDDI Browser [43] is an 

open-source UDDI client following the first approach. A developer can use the 

application to browse, search, and even change information in the UDDI server. UDDI4J 

[42] is an open-source Java library providing a set of APIs for the WS consumer/provider 

to interact with UDDI. Hagge [13] presents in detail how a WS consumer discovers and 

invokes Web Services at run time using UDDI4J. 

3.2 P2P 

P2P networks and corresponding protocols emerged at the end of 1990s as a direct 

consequence of improved bandwidth, connectivity, and available system resources. At 

that time, P2P networks were used in instant messaging systems and scientific research 

systems. After Napster [41] first introduced the technology in its file sharing system, P2P 

networks have managed to establish themselves as an independent track of distributed 

computing. Milojicic et al. [26] divides P2P networks into three types according to the 

discovery/communication model: the centralized directory model, the flooded requests 

model, and the document routing model (usually called the distributed hash table model). 

The latter two have been gaining most attention from researchers due to their better 

flexibility and dependability than the first one.  

3.2.1 The Centralized Directory Model 

This is the simplest P2P model. A central node works as the registry (as shown in Figure 

3.1). All peers register their addresses and resources to the registry. By searching the 

registry, a peer can find other peers that have the desired resource. In this model, the 

central registry is still a single point of failure and introduces performance bottlenecks in 

the system. 

 



 16 

Central Registry

Peer 1 Peer 2 Peer 3
 

Figure 3.1: A centralized directory network 

 

3.2.2 The Flooded Requests Model 

Gnutella is the best-known example of this model (described in subsection 2.2.1). 

According to its propagation mechanism, peers generate many redundant messages which 

are transferred over the whole network. This is the reason that the model is called 

“flooded requests”. Time to Live (TTL) is an approach used to reduce the number of 

redundant messages transferred over the P2P network. Every message has a numeric 

parameter called TTL indicating how many hops the message can be routed. When a 

message reaches a peer, the TTL is decremented. If TTL equals 0, the message is expired 

and will not be routed anymore. 

      Ritter [34] showed a close relationship among reachable peers, TTL, and the number 

of neighbors. He found that increasing TTL and the number of neighbors (marked as N) 

would also increase the number of reachable peers geometrically. In a large-scale 

network, if the values of TTL and N are not big enough, a peer can only access a small 

part of the network. However, high TTL and N incur high bandwidth consumption. He 

presented the bandwidth consumption numerically. As mentioned in his report, to 

propagate an 83 byte Query package in a 10885 peer network (TTL = 5, N = 7), a total of 

1.8 megabytes of data will be transferred over the network. Therefore, to minimize the 

negative impact, TTL and N should be carefully chosen according to the scale of the 

network.  

      Lv et al. [20] investigated the characteristics of this model using four overlay 

topologies: Power-Law Random Graph, Normal Random Graph, Gnutella Graph, and 



 17 

Two-Dimensional Grid. They found that high connectivity of Power-Law Random Graph 

and Gnutella Graph results in a high redundant message ratio and high load on the peer. 

The Normal Random Graph was found most suitable for the flooded requests model. 

They also proposed two approaches to improve the efficiency of discovery, i.e., 

expanding ring and random walks. Using expanding ring, a peer first discovers a 

resource using a small TTL. If discovery fails, it will increase TTL and perform new 

discovery. Therefore, the number of redundant requests can be reduced for the hot 

resource (the popular resource) because the hot resource is widely replicated and easily 

reached. Using random walks, a peer propagates a request to a randomly chosen neighbor. 

This approach reduces the number of redundant messages significantly but increases the 

delay of discovery. Lv et al. suggest that the requesting peer sends a request to more than 

one neighbor to reduce the delay. 

      Chawathe et al. [10] present three more approaches to improve the scalability of 

Gnutella besides the random walks. Dynamic topology adaptation enables low degree 

(low capacity) peers to connect with a high degree (high capacity) peer closely. It utilizes 

processing abilities of high degree peers. Active flow control throttles requests according 

to the capacity of a peer to avoid overloading it. One-hop replication enables a peer to 

keep the service information of its neighbors. The experiment shows that using these four 

approaches together to modify the Gnutella protocol achieves three to five orders of 

magnitude improvement in the capacity of the system. 

      Although the flooded requests model suffers from high bandwidth consumption, it is 

still preferred in research for three reasons. First, its algorithm is simple and eliminates 

the need for the central server. Second, it is very robust in dynamic environments even 

when peers are transient. Finally, it is flexible enough to support different search 

algorithms.   

3.2.3 The Distributed Hash Table Model (DHT) 

In the DHT network, every peer has a unique peer ID and is organized by a ring shape 

link table (as shown in Figure 3.2). The peer’s position in the link table is determined by 

a hash function and its peer ID. Each peer knows several other peers in the link table to 



 18 

build its routing table. The peers in the routing table are chosen from the link table by 

different step lengths. For example, Pastry [35] uses 2
bn

 to determine step lengths. Where, 

the peer ID uses base 2b, and n stands for the step number. If L stands for the location of 

the current peer in the link table, the first chosen peer is located at L + 2
b
, and the second 

one is at L + 2
2b

.   

      Each resource, such as the shared file, is also given a unique ID by a specific 

algorithm. The peer whose peer ID is closest to the resource ID must own the resource or 

know the location of the resource. When a peer issues an inquiry for a resource, it should 

first route the inquiry based on the routing table to the peer whose peer ID is closest to 

the resource ID. Every peer receiving the inquiry will repeat the process until the peer 

whose ID is globally closest to the resource ID is reached. The last found peer is 

supposed to own or know the resource. 

0 1 2

In Pastry, 

m = 2^128 - 1

Peer 1 (key 0)

n

Peer x (key n)

Peer 2 (key 2)
m

Routing Table

Peer with Key 2b

Peer with Key 22b

Peer with Key 2
3b

…

….

 
Figure 3.2: DHT network 

      Handling the arrival and departure of peers in the DHT network varies from one 

protocol to another. Pastry, for example, handles the arrival and departure of peers in the 

following way: 

Arrival: A new peer X must know at least one peer (peer A) in the Pastry network before 

it joins the network. Then, X issues a “join” message with its peer ID to A. Each peer that 

receives the “join” message should perform three operations.  



 19 

• The peer routes the “join” message based on the routing table to the peer A0 

whose peer ID is numerically closest to the peer ID of X.  

• The peer returns the information about A0 to X to build the routing table of X.  

• If the peer ID of X is closer to the peer than any peer is in the routing table, the 

peer updates the routing table using X. 

      X has joined the network if the peer that receives the “join” message is already the 

closest one and cannot route the message anymore. At this time, other peers know X and 

X has its routing table built. 

Departure: A peer may depart without notification. To avoid any interruption of routing 

messages, the routing table keeps the information about those peers whose IDs have the 

same prefix. If the peer finds that a peer X is unavailable, it turns to inquire those peers 

with the same ID prefix as X for an alternate peer. The alternate peer should be the 

closest one to X in all returned peers. Then, the routing table is updated. 

      Chawathe et al. [10] talk about weaknesses of DHT compared to Gnutella. DHT 

networks require more actions and time to process the arrival and departure of the peer. 

Frequent status changes in peers will impair the dependability and performance of the 

system. It is difficult to perform keyword discovery in DHT networks because the 

resource ID must be known before the discovery. Gnutella is better at discovering 

replicas than DHT. 

3.3 Integrating P2P and Web Services  

Schneider [38] discusses the convergence of P2P and Web Services. He compares the 

JXTA [15] protocol with Web Services in several aspects, namely the conceptual 

architecture, the wire protocols (the connecting mechanism), security, discovery, 

reliability, and business standards. He concludes that P2P and Web Services adopt 

different discovery mechanisms, i.e. decentralized vs. centralized, but they are able to 

utilize WSDL and SOAP. The convergence of P2P and Web Services is a way to increase 

efficiency and decrease cost.  



 20 

      Samtani et al [36] identify several potential problems in integrating P2P and Web 

Services into commercial applications, namely network bandwidth, security, and complex 

architectures and maintenance. The main contribution in the paper is that it identifies 

three approaches for integrating P2P and Web Services: 

• Using Web Services protocols as the basic protocol in the P2P network; 

• Using the P2P technology to transform the centralized UDDI registry into the 

decentralized mode; 

• Using XML as business processes in P2P; 

      However, concern about the first and third problems may not be necessary. Using a 

properly selected P2P protocol and specific algorithms, e.g., random walks, will 

effectively reduce the bandwidth consumption to an acceptable level. On the other hand, 

since P2P is designed to work in a kind of environment in which the network node may 

not be stable, it requires less maintenance than other systems when confronted with 

malfunction. 

3.4 Service Discovery 

UDDI is a standard component in Web Services to provide a discovery service. It 

supports multiple UDDI servers through the replication API (UDDI Version 2 and 3 

specifications) to improve the reliability. Each UDDI server keeps the same set of data in 

the repository to avoid a single point of failure. However, using the replication API to 

organize multiple servers involves a high cost in deployment and maintenance. 

Decentralizing UDDI using the P2P technology does not suffer from the same problem. 

      An implementation of a distributed UDDI is the system PETERPAN proposed by 

Laoveerakul et al. [17]. PETERPAN uses the Gnutella protocol and acts as middleware 

connecting GRID and Web Services. 

      Papazoglou et al. [32] propose a UDDI-enabled super-peer registry concept to group 

service providers according to their offerings and subscriptions. A group of service 

providers is a service syndication, in which any provider either relies on a service 

provided by another provider, or provides a service to another provider in the same group. 



 21 

Each service syndication has a super-peer providing publication and subscription services. 

All super-peers are attached to the central UDDI server and communicate in a centralized 

directory P2P manner. The provider in the service syndication appears as a service-peer 

that communicates with other peers in the syndication in a Gnutella manner. If a new 

provider needs to join a proper syndication, it first publishes the services it provides, and 

subscribes to the services it requires (as a precondition) on a known super-peer. Then, 

this super-peer will try to find a destination super-peer that satisfies either of the 

following two criteria; 1) in the syndication managed by the destination super-peer, there 

is a provider having the service required by the new provider; 2) in the syndication 

managed by the destination super-peer, there is a provider requiring the service provided 

by the new provider. If this destination super-peer can be found, the new provider will be 

registered to the super-peer and added to the corresponding syndication. The approach in 

this paper enables service providers to group autonomously according to their service 

offerings and requirements.  

      Castro et al [8] propose building a universal ring in a DHT P2P network to support 

service advertisement, service discovery, and code binding. These functions are based on 

three operations, namely the persistent store, the application-level multicast, and the 

distributed search. Every exposed service (a piece of code) has a code certificate to 

identify the correctness of the service (code binding). Since there may be many Web 

Services with the same functionality and name globally, the code certificate will help the 

user find the correct service to invoke. It is essential for finding the correct service that 

the information used to generate the service key for discovery should be the same as the 

one used to generate the service key for advertisement.   

      Banaei-Kashani et al. [1] suggest a P2P service discovery method using the Gnutella 

protocol and semantic technologies. There is no central registry in the system. Every 

service provider or consumer is a peer. The service provider publishes its service locally. 

The service consumer originates a query based on keywords or ontology, and propagates 

it in a Gnutella manner. Although this method is intuitive and simple, it can cause high 

network consumption and lower the possibility of finding a service. 



 22 

      METEOR-S Web Services Discovery Infrastructure (MWSDI, [44]) is a scalable 

publication and discovery environment involving semantic Web Services and the P2P 

topology. In the MWSDI environment, there are many standard UDDI registries running 

in different Operator peers respectively. Every Operator peer exposes Operator Services 

to other peers. Operation Services are a set of services based on standard UDDI 

specification and enhanced by semantic technologies. The communication between peers 

relies on the P2P protocol. The user who needs to publish or discover services should call 

the Operator Services through a client peer, which is a transient interpreter between the 

user and MWSDI. To build the relationship between the Web Service and the ontology, 

MWSDI uses WSDL and predefined tModels (the metadata structures in UDDI 

describing the common concept and understanding) to present taxonomies of inputs and 

outputs. 

      Toma et al. [40] propose a P2P discovery environment based on the Web Services 

Execution Environment (WSMX, [14]), a test bed supporting Semantic Web Services. 

They choose a flooding request P2P protocol, HyperCuP [37], as the networking 

technology. Each WSMX peer has a registry which keeps the information of the local 

service. All peers are organized by the HyperCuP protocol. The Service Requestor sends 

out a request for service to a known WSMX peer. The WSMX peer searches in the local 

registry for the service and sends the result back to the requestor if it has the service. 

Otherwise, it sends the request to other peers according to the HyperCuP protocol. The 

most interesting aspect in the paper is that the HyperCuP protocol reduces the bandwidth 

consumption by building ontology concept clusters. The request is routed to the 

corresponding clusters according to its domain ontology concepts. 

3.5 Service Selection 

When dynamic discovery is used in Web Services, it is common that the result of the 

discovery contains more than one provider. Unlike the file sharing P2P system in which a 

file download can be split into many small tasks running in multiple peers, a service 

invocation occurs between a provider and a consumer. As shown in Figure 3.3, the WS 

consumer must pick only one from all candidate providers to perform the invocation. 

Even for a composite Web Service consisting of many atomic Web Services, the 



 23 

selection issue still needs to be addressed when there are multiple providers available for 

an atomic service. 

`

WS Consumer

WS Provider

WS Provider

WS Provider

?

 
Figure 3.3: Service selection 

      Padovitz et al. [31] present three models to collect information dynamically in a 

mobile/wireless environment. The collected information is the base for selecting the best 

provider. The first is the RPC based model in which the WS consumer sends out an 

inquiry to all direct providers to collect information. If a provider is dependent on other 

providers to perform its service, it will send the inquiry to the dependent provider. This 

process repeats until the final provider or the depth constraint for the inquiry is reached. 

This model works like a contract-net [39] in which the further decision is delegated to the 

sub-contractor. The second is the mobile agents based model, in which the mobile agent 

works as the information collector moving from one provider to another provider. Once 

the complete series of service providers has been browsed by the mobile agent, it will go 

back to the consumer. Security is a major concern when applying this approach. The third 

is the circulating mobile agent model in which the mobile agent itself moves from one 

provider to another continuously to collect necessary information. When a cycle is done, 

the mobile agent has visited all providers and goes back to the consumer to report all 

collected information. In addition to the security issue, this model may suffer from waste 

cycles when the consumer does not need any information in the idle state. 

      QoS is a means to enable selection and filter out unqualified providers. Vu et al. [45] 

propose P2P-based Web Services discovery that uses semantics to find WSDL and QoS 

data to select a provider. In the QoS part, the registry, which resides in the peer, keeps 



 24 

Web Service publications from providers and QoS feedback from consumers. To avoid 

cheating on the feedback from the consumer, the system employs trusted agents to 

monitor both service providers and consumers. They monitor the service and create QoS 

reports in the registry. Based on the QoS reports, they evaluate the feedback from 

consumers. This approach may cause three potential issues; 1) continuous probing of the 

service consumes processing resources and network bandwidth of the target machine; 2) 

agents may not be accurate or correct in evaluating QoS reports from consumers because 

they use different criteria to measure a service; 3) as mentioned in the paper, those agents 

are usually resource consuming. The complex configuration and maintenance counteract 

the benefit of adopting P2P. 

      Some QoS-based selection methods merely use the experiences of each individual 

service consumer. When a service consumer has had no experiences with service 

providers, it cannot make a good choice. If service consumers can share their experiences, 

they can build up the reputation of service providers and find desired services. 

Maximilien et al. [22, 23, 24] propose an agent-based approach where each Web Service 

is associated with an agent responsible for collecting feedbacks (e.g. service response 

time, availability, price) from the consumers of the service. When a service consumer 

wants to know whether this web service is good or not, it can access the reputation-

related information from the agent, calculate the reputation of the service provider, and 

make a decision taking its own QoS preference into account. For instance, some 

consumers prefer a service with short response time, while some consumers may care 

more about the reliability of a service. Unfortunately, Maximilien et al. do not provide 

details about how to compute the reputation. 

      In Web Services, a consumer performs discovery only in the UDDI server. UDDI 

does not provide QoS information to the consumer. To address this issue, Ran [33] 

proposes a model for Web Services discovery. The model introduces a new certifier role 

into the conventional triangle structure of Web Services. A service provider first sends its 

QoS claim to the certifier to get the claim verified. Then it registers its service and 

certified claim to the UDDI server. A service consumer discovers a service with specific 

QoS constraints from the UDDI server. The returned result from UDDI contains services 

satisfying QoS constraints. To present the QoS information, Ran extends the UDDI data 



 25 

structure by attaching qualityInformation to businessService. He introduces categories 

used in qualityInformation, which can be used in the proposed architecture in this thesis 

to define QoS. The weakness of the model is that all existing components in Web 

Services must be re-implemented. 

      Using generic criteria to measure QoS of Web Services is not sufficient in some 

domains. Liu et al. [19] address the problem by using an extensible QoS model. They 

divide quality criteria into generic ones and business related ones. Then the QoS 

computation is to apply two phases of normalization on the QoS criteria matrix. The 

proposed approach in the paper is uniform. It is able to process an unlimited number of 

criteria and allow setting parameters to bias the selection. 

      Day et al. [12] have discussed related work regarding service selection. They argue 

that there are two ways to get the information necessary for service selection: provider-

side and consumer-side augmentations. The provider-side augmentation allows the 

service provider to describe the guarantee about its service. The service consumer may 

select a suitable provider according to the description. However, if the description of the 

service is not consistent with its performance, the selection will be wrong. By contrast, 

the consumer-side augmentation, which allows the service consumer to record the 

experience about each service invocation, has more advantages. Each experience record 

describes QoS in three aspects: whether or not the service is available, whether or not the 

expected result is returned, and the roundtrip time. The consumer treats the service 

provider as a black box and assesses it according to those history experiences.  

      They proposed two approaches, namely the rule-based and the naive Bayesian 

reasoners, to fulfill the autonomous service selection using the client side augmentation. 

Specially, they chose Resource Description Framework (RDF, [21]), which provides 

knowledge management using XML based metadata models, as the underlying repository. 

The rule-based reasoner takes the QoS experiences as the input and outputs a series of 

values representing candidate services respectively. The service with the highest value 

will be the best. The naive Bayesian reasoner takes more attributes as the input besides 

each experience. These extra attributes, e.g. processor load, total memory used, and the 

number of processes, represent the runtime context of the consumer and may influence 



 26 

the manner of the service invocation. The output is one of five classes the service belongs 

to, namely excellent, good, acceptable, poor, and terrible. The reasoner always chooses 

the service in the highest available class as the best one. If there is more than one service 

in the highest available class, it chooses randomly.  

      Those attributes mentioned by Day et al. to represent the runtime context of a 

consumer influence a service invocation locally, but have nothing to do with the 

invocation issued by any other consumer in the system. They will not help other 

consumers choose the most suitable providers. 

3.6 Conclusions 

Web Services will benefit from the P2P technology in service discovery and service 

invocations. Using P2P to distribute the UDDI service began to gain attention early. The 

distributed UDDI service provides higher reliability than the standard one, and is 

compatible with existing Web Service components. Banaei-Kashani et al. [1] present a 

feasible and simple design in which multiple peers cooperate to provide the UDDI 

service. 

      Using P2P in service invocations brings more functionality to the system. When the 

service consumer requests a service, an agent peer will receive the request and perform 

the request in a P2P manner. This process may involve a service discovery operation 

(dynamic discovery), and a selection operation when there are multiple services available. 

Many studies have been done in this area. 

      QoS is the most studied criterion used in the selection operation. Due to a lack of QoS 

support in Web Services, researchers have proposed the use of agents [30, 44, 12] to 

collect QoS information. They tend to use consumer-side augmentations that treat the 

provider as a black box. The only information collected from a provider is its static QoS 

statement. However, the runtime context of a provider will influence QoS significantly. 

Treating the service provider as a black box prevents the consumer from assessing the 

provider’s characteristics globally. The consumer may be misled due to the common 

experiences disregarding the current context of the provider. Using a provider-side agent, 

it is possible to represent the runtime context of the provider. 



 27 

      Although these studies provide valuable theories and techniques that can be used to 

solve the problem of improving the reliability of Web Services in a dynamic environment 

through P2P technologies, they only focus on a part of the whole problem, either service 

discovery or service selection. They do not manage the system as a whole. Moreover, the 

approaches above disregard the life cycle of Web Service applications (e.g., development 

and deployment) and require extra modifications in Web Service applications. 

      The research presented in this thesis focuses on the development of a framework that 

will support the transparent integration of P2P concepts into the Web Services. The 

framework is fully compatible with existing Web Services applications. It provides Web 

Service applications life cycle support. 



 28 

 

CHAPTER 4 

P2P-WEB SERVICES ARCHITECTURE 

The P2P-Web Services architecture enables Web Services to work effectively in a 

dynamic networking environment.  It consists of two functional components, the 

distributed P2P UDDI (PUDDI) and the P2P-Web Services Gateway (PWSG).  

      PUDDI is a substitute for UDDI in the proposed architecture to overcome the 

drawbacks of UDDI. It provides all functions listed in the UDDI specification V3 [3]. 

The UDDI client, the WS provider, and the WS consumer interact with PUDDI to fulfill 

UDDI operations in the proposed architecture. From their perspectives, there is no 

difference between PUDDI and UDDI. However, PUDDI has no central registry and 

works in a distributed manner. 

      The service invocation between the WS provider and the WS consumer is performed 

via PWSG. In the proposed architecture, PWSG plays the role of the WS consumer for 

the WS provider, and the WS provider for the WS consumer. PWSG controls every 

aspect of the service invocation to take advantage of P2P. 

      PUDDI and PWSG both play two roles: a Web Services component and a P2P peer. 

They are Web Services components when interacting with other Web Services 

components, and they are P2P peers when transferring messages over the P2P network. 

This similarity motivates the idea of the P2P-Web Services framework (PWSF) to reuse 

the same structure/functionality and minimize the effort to build PUDDI and PWSG.  

      This chapter is outlined as following. Section 4.1, 4.2, and 4.3 describe PWSF, 

PUDDI, and PWSG respectively. Section 4.4 presents the way to use both PUDDI and 

PWSG. Section 4.5 details the functions used by PWSG to improve service invocations. 

Finally, the deployment of the architecture is presented in Section 4.6. 

 

 



 29 

4.1 The P2P-Web Services Framework (PWSF) 

Consumer Proxy

Provider B

Provider A

Selects

 

Figure 4.1: Using the proxy to manipulate communication 

In Web Services, the SOAP message is the base of the inter-application communication. 

Its textual format provides an opportunity to manipulate the communication by using a 

proxy that intercepts SOAP messages passing through it. Figure 4.1 shows the concept of 

using a transparent proxy between a WS consumer and a WS provider, in which the 

proxy plays two roles. From the perspective of the consumer, the proxy is the service 

provider. From the perspective of the provider, the proxy is the consumer. Since the 

consumer sends the request to and receives the response from the proxy, the proxy can 

fully control the communication between the consumer and the provider. In Figure 4.1, 

the proxy can “select” a service provider dynamically without notifying the consumer. 

PWSFWS Consumer

P2P Network

PWSF
WS Provider

 
Figure 4.2: A working scenario using PWSF 

      PWSF is a transparent proxy intercepting the SOAP message. Figure 4.2 shows a 

scenario, in which PWSF plays the role of the P2P peer besides the WS provider and the 

WS consumer. When interacting with the P2P network, a PWSF node appears as a P2P 

peer and manages to build and maintain the P2P network with other PWSF nodes 

cooperatively. Therefore, PWSF is more like a gateway joining two networks together. 

      PWSF supports the Plug-in technology, by which a developer builds a software 

module complying with the plug-in interface and can easily plug the module into the 

framework to support additional functions. As shown in Figure 4.3, PWSF consists of 



 30 

three layers, the proxy layer, the control layer, and the networking layer. Adjoining layers 

exchange information via two unidirectional message queues. Each layer consists of two 

isolated functional components: the framework component and the plug-in. The plug-in 

contains the specific logical functionality that determines how each layer should behave 

in a given situation. It is invoked by the framework component when a message arrives or 

a predefined timer is expired. Then, the plug-in performs consequent actions via the 

interface provided by the framework component. Next, the functionality of each layer 

will be described briefly. 

Web Services Proxy Proxy Plug-ins

Logic Controller Controller Plug-ins

Message 

Queue

Message 

Queue

Communicator
Communicator 

Plug-ins

Message 
Queue

Message 
Queue

Proxy Layer

Control Layer

Networking Layer

The P2P-Web Services Framework

A Web Services 
Provider/Consumer

A P2P Network

 

Figure 4.3: The Software Structure of PWSF 

• Proxy Layer 

The Web Services proxy has HTTP connections with WS providers or consumers 

and exchanges SOAP messages with them. The plug-in at this layer manipulates the 

SOAP message from both the WS provider/consumer and the lower layer.  



 31 

• Control Layer 

The logic controller determines how a service request should be fulfilled over the 

P2P network according to characteristics of different P2P models. Any operation in 

this layer does not refer to details of a specific P2P protocol. The plug-in is the key 

element to control the behavior. Those advanced functions, such as caching and 

selection, which will improve the performance of the service invocation, can be 

implemented in this layer. Caching enables PWSF to retrieve the state it has 

experienced immediately. Selection helps the WS consumer find the most suitable 

provider and filter out ineligible providers. 

• Networking Layer 

This layer manages building and maintaining the underlying P2P network. The 

communicator implements all basic networking operations, such as building 

connections and sending/receiving packages. The plug-in determines how the 

communication between peers will be performed according to a specific P2P protocol. 

By switching plug-ins supporting different P2P algorithms, the framework is able to 

support different P2P protocols. 

PWSF

PUDDI Plug-in or

PWSG Plug-in

Web Services 

Components

A P2P Network

 

Figure 4.4: Using PWSF as the base of PUDDI and PWSG 

      Using PWSF as the base of PUDDI and PWSG (Figure 4.4) maximizes reusability 

and minimizes the effort of development. It helps developers modularize the application 

for easy maintenance.  



 32 

4.2 The Distributed P2P UDDI (PUDDI) 

A UDDI server is a centralized node in Web Services and introduces a single point of 

failure in the system. The information about services in UDDI may be outdated because 

UDDI is unable to probe the availability of the provider. The proposal of PUDDI 

addresses these issues in a P2P manner. 

Distributed P2P UDDI 
(PUDDI) Peer

UDDI client
WS 

consumer

P2P Network

WS provider

Registers

Administrator

Distributed P2P UDDI 

(PUDDI) Peer

UDDI client

Developer

Discovers

Registers Discovers

Communicates CommunicatesUDDI Server (Central Registry)

UDDI client
WS 

consumer
WS provider

Registers

Administrator

UDDI client

Developer

Discovers

Registers Discovers

Using UDDI in Web Services
Using PUDDI in the proposed 

architecture

Repository

Repository

 

Figure 4.5: Using PUDDI in the proposed architecture to substitute UDDI 

      Figure 4.5 shows using PUDDI to substitute for UDDI in the proposed architecture. 

In Web Services, the administrator, the UDDI client, or the WS provider registers the 

service information to the central UDDI server. The developer, the UDDI client, or the 

WS consumer discovers the service information from a centralized UDDI server. In 

contrast, PUDDI is a decentralized system consisting of only PUDDI peers and has no 

central server. All peers are organized through the P2P protocol. On the provider side, the 

PUDDI peer accepts the register request and stores the information in the local repository. 

On the consumer side, the PUDDI peer accepts discovery requests and inquires other 

peers over the underlying P2P network. Since the PUDDI peer provides the same 

functionality as the UDDI server, this transformation is transparent to the UDDI client, 

the WS provider, and the WS consumer. They will not sense any difference between a 

PUDDI peer and a UDDI server. 

      On the provider side, the PUDDI peer should be deployed with the WS provider in 

the same physical machine so that its availability is consistent with that of the machine. It 



 33 

probes the provider at a certain interval to determine the availability of the provider. So, 

there is no unavailable provider in the result of the discovery operation returned from 

PUDDI. When the IP address of a machine is changed, the PUDDI peer will update the 

corresponding binding information in the repository automatically. The administrator 

does not need to update the binding information explicitly.  

      The UDDI client and the WS consumer discover service information through the 

PUDDI peer installed in the same machine. A discovery request will be fulfilled over the 

underlying P2P network. For example, if the Gnutella protocol is applied, the discovery 

request will be transformed to the Query request. When a PUDDI peer receives the Query 

request, it begins to search the local repository. Then, it responds with a QHit message if 

the record in the repository matches the search keyword. PUDDI guarantees that the 

result of discovery is up to date. 

4.3 The P2P-Web Services Gateway (PWSG) 

In Web Services, a WS consumer tends to request a service from an appointed provider. 

When the appointed provider is not available, the service invocation fails. 

P2P-Web Services 

Gateway (PWSG) Peer

The WS consumer

P2P Network

WS provider

Responds

P2P-Web Services 

Gateway (PWSG) Peer

Invokes

Communicates Communicates

The WS consumerWS provider

Responds

Invokes

The service invocation in Web Services
The service invocation in the proposed 

architecture

 

Figure 4.6: Using PWSG in the proposed architecture 

      PWSG manages the communication between the WS provider and the WS consumer 

to improve the quality of the service invocation, and yet avoid any re-designing and re-

programming in existing applications. Figure 4.6 shows the transformation from the 

service invocation in Web Services to the one in the proposed architecture. Each WS 



 34 

provider/consumer in the proposed architecture interacts with a PWSG peer installed on 

the same machine.  

      Once joining the system, the PWSG peer installed with the WS provider fetches the 

WSDL document from the WS provider. It stores the WSDL document in its repository 

for the discovery purpose. 

      The WS consumer treats the local PWSG peer as the WS provider and requests the 

service of the latter. The local PWSG peer performs the service invocation in two phases.  

      In the first phase, the PWSG peer (the issuer) parses the invocation request (the 

SOAP request) and extracts three key elements to represent the requested service. These 

three key elements are: 

• The method name to be invoked, 

• All parameters and their types, and 

• The return type. 

Then, the issuer sends out a discovery request with these key elements over the P2P 

network to find WS providers. Once a PWSG peer installed with the WS provider 

receives the discovery request, it will respond to the issuer if the local WSDL document 

fits those elements in the request.  

      In the second phase, the issuer receives one or more responses from the P2P network. 

It selects the best one from all responding PWSG peers using the QoS based selection 

(Section 4.5). Then, it builds a connection to the selected peer and sends it the service 

invocation request. The selected PWSG peer invokes the service of the attached provider 

according to the request and sends the result back to the issuer. Finally, the issuer returns 

the result to the consumer and finishes the service invocation. 

4.4 Usage of PUDDI and PWSG 

Although PWSG aims to fulfill any WS invocation and supports runtime discovery, 

PUDDI is still needed at the beginning of development as the substitute for UDDI. The 

bindingTemplate returned from the local PUDDI peer is different from that returned from 

the UDDI server. The location of the provider is replaced by the address to access the 



 35 

local PWSG peer plus an encoded string to identify the provider. So, the developer and 

the WS consumer will treat the PWSG peer as the WS provider. PWSG can be easily 

introduced into the life cycle of the Web Service application. To illustrate the process, if 

the WS provider is assumed to be at: 

http://192.168.0.1:1080/service1 

Then, the transformed location is: 

http://localhost:9000/192-168-0-1&1080&service1 

Where, http://localhost:9000 is the location to access the local PWSG peer. 192-168-0-

1&1080&service1 is an encoded location to access the provider. PWSG will use the 

encoded location to fetch the WSDL document from the provider. 

      To obtain the WSDL document, the developer may use the Uniform Resource 

Locator (URL) http://localhost:9000/192-168-0-1&1080&service1?wsdl to access the 

local PWSG peer. Since the location of the provider is indicated in the URL, the PWSG 

peer can easily fetch the WSDL document from that PWSG peer installed with the actual 

WS provider. Before returning the WSDL document to the developer, the PWSG peer 

replaces the location of the WS provider with its location (shown in Figure 4.7). This 

guarantees that the WS consumer developed based on the changed WSDL document will 

use the local PWSG peer as the provider.  

---- WSDL returned from the WS provider ----
    . . . . . .
    <service name='WSProviderService'>
        <port name='WSProviderPort' binding='tns:WSProviderBinding'>
            <soap:address location='http://192.168.0.1/service1'/>
        </port>
    </service>

---- WSDL returned from the local PWSG peer ----
    . . . . . .
    <service name='WSProviderService'>
        <port name='WSProviderPort' binding='tns:WSProviderBinding'>
            <soap:address location='http://localhost:9000/service1'/>
        </port>
    </service>

 

Figure 4.7: Difference between two WSDL documents 



 36 

4.5 The QoS Based Selection 

After performing service discovery in the first phase of the service invocation, PWSG 

may find multiple service providers available and must select the most suitable. The QoS 

based selection used in the architecture aims to selection a provider on behalf of the 

consumer. It performs three operations, namely storing, collecting, and reasoning (Figure 

4.8). 

Repository
Storing 

Operation

Consumer

QoS 

FeedBack

Collecting

Operation

Reasoning

Operation

Provider

Predicted 

Response 
Time

QoS 

FeedBack

QoS 

FeedBack

Predicted 

Response 

Time

QoS 

FeedBack

Recommendation

 

Figure 4.8: The QoS Based Selection 

• Through the storing operation, a QoS feedback report from the consumer can be 

saved to the repository of the provider. The QoS feedback report provides a 

historical reference for the consumer to assess the provider. Each provider only 

keeps the feedback information relevant to it.  

• The collecting operation retrieves all necessary data from providers for the 

reasoning operation.  

• The reasoning operation manages to select the best service provider for the 

consumer according to the collected data. 

      In the first phase of the service invocation, the PWSG peer collects two types of 

information from candidate providers using the collecting operation, the QoS feedback 

report and the runtime context of the provider. 



 37 

      A QoS feedback report consists of three parameters shown in Table 4.1, in which the 

computation of Predicted response time will be explained in detail later in this section. 

Table 4.1: The parameters of QoS feedback 

Parameter Type Description 

Response 

time 

int 

(milliseconds) 

The time that the consumer has waited to get the response 

from the provider.  

Predicted 

response 

time 

int 

(milliseconds) 

The predicted response time according to the runtime 

context of the provider 

Time 

difference  

int  

(milliseconds) 

The time difference between the response time and the 

predicted response time. 

 

     timeresponsePredictedtime ResponsedifferenceTime −=  

      The runtime context information is generated by the service provider to help assess 

the provider more accurately. It has two parameters shown in Table 4.2. 

Table 4.2: The parameters used in runtime context information 

Parameter Type Description 

Request Rate float 

(requests/second) 

The number of requests arriving at the 

provider in one second 

Mean service time int (milliseconds) The time consumed in processing a 

request in the service provider 

      Using the open model solution technique ([18], Section 6.4.1), the response time can 

be given by the following equation: 

[ ])(1)( λλ ADR +=  

      Where, )(λR is the response time of a request at a give request rate λ , D is the 

service time that the request needs to be executed in the processor, )(λA is the number of 

requests waiting in the queue in the front of the current request.  

      Since each incoming request/outgoing reply goes through the PWSG peer on the 

provider side, )(λA and )(λR can be observed at any time by the PWSG peer. Therefore, 

the mean service time can be obtained by the following equation: 

)(1

)(

λ

λ

A

R
D

+
=  



 38 

      The computation of the mean service time only needs to be executed once and then is 

in effect for the whole running period of the PWSG peer. 

      According to the QoS feedback and runtime context information, the PWSG peer can 

infer the best provider to invoke the requested service. To describe the reasoning 

operation more clearly, the notation of the parameters is presented in Table 4.3.  

Table 4.3: The notation of parameters  

λi Arrival rate of the i-th provider pair 

Si Mean service time of the i-th provider peer 
n

iD  Mean time difference reported by the n-th consumer peer regarding the 

i-th provider peer 

iD  Mean time difference reported by the current consumer peer regarding 

the i-th provider peer 

Ni The number of QoS feedback reports regarding the i-th provider peer 

Ti The predicted response time of the i-th provider peer 

PRTi The predicted response time (including a network lag) for the i-th 

provider peer 

Ai The rank of the i-th provider peer 

      Using the open model solution technique ([18], Section 6.4.1) and Little’s Law ([18], 

Section 3.3), the response time can be given by: 

D

D
R

λ
λ

−
=

1
)(  

      Where, )(λR is the response time of a request at a give request rate λ , D is the 

service time. Then, the response time Ti in the QoS selection can be defined as: 

ii

i
i

S

S
T

λ−
=

1
 

      Where, Ti does not take other lags (e.g. the network and the firewall lags) into 

account. QoS feedback contains the information about the mean external lag time. 

      If the current consumer peer has its own QoS feedback data on the provider peer 

(previous experiences), PRTi can be defined as 

iii DTPRT +=  



 39 

      If the current consumer peer does not have its own QoS feedback data, PRTi can be 

defined as: 

∑
=

+=
iN

n

n

i

i

ii D
N

TPRT
1

1
 

      Then, the rank of the i-th provider peer, i.e. Ai, can be defined as: 

i
i PRT

A 1=  

      Eventually, the provider peer with the highest value of Ai will be selected by the QoS 

based selection. 

4.6 Deployment 

P2P Network

…...

`

Provider Peer

WS Provider

PUDDI

PWSG

Provider Peer

WS Provider

PUDDI

PWSG

Provider Peer

WS Provider

PUDDI

PWSG

Consumer Peer

WS Consumer

PWSG

`

Consumer Peer

WS Consumer

PUDDI

PWSG

…...

UDDI Client

UDDI Client

Developer

Administrator

 

Figure 4.9: The deployment scenario of the proposed architecture 

At the deployment stage, each WS provider/consumer must have a PWSG peer (Figure 

4.9) installed on the same local machine. They will only interact with the local PWSG 

peer in the future. To do so, the WS consumer needs to switch its preset provider address 



 40 

to the local PWSG peer. If the WS consumer is developed based on the WSDL document 

obtained from the proposed architecture, there is no change required for the consumer. 

For the WS provider, its address should be set in the configuration file of the PWSG peer. 

Then, the PWSG peer will send any request to it. 

      The setup of PUDDI is similar. The WS consumer/UDDI client needs to switch its 

preset UDDI address to the local PUDDI peer. On the provider side, the WS 

provider/UDDI client also needs to switch its preset provider address to the local PUDDI 

peer. 

      Once the system is deployed, the WS provider, the WS consumer, and the UDDI 

client work seamlessly with the architecture and are not aware of the organization of the 

P2P network in their whole life cycle. 



 41 

 

CHAPTER 5 

EXPERIMENT 1: OVERHEAD AND PERFORMANCE OF 

PUDDI AND PWSG 

The P2P-Web Services architecture uses PUDDI and PWSG to perform Web Service 

discovery and invocations in a dynamic networking environment. The P2P characteristics 

(e.g., request propagation and Ping-Pong mechanism) of these two components introduce 

overheads to the system. According to the Gnutella protocol, the more peers the system 

has, the more time the discovery operation takes. It can be inferred that the performance 

of PUDDI/PWSG is related to the number of peers in the system. The experiments in this 

chapter aim to investigate how the proposed architecture performs in different sizes of 

networks in the following aspects. 

• CPU and network bandwidth consumption 

These help determine quantitatively how much the architecture uses 

computational resources, and whether or not it is a burden to the deployed 

environment. 

• Throughput and response time 

These help determine the processing capacity and speed of the architecture in a 

given hardware/software environment. 

      This part of experimentation will be conducted in a reference system, which is a 

working implementation of the architecture and consists of prototype peers running on 

multiple machines. The scalability of the reference system is limited to the available 

hardware resources. 

5.1 Experimental Setup 

The reference system is set up using two kinds of networking topologies, a two-peer 

topology (Figure 5.1) and a four-peer topology (Figure 5.3). PUDDI and PWSG are 



 42 

examined using both topologies. Each consumer/provider peer in both networking 

topologies is a physical machine that has a PUDDI/PWSG peer running on it. Each 

PUDDI/PWSG peer has full connectivity which means it has a direct connection with all 

other PUDDI/PWSG peers. The topology shown in Figure 5.2 is simplified from the two-

peer topology and has only one PUDDI peer. It is dedicated to examining the PUDDI 

Publication API because this experiment only involves operations between a UDDI client 

and a PUDDI peer. 

      The service requestor, the UDDI client for PUDDI or the WS consumer for PWSG, 

runs on a dedicated machine to generate requests at various request rates (from 1req/sec 

up to 80req/sec). It logs replies from the attached PUDDI/PWSG peer, and generates a 

performance report according to its log. 

Provider Peer Consumer Peer

Gnutella

WS Provider
(Optional)

PUDDI Peer

`

UDDI ClientPUDDI Peer

Service Requestor
 

 

Provider Peer Consumer Peer

Gnutella

WS Provider

PWSG Peer

`

WS 

Consumer
PWSG Peer

Service Requestor
 

Figure 5.1: Two-peer networking topology 

`

UDDI ClientPUDDI Peer

 
Figure 5.2: Topology used for examining the PUDDI Publication API 



 43 

Consumer Peer

Provider Peer

Provider Peer

Provider Peer

Gnutella

WS Provider

(Optional)

PUDDI Peer

WS Provider

(Optional)

PUDDI Peer

WS Provider

(Optional)

PUDDI Peer

PUDDI Peer`

UDDI Client

 

Consumer Peer

Provider Peer

Provider Peer

Provider Peer

Gnutella

WS Provider

PWSG Peer

WS Provider

PWSG Peer

WS Provider

PWSG Peer

PWSG Peer`

WS 

Consumer

 
Figure 5.3: Four-peer networking topology 

      Table 5.1 summarizes the hardware configuration adopted in experiments. 

Table 5.1: Hardware configuration of experimental machines 

      The Web Service provided by each WS Provider in Figure 5.1, 5.2, and 5.3 only 

implements one light-weight “echo” method that takes an integer as the input and returns 

Role CPU Memory Network 

Interface 

Service 

Requestor 

3.2G Pentium 4 2G 

Service 

Provider 

Each service provider runs on the same 

machine with the attached PUDDI/PWSG peer 

PUDDI/PWSG 

Peer 

600Mhz Pentium III 512M 

 

 

100Mb 

Ethernet 



 44 

the same integer. Since the experiments in this chapter aim to investigate PUDDI/PWSG, 

the low resource consumption of this service provider enables it to be deployed with 

PUDDI/PWSG on the same machine to simplify the setup of all experiments. The 

provider’s impact on the system performance is minimal and can be ignored. 

      The PUDDI peer provides the UDDI client standard UDDI services, which are, in the 

current implementation of PUDDI, the UDDI Inquiry and Publication APIs.  

      Table 5.2 summarizes all Web Services used in experiments. 

Table 5.2: Web Service provided by each peer 

      In the experiments, all workloads are generated by consumer peers, specifically, the 

UDDI client and the WS consumer, at various rates. The UDDI client issues publication 

requests to the PUDDI peer to examine the PUDDI Publication API. It issues inquiry 

requests to the PUDDI peer to examine the PUDDI Inquiry API. The WS consumer 

issues service requests to the PWSG peer to examine the service invocation. 

5.2 CPU Usage of PUDDI 

Measuring CPU usage of PUDDI is process based, which presents the percentage of time 

that the PUDDI process occupies the CPU in the whole running period. The higher the 

CPU usage, the less available the CPU is for other processes. It is useful for users to 

determine whether or not a PUDDI peer and other Web Services applications can be 

deployed together on the same physical machine. 

 PUDDI PWSG 

Consumer 

Peer 

The PUDDI peer provides the 

UDDI Inquiry API (including 

FindBusiness, FindService, and 

FindBinding), which is invoked 

by the UDDI client 

PWSG peer on the WS 

consumer side does not 

provide any Web Service 

Provider Peer The PUDDI peer provides the 

UDDI Publication API 

(including SaveBusiness, 

SaveService, and SaveBinding), 

which is invoked by the WS 

provider (or the UDDI client) 

Each WS Provider provides a 

light weight echo service. To 

simplify the experiment, all 

WS providers provide the 

same service (identical WSDL 

definition). 



 45 

      Figure 5.4 shows the CPU usage of the PUDDI Publication API, in which three 

essential functions, i.e., SaveBusiness, SaveService, and SaveBinding, are measured.  

CPU Usage

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80

Request Rate (Req/Sec)

C
P

U
 U

s
a
g

e
 (

%
)

SaveBusiness SaveService SaveBinding

 
Figure 5.4: CPU usage of the PUDDI Publication API 

      The SaveBusiness operation consumes less CPU than the other two operations to 

process a request, because its internal data manipulation is simpler than other two.  

      Figure 5.5 and 5.6 present the CPU usage of the PUDDI Inquiry API using the two-

peer topology and the four-peer topology respectively.  

CPU Usage

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60

Request Rate (Req/Sec)

C
P

U
 U

s
a
g

e
 (

%
)

FindBusiness (Consumer Side) FindService (Consumer Side)

FindBinding (Consumer Side) FindBusiness (Provider Side)

FindService (Provider Side) FindBinding (Provider Side)

 
Figure 5.5: CPU usage of the PUDDI Inquiry API using two-peer topology 



 46 

CPU Usage

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40

Request Rate (Req/Sec)

C
P

U
 U

s
a
g

e
 (

%
)

FindBusiness (Consumer Side) FindService (Consumer Side)

FindBinding (Consumer Side) FindBusiness (Provider Side)

FindService (Provider Side) FindBinding (Provider Side)

 
Figure 5.6: CPU usage of the PUDDI Inquiry API using four-peer topology 

      In Figure 5.5, three operations on the consumer side show large differences at high 

request rates (> 50req/sec). These differences are mainly caused by the complexity of 

their data manipulation. On the provider side, these differences are less distinct. Given a 

request rate, PUDDI in the four-peer topology consumes more CPU resources than the 

two-peer topology. This is because the four-peer PUDDI system has to process more 

packages than the two-peer PUDDI system. The increase in the number of packages in 

the four-peer system will be examined in Section 5.4. 

      Comparing CPU usage of the consumer peer and the provider peer (Figure 5.5 and 

Figure 5.6) shows a significant difference. The consumer peer has a higher CPU usage 

than the provider peer. This is because, for each request, the PUDDI peer on the 

consumer side has to interact with both other PUDDI peers and the UDDI client, while 

the PUDDI peer on the provider side only interacts with other peers. 

5.3 CPU Usage of PWSG 

Measuring the CPU usage of PWSG is also process based. It is as useful as measuring 

CPU usage of PUDDI. Figure 5.7 presents the CPU usage of PWSG in the two-peer 

network, while Figure 5.8 presents the CPU usage in the four-peer network. 



 47 

CPU Usage

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

Request Rate (Req/Sec)

C
P

U
 U

s
a
g

e
 (

%
)

Consumer Side Provider Side

 
Figure 5.7: CPU usage of PWSG using two-peer topology 

CPU Usage

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50

Request Rate (Req/Sec)

C
P

U
 U

s
a

g
e

 (
%

)

Consumer Side Provider Side

 
Figure 5.8: CPU usage of PWSG using four-peer topology 

      In both topologies, the consumer peer has a higher CPU usage than the provider peer 

because the consumer peer has to process more data packages. At the same request rate, 

peers in the four-peer topology have higher CPU usage than those in the two-peer 

topology because the four-peer network has more data packages transferred. 

      In Figure 5.8, there is a drop in the CPU usage on the provider side when the request 

rate is 40req/sec. This may be caused by the interference from the garbage collection 

feature of the development platform (Microsoft C# and .Net framework) and the virtue 

memory management of OS (Windows XP).  



 48 

5.4 Bandwidth Consumption of PUDDI 

The main drawback of the Gnutella protocol is its high bandwidth consumption. Since 

PUDDI and PWSG use the Gnutella protocol to manage all peers, it is necessary to 

examine their bandwidth consumption to determine in what magnitude they consume the 

bandwidth.  

Bandwidth Consumption

0

10

20

30

40

50

60

0 10 20 30 40 50 60

Request Rate (Req/Sec)

P
a
c
k
a
g

e
 /

 S
e
c
o

n
d

FindBusiness(in) FindService(in) FindBinding(in)

FindBusiness(out) FindService(out) FindBinding(out)

 
Figure 5.9: PUDDI bandwidth consumption on the consumer side using two-peer 

topology 

 

Figure 5.10: PUDDI bandwidth consumption on the provider side using two-peer 

topology 

Bandwidth Consumption (Provider Peer)

0

20

40

60

80

100

120

0 10 20 30 40 50 60

Request Rate (Req/Sec)

P
a
c
k
a
g

e
 /

 S
e
c
o

n
d

FindBusiness(in) FindService(in) FindBinding(in)

FindBusiness(out) FindService(out) FindBinding(out)



 49 

      Figure 5.9 and 5.11 present the PUDDI bandwidth consumption on the consumer side, 

while Figure 5.10 and 5.12 present the bandwidth consumption on the provider side. 

Bandwidth Consumption

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40

Request Rate (Req/Sec)

P
a
c
k
a
g

e
 /

 S
e
c
o

n
d

FindBusiness(in) FindService(in) FindBinding(in)

FindBusiness(out) FindService(out) FindBinding(out)

 
Figure 5.11: PUDDI bandwidth consumption on the consumer side using four-peer 

topology 

Bandwidth Consumption (Provider Peer)

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 40

Request Rate (Req/Sec)

P
a
c
k
a
g

e
 /

 S
e
c
o

n
d

FindBusiness(in) FindService(in) FindBinding(in)

FindBusiness(out) FindService(out) FindBinding(out)

 
Figure 5.12: PUDDI bandwidth consumption on the provider side using four-peer 

topology 

      In the two-peer network, the number of incoming packages/outgoing packages on the 

consumer side equals the number of requests because there is no redundant package 

transferred. On the provider side, the number of outgoing packages is two times higher 

than that of incoming packages because the provider peer also propagates each incoming 

request to its neighbor, the only consumer peer in the network. 



 50 

      Figure 5.11 shows that the increase in the number of incoming/outgoing packages on 

the consumer side is proportional to the increase in the number of peers. The higher the 

number of peers, the higher the bandwidth consumption is. On the provider side (Figure 

5.12), the number of incoming packages equals the request rate because any redundant 

package will be deleted by the peer. The number of outgoing packages is proportional to 

the number of peers because the peer propagates incoming requests to its neighbors. 

5.5 Bandwidth consumption of PWSG 

Bandwidth Consumption

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70

Request Rate (Req/Sec)

P
a
c
k
a
g

e
 /

 S
e
c
o

n
d

Incoming Package (Consumer Side) Outgoing Package (Consumer Side)

Incoming Package (Provider Side) Outgoing Package (Provider Side)

 
Figure 5.13: PWSG bandwidth consumption using two-peer topology 

Bandwidth Consumption

0

20

40

60

80

100

120

0 10 20 30 40 50

Request Rate (Req/Sec)

P
a
c
k
a
g

e
 /

 S
e
c
o

n
d

Incoming Package (Consumer Side) Outgoing Package (Consumer Side)

Incoming Package (Provider Side) Outgoing Package (Provider Side)

 
Figure 5.14: PWSG bandwidth consumption using four-peer topology 



 51 

In the two-peer topology (Figure 5.13), both the consumer peer and the provider peer use 

the same amount of bandwidth. In the four-peer topology (Figure 5.14), the consumer 

peer requires much higher bandwidth than the provider peer because it interacts with all 

providers to process each request. The provider peer in the four-peer network consumes 

slightly less bandwidth than it does in the two-peer network, because, in the four-peer 

network, all invocation requests are balanced among three provider peers. In the two-peer 

network, all invocations are processed by the only one provider.  

5.6 Throughput and Response Time of PUDDI 

This section and the following section will examine the performance of PUDDI and 

PWSG in terms of throughput and response time. Throughput represents the number of 

processed requests by the system per second at a given request rate. The maximal 

capacity of the system is represented by the maximal throughput. Response time is the 

time the system consumes to process a request at a given request rate. 

Throughput

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80

Request Rate (Req/Sec)

T
h

ro
u

g
h

p
u

t 
(R

e
q

/S
e

c
)

SaveBusiness SaveService SaveBinding

 
Figure 5.15: Throughput of the PUDDI Publication API 



 52 

Response Time

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80

Request Rate (req/sec)

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
)

SaveBusiness SaveService SaveBinding

 
Figure 5.16: Response time of the PUDDI Publication API 

      The methods measured in the experiment have the same throughput and response 

time curves. They reach their maximal throughput at the request rate 60req/sec. When the 

request rate is greater than 60req/sec, the performance deteriorates rapidly. The response 

time goes up fast and the throughput stops going up and even declines.  

Throughput

0

10

20

30

40

50

60

0 10 20 30 40 50 60

Request Rate (Req/Sec)

T
h

ro
u

g
h

p
u

t 
(R

e
q

/S
e

c
)

FindBusiness FindService FindBinding

 
Figure 5.17: Throughput of the PUDDI Inquiry API using two-peer topology 



 53 

Response Time

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60

Request Rate (req/sec)

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
)

FindBusiness FindService FindBinding

 
Figure 5.18: Response time of the PUDDI Inquiry API using two-peer topology 

      Figure 5.17 and 5.18 show that the performance of FindBusiness is significantly 

better than the other two. This is because FindService and FindBinding have to do more 

data manipulation internally which lengthens response time and lowers throughput.  

      In the four-peer network, the performance (Figure 5.19 and 5.20) is lower because 

more packages are transferred over the network and come at a cost. The differences in 

data manipulation among three methods are not visible in Figure 5.19 and 5.20 because 

the performance bottleneck is mainly caused by the high number of packages. 

Throughput

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40

Request Rate (Req/Sec)

T
h

ro
u

g
h

p
u

t 
(R

e
q

/S
e

c
)

FindBusiness FindService FindBinding

 
Figure 5.19: Throughput of the PUDDI Inquiry API using four-peer topology 



 54 

Response Time

0

500

1000

1500

2000

0 5 10 15 20 25 30 35 40

Request Rate (req/sec)

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
)

FindBusiness FindService FindBinding

 
Figure 5.20: Response time of the PUDDI Inquiry API using four-peer topology 

5.7 Throughput and Response Time of PWSG 

In Figure 5.21 and 5.22, the performance of the four-peer PWSG system is lower than 

that of the two-peer PWSG system because more packages are transferred over the four-

peer network than the two-peer network.  

Response Time

0

200

400

600

800

1000

1200

1400

1600

1800

0 20 40 60

Request Rate (req/sec)

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s

)

Response Time (2 peers) Response Time (4 peers)

 
Figure 5.21: Response time of PWSG 



 55 

Throughput

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70

Request Rate (Req/Sec)

T
h

ro
u

g
h

p
u

t 
(R

e
q

/S
e

c
)

ThroughPut (2 peers) Throughput (4 peers)

 
Figure 5.22: Throughput of PWSG 

5.7 Conclusions 

The use of PUDDI and PWSG adds an overhead to the target machine in terms of CPU 

usage and bandwidth consumption. This overhead varies according to two factors: the 

request rate and the number of peers. The higher the request rate is, the higher the 

overhead is. The more peers the system has, the higher the overhead is. The overhead on 

the consumer side is higher than that on the provider side because the consumer peer 

needs to process more messages than the provider peer does for each service invocation.  

      The number of PUDDI/PWSG peers is a major factor that determines the 

performance of the whole system. Given a certain request rate, PUDDI/PWSG has higher 

throughput and lower response time in a two-peer network than it in a four-peer network. 

Therefore, the more peers the system has, the lower the performance is. This result is 

consistent with the observation result of the overhead of PUDDI/PWSG. 



 56 

 

CHAPTER 6 

CALIBRATING THE SIMULATION SYSTEM 

The size of the reference system used in the above experiments is not large enough to 

examine the proposed architecture thoroughly. The parameters of the P2P protocol, e.g., 

TTL and the number of neighbors, do not show their characteristics in a small system. To 

observe the nature of these parameters, a large scale system, e.g., a system with 1000 

peers, is required. 

      Furthermore, the reference system is not flexible enough for examining the QoS 

selection which requires changing some system settings, e.g., the network connection 

speed, CPU processing capacity, and the number of peers. These settings are difficult to 

manipulate as needed on existing hardware.  

      A simulation system will be used in the rest of experiments to achieve the 

requirements mentioned above. The simulation system is an application that simulates the 

logical working mechanism of the reference system on a highly abstract level. It uses a 

number of system parameters collected from the reference system to control each action 

internally. When using the same topology, if the result observed from the simulation 

system is similar to the one observed from the reference system, one can say that the 

simulation system is accurate and correct enough to observe the nature of the architecture. 

Configuring these parameters in the simulation system to represent behaviours of the 

reference system is called calibration in this thesis.  

      Two sets of experiments are conducted on the simulation system: 

• Examining the effects of P2P parameters, i.e., TTL and the number of 

neighbors 

The result of this experiment helps users properly configure P2P parameters of 

the PWSG system to achieve different system performance. 

 



 57 

• Comparing the QoS selection with other selection methods in terms of 

improving overall performance 

The purpose of this experiment is to determine whether or not the QoS selection 

will improve the system performance. 

      In this chapter, a calibration process will be conducted on the simulation system. First, 

system parameters will be measured on the reference system. Then, these parameters will 

be set up in the simulation system. Finally, the simulation system will be examined using 

the same configuration as the reference system. If the result obtained from the simulation 

system is similar to that from the reference system, the calibration is finished. 

6.1 Design of the Simulation System 

The simulation system consists of virtual peers, a task scheduler, and a message bus 

(Figure 6.1). The virtual peer is an object representing the functionality of the 

consumer/provider peer in the reference system. It has three layers: 

• Virtual networking layer, which sends/receives packages to/from the message 

bus just like operating over a real network, 

• Protocol layer, which implements the Gnutella protocol, and 

• Functional layer, which implements service discovery and service invocations. 

The QoS selection works in this layer. 

Simulation System

Message Bus

Virtual 

Peer

Virtual 

Peer

Virtual 

Peer

Task Scheduler

Activate

Send/Receive Send/Receive Send/Receive

Virtual Peer

Functional 
Layer

Protocol 

Layer

Virtual 

Networking 
Layer

Synchronize

Action 

Queue

Action 
Queue

Action 

Queue

 
 

Figure 6.1: The simulation system 



 58 

      The virtual peer is categorized as the provider peer and the consumer peer according 

to the role it plays in the service invocation. The consumer peer requires services, while 

the provider peer provides services.  

Task Scheduler

Virtual 
Peer

Action Queue

Action 1

.

.

.

Action 2

Remaining 
execution time

Execute the 
action

Decrease by 1

If the remaining 

execution time is 

zero, execute it

 
 

Figure 6.2: Execution of the action 

      The task scheduler activates each virtual peer sequentially according to an internal 

timer. When a virtual peer is activated, the task scheduler will examine all actions in the 

action queue of the peer (Figure 6.2). Each action has a field indicating its remaining 

execution time that will be decreased by 1 each time when the virtual peer is activated. If 

the remaining execution time is zero, the action will be removed from the queue and 

executed. Actions are created by functional layers according to specific events or 

messages. After all actions of the current peer are manipulated, the task scheduler will 

activate the next peer. When all peers are activated once, a run is finished. The internal 

timer moves one step (configurable) forward. Then, the task scheduler starts the next run. 

      The message bus is a software module used by all virtual peers to exchange messages. 

It receives the message from the virtual peer and notifies the destination peer of the 

message arrival. Then the destination peer can receive the message from the bus in the 

next activation period. To simulate different network transferring lags, the message bus is 

able to delay message transferring for a certain time length (configurable). This delay is 

synchronized with the internal timer in the task scheduler. 

 



 59 

6.2 Choice of System Parameters 

Since performance is a major concern in experiments conducted on the simulation system, 

it is necessary for the simulation system to represent the execution time (response time) 

as well as the effect of each operation.  

      The response time can be represented by the following equation ([18] Section 6.4.1, 

Open model solution technique):  

[ ])(1)( λλ ADR +=  

      Where, )(λR is the response time of a request at a give request rate λ , D is the 

service time that the request needs to be executed in the processor, )(λA is the number of 

requests waiting in the queue in front of the current request. Based on this equation, the 

response time of a request can be intuitively understood as its service time plus the 

waiting time used to process requests in front of it. 

Proxy Plug-ins

Controller Plug-
ins

Communicator 
Plug-ins

Proxy Layer

Control Layer

Networking Layer

The P2P-Web Services Framework

Web Services 

Consumer

P2P Network

Proxy Plug-ins

Controller Plug-
ins

Communicator 
Plug-ins

Proxy Layer

Control Layer

Networking Layer

The P2P-Web Services Framework

Web Services 

Provider

Message 

Queue

Message 

Queue

Message 

Queue

Message 

Queue

Message 

Queue

Message 

Queue

Web Services 
Proxy

Logic Controller

Communicator

Web Services 
Proxy

Message 

Queue

Logic Controller

Message 

Queue

Communicator

1
23 4

56

 
Figure 6.3: Decomposing a request process 

      According to the above analysis, processing a request in the reference system can be 

decomposed to six sub-operations, which are shown in Figure 6.3. These sub-operations 

are: 



 60 

1111 Sending a discovery request from a consumer peer to a provider peer, 

2222 Responding the discovery request, 

3333 Selecting the provider peer and sending it the invocation request, 

4444 Receiving the invocation request and performing the invocation, 

5555 Returning the invocation result to the consumer peer, and 

6666 Receiving the result and finalizing the service invocation. 

      These sub-operations help determine the system parameters used in the simulation 

system. In the simulation system, there are also six corresponding actions executed to 

process each request. The execution of these actions, which represent those sub-

operations on the reference system, is controlled by six sets of service time. The service 

time of each sub-operation can be easily collected from the reference system. 

6.3 Calibration 

The parameters determined above do not include the latency caused by the network. 

Since there are some other delays existing in the reference system, the network latency 

can be used as a means to tweak the simulation system. The response time given by the 

equation in Section 6.2 is not an instant value but a long-term, statistic value. Therefore, 

measuring the accuracy of the simulation system is also based on statistical results. 

      The calibration is conducted using three kinds of networking topologies, a two-peer 

network shown in Figure 6.4, a three-peer topology shown in Figure 6.6, and a four-peer 

topology shown in Figure 6.8. Figure 6.5, 6.7, and 6.9 present the performance curves 

measured in the reference system and the simulation system using two-peer, three-peer, 

and four-peer topologies.  

Consumer Peer Provider Peer

`

 
 

Figure 6.4: Two-peer topology 



 61 

Response Time

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 50 60 70

Request Rate(req/sec)

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Reference System Simulation System

 

Throughput

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70

Request Rate(req/sec)

T
h

ro
u

g
h

p
u

t(
re

q
/s

e
c
)

Reference System Simulation System

 
Figure 6.5: Performance comparison using the two-peer topology 

Provider Peer

Provider Peer

Consumer 

Peer

`

 
Figure 6.6: Three-peer topology 

Response Time

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80

Request Rate(req/sec)

R
e
s
p
o
n
s
e
 T

im
e
(m

s
)

Reference System Simulation System

 

Throughput

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80

Request Rate(req/sec)

T
h
ro

u
g
h
p
u
t(

re
q
/s

e
c
)

Reference System Simulation System

 
Figure 6.7: Performance comparison using the three-peer topology 

Provider Peer

Provider Peer

Consumer 
Peer

Provider Peer

`

 
Figure 6.8: Four-peer topology 



 62 

Response Time

0

500

1000

1500

2000

2500

0 10 20 30 40 50

Request Rate(req/sec)

R
e
s
p
o
n
s
e
 T

im
e
(m

s
)

Reference System Simulation System

 

Throughput

0

5

10

15

20

25

30

0 10 20 30 40 50

Request Rate(req/sec)

T
h
ro

u
g
h
p
u
t(

re
q
/s

e
c
)

Reference System Simulation System

 
Figure 6.9: Performance comparison using the four-peer topology 

6.4 Conclusions 

Based on the result of calibration, one can draw the following conclusions.  

• The throughput measured in the simulation system matches the throughput 

measured in the reference system when the system is not saturated (the request 

rate is less than the maximal throughput). It is also close to the reference data 

when the system is saturated (the request rate is equal to or greater than the 

maximal throughput). 

• The response time measured in the simulation system matches the response time 

measured in the reference system when the request rate is less than 10req/sec. It 

shows a deviation from the reference data when the request rate is greater than 

10req/sec. 

• Throughput and request time measured in both systems show the same tendency. 

      Although the simulation system does not behave exactly as the reference system in 

some situations, its approximation is accurate enough for the experiments conducted in it 

for the following reasons: 

• The experiment examining the effects of the P2P parameters is working in an 

extreme low request rate situation. Each request is only issued after the previous 

request is completed. There are no concurrent requests issued. In this situation, 

the simulation system precisely represents the behaviour of the reference system. 



 63 

• The experiment examining the QoS selection will compare the result with the 

other two selection methods in the same situation. The deviation of the 

simulation system in representing the behaviour of the reference system is 

eliminated in the comparison. The correctness of the performance tendency of 

the simulation system plays a major role in guaranteeing the correctness of the 

result. 



 64 

 

CHAPTER 7 

EXPERIMENT 2: EFFECTS OF P2P PARAMETERS 

The P2P-Web Services architecture has a number of parameters related to the Gnutella 

protocol that can be changed in the configuration file. The most important parameters are: 

TTL, the number of neighbors, and the waiting time for discovery replies. When 

deploying the system, a user needs to configure these parameters properly. Incorrect 

values may have negative effects on the system performance and efficiency. Research 

about the effects of these P2P parameters is scarce. The papers and technical reports 

mentioning the effects, e.g., [33] and [20], draw their conclusions only based on 

mathematic or logical analysis. A simulation based study about these P2P parameters will 

be an inevitable supplement to this research field. The experiment in this chapter focuses 

on the following aspects. 

• Effects of different TTLs on the number of reachable peers, the discovery 

duration, and the number of packages transferred. 

• Effects of different numbers of neighbors on the number of reachable peers, 

the discovery duration, and the number of packages transferred. 

      This experiment will help reveal the effects of P2P parameters in different situations, 

and optimize the configuration of the P2P-Web Services architecture. 

7.1 Effects of TTL 

Generally, the value of TTL should be chosen according to the number of peers in the 

system. The more peers in the system, the greater TTL should be. Ritter [33] argued that 

a high TTL increases the number of reachable peers geometrically but incurs high 

bandwidth consumption. He gave a table in his report showing the relationship between 

TTL and the number of reachable peers, and TTL and bandwidth consumption.  

      In the P2P-Web Services architecture, the discovery duration is also a crucial factor 

for users because it determines the response time of a service invocation. The more 



 65 

reachable peers, the longer the discovery duration. The discovery duration has not been 

studied by researchers due to limitations of the methodologies they chose. The simulation 

system used in the experiments provides a means to investigate this crucial factor.  

      The experiment is conducted in the simulation system with 2000 and 10000 provider 

peers separately. There is only one consumer peer in the system that issues requests and 

records each response. Each peer builds connections to other peers according to the Ping-

Pong algorithm of Gnutella that finds out new peers using the ping request and chooses 

neighbors randomly from all known peers.  

      To simplify service discovery, all provider peers provide the same service. The 

consumer peer sequentially issues requests with a TTL value chosen from 1 to 15. The 

new request is issued only after the previous request is finished and there is not package 

propagated over the network. For each TTL, the consumer peer will record the number of 

reachable peers, the waiting time for all responses, the number of requests (Query) 

propagated, and the number of responses (QHit) propagated. 

   Table 7.1 summarizes the configuration of the experiment. 

Table 7.1: Experimental configuration 

#Provider Peer 2000 and 10000 separately 

#Consumer Peer 1 

TTL From 1 to 15 

#Neighbors 5 

Networking Latency 5ms for any connection between two peers 

 

Reachable Peers VS. TTLs (2000 Peers)

0200400600800100012001400160018002000
0 2 4 6 8 10 12 14

TTL

#
R

ea
ch

ab
le

 P
ee

r

Reachable Peers VS. TTLs (10000 Peers)

010002000300040005000600070008000900010000
0 2 4 6 8 10 12 14

TTL

#
R

ea
ch

ab
le

 P
ee

rs

 
Figure 7.1: Number of reachable peers V.S. TTLs 



 66 

Search Time VS. TTLs (2000 Peers)

0

2000

4000

6000

8000

10000

12000

0 2 4 6 8 10 12 14

TTL

S
ea

rc
h
 T

im
e 

D
u
ra

ti
o
n
 (

m
s)

 .

 

Search Time VS. TTLs (10000 Peers)

0

10000

20000

30000

40000

50000

60000

0 2 4 6 8 10 12 14
TTL

S
e

ar
ch

 T
im

e
 D

u
ra

ti
o

n
 (

m
s)

 .

 
Figure 7.2: Search time duration V.S. TTLs 

      Figure 7.1 presents that for the same network topology a slight increase in the value 

of TTL will significantly increase the number of reachable peers. For instance, when TTL 

is 4, the number of reachable peers is about 300. When TTL is 6, about 1800 peers can be 

reached. For the same TTL, the number of reachable peers changes in different network 

topologies. The more peers the system has, the more peers a search request can reach. 

This is because the small network has more connection overlaps than the large one. A 

connection overlap means that several close peers have some common neighbors. The 

package propagated in a connection overlap is unable to reach any new peer outside the 

overlap. So, the connection overlap makes the discovery less efficient.  

      Figure 7.2 presents that the search duration is only proportional to the reachable peers. 

The time curve exactly matches the curve of reachable peers in Figure 7.1. Searching 

2000 peers takes approximate 12000 ms and searching 10000 peers takes approximate 

60000 ms. 

#Query VS. TTLs (2000 Peers)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 2 4 6 8 10 12 14

TTL

#
P

a
ck

ag
es

#Query #QHit

 

#Query VS. TTLs (10000 Peers)

0

20000

40000

60000

80000

100000

120000

0 2 4 6 8 10 12 14

TTL

#
P

ac
k
a
g
e
s

#Query #QHit

 
 

Figure 7.3: Number of packages V.S. TTLs 



 67 

      The number of packages (Query and QHit) transferred in the system (Figure 7.3) 

shows a similar curve as the reachable peers. The number of QHit packages is far greater 

than that of Query packages. This is because that along a Query propagation route each 

peer will create a QHit package that will be transferred back to the consumer peer along 

the Query route. 

7.2 Effects of the Number of Neighbors 

Besides TTL, the number of neighbors also has an effect on the reachable peers. The 

greater the number of neighbors is, the more peers a request can reach. Although the 

effect is intuitive, there is no data available to show the effect precisely. It is still unclear 

whether or not the number of neighbors has the same effects as TTL on the number of 

reachable peers, search duration, and number of packages transferred. This experiment 

aims to examine the effects using different numbers of neighbors. 

      The experimental setup is the same as the experiment examining TTL using 2000 

peers except that the value of TTL is fixed to 5 and the number of neighbors is not fixed. 

Table 7.2 summarizes the configuration of the experiment. 

Table 7.2: Experimental configuration 

#Provider Peer 2000 

#Consumer Peer 1 

TTL 5 

#Neighbors From 1 to 15 

Networking Latency 5ms for any connection between two peers 
 

Reachable Peers VS. #Neighbors (2000 peers)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

#Neighbors

#
R

e
a
c
h

a
b

le
 P

e
e
rs

 
Figure 7.4: Reachable peers V.S. #Neighbors 



 68 

Search Time VS. TTLs (2000 Peers)

0

2000

4000

6000

8000

10000

12000

0 2 4 6 8 10 12 14

#Neighbors

S
ea

rc
h

 T
im

e 
D

u
ra

ti
o
n

 (
m

s)
 .

 
Figure 7.5: Search time V.S. #Neighbors 

      Increasing the number of neighbors leads to a fluctuating curve on the number of 

reachable peers (Figure 7.4). Correspondingly, the search duration also shows the same 

fluctuating curve when the number of neighbors changes (Figure 7.5). Some parts of the 

curve in Figure 7.4, e.g., from 5 to7 on the X axis, are flatter than others. This means that 

the increase of the number of neighbors may not effectively expand the reachable area 

over the network, because the increase in the number of neighbors involves increasing 

overlaps as well. When the increase in the number of neighbors is great enough, the 

reachable area can be expanded substantially.  

#Packages VS. Neighbors (2000 Peers)

0

2000

4000

6000

8000

10000

12000

14000

0 2 4 6 8 10 12 14

#Neighbors

#
P

ac
k
ag

es

#Query #QHit

 
Figure 7.6: #Packages V.S. #Neighbors 

      Figure 7.6 presents that increasing the number of neighbors can reduce the number of 

QHit packages transferred over the network. This is because the high number of 



 69 

neighbors shortens the average route length from the consumer peer to every provider 

peer. 

7.3 Conclusions 

According to the experimental result, one can observe that the search time and the 

number of packages transferred are directly proportional to the reachable peers instead of 

TTL and the number of neighbors. When the number of neighbors is fixed, a slight 

increase in TTL will significantly increase the number of reachable peers. By contrast, 

when TTL is fixed, a slight change in the number of neighbors may not affect the number 

of reachable peers significantly.  

      When the search efficiency is the major concern in deployment, the user can set a 

large TTL in the system. When the search time is the major concern, the user can set the 

search waiting time of PWSG to the value with which PWSG is able to reach desirable 

number of peers. When the bandwidth consumption is the major concern, the number of 

neighbors should be given a fairly large value that should be less than the limit of OS 

(e.g., by default, 10 connections on Windows XP Professional). 



 70 

 

CHAPTER 8 

EXPERIMENT 3: EXAMINING QOS SELECTION 

In this experiment, the focus is the key issue of the research, the QoS based selection. 

Since the QoS selection aims to improve the system performance, its effects about 

response time and throughput will be examined in various situations in the simulation 

system.  

      To make the experimental result intuitive, another two common selection methods, 

i.e., random and feedback based selection, will be examined in the same situations to 

serve as references. The performance of these three selection methods will be compared 

to show the improvement of the QoS selection. 

8.1 Experimental Setup 

In most real systems, the number of service providers (servers) is far less than that of 

service consumers (clients) because the cost of a provider is higher than that of a 

consumer. The QoS selection is designed to work in this situation to help each consumer 

find the most available of all providers. The simulation system configured in this 

experiment has less provider peers (10) and more consumer peers (100 and 200) than the 

system in Experiment 2 that, in contrast, has 2000/10000 provider peers and only 1 

consumer peer. This configuration is chosen for the following reasons: 

• According to the response time curve shown in Experiment 1, the steepest part 

of the curve is achieved when the request rate is greater than 50% of the 

maximal throughput. Any slight change in the request rate in this range will 

significantly change the response time and present a distinct difference in the 

experimental result. Based on the service time set in the simulation system, the 

ratio of providers to consumers is at about 1:10 to achieve desirable request rates. 

• The number of requests issued by each consumer should be large enough for the 

QoS selection to work effectively (warming time). In the experiment, each 



 71 

consumer will issue 100 requests. Based on preliminary tests on the experiment 

machine (Pentium 4 3.2G, 2G Ram), the basic service time is set to 50ms to 

achieve a reasonable experiment time (10 hours for a run). The maximal 

throughput under this service time is about 20req/sec that is also consistent with 

the observed result in Experiment 1. Then, the numbers of providers and 

consumers can be set to 10 and 100 respectively. 

      The experiment has 4 settings representing the local-area network (LAN), the wide-

area network (WAN), WAN with mixed servers, and heavy load WAN with mixed 

servers. 

The local-area network setting (Setting 1) 

      The LAN environment features a fast network connection for all peers. All provider 

peers have the same basic service time (50ms). The setting is summarized in Table 8.1. 

Table 8.1: Local-area network setting 

#Providers 10 (All providers provide the identical service) 

#Consumer 100 

Service Time 50ms 

Network Connection Latency 5ms 

TTL 5 

#Neighbors 5 

 

The wide-area network setting (Setting 2) 

      The WAN environment features mixed network connection speed. A consumer may 

have different connection qualities with different providers. To simplify the experiment, 

there are only two kinds of connections used in the system. The setting is summarized in 

Table 8.2. 

Table 8.2: Wide-area network setting 

#Providers 10 (All providers provide the identical service) 

#Consumer 100 

Service Time 50ms 

Network Connection Latency 5ms for the consumer-provider pair whose ID 

are both even or odd, Otherwise, 50ms for the 

rest 

TTL 5 

#Neighbors 5 



 72 

WAN with mixed servers (Setting 3) 

      This setting represents a scenario close to the real system. It has servers with different 

processing abilities as well as different connection qualities. To simplify the experiment, 

there are only two kinds of processing abilities used for servers. Table 8.3 summarizes 

this setting’s parameters. 

Table 8.3: WAN with mixed servers setting 

#Providers 10 (All providers provide the identical service) 

#Consumer 100 

Service Time Mixed servers: 

50ms for the server with an even id 

500ms for the server with an odd id 

Network Connection Latency 5ms for the consumer-provider pair whose ID 

are both even or odd, Otherwise, 50ms for the 

rest 

TTL 5 

#Neighbors 5 
 

Heavy load WAN with mixed servers (Setting 4) 

      This setting is modified based on Setting 3. The only difference is that this setting has 

200 consumers. The providers in the system have a higher request rate than above three 

settings. Table 8.4 summarizes this setting’s parameters. 

Table 8.4: Heavy load WAN with mixed servers setting 

#Providers 10 (All providers provide the identical service) 

#Consumer 200 

Service Time Mixed servers: 

50ms for the server with an even id 

500ms for the server with an odd id 

Network Connection Latency 5ms for the consumer-provider pair whose ID 

are both even or odd, Otherwise, 50ms for the 

rest 

TTL 5 

#Neighbors 5 
 

      The workload is generated by each consumer peer individually. Each consumer peer 

generates 100 service invocation requests in each setting. It issues a request immediately 

after it receives the response for the previous request. It generates a feedback report that 



 73 

will be kept in the provider peer as a reference for the following invocations. The 

feedback report keeps the information about predicted and actual response time. 

      For each kind of setting, three selection methods, i.e., QoS selection, feedback based 

selection, and random selection, will be examined. Random selection selects a provider 

using a random function. Feedback based selection selects a provider based on the 

average response time bS . It always selects the provider with the shortest response time. 

bS is given as below: 










=

∑∑

∑

= =

                                                  ,

        ,

1 1

1

otherwisem
n

R

reportsfeedbackhasalreadyprovidertheif
n

R

S
m

i

n

n

n

i

n n

i

b  

Where, n

iR denotes the response time recorded in the n -th feedback report regarding the 

i -th provider, m denotes the number of providers. 

8.2 Experimental Results 

The experimental results are presented in terms of the mean response time, throughput, 

and standard deviation. The mean response time is the average response time of all 

requests. Throughput represents how many requests all providers process in one second. 

The standard deviation presents a statistical difference indicating how much the response 

time of each request deviates from the mean response time. 

      Figure 8.1 presents the experimental result of Setting 1. In Setting 1, the response 

time of random selection shows less fluctuation (lowest standard deviation) as all 

requests are evenly loaded on providers (balanced load). QoS selection is very effective 

in arranging requests for providers (lowest mean service time). Also, its response time is 

the same as random selection. Feedback selection does not work well in this setting. 

 



 74 

Response Time

0

100

200

300

400

500

600

700

800

900

1000

m
s

QoS Selection

Feedback Selection

Random Selection

Throughput

0

5

10

15

20

25

30

35

40

45

50

R
eq

/S
ec QoS Selection

Feedback Selection

Random Selection

 

Standard Deviation

0

50

100

150

200

250

300

350

400

450

QoS Selection

Feedback Selection

Random Selection

 
Figure 8.1: Experimental result of Setting 1 

      Figure 8.2 presents the experimental result of Setting 2. 

Response Time

0

100

200

300

400

500

600

700

800

900

1000

m
s

QoS Selection

Feedback Selection

Random Selection

Throughput

0

5

10

15

20

25

30

35

40

45

50

R
eq

/S
ec QoS Selection

Feedback Selection

Random Selection

 

Standard Deviation

0

50

100

150

200

250

300

350

QoS Selection

Feedback Selection

Random Selection

 
Figure 8.2: Experimental result of Setting 2 



 75 

      In the experiment of Setting 2, feedback selection is getting better than it is in Setting 

1. Random selection deteriorates due to its high response time and standard deviation. 

QoS selection still shows its advantages in response time and standard deviation. 

      Figure 8.3 presents the experimental result of Setting 3. 

Response Time

0

200

400

600

800

1000

1200

1400

1600

m
s QoS Selection

Feedback Selection

Random Selection

Throughput

0

5

10

15

20

25

30

35

40

R
eq

/S
ec QoS Selection

Feedback Selection

Random Selection

 

Standard Deviation

0

500

1000

1500

2000

QoS Selection

Feedback Selection

Random Selection

 
Figure 8.3: Experimental result of Setting 3 

      In the experiment of Setting 3, the system configuration is getting more complicated 

due to the introduction of provider differences. Since QoS selection takes the remaining 

load of each provider into account, it can arrange requests for providers optimally. This 

advantage results in the lowest response time and standard deviation. Also, the 

throughput of QoS selection is very close to the highest one. Random selection achieves 

the worst performance.  

      Figure 8.4 presents the experimental result of Setting 4. 



 76 

Response Time

0

500

1000

1500

2000

2500

3000

m
s

QoS Selection

Feedback Selection

Random Selection

Throughput

0

5

10

15

20

25

30

35

40

R
eq

/S
ec QoS Selection

Feedback Selection

Random Selection

 

Standard Deviation

0

500

1000

1500

2000

2500

3000

3500

4000

QoS Selection

Feedback Selection

Random Selection

 
Figure 8.4: Experimental result of Setting 4 

      In the experiment of Setting 4, QoS selection outperforms other two methods in terms 

of response time, throughput, and standard deviation. The performance of feedback 

selection is close to that of QoS selection. Random selection is still the worst. 

8.3 Conclusions 

QoS selection is able to achieve a lower and less fluctuating response time than feedback 

selection and random selection in all situations. To each individual consumer peer, QoS 

selection provides it a better choice than other two selection methods because of the 

guarantee of the lowest response time and deviation. The response time curves presented 

in Experiment 1 (measuring performance of PWSG) indicates that high throughput leads 

to high response time. This conclusion is applicable in the experiment result of examining 

QoS selection. Therefore, QoS selection is unable to achieve highest throughput in some 

cases when the response time is relatively low. Overall, the low standard deviation of 

QoS selection proves its stability. 



 77 

 

CHAPTER 9 

CONCLUSIONS AND FUTURE WORK 

SOA is a software model that “represents software functionality as discoverable services 

on the network” [9]. It consists of the service provider, the service consumer, and the 

central registry. To maximize the scalability of the system, these components are loosely 

coupled by message based interactions and standardized service definition schemas. Even 

so, the communication between components is still server-centric. A client component 

connects to a pre-determined server component without taking the status of the server 

component into account. This server-centric approach excludes SOA from a dynamic 

networking environment, in which all participants can enter and depart at any time 

without notice (e.g., wireless network).  

      The P2P-Web Services architecture proposed in this thesis eliminates this 

constraint and enables the use of SOA in dynamic networking environments. 

Specifically, it integrates P2P concepts into Web Services to support service discovery 

and service invocations in a dynamic networking environment. The architecture consists 

of PUDDI and PWSG, supporting the life cycle of Web Services components, from 

development to deployment, which is lacking in other proposed systems. 

      PUDDI is a distributed UDDI system used as a substitute for the standard UDDI 

server. Each Web Services component, i.e., the WS consumer, the WS provider, or the 

UDDI client, interacts with a PUDDI peer paired locally with it and treats this PUDDI 

peer as a UDDI server. The PUDDI peer receives the register request from the WS 

provider or the UDDI client and keeps the information in the local repository for service 

discovery. When a PUDDI peer receives a service discovery request from the WS 

consumer or the UDDI client, it will inquire other PUDDI peers for the service over the 

P2P network. The discovery result will be returned to the WS consumer or the UDDI 

client. 



 78 

      PWSG is a software gateway connecting to Web Service components to perform 

service invocations in a P2P manner. Each WS consumer/WS provider interacts with its 

local PWSG peer. The WS consumer treats the PWSG peer as a service provider, while 

the WS provider treats the PWSG peer as a service consumer. When a PWSG peer 

receives a service invocation request from the WS consumer, it will perform the service 

invocation in two phases. In the first phase, this PWSG peer will inquire other PWSG 

peers for the service invoked by the request over the P2P network. The provider 

responding to the inquiry will be considered as a candidate. In the second phase, this 

PWSG peer will select one provider from all candidates and send it the invocation request. 

The result of the invocation will be returned to the WS consumer. 

      The P2P-Web Services architecture uses PWSF as the basis for PUDDI and PWSG. 

PWSF is a transparent proxy joining the P2P network and Web Service components. It 

uses three layers, the proxy layer, the control layer, and the networking layer, to manage 

functions hierarchically. PUDDI and PWSG are developed as two sets of plug-ins 

residing in these three layers. This design pattern maximizes reusability and minimizes 

the effort of development. 

      A reference system and a simulation system have been developed to investigate the 

P2P-Web Services architecture. The reference system is a working implementation of the 

architecture and consists of prototype peers running on multiple machines. Its scalability 

is limited to the available hardware resources. The simulation system is used to observe 

the nature of system parameters for a large scale system. It is an application simulating 

the logical working mechanism of the reference system on a highly abstract level. The 

simulation system uses a number of system parameters collected from the reference 

system to control each action internally. When using the same topology, if the result 

observed in the simulation system is similar to the one observed in the reference system, 

one can say that the simulation system is accurate enough to be used in the experiments. 

      The use of PUDDI and PWSG adds an overhead to the Web Services system. The 

experiment examining overhead and performance of PUDDI and PWSG measured the 

cost quantitatively in terms of CPU usage and bandwidth consumption. Also, it measured 



 79 

the performance of PUDDI and PWSG in terms of response time and throughput. This 

experiment showed: 

• The higher the request rate is, the higher the overhead is. The CPU usage and 

bandwidth consumption have a linear relationship with the request rate when the 

system is not nearly saturated (CPU usage < 80%). They show a flat curve 

gradually approaching their maximal values when the system is nearly saturated. 

• The overhead in the consumer peer is higher than that in the provider peer 

because the consumer peer processes more network packages. 

• The more provider peers the system has, the higher the overhead is, and the 

lower the performance is. 

      The experiment examining the effects of P2P parameters revealed that a slight change 

in TTL may significantly affect the number of reachable peers, the search duration, and 

bandwidth consumption. In a 2000-peer network, when TTL is changed from 5 to 6, the 

number of reachable peers raises from about 900 to 1780. A slight change in the number 

of neighbors may not affect the number of reachable peers all the way. However, 

increasing the number of neighbors will help reduce bandwidth consumption. In a 2000-

peer network, to reach the same number of peers, a high number of neighbors 

(#neighbors = 15, TTL=5) may reduce the number of packages by 26% when compared 

with a low number of neighbors (#neighbors = 5, TTL=7). 

      PWSG performs a service discovery operation for each service invocation. There may 

be more than one provider available for the consumer. To determine the most suitable 

provider for the consumer, the QoS based selection is used in PWSG. It collects the 

information from providers regarding their current remaining capacity and historical 

feedback reports. The experiment examining QoS selection compared QoS based 

selection with random selection and feedback based selection in terms of response time 

and overall throughput. It showed that QoS based selection can achieve an 11%-51% 

lower response time than the other two methods in all situations. The standard deviation 

of its response time is also low. This means that the QoS based selection is stable.  



 80 

      The P2P-Web Services architecture has achieved the purpose of integrating P2P 

concepts into Web Services to enable Web Services to work effectively in dynamic 

networking environments. By using the Gnutella Query/QHit mechanism to fulfill each 

discovery/invocation request, the consumer peer needs to propagate a Query request over 

the P2P network and wait for replies from provider peers. This mechanism introduces an 

overhead into the P2P-Web Services architecture. In a small business environment that 

usually contains 1-2 replica servers (mirror servers), this overhead is relatively small and 

has a minor impact on the system performance. When the number of peers in the system 

is greater than four, this overhead will significantly impact the system performance. 

Using a distributed hash table P2P protocol can effectively shorten the search time and 

achieve a much lower overhead than the Gnutella protocol. This solution will be 

presented below as a part of the future work.  

      The QoS based selection of the P2P-Web Services architecture ensures that a service 

invocation can be executed in a shorter time than the traditional QoS selection. The 

traditional QoS selection only uses the historical invocation information to infer the QoS 

of the provider. The QoS selection proposed in this thesis not only uses the historical 

invocation information, but uses the current workload of the provider. It is able to infer 

the QoS of the provider more accurately. No matter what algorithm the traditional QoS 

selection uses, it lacks the context information about the provider. Comparing the new 

QoS selection with the traditional QoS selection reveals that the new QoS selection 

achieves the similar throughput as the traditional QoS selection, and outperforms the 

traditional QoS selection in terms of response time and standard deviation. 

      The P2P-Web Services architecture can be further improved in the following aspects: 

• Supporting DHT P2P protocols 

Using DHT P2P protocols is an effective means for the architecture to reduce 

bandwidth consumption and search waiting time. DHT does not support arbitrary 

keyword search because its searching pattern requires an exact match on the 

predefined keyword. When DHT is used in the P2P-Web Services architecture, 

this weakness can be addressed using domain-specific ontologies to standardize 

the service keywords (e.g., a service description and a method name). A 



 81 

standardized keyword has an unambiguous meaning in the system and can be 

hashed for the search purposes.  

• Using Semantic Web Services to enhance service discovery 

The service discovery currently used in the P2P-Web Services architecture is 

keyword based. It requests an exact match in the method name and parameters. 

This limitation lowers the hit rate because there is no criterion for defining a 

service. Developers can define services in any way they like. Using semantic 

descriptions, a WS provider is able to publish its service in a strict, machine-

understandable way. Then, service discovery will be functionality based. 

• Response time/throughput based QoS selection 

The QoS selection that has been implemented aims to minimize the mean 

response time. It will always select the provider that has the least pressure to 

achieve short response time. Although the mean response time is short, the 

system overall throughput may not be optimal. For some systems, the overall 

throughput is the major concern. It is useful for QoS based selection to support 

maximizing throughput. The user can switch the selection function to either 

maximize throughput or minimize response time. 



 82 

 

REFERENCES 

[1] Banaei-Kashani, F., Chen, C., and Shahabi, C. “WSPDS: Web Services Peer-to-Peer 

Discovery Service”. In Intl. Symposium on Web Services and Applications, 7 pages. 

2004. 

 

[2] Bellwood, T. “UDDI Version 2 Specifications”. http://uddi.org/pubs/Program-

mersAPI-V2.04-Published-20020719.pdf, 93 pages. 2002. 

 

[3] Bellwood, T., Capell, S., Clement, L., Colgrave, J., Dovey, M.J., Feygin, D., Hately, 

A., Kochman, R., Macias, P., Novotny, M., Paolucci, M., Riegen, C.V., Rogers, T., 

Sycara, K., Wenzel, P., and Wu, Z. “UDDI Version 3.0.2”. http://www.oasis-

open.org/committees/uddi-spec/doc/spec/v3/uddi-v3.0.2-20041019.pdf, 420 pages. 

2004. 

 

[4] Booth, D. and Liu, C.K. “Web Services Description Language (WSDL) Version 2.0 

Part 0: Primer”. http://www.w3.org/TR/2005/WD-wsdl20-primer-20050803/ws-

dl20-primer.pdf, 84 pages. 2005 

 

[5] Boubez, T., Hondo, M., Kurt, C., Rodriguez, J., and Rogers, D. “UDDI 

Programmer's API 1.0”. http://www.uddi.org/pubs/ProgrammersAPI-V1.01-

Published-20020628.pdf, 68 pages. 2002 

 

[6] Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H.F., 

Thatte, S., and Winer, D. “Simple Object Access Protocol (SOAP) 1.1”. 

http://www.w3.org/TR/2000/NOTE-SOAP-20000508, 1 page. 2000 

 

[7] Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., and Yergeau, F. “Extensible 

markup language (xml) 1.0 (third edition)”. http://www.w3.org/TR/REC-xml, 1 page. 

2004. 

 

[8] Castro, M., Druschel, P., Kermarrec, A., and Rowstron, A. “One ring to rule them all: 

Service discovery and binding in structured peer-to-peer overlay networks”. In 

Proceedings of the SIGOPS European Workshop, Saint-Emilion, 6 pages. France. 

2002 

 

[9] Chatarji, J. “Introduction to Service Oriented Architecture (SOA)”. http://w-

ww.devshed.com/c/a/Web-Services/Introduction-to-Service-Oriented-Architecture-

SOA, 5 pages. 2004. 

 

[10] Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., and Shenker, S. “Making 

gnutella-like P2P systems scalable”. In Proceedings of the ACM SIGCOMM ’03 

Conference, pages 407-418. New York, USA. 2003. 



 83 

[11] Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S. “Web services 

description language (wsdl) 1.1”. http://www.w3.org/TR/wsdl, 1 page. 2001. 

 

[12] Day, J. and Deters, R. “Selecting the best web service”. In Proceedings of the IBM 

Centers for Advanced Study Conference (CASCON ’04), pages 293-307. Ontario, 

Canada. 2004. 

 

[13] Hagge, D. “Dynamic Discovery and Invocation of Web services”. http://www-

128.ibm.com/developerworks/library/ws-udax.html?n-ws-10312, 1 page. 2001. 

 

[14] Haller, A., Cimpian, E., Mocan, A., Oren, E., and Bussler, C. “WSMX - a semantic 

service-oriented architecture”. In Proceedings of the International Conference on 

Web Services (ICWS 2005), 8 pages. Orlando, Florida, USA. 2005. 

 

[15] Gong, L. “JXTA: A network programming environment”. IEEE Internet Computing, 

Volume 5, pages 88-95. 2001. 

 

[16] jUDDI. Web Services Project @ Apache. http://ws.apache.org/juddi - Accessed on 

September, 2005. 

 

[17] Laoveerakul, S., Laongwaree, K., and Tongsima, S. “Decentralized UDDI based on 

P2P”. http://www.hpcc.nectec.or.th/C4/grid/UDDI.pdf, 4 pages. 2002. 

 

[18] Lazowska, E.D., Zahorjan, J., Graham, G.S., and Sevcik, K.C. “Quantitative System 

Performance: Computer System Analysis Using Queueing Network Models”. 

Prentice Hall. 1984. 

 

[19] Liu, Y., Ngu, A.H., and Zeng, L. “QoS computation and policing in dynamic web 

service selection”. In Proceedings of the 13th international World Wide Web 

Conference on Alternate Track Papers. WWW Alt. '04. ACM Press, pages 66-73. 

New York, USA. 2004. 

 

[20] Lv, Q., Cao, P., Cohen, E., Li, K., and Shenker, S. “Search and replication in 

unstructured peer-to-peer networks”. In Proceedings of the 16th international 

Conference on Supercomputing. ICS '02. ACM Press, pages 84-95. New York, USA. 

2002 

 

[21] Manola, F. and Miller, E. “RDF (Resource Description Framework) primer”. 

http://www.w3.org/TR/rdf-primer, 1 page. 2004. 

 

[22] Maximilien, E.M. and Singh, M.P. “Reputation and endorsement for web services”. 

SIGecom Exch. Volume 3.1, pages 24-31. 2001. 

 

[23] Maximilien, E.M. and Singh, M.P. “Conceptual Model of Web Service Reputation”. 

SIG-MOD Record, ACM Special Interest Group on Management of Data. Volume 

31, number 4, pages 36-41. 2002. 



 84 

[24] Maximilien, E.M. and Singh, M.P. “Toward autonomic web services trust and 

selection”. In Proceedings of the 2nd international Conference on Service Oriented 

Computing. ICSOC '04. ACM Press, pages 212-221. New York, USA. 2004. 

 

[25] Microsoft Corporation. “DCOM Technical Overview”. http://msdn.microsoft.com/-

library/default.asp?url=/library/en-us/dndcom/html/msdn_dcomtec.asp, 1 page. 1996. 

 

[26] Milojicic, D.S., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard, B., 

Rollins, S., and Xu, Z. “Peer-to-peer computing”. Tech. Rep. HPL-2002-57, Hewlett 

Packard Laboratories, 52 pages. 2002. 

 

[27] Mitra, N. “Soap version 1.2 part 0: Primer”. http://www.w3.org/TR/soap12-part0, 1 

page. 2003. 

 

[28] "New to SOA and Web services", http://www-128.ibm.com/developerworks/webser-

vices/newto/websvc.html, 1 page. Accessed on November, 2005. 

 

[29] Object Management Group. “Common Object Request Broker Architecture 

(CORBA)”. http://www.corba.org - Accessed on July, 2005. 

 

[30] Orchard, D. "Achieving Loose Coupling". http://dev2dev.bea.com/pub/a/2004/02/-

orchard.html, 1 page. 2004. 

 

[31] Padovitz, A., Krishnaswamy, S., and Loke, S.W. “Towards Efficient Selection of 

Web Services”. Workshop on Web Services and Agent-based Engineering (WSABE), 

at 2nd International Conference on Autonomous Agents and Multi-agent Systems 

( AAMAS),  9 pages. Melbourne, Australia. 2003. 

 

[32] Papazoglou, M.P., Kramer, B.J., and Yang, J. “Leveraging Web-services and Peer-

to-Peer Networks”. In Proceedings of the 15th Conference on Advanced Information 

Systems Engineering (CAiSE ’03), pages 485-501. 2003. 

 

[33] Ran, S. “A model for web services discovery with QoS”. ACM SIGecom Exchanges, 

Vol. 4, No. 1, pages 1-10. 2003. 

 

[34] Ritter, J. “Why Gnutella Can’t Scale. No, Really”. http://www.darkridge.com/~jpr5/-

doc/gnutella.html. 1 page. 2001. 

 

[35] Rowstron, A. and Druschel, P. “Pastry: Scalable, distributed object location and 

routing for large-scale peer-to-peer systems”. IFIP/ACM International Conference on 

Distributed Systems Platforms (Middleware), pages 329-350. Heidelberg, Germany. 

2001. 

 

[36] Samtani, G. & Sadhwani, D. “Web Services and Peer to Peer Computing”. 

http://www.webservicesarchitect.com/content/articles/samtani05.asp, 1 page. 2002. 



 85 

[37] Schlosser, M., Sintek, M., Decker, S., and Nejdl, W. “A Scalable and Ontology-

Based P2P Infrastructure for Semantic Web Services”. Second International 

Conference on Peer-to-Peer Computing (P2P'02), pages 104-111. Linkoping, 

Sweden. 2002. 

 

[38] Schneider, J. “Convergence of Peer and Web Services”. O’Reilly’s Open Source 

Convention, 1 page. 2002. 

 

[39] Smith, R.G. “The Contract Net Protocol: High-Level Communication and Control in 

a Distributed Problem Solver”. IEEE Transactions on Computers, C-29(12), pages 

1104-1113. 1980. 

 

[40] Toma, I., Sapkota, B., Scicluna, J., Gomez, J.M., Roman, D., and Fensel, D. “A P2P 

Discovery mechanism for Web Service Execution Environment”. In Proc. of the 2nd 

Int'l WSMO Implementation Workshop (WIW 2005), 10 pages. Innsbruck, Austria. 

2005. 

 

[41] Tyson, J. “How the Old Napster Worked”. Marshall Brain’s HowStuffWorks. 

http://www.howstuffworks.com/napster1.htm, 4 pages. Accessed on January, 2006. 

 

[42] UDDI4J open-source project, http://sourceforge.net/projects/uddi4j - Accessed on 

August, 2005. 

 

[43] UDDI Browser, http://www.uddibrowser.org - Accessed on August, 2005. 

 

[44] Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., Oundhakar, S., and Miller, J. 

“METEOR-S WSDI: A Scalable P2P Infrastructure of Registries for Semantic 

Publication and Discovery of Web Services”. Journal of Information Technology and 

Management, 24 pages. 2004. 

 

[45] Vu, L., Hauswirth, M., and Aberer, K. “Towards P2P-based Semantic Web Service 

Discovery with QoS Support”. Technical report, 15 pages. 2005. 

 

 

 

 

 


