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ABSTRACT 

 The overall objective of the work described in this thesis was to examine the effects of 

both waterborne and dietary routes of exposure to fathead minnow (Pimephales promelas) when 

exposed to complex metal mining mixtures.  This was conducted using a 21-day, multi-trophic, 

short-term fathead minnow (FHM) reproductive bioassay. The endpoints that were measured 

were used to assess the effects on multiple levels of biological organization (sub-organismal to 

population endpoints).   

 The first phase of this research was conducted in situ using environmentally realistic 

concentrations of 3 separate metal mining effluents [20% surface water effluent (SWE), 30% 

mine water effluent (MWE), 45% process water effluent (PWE)] from Sudbury, Ontario, 

Canada. Metals were analyzed in several media (water, sediments) and tissues (biofilm, 

Chironomus dilutus, female fathead minnow carcass, ovaries, liver and gills).  The incorporation 

of the biofilm (primary producers) into the bioassay also added another level of organization that 

was novel to this study.  Significant increases in metal concentrations were observed in the water 

and biofilm tissues in all treatments [SWE, MWE, PWE], compared to reference.  Cobalt and 

nickel increased significantly in C. dilutus tissues in SWE (1.4-fold and 1.5-fold respectively), 

and copper and selenium in PWE (5.2-fold and 3.3-fold respectively), however no significant 

increases occurred in MWE compared to reference. There were no significant increases in metal 

concentrations in female FHM tissues (carcass, liver, gonads, gills) in any of the treatments, 

suggesting that metal bioavailability was reduced. Cumulative number of eggs per female per 

day increased significantly (+127%) after exposure to SWE and decreased significantly (-33%) 

after exposure to PWE when compared to the reference fish.  Mean total number of days to hatch 

was also reduced in PWE compared to reference.  

 In order to gain a better understanding of the routes of exposure causing toxicity in FHM,  

the second phase of this research examined the effects of exposure through diet, through water or 

through both using a fully factorial food exposure design in a laboratory setting.  In this 

experiment we pre-exposed C. dilutus to both 45% PWE and laboratory control water until they 

reached the 3
rd

-4
th

 instar stage of development (approximately 21 days) where they were 

collected and frozen until the start of the FHM reproductive bioassay. We further examined the 

role of food quality on fish toxicity by assessing differences between multi trophic (where fish 
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were fed both a live and frozen diet of C. dilutus) in the laboratory. This research was conducted 

at the Toxicology Centre in Saskatoon, Saskatchewan, Canada. The results showed that 

significant effects were observed when fish were fed a live diet versus a frozen diet. Condition 

factor and body weight increased, although inconsistent effects were observed for liver somatic 

index (LSI) in fathead minnows in both experiments when exposed to one or both routes of 

exposure. Cumulative total egg production and cumulative spawning events were both 

significantly affected by both waterborne and dietborne exposures with the greatest effects seen 

in the multi-trophic streams and particularly when fish were fed a live diet.  

 This significance of this research has demonstrated the importance of including both 

routes of exposure when assessing effects of mine effluent. This research also shows that the 

artificial stream technology is a useful tool in isolating the effects of a particular point source 

input (metal mining mixtures) when a system is highly confounded. The results suggest that 

under environmentally relevant exposure conditions, trophic transfer and live diet may lead to 

greater reproductive effects and increased fish toxicity. This also suggests that trophic transfer is 

an important route of exposure that is virtually impossible to attain using typical laboratory 

bioassay techniques (food-borne study using artificial diets or waterborne exposures only). 
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This thesis has been organized in a manuscript format for publication in scientific journals. 

Therefore there may be some repetition of introduction, materials and methods and figures 

throughout. Abstracts have not been included in each data chapter to reduce the redundancy. 

Chapter 2 was submitted to Ecotoxicology and Environmental Safety.   

Chapter 3 was submitted to Aquatic Toxicology. 
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1.0 INTRODUCTION 

The overall objective of my thesis research was to assess the effects of waterborne and 

dietborne exposures to metal mining effluents (MMEs) in fathead minnow (Pimephales 

promelas). Emphasis on reproductive response endpoints in fathead minnow (FHM) was also a 

primary focus because of the link between these endpoints and population stability.  This study 

also provided an indication of the population level effects of effluent exposure in Junction Creek, 

Ontario, Canada. Comparisons between the multi-trophic bioassay (fish fed a live diet of 

Chironomus dilutus) and traditional feeding experiments (fish fed pre-frozen C. dilutus) were 

also conducted to assess the role of food quality. Causative metals in the effluent were examined 

by assessing the accumulation in tissues [biofilm, C. dilutus, FHM (carcass, gonads, liver, gills)]. 

Understanding the causes of reproductive effects by examining routes of exposure and 

identifying causative metals is the first step towards mitigating the effects of complex metal 

mining mixtures.  

 

1.1 Study site 

Sudbury, Ontario (ON), Canada is home to some of the richest ore bodies in North 

America and was the second largest nickel producer in the world in 2007 (DOIR, 2008). Mining 

activities have taken place in the Sudbury region (~46.5 N, 81 W) for centuries and the 

continuous mining and smelting of ores in open roast beds conducted from about 1883 until 

1929, have led to significant environmental degradation of the landscape and watersheds in the 

area (Jaagumagi and Bedard, 2001). The Junction Creek watershed in particular has been the 

receiving environment of a variety of point and non-point source discharges (Jaagumagi and 

Bedard, 2001; Stantec and C. Portt & Associates, 2006).  Junction Creek is located in Sudbury, 

ON , approximately 400 km north of Toronto, ON, Canada (Figure 1.1). Junction Creek spans a 

length of approximately 25 km and can vary in width between 3-16 m. The main branch of the 

creek flows in a south-westerly direction from the town of Garson, ON, through the city of 

Greater Sudbury, ON, terminating at Kelly Lake (Figure 1.1) and contains five main tributaries. 

Point sources include three Vale Inc. wastewater treatment plant (WWTP) discharges; Garson, 



 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Location of Junction Creek watershed near Sudbury, Ontario, Canada, and its tributaries.  
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referred from this point forward as mine water effluent (MWE) (2,987 m
3
/d in 2009), Nolin 

referred from this point forward as surface water effluent (SWE) (19,161 m
3
/d in 2009) and 

Copper Cliff referred from this point forward as process water effluent (PWE) (141,345 m
3
/d in 

2009), as well as municipal sewage wastewater from the Sudbury WWTP (102,375 m
3
/d in 

2009). Non-point discharges have included atmospheric deposition from smelting and refining, 

seepage from acid generating waste rock and slag, runoff from a historical creosote plant and 

urban runoff (Jaagumagi and Bedard, 2001; Stantec and C. Portt & Associates, 2006). Historical 

studies of Junction Creek have shown a decrease in the fish population in all reaches of the 

creek, suggesting the possibility of reproductive failure and population-level effects (Jaagumagi 

and Bedard, 2001). 

 

1.2 Examination of metal exposure to fish  

The effects of waterborne metal toxicity in freshwater species have been well 

documented in the Sudbury region (Bradley and Morris, 1986; Eastwood and Couture, 2002; 

Couture and Rajotte, 2003; Pyle et al., 2005; Gauthier et al., 2006).  Elevated Cu and Ni levels 

have been reported in the livers of several fish species (yellow perch, Perca flavescens; walleye, 

Stizostedion vitreum; northern pike, Esox lucius; white sucker, Catostomus commersoni and lake 

whitefish, Coregonus clupeaformis) (Bradley and Morris, 1986). Elevated levels of (Cd, Cu, Ni, 

Pb, Zn) have also been observed in the kidneys, livers, intestines and muscles of resident lake 

trout and yellow perch (Eastwood and Couture, 2002; Couture and Rajotte, 2003; Pyle et al., 

2005). Furthermore, increased metal body burdens of Cd, Cu, Rb, Se and Sr have been observed 

in resident fathead minnow (Pimephales promelas) and creek chub (Semotilus atromaculatus) 

from Junction Creek (Weber et al., 2008).  

 The gills and the gut are the main routes of exposure to toxic agents in teleost fish 

(DiGiulio and Hinton, 2008). The liver is a main target organ of metal toxicity because it 

receives a large supply of blood (transporter of metals), and is directly involved in the 

biotransformation, metabolism and excretion of metals from the body (DiGiulio and Tillitt, 

1997).  The substitution of nutrient metals (a metal which is required for normal health at low 

concentrations but can become toxic at higher concentrations (e.g., Se)), by exogenous metals 

and/or an overload of nutrient metals in the body could lead to alterations in cellular function, 
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DNA and proteins resulting in a reduction in viable offspring and reduced egg production 

(DiGiulio and Tillitt, 1997). Furthermore, increased metal accumulation in the liver could affect 

circulating hormone levels in the blood resulting in increased embryo toxicity and altered 

vitellogenin levels (DiGiulio and Tillitt, 1997). Vitellogenin is the egg yolk pre-cursor protein 

produced in the livers of reproductively mature female fish.  

 The gills function in the exchange of ions and respiratory gases as well as for acid-base 

regulation in freshwater fish, and thus can be greatly affected by the exposure to environmental 

chemicals (DiGiulio and Hinton, 2008). One of the many functions of fish gills is to regulate the 

ion homeostasis in fish (Niyogi and Wood, 2004). The acute exposure to metals such as Cu, Ni 

and Zn could severely affect the ability of the fish gill to regulate ions, and could also lead to 

other adverse health effects such as reduced gas exchange, excess mucus secretion, gill swelling, 

gill damage (epithelial lifting, lamellar fusion, necrosis and apoptosis), cellular damage, 

oxidation of proteins, membrane lipid peroxidation, cleavage of DNA and RNA molecules and 

ultimately death (Niyogi and Wood, 2004).  Due to the importance of gills as a vital organ and 

the primary site accumulation of waterborne metals, one of the key aspects of this study was to 

examine metal concentrations in gill tissues. This aspect has not yet been examined previously in 

Junction Creek and will help in understanding the importance of water as route of exposure 

leading to fish toxicity.  

 Evidence in the literature suggests that metals taken up from the water and the diet have 

different dispositions within the body of fish and invertebrates (DiGiulio and Tillitt, 1997; 

Meyer, 2002; Niyogi and Wood, 2003). Gills are mainly affected by waterborne exposure to 

chemicals, however blood borne chemicals accumulated from diet via the gut could also enter 

the gills, in addition to other vital organs such as liver, gut and kidney, albeit in small 

proportions, and affect its structure and function (DiGiulio and Hinton, 2008). Significantly 

elevated levels of metal accumulation in the gills compared to other internal organs may indicate 

that the route of exposure is primarily waterborne, whereas significantly higher accumulation in 

other organs (e.g., intestines, liver) compared to the gill may suggest a primarily dietborne 

exposure (Meyer, 2005). In order to gain a better understanding of the various routes of 

exposure, metal assimilation through the diet was also examined using the three MME's in 

Junction Creek. Evidence of toxic effects of dietborne metals have already been reported in the 

literature, where increased accumulation of dietborne metals such as As, Cd, Cu, Ni, Zn, Pb, Se 



 

6 

 

in the liver, gut, kidneys and gonads have been linked to reduced survival, growth and 

reproduction in fish (Lemly, 2002; Ng and Wood, 2008; Boyle et al., 2008; Muscatello et al., 

2008).   

 Our research team of Dubé et al., has been examining exposure pathways (waterborne 

and dietborne) at the study site for over ten years. In total we have conducted more than seven 

different studies using a variety of invertebrate and fish species. The early experiments (prior to 

2006) were strictly waterborne exposures and did not include a dietary component.   

Consequently, we felt that these studies lacked environmental realism and did not fully assess 

both exposure pathways.  Therefore, in 2006, development of a modified fish bioassay was 

implemented at the study site using a modular mesocosm (artificial stream) system (Rickwood et 

al., 2006b).  We further tested the application of the mesocosm system using different treatment 

waters (e.g., PWE and municipal sewage wastewater) (Rickwood et al., 2008). Overall we have 

observed increased metal tissue burdens in all of the studies to date in one or more tissue type 

(Hruska and Dubé, 2004; Dubé et al., 2006a; Rickwood et al., 2006a, 2008).  We have also seen 

reduced survival in both fish and invertebrates in half of the experiments when exposed to one or 

more routes of exposure (Hruska and Dubé, 2004; Dubé et al., 2006a; Rickwood et al., 2006a).  

Reproduction (e.g., gonad size, testosterone levels, spawning, egg size, egg production, hatching 

and emergence) in both fish and invertebrates were also affected in some way in all of the studies 

and remain the main focus of the research (Hruska and Dubé, 2004; Dubé et al., 2006a; 

Rickwood et al., 2006a, 2008). However conflicting reproductive results among the field and lab 

studies (e.g., spawning and egg production) have been observed (Rickwood et al., 2006a, 2008). 

In Rickwood's lab study (2006a), reproductive output in both the waterborne-only and multi-

trophic streams was reduced. Rickwood's study (2006a) also showed a significant reduction in 

larval responses (hatching & deformities) in the multi-trophic streams suggesting that diet was an 

important route of exposure.  In contrast, Rickwood's field study (2008), showed that exposure 

through both routes of exposure had a stimulatory effect on fish reproduction (increased egg 

production and spawning). These discrepancies were mainly attributed to differences in 

treatment water used (PWE vs. municipal sewage/PWE combination). It was postulated that the 

mixture of sewage treatment effluent along with the process water effluent may have affected the 

bioavailability of the metals due to increased organic content in the water.  Consequently, one of 

the key results to come out of Rickwood’s studies was that greater effects were observed in the 



 

7 

 

multi-trophic streams in comparison to the waterborne streams alone, which suggested that 

dietary exposure was far more important than was originally anticipated.  In light of the fact that 

diet may play a dominant role in the fish responses that we saw in the multi-trophic studies, we 

recognized the need to investigate the exposure pathways of water, diet and the combination of 

the two in greater detail and their responses to FHM using a factorial design.  

 

1.3 Assessing food quality 

Another important aspect of our study was to examine the differences in metal 

accumulation in FHM when food quality differed. It has been identified that many mesocosm 

studies are not multi-trophic and most use a pre-frozen or artificial diet to feed the fish (Wren 

and Stephenson, 1991; Alves et al., 2006). Furthermore, most studies in the laboratory that 

determine critical thresholds or toxicity guidelines for metals are based on waterborne exposure 

studies (Borgmann et al., 2005; Roussel et al., 2007; Kolts et al., 2009). This does not allow for 

an environmentally relevant assessment of the biological pathways.  Our previous work seems to 

suggest that multi-trophic bioassays in mini food webs make the most sense ecologically.  

However, we have observed conflicting effects in FHM responses when fish were exposed multi-

trophic compared to waterborne exposures, which indicates that the quality of the prey (C. 

dilutus) may play a dominant role.  Therefore, we wanted to assess whether fish responses 

differed when FHM were fed live or frozen diets of C. dilutus held in both lab and effluent water 

(PWE). It has been suggested in the literature that feeding with live prey may result in greater 

metal toxicity due to biological incorporation into living tissues (DeSchamphelaere and Janssen, 

2004).  

 

1.4 The addition of primary producers (biofilm) to the bioassay 

As a result of historical and current industrial activities in the region, all waterbodies 

within 17,000 km
2
 of the Sudbury area have shown elevated metal concentrations in surface 

water, sediment and biota (Bradley and Morris, 1986; Rajotte and Couture 2002; Pyle et al., 

2005; Gauthier et al., 2006). In particular, Cu, Ni, Zn (Bradley and Morris, 1986; Nriagu et al., 

1998; Couture and Rajotte, 2003; Dubé et al., 2006a) and Pb (Couture and Rajotte, 2003; Dubé 

et al., 2006a) have been found above background levels in water and sediments. Regardless of 

reduced smelter emissions and efforts to clean-up the Sudbury region, Se, Cu and Ni 
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concentrations in sediment and surface waters remain high throughout the area (Couture and 

Rajotte, 2003; Pyle et al., 2005). Elevated total metal concentrations in the water and sediment 

however do not necessarily correlate to high tissue accumulations in aquatic organisms. Water 

hardness, metal speciation, pH, organic matter and cationic competition among metals for 

binding sites on membrane surfaces can all influence the bioavailability of certain metals 

(Meyer, 2002; Peakall and Burger, 2003). For instance, waterborne Se can be removed from the 

water column through adsorption to sediments and organic matter, complexation with other 

metals or ions in the water, and taken up by plants and algae, which form the basis of the food 

chain (Muscatello et al., 2008). Selenium in particular is highly assimilated by primary producers 

(e.g., phytoplankton) and is transformed into more bioavailable forms (e.g., seleno-amino acids) 

contributing to increased Se accumulation in higher trophic level organisms (Muscatello et al., 

2009). Therefore, the presence of primary producers plays a critical role in the accumulation of 

Se and possibly other metals in the food chain following exposure to effluent mixtures. In order 

to gain a better understanding of the role of the periphyton/biofilm growth in the artificial 

streams, we allowed the biofilm to naturally develop in the streams enabling us to examine a 

natural primary producer (algae). Metal accumulation in the biofilm has not been assessed 

previously in any artificial stream studies with MME – an aspect that may provide a better 

understanding of metal partitioning and bioavailability in biota. 

 

1.5 Relevance to the Environmental Effects Monitoring program 

In the late 1990’s, Environment Canada initiated a multi-stakeholder consultation to 

develop the Environmental Effects Monitoring (EEM) program for all metal mining operations 

in Canada (ENV Canada, 2002). The EEM program was designed to achieve national uniformity 

in monitoring the effects of mining to the aquatic environment, while taking into consideration 

site-specific factors (ENV Canada, 2002). Since 2002, all metal mining operations in Canada, to 

which the Metal Mining Effluent Regulations (MMER) apply, have been required to conduct an 

EEM study. EEM is a requirement of the MMER under the authority of the Fisheries Act, and is 

used to evaluate the effects of metal mining effluents on the environment (Lowell et al., 2007). 

The Metal Mining EEM Program is structured into “phases”, whereby a mine conducts an EEM 

study every two to six years with both monitoring and interpretation components (Lowell et al., 

2007). These phases include: i) initial monitoring (the first biological study), ii) periodic 
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monitoring (to confirm results of previous studies and to ensure no changes), iii) focused 

monitoring (to assess magnitude and geographical extent of the effects), iv) investigation of 

cause (to identify the cause of the effect).  

The EEM program primarily focuses on the biological monitoring of three main areas: 1) 

a fish population survey to assess fish health, 2) a benthic invertebrate community survey to 

assess effects on fish habitat, and 3) a study of mercury levels in fish tissue to assess effects on 

the usability of the fisheries resources (Lowell et al., 2007). Sentinel fish populations (both sexes 

of two species) and benthic invertebrate communities are collected and assessed at reference 

sites and sites exposed to the treated effluent discharge. The response endpoints to be measured 

are specified for fish (condition [body weight against length], relative liver size [liver weight 

against body weight] , relative gonad size [gonad weight against body weight], size at age [body 

weight against age], age) and benthos (total density [total No. of individuals of all taxonomic 

groups collected at the sampling station], taxon richness [No. of different taxonomic groups 

collected at the sampling station], Bray-Curtis [index that measures dissimilarity in community 

structure among sites], Simpson's evenness [measures the proportion of individuals that 

contribute to the total sample for each taxonomic group]) with “an effect” defined as a 

statistically significant different between reference and exposed populations for any of the effect 

endpoints measured. One of the ways that this is measured is by comparing the critical effect 

sizes (a measured percentage difference or magnitude of change)  between exposure and 

reference fish for 5 main fish endpoints [i) condition, ii) gonad weight, iii) liver weight, iv) 

weight at age and v) age]. The critical effect sizes (CES) have been set at ±10% for condition 

and CES = [(exposure mean - reference mean / reference mean) * 100)], ±25% for the other 4 

endpoints (ENV Canada, 2002; Lowell 2010 pers. communications).  The monitoring program is 

one of a kind in the world, of the highest level of scientific review and adaptive management, 

and key management actions and decisions are tied to the presence of effects and their 

magnitude. Due to the consistency and scientific rigor of the EEM approach at all mine sites, 

national assessments of mine effects across the country are possible. In 2010 (Phase 2 of the 

EEM program), the national assessment reported decreased condition, liver size and growth rate 

in fish across Canada indicating an inhibitory response pattern (Lowell et al., unpublished). For 

benthos, the national assessment for mines across Canada also indicated an inhibitory response 

pattern after exposure to MME for taxon richness but indicated a stimulatory response pattern for 
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density.  Since the development of the mesocosm technology was primarily for use as an 

alternative method to the standard fish field survey, we were able to assess all of the EEM-based 

endpoints in order to compare our data with the national EEM program. We did not, analyze 

mercury in the fish tissues in any of our studies, nor did we fully assess the benthic invertebrate 

community of Junction Creek.  The main focus of this research was solely to address the 

fisheries component of the EEM program and to further assess the use of the modified mesocosm 

bioassay in conducting these types of studies.     

 

1.6 Mesocosm technology and historical research at the study site 

In Junction Creek, there are three regulated final discharge locations (SWE, MWE and 

PWE) that fall under the EEM monitoring program. Concentrations of the three mine effluents 

have been estimated to be 20% SWE, 30% MWE and 45% PWE respectively at the point of 

convergence of the mine’s discharge with Junction Creek at low creek flow (Figure 1.1) (Dubé et 

al.,  2006a). Due to the site-specific historical contamination and the confounded nature of the 

study site, Vale, with the approval of Environment Canada, have been studying the fish 

population of Junction Creek using an alternative mesocosm technology. Field studies have 

shown that complex mixtures such as mining effluents are extremely difficult to mimic in the 

laboratory and that although laboratory studies allow for the isolation of various environmental 

components, they cannot replace the value of field experimentation. Furthermore, assessment of 

the effects of contaminants and development of guidelines and criteria for the protection of 

freshwater aquatic life have almost exclusively been developed through the use of waterborne 

dose-response studies conducted under highly controlled laboratory conditions (ASTM, 1980; 

EPS, 1980; Mayer et al., 1986; Mayer and Ellersieck 1988; Pascoe et al., 1989; Canada Gazette, 

1989; Wren and Stephenson, 1991; CCME, 1991; USEPA, 1972, 1985abc, 1994ab; CCME, 

1991, 1999).  Furthermore, in those studies, the test organisms were either: not fed; were fed 

uncontaminated food; or fed an artificial diet (e.g., fish pellets). The relevance of these criteria to 

the field has been questioned (Fisher and Hook, 2002; Lemly, 2002; Hamilton, 2004; 

DeSchamphelaere and Janssen, 2004; Reash et al., 2006; Farag et al., 2007; Boyle et al., 2008; 

Muscatello et al., 2008). Alternative methods such as field-based mesocosm studies have shown 

increasing ability to maintain the environmental realism of a field study while still allowing for 
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variable control (e.g., sample size, sex ratios, ambient temperature, natural reference water 

quality as dilution water, etc).  

 Mesocosm technology or artificial stream systems have been used at the study site for a 

number of years. The early use of the technology in 2001 and 2002 identified that 20% SWE, 

30% MWE and 45% PWE, affected fish endpoints in a waterborne exposure (Dubé et al., 

2006a). Creek chub (Semotilus atromaculatus) survival was decreased in all exposures and pearl 

dace (Semotilus margarita) survival was decreased by as much as 40% in MWE and 50% in 

PWE (Dubé et al., 2006a). In addition, total body weight for both male and female pearl dace 

was reduced in MWE and PWE respectively (Dubé et al., 2006a). Furthermore, metal analysis in 

water and muscle tissue (body burdens) showed increased Ni, Rb, Sr, Fe, Li, Tl and Se for both 

species of fish exposed to each of the MWE and PWE (Dubé et al., 2006a). In 2002, field-based, 

life-cycle bioassays were conducted in artificial streams using the freshwater midge 

(Chironomus dilutus, formerly Chironomus tentans). Midges were exposed to PWE for 37 days 

in field mesocosms and showed reduced survival, reduced total emergence, increased time to 

emergence and reduced hatching success (Hruska and Dubé, 2004). Subsequent C. dilutus lab 

studies (Hruska and Dubé, 2004; 2005) showed that the freshwater midge was a good test species 

for use in field-based mesocosms and could be used as a self-sustaining diet for fish in 

developing a multi-trophic bioassay.  

 A lab-based multi-trophic mesocosm was developed and implemented in the field at the 

Vale site by Rickwood et al., (2006a,b). Two environmentally relevant species, the fathead 

minnow (Pimephales promelas) and the freshwater midge (C. dilutus) were used by Rickwood et 

al., (2006a,b). A self-sustaining multi-trophic bioassay was developed to comparatively assess 

the effects of an effluent (45% PWE) and effluent/sewage waste water blended effluent (PWE-

WWT) through water alone compared to water plus food (trophic transfer or multi-trophic) 

pathways on FHM reproduction (Rickwood et al., 2006b). Results of the field study showed that 

exposure to PWE-WWT significantly increased egg production and larval deformities but 

significantly decreased larval hatching success which were evident only in the trophic transfer 

treatments (Rickwood et al., 2006a). This work suggested that the dietary pathway was an 

important route of exposure for determining the effects of mine effluents on the offspring of 

fathead minnow (Rickwood et al., 2006a).   



 

12 

 

 Subsequent lab studies showed significant reductions in cumulative spawning events and 

egg production as well as decreased hatching success after waterborne exposure to PWE 

(Rickwood et al., 2006a).  In contrast, the trophic transfer system showed significant increases in 

spawning events, egg production and larval deformities after exposure to the PWE (Rickwood et 

al., 2006a; 2008). Rickwood et al., (2008) suggested the possibility of a nutrient enhancement 

effect due to the use of municipal wastewater and subsequent increase in phosphorus 

concentrations (Rickwood et al., 2008). Differences in food availability between the multi-

trophic and water-only exposures were also hypothesized but could only account for a small 

portion of the discrepancies observed among the studies conducted by Rickwood (Rickwood et 

al., 2006b;).  In the multi-trophic system, fish may have been able to access higher densities of C. 

dilutus compared to the water-only system in which the fish were fed an optimum daily amount 

of 1 gram C. dilutus/day in each stream (Rickwood et al., 2006a; 2008).  Consequently, increased 

food availability may have resulted in increased egg production. It was also suggested that 

increases in water quality parameters (DOC, TOC, TSS and total phosphorus) in the multi-

trophic streams may have contributed to increased egg production in FHM since the 

bioavailability of metals has been shown to decrease with exposure to increased organic matter 

(Rickwood et al., 2008). Furthermore, it was hypothesized that perhaps increased bacterial load 

in the municipal wastewater may have contributed to decreased toxicity of the effluent in the 

multi-trophic streams (Rickwood et al., 2008). Bacteria are capable of producing enzymes, which 

can biodegrade or biotransform contaminants in the environment (Rickwood et al., 2008). 

 

1.7 Treatment water 

Two reference treatments and 3 effluent treatments were used in the current studies. The 

first reference treatment (Vermilion River) considered the resident field conditions at the study 

site and contained similar background levels of contamination as Junction Creek in order to 

eliminate differences in physical parameters (climate, geography) and allow for a better 

assessment of the current effluent effects. The second reference treatment was formulated using a 

combination of reverse osmosis and de-chlorinated Saskatoon tap water.  This was conducted so 

that effluent effects could be examined in isolation of historical contamination, while keeping 

water quality parameters that are known to modify toxicity such as hardness as close as possible 

to Sudbury levels.   
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 Three mine effluent treatments (SWE, MWE, PWE) were used in the field experiment, 

whereas only PWE was used in the laboratory experiment. Since PWE was shown to elicit the 

greatest number of effects in the field experiment as well as in previous experiments conducted 

by our lab, it was the only effluent treatment used in the laboratory experiments.  All effluents 

were treated by conventional hydroxide precipitation (lime addition and settling) and subsequent 

pH adjustment prior to discharge (Stantec, 2009). It should be noted that under the MMER and 

the EEM program, effluents are regulated in the same manner despite their origin. However, the 

nature of each effluent is quite unique and it is critical to understand how different each is to 

truly be able to understand mine discharge effects on waters.  

 

1.7.1 Control/reference treatment water 

The Vermilion Water Treatment Plant (WTP) is located approximately 18 km west of 

Greater Sudbury, north of the town of Lively, ON, Canada and was the location of the field 

experiment conducted in 2009.  It is owned and operated by Vale and provides potable water to 

the communities of Copper Cliff, Lively, Whitefish, Naughton, Whitefish Lake First Nations as 

well as all Vale mine properties (Creighton Mine, Nickel Refinery, Copper Refinery, Smelter 

South Mine, North Mine, Clarabelle, Tailings area) west of Sudbury (Vale, 2008). Raw water 

was transported to the plant through underground piping system from the Vermilion River, 

located approximately 5 km west of the WTP, and was used as the reference/control and dilution 

water for the field experiment. Despite the fact that the Vermilion River is situated in what is 

considered the "zone of impact" [an area within 17,000 Km
2
 of the City of Greater Sudbury that 

has been significantly impacted by atmospheric deposition from the smelting of ore 

(Keller,1992)], it was chosen as our reference site for two main reasons. First, the Vermilion 

River was located in the adjacent watershed and within the same geographic region, which helps 

to eliminate differences unrelated to contamination (e.g., climate and geography) (Weber et al., 

2008). Second, we thought that by using a reference site that was similarly contaminated 

historically, it may allow for a better assessment of the current effluent effects, since the EEM 

program is mainly concerned with current effects and not historical effects (Weber et al., 2008). 

Furthermore, logistically the Vermilion River provided a reference waterbody that had not 

received direct mine or municipal sewage water effluent; it was easily accessible and had been 

used as reference water in previous mesocosm studies at the site. 
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 Reference water for the lab experiment was conducted using a combination of 60% 

reverse osmosis (RO) water and 40% de-chlorinated Saskatoon city water.  The use of RO water 

was a key component of this study design since our goal was to closely approximate the 

reference water conditions (pH, hardness, alkalinity) in the Sudbury region.  This had enabled us 

to truly analyze the effluent effects on the aquatic organisms without the confounding effects of 

the environmental legacies and/or the confounding effects of geographic reference/control water 

quality differences (Sudbury vs. Saskatoon).   

 All reference water was used as a control or reference treatment in the experiments and 

was also used to dilute the 100% effluent to the appropriate environmentally relevant 

concentrations. 

 

1.7.2 20% Surface water effluent (SWE) 

The Nolin Creek Waste Water Treatment Plant is the final discharge point for the 20% 

Surface Water Effluent (SWE).  The treatment plant was designed to treat the surface water 

drainage from the Nolin West Branch watershed including runoff from the Murray Mine pit and 

Clarabelle Mill.  It also treats water from two storage reservoirs (Clarabelle and Nolin), but does 

not treat any direct process (mining, milling, smelting, refining) water discharges (Stantec, 

2009). In 2009 it treated and discharged a total of 19,161 m
3
/d effluent to Junction Creek. The 

water from these sources is pH adjusted with lime and settled to remove heavy metals and 

suspended solids with the aid of flocculent addition in the clarifier prior to discharge into Nolin 

Creek, which joins Junction Creek from the northwest (see Figure 1.1) (Jaagumagi and Bedard, 

2001; Stantec, 2009). The confluence of these two waterbodies is located inside a large culvert, 

beneath the downtown area of the city and is not readily accessible (Jaagumagi and Bedard, 

2001). Based on flow data and conductivity readings, the effluent concentration has been 

estimated to be ~20%, at the confluence of Nolin Creek and Junction Creek (Dubé et al, 2006). 

Nolin Creek also receives non-point source inputs in the form of urban runoff from the City of 

Greater Sudbury as well as runoff from the main city snow dump (Jaagumagi and Bedard, 2001).  

Elevated levels of Ba, Bo, Ca, Co, Cu, Li, Mg, Ni, Rb, Se and Sr were observed in the 100% 

treated effluent in 2009 compared to reference water. Hardness and calcium levels were also 

increased compared to reference.  
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1.7.3 30% Mine water effluent (MWE) 

The Mine Water Effluent (MWE) discharge was located just downstream of the Garson 

Mine in the Town of Garson. The Garson Mine is an underground Copper and Nickel Mine, 

which produces about 2,150 tons of ore per day. Surface runoff and dewatering of the 

underground workings are directed to a reservoir on the surface where they are subsequently 

treated (pH adjusted with lime) in a relatively small treatment system, then pumped to a 

polishing pond prior to being discharged to the receiving environment (Stantec, 2009). The final 

discharge point was located at the headwaters of Junction Creek and the effluent concentration 

located 250 m downstream of it has been estimated at ~30%. In 2009 the Garson Mine treated 

and discharged 2,987 m
3
/d of effluent to Junction Creek. Effluent concentrations in 2009 showed 

all of the same elevated metals as in the SWE (Ba, B, Ca, Co, Cu, Li, Mg, Mo, Rb, Se, Sr), along 

with As, hardness and Total Organic Carbon (TOC) compared to reference values. The MWE 

showed a slightly increased nutrient enrichment compared to the SWE, much greater hardness 

levels and a greater concentration in metals overall.  

 

1.7.4 45% Process water effluent (PWE) 

The final mining effluent discharge into Junction Creek is the Process Water Effluent 

(PWE) discharge from the Copper Cliff Waste Water Treatment Plant (CCWWTP).  The 

CCWWTP receives a number of process water effluents including mine water and tailings from 

the Creighton Mine, Frood Stobie, North Mine, South Mine, Nickel Refinery, Copper Refinery, 

Smelter Complex and Clarabelle Mill (Stantec, 2009).  It also receives inputs from active and 

inactive tailings, collected surface runoff from the Town of Copper Cliff, ON and sewage from 

the mine-related housing/administration offices and the Copper Cliff municipal sewage treatment 

plant (Stantec, 2009). Effluent is discharged directly to Copper Cliff Creek, one of the major 

tributaries of Junction Creek, where it flows northwest approximately 3 km and enters Junction 

Creek. A total of 141,345 m
3
/d of treated effluent was discharged to Junction Creek in 2009. The 

estimated effluent concentration at the confluence of Copper Cliff Creek and Junction Creek has 

been estimated to be ~45%. The PWE represents the greatest volume of effluent that is 

discharged into Junction Creek and is the largest facility among the three processing facilities 

described above. Consequently it has been the effluent of most concern in the studies that have 
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been conducted by our lab to date. Effluent concentrations in 2009 and 2010 showed elevated 

levels of all of the same metals as in the SWE and MWE (Ba, B, Ca, Co, Cu, Li, Mg, Mo, Rb, 

Se, Sr), though metal concentrations were much higher in the PWE than in either SWE or MWE 

for most metals.  In addition to these, elevated levels of Al, As, Tl, TOC and Hardness levels 

were observed.  The PWE appears to be characteristically more similar to the MWE with respect 

to nutrient enhancement, with the exception of it having a slightly greater increase in overall 

metals when observed at the 100% effluent concentration. Furthermore, there are other 

constituents in the effluents from metal beneficiation (mineral extraction) processes that may or 

may not be toxic to fish (e.g., xanthates, alcohols, flocculants, polymers, organic reagents, 

hydrocarbons, estrogenic compounds from sewage waste etc.), though it was beyond the scope of 

the current study to assess their effects on fish.  

  

1.8 Study species 

1.8.1 Fathead minnow (Pimephales promelas) 

Fathead minnow (FHM) was used for both field-based and laboratory experiments of my 

study. FHM is one of the most-commonly used fish species for acute and chronic toxicity testing 

because it is an environmentally relevant species and ubiquitous throughout North America 

(Rand, 1995). FHM is an ideal test species for this study in particular because it is naturally 

found in Junction Creek and can be readily cultured in the laboratory (Rand, 1995). In particular, 

FHM species are small, fractional substrate spawners that produce clutches of 50-150 eggs every 

3-5 days both in the field and the laboratory (Rickwood, 2006a).  Additionally, the natural 

history, reproduction and spawning behaviour of the FHM are well known, since they have been 

extensively tested and used for regulatory purpose by the government as well as the industry 

(Benoit et al., 1982; Rand, 1995; Ankley et al., 2001; OECD, 2004; Rickwood, 2006a; Ankley 

and Villeneuve, 2006; USEPA, 2007).  

 

1.8.2 Freshwater midge (Chironomus dilutus) 

Chironomus dilutus (C. dilutus), formerly Chironomus tentans, was used in both field-

based and laboratory mesocosm experiments in our study.  Similar to FHM, C. dilutus are 

commonly used for freshwater toxicity testing, because their life cycle is well characterized and 

they can be easily cultured and handled in the laboratory and field (Benoit et al., 1997; EPS, 
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1997). They also represent an environmentally relevant species for my study since they are 

ubiquitous and abundant in freshwater environments in Sudbury and throughout North America 

(Benoit et al., 1997; Rickwood, 2006a). C. dilutus undergoes complete holometabolous 

metamorphosis (egg, larvae, pupae, adult), in approximately 23-30 days at 23ºC (Benoit et al., 

1997).  Eggs begin to hatch within two days of oviposition and may take up to six days to 

complete the hatch (Benoit et al., 1997). The larvae pass through four instars and after 23 days 

enter the pupae stage where they terminate feeding (Benoit et al., 1997).  The pupal stage 

generally lasts one day before emergence into adulthood (Benoit et al., 1997).  Adults mate 

within days of emergence and females produce a single egg mass within 24 hrs of mating (Benoit 

et al., 1997).  Both males and females die within seven days of emergence, just long enough to 

reproduce and complete the life cycle (Benoit et al., 1997).  Due to their relatively short life 

cycle, and numerous life stages, C. dilutus are an appropriate species for use in the multi-trophic 

bioassay because they will naturally replenish the FHM food supply in each self-contained 

artificial stream. 

 

 1.9 Research objectives and hypotheses 

The mesocosm technology has been developed for the EEM program because it has 

allowed us to measure all of the EEM-based endpoints under environmentally relevant exposure 

conditions in isolation of other confounding factors in the watershed.  This technology has 

allowed us to measure direct reproductive outputs in invertebrates and fish under 

environmentally relevant exposure conditions using a live diet, which to our knowledge, has not 

been developed in any other country.  We have also been able to show how we can manipulate 

the study design to assess various exposure scenarios (e.g., sediment vs water exposures; dietary 

vs waterborne routes of exposure; whole effluent vs single metal exposures).  The ability to be 

able to conduct hypothesis-driven manipulative studies using a fish bioassay will be especially 

useful as we move towards investigation of cause in the EEM program.   

 Based on previous work conducted at the Vale study site over the last 10 years,  our 

studies involving the multi-trophic streams have suggested that the diet may play a dominant role 

in the fish responses that we have seen. Therefore more research was required to assess exposure 

pathways using all three of Vale's effluents (SWE, MWE, PWE) in a multi-trophic bioassay 

study design. Since metals assimilate differently in the body based on exposure route, tissue type 
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and species, there was also a need to examine metal accumulation in several different tissue 

types (gills, gonads, liver, carcass) and in several species including the biofilm. The assessment 

of metals in the FHM gills and the biofilm was novel to this study and had not been conducted 

previously. In addition we modified the methodology so that the prey base (C. dilutus) was 

exposed to the effluent prior to the addition of the fish so that once the exposure began the FHM 

would be exposed through both routes of exposure simultaneously from the onset of the 

experiment. We have attempted to address these data gaps in the Phase I field-based mesocosm 

study of this thesis. Our research objectives and hypotheses follow.   

  Having verified once again that the PWE elicited the greatest toxic responses to FHM 

compared to the other 2 effluents in Phase I, there was still a need to investigate in greater detail 

the exposure pathways of water, diet and the combination of the two and their responses to FHM.  

This second study was novel in that it followed a complete factorial food design (see chapter 3 

for greater details).  Another unique feature of this experiment was that the prey was exposed to 

the PWE and control water for about 3 weeks prior to freezing them into 1 gram aliquots. This 

was a key component to this study in order to allow sufficient time for metal tissue 

concentrations to reach equilibrium with the water concentrations to ensure dietary exposure. 

Another novel component to the study was the need to control for differences in water quality 

parameters such as hardness since they are known modifiers of toxicity.  Previous studies have 

not been able to address the differences in water quality between Sudbury and Saskatoon.  We 

were able to do this using a mixture of 60% reverse osmosis water and 40% de-chlorinated lab 

water. Furthermore, since many mesocosm studies are not multi-trophic and most use a pre-

frozen or artificial diet, (as was used in the exposure pathway experiment above),  we wanted to 

assess the role of food quality with respect to fish responses.  This was addressed in our food 

quality experiment when FHM were fed both a live and frozen diet and held in differing 

treatment waters (lab vs. effluent water).  We have attempted to address these data gaps in Phase 

II of this thesis, the laboratory-based mesocosm study. Our research objectives and hypotheses 

follow.   
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1.9.1 Phase I – Field-based mesocosm study 

Objective 1: To determine responses of FHM to three different MME's (20%SWE, 30%MWE, 

45%PWE) discharging to the same receiving environment in situ using a multi-trophic, self-

sustaining bioassay. 

Ho 1: There are no significant differences among FHM egg production, larval deformities, and 

larval survival following exposure to MME and responses do not differ according to effluent 

type (surface water effluent, mine water effluent, process water effluent). 

 

Objective 2: To examine the combined effects of both waterborne and dietary routes of 

exposure, using cultured C. dilutus, under environmentally realistic multi-trophic exposure 

conditions. 

Ho 2: There are no significant differences among FHM responses when exposed to effluent 

exposed food and water. 

 

Objective 3: To identify key water quality parameters and target metals in the effluent and in 

environmental components of the mesocosm system (e.g., biofilm, sediments, C. dilutus bodies, 

and FHM gills, ovaries, liver and muscle). 

Ho 3: There are no significant differences in metal accumulation among tissue types, species or 

effluent treatments. 

 

1.9.2 Phase II - Laboratory-based mesocosm study 

Objective 1: To understand the relative importance of water versus diet as pathways of exposure 

to a PWE causing effects in FHM using a fully factorial cross-over experimental design.  

Ho1: There is no significant difference in fish response when exposed through the water, diet or 

both routes of exposure. 

 

Objective 2: To examine the role of food quality (exposed or unexposed to MME) on FHM 

through a comparison of a combined multi-trophic bioassay (fish were fed a live diet of C. 

dilutus) versus fish fed a frozen diet (laboratory prepared and frozen C. dilutus). 

Ho2: There is no significant difference in fish response when fish are fed a live or frozen diet or 

when fish are held in reference or effluent treatment water. 
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Chapter 2
a 

EXAMINING THE EFFECTS OF METAL MINING MIXTURES ON FATHEAD 

MINNOW (PIMEPHALES PROMELAS) USING FIELD-BASED MULTI-TROPHIC 

ARTIFICIAL STREAMS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a
 This chapter has been submitted to the Journal of Ecotoxicology and Environmental Safety 

under joint authorship with Monique Dubé, Carrie Rickwood and Som Niyogi.



 

22 

 

 

2.0 INTRODUCTION 

 MME's can vary significantly in quality even for the same discharge site based on several 

factors, including: (i) the type/quality of the ore being milled, (ii) the geological formation of the 

rock, (iii) the effluent treatment process, (iv) the type of mining facility, and (v) the size of the 

operation.  As with most rivers in Canada, multiple discharges (point sources) from the same 

mine or from different mining operations can occur within the same waterbody or watershed. In 

some cases, several other confounding factors, such as urban run-off, historical contamination, 

leaching of metals from soils and sediment and inputs from other users of the same waterbody, 

add to the complexity of assessing effects of individual mine effluent discharges into natural 

waters. However, it is critical for mitigation, regulation and management, when studying the 

receiving environment, to know which discharge (point source) is having the greatest effect on 

the environment in isolation of the other inputs.  While this seems to be an obvious consideration 

for watershed management it is often overlooked when the same regulations are applied across 

very different discharge types for the same industry, in this case metal mining. To date, much of 

the research on the effects of metal contamination in fish populations has focused primarily on 

single metal exposures, either through water or diet (McGeer et al., 2000; Kolts et al., 2009). 

However, there is evidence that metal mixtures (e.g., mining effluent) and their interactions with 

surface water can act in both a synergistic and antagonistic manner in the natural environment 

(Weber et al., 2008). Due to the complexity of mixtures, the tendency in many studies is to focus 

hypothesis testing on several elements of interest despite the receiving environment being 

exposed to the effluent as a whole. While this may focus the experimental design, the overall 

conclusions can be misleading and of lower ecological relevance since no mine or milling 

operation discharges a single metal, micronutrient or element. Therefore our current study 

allowed us to examine three major point sources simultaneously in order to determine which 

point source was of greatest ecological importance with respect to FHM responses. 

 Junction Creek is the final receiving waterbody of three treated MME discharges.  In 

addition to these inputs, it receives municipal sewage treatment plant effluent, urban and 

industrial discharges and seepage from historical contamination (Jaagumagi and Bedard, 2001). 

Moreover, inputs into Junction Creek from tributaries carry drainage from soils and sediments 

that are historically contaminated with metals (Nriagu et al, 1998). The effects of mining 
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effluents/metal mixtures on freshwater species have been well documented downstream of 

mining discharges throughout North America, with elevated metals observed in fish (whole 

body, gonads, blood, liver, kidney, carcass) and invertebrate (whole body)  tissues (Dubé et al., 

2006a; Schmitt et al., 2009). Furthermore, increased body burdens of Cd, Cu, Rb, Se and Sr, 

have been recorded in resident FHM and creek chub (Semotilus atromaculatus) downstream of 

the discharge locations within Junction Creek in Sudbury, Ontario, the site of the current 

research study (Weber et al., 2008). 

 Furthermore, there are other constituents in the effluents from metal beneficiation 

(mineral extraction) processes that may or may not be toxic to fish (e.g., xanthates, alcohols, 

flocculants, polymers, organic reagents, hydrocarbons, estrogenic compounds from sewage 

waste etc.), and there is little to no understanding of how these constituents interact in the 

effluent. When mining effluents act in a synergistic and interactive manner with the other 

confounding factors described above, it is nearly impossible to decipher between contributing 

influences using standard field fisheries surveys. Conventional field studies were unable to 

distinguish current mining effluent effects from all other inputs (Jaagumagi and Bedard, 2001; 

Eastwood and Couture, 2002).   

 Very few studies have been able to isolate the major point sources in a river system and 

even fewer have been able to assess all relevant exposure pathways (water & diet) in a controlled 

hypothesis-driven experimental design. This study allowed us to examine mine effluent and 

metal/micronutrient effects on fish and fish reproduction that incorporated a full trophic structure 

in a manipulative experimental design. Since it is known that many elements are transferred 

through the diet, the trophic transfer was of key importance to the study design. The significance 

of this research is important to the mining industry, Environment Canada and Canadians who 

utilize fisheries resources. The assessment of potential effluent effects from mine sites is 

Federally regulated under the Environmental Effects Monitoring program (EEM). The EEM 

program was implemented in 2002 by Environment Canada under the Metal Mining Effluent 

Regulations (MMER) to monitor and assess the effects of MME on fish, fish habitat and fisheries 

resources across Canada (MMER, 2002).  Artificial streams (mesocosms) have been used at the 

current study site for approximately 10 years to study these effects and to develop a modified 

multi-trophic bioassay that could be used to test point source discharges in isolation of all other 

inputs, in consideration of the guidelines and regulatory standards of the EEM program. Early 
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mesocosm studies were conducted using waterborne exposures and were determined to lack 

environmental realism in that the dietary exposure pathway was not considered as a confounding 

factor (Dubé et al., 2006a). Although this approach remained consistent with many sublethal 

toxicity bioassays and fish mesocosm studies, it was recognized that there was a need to build a 

food web into the biological exposure system. The first multi-trophic reproductive bioassay 

studies using the Junction Creek effluents were conducted in 2004-05 using Chironomus dilutus 

as the diet and FHM breeding pairs (Rickwood et al., 2006a, 2008). In the current study, another 

trophic level was included to allow the natural biofilm in the water to colonize the artificial 

streams.  

 The main objective of the current study was to assess the combined effects of both 

waterborne and dietborne routes of exposure to FHM adults and larvae exposed to three 

separately treated MME's [surface water effluent (SWE), mine water effluent (MWE), and 

process water effluent (PWE)], under environmentally relevant concentrations using a self-

sustaining multi-trophic mesocosm bioassay. The three mining effluents were examined 

concurrently and comparatively to determine if and how exposure to the effluents affected FHM 

responses. In addition to the biological and reproductive endpoints measured in previous multi-

trophic experiments, metal and micronutrient accumulation in specific target organs (e.g., gill, 

liver and gonad) were also measured. Using this power of integrated results (weight of evidence 

approach) allowed for the identification of the most prominent elements in the effluent, and 

allowed for the characterization of their exposure pathways and potential toxicity to fish.   

 

2.1 MATERIALS AND METHODS 

2.1.1 Study site 

Sudbury, Ontario, Canada is home to the second largest nickel deposit in the world and 

has been continuously mined for copper and nickel for over a century (Weber et al., 2008). The 

mine complex itself produces nickel, copper, precious metals, platinum-group metals, sulphuric 

acid and liquid sulphur dioxide (Rickwood et al., 2008).   

 Junction Creek is the receiving environment of three discharges (MWE, SWE, PWE) of 

treated mine effluent (Figure 1.1).  The main branch of Junction Creek spans a length of 

approximately 25 km and flows southwest through the City of Greater Sudbury. The MME’s are 
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all treated by conventional hydroxide precipitation and subsequent pH adjustment (using Lime).  

In addition, flocculants and filtering agents (e.g., Percol 338 polymer) are added to aid in settling 

of particles (Stantec, 2009). Final effluents are then pH adjusted with either CO2 or SO2 prior to 

being discharged into the environment (Stantec, 2009). Although the nature of the MME's varies 

among the three mine discharges, they are subjected to the same environmental regulations 

regardless of their composition. MWE discharge is located at the headwaters of Junction Creek 

and is comprised of mine water and surface water from an underground mining operation. MWE 

is discharged directly into Garson Creek, a tributary before it enters the main branch of Junction 

Creek. The second effluent discharge, SWE, is mainly comprised of surface water from 

decommissioned mining pits and reservoirs and flows directly into the Nolin Creek tributary, 

prior to entering Junction Creek, downstream of MWE. The third mine discharge, PWE, 

constitutes the greatest volume of effluent entering Junction Creek. The composition of PWE is 

very different from the other effluents in that it is the only one that receives process water from 

the beneficiation of the ores as well as sewage waste from the surface mine buildings.  PWE is 

discharged first to the Copper Cliff Creek tributary prior to entering Junction Creek, just 

downstream of the Sudbury Municipal sewage wastewater facility. Environmental concentrations 

of the three effluent discharges have been estimated at 30% MWE, 20% SWE and 45% PWE at 

their respective Junction Creek confluences (Dubé et al., 2006a). 

 

2.1.2 Experimental design 

This study was conducted from July to September, 2008 using in situ modular mesocosm 

systems in Sudbury, Ontario. It consisted of a 10-day pre-exposure period and 21-day exposure 

period.  Each modular mesocosm unit consisted of a table (one table per treatment) with eight 

10.3-L, circular, high-density polyethylene streams.  The mesocosm system consisted of 

polyethylene holding tanks and a series of pumps (centrifugal and metering pumps) for the 

delivery of the treatment concentrations to the four modular mesocosm units (see Hruska and 

Dubé, 2004 for detailed description of mesocosm systems and design). There were three effluent 

treatments (SWE, MWE, PWE) as well as a reference treatment. Flows within the system were 

partially re-circulated at rate of 0.26 L/min to achieve a reservoir exchange rate of twice daily. 

Reference water was obtained from the Vermilion River located west of Junction Creek within 

the adjacent watershed. Despite the fact that the Vermilion River is situated in what is considered 
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the "zone of impact" [an area within 17,000 km
2
 of the City of Greater Sudbury that has been 

significantly impacted by atmospheric deposition from the smelting of ore (Keller, 1992)], it was 

chosen as our reference site for several reasons. The Vermilion River was located in the adjacent 

watershed and within the same geographic region, which helped to eliminate differences 

unrelated to contamination (e.g., climate and geography) (Weber et al., 2008). It was decided that 

by using a reference site that was similarly contaminated historically, it might allow for a better 

assessment of the current effluent effects, since we were mainly concerned with current effects 

and not historical effects (Weber et al., 2008). Furthermore, logistically the Vermilion River 

provided a reference waterbody that had not received direct mine or municipal sewage effluent; 

it was also easily accessible and had been used as reference water in previous mesocosm studies 

at the site.  Effluent water (100%) was collected in 1,000 L cubic totes and transported to the site 

on a weekly basis. Treatment solutions were mixed in 300-gallon (1,136L) polyethylene tanks at 

their pre-determined concentrations (45% PWE, 30% MWE, 20% SWE) using Vermilion River 

water as the dilution water.   

 

2.1.3 Pre-exposure phase 

A pre-exposure phase was conducted over a 10-day period (from August 4 to 14, 2008) 

using Vermillion reference water in order to establish baseline reproductive performance of the 

FHMs. Fish were fed frozen bloodworms (C. riparius) twice daily at a feeding rate of 1 

gram/day. Breeding tiles (~15 cm section of PVC pipe cut in half) were checked daily for egg 

production.  Eggs were removed from the tiles, placed in a Petri dish and photographed using a 

Cannon Powershot digital camera (Model A620, Mississauga, ON) and examined using a Vista 

vision
TM

 (Model 48402-00, VWR International, Mississauga, ON) tri-nocular microscope to 

determine fertilization success.  Eggs were then placed into PVC cups with 250 µm screen mesh 

and placed into rearing chambers and continuously aerated using air stones. Treatment water was 

heated in the mesocosm reservoirs and in the mixing tanks using submersible aquaria heaters. In 

situ water quality monitoring was conducted each morning at 8:00 am.  Sampling equipment was 

cleaned using de-ionized water between measurements. Samples were collected starting from the 

reference treatment and in order of increasing effluent concentration in a sequential and orderly 

fashion to prevent cross-contamination.  Temperature was monitored on an hourly basis in each 

treatment using data loggers (Optic Stowaways, Onset Computer, Bourne, MA, USA) and varied 
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between 18-25°C in all streams over the course of the day based on the diurnal fluctuations and 

ambient environmental conditions. The length of daylight also varied according to natural 

diurnal fluctuations but averaged a daily photoperiod of 13 hrs of day light : 11 hours of 

darkness. Other in situ water quality parameters (pH, dissolved oxygen, temperature, 

conductivity) were monitored using a YSI meter (Yellow Springs Instruments, Yellow Springs, 

OH, USA). Ammonia was monitored using an ammonia test kit (Rolf C. Hagen, Edmonton, AB, 

Canada). All meters and pumps were calibrated daily and maintained in good working order at 

all times throughout the experiment. Hatching success was determined once larvae hatched (3-5 

days post spawn). Ten month old, naive (fish that had not previously spawned prior to the 

experiment) FHM were used in the study from stock cultures supplied by Osage Catfisheries Inc. 

(Osage Beach, MO, USA). A total of 64 breeding pairs were randomly selected for the pre-

exposure phase of the study. At the end of the breeding trial, 32 pairs were selected for use in the 

exposure phase of the experiment. Breeding pairs were selected on the basis that there was 100% 

survival of all adults, eggs were produced in each replicate at least once in the immediately 

preceding 7 days, and >80% fertilization of eggs had occurred (Ankley et al., 2001; OECD, 

2006; USEPA, 2007). Statistical analyses were conducted on the breeding pairs selected for the 

exposure phase to ensure that there were no significant differences among treatments.  

 

2.1.4 Trophic transfer set-up  

Each stream of the trophic-transfer system consisted of a sediment layer (2.54 cm of pre-

cleaned silica sand), a breeding tile and a feeding barrier. The feeding barrier was a circular, 

plastic wire mesh “platform” (mesh size of 1cm
2
) with a pie section removed (1/10

th
 of the 

circle) that allowed access of FHM to a controlled streambed area that had an estimated C. 

dilutus density equal to 1g/C. dilutus/day (Rickwood et al., 2006a). Each stream also was 

covered with a mesh screen (500 microns) so any emerging insects were retained, counted, and 

left in the streams to reproduce. Seven day-old midge larvae (C. dilutus) were added on three 

occasions (July 25, August 1 and August 8) to establish a mixed age chironomid larvae 

population (egg, larvae, pupae, adult) in the artificial streams. Egg sacs were isolated from brood 

stocks and grown to 7 days at the Western College of Veterinary Medicine at the University of 

Saskatchewan and shipped to the site in snap lid containers. Chironomids were acclimated to 

both temperature and water over a 16 hour period by static renewal of 25% of the water every 4 
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hours.  The total number of egg sacs required for the 21-day exposure period was calculated 

based on optimal food supply (1g/day) for the FHM breeding pair in each of the streams (see 

Rickwood et al., 2006a, 2008 for greater details). The chironomids were cultured under 

respective treatment conditions approximately three weeks prior to the introduction of the FHM 

to ensure dietary exposure. The C. dilutus were fed 10 ml in the first week, 20 ml in the second 

week and 30 ml in the third and subsequent weeks with a Tetramin slurry blend (100g of 

Tetramin flakes to 1000 mL of control water), 3 times per week. Core samples were obtained 

on a weekly basis in order to estimate survival and compare stream densities (number 

chironomids per cm
2
 x total stream area (9cm

2
)) among treatments.  

 

2.1.5 Exposure phase 

The exposure phase was conducted immediately following the pre-exposure phase for a 

duration of 21 days (August 15- September 4). Breeding pairs (32 in total) selected from the pre-

exposure phase were randomly placed into the exposure and reference streams which were 

heated to 18-25°C using submersible aquaria heaters. Lighting averaged a 13h light: 11h dark 

photoperiod based on natural field conditions and flow rates remained the same as during the 

pre-exposure phase at 0.26 L/min to achieve a reservoir exchange rate of twice daily. During the 

exposure phase of the experiment, breeding tiles were checked on a daily basis. Eggs were 

checked each morning by 9:00 am in the same manner as described above in section 2.1.3. Eggs 

were aerated continuously and after a 2-day period, (once eyes had formed), were re-

photographed, and re-counted. Once the larvae hatched (5 days post-hatch), larvae were 

examined for deformities using the Vista Vision microscope. Frequency of deformities was 

observed in three main categories: craniofacial, edema and skeletal based on criteria outlined in 

Holm et al., (2003). At the end of the 21-day exposure period, fish were anaesthetized using 

clove oil (30μl reference water per 1μl clove oil) and were then euthanized by spinal severance 

prior to dissection according to the University of Saskatchewan approved animal care protocols. 

Liver, gonads, gills and carcass tissues were removed and weighed (to 0.001 g) and placed into 

the appropriately pre-labelled sample vial and frozen for metals analysis. Visual observations for 

abnormalities or presence of parasites were also noted during dissections. Secondary sex 

characteristics including: banding, nuptial tubercles, dorsal pad and fin dot in males and 

ovipositor size in females were also assessed. Each secondary sex characteristic was evaluated 
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using a point system outlined by Parrot and Wood (2002). Fish were analyzed for the standard 

EEM fish survey endpoints including: relative liver weight, relative gonad weight, condition, and 

survival. One biofilm and chironomid sample was also collected from each stream at the end of 

the exposure period. Chironomids were physically picked from the bottom of the streams using 

forceps.  They were dried and weighed to 0.001 g and then placed into pre-labeled sample 

collection vials and placed in the freezer. Final C. dilutus densities (number of C. dilutus/cm
2
) 

were determined at the end of the exposure period by obtaining a pooled sample from three 

sediment cores (area per core 9 cm
2
). Biofilm was scraped from the sides of each stream using a 

plastic spatula and placed into pre-labelled sample vials and into the freezer. All tissue samples 

and biofilm were immediately shipped on ice to the lab (Testmark Laboratories, Garson, ON, 

Canada) after experimental take-down and analyzed in accordance with the American Public 

Health Association (APHA) and the US EPA solid waste (SW) analytical methods. 

 Water samples from each treatment were collected on a weekly basis for the analysis of 

general water chemistry parameters (e.g., pH, alkalinity, dissolved oxygen), major anions (e.g., 

Cl, NO3, PO4, SO4), Total Organic Carbon (TOC), Dissolved Organic Carbon (DOC), total 

metals (e.g., Al, Cr, Ni, Rb, Sr), metalloids (e.g., As, B, Ce, Si, Te) and micronutrients (e.g., Se, 

Co, Zn, Cu). Grab samples were collected, in pre-labelled high density polyethylene (HDPE) 

sample bottles from each mesocosm reservoir.  Sample bottles were rinsed three times with the 

respective treatment water prior to sample collection. Each suite of samples were placed in a 

plastic bag and immediately placed into the fridge or cooler and shipped directly to the lab on ice 

to maintain samples at 4°C. A suite of 41 elements were analyzed. Water samples were acidified, 

and analyzed for total metals using inductively coupled plasma-mass spectrometry (ICP-MS). 

Water hardness was also analyzed using ICP-MS without acidification of the water. The total 

water hardness was calculated from ICP-MS using both Ca
2+

 and Mg
2+

 cations and was 

expressed as the equivalent of calcium carbonate (CaCO3) in the water. Conductivity and 

alkalinity in water were measured using a Metrohm analyzer, pH was analyzed using 

electrometric methodology, and total suspended solids were evaluated using a gravimetric 

method. Anions in the water were analyzed by ion chromatography. Ammonia, total Kjeldahl 

nitrogen, and total phosphorus were filtered in acid (persulfate or sulfuric acid) and analyzed by 

auto-colorimetry. TOC and DOC were both analyzed using a Dohrman TOC analyzer, and for 

DOC estimation water samples were filtered through a 0.45 µM nylon filter. One sediment 
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sample was collected from each stream at the end of the experiment. Grab samples were 

collected in 250 mL glass jars and analyzed for total metals, particle size (PSA) and total organic 

carbon (TOC). Sediment samples were digested in aqua regia and total metals were analyzed by 

ICP-MS. All of these above water quality measurements were conducted by the Testmark 

Laboratories, in accordance with the analytical methodology of APHA and US EPA. 

  Four types of quality control (QC) practices were followed by the laboratory (method 

blanks, in-house control standards, laboratory duplicates and matrix spike recovery samples). All 

four were used for water and sediments and three (method blanks, in-house control standards and 

spike recovery samples) were used for the tissue analysis. Data quality objectives (DQO) of 10% 

for water and sediments and 20% for biota were established to serve as criteria for data quality 

assessments. Three laboratory duplicates were run for water and one for sediment in order to 

assess the variability which may occur during laboratory analysis. The relative percent difference 

(RPD) among original samples and duplicates were analyzed, and showed that the laboratory 

[RPD = 100 * ABS (Sample A - Duplicate B) / mean (Sample A : Duplicate B)] precision was 

achieved for 91%  of the comparisons made for water and 81% of the sediment comparisons. 

Spike recovery samples for water, ammonia, total phosphorus, anions, DOC and TOC were 

assessed using aqueous certified reference material purchased from various manufacturers by the 

lab. Percentage recovery for aqueous samples was within the range of 85.8%-113%.  DOLT-3 

dogfish (Squalus acanthias) liver reference materials were used in the calibration procedures to 

analyze all biological tissues; the percentage recovery was within the range of 94.1% - 112.5% 

for select elements (As, Cd, Cu, Fe, Pb, Hg, Ni, Se, Ag, Zn).  Field blanks or field duplicates 

were not collected during the study.  

 

2.1.6 Data analysis  

All statistical analyses were performed using SPSS® 17 (SPSS Inc., Chicago, Il, USA) 

and graphed using Sigmaplot® Version 10 (San Jose, CA, USA). One-way analysis of variance 

(ANOVA) or the non-parametric equivalent (Kruskal Wallis) tests were used to assess most of 

the data (mean egg production, hatching success, percent deformities, metal tissue burdens, water 

quality, condition, LSI, GSI). All data analyzed using an ANOVA were first tested for 

parametric assumptions (normal distribution and homogeneity of variance using Shapiro-Wilk's 

and Levene's tests). Kolmogorov Smirnov (KS) tests were used to assess cumulative frequency 
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data (e.g., egg production, spawning events), and Chi-square analysis was used to assess the 

attribute data (e.g., secondary sex characteristics). Transformation was conducted (log 

transformation of continuous or derived data and angular transformation of percentage-based or 

ratio scaled data) when required. Differences from reference and among treatments were 

assessed using a Tukey’s or Dunnett's post hoc or non-parametric Mann-Whitney-U test 

applying the appropriate Bonferonni correction (α (0.05)/number of comparisons made) to 

reduce the Type I error rate. Chironomid densities (number of C. dilutus/cm
2
) and emergence 

(number of adults emerged) data were analyzed using a two-way ANOVA with the duration of 

the exposure (in days) and treatment type as the two factors. All results were significant when p≤ 

0.05.  

 

2.2 RESULTS 

2.2.1 Water quality and metal analysis 

Significant increases in conductivity, calcium, and total hardness were observed in all 

three treatments (SWE, MWE, PWE) compared to the reference (one-way ANOVA and multiple 

comparisons for all variables, p<0.001). Other general water quality parameters including 

temperature did not differ significantly among treatments at any point in time during the 

experiment. Likewise, there were significant increases in concentrations of Ba, B, Li, Rb, and Sr 

in all treatments compared to reference (Table 2.1). Nitrate, total nitrogen and Mg significantly 

increased in MWE and PWE treatments compared to reference (Table 2.1). The concentrations 

of Cu, Ni, Se and Tl increased significantly in PWE compared to the reference, SWE or MWE 

(Table 2.1). 

 

2.2.2 Metal burdens in all matrices 

Copper in PWE was the only metal that increased significantly (~830%) in the sediment 

among all treatments (2.32 ± 0.56 mean µg/g ± SE), compared to the reference (0.25 ± 0.00 

mean µg/g ± SE) (sediment data not shown). Several elements (e.g., Cu, Se, Ni, Co, Sr) were 

significantly elevated in the biofilm relative to reference in all three treatments (Figure 2.1). Co 

(~141% data not shown) and Ni (~150%) were the only two elements found to increase 

significantly in chironomids in the SWE treatment (Figure 2.2). Cu (~515%) and Se (~327%) 

increased significantly however in chironomids in the PWE treatment (Figure 2.2).  However, 
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these increases did not directly transfer into the invertebrate (C. dilutus) or female fish tissues, 

and, in many cases, elements  that increased in the biofilm decreased in chironomid and female 

fish tissues in the PWE treatment relative to the reference (Figure 2.2 selected metals). There 

were also no significant increases in metal or micronutrient burdens in chironomids exposed to 

MWE compared to the reference (Figure 2.2 selected metals). Metal burdens in FHM were 

analyzed solely in the females in the current study based on the assumption that females have a 

greater ability to affect the F1 generation and pass any potential contaminants to the offspring via 

maternal transfer. In addition, previous work conducted on resident FHM population in Junction 

Creek (Weber et al., 2008), suggested that female fish accumulated greater metal burdens 

relative to males. There were no significant increases in metal accumulation in any FHM tissues 

analyzed (carcass, ovaries, gills, liver) in any of our treatments of the present study. An 

increasing trend of selenium accumulation was observed in the carcass (~120%) of fish exposed 

to PWE (Figure 2.2). Similarly, an increasing trend, though not statistically significant, was 

observed in FHM liver with copper accumulation in the MWE treatment (~72%) and the PWE 

treatment (~180%) compared to reference (Figure 2.2).  

 

2.2.3 Biological endpoints 

Significant differences among fish body weight (p=0.588) or fork length (p=0.615) among 

the four treatments were not observed. Variability of fish condition [100(body weight (g)/ 

length(cm)
3
], gonadosomatic index (GSI) [100(gonad weight/ body weight)] and liver somatic 

index (LSI) [100(liver weight/body weight)] were assessed in FHM. A significant increase in 

female FHM condition was observed in the SWE treatment compared to the reference (p=0.002) 

(Table 2.2). Since body weight or length did not differ among treatments, these results would 

suggest that the observed differences were the result of a synergistic relationship between body 

weight and length. GSI and LSI were not significantly affected in females when exposed to 

MME's. However, a significant increase in LSI (p=0.041) was observed in male FHM in the 

MWE treatment compared to reference (Table 2.2), with no appreciable differences in condition  



 

 

Table 2.1: Summary of water chemistry and mean total metals (mean ± standard error, n=3) showing statistically significant 

differences analyzed in water samples collected from Reference, SWE (surface water effluent), MWE (mine water effluent) and 

PWE (process water effluent) treatments in artificial streams during the 2008 field study. Asterisks represent significant system 

effects where *p<0.05, **p<0.01, ***p<0.001 (data analyzed using a One-Way ANOVA or Kruskal Wallis). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a
TOC = Total Organic Carbon 

b
DOC = Dissolved Organic Carbon 

c
TSS = Total Suspended Soli

 

  

Parameter 

Units 

Canadian 

Water 

Quality 

Guidelines 

(Aquatic Life) Reference 20% SWE 30% MWE 45% PWE 

 Temperature °C - 21.70.44 22.40.63 21.71.44 23.170.40 

pH  pH 6.5-9 7.52  0.15 7.29  0.12 7.33  0.16 6.69  0.43 General 

Chemistry  TOC
 a
   mg/L - 10.33  0.67 9.67  0.33 9.00  0.58 7.33  0.88* 

 DOC
 b

   mg/L - 8.67  0.88 9.33  0.33 8.00  1.15 7.00  0.58 

 TSS
 c
 mg/L - 3  0 3 0 3  0 5 2 

 Alkalinity mg/L - 43.7  0.1 43.5  1.4 43.2  4.0 25.1  6.6 

 Ammonia  mg/L - 0.17  0.05 0.32  0.11 0.74  0.35 1.89  0.77 

 Conductivity µS/cm - 148  6 465  14*** 769  33*** 1616  53*** 

 Nitrate mg/L - 0.10  0.05 0.12  0.04 1.97  0.43** 1.26  0.76* 

 Total Calcium mg/L - 15.5  0.8 60.7 5.8*** 108.9  7.6*** 259.3  20.7*** 

 Total Magnesium mg/L - 3.3  0.3 3.9  0.2 1.0  0.4*** 8.2  1.4** 

 Total Hardness (as CaCO3)  mg/L - 54.5  3.8 163.0  20.4*** 308.3  5.5*** 651.3  23.9*** 

 Total Phosphorus (as P) mg/L - 0.25  0.20 0.29  0.23 0.05  0.01 0.10  0.02 

 Total Nitrogen mg/L - 1.31  0.01 1.61  0.22 4.06  0.75** 4.16  0.51** 

Metals Total Barium µg/L - 13.57  0.20 16.83  0.78* 80.50  55.25* 28.43  1.47* 

 Total Boron µg/L - 12.33  1.20 18.00  0.58* 30.87  1.92*** 42.30  5.31*** 

 Total Cobalt µg/L - 0.30  0.16 0.39  0.05 0.36  0.14 1.45  0.12* 

 Total Copper µg/L 2-4 9.00  0.38 9.23  1.07 7.93  1.20 50.80  5.45*** 

 Total Lithium µg/L - 2.50  0.00 8.10  0.65*** 8.47  1.33*** 26.33  3.38*** 

 Total Nickel µg/L 25-150 11.47  1.54 32.67  4.96 27.10  10.60 53.27  15.49* 

 Total Rubidium µg/L - 2.33  0.03 6.00  0.50*** 11.77  1.02*** 35.47  2.74*** 

 Total Selenium µg/L 1.0 0.80  0.30 0.50  0.00 1.37  0.44 11.10  0.92* 

 Total Strontium µg/L - 57.93  1.01 137.7  10.17*** 482.3  36.06*** 485.0  32.51*** 

 Total Thallium µg/L 0.8 0.05  0.00 0.05  0.00 0.05  0.00 0.30  0.04* 

3
3
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Figure 2.1 Selected metals (mean ± standard error, n=5) that were significantly increased in one 

or more treatment, SWE (surface water effluent), MWE (mine water effluent), and PWE (process 

water effluent) in the biofilm (µg/g) over a 21-day exposure period. Asterisks represent 

significant difference from reference where *p<0.05, **p<0.01, ***p<0.001 (data analyzed 

using a One-Way ANOVA or Kruskal Wallis). 
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Figure 2.2 Selected metal concentrations [Cu, Se, Ni, Co] in tissues analyzed in fathead minnow (P.promelas) [Carcass, Ovaries, 

Liver, Gills], and midge larvae (C. dilutus) (mean ± standard error, n=5) after exposure to SWE (surface water effluent), MWE 

(mine water effluent), and PWE (process water effluent) over 21-days.  Asterisks denote a significant increase in metal 

concentrations compared to reference, where *p<0.05, **p<0.01, ***p<0.001 (data analyzed using a One-Way ANOVA or Kruskal 

Wallis)
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or GSI in any of the treatments when compared to reference. Again, since body weight did not 

significantly differ among fish we assume that liver weight was mainly responsible for the 

observed differences in LSI. 

 

2.2.4 Reproductive endpoints 

There was a significant difference in fecundity when compared to both body weight and 

fork length (p= 0.046 and 0.049, respectively) in the SWE treatment only (Table 2.2). This is 

supported by results showing a significant increase in egg production [Cumulative total number 

of eggs produced (p=0.006), cumulative eggs per female per day (p=0.017) and cumulative 

spawning events (p=0.042) see Table 2.2 and Figure 2.3 for selected parameters] after exposure 

to SWE compared to that in the reference. In comparison, a significant decrease was observed in 

cumulative eggs per female per day p=0.001), cumulative total number of eggs produced 

(p=0.001) (Table 2.2; Figure 2.3) with no significant differences in spawning events (p=0.095) 

(Table 2; Figure 2.3) in the PWE treatment compared to that in the reference (Table 2.2; Figure 

2.3). No significant changes in any of these endpoints were observed in MWE treatment relative 

to the reference (p>0.05).  Egg size (as a function of body weight) was significantly decreased 

following PWE exposure (p<0.05) (Table 2.2).  

 A significant reduction in mean total number of days to hatch was also observed after 

exposure to both SWE and PWE compared to the reference (p<0.05) (Table 2.2). A significant 

increase in fertilization success was observed after exposure to PWE compared to the reference 

(p=0.018) (Table 2.2). No significant changes in gonad weight, mean total egg production (the 

total number of eggs produced by each female in a given stream/replicate, over the 21-day 

exposure period) and mean egg production (average number of eggs produced by each female in 

a given stream over the 21 day exposure period), hatching success, adult survival, larval survival 

or larval deformities were observed in any of the effluent treatments when compared to the 

reference (Table 2.2).  Similarly, there were no significant differences in either male or female 

secondary sex characteristics in any of the effluent treatments compared to the reference 

(p>0.05). When development of characteristics was assessed over time, no significant changes 

occurred in any of the treatments compared to the reference (p>0.05).  
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2.2.5 Chironomus dilutus density and emergence 

Chironomid densities in each treatment at the end of the exposure period are shown in Figure 

2.4. After 21 days of the study, the food resource averaged 3.5 larvae/cm
2
 in the reference 

treatment and decreased to 2.5 larvae/cm
2
 in the SWE, 1.75 larvae/cm

2
 in PWE and 1.0 

larvae/cm
2
 in MWE. A statistically significant difference in chironomid densities among effluent 

and reference exposed invertebrates was observed (p<0.001). Post-hoc analysis revealed a 

significant difference from the reference for all three treatments (SWE p=0.001, MWE p<0.001, 

PWE p<0.001). Satiation density of 1.48 C. dilutus/cm
2
 was, however, achieved in most 

treatments by the end of exposure. The optimum density was based on a daily feeding amount of 

1g/breeding pair/day established during the development of the modified bioassay (Rickwood et 

al., 2006a), which was based on the amount of food that was required by the FHM to achieve 

satiation (Ankley, 2001). Densities were then based on the number of C. dilutus that were 

equivalent to one gram (50 larvae in our case) over 21 days of exposure (1050 total chironomids) 

per total stream area (706 cm
2
), resulting in the satiation density of 1.48 C. dilutus/cm

2
. Densities 

did not appear to affect FHM egg production since densities in the SWE treatment were 

significantly lower than the reference, yet this treatment had the highest egg production. 

Similarly, MWE had the lowest densities but similar egg production to the reference. 

Results showed that the duration of exposure (time) and the type of effluent (treatment), as 

well as the interaction between time and treatment had a significant effect on the emergence of 

adult chironomids (p<0.001 for all). In the first two weeks of exposure, emergence appeared 

consistent across the three effluent treatments (Figure 2.5). A decrease of adult emergence in the 

reference and SWE occurred during the intermediate phase of the exposure, which could be due 

to the increased consumption by fish and/or the stage of larval development at the time of sample 

collection. Emerging adults were counted but not removed from the streams, thus any 

chironomid breeding resulted in the deposition of egg sacs and corresponding generational 

cycling in the streams. Chironomid egg sacs were observed being laid in the streams throughout 

the study. The final week of adult emergence corresponded to the high larval densities observed 

in the sediment cores in all of the treatments including the reference. 

 



 

 

Table 2.2 Percent magnitude of change (+, -, 0, n=8) relative to reference for selected biological and reproductive endpoints 

measured in both male and female fathead minnow (P.promelas) after exposure to SWE (surface water effluent), MWE (mine 

water effluent), and PWE (process water effluent) over 21-days. Asterisks represent significant treatment effect where *p<0.05, 

**p<0.01, ***p<0.001 (data analyzed using a One-Way ANOVA or Kruskal-Wallis for mean data, Kolmorov Smirnov for 

cumulative data and Chi-square for attribute data).  
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Females Males Biological Endpoints 

  SWE MWE PWE SWE MWE PWE 

Fork length -4% 0% -1% +8% +8% +2% 

Body weight +14% +11% +12% +32% +33% +9% 

Liver weight +26% -5% -9% +118% +161% +47% 
Condition [(body wt/length(cm)

3
) *100] +26%** +11% +13% +4% +6% +1% 

Liver weight vs body weight (LSI) +6% -14% -20% +59% +97%* +34% 

Reproductive Endpoints             

Gonad weight  +76% +58% +65% +51% +40% +33% 

Gonad weight vs body weight (GSI) +49% +45% +46% +13% +20% +31% 
Mortality 0% 0% 0% 0% 0% 0% 

Fecundity +97%* +2% -52% N/A N/A N/A 

Egg size vs length 0% -4% -8%** N/A N/A N/A 
Egg size vs body weight -11% -13% -18%* N/A N/A N/A 

Cumulative eggs/female/day +75%* -5% -60%***    

Cumulative total egg production +122%** +7% -39%***    

Cumulative spawning events +29%* +9% -17%    
Mean eggs produced +98% +2% -41%    

Mean eggs/female/day +68% +9% 0%    

Secondary sex characteristics +13% +20% +7% +26% +11% +12% 
Mean days to hatch -11%* -3% -15%**    

Hatching success -23% -47% +9%    

Mean fertilization success +2% 0% +6%*    
Mean larval survival (Day 5) -6% -28% -21%    

Mean larval deformities +13.9% -25.8% -40%       
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Figure 2.3.  Cumulative total egg production and cumulative number of spawning events by 

fathead minnow (P.promelas) breeding pairs during a 10-day pre-exposure and 21-day exposure 

period to 20%SWE (surface water effluent), 30% MWE (mine water effluent), and 45% PWE 

(process water effluent) compared to reference water.  Asterisks denote a significant difference 

from reference, n=8 during the exposure phase (data analyzed using Kolmorov Smirnov). 
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Figure 2.4 Comparison of C. dilutus densities (mean ± SE, n=8) in replicate streams after 

exposure to 20% SWE (surface water effluent), 30% MWE (mine water effluent), 45% PWE 

(process water effluent) after the 21-day exposure period. Asterisks represent significant 

difference from reference where *p<0.05, **p<0.01, ***p<0.001 (data analyzed using a One-

Way ANOVA). 
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Figure 2.5 Comparison of C. dilutus adult emergence in replicate streams after exposure to 20% 

SWE (surface water effluent), 30% MWE (mine-water effluent), 45% PWE (process-water 

effluent) after the 21-day exposure period. Asterisks represent significant difference from 

reference where *p<0.05, **p<0.01, ***p<0.001 (data analyzed using a Two-Way ANOVA, 

n=8). 
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2.3 DISCUSSION  

Most mining operations in Canada are now moving towards investigating the cause of 

effluent effects as years of monitoring have determined that effects exist and subsequent 

mitigation requires an understanding of cause. The ability to assess the effects of each individual 

effluent can be a difficult task to undertake using traditional field studies, particularly when the 

study site is impacted by multiple confounding stressors. Multi-trophic mesocosms combining 

both food and water as a source of exposure have proven to be a good alternative to traditional 

field studies.  

 

 2.3.1 Water quality 

Total metal concentrations in the effluents increased in a concentration-dependent fashion 

with the lowest metal concentrations in the 20%SWE, followed by 30%MWE, and the highest 

metal concentration in the 45%PWE. These findings were consistent with previous field and lab 

studies of Junction Creek  (Hruska and Dubé, 2004; Dubé et al., 2006a; Weber et al., 2008; 

Rickwood et al., 2006a, 2008).  Although many of the causative elements found in all three 

mining effluents (SWE, MWE, PWE) (e.g., Co, Cu, Li, Mg, Ni, Rb, Se, Sr, Tl) were 

significantly higher than in the reference water and were above Canadian Water Quality 

Guidelines for the Protection of Aquatic Life (CCME, 1999),(Cu, Ni, Cr, Fe, Cd, Co, Pb, Mo, 

Cr, Tl), there were no significant increases of metal accumulation in any of the female FHM 

tissues (carcass, gills, gonads and liver) analyzed. Adult survival was similar among all 

treatments relative to the reference (88% survival in reference).  

  Water chemistry parameters such as hardness, dissolved and suspended organic carbon, 

pH and alkalinity are important modifiers of metal bioavailability and toxicity to aquatic 

organisms (Paquin et al., 2002; Niyogi and Wood, 2004). In the current study,  3-12 fold 

elevated water hardness concentrations as well as 4-16 fold increase in Ca (the primary hardness 

cation) concentrations in the MMEs (SWE, MWE, PWE) were observed compared to the 

reference water. Since it has been found that metal bioavailability decreases with increasing 

water hardness, it was likely the most important factor among all the water chemistry variables in 

reducing waterborne metal accumulation by MME exposed fish in the study.  
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2.3.2 Biofilm and chironomids 

Biofilm is composed of algae, bacteria, and fine detrital matter that adhere to substrates in 

waterbodies. This study showed that several elements (e.g., boron, cobalt, lead, strontium and 

selenium) were elevated in the biofilm of MME treatments relative to the reference (Figure 2.2). 

Similarly, cobalt and nickel in the SWE treatment, and copper and selenium in the PWE 

treatment were elevated in the chironomid tissues (Figure 2.2, select elements). However, 

increased metal and micronutrient accumulation both in the biofilm and chironomids did not 

result in significant increased burdens in FHM, although increasing trends were visible in FHM 

livers, ovaries and carcass tissues (Table 2). Farag et al. (2007) have also reported significantly 

higher metal levels in the biofilm relative to benthic macro-invertebrates and fish tissues in a 

watershed impacted by MMEs, suggesting that biofilm plays a key role in influencing the 

transfer of metals into the food chain. Considering the highest concentration of elements were 

detected in biofilm across all effluent treatments, it is possible that, in addition to water hardness, 

the growth of biofilm in the streams played an important role in reducing waterborne metal 

bioavailability in our treatments. Dissolved elements in the water column can easily be 

transferred to the abiotic (colloids in the water) and biotic components through biological 

processes (diffusion, binding, uptake) within the biofilm (Hamilton, 2004; Orr et al., 2006; 

Buffle et al., 2009). It is also possible that only a limited transfer of elements occurred through 

the food chain because the chironomids and possibly the fish were not feeding entirely on the 

biofilm during our study. Chironomids were supplied a diet of Nutrafin
TM

 slurry 3 times per 

week throughout the entire experiment, and therefore had an alternate food source. The 

consumption of biofilm by FHM or the chironomids as a food source has not been addressed 

under the current study design, and should be examined in future investigations. Furthermore, 

chironomid larvae in the natural environment are primarily collector-gatherers but can occupy a 

variety of niches including: collector-filterers, scrapers and predators feeding on fine sediment, 

detritus, algae as well as other midge larvae. (Voshell, 2002). Due to the omnivorous nature of 

the chironomids, future studies may also consider the addition of a scraper (at the nymph stage) 

to the streams (e.g., mayflies, caddisflies), since they would feed entirely on the natural biofilm, 

which may provide a better indication of metal transfer through the food chain. 
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2.3.3 Fathead Minnow tissue metal burdens 

One of the objectives of the present study was to assess the accumulation of elements by 

fish both through the water and the food chain.  In the natural environment, FHM's feed from the 

bottom on aquatic insect larvae, zooplankton and algae (Holm et al., 2009). This natural feeding 

behaviour was facilitated within each of the streams by allowing the biofilm (algae) to establish 

along with the prey base (chironomids) in the bottom sediments prior to the introduction of the 

FHM. This also ensured that both the biofilm and the chironomids were exposed to the effluent 

prior to the fish consuming them. It was hypothesized that increased metal content in the 

effluents would lead to increased metal accumulation in fish tissues through trophic transfer.  

Although we observed statistically elevated levels of Cu and Se, in the water, biofilm and 

chironomid tissues in the PWE treatment, statistically significant accumulations of these 

micronutrients in the fish tissues were not observed.  Often in the natural sciences, important 

biological differences can fail statistical detection due to a variety of reasons (e.g., small sample 

size, high variance in the data, low power to detect a significant difference) (Johnson, 1999; 

Bosker et al., 2009). Conversely, unimportant differences can turn out to be significant due to 

abnormally large sample sizes (Johnson, 1999). In some cases a judgment call between statistical 

significance (non-significance) and biological significance (non-significance) must be made. 

Consequently, upon examination of the data biologically (though not statistically), both selenium 

(in the carcass and liver) and copper (in the liver) showed an increasing trend of metal 

accumulation in FHM exposed to PWE (Figure 2).  Previous studies conducted on Junction 

Creek (Eastwood and Couture, 2002; Jaagumagi and Bedard, 2001, Weber et al., 2008) have 

consistently reported elevated levels of Cu in fish tissues.  Studies conducted by our lab using 

PWE have also consistently reported elevated levels of both Cu and Se in fish tissues (Dubé et 

al., 2006a; Rickwood et al., 2006a, 2008).  It is possible that the sample size was too small and/or 

the elevated micronutrient concentrations in the reference water limited the ability to detect a 

significant difference among treatments, however we could not discount the biological 

significance of the increasing trend in both Cu and Se in fish tissues.   

 The dominant pathway of selenium uptake in fish is thought to be the diet, where it is 

passed on to the egg mainly through maternal transfer (Ogle and Knight, 1989; Lemly, 2002). 

The bioaccumulation of Se through trophic transfer has been well documented in the literature, 

and it has been implicated in fish reproductive impairment, reduced fish biomass, population 
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declines and drastic alterations in fish community structure (Ogle and Knight, 1989; Heinz et al., 

1996; Lemly, 2002). Therefore, it is a metal of great concern for all mining operations in Canada 

and throughout the world and has been gaining substantial interest in the literature over the last 

few years. Although waterborne Se concentrations exceeded the toxicity thresholds established 

by the USEPA (2004) of 5 µg/l  in PWE by a factor of 2, Se accumulation in the eggs were well 

below the level reported in the literature (Lemly, 1993; Hamilton, 2004) to elicit teratogenic 

effects (10 µg/g dry weight), with concentrations ranging from 0.924 to 1.548 µg/g wet weight 

(approximately 3.926 to 6.579 µg/g dry weight based on 76.47% moisture [Muscatello et al., 

2006]). There were also no significant differences in larval deformities in any of the effluent 

treatments (SWE, MWE, PWE) compared to the reference.   Previous studies conducted by our 

lab have recorded increased deformities in larvae exposed to PWE, despite lowered total Se 

concentrations in the water (Rickwood et al., 2008). Although we found significantly higher Se 

concentration in chironomids, and increasing trends in the FHM livers and carcasses, the Se 

levels in the ovaries and eggs were similar across all of the treatments. These results suggest that 

although trophic transfer of Se might have occurred in the PWE treatment to an extent, it did not 

result in a substantial maternal transfer of Se. Speciation analysis conducted in our lab have 

shown that the inorganic Se present in the PWE in our study was largely in selenate form, which 

is known to be less bioavailable and less toxic to aquatic animals than selenite (Lemly, 2002; Orr 

et al., 2006).  However, it is known that primary producers can transform inorganic forms of Se 

into organic species (e.g., selenomethionine) which are readily transferred through food webs 

(Muscatello et al., 2009). It is possible that this could have occurred in the current study though 

we have no way of confirming this theory. Nevertheless, based on the re-occurrence of 

significant Se accumulations in biotic tissues in all of our studies to date, inconsistent larval 

deformity results and minimal speciation data, it can be suggested that Se is a metal of concern in 

the effluent water with regards to the reproductive effects observed in fish exposed to the PWE.  

 Cu also transferred through the food chain (water, biofilm, chironomids, FHM [liver])  

and exhibited an increasing trend, though not statistically significant in the PWE. Cu toxicity can 

occur through both waterborne and dietborne routes of exposure. Cu is a micronutrient that is 

known to be tightly regulated in fish through the homeostatic mechanisms to ensure toxicity 

and/or deficiencies do not occur (Schlenk and Benson, 2001).  Due to this homeostatic regulation 

of Cu, levels in the water or diet would have to remain at a relatively high level in order for 
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measurable bioaccumulation into the tissues and subsequent toxicity to occur (Schlenk and 

Benson, 2001).  Population threshold concentration (PTC) in the literature has been estimated at 

27 µg/l for waterborne Cu exposure of FHM, at hardness levels of 218 mg/L (Iwasaki et al, 

2010). Since Cu levels were found at concentrations well above the estimated PTC in the PWE 

treatment (50 µg/l at hardness of 651 mg/L in 45% PWE), it is plausible that chronic waterborne 

Cu exposure could lead to population-level effects in FHM.  Consequently, chronic exposure to 

elevated levels of Cu has been shown to impair the homeostatic mechanisms resulting in cellular 

damage, oxidation of proteins, membrane lipid peroxidation and cleavage of DNA and RNA 

molecules (Schlenk and Benson, 2001). Significant Cu accumulation in the gills was not 

observed in any of the treatments, which suggests that the accumulation in the tissues was 

predominantly dietary related. This was also reflected in the tissue analysis which showed 

concentrations (wet.wt.) between 1.8-7.1 µg/g in the ovaries, 0.5-0.9 µg/g in the carcass and 3.9-

80.3 µg/g in the livers among the three treatments. Due to the elevated levels of Cu in the PWE, 

the observed metal accumulations in FHM (ovaries, carcass and liver) tissues and the ability of 

elevated Cu in fish to affect critical life stages, fish growth and development (Schlenk and 

Benson, 2001), Cu remains a metal of concern in the PWE.   

 Reproductive effects have been consistently observed in both fish and benthic 

invertebrates in all of the studies that we have conducted with Junction Creek MMEs to date 

including our current study (Dubé et al., 2006a; Weber et al., 2008; Rickwood et al., 2006a, 

2008). We believe that the nature of the effluent and its composition are the main contributing 

factors affecting toxicity. As previously mentioned, PWE is mainly comprised of mine process 

water from mining, and milling activities whereas the other effluents are mixtures of surface 

runoff and underground mine operation water.  The milling process for most mines requires the 

use of a variety of chemical reagents in the flotation process which may or may not include such 

things as: modifiers (e.g., Lime, sodium carbonate) used to increase the pH and activators (e.g., 

sodium sulfide, sodium hydrosulfide) used to float the metal of interest. After the flotation 

process the concentrated product goes through a de-watering and thickening process where 

flocculants and filtering agents are used such as:  sodium isopropyl xanthate, sodium isobutyl 

xanthate, polymers, nonionic surfactants, polyacrylate and anionic and nonionic polyacrylamides 

(EPA, 1994b). At all steps in the process, the waste products generated are sent to the tailings 

basin. In addition, there are other wastes produced by the mine which could end up in the tailings 
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basin such as surface runoff from fuel storage areas and maintenance shops and effluent from 

waste water treatment processes.  Though it was beyond the scope of the current study design to 

examine the organic constituents in the MME's, they too have the potential to affect FHM 

responses and could be partially responsible for the reproductive effects observed in our current 

study. Also PWE constitutes the greatest volume of effluent at the highest concentration of 

metals entering Junction Creek. Therefore, it is not surprising that we observed greater effects 

associated with PWE exposure. However, we cannot discount the importance of effluent 

characteristics and composition in assessing effluent-mediated effects.   Elevated concentrations 

of elements in the tissues of biota exposed to PWE suggest that the reproductive effects 

documented are associated with micronutrient exposure. Though not statistically significant, we 

did find clear trends for increasing Cu and Se accumulation in livers of fish exposed to PWE. 

Our fish metal accumulation data had a high degree of variability surrounding the mean and the 

sample size was fairly low (n=8,) therefore the power (P=0.115 to 0.618) to detect a significant 

difference between PWE and the reference fish was low.  Furthermore, the lack of statistical 

power to detect a significant difference could be attributed to the relatively shorter duration of 

exposure (21 days) since Cu accumulation occurs rather slowly in fish due to homeostatic 

regulation (Kamunde and Wood, 2004).  Cu and Se levels increased by 6-fold and 4-fold, 

respectively, in C. dilutus tissues exposed to PWE when compared to the reference.  Although 

we did not observe significant metal accumulations in FHM ovaries, reproductive effects are still 

possible via other important organs (e.g., liver). The liver is a target organ of metal toxicity in 

fish because it receives a large supply of blood (transporter of metals), is directly involved in the 

biotransformation, metabolism and excretion of metals, and plays a critical role in maintaining 

internal homeostasis in fish (DiGiulio and Tillitt, 1997).  The biotransformation process could 

lead to alterations in cellular function, DNA and proteins resulting in a reduction of viable 

offspring and reduced egg production (DiGiulio and Tillitt, 1997; Schlenk and Benson, 2001).  

This does not contradict with our findings since we did observe a significant decrease in 

cumulative total egg production (Figure 2.3) in PWE exposed fish compared to the reference.  

Furthermore, increased metal and micronutrient accumulation in the liver could affect circulating 

hormone levels in the blood resulting in increased embryo toxicity and altered vitellogenin levels  

(DiGiulio and Tillitt, 1997). Se is incorporated into vitellogenin (yolk proteins) in the liver and 

gets transported to the ovary where it can cause necrosis and rupturing of the egg follicles (Kroll 
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et al., 1991). Furthermore, if it is incorporated into the yolk sac, larval absorption could lead to 

deformities (e.g., kyphosis, lordosis, scoliosis) (Kroll et al., 1991).  Reduced mRNA transcript 

levels of vitellogenin have been observed in the livers of female zebrafish (Danio rerio) fed with 

metal-laden polychaetes (Nereis diversicolor) (Boyle et al., 2008). Since vitellogenin levels were 

not measured in our current study, we can only speculate that it might have been a factor for the 

decreases in cumulative egg production and cumulative spawning events that we have observed 

with PWE in the study (Figure 2.3).   

 

2.3.4 Metal effects on Fathead Minnow reproductive/biological endpoints  

On a national level, the EEM program has shown that fish exposed to mining effluents 

have reduced condition factor, liver size and growth rates compared to the reference fish (Lowell 

et al., unpublished). Similarly, benthic invertebrates have shown consistent decreases in taxon 

richness but inconsistent results with respect to densities (Lowell et al., unpublished). In the 

current study, increased condition (+26%) was observed in fish exposed to SWE. Increased liver 

size (+133% in females and +27% in males) and increased gonad size (+31% in females to +49%  

in males) were observed for all MME's (Table 2). In each instance the magnitude of change 

exceeded the Critical Effect Size (CES) for condition factor (±10%), liver size (± 25%) and 

gonad size (± 25%) as specified in the EEM program (MMER, 2002). Increased liver size is not 

all that surprising since the liver is a target organ for metal accumulation however, the increase 

in condition and gonad size in the MME's compared to reference was of special interest to the 

study. Differences in fecundity were observed in the SWE and PWE treatments when compared 

to reference treatments.  This would suggest that fish may be larger in size in SWE and smaller 

in PWE and that larger fish in any given treatment would be expected to produce more eggs. 

However, changes in fecundity were not a factor of the size (body weight or length were not 

statistically different) of the fish, they just produced more eggs in the SWE and less eggs in 

PWE.  Furthermore, it has been postulated that perhaps the differences in FHM reproduction 

(cumulative total egg production, cumulative spawning events) could be linked to differences in 

food abundance in the streams. Previous studies (Hruska and Dubé, 2004; Rickwood et al., 

2006a) have shown time dependent effluent-related effects on chironomid emergence patterns. 

When adult emergence was analyzed using a two-factor ANOVA, a significant interaction 

between time and treatment was observed in all treatments.  This suggested that the effect of 
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time was dependent on the presence of the effluent and exposure duration. Biologically, 

successful chironomid adult emergence was significantly reduced by both increasing effluent 

concentration and exposure time, which has been observed in previous studies (Hruska et al., 

2004). At the end of the exposure period for this study, chironomid densities were significantly 

reduced in all treatments compared to reference, although all treatments exceeded our optimal 

feeding amount (1.0 -1.5/cm
2
). This suggests that the greater than 100% increase in egg 

production in SWE and the 39% reduction in egg production in PWE may be due to the greater 

food availability or lack thereof in MME treatments compared to the reference.  

 It was also hypothesized that differences in reproductive output between the two 

treatments (PWE/SWE) may be associated to differences in effluent type or temperature 

differences among treatments. Although temperature fluctuated between 18-25°C in all streams 

throughout the experiment, the mean temperature did not differ significantly among treatments. 

Therefore temperature was not elevated in this particular treatment compared to the others. The 

nature of the three effluents however, differed considerably in both composition and 

concentration. Elevated levels of Ba, B, Ca, Co, Cu, Li, Mg, Mo, Rb, Se, Sr and Total 

Phosphorus (TP) were observed in the SWE compared to reference water. TP was the only 

nutrient that was elevated, though not statistically, in SWE relative to all other treatments (Table 

2.1). In nutrient-limited systems, TP enrichment can increase periphyton (biofilm) biomass and 

the production and abundance of benthic invertebrates such as chironomids, which use periphytic 

algae as a primary food source (Chambers et al., 2000; Culp et al., 2000). Consequently, 

increased food supply has been linked to increased condition, gonad size and egg masses 

(Gibbons et al, 1998). Though TP levels in SWE were not statistically different among 

treatments there may have been a slight nutrient enhancement effect since elevated chironomid 

densities were observed relative to PWE. Therefore, increased condition factor and egg 

production in SWE was most likely due to an elevated food supply resulting in increased energy 

storage in the fish. There is also the possibility that a hormetic effect (e.g., increased egg 

production at low-dose) may have occurred in SWE, though further toxicity testing using a 

dilution gradient with doses near to the no observed effect level (NOEL) would be required to 

confirm this theory (Giesy, 2001). Mine effluent mixtures are very complex and it is unknown 

how the various compounds interact. Since speciation data was not conducted on this effluent we 

can only speculate that the species present in SWE may have been less toxic forms than those 
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found in the PWE.  Furthermore, a reduced concentration of overall elements in SWE may have 

resulted in overall reduced metal exposure, reduced oxidative stress and reduced bioavailability 

in SWE compared to PWE.   

Effluent concentrations in MWE showed all of the same elevated elements as in the SWE 

(Ba, B, Ca, Co, Cu, Li, Mg, Mo, Rb, Se, Sr), along with As, hardness and total organic carbon 

(TOC) compared to reference values. The MWE showed much greater hardness levels and a 

greater concentration of elements overall.  

Effluent concentrations in PWE showed elevated levels of all of the same elements as in 

the SWE and MWE (Ba, B, Ca, Co, Cu, Li, Mg, Mo, Rb, Se, Sr), though metal concentrations 

were much higher in the PWE than in either SWE or MWE for most elements.  In addition to 

these variables, elevated levels of Al, As, Tl, TOC and hardness were observed.  The PWE 

appears to be characteristically more similar to the MWE with respect to nutrient concentration, 

with the exception of it having a slightly greater increase in overall metal concentrations in the 

100% effluent. In addition, PWE contains a number of beneficiation products which may or may 

not affect reproduction in fish. Furthermore, PWE contains sewage wastewater from the 

associated mining operations, whereas SWE and MWE do not.  It is possible that PWE could 

contain sufficient levels of estrogenic compounds which could greatly hinder reproductive output 

in FHM. Hardness and calcium levels were elevated in all effluents compared to reference, 

which is likely an artifact of the treatment process since all three MME's are pH adjusted with 

lime and settled prior to discharge into Junction Creek. This may also explain why some 

elements were elevated in the reference matrices (water, sediment, biofilm, chironomids, fish 

tissues) compared to exposure.  In addition to the physical uptake of elements, stressful exposure 

conditions, especially in the PWE, could have resulted in a shift in energy production with more 

energy concentrated on survival and less on reproduction (Franssen, 2009).  

 Increased TP and subsequent increased growth of biofilm and chironomid densities in 

SWE streams compared to PWE also has led us to consider that increased bacterial growth in the 

streams may have also contributed to reduced toxicity in SWE due to the potential for 

bacteriological reactions, particularly by sulphate reducing bacteria to reduce metal content in 

effluent water by precipitating them as metal sulphides (Choudhury et al., 2006).  
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2.4 CONCLUSION 

Through the use of an environmentally relevant bioassay, the point source discharge into 

Junction Creek of greatest priority has been identified as PWE.  It is difficult to determine 

whether the composition of the effluent, the volume discharged, the treatment processes or a 

combination of factors affected metal accumulation in PWE. However, a weight of evidence 

approach was used to identify the prominent elements in the metal mixture which may have 

contributed to reproductive effects in FHM.  The high metal content in the MME waters did not 

transfer appreciably through the food chain for most of the elements except Cu and Se in the 

PWE. Effluent quality (increased water hardness, organic matter, presence of sewage in the 

effluent and differences in metal concentrations), fish energetics, and differences in bacterial 

(biofilm) growth in the streams appear to have played a role in reducing waterborne metal 

bioavailability to FHM.  We also observed significantly higher accumulation of elements by the 

biofilm than chironomids and FHM, which also likely decreased waterborne metal 

bioavailability and toxicity in FHM exposed to MME's. Cu and Se remain micronutrients of 

concern in the PWE since trophic transfer of both were observed in our current study as well as 

many other studies that have been conducted in the Sudbury area. Reduced cumulative egg 

production and cumulative number of spawning events were recorded in FHM exposed to PWE, 

possibly induced by dietary Cu and Se exposure and accumulation. Though Se certainly appears 

in the effluents and is sufficiently high in PWE to raise cause for concern, there is insufficient 

speciation data to directly link it as a cause to the reproductive effects seen in the current study. 

 Future studies should consider assessing dissolved metals, the presence of organic 

constituents (flotation agents, frothing and de-foaming compounds, polymers, flocculants etc.), 

and estrogenic compounds in MME's especially in PWE. Vitellogenin levels in gonad tissues 

would help to assess cause of reproductive impairment and may give an indication of organic or 

estrogenic exposure.  Dissolved metals analysis and speciation of Se, and the analysis of organic 

forms of selenium in the food chain (e.g., selenomehionine) would also help to better predict 

metal bioavailability in the presence of these organic compounds. It would also be beneficial to 

examine the bacterial component of the biofilm for the presence of sulphur reducing bacteria in 

conjunction with metal content, in order to better understand the role of biofilm in metal 
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bioaccumulation, and to determine its significance in metal uptake from complex metal-mining 

mixtures. 
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Chapter 3
a 

EXAMINING WATERBORNE AND DIETBORNE ROUTES OF EXPOSURE AND 

THEIR CONTRIBUTION TO BIOLOGICAL RESPONSE PATTERNS IN FATHEAD 

MINNOW (PIMEPHALES PROMELAS) 
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This chapter has been submitted to the journal of Aquatic Toxicology under joint authorship 

with Monique G. Dubé, Allison J. Squires and Som Niyogi.   
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3.0  INTRODUCTION 

Drainage from historical mining activities, mine waste, process mill tailings, mine 

effluent and refining activities can enter surrounding watersheds and become sources of metals 

in the sediments, water and biota (fish, benthic invertebrates, biofilm). However, due to the 

complexities of aquatic ecosystems, our understanding of how metals and metal mixtures affect 

the food chain is limited. Previous studies conducted by our research group have shown 

waterborne effects in both fish (decreased egg size, increased tissue metal burdens) and 

invertebrates (reduced hatching success, reduced emergence) when exposed to the treated metal 

mining effluents (MME) (Hruska & Dubé, 2004; Dubé et al., 2005). Similar effects of metal-

mining effluent exposure on fish have also been demonstrated in both lab-based as well as field-

based studies (Bradley and Morris, 1986; Eastwood and Couture, 2002; Couture and Rajotte, 

2003; Pyle et al., 2005).     

 There is no dispute that water-borne exposure is an important route of metal uptake in 

aquatic organisms and has been the basis for setting environmental water quality criteria and 

standards for metals in Canada and the USA (Meyer, 2005).  However, metals are assimilated 

from the water and the diet very differently in the tissues of invertebrates and fish (Meyer et al., 

2005).  Diet-borne exposure can result in whole body burdens, (often several orders of 

magnitude higher), or specific tissue burdens far greater than caused by water-borne exposure 

alone (Meyer et al., 2005).  Even low levels of exposure in the water could lead to acutely toxic 

levels of dietary exposure in higher-level predators due to biomagnification and trophic transfer 

up the food chain (Meyer et al., 2005). Diet-borne metals such as Cu, Ni, Zn, Se can also reduce 

the survival, growth and reproduction of aquatic invertebrates and fish (Meyer et al., 2005). 

More recent studies have demonstrated that diet can be an important pathway of metal exposure 

in fish leading to reproductive impairment and toxicity (Rickwood et al., 2006a,2008; 

Rasmussen et al., 2008; Ng and Wood, 2008; Boyle et al., 2008; Muscatello et al., 2008).  

 It is often assumed that the waterborne exposure pathway is primarily mediated through 

the gills and the dietary pathway is mediated through other internal target organs, such as the gut 

and liver. However, metals accumulated from diet can be transported to the gill, and can 

subsequently affect the gill structure and function, suggesting that the dietary pathway is more 

important than previously identified (DeSchamphelaere and Janssen, 2004; DiGiulio and Hinton, 

2008). Nevertheless, it is well documented that the gill is usually the primary organ of metal 
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accumulation if the exposure is predominantly waterborne, whereas gill accumulation of metals 

is much less relative to that in other vital organs (e.g., liver and gut) during dietary exposure.  

 The objectives of our current study are two-fold; i) to examine the effects of exposure 

through diet, through water or through both routes of exposure using a fully factorial exposure 

design in the laboratory (Experiment I), and ii) to examine the role of food quality on fish 

toxicity by assessing differences in FHM responses when fish were fed a live diet of C. dilutus 

(multi-trophic) versus when fish were fed a frozen, laboratory-prepared diet of C. dilutus 

(Experiment II). This information is critical to bettering our understanding of the significance of 

diet for chronic toxicity testing of MMEs to reproducing FHM and their offspring and to 

consider how this information may affect our interpretation and application of different 

bioassays. 

 

3.1 METHODS AND MATERIALS 

3.1.1 Source area of mining effluents 

The study site was located in Junction Creek, Sudbury, ON, Canada approximately 400 

km north of Toronto, Ontario, Canada from January to May, 2009 (Figure 1.1). Junction Creek 

spans a length of about 25 km and can vary in width between 3-16 m. The main branch of the 

creek flows in a south westerly direction from the community of Garson, ON, through the city of 

Greater Sudbury, ON, terminating at Kelly Lake (Figure 1.1). It contains 5 main tributaries and 

receives several point and non-point source inputs, which may affect the system in a cumulative 

manner, including urban runoff, historical and current atmospheric deposition from mining 

activities, municipal wastewater treatment and landfill seepage (Jaagumagi and Bedard, 2001). It 

is also the final receiving environment of three treated MME discharges. The MME’s are all 

treated by conventional hydroxide precipitation and subsequent pH adjustment prior to 

discharging into Junction Creek (Rickwood et al., 2008). However, the nature of the MME varies 

among the three mine discharges. This study was conducted using only one of the MME 

discharges, a process water effluent (PWE) diluted to its natural environmental concentration in 
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Junction Creek of 45% PWE comprised of a mixture of several mining inputs (e.g., mining, 

milling, smelting and refining from the Sudbury area. The 45% PWE was chosen for this study 

since previous research undertaken by our lab has shown it to elicit the greatest effects to fish 

among the three MME’s (Hruska & Dubé, 2004; Dubé et al., 2005; Rickwood et al., 2006a, 

2008).  

 

3.1.2 Experimental design 

The current study was conducted from January to May, 2009 at the Aquatic Toxicology 

Research Facility, in the Toxicology Centre of the University of Saskatchewan in Saskatoon, SK, 

Canada, using artificial streams (mesocosms). Process water effluent (PWE) was shipped to the 

University on a weekly basis from Sudbury, ON, Canada. Laboratory control water was 

comprised of a mixture of 40% de-chlorinated tap water and 60% reverse osmosis (RO) water. 

The use of RO water in the current study was a key component of this study design since our 

goal was to closely approximate the reference water conditions (pH, hardness, alkalinity) in the 

Sudbury region.  This has enabled us to truly analyze the effluent effects on the aquatic 

organisms without the confounding effects of the environmental legacies and/or the confounding 

effects of geographic reference/control water quality differences (Sudbury vs Saskatoon). The 

laboratory control water was also used to dilute the 100% effluent to the appropriate 

environmentally relevant concentration of 45% PWE. Both water-only and multi-trophic 

artificial streams were used in the current study.  The water-only streams expose FHM to effluent 

only through the water phase. The multi-trophic streams refer to a food chain of C. dilutus, and 

FHM in a self-sustaining system (no external food supply) so that exposure of FHM is through 

both water and dietary pathways.  

 Each mesocosm table consisted of eight replicate, 10.3 L, circular, high-density 

polyethlylene artificial streams and each stream contained a 1” (2.54 cm) layer of pre-washed 

silica sand. The table then drained into an 85-L reservoir from which water was re-circulated 

through an 8-port manifold via a Marsh pump (Model LC-3CP-MD, March Manufacturing, 

Glenview, IL, USA), and evenly distributed to each of the streams (for more details regarding the 

mesocosm design see Hruska and Dubé, 2004).  Treatment water was aerated with air stones and 

heated to 25 ± 2 °C using submersible aquaria heaters. Lighting was adjusted to a 16h light:8h 

dark photoperiod. In addition, there were two corresponding flow through treatment tanks that 
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housed the egg and larval cups for each treatment. Two peristaltic pumps (Masterflex® L/S, 

Model 7524-50, USA) were used to supply the appropriate fresh reference and effluent water to 

the larval and egg tanks to achieve the same turnover rates as the artificial streams (0.014 L/min). 

This ensured that at least 1 turnover per day was maintained in each of the streams and egg/larval 

hatching tanks throughout the experiment.  

 

3.1.3 Exposure pathway - full factorial set-up 

A total of 4 mesocosm tables were used in the factorial study for a total of 32 streams.  Two 

of the tables were supplied with reference water and the other two tables were supplied with 45% 

PWE.  Each stream contained a PVC breeding tile and a 250 µm mesh screen to prevent the 

escape of FHM.  The factorial portion of the study required that the culturing of the fish diet (C. 

dilutus) be prepared in advance and frozen. Diet varied between C. dilutus raised in effluent 

water (45% PWE) and, C. dilutus raised in laboratory control water (60% RO water and 40% 

dechlorinated laboratory water) as shown in Figure 3.1. The treatments used in our exposure 

pathway study design were as follows:  

 Table 1 contained control water and FHM were fed C. dilutus raised in control water 

(CWCB treatment). 

 Table 2 contained control water and FHM were fed C. dilutus raised in 45% PWE water 

(CWEB treatment). 

 Table 3 contained 45% PWE water and FHM were fed C. dilutus raised in control water 

(EWCB treatment). 

 Table 4 contained 45% PWE water and FHM were fed C. dilutus raised in 45% PWE 

water (EWEB treatment). 

 

3.1.4 Food quality – multi-trophic set-up  

The laboratory-based multi-trophic system involved the use of 2 mesocosm tables as described 

above for a total of 16 streams (Figure 3.2).  Each stream contained a breeding tile, feeding 

barrier and 250µm mesh screen to prevent the escape of biota and to ensure any emerging insects 

were retained, counted, and left in the streams to reproduce. Treatments used in the food quality 

study design included the following:  
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 Table 1 contained control water and FHM were fed artificial diet of C. dilutus raised in 

control water (CWCB treatment as above). 

 Table 2 contained 45% PWE water and FHM were fed artificial diet of C. dilutus raised 

in 45% PWE water (EWEB treatment as above) 

 Table 3 contained the multi-trophic streams with FHM held in control water, which 

grazed on live C. dilutus raised in the streams (MT-control treatment). 

 Table 4 contained the multi-trophic streams with FHM held in 45% PWE water, which 

grazed on live C. dilutus raised in the streams (MT-effluent treatment). 
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Figure 3.1. Exposure pathway (full factorial) experimental design used to investigate the 

importance of water-only, dietary-only and complete exposures when fathead minnow are 

exposed to both control water and 45% PWE (Process Water Effluent). Where C=control, 

E=effluent, W=water and B=benthic organisms. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Food quality experimental design used to investigate differences in fathead minnow 

responses when fed a live diet (multi-trophic) or a laboratory prepared artificial diet (frozen) of 

Chironomus dilutus when exposed to both control water and 45% PWE (Process Water 

Effluent). Where C=control, E=effluent, W=water, B=benthic organisms and MT=multi-trophic. 
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3.1.5 Water requirements 

Effluent from the mine was shipped to the University of Saskatchewan on a weekly basis 

for approximately 12 weeks in order to culture chironomids and for the fish exposures. 

Chironomids were cultured as larvae exposed to either laboratory control water (40% de-

chlorinated lab water and 60% RO water), or 45% PWE. The culturing of the chironomids in 

effluent water required that the mine send 126 L of effluent on a weekly basis for the first 4 

weeks of the experiment. Effluent was collected weekly by mine personnel in 60 L pails and 

shipped immediately upon collection to the Toxicology Centre at the University of 

Saskatchewan. The 100% PWE water was mixed in a 90 gallon (341 L) polyethylene tank to a 

concentration of 45% PWE using laboratory control water. The water was heated with 400 W 

submersible aquaria heaters to approximately 23 ± 2°C, aerated, and added to the 40 L 

chironomid aquaria via static renewal (e.g., 25-50% treatment water replacement twice a week) 

for 4 weeks or until the larvae reached the third or fourth instar stage.  

 The fish pre-exposure period spanned 21 days and required the use of approximately 

15,000 L of laboratory control water per week to achieve 1 turnover per day in each of 96 

streams. During the fish exposure period of the study, effluent was shipped from the mine to the 

University of Saskatchewan in 1,000 L totes for approximately 7 consecutive weeks. The 

effluent water was mixed in 300 gallon (1,136 L) polyethylene tanks and heated to 25 2 C 

using 400 W submersible aquatic heaters to maintain optimum breeding temperatures based on 

OECD (2004, 2006) and US EPA (2007) fish bioassay protocols. Normal summer temperatures 

of 15-23 C have been reported in Junction Creek but have been shown to vary as much as 10 

degrees in a single day in the same sampling area (JCSC, 2008). Therefore, we are certain that 

we were able to achieve environmentally relevant temperatures in the streams throughout the 

experiment. Over the entire exposure period (21 days), a total of 3 mesocosm tables were 

supplied with laboratory control water, and 3 were supplied with 45% PWE (Figures 3.2 and 

3.3). 

 

3.1.6 Fathead minnows (Pimephales promelas) 

A pre-exposure breeding trial was conducted for approximately similar duration as the 

exposure period of 21 days. Six-month-old naïve FHM were obtained from Osage Catfisheries 

Inc. (Osage Beach, MO, USA), and 192 fish were randomly selected from this culture for the 
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pre-exposure period. Breeding pairs (1male and 1 female) were placed into each stream 

containing a PVC breeding tile and a 250 µm mesh screen to prevent the escape of FHM.  The 

pre-breeding trial consisted of 96 breeding pairs (8 pairs per table) and was conducted in the 

absence of effluent to establish baseline reproductive performance. Breeding tiles were checked 

daily for egg production. Eggs were removed from the tiles, placed in a Petri dish and 

photographed using a Cannon Powershot digital camera (Model A620, Mississauga, ON) and 

examined using a Vista vision
TM

 (Model 48402-00, VWR International, Missisauga, ON) 

trinocular microscope to determine fertilization success.  Photographs were obtained in order to 

count and measure egg size using Image Pro Plus 6.1 software (Media Cybenectics Inc., 

Maryland, USA). Eggs were then placed into PVC cups with 250 µm screen mesh and placed 

into rearing chambers and continuously aerated using air stones. Hatching success was 

determined once larvae hatched (3-5 days post spawn). After 21 days, selection of breeding pairs 

for the exposure period of the study was undertaken.  The selection was based on 100% survival 

of all adults, that the pair had bred at least once and there was a >80% fertilization of the eggs 

(Rickwood et al., 2008). Based on these criterion only 31% of the pre-exposed breeding pairs 

met the requirements and were selected for exposure testing, therefore our sample size during the 

exposure phase was reduced to 5 (n=5 pairs per treatment).   

 Statistical analysis was conducted in order to determine if there were differences among 

reproductive endpoints prior to effluent exposure. Fertilization success was analyzed using a 

one-way ANOVA providing assumptions of normality (Shapiro-Wilks) and homogeneity of 

variance (Levene’s) were met. Alternatively, the data was log transformed or the non-parametric 

equivalent (Kruskal-Wallis test) was applied to any data that did not meet the assumptions (e.g., 

mean egg production, mean total egg production).  A chi-squared test was used to analyze 

differences in the number of spawning events among the groups.  No significant differences were 

found among the 6 groups (>0.05).    

 Selected breeding pairs were placed into the appropriate treatment groups in individual 

streams. Fish that were placed into the factorial streams were fed 1 gram of pre-frozen C. dilutus 

daily, which were raised in either laboratory control water or in 45% PWE depending on the 

treatment group (Figure 3.1). The fish in the trophic transfer mesocosms grazed on live C. dilutus 

that were cultured in the same streams before the fish were added.  Feeding barriers were placed 

in the trophic transfer streams to ensure that the FHM were getting the same dietary exposure of 
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1g/day based on satiation density following the same methodology as previous studies conducted 

by our research team (Rickwood et al., 2006a, 2008) and others (Ankley, 2001).  

 We collected a subsample of larvae to assess larval deformities and whole body metal 

uptake at two critical time periods where metal exposure to the larvae was anticipated to be the 

greatest (day 5 and day 10 post-hatch). Breeding tiles were checked on a daily basis for egg 

production. Eggs laid were gently rolled off the breeding tile and placed into a Petri dish to 

obtain a photo for enumeration, sizing and determination of fertilization rates using a Cannon 

Powershot digital camera (Model A620, Mississauga, ON). Eggs were immediately placed into a 

PVC egg cup with 250 µm nitex screen on the bottom and placed in the appropriate egg-hatching 

tank in the flow through wet table. Eggs were aerated continuously and after a 2-day period, 

(once eyes had formed), were re-photographed and re-counted. Once the larvae hatched (3-5 

days), 5-20 larvae were collected, stored in 10% buffered formalin and examined for deformities 

at a later date using a Vista vision
TM

 (Model 48402-00, VWR International, Missisauga, ON) 

trinocular microscope. Frequency of deformities was recorded based on four main categories 

(craniofacial, edema, spinal and hemorrhage) using criteria outlined by Holm et al., (2003). A 

sub-sample of 5 to 10 larvae were placed back into the larval tanks where they were allowed to 

further develop for a 5-day period (10 days total) and then re-assessed using the same protocol as 

the day-5 larvae. Remaining larvae were dried, collected and frozen for metals tissue analysis. At 

the end of the exposure period, fish were anaesthetized using methane tricainesulfonate (MS222, 

~1,000 mg/L) following the University of Saskatchewan's animal care protocols. Fork length 

(mm), whole body weight (g) and secondary sexual characteristics were recorded based on 

protocols developed by Parrot and Wood (2002).  Fish were euthanized by spinal severance and, 

liver, gills, gonads and carcass weights were recorded, collected and frozen for analysis of 

metals. 

 

3.1.7 Exposure pathway study - Chironomus dilutus 

Chironomid culturing was conducted for the factorial feeding component of the current 

study. Four to five egg sacs were isolated from the University of Saskatchewan culture and 

placed into a 40 L culturing aquaria (culture chambers) containing either laboratory control water 

or 45% PWE. Given that the PWE has been found to reduce hatching success in C. dilutus 

(Nebeker et al., 1988; Pascoe et al., 1989; Hruska and Dubé, 2004), the 45% PWE was 
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introduced to the culture chambers once hatching had occurred. Each culture chamber contained 

a 1” (2.54 cm) layer of pre-washed silica sand. Treatment water was mixed in two separate, 90 

gallon (341 L) polyethylene mixing tanks that were aerated and heated to approximately 23°C ± 

2 prior to transferring into the appropriate aquaria. Water in the culture chambers was renewed 

manually every 48 hours to prevent excessive spikes in ammonia and to maintain a healthy 

culture. During culturing period (21 days) C. dilutus were fed 30 ml of Tetramin™ slurry (100g 

of Tetramin flakes to 1000 mL of control water), 3 times per week. Once larvae reached the 3
rd

 

or 4
th

 instar stage, they were aspirated from the top layers of sand, dried and separated into 1 g 

samples and frozen for use in the full factorial experiment as the laboratory-based artificial (non-

living) food source for the FHM.  

 

3.1.8 Food quality study - Chironomus dilutus 

Chironomid culturing was also conducted for the set-up of the multi-trophic systems. A 

total of two mesocosm tables (16 streams) were used in the establishment of the multi-trophic 

cultures. In order to achieve a similar feeding rate (1g/day) as the factorial system, egg sacs were 

isolated and placed into 16 individual, 11.4 L culturing chambers.  Once hatched, the larvae were 

grown under both treatment conditions (laboratory control water and 45% effluent water) for 7-

10 days and then placed into each mesocosm stream. This process was repeated each week for 

three weeks until the food base was established in each stream.  A feeding barrier and breeding 

tile were then placed in each of the multi-trophic streams prior to the introduction of the FHM to 

ensure that all emerging insects were retained, counted, and left in the streams to reproduce. The 

C. dilutus were fed 10 ml in the first week, 20 ml in the second week and 30 ml in the third and 

subsequent weeks with a Tetramin slurry blend. One core sample (9cm
2
) was obtained from 

each of the streams on a weekly basis after each new batch of chironomids had been added to the 

stream in order to calculate densities and to ensure that all streams contained a similar density of 

larvae 1.48 chironomids/cm
2
 based on satiation. At the end of the experiment, 3 core samples 

were also taken from each stream in order to calculate the final densities in the streams.  Samples 

were preserved with 10% buffered formalin to be counted under a proper fumehood at a later 

date. At the end of the exposure period, a 1 g sample of C. dilutus larvae was collected from each 

of the streams for metals tissue analysis. 
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3.2 ANALYSES 

3.2.1 Laboratory analysis 

All samples were analyzed using standard methods and quality assurance at Testmark 

Laboratories in Sudbury, ON, Canada.  Matrices tested included: water, fish tissues (carcass, 

gonad, gills, liver), fish larvae and C. dilutus tissues.  Water samples were collected once per 

week during the exposure phase from each of the mesocosm reservoirs and from the 100% 

effluent tank in week two.  Samples were collected according to standard sampling protocol and 

kept at 4 ºC in a cooler on ice and shipped immediately to Testmark Laboratories in Sudbury, 

ON, Canada where all the analyses were carried out.  The water samples were analyzed for 

various water chemistry parameters (see Tables 3.1 and 3.2) using the American Public Health 

Association (APHA) and the US EPA solid waste (SW) analytical methods and procedures. 

Total metals were analyzed in water and tissue samples using Inductively Coupled Plasma - 

Mass Spectrometry (ICP MS). The tissue samples were block digested prior to analysis, and the 

concentration of metals were derived on the basis of wet mass. Quality assurance/quality control 

for the metals analysis were maintained using calibration standards, control standards, aqueous 

and tissue certified reference standards (85.8% to 116% recovery rate), calibration blanks, 

method blanks and the analysis of duplicate samples.  

 

3.2.2 In-situ water quality analysis 

Daily in-situ water quality measurements were obtained for general chemistry in all of 

the treatments during both the pre-exposure and exposure phases of the experiments. 

Conductivity, dissolved oxygen and temperature were measured using a handheld YSI portable 

meter (Yellow Springs Instrument, Yellow Springs, OH). In addition, ammonia levels (Hannah 

Instruments, Hungary, Europe), pH (Oakton phTestr30, San Francisco, CA), and hardness 

(Hatch Test Kit Model 5-EP MG-L, Loveland, CO) were also measured.  

 

3.2.3 Data analysis  

At the end of the exposure period, fish metrics, reproductive endpoints and larval 

endpoints were analyzed. All statistical analyses were performed using SPSS® 17 (SPSS Inc., 

Chicago, Il, USA) and graphed using Sigmaplot® Version 11 (San Jose, CA, USA).  Most of the 
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data were analyzed using a two-way Analysis of Variance (2-way ANOVA) providing that the 

data met the assumptions (normal distribution and homogeneity of variance) when analyzed 

using Shapiro Wilk's and Levene’s tests.  2-way ANOVAs were performed for experiment I data 

in order to try and decipher if there was a significant difference among treatments when fish 

were exposed through water only, diet only and through both routes of exposure.  Whereas, the 

data from Experiment II was examined to determine whether there was a significant difference 

among water treatments (control vs effluent), food quality (live vs frozen diet) or both 

(interaction).  Transformation was conducted (Log transformation of continuous or derived data 

and angular transformation of percentage-based or ratio scaled data) when normality failed and 

the non-parametric equivalent of the 2-way ANOVA (Shreirer-Ray-Hare extension of the 

Kruskal-Wallis test) was conducted when assumptions were not met. A two-way ANOVA or its 

equivalent was conducted on the following endpoints: hatching success, percent deformities, LSI 

(liver weight(g)/body weight(g)*100), GSI (gonad weight(g)/body weight(g) * 100), condition 

[(body weight(g)/total length(cm)
3
) * 100] metal tissue burdens and water quality.  Kolmogorov 

Smirnov (KS) tests were used to assess cumulative frequency data including: cumulative 

eggs/female [Cum. # eggs produced per treatment/# of living females/# of days] which factors in 

the effects of mortality on egg production and represents population effects over time;  

cumulative total egg production [Cum. total # eggs produced/treatment/day] which measures the 

distribution of total egg production (when and how much) for each treatment over time; and 

cumulative spawning events [Cum. total # spawning events/treatment/day]). Two-way 

ANOVA’s or non-parametric equivalent (Kruskal Wallis) tests were conducted on mean egg 

data. Mean total egg production [total # of eggs produced per breeding group/ # of females in 

group/ # of exposure days] assessed the total number of all eggs produced in each replicate over 

a 21 day period; and,  mean egg production [mean # eggs produced per stream/ # of females in 

group/# of exposure days]) assessed the size of the brood produced for each replicate. 

Differences among treatment groups were further assessed using a Tukey’s post hoc or non-

parametric Mann-Whitney-U test applying the appropriate Bonferonni correction (α 

(0.05)/number of comparisons made) to reduce the Type I error rate.  Chi-square tests were used 

to analyze discrete data (e.g., number of spawning events).  Two-way ANOVAs were used to 

assess gonad, liver and body weight of FHM. When an interaction was observed, graphical 

interpretation of the data was conducted. Any interactions that could not be deciphered readily 



 

66 

were split and a t-test was performed on the water only exposures or dietary only/diet quality 

exposures separately to determine where the difference lay. Finally, chironomid densities 

(number of C. dilutus/cm
2
) and emergence (number of adults emerged) were assessed using 2-

way ANOVAs to determine responses over 21 days of exposure.  All results were significant 

when p<0.05. 

 

3.3  RESULTS 

3.3.1 Water quality  

3.3.1.1 Exposure pathway study (Experiment I) 

Treatment Effects: Significant treatment effects were observed in all general water quality 

parameters and in most metals (Al, Ca, Co, Cu, Li, Mn, Ni, Rb, Se) exposed to EWCB and 

EWEB treatments in the exposure pathway study compared to control treatments (CWCB, 

CWEB) (Table 3.1).   

Food-Type Effects: Food-type effects were not as prominent in the water quality 

parameters with significant effects only seen in the CWEB and EWEB treatments for alkalinity, 

and no significant food-type metal effects (Table 3.1).   

Interaction Effects: Waterborne Pb was the only water quality parameter to elicit a 

significant interaction (Table 3.1).  However, closer examination of the raw data showed high 

variability among treatment groups.  Furthermore, half of the data analyzed were below detection 

limits, which is likely a contributing factor of the spurious results observed. Pb levels in all 

treatments were well below the Canadian water quality guidelines (CWQG) for the protection of 

aquatic life and it is not anticipated to contribute appreciably to fish toxicity in the current study 

(CCME, 2007). 

 

3.3.1.2 Food quality (Experiment II) 

Treatment Effects: A significant treatment effect was observed for most of the general 

water quality parameters with the exception of K, and for most metals with the exception of Al, 

Pb and Tl in the effluent treatments (EWEB, MT-effluent) when compared to controls (CWCB, 

MT-control) (Table 3.2).  

Food-Type Effects: Significant food-type effects were observed in the general water 

quality parameters (DOC, TOC, pH) and for several metals (Cd, Co, Pb, Ni) in the multi-trophic 
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streams compared to the artificially fed streams regardless of treatment water (control/effluent 

water) indicating an increase in DOC, TOC, pH and metals when insects were alive (Table 3.2).  

Interaction Effects: Significant interactions occurred for Nitrate (NO3), Al, and Ni (Table 

3.2).  However, Ni was the only interaction of concern in these three parameters since it 

increased approximately 36-fold (3,478%) in the effluent treated streams regardless of food 

quality (live or frozen benthic organisms) when compared to the controls.  Although there was 

no effect on the presence of the control benthic organisms (live vs frozen), there was a small 

effect in the effluent treated streams, which resulted in a 14% increase in Ni when live benthic 

organisms were present compared to the frozen C. dilutus. 

 

3.3.2 Metal tissue burdens  

3.3.2.1 Exposure pathway study (Experiment I) 

Treatment Effects: There were no significant effects among treatment types (effluent or 

reference water) observed in FHM tissues in the exposure pathway study (p>0.05).  

Food-Type Effects: Food-type effects were observed for Rb in carcass (p=0.029) and 

gonad (p<0.001) tissues in fish exposed to effluent-raised benthic organisms (effluent benthic 

organisms). An increase of about 2-fold was observed in both carcass and gonads compared to 

fish exposed to control-raised benthic organisms (Figure 3.3).  

Interaction Effects: A significant interaction occurred for Rb (p=0.005) in liver tissues of the 

FHM. Closer examination of the interaction graphs suggested that regardless of treatment type 

(control water or effluent water), Rb appeared to accumulate in FHM liver in a similar fashion 

when exposed to effluent benthic organisms (CWEB, EWEB). Conversely, when FHM were 

exposed to control benthic organisms, there was substantially more accumulation (~2-fold 

increase) of Rb in the effluent exposed fish (EWCB) compared to control fish (CWCB).  These 

results also suggest that greater accumulation of Rb occurred when FHM were exposed only 

through waterborne routes of exposure (EWCB) and less accumulation occurred when exposed 

through diet (CWEB) or both routes of exposure (EWEB).   

 



 

 

Table 3.1 Summary of mean (±SEM, n=3) water quality parameters measured in the exposure pathway study (factorial 

design).Significant treatment effect (a), dietary effect (b) and, interaction (c) observed when p<0.05. Where C=control, E=effluent, 

W=water, and B=benthic organisms (data analyzed using a Two-Way ANOVA or Scheirer Ray Hare extension of the Kruskal 

Wallis). 
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Table 3.2 Summary of mean (± SEM, n=3) water quality parameters measured in the food quality study. Significant treatment 

effect (a), dietary effect (b) and, interaction (c) observed when p<0.05. Where C=control, E=effluent, W=water, and B=benthic 

organisms (data analyzed using a Two-Way ANOVA or Scheirer Ray Hare extension of the Kruskal Wallis). 
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A) 

 
B) 

 

Figure 3.3 Selected metal concentrations [Rb, Se] in tissues analyzed in fathead minnow 

(P.promelas) [carcass, ovaries, liver, gills, larvae] (mean ± standard error, n=5) after exposure to 

45% PWE in the A) exposure pathway and B) food quality experiments over 21-days of 

exposure.  Letters denote a significant increase in metal concentrations compared to reference 

when p<0.05. Where, a=significant treatment effect, b=significant dietary effect and 

c=significant interaction and where C=control, E=effluent, W=water, B=benthic organisms and 

MT=multi-trophic (data analyzed using a Two-Way ANOVA or Scheirer Ray Hare extension of 

the Kruskal Wallis).
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3.3.2.2 Food quality study (Experiment II) 

Treatment Effects: Significant treatment effects were observed for Tl (p=0.010) and 

Rb (p=0.002) in FHM carcass tissues when exposed to effluent water regardless of food quality 

(artificial or live diet of C. dilutus) (Se and Rb results shown in Figure 3.3).  Thallium levels 

increased 3-fold and Rb levels increased 2-fold. Similarly, Se (p=0.002) and Rb (p<0.001) both 

significantly increased (2-fold) in the gonads (ovaries) of female FHM exposed to effluent water 

compared to fish exposed to control water (Se and Rb results shown in Figure 3.3). Rb 

(p=0.004), Sr (p=0.022), Se (p=0.002), and Cu (p=0.029) all significantly increased in FHM 

livers (2 to 4-fold) in the fish exposed to the effluent water compared to control regardless of 

food quality (Se and Rb results shown in Figure 3.3, all other data shown in Appendix B). 

Food-Type Effects: Rb increased significantly (p=0.015) in the livers (2-fold) when 

fish were fed a live diet of C. dilutus compared to when fish were fed a frozen diet (Rb results 

shown in Figure 3.3). 

Interaction Effects: A significant interaction was observed in the liver of FHM for Rb 

(p=0.032) (Se and Rb results shown in Figure 3.3).  Interaction graphs showed that Rb increased 

in liver tissues by 3-fold  (~155%) in fish fed a live diet and by about 33% in fish fed an effluent 

treated frozen diet relative to the controls. A significant interaction for Cd (p=0.049) was also 

observed in carcass tissues of FHM. Closer examination of the interaction graphs showed that 

there were no changes in Cd burdens in the fish fed an artificial diet regardless of the treatment 

type (effluent/control), however there was a 3-fold reduction of Cd in the multi-trophic system in 

the effluent treatment compared to control which resulted in the interaction observed.      

 

3.3.3 Chironomus dilutus tissue burdens 

The data presented in Figure 3.4 shows the concentration of a select number of metals in 

the chironomid tissues.  Although statistical analysis could not be conducted since samples were 

pooled for each treatment, it still provides an indication of the tissue concentrations in the 

chironomids. The data appears to coincide with the FHM tissue metal uptake in that we see 

increased metal concentrations (Co, Ni, Rb, Se) in the effluent exposed chironomids compared to  
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Figure 3.4 Selected metal concentrations [Co, Ni, Rb, Se] in tissues analyzed in freshwater 

midge (C. dilutus) exposed to control water [MT Control, CWCB] and 45% PWE (Process 

Water Effluent) [MT Effluent, EWEB] over a 21-day period. Where C=control, E=effluent, 

W=water, B=benthic organisms and MT=multi-trophic. 
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the control exposed chrionomids in both systems.  This indicates the importance of trophic 

transfer and dietary exposure of metals to fish. 

3.3.4 Morphological endpoints 

Treatment Effects: There was a significant treatment effect for female condition 

factor, liver somatic index (LSI), egg size and body weight in both studies (exposure pathway 

(Exp 1) and food quality (Exp 2)) (p<0.05). Interestingly, in both systems, condition factor and 

body weight showed about a 30% increase when exposed to effluent water whereas LSI and egg 

size showed about a 35% and 6% decrease respectively when exposed to effluent water. No 

significant differences were observed in male FHM in any of the same morphological endpoints 

measured (see Appendix A). 

Food-Type Effects: In the exposure pathway  system, significant food-type effects 

were observed for LSI (p<0.001), which showed a decrease of about 41% in FHM fed effluent 

benthic organisms compared to those fed control benthic organisms.   

 A significant food-type effect was also observed for female condition factor and body 

weight in the food quality system (Experiment 2) (p<0.001 for both). Condition factor increased 

about 39% and body weight increased 49% in the multi-trophic streams compared to the 

artificially fed streams. No significant differences were observed in similar endpoints measured 

for male FHM (see Appendix A). 

Interaction Effects: A significant interaction in females was seen for condition factor 

(p=0.005) and body weight (p=0.004) in the exposure pathway system (Experiment 1). Graphical 

representation of the data showed condition was similar when FHM were fed effluent benthic 

organisms regardless of the treatment type (effluent vs control).  However, when FHM were fed 

control benthic organisms, condition was much greater in the effluent treatments than in the 

controls.  These findings were also observed with body weight (Appendix A).  

 A significant interaction was also seen for female LSI in the food quality system 

(Experiment 2) (p=0.020). Interaction graphs depicted LSI's to be similar in the multi-trophic 

streams regardless of treatment type (control vs effluent).  In contrast LSI's decreased when 

FHM were fed the frozen diet of effluent insects.  No significant interactions were observed for 

male FHM in either system for any of the morphological endpoints measured (see Appendix A).  
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3.3.5 Reproductive endpoints 

3.3.5.1 Cumulative egg production and spawning events 

In the exposure pathway system (Experiment 1), there was a significant increase in 

cumulative total egg production (p<0.001) and cumulative egg production (p=0.006) in CWEB 

compared to CWCB (Figure 3.5A).  Conversely, there was a significant decrease in cumulative 

spawning events in both EWCB and EWEB (p<0.001 respectively) (see Appendix A).   

 In the food quality system (Experiment 2), there was a significant increase in cumulative 

total egg production (p=0.017), cumulative spawning events (p<0.001) and cumulative egg 

production (p=0.017) in the MT control treatment when FHM were fed a live diet compared to 

the artificially fed CWCB treatment (Figure 3.5B).  However, there was a significant decrease in 

cumulative total egg production, spawning events and egg production (p<0.001 for all) in MT 

effluent compared to CWCB (Figure 3.5B). There was also a significant decrease in cumulative 

egg production (p=0.017) and cumulative spawning (p<0.001) in EWEB when compared to 

CWCB but no significant difference in cumulative total egg production (p=0.194) (see Appendix 

A). 

 

3.3.5.2 Mean egg production 

Treatment Effects: Mean total egg production (total eggs produced/treatment/exposure 

period) was the only endpoint that showed a significant treatment effect in the food quality 

system (Experiment 2) (p=0.020). There was a 2.6-fold decrease in mean total egg production in 

the effluent treatments compared to the control treatments.  However, there were no significant 

treatment effects in the exposure pathway system and, there were no significant food-type effects 

in either system.    

Interaction Effects: A significant interaction occurred for mean egg production [(total 

eggs produced per replicate/number of broods)/number of females in a breeding group/ number 

of exposure days)] (p=0.042), and mean total egg production (p=0.015) in the full factorial 

system (Experiment 1) indicating that diet and water were not acting independently in this 

system.   Further examination of the interaction graphs showed that overall there was greater 

mean egg production in FHM held in control water compared to effluent water.  However we 

also saw elevated mean egg production when FHM were fed effluent benthic organisms 

regardless of the treatment type (control vs effluent). Mean total egg production was similar in 
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FHM when fed control benthic organisms regardless of treatment water (control vs effluent).  

However, there was much greater mean total egg production when FHM were fed effluent 

benthic organisms and held in control water (CWEB) than when held in effluent water (EBEW) 

resulting in the interaction observed.   

 

3.3.6 Larval endpoints 

Treatment Effects: In the exposure pathway experiment (Experiment 1) there was a 

significant hastening in the number of days to hatch (p=0.001). However, an increase in the 

number of larvae to successfully hatch (p=0.005) was observed when larvae were exposed to the 

effluent water. Results showed a 2-fold delay in days to hatch and about a 25% increase in 

hatching success when compared to larvae in the control treatments.  Metal tissue burdens 5 days 

post-hatch also increased for Rb (2-fold), B (7-fold), Cu (3-fold) and Ni (2-fold) in the larvae 

exposed to effluent compared to control (see Figure 3.3 for Se and Rb results).  

There was a significant treatment effect on days to hatch in the food quality experiment 

(Experiment 2) (p=0.009), which showed that larvae hatched 22.7% quicker in the control water 

than the effluent water.  Cu and Rb both increased by about 2-fold and were the only metals that 

were elevated in larvae tissues exposed to effluent treatment water in the food quality (see Figure 

3.3 for Rb results).  There were no significant food-type effects or interactions seen in the larvae 

endpoints for either system. 

 

3.3.6.1 Larval deformities 

The frequency of deformities was normalized based on the brood size and analysis 

revealed that there were no significant effects observed for either system 5 and 10 days post 

hatch (Figure 3.6).  Although there was a slight increase in the percentage of edema and spinal 

malformations in the food quality  system at day 5, and a slight increase in the percentage of 

edema, hemorrhage and spinal deformities in the exposure pathway  system at day 10, statistical 

analysis failed to show significant treatment, food or interactive effects (Figure 3.6). 
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3.3.6.2  Chironomus dilutus densities and emergence 

Statistically significant differences among C. dilutus densities were not observed among 

treatment water nor were any food-related effects observed in either of the systems (Experiment 

1 or 2) (Figure 3.7). However, a significant treatment effect (p=0.007), food-type effect 

(p=0.014) and significant interaction (p=0.001) were observed in the emergence data (Figure 

3.7). Emergence in the MT-effluent was significantly reduced due to treatment, food and 

interactive effects compared to the MT-control streams (Figure 3.7). Conflicting density and 

emergence results may be partially attributed to the high degree of variance around the mean for 

the density data and the inability to statistically show a difference. However, it was apparent that 

densities were inhibited in the effluent exposed streams.  
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Figure 3.5 Cumulative egg production per female fathead minnow (P.promelas) per day in the 

(A) exposure pathway study and, (B) food quality study during a 21-day exposure period.  

Letters denote a significant difference from CWCB (control water control benthic organisms) 

when =0.05, n=5. Where C=control, E=effluent, W=water, B=benthic organisms and 

MT=multi-trophic (data analyzed using Kolmorov Smirnov).
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  A)         C) 

 

B)        D) 

  

 

 

 

Figure 3.6 Frequency of fathead minnow larval deformities from birth to 5 and 10 days post-

hatch in the exposure pathway study (A, B) and food quality study (C, D). Where C=control, 

E=effluent, W=water, B=benthic organisms and MT=multi-trophic (data analyzed using a Two-

Way ANOVA or Scheirer  Ray Hare extension of the Kruskal Wallis). 
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Figure 3.7 C. dilutus densities (A) and adult emergence (B) measured throughout the 21-day 

exposure period in the multi-trophic streams.  Letters denote a significant treatment effect (a), 

significant food effect (b), and significant interaction (c), where C=control, E=effluent, 

W=water, B=benthic organisms and MT=multi-trophic (data analyzed using a Two-Way 

ANOVA).  
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3.4  DISCUSSION 

3.4.1 Water chemistry 

Dissolved organic carbon (DOC), total organic carbon (TOC), Cd, Co, and Ni all were 

significantly elevated whereas Pb and pH were significantly decreased in the multi-trophic 

effluent streams in the food quality system compared to control streams. Alkalinity however, was 

the only water quality parameter in the effluent factorial streams (exposure pathway system) to 

exhibit significantly reduced values compared to control streams.   Water chemistry parameters 

such as dissolved and suspended organic carbon, pH and alkalinity are important modifiers of 

metal bioavailability and toxicity to aquatic organisms (Paquin et al., 2002; Niyogi and Wood, 

2004). Furthermore, elevated TOC and DOC levels in the environment have been associated 

with reduced uptake of various divalent metals (e.g., Cu, Pb, Cd) in aquatic organisms due to 

complexation (Sprague, 1985; Winter et al., 2005; Chakraborty et al., 2006), and has probably 

played a prominent role in influencing metal bioavailability in our multi-trophic streams.  Multi-

trophic streams were administered a blend of Tetramin
TM

 slurry as sustenance for the 

chironomids.  Tetramin
TM

 slurry was formulated from a blend of Tetramin
TM

 flakes containing a 

mixture of both plant and fish-based materials and water. It is possible that excess Tetramin
TM

 

may have contributed to an increase in the dissolved and organic carbon content in the multi-

trophic streams.  Furthermore, the Tetramin
TM 

may have provided a source of algae or bacteria, 

which may have enhanced carbon levels in the multi-trophic streams.   

 Alkalinity levels were lower (2-fold) in the factorial 45% PWE streams compared to the 

control streams likely due to acidic nature of the raw effluent, though it is unlikely that it 

contributed to any physiological and/or reproductive effects observed in fish.   

 

3.4.2 Metal tissue burdens  

Metal burdens in FHM were conducted solely on the females in the current study so that 

a greater diversity of tissue samples could be analyzed.  It was also assumed that the females 

would have a greater ability to affect the F1 generation and pass any potential contaminants to 

the offspring via maternal transfer. In addition, previous work conducted on resident FHM at the 

studied site (Rickwood et al., 2006a, 2008; Weber et al., 2008) suggested that female fish 

accumulated greater metal burdens and suffered significantly greater biochemical effects than 

males.   
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Rb was the only element analyzed in the chironomid and fish tissues that consistently 

assimilated in tissues when exposed to the effluent both through waterborne and dietborne 

exposure. Rb is an abundant alkali earth metal found in the earth’s crust (Anke & Angelow, 

1995).  Despite its abundance in the environment, it remains an element that is rarely studied. 

However, there is increasing evidence to suggest that it biomagnifies in the food chain and that it 

could cause reproductive impairment in fish (Campbell et al., 2005; Yamaguchi et al., 2007).  

Biomagnification studies using stable nitrogen isotopes (
15

N) conducted using invertebrates, 

freshwater fish, seabirds and ringed seals showed that Rb biomagnified through the food web in 

diverse ecosystems in a similar fashion to methylmercury (Campbell et al., 2005). Although it 

was not possible to assess the biomagnification potential of Rb in our study, we did observe 

significant increases of Rb in water, chironomid tissue, and FHM carcass, liver and gonad tissues 

(p<0.05) in the effluent treatments compared to controls. Similar findings have also been 

recorded in our previous field and lab studies (Rickwood et al., 2006a, 2008; Weber et al., 2008). 

Furthermore, Rb was also one of the only metals of significance found in the F1-generation 

(larvae) tissues in our current study. More recent studies have also shown Rb has the potential to 

inhibit spermatogenesis in fish (Yamaguchi et al., 2007).  Due to the fact that there is very little 

aquatic toxicological data available for Rb in the literature, it is difficult to hypothesize safe 

levels of exposure of Rb to FHM.  Consequently, we cannot discount Rb as a potential metal of 

concern in mining effluents.  In addition, histopathological analyses of male testes in our 

previous lab and field studies have shown significant increased cell death (necrosis and 

apoptosis) in gonads, increased fibrosis, reduced sperm production, reduced spermatogonia and 

spermatocytes in males when exposed to PWE effluent water (Rickwood et al., 2006a; Weber et 

al., 2008). At present, we cannot speculate whether Rb is linked to the cause of the reproductive 

effects seen in the current study. However, due to the biomagnification potential, its recent link 

to male reproductive toxicity and its prevalence in all of our previous studies at the study site and 

other mine sites, it remains a metal of concern, warranting further investigation.   

Cd  accumulated significantly in the liver (1.18 ± 0.79 µg/g wet wt. or ~4.54 µg/g dry wt. 

based on 74.01% moisture [Muscatello et al., 2006]) of FHM exposed to waterborne effluent in 

the full factorial system. Previous field studies conducted by our lab have also confirmed that Cd 

increases significantly in the bodies of resident fish at the study site (Weber et al., 2008). In a 

comparable study, increased concentrations were observed in the liver of rainbow trout exposed 



 

82 

 

to 2.2 µg/l waterborne Cd (Farag et al., 1994).  No significant increases in FHM tissue burdens 

occurred when exposed to Cd through the diet in either system. Despite these findings, Cd 

exposure through the diet has been identified as a route of exposure, which could result in 

reproductive impairment to aquatic organisms (Farag et al., 1994). Studies using marine 

copepods have shown that Cd exposure through the diet significantly affected reproduction 

through the alteration of vitellogenesis and decreased hatching due to lowered protein levels in 

the egg at concentrations of 0.562 µg/g dry wt. (2.16 µg/g wet wt. based on 74.01% moisture) Cd 

with no appreciable effects seen with waterborne exposure (Fisher and Hook, 2002).  Though we 

did not observe any significant increases in dietary Cd levels in FHM, the levels of exposure are 

well within levels known to elicit reproductive toxicity. Moreover, levels of Cd observed in the 

PWE were approximately 91% greater than the safe level established by the CWQG for the 

protection of aquatic life (CCME, 2007).  Though we cannot speculate as to the significance of 

Cd on the reproductive effects we have seen in FHM, its known persistence in the environment 

(1/2 life >30years) and its relative toxicity to fish, identify it as a constituent in the PWE worthy 

of further investigation.  

 Similar to our previous findings (Rickwood et al, 2006b, 2008), selenium (Se) was 

increased in the gonads in effluent exposed FHM. Selenium effects (ovarian cell necrosis, 

reproductive failure, ruptured egg follicles) on fish reproduction and developmental 

abnormalities in larvae have been well documented in the literature (Lemly, 2002; Hamilton, 

2004; Muscatello et al., 2008).  The currently proposed threshold for ovarian Se has been 

identified at >10µg/g dry wt. by the US EPA (Lemly, 2002). Ovarian Se concentrations in our 

study averaged approximately 2.51 µg/g wet wt. [9.66 µg/g dry wt. based on 74.01% moisture 

content (Muscatello et al., 2008)], in both exposure systems. Based on the current threshold 

levels, the concentrations recorded in our current study were quite close to the levels expected to 

elicit toxic response in FHM.  However, this was not reflected in our larval investigation, which 

showed no significant differences in deformities among treatments over two critical time periods 

(day 5 &10) post-hatch.  The majority of the larvae in all of the treatments were normal (>90%), 

followed by the appearance of spinal deformities at 7% with edema and hemorrhage at 2% 

respectively. In order to enable the investigation of all endpoints of interest, only a sub-set of 

larvae were analyzed for deformities since they were collected at two time periods (day 5 & 10), 

and the majority of larvae were required for metals analysis.  Furthermore, the deformities that 
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were observed did not appear to be associated with selenium exposure. Skeletal deformities are 

more indicative of Se exposure through maternal transfer rather than other types of deformities 

(edema, hemorrhage, spinal), which were observed in our study (Lemly, 2002; Hamiliton, 2004). 

From Se speciation studies conducted by our research team, it is known that the selenium present 

in PWE is predominantly in the form of selenate, a less toxic and less bioavailable form of Se. 

Nevertheless, based on our findings it can be suggested that selenium is also a metalloid of 

concern with regards to the reproductive effects observed in fish exposed to the PWE.  

 The current study was the first in our lab to analyze metal tissue burdens in the FHM 

larvae (F1-generation). Early life stages (egg, yolk-sac larvae, swim-up) are the most sensitive to 

developmental effects of metal exposure (DiGiulio and Tillitt, 1997). Metal uptake, 

accumulation and deposition during early life stages has been linked to the direct exposure of the 

eggs and larvae to toxins through maternal transfer as well as waterborne exposure after the eggs 

have been laid and/or after the larvae have hatched (DiGiulio and Tillitt, 1997). Additionally, as 

the yolk-sac is consumed and the larvae begin to start feeding on their own (swim-up stage), 

metals can be further mobilized into the tissues from the yolk-sac, increasing the metal exposure 

to the larvae (DiGiulio and Tillitt, 1997). Studies have identified that the yolk-sac may be fully 

consumed in FHM anywhere from 2-9 days post hatch (USEPA, 1996; Crane et al., 2004; 

DiGiulio and Hinton, 2008). Analysis showed that both Cu and Rb significantly increased in the 

larvae tissues through one or more exposure pathway (food/water) in both of the systems 

(exposure pathway & food quality). Copper increased 29-78% and Rb increased 26-43% in 

larvae tissues when exposed through waterborne routes of exposure.  This suggests that metal 

uptake and accumulation in the larvae was predominantly dermally and bronchially mediated.  

We also observed a 16% increase in Cu and a 61% increase in Rb in the multi-trophic streams 

when the adults were exposed through dietborne routes of exposure.  This suggests the 

possibility of metal exposure through maternal transfer and the mobilization of both Cu and Rb 

from the yolk-sac since the larvae had not yet reached the swim-up stage of development, and 

were not feeding on their own. 

 

3.4.3 Morphological endpoints  

Results of our study showed significantly increased condition factor (+53%) and body 

weight (+51%) and significantly decreased LSI (-30%) and egg size (-3%) in effluent exposed 
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FHM in both systems.  There was also a significant dietary effect on LSI in the exposure 

pathway system, which showed that liver size decreased (- 41%) when fish ate an artificial diet 

of effluent-exposed chironomids.  There was also a significant dietary effect for condition factor 

and body weight in the food quality system. Both condition factor (+65%) and body weight 

(+96%) significantly increased in FHM in the multi-trophic streams compared to the FHM in the 

streams fed an artificial diet.  The increase in condition and decrease in egg size coincide with 

our previous field studies conducted using resident fish species collected downstream of the 

effluent discharge (Weber et al., 2008). However, where the two studies differ is in the effects on 

liver size.  The field studies (Weber et al., 2008), showed significantly increased liver size, 

whereas our current study showed significantly decreased liver size.  These discrepancies 

however could be related to differences in treatment water among the lab and field studies.  In 

Weber's study (2008) fish were caught downstream of the Sudbury sewage treatment plant 

outfall.  Increased organic nutrient enrichment has been linked to increased liver size in fish 

exposed to municipal and industrial wastewater (Yeom et al., 2007), and maybe partially 

responsible for the increased liver sizes in the resident FHM of Junction Creek.  The relatively 

low sample size used in our current lab study may also have reduced the power to detect a 

statistically significant difference.   

 Our current study results do coincide with the national environmental effects monitoring 

(EEM) findings, showing that most mines across Canada exhibited similar inhibitory responses 

in fish liver when exposed to mine effluent (Lowell et al., pers. communication).  Condition 

factor did not exhibit a similar inhibitory response pattern as observed in the national EEM 

findings, however when we examined reproductive output in our effluent exposed streams, we 

had significantly less egg production especially in our EWEB and MT-effluent treatments where 

fish were exposed to effluent through both routes of exposure.  It would appear that reproductive 

investment in FHM was severely reduced and females seemed to be sequestering their eggs.   

Although it may apparently indicate that they are healthier, fatter and in better condition, when in 

fact it is possible the fish are allocating more energy towards metal detoxification and thereby 

survival, and less on reproduction.  Perhaps a longer exposure period is necessary to determine 

whether or not the eggs would be reabsorbed or eventually released.  The similarity of findings 

from our current study with both the field and national EEM program findings further validate 
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the mesocosm technology as a useful alternative for investigating fisheries effects due to effluent 

exposure when field studies cannot be conducted.      

 

3.4.4 Exposure Pathway 

The first objective of our study was to examine exposure pathways (dietary, waterborne 

and both) independently and simultaneously within the same experiment. We are not aware of 

any studies in the literature that have assessed environmentally relevant effluent mixtures and 

three separate routes of exposure simultaneously using a modified fish bioassay.  In this study, 

fish were fed a pre-frozen diet of chironomids that had been grown in either laboratory control 

water or 45% PWE.  This was important to the study design since metal enrichment of the diet 

(chironomids) needed to reflect environmental exposure conditions found in Junction Creek 

without the confounded effects of historical sediment contamination.  Results showed that when 

fish were exposed through the water it did not result in significant metal tissue burdens in the 

FHM, however female condition, LSI, egg size and body weight increased. Previous waterborne-

only studies conducted by our research team have shown increased metal tissue accumulations in 

Creek Chub and FHM exposed to PWE however, no changes in body weight, condition or liver 

size were observed (Dubé et al., 2006a; Rickwood et al., 2006b). Discrepancies among studies 

may be attributed to species differences (Creek Chub vs FHM) and/or differences in reference-

control water used in each study (Garson flux pit vs, dechlorinated laboratory control water vs 

RO-dechlorinated lab water mix). Since the reference water was used as dilution water to mix the 

100% effluent to the appropriate 45% concentration, variations in the reference water used could 

account for the contrasting fish responses since water quality parameters (e.g., pH, hardness, 

alkalinity, DOM) are known modifiers of toxicity to aquatic organisms.  

When fish were exposed through the diet, elevated levels of Rb were observed in the 

carcass and gonads. Elevated metal concentrations have also been observed in rainbow trout 

carcass when exposed to dietary metals (Cd, Cu, Zn, Ag) relative to fish exposed waterborne 

metals or control fish suggesting that metals behave differently depending on their routes of 

exposure (Galvez et al., 2001; Szebedinszky et al., 2001).  

Significant interactions were observed for Rb in liver tissues and for condition and body 

weight in females suggesting that both diet and water exposure were required for effects to be 

observed. Differences in physiological parameters and accumulation rate based on route of metal 
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exposure (diet or water) has also been observed in rainbow trout (Galvez et al., 2001). Increased 

condition has also been observed in previous mesocosm studies using (Rickwood et al., 2006b) 

as well as  wild fish in the Sudbury area exposed via both routes of exposure (Pyle et al., 2005; 

Weber et al., 2008).   

A significant increase in egg production (cumulative total egg production and cumulative 

egg production) was also observed when fish were exposed to effluent through the diet only. 

This suggested that the effluent had a stimulatory effect on egg production when exposed 

through one exposure pathway. It is possible that the control water used in these particular 

streams contained high levels of RO water and did not provide sufficient micronutrients/metals 

for optimum reproduction. We suspect that this may have occurred because of improved food 

quality due to the leaching of metal from the frozen chironomids, resulting in a decrease in 

dietary metal exposure. Studies have shown that frozen organisms can depurate approximately 

30% of the metal burdens when placed in water (Mount et al., 1994; Ng and Wood, 2008). 

Although it was rare for un-eaten food to remain in the streams for any length of time, it is 

possible that mortality of one of the pairs could have led to increased depuration and reduced 

metal uptake. However, when fish were exposed through both routes of exposure (e.g., EWEB), 

there was significantly decreased egg production and spawning events observed. This suggested 

that effluent exposure through both exposure pathways acted in an additive manner.  These 

conflicting results showed how complex these natural systems are and that omitting an exposure 

pathway (dietary or waterborne) can lead to very different results. Similar findings have been 

observed in a factorial food study using Daphnia magna, which showed that combined 

waterborne and dietary exposures significantly affected reproduction and growth at higher 

exposure concentrations and results differed from when D. magna were exposed through only 

one route of exposure (DeSchamphelaere and Janssen, 2004). 

 

3.4.5 Food quality and quantity  

The second objective of our study was to assess whether relative toxicity to FHM was 

affected by the quality of food (live versus frozen) that they were eating.  Studies have reported 

absorption efficiencies up to 5-fold higher in rainbow trout fed with live prey compared to those 

fed an artificial diet (Harrison and Curtis, 2002). It has been suggested that feeding with live prey 

may result in greater metal toxicity due to biological incorporation into living tissues 
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(DeSchamphelaere and Janssen, 2004). Metals bound to cytosolic proteins of prey may increase 

metal bioavailability to the predator far greater than metals bound to insoluble fractions (Ng and 

Wood, 2008).  This suggests that multi-trophic pathways may play a greater role in metal 

toxicity than a frozen diet (Ng and Wood, 2008).  However, in our current study we did expose 

the C. dilutus to PWE for three weeks prior to freezing which should have enabled sufficient 

incorporation of metals into the tissues of the prey.  Furthermore, analysis of the C. dilutus 

tissues confirmed that metals were in fact similar in both multi-trophic and frozen insects, yet we 

observed very different response patterns in the predators (FHM) with respect to food quality.  

We can only assume that this may be attributed to the subcellular distribution of metals in the 

prey, metabolic availability of metals in the prey, assimilation efficiency of the predator, weight 

specific ingestion rate of the predator and/or metal depuration from the artificial/frozen prey 

(DeSchamphelaere and Janssen, 2004; Ng and Wood, 2008).  Similar studies have shown that 

20-30% of metals (Cd, Cu, Zn) depurated from frozen prey to the treatment water when thawed 

and fed to fish (Mount et al., 1994; Ng and Wood, 2008).  Since, depuration studies were not 

conducted on the frozen insects in our study, it is possible that FHM fed the artificial diet were 

not exposed to the same concentration of metals as the multi-trophic FHM due to depuration of 

metals from the frozen insects.  

  Nevertheless, our study showed that the quality of the food significantly affected the 

FHM condition factor and body weight.  Condition is a commonly used morphometric endpoint 

to assess the well being of fish in a specific population and is generally thought to reflect the 

recent feeding activities in fish (Couture and Pyle, 2008).  Elevated condition corresponds to 

increased energy storage (e.g., fat deposition, egg production) relative to physiological energy 

requirements, whereas decreased condition may indicate reduced food availability and/or 

increased physiological demand for energetic resources (Couture and Pyle, 2008).  Therefore it is 

possible that fish may allocate significant energetic resources to metal detoxification and less to 

energy storage in metal contaminated systems (Smith et al., 2001).  When fish were fed a live 

diet, we saw a significant increased condition and body weight compared to fish fed frozen 

chironomids.  At first glance it would appear that the fish are of superior health in the PWE 

multi-trophic streams. However their highly elevated condition factor, well above the EEM-

based critical effect level of ± 25%, suggests that the significant increase in condition and body 

weight, may actually be related to a reduction in egg production and spawning events in the 
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effluent exposed FHM. Increased condition has also been observed in studies of fish inhabiting 

metal-contaminated lakes (Farkas et al.2003; Pyle et al. 2005) as well studies conducted in 

Junction Creek (Jaagumaji and Bedard, 2001; Weber et al., 2008) relative to fish inhabiting 

reference waterbodies.  

 Fish in the multi-trophic control streams (MT-control) had significantly greater egg 

production (+55% cumulative eggs per female and +37% total egg production) compared to fish 

fed an artificial diet held in control water (CWCB).  Whereas, fish in the multi-trophic effluent 

streams (MT-effluent) had significantly decreased egg production (-49% cumulative eggs per 

female and -68% total egg production) when compared to effluent exposed fish fed a frozen diet 

(EWEB). The fish fed a frozen diet maintained statistically similar cumulative egg production 

(eggs/female/day and total egg production) regardless of treatment water.  We suspect that this 

might have occurred because of improved food quality due to the leaching of metals from the 

frozen insect tissue to the exposure water. We observed significantly increased condition factor 

and body weight and significantly decreased egg production (both cumulative and mean) and 

spawning events, which suggests that the females were sequestering their eggs. One hypothesis 

that explains this effect could be that energy allocations in fish were focused primarily on metal 

detoxification and maintaining homeostasis rather than reproduction due to the increased 

accumulation of metals from PWE exposure water.   

 Another hypothesis is that food abundance differed in the multi-trophic treatments 

compared to the artificially fed treatments. When we established our prey base in the multi-

trophic streams, our goal was to attain a density of 1.48 C. dilutus/cm
2
 to achieve a feeding rate 

of 1gram C. dilutus/day, similar to that of the non multi-trophic streams (exposure pathway -  

factorial design).  Prior to the insertion of the fish, at week 1, chironomid densities in the multi-

trophic control streams reached levels of 0.41/cm
2
 with levels of 2.07/cm

2
 (5-fold increase) 

achieved by the end of the 21-day exposure. This showed that food was not a limiting factor in 

the multi-trophic control streams.  Conversely, the densities in our multi-trophic effluent streams 

began with densities of 1.07/cm
2
 then decreased to levels of 0.36/cm

2
 (3-fold decrease) by the 

end of the 21-day exposure period, which suggests that food may have been limiting in the 

effluent streams.  Statistical analyses also detected a significant treatment effect on chironomid 

emergence (P=0.007). Previous studies are consistent with these findings, which suggest that 

PWE exposure to the chironomids resulted in reduced hatching and emergence, indirectly 
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affecting fish reproduction in these streams (Hruska and Dubé, 2004). The lowered densities may 

have contributed to the decrease in reproduction that we recorded in this study, however 

statistical analysis of the densities in the streams compared to the optimum levels required to 

achieve FHM satiation of 1gram chironomids/day (48% wet body wt./ 1.48/cm
2
) failed to detect 

a statistically significant difference among treatments (P>0.05).  It should also be noted that 

many studies in the literature and other bioassay protocols suggest a feeding rate anywhere from 

3.5-6% wet body weight in order to maintain healthy fish reproduction (Mount et al., 1994; 

Farag et al., 1994; USEPA, 1996; Dubé et al., 2006a; Ng and Wood, 2008). The nature of the 

multi-trophic mesocosms allows us to establish a multi-generational prey base while controlling 

the FHM feeding rate using a feeding barrier which we turn every second day.  In theory this 

should provide the appropriate density of chironomids for ~34 days of exposure without having 

to add further chironomids.  Excess chironomids in PWE streams at the start of the experiment, 

prior to when the fish were introduced and densities at the end of the experiment suggest that 

levels between 12-35% body weight were maintained in the streams at all times throughout the 

study (Figure 3.7). Furthermore, despite the indication that relatively high environmental metal 

concentrations resulted in a decrease in food availability (e.g., reduced chironomid densities) in 

the PWE streams, the elevated condition in the FHM suggests that there was sufficient food 

resources for maintaining fat deposition though not sufficient for maintaining egg production.   

Based on the fact that adult emergence was significantly affected by the PWE, we can only 

assume that the FHM had sufficient food for the duration of the study however, chironomid 

reproduction was significantly altered with effluent exposure resulting in a reduced density by 

the end of the experiment.  Since we were unable to obtain core samples throughout the entire 

exposure phase, we cannot discount the fact that lowered reproduction could have been at least 

partially due to reduced food availability in the MT-effluent streams.  Similar studies have also 

shown that fish fed a lower ration of food (~4.62% of their initial mean body mass) exhibited 

greater effects (increased mortality, reduced growth and increased fin erosion) than fish fed 

higher rations (18.48% and 44.03% of their initial mean body mass) (Hopkins et al., 2002). Most 

toxicity bioassays control for confounding food limitations in their designs, but under 

environmentally realistic exposure conditions, prey abundance is often limited (Hopkins et al., 

2002).  Future studies should focus on food quantity and its role in affecting FHM reproduction.  
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3.5 CONCLUSION 

Assessing the relative importance of dietary and waterborne routes of exposure showed 

that metals assimilated differently in FHM tissues depending on the exposure route.  Elevated 

metals were observed in one or more tissue type (carcass, liver and gonads) when FHM were 

exposed through water or diet or both routes of exposure. Condition, body weight in female adult 

FHM and tissue metal burdens in 5-day FHM larvae increased significantly and cumulative 

spawning decreased when exposed to effluent water.  Conversely, LSI, cumulative total egg 

production and cumulative eggs/female/day increased in female FHM exposed through the diet. 

The examination of food quality effects on FHM toxicity showed that for some metals  (e.g., Tl, 

Rb, Se, Sr, Cu) effluent water, regardless of food type (live or frozen), was predominantly 

responsible for increased FHM tissue burdens (carcass, liver, gonads).  However,  Rb and Cd 

appeared to increase significantly in FHM livers when exposed to through live diet (MT-

effluent). Interestingly though, a majority of the reproductive and biological responses to FHM 

were found in the multi-trophic effluent streams where FHM fed on live chironomids.  Condition 

and body weight increased and cumulative total egg production, cumulative spawning, 

cumulative eggs/female/day significantly decreased.  This suggests that multi-trophic and dietary 

exposure are the predominant pathways responsible for reproductive impairment in FHM 

exposed to complex metal mining effluent.  These effects appear to be most notable when FHM 

were fed a live diet vs an artificial diet of frozen C. dilutus which holds importance for 

methodological testing approaches with metals and mine effluents.  
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Chapter 4 

GENERAL DISCUSSION 
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4.0 PROJECT RATIONALE 

The mining industry in Canada is of significant economic importance. It also holds 

potential for contributing to environmental change in waters receiving significant volumes of 

treated effluents. In the most recent review of aquatic effects in Canada (Lowell et al., 2007) it 

was revealed that there are over 70 mines currently operating and discharging effluent. It is 

difficult to quantify the total effluent loading into Canadian aquatic systems however if we 

consider an average discharge rate of a mine to be about 41,500 m
3
/day (based on the three mine 

discharges at the study site), we can estimate the daily effluent loading in Canadian waters to be 

about 2.9 million m
3
/day. While all effluents discharged are treated under Canadian regulations, 

effects are documented in the aquatic environments receiving the effluent discharges. After 2 

phases of monitoring (phase 1 [2004-2005]; phase 2 [2007-2008]), the national assessment team 

(Lowell et al., 2007; 2010 pers. communication) reported some key changes in aquatic 

environments receiving effluents.  There were significant decreases in condition, liver sizes, and 

growth rates in fish as well as significant decreases in benthic invertebrate density and taxon 

richness, demonstrating an inhibitory response pattern on a national level.  

 Understanding the significance of the industry to our country, the potential for 

environmental change associated with effluent discharges, and the fact that significant changes 

have been detected as evidenced in biological response patterns of Lowell et al. (2007), the broad 

objectives of this thesis were to address significant research gaps limiting our understanding of 

mine effluent effects on aquatic systems. Firstly, I wished to develop an approach to assess 

individual mine effluent contributions to a watershed receiving multiple point source discharges 

including three different types of mine effluents. Secondly, I wished to assess effects in a manner 

that allowed experimental manipulation of critical response endpoints (e.g., fish survival and 

reproduction) in a highly realistic and more environmentally relevant manner than approaches 

currently used in the literature. Environmental realism was achieved by inclusion of multiple 

routes of exposure (waterborne and dietborne) in an in-field food web bioassay. Thirdly, I 

wished to better understand the role of diet in assessing the effects of metal mine effluents on 

fish reproduction through direct manipulative studies.  Finally, based on tissue accumulation of 

metals, my intention was to determine if particular metals appeared to potentially cause any of 

the effects observed.    
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4.1 INTRODUCTION 

The field study was conducted from July to September, 2008 and the laboratory studies 

were conducted from January to May, 2009 using in situ modular mesocosm systems. The 

mesocosm system was based on a modified reproductive bioassay developed by Rickwood et al., 

2006a which allowed the assessment of up to three separate point source discharges (effluents) 

simultaneously in a field experiment. This also enabled the determination of which effluent was 

having the greatest effects on the aquatic environment in isolation of any other confounding 

inputs.  Further application of the mesocosms was administered in the laboratory studies to 

assess the various routes of exposure as well as food quality to evaluate their role in affecting 

fish responses. Very few studies have been able to isolate the major point sources in a river 

system and even fewer have been able to assess exposure pathways (water and diet) in a 

controlled hypothesis-driven experimental design using effluent mixtures in a multi-trophic 

system. To our knowledge this study was also the first to investigate effects of metal mining 

effluent on fish responses based on food quality when fish were fed a live diet versus a 

laboratory prepared diet. This research provides a more environmentally realistic bioassay by 

incorporating a trophic transfer component.  The technology has proven to be effective as a 

surrogate to a resident fish survey for mines in Canada that may need to assess their current 

effluent effects using an alternative approach to the standard fish survey.   A total of 38 

endpoints were analyzed over three studies however, this discussion will focus only on selected 

biological (condition factor, gonad size (GSI), liver size (LSI), body weight) and reproductive 

(cumulative eggs/female/day, cumulative total egg production, cumulative spawning events and 

egg size) endpoints in FHM as well as two main endpoints that were measured in the 

chironomids (densities, adult emergence).   

4.2 ENVIRONMENTAL EFFECTS MONITORING ENDPOINTS 

The Canadian EEM program requires all mines to evaluate the effects of mine effluent by 

assessing several response endpoints [fish population surveys, benthic invertebrate community 

surveys and fish usability (Hg in tissues)] (MMER, 2002). Similar endpoints are assessed around 

the world.  In the USA this is conducted through nation-wide monitoring programs such as: the 

National Water Quality Assessment Program (NAQWA), Biomonitoring of Environmental 

Status and Trends Program, the National Lake Fish Tissue Study (NLFTS) and the 

Bioassessment Index of Biotic Integrity (B-IBI) program (CCME, 2006). Benthic 
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macroinvertebrates and fish are most commonly monitored.  However, some States also monitor 

perhiphyton (CCME, 2006).   Similar programs have also been implemented in Australia using 

the Water Reform Framework (WRF), the National River Health Program (NRHP) and the 

Australian River Assessment System model (AURIVAS) (CCME, 2006). The AURIVAS model 

incorporates a number of community assemblages such as benthic macroinvertebrates, fish, 

diatoms, macrophytes and riparian vegetation (CCME, 2006).  Similarly in Europe, the Centre 

for Ecology and Hydrology (CEH) manages biomonitoring programs in Scotland, Northern 

Ireland, Wales and England (CCME, 2006). The CEH uses the River Invertebrate Prediction and 

Classification System (RIVPACS) model to analyze routine benthic macroinvertebrate 

monitoring data that are collected in spring and fall (CCME, 2006). However, there has been 

limited use of fish and aquatic vegetation in the RIVPACS model thus far (CCME, 2006).  

 The most common biological indicator used in monitoring programs to assess 

environmental degradation throughout the world appears to be the benthic macroinvertebrate 

community, followed by fish and to a lesser degree periphyton and aquatic vegetation.  Common 

endpoints measured for benthic invertebrates include: taxanomic richness, abundance, EPT 

(Ephemeroptera Plecoptera, Trichoptera) richness, diversity, evenness, Bray-Curtis Index, 

Shannon-Wiener Index, Hilsenhoff Biotic Index among others. Fish endpoints measured include 

the index of biological integrity or the index of well being, as well as assessing relative weight, 

abundance and condition. Assessment of the periphyton community includes an algal community 

assessment, chlorophyll "a" content and algal biomass. The EEM program in Canada however, 

uses both fish and benthic response endpoints to assess mine impacts to the environment. The 

response endpoints considered in the EEM program include condition (total body weight vs total 

length), relative liver weight, relative gonad weight, weight at age and age for fish; and density, 

taxa richness, Simpson's evenness index, and Bray-Curtis dissimilarity index for benthic 

macroinvertebrate communities. An assessment of fish usability is also conducted where fish 

tissues are analyzed for mercury. The EEM program has attempted to encompass many of the 

valuable assessment programs available internationally into one comprehensive program that can 

be applied to all mines across Canada.  The program is currently on its third Phase of studies for 

most mines in Canada.  On a national level, Phase 1 of the EEM program found a significant 

decrease in condition and relative liver weight in the fish population survey as well as decreased 

taxon richness and total density in the benthic invertebrate community survey exposed to treated 
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effluent for many mines across Canada.  In Phase 2, a decrease in condition, relative liver weight 

and weight at age was observed in fish populations as well as decreased taxon richness in the 

benthic invertebrate communities. Total invertebrate densities at exposure sites for mines 

significantly increased across Canada. 

 In the current field study, magnitude of changes in exposed fish relative to the reference 

fish was significantly increased for condition in female FHM exposed to SWE.  Significant 

increases in relative liver size (both sexes) in all MME's were also observed as was a significant 

increase in relative gonad size (both sexes) in all MME's. In each instance changes exceeded the 

Critical Effect Size (CES) for condition factor (±10%), liver size (± 25%) and gonad size (± 

25%) as specified in the EEM program (MMER, 2002). Overall, the field study showed that the 

MME's have a stimulatory effect on fish in Junction Creek, which was not consistent with the 

observations made by the national findings in both phases.  Similar to the national findings of 

Phase 1, decreased chironomid densities were observed in all MME's relative to reference 

streams.  

 Results of the lab studies however showed significantly increased condition and body 

weight in female FHM and significantly decreased egg size in fish as well as decreased 

chironomid densities when exposed to PWE (Table 4.1).  Conflicting results for LSI was 

observed in our lab studies (Table 4.1). However, our food quality experiment (MT-Lab) in 

which fish were fed live chironomids, did coincide with the national findings, showing inhibitory 

responses in fish liver when exposed to mine effluent in both phase 1 and 2 (Lowell et al., 2007 

and 2010 pers. communication). Condition factor and body weight however, exhibited a 

stimulatory response pattern in all current experiments, contrary to those observed by the 

national EEM findings in both Phases.  We have observed significant increases in condition in 

both fish and invertebrates in our studies to date (Table 4.1). Despite discrepancies with the 

national findings, the results do coincide with other studies conducted in the Sudbury area, which 

have shown that condition in yellow perch was either unchanged or increased when compared to 



 

 

Table 4.1. Summary of studies (field and mesocosm) conducted by our research team (Dubé et al.) over the last ten years using 

the 45% PWE (Process Water Effluent).  Arrows depict a significant increase () or decrease () in the effects observed in 

female FHM when compared to the control/reference treatment. Effects for C. dilutus rather than FHM. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aDensities refer to C. dilutus stream densities  
bGSI = Gonadal Somatic Index 
cLSI = Liver Somatic Index 

NS= not significantly different from reference values 

MT= multi-trophic 

Exp = Experiment 

 FIELD 

STUDY 

MESOCOSM STUDIES 

Effect Observed Weber et 

al. 2008 

(Residen

t Fish) 

Dubé et 

al., 2006a 

(Fish-

Field) 

Hruska & 

Dubé, 2004 

(C. dilutus - 

Lab & 

Field) 

Rickwood 

et al., 

2006b 

(MT-Lab) 

Rickwood 

et al., 2008 

(MT-Field) 

Ramilo et 

al., Field  

(Exp 1) 

Ramilo et al., 

Exposure 

Pathway 

(Exp 2) 

Ramilo et 

al., Food 

Quality  

(Exp 2) 

a
Density - -      NS 

b
GSI NS  NS - NS NS NS NS 

c
LSI   - - NS    

Testosterone -    NS - - - 

Survival -   NS  NS NS - 

Condition NS NS       

Metal Accumulation 

in Tissues 
        

Spawning  

Events 

- 

 

- 

 
-      

Egg Size  NS - - NS    

Egg Production  NS -      

Hatching Success     NS NS   

Larval Deformities - - - -  NS NS NS 

9
6
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reference fish (Pyle et al., 2005).  Furthermore, 2 out of 5 of our studies have shown inhibitory 

effects in LSI (Table 4.1). Inconsistent effects on liver size (LSI) have also been observed in fish 

exposed to other mine effluents (Woodward et al., 1995; Farag et al., 1999; Eastwood and 

Couture, 2002). All of our studies conducted to date have shown an inhibitory effect of PWE on 

chironomid density (Table 4.1), which is consistent with the national findings in Phase 2 as well 

as with the field studies conducted in Junction Creek in 2009 (Stantec, 2009). In addition, several 

reproductive endpoints were measured in the MME's and have been shown to inhibit egg 

production (cumulative eggs/female/day and cumulative total egg production), egg size and 

cumulative spawning events when exposed to PWE (Table 4.1), have no effect when exposed to 

MWE (Chapter 2) and a stimulatory effect on reproduction when exposed to SWE (Chapter 2).  

Similar reproductive impairment (e.g., reduced egg production, reduced hatching success) has 

also been observed in fish exposed to metal contaminated sites (Munkittrick and Dixon, 1988; 

Fisher and Hook, 2002; Boyle et al., 2008; Franssen, 2009).  Decreased egg size has also been 

observed in yellow perch in the Sudbury area (Pyle et al., 2005). 

 

4.3 GENERATION OF HYPOTHESES  

Several hypotheses have been presented to explain why FHM condition has been 

increased in SWE (Chapter 2) and PWE in our current field study despite reduced spawning 

events and eggs produced in the PWE treatment.  One theory is that the fish may have grown 

larger in the SWE treatments and therefore ate more, grew larger and produced more eggs than 

the fish in PWE. However, there were no significant differences among total body weight or fork 

length among treatments. Increased egg production was observed for SWE compared to 

reference, however this was not a factor of fish size.  The fish in the SWE did not grow larger 

than the fish in the other treatments; they simply produced more eggs even when compared to the 

reference treatments. Some investigators compute condition based on the "gonad-free" body 

weight to remove the effect of temporally varying gonad weight from the denominator.  

Condition was calculated using both methods however, the end results were not appreciably 

different therefore condition indices were calculated based on total body weight.  Furthermore, it 

is not clear in the EEM guidance document whether condition is computed using total body 

weight or gonad-free body weight. However, since the fish used in the study were all laboratory 

reared, were naive fish, at a similar stage of reproduction and of the same age, it is unlikely that 
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temporal variability played a substantial role in affecting condition.  We also investigated the 

possibility that a greater abundance of food (C. dilutus) was available in the SWE compared to 

the other treatments however, chironomid density analysis showed that there was less food 

available in the SWE compared to the control streams (Chapter 2), which suggested that food 

abundance was not a factor in the increased egg production observed. However, in our food 

quality experiment (Table 4.1, Experiment 2), it was possible that lowered densities of 

chironomids in the effluent exposed multi-trophic treatments could have partially attributed to a 

decrease in reproduction (Table 4.1). The findings from previous studies conducted in our lab are 

consistent with the current findings, which suggest that PWE exposure severely alters 

reproduction in chironomids (Hruska and Dubé, 2004, Rickwood et al., 2006a, 2008).   Both the 

current field and lab experiments showed that the duration of exposure (time) and type of 

treatment (effluent vs control), regardless of the effluent, as well as the interaction between time 

and treatment had a significant effect on adult chrionomid emergence.    

 Interestingly when food abundance was controlled for in the exposure pathway 

experiment (Table 4.1, Experiment 1) a significant reduction in egg production was still 

observed when fish were exposed to PWE through both routes of exposure, which seems to 

suggest that food abundance may not be a limiting factor in reproductive effects in our current 

studies.   

  One proposed hypothesis for the increased condition factor, decreased egg size, 

spawning events and overall egg production in fish exposed to PWE may be that energy 

allocations were focussed primarily on maintaining metabolic homeostasis and metal 

detoxification rather than reproduction, due to increased metal exposure, and that significantly 

reduced egg size may indicate the possibility of resorption of their eggs under these stressful 

conditions (Helfman et al., 1997). Egg resorption is a common process in oviparous fish which 

allows the female to re-use proteins, fats and minerals in the eggs for maintenance and growth 

under stressful conditions (Helfman et al., 1997). Furthermore, fish have been shown to adjust 

their egg size in response to environmental stress (Kamaran et al., 2007; Driessnack et al., 2011).  

Although we can only speculate as to what may be occurring, gonadal development and 

histopathology analysis in previous studies appear to agree with this theory and  have shown 

significant increased rates of zona radiata breakdown, enlarged granulose cells and yolk 

resorption in ovaries of FHM (Weber et al., 2008).  This suggests that perhaps 21 days of 



 

99 

 

exposure was not sufficient for resorption of the eggs to occur and could have resulted in the 

elevated condition factor that we have observed in our latest studies. In addition, fish mortality 

increased in some streams likely as a result of increased stress due to effluent exposure or 

disruption of normal reproductive functions. Mortality alters the sample size, increases 

variability and reduces the power to detect a significant effect, which could be partially attributed 

to the variability in some of the biological endpoints measured in this study. Discrepancies 

among our latest studies and the national findings could also be attributed to fact that most mines 

conduct EEM studies on resident fish downstream of their final discharge point.  There is no way 

of controlling the migration of wild fish and they may actually spend more time closer to the 

effluent discharge, where there is less dilution, and therefore be subjected to greater exposure 

than in the mesocosm studies. This may explain why a stimulatory effect was prominent in our 

studies and an inhibitory effect was more prominent in the national findings.     

 

4.4 ROUTES OF EXPOSURE 

Our exposure pathway study was conducted specifically to examine the relative 

importance of dietary and waterborne routes of exposure to PWE in a laboratory setting (Chapter 

3). This study enabled us to alter the experimental design of the bioassay to allow for the 

application of a factorial study design allowing us to assess both routes of exposure 

simultaneously in a controlled hypothesis-driven study. Most studies do not assess routes of 

exposure independently from each other, and concurrent exposures to both waterborne and 

dietborne exposures can complicate the interpretation of the experimental data (Meyer et al., 

2005). Examining the exposure pathways independently and simultaneously within the same 

experiment can provide valuable insight about mechanisms of metal uptake, bioavailability, 

bioaccumulation and toxicity (Meyer et al., 2005). We are not aware of any studies in the 

literature that have assessed environmentally relevant effluent mixtures and three separate routes 

of exposure (dietary, waterborne and both) simultaneously using a modified fish bioassay.  In 

this study, fish were fed a pre-frozen diet of chironomids that had been grown in either 

laboratory control water or 45% PWE.  This was important to the study design since metal 

enrichment of the diet (chironomids) needed to reflect environmental exposure conditions found 

in Junction Creek. There were 4 treatments: a complete control where fish were held in control 

water and fed benthic organisms raised in control water (CWCB), a waterborne-only exposure 
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where fish were held in effluent water and fed control benthic organisms (EWCB) a dietborne-

only exposure where fish were held in control water and fed effluent raised benthic organisms 

(CWEB) and finally a complete exposure treatment (EWEB) where fish were held in effluent 

water and fed benthic organisms raised in effluent water. The results showed that metals 

accumulated differently in FHM tissues depending on the exposure route.  Elevated metals were 

observed in one or more tissue type (carcass, liver and gonads) when FHM were exposed 

through water (Al, Ce, Sr, Cd), diet (Rb, Co, Al, Ce) or both routes (Mg, Pb, Cr, Va) of 

exposure. Condition factor and body weight significantly increased, whereas LSI and egg size 

significantly decreased when FHM were exposed through waterborne routes of exposure. LSI 

was also significantly decreased when exposed through dietary exposure pathways (CWEB). 

Results showed that both waterborne and dietborne routes of exposure can significantly affect 

liver size (LSI) and can do so independently of each other.  A significant interaction was 

observed for condition and body weight in female FHM which suggested that both effluent water 

and effluent exposed chironomids were dependent on each other and acted in an additive manner 

for effects to occur.  This was an important discovery since it was apparent that both routes of 

exposure were required to elicit significant effects.    

 A significant increase in egg production (cumulative total egg production and cumulative 

egg production) was observed when fish were exposed through the diet only.  This suggested that 

the effluent had a stimulatory effect on egg production when exposed through one exposure 

pathway. However, when fish were exposed through both routes of exposure (EWEB), there was 

significantly decreased egg production and spawning events observed. This suggested that 

effluent exposure through both exposure pathways acted in an additive manner.  These 

conflicting results showed how complex these natural systems are and that omitting an exposure 

pathway (dietary or waterborne) can lead to very different results. Similar findings have been 

observed in a factorial food study using Daphnia magna, which showed that combined 

waterborne and dietary exposures significantly affected reproduction and growth at higher 

exposure concentrations and results differed from when D. magna were exposed through only 

one route of exposure (DeSchamphelaere and Janssen, 2004).  
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4.5  FOOD QUALITY 

The food quality study was conducted concurrently with the exposure pathway study in 

the lab in order to assess whether fish responses differed when prey (C. dilutus) were live or 

frozen. We are only aware of one other study design which has attempted to assess biological 

effects through various routes of exposure using a live diet (DeSchamphelaere and Janssen, 

2004), however the current study to our knowledge, is the first to examine a live and laboratory 

prepared frozen diet simultaneously using fish held in an effluent mixture.  Results showed that 

several FHM responses (biological and reproductive) were affected by food quality. 

 A significant treatment effect (PWE treatment vs reference treatment) was observed for 

LSI and egg size. Both were significantly decreased when exposed to the PWE treatment 

compared to reference treatment, regardless of whether fish were fed live or frozen food. A 

significant interaction was also observed for LSI suggesting that both effluent exposure and live 

benthic organisms interacted in an additive manner to cause a decrease in LSI. However based 

on the fact that a similar response was observed when fish were held in PWE treatments 

(waterborne only exposure), it would suggest that the predominant route of toxicity is through 

waterborne exposure and food quality plays only a small role in eliciting toxic response to FHM 

livers when exposed to metal mixtures. Egg size and egg volume have also been shown to 

significantly decrease when exposed to waterborne concentrations of Se (selenate form) as low 

as 3 ug/l (Driessnack et al., 2011). Waterborne Se concentrations in all MME's discharged to 

Junction creek have exceeded this threshold value (Table 4.2). Furthermore in the same study, a 

21 day depuration phase showed that when fish were removed from the contaminant source, egg 

size/ volume rapidly increased to reference conditions (Driessnack et al., 2011). This study 

showed a direct cause and effect of selenate on FHM egg reproduction and would be of value to 

reproduce using Vale's MME's in future studies.    

 A significant treatment effect and food-type effect was observed for condition and body 

weight in female FHM. Both condition and body weight increased when exposed to the PWE, 

and when fish were fed live benthic organisms. However, significantly decreased egg production 

(cumulative total egg production, cumulative eggs/female/day) and spawning was observed 

when fish were held in the PWE and fed live benthic organisms. Increased condition and body 

weight in conjunction with decreased egg production would suggest that the females were 

sequestering their eggs or that one or both sexes may have altered energy allocation (e.g., from 
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reproduction to ionoregulation) in order to deal with the stress of increased metal exposure. 

Conversely, a significant increase in cumulative total egg production, cumulative spawning 

events and cumulative egg production was observed when fish were fed live benthic organisms 

in the control treatment compared to when they were held in effluent water and fed live benthic 

organisms.  

 Overall, similar reproductive effects were observed when fish were fed a frozen 

laboratory prepared diet regardless of the treatment water they were exposed to.  Whereas we 

observed significantly contrasting reproductive effects when fish were fed live benthic organisms 

and exposed to different treatment water.   

 Furthermore, when metal accumulation in the fish tissues was examined, Rb and Se both 

significantly increased in liver and carcass when fed live prey. Several possible reasons for this 

were discussed previously in Chapter 3 but these findings suggests that multi-trophic live dietary 

pathways may play a  greater role in metal toxicity than a frozen laboratory prepared diet of 

chironomids.   

 

4.6 EFFLUENT QUALITY  

Both field and lab studies showed a high degree of variability for most of the biological 

endpoints measured (egg production, egg size, larval deformities), even when the same effluent 

treatment was used (PWE) (Table 4.1).  This variability may be attributed to a number of factors 

including:  1) the chemical composition and nature (e.g., surface water, mine water, process 

water) of the mining effluent; 2) other organic constituents in the effluent; and 3) the sample 

size.   

 Upon closer examination of the reproductive output in our effluent exposed streams, we 

have observed significantly less egg production and spawning events in most studies to date, 

especially in the PWE treatments (Table 4.1).  It would appear that reproductive investment in 

FHM was severely reduced and females seemed to be sequestering their eggs which directly 

affected condition.  We have hypothesized that effluent quality may have been partially 

responsible for this and could have resulted in a shift in energy allocation, whereby more energy 

was concentrated on ionoregulation and less on reproduction (Franssen, 2009). MME's are 

continually changing based on the geological properties of the rock and the milling process, 

which makes them extremely difficult to work with and to obtain repeatable results. Over the last  



 

 

Table 4.2 Key Effluent Parameters Measured in Eight Mesocosm and One Resident Fish Field Study Using One or More Treated 

MME's [Surface Water Effluent (SWE), Mine Water Effluent (MWE), Process Water Effluent (PWE)] Discharged to Junction 

Creek Over the Last Ten Years. 

MT=multi-trophic 

1
0
3

 

Hruska & Dubé, 

2002 (Field Study)

Hruska & Dubé , 

2003 (Lab Study)

Rickwood et al., 

2004 (Lab Study)

SWE MWE PWE SWE MWE PWE PWE PWE PWE-MT

Conductivity (µS/cm) 711.5 ± 22.5 1128.0 ± 1.0 1628.0 ± 190.0 197.8 ± 6.3 525.9 ± 18.1 1065.6 ± 37.0 1864 ± 48 1730 ± 43.6

pH 8.1 ± 0.01 8.0 ± 0.01 7.8 ± 0.04 7.7 ± 0.7 7.5 ± 0.06 7.5 ± 0.06 7.7 ± 1.4 7.8 ± 0.1 7.57 ± 0.07

Total Ammonia (mg/l) 0.20 ± 0.00 0.55 ± 0.25 0.9 ± 0.10 0.32 ± 0.18 0.87 ± 0.16 1.35 ± 0.07 1.39 ± 0.07 2.3 ± 0.9 0.15 ± 0.10

Dissolved Organic Carbon (mg/l) - - - - - - 4.2 ± 0.1 5.6 ± 1.7 3.33 ± 1.45

Total Organic Carbon (mg/l) - - - 8.88 ± 2.58 5.32 ± 1.08 4.22 ± 0.12 4.7 ± 0.5 - 3.67 ± 1.76

Total Hardness (mg/l as CaCO3) - - - 103.1 ± 9.8 287.1 ± 23.1 729.2 ± 52.6 793 ± 21 1035 ± 116 882 ± 29.5

Total Suspended Solids (mg/l) - - - - - - - - -

Cadmium (µg/l) - - - - - - - 0.99 ± 0.23 0.15 ± 0.05

Cobalt (µg/l) - - - - - - 2.3 ± 0.4 15.03 ± 0.47 3.12 ± 0.61

Copper (µg/l) - - - - - - 83 ± 10 63.7 ± 8.6 93.8 ± 16.1

Nickel (µg/l) - - - - - - 78 ± 12 199 ± 25 114 ± 51.2

Rubidium (µg/l) - - - - - - 29 ± 0.8 47.7 ± 5.6 51.4 ± 16.4

Selenium (µg/l) - - - - - - 64 ± 28 6.84 ± 0.36 7.37 ± 0.66

Strontium (µg/l) - - - - - - 576 ± 96 722 ± 82 809 ± 220

Thallium (µg/l) - - - - - - - 0.664 ± 0.052 1.02 ± 0.53

Vanadium (µg/l) - - - - - - - 0.17 ± 0.02 -

Zinc (µg/l) - - - - - - 9 ± 1 4.5 ± 0.7 12.5 ± 1.99

Rickwood et al., 

2005 (Field 

Study)

PWE MWW-MT SWE-MT MWE-MT PWE-MT PWE PWE-MT SWE MWE PWE

Conductivity (µS/cm) 1559 ± 108 465 ± 14 769 ± 33 1616 ± 53 1257 ± 95 1316 ± 142 316 933 1322

pH 7.59 ± 0.48 7.29 ± 0.12 7.33 ± 0.16 6.69 ± 0.43 6.81 ± 0.13 6.65 ± 0.12 7.32 7.92 7.05

Total Ammonia (mg/l) 2.78 ± 1.86 0.32 ± 0.11 0.74 ± 0.35 1.89 ± 0.77 0.18 ± 0.04 0.36 ± 0.07 0.05 0.01 1.19

Dissolved Organic Carbon (mg/l) 6.11 ± 0.32 9.33 ± 0.33 8.00 ± 1.15 7.00 ± 0.58 3.0 ± 0.42 4.95 ± 0.54 11 12 8.1

Total Organic Carbon (mg/l) 6.66 ± 0.18 9.67 ± 0.33 9.00 ± 0.58 7.33 ± 0.88 3.90 ± 0.12 6.21 ± 0.43 - - -

Total Hardness (mg/l as CaCO3) 533 ± 43.7 163.0 ± 20.4 308.3 ± 5.5 651.3 ± 23.9 437 ± 44.98 467 ± 54.11 74 276 463

Total Suspended Solids (mg/l) 9.87 ± 2.07 3 ± 0 3 ± 0 5 ± 2 - - 5 <3 15

Cadmium (µg/l) 0.1 ± 0.03 0.08 ± 0.03 0.07 ± 0.02 0.09 ± 0.04 0.11 ± 0.03 0.30 ± 0.04 0.28 <0.1 0.26

Cobalt (µg/l) - 0.39 ± 0.05 0.36 ± 0.14 1.45 ± 0.12 2.03 ± 0.91 3.24 ± 0.53 10.6 1.9 10.9

Copper (µg/l) 33.6 ± 16.8 9.23 ± 1.07 7.93 ± 1.20 50.80 ± 5.45 70.1 ± 11.07 53.5 ± 5.19 61 6 106

Nickel (µg/l) 32.5 ± 14.1 32.67 ± 4.96 27.10 ± 10.60 53.27 ± 15.49 74.2 ± 1.81 84.67 ± 3.07 299 153 280

Rubidium (µg/l) - 6.00 ± 0.50 11.77 ± 1.02 35.47 ± 2.74 22.63 ± 3.76 23.7 ± 3.74 2.3 8.2 19

Selenium (µg/l) 7.2 ± 0.90 0.50 ± 0 1.37 ± 0.44 11.10 ± 0.92 8.0 ± 1.59 8.13 ± 1.05 <1 2.2 7.8

Strontium (µg/l) - 137.67 ± 10.17 482.33 ± 36.06 485.00 ± 32.51 341 ± 41.68 352 ± 49.41 61 380 270

Thallium (µg/l) 0.52 ± 0.05 0.05 ± 0 0.05 ± 0.00 0.30 ± 0.04 0.09 ± 0.02 0.08 ± 0.03 <0.1 <0.1 0.6

Vanadium (µg/l) - 1.03 ± 0.53 1.07 ± 0.35 0.50 ± 0.0 - - 1.3 2.1 1.3

Zinc (µg/l) 10 ± 7.50 9.17 ± 8.17 4.77 ± 2.78 5.4 ± 2.06 7.7 ± 4.53 8 ± 2.02 23 7.9 19

Key Effluent Parameters

MESOCOSM STUDIES 

MESOCOSM STUDIES 

FIELD STUDY

Dubé et al., 2001 (Field Study)

Key Effluent Parameters

Ramilo et al., 2008 (Field study) Ramilo et al., 2009 (Lab Study) Weber et al., 2004 (Field Study)

Dubé et al., 2002 (Field Study)
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In particular, conductivity has varied by as much as of 4-fold in SWE, 2-fold in MWE and 2-fold 

in PWE (Table 4.2).Ammonia has also varied by about 2-fold in SWE and MWE, and by as 

much as 19-fold in PWE in various studies, with the highest concentrations of ammonia 

observed in Rickwood's field study at 2.27 mg/l total ammonia (~0.052 mg/l un-ionized) in PWE 

(Table 4.2). Un-ionized ammonia has been associated with decreased liver somatic index (LSI) 

at concentrations between 0.834 mg/l and 1.112 mg/l in slimy sculpin (Cottus cognatus) 

(Spencer et al., 2008). In the same study, gonadosomatic index (GSI) was elevated in fish 

exposed to 1.668 mg/l un-ionized ammonia (Spencer et al., 2008).  Ammonia levels in all three  

of Vale's effluents appear at concentrations below this toxic threshold value, but may be partially 

associated with the increase in GSI and decrease in LSI observed in some of our studies to date.   

Increased ion levels (magnesium, calcium and sodium) have also been implicated as 

causative factors in MME affecting FHM due to their potential to cause stress associated with 

osmoregulation (Rickwood et al., 2006b; Evans, 2000). Reproduction may be impaired under 

periods of stress and the reproductive effects observed could simply be due to the change in 

water quality, e.g., high conductivity and hardness (Rickwood et al., 2006b). However, it is not 

possible to make any comparisons to previous literature as studies could not be found that have 

investigated these parameters and their effects on reproductive output in FHM (either directly or 

indirectly) (Rickwood et al., 2006b). Furthermore, the nature of the effluent varies considerably 

in composition from each other as described in Chapter 1. SWE is mainly comprised of surface 

runoff and water from collection ponds, MWE is mainly comprised of underground mine water 

and surface runoff from the Garson Mine whereas the PWE is comprised of process water from 

the mining, milling, refining and smelting of ores from the Vale operations.  Despite the 

variability in effluent quality temporally, PWE has been identified in all of our studies to date as 

the effluent of greatest concern, not only because it contains the highest concentration of metals 

and constitutes the greatest volume of effluent that enters into Junction Creek but also because it 

is the only effluent that receives waste from the beneficiation of ores and sewage waste water 

from surface mine operations simultaneously.   

 In this study and other studies conducted in Junction Creek (Jaagumagi and Bedard, 

2001; Weber et al., 2008) a concentration gradient of metal contamination occurs in the water 

with SWE at the lower end and PWE at the higher end and MWE in between.  We have seen this 

gradient in a number of water quality parameters such as hardness, conductivity and ammonia as 
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well as a number of metals and mettaloids (Cu, Ni, Rb, Se, Sr) (Table 2). This gradient has also 

been observed in the biological and reproductive endpoints that have been measured using the 

three effluents in our 2001-2002 studies (Dubé et al., 2006a) as well as in our field study 

conducted in 2008 (Chapter 2). Overall a stimulatory effect has been observed in the SWE and 

an inhibitory effect has been observed in the PWE with a mixture of both effects observed in the 

MWE when compared to reference values, which could be partially due to effluent quality 

(Chapter 2). We have also observed a reverse gradient with TOC and DOC appearing at higher 

concentrations in SWE (Table 4.2). The effluent quality and general water quality parameters 

play a major role in the bioaccumulation of metals and metal uptake in the aquatic environment 

(see Chapter 1 section 1.4 for greater details).   One of the most notable differences among the 

three MME's however is the fact that the PWE contains a number of organic constituents in the 

effluent that are not  present in the other MME's that have not yet been identified. The milling 

process in particular requires the use of chemical reagents in the beneficiation process (e.g., lime, 

sodium cyanide, xanthates, polymers, surfactants). Furthermore, PWE also contains sewage 

waste water as well as runoff from fuel storage areas and maintenance shops as was noted in 

Chapter 2. Though it was beyond the scope of the current study as well as beyond the regulatory 

requirements of the EEM program to examine the organic constituents in the effluent they have 

the potential to affect biological and reproductive endpoints in fish and invertebrates and require 

further attention in future studies. 

 

4.7 METALS OF CONCERN 

Specific metals in the effluent have the ability to directly affect fish reproduction. At the 

end of the 21 day exposure period, both fish and invertebrates were collected to assess metal 

accumulation in determining any potential causative metals of concern which may have led to 

reproductive effects in FHM.  Overall among all of the studies that have been conducted by our 

lab to date, including the current studies; Cu, Ni, Rb, Se, Sr and Tl appear to be the metals most 

consistently observed in the tissues of biota and are the metals of most concern at this time 

(Table 4.3).   

 In particular Rb has been found to accumulate in fish 5 of the 8 studies and in the greatest 

variety of tissue types.  Studies have shown that Rb has the potential to inhibit spermatogenesis 

in fish at concentrations of 18 µg/g in the testes (Yamaguchi et al., 2007). Though Rb 
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accumulation was not analyzed in the FHM testes in any of our previous experiments our current 

study results have shown mean concentrations in the ovaries of females varied from 2.34 to 4.37 

µg/g in the effluent treatments, much lower than Yamaguchi's study (2007). Despite differences 

in gonadal tissue type and species differences, the results suggest that Rb in Vale's MME's were 

below levels that would elicit similar reproductive impairment.  However, previous histological 

testing of male testes has shown evidence of male reproductive impairment (testicular cell death, 

delayed testicular development, fibrosis) when exposed to PWE (Rickwood et al., 2006a; Weber 

et al., 2008) and remains a metal of potential concern.   

Selenium has been implicated in fish reproductive impairment, reduced fish biomass, and 

population declines (Ogle and Knight, 1989; Heinz et al., 1996; Lemly, 2002), and is a known 

teratogen causing severe larval deformities and impaired biological functions at egg 

concentrations of ≥10 µg Se/g dry wt. (DeForest et al., 1999; Muscatello et al., 2006). Se has 

been found consistently elevated in a number of tissue types in a number of studies conducted to 

date (Table 4.3). It has mostly been found in the whole body, carcass and carcass tissues but has 

also been found in the gonad tissues in some studies including the most recent studies. Selenium 

egg concentrations in FHM exposed to PWE treatments in the lab reached levels of 2.78 µg/g 

wet wt. [10.7 0 µg Se/g dry wt. based on 74% moisture (Muscatello et al., 2006)], which was 

sufficiently elevated to elicit teratogenic effects in FHM.  

 Both Cu and Ni have shown increased tissue accumulations in three different studies. 

Both Cu and Ni are highly regulated in fish and though may not be directly linked to 

reproductive impairment they do have the potential to elicit cellular and sub-cellular impairment 

and the development and growth of the F1 generation (Johnson et al., 2007; LaPointe and 

Couture, 2009). Population threshold values for Cu have been estimated at 27 µg/l for 

waterborne Cu exposure in FHM (Iwasaki et al., 2010).  Copper levels in the MME's have been 

known to vary anywhere from 6-106 µg/l with concentrations in the PWE that have never existed 

at a lower concentration than 33 µg/l in all of the studies that have been conducted to date (Table   
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Table 4.3 Summary of metal tissue accumulations in fish exposed to Vale's three MME's 

[Surface Water Effluent (SWE), Mine Water Effluent (MWE), Process Water Effluent 

(PWE)] over the last ten years that have been consistently elevated across studies.  

 

 

 

  

Cu Ni Rb Se Sr Tl

SWE whole body X X

MWE whole body X X

PWE whole body X

SWE whole body X

MWE whole body

PWE whole body X X

PWE muscle X

PWE ovaries X

Rickwood et al., 2008 

(FHM) PWE whole body X X X

SWE whole body X X X X

MWE whole body X X X X

PWE whole body X X X X

gonads X X X X

carcass X X

gills X

gonads X X

carcass X X X

gills X X

gonads X X

gonads X

carcass X

liver X X

gonads X X

carcass X X

liver X X X X

Metals of Potential Concern

Weber et al., 2008 

(Creek chub & FHM)

Rickwood et al., 2006a 

(FHM)

PWE

Ramilo et al., 2009 

Exposure Pathway 

(FHM)

Ramilo et al., 2009 

Food Quality (FHM)
PWE MT

PWE

Study Treatment Tissue Type

Dubé et al., 2006a 

(creek chub)

Dubé et al., 2006a 

(pearl dace)

MWE 
Ramilo et al., 2008 

Field (FHM)

SWE
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4.2) and therefore it is highly probable that population effects could occur in the PWE due to Cu 

exposure. Cellular and sub-cellular effects have been observed in FHM exposed to waterborne 

Ni concentrations of 16 µg/l and dietary exposures of 10 µg/l (LaPointe and Couture, 2009). 

Waterborne concentrations of Ni in all MME's and in all studies have exceeded 16 µg/l (Table 

4.2), which suggests cellular-level effects were possible and could affect reproduction in FHM.   

Strontium and Tl have also been consistently elevated in MME's.  Strontium is not believed to 

directly affect reproduction but has been known to affect ionic regulation in fish and could affect 

survival and therefore has implications for population-level effects. Thallium is known to be 

acutely toxic to Atlantic Salmon at a concentration of 30 µg /L in effluent (Zitko et al. 1975). 

Though thallium levels in the MME's were well below these levels in all of our current studies 

(between 0.05-0.50 µg g/L), it does consistently appear elevated in tissues and the toxic effects 

in FHM are not well known. 

 

4.8 RECOMMENDATIONS 

4.8.1 Recommendations for regulators  

Under the current EEM guidelines "effluent" is defined as: mine water effluent, milling facility 

effluent, tailings impoundment area effluent, treatment pond effluent, treatment facility effluent 

(other than sewage treatment effluent) and seepage and surface drainage that contains deleterious 

substances (MMER, 2002). Despite the obvious differences among effluent types, they are all 

currently regulated in the same manner under the Fisheries Act.  National response patterns have 

been evaluated using meta-analyses and bivariate and multivariate plotting tools to evaluate 

mines on the basis of habitat, ore type, fish gender, fish species, effluent concentration and 

continuous vs intermittent effluent discharge (Lowell et al., 2007).  Meta-analyses are valuable 

tools for assessing individual studies that research the same questions using established effect 

sizes, and then combining these effects to get a more accurate idea of the true effect to the 

population (Field, 2009).  However, our research has shown that differences in effluent type 

elicited significantly different effects on both fish and benthic invertebrates yet there is no 

distinction among them under the current regulation, nor any indication of their importance in 

the meta-analysis. In light of our current findings our suggestion to the regulators would be that 

greater attention be given to meta-analysis based on effluent type.  
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 Much of the research and all of the guidelines that have been developed to date are based 

on toxicity testing of waterborne exposure pathways (Environment Canada EPS1/RM/13; 

EPS1/RM/14; EPS1/RM/21; EPS1/RM/22; EPS1/RM/37) or sediment contamination 

(Environment Canada EPS1/RM/32; EPS1/RM/33; EPS1/RM/41; EPS1/RM/42).  However, if 

our goal is to assess the effects of mine effluents on resident fish and invertebrate species under 

environmentally realistic conditions, changes should be made to the Environment Canada 

biological test methods to reflect this.  Our exposure pathway study has shown that in some cases 

both waterborne and dietborne routes of exposure were required to elicit significant effects in 

female FHM for condition, body weight, egg production (cumulative total egg production and 

cumulative egg production) when exposed to PWE and by omitting an exposure pathway 

(dietary or waterborne) can lead to very different results. Similar findings have been observed in 

a factorial food study using Daphnia magna, which showed that combined waterborne and 

dietary exposures significantly affected reproduction and growth at higher exposure 

concentrations and results differed from when D. magna were exposed through only one route of 

exposure (DeSchamphelaere and Janssen, 2004).  Our recommendation is that these test methods 

also include a live dietary component since our food quality study has shown that similar 

reproductive effects were observed when fish were fed a frozen laboratory prepared diet 

regardless of the treatment water they were exposed to.  However, significantly contrasting 

reproductive effects were observed when fish were fed live prey and exposed to different 

treatment water.   

 Under the current EEM guidelines reproduction is expressed as relative gonad size, 

reproductive effort/success (e.g., number of young-of-the-year, age class composition, larval 

density), fecundity (number of eggs produced by a female), and relative egg size as a function of 

body weight (MMER, 2002). Both fecundity and egg size estimates are based on sub samples 

from female ovaries at the time of sacrificial sampling of the fish. Relative gonad size is the 

“effect endpoint” where as fecundity and egg size are “supporting endpoints”. This means that 

relative gonad size is used as a surrogate to actual reproductive output. The most direct 

measurement of reproductive output is to obtain actual measurements of egg numbers and egg 

size.  This is not possible in the EEM program because in wild fish surveys the adults are 

sampled (or young-of-the-year) rather than nests of spawned eggs. Furthermore, a number of 

studies (~72%) have not properly considered the reproductive biology of the sentinel species 
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prior to the implementation of the field studies and have collected reproductive data at the wrong 

time of year (Barrett and Munkittrick, 2010). Gonad size is commonly used as a surrogate for 

reproductive output because it is much easier to obtain in the field.  Our research has consistently 

shown that egg size was significantly affected by effluent exposure (Weber et al., 2008; 

Driessnack et al., 2011, Chapter 2 and 3). Furthermore, when fish were removed from the 

effluent source, their egg sizes increased significantly over a relatively short time period back to 

reference conditions (Driessnack et al., 2011).  Female gonads often contain non-viable, partially 

resorbed eggs amongst the viable eggs, especially in fractional spawners such as FHM's. 

Consequently, assessing the gonad size as a whole, may not provide a clear indication of 

reproductive effects.  Our recommendations would be that regulators consider a concurrent wild 

fish field study with a live diet multi-trophic FHM bioassay for a mine where significant fish 

reproductive effects (i.e., significant reductions in gonad size, and perhaps ovarian fecundity and 

egg size) have been observed in the EEM program. This would provide an opportunity for 

surrogate measures of changes in relative gonad size for a wild fish species to be compared to 

actual egg counts and sizes as well as relative gonad size in FHM.  

 

4.8.2 Recommendations for the mining industry 

Often in mining there are several mining operations within a relatively small geographic 

area due to the nature of the ore bodies, and often they may discharge effluent into the same 

receiving environment.  However, the definition of effluent under the current regulations is all 

encompassing even though it could vary in type from surface runoff, to mine dewatering, to mill 

process water, and tailings water. It is critical for mitigation, regulation and management, when 

studying the receiving environment, to know which discharge (point source) is having the 

greatest effect on the environment in isolation of the other inputs.  While this seems to be an 

obvious consideration for watershed management it is often overlooked when the same 

regulations are applied across very different discharge types for the same industry, in this case 

metal mining. To date, much of the research on the effects of metal contamination in fish 

populations has focused primarily on single metal exposures, either through water or diet 

(Carreau and Pyle, 2004; Kolts et al., 2009). However, there is evidence that metal mixtures 

(e.g., mining effluent) and their interactions with surface water can act in both a synergistic and 

antagonistic manner in the natural environment (Weber et al., 2008). Due to the complexity of 
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mixtures, the tendency in many studies is to focus hypothesis testing on several elements of 

interest despite the receiving environment being exposed to the effluent as a whole. While this 

may focus the experimental design, the overall conclusions can be misleading and of lower 

ecological relevance since no mine or milling operation discharges a single metal, micronutrient 

or element. It has often occurred where inferences of effects of single elements have resulted in 

significant regulatory focus and industry cost to undertake fate and distribution studies and the 

relevance to the mixture is minimized. The recent international focus on Se is an example of this 

especially as it relates to the discharge of treated mine effluents. Furthermore, treatment of whole 

effluent mixtures is rarely single element focused. Any modification to the effluent treatment 

process to reduce effects typically alters/reduces many elements concurrently. Thus, 

modifications of effluent quality should focus on reducing effects with specific identification of 

the causative element a secondary focus. Therefore our field study allowed us to examine three 

MME's simultaneously in order to determine which effluent was of greatest ecological 

importance with respect to FHM responses. We have been able to confirm that the PWE has 

consistently elicited the greatest effects to the aquatic biota of the three MME's tested and similar 

studies could help other mines isolate their research efforts as they move towards Investigation 

of Cause.  

 Furthermore there is a growing body of evidence to support the understanding of 

watershed-scale cumulative effects assessments in highly confounded watersheds in order to 

better understand the context and significance of individual effluent dischargers to effects in a 

broader watershed context (Munkittrick et al., 2000; Dubé and Munkittrick, 2001; Dubé, 2003; 

Dubé et al., 2006b; Squires et al., 2009). While regulation of individual mine discharges is 

currently required under the Fisheries Act if unregulated non-point source discharges upstream 

are causing much greater significant effects, for example, perhaps emphasis should be placed on 

management and mitigation of the non-point discharges while the mine discharge is expected to 

ensure its effluent quality, and associated and lesser effects, do not change or become worse.  A 

cumulative effects assessment could be offered as a potential alternative study design to the 

control/impact, gradient or reference condition approach currently offered in the guidelines in 

cases where multiple discharges or industries are using the same receiving environment.   
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4.8.3 Recommendations for Vale 

Focus should be placed on the PWE effluent stream with far lesser emphasis on the SWE and 

MWE. As mentioned previously, all of our research to date has shown that the PWE has elicited 

the greatest effects to the aquatic biota. Our field study has shown that this is primarily due to the 

nature of the effluent. The PWE differs considerably from the other two MME's because it 

receives a number of process water effluents including mine water and tailings from the 

Creighton Mine, Frood Stobie, North Mine, South Mine, Nickel Refinery, Copper Refinery, 

Smelter Complex and Clarabelle Mill (Stantec, 2009).  It also receives inputs from active and 

inactive tailings, collected surface runoff from the Town of Copper Cliff, ON and sewage from 

the mine-related housing/administration offices and the Copper Cliff municipal sewage treatment 

plant (Stantec, 2009). As part of the metal beneficiation (metal extraction) process, especially 

during the milling process, many organic constituents are added to the process in order to 

separate the ore from the waste. There is little to no understanding of how these constituents 

(xanthates, alcohols, flocculants, polymers, organic reagents) interact in the effluent and 

furthermore, we have little understanding of their toxicity to aquatic organisms.  During the 

course of our lab experiment we also discovered that the mine alters its treatment process in the 

winter due to extremely cold temperatures in order to maintain copper levels to below acceptable 

levels in the effluent. This is conducted through the addition of Nalmet to the effluent stream.  

Little information regarding the toxicity of Nalmet is available however, it has been shown to be 

toxic to daphnia magna (EC50 = 10 ppm) and rainbow trout (LC50 = 20ppm) (Vigneault et al., 

2010 unpublished).  Because very little is known about Nalmet it may be of benefit to conduct a 

toxicity identification evaluation (TIE) and/or toxicity reduction evaluation (TRE) to determine 

whether it is responsible for causing toxic effects in PWE. (http://maxxam.ca/services/ 

ecotoxicology/tre-tie-tte-2). Xanthates, thiosalts and lime (CaCO3) have also been identified as 

constituents in effluent water that can drastically alter toxicity. TIE studies conducted at other 

mine sites have shown that thiosalts in particular mask the presence of other toxic substances in 

the effluent, xanthates are more toxic in effluent water than lab water (Novack 2010, 

unpublished), and an over abundance of lime could be toxic (Vigneault et al., 2010, 

unpublished). It may be of benefit to conduct a TRE of the PWE in conjunction with a TIE to 

identify other potential causative toxicant(s), isolate their source, evaluate toxicity control 

options and confirm a reduction of PWE toxicity (http://maxxam.ca/services/ecotoxicology/tre-
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tie-tte-2). The TIE procedures within TREs are designed to identify specific substances 

responsible for effluent toxicity (http://maxxam.ca/services/ecotoxicology/tre-tie-tte-2). TIEs 

often consist of three phases: 

 Characterization of the toxicant group 

 Identification of specific causative toxicants 

 Confirmation of causative toxicants 

This data would help the mine to confirm the causative toxicants within the effluent and may 

indicate what adjustments to their ore processing could be made to reduce chemical inputs to the 

environment. Making adjustments to their milling processes may also indirectly remove some of 

the current metals of concern or improve the effluent effects as a whole. 

 

4.8.4 Recommended improvements to mesocosm methodologies 

4.8.4.1 Increased sample size 

Increasing the sample size would help to reduce the variance of the mean and increase the 

power to detect a significant difference among treatments. A power analysis was conducted 

using an online program available from the Vanderbilt Biostatistics Department, University of 

Vanderbilt, Nashville, TN, using the means of four of the commonly tested endpoints in the 

EEM program [liver somatic index (LSI), gonadal somatic index (GSI), condition and egg size 

(ES)] (http://biostat.mc.vanderbilt.edu/wiki/Main/PowerSampleSize). Although cumulative egg 

production is one of the most sensitive endpoints for measuring reproductive effects in FHM it 

could not be conducted using a power analysis because the power analysis calculation is based 

on mean data and there is currently no method that we are aware of which can be used to 

calculate power on cumulative frequency data. Overall the power to detect a significant 

difference among the four endpoints was sufficiently high for assessing GSI, condition and egg 

size in the field experiment, however was not sufficient for determining effects in LSI (Table 

4.4). In the lab experiments, the power to detect a statistical difference for LSI and GSI was low, 

however was sufficient for condition and egg size (Table 4.4). When this situation occurs it 

increases the probability of making a type II error (you conclude based on your stats that there is 

no effect when in fact there may be). Since the variance could also affect the power to detect a 

statistical difference, all attempts have been made to create a more homogeneous test group 

through the inclusion of one specific age group (<1 year old fish), analysis of one sex (females) 



 

114 

 

and by using only one breed of fish (FHM).  Since we have already made all possible attempts to 

reduce the variance in the sample population our only solution for future studies would be to 

increase our power by increasing the sample size.  Based on our field study, we have shown that 

a sample size of 8 was sufficiently powerful to detect a significant difference for most of the 

EEM-based endpoints (Table 4.4). However, data may be compromised when sample size dips 

down to 5. Sample size analysis of our current studies indicated that we would require anywhere 

from a sample size of 14-207 to have sufficient power to detect effects 95% of the time at a 

critical effect size of 25% (Table 4.4). A critical effect size of 25% has been proposed for the 

EEM program and has been associated with the ability to detect ecologically relevant differences 

among most species and endpoints (Munkittrick et al., 2009). However, it is unrealistic and 

unmanageable to propose a sample size of 207 for future studies in order to enable sufficient 

power to detect a statistical difference. Studies by Munkittrick (1992) have found that variance 

estimates in white sucker do not improve substantially beyond a sample size greater than 16, 

therefore our recommendation to increase the sample size to between 8 and 16 seems both 

manageable and appropriate for future mesocosm studies.   

 

4.8.4.2 Pumping system 

Small changes to the mesocosm system design could be made that would allow for 

greater replication and subsequently greater statistical power by replacing the centrifugal and 

diaphram pumps that are currently being used with a peristaltic pump for low turnover rates and 

low effluent dilution concentrations. The metering and centrifugal pumps were originally 

designed for use in larger mesocosm systems where flow rates of 80 L/h (1.33 L/min) were 

required to achieve one turnover per day and when used in this manner are highly accurate. The 

Pulsatron metered diaphram pumps have the ability to pump 500 gallons per day (1.31 L/min) 

and can handle large volumes of water more precisely. However, Masterflex peristaltic pumps 

are designed to be more accurate at lower flow rates of 0.001 to 34 ml/min and would be better 

suited for the smaller stream designs where flow rates of 0.14 L/min are required to achieve 1 

turnover per day. Based on personal experience with the various pumps and the current design of 

the mesocosms, the peristaltics are much easier to use, they are easily calibrated and hold their 

flow rates at these low levels much more consistently and evenly compared to the metered 

pumps when the proper tubing is used. This new system configuration would also make it easier  



 

 

 

Table 4.4 Summary of power analysis and sample size estimate of four key EEM endpoints [liver somatic index (LSI), gonadal 

somatic index (GSI), condition and egg size (ES)] measured in the three current mesocosm experiments comparing PWE 

(Process Water Effluent) to reference/control data. Critical effect sizes (CES) of 25% were used to estimate appropriate sample 

size at a power level of 95%.  

 
COV= SD/mean*100 

CES = Critical effect sizes at 95% power to detect statistically significant differenc

Mean SD

Sample Size 

@ 95% 

power Mean SD

Sample Size 

@ 95% 

power

LSI 25 33.95 0.05 0.05 0.258 2.916 0.990 48 2.326 0.335 48

GSI 25 7.59 0.05 0.05 1.000 8.682 0.659 2 12.703 4.624 2

Condition 25 14.40 0.05 0.05 0.897 1.340 0.193 9 1.513 0.086 9

ES 25 4.93 0.05 0.05 1.000 1.358 0.067 1 1.224 0.076 1

LSI 25 39.38 0.05 0.05 0.120 8.330 3.280 64 3.680 0.990 65

GSI 25 51.88 0.05 0.05 0.088 22.300 11.570 112 10.690 2.670 112

Condition 25 4.76 0.05 0.05 1.000 0.420 0.020 1 0.840 0.050 1

ES 25 2.29 0.05 0.05 1.000 1.310 0.030 0 1.280 0.060 0

LSI 25 24.72 0.05 0.05 0.252 4.410 1.090 26 4.770 2.030 26

GSI 25 67.64 0.05 0.05 0.072 12.730 8.610 200 15.500 6.900 207

Condition 25 18.18 0.05 0.05 0.450 1.100 0.200 14 1.150 0.160 15

ES 25 1.53 0.05 0.05 1.000 1.310 0.020 0 1.290 0.030 0

Field Experiment 

(n=8)

Exposure Pathway 

Experiment (n=5)

Food Quality 

Experiment (n=5)

EndpointTreatment

Reference Exposure

CES COV α β Power

1
1
5
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to maintain an even population of chironomids among the streams throughout the experiment by 

reducing turbulent flows within the streams. This would also enable us to increase our sample 

size up to 16 replicates per treatment with the use of 1 pump.  By re-configuring the system 

design, we would be able to increase our sample size, reduce variability and increase our power 

to detect small differences in EEM endpoint fish responses.  Overall, this may strengthen our 

studies while still maintaining some manageability in the field and lab.  If we were to double our 

sample size but decrease the turnover rate to 1 turnover/day, we would still use the same volume 

of effluent and logistics would remain manageable.   

 

4.8.4.3 Develop statistical tool to calculate power analysis on cumulative data 

Our research (Dubé et al., 2006a, Rickwood et al., 2006a,b; 2008, Driessnack et al., 2011, 

Chapters 2 and 3) and others (Parrott and Wood, 2002; Parrott et al., 2004; Kovacs et al., 2005; 

Parrott, 2005)  have shown that the reproduction endpoints are the most sensitive indicators of 

reproductive effects in FHM. Our studies in particular have identified: cumulative total egg 

production (total number of eggs produced/breeding pair/21 days of exposure); cumulative 

eggs/female/day (cumulative number of eggs produced/female/ each day - factoring mortality 

into the equation); cumulative spawning events (cumulative number of spawning events/breeding 

pair/21 days of exposure); mean egg production (mean number of eggs produced/female/21 days 

of exposure - factoring in mortality); mean total egg production (total mean number of eggs 

produced/breeding pair/21 days of exposure), and egg size (mean egg size/treatment), to be the 

most sensitive endpoints in determining effluent effects in fish. We have consistently shown over 

the last ten years that these reproductive endpoints are extremely valuable and our methodology 

could be a viable tool for the investigation of cause of effluent effects in the EEM program.  

This endpoint however remains a topic of much debate because the method of quantification 

statistical evaluation cannot be agreed upon and is highly inconsistent in the literature.  

Furthermore, differences in methodologies have made it difficult for true comparisons to be 

made across studies, despite what has been reported in the literature.  Some of the main 

differences in methodology are related to the sample size, number of replicates, experimental 

units of replication and statistical methods.  The short-term reproduction bioassay developed 

elsewhere in the literature (Ankley et al., 2001; OECD, 2006; US EPA, 2007), and studies 

conducted by others (Parrott and Wood, 2002; Kovacs et al., 2005; Parrott et al., 2006; Bosker et 
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al., 2010) use multiple fish in a single replicate (e.g., 3-5 females and 2-4 males).This method of 

pooling the reproductive output would increase both the sample size and replication and would 

reduce the within treatment variability among streams. However, it also reduces the ability to 

track reproductive performance on an individual breeding pair basis, making extrapolation from 

biochemical-level responses to population-level effects impossible to determine.  In addition it 

does not allow the assessment of individual reproductive endpoints or track metal accumulation 

or effluent effects from the parent to the offspring.  Without the ability to determine which fish is 

affected, individual reproductive endpoints cannot be truly assessed. 

We have been able to address all of the endpoints of interest (metal accumulation, LSI, 

GSI, reproduction, larval effects) while taking into account different levels of biological 

organization (biochemical, individual and population) and survivorship (mean, total and 

cumulative). Our research has shown that the most significant endpoints are associated with the 

replication changes which factor mortality into the equation (e.g., cumulative eggs/female/day, 

mean eggs/female/day, cumulative spawning). The experimental unit of replication for the 

Ankley/US EPA bioassays is the tank rather than the individual fish whereas the unit of 

replication of our modified bioassay is either the number of males/females (condition, LSI, GSI), 

breeding pair (mean egg production, spawning events, hatching success, deformities) or time (all 

cumulative endpoints).  Consequently the manner in which these endpoints have been 

statistically tested has also varied considerably among studies.  Despite the fact that cumulative 

number of eggs spawned has been portrayed in the literature with the number of days (time) used 

as the unit of replication, the actual statistical analyses have been conducted using ANOVA's 

(e.g., based on means) where the unit of replication is the tank, in many of these bioassay tests 

(Ankley et al., 2001; Bosker et al., 2010). This of course can be very misleading since it is more 

statistically robust to analyse cumulative data using a non-parametric Kolmorov Smirnov test 

because differences in egg distribution over time is what is actually being assessed in these cases.  

We believe that the cumulative data in particular has been misrepresented in the current 

literature and our recommendation is that a proper protocol be developed for calculating the 

cumulative endpoints.  Furthermore, there is currently no method to determine statistical power 

or sample size of the cumulative data in this way, which may be why this calculation remains a 

controversial topic of debate. When the unit of replication is time (day) and there is a minimum 

of 21 days of exposure, we can only assume that this unit of replication is sufficiently high to 
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provide enough power to detect a statistical difference.  However currently there is no way of 

proving that this method of analyzing cumulative data is more powerful. We propose that a 

methodology be developed for calculating power and sample size on cumulative data so that 

there is a viable and defendable alternative method for researchers to use so that comparisons 

among studies can truly be made.  We also recommend that this method consider the value of the 

pre-exposure data. Our lab statistically tests for any “pre-treatment” differences among breeding 

fish after randomly assigned to treatment groups and before effluent exposure begin. This 

ensures that fish with equal breeding output are allocated to treatment groups without bias. 

Statistical tests using pre-exposure data is not commonly reported in the literature and is 

recommended. In addition, our lab has observed very high pre-exposure breeding output that is 

then completely and instantly terminated with the start of effluent exposure and for the same fish. 

It is recommended that this “transitional” change between pre-exposure and exposure for each 

unit of replication be considered in the quantification of power. The “transition” is a highly 

powerful and obvious response not available in other chronic bioassays and should be 

considered.  

   

4.8.4.4 Chironomus dilutus cultures 

Although effluent effects on chironomids have already been established (Hruska and 

Dubé, 2004), with respect to the trophic transfer of metals through the food chain, it may be 

more beneficial to allow the chironomids to feed entirely on natural algae or biofilm from 

Junction Creek. Currently we have been supplementing their diet with Tetramin
TM

 slurry 

(Chapter 2 & 3), however our studies have shown that the Tetramin
TM

 appears to increase the 

organic matter in the streams (TOC and DOC) which may affect the bioavailability of the metals 

to the biota in the streams. Future studies should allow the chironomids to feed solely on the 

biofilm in order to experience a true dietary trophic transfer to accurately assess the role of the 

biofilm in the multi-trophic bioassay. 

 

4.8.4.5 Biofilm measurements 

In our field study we noted that the biofilm accumulated a significant level of metals 

compared to any other matrix analyzed and noted that it played an important role in the 

biavailability of metals in the streams. However, very little is known about the composition of 
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the biofilm or the species of algae and bacteria present.  Investigations of the algae and bacterial 

communities in Junction Creek and the Vermillion River should be conducted to determine 

whether similar species are present in both the reference and exposure areas, since different 

species have different metal assimilation capacities.  Furthermore, sulphate-reducing bacteria can 

play a key role in reducing the metal content in effluent water by precipitating them as metal 

sulphides. It would be highly beneficial to determine the species present to assess whether the 

biofilm is truly affecting bioavailability of metals in the effluent. Additionally, algal biomass as a 

measurement of the chlorophyll a content in the streams was not analyzed in this study and could 

also help quantify both metal bioavailability and the biomass of the algae portion of the biofilm 

in the water.  

 

4.8.4.6 Cellular-level responses 

Results of the tissue metals analysis identified a number of key metals of concern in the 

MME's. These studies give us a good indication of the ecosystem and population-level effects 

that may be occurring at the study site but lack the ability to link the metal of concern to a direct 

cause.  By including cellular-level responses to the study design would allow a direct link to a 

potential cause and effect and provides a more meaningful result for a particular metal of 

concern.   Future studies should consider both male and female histopathology and vitellogenesis 

analysis using single metal and effluent exposures to establish cause in order to validate or 

contest it as a metal requiring mitigation in the effluent treatment process.  The current research 

indicates that gonad histopathological analyses would be most beneficial for cadmium, rubidium 

and selenium since they have the ability to alter vitellogenin, spermatogenesis/ oogenesis and 

reproduction in fish.  Future studies may also wish to assess levels of estrogen mimics especially 

in the water and fish exposed to PWE since it is known to contain sewage waste, in order to 

verify or eliminate it as a potential cause for altered reproductive effects (vitellogenin, 

spermatogenesis etc.).  

 Liver and gonad histopathology would also be most beneficial for copper and nickel 

exposure since cellular damage and oxidation of proteins have been associated with both.  Both 

are also highly regulated and cellular damage is most likely to be observed in the livers.  Again, 

the studies should be conducted as single metal in conjunction with effluent mixtures in order to 

validate or contest each one as a metal requiring mitigation in the effluent treatment process.     
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4.8.4.7 Future Applications of the Mesocosm Design 

Regardless of whether or not the power to detect a significant difference was sufficient in 

our current studies, biologically there was a distinct reduction in reproductive output and 

spawning events and egg size that cannot be ignored since we have consistently observed similar 

findings in most of our studies to date (Table 4.1). These findings have implications for the 

natural population in Junction Creek and for how studies may be conducted in the future. The 

most noteworthy finding of this research was associated with the food quality study.  This study 

maintained statistically significant power (P=0.824) to detect differences among cumulative total 

egg production in FHM.  This study was able to determine that when fish were held in the PWE 

and fed live benthic organisms, cumulative total egg production was reduced and we had 

significant power and confidence in our data to confirm this. This was a key finding which 

showed that multi-trophic live dietary pathways play a greater role in reproductive effects than a 

frozen laboratory prepared diet of chironomids.  Furthermore, our initial exposure route lab study 

showed that omitting an exposure pathway (dietary or waterborne) can lead to very different 

results and thus the inclusion of the dietary component to these industrial studies is important 

and our recommendation would be to always include a multi-trophic or dietary component to all 

effluent studies.   

 We have also hypothesized that reduced egg production in PWE has been partially 

attributed to food quantity in the multi-trophic streams since the fish naturally graze on live 

chironomids in the streams and it is difficult to fully quantify how much they are eating 

compared to the waterborne only streams.  Food quantity experiments where chironomid 

densities should be manipulated to gain better control over feeding rates would be the next 

logical progression of this research in order to determine if food quantity is directly associated 

with reproductive impairment. This information would be valuable to the EEM program since 

most mines across Canada have shown inhibitory effects with respect to the benthic invertebrate 

community [decreased taxon richness and density (phase 1)] (Lowell et al., 2007), but it is 

currently unknown how this relates to fish health and reproduction.    

 Also in light of the association of Se and egg size identified by Driessnack et al., (2011), 

similar egg size studies could be conducted using Vale's three MME's to try and assess possible 

linkages between Se exposure and egg size to better assess cause and effect.  Furthermore, 
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metals of potential concern that have been identified in our research to date (e.g., Cu, Ni, Rb, Se, 

Sr and Tl) could be tested using single metal versus whole effluent testing to try and isolate 

cause and effect based on reproductive or biological endpoints (including cellular-level 

responses) to attempt at deriving similar cause and effect type relationships. The importance of 

testing single metal vs whole effluent is of importance to the development of guidelines for 

mines since metals are never found in the effluent in isolation of other metals and there is the 

potential for them to act in an additive and synergistic manner.  There has been little to no work 

conducted on this issue and there are huge implications for mining operations since it is known 

how complex these natural systems are.  

 Other important applications of this technology could include the addition of natural 

sediment from the exposure and reference areas to assess current effluent effects from historical 

contamination and loading.  Mesocosms could be used to assess current sediment toxicity in the 

natural reference and exposure areas to determine whether the mine has an effluent or sediment 

quality issue as a starting point in assessing environmental effects.  The application of this 

technology offers endless possibilities for the mining industry as the EEM program moves 

towards investigation of cause.  Mesocosms offers an environmentally relevant option that can 

assess current effluent effects in isolation of historical contamination in a multi-trophic system, 

using all components of the environment (water, sediment, fish, benthic organisms, algae), which 

is currently not possible with any of the alternative methods.   

 

4.9 CONCLUSION 

The field study allowed us to identify the point source discharge into Junction Creek of 

greatest priority.  A weight of evidence approach was used to identify the prominent elements in 

the effluent mixtures which may have contributed to reproductive effects in FHM.  The high 

metal content in the MME waters did not transfer appreciably through the food chain for most of 

the elements except Cu, and Se in the PWE. Effluent quality (increased water hardness, organic 

matter, presence of sewage in the effluent and differences in metal concentrations), fish 

energetics, and differences in bacterial (biofilm) growth in the streams appears to have played a 

role in reducing waterborne metal bioavailability to FHM.  We also observed significantly higher 

accumulation of elements by the biofilm than chironomids and FHM, which also likely 

decreased waterborne metal bioavailability and toxicity in FHM exposed to MME's. Cu and Se 
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remain micronutrients of concern in the PWE since trophic transfer of both were observed in our 

current study as well as many other studies that have been conducted in the Sudbury area. 

Reduced cumulative egg production and cumulative number of spawning events were recorded 

in FHM exposed to PWE, possibly induced by dietary Cu and Se exposure and accumulation.  

 In the lab study, we assessed the relative importance of dietary and waterborne routes of 

exposure, and showed that metals assimilated differently in FHM tissues depending on the 

exposure route. Elevated metals were observed in one or more tissue type (carcass, liver and 

gonads) when FHM were exposed through water (Al, Ce, Sr, Cd), diet (Rb, Co, Al, Ce)  or both 

routes (Mg, Pb, Cr, Va) of exposure. Condition factor and body weight was significantly 

increased, whereas LSI and egg size was significantly decreased when FHM were exposed 

through waterborne routes of exposure. Both routes of exposure were required to elicit 

significant effects for LSI.  PWE had a stimulatory effect on egg production when exposed 

through one exposure pathway. However, when fish were exposed through both routes of 

exposure (EWEB), there was significantly decreased egg production and spawning events 

observed. These conflicting results showed that omitting an exposure pathway (dietary or 

waterborne) can lead to very different results.   

 In the food quality experiment (lab experiment 2), LSI and egg size were both 

significantly decreased when exposed to the PWE treatment compared to reference treatment, 

regardless of whether fish were fed live or frozen prey. Condition and body weight increased 

when exposed to the PWE, and when fish were fed live benthic organisms. However, 

significantly decreased egg production (cumulative total egg production, cumulative 

eggs/female/day) and spawning was observed when fish were held in the PWE and fed live 

benthic organisms. Conversely, a significant increase in cumulative total egg production, 

cumulative spawning events and cumulative egg production was observed when fish were fed 

live benthic organisms in the control treatment. Most of the reproductive and biological 

responses to FHM were elevated in the multi-trophic effluent streams where FHM fed on live 

chironomids confirming that the trophic transfer of metals is at least partially dependent upon 

food quality.   

 Overall, we identified several metals of concern (Cu, Ni, Rb, Se, Sr and Tl) in the MME's 

among all of the field and lab studies conducted by our lab.  Future studies should consider 

assessing histopathology of the liver and gonads and the presence of estrogenic compounds in 
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MME's especially in PWE in both a single metal and effluent exposure. In addition, the algal and 

bacterial components of the biofilm should be identified and quantified since it has been 

identified as a significant sink of metals in the effluent and can greatly affect bioavailability. 

Other constituents in the effluent (Nalmet, xanthates, thiosalts and lime (CaCO3)) should be 

examined through a TIE or TRE investigation to assess their role in toxic responses to FHM.  

Vitellogenin levels in gonad tissues would also help to assess cause of reproductive impairment 

and may give an indication of organic or estrogenic exposure.  Dissolved metals analysis and 

speciation of the key metals would also help to better predict metal bioavailability in the 

presence of these organic compounds. Future studies should also be conducted to specifically 

address the development of a sound method for estimating power and determining appropriate 

sample sizes so that cumulative data may be included in the alternative methods section of the 

EEM program as a viable endpoint.   

 These studies have made a significant contribution to our understanding of the effects of 

MMEs on fish and benthic invertebrates by assessing differences in response patterns under 

different conditions (field vs lab).  They also further validate the mesocosm approach as a viable 

alternative to field studies and provide valuable information to the Canadian Environmental 

Effects Monitoring (EEM) Program. 
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APPENDIX A:  Table 1 Summary of mean (± SEM, n=5) biological and reproductive endpoints measured in FHM females in the 

exposure pathway (Experiment I) and food quality (Experiment II) studies. Significant treatment effects (a), dietary effects (b) and 

interactions (c) were observed when p <0.05 when data was analyzed using a Two-Way ANOVA or Scheirer Ray Hare test. 

Cumulative data was analyzed using, Kolmorov-Smirnov, asterisks represent significant effects when *p<0.05, **p<0.01 and 

***p<0.001. 

 

  

 

Exposure Pathway (Exp 1) Food Quality (Exp 2) Biological Endpoints 

  CWCB CWEB EWCB EWEB CWCB EWEB MT-Control MT-Effluent 

Total length (cm) 4.82 ± 0.06 4.8 ± 0.07 4.87 ± 0.29 4.7± 0.21 4.82 ± 0.06 4.7± 0.21 5.02 ± 1.31 5.08 ± 0.13 

Body weight (g) 0.48 ± 0.06 1.00 ± 0.08c 1.24 ± 0.16ac 1.00 ± 0.13ac 0.48 ± 0.06 1.00 ± 0.13a 1.41± 0.16b 1.51± 0.14ab 

Liver weight (g) 0.043 ± 0.01 0.042 ± 0.0 0.063 ± 0.01 0.038 ± 0.0 0.043 ± 0.02 0.038 ± 0.0 0.065 ± 0.01 0.08 ± 0.02 

Adult Survival 0.90 ± 0.10 1.00 ± 0.0 0.70 ± 0.12 0.90 ± 0.10 0.90 ± 0.10 0.70 ± 0.12 0.80 ± 0.12 0.60 ± 0.19 

Condition [(body wt/length(cm)3) *100] 0.424 ± 0.02 0.89 ± 0.04c 1.07 ±0.04ac 0.94 ± 0.02ac 0.424 ± 0.02 0.94 ± 0.02a 1.10 ± 0.10b 1.15 ± 0.08ab 

LSI [Liver weight vs body weight]  8.33 ± 1.47  4.16 ± 0.32b 5.06 ± 0.23a 3.68 ± 0.0ab 8.33 ± 1.47 3.68 ± 0.0c 4.41 ± 0.54bc 4.77 ± 1.01bc 

Reproductive Endpoints         

Gonad weight  0.13 ± 0.04 0.10 ± 0.01 0.14 ± 0.01 0.11 ± 0.02 0.13 ± 0.04 0.11 ± 0.02 0.19 ± 0.07 0.24 ± 0.06 

Gonad weight vs body weight (GSI) 25.3 ± 5.2 10.0 ± 0.89 11.1 ± 0.33 10.7 ± 1.34 25.3 ± 5.2 10.7 ± 1.34 12.7 ± 4.3 15.5 ± 3.5 

Fecundity 52.7 ± 20.6 97.3 ± 34.2 35.9 ± 21.6 68.1 ± 18.8 52.7 ± 20.6 68.1 ± 18.8 74.0 ± 31.0 22.3 ± 11.6 

Egg size vs length 0.027 ± 0.0 0.028 ± 0.0 0.027 ± 0.0 0.027 ± 0.0 0.027 ± 0.0 0.027 ± 0.0 0.026 ± 0.0 0.027 ± 0.0 

Egg size vs body weight 2.92 ± 0.43 1.42 ± 0.18 1.14 ± 0.15 1.34 ± 0.19 2.92 ± 0.43 1.34 ± 0.19 0.87 ± 0.0 0.86 ± 0.01 

Cumulative eggs/female/day 4.30 ± 1.14 8.01 ± 1.98** 5.52 ± 1.83 2.65 ± 0.75 4.30 ± 1.14** 2.65 ± 0.75 7.71 ± 2.30** 1.24 ± 0.32*** 

Cumulative total egg production 471± 110  1006 ± 208*** 506 ± 119 411 ± 78 471± 110  411 ± 78 882 ± 164** 118 ± 26*** 

Cumulative spawning events 10.95 ± 2.9 9.14 ± 2.38 5.62 ± 1.45*** 5.09 ± 1.30*** 10.95 ± 2.9 5.09 ± 1.30*** 6.52 ± 1.36*** 3.71 ± 0.74*** 

Mean eggs produced 37.0 ± 22.8 79.2 ± 52.6c 37.9± 22.6c 30.3 ± 21.2c 37.0 ± 22.8 30.3 ± 21.2 59 ± 42.8 9.67 ± 9.37 

Mean eggs/female/day 0.38 ± 0.43 0.75 ± 0.50c 0.55 ± 0.33c 0.29 ± 0.20c 0.38 ± 0.43 0.29 ± 0.20 0.82 ± 0.70 0.11 ± 0.11 

Mean days to hatch 2.27 ± 0.14 2.24 ± 0.11 3.80 ± 0.36b 2.89 ± 0.26b 2.27 ± 0.14 2.89 ± 0.26b 2.40 ± 0.16 3.67 ± 0.33 

Hatching success 0.66 ± 0.17 0.83 ± 0.01 0.95 ± 0.03b 0.96 ± 0.01b 0.66 ± 0.17 0.96 ± 0.01b 0.69 ± 0.15 0.84 ± 0.12 

Mean fertilization success 0.97 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.98 ± 0.00 0.97 ± 0.00 0.98 ± 0.00 0.99 ± 0.00 0.98 ± 0.01 

Mean larval survival (Day 5) 0.63 ± 0.15 0.79 ± 0.04 0.93 ± 0.04 0.76 ± 0.09 0.63 ± 0.15 0.76 ± 0.09 0.78 ± 0.09 0.88 ± 0.06 

Mean larval deformities 1.78 ± 1.5  1.46 ± 0.50 0.34 ± 0.27 1.13 ± 0.66 1.78 ± 1.5  1.13 ± 0.66 0.07 ± 0.09 0 ± 0 

1
3
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APPENDIX A:  Table 2 Summary of mean (± SEM, n=5) biological endpoints measured in FHM males in the exposure pathway 

(Experiment I) and food quality (Experiment II) studies. Significant treatment effects (a), dietary effects (b) and interactions (c) were 

observed when p <0.05 when data was analyzed using a Two-Way ANOVA or Scheirer Ray Hare test. Cumulative data analyzed 

using, Kolmorov-Smirnov, asterisks represent significant effects when *p<0.05, **p<0.01 and ***p<0.001. 
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Exposure Pathway (Exp 1) Food Quality (Exp 2) Biological Endpoints 

  CWCB CWEB EWCB EWEB CWCB EWEB MT-Control MT-Effluent 

Total length (cm) 6.00 ± 0.15 6.22 ± 0.09 6.1 ± 0.09 6.12 ± 0.09 6.00 ± 0.15 6.12 ± 0.09 6.8 ± 0.30 6.28 ± 0.29 

Body weight (g) 2.10 ± 0.25 2.30 ± 0.12 2.31 ± 0.08 2.08 ± 0.07 2.10 ± 0.25 2.08 ± 0.07 3.73 ± 0.51 2.53 ± 0.40 

Liver weight (g) 0.06 ± 0.00 0.06 ± 0.00 0.07 ± 0.00 0.06 ± 0.01 0.06 ± 0.00 0.06 ± 0.01 0.15 ± 0.00 0.109 ± 0.01 

Adult Survival 0.80 ± 22.4 1.00 ± 0.00 0.80 ± 22.4 1.00 ± 0.00 0.80 ± 22.4 1.00 ± 0.00 0.40 ± 24.5 0.80 ± 22.4 

GSI [gonad weight vs body 

weight] 
1.38 ± 0.12 1.17 ± 0.25 1.54 ± 0.21 2.00 ± 0.38 1.38 ± 0.12 2.00 ± 0.38 1.16 ± 0.29 1.46 ± 0.21 

Condition [(body 

wt/length(cm)
3
) *100] 

0.96 ± 0.07 0.97 ± 0.08 1.02 ± 0.03 0.91 ± 0.06 0.96 ± 0.07 0.91 ± 0.06 1.18 ± 0.00 1.00 ± 0.09 

LSI [Liver weight vs body 

weight]  
3.01 ± 0.61 2.66 ± 0.31 3.10 ± 0.45 3.07 ± 0.80 3.01 ± 0.61 3.07 ± 0.80 4.06 ± 0.51 4.59 ± 0.91 


