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Abstract

The concept of hyperreflexivity has previously been defined for subspaces of B(X, Y ),

where X and Y are Banach spaces. We extend this concept to the subspaces of Bn(X, Y ),

the space of bounded n-linear maps from X × · · ·×X = X(n) into Y , for any n ∈ N. If A

is a Banach algebra and X a Banach A-bimodule, we obtain sufficient conditions under

which Zn(A,X), the space of all bounded n-cocycles from A into X, is hyperreflexive. To

do so, we define two notions related to a Banach algebra: The strong property (B) and

bounded local units (b.l.u). We show that there are sufficiently many Banach algebras

which have both properties. We will prove that all C∗-algebras and group algebras have the

strong property (B). We also prove that finite CSL algebras and finite nest algebras have

this property. We further show that for an arbitrary Banach algebra A and each n ≥ 2,

Mn(A) has the strong property (B) whenever it is equipped with a Banach algebra norm.

In particular, this implies that all Banach algebras are embedded into a Banach algebra

with the strong property (B). With regard to bounded local units, we show that all C∗-

algebras and many group algebras have b.l.u. We investigate the hereditary properties

of both notions to construct more example of Banach algebras with these properties.

We apply our approach and show that the bounded n-cocycle spaces related to Banach

algebras with the strong property (B) and b.l.u. are hyperreflexive provided that the space

of the corresponding n + 1-coboundaries are closed. This includes nuclear C∗-algebras,

many group algebras, matrix spaces of certain Banach algebras and finite CSL and nest

algebras. We finish the thesis with introducing the hyperreflexivity constant. We make

our results more precise with finding an upper bound for the hyperreflexivity constant of

the bounded n-cocycle spaces.
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Chapter 1

Introduction

In this chapter we give a brief history on reflexivity and hyperreflexivity of linear

space of (bounded) operators. As it will be presented, both notions of reflexivity and

hyperreflexivity have been defined in different ways on linear maps between Banach spaces.

We present all such approaches and give details of how the various notions of reflexivity

(hyperreflexivity) are connected. The concept of reflexivity has its root in the problem

of invariant subspaces. Some information on the invariant subspace problem and its

connection with reflexivity is provided. In the final section, it is briefly described how we

approach to the problem of the hyperreflexivity of the bounded n-cocycle spaces in the

thesis.

As the name suggests, the notion of hyperreflexivity is a strengthening of the concept

of reflexivity. Hence we first present a general history of reflexivity in order to have a

better idea of hyperreflexivity.

1.1 Reflexivity

The concept of reflexivity for algebras of bounded operators on Banach spaces has its

origin in operator theory.

Definition 1.1.1. Let X be a Banach space, and let A ⊆ B(X) be an algebra of bounded

operators on X with unit (i.e. idX ∈ A).

(1) LatA denotes the set of all closed subspaces of X invariant under A, i.e., for every
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T ∈ A and I ∈ LatA we have T (I) ⊆ I.

(2) algebra generated by LatA is defined to be the set of all T ∈ B(X) such that T (I) ⊆ I

for each I ∈ LatA. This is denoted by algLatA.

(3) A is said to be reflexive if algLatA = A.

This definition which is historically the start of the topic of reflexivity was first defined

by D. Sarason [56]. During the past decades, the problem of reflexivity has widely been

studied by various authors especially for the operator algebras, i.e., the case where X = H

is a Hilbert space. In particular, two important classes of operator algebras which are

known to be reflexive are:

(i) CSL algebras: Arveson proved in [5] that algebras generated by commutative subspace

lattices or briefly CSL algebras are reflexive.

(ii) von Neumann algebras: It follows easily from the double-commutant Theorem that

every von Neumann algebra is reflexive.

The concept of reflexivity in the sense of Definition 1.1.1 is closely related to the well-

known invariant subspace problem:

“Whether a bounded operator T ∈ B(X) has a non-trivial invariant subspace?”

Invariant subspace problem and reflexivity. Invariant subspace problem is probably

among the most important problems in functional analysis. It is known that a large

number of operators on Hilbert spaces have non-trivial invariant subspaces. Let H be a

Hilbert space:

(i) If H is finite dimensional with dimH > 1, then each operator T on H is a matrix

which is known to have at least a non-zero eigenvector v. If we let L = {αv : α ∈ C},

then L is a non-trivial invariant subspace of T .

(ii) If H is not separable, then for each bounded operator T on H, the following is a

non-trivial invariant subspace of H :

L = span{T n(x) : n ≥ 0},

where x is a non-zero vector and span stands for the closed linear span.

(iii) If H is an arbitrary Hilbert space, then it is shown in [44] that each normal operator
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on H has a non-trivial invariant subspace.

On the other hand, it was shown by Charles Reed that there is a bounded operator

on the space l1 without a non-trivial invariant subspace [46].

Definition 1.1.2. Let X and Y be two Banach spaces. The weak operator topology in

B(X, Y ) is the topology defined by the basic set of neighborhoods

N(T ;A,B, ε) = {R| R ∈ B(X, Y ), |y∗((T −R)x)| < ε, y∗ ∈ B, x ∈ A}

where A and B are arbitrary finite subsets of X and Y ∗ respectively and ε > 0 is arbitrary.

The invariant subspace problem and reflexivity are connected in the following way:

Let X be a Banach space with dimX > 1. Let T ∈ B(X) and define

E = alg{idX , T}
w.o.t

,

where idX is the identity operator and w.o.t stands for the weak operator topology. If T

does not have a non-trivial invariant subspace, then E is not reflexive. The reason is that

clearly

LatT = LatE = {0, X}.

Hence

algLatE = B(X).

On the other hand, it follows easily that T ∈ E ′, the commutant of E. However,

T /∈ B(X)′ = CidX since it has no non-trivial invariant subspace and dimX > 1. Conse-

quently, algLatE 6= E and E is not reflexive.

Generalization of reflexivity. The concept of reflexivity was generalized by D.R.

Larson both algebraically and topologically to the subspaces of B(X, Y ) for Banach spaces

X and Y [32].

Definition 1.1.3. Let X and Y be Banach spaces. Let L(X, Y ) be the space of all linear

operators form X to Y and B(X, Y ) be the subspace of L(X, Y ) consisting of all bounded

3



operators. Suppose that S is a linear subspace of L(X, Y ). For each x ∈ X, we define

S(x) = {S(x) : S ∈ S},

and we let [S(x)] to be the norm-closure of S(x). Put

refa(S) = {T ∈ L(X, Y ) : T (x) ∈ S(x), for each x ∈ X}.

If S ⊆ B(X, Y ), put

ref(S) = {T ∈ B(X, Y ) : T (x) ∈ [S(x)], for each x ∈ X}.

(1) If S ⊆ L(X, Y ), then S is algebraically reflexive if S = refa(S).

(2) If S ⊆ B(X, Y ), then S is (topologically) reflexive if S = ref(S).

Definition 1.1.4. Let X and Y be two Banach spaces. The strong topology in B(X, Y )

is the topology defined by the basic set of neighborhoods

N(T ;A, ε) = {R| R ∈ B(X, Y ), ‖(T −R)x‖ < ε, x ∈ A}

where A is an arbitrary finite subset of X and ε > 0 is arbitrary.

Remark 1.1.5. It is shown in [18, Corollary VI.5] that a convex subset in B(X, Y ) has

the same closure in the weak and strong operator topology. On the other hand, it is easy

to check that if S is a subspace of B(X, Y ), then ref(S) is closed in the strong operator

topology. Consequently, the initial condition for S to be reflexive is that it should be

closed in the strong operator topology and hence in the weak operator topology.

Lemma 1.1.6. Let S be a unital subalgebra of B(X). Then S is reflexive in the sense

of Definition 1.1.1 if and only if it is (topologically) reflexive in the sense of Definition

1.1.3.

Proof. It suffices to show that

algLatS = ref(S).
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First let T ∈ B(X) with the property that for each x ∈ X, there is a sequence {Tn,x} in

S with

T (x) = lim
n→∞

Tn,x(x).

Hence if I ∈ LatS, then for each x ∈ I we have

T (x) = lim
n→∞

Tn,x(x) ∈ I.

This implies that T (I) ⊆ I, and so

T ∈ algLatS.

Therefore

ref(S) ⊆ algLatS. (1.1.1)

Let T ∈ algLatS and pick v0 ∈ X. Define

E = {Sv0 : S ∈ S}.

Then E ∈ LatS. So TE ⊆ E. Since S is unital, v0 ∈ E. Hence Tv0 ∈ E. So that there

exists a sequence {Sn,v0} in S such that

Tv0 = lim
n→∞

Sn,v0v0.

Consequently, T ∈ ref(S).

To generalize the notion of reflexivity, Larson was partly motivated to study the local

behavior of derivations from a Banach algebra A into a Banach A-moduleX. Let Z1(A,X)

be the space of all derivations from A into X. A “local derivation” from A into X is an

element of refa(Z
1(A,X)). A natural question one could consider is for which Banach

algebra A and Banach A-bimodule X, local derivations from A into X are derivations?

This is equivalent to asking whether Z1(A,X) is algebraically reflexive? One can also ask

the topological version of this question. Let Z1(A,X) be the space of bounded derivations

from A into X.

5



“When Z(A,X) is topologically reflexive?”

If the answer is positive, then every so-called approximate local derivation from A into X

would be a derivation.

In the last two decades, the question of algebraic and topological reflexivity of the

derivation spaces has received considerable attention from various researchers and some

very interesting results have been obtained. In [31], R.D. Kadison showed that bounded lo-

cal derivations from a von Neumann algebra into any of its dual bimodules are derivations.

Kadison’s result was generalized later by showing that the space of bounded derivations

from a C∗-algebra into any of its bimodules is both algebraically and topologically reflex-

ive [29, 50]. On the other hand, it was shown in [33] that every local derivation on B(X),

for a Banach space X, is a derivation. In [52], E. Samei showed that the space of bounded

derivations from L1(G) into any Banach L1(G)-bimodule is reflexive provided that G has

an open subgroup of polynomial growth. This class includes IN-groups, maximally almost

periodic groups, and totally disconnected groups.

1.1.1 A general view of reflexivity

The notion of reflexivity (algebraic reflexivity) as we presented in the preceding section

is defined for the subspaces of B(X, Y ) (L(X, Y )). In 1994, Don Hadwin introduced the

concept of E-reflexivity for arbitrary vector spaces [23]. His work is interesting in various

aspects:

(1) It generalizes the concept of reflexivity to arbitrary vector spaces.

(2) When dealing with the spaces L(X, Y ) and B(X, Y ), we can define both notions of

algebraic and topological reflexivity in terms of E-reflexivity.

(3) We recall that a Banach space X is called (classically) reflexive if the map θ : X → X∗∗

is surjective where

θ(x)(ϕ) = ϕ(x), (ϕ ∈ X∗, x ∈ X).

6



In his paper, Don Hadwin rephrased classical reflexivity in terms of E-reflexivity. Hence

his work unifies different versions of reflexivity that were already defined.

In this section, we give definition of E-reflexivity and show how this notion coincide with

other notions of reflexivity. The reference for our results is [23].

Let X be a vector space and suppose that Y is a set of linear maps from X to C that

separates the points of X. For A ⊆ X, we define

A⊥ = {f ∈ Y : f |A = 0}.

For B ⊆ Y , define

B⊥ = ∩{kerf : f ∈ B}.

Suppose that ∅ 6= E ⊆ Y is closed under scalar multiplication and that E⊥ = {0}. We

call (X, Y,E) a reflexivity triple. Let S be a subset of X. We define E-reflexive part of

S to be

refE(S) = (S⊥ ∩ E)⊥.

Hence x ∈ refE(S) if and only if for each f ∈ E with f |S = 0, we have f(x) = 0.

Definition 1.1.7. Let (X, Y,E) be a reflexivity triple. A subset S of X is called E-

reflexive if refE(S) = S.

E-Reflexivity and classical reflexivity:

Suppose that Y is a Banach space, and let X = Y ∗. Then Y can be viewed as a set of

linear maps on X that separates the points of X. Let E = Y . If S ⊆ X, then

refE(S) = (S⊥ ∩ E)⊥ = (S⊥)⊥ = spanw
∗
(S). (1.1.2)

Here spanw
∗
(S) stands for the weak∗-closure of the linear span of S. The last equation in

(1.1.2) is proven in [23, Proposition 1.1]

7



Lemma 1.1.8. Y is classically reflexive if and only if every norm closed linear subspace

of X is E-reflexive.

Proof. Assume that Y is classically reflexive, i.e., Y ∗∗ = Y. Then the weak∗-topology on

X = Y ∗ is exactly the weak topology induced by Y ∗∗. We know that in every normed

space, the norm-closure and the weak closure of a convex subset coincide. Hence on

account of (1.1.2), for every normed closed linear subspace S of X, we have

refE(S) = Sw
∗

= Sw = S‖·‖ = S.

Conversely, let S be a closed subspace of X. Then by the assumption, S is E-reflexive.

Hence, on account of (1.1.2), we have

Sw
∗

= Sw = S. (1.1.3)

On the other hand, we know that ([47, Theorem 3.10])

Y = {y∗∗ ∈ Y ∗∗ : y∗∗ is w∗-continuous on Y ∗}. (1.1.4)

Now pick y∗∗ ∈ Y ∗∗. It is trivial that y∗∗ is w-continuous. Hence ker y∗∗ is w-closed. If

we apply (1.1.3), we infer that ker y∗∗ is w∗-closed. It means that y∗∗ is w∗-continuous.

Consequently, y∗∗ ∈ Y by (1.1.4). Therefore, Y ∗∗ = Y and Y is (classically) reflexive.

E-reflexivity and algebraic reflexivity

Let V and W be two Banach spaces. A rank one-tensor is of the form x ⊗ α for x ∈ V

and α ∈ W ′, where W ′ denotes the set of all linear functionals on W . Every rank-one

tensor acts as a functional on L(V,W ) by

(x⊗ α)(T ) = α(T (x)) (T ∈ L(V,W )).

Lemma 1.1.9. Let E be the set of all rank-one tensors, and let Y = spanE. If S is

a linear subspace of L(V,W ), then refE(S) = refa(S). In particular, S is algebraically

reflexive if and only if it is E-reflexive.
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Proof. Let T ∈ refa(S) and suppose that x ∈ V and α ∈ W ′ are chosen such that

(x⊗ α)(S) = α(S(x)) = 0 ∀S ∈ S.

Let Sx ∈ S be such that T (x) = Sx(x). Then (x ⊗ α)(T ) = α(T (x)) = α(Sx(x)) = 0.

Hence T ∈ refE(S).

Conversely, suppose that T ∈ refE(S), and let x ∈ V . By the assumption, for each

α ∈ W ′ with the property that

(x⊗ α)(S) = α(S(x)) = 0 ∀S ∈ S,

We should have

(x⊗ α)(T ) = α(T (x)) = 0.

This implies that T (x) ∈ S(x). Hence T ∈ refa(S).

E-reflexivity and topological reflexivity:

Let V and W be two Banach spaces. Define

E = {x⊗ α : x ∈ V, α ∈ W ∗},

where W ∗ denotes the space of bounded linear functionals on W . Let Y = B(V,W )∗.

Lemma 1.1.10. Let S be a subspace of B(V,W ). Then refE(S) = ref(S). In particular,

S is topologically reflexive if and only if it is E-reflexive.

Proof. Let T ∈ ref(S). Suppose that x ∈ V and α ∈ W ∗ are chosen such that

(x⊗ α)(S) = α(S(x)) = 0 (S ∈ S).

If {Sn,x} is a sequence in S with T (x) = limn→∞ Sn,x(x), then

(x⊗ α)(T ) = lim
n→∞

α(Sn,x(x)) = 0.

So T ∈ refE(S).

9



Conversely, let T ∈ refE(S). Then for each x ∈ V and α ∈ W ∗ with x⊗ α|S = 0, we

have (x⊗α)(T ) = 0. Equivalently, we can say that for each x ∈ V if α ∈ W ∗ is such that

α(S(x)) = 0 ∀S ∈ S,

then α(T (x)) = 0. By the Hahn-Banach theorem, this implies that T (x) ∈ S(x). Hence

T ∈ ref(S).

1.2 Hyperreflexivity

As mentioned before, the concept of hyperreflexivity is a strengthening of reflexivity. This

concept was first introduced in [6] by W. B. Arveson for operator algebras for which it

was named “the distance formula problem”. Let H be a Hilbert space and S a closed

unital subalgebra of B(H). Let d(·,S) be the quotient norm on B(H)/S defined by

d(T,S) = inf{‖T − S‖ : S ∈ S}.

We can also define the following seminorm on B(H)/S,

β(T,S) = sup{‖P⊥TP‖ : P ∈ LatS}. (1.2.1)

Here, we identify each element I ∈ Lat(S) with its orthogonal projection P : H → I. It

is clear that

β(T,S) ≤ d(T,S), T ∈ B(H).

Moreover it is easy to check that T ∈ algLatS if P⊥TP = 0. Hence β defines a norm on

B(H)/S if and only if S is reflexive.

Definition 1.2.1. A closed unital subalgebra S of B(H) is called hyperreflexive (or

C-hyperreflexive) if there is a constant C > 0 such that

dist(T,S) ≤ Cβ(T,S), (T ∈ B(H)).

The smallest such constant is called the hyperreflexivity constant of S.

10



There are many results on the hyperreflexivity of the operator algebras. For example,

the following two are among the most well-known ones.

(i) Arveson proved in [6] that every nest algebra has a distance formula, and so , it is

hyperreflexive. His result provides a very rare example of hyperreflexive operator algebras

for which the hyperreflexivity constant is 1. Hence norms d and β coincide in this case.

(ii) There are various results on the hyperreflexivity of different classes of von Neumann

algebras mainly due to the works of E. Christensen (see [11] and [12]). In particular, he

proved in [12] that every injective von Neumann algebra is hyperreflexive and that its

hyperreflexivity constant is less than 4. In [22], Giol provided a unified argument under

which many known results on the hyperreflexivity of von Neumann algebras were reob-

tained.

As the concept of reflexivity was generalized from the operator algebras to the sub-

spaces of B(X, Y ), the concept of hyperreflexivity was also generalized in the same man-

ner. Let X and Y be two Banach spaces, and let S be a closed linear subspace of B(X, Y ).

For every T ∈ B(X, Y ), we define

dist(T,S) = inf
S∈S
‖T − S‖,

and

distr(T,S) = sup
‖x‖≤1

inf
S∈S
‖T (x)− S(x)‖.

It is clear that

distr(T,S) ≤ dist(T,S).

In general, distr defines a seminorm on B(X, Y )/S. Moreover, it gives a norm if and only

if S is reflexive.

Definition 1.2.2. A closed subspace S of B(X, Y ) is called hyperreflexive if there is

C > 0 such that

dist(T,S) ≤ Cdistr(T,S) (T ∈ B(X, Y )). (1.2.2)

11



In other words, S is hyperreflexive if dist(·,S) and distr(·,S) define equivalent norms

on B(X, Y )/S. We will show in Proposition 1.2.7 that this coincides with Definition 1.2.1

when X = Y = H is a Hilbert space and S is a closed unital subalgebra of B(H). It is

easy to check that the closed subspace S is reflexive if

distr(T,S) = 0⇒ dist(T, S) = 0.

Hence according to (1.2.2), being hyperreflexive is stronger than being reflexive. K. David-

son and S. Power showed in [16] that the converse might not be true, i.e. not every reflexive

operator algebra is hyperreflexive. However, in the special case when a reflexive subspace

of B(X, Y ) is finite dimensional (for possibly infinite dimensional Banach spaces X and

Y ), then it has to be hyperreflexive [38].

In recent years, several authors have also considered the hyperreflexivity of the deriva-

tion spaces. In [58], V. Shulman showed that Z1(A,A), the space of bounded derivations

from a C∗-algebra A into itself is hyperreflexive if the second Hochschild cohomology group

vanishes (H2(A,A) = 0). It is also shown in [3] that Z1(L1(G), L1(G)) is hyperreflexive

for each amenable group in [SIN]. In [52], E. Samei showed that Z1(L1(G), X∗) is hy-

perreflexive if G is a locally compact amenable group with an open subgroup which has

polynomial growth and X is an essential Banach L1(G)-bimodule. It was later proven in

[4] that Z1(L1(G), L1(G)) is hyperreflexive for each locally compact group with an open

subgroup which has polynomial growth, thus eliminating the assumption of amenability.

More results on reflexivity and hyperreflexivity can be found in [9, 14, 24, 25, 26, 27, 28,

29, 31, 33, 50, 51, 57, 58].

1.2.1 A general view of hyperreflexivity

The definition of hyperreflexivity as we presented in Section 1.1 is valid for the subspaces

of B(V,W ). In Section 1.1.1, we demonstrated how Hadwin generalized the concept of

reflexivity. In his paper, he also defined the concept of E-hyperreflexivity which general-

izes hyperreflexivity [23].

Let X be a Banach space and Y a subspace of X∗ separating the points of X. Suppose
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that E is a nonempty subset of Y which is closed under scalar multiplication such that

E⊥ = {0}. Let

Ẽ = {e ∈ E : ‖e‖ = 1}.

For a subspace S of X, we define

dY (x,S) = sup{|f(x)| : f ∈ S⊥, ‖f‖ = 1},

and

dE(x,S) = sup{|f(x)| : f ∈ S⊥ ∩ Ẽ}.

Obviously we have

dE(x,S) ≤ dY (x,S).

Definition 1.2.3. A subspace S of X is said to be E-hyperreflexive if there is a constant

C > 0 such that

dY (x,S) ≤ CdE(x,S), x ∈ X.

Remark 1.2.4. If S is a closed subspace, then being E-hyperreflexive is stronger than being

E-reflexive, i.e., if S is E-hyperreflexive, then it is E-reflexive in the sense of Definition

1.1.7. To see this, note that we have

dE(x,S) = 0 ⇔ f(x) = 0 ∀f ∈ Ẽ ∩ S⊥

⇔ f(x) = 0 ∀f ∈ E ∩ S⊥

⇔ x ∈ (E ∩ S⊥)⊥ = refE(S).

On the other hand,

dY (x,S) = 0 ⇔ f(x) = 0 ∀f ∈ S⊥

⇔ x ∈ S.

E-hyperreflexivity and hyperreflexivity

In this Section, we show that Hadwin’s approach toward E-hyperreflexivity generalized

the hyperreflexivity in the sense of Definition 1.2.1.
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Proposition 1.2.5. Let V and W be two Banach spaces. Let X = B(V,W ), Y =

B(V,W )∗ and let

E = {x⊗ α : x ∈ V, α ∈ W ∗}.

For T ∈ B(V,W ) and a subspace S ⊆ B(V,W ), we have:

(i) dY (T,S) = dist(T,S).

(ii) dE(T,S) = distr(T,S).

In particular, for any closed subspace of B(V,W ), being hyperreflexive is equivalent to

being E-hyperreflexive.

Proof. (i) Let f ∈ S⊥ with ‖f‖ = 1. Then for each T ∈ B(V,W ), we have

|f(T )| = |f(T )− f(S)| ≤ ‖T − S‖ (∀S ∈ S).

Therefore

dY (T,S) ≤ dist(T,S).

To prove the other way around, let T ∈ B(V,W ). If T ∈ S, trivially we have

dist(T,S) ≤ dY (T,S).

If T /∈ S, then by the Hahn-Banach theorem, there exists f ∈ X∗ such that

‖f‖ = 1, f |S = 0, f(T ) = ‖T‖.

This implies that

dist(T,S) ≤ dY (T,S).

(ii) Let x ∈ V and α ∈ W ∗ be such that

‖x⊗ α‖ = ‖α‖‖x‖ = 1, α(S(x)) = 0 ∀S ∈ S.

Then, for every S ∈ S, we have

‖(x⊗ α)(T )‖ = |α(T (x))|

= |α(T (x)− S(x))|

≤ ‖T (x)− S(x)‖‖α‖

= ‖T (x‖α‖)− S(x‖α‖)‖.
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Hence

|(x⊗ α)(T )| ≤ inf
S∈S
‖T (x‖α‖)− S(x‖α‖)‖.

This implies that

dE(T,S) ≤ distr(T,S).

To prove the converse, it suffices to show that for each x1 ∈ V with ‖x1‖ = 1, there are

x0 ∈ V and α0 ∈ W ∗ such that

‖α0‖‖x0‖ = 1, α0(S(x0)) = 0 ∀S ∈ S

and

inf
S∈S
‖T (x1)− S(x1)‖ ≤ |α0(T (x0))|.

Now if T (x1) ∈ S(x1), then clearly for every α0 and x0 with ‖α0‖‖x0‖ = 1, the inequality

holds. Otherwise, by the Hahn-Banach theorem, there is α0 ∈ W ∗ such that ‖α0‖ = 1,

α0(S(x1)) = 0 and α0(T (x1)) = ‖T (x1)‖ and ‖α0‖ = 1. Hence it suffices to let x0 = x1.

1.2.2 Two definitions of hyperreflexivity for the operator alge-

bras coincide

In this section, we show that Definition 1.2.1 and Definition 1.2.2 are equivalent. Suppose

that X is a Banach space. Let S be a closed unital subalgebra of B(X). Define

β(T,S) = sup{‖πMT |M‖ : M ∈ LatS}, (1.2.3)

where πM : X → X
M

is the quotient map.

Remark 1.2.6. Let X = H be a Hilbert space. Suppose that M is a closed subspace of

H, and let P denote the orthogonal projection onto M . Then it is easy to check that

‖πMT |M‖ = ‖(1− P )TP‖, (T ∈ B(H)).

In particular, definition of β given by (1.2.3) coincides with that of (1.2.1).
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Proposition 1.2.7. Let X be a Banach space. Suppose that S is a closed unital subalgebra

of B(X), and

E = {x⊗ α : x ∈ X,α ∈ X∗}.

Then

dE(T,S) = β(T,S) (T ∈ B(X)).

In particular, Definition 1.2.1 and Definition 1.2.2 coincide when X is a Hilbert space

and S is a unital operator algebra.

Proof. First we show that

dE(T,S) ≤ β(T,S). (1.2.4)

Equivalently, we need to show that for each x⊗ α ∈ E with ‖α‖ = ‖x‖ = 1 and

(x⊗ α)|S = 0, (1.2.5)

there is M ∈ LatS such that

|(x⊗ α)(T )| ≤ ‖πMT |M‖.

To this end, we let M = S(x). Then M ∈ LatS. Moreover, for every m ∈ M , according

to (1.2.5), α(m) = 0. So

|(x⊗ α)(T )| = |α(T (x))|

= |α(T (x)−m)|

≤ ‖T (x)−m‖.

Consequently we can write (note that x ∈M since S is unital)

|(x⊗ α)(T )| ≤ inf
m∈M

‖T |M(x)−m‖

= ‖πMT |M(x)‖

≤ ‖πMT |M‖.
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Next we show that

β(T,S) ≤ dE(T,S). (1.2.6)

To do so, we need to show that for each M ∈ LatS and each ε > 0, there are αε ∈ X∗

and xε ∈ X with ‖αε‖, ‖xε‖ = 1 and

(xε ⊗ αε)|S = αε(S(xε)) = 0

such that

‖πMT |M‖ ≤ |αε(T (xε))|+ ε. (1.2.7)

Note that

‖πMT |M‖ = sup{‖πMT |M(x)‖ : x ∈M, T (x) /∈M and ‖x‖ = 1}.

Hence for ε > 0, there is xε ∈M with T |M(xε) /∈M such that

‖πMT |M‖ ≤ ‖πMT |M(xε)‖+ ε. (1.2.8)

Since T |M(xε) /∈ M, the Hahn-Banach Theorem implies that there is αε ∈ V ∗ with

‖αε‖ = 1 and αε|M = 0 such that

αε(T (xε)) = ‖T |M(xε)‖. (1.2.9)

Now by applying (1.2.9),(1.2.8) and using the fact that ‖πMT |M(xε)‖ ≤ ‖T |M(xε)‖, we

obtain (1.2.7). Note that since M ∈ LatS and xε ∈M , we get

αε(S(xε)) = 0,

as desired. Now (1.2.4) and (1.2.6) imply that

dE(T,S) = β(T,S).

The final result follows by combining the preceding results together with Proposition

1.2.5.
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1.2.3 Our approach to hyperreflexivity

Hyperreflexivity is a powerful tool that allows us to measure the “global” distance of an

element to a linear space using its “local” distance. One important subspace related to

a given Banach algebra is the space of bounded derivations whose hyperreflexivity for

various cases have been studied extensively. The counterparts of bounded derivations

in higher dimensions are bounded n-cocycles which play a fundamental role in the co-

homology of Banach algebras. Our main goal in this thesis is to extend the concept of

hyperreflexivity to these higher cocycles. For Banach spaces X and Y , we first define

hyperreflexivity for subspaces of Bn(X, Y ). Then we focus on Zn(A,X), the space of

bounded n-cocycles from a Banach algebra A into a Banach A-bimodule X, and pose

the question when it can be hyperreflexive. Our investigation leads us to find sufficient

conditions under which Zn(A,X) becomes hyperreflexive. Hence answering this question

improves our knowledge of the cohomology of Banach algebras. We demonstrate that

for a large classes of Banach algebras, including nuclear C∗-algebra, group algebras of

amenable groups with open subgroups of polynomial growth, finite CSL and finite nest

algebras and matrix spaces of some Banach algebras, these sufficient conditions hold which

give evidence that our conditions are satisfactory. For the case when n = 1, our results

include and, at the same time, generalize all the ones already obtained in the literature

pointed out in the section 1.2.

As it is customary, we first present in Chapter 2 some backgrounds of notions that

will be needed in the following chapters.

A tool that plays a key role in our discussion is a property related to a Banach algebra

which we call it the strong property (B) (Definition 3.1.1). In [2], without defining this

property explicitly, it is shown that all C∗-algebras and group algebras have this property.

We devote Chapter 3 to the strong property (B). We study the hereditary properties of

Banach algebras with the strong property (B) which enables us to construct other algebras

with this property from the known ones (Section 3.2).

We will show in Chapter 5 that a fundamental fact towards obtaining the hyperreflex-
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ivity of the bounded n-cocycle spaces of a Banach algebra, is to see when the unitization

of a Banach algebra possesses the strong property (B). This may not be easily seen even if

the algebra itself has the strong property (B)! That is why in Chapter 4, we introduce the

notion of bounded local units or briefly b.l.u. for a Banach algebra which roughly speaking

forces it to have bounded approximate identities consisting of elements that act as local

units on a dense subset (see Definition 4.1.1 and Remark 4.1.2). We show in Theorem

4.1.3 that existence of b.l.u. allows us to carry the strong property (B) from a Banach

algebra to its unitization. We also study the hereditary property of algebras having b.l.u.

We would like to point out that one advantage of investigating the hereditary properties

of both notions of b.l.u. and having the strong property (B) is that this process might

be easier than investigating the hereditary properties of hyperreflexivity of bounded n-

cocyles directly. This also provides us with more examples of bounded n-cocycle spaces

which are hyperreflexive.

One fundamental result of this thesis is presented in Chapter 5.2. We show that if A is

a Banach algebra for which its unitization, i.e., A] = A⊕ C, has the strong property (B)

and X a Banach A-bimodule such that Hn+1(A,X) is a Banach space, then Zn(A,X) is

hyperreflexive (Theorem 5.2.4).

Section 5.3 is devoted to present examples of Banach algebras with hyperreflexive

spaces of bounded n-cocycles. We first show that C∗-algebras and group algebras of

groups with open subgroups of polynomial growth and some of their ideals have both the

strong property (B) and b.l.u. Using the criterion we obtained in Theorem 5.2.4 (pointed

out in the preceding paragraph), we then show that Zn(A,X) is hyperreflexive, for all

n ∈ N, for various cases such as when

(i) A is a nuclear C∗-algebra and X a dual Banach A-bimodule,

(ii) A is a von Neumann algebra of types I, II∞ or III and X = A or X = B(H) ⊇ A for

a Hilbert space H,

(iii) A = I(H⊥) / L1(G) and X a dual Banach I(H⊥)-bimodule. Here G is a locally

compact amenable group with an open subgroup of polynomial growth, and H is a normal

closed subgroup of G.
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We also show that one could drop the amenability assumption in (iii) in some cases

(Theorem 5.3.3). Finally, we show that similar results hold for quotients and tensor

products of such algebras.

In Chapter 6, we introduce the notion of “a constant for the strong property (B)”.

We show that we can come with a constant for the strong property (B) for all Banach

algebras that we already showed to have this property. We also prove that although it

is not true that every Banach algebra has the strong property (B), one can construct

Banach algebras with the strong property (B) related to any arbitrary Banach algebra.

More precisely, for a Banach algebra A and n ≥ 2, we show that if we equip Mn(A),

the space of matrices with entries in A, with an appropriate Banach algebra norm, then

Mn(A) has the strong property (B) with a constant. This implies, in particular, that

every Banach algebra is isometrically embedded into a Banach algebra with the strong

property (B). We also prove that finite nest algebras on any Hilbert space and finite CSL

algebras on separable Hilbert spaces have the strong property (B) with a constant.

As mentioned before, our works in Chapters 3, 4, 5 shows that the strong property (B)

paves the way to solve the problem of hyperreflexivity of the bounded n-cocycle spaces for

various Banach algebras. In Chapter 7, we are interested to have further information on

the hyperreflexivity of such spaces. Roughly speaking, by “further information” we mean

to find a constant which is called the hyperreflexivity constant. This constant in some

sense, measures “the distance” of the comparable norms that appear in the hyperreflex-

ivity context. Our analysis shows that existence of a constant for the strong property (B)

enables us to deal with this problem. We use our results in Chapter 6 and 7 to find an

upper bound for the hyperreflexivity constant of the bounded n-cocycle spaces related to

Banach algebras discussed in the preceding chapters.
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Chapter 2

Preliminaries

The present chapter contains the background necessary for this thesis. We introduce

notations and tools which will be used in the next chapters. In Section 2.1, we review

the definition of Banach spaces, Banach algebras and Banach modules. Some properties

of locally compact groups and some related Banach algebras including group algebras is

provided in Section 2.2. We then define Hochschild cohomology groups, amenable Banach

algebras and amenable groups in Section 2.3. Some basic theorems on such groups and

Banach algebras is presented. In Section 2.4, we introduce certain operator algebras called

CSL and nest algebras. Some results on their Hochschild cohomology groups which will

be needed in Chapter 7 is provided.

2.1 Banach spaces, Banach algebras and Banach mod-

ules

Definition 2.1.1. (1) Let X be a complex vector space. A norm on X is a function

‖ · ‖ : X → R with the following properties: For all x, y ∈ X and α ∈ C.

(i) ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0.

(ii) ‖αx‖ = |α|‖x‖.

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

In this case, we call the pair (X, ‖ · ‖) a normed space.

(2) A sequence {xn} in the normed space (X, ‖ · ‖) is called a Cauchy sequence if for each
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ε > 0, there is N ∈ N such that for each m,n ≥ N, we have

‖xn − xm‖ < ε.

(3) A normed space (X, ‖ · ‖) is called a Banach space if each Cauchy sequence converges

in this space.

Remark 2.1.2. Let (X, ‖ · ‖) be a normed space and M a closed subspace of X. The

quotient space X
M

becomes a normed space with respect to the following norm known as

quotient norm:

‖x+M‖q = inf{‖x− y‖ : y ∈M}.

Let X and Y be two vector spaces. Let L(X, Y ) denotes the set of all linear maps

from X to Y . L(X, Y ) becomes a vector space with respect to the pointwise addition

and scalar multiplication. We let Ln(X, Y ) = L(X(n), Y ) denote the space of all n-linear

maps from X(n) = X × . . .×X︸ ︷︷ ︸
n times

into Y .

If X and Y are normed spaces, then for T ∈ L(n)(X, Y ) we define

‖T‖ = sup{‖T (x1, · · · , xn)‖ : ‖xi‖ ≤ 1, 1 ≤ i ≤ n}.

In this case, we define Bn(X, Y ) to be the subspace of all bounded n-linear maps in

Ln(X, Y ). That is

Bn(X, Y ) = {T ∈ Ln(x, Y ) : ‖T‖ <∞}.

We let B(X, Y ) = B1(X, Y ) and B(X) = B(X,X).

Theorem 2.1.3 (The open mapping theorem). Let X and Y be two Banach spaces. If

T : X → Y is a bounded surjective linear map, then there is a constant C > 0 such that

for each y ∈ Y , there exist x ∈ X with y = T (x) and ‖x‖ ≤ C‖T (x)‖.

Definition 2.1.4. It is proven in [7, Lemma VI.10] that the following defines a norm on

the tensor product X ⊗ Y :

‖u‖ = inf{
n∑
i=1

‖xi‖‖yi‖ : u =
n∑
i=1

xi ⊗ yi}.
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The completion of the normed space (X ⊗ Y, ‖ · ‖) is called the projective tensor product

of X and Y and is denoted by X⊗̂Y .

Remark 2.1.5. It is shown in [7, Proposition VI.12] that elements of X⊗̂Y are of the form

u =
∑∞

n=1 xn ⊗ yn, where
∑∞

n=1 ‖xn‖‖yn‖ <∞. The norm on X⊗̂Y is given by

‖u‖ = inf{
∞∑
n=1

‖xn‖‖yn‖ : u =
∞∑
n=1

xn ⊗ yn}.

Definition 2.1.6. (1) An algebra over C is a complex vector space A together with a map

A × A → A, called product or multiplication and written (a, b) → ab, which is bilinear,

i.e., it satisfies

a(b+ c) = ab+ ac, (a+ b)c = ac+ bc,

as well as

λ(ab) = (λa)b = a(λb) (a, b, c ∈ A and λ ∈ C).

(2) A Banach algebra is an algebra A over complex numbers together with a norm ‖ · ‖

such that the underlying normed space is a Banach space and the inequality

‖ab‖ ≤ ‖a‖‖b‖

holds for all a, b ∈ A.

Remark 2.1.7. (1) Let X be a Banach space. Then B(X) together with the operator

norm and composition as multiplication is a Banach algebra.

(2) Let X and Y be Banach algebras. Then X⊗̂Y together with the projective norm and

the multiplication

(x1 ⊗ y1)(x2 ⊗ y2) = x1x2 ⊗ y1y2

becomes a Banach algebra. (See [7, Propositions VI.17 and VI.18] for proof.)

(3) Let Y be a Banach algebra and X a closed ideal of Y . Then the quotient space

together with the quotient norm and the multiplication

(a+X)(b+X) = ab+X,

becomes a Banach algebra. (See [10, Theorem 4.2] for proof.)
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Definition 2.1.8. Let A be a Banach algebra.

(1) A unit for A is an element 1A ∈ A such that

1Aa = a1A = a (∀a ∈ A).

It is easy to check that if A has a unit, then its unit is unique.

(2) A left approximate identity for A is a net {ρi}i∈I ⊆ A such that for all a ∈ A, we have

lim
i∈I
‖ρia− a‖ = 0.

Right approximate identity is defined similarly. A net which is both a left and a right

approximate identity is called an approximate identity. Note that (left, right) approximate

identity for a Banach algebra might not be unique.

Definition 2.1.9. Let A be an algebra over C.

(1) An involution is a map A → A, denoted by a → a∗ such that for all a, b ∈ A and

λ ∈ C we have

(a+ b)∗ = a∗ + b∗, (λa)∗ = λa∗, (ab)∗ = b∗a∗, and (a∗)∗ = a.

(2) A Banach ∗-algebra is a Banach algebra together with an involution such that for

every a ∈ A we have

‖a∗‖ = ‖a‖.

(3) A Banach ∗-algebra is called a C∗-algebra if

‖a∗a‖ = ‖a‖2

holds for every a ∈ A.

Definition 2.1.10. (1) Let A be an algebra and E a vector space. We call E a left

A-module if there is a bilinear map A× E → E, denoted by (a, e)→ a · e such that

(ab) · e = a · (b · e) (a, b ∈ A e ∈ E).
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Similarly, we can define right A-module.

(2) E is an A-bimodule if it is both a left and a right A-module and

a · (e · b) = (a · e) · b (a, b ∈ A, e ∈ E).

(3) Let A be a Banach algebra and suppose that E is a left A-module which is a Banach

space as well. We say that E is a left Banach A-module if

‖a · e‖ ≤ ‖a‖‖e‖, (a ∈ A, e ∈ E).

Similarly, we can define right Banach A-bimodule.

(4) E is a Banach A-bimodule if it is an A-bimodule, a left Banach A-module and a right

Banach A-module.

Remark 2.1.11. Let A be a Banach algebra and E a Banach A-bimodule. Then E∗, the

dual space of E, becomes a Banach A-bimodule with the module action defined by

a · ϕ(e) = ϕ(e · a), ϕ · a(e) = ϕ(a · e) (a ∈ A, e ∈ E,ϕ ∈ E∗).

2.2 Locally compact groups and some related Banach

algebras

Definition 2.2.1. (1) A topological group is a group G together with a topology on the

set G such that the group multiplication and inversion

G×G→ G, G→ G

(x, y) 7→ xy, x 7→ x−1

are both continuous maps.

(2) A topological group is called a locally compact group if it is Hausdorff and locally

compact.
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Definition 2.2.2. Let G be a locally compact group, and let B be the σ-algebra of Borel

sets on G. Then

(1) A measure µ : A → [0,∞] on the measurable space (G,B) is called a Borel measure.

(2) A Borel measure µ is called locally finite if every point in G possesses a neighborhood

U with µ(U) <∞.

(3) A locally finite Borel measure µ on B is called outer Radon measure or briefly a Radon

measure if

(i) µ(A) = inf{µ(U) : A ⊆ U, U is open}, for every A ∈ B.

(ii) µ(A) = sup{µ(F ) : F ⊆ A, F is compact}, for every A ∈ B which is open or

µ(A) <∞.

(4) µ is called left invariant if µ(xA) = µ(A) holds for every A ∈ B and x ∈ G.

Theorem 2.2.3. Let G be a locally compact group. There is a non-zero, left invariant

Radon measure on G. It is uniquely determined up to positive multipliers. Every such a

measure is called a left Haar measure.

(See [17, Theorem 1.3.4]) for the proof.)

Definition 2.2.4. Let G be a locally compact group. Suppose that B is the Borel σ-

algebra on G and λ is a fixed left Haar measure of G.

(i) The group algebra of G which is denoted by L1(G) is defined as follows:

L1(G) = L1(G,B, λ) = {f : G→ C : f is λ-measurable and ‖f‖1 =

∫
G

|f(x)|dλx <∞}.

For simplicity, we use “dx” to denote “dλx” in the integration.

(ii) We also define the following Banach algebra related to G

L∞(G) = L∞(G,B, λ) = {f : G→ C : f is λ-measurable and ‖f‖∞ <∞}

where ‖f‖∞ = inf{N : λ{x : |f(x)| > N} = 0}.

Theorem 2.2.5. Let G be a locally compact group. Then L1(G) is a Banach algebra with

respect to ‖ · ‖1 and the multiplication ( known as the convolution) that is defined by

(f ∗ g)(x) =

∫
G

f(y)g(y−1x)dy (f, g ∈ L1(G), x ∈ G).
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(See [17, Theorem 1.6.2] for proof.)

Definition 2.2.6. Let G be a locally compact group, and let E be a closed subspace of

L∞(G) containing the constant function.

(1) A mean on E is a functional m ∈ E∗ such that m(1) = ‖m‖ = 1.

(2) G is called amenable if there is a left invariant mean on L∞(G) i.e., a mean such that

m(δg ∗ ϕ) = m(ϕ) (g ∈ G, ϕ ∈ L∞(G)).

Here δg is the Dirac measure at g and

(δg ∗ ϕ)(t) = ϕ(g−1t), locally almost everywhere.

2.3 Amenable Banach algebras and Hochschild coho-

mology

Definition 2.3.1. Let A be a Banach algebra, and let X be a Banach A-bimodule.

(1) An operator D ∈ L(A,X) is a derivation if for all a, b ∈ A, we have

D(ab) = aD(b) +D(a)b.

We let Z1(A,X) and Z1(A,X) to be the linear spaces of derivations and bounded deriva-

tions from A into X, respectively.

(2) For each x ∈ X, the operator adx ∈ B(A,X) defined by

adx(a) = a · x− x · a

is a bounded derivation which is called an inner derivation.

(3) A is called amenable if every bounded derivation from A into any dual A-bimodule is

an inner derivation.

Definition 2.3.2. Let A be a Banach algebra. A bounded net (mα)α in A⊗̂A is called a

bounded approximate diagonal for A if

a ·mα −mα.a→ 0 and a∆Amα → a (a ∈ A)

27



where ∆A : A⊗̂A→ A is the multiplication mapping defined by

∆A(a⊗ b) = ab.

Theorem 2.3.3. A Banach algebra A is amenable if and only if there is a bounded

approximate diagonal for A.

(See [48, Theorem 2.2.4] for proof).

Definition 2.3.4. Let A be a Banach algebra and X a Banach A-bimodule.

(1) For n ∈ N and T ∈ Ln(A,X), define

δnT : (a1, . . . , an+1) 7→ a1T (a2, . . . , an)

+
n∑
j=1

(−1)jT (a1, . . . , ajaj+1, . . . , an+1)

+ (−1)n+1T (a1, . . . , an)an+1.

It is clear that δn is a linear map from Ln(A,X) into Ln+1(A,X); these maps are the

connecting maps. Moreover, it can be shown that δn+1 ◦ δn = 0 for every n ∈ N. The

elements of ker δn are the n-cocycles; we denote this linear space with Zn(A,X).

(2) If we replace Ln(A,X) with Bn(A,X) in the above, we will have the ‘Banach’ version

of the connecting maps; we denote them with the same notation δn. In this case, δn

is a bounded linear map from Bn(A,X) into Bn+1(A,X); these maps are the bounded

connecting maps or n-coboundary operators. The elements of ker δn are the bounded n-

cocycles; we denote this linear space by Zn(A,X). It is easy to check that Z1(A,X) and

Z1(A,X) coincide with our previous definition of these notations.

(3) The sequence

{0} → X
δ0−→ B(A,X)

δ1−→ B2(A,X)
δ2−→ . . .

δn−1

−−→ Bn(A,X)
δn−→ Bn+1(A,X)

δn+1−−→ . . .

is called the Hochschild cochain complex. Here δ0 : X → B(A,X) is defined by,

δ0(x)(a) = a · x− x · a.
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Definition 2.3.5. Let A be a Banach algebra, and let X be a Banach A-bimodule. For

n ∈ N, let

Hn(A,X) =
kerδn

imδn−1
.

Hn(A,X) is called the nth Hochschild cohomology group of A with coefficients in X.

Remark 2.3.6. Let A be a Banach algebra, and let X be a Banach A-bimodule. It is

shown in [15, Section 2.8] that for n ∈ N, the Banach space Bn(A,X) turns into a Banach

A-bimodule by the actions defined through:

(a ? T )(a1, . . . , an) = aT (a1, . . . , an);

(T ? a)(a1, . . . , an) = T (aa1, . . . , an)

+
n∑
j=1

(−1)jT (a, a1, . . . , ajaj+1, . . . , an)

+ (−1)n+1T (a, a1, . . . , an−1)an.

In particular, when n = 1, B(A,X) becomes a Banach A-bimodule with respect to the

products

(a ? T )(b) = aT (b) , (T ? a)(b) = T (ab)− T (a)b.

Remark 2.3.7. Let Λn : Bn+1(A,X)→ Bn(A,B(A,X)) be the identification given by

(Λn(T )(a1, . . . , an))(an+1) = T (a1, . . . , an+1).

Then Λn is an A-bimodule isometric isomorphism. If we denote the connecting maps for

the complex Bn(A, (B(A,X), ?)) by ∆n, then it is shown in [15] that

Λn+1 ◦ δn+1 = ∆n ◦ Λn. (2.3.1)

The well-known Theorem of Johnson makes the connection between amenability of

groups and Banach algebras.

Theorem 2.3.8. (Johnson’s theorem) For a locally compact group G, the following

are equivalent:

(i) G is an amenable group.

(ii) L1(G) is an amenable Banach algebra.
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(See [48, Theorem 2.1.8] for proof.)

By definition, the amenability of a Banach algebra is equivalent to the fact that its

first Hochschild cohomology groups with coefficients in a dual Banach bimodule vanishes.

The following theorem shows that, it is actually the case for the Hochschild cohomology

groups of all orders.

Theorem 2.3.9. For a Banach algebra A the following are equivalent:

(i) A is amenable.

(ii) Hn(A,X∗) = {0} for each Banach A-bimodule X and for all n ∈ N.

(See [48, Theorem 2.4.7]).

2.4 CSL and nest algebras

CSL and nest algebras will be discussed in Chapter 6.

Definition 2.4.1. Let H be a Hilbert space. Let L = {Mi}i∈I be a family of closed

subspaces of H.

(i) L is called a subspace lattice or SL if it is closed under intersection and closed linear

span. A subspace lattice is said to be commutative if the corresponding orthogonal pro-

jections onto its subspaces commute. A commutative subspace lattice is briefly denoted

by CSL. The CSL algebra generated by a CSL L = {Mi}i∈I , is the subalgebra of B(H)

consisting of all bounded linear maps leaving each Mi invariant.

(ii) A CSL is called a nest if it is totally ordered under inclusion. A nest algebra is a CSL

algebra corresponding to a nest.

(iii) A finite CSL (respectively, nest) algebra is a CSL (respectively, nest) algebra whose

corresponding subspace lattice is finite.

Remark 2.4.2. Since every closed subspace of a Hilbert space can be identified with its

range projection, a CSL L = {Mi}i∈I can be thought as a family of projections L = {Pi}i∈I
on a Hilbert space H. Both identifications are used interchangeably. In this case, the
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corresponding CSL algebra is given by,

algL = {T ∈ B(H) : P⊥i TPi = 0, i ∈ I}.

The next theorem gives some information on some cohomology groups of nest algebras.

Theorem 2.4.3. Let N ⊆ B(H) be a nest algebra. Then:

(i) Hn(N,B(H)) = 0, for all n ≥ 1.

(ii) Hn(N,N) = 0, for all n ≥ 1.

Proof. Parts (i) and (ii) are proven in [13, Theorem 2.1] and [13, Theorem 2.3], respec-

tively.

There are some similar results on some cohomology groups of general CSL algebras.

For a CSL algebra A ⊆ B(H), we define E(A) to be the following subalgebra of B(C⊕H),

E(A) = {

 z u

0 a

 ∈ B(C⊕H) : z ∈ C, u ∈ H∗, a ∈ A}.

Theorem 2.4.4. Let L be a finite CSL and A = algL. Then for each n ∈ N,

Hn(E(A), B(C⊕H)) = 0,

and

Hn(E(A), E(A)) = 0.

(For a proof of this theorem, see [42, Lemma 5]).
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Chapter 3

Banach algebras having the strong prop-

erty (B)

We recall from [1, Definition 2.2] that a Banach algebra A has the property (B) if, for

any Banach space X, every continuous bilinear map ϕ : A× A → X that preserves zero

products, i.e., with the property that

a, b ∈ A, ab = 0 implies ϕ(a, b) = 0

is of the form of

ϕ(ab, c) = ϕ(a, bc) (a, b, c ∈ A).

Banach algebras with the property (B) were mainly defined, in order to unify the problem

of disjointness preserving linear maps on different classes of Banach algebras. If A and

B are Banach algebras, then a linear mapping T : A → B is said to be disjointness

preserving if for all a, b ∈ A with ab = 0, we have T (a)T (b) = 0. If T : A → B is a

bounded disjointness preserving linear map, then the bilinear map ϕ : A×A→ B defined

by

ϕ(a, b) = T (a)T (b)

is a bounded bilinear map that preserves zero products. Standard examples of bounded

disjointness preserving maps are weighted composition operators. Let X and Y be locally

compact Hausdorf spaces. Then the operator T : C0(X)→ C0(Y ) defined by

Tf = h · f ◦ φ
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is called a weighted composition operator where φ : Y → X is a homeomorphism and

h : Y → T is a continuous function.

It was shown in [1] that the property (B) is very useful in studying local homomorphisms

and local derivations. Moreover, in [52] the class of Banach algebras with the property

(B) plays an important role in studying the n-reflexivity of the bounded n-cocycles of

some classes of group algebras.

The notion of zero products preserving (bi-)linear maps was generalized in [2] to the notion

of approximately zero products preserving (bi-)linear maps. We will show later in chapter

5 that these latter maps play as important role in the problem of the hyperreflexivity of

the bounded n-cocycle spaces as maps preserving zero products play in that of reflexivity.

That is why we introduce the strong property (B) in this chapter.

3.1 General definition of the strong property (B)

In order to investigate the hyperreflexivity of the spaces of bounded n-cocycles, we first

need to generalized the concept of having the property (B).

Definition 3.1.1. We say that a Banach algebra A has the strong property (B) if for each

K > 0 there is a continuous function (LA,K =)LK : [0,∞)→ [0,∞) with LK(0) = 0 such

that for any Banach space X and every continuous bilinear map ϕ : A × A → X with

‖ϕ‖ ≤ K and each 0 ≤ α < K satisfying

ab = 0⇒ ‖ϕ(a, b)‖ ≤ α‖a‖‖b‖,

we would have

‖ϕ(ab, c)− ϕ(a, bc)‖ ≤ LK(α)‖a‖‖b‖‖c‖ (a, b, c ∈ A).

We call LK a function associated to A and K. It follows routinely from the fact that

LK(0) = 0 if ϕ : A× A→ X satisfies

ab = 0⇒ ϕ(a, b) = 0,
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then

ϕ(ab, c)− ϕ(a, bc) = 0 (a, b, c ∈ A).

Therefore, having the strong property (B) is in fact the generalization of having the

property (B).

In Definition 3.1.1, we presented the concept of the strong property (B) in its most

general form. Remark 3.1.2 and Lemma 3.1.3 below show that in order for a Banach

algebra to have the strong property (B), we need to handle much fewer bounded bilinear

maps.

Remark 3.1.2. In Definition 3.1.1, we need to only investigate the existence of the function

L1 (i.e. when K = 1) since for every K > 0, if we define LK : [0,∞) → [0,∞) by

LK(α) = KL1(α/K), then it is straightforward to check that LK satisfies the assumption

of Definition 3.1.1.

Lemma 3.1.3. Let A be a Banach algebra. Then A has the strong property (B) if and

only if for every continuous bilinear map ϕ : A×A→ C with ‖ϕ‖ ≤ 1 and each 0 ≤ α < 1

satisfying

ab = 0⇒ ‖ϕ(a, b)‖ ≤ α‖a‖‖b‖,

we would have

‖ϕ(ab, c)− ϕ(a, bc)‖ ≤ L1(α)‖a‖‖b‖‖c‖ (a, b, c ∈ A).

Proof. Let X be an arbitrary Banach space and ϕ : A×A→ X a linear map with ‖ϕ‖ ≤ 1

and 0 ≤ α < 1 with

ab = 0⇒ ‖ϕ(a, b)‖ ≤ α‖a‖‖b‖.

Let L be the function associated to C and 1 and fix a0, b0, c0 ∈ A. We show that

‖ϕ(a0b0, c0)− ϕ(a0, b0c0)‖ ≤ L(α)‖a0‖‖b0‖‖c0‖.

Using the Hahn-Banach theorem, we can find a linear map T : X → C, with ‖T‖ = 1 and

34



T (ϕ(a0b0, c0)− ϕ(a0, b0c0)) = ‖ϕ(a0b0, c0)− ϕ(a0, b0c0)‖. (3.1.1)

Now consider the bilinear map T ◦ϕ : A×A→ C. It is easy to see that ‖T ◦ϕ‖ ≤ 1 and

ab = 0⇒ ‖T ◦ ϕ(a, b)‖ ≤ α‖a‖‖b‖.

So by the assumption, for a0, b0, c0 ∈ A we have

|T ◦ ϕ(a0b0, c0)− T ◦ ϕ(a0, b0c0)| ≤ L(α)‖a0‖‖b0‖‖c0‖,

or by (3.1.1),

‖ϕ(a0b0, c0)− ϕ(a0, b0c0)‖ ≤ L(α)‖a0‖‖b0‖‖c0‖.

Since a0, b0, c0 ∈ A are arbitrary, the proof is complete.

We keep the general format of the definition of the strong property (B) since it is

usually more convenient.

Remark 3.1.4. In [2] without defining this property explicitly, it is proven that all group

algebras and C∗-algebras have the strong property (B). In Chapter 7 where we try to find a

constant for the strong property (B) (See Definition 6.1.1), we will present an alternative

way of showing that group algebras and C∗-algebras have the strong property (B). In

Chapter 6, we will also construct other examples of Banach algebras with this property.

This algebras are of the form of matrices over a given Banach algerba or certain operator

algebras.

3.2 Hereditary properties of Banach algebras with

the strong property (B)

One way to construct new examples of Banach algebras with the strong property (B) is

to investigate how this property relates to Banach algebras associated to a given Banach

algebra with the strong property (B). In this section we aim to look into such cases. In

35



other word, we investigate the hereditary properties of the strong property (B).

We start with the following proposition that deals with ideals of a Banach algebra

with the strong property (B).

Proposition 3.2.1. Let A be a Banach algebra having the strong property (B). Suppose

that I is a closed ideal of A such that it has a bounded approximate identity in A. Then

I has the strong property (B).

Proof. Let X be a Banach space and K > 0. Suppose that ϕ : I × I → X is a bounded

bilinear map with ‖ϕ‖ ≤ K and 0 ≤ α < K is such that

uv = 0⇒ ‖ϕ(u, v)‖ ≤ α‖u‖‖v‖.

Fix u, v ∈ I with ‖u‖, ‖v‖ ≤ 1. Define ψu,v : A× A→ X with

ψu,v(a, b) = ϕ(ua, bv).

Obviously ‖ψu,v‖ ≤ ‖ϕ‖ ≤ K. If ab = 0, then (ua)(bv) = 0. Hence

‖ψu,v(a, b)‖ = ‖ϕ(ua, bv)‖

≤ α‖ua‖‖bv‖

≤ α‖a‖‖b‖

Therefore, by Definition 3.1.1, there is a continuous function LK : [0,∞) → [0,∞) with

LK(0) = 0 such that

‖ψu,v(ab, c)− ψu,v(a, bc)‖ ≤ LK(α)‖a‖‖b‖‖c‖

or equivalently,

‖ϕ(uab, cv)− ϕ(ua, bcv)‖ ≤ LK(α)‖a‖‖b‖‖c‖. (3.2.1)

Now suppose that the bounded approximate identity of I in A has a bound M . Then

using (3.2.1), we have

‖ϕ(ub, v)− ϕ(u, bv)‖ ≤M2LK(α)‖b‖ (u, v ∈ I, b ∈ A).
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In particular, if u, v, w ∈ I are arbitrary, then

‖ϕ(uw, v)− ϕ(u,wv)‖ ≤M2LK(α)‖u‖‖v‖‖w‖

Hence I satisfies in the strong property (B) with LI,K = M2LK .

Proposition 3.2.2. Let A be a Banach algebra having the strong property (B) and suppose

that B is a Banach algebra and Φ : A→ B is a bounded surjective homomorphism. Then

B has the strong property (B). In particular, if I is a closed ideal of A, then A/I has the

strong property (B).

Proof. Let X be a Banach space and suppose that ϕ : B ×B → X is a bounded bilinear

map with the property that ‖ϕ‖ ≤ K, and let 0 ≤ α < K with

ab = 0⇒ ‖ϕ(a, b)‖ ≤ α‖a‖‖b‖.

We define ψ : A× A→ X with

ψ(a, b) = ϕ(Φ(a),Φ(b)).

It is easy to check that ‖ψ‖ ≤ ‖Φ‖2‖ϕ‖ ≤ ‖Φ‖2K. Suppose that ab = 0. Then

‖ψ(a, b)‖ = ‖ϕ(Φ(a),Φ(b))‖

≤ α‖Φ(a)‖‖Φ(b)‖

≤ α‖Φ‖2‖a‖‖b‖.

This implies that

‖ψ(ab, c)− ψ(a, bc)‖ ≤ LK′(α)‖a‖‖b‖‖c‖ ∀a, b, c ∈ A, (3.2.2)

where LK′ is the function associated to A and K ′ = ‖Φ‖2K. Using the open mapping

theorem, there is C > 0 such that for each b1, b2, b3 ∈ B there are a1, a2, a3 ∈ A with

b1 = Φ(a1), ‖a1‖ < C‖b1‖.

b2 = Φ(a2), ‖a2‖ < C‖b2‖.
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b3 = Φ(a3), ‖a3‖ < C‖b3‖.

Now by (3.2.2), we can write

‖ϕ(b1b2, b3)− ϕ(b1, b2b3)‖ ≤ LK′(α)‖a1‖‖a2‖‖a3‖

≤ C3LK′(α)‖b1‖‖b2‖‖b3‖.

Now it suffices to define LB,K : [0,∞)→ [0,∞) with LB,K = C3LK′ .

Although it is not trivial that the strong property (B) is flexible with respect to the

equivalent norms, one implication of Proposition 3.2.2 is that the strong property (B) is

independent of the complete norm of the Banach algebra.

Corollary 3.2.3. Let A be a Banach algebra having the strong property (B) with respect

to the norm ‖ · ‖. Then A has the strong property (B) with respect to all norms which are

equivalent to ‖ · ‖.

A possible way to construct a Banach algebra related to an infinite family of Banach

algebras is to define their l1-sum. Let I be an index set. If (Ai, ‖ · ‖i)i∈I is a family of

Banach algebras, then we define

l1(I, Ai) = {(ai)i∈I : ‖(ai)i∈I‖1 :=
∑
i∈I

‖ai‖i <∞}.

l1(I, Ai) becomes a Banach algebra with “pointwise” adition and multiplication, and scalar

multiplication defined by λ(ai) = (λai).

Proposition 3.2.4. Let (Ai)i∈N be a family of Banach algebras having the strong property

(B). Let K > 0 and, for each i ∈ N, let Li be a function associated to Ai and K in

Definition (3.1.1). Suppose that there is a continous function L : [0,∞) → [0,∞) with

L(0) = 0 such that

sup
i∈N

Li(α) ≤ L(α) (0 ≤ α < K).

Then A = l1(N, Ai) has the strong property (B). In particular, if {Li, i ∈ N} is a finite

set, then A has the strong property (B).
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Proof. By Remark 3.1.2,it suffices to find a function associated to A and K = 1 satisfying

in Definition 3.1.1. Define the continuous functions LA : [0,∞)→ [0,∞) with

LA(α) = α + L(α) (α ≥ 0),

For each i ∈ N, let li be the natural embedding of Ai into A which is an isometry. Let AF

denote the family of all elements a = (ai)i∈N which are zero except for a finite number of

elements of N. Note that AF is dense in A and for each a ∈ AF , there is n ∈ N such that

a =
∑n

i=1 li(a). Suppose that X is a Banach space, ϕ : A×A→ X is a bounded bilinear

map with ‖ϕ‖ ≤ 1, and 0 ≤ α < 1 is such that

ab = 0⇒ ‖ϕ(a, b)‖ ≤ α‖a‖‖b‖.

For each i ∈ I, let ϕi : Ai × Ai → X be the bounded linear map defined by

ϕi(ai, bi) = ϕ(li(ai), li(bi)).

Note that ‖ϕi‖ ≤ ‖ϕ‖ ≤ 1. If aibi = 0, obviously we have

‖ϕi(ai, bi)‖ ≤ α‖ai‖‖bi‖.

By the hypothesis, this implies that

‖ϕi(aibi, ci)− ϕi(ai, bici)‖ ≤ Li(α)‖ai‖‖bi‖‖ci‖.

Now let a, b, c ∈ AF . Then

‖ϕ(ab, c)− ϕ(a, bc)‖ = ‖
n∑
i=1

n∑
j=1

ϕ(li(aibi), lj(cj))− ϕ(li(ai), lj(bjcj))‖

≤
n∑
i=1

n∑
j=1

‖ϕ(li(aibi), lj(cj))− ϕ(li(ai), lj(bjcj))‖

≤ LA(α)(
n∑
i=1

‖ai‖)(
n∑
i=1

‖bi‖)(
n∑
i=1

‖ci‖) (∗)

= LA(α)‖a‖‖b‖‖c‖,

where the inequality (∗) follows from the following argument:

If i = j, we have
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‖ϕ(li(aibi), li(ci))− ϕ(li(ai), li(bici))‖ ≤ Li(α)‖ai‖‖bi‖‖ci‖

≤ LA(α)‖ai‖‖bi‖‖ci‖.

If i 6= j, then

li(aibi)lj(cj) = li(ai)lj(bjcj) = 0.

Therefore

‖ϕ(li(aibi), lj(cj))− ϕ(li(ai), lj(bjcj))‖ ≤ α‖ai‖‖bi‖‖cj‖+ α‖ai‖‖bj‖‖cj‖

≤ LA(α)(‖ai‖‖bi‖‖cj‖+ ‖ai‖‖bj‖‖cj‖)

Hence

n∑
i=1

n∑
j=1

‖ϕ(li(aibi), lj(cj))− ϕ(li(ai), lj(bjcj))‖ ≤
n∑
i=1

n∑
j 6=i

[LA(α)(‖ai‖‖bi‖‖cj‖+ ‖ai‖‖bj‖‖cj‖)

+ LA(α)‖ai‖‖bi‖‖ci‖]

≤ LA(α)(
n∑
i=1

‖ai‖)(
n∑
i=1

‖bi‖)(
n∑
i=1

‖ci‖)

= LA,1(α)‖a‖‖b‖‖c‖.

Since AF is dense in A and ϕ is continuous, We have

‖ϕ(ab, c)− ϕ(a, bc)‖ ≤ LA,1(α)‖a‖‖b‖‖c‖ (∀a, b, c ∈ A).

Hence it follows again from Remark 3.1.2 that A has the strong property (B).

A standard and useful way to relate two arbitrary Banach algebras is to consider their

(projective) tensor product. The next theorem shows that performing the projective

tensor product, allows us to obtain Banach algebras with the strong property (B) from

the known ones.

Proposition 3.2.5. Let A and B be two Banach algebras having the strong property (B).

Then the projective tensor product A⊗̂B has the strong property (B).
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Proof. Let X be a Banach space and K > 0. Suppose that ϕ : (A⊗̂B)× (A⊗̂B)→ X is

a continuous bilinear map with ‖ϕ‖ ≤ K and 0 ≤ α < K satisfying

xy = 0⇒ ‖ϕ(x, y)‖ ≤ α‖x‖‖y‖.

Fix u, v ∈ B with ‖u‖, ‖v‖ ≤ 1 and define ϕu,v : A× A→ X with

ϕu,v(a, b) = ϕ(a⊗ u, b⊗ v).

It is easy to check that ‖ϕu,v‖ ≤ ‖ϕ‖ ≤ K. Moreover if ab = 0, then

‖ϕu,v(a, b)‖ ≤ α‖a‖‖b‖.

Hence, by the hypothesis, we get

‖ϕu,v(ab, c)− ϕu,v(a, bc)‖ ≤ LA,K(α)‖a‖‖b‖‖c‖ (∀a, b, c ∈ A).

This implies that for all u, v ∈ B,

‖ϕ(ab⊗ u, c⊗ v)− ϕ(a⊗ u, bc⊗ v)‖ ≤ LA,K(α)‖a‖‖b‖‖c‖‖u‖‖v‖ (∀a, b, c ∈ A, u, v ∈ B).

(3.2.3)

Similarly we can show that

‖ϕ(a⊗ uv, b⊗ w)− ϕ(a⊗ u, b⊗ vw)‖ ≤ LB,K(α)‖a‖‖b‖‖u‖‖v‖‖w‖ (∀a, b ∈ A, u, v, w ∈ B).

(3.2.4)

Using inequalities (3.2.3) and (3.2.4) we can write,

‖ϕ((a⊗ u)(b⊗ v), c⊗ w)− ϕ((a⊗ u), (b⊗ v)(c⊗ w))‖ = ‖ϕ(ab⊗ uv, c⊗ w)− ϕ(a⊗ uv, bc⊗ w)

+ ϕ(a⊗ uv, bc⊗ w)− ϕ(a⊗ u, bc⊗ vw)‖

≤ ‖ϕ(ab⊗ uv, c⊗ w)− ϕ(a⊗ uv, bc⊗ w)‖

+ ‖ϕ(a⊗ uv), bc⊗ w)− ϕ(a⊗ u, bc⊗ vw‖

≤ (LA,K(α) + LB,K(α))‖a‖‖b‖‖c‖‖u‖‖v‖‖w‖

Now let x, y, z ∈ A⊗B and consider the following representations

x =

n1∑
i=1

ai ⊗ ui, y =

n2∑
j=1

bj ⊗ vj, z =

n3∑
k=1

ck ⊗ wk.
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Then

‖ϕ(xy, z)− ϕ(x, yz)‖ = ‖
n1∑
i=1

n2∑
j=1

n3∑
k=1

(ϕ((ai ⊗ ui)(bj ⊗ vj), ck ⊗ wk)− ϕ(ai ⊗ ui, (bj ⊗ vj)(ck ⊗ wk)))‖

≤ (LA,K(α) + LB,K(α))

n1∑
i=1

n2∑
j=1

n3∑
k=1

‖ai‖‖ui‖‖bj‖‖vj‖‖ck‖‖wk‖

= (LA,K(α) + LB,K(α))(

n1∑
i=1

‖ai‖‖ui‖)(
n2∑
j=1

‖bj‖‖vj‖)(
n3∑
k=1

‖ck‖‖wk‖)

Since this is true for all representations of x, y, z, we can deduce that

‖ϕ(xy, z)− ϕ(x, yz)‖ ≤ (LA,K(α) + LB,K(α))‖x‖‖y‖‖z‖ (∀x, y, z ∈ A⊗B).

Finally since ϕ is continuous and A⊗B = A⊗̂B, we get

‖ϕ(xy, z)− ϕ(x, yz)‖ ≤ (LA,K(α) + LB,K(α))‖x‖‖y‖‖z‖ (∀x, y, z ∈ A⊗̂B).

The proof is complete if we define LA⊗̂B,K = LA,K + LB,K .

3.3 An example of Banach algebras without the strong

property (B)

When dealing with a new definition or property, a natural question is that whether there is

an example that does not satisfy in the assumptions of the definition. The strong property

(B) is a special property in the sense that, one possibly expects that there should exist

many Banach algebras without the strong property (B). Although this might be true, it is

not easy to find such a counterexample. However, in this section we combine some known

results to give an example of a Banach algebra without the (strong) property (B).

Definition 3.3.1. Let D be the open unit disk on the complex plane. The disk algebra

is defined with,

A(D) = {f ∈ C(D) : f is holomorphic on D}.

Hence a function f lies in A(D) if it is continuous on the closed unit disk and holomorphic

on the open unit disk.
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We will use the next theorems to prove that A(D) does not have the (strong) prop-

erty (B). The following result on the reflexivity of bounded derivations is proven in [52,

Theorem 2.5].

Theorem 3.3.2. Let A be a Banach algebra with local units having the property (B).

Then for any Banach A-bimodule X, Z1(A,X) is reflexive.

The next Theorem that provides an example of a non-reflexive space of bounded

derivations is proven in [54, Theorem 3.1].

Theorem 3.3.3. Let Ω be an open connected subset of the plane, and let A be a Banach

algebra of analytic functions on Ω. Then there is a bounded local derivation from A into

A∗ which is not a derivation. Moreover, Z1(A,A∗) is not reflexive.

Note that A(D) is an example of a Banach algebra of analytic functions.

Remark 3.3.4. A(D) is a unital Banach algebra. So it trivially has local units. Hence if it

also has the property (B), then according to Theorem 3.3.2, Z1(A,A∗) has to be reflexive

which contradicts Theorem 3.3.3. Consequently, A(D) does not have the property (B).

So it does not have the strong property (B) either.

We proved in Section 3.2 that various Banach algebras related to a given Banach alge-

bra with the strong property (B) inherit this property. In Chapter 6, we will use Remark

3.3.4 to prove something in the other way around. Actually, we show that subalgebras of

a Banach algebra with the strong property (B) might not have the same property.
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Chapter 4

Banach algebras with bounded local units

A Banach algebra A is said to be unital if there exist 1A ∈ A such that

1Aa = a1A = a, ∀a ∈ A.

Existence of a unit for a Banach algebra is an extra assumption and it might not exist.

However, in many cases, a bounded approximate identity works as effectively as a unit.

There are also far more Banach algebras with bounded approximate identities rather than

those with a unit.

Among the Banach algebras that fit in our framework with regard to the problem

of hyperreflexivity, unital Banach algebras are possibly the best. But we do not want

to confine ourselves only to this class of Banach algebras. However we can not simply

replace units with bounded approximate identities in our direction yet. That is why we

define the notion of bounded local units which is a concept between a unit and a bounded

approximate identity. In fact, we explain below, in Remark 4.1.2, the existence of a unit

implies existence of bounded local units and existence of bounded local units implies

existence of bounded approximate identity. We present examples to show that neither of

the converse cases hold true.

4.1 General definition of bounded local units

We recall that the unitization of A is A] := A⊕ C with multiplication

(a, λ)(b, µ) = (ab+ aµ+ bλ, λµ) (a, b ∈ A, λ, µ ∈ C),
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and norm

‖(a, λ)‖ = ‖a‖+ |λ| (a ∈ A, λ ∈ C).

Thus A] is a unital Banach algebra with unit (0, 1) which is denoted by 1 if there is no

case of ambiguity. Also A is a closed two-sided ideal of A] with the codimension 1. We

will show in Theorem 5.2.4 that in order to prove the hyperreflexivity of the bounded

n-cocycle spaces related to a Banach algebra A, we need the unitization of A to have the

strong property (B). On the other hand, it follows from Proposition 3.2.1 that if A] has

the strong property (B), then so does A. Hence the natural question is that whether the

converse is true i.e., if A has the strong property (B), can we deduce that A] has the same

property ? In this section, even though we can not answer this question in general, we

present sufficient conditions on A for which this phenomenon occurs. As we will see, our

algebra needs to have sufficiently many local units which are uniformly bounded.

Definition 4.1.1. Let A be a Banach algebra. We say that A has bounded local units or

in brief b.l.u if there are dense subsets Al and Ar of A and M > 0 such that for every

a ∈ Al (resp. b ∈ Ar) there is c ∈ A (resp. d ∈ A) with ‖c‖ ≤ M (resp. ‖d‖ ≤ M)

satisfying

ca = a (bd = b).

Remark 4.1.2. The concept of bounded local units is something strictly between the notion

of a unit and a bounded approximate identity, as we explain below:

(i) Definition 4.1.1 clearly shows that a unital Banach algebra has b.l.u. On the other

hand, C0(R) is an example of a Banach algebra which has b.l.u. but it is not unital.

Note that C0(R) = Cc(R). Urysohn’s Lemma shows that elements of Cc(R) have local

units with bound 1. Hence C0(R) has b.l.u. Note that C0(R) is not unital since R is not

compact.

(ii) The terminology bounded local units has been inspired by the concept of bounded

approximate units. We recall that a Banach algebra A has bounded approximate units or

in brief b.a.u. if there is a bounded subset U of A such that for every ε > 0 and a ∈ A,

there is e ∈ A such that ‖ae − a‖ + ‖ea − a‖ < ε. It is clear from Definition 4.1.1 that
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if A has b.l.u., then it has b.a.u. (simply put e = c + d − dc to get ea = a and be = b).

Moreover, it is proven in [15, Corollary 2.9.15] that a Banach algebra has b.a.u if and only

if it has a bounded approximate identity. Consequently, the existence of b.l.u. implies

existence of bounded approximate identity. However the converse may not be true! One

can construct radical Banach algebras with b.a.u. (see [49, Section 4] or [45]). It is shown

in [15, Corollary 1.5.3] that such algebras can never have any local units.

Hence we are looking for Banach algebras that have bounded approximate units which

also act as local units for some dense subsets.

The next theorem constructs a bridge and makes a connection between a Banach

algebra and its unitization when we are concerned about having the strong property (B).

It demonstrates that the existence of a b.l.u. is of great importance to make such a

connection.

Theorem 4.1.3. Let A be a Banach algebra with b.l.u. and having the strong property

(B). Then A], the unitization of A, has the strong property (B).

Proof. Let X be a Banach space and K > 0. Suppose that ϕ : A]×A] → X is a bounded

bilinear map with ‖ϕ‖ ≤ K, and let 0 ≤ α < K satisfing

a, b ∈ A], ab = 0⇒ ‖ϕ(a, b)‖ ≤ α‖a‖‖b‖. (4.1.1)

In particular, this holds for each a, b ∈ A with ab = 0. Hence, by hypothesis,

‖ϕ(ab, c)− ϕ(a, bc)‖ ≤ LA,K(α)‖a‖‖b‖‖c‖ (∀a, b, c ∈ A). (4.1.2)

Suppose that a ∈ A], c ∈ A, b ∈ Al (see Definition 4.1.1) and let e ∈ A with ‖e‖ ≤M be

such that eb = b. So

a(e− 1)bc = 0.

Therefore, by (4.1.1), we can write

‖ϕ(ae, bc)− ϕ(a, bc)‖ = ‖ϕ(a(e− 1), bc)‖

≤ α‖ae− a‖‖bc‖

≤ α(M + 1)‖a‖‖b‖‖c‖.
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Now if we define L′ : [0,∞)→ [0,∞) with

L′(α) = MLA,K(α) + (M + 1)α,

then, by applying (4.1.2), we get

‖ϕ(ab, c)− ϕ(a, bc)‖ = ‖ϕ(aeb, c)− ϕ(ae, bc) + ϕ(ae, bc)− ϕ(a, bc)‖

≤ ‖ϕ(aeb, c)− ϕ(ae, bc)‖+ ‖ϕ(ae, bc)− ϕ(a, bc)‖

≤ LA,K(α)‖ae‖‖b‖‖c‖+ α(M + 1)‖a‖‖b‖‖c‖

≤ L′(α)‖a‖‖b‖‖c‖

Since ϕ is continuous and Al = A, we conclude that

‖ϕ(ab, c)− ϕ(a, bc)‖ ≤ L′(α)‖a‖‖b‖‖c‖ (∀a ∈ A],∀b, c ∈ A). (4.1.3)

Now suppose that a, c ∈ A], b ∈ Ar (see Definition 4.1.1) and let e ∈ A with ‖e‖ ≤M be

such that be = b. Then

ab(1− e)c = 0.

Define the continuous function LA],K : [0,∞)→ [0,∞) by

LA],K(α) = ML′(α) + α(M + 1).

Using (4.1.3) and (4.1.1), we can write

‖ϕ(a, bc)− ϕ(ab, c)‖ = ‖ϕ(a, bec)− ϕ(ab, ec) + ϕ(ab, ec− c)‖

≤ ‖ϕ(a, bec)− ϕ(ab, ec)‖+ ‖ϕ(ab, ec− c)‖

≤ L′(α)‖a‖‖b‖‖ec‖+ α‖a‖‖b‖‖ec− c‖

≤ LA],K(α)‖a‖‖b‖‖c‖.

Using the continuity of ϕ and the fact that Ar is dense in A, we deduce that

‖ϕ(ab, c)− ϕ(a, bc)‖ ≤ LA],K(α)‖a‖‖b‖‖c‖ (∀a, c ∈ A],∀b ∈ A). (4.1.4)
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Finally suppose that a, c ∈ A], b ∈ A and λ ∈ C. Then

‖ϕ(a(b+ λ), c)− ϕ(a, (b+ λ)c)‖ = ‖ϕ(ab, c)− ϕ(a, bc)‖

≤ LA],K(α)‖a‖‖b‖‖c‖

≤ LA],K(α)‖a‖‖b+ λ‖‖c‖,

where the first inequality follows from (4.1.4). This completes the proof.

We explained in Remark 4.1.2 that a Banach algebra A has b.a.u. if and only if it has

a bounded approximate identity. Hence if A has bounded local units, then it must have

a bounded approximate identity. We finish this section with the following proposition

which shows when the converse holds. This is practical because it shows the connection

between having bounded local units and bounded approximate identities.

Proposition 4.1.4. Let A be a Banach algebra. Then A has b.l.u. if and only if it has a

bounded approximate identity and dense subsets Al and Ar of A such that for every a ∈ Al
(resp. b ∈ Ar) there is c ∈ A (resp. d ∈ A) satisfying ca = a and bd = b.

Proof. “ =⇒ ” Clear.

“⇐= ” Let a ∈ Al and c ∈ A such that ca = a. Define

Annl(a) = {x ∈ A : xa = 0}.

Clearly Annl(a) is a closed left ideal of A and for every x ∈ A,

xc+ Annl(a) = x+ Annl(a).

Now let {ei} to be an approximate identity of A bounded by a constant M . Then for

each i,

eic+ Annl(a) = ei + Annl(a),

and so,

‖c+ Annl(a)‖ = lim
i→∞
‖eic+ Annl(a)‖ = lim

i→∞
‖ei + Annl(a)‖ ≤M.
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Therefore there is x ∈ Annl(a) such that ‖c+ x‖ < M + 1. Since (c+ x)a = ca+ xa = a,

we conclude that the elements of Al can have local units which are uniformly bounded

by M + 1. Similarly, we can show this holds for Ar. Hence, by Definition 4.1.1, A has

bounded local units.

4.2 Examples of Banach algebras with bounded local

units

In this section we provide examples of possibly non-unital Banach algebras which have

b.l.u. Our examples contain all C∗-algebras and large classes of group algebras.

Proposition 4.2.1. Suppose that A is a C∗-algebra. Then A has b.l.u.

Proof. It is clear that commutative C∗-algebras have b.l.u. (use either Proposition 4.1.4

or a direct construction using Urysohn’s lemma). Now suppose that A is a ∗-subalgebra

of B(H) for some Hilbert space H. For every a ∈ A, we can write the polar decomposition

a = U |a|, where U ∈ B(H) is a partial isometry and |a| is the positive part of a. Since

C∗(|a|), the commutative C∗-algebra generated by |a|, lies in A, a can be approximated

by elements in A having right local units in C∗(|a|) ⊆ A. Similarly we can show that

A has a dense subset whose elements have left local units. Therefore A has b.l.u. by

Proposition 4.1.4.

Proposition 4.2.2. Let G be a locally compact group with an open subgroup of polynomial

growth. Then L1(G) has b.l.u.

Proof. It is shown in [52, Lemma 3.1] that if G is a locally compact group with an open

subgroup of polynomial growth, then L1(G) has bounded approximate identities {ϕi}i∈I
and {ψi}i∈I such that for each i ∈ I,

ϕi ∗ ψi = ψi ∗ ϕi = ϕi.
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Hence if we define

L1(G)l = {ϕi ∗ f : f ∈ L1(G), i ∈ I}

and

L1(G)r = {f ∗ ϕi : f ∈ L1(G), i ∈ I},

then L1(G)l and L1(G)r satisfies the assumption of Definition 4.1.1. Hence L1(G) has

b.l.u.

4.3 Hereditary properties of Banach algebras with

bounded local units

In this section, we investigate the hereditary property of Banach algebras with b.l.u. This

will be useful due to Theorem 4.1.3 and Theorem 5.2.4.

Proposition 4.3.1. Let A be a Banach algebra with b.l.u. Suppose that B is a Banach

algebra and Φ : A→ B a continuous algebraic homomorphism with dense range. Then B

has b.l.u. In particular, if I is a closed ideal of A, then A/I has a b.l.u.

Proof. Let Al (resp. Ar) be the set of all elements in A with left (resp. right) local unit

as in Definition 4.1.1. Let M > 0 be a bound for all local units. Define Bl = Φ(Al) and

Br = Φ(Ar). Since Φ is continuous and Al and Ar are dense in A, we have

B = Φ(Al) = Bl, B = Φ(Ar) = Br.

Let b ∈ Bl, and let a ∈ Al be such that b = Φ(a). By the hypothesis, there is e ∈ A with

ea = a and ‖e‖ ≤M . Then

b = Φ(ea) = Φ(e)b and ‖Φ(e)‖ ≤M‖Φ‖.

A similar argument can be applied to Br so that B has b.l.u.

Proposition 4.3.2. Let A and B be Banach algebras with b.l.u. Then A⊗̂B has b.l.u.

50



Proof. Let Ar (resp. Br) be the set of all elements in A (resp. B) with right local units

and those local units are bounded by M and N , respectively. Define (A⊗̂B)r to be

(A⊗̂B)r := {u(a⊗ b) : u ∈ A⊗̂B, a ∈ Ar, b ∈ Br}.

We show that (A⊗̂B)r satisfies the assumption of Definition 4.1.1. For every u ∈ A⊗̂B,

a ∈ Ar and b ∈ Br, there are c ∈ A and e ∈ B with ‖c‖ ≤M and ‖e‖ ≤ N such that

ac = c and be = b.

So

u(a⊗ b)(c⊗ e) = u(a⊗ b).

Hence it remains to show that (A⊗̂B)r is dense in A⊗̂B. Let {ai} and {bi} be bounded

approximate identities for A and B, respectively. Since Ar (resp. Br) is dense in A (resp.

B), we can assume that {ai} ⊂ Ar and {bj} ⊂ Br. Hence for every u ∈ A⊗̂B,

u = lim
(i,j)→∞

u(ai ⊗ bj) ∈ ( ˆA⊗B)r.

Similarly, we can show that (A⊗̂B)l defined by

(A⊗̂B)l := {(a⊗ b)u : u ∈ A⊗B, a ∈ Al, b ∈ Bl}.

satisfies the assumption of Definition 4.1.1. Hence A⊗̂B has b.l.u.

Let Ω be a locally compact Hausdorff space and A a Banach algebra. We let C0(Ω, A)

denote the space of all continuous functions f : Ω → A vanishing at infinity. C0(Ω, A)

together with the canonical sup-norm and pointwise operations becomes a Banach algebra.

Proposition 4.3.3. Let Ω be a locally compact Hausdorff space and A a Banach algebra

with b.l.u. Then C0(Ω, A) has a b.l.u.

Proof. We know that

C0(Ω)⊗̌A ∼= C0(Ω, A)

where ⊗̌ stands for the injective tensor product. Let i : C0(Ω)⊗̂A → C0(Ω)⊗̌A be the

canonical map. i is a homomorphism with dense range. By Proposition 4.2.1, C0(Ω) has
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b.l.u. Hence Proposition 4.3.2 shows that C0(Ω)⊗̂A has a b.l.u. The result now follows

from Proposition 4.3.1.
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Chapter 5

Hyperreflexivity of the bounded n-cocycle

spaces of Banach algebras

In the present chapter, we first generalize the notion of hyperreflexivity to the sub-

spaces of bounded n-linear maps. Then we show that having the strong property (B) and

bounded local units can be fundamental in handling the problem of the hyperreflexivity

of the bounded n-cocycle spaces. We are inspired by the idea used in [52], where it is

shown that having the property (B) and local units can conveniently solve the problem of

the reflexivity of the bounded n-cocycle spaces. We use our results from Chapters 3 and 4

to give examples of Banach algebras whose bounded n-cocycle spaces are hyperreflexive.

Further results will be provided in Chapter 7.

5.1 Generalizing the notion of hyperreflexivity

As it was mentioned before, the notion of hyperreflexivity is defined for the linear sub-

spaces of B(X, Y ). We extend this notion to the linear subspaces of Bn(X, Y ). We do

this in a natural way, as follows.

Definition 5.1.1. Let X and Y be Banach spaces, and let S be a closed subspace of

Bn(X, Y ). For every T ∈ Bn(X, Y ), we define

dist(T,S) = inf
S∈S
‖T − S‖

and

distr(T,S) = sup
||xi||≤1

inf
S∈S
‖T (x1, . . . , xn)− S(x1, . . . , xn)‖.
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It is clear that for all T ∈ Bn(X, Y ),

distr(T,S) ≤ dist(T,S).

We define S to be (n-)reflexive if for every T ∈ Bn(X, Y ), distr(T,S) = 0 implies that

dist(T,S) = 0. We say that S is hyperreflexive if there exist some C > 0 such that for

all T ∈ Bn(X, Y ),

dist(T,S) ≤ Cdistr(T,S).

Remark 5.1.2. In [52], the concept of reflexivity for linear subspace of n-linear maps was

introduced. It is straightforward to verify that distr defines a seminorm on the quotient

space Bn(X, Y )/S given by

‖T + S‖r = distr(T,S).

Now it follows easily from the definition that S is reflexive if and only if ‖·‖r is a norm on

Bn(X, Y )/S. On the other hand, S is hyperreflexive if and only if ‖ · ‖r is equivalent to

the dist norm on Bn(X, Y )/S which is nothing but the quotient norm on Bn(X, Y )/S.

5.2 hyperreflexivity of bounded n-cocycle spaces

In this section, we show how one can apply having the strong property (B) to deduce

that certain spaces of bounded n-cocycles are hyperreflexive. The first such relation is

presented in Theorem 5.2.2. But first we need the following proposition.

Proposition 5.2.1. Let A be a unital Banach algebra having the strong property (B).

Suppose that K > 0. Then:

(i) There is a continuous function MK : [0,∞) → [0,∞) with MK(0) = 0 such that for

every right Banach A-module X and a bounded operator D : A → X with ‖D‖ ≤ K and

each 0 ≤ α < K satisfying

ab = 0⇒ ‖D(a)b‖ ≤ α‖b‖‖a‖
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we have

‖D(ab)c−D(a)bc‖ ≤MK(α)‖a‖‖b‖‖c‖ (∀a, b, c ∈ A).

(ii) There is a continuous function NK : [0,∞) → [0,∞) with NK(0) = 0 such that for

every Banach A-bimodule X and a bounded operator D : A→ X with ‖D‖ ≤ K and each

0 ≤ β < K satisfying

ab = bc = 0⇒ ‖aD(b)c‖ ≤ β‖a‖‖b‖‖c‖

we have

‖d[D(acb)− aD(cb)−D(ac)b+ aD(c)b]e‖ ≤ NK(β)‖a‖‖b‖‖c‖‖d‖‖e‖ (∀a, b, c, d, e ∈ A).

Proof. (i) We define ϕ : A×A→ X with ϕ(a, b) = D(a)b. Note that ||ϕ|| ≤ K. Moreover,

if ab = 0, then

||ϕ(a, b)|| = ||D(a)b|| ≤ α‖a‖‖b‖.

Since A has the strong property (B), there is a continuous function LK : [0,∞)→ [0,∞)

with LK(0) = 0 such that

‖ϕ(ab, c)− ϕ(a, bc)‖ ≤ LK(α)‖a‖‖b‖‖c‖.

or equivalently,

‖D(ab)c−D(a)bc‖ ≤ LK(α)‖a‖‖b‖‖c‖.

So let MK = LK .

(ii) Fix a2, b2 ∈ A with a2b2 = 0 and ‖a2‖ = ‖b2‖ = 1. Define ϕ : A× A→ X with

ϕ(a, b) = aD(ba2)b2.

Note that ‖ϕ‖ ≤ K and if ab = 0, then a(ba2) = (ba2)b2 = 0. Hence

‖ϕ(a, b)‖ = ‖aD(ba2)b2‖ ≤ β‖a‖‖ba2‖‖b2‖ ≤ β‖a‖‖b‖.

Since A has the strong property (B), there is a continuous function LK : [0,∞)→ [0,∞)

with LK(0) = 0 such that

‖ϕ(ab, c)− ϕ(a, bc)‖ ≤ LK(β)‖a‖‖b‖‖c‖.
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Hence

‖abD(ca2)b2 − aD(bca2)b2‖ ≤ LK(β)‖a‖‖b‖‖c‖. (5.2.1)

Now fix a, c, d ∈ A with ‖a‖ = ‖c‖ = ‖d‖ = 1. Define ψ : A× A→ X with

ψ(f, b) = daD(cf)b− dD(acf)b.

Obviously ‖ψ‖ ≤ 2K and if fb = 0, then by (5.2.1)

‖ψ(f, b)‖ ≤ LK(β)‖f‖‖b‖.

Let K ′ = max{LK(β) + 2K : 0 ≤ β ≤ K}. Then there is a continuous function LK′ :

[0,∞)→ [0,∞) with LK′(0) = 0 such that

‖ψ(fb, e)− ψ(f, be)‖ ≤ LK′(LK(β))‖f‖‖b‖‖e‖,

or equivalently,

‖daD(cfb)e− dD(acfb)e− daD(cf)be+ dD(acf)be‖ ≤ LK′(LK(β))‖f‖‖b‖‖e‖.

By putting f = 1, we get

‖d[D(acb)−aD(cb)−D(ac)b+aD(c)b]e‖ ≤ LK′(LK(β))‖a‖‖b‖‖c‖‖d‖‖e‖ (∀a, b, c, d, e ∈ A).

The final reslut follows if we put NK = LK′ ◦ LK .

Now we generalize the result of Proposition 5.2.1 (ii) to higher dimensions.

Theorem 5.2.2. Let A be a unital Banach algebra with unit 1 having the strong property

(B). Suppose that X is a unital Banach A-bimodule, n ∈ N, K > 0, T ∈ Bn(A,X) with

‖T‖ ≤ K and let 0 ≤ γ < K satisfing

a0a1 = a1a2 = · · · = anan+1 = 0⇒ ‖a0T (a1, . . . , an)an+1‖ ≤ γ‖a0‖ · · · ‖an+1‖.

Also T (a1, . . . , an) = 0 if for some 1 ≤ i ≤ n, ai = 1. Then there exists a continuous

function Ln,K : [0,∞) → [0,∞) with Ln,K(0) = 0, depending only on A, n and K, such

that

‖δn(T )‖ ≤ Ln,K(γ).
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Proof. We prove the statement by induction on n. For n = 1, the result follows from

Proposition 5.2.1(ii) together with the fact that X is unital and T (1) = 0.

Now suppose that the result is true for n ∈ N. We prove it for n + 1. Consider

T ∈ Bn+1(A,X) with ‖T‖ ≤ K and 0 ≤ γ < K satisfying

a0a1 = a1a2 = · · · = an+1an+2 = 0⇒ ||a0T (a1, . . . , an+1)an+2‖ ≤ γ‖a0‖ · · · ‖an+2‖.

Also T (a1, . . . , an+1) = 0 if for some 1 ≤ i ≤ n + 1, ai = 1. Take ai ∈ A, i = 0, . . . , n + 1

with a0a1 = a1a2 = · · · = anan+1 = 0. We first show that there is a continuous function

NK : [0,∞)→ [0,∞) with NK(0) = 0, depending only on A and K, such that

‖a0 ? Λn(T )(a1, . . . , an) ? an+1‖ ≤ NK(γ)‖a0‖ · · · ‖an+1‖ (5.2.2)

where the action ? is defined in Remark 2.3.6. First suppose that ‖a0‖ = · · · = ‖an+1‖ = 1,

and let

S = a0 ? Λn(T )(a1, . . . , an) ? an+1.

For every b, c ∈ A with bc = 0, we have

S(b)c = [a0 ? Λn(T )(a1, . . . , an) ? an+1](b)c

= a0Λn(T )(a1, . . . , an)(an+1b)c− a0Λn(T )(a1, . . . , an)(an+1)bc

= a0T (a1, . . . , an, an+1b)c.

But a0a1 = · · · = an(an+1b) = (an+1b)c = 0. Thus, by our hypothesis

‖a0T (a1, . . . , an, an+1b)c‖ ≤ γ‖a0‖ · · · ‖an+1b‖‖c‖ ≤ γ‖b‖‖c‖,

implying that ‖S(b)c‖ ≤ γ‖b‖‖c‖. Hence, by Proposition 5.2.1(i), there exist a continuous

function N ′K : [0,∞)→ [0,∞) with N ′K(0) = 0, depending only on A and K, such that

‖S(bc)− S(b)c‖ ≤ N ′K(γ)‖b‖‖c‖ (∀b, c ∈ A). (5.2.3)

On the other hand,

S(1) = (a0 ? Λn(T )(a1, . . . , an) ? an+1)(1)

= a0Λn(T )(a1, . . . , an)(an+11)− a0Λn(T )(a1, . . . , an)(an+1)1

= 0.
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Putting b = 1 in (5.2.3) and NK = ‖1‖N ′K , we get

‖S(c)‖ ≤ NK(γ)‖c‖ (c ∈ A),

or equivalently,

‖S‖ = ‖a0 ? Λn(T )(a1, . . . , an) ? an+1‖ ≤ NK(γ). (5.2.4)

Now consider the general case. If for some 0 ≤ i ≤ n+ 1, ai = 0, then we clearly have

‖a0 ? Λn(T )(a1, . . . , an) ? an+1‖ ≤ NK(γ)‖a0‖ . . . ‖an+1‖.

Now suppose that for all 0 ≤ i ≤ n+ 1, ai 6= 0. Then

a0

‖a0‖
a1

‖a1‖
= · · · = an+1

‖an+1‖
an+2

‖an+2‖
= 0,

and so, by (5.2.4),

‖ a0

‖a0‖
? Λn(T )(

a1

‖a1‖
, . . . ,

an
‖an‖

) ?
an+1

‖an+1‖
‖ ≤ NK(γ)

implying that (5.2.2) holds.

Now let BA(A,X) denote the space of all (bounded) right A-module morphisms from

A into X and suppose that q : B(A,X) → B(A,X)

BA(A,X)
is the natural quotient mapping.

It is straightforward to verify that
B(A,X)

BA(A,X)
is a unital Banach A-bimodule and q is an

A-bimodule morphism. Thus, by (5.2.2),

‖a0 ? q(Λn(T )(a1, . . . , an)) ? an+1‖ = ‖q(a0 ? Λn(T )(a1, . . . , an) ? an+1)‖

≤ ‖q‖‖a0 ? Λn(T )(a1, . . . , an) ? an+1‖

≤ NK(γ)‖a0‖ . . . ‖an+1‖.

Moreover if for some i, 1 ≤ i ≤ n, ai = 1, then for every a ∈ A,

Λn(T )(a1, . . . , an)(a) = T (a1, . . . , an, a) = 0.

This shows that q ◦ Λn(T )(a1, . . . , an) = 0 if for some 1 ≤ i ≤ n, ai = 1. Let

K ′ = sup{NK(γ) +K : 0 ≤ γ ≤ K}.
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Then, by the assumption of the induction, there is a continuous function LK′ : [0,∞)→

[0,∞) with LK′(0) = 0, depending only on A, n and K, such that for all a0, . . . , an+1 ∈ A,

‖∆n
q (q ◦ Λn(T ))(a1, . . . , an+1)‖ ≤ LK′(NK(γ))‖a1‖ · · · ‖an+1‖, (5.2.5)

where ∆n
q : Bn(A,

B(A,X)

BA(A,X)
) → Bn+1(A,

B(A,X)

BA(A,X)
) is the corresponding connecting

map defined in Definition 2.3.4. On the other hand, since q is a Banach A-bimodule

morphism, it is easy to check that for all a0, . . . , an+1 ∈ A,

∆n
q (q ◦ Λn(T ))(a1, . . . , an+1) = q(∆n(Λn(T ))(a1, . . . , an+1))

= q(Λn+1(δn+1(T ))(a1, . . . , an+1))

where the last equality follows from (2.3.1). Hence, by (5.2.5),

‖q(Λn+1(δn+1(T ))(a1, . . . , an+1))‖ ≤ LK′(NK(γ)‖a1‖ · · · ‖an+1‖,

implying that for S = Λn+1(δn+1(T ))(a1, . . . , an+1),

‖dist(S,BA(A,X))‖ ≤ LK′(NK(γ)‖a1‖ · · · ‖an+1‖.

So for every a ∈ A, we have

‖S(a)− S(1)a‖ ≤ [2LK′(NK(γ)‖a1‖ · · · ‖an+1‖]‖a‖. (5.2.6)

On the other hand,

S(1) = Λn+1(δn+1(T ))(a1, . . . , an+1)(1)

= δn+1(T )(a1, . . . , an+1, 1)

= a1T (a2, . . . , an+1, 1) +
n−1∑
j=0

(−1)jT (a1, . . . , ajaj+1, . . . , an+1, 1) + (−1)nT (a1, . . . , an+11)

+ (−1)n+1T (a1, . . . , an+1)1

= 0.

Therefore by putting a = an+2 in (5.2.6), we have

‖δn+1(T )(a1, . . . , an+2)‖ = ‖Λn+1(δn+1(T ))(a1, . . . , an+1)(an+2)‖

= ‖S(an+2)‖

≤ 2LK′(NK(γ)‖a1‖ . . . ‖an+1‖‖an+2‖.
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Hence our proof is complete if we define Ln+1,K : [0,∞)→ [0,∞) by

Ln+1,K = 2LK′ ◦NK .

Even though Theorem 5.2.2 represents a nice formula, it heavily depends on the fact

that the Banach algebra is unital. A possible way to extend and apply this theorem is to

consider the unitization of the given Banach algebra. Although we do not know whether

the unitization of a Banach algebra with the strong property (B) inherits this property,

the existence of b.l.u. for a Banach algebra makes this happen by Theorem 4.1.3. Hence

for many Banach algebras, passing to the unitization is a good method to eliminate the

assumption of being unital.

Let A be a Banach algebra, and let X be a Banach A-bimodule. We extend X to a

Banach A]-bimodule by defining

1 · x = x · 1 = x.

Let σ : Bn(A,X)→ Bn(A], X) be the linear isometry defined by

σ(T )(a1 + λ1, . . . , an + λn) = T (a1, . . . , an) (5.2.7)

where ai ∈ A and λi ∈ C. It is to check that if δ]n : Bn(A], X) → Bn+1(A], X) is the

corresponding connecting map, then we have

δ]n(σ(T ))(a1 + λ1, . . . , an+1 + λn+1) = δn(T )(a1, . . . , an+1)

So σ(T ) is an n-cocycle if and only if T is an n-cocycle.

Lemma 5.2.3. Let A be a Banach algebra. Let X be a Banach A-bimodule, and let

T ∈ Bn(A,X). Then for every ai ∈ A], i = 0, . . . , n + 1 with a0a1 = · · · = anan+1 = 0,

we have

‖a0σ(T )(a1, . . . , an)an+1‖ ≤ distr(T,Zn(A,X))‖a0‖ · · · ‖an+1‖

where σ : Bn(A,X)→ Bn(A], X) is the linear map defines in (5.2.7).
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Proof. Let ai = bi + λi ∈ A], 0 ≤ i ≤ n + 1 with bi ∈ A and λi ∈ C such that

a0a1 = · · · = anan+1 = 0. Then for D ∈ Zn(A,X), σ(D) ∈ Zn(A], X), and so,

a0σ(D)(a1, . . . , an)an+1 = 0.

Thus

‖a0σ(T )(a1, . . . , an)an+1‖ = ‖a0[σ(T )(a1, . . . , an)− σ(D)(a1, . . . , an)]an+1‖

= ‖a0σ(T −D)(a1, . . . , an)an+1‖

≤ ‖a0‖‖(T −D)(b1, . . . , bn)‖‖an+1‖.

Since D ∈ Zn(A,X) was arbitrary, we have

‖a0σ(T )(a1, . . . , an)an+1‖ ≤ inf
D∈Zn(A,X)

‖T (b1, . . . , bn)−D(b1, . . . , bn)‖‖a0‖‖an+1‖

≤ distr(T,Zn(A,X))‖b1‖ · · · ‖bn‖‖a0‖‖an+1‖

≤ distr(T,Zn(A,X))‖a0‖ · · · ‖an+1‖.

We are now ready to present the main result of this section.

Theorem 5.2.4. Let A be a Banach algebra for which its unitization has the strong

property (B). Let n ∈ N, and let X be a Banach A-bimodule such that Hn+1(A,X) is a

Banach space. Then Zn(A,X) is hyperreflexive.

Proof. We recall from [52] that Zn(A,X) is reflexive. Hence according to Remark 5.1.2,

distr defines a norm and it suffices to show that norms given by dist and distr on

Bn(A,X)/Zn(A,X) are equivalent. Suppose otherwise, i.e., there is a sequence {Tm} ⊆

Bn(A,X) such that for all m ∈ N,

γm := distr(Tm,Zn(A,X)) <
1

m+ 1
(5.2.8)

but

dist(Tm,Zn(A,X)) =
1

2
. (5.2.9)
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We can replace Tm by Tm+Dm for some suitableDm ∈ Zn(A,X) to assume that ‖Tm‖ ≤ 1.

By Lemma 5.2.3, for every a0, . . . , an+1 ∈ A] with a0a1 = . . . = anan+1 = 0,

‖a0σ(Tm)(a1, . . . , an)an+1‖ ≤ γm‖a0‖ . . . ‖an+1‖.

Hence, by our hypothesis and Theorem 5.2.2, there exists a continuous function L :

[0,∞)→ [0,∞) with L(0) = 0 such that

‖δ]n(σ(Tm))‖ ≤ L(γm),

where δ]n : Bn(A], X)→ Bn+1(A], X) is the corresponding connecting map. On the other

hand, it is clear that

‖δn(Tm)‖ ≤ ‖δ]n(σ(Tm))‖.

Therefore

‖δn(Tm)‖ ≤ L(γm).

In particular, from (5.2.8), we have

lim
m→∞

‖δn(Tm)‖ = 0. (5.2.10)

However, Hn+1(A,X) is a Banach space which implies that Imδn is closed. Hence, by the

open mapping theorem, there is a constant C > 0 such that for each T ∈ Bn(A,X),

dist(T,Zn(A,X)) ≤ C‖δn(T )‖.

In particular, for all m ∈ N,

dist(Tm,Zn(A,X)) ≤ C‖δn(Tm)‖.

Hence it follows from (5.2.10) that

lim
m→∞

dist(Tm,Zn(A,X)) = 0,

which is a contradiction to our assumption (5.2.9). Thus Zn(A,X) is hyperreflexive.

As it is described below, the result of Theorem 5.2.4 does not depend on the choice of

the complete norm on the unitization of A.
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Remark 5.2.5. Let A be a closed subalgebra of a unital Banach algebra B with unit e

such that e /∈ A. Then the (closed) subalgebra in B generated by A and e is nothing but

A⊕ Ce. Now it is clear that the mapping

Λ : A] → A⊕ Ce a+ λ 7→ a+ λe,

is a bounded linear bijection. Hence, by the Inverse Mapping Theorem, it is a bounded

algebra isomorphism. Therefore A] can be embedded isomorphically into B and can be

viewed as a closed subalgebra with an equivalent norm. According to Corollary 3.2.3 A]

has the strong property (B) if and only if A⊕Ce ⊆ B has the strong property (B) . This

implies that having the strong property (B) is independent of the choice of adding a unit

to our Banach algebra and hence, the choice of the unitization norm in Theorem 5.2.4

was just out of convenience.

5.3 Examples of Banach algebras with hyperreflexive

bounded n-cocyles spaces

In this section, we put together our results we presented in the previous sections to give

examples of classes of Banach algebras for which certain bounded n-cocycle spaces are

hyperreflexive.

Our first result is on C∗-algebras. In [58], Shulman proved that for a C∗-algebra A,

Z1(A,A) is hyperreflexive provided that H2(A,A) = 0. In the following theorem, we

extend Shulman’s result to larger classes of bounded n-cocycles.

Theorem 5.3.1. Suppose that A is a C∗-algebra, n ∈ N, and X is a Banach A-bimodule

for which Hn+1(A,X) is a Banach space. Then Zn(A,X) is hyperreflexive. In particular,

this is true in either of the following cases:

(i) A is amenable and X is a dual Banach A-bimodule;

(ii) A = X and A is an injective von Neumman algebra.

Proof. By Remark 3.1.4, every C∗-algebra has the strong property (B). The result now

follows from Proposition 4.2.1, Theorem 4.1.3, and Theorem 5.2.4. We also note that for
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every n ∈ N, Hn(A,X) = 0 when A is an injective von Neumman algebra and A = X or

A is amenable and X is a dual Banach A-bimodule.

We now turn our attention to group algebras associated to locally compact groups.

The hypereflexivity of the derivation space from groups algebras have been studied in

[3], [4], and [52]. In particular, it is shown in [52, Theorem 4.3] that if G is a locally

compact amenable group with an open subgroup of polynomial growth, and X a Banach

A-bimodule, then Z1(L1(G), X∗) is hyperreflexive. In [4, Theorem 4.5], the preceding

result was generalized for X = C0(G) by removing the amenability condition. In the

following theorem, we generalized [52, Theorem 4.3] to the space of bounded n-cocyles

from L1(G) and certain ideas associated to it.

For a normal closed subgroup H of G, we let TH : Cc(G) → Cc(G/H) be operator

defined by

TH(f)(xH) =

∫
H

f(xh)dh (f ∈ Cc(G))

where dh is the Haar measure on H. It is well-known that TH extended to a continuous

algebra homomorphism from L1(G) onto L1(G/H). We denote I(H⊥) = kerTH .

Theorem 5.3.2. Let G be a locally compact amenable group with an open subgroup of

polynomial growth, and let H be a normal closed subgroup of G. Then:

(1) I(H⊥) has both b.l.u. and the strong property (B);

(2) For every n ∈ N and Banach I(H⊥)-bimodule X, Zn(I(H⊥), X∗) is hyperreflexive.

Proof. (1) By Remark 3.1.4, every group algebra has the strong property (B). Also

Proposition 4.2.2 shows that L1(G) has b.l.u. Now let H be a normal closed subgroup.

Since G is amenable, it is known that I(H⊥) has a bounded approximate identity. Hence

it has the strong property (B) from Proposition 3.2.1. On the other hand, it is shown in

[35, Theorem 2] (see also [35, Lemma 3]) that I(H⊥) has a dense linear space such that

each element has a local unit. Hence it follows from Proposition 4.1.4 that I(H⊥) has

b.l.u.

(2) Since L1(G) is an amenable Banach algebra and I(H⊥) has a bounded approximate
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identity, I(H⊥) is amenable so that its nth Hochschild cohomology with coefficient in

dual modules vanishes. Thus the result follows from part(1), Theorem 4.1.3 and Theorem

5.2.4.

Theorem 5.3.3. Let G be a locally compact group with an open subgroup of polynomial

growth. Then Z1(L1(G), (L1(G))(n)) is hyperreflexive for n = 0 and for each odd n ∈ N

where (L1(G))(n) stands for the nth dual space of L1(G). In particular, Z1(L1(G), L∞(G))

is hyperreflexive.

Proof. It was shown in the proof of Theorem 5.3.2 that if G is a locally compact group

with an open subgroup of polynomial growth, then L1(G) has both the strong property

(B) and b.l.u. It is also shown in [4, Theorem 2.5] that H2(L1(G), L1(G)) is a Banach

space. Moreover [43, Theorem 3.3] shows that H2(L1(G), (L1(G))(n)) is a Banach space

for each locally compact group G and each odd n ∈ N. Hence the result follows from

Theorem 4.1.3 and Theorem 5.2.4.

Remark 5.3.4. This is proven in [52] that each of the following locally compact groups

has an open subgroup of polynomial growth:

(i) G is a group of polynomial growth.

(ii) G is an IN -group.

(iii) G is a maximally almost periodic group.

(iv) G is a totally disconnected group.

We finish this section by presenting the following two propositions which enable us to

construct more examples of Banach algebras with hypereflexive bounded n-cocyle spaces

from the known ones. As it is with the general approach of this thesis, we need to consider

Banach algebras which inherit both the strong property (B) and b.l.u. It is shown in

Chapters 3 and 4 that quotients and tensor products behave well with this regards.

Proposition 5.3.5. Let A be a Banach algebra with b.l.u. which has the strong property

(B). Suppose that I is a closed ideal of A and X is a Banach A/I-module such that

Hn+1(A/I,X) is a Banach space. Then Zn(A/I,X) is hyperreflexive.
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Proof. By Proposition 4.3.1, A/I has a b.l.u. Also Corollary 3.2.2 shows that A/I has

the strong property (B). Thus the result now follows from Theorems 4.1.3 and 5.2.4.

Proposition 5.3.6. Let A and B be Banach algebras having b.l.u. and the strong property

(B). Let X be a Banach A⊗̂B-module such that Hn+1(A⊗̂B,X) is a Banach space. Then

Zn(A⊗̂B,X) is hyperreflexive.

Proof. By Proposition 4.3.2, A⊗̂B has a b.l.u. Also Proposition 3.2.5 shows that A⊗̂B

has the strong property (B). The result now follows from Theorems 4.1.3 and 5.2.4.
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Chapter 6

A constant for the strong property (B)

In the present chapter, we provide an important tool which will be used in the following

chapter to obtain upper bounds for the hyperreflexivity constant of the bounded n-cocycle

spaces of Banach algebras. Our approach towards the problem of hyperreflexivity shows

that a possible way to find such a constant is to show a Banach algebra has the strong

property (B) with a “special associated function”(see Definition 6.1.1 below ).

We show that for many Banach algebras which we have shown to have the strong property

(B), we can choose a linear function to represent this associated function, so that we can

associate a constant. This includes group algebras, C∗-algebras, finite CSL and nest

algebras. We also prove that for any arbitrary Banach algebra, there are related Banach

algebras which have the strong property (B) with a constant.

6.1 General definition

A Banach algebra is said to have the strong property (B) with a constant if its associated

function is a line as described below.

Definition 6.1.1. We say that a Banach algebra A has the strong property (B) with a

constant r > 0 if for each Banach space X and every bounded bilinear map ϕ : A×A→ X

with the property that

a, b ∈ A ab = 0⇒ ‖ϕ(a, b)‖ ≤ α‖a‖‖b‖,

We can infer that

‖ϕ(ab, c)− ϕ(a, bc)‖ ≤ rα‖a‖‖b‖‖c‖ (∀a, b, c ∈ A).
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Remark 6.1.2. Definition 6.1.1 of a Banach algebra with the strong property (B) is equiv-

alent to the following definition:

A Banach algebra A has the strong property (B) with a constant r > 0 if for every

bounded bilinear map ϕ : A× A→ C, we have

‖ϕ(ab, c)− ϕ(a, bc)‖ ≤ rα(ϕ)‖a‖‖b‖‖c‖, (∀a, b, c ∈ A)

where

α(ϕ) = sup{‖ϕ(a, b)‖ : a, b ∈ A, ‖a‖, ‖b‖ ≤ 1, ab = 0}.

We will use this alternative definition when it is more convenient.

We will see later in Chapter 7 that existence of a constant for the strong property (B)

is fundamental in finding an upper bound for the hypereflexivity constant of the bounded

n-cocycle spaces.

6.2 Fourier algebra of the unit circle

As it was mentioned above, in order to achieve our goal in finding an upper bound for

the hyperreflexivity constant of the bounded n-cocycle spaces of C∗-algebras and group

algebras, we need to find a constant for the strong property (B) for such Banach algebras.

In the present section we aim to find such a constant for the Fourier algebra of the unit

circle. This result is shown to be fundamental to find a constant for the strong property

(B) of C∗-algebras and group algebras. We start with the following essential lemma. Let

T denote the unit circle in C, i.e.

T = {z ∈ C : |z| = 1}.

Here we identify T with R
Z
∼= [−π, π]. In this case s = t if s ≡ t(mod 2πZ). For every

f ∈ L1(T), the Fourier transform on f, denoted by f̂ , is defined by

f̂(n) =
1

2π

∫ π

−π
f(t)e−intdt, (n ∈ Z).
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The Fourier algebra of the unit circle is defined as follows

A(T) = {f ∈ L1(T) : ‖f‖A(T) =
∑
n∈Z

|f̂(n)| <∞}.

It is well-known that A(T) ⊆ C(T), the space of continuous functions on T. Also A(T)

with the pointwise addition and multiplication and ‖ · ‖A(T), is a Banach algebra.

Lemma 6.2.1. Let X be a Banach space and F : A(T)→ X a linear map with ‖F‖ ≤ 1.

Suppose that 0 ≤ α ≤ 1 is such that for each ϕ, ψ ∈ A(T) with suppϕ ∩ suppψ = ∅, we

have

‖F (ϕ ∗ ψ̌)‖ ≤ α‖ϕ‖‖ψ‖.

Let f ∈ A(T) be given by f(s) = eis − 1. Then

‖F (f)‖ ≤ 12

√
π(1 +

√
2)
√
α.

Proof. Let 0 < ε < 3. Define

Wε = {x ∈ T : ‖f −Rxf‖A(T) < ε},

where (Rxf)(s) = f(s+ x). Note that for s ∈ T

(f −Rxf)(s) = eis(1− eix).

Hence if we define e1(s) = eis, then

‖f −Rxf‖A(T) = ‖e1‖|1− eix| = |1− eix|.

So

Wε = {x ∈ T : |1− eix| < ε}.

We show that for each 0 < δ < ε, [−(ε − δ), (ε − δ)] ⊆ Wε. Define g : [−π, π] → T by

g(s) = 1−eis. Let 0 < x < π. Applying vector-valued mean value theorem to the function

g|[0,x], we find 0 < c < x with

|g(x)| = |g(x)− g(0)| ≤ |g′(c)||x| ≤ |x|.
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If −π < x < 0, we use the same argument on the interval [x, 0]. For x = 0, the inequality

trivially holds. So for each 0 < δ < ε and for all x ∈ [−(ε− δ), (ε− δ)] we get

|eix − 1| = |g(x)| ≤ |x| < ε.

It means that [−(ε− δ), (ε− δ)] ⊆ Wε. Define

Vε,δ = [
−(ε− δ)

3
,
(ε− δ)

3
], Uε,δ = [

−(ε− δ)
6

,
(ε− δ)

6
].

Then Vε,δ + Vε,δ + Vε,δ ⊆ Wε and Uε,δ + Uε,δ = Vε,δ. Now put

u =
1

λ(Uε,δ)2
1Uε,δ ∗ 1Uε,δ

and

v = f(
1

λ(Vε,δ)
1Vε,δ+Vε,δ ∗ 1Vε,δ). (6.2.1)

Obviously, 1Uε,δ ∈ L2(T). Since A(T) = L2(T) ∗ L2(T), we have u ∈ A(T) ⊆ C(T) ⊆

L2(T) ⊆ L1(T). It is easy to check that ‖1Uε,δ‖2 =
√
λ(Uε,δ). By definition of the Fourier

norm,

‖u‖A(T) ≤
1

λ(Uε,δ)2
‖1Uε,δ‖2‖1Uε,δ‖2

=
1

λ(Uε,δ)
=

6π

ε− δ
.

(6.2.2)

Since 1Uε,δ ∈ L2(T) ⊆ L1(T) and L2(T) is L1(T)-module with respect to the convolution,

‖u‖2 ≤
1

λ(Uε,δ)2
‖1Uε,δ‖1‖1Uε,δ‖2. (6.2.3)

It is easy to check that ‖1Uε,δ‖1 = λ(Uε,δ). So by (6.2.3),

‖u‖2 ≤
λ(Uε,δ)

3
2

λ(Uε,δ)2
=

1

λ(Uε,δ)
1
2

=

√
6π

ε− δ
. (6.2.4)

We show that suppu ⊆ Uε,δ + Uε,δ. Let x ∈ [−π, π]. Then

(1Uε,δ ∗ 1Uε,δ)(x) =
1

2π

∫ π

−π
1Uε,δ(y)1Uε,δ(x− y)dy

=
1

2π

∫
Uε,δ

1Uε,δ(x− y)dy.
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So for x to be in suppu, there should exist y ∈ supp 1Uε,δ = Uε,δ such that x − y ∈

supp 1Uε,δ = Uε,δ. So x ∈ Uε,δ + Uε,δ.

We also have

‖u‖1 =
1

2π

∫ π

−π
u(x)dx =

1

λ(Uε,δ)2
‖1Uε,δ‖1‖1Uε,δ‖1 = 1. (6.2.5)

Next we prove some properties related to v defined in (6.2.1).

First of all, note that 1Vε,δ+Vε,δ , 1Vε,δ ∈ L2(T). So 1Vε,δ+Vε,δ ∗1Vε,δ ∈ A(T) which implies that

v ∈ A(T). Also

‖v‖A(T) ≤ ‖f‖A(T)‖
1

λ(Vε,δ)
1Vε,δ+Vε,δ ∗ 1Vε,δ‖A(T)

≤ 1

λ(Vε,δ)
‖f‖A(T)‖1Vε,δ+Vε,δ‖2‖1Vε,δ‖2.

Obviously, ‖1Vε,δ+Vε,δ‖2 =
√
λ(Vε,δ + Vε,δ) and ‖1Vε,δ‖2 =

√
λ(Vε,δ). So

‖v‖A(T) ≤ ‖f‖A(T)(
λ(Vε,δ + Vε,δ)

λ(Vε,δ)
)
1
2

= 2(
4(ε−δ)

6π
2(ε−δ)

6π

)
1
2 = 2

√
2.

(6.2.6)

Using (6.2.6), we can write

‖f − v‖A(T) ≤ ‖f‖A(T) + ‖v‖A(T)

≤ 2(1 +
√

2).
(6.2.7)

Similar to what we proved for u, we have

supp v ⊆ supp (1Vε,δ+Vε,δ ∗ 1Vε,δ) ⊆ Vε,δ + Vε,δ + Vε,δ ⊆ Wε.

We now show that for each x ∈ Vε,δ, f(x) = v(x). To see this, take x ∈ Vε,δ. Then

(1Vε,δ+Vε,δ ∗ 1Vε,δ)(x) =
1

2π

∫ π

−π
1Vε,δ+Vε,δ(x− w)1Vε,δ(w)dw

=
1

2π

∫
Vε,δ

1Vε,δ+Vε,δ(x− w)dw

= λ(Vε,δ)
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Hence f(x) = v(x). This implies that

supp (f − v) ⊆ V c
ε,δ. (6.2.8)

We show that ‖v‖2 ≤ 2ε
√

ε−δ
3
. Let x ∈ Wε. Then

|f(x)| = |f(0)−Rxf(0)|

≤ ‖f −Rxf‖∞

≤ ‖f −Rxf‖A(T)

< ε.

Since supp v ⊆ Wε, we get

‖v‖2
2 =

1

2π

∫
Wε

|f(t)|2| 1

λ(Vε)
1Vε,δ+Vε,δ ∗ 1Vε,δ(t)|2dt

≤ ε2
1

λ(Vε,δ)2
‖1Vε,δ+Vε,δ ∗ 1Vε,δ‖2

2

≤ ε2
1

λ(Vε,δ)2
‖1Vε,δ+Vε,δ‖2

2‖1Vε,δ‖2
1

= ε2
1

λ(Vε,δ)2
λ(Vε + Vε)λ(Vε,δ)

2

= ε2
4(ε− δ)

6π
.

This implies that

‖v‖2 ≤ 2ε

√
ε− δ
6π

. (6.2.9)

We now show that ‖f − f ∗ ǔ‖A(T) ≤ ε. We can write f ∗ ǔ as a Bochner integral

f ∗ ǔ =
1

2π

∫ π

−π
u(x)Rxfdx.

By (6.2.5), 1
2π

∫ π
−π u(x)dx = 1. Therefore

‖f − f ∗ ǔ‖A(T) =
1

2π
‖
∫ π

−π
(f −Rxf)u(x)dx‖A(T)

≤ 1

2π

∫
Uε,δ+Uε,δ

‖(f −Rxf)‖A(T)|u(x)|dx

< ε,

72



where the last inequality follows from the fact that Uε,δ + Uε,δ ⊆ Wε and ‖u‖1 = 1. On

the other hand, using (6.2.4) and (6.2.9), we get

‖v ∗ ǔ‖A(T) ≤ ‖u‖2‖v‖2

≤
√

6π

ε− δ
2ε

√
ε− δ
6π

= 2ε.

So if we put a = (f − v) ∗ ǔ, then

‖f − a‖A(T) ≤ ‖f − f ∗ ǔ‖A(T) + ‖v ∗ ǔ‖A(T)

< ε+ 2ε = 3ε.
(6.2.10)

Now we can write

‖F (f)‖ = ‖F (f − a+ a)‖

≤ ‖F (f − a)‖+ ‖F (a)‖.

Since a = (f − v) ∗ ǔ and by (6.2.8), supp (f − v) ∩ supp ǔ ⊆ V c
ε,δ ∩ Vε,δ = ∅, we have (by

hypothesis)

‖F (a)‖ ≤ α‖f − v‖A(T)‖u‖A(T).

Hence

‖F (f)‖ ≤ ‖f − a‖A(T) + α‖f − v‖A(T)‖u‖A(T).

Using (6.2.2), (6.2.7) and (6.2.10), we get

‖F (f)‖ ≤ 3ε+ α2(1 +
√

2)
6π

ε− δ
(0 < ε < 3 0 < δ < ε).

Letting δ → 0, A = 3 and B = 12π(1 +
√

2), we have

‖F (f)‖ ≤ inf{Aε+
αB

ε
, 0 < ε < 3}. (6.2.11)

Define k : (0, 3)→ R+ by k(ε) = Aε+ αB
ε

. Then

k′(ε) = A− αB

ε2
= 0⇒ ε =

√
αB

A
.

Note that for each 0 ≤ α ≤ 1 we have
√

αB
A
< 3 . So by (6.2.11) we can write

‖F (f)‖ ≤ k(

√
αB

A
) = 2

√
ABα = 12

√
π(1 +

√
2)
√
α.
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We are now ready to prove the main result of this section which was partly inspired

by [2, Lemma 3.1] and its proof.

Theorem 6.2.2. Let φ : A(T) × A(T) → C be a continuous bilinear map satisfying the

property

f, g ∈ A(T), supp f ∩ supp g = ∅ ⇒ |φ(f, g)| ≤ α‖f‖‖g‖ (6.2.12)

for some α ≥ 0. Then

|φ(fg, h)− φ(f, gh)| ≤ 288π(1 +
√

2)α‖f‖‖g‖‖h‖ (6.2.13)

for all f, g, h ∈ A(T).

Proof. First assume that 0 ≤ α < 1 and ‖φ‖ ≤ 1. The map φ gives rise to a continuous

linear operator Φ on the projective tensor product A(T)⊗̂A(T)(= A(T × T)) defined

through

Φ(f ⊗ g) = φ(f, g) (f, g ∈ A(T)). (6.2.14)

We define N : A(T)→ A(T× T) with

Nk(s, t) = k(s− t) (k ∈ A(T), s, t ∈ T).

Pick f, h ∈ A(T) with ‖f‖, ‖h‖ ≤ 1 and define Nf,h : A(T)→ A(T× T) with

Nf,hk = Nk(f ⊗ e1h)

where e1 ∈ A(T) is given by e1(s) = eis. Then it is easy to check that

Nf,h(e1 − 1) = fe1 ⊗ h− f ⊗ e1h. (6.2.15)

Note that for ψ, ϕ ∈ A(T), we have the Bochner integral equality

N(ϕ ∗ ψ̌) =

∫
T
Rxϕ⊗Rxψdx.
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Hence

Nf,h(ϕ ∗ ψ̌) =

∫
T
(Rxϕ)f ⊗ (Rxψ)e1hdx. (6.2.16)

If suppϕ ∩ suppψ = ∅, then we have

supp ((Rxϕ)f) ∩ supp ((Rxψ)e1h) = ∅.

Hence using (6.2.16) we get

|Φ ◦Nf,h(ϕ ∗ ψ̌)| ≤
∫
T
‖Φ((Rxϕ)f ⊗ (Rxψ)e1h)‖dx

≤
∫
T
‖φ((Rxϕ)f, (Rxψ)e1h)‖dx (by (6.2.12))

≤
∫
T
α‖φ(Rxϕ)f‖‖(Rxψ)e1)‖dx

≤ α‖ϕ‖‖ψ‖.

Hence by Lemma 6.2.1, we should have

|(Φ ◦Nf,h)(e1 − 1)| ≤ 12

√
π(1 +

√
2)
√
α,

which by (6.2.15), it implies that

|ϕ(fe1, h)− ϕ(f, e1h)| = |Φ(fe1 ⊗ h− f ⊗ e1h)|

≤ 12

√
π(1 +

√
2)
√
α.

(6.2.17)

Now we show that

|φ(fen, h)− φ(f, enh)| ≤ 12

√
π(1 +

√
2)
√
α‖f‖‖h‖ (6.2.18)

for all f, h ∈ A(T), where en denotes the function in A(T) defined by

en(s) = eins (s ∈ R, n ∈ Z).

For a ∈ A(T), let an ∈ A(T) be the function defined by

an(x) = a(nx).
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Note that en = (e1)n. Define τ : A(T)× A(T)→ C by

τ(a, b) = φ(fan, hbn) (a, b ∈ A(T)).

Note that if a ∈ A(T), then a(s) =
∑+∞

k=−∞ â(k)eiks, hence a(ns) =
∑+∞

k=−∞ â(k)eikns and

so an ∈ A(T) with

‖an‖ ≤
+∞∑

k=−∞

|â(k)| = ‖a‖.

Moreover, if a, b ∈ A(T) are such that supp a ∩ supp b = ∅, then it is easily seen that

supp fan ∩ supphbn = ∅. So

|τ(a, b)| ≤ ‖φ(fan, hbn)‖

≤ α‖fan‖‖hbn‖

≤ α‖a‖‖b‖.

From (6.2.17), we deduce that

|τ(e1, 1)− τ(1, e1)| ≤ 12

√
π(1 +

√
2)
√
α. (6.2.19)

On the other hand, we have

τ(e1, 1) = φ(fen, h), τ(1, e1) = φ(f, enh)

which, together with (6.2.19), gives (6.2.18).

Now let g ∈ A(T). Since g =
∑+∞

k=−∞ ĝ(k)ek, by applying (6.2.18) we get

|φ(fg, h)− φ(f, gh)| = |φ(
+∞∑

k=−∞

ĝ(k)fek, h)− φ(f,
+∞∑

k=−∞

ĝ(k)ekh)|

≤
+∞∑
−∞

|ĝ(k)||φ(fek, h)− φ(f, ekh)|

≤
+∞∑
−∞

|ĝ(k)|12

√
π(1 +

√
2)
√
α

= 12

√
π(1 +

√
2)
√
α‖g‖.
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Therefore if f, h ∈ A(T) are arbitrary elements, we get

|φ(fg, h)− φ(f, gh)| ≤ 12

√
π(1 +

√
2)
√
α‖f‖‖g‖‖h‖. (6.2.20)

Next, let m : A(T× T)→ A(T) be the multiplication map which maps every elementary

tensor f⊗g ∈ A(T×T) to fg ∈ A(T). It follows from (6.2.20) that for u =
∑∞

i=1 fi⊗gi ∈

A(T× T) we can write

|Φ(u)− φ(1,m(u))| = |Φ(
∞∑
i=1

fi ⊗ gi −
∞∑
i=1

1⊗ figi)|

≤ 12

√
π(1 +

√
2)
√
α
∞∑
i=1

‖fi‖‖gi‖,

In particular, for every u ∈ I := ker m,

|Φ(u)| ≤ 12

√
π(1 +

√
2)
√
α‖u‖,

implying that

‖Φ|I‖ ≤ 12

√
π(1 +

√
2)
√
α. (6.2.21)

Now consider the general case. Let φ : A(T) × A(T) → C be a continuous bilinear map

satisfying (6.2.12) for some α > 0. Without lost of generality, we can assume that Φ|I 6= 0.

Let Φ0 ∈ I∗ with Φ0 = Φ|I
‖Φ|I‖

. Then ‖Φ0‖ = 1. By the Hahn-Banach Theorem, Φ0 can be

extended to Ψ ∈ A(T × T)∗ with ‖Ψ‖ = 1. For f, g ∈ A(T) with supp f ∩ supp g = ∅ we

have

|Ψ(f ⊗ g)| = |Φ0(f ⊗ g)|

=
1

‖Φ|I‖
|Φ(f ⊗ g)|

≤ α

‖Φ|I‖
‖f‖‖g‖.

Put α0 = α
‖Φ|I‖

. Then ‖Ψ‖ = 1 and 0 ≤ α0 ≤ 1 (We can assume α ≤ ‖Φ|I‖, otherwise the

statement is trivial). By the first part and (6.2.21),

1 = ‖Φ0‖ = ‖Ψ|I‖

≤ 12

√
π(1 +

√
2)
√
α0

= 12

√
π(1 +

√
2)

√
α

‖Φ|I‖
.
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This implies that

‖Φ|I‖ ≤ 144π(1 +
√

2)α.

In particular, for every u ∈ I

|Φ(u)| ≤ 144π(1 +
√

2)α‖u‖.

Finally for f, g, h ∈ A(T), it is clear that fg ⊗ h− f ⊗ gh ∈ I. So we can write

|φ(fg, h)− φ(f, gh)| = |Φ(fg ⊗ h− f ⊗ gh)|

≤ 144π(1 +
√

2)α‖fg ⊗ h− f ⊗ gh‖

≤ 288π(1 +
√

2)α‖f‖‖g‖‖h‖.

6.3 Group algebras and C∗-algebras

In this section, we use the result of Section 6.2 to obtain a constant for the strong property

(B) of C∗-algebras and group algebras. The approach we use in this section is entirely

adopted from [2] with a slight modification using our result from the preceding section.

The idea is based on passing to the multiplier algebra of the given Banach algebra and

then considering some special elements of the multiplier algebra called the doubly power

bounded elements. We highlight that the approach in [2] does not give a constant for the

strong property (B), whereas our modification does.

We first present some definitions which are required in the discussion.

Definition 6.3.1. Let A be a Banach algebra. We say that A is left faithful if

{a ∈ A : aA = {0}} = {0}.

A is said to be right faithful if

{a ∈ A : Aa = 0}} = {0}.
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Definition 6.3.2. A multiplier on a Banach algebra A is a pair (L,R), where L,R : A→

A are linear maps such that, for all a, b ∈ A, the following identities hold

L(ab) = L(a)b, R(ab) = aR(b) and aL(b) = R(a)b.

The set of all multipliers on A is denoted byM(A). It turns out that every multiplier

on a right and left faithful Banach algebra A consists of continuous linear operators on A

so thatM(A) becomes a unital closed subalgebra of B(A)×B(A)op called the multiplier

algebra of A. Here we write B(A)op for the opposite algebra to B(A) and we take the

norm on B(A)×B(A)op to be given by

‖(S, T )‖ = max{‖S‖, ‖T‖}

for all S, T ∈ B(A). Moreover, A is canonically embedded into M(A) by

a→ (La, Ra)

where La(b) = ab = Rb(a) for all a, b ∈ A and the embedding of A intoM(A) is continuous

with

‖(La, Ra)‖ ≤ ‖a‖, (a ∈ A).

If, in addition A has a contractive approximate identity, then we can identify A isomet-

rically with its image via this embedding.

Definition 6.3.3. Let A be a left and right faithful Banach algebra. An invertible element

µ ∈M(A) is called doubly power bounded if

sup
k∈Z
‖µk‖ <∞.

The following lemma shows how doubly power bounded elements fit in the definition

of the strong property (B). This is a modification of [2][Lemma 3.2]

Lemma 6.3.4. Let A be a Banach algebra, and let ϕ : A × A → X be a continuous

bilinear map into a Banach space X satisfying the property

a, b ∈ A, ab = 0⇒ ‖ϕ(a, b)‖ ≤ α‖a‖‖b‖ (6.3.1)
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for some α ≥ 0. If µ ∈M(A) is a doubly power bounded element with

M = sup
k∈Z
‖µk‖, (6.3.2)

then

‖ϕ(aµ, b)− ϕ(a, µb)‖ ≤ 288π(1 +
√

2)M2α‖a‖‖b‖ (6.3.3)

for all a, b ∈ A.

Proof. Pick a, b ∈ A and let µ ∈M(A) satisfying in (6.3.2). We define a continuous linear

operator

Tµ : A(T)→M(A), Tµ(f) =
+∞∑

k=−∞

f̂(k)µk (f ∈ A(T)).

Tµ is well-defined since

‖Tµ(f)‖ ≤
+∞∑

k=−∞

|f̂(k)|‖µk‖

≤ M‖f‖ (f ∈ A(T)).

(6.3.4)

Moreover, Tµ is an algebraic homomorphism as it is shown below

Tµ(fg) =
+∞∑
j=−∞

(f̂ g)(j)µj

=
+∞∑
j=−∞

(f̂ ∗ ĝ)(j)µj

=
+∞∑
j=−∞

(
+∞∑

k=−∞

f̂(k)ĝ(j − k))µj

= (
+∞∑

k=−∞

f̂(k)µk)(
+∞∑

k=−∞

ĝ(k)µk)

= Tµ(f)Tµ(g) (f, g ∈ A(T)).

(6.3.5)

Now we define the continuous bilinear map

ψ : A(T)× A(T)→ X, ψ(f, g) = ϕ(aTµ(f), Tµ(g)b) (f, g ∈ A(T)). (6.3.6)
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Suppose that f, g ∈ A(T) are such that

supp f ∩ supp g = ∅.

Then

(aTµ(f))(Tµ(g)b) = aTµ(fg)b = 0.

Hence we can write

‖ψ(f, g)‖ ≤ α‖aTµ(f)‖‖Tµ(g)b‖

≤ αM2‖a‖‖b‖‖f‖‖g‖.
(6.3.7)

Using Theorem 6.2.2, taking into account of (6.3.6) and (6.3.7) we can deduce that

‖ϕ(aµ, b)− ϕ(a, µb)‖ = ‖ψ(e1, 1)− ψ(1, e1)‖

≤ 288π(1 +
√

2)M2α‖a‖‖b‖

where e1 ∈ A(T) is given by e1(s) = eis. This completes the proof.

Group algebras and C∗-algebras are among the Banach algebras that fit in the frame-

work of Lemma 6.3.4.

6.3.1 Group algebras.

For a locally compact group G, we write M(G) for the linear space of all complex, regular

Borel measures on G. It is well-known that M(G) is a Banach algebra with respect to the

convolution product and the total variation as the norm. Also, L1(G) can be seen as the

two-sided closed ideal of M(G) consisting of all measures in M(G) which are absolutely

continuous with respect to λ, a fixed Haar measure on G. In fact, by Wendels theorem

([15, Theorem 3.3.40]), M(G) is nothing but the multiplier algebra of L1(G). By [15,

Theorem 3.3.15], the Banach space C0(G) is a Banach M(G)-bimodule and M(G) with

respect to the convolution product is the dual of C0(G) as a Banach M(G)-bimodule. For

every t ∈ G we denote by δt the unit point mass measure at t. It is important to notice
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that the convolution product in L1(G) can be expressed in the following way:

f ∗ g =

∫
G

f(t)(δt ∗ g)dλ(t)

=

∫
G

(f ∗ δt)g(t)dλ(t) (f, g ∈ L1(G))

(6.3.8)

where the expressions on the right are considered as (Bochner) integrals of measurable

L1(G)-valued functions of t: see [39, Table 1 on page 144 and Appendix 1.9.16]. The

following Theorem and its proof is a modification of [2, Theorem 3.4].

Theorem 6.3.5. Let G be a locally compact group and let

ϕ : L1(G)× L1(G)→ X

be a continuous bilinear map on a Banach space X satisfying the property

f, g ∈ A, f ∗ g = 0⇒ ‖ϕ(f, g)‖ ≤ α‖f‖1‖g‖1 (6.3.9)

for some α ≥ 0. Then

‖ϕ(f ∗ g, h)− ϕ(f, g ∗ h)‖ ≤ 288π(1 +
√

2)α‖f‖1‖g‖1‖h‖1

for all f, g, h ∈ L1(G).

Proof. For every t ∈ G, the unit point mass measure δt at t clearly satisfies in

‖δkt ‖ = ‖δtk‖ = 1

for each k ∈ Z. Therefore (6.3.3) in Lemma 6.3.4 implies that

‖ϕ(f ∗ δt, h)− ϕ(f, δt ∗ h)‖ ≤ 288π(1 +
√

2)α‖f‖1‖h‖1 (6.3.10)

for all f, h ∈ L1(G), t ∈ G. We now pick f, g, h ∈ L1(G) and multiply (6.3.10) by |g(t)|,

with t ∈ G, and get

‖ϕ(f ∗ g(t)δt, h)− ϕ(f, g(t)δt ∗ h)‖ ≤ 288π(1 +
√

2)α‖f‖1‖h‖1|g(t)|. (6.3.11)
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If we integrate (6.3.11), we arrive at∫
G

‖ϕ(f ∗ g(t)δt, h)− ϕ(f, g(t)δt ∗ h)‖dλ(t) ≤ 288π(1 +
√

2)α‖f‖1‖h‖1

∫
G

|g(t)|dλ(t)

= 288π(1 +
√

2)α‖f‖1‖h‖1‖g(t)‖1.

(6.3.12)

Note that ∫
G

ϕ(f ∗ g(t)δt, h)dλ(t) = ϕ(

∫
G

f ∗ g(t)δtdλ(t), h)

= ϕ(f ∗ g, h),

(6.3.13)

and ∫
G

ϕ(f, g(t)δt ∗ h)dλ(t) = ϕ(f,

∫
G

g(t)δt ∗ hdλ(t))

= ϕ(f, g ∗ h).

(6.3.14)

Since

‖
∫
G

(ϕ(f ∗ g(t)δt, h) − ϕ(f, g(t)δt ∗ h))dλ(t)‖

≤
∫
G

‖ϕ(f ∗ g(t)δt, h)− ϕ(f, g(t)δt ∗ h)‖dλ(t),

combining (6.3.12), (6.3.13) and (6.3.14) imply that

‖ϕ(f ∗ g, h)− ϕ(f, g ∗ h)‖ ≤ 288π(1 +
√

2)α‖f‖1‖g‖1‖h‖1,

as desired.

6.3.2 C∗-algebras.

Let A be a C∗-algebra. It is well-known that the multiplier algebra of A,M(A) becomes

a unital C∗-algebra (see [15, Proposition 3.2.39]).

Theorem 6.3.6. Let A be a C∗-algebra, and let ϕ : A×A→ X be a continuous bilinear

map on a Banach space X satisfying the property

a, b ∈ A, ab = 0⇒ ‖ϕ(a, b)‖ ≤ α‖a‖‖b‖ (6.3.15)
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for some α ≥ 0. Then

‖ϕ(ab, c)− ϕ(a, bc)‖ ≤ 288π(1 +
√

2)α‖a‖‖b‖‖c‖

for all a, b, c ∈ A.

Proof. Recall that the unitary elements of M(A) are those u ∈M(A) such that

uu∗ = u∗u = 1,

which clearly entails that ‖uk‖ = 1 for each k ∈ Z. Hence unitary elements are doubly

power bounded and consequently Lemma 6.3.4 gives that

‖ϕ(au, c)− ϕ(a, uc)‖ ≤ 288π(1 +
√

2)α‖a‖‖c‖, (6.3.16)

for each a, c ∈ A, and a unitary u ∈ M(A). It is clear that (6.3.16) still holds true in

the case when u lies in the convex hull of the set of the unitary elements ofM(A). Since

M(A) is a C∗-algebra, by the Russo-Dye Theorem [15, Theorem 3.2.18] this convex hull

is norm-dense in the closed unit ball of M(A). Consequently (6.3.16) also holds for each

u in the closed unit ball of M(A). In particular, we get

‖ϕ(ab, c)− ϕ(a, bc)‖ ≤ 288π(1 +
√

2)α‖a‖‖b‖‖c‖

for all a, b, c ∈ A. This completes the proof.

6.4 Banach algebras’ matrix spaces

It was pointed out in Remark 3.3.4 that there is a Banach algebra without the strong

property (B). Indeed, for majority of Banach algebras, it is not known whether or not

they have the strong property (B). So we could ask if there is a way that an arbitrary

Banach algebra relates to the strong property (B). In this section, we show that there is

such a way. In fact, we prove that if A is an arbitrary Banach algebra such that Mn(A) is

a Banach algebra for some n ≥ 2 satisfying an identity (inequalities (6.4.1)), then Mn(A)

has the strong property (B) and contains A as a closed subalgebra in a natural way. This
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result, in particular, shows that subalgebras might not inherit the strong property (B). In

this section, we show that matrix spaces related to an arbitrary Banach algebra have the

strong propert (B). The following Lemma is fundamental to prove such a fact. It shows

that idempotents fit nicely in the strong property (B).

Lemma 6.4.1. Let A be a unital Banach algebra. For n ∈ N, suppose that (Mn(A), ‖ · ‖)

is a Banach algebra with the property that for each [aij] ∈Mn(A)

‖aij‖ ≤ ‖[aij]‖ ≤
∑
i,j

‖aij‖ = ‖[aij]‖s. (6.4.1)

Let X be a Banach space and ϕ : Mn(A)×Mn(A)→ X a bounded bilinear map with the

property that

A,B ∈Mn(A), AB = 0⇒ ‖ϕ(A,B)‖ ≤ α‖A‖‖B‖,

for some α > 0. Then for all A,B ∈Mn(A) and every idempotent P ∈Mn(A)

‖ϕ(AP,B)− ϕ(A,PB)‖ ≤ 2‖P‖(n+ ‖P‖)α‖A‖‖B‖.

Proof. Let I be the identity matrix in Mn(A). We have AP (I − P )B = 0. So by the

assumption

‖ϕ(AP, (I − P )B)‖ ≤ α‖A‖‖B‖‖P‖(‖I‖+ ‖P‖)

≤ α‖P‖(n+ ‖P‖)‖A‖‖B‖.

So

‖ϕ(AP,B)− ϕ(AP, PB)‖ ≤ α‖P‖(n+ ‖P‖)‖A‖‖B‖.

Hence we can write

‖ϕ(AP,B)− ϕ(A,PB)‖ = ‖ϕ(AP + A(I − P ), PB)− ϕ(AP,B)‖

≤ ‖ϕ(AP, PB)− ϕ(AP,B)‖+ ‖ϕ(A(I − P ), PB)‖

≤ 2α‖P‖(n+ ‖P‖)‖A‖‖B‖.
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From now on, we always assume that (Mn(A), ‖ · ‖) is a Banach algebra satisfying in

(6.4.1) given in Lemma 6.4.1.

We show that if A is unital, then there is a fixed number N such that each element

of Mn(A) is generated by at most N idempotents.

Lemma 6.4.2. Let A be a unital Banach algebra with unit e. For a ∈ A and 1 ≤ i, j ≤ n,

define the following matrices in Mn(A):

(Aij,a)ks =

 a ks = ij

0 otherwise
1 ≤ k, s ≤ n.

Then every matrix A = [aij] ∈Mn(A) can be written in the following form:

A = A12,eA21,a11

+
n∑
j=2

Aj(j−1),eA(j−1)j,ajj

+
∑
i 6=j

Aij,aij .

Proof. It is easy to check that the following hold for each a ∈ A,

A11,a = A12,eA21,a , (6.4.2)

and

Ajj,a = Aj(j−1),eA(j−1)j,a 2 ≤ j ≤ n. (6.4.3)

Now using (6.4.2) and (6.4.3), we have

A =
∑
i,j

Aij,aij

= A12,eA21,a11

+
n∑
j=2

Aj(j−1),eA(j−1)j,ajj

+
∑
i 6=j

Aij,aij .
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Taking into account Lemma 6.4.2, we prove Lemma 6.4.3 and Lemma 6.4.4 below to

proceed to prove the main result of this section which is Theorem 6.4.5.

Lemma 6.4.3. Let B1, . . . , Bk ∈ Mn(A) with ‖Bi‖ ≤ M for each 1 ≤ i ≤ n. Suppose

that for each A,C ∈Mn(A),

‖ϕ(ABi, C)− ϕ(A,BiC)‖ ≤ Liα‖A‖‖C‖,

for some Li > 0. Then

(i) ‖ϕ(AB1 · · ·Bk, C)− ϕ(A,B1 · · ·BkC)‖ ≤Mk−1(L1 + · · ·+ Lk)α‖A‖‖B‖.

(ii) ‖ϕ(A(B1 + · · ·+Bk), C)− ϕ(A, (B1 + · · ·+Bk)C)‖ ≤ (L1 + · · ·+ Lk)α‖A‖‖B‖.

Proof. (ii) is trivial. We prove (i) for k = 2. The general case is obtained by applying

induction. We have

‖ϕ(AB1B2, C)− ϕ(AB1, B2C)‖ ≤ L2α‖AB1‖‖C‖ ≤ML2α‖A‖‖C‖. (6.4.4)

and

‖ϕ(AB1, B2C)− ϕ(A,B1B2C)‖ ≤ L1‖A‖‖B2C‖ ≤ML1α‖A‖‖C‖. (6.4.5)

Hence using (6.4.4) and (6.4.5) we get

‖ϕ(AB1B2, C)− ϕ(A,B1B2C)‖ ≤ ‖ϕ(AB1, B2C)− ϕ(AB1, B2C)‖

+ ‖ϕ(AB1, B2C)− ϕ(A,B1B2C)‖

≤ M(L1 + L2)α‖A‖‖C‖.

Lemma 6.4.4. Let a ∈ A with ‖a‖ ≤ 1. Then for each i 6= j, and A,B ∈Mn(A),

‖ϕ(AAij,a, B)− ϕ(A,Aij,aB)‖ ≤ 2(3n+ 5)α‖A‖‖B‖.
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Proof. For a, b ∈ A and 1 ≤ i, j, k, l ≤ n, we define the following matrix in Mn(A),

(Bkl,b
ij,a)ms =


a ms = ij

b ms = kl

0 otherwise

1 ≤ m, s ≤ n.

For i and j with i 6= j, it is easy to check that

Aij,a = Bjj,e
ij,a − Ajj,e,

It is straightforward to see that both matrices in the right hand side of the preceding

equality are idempotents. Since (Mn(A), ‖ · ‖) satisfies in (6.4.1), for each 1 ≤ i, j ≤ n

with i 6= j, we have

‖Ajj,e‖ ≤ ‖e‖ = 1 and ‖Bjj,e
ij,a‖ ≤ ‖a‖+ ‖e‖ ≤ 2.

Using this fact and Lemma 6.4.3(ii), and Lemma 6.4.1, we have

‖ϕ(AAij,a, B)− ϕ(A,Aij,aB)‖ ≤ 2[(2n+ 4) + (n+ 1)]α‖A‖‖B‖

= 2(3n+ 5)α‖A‖‖B‖.

We can now show that the matrix spaces of a unital Banach algebra have the strong

property (B) with a constant.

Theorem 6.4.5. Let A be a unital Banach algebra such that Mn(A) is a Banach algebra

satisfying in (6.4.1) for some n ≥ 2. Then Mn(A) has the strong property (B) with a

constant given by

Cn = (6n3 + 16n2 + 10n).

Proof. Let X be a Banach space and ϕ : Mn(A) × Mn(A) → X a bilinear map (not

necessarily bounded!) with the property that

AB = 0⇒ ‖ϕ(A,B)‖ ≤ α‖A‖‖B‖.
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Let A,B,C ∈ Mn(A) with ‖A‖ = ‖[aij]‖ ≤ 1 and ‖B‖, ‖C‖ ≤ 1. Since (Mn(A), ‖ · ‖)

satisfies in (6.4.1), we have that ‖aij‖ ≤ 1 for each 1 ≤ i, j ≤ n. Consequently (again

using (6.4.1)), for all 1 ≤ i, j, k, s ≤ n, we should have ‖Aks,aij‖ ≤ 1. Now using Lemma

6.4.2, we can write

‖ϕ(BA,C)− ϕ(B,AC)‖ ≤ ‖ϕ(BA12,eA21,a11 , C)− ϕ(B,A12,eA21,a11C)‖

+
n∑
j=2

‖ϕ(BAj(j−1),eA(j−1)j,ajj , C)− ϕ(B,Aj(j−1),eA(j−1)j,ajjC)‖

+
∑
i 6=j

‖ϕ(BAij,aij , C)− ϕ(B,Aij,aijC)‖.

If we apply Lemma 6.4.3.(i) and Lemma 6.4.4 we get

‖ϕ(BA,C)− ϕ(B,AC)‖ ≤ 4(3n+ 5)α

+ (n− 1)[4(3n+ 5)α]

+ (n2 − n)[2(3n+ 5)α].

A simple calculation now shows that the constant in the right hand side is equal to

2(3n3 + 8n2 + 5n).

This completes the proof.

We can improve the result of Theorem 6.4.5 by eliminating the assumption on the Ba-

nach algebra to be unital. As one may expect, we do this with considering the unitization

of the given Banach algebra.

Theorem 6.4.6. Let A be a Banach algebra. Let A] denote the unitization of A. Suppose

that for n ≥ 2, (Mn(A]), ‖ · ‖) is a Banach algebra satisfying (6.4.1). Then (Mn(A), ‖ · ‖)

has the strong property (B) with a constant bounded by

n2(6n3 + 16n2 + 10n).

Proof. According to Theorem 6.4.5, Mn(A]) has the strong property (B) with a constant

given by

Cn = (6n3 + 16n2 + 10n).
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Since Mn(A) is an ideal of Mn(A]), Proposition 3.2.1 implies that it has the strong

property (B) with a constant given by

‖I ⊗ 1‖2
Mn(A)(6n

3 + 16n2 + 10n) ≤ n2(6n3 + 16n2 + 10n).

In the following examples, we present various classes of norms on Mn(A) for which

Theorem 6.4.5 and Theorem 6.4.6 hold. Thus demonstrating the generality of our results.

Example 6.4.7. Let A be a Banach algebra. For n ≥ 2, Mn(A) becomes a Banach algebra

with the following norm

‖[aij]‖s =
∑
i,j

‖aij‖.

It is clear that (Mn(A]), ‖·‖s) satisfies in (6.4.1). Hence, by Theorem 6.4.6, (Mn(A), ‖·‖s)

has the strong property (B) with a constant given by

Cn = n2(6n3 + 16n2 + 10n).

If A is unital, then Theorem 6.4.5 shows that this constant can be reduced to

Cn = (6n3 + 16n2 + 10n).

In some cases, the constants given in Theorem 6.4.5 and Theorem 6.4.6 can be reduced.

Example 6.4.8. Let A be a unital Banach algebra. For n ≥ 2, consider the operator norm

on Mn and equip Mn(A) ∼= Mn ⊗A with the projective tensor norm. Then ‖idMn⊗A‖ =

‖idMn‖‖idA‖ = 1. Hence, in this case, proof of Lemma 6.4.1 can be modified to show that

for each idempotent P ∈Mn(A),

‖ϕ(AP,B)− ϕ(A,PB)‖ ≤ 2‖P‖(1 + ‖P‖)α‖A‖‖B‖.

Consequently, proof of Theorem 6.4.5 can be modified to show that Mn(A) has the strong

property (B) with a constant given by

Cn = 16(n2 + n).
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If A is an arbitrary Banach algebra, then a similar argument as that of Theorem 6.4.6

can be applied to shows that Mn(A) has the strong property (B) with a constant given

by

Cn = 16(n2 + n).

Proposition 6.4.9. Every Banach algebra is isometrically embedded into a Banach alge-

bra which has the strong property (B).

Proof. Let A be an arbitrary Banach algebra . According to Example 6.4.7, (M2(A), ‖·‖s)

has the strong property (B). It is easy to check that the mapping θ : A → M2(A) given

by

θ(a) =

 a 0

0 0


is an isometric algebraic homomorphism.

Corollary 6.4.10. Subalgebras might not inherit the strong property (B).

Proof. According to Corollary 3.3.4, A(D) does not have the strong property (B). How-

ever, it is a closed subalgebra of M2(A(D)) which has the strong property (B) according

to Proposition 6.4.9.

6.5 Finite nest algebras on arbitrary Hilbert spaces

CSL algebras and more specially, nest algebras are important classes of non-self adjoint

operator algebras. In particular, when dealing with the problems of the reflexivity and

hyperreflexivity of operator algebras, they where amongst the first to be studied. In [5],

Arveson showed that every CSL algebra is a reflexive operator algebra. He proved latter

in [6] that some special CSL algebras called the nest algebra are hyperreflexive. Actually,

his result highlighted nest algebras to be very rare hyperreflexive operator algebras for

which the hyperreflexivity constant is 1, i.e., for every nest algebra N ⊆ B(H),

dist(T,N) = distr(T,N), T ∈ B(H).
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In the present and the following sections, we prove that finite nest algebras on any Hilbert

space and finite CSL algebras on separable Hilbert spaces have the strong property (B)

with a constant. To do so, we first show that such operator algebras can always be

represented as n× n-matrices for n ≥ 2.

Clearly the largest possible nest algebra that can be defined on a Hilbert space H is

B(H) which is generated by the trivial nest {0, H}. A nice property of B(H) is that its

elements are linear combinations of at most 10 idempotents.

Theorem 6.5.1. Let H be a Hilbert space and T ∈ B(H). Then

T =
10∑
n=1

λnPn

where for 1 ≤ n ≤ 10, Pn ∈ B(H) is a projection and λn ∈ C with |λn| ≤ 2‖T‖.

Proof. For the proof and more details see [37].

The next lemma shows that elements of a finite nest algebra can be represented as

matrices. This was pointed out in [13] without proof. But for sake of completion, we

present a proof for it. This lemma together with Theorem 6.5.1 will be used later to show

that a finite nest algebras is generated by its idempotents.

Lemma 6.5.2. Let H be a Hilbert space and 0 = e0 ≤ e1 ≤ · · · ≤ en = 1 a finite nest on

H. If Hj is the range of ej − ej−1, then

H = H1 ⊕ · · · ⊕Hn.

Moreover, if N is the corresponding nest algebra, then elements of N are exactly those

represented as upper triangular matrices with respect to above decomposition.

Proof. It is easy to check that for each 1 ≤ j ≤ n, ej − ej−1 is a projection. Moreover it

is clear that,

n∑
i=1

ei − ei−1 = 1. (6.5.1)
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Note that if i < j, then

(ej − ej−1)(ei − ei−1) = 0.

Consequently, we find that

Hj ∩Hi = ran(ej − ej−1) ∩ ran(ei − ei−1) = {0}. (6.5.2)

(6.5.1) and (6.5.2) imply that

H = H1 ⊕ · · · ⊕Hn.

Note that each a ∈ B(H) is represented as a matrix [aij] with respect to this decomposition

where aij : Hj → Hi maps h ∈ Hj to the orthogonal projection of ah on Hi. Hence

aij = (ei − ei−1)a(ej − ej−1).

If a ∈ N , then for each 1 ≤ j ≤ n we have aej = ejaej. Hence

aij = (ei − ei−1)(ejaej − ej−1aej−1).

This implies that

i > j ⇒ aij = 0.

Hence a is represented as an upper triangular matrix.

Conversely, suppose that a has an upper triangular representation. Then for i > j, we

have

aij = (ei − ei−1)a(ej − ej−1) = 0. (6.5.3)

To show a ∈ N , we need to show that

(1− ej)aej = 0, 1 ≤ j ≤ n.

We prove it for j = 1; other cases are proven similarly. According to (6.5.3) we can write

(e2 − e1)ae1 = 0

(e3 − e2)ae1 = 0

...

(en − en−1)ae1 = 0

(6.5.4)
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If we add all equations in (6.5.4) we get,

(1− e1)ae1 = 0,

as desired.

As it is shown in the next Theorem, representing finite nest algebras as matrices is

fundamental in proving that these type of operator algebras have the strong property (B).

Theorem 6.5.3. Let H be a Hilbert space and 0 = e0 ≤ e1 ≤ · · · ≤ en = 1 a finite nest

on H. If N is the corresponding nest algebra, then N has the strong property (B) with a

constant given by rn = 33n+ 7n2.

Proof. For 1 ≤ j ≤ n, if Hj is the range of ej − ej−1, then according to Lemma 6.5.2

H = H1 ⊕ · · · ⊕Hn

and for T ∈ B(H), we have T ∈ N if and only if its matrix form with respect to above

decomposition is upper triangular. Now assume that ϕ : N × N → C is a bilinear map

with the property that

a, b ∈ N ab = 0⇒ ‖ϕ(a, b)‖ ≤ α‖a‖‖b‖.

Using the same argument as we used to prove Lemma 6.4.1, we can check that for any

idempotent P ∈ N and any a, b ∈ N , we have

‖ϕ(aP, b)− ϕ(a, Pb)‖ ≤ 2‖P‖(‖I − P‖)α‖a‖‖b‖. (6.5.5)

Note that for T ∈ B(H), if the matrix form is given by T = [Tij], then

‖Tij‖ ≤ ‖T‖ ≤
∑
i,j

‖Tij‖. (6.5.6)

Now pick c = [cij] ∈ N with ‖c‖ ≤ 1. Then

c =
∑
i≤j

Acij ,ij,

94



where Acij ,ij ∈ B(H) is a matrix all entries of which are 0 except the ijth entry which is

cij. If i < j, then we can write

Acij ,ij = Bcij ,ij − Ejj,

where

(Bcij ,ij)mn =


1 mn = jj

cij mn = ij

0 otherwise

and

(Ejj)mn =

 1 mn = jj

0 otherwise
.

Note that Bcij ,ij and Ejj are both idempotents and by (6.5.6) we have ‖Bcij ,ij‖ ≤ 2 and

‖Ejj‖ ≤ 1. Consequently by applying (6.5.5) we obtain that

‖ϕ(aAcij ,ij, b)− ϕ(a,Acij ,ijb)‖ ≤ 14α‖a‖‖b‖. (6.5.7)

On the other hand, for 1 ≤ i ≤ n, we have cii ∈ B(Hi). So by Theorem 6.5.1 we have

cii =
10∑
k=1

λikP
i
k,

where P i
k ∈ B(Hi) ⊆ N is a projection and

|λik| ≤ 2‖cii‖ ≤ 2‖c‖ ≤ 2.

As a result, we have

‖ϕ(aAcii,ii, b)− ϕ(a,Acii,iib)‖ ≤
10∑
k=1

2‖ϕ(aAPki ,ii, b)− ϕ(a,APki ,iib)‖

≤ 40α‖a‖‖b‖.

(6.5.8)

We have

c =
n∑
i=1

Acii,ii +
∑
i<j

Acij ,ij.
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Hence, by applying (6.5.7) and (6.5.8) we can write

‖ϕ(ac, b)− ϕ(a, cb)‖ ≤
n∑
i=1

‖ϕ(aAcii,ii, b)− ϕ(a,Acii,iib)‖

+
∑
i<j

‖ϕ(aAcij ,ij, b)− ϕ(a,Acij ,ijb)‖

≤ (40n+ 14
n(n− 1)

2
)α‖a‖‖b‖

= (33n+ 7n2)α‖a‖‖b‖.

(6.5.9)

Finally applying (6.5.9), for arbitrary c ∈ N we obtain that

‖ϕ(ac, b)− ϕ(a, cb)‖ ≤ (33n+ 7n2)α‖a‖‖b‖‖c‖,

as claimed.

Remark 6.5.4. The idea that is used to prove Theorem 6.2.11, can be applied to construct

more examples of operator algebras with the strong property (B). Let H be a Hilbert

space. Assume that H = H1⊕· · ·⊕Hn is any decomposition of H. Let A be a subalgebra

of B(H) having the following properties:

(i) If a = [aij] ∈ A, then Aaij ,ij ∈ A for each 1 ≤ i, j ≤ n, where

(Aij)mn =

 aij mn = ij

0 otherwise
.

(ii) For each 1 ≤ i ≤ n, Eii ∈ A.

(iii) For 1 ≤ i ≤ n, if there is A ∈ A such that Aaii,ii /∈ CEii, then we require that

B(Hi) ⊆ A.

Then A has the strong property (B).

Example 6.5.5. Let H be Hilbert space.

(i) If H = H1⊕· · ·⊕Hn is any decomposition of H, then subalgebra of B(H) containing all

operators with upper triangular representation as well as subalgebra of B(H) containing

all operators with lower triangular representation with respect to this decomposition have

the strong property (B).
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(ii) Let H = H1⊕H2⊕H3 be a decomposition of H. It is easy to check that the following

is a subalgebra of B(H) satisfying the assumptions of Remark 6.5.4,

A = {


b11 0 b13

b21 b22 b23

0 0 b33

 : bij ∈ B(Hj, Hi)}.

So A has the strong property (B).

(iii) Consider the following subalgebra of A defined in (ii).

B = {


b11 0 b13

b21 b22 b23

0 0 b33

 : bii ∈ C1Hi , bij ∈ B(Hj, Hi)}.

According to Remark 6.5.4, B has the strong property (B).

6.6 Finite CSL algebras on Separable Hilbert spaces

As it was presented in the previous section, the main tool to prove a finite nest algebra has

the strong property (B) is to represent elements of the nest algebra as upper triangular

matrices. In the following, we present a similar representation for finite CSL algebras on

separable Hilbert spaces. The main reference for this section is [34].

Definition 6.6.1. Let n ∈ N, and let � be a partial order on {1, 2, . . . , n}. A subset F

of {1, 2, . . . , n} is �-hereditary (or simply hereditary if no confusion arises) if

i � j ∈ F ⇒ i ∈ F .

The class of all hereditary subsets is denoted by Dn(�).

Remark 6.6.2. It is easy to check that Dn(�) is closed under intersection and union.

Moreover, for 1 ≤ j ≤ n, each subset of the form

{i : 1 ≤ i ≤ n and i � j} (6.6.1)
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is in Dn(�). It can be shown that in general, not all hereditary subsets of {1, 2, . . . , n}

are of the form (6.6.1). However, it is not difficult to check that any hereditary subset

has to be a union of subsets of the form (6.6.1).

Theorem 6.6.3. Let H be a separable Hilbert space. Assume that L is a finite CSL

consisting of n non-zero projections. Then there is a partial order � on the set {1, . . . , n}

consistent with the natural order,i.e.,

i � j ⇒ i ≤ j, 1 ≤ i, j ≤ n.

and a decomposition H = ⊕ni=1Hi for the Hilbert space such that

algL = {[Tij] ∈ B(H) : Tij ∈ B(Hj, Hi), Tij = 0 if i � j}. (6.6.2)

So algL consists of all upper triangular matrices with possibly some fixed zeros up the

diagonal.

Proof. For a proof to this theorem see [34].

Remark 6.6.4. According to Theorem 6.6.3, the “building blocks” of finite CSL’s are:

(i) an orthogonal decomposition H = H1 ⊕ · · · ⊕Hn.

(ii) a partial order � consistent with the natural order.

Note that in order to construct finite CSL algebras we do not require the partial order to

be consistent with the natural order. Actually, if H = H1 ⊕ · · · ⊕Hn, and � is a partial

order on {1, . . . , n} (not necessarily consistent with the natural order), then according to

Remark 6.6.2,

L = {⊕i∈FHi : F ∈ Dn(�)}

is a subspace lattice. Also corresponding CSL algebra is given by (6.6.2). To see this,

let T = [Tij] ∈ B(H) with Tij = 0 if i � j. We show that T ∈ algL. According to

Remark 6.6.2, it suffices to show that subspaces of the form M = ⊕i�j0Hi, for some fixed

1 ≤ j0 ≤ n, are invariant under T . We notice that each operator Tij acts on Hj and maps

Hj into Hi. Hence Tij acts non-trivially on M only if j � j0 and i � j. In this case, we

have

Tij(Hj) ⊆ Hi ⊆M.
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Hence T leaves M invariant. Consequently, T ∈ algL.

Conversely, let T = [Tij] be an operator on H. Suppose that for some 1 ≤ i0, j0 ≤ n with

i0 � j0, we have Ti0j0 6= 0. We define

M = ⊕i�j0Hi ∈ L.

Then Hj0 ⊆M and Ti0j0(Hj0) ⊆ Hi0 *M. Hence T /∈ algL.

Note that a straightforward algorithm can be used to show that this CSL algebra, algL,

is isomorphic to another CSL algebra generated by another partial order consistent with

the natural order.

Example 6.6.5. Let H = H1 ⊕H2 ⊕H3. Define the following partial order on {1, 2, 3},

2 � 1 � 3 and n � n (n = 1, 2, 3).

If we let

L = {⊕i∈FHi : F ∈ D3(�)},

then

algL = {


b11 0 b13

b21 b22 b23

0 0 b33

 : bij ∈ B(Hj, Hi)}.

which is exactly algebra constructed in Example 6.5.5 (ii).

Similar to nest algebras, representing separable CSL algebras as matrices paves the

way to prove that these operator algebras have the strong property (B).

Proposition 6.6.6. Let L be a finite CSL consisting of n non-zero projection on a sep-

arable Hilbert space H. Then algL has the strong property (B) with a constant given

by

rn = 33n+ 7n2.

Proof. We use the same argument as was used to prove Theorem 6.5.3. Note that ac-

cording to Theorem 6.6.3, every finite CSL algebra has a representation satisfying in the

assumptions of Remark 6.5.4. Note that the constant rn for the strong property (B) of
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nest algebras was obtained based on the fact that each matrix in N has at most n non-zero

entries on and n2−n
2

non-zero entries off the diagonal. Theorem 6.6.3 shows that the same

thing holds true for CSL algebras. Hence we can end up with obtaining the constant

rn = 33n+ 7n2

for the strong property (B) of CSL algebras.

Remark 6.6.7. The constant rn given in Proposition 6.6.6 is a universal constant for all

finite CSL algebras on separable Hilbert spaces whose lattices have n non-zero elements.

This constant can possibly be reduced if we pick certain finite CSL algebras.

For example, let H be a separable Hilbert space with the following decomposition,

H = H1 ⊕ · · · ⊕Hn.

Define the partial order � on {1, · · · , n} by

i � n and i � i, 1 ≤ i ≤ n.

By Theorem 6.6.3, these decomposition and partial order give us a finite CSL algebra the

∗-diagram of which is given by 
∗ ∗

∗ 0
...

0
. . .

...

∗

 .

So there are n non-zero entries on and n− 1 non-zero entries off the diagonal. Using

this fact, one can apply the argument that was used in the proof of Theorem 6.5.3 to

obtain sn = 54n− 14 as a constant for the strong property (B) of this finite CSL algebra.
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Chapter 7

An upper bound for the hyperreflexivity

constant of the bounded n-cocycle spaces

of Banach algebras

In the present chapter, we aim to take the final step towards the hyperreflexivity of

the bounded n-cocycle spaces by finding the hyperreflexivity constant. Let S ⊆ B(X, Y )

be a closed subspace. So far, the question was that whether there exist a constant C > 0

such that

dist(T,S) ≤ Cdistr(T,S), (T ∈ B(H)). (7.0.1)

Now we ask, if such a constant exists, then what is the smallest value it can attain? We call

this the hyperreflexivity constant of S. Usually it is not easy to find the hyperreflexivity

constant. Hence, we are satisfied if we can find an upper bound for this constant.

The problem of finding the hyperreflexivity constant was introduced at the same time

when the problem of hyperreflexivity was set for the operator algebras. Possibly, nest

algebras have the most elegant hyperreflexivity constant. It is proven in [5] that the

hyperreflexivity constant for any nest algebra is 1. Some results on the upper bounds for

the hyperreflexivity constant of some classes of von Neumann algebras are provided in

[11, 12]. Similar results for certain spaces of matrices can be found in [8]. Although we

are usually more interested in the upper bounds for the hyperreflexivity constant, some

information in the other way around is provided in [16] where a lower bound for the

hyperreflexivity constant of certain matrix spaces and the CSL algebras related to the

finite tensor product of some non-trivial nests is found.
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We use our approach in the preceding chapter where we found constants for the strong

property (B) of various Banach algebras to obtain upper bounds for the hyperreflexivity

constant of the bounded n-cocycle spaces related to these Banach algebras.

7.1 General theory

So far we have introduced many Banach algebras with the strong property (B). More so,

we could come with a constant for the strong property (B) of all such Banach algebras.

In this section, we show how existence of such a constant can help us to find an upper

bound for the hyperreflexivity constant of the bounded n-cocycle spaces. We achieve our

goal by modifying our approach in Section 5.2 and its main result. We start with the

following proposition which is a modification of Proposition 5.2.1

Proposition 7.1.1. Let A be a unital Banach algebra having the strong property (B) with

a constant r.

(i) For every right Banach A-module X and a bounded operator D : A → X and each

α ≥ 0 satisfying

ab = 0⇒ ‖D(a)b‖ ≤ α‖b‖‖a‖

we have

‖D(ab)c−D(a)bc‖ ≤ rα‖a‖‖b‖‖c‖ (∀a, b, c ∈ A).

(ii) For every right Banach A-module X and a bounded operator D : A → X and each

β ≥ 0 satisfying

ab = bc = 0⇒ ‖aD(b)c‖ ≤ β‖a‖‖b‖‖c‖

we have

‖d[D(acb)− aD(cb)−D(ac)b+ aD(c)b]e‖ ≤ r2β‖a‖‖b‖‖c‖‖d‖‖e‖ (∀a, b, c, d, e ∈ A).

Proof. (i) We define ϕ : A× A→ X with ϕ(a, b) = D(a)b. If ab = 0, then

||ϕ(a, b)|| = ||D(a)b|| ≤ α‖a‖‖b‖.
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Therefore by the assumption we get

‖ϕ(ab, c)− ϕ(a, bc)‖ ≤ rα‖a‖‖b‖‖c‖,

or equivalently,

‖D(ab)c−D(a)bc‖ ≤ rα‖a‖‖b‖‖c‖,

as desired.

(ii) Fix a2, b2 ∈ A with a2b2 = 0 and ‖a2‖ = ‖b2‖ = 1. Define ϕ : A× A→ X with

ϕ(a, b) = aD(ba2)b2.

If ab = 0, then a(ba2) = (ba2)b2 = 0. Hence

‖ϕ(a, b)‖ = ‖aD(ba2)b2‖ ≤ β‖a‖‖ba2‖‖b2‖ ≤ β‖a‖‖b‖.

By the assumption, we have

‖ϕ(ab, c)− ϕ(a, bc)‖ ≤ rβ‖a‖‖b‖‖c‖,

or equivalently,

‖abD(ca2)b2 − aD(bca2)b2‖ ≤ rβ‖a‖‖b‖‖c‖. (7.1.1)

Now fix a, c, d ∈ A with ‖a‖ = ‖c‖ = ‖d‖ = 1. Define ψ : A× A→ X with

ψ(f, b) = daD(cf)b− dD(acf)b.

Obviously if fb = 0, then by (7.1.1),

‖ψ(f, b)‖ ≤ rβ‖f‖‖b‖.

Hence, again by our assumption we deduce that for every f, b, e ∈ A,

‖ψ(fb, e)− ψ(f, be)‖ ≤ rrβ‖f‖‖b‖‖e‖

= r2β‖f‖‖b‖‖e‖,
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or equivalently,

‖daD(cfb)e− dD(acfb)e− daD(cf)be+ dD(acf)be‖ ≤ r2β‖f‖‖b‖‖e‖.

By putting f = 1, we get

‖d[D(acb)− aD(cb)−D(ac)b+ aD(c)b]e‖ ≤ r2β‖a‖‖b‖‖c‖‖d‖‖e‖ (∀a, b, c, d, e ∈ A).

Proposition 7.1.1 (ii) can be improved to the higher dimensions using the induction

as it is demonstrated in the following Theorem. We note that this is a modification of

Theorem 5.2.2.

Theorem 7.1.2. Let A be a unital Banach algebra with unit 1 having the strong property

(B) with a constant r. Suppose that X is a unital Banach A-bimodule, n ∈ N, T ∈

Bn(A,X) and let γ ≥ 0 satisfying

a0a1 = a1a2 = · · · = anan+1 = 0⇒ ‖a0T (a1, . . . , an)an+1‖ ≤ γ‖a0‖ · · · ‖an+1‖.

Also T (a1, . . . , an) = 0 if for some 1 ≤ i ≤ n, ai = 1. Then

‖δn(T )‖ ≤ 2n−1rn+1γ.

Proof. We prove the statement by induction on n. For n = 1, the result follows from

Proposition 7.1.1(ii) together with the fact that X is unital and T (1) = 0.

Now suppose that the result is true for n ∈ N. We prove it for n + 1. Consider

T ∈ Bn+1(A,X) and γ ≥ 0 satisfying

a0a1 = a1a2 = · · · = an+1an+2 = 0⇒ ||a0T (a1, . . . , an+1)an+2‖ ≤ γ‖a0‖ · · · ‖an+2‖.

Also T (a1, . . . , an+1) = 0 if for some 1 ≤ i ≤ n + 1, ai = 1. Take ai ∈ A, i = 0, . . . , n + 1

with a0a1 = a1a2 = · · · = anan+1 = 0. We first show that

‖a0 ? Λn(T )(a1, . . . , an) ? an+1‖ ≤ rγ‖a0‖ · · · ‖an+1‖. (7.1.2)
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First suppose that ‖a0‖ = · · · = ‖an+1‖ = 1, and let

S = a0 ? Λn(T )(a1, . . . , an) ? an+1.

For every b, c ∈ A with bc = 0, we have

S(b)c = [a0 ? Λn(T )(a1, . . . , an) ? an+1](b)c

= a0Λn(T )(a1, . . . , an)(an+1b)c− a0Λn(T )(a1, . . . , an)(an+1)bc

= a0T (a1, . . . , an, an+1b)c.

But a0a1 = · · · = an(an+1b) = (an+1b)c = 0. Thus, by our hypothesis

‖a0T (a1, . . . , an, an+1b)c‖ ≤ γ‖a0‖ · · · ‖an+1b‖‖c‖ ≤ γ‖b‖‖c‖

implying that ‖S(b)c‖ ≤ γ‖b‖‖c‖. Hence, by Proposition 7.1.1(i), we get

‖S(bc)− S(b)c‖ ≤ rγ‖b‖‖c‖ (∀b, c ∈ A). (7.1.3)

On the other hand,

S(1) = (a0 ? Λn(T )(a1, . . . , an) ? an+1)(1)

= a0Λn(T )(a1, . . . , an)(an+11)− a0Λn(T )(a1, . . . , an)(an+1)1

= 0.

Putting b = 1 in (7.1.3), we can write

‖S(c)‖ ≤ rγ‖c‖ (c ∈ A)

or equivalently,

‖S‖ = ‖a0 ? Λn(T )(a1, . . . , an) ? an+1‖ ≤ rγ. (7.1.4)

Now consider the general case. If for some 0 ≤ i ≤ n+ 1, ai = 0, then we clearly have

‖a0 ? Λn(T )(a1, . . . , an) ? an+1‖ ≤ rγ‖a0‖ . . . ‖an+1‖.

105



Now suppose that for all 0 ≤ i ≤ n+ 1, ai 6= 0. Then

a0

‖a0‖
a1

‖a1‖
= · · · = an+1

‖an+1‖
an+2

‖an+2‖
= 0,

and so, by (7.1.4),

‖ a0

‖a0‖
? Λn(T )(

a1

‖a1‖
, . . . ,

an
‖an‖

) ?
an+1

‖an+1‖
‖ ≤ rγ,

implying that (7.1.2) holds.

Now let BA(A,X) denote the space of all left multipliers from A into X and suppose

that q : B(A,X) → B(A,X)

BA(A,X)
is the natural quotient mapping. It is straightforward to

verify that
B(A,X)

BA(A,X)
is a unital Banach A-bimodule and q is an A-bimodule morphism.

Thus, by (7.1.2),

‖a0 ? q(Λn(T )(a1, . . . , an)) ? an+1‖ = ‖q(a0 ? Λn(T )(a1, . . . , an) ? an+1)‖

≤ ‖q‖‖a0 ? Λn(T )(a1, . . . , an) ? an+1‖

≤ rγ‖a0‖ . . . ‖an+1‖.

Moreover, if for some i, 1 ≤ i ≤ n, ai = 1, then for every a ∈ A,

Λn(T )(a1, . . . , an)(a) = T (a1, . . . , an, a) = 0.

This shows that q ◦ Λn(T )(a1, . . . , an) = 0 if for some 1 ≤ i ≤ n, ai = 1. Now using the

assumption of the induction, we have

‖∆n
q (q ◦ Λn(T ))(a1, . . . , an+1)‖ ≤ (2n−1rn+1)(rγ)‖a1‖ · · · ‖an+1‖

≤ 2n−1rn+2γ‖a1‖ · · · ‖an+1‖
(7.1.5)

where ∆n
q : Bn(A,

B(A,X)

BA(A,X)
) → Bn+1(A,

B(A,X)

BA(A,X)
) is the corresponding connecting

map in Definition 2.3.4. On the other hand, since q is a Banach A-bimodule morphism,

it is easy to check that for all a0, . . . , an+1 ∈ A,

∆n
q (q ◦ Λn(T ))(a1, . . . , an+1) = q(∆n(Λn(T ))(a1, . . . , an+1))

= q(Λn+1(δn+1(T ))(a1, . . . , an+1)).

106



Hence, by (7.1.5)

‖q(Λn+1(δn+1(T ))(a1, . . . , an+1))‖ ≤ 2n−1rn+2γ‖a1‖ · · · ‖an+1‖

implying that for S = Λn+1(δn+1(T ))(a1, . . . , an+1),

‖dist(S,BA(A,X))‖ ≤ 2n−1rn+2γ‖a1‖ · · · ‖an+1‖.

So for every a ∈ A, we have

‖S(a)− S(1)a‖ ≤ 2[2n−1rn+2γ‖a1‖ · · · ‖an+1‖‖a‖]

≤ 2nrn+2γ‖a1‖ · · · ‖an+1‖‖a‖.
(7.1.6)

On the other hand,

S(1) = Λn+1(δn+1(T ))(a1, . . . , an+1)(1)

= δn+1(T )(a1, . . . , an+1, 1)

= a1T (a2, . . . , an+1, 1) +
n−1∑
j=0

(−1)jT (a1, . . . , ajaj+1, . . . , an+1, 1) + (−1)nT (a1, . . . , an+11)

+ (−1)n+1T (a1, . . . , an+1)1

= 0.

Therefore by putting a = an+2 in (7.1.6), we have

‖δn+1(T )(a1, . . . , an+2)‖ = ‖Λn+1(δn+1(T ))(a1, . . . , an+1)(an+2)

= ‖S(an+2)‖

= ‖S(an+2)− S(1)an+2‖

≤ 2nrn+2γ‖a1‖ . . . ‖an+2‖.

This completes the proof.

Now we are ready to give the main result of this chapter.
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Theorem 7.1.3. Let A be a Banach algebra having b.l.u. and the strong property (B)

with a constant r. Let M be a bound for the local units of A. Let n ∈ N, suppose that

X is a Banach A-bimodule such that Hn+1(A,X) is a Banach space. Then for each

T ∈ Bn(A,X), we have

dist(T,Zn(A,X)) ≤ C2n−1(M2r + (M + 1)2)n+1distr(T,Zn(A,X))

where C is a constant satisfying

dist(T, Zn(A,X)) ≤ C‖δn(T )‖, (T ∈ Bn(Z,X)). (7.1.7)

Proof. Let T ∈ Bn(A,X). By Lemma 5.2.3, for every ai ∈ A], i = 0, . . . , n + 1 with

a0a1 = · · · = anan+1 = 0, we have

‖a0σ(T )(a1, . . . , an)an+1‖ ≤ distr(T,Zn(A,X))‖a1‖ · · · ‖an+1‖

where σ(T ) : A] → X is defined by

σ(T )(b1 + λ1, . . . , bn + λn) = T (b1, . . . , bn) (bi ∈ A, λi ∈ C).

On the other hand, if for some 1 ≤ i ≤ n, ai = 1, then

σ(T )(a1, . . . , an) = 0.

If we apply Theorem 4.1.3, we find that A] has the strong property (B) with a constant

given by,

M2r + (M + 1)2.

Hence we can use Theorem 7.1.2 to write

‖δ]n(σ(T ))‖ ≤ 2n−1(M2r + (M + 1)2)n+1distr(T,Zn(A,X)). (7.1.8)

Now since Hn+1(A,X) is a Banach space, Imδn is closed. Hence, by the open mapping

theorem, there is a constant C > 0 such that for each T ∈ Bn(A,X),

dist(T,Zn(A,X)) ≤ C‖δn(T )‖. (7.1.9)
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It is straightforward to check that

‖δn(T )‖ ≤ ‖δ]n(σ(T ))‖. (7.1.10)

Hence putting (7.1.8), (7.1.9) and (7.1.10) together we get,

dist(T,Zn(A,X)) ≤ C2n−1(M2r + (M + 1)2)n+1distr(T,Zn(A,X)), (7.1.11)

as desired.

7.2 Group algebras and C∗-algebras

We showed in Section 6.3 that every C∗-algebra and group algebra has the strong property

(B) with a constant. On account of Theorem 7.1.3, this enables us to obtain an upper

bound for the hyperreflexivity constant of the bounded n-cocycle spaces of C∗-algebras

and group algebras. First we need to introduce the notion of amenability constant.

Definition 7.2.1. Let A be a Banach algebra. The amenability constant of A, which we

denote by AM(A), is

inf{sup
α
‖µα‖ : (µα)α is a bounded approximate diagonal for A}

where we define the infimum of the empty set to be +∞. Hence A is amenable if and

only if AM(A) <∞ (see Definition 2.3.2 and Theorem 2.3.3).

Remark 7.2.2. (i) Let G be a locally compact amenable group. Then AM(L1(G)) = 1

(see [59, Corollary 1. 10]).

(ii) Let A be an amenable C∗-algebra. Then AM(A) = 1.

Remark 7.2.3. Let A be an amenable Banach algebra and suppose that X is a dual Banach

A-bimodule. Then C ≤ AM(A) where C is the constant given in (7.1.7) (see [3]).

Theorem 7.2.4. Suppose that A is a C∗-algebra or the group algebra of a group with an

open subgroup of polynomial growth. Let n ∈ N, and let X be a Banach A-bimodule such
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that Hn+1(A,X) is a Banach space. Then Zn(A,X) is hyperreflexive with a constant

bounded by

C2n−1(288πM2(1 +
√

2) + (M + 1)2)n+1

where M is a bound for the local units of A and C is a constant satisfying in (7.1.7). In

particular, we have

(i) If A is a C∗-algebra or the group algebra of a discrete group, then M = 1.

(ii) In the case where A is amenable and X is the dual of a Banach A-bimodule, we can

assume that C = 1.

Proof. The main statement follows if we combine Corollary 6.3.6 (resp. Corollary 6.3.5)

and Theorem 7.1.3. To prove (i), note that the group algebra of a discrete group is

unital. Moreover, Proposition 4.2.1 shows that local units of a C∗-algebra are bounded

by 1. Finally, (ii) follows if we apply Remark 7.2.2 and Remark 7.2.3.

7.3 Banach algebras’ matrix spaces

In Section 6.4 we showed that Banach algebras’ matrix spaces when equipped with an

appropriate Banach algebra norm have the strong property (B). Hence according to

Theorem 4.1.3 and Theorem 5.2.4 , if such a Banach algebra has b.l.u., then we will be

able to give some results on the hyperreflexivity of bounded n-cocycles related to it. In

the current section we assume that Mm and Mm(A) = Mm⊗A are respectively equipped

with the operator norm and the projective tensor norm. Then according to Example

6.4.8, it has the strong property (B) with a constant given by 16(m2 +m).

Theorem 7.3.1. Let n ∈ N and m ≥ 2. Suppose that A is a Banach algebra with b.l.u.

whose local units have bound N , and let X be a Banach Mm(A)-bimodule with the property

that Hn+1(Mm(A), X) is a Banach space. Then Zn(Mm(A), X) is hyperreflexive with a

constant bounded by

C2n−1(16N2(m2 +m) + (N + 1)2)n+1,

where C is a constant satisfying in (7.1.7).
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Proof. According to Example 6.4.8, Mm(A) has the strong property (B) with a constant

given by16(m2 + m). Since Mm and A both have b.l.u., Proposition 4.3.2 shows that

Mm(A) has b.l.u. with bound N . The result now follows from Theorem 7.1.3.

Since amenable Banach algebras are the most well-known Banach algebras whose

Hochschild cohomology groups are Banach space, Theorem 7.3.1 specially gives some

results on such Banach algebras.

Corollary 7.3.2. Let A be an amenable Banach algebra with b.l.u. Suppose that n ∈ N

and m ≥ 2. Then for every Banach Mm(A)-bimodule X, Zn(Mm(A), X∗) is hyperreflexive

with a constant bounded by

2n−1(16N2(m2 +m) + (N + 1)2)n+1,

where N is a bound for local units of A and C is a constant satisfying in (7.1.7).

Proof. It is known that Mm is an amenable Banach algebra. Hence Mm(A) = Mm ⊗ A

is amenable as well. This implies that for each Banach Mm(A)-bimodule X and for each

n ∈ N, Hn+1(Mm(A), X∗) = 0. The result now follows from Theorem 7.3.1.

Example 7.3.3. Let X be a Banach space. Suppose that m ≥ 2 and equip Mm(B(X)) ∼=

B(X(m)) with the operator norm. Note that B(X(m)) is a unital Banach algebra. More-

over, it is proven in [30] that for each n ∈ N, we have

Hn(B(X(m)), B(X(m))) = {0}.

Hence, Theorem 7.3.1 implies that Zn(B(X(m)), B(X(m))) is hyperreflexive with a con-

stant bounded by

C2n−1(16(m2 +m) + 4)n+1,

where C is a constant satisfying in (7.1.7).

Example 7.3.4. Let G be a locally compact amenable group with an open subgroup of

polynomial growth. Corollary 4.2.2 shows that L1(G) has b.l.u. Suppose that n ∈ N and
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m ≥ 2. Then according to Corollary 7.3.2, for every Banach Mm(L1(G))-bimodule X,

Zn(Mm(L1(G)), X∗) is hyperreflexive with a constant bounded by

C2n−1(16N2(m2 +m) + (N + 1)2)n+1,

where N is a bound for local units of A and C is a constant satisfying in (7.1.7). If G is

discrete, then N = 1.

7.4 Finite nest and CSL algebras

We finish this chapter by providing results on the hyperreflexivity constant of bounded

n-cocycle spaces related to finite nest and finite CSL algebras. Since there have already

been some information on the Hochschield cohomology groups of CSL and nest algebras

([13, 42]), on account of Theorem 7.1.3, we can come with results on the hyperreflexivity

of the relevant bounded n-cocycle spaces.

Theorem 7.4.1. Let A be a finite nest (resp. finite CSL) algebra on a (resp. Separable)

Hilbert space generated by m nonzero projctions. Let n ∈ N, and let X be a Banach

A-bimodule such that Hn+1(A,X) is a Banach space. Then Zn(A,X) is hyperreflexive

with a constant bounded by

C2n−1(33m+ 7m2 + 4)n+1,

where C is a constant satisfying in (7.1.7).

Proof. According to Theorem 6.5.3 (resp. Theorem 6.6.6) a constant for the strong prop-

erty (B) of a finite nest (resp. finite CSL) algebra generated by m nonzero projections is

given by

33m+ 7m2.

Now the result follows from Theorem 7.1.3.

Using the fact that finite nest algebras are unital Banach algebras with the strong

property (B), we can present the following result.
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Corollary 7.4.2. Let N ⊆ B(H) be a finite nest algebra generated by m elements. Then:

(i) For all n ≥ 1, Zn(N,B(H)) is hyperreflexive.

(ii) For all n ≥ 1, Zn(N,N) is hyperreflexive.

Moreover, an upper bound for the hyperreflexivity constant of these spaces is given by,

C2n−1(33m+ 7m2 + 4)n+1,

where C is a constant satisfying in (7.1.7).

Proof. According to Theorem 2.4.3,

Hn(N,B(H)) = 0 and Hn(N,N) = 0.

The result now follows if we apply Theorem 7.4.1.

In the preceding corollary, in order to show that Zn(N,N) (resp. Zn(N,B(H))),

for a nest algebra N , is hyperreflexive, we used the fact that Hn(N,N) = 0 (resp.

Hn(N,B(H)) = 0 ). In general, the same result might not be true for a (finite) CSL

algebra. But according to Theorem 2.4.4, there are some alternatives for certain CSL al-

gebras. This enables us to give the following result on the hyperreflexivity of the bounded

n-cocycle spaces of CSL algebras.

Remark 7.4.3. Let A be a norm closed unital subalgebra of B(H) for some Hilbert space

H. Let E(A) be the following subalgebra of B(C⊕H),

E(A) = {

 z u

0 a

 ∈ B(C⊕H) : z ∈ C, u ∈ H∗, a ∈ A}.

It is proven in [42] that if L is a CSL and A = algL, then E(A) is a CSL algebra and

LatE(A) = {e1 ⊕ L : L ∈ L} ∪ {0}

where e1 is the projection of C⊕H onto C. In particular, if L is finite, then LatE(A) is

a finite CSL as well.
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Proposition 7.4.4. Let H be a separable Hilbert space, let L ⊆ H be a finite CSL

generated by m projections, and let A = algL. Then for each n ∈ N, Zn(E(A), B(C⊕H))

and Zn(E(A), E(A)) are hyperreflexive. Moreover, an upper bound for the hyperreflexivity

constant of these spaces is given by

C2n−1(33(m+ 1) + 7(m+ 1)2 + 4)n+1,

where C is a constant satisfying in (7.1.7).

Proof. By Remark 7.4.3, E(A) is a finite CSL algebra on a separable Hilbert space. By

Theorem 2.4.4,

Hn(E(A), B(C⊕H)) = 0,

and

Hn(E(A), E(A)) = 0.

Moreover Proposition 6.6.6 shows that E(A) is a unital Banach algebra with the strong

property (B). On the other hand, E(A) is a CSL algebra generated by (m + 1) non-zero

projections. According to Theorem 6.5.3, a constant for the strong property (B) of E(A)

is given by

33(m+ 1) + 7(m+ 1)2.

The result now follows from Theorem 7.1.3.

Proposition 7.4.5. Let A be a finite dimensional CSL algebra. Let X be a finite dimen-

sional Banach A-bimodule. Then for each n ∈ N, Zn(A, X) is hyperreflexive.

Proof. By Theorem 6.6.6, A is a unital Banach algebra with the strong property (B).

Since A and X are both finite dimensional, Hn(A, X) is a finite dimensional normed

algebra and hence it is a Banach space. The result now follows from Theorem 7.1.3.
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