
Multiple Sequence Alignment Augmented by

Expert User Constraints

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Lingling Jin

c©Lingling Jin, March/2010. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from

the University of Saskatchewan, I agree that the Libraries of this University may make it freely

available for inspection. I further agree that permission for copying of this thesis in any manner,

in whole or in part, for scholarly purposes may be granted by the professor or professors who

supervised my thesis work or, in their absence, by the Head of the Department or the Dean of

the College in which my thesis work was done. It is understood that any copying or publication

or use of this thesis or parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to the University

of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part

should be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i

Abstract

Sequence alignment has become one of the most common tasks in bioinformatics. Most of

the existing sequence alignment methods use general scoring schemes. But these alignments are

sometimes not completely relevant because they do not necessarily provide the desired information.

It would be extremely difficult, if not impossible, to include any possible objective into an algorithm.

Our goal is to allow a working biologist to augment a given alignment with additional information

based on their knowledge and objectives.

In this thesis, we will formally define constraints and compatible constraint sets for an alignment

which require some positions of the sequences to be aligned together. Using this approach, one can

align some specific segments such as domains within protein sequences by inputting constraints (the

positions of the segments on the sequences), and the algorithm will automatically find an optimal

alignment in which the segments are aligned together.

A necessary prerequisite of calculating an alignment is that the constraints inputted be com-

patible with each other, and we will develop algorithms to check this condition for both pairwise

and multiple sequence alignments. The algorithms are based on a depth-first search on a graph

that is converted from the constraints and the alignment. We then develop algorithms to perform

pairwise and multiple sequence alignments satisfying these compatible constraints.

Using straightforward dynamic programming for pairwise sequence alignment satisfying a com-

patible constraint set, an optimal alignment corresponds to a path going through the dynamic

programming matrix, and as we are only using single-position constraints, a constraint can be

represented as a point on the matrix, so a compatible constraint set is a set of points. We try to

determine a new path, rather than the original path, that achieves the highest score which goes

through all the compatible constraint set points. The path is a concatenation of sub-paths, so that

only the scores in the sub-matrices need to be calculated. This means the time required to get the

new path decreases as the number of constraints increases, and it also varies as the positions of

the points change. It can be further reduced by using the information from the original alignment,

which can offer a significant speed gain.

We then use exact and progressive algorithms to find multiple sequence alignments satisfying

a compatible constraint set, which are extensions of pairwise sequence alignments. With exact

algorithms for three sequences, where constraints are represented as lines, we discuss a method to

force the optimal path to cross the constraint lines. And with progressive algorithms, we use a set

of pairwise alignments satisfying compatible constraints to construct multiple sequence alignments

progressively. Because they are more complex, we leave some extensions as future work.

ii

Acknowledgements

First of all, I would like to thank my supervisor Dr. Ian McQuillan for his guidance, encour-

agement, support and constant patience. Words cannot describe my thanks. I am lucky to be your

student, you are an excellent supervisor and a good friend.

I would like to give very special thanks to our mom, Jan, a special person to me. I am grateful to

have her support and encouragement when I was away from my family. She is my mom in Canada!

I want to express my thanks to my advisory committee: Dr. Tony Kusalik, Dr. Nate Osgood,

and my external examiner Dr. Joe Angel for their valuable suggestions and comments.

I also want to thank all the fellow members in the Bioinformatics lab, especially Wayne Clarke,

my friend Sheng Wang (Department of Microbiology & Immunology) and Dr. Hong Wang (The

Department of Biochemistry) for helping me with a lot of discussions on the motivation of this

thesis.

I would like to give thanks to my parents in China, especially my mom. Thank you for your

love and support. I am proud to be your daughter.

I would also like to say “thank you” to my husband Shi Shi, an excellent visual designer, for

helping draw the fantastic pictures in this thesis for me. He and our lovely baby April make my

life full of love and happiness.

iii

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents iv

List of Tables vi

List of Figures vii

List of Abbreviations viii

1 Introduction 1
1.1 The Power of Sequence Alignment . 1
1.2 Manual Refinement of Sequence Alignment . 2
1.3 Layout of the Thesis . 2

2 Motivation and Objectives 3
2.1 Necessity of Sequence Alignment Adjustments . 3
2.2 Four Cases Requiring Manual Adjustment . 4

2.2.1 Case 1 . 4
2.2.2 Case 2 . 5
2.2.3 Case 3 . 7
2.2.4 Case 4 . 8

2.3 Our Objectives . 11

3 Preliminaries 12
3.1 Introduction . 12

3.1.1 Formal Definitions . 12
3.1.2 Evolutionary Mutations . 14
3.1.3 The Scoring Scheme . 15

3.2 Dynamic Programming and Optimal Alignment . 16
3.2.1 Global Alignment: the Needleman-Wunsch Algorithm 16
3.2.2 Local Alignment: the Smith-Waterman Algorithm 18

3.3 Multiple Sequence Alignment . 19
3.3.1 Multi-dimensional Dynamic Programming . 20
3.3.2 Classification of Multiple Sequence Alignment Algorithms 21

3.4 Existing Algorithms or Packages for Alignment with Constraints 23

4 Compatible Constraint Set 25
4.1 What is a Constraint? . 25

4.1.1 Definition of a Constraint . 25
4.1.2 Definition of Compatible Constraints . 26

4.2 Compatible Constraint Set on Pairwise Sequence Alignment 27
4.2.1 Analysis of Compatible Constraints on Pairwise Sequences 27
4.2.2 The First Algorithm to Determine a pair CCS 30
4.2.3 Sort Constraints on Multiple Sequences . 30
4.2.4 Determine a pair CCS Using a Graph Algorithm 31

iv

4.2.5 Complexity . 35
4.3 Compatible Constraint Set on Multiple Sequence Alignment 35

4.3.1 Analysis of Compatible Constraints on Multiple Sequences 35
4.3.2 Determine a CCS on Multiple Sequences Using a Graph Algorithm 35
4.3.3 Complexity . 40

5 Pairwise Sequence Alignment Satisfying A Compatible Constraint Set 41
5.1 The Representation of an Alignment and a CCS on a Dynamic Programming Matrix 41
5.2 A Basic Method of Calculation . 42
5.3 Speed-ups Using the Original Alignment . 44

5.3.1 Some Parts can be Ignored . 46
5.3.2 Method of Calculation While Omitting the Irrelevant Parts 50
5.3.3 The Amount of Calculation . 53

5.4 Complexity . 54

6 Multiple Sequence Alignment Satisfying A Compatible Constraint Set 56
6.1 Exact Algorithms for Alignments Satisfying a CCS with Three Sequences 56

6.1.1 Method of Calculation . 57
6.1.2 Complexity . 60

6.2 Progressive Algorithms for Multiple Sequence Alignment Satisfying a CCS 61
6.2.1 Build a Guide Tree . 61
6.2.2 Progressively Align Multiple Sequences . 61
6.2.3 The Amount of Calculation . 64

7 Conclusion and Future Directions 66
7.1 Summary of the Thesis . 66
7.2 Future Work . 66

References 69

v

List of Tables

2.1 The names of the eight sequences, and the positions of the ring domain. 7

vi

List of Figures

1.1 An example of a sequence alignment. 2

2.1 A manual adjustment to unify several small gaps into one large gap. 4
2.2 A manual adjustment to move the gaps in homologous sequences into the same columns 5
2.3 A real example of manual adjustment. 6
2.4 The alignment of the ring domain in eight sequences. 8
2.5 The alignment of sequences with the same ring domain. 9
2.6 A manual adjustment to move a primer to its correct position on a reference sequence 10

3.1 The dynamic programming computation scheme . 17
3.2 The dynamic programming matrix of the Needleman-Wunsch Algorithm 18
3.3 A potential representation of a global alignment and a local alignment 19
3.4 3-dimensional dynamic programming to calculate the alignment of three sequences. . 20

4.1 A manual adjustment on a pairwise alignment . 26
4.2 The visualization of a constraint . 26
4.3 All possible relationships between two constraints on two sequences 28
4.4 The visualization of four constraints . 33
4.5 The graph converted from the constraints in Figure 4.4 33
4.6 An example of incompatible constraints on multiple sequences 36
4.7 The graph obtained from incompatible constraints 37
4.8 An example of compatible constraints on multiple sequences. 38
4.9 The graph converted from compatible constraints . 38
4.10 An example of a DAG . 39
4.11 A sequence alignment restricted by four constraints 39

5.1 Optimal alignment satisfying a CCS . 42
5.2 Four steps of getting a new path going through all the CCS points. 43
5.3 The flow chart of calculating the optimal pairwise alignment satisfying a CCS. . . . 45
5.4 The offset between a constraint point and the original path. 46
5.5 The original path goes through the top-right part of the sub-matrix 46
5.6 The original path goes through the bottom-left part of the sub-matrix 47
5.7 The original path crosses the new optimal path . 47
5.8 The original path does not go through the sub-matrix 48
5.9 The irrelevant part can be ignored. 49
5.10 The method of calculation when d1 ≤ 0 and d2 ≤ 0. 50
5.11 The method of calculation when d1 ≥ 0 and d2 ≥ 0. 51
5.12 The information from the original alignment can be used in calculating. 52
5.13 A simplified condition of the original path and the amount of calculation. 53
5.14 A visualization of the relationship of the amount of computation with the position

of the point on the matrix. 54
5.15 An example of the amount of calculation for four constraints on two sequences. . . . 55

6.1 Multiple sequence alignment satisfying a CCS . 57
6.2 A 3-dimensional matrix used to calculate global sequence alignment satisfying a CCS. 57
6.3 A 3-dimensional dynamic programming computation scheme 59
6.4 A close look at the 3-dimensional matrix. 60
6.5 An example demonstrating how to build a guide tree. 62
6.6 A guide tree of three sequences satisfying a CCS . 64
6.7 An example to demonstrate the concept of LCA. 64

vii

List of Abbreviations

DP Dynamic Programming
SP Sum of Pairs
MSA Multiple Sequence Alignment
CCS Compatible Constraint Set
DAG Directed Acyclic Graph
DFS Depth First Search
LCA Lowest Common Ancestor
PCR Polymerase Chain Reaction
NP Nondeterministic Polynomial

viii

Chapter 1

Introduction

1.1 The Power of Sequence Alignment

Throughout evolution, DNA sequences accumulate substitutions, insertions and deletions, which

then cause differences in the RNA and proteins they produce. We can often discover a significant

similarity between a new sequence and a sequence about which something is already known. When

this occurs, we can sometimes infer information such as structure and/or function for the new se-

quence, such as the secondary structures of a protein sequence, or the regulatory function of a gene.

To evaluate the similarity of two sequences, one typically begins by finding a plausible alignment

between them. For this reason, techniques for aligning and comparing sequences have become the

most common task in bioinformatics and an important avenue of bioinformatics research.

Sequence alignment is a method for sequence comparison, which allows biologists to reveal

similarity between different sequences of DNA, RNA or proteins. The consequences of performing

this type of analysis have been significant. One of the first success stories involved establishing a

link between cancer-causing genes and normal growth genes [14]. In 1984, scientists used a simple

computational technique to compare the newly discovered cancer-causing ν-sis oncogene with all

(at the time) known sequenced genes. To their astonishment, the cancer-causing gene matched a

normal gene involved in growth and development called platelet-derived growth factor (PDGF).

After discovering this similarity, scientists became suspicious that cancer might be caused by a

normal growth gene being stimulated at the wrong time, which causes uncontrolled cell growth and

leads to cancer.

To perform a sequence alignment is to map the letters of one sequence onto other sequences.

As with the example in Figure 1.1, aligned sequences of nucleotides are typically represented as

rows within a matrix. Gaps are inserted between the characters using the gap symbol, “-”, allowing

similar characters to be aligned in successive columns. An alignment between two or more sequences

can represent an explicit hypothesis regarding the evolutionary history of those sequences. As a

result, comparisons of related sequences have facilitated many recent advances in understanding

the information of genetic sequences.

1

Figure 1.1: An example of sequence alignment. Here the first, second, fourth, and
seventh positions align correctly. The fifth position is a mismatch. The third, sixth,
eighth and ninth positions are gaps.

1.2 Manual Refinement of Sequence Alignment

While the true evolutionary path followed by a sequence cannot be inferred with certainty, sequence

alignment algorithms can be used to identify alignments with a low probability of similarity by

chance. However, it is a common practice for expert users to manually adjust alignments after

running some automatic alignment algorithms. Then the alignments can more accurately reflect

a researcher’s knowledge, the truth, or can be tailored towards their particular objectives. In this

thesis, we are interested in studying efficient algorithms to manually refine alignments.

1.3 Layout of the Thesis

In the thesis, we will mainly address the problem of how to combine additional information from

expert users with existing alignments.

In Chapter 1, we give a brief introduction. In Chapter 2, we provide the motivation and

objectives of the work in the thesis. Chapter 3 gives preliminaries and background knowledge

necessary to understand our contributions. Chapter 4 gives the formal definition of constraints

(additional information from specialists) and algorithms to determine whether a set of constraints

is consistent. Chapter 5 and Chapter 6 provide the methods/algorithms to perform pairwise and

multiple sequence alignments satisfying a compatible constraint set. And Chapter 7 gives the

conclusion of this thesis and a list of future works.

2

Chapter 2

Motivation and Objectives

In this chapter, we will talk about the motivations of manually refining alignments, and our

main goals that we seek to accomplish in the thesis.

2.1 Necessity of Sequence Alignment Adjustments

Most sequence alignment algorithms are designed to find either optimal or close-to-optimal align-

ments according to some scoring scheme. However, a maximum scoring alignment can only hope

to approximate the truth. From a biologist’s point of view, an optimal alignment and score do not

necessarily provide them with the desired information because these scores do not always reflect the

significant biological events contributing to the evolution of each portion of the sequences. Although

some algorithms can even guarantee “optimal alignments” in terms of achieving the highest possible

score, they might not be tailored for the objective of the user. For example, even the best multiple

sequence alignment methods only achieve < 50% accuracy per position in alignment of sequences

with < 20% identity [32]. As a consequence, all alignments require inspection and interpretation,

and often adjustment by hand, in order to produce an alignment that best represents the biological

context of the sequences [36]. We will elaborate on this point in the next section.

Biologists can often use other information about the sequence or structure of a family of proteins

to improve a multiple sequence alignment. Therefore, an important aspect of constructing accurate

alignments is to allow a working biologist to augment a given alignment with additional information

based on their knowledge and objectives.

For example, some sequences have specific segments which contribute to the function of the

sequences, such as an exon in a DNA sequence or a domain in a protein sequence. Perhaps a

particular biologist is only interested in the functional segments, but is less concerned with the

other regions of the sequences. The primary task of this kind of alignment is to align the functional

segments together, which may not be properly reflected with the scoring scheme. The straightfor-

ward global or local alignment cannot guarantee to align these parts together even by changing

the scoring or gap penalty schemes. Moreover, it would be extremely difficult, if not impossible,

to include any possible objective into such an algorithm. We will discuss four such objectives in

3

Section 2.2, which shows that they can be quite simple or quite complex based on the particular

expert knowledge.

2.2 Four Cases Requiring Manual Adjustment

In this section, we will present some distinct objectives which would benefit from manual refinement.

2.2.1 Case 1

Figure 2.1: Pictured above is a hypothetical manual adjustment to unify several
small gaps into one large gap.

A multiple sequence alignment carried out using an automatic alignment algorithm often results

in an alignment with several small gaps in the sequences. From a biological point of view, insertions

or deletions are more likely to result from a large gap rather than many small adjacent ones. This

is because the frequency of gaps of many characters are expected almost as much as gaps of a

single character [28]. This problem can be accommodated in an automatic alignment program by

using a strategy with a separate gap-open and gap-extension penalty, such as one from [31]. In this

scenario, we typically penalize more for a gap opening than extending a gap. This favours longer

insertions and deletions than would otherwise be the case with single gaps. Therefore, if one wanted

to unify several small gaps into a large one, one could increase the gap opening penalty versus the

gap extension penalty. Disadvantages of this approach are that they can negatively impact other

parts of the alignment, it is costly in terms of time to recompute entire alignments, and the best

balance of parameters can be difficult to estimate. It is also not user-friendly to biologists who are

not always experts on the details of the algorithms. Otherwise, one can manually and iteratively

adjust the alignment in order to move the small gaps together to form a large one (Figure 2.1).

This is often a desirable approach.

Along this same line, one might iteratively change the scoring matrix if one does not know the

evolutionary distance between the sequences to be aligned. A scoring matrix is a matrix of score

values that describes the rate at which one character in a sequence changes to other character states

over time. They are usually seen in the context of amino acid or DNA sequence alignments, where

the similarity between sequences depends on their time of divergence and the substitution rates as

4

represented in the matrix. However, if we are performing a multiple sequence alignment between

sequences that do not have the same distance between them, one cannot pick an ideal single matrix.

Although ClustalW [31] can choose different matrices as the alignment proceeds, depending on the

estimated divergence of the sequences to be aligned at each stage, this estimated distance might

not be ideal to calculate an accurate alignment. Furthermore, it is likely the default matrix used

by algorithms is rarely changed by users.

2.2.2 Case 2

Some biologists desire to align several very related sequences. The resulting alignment sometimes

contains gaps in the sequences, but with the gaps not being close in each of the sequences. For

the alignment, one might want to focus attention on the subset of columns corresponding to key

characters and core structural elements that can be aligned with confidence.

Biologists can produce high quality multiple sequence alignments manually using expert knowl-

edge of sequence evolution such as:

• expected patterns of insertions and deletions that tend to alternate with blocks of conserved

sequence;

• the phylogenetic relationships between sequences dictating regions which should and/or should

not align in columns and in the patterns of gaps.

As the sequences are closely related, we might expect the gaps in them to be approximately the

same length and so should be aligned in columns, so a manual adjustment is required to unify the

gaps (Figure 2.2).

Figure 2.2: This picture demonstrates a manual adjustment in order to move the
gaps in homologous sequences into the same columns.

5

In Figure 2.3, we show some sequences of Brassica napus from [7]. Figure 2.3 (a) is the multiple

sequence alignment between them using ClustalW with the default parameters. Some parts of

the alignment are likely not accurate and require adjustments. We zoom in one part of them in

Figure 2.3 (b), in which one can find that the gaps are quite distributed. In order to make a high

quality alignment which is biologically meaningful, we need to manually adjust it, in order to better

reflect the relationships between the sequences. Figure 2.3 (c) shows an alignment after a manual

adjustment. One can see that the characters are aligned better and the gaps are placed into the

same or very close columns in each sequence.

Figure 2.3: Picture (a) demonstrates a multiple alignment of selected Brassica
napus sequences using ClustalW. Picture (b) is a zoom in of (a) in the region where
the gaps in the sequences mostly occur. Picture (c) is the alignment after manual
adjustment. One can see that the sequences are aligned better after adjustment.
There is a separate color for each nucleotide of the consensus.

6

We compare the scores of the two segments marked with boxes in Figure 2.3 (b) and (c). Here,

we use the sum-of-pairs function to score the multiple alignments, in which columns are scored by

a “sum of pairs” (SP) function using a scoring matrix. The sum-of-pairs score for a column mi is

defined in [9] as:

S(mi) =
∑
k<l

s(mk,i,ml,i), (2.1)

where k, l are two sequences, and scores s(a, b) come from a scoring matrix. In this case, we gave 1

as the match score and -1 as the mismatch score. Gaps are handled by defining s(a,−) and s(−, a)

to be the gap penalty, which is -1 in this case, and s(−,−) to be 0.

Then we can achieve -107 for (b) and 620 for (c). It is hence very likely that a manual adjustment

can make the alignment better in these regions.

2.2.3 Case 3

Some biologists would like to study the conservation of sequences which have common domains.

To do this work, the common domains need to be aligned together in a multiple alignment, based

on which the biologists can then study the relationships of the remaining parts of the sequences.

Here is an example from [35] of eight sequences, which all contain a ring domain. The names of

the sequences and the position of the ring domains are listed as Table 2.1.

Name of protein sequence Position of ring domain

AT5G38895 169-209

AT3G02290 181-221

AT5G15790 182-222

AT5G41350 161-201

AT4G00335 139-179

AT4G23450 104-144

AT4G14220 (RHF1A) 46-87

AT5G22000 33-73

Table 2.1: The names of the eight sequences, and the positions of the ring domain.

For a biologist interested primarily in aligning these domains, one would expect a result of

aligning domains such as shown in Figure 2.4. But from the alignment of the entire sequences in

Figure 2.5, we can easily see that the domains in two sequences marked with boxes are not aligned

with the domains in the other four sequences also marked with boxes using ClustalX [13] (in the

example). That is because the position of the domains on AT4G14220 and AT5G22000 are quite

distant from the domains on the other four sequences. To align the domains together, it requires

7

there be a very long gap in AT4G14220 and AT5G22000, which will likely violate the optimality of

the entire alignment with a gap penalty. Therefore the algorithm instead aligns them as shown in

Figure 2.5.

Figure 2.4: Pictured above is the alignment of the ring domain in eight sequences.

In this situation, a manual adjustment is required to move the unaligned domains in order to

align them together. Then biologists can study the conservation of the other parts of the sequences.

2.2.4 Case 4

Next, we will provide a more specialized case which serves to illustrate the wide range of objectives

for performing a multiple sequence alignment, and how that can change the manual refinement.

Polymerase chain reaction (PCR) is an experimental technique widely used in molecular biology

to amplify specific regions of a DNA strand (the DNA target), which can be a gene, part of a gene,

or a non-coding sequence. As PCR progresses, the DNA generated is itself used as a template

for replication that sets in motion a chain reaction in which the DNA template is exponentially

amplified. With PCR, it is possible to amplify a single or few copies of a DNA fragment across

several orders of magnitude, generating millions or more copies of the DNA. A primer is a strand

of nucleic acid that serves as a starting point for DNA replication, and is required for initiation of

DNA synthesis. The selectivity of PCR stems from the use of primers that are complementary to

the DNA region targeted for amplification under specific thermal cycling conditions [3].

Family specific PCR is a technique used when PCR primers amplify an entire gene family, which

is a group of closely related genes that encode similar products and have descended from the same

ancestral gene. If one wants to sequence introns which are conserved in the gene, designing family

specific PCR primers that span these conserved regions is a process that currently requires a lot

of human participation [7]. In this process, researchers can align small primers with the reference

sequence at the correct positions at the boundaries of exons. The reason to align primers with a

known reference sequence is because the study of several species from a gene family is of interest,

where we expect variations between them and they are slightly different from the reference sequence.

As shown in Figure 2.6 (taken from [7]), we know that exon2 and exon3 are highly similar in

8

Figure 2.5: Pictured above is an alignment of eight sequences made by ClustalX,
and the five different subgraphs show successive regions of the sequences. The
unaligned ring domains are marked with boxes.

9

Figure 2.6: Pictured above is a description of a mistake which could occur when
aligning small primers with a reference sequence, which requires manual adjustment
to move the primer P2 to its correct position. In step 1, a mistake occurs which
aligns P2 at an incorrect position in exon3 with a distance between P1 and P2 of
more than 100 bp. In step 2, we manually adjust the alignment to place P2 in
exon2.

the reference sequence and the distance between them is far bigger than we can consider while

designing primers, and the distance between the two primers P1 and P2 is already known (less than

100bp). Step 1 is to align the primers P1 and P2 with the reference sequence R. We expect that

P1 can be aligned with exon1 and P2 can be aligned with exon2. However, there can be mistakes

that occur in the alignment in this step, as in Figure 2.6.

As we know that exon2 and exon3 are similar, mistakes can easily occur which aligns the primer

at an incorrect position in exon3 with a distance between the two primers of more than 100 bp as

shown in step 1 of Figure 2.6. If the distance between P1 and P2 is known, we can manually adjust

the alignment to place P2 in exon2.

Therefore, a manual adjustment is required to move P2 to its correct position in step 2 as shown

in step 2 in Figure 2.6.

10

2.3 Our Objectives

The objectives of this thesis can be divided into three categories. The first is to formalize the notion

of an alignment constraint, a compatible constraint set and an alignment satisfying a compatible

constraint set. The second is to design algorithms to determine whether a set of constraints is

compatible in a sequence alignment. This allows us to describe alignment constraints which are

consistent with each other. The third goal is to provide algorithms to efficiently compute realign-

ment or alignments based on expert users’ manual adjustments. The algorithms should provide a

method that gives a simple, flexible, fast and accurate solution to the problem of how to combine

additional information to yield an optimal alignment satisfying constraints. We will study theoret-

ically how this can be accomplished starting with different multiple sequence alignment techniques.

Furthermore, in principle, one can even make constraints automatically, not just based on users’

input. For example, one can automatically add constraints based on databases of domains, exons,

or some certain protein structures.

11

Chapter 3

Preliminaries

In this chapter, we will introduce some preliminaries, including definitions we will use in the

thesis, a survey of sequence alignment algorithms, summaries of some classical algorithms and

methods, and a survey of existing algorithms or packages which allow additional user constraints.

3.1 Introduction

We briefly discussed what sequence alignments look like in Chapter 2. Next, we will formally define

an alignment.

3.1.1 Formal Definitions

In this section, we will introduce some formal definitions similar to those in [14] in order to math-

ematically define an alignment, which will be important for the rest of the thesis. The definitions

are given in an abstract manner in order to apply to any type of sequences, such as DNA, RNA

or protein, and to work precisely in a variety of situations. Furthermore, it is possible to define

sequence alignment in terms of standard mathematical constructs. We will also give examples to

clarify them.

Definition 1. An alphabet Σ is an abstract and finite set of symbols. Let ‘−’ be a new symbol not

in Σ, and we let Σ = Σ ∪ {−}. We call ‘−’ the gap symbol.

So, for example, we could consider an alphabet of amino acids, or deoxyribonucleotides, or

ribonucleotides depending on whether we are considering proteins, DNA or RNA.

Definition 2. A string is any finite sequence of characters over an alphabet. Let Σ be an alphabet

and s = s1s2 · · · sn be a string, si ∈ Σ, 1 ≤ i ≤ n. Let j, k satisfy 1 ≤ j ≤ k ≤ n. Then the substring

of s which begins at the jth character, and ends at the kth character is s(j, k) = sjsj+1 · · · sk.

Moreover, s(j) = sj, the jth character alone. The length of s is denoted by |s|, which is the

number of characters in the string.

Definition 3. If Σ is an alphabet, then Σ∗ is the set of all strings over the alphabet Σ, which

includes the empty word, λ.

12

Definition 4. Let Σ and Γ be two alphabets. A string homomorphism h is a function from Σ∗ to

Γ∗ such that h(λ) = λ and h(xa) = h(x)h(a) for x ∈ Σ∗, a ∈ Σ.

The homomorphism in the following example maps a DNA string onto the corresponding RNA

string.

Example 1. Let s = ATTCAATCG. We can define a homorphism from {A,C, T,G}∗ to {A,C,U,G}∗

such that h(A) = A, h(C) = C, h(T) = U , and h(G) = G. Then h(s) = AUUCAAUCG.

A string homomorphism is defined entirely in terms of how it acts on individual letters. There-

fore, on a string w = a1a2 · · · an, ai ∈ Σ, 1 ≤ i ≤ n, then h(w) = h(a1)h(a2) · · ·h(an).

Definition 5. Let Σ be an alphabet. We define a homomorphism h from Σ∗ to Σ∗ defined by

h(a)=a for all a ∈ Σ and h(−) = λ. We also define two homomorphisms h1 and h2 from (Σ ×Σ)∗

to Σ ∗, defined by h1((a, b)) = a, h2((a, b)) = b, for each a, b ∈ Σ ∗.

Now we have constructed enough definitions in order to define alignments in a way that corre-

sponds to the more pictorial type of alignments with which most bioinformaticians are familiar.

Definition 6. Let s = s1 · · · sn, t = t1 · · · tm, si, tj ∈ Σ, 1 ≤ i ≤ n, 1 ≤ j ≤ m. An alignment of s

and t is a string x ∈ (Σ × Σ)∗, such that h (h1(x)) = s, h (h2(x)) = t, and there does not exist

i, such that h1(x(i)) = h2(x(i)) = −. We say that a string in x ∈ (Σ × Σ)∗ is an alignment over

Σ, if it is an alignment of some strings s and t in Σ∗.

In order to understand these definitions better, here is an example:

Example 2. Let us start with two sequences: s=ATTCGA, t=GATAA. One alignment between the

two sequences is x = (−, G)(A,A)(T, T)(T,−)(C,−)(G,A)(A,A), as h (h2(x)) = t, h (h1(x)) = s,

and (−,−) is not a character of the alignment. An alignment such as x can be visualized as:

− A T T C G A

G A T −− A A.

Then we have:

h1(x) = s′ = −ATTCGA, h2(x) = t′ = GAT −−AA,

h (s′) = s = ATTCGA, h (t′) = t = GATAA.

It is also desirable to be able to align more than two sequences. We need to generalize the

definitions for multiple alignments.

Definition 7. For natural number k, we define homomorphism hi, 1 ≤ i ≤ k from

k︷ ︸︸ ︷
(Σ × · · · × Σ)

∗

to Σ ∗, defined by hi((a1, · · · , ak)) = ai for each i, 1 ≤ i ≤ k.

13

Definition 8. Let

s1 = s11 · · · s1n1
,

s2 = s21 · · · s2n1
,

· · · ,

sk = sk1
· · · sknk

,

sij ∈ Σ, 1 ≤ i ≤ k, 1 ≤ j ≤ ni. An alignment of s1, · · · , sk is a string x ∈
k︷ ︸︸ ︷

(Σ × · · · × Σ)

∗

such

that h (hi(x)) = si, for each i, 1 ≤ i ≤ k, and there does not exist j such that hi(x(j)) = −, for all

i, 1 ≤ i ≤ k. We say that a string x ∈
k︷ ︸︸ ︷

(Σ × · · · × Σ)

∗

is an alignment over Σ, if it is an alignment

of some strings s1, · · · , sk in Σ∗.

Example 3. For the alignment x = (A,A,A)(C,C,G)(A,−,−)(G,−,−)(T, T,G)(A,C,C)(G,G,G),

we get the following visualization:

A C A G T A G

A C − − T C G

A G − − G C G.

We also develop the idea of a “consensus sequence”. The consensus sequence of a multiple

alignment is informally, a “best” single sequence to represent the alignment.

Definition 9. A consensus y of an alignment x ∈ Σ∗ is a string, such that y(i) = a, where a occurs

at least as many times in x(i) as any other letter.

Example 4. A consensus for

A C A G T A G

A C − − T C G

A G − − G C G

is ACAGTCG. Notice that it is possible to have more than one consensus.

3.1.2 Evolutionary Mutations

Throughout evolution, biological sequences show complex patterns of similarity to one another [15].

When we perform a sequence comparison, we are looking for evidence that they have diverged from

a common ancestor by a process of mutations which were introduced in one or both lineages in the

time since they diverged from one another. The basic mutational processes that are considered are

substitutions, which change characters in a sequence, and insertions and deletions, which add or

remove characters. Insertions and deletions are together referred to as gaps.

14

As shown in Figure 1.1, columns that contain the same letter in both rows are called matches,

while columns containing different letters are called mismatches. The columns of the alignment

containing a gap could be the result of an insertion in one sequence or a deletion in the other.

3.1.3 The Scoring Scheme

There are many possible alignments of strings, but we would like to find the best possible one.

A scoring scheme is commonly used which assigns a number to each alignment. A simple scheme

frequently used is to have fixed scores associated with matches, mismatches and gaps, and then

to assign the score of an alignment to be the sum of the appropriate terms for each aligned pair

of characters, plus terms for the gaps. Informally, if sequences are homologous, then we expect

identities and conservative substitutions to be more likely in alignments than we expect by chance,

and so to contribute positive score terms; and non-conservative changes are expected to be observed

less frequently in real alignments than we expect by chance, and so these contribute negative score

terms [9]. The alignment shown in Figure 1.1 has four matches, one mismatches, and four gaps.

The number of matches plus the number of mismatches plus the number of gaps is equal to the

length of the alignment matrix and must be smaller than or equal to the sum of the lengths of the

sequences.

Using an additive scoring scheme corresponds to an assumption that we can consider mutations

at different sites in a sequence to have occurred independently (at least from the perspective of

creating equal scores). A gap penalty is a negative score, and we call it penalty, because we add the

negative scores. There are several ways to assign gap penalties. One technique is to use constant

gap penalties. In this case, only one parameter, d, is added to the alignment score when the gap

is first opened. This means that every gap, no matter what its size is, receives the same penalty.

Another technique is to use linear gap penalties. Here we only have one parameter, d, which is a

penalty per unit length of gap. This is almost always negative, so that the alignment with fewer

gaps is favoured over the alignment with more gaps. Under a linear gap penalty, the overall penalty

for one large gap is the same as for many small gaps. However, in biological sequences, it is more

likely to have one gap of n characters from a single insertion or deletion event, than it is to have

n gaps of single character [28]. An affine gap penalty is a technique which attempts to overcome

this problem. Affine gap penalties are length dependent and use a gap opening penalty, o, and a

gap extension penalty, e. A gap of length l is then given a penalty o + (l − 1)e. So that gaps are

discouraged, o and e are almost always negative. Furthermore, because a few large gaps are better

than many small gaps, e is almost always bigger than o to encourage gap extension rather than gap

introduction (that is, the absolute value of e is smaller).

15

3.2 Dynamic Programming and Optimal Alignment

Finding the optimal alignment between two sequences can be a computationally complex task, as

there are a huge number of possible alignments of even two sequences. Fortunately, a technique

called dynamic programming makes sequence alignment more tractable. Some algorithms break a

problem into smaller subproblems and use the solutions of the subproblems to construct solutions

to large ones. During this process, the number of subproblems may become very large, and some

algorithms solve the same subproblem repeatedly, needlessly increasing the running time. Dynamic

programming organizes computations to avoid recomputing values that have already been deter-

mined, which can often save a great deal of time [15]. It provides a framework for understanding

DNA sequence comparison algorithms.

The simplest dynamic programming alignment algorithms to understand are pairwise sequence

alignment algorithms. Many dynamic programming algorithms are guaranteed to find the optimal

scoring alignment or set of alignments. Using the scoring schemes we have discussed, better align-

ments will have higher scores, so we want to maximize the score to find the optimal alignment. In

the following subsections we will introduce two algorithms. Although the details of the algorithms

are slightly different across their application, they are both based on dynamic programming. They

will also form the basis for new methods in the thesis.

3.2.1 Global Alignment: the Needleman-Wunsch Algorithm

The global alignment is the alignment of entire sequences. The first problem we consider is that of

obtaining the optimal global alignment between two entire sequences. The dynamic programming

algorithm for solving this problem is known in biological sequence analysis as the Needleman-

Wunsch algorithm [21].

We use a parameter d for the score when a character is aligned with a gap, which is negative.

We also need score terms for each aligned character pair, and for that purpose, we use a substi-

tution matrix s, which gives a score associated with substituting one character in a sequence with

other characters over time. Substitution matrices are usually seen in the context of amino acid

or DNA sequence alignments, where the similarity between sequences depends on their time since

divergence and the substitution rates as represented in the two-dimensional matrix. For amino

acids, a substitution matrix assigns scores or frequencies to the alignment of each possible pair of

amino acids, usually based on the similarity of the amino acids’ chemical properties and/or the

evolutionary probability of the mutation. While for nucleotide sequences, typically a much simpler

substitution matrix is used, where only identical matches and mismatches are considered.

The idea is to build up an optimal alignment using previous solutions for optimal alignments

of smaller subsequences. Let x = x1 · · ·xm, y = y1 · · · yn, where xi, yi are individual characters.

16

We construct a two-dimensional dynamic programming matrix F indexed by i and j, one index

for each sequence, where the value F (i, j) is the score of the best alignment between the initial

segment x1x2 · · ·xi and the initial segment y1y2 · · · yj . We can build F (i, j) iteratively. We begin

by initializing F (0, 0) = 0. We then proceed to fill the matrix from top-left to bottom-right. If

F (i−1, j−1), F (i−1, j) and F (i, j−1) are known, it is possible to calculate F (i, j). There are three

possible ways that the best score F (i, j) of an alignment up to xi, yj could be obtained (supposing

a linear gap penalty): xi could be aligned to yj , in which case F (i, j) = F (i− 1, j − 1) + s(xi, yj) ;

or xi is aligned to a gap, in which case F (i, j) = F (i− 1, j) + d; or yj is aligned to a gap, in which

case F (i, j) = F (i, j − 1) + d as in Figure 3.1. The best score up to (i, j) will be the largest of

these three options, assuming that the three scores in each has been properly calculated, which can

be proven inductively [9]. And we must deal with some boundary conditions. Along the top row,

where j = 0, the values F (i, j − 1) and F (i− 1, j − 1) are not defined so the values F (i, 0) must be

handled specially. The values F (i, 0) represent alignments of a prefix of x to all gaps in y, so we

can define F (i, 0) = id. Likewise, down the left column we set F (0, j) = jd.

Therefore, we have the following recurrence:

F (i, j) = max

F (i− 1, j) + d, for i > 0,

F (i, j − 1) + d, for j > 0,

F (i− 1, j − 1) + s(xi, yj), for i > 0 and j > 0.

(3.1)

This equation is applied repeatedly to fill in the matrix of F (i, j) values, calculating the value in

the bottom-right corner of each square of four cells from one of the other three values (above-left,

left, or above) as in Figure 3.1.

Figure 3.1: The dynamic programming computation scheme which calculates the
value in the bottom-right corner of each square of four cells from one of the other
three values (above-left, left, or above).

As we fill in the F (i, j) values, we can also keep an arrow (or some entity, such as an integer

representing them) in each cell, back to the cell from which its F (i, j) was derived, as shown in

the example of the full dynamic programming matrix in Figure 3.2. This arrow describes the last

position of the best alignment of x1x2 · · ·xi with y1y2 · · · yj .

17

Figure 3.2: Pictured above is the dynamic programming matrix of the Needleman-
Wunsch Algorithm.

The value in the final cell of the matrix, F (n,m), is by induction the best score for an alignment

of x1x2 · · ·xn to y1y2 · · · ym, which is what we want: the score of the best global alignment of x

and y. To find the alignment itself, we must backtrack the dynamic programming matrix using

some sequences of arrows starting at (n,m) to (0, 0) to completely find a path of choices that led to

this final value. Indeed, when taking the maximum value in Equation 3.1, we are determining the

possibility for the last position of an optimal alignment of x1x2 · · ·xi with y1y2 · · · yj , and thus by

continuing iteratively, we can determine one or every optimal alignment of x with y backtracking

in this manner.

3.2.2 Local Alignment: the Smith-Waterman Algorithm

Thus far, we know how to find the best match between sequences from one end to the other. How-

ever, a common situation occurs when we are looking for the best alignment between subsequences

of x and y (as opposed to entire sequences). This type of alignment would be desired, for exam-

ple, when it is suspected that two protein sequences share a common domain, or when comparing

extended sections of genomic DNA sequence. It is also usually the most sensitive way to detect

similarity when comparing two very highly diverged sequences, even when they may have a shared

evolutionary origin along their entire length [29]. The highest scoring alignment of subsequences

of x and y is called the best local alignment, and the algorithm to find the best local alignment is

called the Smith-Waterman algorithm [29].

18

The algorithm for finding an optimal local alignment is closely related to that described for

global alignments, but there are two differences. First, in each cell in the table, an extra possibility

is added to the equation, allowing F (i, j) to take the value 0 if all other options have values less

than 0. Taking the 0 option corresponds to starting a new alignment.

F (i, j) = max

0, for i ≥ 0 or j ≥ 0 ,

F (i− 1, j) + d, for i > 0 ,

F (i, j − 1) + d, for j > 0 ,

F (i− 1, j − 1) + s(xi, yj), for i > 0 and j > 0 .

(3.2)

The second change is that now an alignment can end anywhere in the matrix, so instead of

taking the value in the bottom right corner, F (n,m), for the best score, we look for the highest

value, max 1≤i≤n
1≤j≤m

F (i, j), over the whole matrix, and start the traceback from there. The traceback

ends when we hit a cell with value 0, which corresponds to the start of the alignment. A comparison

of the best global versus local alignment path is shown in Figure 3.3 [14].

Figure 3.3: The lower line represents a potential global alignment between the
two sequences on the axes and the upper line represents a potential local alignment.

3.3 Multiple Sequence Alignment

“One amino acid sequence plays coy; a pair of homologous sequences whisper; many
aligned sequences shout out loud.” [17]

In nature, even a single sequence contains all the information necessary to dictate the structure of

the protein. Through a pairwise sequence alignment, we can infer the similarity level between two

19

sequences, matches and mismatches among the alignment, gaps and conserved characters. However,

such a comparison fails to give much insight on evolutionary relationships. Multiple alignments, a

natural extension of two-sequence comparisons, are a powerful way to study biological sequences.

In a multiple sequence alignment, homologous characters among a set of sequences are aligned

together in columns. “Homologous” has come to mean corresponding or similar position, structure,

function, or characteristics due to evolutionary relatedness. Sequences can be aligned to visualize

the effect of evolution across the whole family. Ideally, a column of aligned characters all diverge

from a common ancestor.

3.3.1 Multi-dimensional Dynamic Programming

From the Needleman-Wunsch and Smith-Waterman Algorithms we can see how to find the global or

local optimal alignment of two sequences. It is possible to generalize pairwise dynamic programming

alignment to alignments of n sequences. In Section 3.2, we calculated the optimal alignment of two

sequences using a two-dimensional matrix. Similarly, the optimal alignment of three sequences

can be calculated using a cube (or a three-dimensional matrix) as shown in Figure 3.4, where the

sequences to be aligned are marked as sequence 1, sequence 2 and sequence 3. The choice of path

which corresponds to the optimal alignment goes through the cube from the corner at position A to

the opposite one at position B. The corner that corresponds to the first character of all sequences

is called the original corner (position A in Figure 3.4), and the corner corresponding to the last

character of all sequences is called the end corner (position B in Figure 3.4).

Figure 3.4: 3-dimensional dynamic programming to calculate the alignment of
three sequences.

To calculate the optimal alignment (optimal path) of n sequences s1, s2, · · · , sn, we need an

n-dimensional matrix. Consider the n-dimensional matrix M(s1, s2, · · · , sn). Each position in M

20

may be thought of as the end corner of the sub-matrix M(s1(1, i1), · · · , sn(1, in)), where for each

sequence s, s(1, i) denotes the subsequence consisting of the first i characters of s as in Definition 2.

The idea of the method is to iteratively find optimal paths for all these sub-matrices. We compute

the maximum score needed to reach each position through a valid path. This process is repeated

until we calculate the maximum score needed to reach the end corner of M(s1, s2, · · · , sn). Together

with the optimal score of each position of the matrix, we keep an arrow to trace back an optimal

path.

Performing a multiple sequence alignment with dynamic programming involves calculation in a

multi-dimensional matrix and it is computationally complex to produce. The search space increases

exponentially with increasing n and is dependent on sequence length. That is, the time complexity

is O(|s1| × |s2| × · · · × |sn|), where s1, s2 · · · sn are the sequences. To find the global optimum for n

sequences this way has been shown to be NP-complete where the number of sequences varies [34],

unless we take n as constant in which case it can be performed in polynomial time. Nevertheless, the

usefulness of these alignments in bioinformatics has led to the development of a variety of methods

suitable for aligning three or more sequences that are more efficient but are not guaranteed to

produce optimal results. The field of multiple sequence alignments has undergone drastic changes

with the introduction of several new algorithms and new evaluation methods [22, 33, 11, 23].

3.3.2 Classification of Multiple Sequence Alignment Algorithms

Considering the most common strategies, it is convenient to classify existing algorithms into three

main categories: exact algorithms, iterative alignments and progressive alignments [22]. The iter-

ative and progressive algorithms are heuristic methods.

Exact Algorithms

Exact algorithms attempt to simultaneously align multiple sequences and find an optimal align-

ment given the scoring scheme. This would be especially useful when dealing with sets of extremely

divergent sequences whose pairwise alignments are all likely to be incorrect [22]. This was achieved

in the MSA program, an implementation of the Carrillo and Lipman algorithm [5]. The MSA

program [18] optimizes the sum of all of the pairs of characters at each position in the alignment

(the so-called sum-of-pairs score), and used a branch-and-bound technique to make small multi-

ple alignments more practical in a reasonable amount of time. It was restricted to small sets of

moderately similar sequences.

The exact algorithm has high memory and computational time requirements, and can only

handle a small number of sequences. Hence it is still impractical for many multiple sequence

alignment applications that require the simultaneous alignment of many sequences.

21

Iterative Algorithms

Iterative algorithms provide a heuristic technique to perform a multiple sequence alignment. It

produces an alignment and refines it through a series of iterations until no more improvements can be

made. Iteration has been successfully used and is a key optimization technique for multiple sequence

alignment. Iterative algorithms do not provide any guarantees about finding optimal solutions but

the alignments are reasonably robust and much less sensitive to the number of sequences to be

aligned. They are based on the idea that the solution to a given problem can be computed by

modifying an already existing sub-optimal solution. Each modification step is an iteration.

Iterative methods can be deterministic or stochastic, depending on the strategy used to improve

the alignment. The simpler iterative strategies are deterministic. Traditional stochastic iterative

methods include simulated annealing and genetic algorithms. Bioinformatics packages using itera-

tive algorithms are PRRP[22], DIALIGN[20], MUSCLE[10], etc.

Progressive Algorithms

Probably the most commonly used approach to multiple sequence alignment is progressive align-

ment. The progressive algorithm provides an approximate solution, which can provide an alignment

but cannot guarantee that the score is maximal. It is a fast and effective technique to multiply

align a set of sequences with feasible time and space, and in many cases the resulting alignments

are reasonable.

Generally, there are two steps to perform a progressive algorithm:

1. Build a guide tree.

The most important heuristic of progressive alignment algorithms is to align the most similar

pairs of sequences first, which form the most reliable initial alignments. Most algorithms

build a “guide tree”, which is determined by a clustering method such as the neighbour-

joining method, and may be calculated using distances based on the number of identical two

letter sub-sequences [31]. It is a binary tree whose leaves represent sequences and whose

interior nodes represent alignments. The root node represents a complete multiple alignment.

The nodes together on the same subtree are the most similar pairs.

2. Progressively align sequences following the order of the guide tree.

The method depends on a progressive assembly of the multiple alignments where sequences

or alignments are added one by one so that there are never more than two simultaneous

alignments using dynamic programming. Initially, two sequences are chosen from the guide

tree and aligned by standard pairwise alignment; this alignment is fixed. Then, a third

sequence is chosen and aligned to the consensus sequence (or aligned to an alignment) of the

first alignment, and this process is iterated until all sequences have been aligned.

22

This approach has the advantage of speed and simplicity combined with reasonable sensitivity.

Although successful in a wide variety of cases, this method suffers from its “greediness”. Errors

made in the first alignments cannot be rectified later as the rest of the sequences are added in.

The most widely used multiple sequence alignment packages are based on an implementation of

this algorithm. For example, ClustalW [31], which attempts to optimize the weighted sum-of-pairs

with affine gap penalties, is a straightforward progressive alignment strategy where sequences are

added to the multiple alignment according to the order indicated by a pre-computed dendrogram.

In general, ClustalW performs better when the phylogenetic tree is relatively dense without any

obvious outlier. T-Coffee [24] is an improvement to the progressive alignment algorithm where

sequences are aligned in a progressive manner but using a strategy to minimize potential errors,

especially in the early stages of the alignment.

3.4 Existing Algorithms or Packages for Alignment with

Constraints

There are some existing algorithms or packages allowing users to add some additional manual

information in order to refine alignments. One can attempt to modify alignments using additional

constraints, based on different types of expert knowledge. But they have drawbacks in different

respects. In this section, we will briefly introduce them.

In order to get more accurate alignments, some of the alignment algorithms tried to incorporate

additional biological information. PROMALS [26] improves alignment quality by combining sev-

eral advanced techniques, such as database searching for additional homologs, secondary structure

prediction and probabilistic consistency of profile-to-profile comparisons. Further improvements to

PROMALS alignment quality arise from using constraints on the regions that should be aligned.

Such constraints can be defined by structural superposition or other additional expert knowledge.

The resulting program, PROMALS3D [27], brings together sequence and structure-based alignment

to generate multiple alignments consistent with both sequence and structural information. In PRO-

MALS3D, for input sequences, they used similarity searches to retrieve homologs with available 3D

structures. The structure-based alignments among these homologs help define high-quality con-

straints that are combined with sequence-based profile-to-profile alignments enhanced by predicted

secondary structures. However, as these “high-quality constraints” are derived from available pro-

tein 3D structures, and the process of search, retrieval and defining constraints can be influenced

by many other factors, it may have problems. The program does not allow expert interaction to

correct any problems which may arise while running the program.

Jalview [6, 36] is a multiple alignment editor written in Java. One of its functions is editing

alignments. Using Jalview, gaps can be inserted/deleted, insertion or deletion of gaps in groups of

23

sequences can be performed, and gapped columns can be removed using the mouse or keyboard.

However, all these modifications on alignments are made in the form of editing an output figure,

without changing results algorithmically based on the data used to generate the figure. It does

not recompute the other parts of the alignment, even though the modifications could change the

alignments’ optimality.

CLC Sequence Viewer [4] gives options of identifying specific positions in sequences and align-

ments which should be forced to align to each other and realigning a selection of an alignment.

It is possible to introduce an alignment fixpoint in a sequence or alignment. When aligning two

sequences with alignment fixpoints, the fixpoint regions will then be forced to align with each other.

One example would be three sequences A, B and C where sequences A and B have one copy of

a domain while sequence C has two copies of the domain. Then you can force sequence A to

align to the first copy and sequence B to align to the second copy of the domains in sequence C.

This is a more flexible way than the use of constraints in PROMALS3D, while Jalview, it does

algorithmically change the remaining parts of the alignment.

However, the package is a commercial product. Also, the entire alignment is recomputed and

refreshed instead of only refreshing the sections that have changed, which is less effective com-

putationally. This solution is not ideal, Teal and Rudnicky [30] found that a delay in response

time caused users to change their strategies in how they used tools. Therefore, recomputing entire

alignments can harm interaction as well.

Thus, the question remains as to how an alignment can be dynamically recomputed in a fluid

and fast manner.

24

Chapter 4

Compatible Constraint Set

4.1 What is a Constraint?

In Chapter 2, we discussed some types of additional information that biologists might incorporate

in various scenarios while running automatic alignment programs, in order to find an alignment

better satisfying their objectives. In this chapter, we will introduce the definition of a constraint

and the relationships between constraints in order to accommodate these and other scenarios.

Many types of additional information can be represented as a kind of constraint. Here, we

will first describe constraints informally, with an example. The SEC homology 3 domain (SH3

domain) is a small protein domain of about 60 amino acid residues. It is usually found in proteins

that interact with other proteins and mediate assembly of specific protein complexes, typically via

binding to proline-rich peptides with their respective binding partner [25]. For those studying the

interactions between proteins, a natural objective of the sequence alignment would be to align the

SH3 domains together. This requirement can be captured as a constraint on the alignment of

sequences that contain the domain.

As shown in Figure 4.1 (a), CRKL and GRB2 are two sequences where CRKL has one copy of

the SH3 domain while GRB2 has two copies of the SH3 domains. A constraint on the alignment can

be used to force CRKL to align to the second copy (Figure 4.1 (b)) or to the first copy (Figure 4.1

(c)) of SH3 domains in GRB2.

4.1.1 Definition of a Constraint

From the example in Figure 4.1, we developed some intuitive notions for constraints, which we will

now define formally. Some definitions from Chapter 3 will be used within these new definitions.

Definition 10. Let s1, s2, · · · , sm,m > 1 be strings. A constraint is a pair {(k, i), (l, j)} between

strings sk and sl, where l 6= k, 1 ≤ k, l ≤ m, 1 ≤ i ≤ |sk|, 1 ≤ j ≤ |sl|. Here, k and l are called the

sequence numbers, and i and j are called the position numbers.

A constraint can also be visualized as in Figure 4.2. Essentially, it is a restriction enforcing

that character of one sequence must align with one character on another. This is a general type

25

Figure 4.1: (a) two sequences containing SH3 domains: CRKL contains one copy
and GRB2 contains two copies; (b) a constraint to align the SH3 domain in CRKL
with the second copy of SH3 domain in GRB2; (c) a constraint to align the SH3
domain in CRKL with the first copy of SH3 domain in GRB2.

of constraint and most additional information can be abstracted to this form. But there are some

other types of constraints on alignments that can also be treated computationally, but we will not

study here. For example, some expert users might not know the exact positions in the sequences

that should be forced to align, but would like to align a region in one sequence with a certain region

in other sequences.

Figure 4.2: One can visualize a constraint between position i of sequence sk and
position j of sequence sl with a line.

4.1.2 Definition of Compatible Constraints

Using the definition of a constraint, we can now define an alignment satisfying constraints, and the

optimal alignment satisfying constraints.

Definition 11. An alignment of m sequences s1, s2, · · · , sm satisfying n constraints

C1 = {(k1, i1), (l1, j1)}, C2 = {(k2, i2), (l2, j2)}, · · · , Cn = {(kn, in), (ln, jn)},

is any alignment x of s1, s2, · · · , sm, where for each Cp, 1 ≤ p ≤ n, character ip of skp
is aligned

with character jp of slp .

Definition 12. Given a scoring scheme δ which assigns a number to each alignment, an optimal

alignment of s1, s2, · · · , sm satisfying constraints C1, C2, · · · , Cn is the highest-scoring alignment

26

satisfying these constraints. That is, an alignment with score

max{δ(x) | x is a multiple alignment of s1, s2, · · · , sm which satisfies constraints C1, C2, · · · , Cn}.

We will formalize the notion, and give the general definition of compatible constraints as follows.

Definition 13. Given sequences s1, s2, · · · , sm and constraints C1, C2, · · · , Cn between them, the

constraints are compatible if there exists an alignment satisfying these constraints. If they are

compatible, we say that {C1, C2, · · · , Cn} is a compatible constraint set, or CCS for short.

By this definition, a set of constraints must be compatible in order for an alignment satisfying

those constraints to be defined.

4.2 Compatible Constraint Set on Pairwise Sequence Align-

ment

We will first discuss constraints on pairwise alignments in this section due to their simplicity and

importance for certain generalizations to multiple sequences. It is also necessary to introduce them

separately because in the next section we will convert the constraints on multiple alignments to

this form.

4.2.1 Analysis of Compatible Constraints on Pairwise Sequences

Compatible constraints represent a relationship between constraints. An alignment cannot satisfy

constraints which are incompatible within the same aligning process. In order to compute align-

ments using constraints, we must first make sure the constraints do not conflict. For example,

the two constraints C1 = {(k, 10), (l, 20)} and C2 = {(k, 20), (l, 10)} enforces aligning the 10th

character of sequence sk with the 20th character of sequence sl, and aligning the 20th character of

sequence sk with the 10th character of sequence sl. It is obvious that such an alignment satisfying

both C1 and C2 does not exist.

In the following sections, we will describe algorithms which decide the compatibility of the

constraints. For only two sequences, the situation is relatively simple. This will become a more

complicated problem as we generalize the results of this section to multiple sequences.

Before introducing the algorithms, we need to talk about the kinds of constraints that are

compatible on two sequences.

As visualized in Figure 4.2 shows, a constraint can be described as a line from a point on one

sequence to a point on the other sequence. For example, a constraint C = {(k, i), (l, j)} is a line

from the ith position of sequence sk to the jth position of sequence sl. Then two constraints

can be described as two lines. Figure 4.3 gives all relationships between two constraints, C1 =

27

{(k, i1), (l, j1)}, C2 = {(k, i2), (l, j2)}, on two sequences. We can easily find that Figure 4.3 (a) and

(b) are compatible constraints (they can co-exist in an alignment), while Figure 4.3 (c) and (d) are

conflicting. This is because in Figure 4.3 (c), if we are trying to force i1 to align with j1, and we

know that i2 > i1, that would imply that j2 would necessarily be bigger than j1, which is not true.

Figure 4.3: In this figure, we draw possible cases of the relationships between two
constraints, C1 = {(k, i1), (l, j1)}, C2 = {(k, i2), (l, j2)}, on two sequences sk and sl.

Intuitively, we can accept Figure 4.3 (a) and (b) as compatible constraints, and the constraints of

the form as depicted in Figure 4.3 (c) and (d) are not compatible, because the lines cross. Visually

with only two sequences, two constraints are compatible, if and only if the two lines do not cross

with each other or meet at the same point at one sequence.

There is a law to mathematically decide whether two constraints are compatible or not in the

situation of only using two sequences.

Proposition 1. Given two sequences sk and sl, and two constraints C1 = {(k, i1), (l, j1)}, C2 =

{(k, i2), (l, j2)} with C1 6= C2, C1 is compatible with C2, if and only if at least one of the following

occurs:

i2 < i1 and j2 < j1,

i2 > i1 and j2 > j1.

Otherwise, C1 and C2 are incompatible on the two sequences.

Proof. Assume that C1 and C2 are compatible. Then there exists an alignment x, where the i1th

character of sequence sk is aligned with the j1th character of sequence sl; and the i2th character

of sequence sk is aligned with the j2th character of sequence sl. Therefore, let α be the position of

x containing the i1th character of sequence sk and the j1th character of sequence sl; and let β be

the position of x containing the i2th character of sequence sk and the j2th character of sequence

sl. Since C1 6= C2, we know that α 6= β. If α > β, then i2 < i1 and j2 < j1; if α < β, then i2 > i1

and j2 > j1.

28

Conversely, assume that either i2 < i1 and j2 < j1 or i2 > i1 and j2 > j1. In the first

case, we can create any alignment of sk(1) · · · sk(i2 − 1) with sl(1) · · · sl(j2 − 1), concatenated

with sk(i2) aligned with sl(j2), concatenated with any alignment of sk(i2 + 1) · · · sk(i1 − 1) with

sl(j2+1) · · · sl(j1−1), concatenated with sk(i1) aligned with sl(j1), concatenated with any alignment

of sk(i1 + 1) · · · sk(|sk|) with sl(j1 + 1) · · · sl(|sl|). Such an alignment must exist. Similarly, in the

second case, we can create any alignment of sk(1) · · · sk(i1−1) with sl(1) · · · sl(j1−1), concatenated

with sk(i1) aligned with sl(j1), concatenated with any alignment of sk(i1 + 1) · · · sk(i2 − 1) with

sl(j1+1) · · · sl(j2−1), concatenated with sk(i2) aligned with sl(j2), concatenated with any alignment

of sk(i2 + 1) · · · sk(|sk|) with sl(j2 + 1) · · · sl(|sl|). Such an alignment also must exist. Hence C1

and C2 are compatible.

Thus, for distinct constraints C1 and C2, C1 is incompatible with C2 if and only if one of the

following happens:

i2 ≤ i1 and j2 ≥ j1,

i2 ≥ i1 and j2 ≤ j1.

This proposition provides a simple criterion, which can be calculated in constant time for a pair

of constraints.

Now let us give the definition of a pair CCS.

Definition 14. A pair CCS is a set of constraints, in which every pair of constraints is compatible.

Knowing exactly when two constraints are compatible, we now can introduce a proposition to

determine whether a given set of constraints is a compatible constraint set (CCS) for pairwise

sequences, which we will then use within Algorithm 1.

Proposition 2. Given two sequences sk, sl, and a constraint set Cp = {{(k, ip), (l, jp)} | 1 ≤ p ≤ n}

on them. The constraints are compatible, if and only if all pairs of the constraints in the set are

compatible. That is, the set is a CCS if and only if it is a pair CCS.

Proof. If the constraints C1, C2, · · · , Cn are compatible, then all pairs of them are compatible as

well.

Conversely, assume all pairs of the constraints are compatible for the given constraint set Cp =

{{(k, ip), (l, jp)} | 1 ≤ p ≤ n}. We will show by induction on m (m ≤ n) that C1, C2, · · · , Cn must

be compatible.

The base case occurs with m = 2 when there are only two constraints in the set. Because all

pairs of constraints are compatible, then the two constraints in the set must be compatible.

Assume that C1, C2, · · · , Cm are compatible when 2 ≤ m < n. Then following the definition of

compatible constraints (Definition 13), there must exist an alignment x, satisfying C1, C2, · · · , Cm.

29

Let p be such that ip is maximal in i1, · · · , im with ip < im+1, and let q be such that iq is minimal

in i1, · · · , im with iq > im+1, if they exist. We know that Cp and Cq are compatible with Cm+1.

From Proposition 1, we know that (im+1 < ip and jm+1 < jp) or (im+1 > ip and jm+1 > jp), and

we also know that (im+1 < iq and jm+1 < jq) or (im+1 > iq and jm+1 > jq). Such an alignment,

satisfying the inequalities concurrently, must exist. So C1, C2, · · · , Cm+1 are compatible. The case

is similar if p does not exist (m+ 1 is the first constraint) and if q does not exist (m+ 1 is the last

constraint).

Based on the above, when m = n, C1, C2, · · · , Cn are compatible.

4.2.2 The First Algorithm to Determine a pair CCS

Before constraining an alignment, we must first determine whether the given constraints are com-

patible. In light of Proposition 2, only a pair CCS can be added to an alignment of two sequences.

Here is the first algorithm to decide whether a given constraint set is a pair CCS or not. This is

a prerequisite to computing alignments with constraints, and its correctness follows from Proposi-

tion 1 and Proposition 2, as it checks whether each pair of constraints is compatible.

Algorithm 1: Determine pair CCS

Input: two sequences sk and sl;

n constraints (n ≥ 1): Cp = {{(k, ip), (l, jp)} | 1 ≤ p ≤ n}.

Process: Check compatibilities of all pairs of constraints.

1 for constraints p from 1 to n− 1

2 for constraints q from p+ 1 to n

3 if (iq − ip)× (jq − jp) > 0 //when (iq < ip and jq < jp) or (iq > ip and jq > jp)

4 // do nothing

5 else Return false;

6 Return true;

The complexity of Algorithm 1 is O(n2), which is high. As the number of constraints increases,

the algorithm becomes slower. So we need a more efficient algorithm to determine if constraints

are compatible.

4.2.3 Sort Constraints on Multiple Sequences

Since the constraints are given by users according to their needs, they may not be in order, from left

to right according to the alignment. Before constraining an alignment, we can sort the constraints.

Algorithm 2 will address this work. It sorts the constraints based on their positions in one sequence.

This algorithm can be used for either two sequences or multiple sequences.

30

We assume that all the constraints are distinct. When sorting constraints involving each se-

quence sq, they are sorted in increasing order of the position of sq, and if there are two constraints

involving the same position of sq, we rank constraints lower depending on the other sequence of

the constraint. For example, if we have constraints C1 = {(k, i), (l, j)}, C2 = {(k, i), (q, p)}, then

we rank C1 first if l < q, and C2 first otherwise. If l = q, then we use j and p to order.

Then we have our Algorithm 2: Sort as follows.

Algorithm 2: Sort

Input m sequences s1, s2, · · · , sm;

n constraints(n ≥ 1): Cp = {{(kp, ip), (lp, jp)} | 1 ≤ p ≤ n, 1 ≤ kp, lp ≤ m}.

Process Sort constraints based on position numbers.

1 r1···m = 0; //initialize m counters

2 for p from 1 to n //for all constraints involving Cp

5 rkp
+ +;

5 rlp + +;

6 Sortedkp [rkp] = Cp;

6 Sortedlp [rlp] = Cp;

7 for q from 1 to m //for all sequences

8 Sortedq = QuickSort(Sortedq); //call a standard quicksort algorithm

Output return Sorted1···m;

Quicksort is a well-known sorting algorithm developed by Hoare [12] that, on average, makes

O(n log n) comparisons to sort n items. In Algorithm 2, the time taken is O(n + k1 log k1 + · · · +

km log km), where n is the number of constraints, m is the number of sequences, and ki is the

number of constraints involving sequence si (1 ≤ i ≤ m). This will give O(n log n) complexity for

constraints either in two sequences or m sequences, and it will be useful for the rest of this thesis.

4.2.4 Determine a pair CCS Using a Graph Algorithm

Here we present another algorithm to do the same task which is the one we will generalize to multiple

sequences. Following the definition of constraints (Definition 10), we can use a pair to denote a

constraint C between sequences sk and sl over m sequences s1, · · · , sm: C = {(k, i), (l, j)}, where

l 6= k, 1 ≤ k, l ≤ m, 1 ≤ i ≤ |sk|, i ≤ j ≤ |sl|. In this section, we only discuss constraints on two

sequences sk and sl, and we have n constraints C1 = {(k, i1), (l, j1)}, C2 = {(k, i2), (l, j2)}, · · · , Cn =

{(k, in), (l, jn)}.

Before introducing the algorithm, it is necessary to review some definitions from graph theory

from [1] and [19].

31

Definition 15. A directed graph G = (V,E) is a finite set of vertices V , and a finite set of edges

with E ⊆ V × V = {(v1, v2) | v1, v2 ∈ V, v1 is a source and v2 is a target of the edge (v1, v2)}.

Definition 16. Let G = (V,E) be a graph. A path in G is a sequence of vertices v1, v2, · · · , vn,

such that (v1, v2), (v2, v3),· · ·, (vn−1, vn) are edges. This path is from vertex v1 to vertex vn, and

passes through vertices v2, v3, · · · , vn−1, and ends at vertex vn. The length of the path is the number

of edges on the path, which is n− 1. As a special case, a single vertex v by itself denotes a path of

length zero from v to v.

Definition 17. Any path of length at least one that begins and ends in the same vertex is a cycle.

Definition 18. A directed acyclic graph, or DAG for short, is a directed graph with no cycles.

Our algorithm uses a graph algorithm to determine if a set of constraints on two sequences is

compatible. It contains two steps: first, to convert the given constraints to a graph; second, to find

if there is any cycle in the graph.

Step 1: Convert Constraints to a Graph

From the constraints, we are trying to discuss the compatibility in the form of a graph problem.

First, we discuss how we can convert our constraints to a directed graph.

In the graph, we convert each constraint into one vertex, and then n constraints can be converted

to n vertices, and we will denote each vertex by the constraint label. For example, a constraint

C = {(k, i), (l, j)} can be converted to a vertex with label C.

We connect the vertices with edges following certain rules. As vertices have an order decided

by the position number in each sequence (the position of the constraint in sequence k and l), we

first sort them with each sequence in ascending order using Algorithm 2. Then we connect the

neighbouring vertices on the same sequence with one directed edge from the one with a smaller

position number to the one with a larger position number. If there are two consecutive constraints

involving the same position of the same sequence, then we add edges in both directions introducing

a cycle. So if the number of constraints is n, then the number of vertices would be n, and the

number of edges would be at most 4(n − 1), as we can have a different sorted order for both

sequences. Here is an example to demonstrate the conversion.

Example 5. Given two sequences sk and sl, and four constraints C1 = {(k, 5), (l, 3)}, C2 =

{(k, 20), (l, 10)}, C3 = {(k, 50), (l, 66)} and C4 = {(k, 73), (l, 90)}, the constraints can be visualized

in Figure 4.4.

After converting the constraints to a graph, we obtain the graph in Figure 4.5.

The following algorithm converts constraints C1, C2, · · · , Cn on sequences sk and sl to a graph

using adjacency lists as the data structure [8]. The algorithm calls Algorithm 2 using QuickSort

[12] to sort the constraints in ascending order according to sequence number.

32

Figure 4.4: We show the visualization of four constraints.

Figure 4.5: Pictured above is the graph obtained from converting the constraints
in Figure 4.4.

Algorithm 3: Convertpairwise

Input two sequences sk and sl;

n constraints (n ≥ 1): Cp ={{(k, ip), (l, jp)}| 1 ≤ p ≤ n)};

Process Sort constraints on each of the two sequences, then convert them to a directed graph.

1 for p from 1 to n //the first for loop: add all constraints

2 vp = CreateV ertex(C[p]);

3 Sortedk,l = Sort(sk,l, C1···n);

4 for i from 1 to |Sortedk| //the second for loop:

//add all constraints involving sequence sk

5 CreateEdge(Sortedk[i], Sortedk[i+ 1]);

6 if Sortedk[i] and Sortedk[i+ 1] both involve the same position of sk

7 CreateEdge(Sortedk[i+ 1], Sortedk[i]);

8 for i from 1 to |Sortedl| //the third for loop:

//add all constraints involving sequence sl

9 if edge does not exist

10 CreateEdge(Sortedl[i], Sortedl[i+ 1]);

11 if Sortedl[i] and Sortedl[i+ 1] both involve the same position of sl,

and edge does not exist

12 CreateEdge(Sortedl[i+ 1], Sortedl[i]);

Output return G = (V,E);

The complexity to convert sorted constraints to a graph is O(n), and combined with the sorting

this takes O(n log n) time.

33

Step 2: Find a Cycle in the Graph

The reason we are trying to determine whether there exists a cycle in the graphs produced is because

we found that there is a relationship between the compatibility of constraints and the existence of

cycles in a graph, as given in Theorem 1.

Theorem 1. Given two sequences sk and sl, and n constraints (n ≥ 1): Cp = {{(k, ip), (l, jp)} | 1 ≤

p ≤ n}, and a graph G = (V,E) created from the constraints via Algorithm 3. Then C1, C2, · · · , Cn

are compatible constraints if and only if G has no cycles.

Proof. Assume that C1, C2, · · · , Cn (n ≥ 1) are compatible constraints, and they are sorted by

Algorithm 2. Then there exists an alignment x satisfying C1, C2, · · · , Cn, which means that the

ipth character of sequence sk is aligned with the jpth character of sequence sl, for every 1 ≤ p ≤ n.

Moreover, for both sk and sl, these positions must be disjoint for an alignment to exist. Thus

neither if statement on line 6 nor line 11 are true. Therefore, let αp be the position of x containing

the ipth character of sequence sk and the jpth character of sequence sl, and let vp be the vertex

corresponding to this constraint. If we sort α1, α2, · · · , αn, then the indices will be identical to the

edges added in Algorithm 3 in the second for loop, and also in the third for loop. Moreover, there

is not any repeated vertex, since the second coordinate of the pair with k as the first parameter

strictly increases. Hence, there are no cycles.

Conversely, assume that the graph G is a DAG, where G was created from C1, C2, · · · , Cn

(n ≥ 1), following Algorithm 3. Then neither if statement in line 6 nor line 11 can be true, since

otherwise a cycle would be immediately introduced. Thus the constraints strictly increase according

to each sequence. Then in Algorithm 3, the second and third for loops must sort in the same order as

otherwise there are two vertices Ci, Cj , such that Ci appears before Cj in the first for loop, and Cj

appears before Ci in the second for loop, which contradicts the fact that there are no cycles. Then if

r1, r2, · · · , rn is the sorted sequence positions in sk and t1, t2, · · · , tn is the sorted sequence positions

in sl, then we can create any alignment of sk(1) · · · sk(r1− 1) with sl(1) · · · sl(t1− 1), concatenated

with sk(r1) aligned with sl(t1), concatenated with any alignment of sk(r1 + 1) · · · sk(r2 − 1) with

sl(t1 + 1) · · · sl(t2 − 1), concatenated with sk(r2) aligned with sl(t2), · · ·, concatenated with any

alignment of sk(rp−1+1) · · · sk(rp−1) with sl(tp−1+1) · · · sl(tp−1), concatenated with sk(rp) aligned

with sl(tp), · · ·, concatenated with sk(rn) aligned with sl(tn), concatenated with any alignment of

sk(rn + 1) · · · sk(|sk|) with sl(tn + 1) · · · sl(|sl|). Such an alignment must exist, so C1, C2, · · · , Cn

are compatible.

To detect if a graph has cycles, or if a graph is a DAG, we will use a depth-first search, DFS(G, v)

[8]. The strategy followed by DFS is, as its name implies, to search “deeper” in the graph whenever

possible. In DFS, edges are explored out of the most recently discovered vertex v that still has

unexplored edges leaving it. When all of v’s edges have been explored, the search “backtracks” to

34

explore edges leaving the vertex from which v was discovered. This process continues until we have

discovered all the vertices that are reachable from the original source vertex. If any undiscovered

vertices remain, then one of them is selected as a new source and the search is repeated from that

source. This entire process is repeated until all vertices are discovered. The complexity of a depth-

first search is O(|V |+ |E|), and for our algorithm, this gives O(n) when we use the adjacency list

as the data structure for graphs [1] in the current situation of pairwise alignment.

4.2.5 Complexity

For two sequences, the complexity of sorting constraints is O(n log n), the complexity of converting

sorted constraints to a graph is O(n), and the complexity to detect cycles in the graph is O(n),

so the entire complexity for detecting the compatibility of a given set of constraints is O(n log n).

Moreover, this graph theoretic approach will be the most useful with multiple sequences in the next

section.

4.3 Compatible Constraint Set on Multiple Sequence Align-

ment

In Section 4.2, we discussed compatible constraints on two sequences, and have defined compatible

constraints and a compatible constraint set (CCS) in Definition 13 and a pair CCS in Definition 14.

Then we gave Proposition 1 and Proposition 2 to provide a simple criteria to determine if a set of

constraints is compatible or not. We also provided algorithms to determine if a constraint set is a

compatible constraint set on two sequences. In this section, we will talk about the compatibility of

constraints on multiple sequences.

4.3.1 Analysis of Compatible Constraints on Multiple Sequences

The characterization of Proposition 1 and Proposition 2 for two sequences does not hold any more

for multiple sequences. Take the constraints in Figure 4.6 as an example. Although all pairs of

constraints are compatible, the constraint set is incompatible. However, one needs to analyze all

constraints simultaneously in order to establish this fact. Thus for multiple sequences, we need

another characterization and algorithm to address this problem.

4.3.2 Determine a CCS on Multiple Sequences Using a Graph Algorithm

Here, we will generalize Algorithm 3 in Section 4.2.4 to multiple sequences, in order to determine

if a set of constraints on multiple sequences is compatible. It contains three steps: we will first

35

Figure 4.6: We provide an example of incompatible constraints on multiple se-
quences.

sort the constraints involving each sequence by location; then we will convert the constraints to a

directed graph; third, we will check if there exists a cycle in the directed graph.

Step 1: Convert Constraints to a graph

In the graph, we convert each constraint into one vertex, then n constraints can be converted to

n vertices. Then we sort them by each sequence in an ascending order using Algorithm 2, and

connect the neighbouring vertices on the same sequence with one directed edge from the vertex

with a smaller position number to the one with a larger position number, and also adding in a

second reverse edge if we have two constraints meet at the same position of one sequence both

going to a same sequence. Thus if the number of constraints is n, then we have n vertices, and the

number of edges would be at most 4n.

Algorithm 4: Convert multiple

Input m sequences s1, s2, · · · sm;

n constraints (n ≥ 1): Cp = {{(kp, ip), (lp, jp)} | 1 ≤ p ≤ n, 1 ≤ kp, lp ≤ m};

Process: Sort constraints on multiple sequences, then convert them to a directed graph.

1 for p from 1 to n //the first for loop: add all constraints

2 vp = CreateV ertex(C[p]);

3 Sorted1···m = Sort(s1···m, C1···n);

4 for k from 1 to m //the second for loop: add all sequences

5 for i from 1 to |Sortedk| − 1 //the third for loop:

//add all constraints involving each sequence

6 if edge does not exist

7 CreateEdge(Sortedk[i], Sortedk[i+ 1]);

8 if Sortedk[i] and Sortedk[i+ 1] both involve the same position of sk,

and both get mapped to the same sequence,

and edge does not exist

9 CreateEdge(Sortedk[i+ 1], Sortedk[i]);

36

Output return G = (V,E);

The complexity of the sorting algorithm, Algorithm 2, is O(n log n). So for Algorithm 4:

Convert multiple, using ki to denote the number of constraints involving sequence si (1 ≤ i ≤ m),

it takes O(n log n+ n+ (k1 + k2 + · · ·+ km)) ≤ O(n log n+ n+ 2n) = O(n log n+ 3n) time, which

will give a complexity of O(n log n).

Step 2: Find a Cycle in the Graph

First, let us look at some examples.

Example 6. Following Algorithm 4, the result of sorting constraints in Figure 4.6 could be repre-

sented as

sk : C1 < C3,

sl : C2 < C1,

sq : C3 < C2.

And Figure 4.7 shows the graph produced from the constraints, which are incompatible.

Figure 4.7: The graph obtained from the incompatible constraints in Figure 4.6.

It is obvious to see that there are cycles in the graph.

Example 7. We provide another example of compatible constraints in Figure 4.8 which can be

converted into Figure 4.9, with the result of sorting.

sk : C1 < C3,

sl : C2 < C1,

sq : C2 < C3.

As shown in Figure 4.9, the graph converted from the compatible constraints does not have any

cycle.

37

Figure 4.8: We provide an example of compatible constraints on multiple se-
quences.

Figure 4.9: The graph converted from the compatible constraints in Figure 4.8.

From the two examples above, we can find that there is a relationship between the compatibility

of constraints and the existence of cycles in a directed graph. That is, if there exists a cycle in the

directed graph, the constraints are incompatible, otherwise, the constraints are compatible. Then

we have a theorem as follows:

Theorem 2. Given m sequences s1, s2 · · · sm, n constraints (n ≥ 1): Cp = {{(kp, ip), (lp, jp)} | 1 ≤

p ≤ n, 1 ≤ k, l ≤ m}, and a graph G = (V,E) created from the constraints via Algorithm 4. Then

C1, C2, · · · , Cn are compatible constraints, if and only if G has no cycles.

Before proving Theorem 2, we need to introduce a definition of topological sort of a DAG.

Definition 19. A topological sort is a process of assigning a linear ordering to the vertices of a

DAG, so that if there is an edge from vertex i to vertex j, then i appears before j in the linear

ordering.

From [16], we know that one important property of a DAG is the topological sorting property.

It is always possible to write the vertices of a DAG in a list, v1, v2, · · · , vn, in such a way that if

there is a path from vi to vj in the DAG, then in the list vi precedes vj (that is i < j).

For example, a, b, d, c and a, d, b, c are both topological sorts of the DAG given in Figure 4.10.

If we have an alignment and constraints as in Figure 4.11, then this corresponds to the graph

in Figure 4.10.

Then, let us prove Theorem 2.

38

Figure 4.10: Pictured above is an example of a DAG.

Figure 4.11: Pictured above is a sequence alignment restricted by four constraints
a, b, c and d, which corresponds to the graph in Figure 4.10.

Proof. Assume that C1, C2, · · · , Cn(n ≥ 1) are compatible constraints, and they are sorted by

Algorithm 2 which sorts the constraints by each sequence based on their positions in that sequence.

If there is more than one constraint with the same sequence number, and because the constraints are

compatible, there cannot be two constraints from the same position of one sequence both mapped

to the same sequence. Thus, no edges are introduced in line 9. Then there exists an alignment x

satisfying C1, C2, · · · , Cn, which means that the ipth character of sequence skp
is aligned with the

jpth character of sequence slp , for every 1 ≤ p ≤ n. Therefore, let αp be the position of x containing

the ipth character of skp
and the jpth character of slp , and let vp be the vertex corresponding to

this constraint. In Algorithm 4, when we create the edges, the third for loop adds edges from vr

to vt, only if αr ≤ αt, and if αr = αt, then only one edge is added from sequence with smaller

sequence number to that with larger sequence number (going down the alignment). Thus, there

are no repeat vertices on any path. Hence, there are no cycles.

Conversely, assume that G is a DAG, where G is created from C1, C2, · · · , Cn(n ≥ 1) following

Algorithm 4. Since there is always a topological sort of any DAG, then we can topologically sort

G, and find an order of the vertices in the DAG, which does not contain a cycle (topological sort

of any DAG can be easily accomplished using a depth-first search as in [1]). Thus an alignment

39

satisfying all C1, C2, · · · , Cn(n ≥ 1) must exist, where the constraints appear in the same order as

the topological sort. Therefore, the constraints are compatible.

4.3.3 Complexity

In a similar fashion to the last section, we can also use a depth first search [8] to detect the existence

of cycles in multiple sequences, which again gives a O(|V |+ |E|) = O(n) time complexity. Thus, it

is not dependent on the number of sequences.

For m sequences and n constraints, the sorting of constraints, then converting the constraints

into a graph, and then detecting cycles can also be accomplished in O(n log n) time, and is therefore

independent of the number of sequences.

40

Chapter 5

Pairwise Sequence Alignment Satisfying A Com-

patible Constraint Set

In Chapter 4, we analyzed compatible constraint sets and provided algorithms to determine if

a set of constraints is a CCS for both two sequences and multiple sequences. Given a CCS and an

alignment, we would like to focus on establishing the correspondence between the alignment and

the CCS. In this chapter, we will address this work for the case of using two sequences. Most of

the examples are given using DNA sequences, but it also works with protein sequences if we use

a different scoring matrix. The work in this chapter applies to both global and local alignment

(except the speed-ups of Section 5.3 only apply to global alignment) with linear gap penalties.

5.1 The Representation of an Alignment and a CCS on a

Dynamic Programming Matrix

As introduced in Section 3.2, the Needleman-Wunsch and Smith-Waterman algorithms can align

two sequences based on dynamic programming, which calculates two matrices, called dynamic

programming matrices. One matrix stores the highest scores of all sub-alignments, and the other

records the arrows or paths, which are calculated from the scores. One can easily find an alignment

by a path on a dynamic programming matrix.

We also examined CCS in Chapter 4, and determined that a CCS can be visualized as lines

between sequences as shown in Figure 4.2. In this chapter, we will represent constraints differently.

A constraint will instead be visualized as a point on the dynamic programming matrix, and a CCS

as a set of points (or positions) on the dynamic programming matrix. This abstraction will be used

for algorithmic design.

Let us look at an example. In Figure 5.1(a), we use points to represent constraints. The optimal

alignment of the two sequences is represented with a path.

One can see that in the example of Figure 5.1(a), the path does not go through any point. In

other words, the optimal alignment does not satisfy the given CCS. Naturally, we would like to

find another path, which does traverse the CCS points and at the same time yields a highest score

41

Figure 5.1: (a) We show the original optimal alignment path together with the
CCS points; (b) The new optimal alignment satisfying all constraints goes through
all the CCS points.

compared to other paths through all such points. A new path in Figure 5.1(b) gives the optimal

alignment that satisfies the CCS, which we wish to calculate in this chapter.

5.2 A Basic Method of Calculation

The straightforward dynamic programming algorithm can find the mathematically optimal path,

which achieves the highest score. However, this path cannot guarantee, and will likely not, traverse

all the points, or guarantee that the alignment satisfies the CCS. This occurs because it does not

have any criteria to restrict the path except using the highest score.

In this section, we will introduce a basic method to find a path which traverses all CCS points,

and at the same time, is an optimal path which does go through the points. It works for both

global and local alignments.

We mentioned that the constraints can be represented as points on a dynamic programming

matrix, and therefore given a constraint, it is easy to convert it into a point. Let sk = x1 · · ·xm,

sl = y1 · · · yn be two sequences, where xi, yj (1 ≤ i ≤ m, 1 ≤ j ≤ n) are individual characters.

The dynamic programming matrix is indexed by i and j respectively for each sequence. Then a

constraint C = {(k, i), (l, j)} is represented with the point (i, j) on the matrix.

One process of getting such an alignment includes the following four steps (Figure 5.2):

1. Convert constraints to points and fix them onto the dynamic programming matrix;

42

Figure 5.2: Four steps of getting a new path going through all the CCS points.
(a) Convert constraints to points and fix them onto the dynamic programming
matrix; (b) Divide the matrix into several sub-matrices regularized by the points;
(c) For each sub-matrix, perform straightforward dynamic programming starting
at the high score from the previous matrix to find the optimal sub-path in it; (d)
Concatenate the sub-paths from (c), which goes through all the points, and get the
new alignment from the new path.

43

2. Divide the matrix into several sub-matrices regularized by the points;

3. For each sub-matrix, starting from the high score of the previous sub-matrix as the initial

value, perform straightforward dynamic programming to find the optimal sub-path in it. For

global sequence alignment, initialize the first row and column to multiples of the gap penalty.

For local sequence alignment, start at the high score from the previous sub-matrix, and in

the first row and column, add the gap penalty until hitting 0, then do not go below;

4. Concatenate the sub-paths obtained in step 3, which goes through all the points, and get a

new alignment from the new path.

Then, if an optimal alignment is first calculated, after which constraints are entered, we can use

the same original dynamic programming matrices to calculate all of the sub-alignments.

The flow chart in Figure 5.3 summarizes the entire procedure.

5.3 Speed-ups Using the Original Alignment

The information from the original alignment can be used in calculating the new alignment, so that

we do not have to recompute the entirety of all sub-matrices. This section works for global sequence

alignment, but we have not extended it to local sequence alignment. First of all, let us introduce

some definitions which are useful for the rest of this section.

Definition 20. If we have a path α on the matrix, and two points a and b on α, then the path of

α between a and b is called α restricted to a, b which is denoted by α|a,b.

Then let us define the offset between a constraint point and the original path α.

Definition 21. If there is a constraint point on a dynamic programming matrix, then the point

can divide the entire matrix into four sub-matrices, which we denote as I, II, III, IV as shown

in Figure 5.4. If the original path α passes into a sub-matrix, then the offset between α and the

constraint point of sub-matrix I is denoted by dI , and the offset between α and the constraint point

of sub-matrix III is denoted by dIII . If the constraint point is beneath α, the offset is negative as

shown in Figure 5.4 (a), otherwise, if the point is above α, then the offset is positive as in Figure 5.4

(b).

In this section, if C is a constraint, then we will only recalculate sub-matrices I and III, as the

new optimal alignment must go through I and III, but not II nor IV (the new optimal path must

go through the constraint). Thus, if we are calculating I, we are only concerned with dI , and if we

are calculating III, then we are only concerned with dIII . Thus, if the direction I or III is clear, we

will just speak of the offset. Hence, in the figures below, we denote the offset between the original

path and point C1 by d1, the offset between the original path and C2 by d2, as the sub-matrix we

are calculating is clear from the contexts.

44

Figure 5.3: The flow chart of calculating the optimal pairwise alignment satisfying
a CCS.

45

Figure 5.4: The figures above demonstrate the offset between a constraint point
and the original path.

5.3.1 Some Parts can be Ignored

Let us examine the relationships between the original path α and the sub-matrices. All the possible

cases are listed below, in which two consecutive constraints C1 and C2 form the two corners of the

sub-matrix.

1. The original path α goes through the top-right part of the sub-matrix between constraints

C1 and C2, as shown in Figure 5.5. In this case, we have

d1 ≤ 0, d2 ≤ 0.

Figure 5.5: The original path (dotted line) goes through the top-right part of the
sub-matrix between constraints C1 and C2.

46

2. The original path α goes through the bottom-left part of the sub-matrix between constraints

C1 and C2, as shown in Figure 5.6. In this case, we have

d1 ≥ 0, d2 ≥ 0.

Figure 5.6: The original path (dotted line) goes through the bottom-left part of
the sub-matrix between constraints C1 and C2.

3. The original path α crosses the new optimal path β between constraints C1 and C2, as shown

in Figure 5.7.

Figure 5.7: The original path (dotted line) crosses the new optimal path.

In (a), we have

47

d1 < 0, d2 > 0,

and in (b), we have

d1 > 0, d2 < 0.

Because the new optimal path crosses the original path, it is not obvious how we can use the

information from the original path. In this case, we recalculate the whole sub-matrix to find

the new optimal alignment.

4. The original path α does not go through the sub-matrix between C1 and C2 as shown in

Figure 5.8. In this case, the offset between the constraint point and the original path is not

defined. It is not obvious how we can use the information from the original path, so we need

to recalculate the whole sub-matrix to find the new optimal alignment.

Figure 5.8: The original path (dotted line) does not go through the sub-matrix
between constraints C1 and C2.

In all cases above, C1 and C2 can either be constraints or corners of the entire matrix.

From these cases, we found that if d1×d2 ≥ 0, some parts of the score calculation and alignment

construction in the sub-matrix can be ignored, such as in case 1 and 2. But if d1 × d2 < 0, we

have to recalculate all sub-matrices, as is required in case 3. For example, to find the new optimal

alignment, we can ignore the part of the matrix shaded in dark grey in case 1 and case 2, each

of which we call an irrelevant part, and recalculate the part shaded in light grey, because the new

optimal path will not pass into the irrelevant parts. There is a special case when d1 = 0 and d2 = 0

which is covered by both class 1 and class 2. Here, the new optimal path overlaps the original path,

so we do not need to recalculate it. This is because we use the same algorithm both in calculating

48

the original path and the new path, and if we recalculate the sub-matrix for the new path, though

we use different initial values from the original values, the path would be the same.

Now let us prove that an irrelevant part can be safely ignored while we still find the optimal path.

This speed gain might end up being significant as constraints might often be found in proximity to

the optimal alignment. We only need to prove that if the new optimal path hits the original path,

the optimal segment between the two points of intersection is on the original path.

Proposition 3. Given two sequences sk and sl, and two points (i1, j1) and (i2, j2), where C1 =

{(k, i1), (l, j1)} is a constraint or (i1, j1) is the upper left corner of the matrix, and C2 = {(k, i2), (l, j2)}

is a constraint or (i2, j2) is the lower right corner of the matrix. If an original optimal path α crosses

with the new path β from C1 to C2 at two points a at (ia, ja) and b at (ib, jb), then β|C1,a, followed

by α|a,b, followed by β|b,C2
is optimal.

Proof. Figure 5.9 shows a sub-matrix with two consecutive constraint points C1 and C2 as the

corners. We use contradiction to prove that β|C1,a, followed by α|a,b, followed by β|b,C2
is optimal.

Figure 5.9: The picture above shows the original and the new path in a sub-matrix
with two consecutive constraint points C1 and C2 as the corners. If they cross each
other, then β|C1,a, followed by α|a,b, followed by β|b,C2

is optimal.

Assume that it is not optimal. Then the alignment with the path β|C1,C2
has a higher score

49

than the alignment corresponding to the path β|C1,a, followed by α|a,b, followed by β|b,C2 .

Let y be the alignment corresponding to the first path with β|a,b, and let x be the alignment

corresponding to the second path with α|a,b. Then the combined score of y is higher than the

score of x. Thus we can substitute y for x between the position a at (ia, ja) and b at (ib, jb) in the

alignment from C1 to C2. Therefore, this new alignment has a higher score than α, contradicting

the original optimality of α.

Therefore, the alignment from C1 to C2 corresponding to β|C1,a, followed by α|a,b, followed by

β|b,C2 is optimal.

5.3.2 Method of Calculation While Omitting the Irrelevant Parts

Now we can give the method of calculation while omitting the irrelevant parts for the cases of

d1 × d2 ≥ 0 in Section 5.3.1.

1. d1 ≤ 0 and d2 ≤ 0.

In this case, the original path α passes into the top right part of the sub-matrix between C1

and C2, and divides the sub-matrix into two parts, X and Y . We can omit the calculation in

part Y , and only calculate part X as shown in Figure 5.10.

First, we mark each position on the original path. Then we perform a straightforward dynamic

programming in the sub-matrix between C1 and C2. Starting from C1, we calculate row by

row. In each row, we calculate from left to right until we hit a marked position in this row

which is on the original path, then we stop calculating in this row and start in the next row

in the same manner until we end at point C2. The process of calculating is also shown in

Figure 5.10.

Figure 5.10: The method of calculation when d1 ≤ 0 and d2 ≤ 0.

50

2. d1 ≥ 0 and d2 ≥ 0.

In this case, the original path α passes into the left bottom part of the sub-matrix between

C1 and C2, and divides the sub-matrix into two parts, X and Y . We can omit the calculation

in part Y , and only calculate part X as shown in Figure 5.11.

First, we also mark each position on the original path, then perform a straightforward dynamic

programming in the sub-matrix between C1 and C2. Starting from C1, instead of calculating

row by row, we calculate column by column in this case. In each column, we calculate from

top to bottom until we hit a marked position in this column which is on the original path,

then we stop calculating in this column and start in the next column in the same manner

until we end at point C2. The process of calculating is also shown in Figure 5.11. Indeed, it

does not matter as to whether we calculate dynamic programming matrices in a row-by-row,

or a column-by-column fashion.

Figure 5.11: The method of calculation when d1 ≥ 0 and d2 ≥ 0.

We just discussed in detail the method of calculation while omitting the irrelevant part, and

now let us look at a more general example to show this speed-up still guarantees optimality.

Example 8. In Figure 5.12, the parts labelled A, B can be eliminated from any matrix calculation,

as we are only interested in the alignment going through the constraints. But also, sections labelled

C, D, E, F can be ignored. For example, we do not need to recalculate part D as introduced in class

1. One can use the original scores and calculation to find the optimal alignment from 2 to 3 without

recalculating the values in D. Hence, when performing dynamic programming row-by-row, one can

stop calculating at the position where the original path hits each row. Part E can be omitted from

calculating as introduced in class 2, by performing dynamic programming in a column-by-column

fashion.

51

Figure 5.12: The information from the original alignment can be used in calcu-
lating the new alignment.

52

5.3.3 The Amount of Calculation

In this subsection, let us examine the amount of calculation that we need to do in the DP matrix,

excluding the irrelevant parts.

Because the original path has an exponential number of possibilities (with three directions which

are up, down and diagonal) and can appear anywhere in the matrices, it is complicated to consider

all the possible cases or an average case, so we will calculate some special cases of interest. If we

assume in a simplified condition, the original path is along the diagonal of the entire matrix (which

means no gaps are inserted in the original alignment) as shown in Figure 5.13.

Figure 5.13: Pictured above is a simplified condition that the original path is a
diagonal.

Under this assumption, the amount of calculation depends on the offset of the original path

and the constraint points. Suppose the two sequences are sk and sl, the two consecutive constraint

points are C1 = {(k, i1), (l, j1)} and C2 = {(k, i2), (l, j2)} which form the two diagonal corners of

a sub-matrix, where 1 ≤ i1, i2 ≤ |sk|, 1 ≤ j1, j2 ≤ |sl|. For the cases that the original path does

go through the sub-matrix in cases 1 to 3 in Section 5.3.1, suppose the offset between C1 to the

original path is d1, and the offset between C2 to the original path is d2, we have the amount of

calculation Q for a sub-matrix:

Q ' (i2 − i1)(j2 − j1)− (i2−i1−d1)(j2−j1−d2)
2

One can easily see that, the closer that the constraint points are to the original path, the less

we need to recalculate.

53

5.4 Complexity

The complexity of the straightforward dynamic programming algorithm for aligning sequences of

lengths n1 and n2 respectively is superlinear with the sequence sizes; in this case it is O(n1 × n2)

[14]. For large matrices, the sum of the time to perform alignment of a series of sub-matrices will

be much less than the total time to do sequence alignment on the entire matrix.

In our problem, the time required to get the new alignment can be reduced by:

1. The number of constraints.

We divide the dynamic programming matrix into several sub-matrices regularized by the CCS

points in the process of calculation. We found that to get the alignment satisfying a CCS, only

the scores in the shaded sub-matrices of Figure 5.2(b) need to be calculated, which means

that the amount of calculation required to obtain the new alignment decreases as the number

of constraints increases.

2. The position of the CCS points within the dynamic programming matrix.

The specific amount depends on the position of the CCS points on the dynamic programming

matrix. For the case of only one point on the matrix, the amount of calculation changes as

the varying position of this point as represented in Figure 5.14. The amount of calculation

increases as the grey becomes darker, so that the point in area 1 or 3 needs more calculation

than the one in area 2 or 4.

Figure 5.14: A visualization of the relationship of the amount of computation
with the position of a single constraint point on the matrix. The darker the grey
is, the more computation required.

54

Now suppose there are k points on the matrix. The new path should traverse all these points,

and thus the best case is when the points are “close” to the top-right or bottom-left corners,

and the worst case is when they are “close” to the top-left or bottom-right corners. An

example of m = 15, n = 15, k = 4 is given in Figure 5.15, where m, n are the lengths of the

two sequences, and k is the number of constraints.

Figure 5.15: We provide two examples with two sequences of length 15, and 4
points on the matrix. (a) the worst case; (b) the best case.

Then, with k points on the matrix, the best case is

(n1 − k) + (n2 − k) + (k − 1) = n1 + n2 − (k + 1) ,

and the worst case is

k + (n1 − k)× (n2 − k).

3. The position of the original alignment within the sub-matrices regularized by CCS points.

We also noticed in Section 5.3, that the information from the original alignment is very useful

in reducing the complexity for global alignment. The amount of calculation depends on the

position of the original path within the sub-matrix. This could be a significant speed gain.

4. The offset between the CCS points and the original path, as introduced in the case of global

alignment in Section 5.3.3.

In total, for two sequences sk and sl, if there exists a constant Z, such that for every two

consecutive constraints C1 = {(k, i1), (l, j1)} and C2 = {(k, i2), (l, j2)} with the constraint points

(i1, j1) and (i2, j2), either (i2 − i1) ≤ Z or (j2 − j1) ≤ Z, then the time complexity to compute the

alignment between sk and sl satisfying C1 and C2 is O(|sk|+ |sl|). This essentially means that the

grey boxes in Figure 5.15 are all “close enough” to lines, that the entire time complexity is linear.

55

Chapter 6

Multiple Sequence Alignment Satisfying A Com-

patible Constraint Set

Multiple sequence alignments are a powerful way to study biological sequences, are widely used

in the areas of DNA and protein sequence analysis, and are a natural extension of pairwise sequence

alignments. In this chapter, we will extend the method of finding pairwise sequence alignments

satisfying a CCS in Chapter 5 to multiple sequences.

We have discussed algorithms to detect if a set of constraints is a CCS or not for multiple

sequences, using a graph algorithm in Chapter 4. Based on this graph formulation, we will now

establish a correspondence between a CCS and multiple sequence alignments.

As mentioned in Section 3.3.2, three different techniques used to calculate multiple alignments

are exact, iterative, and progressive algorithms. We will focus on exact and progressive algorithms

in this chapter. This work applies to both global and local alignment with linear gap penalties.

6.1 Exact Algorithms for Alignments Satisfying a CCS with

Three Sequences

Exact algorithms attempt to simultaneously align multiple sequences and find the optimal answer

given a scoring scheme, which is especially useful when dealing with sets of divergent sequences.

In Section 3.3.1, we introduced a known method of calculating an optimal alignment of n

sequences using an n-dimensional matrix. In this subsection, we will discuss how to calculate an

alignment that satisfies a CCS using a multi-dimensional matrix. First, let us look at an example

of aligning three sequences s1, s2, s3 satisfying three compatible constraints C1, C2, C3, as shown

in Figure 6.1.

To calculate the optimal alignment in this example, we need a cube (or a 3D matrix) as shown in

Figure 6.2. The constraints can be represented as lines inside the cube, which are called constraint

lines. Indeed, as each constraint is only between two positions of the three sequences, they are

lines in the 3-dimensional matrix rather than points. The three constraints are given by three lines

C ′1C
′′
1 , C ′2C

′′
2 , C ′3C

′′
3 in the figure. To calculate the optimal alignment satisfying the constraints is

56

Figure 6.1: In this example, we have s1, s2, s3 as sequences to be aligned, and
C1, C2, C3 as compatible constraints.

to calculate the optimal path from position A to position B while crossing all three constraint lines.

Figure 6.2: A 3-dimensional matrix is used to calculate the optimal global align-
ment of s1, s2, s3 satisfying compatible constraints C1, C2, C3. An optimal global
path is from position A to position B, and the constraints can be represented as
lines inside the cube. The optimal path must cross all lines in order to satisfy the
constraints.

6.1.1 Method of Calculation

The basic idea in finding the optimal alignment satisfying the constraints is to force the path to

cross the constraint lines and yield the highest score. We can implement this with the strategy of

not assigning scores to the paths that do not cross the constraint lines, so that the highest scoring

path would cross the lines automatically.

57

We will use global sequence alignment, although it works for local sequence alignment as well.

First, we need to define a function g(i, j, k), because it is useful for defining the recurrence.

Definition 22. Let g(i, j, k) be a function on three sequences s1, s2 and s3 with X as a CCS, where

1 ≤ i ≤ |s1|, 1 ≤ j ≤ |s2|, 1 ≤ k ≤ |s3|. Then g(i, j, k) is true if the constraints {(1, i), (2, j)},

{(2, j), (3, k)}, {(1, i), (3, k)}, together with X are compatible with s1, s2, s3, and false otherwise.

In other words, g(i, j, k) is true if it is possible to have the characters s1(i), s2(j), s3(k) be

aligned together and still satisfy the constraints. This is important, as we are only interested in

calculating the values at each position (i, j, k) of the matrix if g(i, j, k) is true. In the example of

Figure 6.2, g(i, j, k) is true when the point is in the shaded sub-cubes, and it is false in other

regions because the new optimal path that satisfies the constraints will not pass into those regions.

A straightforward algorithm to test if g(i, j, k) is true for each (i, j, k) is to test whether the three

constraints of Definition 22 are compatible with the CCS. However, this is not efficient to do for

each (i, j, k). We leave an efficient method of finding out the values of g(i, j, k) in the entire matrix

for future work.

The straightforward dynamic programming method calculates the alignment between three

sequences using the Equation (6.1), where M is a 3-dimensional dynamic programming matrix,

and s is the scoring matrix.

The base case is M(0, 0, 0) = 0. Then we can fill in items in the cube iteratively following the

recurrence. We define M(i, j, k) to be defined if g(i, j, k) is true. Then M(i, j, k) =

max

M(i− 1, j − 1, k − 1) + s(xi, yj , zk), if i, j, k > 0 & g(i− 1, j − 1, k − 1), À

M(i− 1, j − 1, k) + s(xi, yj ,−), if i, j > 0, k ≥ 0 & g(i− 1, j − 1, k), Á

M(i− 1, j, k − 1) + s(xi,−, zk), if i, k > 0, j ≥ 0 & g(i− 1, j, k − 1), Â

M(i− 1, j, k) + s(xi,−,−), if i > 0, j, k ≥ 0 & g(i− 1, j, k), Ã

M(i, j − 1, k − 1) + s(−, yj , zk), if j, k > 0, i ≥ 0 & g(i, j − 1, k − 1), Ä

M(i, j − 1, k) + s(−, yj ,−), if j > 0, i, k ≥ 0 & g(i, j − 1, k), Å

M(i, j, k − 1) + s(−,−, zk), if k > 0, i, j ≥ 0 & g(i, j, k − 1), Æ

undefined, if none of the above apply.

(6.1)

We marked each option in Equation (6.1) with a number, which corresponds to that of Figure 6.3

to better understand the computation scheme.

The reason we have g(i, j, k) in the recurrence is because we are not willing to assign scores

to the paths that do not cross the constraint lines, and we know that with the constraints added,

the regions that the new path might pass into will be defined by g(i, j, k). Thus we have g(i, j, k)

in the if condition part of each case in the recurrence, in order to restrict the path to be only

in the region where is defined g(i, j, k). This means the path would cross the constraint lines

58

Figure 6.3: A 3-dimensional dynamic programming computation scheme which
calculates the value using the other seven values beside it. The value of interest is
the shaded box which assumes we have calculated the other boxes.

automatically. Having g(i, j, k) in the recurrence is different from the usual recurrence, because for

each calculation of M(i, j, k), we can take any of the seven options in the usual recurrence; whereas

with g(i, j, k) in the if condition, we only take the options when their corresponding g(i, j, k) is

true, so that we may have less than seven options.

Intuitively, we should fill in the cube iteratively, and stop calculating every time we hit a

character on the constraint lines, and start filling in the next sub-cube using the scores on the

constraint line as the initial values.

In Figure 6.1, suppose the three constraints are C1 = {(1, i1), (2, j1)}, C2 = {(2, j2), (3, k2)},

C3 = {(1, i3), (3, k3)}, and we can take a close look at the calculation of the first two sub-cubes in

Figure 6.4. We will firstly hit C2 while calculating the first sub-cube, and hit C1 while calculating

the second sub-cube.

After initialization, we start filling in the first sub-cube from the start point A following Equa-

tion (6.1). We will first hit j2 on s2 when we fill in the upward surface row by row, then we stop

and go to the next surface beneath. We fill it in plane by plane as k increases until we hit k2 on

s3, and the calculation for the first sub-cube stops.

The method of the calculation of the second sub-cube is similar to the first one. But we know

that g(i, j, k) is false outside the shaded cubes, thus except for the constraint line C ′2C
′′
2 as the

initial values of the second sub-cube, for the upward surface of the second sub-cube, scores coming

from above are not defined, and therefore, instead of taking the 7 possibilities in Equation (6.1),

we only need to find the maximum value of Á, Ã, Å. For the leftward surface, we remove the scores

59

Figure 6.4: A close look at the 3-dimensional matrix to calculate the optimal
alignment of S1, S2, S3 satisfying compatible constraints C1, C2, C3.

coming from the left, and only calculate the values of Â, Ã, Æ. For the front surface, we remove

the scores coming from the front, and only calculate the values of Ä, Å, Æ. Having the values on

the surfaces, we can now fill in the second sub-cube following Equation 6.1 until we hit i1 on s1

then j1 on s2.

Using the same method, all the sub-cubes can be filled in. As a result, the new optimal path

will start at position A, end at position B and cross the constraint lines automatically.

In general, it seems difficult to give a precise algorithm that only calculates M(i, j, k) exactly

when g(i, j, k) is defined. Thus, we leave an efficient algorithm using the recurrence of Equation (6.1)

as future work.

6.1.2 Complexity

The complexity of calculating the multiple alignment between three sequences s1, s2 and s3 using

exact algorithms can be done in O(|s1|× |s2|× |s3|). After adding constraints to the alignment, the

amount of the calculation of the new alignment varies as the number of constraints changes, but is

still O(|s1| × |s2| × |s3|) in the worst case.

60

6.2 Progressive Algorithms for Multiple Sequence Align-

ment Satisfying a CCS

Progressive algorithms allow large alignments of distantly related sequences to be constructed

quickly and simply. Some dramatic improvements have been made to the methodology with respect

to speed, and capacity to deal with large numbers of sequences and accuracy.

With progressive algorithms, there are usually two steps: the first is to build a guide tree to

guide the alignment, then the second step is to use a series of pairwise alignments to align larger

and larger groups of sequences, following the branching order of the guide tree. In the following

subsections, we will discuss the steps in detail.

6.2.1 Build a Guide Tree

The algorithm is based on building the full alignment progressively, using the branching order of

a “guide tree” to guide the alignments. As the name suggests, this tree is meant to guide the

clustering process. ClustalW includes steps to build a guide tree, which is relatively efficient. In

this subsection, we will take an interest in building a tree as done in ClustalW [31].

In order to build a guide tree, there are two stages:

1. Aligning all pairs of sequences separately to calculate pairwise distances.

There are many different ways of defining distance. In ClustalW, it calculates scores of each

pairwise alignment using dynamic programming, and these scores represent distances between

each pair of sequences. Then it can create an n×n matrix from the distances, where n is the

number of sequences, as shown in the example in Figure 6.5 (a).

2. Making a guide tree from pairwise distances.

A rooted binary tree (Figure 6.5 (c)) can be calculated from the distance matrix of stage 1

using a hierarchical clustering method such as the Neighbour-Joining method, or UPGMA in

[31].

6.2.2 Progressively Align Multiple Sequences

The basic procedure at this stage is to use a series of pairwise alignments to progressively align

groups of sequences, following the branching order in the guide tree. We proceed from the leaves

of the rooted tree towards the root.

Each step consists of aligning two existing alignments or sequences.

1. Align two sequences.

When aligning two sequences with constraints between them, we follow the algorithms in

61

Figure 6.5: The procedure of building a guide tree adapted from [31]. (a) The
distance matrix is calculated from all pairwise alignments. (b) The unrooted tree
made from the distance matrix using the Neighbour-Joining method. (c) The rooted
tree converted from the unrooted tree.

62

Chapter 5 to perform a pairwise sequence alignment satisfying CCS.

2. Align an alignment with a sequence.

When aligning an alignment with a sequence, we use a consensus sequence (Definition 9) of an

alignment. In our algorithm, we use the character that occurs at least as many times as any

other characters at this position. Notice that it is possible to have more than one consensus.

If there is more than one option, we pick one arbitrarily.

Example 9. A consensus for

A C A G T A G

A C − − T C G

A G − − G C G

A G A C T G C

could be any one of ACAGTCG, ACACTCG, AGAGTCG, AGACTCG.

Therefore, we need to convert the constraints from the sequences to the consensus sequences,

and then perform a pairwise alignment satisfying these constraints.

3. Align two alignments.

When aligning two alignments, we can first find the consensus sequences of the two align-

ments separately, and convert the constraints from sequences to the consensus sequences, then

perform a pairwise alignment satisfying these constraints using the algorithms introduced in

Chapter 5.

Here is an example to show the idea of how to align the three sequences with a CCS in Figure 6.1.

Example 10. The sequences to be aligned are s1, s2 and s3, and the CCS consists of three con-

straints: C1, C2 and C3, as shown in Figure 6.1. The guide tree calculated from the pairwise

distances is shown in Figure 6.6, where s1 and s2 are constrained by C1, s2 and s3 are constrained

by C2, and s1 and s3 are constrained by C3. Then we enforce C2 and C3 with R′, the consensus of

s1 and s2, aligned with s3.

In this example, the procedure of performing the multiple sequence alignment satisfying CCS

includes the following steps: first, build a guide tree using the distances calculated from dynamic

programming of each pair of sequences; second, align two sequences s1 and s2 constrained by C1;

third find the consensus sequence R′ of the alignment of s1 and s2, and convert C2 from s2 to R′,

convert C3 from s1 to R′; last, align the consensus sequence R′ with s3 constrained by C2, C3.

63

Figure 6.6: The guide tree of s1, s2 and s3, with the constraints C1, C2, C3.

6.2.3 The Amount of Calculation

If we store the results of every step when originally progressively aligning the sequences, and after

adding constraints to the alignment, we only need to recalculate some of the pairwise alignments.

First let us look at a definition that is useful for the rest of this section. The lowest common

ancestor (LCA) [2] is a concept in graph theory and computer science.

Definition 23. Let T be a rooted tree with n nodes. The lowest common ancestor (LCA) is defined

between two nodes v and w as the lowest node in T that has both v and w as descendants (where

we allow a node to be a descendant of itself).

The LCA of v and w in a tree T is the shared ancestor of v and w that is located farthest from

the root. As in Figure 6.7, the LCA of s1 and s2 is 3, the LCA of s3 and s4 is 2, and the LCA of

s2 and s5 is 1.

Figure 6.7: An example to demonstrate the concept of LCA.

After adding constraints to an alignment, we only need to recalculate starting at the LCA of the

64

two sequences that are constrained, upwards towards the root. For the example in Figure 6.7, if the

constraint is between s1 and s5, all calculation under node À remains the same, but the constraint

between s1 and s5 involves calculating consensus Ã, Á and Â, as before with no constraints between,

and we must recalculate the pairwise alignment of consensus Â and consensus Á, enforcing the

constraint between s1 and s5 with appropriate positioning of the consensus.

65

Chapter 7

Conclusion and Future Directions

7.1 Summary of the Thesis

In the thesis, we introduced the background knowledge and the motivation of our work in the first

three chapters. Then we tried to find optimal sequence alignments satisfying some constraints,

which can be created based on expert user’s knowledge, experience or needs.

We first formally defined a constraint, compatible constraints and a compatible constraint set

(CCS) in Chapter 4. Then on the basis of the definitions, we designed algorithms using a depth-first

search on a directed graph that is converted from the constraints and the alignment, in order to

determine if a set of constraints is compatible or not. If the constraints are compatible, we can add

them to the alignment to force the new alignment to satisfy them while yielding the highest score.

Having the compatible constraint set, in Chapter 5, we gave a procedure to perform a pairwise

sequence alignment satisfying a CCS. The algorithm can be sped up depending on the number and

position of the constraints, and in the case of global alignment, we can also omit some of the score

calculations in the dynamic programming matrix using the information from the original alignment,

which can also be a big speed gain.

In Chapter 6, we developed algorithms for multiple sequence alignment satisfying a CCS with

three sequences based on exact algorithms, and then with multiple sequences based on progressive

algorithms.

We also leave some open questions in the thesis for future research.

7.2 Future Work

In the future, there are several directions to extend the work of the thesis.

1. Extending the definition of a constraint, and allowing users to input constraints without exact

positions, but with regions.

2. Based on point 1, we will develop new algorithms to determine the compatibility of the more

general constraints.

66

3. An efficient algorithm to find which values of g(i, j, k) are true, and calculate exactly M(i, j, k)

where g(i, j, k) is true.

4. An exact algorithm for multiple sequence alignment with more than three sequences satisfying

a CCS rather than only for three sequences.

5. For the progressive algorithm for multiple sequence alignment satisfying a CCS, it is possible

to dynamically adjust the guide tree after adding constraints, to update the order of clustering

sequences.

6. One can automatically find the underlying common segments in various databases, such as a

database of known domains, and add them as constraints to an alignment.

7. Add other types of constraints that force the algorithm to not match certain positions.

67

References

[1] A.V. Aho, J.E. Hopcroft, and J. Ullman. Data Structures and Algorithms. Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA, USA, 1983.

[2] AV Aho, JE Hopcroft, and JD Ullman. On finding lowest common ancestors in trees. In
Proceedings of the fifth annual ACM symposium on Theory of computing, pages 253–265. ACM
New York, NY, USA, 1973.

[3] J.M.S. Bartlett and D. Stirling. A short history of the polymerase chain reaction. DNA,
226:3–6.

[4] CLC bio. CLC Sequence Viewer. www.clcbio.com.

[5] H. Carrillo and D. Lipman. The multiple sequence alignment problem in biology. SIAM
Journal on Applied Mathematics, 48(5):1073–1082, 1988.

[6] M. Clamp, J. Cuff, S.M. Searle, and G.J. Barton. The jalview java alignment editor. Bioin-
formatics, 20(3):426–427, 2004.

[7] Wayne Clarke. Paper in preparation. 2008.

[8] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms (Second
Edition). MIT press, USA, 2001.

[9] R. Durbin, S.R. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis: Probabilistic
Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge, 1998.

[10] R.C. Edgar. MUSCLE: multiple sequence alignment with high accuracy and high throughput.
Nucleic Acids Research, 32(5):1792–1797, 2004.

[11] R.C. Edgar and S. Batzoglou. Multiple sequence alignment. Current Opinion in Structural
Biology, 16(3):368–373, 2006.

[12] C.A.R. Hoare. Quicksort. The Computer Journal, 5(1):10–16, 1962.

[13] F. Jeanmougin, J.D. Thompson, M. Gouy, D.G. Higgins, and T.J. Gibson. Multiple sequence
alignment with Clustal X. Trends in Biochemical Sciences, 23(10):403–405, 1998.

[14] N.C. Jones and P.A. Pevzner. An Introduction to Bioinformatics Algorithms. MIT Press
Cambridge, Mass, 5 Cambridge Center, Cambridge, 2004.

[15] I. Korf, M. Yandell, and J. Bedell. BLAST. O’Reilly Media, Inc., Sebastopol, CA, USA, 2003.

[16] R.R. Korfhage. Discrete Computational Structures. Academic Press, Inc. Orlando, FL, USA,
USA, 1983.

[17] A.M. Lesk. Introduction to Bioinformatics. Oxford University Press Oxford, New York, 2002.

[18] D.J. Lipman, S.F. Altschul, and J.D. Kececioglu. A tool for multiple sequence alignment.
Proceedings of the National Academy of Sciences, 86(12):4412–4415, 1989.

[19] Miroslav Martinovic. CMSC 410: Advanced Algorithms, 2001. Department of Computer
Science, The College of New Jersey.

68

[20] B. Morgenstern, K. Frech, A. Dress, and T. Werner. DIALIGN: finding local similarities by
multiple sequence alignment. Bioinformatics, 14(3):290–294, 1998.

[21] S.B. Needleman and C.D. Wunsch. A general method applicable to the search for similarities
in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3):443–453, 1970.

[22] C. Notredame. Recent progress in multiple sequence alignment: a survey. Pharmacogenomics,
3(1):131–144, 2002.

[23] C. Notredame. Recent evolutions of multiple sequence alignment algorithms. PLoS Computa-
tional Biology, 3(8):e123, 2007.

[24] C. Notredame, D.G. Higgins, and J. Heringa. T-coffee: a novel method for fast and accurate
multiple sequence alignment. Journal of Molecular Biology, 302(1):205–217, 2000.

[25] T. Pawson and J. Schlessinger. SH2 and SH3 domains. Current Biology, 3:434–434, 1993.

[26] J. Pei and N.V. Grishin. PROMALS: towards accurate multiple sequence alignments of dis-
tantly related proteins. Bioinformatics, 23(7):802–808, 2007.

[27] J. Pei, B.H. Kim, and N.V. Grishin. PROMALS3D: a tool for multiple protein sequence and
structure alignments. Nucleic Acids Research, 36(7):2295–2300, 2008.

[28] B. Qian and R.A. Goldstein. Distribution of indel lengths. PROTEINS: Structure, Function,
and Genetics, 45(1):102–104, 2001.

[29] T.F. Smith and M.S. Waterman. Identification of common molecular subsequences. Journal
of Molecular Biology, 147:195–197, 1981.

[30] S.L. Teal and A.I. Rudnicky. A performance model of system delay and user strategy selection.
In Proceedings of the SIGCHI conference on Human factors in computing systems, pages 295–
305. ACM New York, NY, USA, 1992.

[31] J.D. Thompson, D.G. Higgins, T.J. Gibson, et al. CLUSTAL W: improving the sensitivity
of progressive multiple sequence alignment through sequence weighting, position-specific gap
penalties and weight matrix choice. Nucleic Acids Research, 22:4673–4673, 1994.

[32] J.D. Thompson, F. Plewniak, and O. Poch. A comprehensive comparison of multiple sequence
alignment programs. Nucleic Acids Research, 27(13):2682–2690, 1999.

[33] I.M. Wallace, G. Blackshields, and D.G. Higgins. Multiple sequence alignments. Current
Opinion in Structural Biology, 15(3):261–266, 2005.

[34] L. Wang and T. Jiang. On the complexity of multiple sequence alignment. J. Comput. Biol,
1(4):337–348, 1994.

[35] Sheng Wang. Paper in preparation. 2010.

[36] A.M. Waterhouse, J.B. Procter, D.M.A. Martin, M. Clamp, and G.J. Barton. Jalview Version
2–a multiple sequence alignment editor and analysis workbench. Bioinformatics, 25(9):1189–
1911, 2009.

69

	Permission to Use
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	The Power of Sequence Alignment
	Manual Refinement of Sequence Alignment
	Layout of the Thesis

	Motivation and Objectives
	Necessity of Sequence Alignment Adjustments
	Four Cases Requiring Manual Adjustment
	Case 1
	Case 2
	Case 3
	Case 4

	Our Objectives

	Preliminaries
	Introduction
	Formal Definitions
	Evolutionary Mutations
	The Scoring Scheme

	Dynamic Programming and Optimal Alignment
	Global Alignment: the Needleman-Wunsch Algorithm
	Local Alignment: the Smith-Waterman Algorithm

	Multiple Sequence Alignment
	Multi-dimensional Dynamic Programming
	Classification of Multiple Sequence Alignment Algorithms

	Existing Algorithms or Packages for Alignment with Constraints

	Compatible Constraint Set
	What is a Constraint?
	Definition of a Constraint
	Definition of Compatible Constraints

	Compatible Constraint Set on Pairwise Sequence Alignment
	Analysis of Compatible Constraints on Pairwise Sequences
	The First Algorithm to Determine a pair CCS
	Sort Constraints on Multiple Sequences
	Determine a pair CCS Using a Graph Algorithm
	Complexity

	Compatible Constraint Set on Multiple Sequence Alignment
	Analysis of Compatible Constraints on Multiple Sequences
	Determine a CCS on Multiple Sequences Using a Graph Algorithm
	Complexity

	Pairwise Sequence Alignment Satisfying A Compatible Constraint Set
	The Representation of an Alignment and a CCS on a Dynamic Programming Matrix
	A Basic Method of Calculation
	Speed-ups Using the Original Alignment
	Some Parts can be Ignored
	Method of Calculation While Omitting the Irrelevant Parts
	The Amount of Calculation

	Complexity

	Multiple Sequence Alignment Satisfying A Compatible Constraint Set
	Exact Algorithms for Alignments Satisfying a CCS with Three Sequences
	Method of Calculation
	Complexity

	Progressive Algorithms for Multiple Sequence Alignment Satisfying a CCS
	Build a Guide Tree
	Progressively Align Multiple Sequences
	The Amount of Calculation

	Conclusion and Future Directions
	Summary of the Thesis
	Future Work

	References

