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Preface

In the years following the Contribution of Working Group I to the Sec-
ond Assessment Report of the Intergovernmental Panel on Climate Change
(Houghton et al. 1996) speculations grew that the occurrence rate of extreme
weather and climate events such as, for example, landfalling hurricanes or
floods, may have changed in the past decades, and that this change be related
to a change of global climate (e. g., Olsen et al. 1998, Easterling et al. 2000).
It is further currently being realized that the nonstationary character of a
climate change has to be considered when analysing extreme events and their
probability density functions (PDFs) in meteorology and climatology (Olsen
et al. 1998). Finally, it seems that the understanding is growing that, in a
world of limited climate data and coarse climate models, estimated quantities
without error bars or confidence intervals have little use for assessing results
and evaluating consequences (Allen et al. 2000).

This means that, in principle, we have to estimate time-dependent PDF's
when analysing extreme-climate data. Whereas this is less problematic when
using climate model output, it is formidably difficult for observed data since
then we cannot repeat experiments (von Storch and Zwiers 1999). The
computer program documented here, XTREND, estimates only the time-
dependent occurrence rate of extreme events for observed time series (¢, x),
treating the data as realizations of a non-homogeneous Poisson process.
Whereas this recognizes the t-dependence, it is a simplified approach because
the z-information is drastically reduced (magnitude classes for ). However,
as a positive aside, also qualitative z-data, as they are often found in written
documents, can be analysed, and even data without z-information. That is,
XTREND is a robust method as regards the distribution of data, x.

XTREND consists of the following methodical Parts. Time interval extrac-
tion (Part 1) to analyse different parts of a time series; extreme events de-
tection (Part 2) with robust smoothing; magnitude classification (Part 3) by
hand; occurrence rate estimation (Part 4) with kernel functions; bootstrap



simulations (Part 5) to estimate confidence bands around the occurrence rate.
You work interactively with XTREND (parameter adjustment, calculation,
graphics) to acquire more intuition for your data. Although, using “nor-
mal” data sizes (less than, say, 1000) and modern machines, the computing
time seems to be acceptable (less than a few minutes), parameter adjustment
should be done carefully to avoid spurious results or, on the other hand, too
long computing times. This Report helps you to achieve that. Although it
explains the statistical concepts used, this is generally done with less detail,
and you should consult the given references (which include some textbooks)
for a deeper understanding.

The structure of the Report follows closely that of XTREND. A Glossary
which includes the used variable notation is supplied after the Table of Con-
tents. One point is emphasized already: In statistics, the term “occurrence
rate” is identical to “intensity” of a Poisson process whereas in other sciences
the meaning of “intensity” varies. XTREND and this Report follow statistics
in usage. The strength of an event (value x) is denoted as “magnitude”.

Obviously, XTREND can also be used to analyse data from fields such as
Econometrics or Actuarial Sciences etc. Welcome to readers from other fields!

It is a pleasure to thank Prof. Dr. G. Tetzlaff and Dr. M. Boérngen (both at
LIM) for their interest and the discussions on extreme flood events of Eu-
ropean rivers. Dr. D. Wagenbach (IUP, Heidelberg) kindly supplied the ice
core data of Example 2 which actually initiated development of XTREND.
Those mentioned and the following people supplied, in varying degree, com-
ments and suggestions on XTREND: Dr. D. Fleitmann (Geology, Berne), Dr.
D. Gyalistras (Geography, Berne), Dr. J. Luterbacher (Geography, Berne),
Prof. Dr. A. Mangini (IUP, Heidelberg), Prof. Dr. W. Metz (LIM), Dr. M.
Schulz (Geology, Kiel), Dr. A. Timmermann (IfM, Kiel), Dr. Q. Yao (LSE,
London). Financial support by the Deutsche Forschungsgemeinschaft (Bonn,
FRG) is acknowledged (Ref. Mu 1595/1-1 and /1-2). Thanks also to soft-
ware developers of Gnuplot and Latex!

Comments by you on XTREND, reports about bugs etc. are welcome! If you
wish to abtain a copy of XTREND please contact me via email, providing
information about your machine and system.

Leipzig, December 2001, Manfred Mudelsee
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Glossary and notation

BP
Ccv
HO
H1
MAD

Notation

Lobs—1
tobsfr
t1
rl
dl
nl
t2
2
r2u
T2
d2
b2
b2u
b2
br, 1
v2
v2u
V2
n2
t3
3
n3
t4
n4

before present

cross validation

null hypothesis

alternative hypothesis

median of absolute distances to median

observation interval, left bound

observation interval, right bound

time, original data

time series value, original data

segment duration, original data (segmented)

number of points

time, interval extracted data

time series value, interval extracted data (not segmented)
untransformed time series value, interval extracted data (segmented)
transformed time series value, interval extracted data (segmented)
segment duration, interval extracted data (segmented)

background value, interval extracted data (not segmented)
background value, interval extracted and untransformed data (segmented)
background value, interval extracted and transformed data (segmented)
delete-one background value

variability, interval extracted data (not segmented)

variability, interval extracted and untransformed data (segmented)
variability, interval extracted and transformed data (segmented)
number of points

time, extreme data

time series value, extreme data

number of points

time, classified extreme data, without pseudodata

number of points

time, classified extreme data, with pseudodata

number of points

simulated ¢



Ngrid
Nhsrch
Nmin
Nsim

p

rl, r2

rule

confidence level

magnitude class bound

CV function (Lj-norm), running median smoothing
CV function (Ly-norm), running median smoothing
CV function (median criterion), running median smoothing
CV function, kernel bandwidth selection

tiny value

average

kernel bandwidth

determines right search bound for h

minimizes C'V (h)

smoothing parameter, running median smoothing of x2
minimizes C'V; (k)

minimizes C'V,(k)

minimizes C'Vp, (k)

determines right search bound for k£ and k,
smoothing parameter, running median smoothing of x2,
minimizes C'V; (k)

minimizes C'V,(k,)

minimizes C'Vp,(ky)

kernel function

number of magnitude classes

design points (time), estimated occurrence rate
estimated occurrence rate

leave-one-out occurrence rate

simulated [,

lower bound, estimated occurrence rate

upper bound, estimated occurrence rate

number of design points [,

number of search values (h)

minimum number of points

number of bootstrap simulations

one-sided probability (HO test)

probabilities

pseudodata generation rule

studentized quantity

percentile

test statistic (HO test)

threshold parameter (magnitude classification)

test values for z



Part 0: Starting XTREND

Part 1: Time interval extraction

Part 2: Extreme events detection
Part 3: Magnitude classification
Part 4: Occurrence rate estimation

Part 5: Bootstrap simulation

Part O:
Starting XTREND

XTREND is written in Fortran 90 and uses a precision similar to “double

precision” of FORTRAN 77.

0.1 System requirements

2 400 MHz processor

a few MB free disk space

several MB RAM (variable space in XTREND is mostly allocated dy-
namically), a rough formula is:

R,AM =168 [24 -nl + ngrid : (l . ngrid + nsim) + 5 - nhsrch]

(see Glossary for explanation of variables)

DOS window under Windows 95, Windows 98 or Windows NT (other
operating systems not tested)

0.2 Installation

Copy files XTREND.EXE, XTREND.CFG and CVMED.PLT to a directory of your
choice. XTREND requires that the freeware graphics program Gnuplot (ver-
sion 3.6 or higher) is installed on your computer with the path name set
accordingly. (If you intent to use Gnuplot solely with XTREND, you may
simply install the Gnuplot files in XTREND’s directory. Gnuplot executable
name has to be gnuplot.exe. You may obtain a copy of Gnuplot from the
author’s URL.)
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0.3 Configuration file

With XTREND.CFG you pass parameter values that are not being altered dur-
ing running. At first, use the typical values given in the comment lines of
XTREND.CFG. How to change them is discussed in the following Parts.

This is a typical example of the content of XTREND.CFG (see Glossary for
explanation of variables):

kcfg
krel=0.30,
rule=’threepoint’,
hrelmax=1.0,
nhsrch=400,
ngrid=1024,
alpha=0.900

! Typical values:

! krel=0.25,

! rule=’twopoint ’ / ’threepoint’ / ’reflection’
! hrelmax=0.5,

! nhsrch=400,

! ngrid=1024,

! alpha=0.80, 0.90, 0.95, 0.99

0.4 Running

By the command XTREND at the DOS prompt.

0.5 Datatype

Your data have to be in ASCII (text) format. Since information about ex-
treme weather or climate events may be of different types, XTREND allows
four datatypes:

e ordinary
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e ordinary and segmented, also called segmented in XTREND out-
put

e extreme

e extreme times, also called times in XTREND output

0.5.1 Ordinary

An ordinary time series,

t1(;11) 3;1(;11),

is assumed to consist of not only extreme but also some background values.
Example 1 is an ordinary time series. Background estimation and extreme
events detection is carried out in Part 2.

0.5.2 Segmented
An ordinary and segmented, in short segmented, time series,

(1) 21(1)  d1(1)
t1(2)  21(2)  d1(2)

H(nl) wl(nl) di(nl),

means that your data have not the character of point values but rather re-
present a segment of an archive, for example, an ice core. The larger the
duration, d1(i), is in relation to the spacing, ¢(i)—t(i—1), the more important
is that you supply d1, in particular if d1(7) is not constant. See Example 2.

0.5.3 Extreme

An extreme time series,

tl(;zl) xl(;zl),
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already consists of only extreme values. It might, for example, be the result
of a previous data analysis using methods of Extreme Value Theory (e. g.,
Embrechts et al. 1997, Reiss and Thomas 1997).

0.5.4 Times

An extreme times, in short times, time series,
t1(1)
t1(2)
t1(nl),

consists of only the times of extreme events. This form is used when z1 is
unknown or no quantitative value may be assigned to an event.

0.6 Number of points

XTREND requires at least ny, = 25 data points. With less data your results
would likely be without significance.

0.7 Observation interval

The interval over which the observations were made is an important point
without which your data give no complete information! For example, you
may have started in AD 1871 with observing major volcanic eruptions, but
the first recording is from AD 1883 (Krakatau). The observation time in-
terval, [tops—1; fobs—:|, influences the generation of pseudodata (Part 4) and,
hence, the estimated occurrence rate at the upper and lower boundaries of
your observed data. If the observation interval is unknown, you should exper-
iment with reasonably chosen values and try different methods of pseudodata
generation; eventually a smaller kernel bandwidth for occurrence rate esti-
mation (Part 4) should be selected since then the boundary effect is smaller.

0.8 Numerical values of input data

Too big or too small data values might cause problems in numerical calcu-
lations. In such cases XTREND asks you to rescale accordingly. XTREND
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further requires that t1 increases strictly monotonically—whether it means
time or geological age.

0.9 Interactive working

After you have supplied datatype, path and file name of data, nl and the
observation interval, XTREND plots the timeseries on the screen. (In case
of segmented, also d1 is plotted.) Proceeding with a keystroke, you get
information field 1 and Part 1 decision tree. This illustrates how working
is done with XTREND: information fields and graphics help you to adjust
parameters for an effectice calculation and to carry out the analyses of your
data.

0.10 Notes

0.10.1 Gaps

Obviously, gaps (time intervals without observation) in your data cause prob-
lems for interpreting results. You might wish to split your data and analyse
the parts separately. In case of small gaps, it might work to analyse the data
as follows: stack the observed intervals together (i. e., time shiftings), analyse
the stack with XTREND, reverse the time shiftings (i. e., gaps re-appear) in
the estimated occurrence rate and confidence bands. Gaps further influence
interpretation of result of hypothesis test (Subsection 4.4.6).

0.10.2 Transformation

In principle, a transformation tool could have been added to XTREND (after
data read): z1 linearly transformed, absolute value, etc. The purpose could
be: firstly, to have extreme events only in one direction (positive or negative)
as XTREND assumes; secondly, to allow a logarithmic z-scale. This trans-
formation tool is avoided: for most of the envisaged geological applications,
it seems not necessary because extreme negative and positive events should
be treated separately. Further, transformations as the logarithmic should be
carried out prior to the XTREND analysis.
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0.11 Examples

1000

100

X2 [ppb]

10

0 2000 4000 6000 8000
{2 [years BP]

Example 1: GISP2 ice core (Greenland), SO?™, Datatype: ordinary, nl =
3929, observation interval: [-36.0; 9001.0] years before present (defined as
AD 1950) (Zielinski et al. 1994). The major sulfate peaks indicate events of

explosive volcanism.
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1000

100

X2 [ppb]

10

0 2000 4000 6000 8000
{2 [years BP]

Example 2: CCB ice core (Alps), Ca®", Datatype: segmented, nl = 793,
observation interval: [0.0; 360.0] years before present (defined as AD 1996)
(Wagenbach et al. 1996), logarithmic age model (Wagenbach 1999, pers.
comm.). The major calcium peaks indicate events of Saharan dust input.

1.5 —
? 1.0 -
(U —
q) —
b p—
% 0.5 —
0.0 __‘I'm'|1111'|1111'|1111'|1111'|'m1'|1111'|'|

0 50 100 150 200 250 300 350
{2 [years BP]

Example 2: CCB ice core, duration.
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Starting XTREND

’Part 1:

Time interval extraction‘

Part 2:
Part 3:
Part 4:
Part 5:

Part 1:

Extreme events detection
Magnitude classification
Occurrence rate estimation

Bootstrap simulation

Time interval extraction

1.1 Access

Part 1 is accessible for datatypes:
e ordinary
e segmented
e extreme

e times

1.2 Structure

1.2.1 Ordinary, extreme

2=tl,x2=x1

A

Plot (12; x2)

Information field 1

Calculate 2, x2
Input 72 bounds

Part 1 decision tree
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1.2.2 Segmented

2=1,x2u=xl,d2=dl

A

Plot (£2; x2u), (£2; d2)

Information field 1

Part 1 decision tree

Calculate 12, x2u, d2
Input £2 bounds

1.2.3 Times

A

Calculate 12
Input 12 bounds

Information field 1

Part 1 decision tree

1.3 Information field 1

This information field displays:

e data file name
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datatype

time interval—original (1), value of nl

time interval-—observed

(if n1 # n2) time interval—extracted (¢2), value of n2

1.4 Purpose

Time interval extraction allows to analyse parts of your time series in detail
using the methods of Part 2 (Extreme events detection) and Part 3 (Magni-
tude classification).

1.5 Notes

1.5.1 Minimum number of points

A new time interval has to contain at least n,;, = 25 data points.

1.5.2 You and XTREND

When your input is outside of the permissible range XTREND alerts you ac-
cordingly and asks for new input. You have five chances to supply a sufficient
input.

1.5.3 Original time interval

For estimating the occurrence rate (Part 4), the original time interval has to
be used.
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Part 1: Time interval extraction

Part 2: Extreme events detection‘

Part 3: Magnitude classification
Part 4: Occurrence rate estimation

Part 5: Bootstrap simulation

Part 2:
Extreme events detection

2.1 Access

Part 2 is accessible for datatypes:
e ordinary

e segmented

2.2 Structure

Information field 1

2.2.1 Ordinary

Plot (12 x2, b2, b2 + zyegy * v2) or|

plot (2; x2, b2, b2 + 2 * 12) |

f

Information field 1

Information field 2

Part 2 decision tree

+
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2.2.2 Segmented

Information field 1

‘ Print /‘uicvl’ /"uicv2~ kuicvm}

Plot (£2; x2u, h2u)

Information field 1
Information field 2

Part 2 decision tree i

Change plot setting

X2 = (x2u - b2u)v2u

Information field 1

Print koy |, kovds kevm

Plot (12; x2, b2, b2 + zgogt * 12) or |
plot (2; x2, b2, b2 + 2 * 12) |

Part 2 decision tree ii

A\
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2.3 Information field 2

This information field displays:
e values of k£ (and, for segmented, k,)
e value of z

e number n3 of extreme points

2.4 Plot setting

Allows you to change the plot style:
e horizontal range
e vertical range

e linear/logarithmic abscissa

2.5 Purpose

Both datatypes that have access to Part 1 assume that a background source
contributes to the data. In climatology, a constant background is often unre-
alistic. XTREND estimates the time-dependent background, 02, by running
median smoothing (2k + 1 points). This is a robust method (e. g., Tukey
1977), that means, backround estimation is not affected by outliers/extreme
values which, indeed, are assumed to exist in the time series.!

Of particular importance is the choice of k£ (smoothing problem). XTREND
attacks that problem by cross-validation, using three criterions: Lj-norm,

1On the contrary, the running mean would not provide a robust background estimation.
Likewise, the standard deviation does not provide a robust estimation of the variability
in the time series. Despite these facts, Cuomo et al. (2000) who used mean and standard
deviation, titled their study “Robust statistical methods to discriminate extreme events
in geoelectrical precursory signals: Implications with earthquake prediction”.
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Lo-norm and median criterion (Zheng and Yang 1998):

CVi(k) = Zras )= b >\]/n2,

n2 1/2
CVa(k) = Z(w(z‘)—bk,_1<i>>2] / n2,

Li=1

CVi(k) = median {|z(i) — br_1(7)|},

where by, _; is the delete-one background estimate. The cross-validation func-
tions measure the average ability of by _1(7) to predict the observation (7).
kcyvi minimizes C'Vi(k), analogously kcyo and koym.

To detect an extreme value against the background, 62, the running MAD
(median of absolute distances to the median), v2, is calculated as a robust
measure of variability? (2k + 1 window points) (Tukey 1977). A threshold, z,
has to be selected. The extreme times, t3, are then defined and the extreme
values, 23, calculated as follows:

if %_(52(2) >z >0 (positive extreme event)

or %(b)z() <z <0 (negative extreme event)

then z3(j) = %7(52(1) and

t3(j) = t2(7).
A typical value for z is 3.5 (Hampel 1985).

2.6 Notes

2.6.1 Transformation for segmented data

(L 7

Index in 22u, b2u, v2u etc. (segmented) means “untransformed”. Mu-
delsee (1999) has shown that in case of non-constant d2, the transformation

22(i) = [x2u(i) — b2u(7)] - d2(i)

has to be applied to correct for the “dilution” of extreme values by back-
ground values (the degree of dilution depending on d2).

2Cf. the last footnote.
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2.6.2 Double heap

The algorithm of Hardle and Steiger (1995) employs a double heap order of
window data which is updated as the window moves. XTREND performs
sorting to generate the initial double heap which is evidently not the most
efficient method (although the increase in computing time is negligible). It
might constitute an interesting research problem how to efficiently generate
a double heap order from unsorted data.

2.6.3 Median smoothing parameter selection

XTREND writes the data of cross validation functions C'V;(k), C'V,(k) and
CVm(k), E = 1,...,nl -k, into file CVMED.DAT. You may wish to inspect
these curves when being prompted to select k or, for segmented, k,. For
that, open a second DOS window and run

gnuplot CVMED.PLT

(the plot file is included in the XTREND files). The three criterions used are
aimed to provide three looks at the trend/variability characteristics of the
time series. It is conjectured that robust measures C'V; and CV,, are more
useful than C'V; for data “contaminated” with extreme values. However,
note that autocorrelation in the time series can seriously influence the CV
functions (Simonoff 1996). For climatic and meteorological time series po-
sitive autocorrelation (persistence) is to be expected (Mudelsee (in press))
which means that you should use somewhat higher smoothing values. Be
therefore advised to experiment with different smoothing values (e. g., local
minima of CV functions) (Marron 1987, 1988), use a value of k¢ large enough
(say, 0.5), and also to use your knowledge about the data: at which timescales
do the recorded climatic processes act etc.

2.6.4 Threshold

z is rounded from your input to the nearest half integer (also negative). As
regards z selection, Hampel’s rule z = 3.5 is only a guide. Obviously, a larger
value for z makes it more likely to (correctly) reject background values—but
also more likely to miss extreme values, and vice versa. XTREND allows to
plot b2 + ziest - v2 for up to three values of zi simultaneously to help you
to develop an intuition where the right threshold for your data lies.
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2.7 Examples

—_—  d
— ”
" . TV (K)
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0 10 20 30 40 50 60
k

Example 1: GISP2 ice core, CV functions (running median smoothing). C'V;
has absolute minimum at kcyvi = 9, C'V, has no local minimum, and C'V,,
has absolute minimum at kcy, = 13.

1000
o)
S 100 =y
— |
N gy ‘ '
X h"mlyﬂqlﬂﬂw,!ﬁm,,,,m'ymm,,wp,.,ﬁhllMMM[J,
10

0 200 400 600 800 1000
{2 [years BP]

Example 1: GISP2 ice core, extreme events detection (young part plotted
here). The lower thick line is time-dependent background, b2, estimated
using £ = 13; the upper thick line is time-dependent threshold, b2 + z - v2,
using Hampel’s (1985) rule (z = 3.5). The background contains non-volcanic,
weaker sulfate signals (e. g., from oceanic sources).
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3000 —
a2 2000 -
L _
> .
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0 50 100 150 200 250 300 350
{2 [years BP]

Example 2: CCB ice core, extreme events detection. The thick line is un-
transformed time-dependent background, b2u, estimated using k, = 27. The
background contains calcium ions not derived from Saharan dust.
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Example 2: CCB ice core, extreme events detection. The lower thick line
is transformed time-dependent background, b2, estimated using & = 50; the
upper thick line is time-dependent threshold, 02 + z - v2, using Hampel’s
(1985) rule (z = 3.5).
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Part 3:
Magnitude classification

3.1 Access

Part 3 is accessible for datatypes:
e ordinary
e segmented

o extreme

3.2 Structure

3.2.1 Ordinary, segmented

Plot (t3; x3)

A

Plot classes

Information field 1

Information field 2
Information field 3

Part 3 decision tree

Magnitude classification
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3.2.2 Extreme

3=12,x3=x2
Plot (t3; x3)

Information field 1

A

Plot classes

Part 3 decision tree ‘ Plot empirical distribution (x3)‘

3.3 Information field 3

This information field displays for each class i = 1,...,(:
e class intervals [¢(i — 1); ¢(1)]
e number of points, n4()
e (if set (Part 4)) kernel bandwidth h(7)

e (if set (Part 5)) number of bootstrap simulations ngy (%)

3.4 Purpose

To analyse the x coordinate of your data (see Preface). For example, you may
be interested to compare the occurrence rate of major flood events with that
of minor flood events. Obviously, your choice of the number of classes, [, and
the class bounds, ¢, will depend on the number of points, n3. Furthermore,
your intimate knowledge about the data will be a helpful guide when you
experiment with [ and c.
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3.5 Notes

3.5.1 Maximum number of classes

The maximum number of classes allowed is 6.

3.5.2 Magnitude class bounds

Class bounds selection may be made automatically (equidistant ¢) or by
hand. Eventually, you may want to use output file XTRENDO1.DAT (from a
former XTREND run with the same data) for analysing outside of XTREND
the distribution of 3 in more detail.

3.6 Examples
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Example 1: GISP2 ice core, detected extreme events (n3 = 415).
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Example 1: GISP2 ice core, extreme events, empirical distribution function.
Magnitude class bound is also shown.

class
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Example 1: GISP2 ice core, classified extreme events (I = 2).
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Example 2: CCB ice core, detected extreme events (n3 = 103).

class
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Example 2: CCB ice core, classified extreme events (I = 1).
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Part 0: Starting XTREND
Part 1: Time interval extraction
Part 2: Extreme events detection

Part 3: Magnitude classification

’Part 4: Occurrence rate estimation

Part 5: Bootstrap simulation

Occurrence rate estimation

4.1 Access

Part 4 is accessible for datatypes:

e ordinary

Information field 1

Information field 3

segmented

Part 4 decision tree

e extreme

e times

4.2 Structure

Occurrence rate estimation

Plot ly(i), print test result

‘Tesl hypothesis "l),(i) = const." ‘

‘Prim test result

Estimate /(i)

Select class i

(If not done yet)

Calculate CV functions

(If not done yet)
Generate pseudodata

—}—‘Test hypothesis "ly(i) = cunst."‘—H
—>—Tpart 1}

Y

@ect class i

—b—{(lfordinary or seg d) Part 2 }

»
»

—P—{(If ordinary, segmented or extreme) Part 3 }—%




Part 4: Occurrence rate estimation
4.3 Purpose

The occurrence rate, [, is estimated using a kernel function (Diggle 1985):
(L) = > Kalle = 1(0),  Kn() = 'K (-/h).
i=1

where ¢ are the pseudodata-augmented event times (number: n) (see Subsec-
tion 4.4.1), I, are the design points (see Subsection 4.4.2), K, is the kernel
function (see Subsection 4.4.3) and h is the kernel bandwidth (see Subsection
4.4.4). (The “hat” indicates the estimate.?)

The advantages of that method over histogram binning are well known from
the context of density estimation (Silverman 1986). For example, why should
a decade (in which you count the number of extreme events) start at AD 1880
and not at AD 18787 Mudelsee et al. (2001) give an illustrating example in
case of flood events.

XTREND additionally tests the hyopthesis “l, is constant within the obser-
vation interval” (see Subsection 4.4.6). This test is not possible for extracted
time intervals.

4.4 Notes

4.4.1 Pseudodata

Since the extreme event times for a magnitude class, ¢4, are restricted to the
observation interval, [tops—1; fobs—r), boundary effects (i. e., reduced [,) will
occur near (within, say, ~ 3 - h) the boundaries. This bias may be severe
in case of occurrence rate estimation (in contrast with density estimation)
because the observed process may continue outside the observation interval.

A computationally efficient method to reduce boundary effects is to gener-
ate pseudodata outside [tops_1; tops—r]- The simplest pseudodata method is
reflection of data (¢4) at the boundaries (parameter rule = 'reflection’), for
example:

£(i) = tobs—1 — [t4(E) — tobs—1],

where ¢ = t4 + pseudodata (¢ is sorted finally). Evidently, the reflection
method fails to take into account a nonzero slope of [, at a boundary. The

3This Report uses the “hat” notation rather loosely.
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pseudodata method of Cowling and Hall (1996) overcomes this problem by
extrapolating the empirical distribution function of t4. Depending on the
kind of extrapolation, a variety of pseudodata generating rules are given.
Cowling and Hall (1996) found via a Monte Carlo simulation study that their
pseudodata method outperforms other methods devised to reduce boundary
effects. XTREND has implemented two pseudodata generating rules that
were best in the simulation study:

rule 'threepoint’:

t(7) = tobs—1 — 5 [t4(i/3) — tops—1] — 4 [t4(2i/3) — tops—1] + 10/3 [t4(7) — tops—1] ,
rule 'twopoint ’:

£(i) = tobs—1 — 9[t4(i/3) — tobs—1] + 2 [t4(i) — tobs—1] ,

fractional data found by linear interpolation with ¢t4(0) := t,ps_1. Pseudo-

data right of t,,s_, are generated correspondingly. As regards the choice of
parameter rule, see Subsection 0.7.

4.4.2 Design points

The design points, [, where [, is calculated, cover the interval
[tobs—l -3 [tl(TLl) - tl(l)] ' hrelmax; tobs—r +3- [t1<n1) - tl(l)] ' hrelmax]

with constant spacing (ngiq points). For a typical value of heimax = 0.5,
this means that the number of output data (I, l,) in [tops—1; tobs—r| can be
as less as & ngnq/4. This has to be considered when selecting ng,iq in the
configuration file.

4.4.3 Kernel calculation

The kernel function is a Gaussian which enables fast calculation of the oc-
currence rate in Fourier space (Silverman 1982). XTREND uses the Fast
Fourier Transform algorithm of Press et al. (1996). ngiq has to be a power
of two. In most situations, a value of 1024 or 2048 should yield a reasonable
tradeoff: finely spaced design points (Subsection 4.4.2) and acceptable RAM
size requirements and speed (Section 0.1).

4.4.4 Kernel bandwidth parameter selection

The selection of kernel bandwidth, h, is a crucial step in occurrence rate
estimation, similarly to median smoothing parameter selection (Subsection
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2.6.3). Brooks and Marron (1991) devised a cross-validation criterion for
bandwidth selection based on the Ly, norm which is asymptotically optimal
for kernel occurence rate estimation. Thus, hcy minimizes

tobs—r

~

CV(h) = / lyh(lx)2 dly — Qi:l/;m(t(i)), (4.1)

tobs—1
where

~

bypille) = D Enlle = 2(7))
o

is the leave-one-out estimator. C'V'(h) is determined for h = [t1(nl) — t1(1)]-
0.001 to [t1(nl) — t1(1)] - Arelmax (Mnsren search values). We note the following
points (which apply also to median smoothing parameter selection):

e computing-time intensive step
e advise: experiment with different h values

e local minima of C'V(h) may point to a relevant structure in data

4.4.5 CV calculation

The second term of the right-hand side in Equation 4.1 constitutes a sum
of exponentials over a rectangle (i,j) (not a square because of the pseu-
dodata). The terms near the upper left or lower right corner are small
(o< exp {— [(t(4) —t(j))/h]2/2}), the terms near the 1:1 line are around
unity. This led to the following idea to reduce computational effort: Cal-
culate the terms only in the intermediate range, set the terms near (‘“near”
defined by machine precision) the 1:1 line equal to 1, omit the terms near the
two corners. However, for typical data sizes in Geosciences (less than a few
thousand) and typical machine precisions, the gain is negligible and therefore
not implemented in XTREND. However, XTREND takes into account the
variable term size in the summation to reduce roundoff errors.



Part 4: Occurrence rate estimation

4.4.6 Hypothesis test
Under the null hypothesis “/, = constant”, the test statistic
u = Z t4(2)/n4 - [tobs—r + tobs—l] /2
[tobs—r - tobs—l] (1/(12 : n4))

tends rapidly to the standardized normal form (e. g., Cox and Lewis 1966).
XTREND reports in addition to u the respective one-sided probability, p.

4.4.7 Segmentation problem

Mudelsee (1999) devised an idea for deciding whether, in the case of seg-
mented data and more than one magnitude class (evenly spaced), a segment
contains in reality, say, two events of lower class instead of one event of higher
class: Compare the probability, r1, for one class-two event (calculated us-
ing [,(class | = 2) with the probability, 72, for two class-one events (using
l,(I = 1)) and redistribute ¢4 if r2 > r1. This idea is not implemented in
XTREND because of following problems.

Limited precision:
1. Positions of new t4 are unknown within segment.

2. Magnitude classification uses Heaviside function. For example: event
with 23 = 1.1 falls into class 2 = ]1.0; 2.0] and is redistributed as two
class-1 events. On the other hand, two events 3 = 0.9 and x3 = 1.0
(sum = 1.9) also result in two class-1 events.

3. Even class spacing may limit the analysis seriously.
Implementation problems and computational burden:
1. After t4 redistribution, a class may contain less than n,,;, points.

2. After t4 redistribution, in principle, new pseudodata and new CV func-
tions calculations are necessary and, further, new selection of band-
widths, h. Using different h, different [ will result, and, eventually, the
above condition 2 > r1 will not halt anymore.

Therefore, it might in practice not be possible to “look into the segments”.
The “segmentation problem”, however, has to be considered when interpret-
ing results.
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4.4.8 Autocorrelation

XTREND treats extreme event times, t3, as realizations of a (non-homo-
geneous) Poisson process, that is, as independent from each other. This
assumption should be tested when interpreting results. A CV function with
very small hgy might indicate positive autocorrelation. As noted in Subsec-
tion 2.6.3, climatic and meteorological time series often show positive auto-
correlation. One reason for that is a high sampling rate of a climatological
process, for example, in a sediment core. Be therefore advised to check and
correct for autocorrelation outside of XTREND), using your knowledge about
the data archive. One remedy might be to re-sample by hand the data at a
lower resolution.

4.5 Examples
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g _
~ -9.5 —
O -
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Example 1: GISP2 ice core, magnitude class 1, CV function (kernel band-
width selection). C'V(h) has absolute minimum at hey = 1591.0 years.
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Example 1: GISP2 ice core, estimated occurrence rates (h = 1591.0 years
and pseudodata rule “reflection” used for both classes).
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Example 2: CCB ice core, CV function (kernel bandwidth selection). C'V'(h)
has absolute minimum at hcy = 129.9 years; considerably low CV values
exist for h Z 15.0 years.
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Example 2: CCB ice core, estimated occurrence rate. h = 20.0 years was used
instead of hcy to inspect short-term changes and reduce boundary effects;
pseudodata rule: “reflection”.
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Part 2: Extreme events detection
Part 3: Magnitude classification

Part 4: Occurrence rate estimation

Part 5: Bootstrap simulation

Part 5
Bootstrap simulation

5.1 Access

Part 5 is accessible for datatypes:

e ordinary

Information field 1

e segmented i
() eXtI‘eme Part 5 decision tree Plot 1},(,'), [yl(i)’ [yu(,')
e times Estimate (7). Ly ()

(If not done yet)
Seed random number generator

5.2 Structure

Input ngjp, (7)

—P—( (If ordinary or d) Part 2 } >
—»—{ (If ordinary, segmented or extreme) Part 3 }—%

A4

Write output files
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5.3 Output files

Output file XTRENDO1 . DAT is written for datatypes ordinary and segmented:
e Information field 1
e Information field 2
e Information field 3

e Data from Part 2 (Extreme events detection): t2, 22, b2, v2, b2+ z-v2,
d2 (segmented), z2u (segmented), b2u (segmented), 3, x3

Output file XTRENDO2 . DAT:

e Information field 1

e Information field 2

e Information field 3

e Data from Part 3 (Magnitude classification): t4, ¢ for all classes
Output file XTRENDO3.DAT:

e Information field 1

e Information field 2

e Information field 3

Test result (HO: “constant occurrence rate”): u, p

e Data from Parts 4 (Occurrence rate estimation) and 5 (Bootstrap sim-
ulation): 1, L, l,, for all classes

5.4 Purpose

A confidence band around the estimated occurrence rate is essential for in-
terpreting results. For example, you might want to know whether a “trough”
in the estimated occurrence rate of heavy rainfall events during the Maunder
Minimum (~ AD 1650 to AD 1715) is realistic or, instead, came by chance
into your data. XTREND uses bootstrap simulations to produce a set of sim-
ulated events, t*. Occurrence rate estimation (using same kernel bandwidth
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as for the original data) is carried out, yielding an estimate, lAy* The proce-
dure simulation—estimation is repeated, ngy, times in total. The variability

of l/;/* allows to determine confidence bands (level «) of l; The methodology
has been developed by Cowling et al. (1996).

A number of simulated events is used which is equal to the number of data,
n, for the original estimation. Then, ¢* is drawn from the set ¢ with replace-
ment*. The confidence band calculated is a percentile-t type: Let E(lAy*)
be the average occurrence rate (at point I, € [tobs_1; tobs—r]). Calculate the

studentized quantity,
- [0 - 5G] Vi

which is approximately pivotal, that is, independent of [, and [,,. That allows
you to calculate the t,-percentiles of |T'|. Finally, the confidence bounds are

calculated as
[y = max (0, E(l;*) — ta\/i) ,
b = B +tay/D

5.5 Notes

5.5.1 Other methods

In a simulation study, the method used here (“Method 3”) gave nearly iden-
tical results as two other methods (Cowling et al. 1996). It is implemented
into XTREND because of its simplicity. That study compared also two other
types of confidence band with the type used here (“Type 17); again, the dif-
ferences were small.

5.5.2 Bias

Cowling et al. (1996) show that lAy has a bias of approximately L} (,)/2
(Gaussian kernel) where [ is the second derivative of [,. You may explicitly
correct for that bias (outside of XTREND) with an estimate for [; obtained

4The bootstrap. Efron and Tibshirani (1993) is an excellent monograph on that re-
sampling method.
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from using a larger bandwidth in its construction. A simpler method, how-
ever, is undersmoothing (small i) which reduces bias effectively (Cowling et
al. 1996).

5.5.3 Very small kernel bandwidth

In XTREND’s subroutine that calculates the kernel occurrence rate (modified
routine denest in Silverman (1982)), the smallest l; value is set equal to tiny
value € (= 1.0e—12). This ensures that T' can be calculated without risking
math errors. This safeguarding, however, needs additional measures to ensure
meaningful results:

1. A rough estimate of the upper bound of the average occurrence rate
is given by the ratio nl/ (tops—r — tobs—1), that is, approximately 1/(av-
erage spacing). That value should be considerably larger than tiny.
XTREND checks that.

2. Regions [, where no/few data points exist, in case of small kernel band-

width, tend to produce l; = €. Likewise, there: lAy* ~ e. That means,
there: T~ 0. It follows that t, will be smaller in comparison with the
true value (i. e., calculated without numerical errors). The confidence
band, therefore, is smaller than the true. This effect is more serious
the larger the proportion of the number of points [, where [, = € to the
number of points I, € [tobs_1; tobs—r] Decomes in relation to confidence
level a. In such cases XTREND issues a warning message. It is possi-
ble to select a larger kernel bandwidth to reduce this effect. However,
for highly clustered data (say, 60 % of data in the first 10 % of the
observed time interval, 40 % in the last 5 %), it might then become
impossible to see the structure within a cluster. In such cases, the ob-
servations should be cut into pieces (containing one cluster), and the
fine structure within each cluster analysed separately with XTREND.

5.5.4 Computing time

The bootstrap simulations do not generally take longer than the CV calcu-
lations.

5.5.5 Exit

You may exit XTREND without performing bootstrap simulation.
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5.6 Examples
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Example 1: GISP2 ice core, estimated occurrence rates and confidence bands
(v = 0.90, ngm, = 10000). Hypothesis “l, = constant” (Subsection 4.4.6)
cannot be rejected with reasonably small p values (class 1, p = 0.16; class 2,
p = 0.13). The bootstrap simulations, however, reveal: At around 9000 years
BP the occurrence rate of explosive volcanic eruptions, indicated by sulfate
ions, was high (in accordance with Zielinski et al. (1994)). Then, as new
finding here, a decrease towards mid-Holocene and again an increase towards
present occurred. In case of class 1 events, this trend is significant. (Setting
[ = 1 magnitude class revealed a similar trend, at the same significance level.)
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occurrence rate Iy [1/year]

0 50 100 150 200 250 300 350
design points /, [years BP]

Example 2: CCB ice core, estimated occurrence rate and confidence band
(o = 0.90, ngm = 2000). Hypothesis “l, = constant” can be rejected
(p < 1.0e—7) against H1: “I, increases towards the present”. The bootstrap
simulations confirm the overall increasing occurrence rate and, in addition,
reveal that this was interrupted by a significant “trough” at around 1900 AD
(I, = 96.0 years). Avila and Pefiuelas (1999) found an increase in the oc-
currence rate of Saharan dust peaks in rainfall data from northeastern Spain
during the past few decades.’

5A caveat against this study is that it compares data from different sites, that is, the
data may not be homogeneous.
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