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Chapter 1

Introduction and overview

When adopting the explanatory framework of methodological individualism, as-

sumptions about the actors’ decision-making are required (Coleman, 1990, p. 11).

Even though there are different versions of methodological individualism (Udehn,

2002), the actors’ properties and decisions are always regular in at least some rel-

evant aspects. These regularities allow to formulate rules or axioms of behaviour

and, therefore, promote the explanation of social phenomena.

Different rules of individual behaviour are applicable in sociological theories

that build on methodological individualism. For example, the assumption of ra-

tional behaviour has been borrowed from economic theories and used repeatedly in

sociology (e.g. Coleman, 1990; Gintis, 2009; Braun and Gautschi, 2011). In many

situations, this assumption facilitates the explanation of social phenomena because

solution concepts that are based on rational behaviour can be readily transferred

from economics to sociology.

Next to economic theory, also behavioural psychology has provided a basis for

assumptions about individual behaviour. Well-known sociologists such as George

C. Homans (1961), Richard M. Emerson (1972a), Karl-Dieter Opp (1972), John

H. Kunkel (1975), and many others (Burgess and Bushell, 1969; Hamblin and

Kunkel, 1977) employed principles from behavioural psychology in order to study

social phenomena. Influences from behaviourism are still visible in contemporary

theories of social exchange (Molm, 2006, p. 29) or backward-looking rationality

(Macy and Flache, 2009, pp. 250-251).
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16 CHAPTER 1. INTRODUCTION AND OVERVIEW

In behavioural psychology, two main forms of learning account for regularities in

behaviour. One of them is called classical conditioning. It describes the emergence

of a natural reflex in connection with a previously neutral stimulus. For example, in

a famous experiment with dogs, the salivation reflex was conditioned to emerge in

connection with the sound of a bell (Pavlov, 1927). In 1937, B. F. Skinner marked

out a different learning process, named operant conditioning. In contrast to a

conditioned reflex, any kind of behaviour can be acquired by operant conditioning.

Learning takes place as soon as “a reinforcer [..] follows upon the organism’s own

behaviour” (Skinner, 1953, p. 65).

The theory of operant conditioning is in opposition to cognitive theories of ra-

tional choice. An action is fully explained by its previous reinforcements, and there

is no need to consider thoughts, emotions, or any other cognitive states (Rachlin

and Laibson, 1997, p. 7). Similar to the process of natural selection in the evolu-

tion of species, “the causal processes producing the behavior [..] are instances of

selection by consequences” (Ringen, 1999, p. 168, italics added). Instead of under-

standing an observed action as the result of cognitive processes and anticipation,

it is seen as being controlled by past events.

Richard Herrnstein, who was a student of Skinner, refined the ideas of operant

conditioning. He argued that behaviour depends not only on the occurrence of

a timely proximate reinforcer but, more specifically, on the general rate of rein-

forcements (Herrnstein, 1969). In support of this hypothesis is a widely observed

empirical regularity, which has been called the matching law (Herrnstein, 1997).

According to this law, the relative frequency of a particular action equals the

relative frequency of its reinforcements.

Since the matching law describes a regularity in decision-making, it is, similar

to the assumption of rationality, a potential foundation of individual behaviour in

sociological theories.

Hence, the topic of this thesis is the application of the matching law

as micro-level assumption in the explanation of social phenomena.

Although the matching law was repeatedly shown to hold in social situations (e.g.

Conger and Killeen, 1974; Hamblin, 1977, 1979; Sunahara and Pierce, 1982; Mc-

Dowell, 1988; Borrero et al., 2007), it has not been used to derive hypotheses
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about social phenomena yet. Two exceptions are the work of Louis N. Gray and

colleagues (Gray and von Broembsen, 1976; Gray et al., 1982), which is reviewed

in section 2.2.4, and a paper on learning in games by Brenner and Witt (2003),

which is discussed in section 4.4.

A possible reason for the limited sociological interest in the matching law is

the lack of a formal framework that allows the theoretical derivation of hypothe-

ses. In case of the rationality assumption, such a framework was provided by

economic theories, for example by general equilibrium theory or game theory. It

is demonstrated in the following chapters that some parts of these frameworks

can be employed with the matching law as well. But additional concepts must be

introduced, and restricting assumptions have to be made.

Figure 1.1 illustrates the undertaking of this thesis in reference to Coleman’s

(1990, p. 646) micro-macro scheme.

-

B
B
B
B
B
B
BBN �

�
�
�
�
�
���

conditions of choice the matching law

social conditions social phenomenon

rule of choice

Figure 1.1: The matching law in Coleman’s micro-macro scheme

The matching law takes the place of the outcome of individual decision-making.

The transition from individual outcomes to a social phenomenon is usually com-

plex. A particular problem in case of the matching law is its reference to relative

frequencies and, thus, to an aggregated measure of a sequence of decisions. This

point is clarified by figures 1.2 and 1.3.

In the diagram of figure 1.2, an actor is assumed to choose repeatedly one of

several alternatives by following a fixed rule. The circles stand for points in time.

A horizontal arrow from one circle to another displays a choice. As indicated by the
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f f f f f f- - - - -
rule rule rule rule rule

�� �social environment

? ? ? ? ? ?

6 6 6 6 6

actor

Figure 1.2: The repeated interaction of an actor with the social environment

vertical arrows, the choice alternatives and the result of a decision are conditioned

by the social environment. At the same time, the actions may have an effect on the

social environment. It cannot be assumed that decisions are made independently.

In contrast, the choice at one point may affect a later decision directly, for example

by a learning process, or indirectly via the social environment.

Figure 1.3 narrows the previous diagram down to the interaction between mul-

tiple actors, which is seen as part of the social environment. The actors influence

each other in their decisions. It is indicated that the matching law (ML) refers to

relative frequencies of a sequence of decisions (marked by the horizontally stretched

ovals). For instance, the matching law may state that actor 1 chooses a particular

alternative in 2 out of 5 decisions. But it is not known, which alternative is chosen

at a particular point in time. Neither does the matching law imply a stochastic

model that allows the specification of probabilities of choice.

f f f f f- - - -
rule rule rule rule

actor 1

? ? ? ? ?

6 6 6 6 6

f f f f f- - - -
rule rule rule rule

actor 2

? ? ? ? ?

6 6 6 6 6

. . . . . . . . . . . . . . .. . .

? ? ? ? ?

6 6 6 6 6

f f f f f- - - -
rule rule rule rule

actor n

�� ��ML

�� ��ML

�� ��ML

�

�

�

�
SP

Figure 1.3: The repeated interaction of multiple actors
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A social phenomenon (SP) commonly refers to a cross-sectional or longitudinal

measurement of individual properties or decisions. Therefore, it corresponds to

one or several ovals that vertically stretch over the circles of the diagram. It is

apparent that a vertically recorded social phenomenon is not compatible with the

horizontally spreading matching law. No macro-level derivation can be made from

the matching law because nothing is known about the decisions of the actors at a

particular point in time.

A solution to this problem is the establishment of a rule of decision-making

(see figure 1.3) that results in the matching law on the individual level and can be

used to derive outcomes on the social level. Multiple rules exist that meet these

requirements. With melioration learning, a relatively simple one is presented

and analysed in this thesis.

The next chapter introduces and illustrates the matching law. An experiment

that led to the formulation of this law is summarised, and various extensions are

discussed: the generalised matching law, the incorporation of delay, the law of

response strength, and social matching. Chapter 2 also gives a short overview of

empirical studies that detected the matching law in human behaviour.

In previous research, the matching law was empirically justified by fitting its

generalised version to data from experiments. Because the parameters of this

model were not specified beforehand, the matching law was not tested statistically.

Instead, only the “goodness of fit” was evaluated after the parameters had been

estimated from the data.

In order to use the matching law as micro-level assumption, its parameters must

be derived from situational properties. This requires a new theoretical perspective.

In chapter 3, such a perspective is presented by integrating the matching law

into economic consumer theory. Given an adequate definition of a situation, this

approach allows to theoretically derive the parameters, to predict outcomes of

individual decisions, and to specify empirically testable and falsifiable hypotheses.

The integration into economic consumer theory also facilitates the comparison

of the matching law to standard predictions of behaviour. More specifically, it is

shown in chapter 4 that optimal behaviour corresponds to the matching law in a

certain class of situations. But generally, the predictions of the matching law are



20 CHAPTER 1. INTRODUCTION AND OVERVIEW

not optimal. It can be regarded as an alternative explanation of social behaviour

if standard economic solutions fail.

In chapter 5, a rule of decision-making is introduced that is supposed to re-

sult in the matching law. Following earlier work on this subject (Herrnstein and

Vaughan, 1980), this rule is called melioration learning. Basically, it is assumed

that individuals always choose one of the alternatives with the currently highest

average value. The average value of an alternative is obtained from previous ex-

periences. It is shown that this learning process converges to the matching law if

the situation is sufficiently stationary.

However, if multiple actors interact with each other, the situation is generally

non-stationary, and the behaviour of actors who learn by melioration may never

converge. Therefore, computer simulations are used to analyse the long-term dy-

namics of interactive melioration learning. Various two-person situations that are

known from game theory are considered in chapter 6. It is demonstrated that the

actors learn to play a dominant strategy or one of the pure Nash equilibria. If no

pure equilibrium exists, the relative frequencies of choice converge to the mixed

Nash equilibrium in some of the games.

Situations with more than two actors are examined in chapter 7. First, everyone

interacts simultaneously with several partners in a coordination game. This model

allows to explore the evolution of social conventions and institutions (Young, 1998).

The simulations reveal that the network structure of interactions affects a group’s

ability to coordinate its members’ choices. Additionally, it is shown that the

actors can learn to volunteer in the volunteer’s dilemma and to cooperate in a

multi-person prisoner’s dilemma. In the latter case, the option to punish defectors

or to abstain from the interaction further mitigates the dilemma.

The last chapter presents an evolutionary justification of the matching law.

Since behaviour that conforms to this law is not necessarily optimal, it is disputable

that such a fundamental behavioural regularity has evolved by natural selection.

Rules of choice that guarantee optimal results should have replaced rules that lead

to the matching law. Nevertheless, melioration learning is shown to be evolutionary

advantageous in uncertain competitive environments.



Chapter 2

The matching law

This chapter contains an incomplete summary of the extensive research on the

matching law. In section 2.1, its first version, which will be called the strict

matching law, is introduced as an empirical regularity of individual behaviour.

Because systematic deviations from the equation of the strict matching law were

discovered experimentally, extensions to larger families of equations have been

established. Some of these extensions are described in section 2.2. For example,

the generalised matching law uses free parameters to fit the equation of the strict

matching law to observed behaviour. Further generalisations regard the delay of

reinforcement, the absolute frequency of choice, and social matching.

A short overview of empirical studies is given in section 2.3. While most ex-

periments were conducted with animals, such as pigeons or rats, this overview

concentrates on evidence of the matching law in human behaviour.

2.1 The strict matching law

One of the first experiments that led to the formulation of the matching law was

reported by Richard Herrnstein (1961). In this experiment, pigeons were placed

in a box with two response-keys, denoted as key 1 and key 2. Food was released

occassionally as a reinforcement of pecking on one of the response-keys. During

the experiment, the absolute frequencies of pecks k1 and k2 and the corresponding

absolute frequencies of reinforcements s1 and s2 were recorded for each key. Af-

21
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ter plotting these values for different schedules of reinforcement, an approximate

matching of the relative frequencies of choice k1
k1+k2

to the relative frequencies of

reinforcement s1
s1+s2

was observed:

k1
k1 + k2

=
s1

s1 + s2
. (2.1)

Equation (2.1) is called the strict matching law. Alternatively, the following

condition of the strict matching law is commonly found in the literature:

s1
k1

=
s2
k2
. (2.2)

Condition (2.2) is equivalent to condition (2.1) if k1, k2, s1, s2 > 0.

The strict matching law can be illustrated by the penalty kick situation of

(European) football games. The kicker is assumed to choose between the left and

the right side of the goal. The reinforcement of either choice depends, among other

things, on the action of the goal-keeper. The player scores by kicking the ball into

the goal and fails if the ball misses the goal, hits the posts, or is blocked by the

keeper. Let us assume one particular player who was engaged in 50 penalty kicks.

A hypothetical distribution of choices and reinforcements is shown in table 2.1.

Table 2.1: A sample distribution of choices in penalty kick situations

choice of kicker left (k1) right (k2)
40 10

reinforcement success (s1) failure success (s2) failure
24 16 6 4

According to equation (2.1), the strict matching law holds in this example because

k1
k1 + k2

=
40

50
= 0.8 =

24

30
=

s1
s1 + s2

.

Also equation (2.2) holds:

s1
k1

=
24

40
= 0.6 =

6

10
=
s2
k2
.
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2.2 Extensions of the strict matching law

The strength of the strict matching law is its simplicity and wide applicability. It

is supposed to describe behaviour in any situation in which an individual chooses

repeatedly between two similar alternatives. There has been extensive research on

the empirical validity of the matching law. Some of this research is summarised in

section 2.3. Further overviews are given in Herrnstein (1997), Mazur (2001, ch. 14),

Poling et al. (2011), or Reed and Kaplan (2011). Reviews of empirical studies are,

for example, written by de Villiers and Herrnstein (1976), Baum (1979), Hamblin

(1979), Pierce and Epling (1983), and McDowell (2005).

In spite of several empirical confirmations of the strict matching law, the re-

searchers agree that it often fails to describe behaviour. As summarised by Baum

(1974, 1979), most of the deviations originate from the presence of asymmetries in

choice alternatives or reinforcements. For instance, if the choice of one alternative

requires additional effort or if the reinforcements differ in their amount, quality,

or deprivation rate, the strict matching law fails.

The detection of systematic deviations led to the extension of the strict match-

ing law to a set of equations, which has been called the generalised matching law.

As indicated in section 2.2.1, this generalised version is able to account for most of

the deviations. Section 2.2.2 presents the incorporation of another widely observed

empirical phenomenon, which is known as sensitivity to delay. An extension of the

matching law that considers absolute frequencies of choice is discussed in section

2.2.3. Finally, a previous attempt to extend the individual matching law to a social

matching law is described in section 2.2.4.

2.2.1 The generalised matching law

According to condition (2.2), the strict version of the matching law requires equal-

ity between the rates of reinforcement. If s2 > 0, this is equivalent to

k1
k2

=
s1
s2
.

The generalised matching law (e.g. Baum, 1974; McDowell, 2013a) accounts for
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systematic deviations from this condition by adding two parameters α, β ∈ (0,∞):

k1
k2

= β ·
(
s1
s2

)α
. (2.3)

It is said that the generalised matching law holds if there exist α, β ∈ (0,∞)

such that condition (2.3) is true. This means that the generalised matching law

corresponds to a set of indefinitely many equations.

Figure 2.1 illustrates the effect of different values of β and α on the relationship

between the relative frequencies of choice and reinforcement (equation (2.1)):

k1
k1 + k2

=
β · sα1

β · sα1 + sα2
.

The curves show the function y := f
(

s1
s1+s2

)
=

β·sα1
β·sα1+sα2

. The diagonals indicate this

relation in case of strict matching (β = α = 1). The left-sided graph contains the

generalised matching law with α = 1 and different values of β. In the right-sided

graph, β is set to 1, and α is varied between 0.1 and 10.
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Figure 2.1: The generalised matching law with different values of β and α

By setting β 6= 1, the generalised matching law captures bias, which is a sys-

tematic preference for one of the alternatives (Baum, 1974). As pictured by the

left-sided graph of figure 2.1, the first alternative is chosen more often than pre-

dicted by the strict matching law if β > 1. If β < 1, the second alternative appears
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more frequently. Baum (1974) mentioned different sources of bias. First, an indi-

vidual may prefer one alternative because of additional effort that comes with the

other one. For example, if the individual is left-handed, a left-sided response key

is more easily accessible than a right-sided key. Second, the resources that are re-

ceived as reinforcements may differ in their amount or quality. In the experiments

of Herrnstein (1961), the pigeons received always the same amount of the same

kind of grain. But, if pecking on one key results in a more valuable resource or in

a greater amount of grain than pecking on the other key, the former is likely to be

pecked more often than predicted by the relative frequency of reinforcement.

Also without the parameter β, differences in amount of reinforcement were

taken into account in the past. On the one hand, the variables s1 and s2 of

equation (2.1) were interpreted as the aggregated amount of all reinforcers instead

of the absolute frequency of reinforcement (e.g. de Villiers and Herrnstein, 1976).

On the other hand, differences in amount were explicitly modelled and added to

the equation (Rachlin, 1971). Let b1, b2 ∈ [0,∞) indicate the average amounts of

the resources that are consumed during a reinforcement of alternative 1 and 2,

respectively. An extended version of the strict matching law is given by

k1
k1 + k2

=
b1 · s1

b1 · s1 + b2 · s2
, (2.4)

or
k1
k2

=
b1 · s1
b2 · s2

. (2.5)

In comparison to the generalised matching law of equation (2.3), this approach

suggests that bias is captured by setting β = b1
b2

or β =
(
b1
b2

)α
.

The difficulty of evaluating this explanation of bias is the measurement of

actually consumed resources. Consider, for example, the experiment of Fantino

et al. (1972), in which pigeons chose between two response-keys. In contrast to the

experiment of Herrnstein (1961), the reinforcements differed in their maximally

available amount of resources (6 vs. 1.5 seconds access to food). The authors

included these differences by multiplying “the number of reinforcements observed

on that schedule [..] by the duration of each reinforcer” (Fantino et al., 1972, p.

40). In respect to the notations above, it was assumed that b1 = 6 and b2 = 1.5,
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even though b1 and b2 stand for the average amounts of consumed grain and not the

average amounts of grain that could be maximally consumed. If a pigeon’s actual

consumption differed from the maximally possible consumption, the authors may

have rejected this explanation of bias by mistake.

The costs of choosing an alternative is another supposed cause of bias and can

be included similarly. Gray and Tallman (1984) suggested that the total costs

ci ∈ (0,∞) that come with choosing an alternative i ∈ {1, 2} should be added

inversely proportionally to equation (2.5):

k1
k2

=
c2
c1
· b1 · s1
b2 · s2

. (2.6)

In a series of studies (Gray and Tallman, 1984; Stafford et al., 1986; Gray et al.,

1991; Judson and Duran-Aydintug, 1991), equation (2.6) was shown to fit experi-

mental data more accurately than alternative behavioural models that include the

effects of costs or punishment. It should be noted that, in contrast to the inter-

pretation of bi, the term ci denotes the total costs of choosing i ∈ {1, 2}, and ci
ki

stands for the average costs per choice.

The second parameter α of equation (2.3) accounts for two systematic devia-

tions that have been called undermatching and overmatching (Baum, 1979). In

case of overmatching, alternatives with high relative frequencies of reinforcement

are chosen more often than predicted by the strict matching law. In the right-sided

graph of figure 2.1, this is modelled by α > 1 and depicted by curves that are close

to y = 0.0 if s1
s1+s2

< 0.5 and close to y = 1.0 if s1
s1+s2

> 0.5. In contrast, un-

dermatching stems from a systematic preference for the less reinforced alternative

and is modelled by α < 1. This is shown by curves that are close to y = 0.5.

In experimental studies, undermatching was observed more often than over-

matching. For example, undermatching occurred if a frequent switching between

the alternatives was possible (Baum, 1979). In most experiments, a changeover

delay (COD) was included that punished a switch between the response-keys by

a delay in the next reinforcement. Herrnstein (1970) referred to an experiment of

Shull and Pliskoff (1967) when stating that the strict matching law was observed

if the COD was neither too small nor too large. Otherwise, undermatching (small

COD) or overmatching (large COD) was found.
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Another reason of undermatching is the presence of interrelated deprivation

rates (Baum and Nevin, 1981; Green and Freed, 1993). If the consumption of one

resource increases the demand for another resource (e.g. the consumption of food

may increase the demand for water), an increase in reinforcement of one alternative

raises the frequency of choosing the other one. This results in undermatching or

even in an inversion of the matching relation (α < 0), which means that the less

reinforced alternative is chosen more often than the highly reinforced alternative.

Interrelated deprivation rates are further discussed in section 4.2.

Moreover, since undermatching implies that low relative frequencies of choice

are adjusted to somewhat higher levels, this behaviour might be interpreted as

experimenting. Theoretical support for this conjecture was given in the work of

McDowell (2013b), who modelled individual decision-making as an evolutionary

process (see also section 5.3.4). It was shown that the undermatching parameter

α decreases if the amount of experimental behaviour (implemented as mutation

rate) increases (McDowell and Caron, 2007, p. 102). Although this effect is not

linear (McDowell and Popa, 2010, p. 251) and interacts with other components

of the model, empirical support for this explanation of undermatching is found in

some of the studies that are mentioned in section 2.3.

2.2.2 Delay, hyperbolic discounting, and self-control

Another extension of the matching law, which is often discussed in the literature,

includes time delay. If the reinforcers of an alternative i ∈ {1, 2} have a total

amount of ai := bi · si, but every reinforcement is delayed by a time period di ∈
[0,∞), this factor can be included by hyperbolic discounting. According to

Mazur and Herrnstein (1988), this means that the subjective value vi of alternative

i ∈ {1, 2} is given by

vi :=
ai

1 + δ · di
, (2.7)

with a scale factor δ ∈ [0, 1]. Subsequently, the strict matching law is extended to

k1
k1 + k2

=
v1

v1 + v2
. (2.8)
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There are several implications of the assumption of equation (2.7). First, time

delay has a discounting effect on the value of a reinforcer. The left-sided plot of

figure 2.2 illustrates this effect for the choice between two alternatives 1 and 2 with

a1 = 10 and a2 = 20. Alternative 2 (solid line) is preferred to alternative 1 as long

as there is no difference in delay (d1 = d2). But this preference relation changes

if the delay of the reinforcement of alternative 2 increases. The two straight lines

indicate that, if d1 = 2, a delay of d2 > 5 sets the value of alternative 2 below the

value of alternative 1.
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Figure 2.2: The value vi in dependence of delay di and sensitivity to delay δ

A second implication concerns the effect of δ, which is interpreted as an actor’s

sensitivity to delay or impulsiveness. The left-sided plot of figure 2.2 shows an

actor who is maximally sensitive to delay (δ = 1.0). The actor’s preferences

depend on the differences in delay. If the sensitivity δ approaches zero, the actor

becomes more tolerant in regard to delay. In fact, if δ = 0.0, the two curves are

horizontal lines with v2 > v1 for all values of d1 and d2. Herrnstein (1997, p. 141)

stated that the impulsiveness parameter “can vary across species, individuals, and

situations”. It may be subject to training and education, for a decrease during

life is often observed. Children are usually more impulsive than adults. But also

adults lack some form of self-control in many situations (Rachlin, 2000).

Third, the sensitivity to delay may lead to a change in preferences if the mo-

ment of reinforcement comes closer in time. As explicated by Rachlin (2000, pp.

30-41), this distinguishes hyperbolic discounting from exponential discounting. If

the values are discounted exponentially, the following form is assumed: vi = δdi ·ai,
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i ∈ {1, 2}. Given that v1 = δd1 · a1 > δd2 · a2 = v2, this relationship holds for any

constant x ∈ R added to d1 and d2: δ
d1+x · a1 > δd2+x · a2. In contrast, the pref-

erence relation can change if equation (2.7) is used. For example, it holds that
10

1+δ·0 >
20

1+δ·2 in case of δ = 1.0. If adding x = 100 to each time delay d1 and d2,

the opposite relation arises: 10
1+δ·100 ≈ 0.1 < 0.2 ≈ 20

1+δ·102 . From a large distance

in time, the differences in amount are correctly perceived. But the perception of

the amounts are distorted when being temporarily close to a reinforcement.

According to the Ainsle-Rachlin theory, the commonly observed failure of self-

control is explained by hyperbolic discounting (see e.g. Mazur, 2001, ch. 14.3, or

Rachlin, 2000, ch. 2). A failure of self-control is observed if an individual is aware

of the high benefit of one alternative but still chooses another less beneficial alter-

native because of its immediate reinforcement. There is numerous experimental

and everyday evidence for a predominant lack of self-control in humans (Herrn-

stein, 1990b; Mazur, 2001). For instance, many people know the benefit of having

cereals instead of cake for breakfast but still choose the latter. The benefit of cake

is immediate, but the value of eating healthy is delayed. People who show this

kind of behaviour may be characterised as lacking self-control. Their behaviour is

explained by equation (2.7) and a high value of δ. Another example, which is ex-

plained by hyperbolic discounting, is the commonly observed regret of addicts who

recognise the predominance of long-term costs of addictive behaviour but cannot

resist in the moment of choice.

Hyperbolic discounting also explains the affinity towards a variable-interval re-

inforcement schedule in contrast to a fixed-interval schedule (e.g. Bacotti, 1977).

Both schedules may reinforce an action after the same amount of time on aver-

age. But, while the time is constant in case of the fixed-interval schedule, it varies

in case of the variable-interval schedule. This means that the reinforcements on

the variable-interval schedule usually take place later or earlier than the reinforce-

ments on the fixed-interval schedule. According to hyperbolic discounting, the

immediate reinforcements have a much greater value than the late reinforcements.

This makes the variable-interval schedule more valuable than the fixed-interval

schedule. Consequently, variable-interval reinforcement schedules are more effec-

tive in teaching desired behaviour than fixed-interval schedules (Mazur, 2001). In

a similar manner, compulsive gambling is explained.



30 CHAPTER 2. THE MATCHING LAW

2.2.3 The law of response strength

While equation (2.1) requires the choice between two alternatives, also the repeated

selection of a single alternative can be examined with respect to the matching law.

This situation is referred to as the “take or leave it”-choice, which means that an

actor obtains the opportunity to take a particular action or to do nothing. In this

case, Herrnstein (1970) suggested the following equation:

k1 = (k1 + k0) ·
s1

s1 + s0
. (2.9)

In equation (2.9), k := k1 + k0 denotes the total number of occasions in which

a single alternative is available for choice. Similar to the previous sections, k1

is the actual absolute frequency of choice, and s1 gives the number of choices

that were reinforced. Furthermore, s0 equals the number of occasions that were

reinforced without choosing the alternative (thus: s0 ≤ k0). It is hypothesized

that an actor becomes distracted by various aspects of the environment and that

these distractions are sometimes experienced as reinforcement. For example, after

a longer period of pecking, pigeons may appreciate some rest, or they get distracted

by an itch and spend the next couple of seconds scratching.

Equation (2.9) adds two aspects to the study of the matching law. First,

the number of choice opportunities in which no alternative was chosen (k0), and,

second, the number of reinforcements that are not connected to any alternative

(s0). Both factors are required if only one alternative is considered. In the case

of two alternatives, these variables can be included as well. This leads to the

following version of the matching law, which has been called the law of response

strength (Herrnstein, 1970; de Villiers and Herrnstein, 1976):

k1 = k · s1
s0 + s1 + s2

, (2.10)

with k := k0+k1+k2. In comparison to the strict matching law, the interpretation

of k0 and s0 diverges from the interpretation of k1 or k2 and s1 or s2. Another

difference is the emphasis on the absolute frequency k1 instead of the relative

frequency k1
k

. But formally, the law of response strength is a mere extension of

equation (2.1) to a larger set of alternatives.
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2.2.4 Social matching

In general, the interpretation of the matching law presumes that the variables

describe the behaviour of a single actor. Some authors (Gray and von Broembsen,

1976; Gray et al., 1982) argued that, due to social comparison processes, the

matching law also holds on the social level. For example, two actors, who are

denoted by the letters x and y, may choose repeatedly among several alternatives.

Similar to the definition of the strict matching law, the frequencies of choosing a

particular alternative are denoted by kx and ky for each actor, and the frequencies

of reinforcement are given by sx and sy. The authors stated that

kx
kx + ky

=
sx

sx + sy
. (2.11)

In contrast to the strict matching law, the sums of the denominators run over the

set of actors and not over the set of alternatives.

Gray and von Broembsen (1976) applied this formula of social matching to

different data and demonstrated its applicability to various social settings, such as

communication and power structures. Gray et al. (1982) analysed this equation

theoretically in the context of social exchange. The authors argued that differences

in exchange outcomes are explained by matching processes on the social level.

As mentioned by Gray and von Broembsen (1976), equation (2.11) is derived

from the assumptions of social comparison processes and perfect information about

the other actor’s choices and reinforcements. In case that each of the two actors

observes the choices and reinforcements of the other actor, social comparison might

mean that both actors adjust their choice distributions until their success rates

match:
sx
kx

=
sy
ky
. (2.12)

Equation (2.12) is the “social counterpart” of condition (2.2), which implies that

equation (2.11) results from equation (2.12):

kx
kx + ky

=
kx

sx · kxsx + sy · kxsx
=

sx
sx + sy

.

Therefore, the social matching law derives from social comparison processes.
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2.3 Empirical evidence

All of the previously mentioned versions of the matching law were analysed empir-

ically. In experimental settings, the frequencies of choice (k1, k2) and the frequen-

cies of reinforcement (s1, s2) can be measured accurately. But the free parameters

α, β, k0, and s0 are usually not known. Instead of testing the generalised matching

law or the law of response strength, most authors estimated the free parameters

by fitting equation (2.3) or (2.10) to observed data.

De Villiers and Herrnstein (1976) summarised various experiments with pi-

geons, rats, monkeys, and humans. The law of response strength (equation (2.10))

accounted for a high percentage of variance in the data if the parameters k0 and

s0 are fitted properly. In a more recent review, McDowell (2013a, p. 9) disagreed

and stated that, in most cases, the law of response strength performs badly. Only

if additional parameters were added to equation (2.10) (similar to equation (2.3)),

the law of response strength fit the observations.

A similar conclusion was usually drawn from the large number of studies that

applied equations (2.1) and (2.3) to experimental data. Reviewers of these studies

(e.g. Baum, 1979; Pierce and Epling, 1983; McDowell, 2005; Reed and Kaplan,

2011; Poling et al., 2011) recapped that the generalised matching law, but not

the strict version, accurately described the choice behaviour under a wide variety

of conditions. This finding held for animals as well as humans. For instance,

in an experiment of Sunahara and Pierce (1982), human participants exchanged

monetary points with two different partners by pressing buttons on an interaction

panel. The results confirmed the generalised matching law. Due to inequalities in

the reinforcements, the bias parameter β was different from one.

An experiment that more adequately resembled real situations was conducted

by Conger and Killeen (1974). The authors observed the behaviour of members of a

discussion group. The matching law correctly described the relationship between

the rate of speaking to one of the discussion partners and the rate of positive

responses from this partner. However, the authors fit the matching law to the

pooled data of all (five) subjects (Conger and Killeen, 1974, p. 412). The results

might be misleading because matching on a population level does not necessary

imply matching on the individual level (see also Caron, 2013b,a).
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Further experiments and field studies with humans were summarised by Ham-

blin (1977) or Pierce and Epling (1983). The situations included verbal inter-

actions, gambling, group discussions, and even the publication of encyclopedia

articles. McDowell (1988, pp. 103-104) reported a series of studies that confirmed

the matching law in natural human environments (outside of the laboratory). In

these studies, undesired behaviour, such as self-injurious scratching or disruptive

behaviour in school, was either negatively reinforced or confronted with positive

reinforcement of alternative behaviour. The decrease of undesired behaviour in

dependence of the relative rate of reinforcement corresponded to the predictions

of the matching law. Additionally, desired behaviour, such as good performance

in school, diminished because of random background reinforcement. The rate of

change was in accordance with the law of response strength.

A list of more recent studies is found in McDowell (2013a, p. 2). For example,

Borrero et al. (2007) applied the generalised matching law to subjects who partic-

ipated in a discussion about juvenile delinquency. In contrast to the earlier study

of Conger and Killeen (1974), Borrero et al. (2007) used individual data to fit the

matching law equation and obtained partly affirmative results.

In another study, Vollmer and Bourret (2000) analysed the success of two- and

three-point shots during college basketball games. In case of experienced players,

the relative frequencies of attempted three-point shots matched the relative fre-

quencies of scored three-points shots. This result was confirmed in further studies

(Alferink et al., 2009). Moreover, when comparing the players of different divi-

sions, the levels of undermatching varied. Players of highly ranked teams showed

less undermatching then players of low ranks. This finding supports the conjec-

ture that undermatching results from experimenting. Lowly ranked players had

maybe insufficient experience and, therefore, tried three-point shots even though

they were less successful than two-point shots.

A comparable result was obtained in an experiment in which participants

played a simulated rock-paper-scissors game (Kangas et al., 2009). The computer

opponent chose its answer by a schedule of fixed probabilities. In this case, the

only outcome that is in line with the strict matching law is the exclusive choice

of the alternative with the highest probability of success (e.g. Herrnstein, 1982,

p. 78). In a first treatment, the subjects had no information about the probabil-
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ities. Their choices deviated from the strict matching law, as did the choices of

the less experienced basketball players. In another treatment, information about

the reinforcement probabilities were revealed. Subsequently, the choices of almost

all subjects were in agreement with the strict matching law. Further analyses in-

dicated a development from undermatching to strict matching during the trials of

the first treatment. These findings suggest that undermatching is the consequence

of insufficient experience with the underlying reinforcement procedures.

2.4 Conclusion

One might say that the matching law is a widely studied and often observed em-

pirical phenomenon. But the term “matching law” was not used consistently in

the past. Initially, this law was formulated in light of a small number of experi-

ments. With the analysis of a broader range of situations, systematic deviations

from this first version were discovered, and classes of equations with several free

parameters were introduced. The success of the “matching law” results from the

connection of this term to these classes of equations and from the fact that almost

every behaviour can be described by them.



Chapter 3

Integration into consumer theory

Although the generalised matching law describes behaviour more accurately than

the strict version, it has the disadvantage of containing a set of free parameters.

In most studies, these parameters were arbitrarily chosen in order to fit the model

to the data. This approach reduces the falsifiability of the matching law and its

applicability as micro-level assumption in social situations.

Another problem of the generalised matching law is its sensitivity to situa-

tional constraints. Caron (2015) demonstrated that, even if there is no effect from

reinforcements (s1, s2) to choices (k1, k2), fitting the generalised matching law

to simulated data produces spurious correlations. These correlations are due to

the constraints s1 ≤ k1 and s2 ≤ k2. The level of explained variance was, with

41−49%, lower than in behavioural experiments. Nevertheless, the finding stresses

the necessity of a “more comprehensive and exhaustive description of environmen-

tal constraints” (Caron, 2015, p. 232).

In this chapter, a formalisation of the matching law that is able to account for

environmental constraints is advanced. Similar to the generalised matching law,

a greater empirical validity is achieved by taking some causes of bias and under-

matching into account. But instead of introducing free parameters, the frequencies

of reinforcement (s1 and s2) are substituted by more adequate measures of an ac-

tor’s preferences and situational constraints. This procedure is in line with the

interpretations of the matching law by Herrnstein (1997), Rachlin et al. (1980),

and Gray and Tallman (1984).

35
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More specifically, the integration of the matching law into economic consumer

theory is pursued. In some form, many of the following results are found in previous

work (e.g. Rachlin et al., 1980; Herrnstein, 1997). The main contribution of this

chapter is the unification of different lines of work and the generalisation of earlier

results. One goal is the presentation of an empirically testable matching law.

Additionally, it is aimed for the consideration of the matching law as an alternative

to standard solutions of economic theory.

A connection between the matching law and economic theory has already been

worked out by Howard Rachlin and colleagues (Rachlin et al., 1976, 1980, 1981).

The authors attempted to establish general aspects of microeconomic theory in

behavioural psychology. They pointed to the advantages of modelling the experi-

mental situation by utility and budget functions and compared the predictions of

utility maximisation to experimental observations. While the main focus of these

papers and some of its critics (e.g. Baum and Nevin, 1981; Herrnstein, 1981) was

the attempt to introduce the maximisation assumption in behavioural psychology,

this chapter deals with another point that was made by the authors. In Rachlin

et al. (1980), it was argued that the generalised matching law can be applied to

the microeconomic framework. It was also indicated that free parameters must be

derived from a theory of value (Rachlin et al., 1981, p. 409).

Following Rachlin et al. (1976), a situation of repeated choice, such as a be-

havioural experiment or a real-world setting, is modelled by the consumer prob-

lem of microeconomic theory. In order to apply the matching law, restricting

assumptions about the consumer problem have to be made. The resulting class of

situations is called the problem of distributed choice (section 3.1).

While most of the preceding work on the matching law was limited to the choice

among two alternatives, the problem of distributed choice allows any finite num-

ber of alternatives (as suggested by Herrnstein, 1970, 1971, 1974). Furthermore,

a previously disregarded connection to economic utility theory, i.e. the theory of

additive conjoint measurement, is explicated. This enables the theoretical deriva-

tion of the model parameters from assumptions about the actor’s preferences and

a formal description of the situation.

In section 3.2, the matching law is introduced as solution to the problem of

distributed choice. Similar approaches can be found in past theoretical research:
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first, a general class of problems is defined, and, subsequently, a solution to these

problems is presented. For example, the Nash equilibrium was suggested as a

solution to any non-cooperative game with two or more players (Nash, 1951).

Comparably, several theoretical studies in behavioural psychology focused on the

formal modelling of an experimental situation and compared different theoretical

predictions to each other and to observed behaviour (Houston and McNamara,

1981; Staddon, 2001; Belinsky et al., 2004, 2005).

In contrast to earlier work on the generalised matching law, the new formal-

isation requires the specification of the situation ex ante and allows to test the

matching law instead of fitting it to empirical data. Hence, a more accurate test

of the matching law is made possible.

Moreover, the next chapter emphasises the usage of the matching law as an

alternative to standard solutions of economic theory, which are usually built on

utility maximisation. Despite the large amount of experimental research by psy-

chologists, the matching law has been largely ignored by economists and sociolo-

gists. By restricting the consumer problem to the problem of distributed choice,

the matching law can be applied as micro-level assumption of individual behaviour.

Similar to the usage of other micro-level assumptions, this provides an opportunity

to derive social phenomena from the matching law.

3.1 The problem of distributed choice

Since the matching law cannot be applied to any instance of the consumer problem,

restricting assumptions about the situation and the preferences of an actor are

required. Subsequently, it is possible to substitute the frequencies of reinforcement

(s1 and s2) by more adequate measures of reinforcement. In the following, sufficient

conditions for the application of the matching law are given.

3.1.1 Assumptions about the situation

For any m ∈ N, a set E = {e1, e2, . . . , em} is regarded as set of choice alternatives.

An actor is assumed to repeatedly choose one of the alternatives of E. In order

to be in line with previous research, it is distinguished between behaviour and
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outcomes. The behaviour of an actor is modelled by the set of choice distributions

P :=
{
p = (pe1 , pe2 , . . . , pem) ∈ [0, 1]E

∣∣ ∑
j∈E pj = 1

}
.

Each element of P denotes a frequency distribution over the alternatives E.

The set of outcomes is restricted to X := [0,∞)E. If x = (xe1 , xe2 , . . . , xem) ∈
X , the elements xe1 , xe2 , . . . , xem should be seen as the relative amounts of rein-

forcement that are obtained after choosing the corresponding alternatives. An

outcome depends on the behaviour and the situation. This relationship is com-

monly specified by a budget function g : P → X .

The budget function of a behavioural experiment depends on the experimental

procedure. For example, in case of two alternatives (E = {1, 2}) and a concurrent

fixed-ratio schedule, a reinforcement is released with a fixed probability be ∈ (0, 1)

after choosing an alternative e ∈ E. If there are no further differences in reinforce-

ment, the budget function is defined by

g(p) := (b1 · p1, b2 · p2) , for all p = (p1, p2) ∈ P . (3.1)

If the first alternative is chosen 30% of the time (p1 = 0.3) and this alternative is

reinforced with probability b1 = 0.5, the relative amount of reinforcement is x1 =

0.15. During 100 rounds of the experiment, the subject obtains reinforcements in

approximately 15 of the 30 rounds in which the first alternative was chosen.

According to Rachlin et al. (1980), the budget function of a general behavioural

experiment with m alternatives (E = {1, 2, . . . ,m}) is given by

g(p) := (b1 · pr11 , b2 · pr22 , . . . , bm · prmm ) , for all p = (p1, p2, . . . , pm) ∈ P . (3.2)

The parameters (r1, . . . , rm) ∈ (0, 1]m and (b1, . . . , bm) ∈ [0,∞)m specify the re-

inforcement schedules. If ri = 1, the alternative i ∈ E is reinforced by a ratio

schedule. An interval schedule is characterised by 0 < ri < 1 (Rachlin et al., 1980,

p. 362). The second set of parameters (b1, b2, . . . , bm) allows to include differences

in probabilities or amounts of reinforcement. Following the arguments of Baum

(1974), this should account for some of the systematic deviations from the strict

matching law that were captured by the free parameters α and β of equation (2.3).
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In the budget function of equation (3.2), the outcome xi = bi · prii of an alter-

native i ∈ E depends on the frequency pi of this alternative. Generally, also the

frequency of another alternative can influence this outcome. This requires at least

three alternatives and is usually avoided in laboratory experiments. In real-world

situations, complex correlations are possible. For example, a person may choose

between three routes to work each morning: E = {A,B,C}. The selection of a

route is regarded as successful if the person is not caught up in a traffic jam. It pays

off not to take one route exclusively because of seasonal differences, such as school

holidays or weather conditions. In other words, the outcome xA of choosing route

A depends on its frequency pA. However, xA may also depend on the frequency pB

of choosing route B. For instance, if other persons choose between route A and C

every morning, the first person should avoid route C most of the time such that

the others keep clear of route A. Hence, the outcome xA is improved by choosing

route B more often than route C.

While it is difficult to specify the budget function of real-world situations,

it is usually straightforward to do this for laboratory experiments. A greater

challenge is the derivation of a subject’s preferences in regard to the outcomes.

As demonstrated by Rachlin et al. (1981), economic utility theory can be used

to derive preferences from behavioural experiments. But additional assumptions

about the preferences of an actor have to be made if the matching law is applied.

3.1.2 Assumptions about the preferences of an actor

One fundamental requirement is that the actor’s preferences over the set X can be

described by a non-negative and additive utility function. More specifically,

let % be a binary relation on X that describes the actor’s preferences. It is required

that there exist functions ue1 , ue2 . . . , uem : [0,∞) → [0,∞) such that for every

x = (xe1 , xe2 , . . . , xem) ∈ X ,y = (ye1 , ye2 , . . . , yem) ∈ X :

x % y ⇔
∑
j∈E

uj (xj) ≥
∑
j∈E

uj (yj) . (3.3)

Since the functions ui depend only on xi instead of the whole vector (xe1 , . . . , xem),

a connection to the theory of additive conjoint measurement is made.
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The theory of additive conjoint measurement characterises preferences that

allow an additive decomposition of the utility function (Fishburn, 1970; Krantz

et al., 1971). Necessary conditions for the existence of an additive utility function

are weak ordering (completeness and transitivity), independence among the alter-

natives, and the Archimedean axiom (Krantz et al., 1971). If, additionally, at least

three alternatives are essential (they actively affect the preference relation, Krantz

et al., 1971, p. 256) and if restricted solvability holds (Krantz et al., 1971, p. 301),

these conditions are sufficient for the existence of an additive utility function. The

last axiom may be replaced by other assumptions (Jaffray, 1974; Nakamura, 2002).

But if ue1 , ue2 . . . , uem are continuous on [0,∞), restricted solvability holds.

The following definition summarises the assumptions. It describes a class of

situations to which the matching law can be applied. In line with previous research

on this subject, this situation is labelled the problem of distributed choice (Herrn-

stein and Prelec, 1991).

Definition 3.4. Let m ∈ N, E = {e1, e2, . . . , em}, X := [0,∞)E, and P :={
(pe1 , pe2 , . . . , pem) ∈ [0, 1]E

∣∣ ∑
j∈E pj = 1

}
. A problem of distributed choice

is given by a triple (E, g, u) if

• g : P → X is a budget function with pj = 0⇒ xj = 0, ∀j ∈ E, and if

• u : X → [0,∞) is a utility function such that there exist functions

ue1 , ue2 . . . , uem : [0,∞)→ [0,∞) with uj(0) = 0, ∀j ∈ E, and

u(xe1 , . . . , xem) =
∑
j∈E

uj(xj) for every (xj)j∈E ∈ X .

It is required that pe = 0⇒ xe = 0 and xe = 0⇒ ue(xe) = 0 for every e ∈ E.

On the one hand, this is in accordance with the general understanding that, if an

alternative e ∈ E is not chosen, then neither an outcome nor any utility is linked

to this alternative.

On the other hand, this assumption enables the application of the matching law

because it implies that the measurement of utility must be done on ratio scales. As

stated above, certain axioms are required for the utility function to be additively

decomposable in non-negative functions ue1 , . . . , uem . The same axioms guarantee



3.1. THE PROBLEM OF DISTRIBUTED CHOICE 41

that these functions are unique up to positive linear transformations (Krantz et al.,

1971, p. 302, theorem 13). Since ue(0) = 0 for all e ∈ E, the intercept of any linear

transformation of ue1 , . . . , uem must be zero, and the functions are unique up to

scale. This is a property of the ratio scale.

Definition 3.4 distinguishes between budget and utility function. It is com-

monly accepted that the utility function is attached to an actor and does not

change with the environment. The budget function, on the contrary, is defined by

situational properties, such as the mechanisms of reinforcement. For the purpose

of an easier presentation, the two functions are concatenated to v := u ◦ g in the

following definition. This concatenation also stresses that, instead of the outcome

x ∈ X , which is usually the focus of economic analysis, the behaviour p ∈ P is

the variable of interest.

Definition 3.5. Let (E, g, u) be a problem of distributed choice. The function

v : P → [0,∞) with v := u ◦ g is called value function. A problem of distributed

choice is also denoted by the pair (E, v). Furthermore, let πj : [0,∞)E → [0,∞),

j ∈ E, be the projection function that maps (xe1 , xe2 , . . . , xem) to xj. The function

vj : P → [0,∞) with vj := uj ◦πj ◦g is the component value function of j ∈ E.

If p = (pj)j∈E ∈ P and pj > 0, j ∈ E, then

vj(p) :=
vj(p)

pj

is called the average value of j.

The component value functions {vj}j∈E assign non-negative real numbers to

every element of P . Because of the additive structure of the utility function, it

holds that

v(p) =
∑
j∈E

vj(p) for every p ∈ P .

Consequently, for a given p ∈ P , vj(p) returns the share of the total value v(p)

that is associated with alternative j ∈ E.

Two examples of a problem of distributed choice with E = {1, 2} are shown in

table 3.1. In the first example, the linear utility function u(x) = 8x1 + 6x2, for all

x = (x1, x2) ∈ X , is considered. This function can be additively decomposed into
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example 1 example 2

v(p) = 8p1 + 6p2 v(p) = 8p1 − 5p21 + 6p2 − 5p22

v1(p) = 8, v2(p) = 6 v1(p) = 8− 5p1, v2(p) = 6− 5p2

0.0 0.2 0.4 0.6 0.8 1.0

2
4

6
8

choice of first alternative (p1)

v1(p) v2(p) v(p)

0.0 0.2 0.4 0.6 0.8 1.0
2

4
6

8
choice of first alternative (p1)

v1(p) v2(p) v(p)

Table 3.1: Examples of a problem of distributed choice with E = {1, 2}

u1(x1) = 8x1 and u2(x2) = 6x2. If a reinforcement follows a choice with certainty,

the budget function is given by g(p) = p. This implies the value functions and

average values that are listed in the left-sided column.

In the second example of table 3.1, the average values v1 and v2 decrease

with the relative frequencies of choosing the respective alternatives. This may, for

instance, result from a utility function that accounts for the effects of satiation

or from a budget function which outcome depends on the frequency of previous

decisions.

3.2 The matching law solution

In order to introduce the matching law as a solution to the problem of distributed

choice, the experiment of Herrnstein (1961) (see section 2.1) and the strict match-

ing law are reconsidered. The experiment consisted of the repeated choice between

two alternatives (E = {1, 2}). If an actor distributes n ∈ N decisions over E, the

observed behaviour is any pair (p1, p2) with

(p1, p2) ∈
{

(0, 1) ,
(
1
n
, n−1

n

)
,
(
2
n
, n−2

n

)
, . . . ,

(
n−1
n
, 1
n

)
, (1, 0)

}
⊂ P .
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In respect to the notation of section 2.1, this means that

p1 = k1
k1+k2

and p2 = k2
k1+k2

,

with n = k1 + k2 and ki denoting the absolute frequency of choosing alternative

i ∈ E. Since Herrnstein (1961) used a set of concurrent variable-interval schedules,

the budget function is given by

g(p) := (b1 · pr11 , b2 · pr22 ) , for all p = (p1, p2) ∈ P ,

with r1, r2 ∈ (0, 1) and b1, b2 ∈ (0,∞) specifying the schedule. It follows that

the absolute frequencies of reinforcement s1, s2 ∈ N approximate n · b1 · pr11 and

n · b2 · pr22 , respectively, if n is large.

Because there were no differences in outcomes (same amounts of the same kind

of grain), the preferences are represented by u(x1, x2) = x1 + x2, which is clearly

additive with u1(x1) = x1 and u2(x2) = x2. Accordingly, the component value

functions are given by v1(p) = b1 · pr11 and v2(p) = b2 · pr22 , for all p = (p1, p2) ∈ P .

With regard to equation (2.1), the strict matching law holds if

p1 =
k1

k1 + k2
=

s1
s1 + s2

≈ n · b1 · pr11
n · b1 · pr11 + n · b2 · pr22

=
v1(p)

v1(p) + v2(p)
.

This observation motivates the following general definition of the matching law.

Definition 3.6. Given a problem of distributed choice (E, g, u) and the value func-

tions v, {vj}j∈E as specified by definition 3.5, the matching law holds for a given

p = (pj)j∈E ∈ P if v(p) > 0 and

pi =
vi(p)∑
j∈E vj(p)

, for all i ∈ E. (3.7)

The set of all p ∈ P that satisfy condition (3.7) is called matching law solution

and denoted by M(E, g, u) or M(E, v).

For the examples of table 3.1, the matching law solutions are {(0, 1), (1, 0)} and

{(0, 1), (1, 0), (0.7, 0.3)}, respectively. It can be easily checked that condition (3.7)
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holds for the elements of both sets. In order to make sure that a matching law

solution is complete, the following characterisations should be used.

First, a matching law solution is never empty. Let e ∈ E be an alternative

with pe = 1, then pj = 0, for all j 6= e. Because it is required by definition 3.4 that

vj(p) = 0 if pj = 0, the conditions of equation (3.7) reduce to 1 = pe = ve(p)
ve(p)

= 1

and 0 = pj = 0
ve(p)

, for all j 6= e.

Observation 3.8. Given a problem of distributed choice (E, v):

{(pj)j∈E ∈ P : pj ∈ {0, 1}, for all j ∈ E} ⊆M(E, v).

A choice distribution of the set {(pj)j∈E ∈ P : pj ∈ {0, 1}, for all j ∈ E} consists

of zeros and a single one at an index e ∈ E. These distributions can be interpreted

as “choosing only alternative e”.

Second, given a solution (pj)j∈E ∈M(E, v) and any e ∈ E with pe > 0, it must

hold that
∑

j∈E vj(p) = ve(p)
pe

. This is expressed by the next observation.

Observation 3.9. For any element p = (pj)i∈E ∈ M(E, v) and e ∈ E, it holds

that

pe > 0⇒ ve(p) = v(p).

Since the total value v(p) =
∑

j∈E vj(p) is constant for a given choice distribution

p = (pj)j∈E ∈ P , the average values vj(p) of all j ∈ E with pj > 0 are equal. This

is a sufficient and necessary condition of the matching law:

Proposition 3.10. Given a problem of distributed choice (E, v) and any p =

(pj)i∈E ∈ P: p ∈M(E, v) if and only if, for all i, j ∈ E with pi, pj > 0,

vi(p) = vj(p). (3.11)

Proof. (i) ⇒: Let i, j ∈ E with pi, pj > 0. Because of observation 3.9, it follows

that vi(p) = v(p) = vj(p). (ii)⇐: Let i ∈ E. a) If pi = 0, then pi = 0 = vi(p)∑
j∈E vj(p)

.

b) If pi = 1, then pj = 0 for all j ∈ E with j 6= i, and pi = 1 = vi(p)
vi(p)

= vi(p)∑
j∈E vj(p)

. c)

If 0 < pi < 1, it follows from the assumption that vi(p) = vj(p) for all j ∈ E with

pj > 0. Furthermore: vi(p) > 0 because
∑

j∈E vj(p) > 0 is required by definition

3.4. Hence: pi = vi(p)·pi
vi(p)

= vi(p)·pi
vi(p)·

∑
j∈E pj

= vi(p)·pi∑
j∈E vj(p)·pj

= vi(p)∑
j∈E vj(p)

.
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Proposition 3.10 implies that a frequency distribution p = (pj)j∈E ∈ P is an

element of the matching law solution only if the average value functions vi and

vj of any two elements i, j ∈ E with pi > 0 and pj > 0 intersect at the point

p. Therefore, condition (3.11) simplifies the application of the matching law to

a problem of distributed choice. In table 3.1, the right-sided plot shows that the

curves v1 and v2 intersect at p1 = 0.7, which is an element of the matching law

solution. Furthermore, since this is the only intersection, there are no further

elements of P for which the matching law holds (apart from the elements specified

by observation 3.8).

The characterisation of the matching law by condition (3.11) is widely known

in behavioural psychology (e.g. Herrnstein, 1997). But the presentation of this

equivalence relationship has mostly been incomplete and restricted to a small set of

situations. Proposition 3.10 demonstrates that the equivalence of condition (3.11)

and condition (3.7) holds in any situations that can be specified as a problem of

distributed choice. It also emphasises that the matching law refers to alternatives

that are chosen with strictly positive frequencies. Alternatives with zero frequency

can be disregarded. Especially, the exclusive choice of a single alternative is always

in line with the matching law (observation 3.8). This observation enlarges the set

of choice distributions that are explained by the matching law.

Proposition 3.10 also clarifies that a researcher can concentrate on any subset

F ⊂ E of readily observable alternatives without compromising the credibility of

the results. If the matching law holds for all alternatives E, then it must also hold

for the observed ones F . Accordingly, if the matching law cannot be found in F ,

it does not hold for any superset of F .

Another benefit of the formulation of proposition 3.10 is the derivation of the

following point: the prediction of the matching law is independent of the partic-

ular representation of the preferences. As stated in section 3.1.2, the functions

ue1 , . . . , uem are unique up to scale in case that they are continuous on [0,∞). If

there is another set of continuous functions we1 , . . . , wem that additively represent

the preference relation of the actor, then there exists an a ∈ (0,∞) with

wj(xj) = a · uj(xj) for every j ∈ E and xj ∈ [0,∞).
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It follows that, given a p = (pj)j∈E ∈ P and any i, j ∈ E with pi, pj > 0,

ui(πi(g(p)))

pi
=
uj(πj(g(p)))

pj
⇔ wi(πi(g(p)))

pi
=
wj(πj(g(p)))

pj
.

This proves the following proposition.

Proposition 3.12. Let (E, g, u) be a problem of distributed choice and u be a

continuous utility function that represents an actor’s preferences. If there is an-

other continuous, additive, and non-negative utility function w that represents the

actor’s preferences, then

M(E, g, u) = M(E, g, w).

3.3 Conclusion

Given an adequate specification of the economic consumer problem, it is possible

to apply the matching law as a solution. In this regard, the matching law becomes

a property of some frequency distributions p ∈ P and can be used to derive

empirically testable hypotheses. The advantages of this approach are the existence

of a clear definition of the matching law and a greatly enhanced falsifiability of

the derived hypotheses. Moreover, this framework allows the matching law to be

seen as an alternative to standard solutions of economic theory.

Nevertheless, it should be noted that, since the matching law requires a period

of repetitions, it is best applied to situations of routine behaviour. This point was

made by Tallman and Gray (1990, p. 422) who argued that “[b]ehaviorists have

provided a viable framework for explaining choices that are made in day-to-day

routine situations, whereas the subjectivists [e.g. rational choice theorists] explain

choices under novel, or a least nonroutine, conditions.”



Chapter 4

Optimal and suboptimal matching

With its incorporation into microeconomic theory, the matching law can be com-

pared to optimal behaviour. In line with previous research, optimal behaviour is

shown to imply the matching law under certain conditions (section 4.1). For exam-

ple, given an experiment with concurrent ratio or interval schedules, the matching

law holds for any outcome that conforms to the optimal point of a CES utility

function (section 4.2).

However, an often noted property of the matching law is that the behaviour is

not necessarily optimal (Rachlin et al., 1980; Vaughan and Herrnstein, 1987; Herrn-

stein, 1990a,b; Herrnstein and Prelec, 1991). Section 4.3 presents several examples

in which the matching law and optimal behaviour diverge. A comparison of the

matching law and the Nash equilibrium concludes this chapter.

4.1 Optimal matching

Given a problem of distributed choice (E, v), an optimisation of the overall value

of reinforcement means that an actor selects a distribution p = (pj)j∈E ∈ P that

maximises the total value v(p) =
∑

j∈E vj(p). It was argued by several authors

(Rachlin et al., 1976; Staddon and Motheral, 1978) that maximising behaviour

often leads to a prediction of the matching law. Herrnstein (1982) noted that

both matching and maximising predict the same distribution p ∈ P if the average

values vj(p) of all alternatives j ∈ E are independent of p.

47
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When considering the choice between two alternatives 1 and 2 with constant

average values of reinforcements v1 = β1 ∈ (0,∞) and v2 = β2 ∈ (0,∞), the

overall value is optimised by any p1 that maximises∑
j∈E

vj(p) = v1(p) · p1 + v2(p) · (1− p1) = p1 · (β1 − β2) + β2.

Hence, the optimal distributions are given by

arg max
p∈P

v(p) =


{(1, 0)} if β1 > β2,

{(0, 1)} if β1 < β2,

P if β1 = β2.

In comparison, the matching law solution looks slightly different:

M(E, v) =

{
{(1, 0), (0, 1)} if β1 6= β2,

P if β1 = β2.

If β1 = β2, the set of maximising distributions is equal to the matching law solution.

In the case of β1 6= β2, either (1, 0) or (0, 1) is optimal, but the matching law allows

any of the two elements {(1, 0), (0, 1)}. This means that the optimal solution

implies the matching law, but the converse does not hold. Even if there is a best

answer (e.g. β1 > β2), the exclusive choice of the inferior alternative is consistent

with the matching law.

In situations in which the average values are not constant, the optimal solution

may still imply the matching law. The following proposition expresses this result

for a broad class of value functions.

Proposition 4.1. Let (E, v) be a problem of distributed choice. If there exist

α ∈ R, γ ∈ [0,∞), and (βj)j∈E ∈ RE such that, for all p = (pj)j∈E ∈ P and every

e ∈ E with pe > 0, it holds that

ve(p) = βe · (pe)α + γ · pe, (4.2)

then

arg max
p∈P

v(p) ⊆M(E, v).
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Proof. The optimal solution of the situation is given by

arg max
p∈P

v(p) = arg max
p∈P

(∑
j∈E

vj(p)

)
= arg max

p∈P

(
γ +

∑
j∈E

βj · pαj

)
.

The extrema of γ+
∑

i∈E βi ·pαi constrained by p = (pj)j∈E ∈ P can be found by the

method of Lagrange multipliers extended to the Karush–Kuhn–Tucker conditions

(see e.g. Hauser, 2012, p. 9). The conditions are compactly written as

(pj)j∈E ∈ P (4.3)

0 = α · βi · pα−1i + λ+ µi,∀i ∈ E (4.4)

0 = µi · pi,∀i ∈ E, (4.5)

with λ ∈ R and (µi)i∈E ∈ RE being Lagrange multipliers. The method of Lagrange

multipliers states that, for any point p = (pj)j∈E ∈ P that maximises v(p), there

must exist λ ∈ R and (µi)i∈E ∈ RE such that ((pj)j∈E, λ, (µi)i∈E) satisfy conditions

(4.4) and (4.5). In the following, it is shown that the set of all points (pj)j∈E ∈ P
that satisfy these conditions is a subset of the matching law solution. Let (pj)j∈E ∈
P and i ∈ E. If pi = 0, condition (4.5) holds for this i, and condition (4.4) becomes

true by setting µi = −λ. If, on the other hand, pi > 0, µi must equal zero (because

of conditon (4.5)), and condition (4.4) reduces to

−λ = α · βi · pα−1i .

This means that conditions (4.4) and (4.5) lead to

∀i, j ∈ E with pi, pj > 0 : βi · pα−1i = βj · pα−1j ,

which implies the condition of proposition 3.10:

∀i, j ∈ E with pi, pj > 0 : βi · pα−1i + γ︸ ︷︷ ︸
=vi(p)

= βj · pα−1j + γ︸ ︷︷ ︸
=vj(p)

. (4.6)

This proves the proposition.
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A special case of proposition 4.1 (E = {1, 2} and γ = 0) was stated by Rachlin

et al. (1980, p. 365). The proposition extends the earlier result to problems of

distributed choice with an arbitrary number of alternatives and with γ ≥ 0. The

case of γ = 0 was studied by Rachlin et al. (1980) because it corresponds to ratio

or interval schedules of reinforcement and a CES utility function (see section 4.2).

By allowing γ > 0, the proposition also covers situations that were analysed by

Herrnstein (1997, pp. 204, 277, 282).
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Figure 4.1: The situation of proposition 4.1

Some examples of the situation of proposition 4.1 are seen in figure 4.1. The

choice is between two alternatives. The x-axis depicts the frequency p1 of choosing

the first alternative. The average values of each alternative v1(p) and v2(p), and

the total value v(p) are drawn for each p = (p1, p2) ∈ P and for a set of different

parameter combinations. Since definition 3.4 requires that the component value

functions {vj}j∈E are non-negative, the set of parameters of proposition 4.1 is

limited to (βj)j∈E ≥ −γ if α ≥ 1 and to (βj)j∈E ≥ 0 if α < 1.
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Two examples with α > 1 and γ > 0 are shown in the plots of the upper row

of figure 4.1. The average values decrease if their relative frequencies of choice

increase. The parameters (β1, β2) = (−4,−6) stand for the rates of decrease, and

α specifies the shape of the curves. In both cases, the point p with the maximum

overall value v(p) coincides with the intersection of the two curves of v1 and v2.

The latter is an element of the matching law solution.

If α > 1 and β1, β2 > 0, the average values increase with their frequencies

of choice. This is pictured in the left plot of the lower row. There exist some

situations that can be modelled by α > 1 and β1, β2 > 0. For instance, the

average value of playing a musical instrument or speaking a foreign language may

increase with the frequency of choosing this activity. In the particular example of

figure 4.1, the maximum of v is at p1 = 0, which is an element of the matching

law solution. The remaining plot of figure 4.1 pictures an example with α < 1 and

γ = 0. In this case, β1 and β2 must be greater than zero. Situations with α < 1

and γ = 0 are examined in the next section.

4.2 Constant elasticity of substitution utility

In chapter 2, multiple factors that cause deviations from the strict matching law

(equation (2.1)) were mentioned. One factor that leads to undermatching and is

captured by the generalised matching law (equation (2.3)) is the level of substi-

tutability of the reinforcements (Baum and Nevin, 1981; Green and Freed, 1993).

According to Rachlin et al. (1980), the level of substitutability can be taken into

account by a CES utility function. The arguments of Rachlin et al. (1980) are

retraced and elaborated in this section.

Given a set of alternatives E = {1, 2, . . . ,m} , m ∈ N, the budget function g of

equation (3.2) is supposed to describe behavioural experiments that use ratio or

interval schedules (Rachlin et al., 1980, p. 362). In accordance with the situation

of proposition 4.1, the reinforcement schedules of all alternatives are required to

be of the same kind: r1 = · · · = rm =: r. This means that, with 0 < r ≤ 1 and

b1, b2, . . . , bm > 0,

g(p) =
(
b1 · pre1 , b2 · p

r
e2
, . . . , bm · prem

)
, for all p = (pe1 , pe2 , . . . , pem) ∈ P . (4.7)
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Furthermore, the preferences of an actor are assumed to follow a constant

elasticity of substitution (CES) utility function (Arrow et al., 1961; Dixit and

Stiglitz, 1977). This function is given by

u(x) =

(∑
j∈E

aj · xρj

) 1
ρ

, for all x = (xj)j∈E ∈ X , (4.8)

with ρ ≤ 1, ρ 6= 0, and aj > 0, for all j ∈ E. A transformation of this function to

u(x)ρ does not change its extrema. If ρ > 0, it is a positive monotonic transfor-

mation with u(x) > u(y) ⇒ u(x)ρ > u(y)ρ, for all x,y ∈ X . If ρ < 0, maxima

become minima and vice versa because u(x) > u(y)⇒ u(x)ρ < u(y)ρ.

The transformed utility function u(x)ρ is clearly additive and non-negative on

X = [0,∞)E. The concatenation of the budget function g and the utility function

uρ leads to the following component value functions:

vj(p) = aj ·
(
bj · prj

)ρ
, for each j ∈ E and p = (pj)j∈E ∈ P . (4.9)

With βj = aj · bρj , α = r · ρ, and γ = 0, this corresponds to the situation of

proposition 4.1. It was shown in the proof that all extrema (not only the maxima)

of the value function v(p) =
∑

j∈E vj(p) are elements of the matching law solution.

Consequently, the behaviour of an actor conforms to the matching law in case of

CES preferences and a situation described by the budget function (4.7).

A prominent example of a CES utility function is, with ρ = 1, the linear utility

function:

u(x) =
∑
j∈E

aj · xj, for all x = (xj)j∈E ∈ X .

Situations that are modelled by linear functions cover reinforcements with infi-

nite elasticity of substitutability, which means that they are perfect substitutes.

This was evident in the original experiments of Herrnstein (1961), in which strict

matching was discovered. The reinforcers were of the same kind and, hence, perfect

substitutes. But also experiments with differences in the quality of reinforcements

can be modelled by a linear utility function as long as the parameters aj are set

to appropriate values.
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In case of ρ < 1, a finite elasticity of substitutability is modelled, and the

resources, which are used as reinforcements, somehow complement each other. If,

for example, two different kinds of food are used as reinforcements and both re-

sources are subject to satiation, the subjective value of an additional unit of either

resource decreases with its repeated consumption. When continuously consuming

the first kind, receiving the second kind from time to time actually increases the

subjective value of the first one. Therefore, a mix of both resources results in a

higher average value than the consumption of a single resource.

In the limit ρ→ 0, equation (4.8) approaches the Cobb-Douglas utility function

(see e.g. Saito, 2011). It has the following form:

u(x) =
∏
j∈E

x
aj
j , for all x ∈ X , (4.10)

with aj > 0, for all j ∈ E.

Cobb-Douglas preferences can be described by a additive utility function be-

cause function (4.10) is unique up to positive monotone transformation. Therefore,

the logarithmic transformation represents the same preferences:

log u(x) =
∑
j∈E

aj log xj, for all x = (xj)j∈E ∈ X .

However, the components uj(xj) = aj log xj take negative values if xj ∈ (0, 1).

Since this holds true for any positive linear transformation of the components,

there is no additive representation of Cobb-Douglas preferences with non-negative

components u1, . . . , um.

Even though Cobb-Douglas preferences cannot be exactly represented by an

additive and non-negative utility function, they can be arbitrarily closely approx-

imated by

u(x) =
∑
j∈E

aj · xρj , for all x = (xj)j∈E ∈ X (4.11)

and small ρ > 0. In combination with the budget function g of equation (4.7),

equation (4.11) corresponds to the situation of proposition 4.1. Consequently,

behaviour of an actor with Cobb-Douglas preferences in a situation described by

the budget function (4.7) approximates the matching law.
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A similar result is obtained in the limit of ρ→ −∞. The CES utility function

approaches the Leontief utilities (see e.g. Saito, 2011), which are given by

u(x) = min
j∈E

{
xj
aj

}
, for all x = (xj)j∈E ∈ X .

Leontief preferences are not representable by an additive function, but they can

be approximated by equation (4.11) and a small ρ < 0. Therefore, actors with

Leontief preferences approach the matching law in the situation of equation (4.7).

A situation with ρ < 0 occurs if the reinforcement of one alternative is available

only in combination with the reinforcement of another alternative. This leads to an

inversion of the strict matching law because the less reinforced alternative is chosen

more often than the highly reinforced alternative. An example was studied by

Hursh (1978). In experiments with rhesus monkeys, food and water were provided

as reinforcements of two alternatives. It was observed that a higher rate of food

as reinforcement led to an increase in responding to the water alternative. Due to

the fact that no food or water was provided outside of the experiment, food was

valuable only in combination with water.

An inversion of the matching law can also be caused by situational properties.

This is modelled by the budget function of equation (4.7) and r < 0. For example,

the choice of one alternative may release food that remains behind a barrier. Only

the choice of another alternative sometimes opens the barrier. In other words, the

reinforcement of one alternative is not experienced until the other alternative is

chosen. Consequently, if the reinforcement rate of the first alternative is increased,

a subject chooses the second alternative more often.

4.3 Suboptimal matching

In regard to the opposite direction of proposition 4.1, an element p of the matching

law solution does generally not result in an optimal value v(p). Given the situation

of proposition 4.1 with two alternatives (E = {1, 2}) and α = γ = 0, it was

already shown that matching is not always optimal: if β1 > β2, the exclusive

choice of alternative 2 (p = (0, 1)) is an element of the matching law solution but

no optimal distribution of choice.
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Moreover, the optimal distribution is no element of the matching law solution

in many situations that differ from the ones of proposition 4.1. An instance is

specified by the following component value functions if γi 6= γj whenever i 6= j:

vi(p) = βi · pαi + γi · pi, for all p = (pj)j∈E ∈ P . (4.12)

In figure 4.2, two examples with α = 2 are given. The choice is between two

alternatives. The first plot pictures a situation with γ1 = 6 and γ2 = 10. If p1 = 0,

p1 = 1, or p1 = 1
6
, the behaviour corresponds to the matching law, whereas the

optimal distribution requires that p1 = 1
3
. A difference between optimal distri-

bution and matching law is more clearly seen in the second plot, in which also

the slope parameters β1 and β2 vary. The matching law solution is given by{
(1, 0) , (0, 1) ,

(
1
3
, 2
3

)}
and the optimal distribution by

(
7
12
, 5
12

)
.
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Figure 4.2: The situation of condition (4.12) with α = 2

Furthermore, if different schedules of reinforcement are used in an experiment,

the third parameter α of equation (4.2) varies such that αi 6= αj whenever i 6= j:

vi(p) = βi · pαii + γi · pi, for all p = (pj)j∈E ∈ P . (4.13)

Two instances of this situation are represented by the plots of figure 4.3. The

situation of the left-sided plot implies an optimal distribution at p1 = 0.45, which

is no element of the matching law solution. A more noticeable difference is found

in the second plot, in which the highest average value is obtained at p1 = 0.5.
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Figure 4.3: The situation of condition (4.13) with α1 = 2 and α2 = 3

In the three applications that follow, the optimal behaviour of a problem of

distributed choice diverges from the matching law. One application comes from

Herrnstein and Prelec (1991) and concerns the choice between two consumable

goods. Second, the penalty kick example of chapter 2 is revisited. The third

application is the study of addictive behaviour by Herrnstein and Prelec (1992).

4.3.1 The choice between pizza and salad

A situation that resembles the left-sided plot of figure 4.2 may arise in regard to

the daily selection of food for lunch (Herrnstein and Prelec, 1991). In a highly

simplified model, an actor chooses between two different items, e.g. pizza (alter-

native 1) and salad (alternative 2). A distribution p = (p1, p2) gives the relative

frequencies of choice over a period of several days. As pictured in the left-sided

plot of figure 4.2, the actor shows a general preference for salad (γ2 > γ1). Be-

cause of satiation or deprivation effects, the average values of pizza v1 and salad

v2 change with the respective frequencies of choice. For example, if pizza is chosen

every day, its average value is lower than if chosen every second day.

The matching law predicts the exclusive choice of pizza, the exclusive choice

of salad, or any distribution p with p1 > 0, p2 > 0, and v1(p) = v2(p), which

is, in the given example, p =
(
1
6
, 5
6

)
. The actor maximises the overall value of

lunch by choosing a mix of both alternatives with p1 = 1
3
. This means that, if the

actor chooses optimally, the average value of pizza v1(p) is lower than the average

value of salad v2(p). It may seem unreasonable to choose pizza regularly if the
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average value of salad is actually higher. Similar examples gave rise to a series

of articles by Herrnstein and colleagues that argue for the matching law (and,

more specifically, for a learning model that leads to the matching law) instead of

optimality as a fundamental solution concept of human choice behaviour (see the

collection of papers in Herrnstein, 1997, part III).

4.3.2 Penalty kicks

In chapter 2, the strict matching law was illustrated by the example of penalty

kicks during football games. The kicker was assumed to choose between the left

and the right side of the goal. Either choice is reinforced if the ball ends up

inside of the goal. If modelled by a problem of distributed choice (E, v), the set

of alternatives E contains the choices L for the left and R for the right side of the

goal. The specification of the value function v depends on the particular kicker

as well as on the environment. Assuming that the worth of a goal is independent

of the chosen side, the utility of a success can be normalised to one. This means

that the average value vi of an alternative i ∈ E resembles its success rate, which

is the probability of scoring a goal after choosing alternative i. Figure 4.4 shows

two concrete specifications of v.
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Figure 4.4: Examples of the penalty kick situation

In the first plot, the success rate is higher when choosing the left side of the

goal. Both rates are independent of the frequencies of choice p = (pL, pR), and the

kicker maximises the overall success by always choosing the left side of the goal.

This conforms to the matching law.
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More realistically, the success rate of an alternative i ∈ E decreases with its

frequency of choice pi. For example, the goalkeeper might choose the left side of

the goal with the same relative frequency as the kicker chooses this side. This

is modelled by the second plot of figure 4.4 (the choices of kicker and goalkeeper

are assumed to be independent of each other). The optimal response of the kicker

is at pL = 0.5, which results in v(0.5, 0.5) = 0.425. However, at this point, the

success rate on the left side is higher than the success rate on the right side:

vL(0.5, 0.5) = 0.5 > 0.35 = vR(0.5, 0.5). It is plausible to assume that the kicker

is going to increase the frequency of choosing the left side until the success rates

are equal at pL = 2
3
. This is a prediction of the matching law.

4.3.3 Addictive behaviour

In light of the previous examples, it is concluded that, on the one hand, the match-

ing law implies the maximisation of immediate rewards. On the other hand, long-

term disadvantages develop because of a reduced overall value of reinforcement.

This is especially evident in the study of addictive behaviour.

Addictive behaviour is assumed to consist of the repeated choice between the

consumption of an addictive substance (A) and any non-addictive alternative (N).

According to Herrnstein and Prelec (1992), addictive substances are characterised

by an immediate benefit, which means that the subjective value of consuming the

addictive substance is higher than not consuming. This is shown in the left-sided

graph of figure 4.5: the average value of the addictive substance vA is always higher

than the average value of the alternative behaviour vN .
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Figure 4.5: Average values of addictive (A) and alternative (N) behaviour
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Similar to any other consumable good, the average value vA of the addictive

substance decreases with pA. Another property of addictive substances is that

their repeated consumption lowers the value of activities that do not involve these

substances. Thus, the average value of the alternative behaviour vN also decreases

with the frequency pA of consuming the addictive substance. As shown in the

left-sided graph of figure 4.5, the optimal choice is a moderate consumption of the

addictive substance. This is not a matching law equilibrium, which predicts either

no or constant consumption.

Herrnstein and Prelec (1992) stated that the shape of a value function depends

on the addictive substance. Substances such as alcohol, which is modelled by the

right-sided graph of figure 4.5, may have different effects. It is often argued that

a moderate level of consuming alcohol increases the average value of alternative

behaviour because it solves problems that derive, for example, from stress or shy-

ness. Furthermore, the value function vN may be tangent to vA, or both functions

intersect. But the optimal point is not stable in respect to the matching law as

long as the average value of alcohol exceeds the average value of the alternative.

4.4 The matching law and the Nash equilibrium

Brenner and Witt (2003) analysed two-person strategic games that are repeatedly

played with different partners. The authors demonstrated that the Nash equilib-

rium of the stage game corresponds to the matching law if the payoffs of the stage

game do not change with the distribution of previous decisions. A Nash equi-

librium is specified by a probability distribution over the alternatives such that

the expected payoffs of all alternatives with strictly positive probability are equal.

If the stage game is repeated independently, this property mirrors the statement

of proposition 3.10 because the relative frequencies approach the probabilities of

choice and the expected payoffs are approximated by the average values.

A difference between a two-person strategic game and a problem of distributed

choice is that the latter does not explicitly model the decisions of the other person.

In the example of penalty kicks, the goalkeeper’s decisions were subsumed in the

dependence of the average values vL and vR on the frequency distribution p. The

goalkeeper was assumed to take the previous decisions of the kicker into account.
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Hence, from the kicker’s point of view, the success rates vL and vR depend on the

own frequency distribution p.

goalkeeper left right

kicker
left 0.2 0.8

right 0.5 0.2

Table 4.1: Score probabilities of a kicker in a penalty kick situation

If penalty kicks are modelled by a repeatedly played two-person strategic game,

the payoffs of the stage game are typically independent of previous decisions (see

e.g. Chiappori et al., 2002; Palacios-Huerta, 2003; Berger and Hammer, 2007).

Table 4.1 shows a sample game by specifying a kicker’s probabilities of scoring a

goal given the own and the goalkeeper’s decision. The probability of scoring is

higher if the goalkeeper chooses not the same side as the kicker. Furthermore,

since the kicker’s right foot is stronger than his left foot, the score probability on

the left side is higher than on the right side.

If the game of table 4.1 is repeatedly played, a problem of distributed choice

can be defined. The value function depends on the strategy of the goalkeeper. For

example, the goalkeeper may adopt the kicker’s relative frequency pL of choosing

the left side of the goal. The value functions of this case were depicted in the

right-sided plot of figure 4.4. As already noted, the matching law solution diverges

from the individually optimal solution.

The Nash equilibrium requires that, given a choice probability pL of the kicker,

the goalkeeper selects a choice distribution (qL, qR) ∈ P that maximises his ex-

pected payoff (because the game is equivalent to a zero-sum game). In the game

of table 4.1, this means that the goalkeeper always chooses the right side of the

goal if pL <
1
3

and the left side of the goal if pL >
1
3
. In the case of pL = 1

3
, the

goalkeeper is indifferent between both alternatives and chooses the left side with

probability qL = 2
3
, such that the kicker is also indifferent with respect to his al-

ternatives. Figure 4.6 shows this situation from the perspective of the kicker. The

optimal point (pL = 1
3
) corresponds to an element of the matching law solution

because vL(1
3
, 2
3
) = vR(1

3
, 2
3
).
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Figure 4.6: The penalty kick situation under Nash equilibrium condition

However, this result is based on the assumptions that the payoffs of the stage

game are stable and the game is repeated independently. Brenner and Witt (2003)

provided proof that, if a stage game is continuously played with the same partner

and the payoffs depend on the distribution of previous choices, the Nash equilibrium

of the repeated game is different from the matching law.

4.5 Conclusion

The relationship between the matching law and optimal behaviour depends on the

particular problem of distributed choice. There is a class of situations in which

the optimal distribution of choice implies behaviour that is in accordance with the

matching law. But, in general, the matching law diverges from optimal behaviour.

Further analyses of the relationship between optimisation and the matching law

can be found in Baum (1981), Vaughan (1981), or Herrnstein (1997).

The matching law is different from maximisation because it neglects the long-

term effects of previous decisions. More specifically, Sakai and Fukai (2008b)

showed that the difference between optimisation and the matching law can be

mathematically expressed by the change in the value v that stems from the change

in behaviour p. A similar point was made by Loewenstein et al. (2009): if actors

are not able to draw a connection between past behaviour and future rewards, the

matching law is consistent with the principle of utility maximisation.
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Chapter 5

Melioration learning

Even though the integration of the matching law into consumer theory enables its

usage as micro-level assumption, the application on the social level is still limited.

One point was already made in chapter 1. The matching law describes a relation-

ship between decisions and reinforcements that are observed over a period of time.

Nothing is said about an actor’s disposition of choosing one of the alternatives at a

particular point in time. Hence, any hypothesis that is derived from the matching

law must refer to aggregated individual behaviour.

Second, the matching law solution generally contains multiple elements because

the exclusive choice of each alternative is always included (observation 3.8). There

is no immediate criterion that marks one element of the matching law solution as

more likely than another. Moreover, in case of n ∈ N actors and m ∈ N alternatives

for each actor, there are at least mn different outcomes that correspond to the

matching law. Without a theory that selects between different elements of the

matching law solution, its application on the social level is impeded.

Finally, in section 2.2.4, a macro-level regularity was derived from the match-

ing law under the assumptions that reinforcement is external and all actors are

perfectly informed about the reinforcements of other actors. The analysis becomes

more complex if information is limited or if the reinforcement of one actor depends

on the choices of other actors. In order to arrive at predictions for this kind of

social situation, additional assumptions about the processing and evaluation of

available information are required.

63
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As stated in chapter 1, a solution to these limitations is the acceptance of a

mechanism of decision-making, or a learning rule, that results in the matching law

on the individual level and can be applied to the derivation of social phenomena.

A wide range of existing theories might be applicable. In consideration of the

behaviouristic origin of the matching law, it is focused on learning models. The

best known economic models, such as regret matching, fictitious play, or Bayesian

learning, were suggested as normative processes that lead to some form of indi-

vidually optimal behaviour in the long run (see e.g. Young, 2004). Psychological

models of learning, on the other hand, try to represent the development of human

behaviour as realistic as possible while keeping it analytically tractable. According

to Staddon and Cerutti (2003, p. 134), most of the psychological learning models

describe processes that are consistent with the matching law.

One of the processes that are supposed to result in the matching law was

introduced by Herrnstein and Vaughan (1980) and called melioration. In the next

section, the ideas of the authors are summarised. Afterwards, an algorithm is

introduced that mathematically expresses the informal description of melioration

(section 5.2). It is shown that this model implies the matching law if relatively

strong assumptions about the situation hold. In section 5.3, the application of

melioration in sociological research is justified. Additionally, differences to other

learning models and empirical studies are discussed.

5.1 Previous research

Generally speaking, melioration learning states that the development of behavioural

tendencies is controlled by past experiences. More specifically, a particular be-

haviour is strengthened because of a high average value of previous events that

were perceived as consequences of this behaviour.

In the original literature, melioration learning was defined similarly vaguely.

For example, in one of the first articles, melioration meant that “behavior shifts

toward higher local rates of reinforcement” (Herrnstein, 1997, p. 75). A local

reinforcement rate was defined as “the reinforcement actually obtained from an

alternative [..] divided by the time allocated to it” (Herrnstein, 1997, p. 76). In

terms of definition 3.5, the local reinforcement rate can be equated with the average
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value of an alternative. Elsewhere, Vaughan and Herrnstein (1987) more formally

describe the process of melioration by a differential equation. Let there be a two-

element choice set {1, 2}. Given a point in time t ∈ (0,∞), pi(t) ∈ [0, 1] stands

for the relative frequency of having chosen alternative i ∈ {1, 2}. Vaughan and

Herrnstein (1987) state that the frequency p1(t) changes over time in accordance

with the following equation:

dp1(t)

dt
= f (v̂1(t)− v̂2(t)) . (5.1)

The function f(·) is differentiable and strictly monotonically increasing. It must

also hold that f(0) = 0. The term v̂i(t) (i ∈ {1, 2}) stands for the local reinforce-

ment rate of alternative i at time t. Herrnstein (1990a, p. 219) states that

“[t]he melioration process continues until the stronger response dis-

places all others, or, because the reinforcement returns from an alter-

native may depend on its level of occurrence, equilibrium is attained

with several alternatives left in the response set, each yielding the same

returns per unit at a given allocation among them [..].”

If applied to a problem of distributed choice ({1, 2}, v) (definitions 3.4 and 3.5),

equation (5.1) transforms to

dp1(t)

dt
= f (v1(p(t))− v2(p(t))) , (5.2)

with p(t) := (p1(t), p2(t)) for all t ∈ (0,∞). It follows that the quotation of Herrn-

stein (1990a) is a verbal interpretation of the condition of proposition 3.10, which

was shown to be equivalent to the matching law.

Equation (5.1) identifies melioration learning as a change in aggregated be-

haviour. Depending on the particular function f(·) and the situation, it describes

a development of the distribution of relative frequencies (p1(t), p2(t)). Because

f(0) = 0, melioration guarantees that the matching law is a stable state. And

since f(·) is assumed to be a continuous and strictly monotonically increasing

function, it seems plausible that this state is reached eventually (see also Vaughan,

1985, p. 387). However, this must not be true for every f(·) and every situation.
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The distribution (p1(t), p2(t)) might change in accordance with equation (5.1) but

never reach the matching law. Moreover, the function f(·) should depend on

v̂1(t) − v̂2(t) and p1(t), such that (p1(t), p2(t)) remains a frequency distribution

with p1(t), p2(t) ≥ 0 and p1(t) + p2(t) = 1.

Without specifying the function f(·) of equation (5.1), the melioration learning

rule remains vague and the long-term behaviour cannot be properly analysed. A

learning model is more accurate if it specifies a decision rule instead of a general

change in aggregated behaviour. The decision rule may be deterministic or prob-

abilistic, for example “given condition c, choose alternative a” or “given condition

c, choose alternative a with probability qa”.

In the past, mathematically rigorous representations of melioration learning

were suggested. For example, Brenner and Witt (2003, p. 432) substituted the

relative frequency p1(t) of equation (5.1) by the probability q1(t) ∈ [0, 1] of choosing

alternative 1 at time t and define melioration learning as

q1(t+ T ) = q1(t) + q1(t)(1− q1(t)) · α · (v̂1(t)− v̂2(t)). (5.3)

In equation (5.3), T ∈ (0,∞) stands for the length of a time period between two

choices, and α is a given constant (Brenner and Witt, 2003, p. 433). In connection

with the rule “choose alternative 1 at time t with probability q1(t)”, equation

(5.3) implies a change in the relative frequencies of choice that is roughly in line

with equation (5.1). Since decisions are probabilistic, it is possible for the relative

frequency p1(t) to decreases even if v̂1(t) > v̂2(t).

Sakai et al. (2006) and Loewenstein (2010) formalised melioration learning by

iterative processes that are similar to equation (5.3). They showed that the steady

states of their learning rules correspond to the matching law. Loewenstein (2010)

even based his rule on a theory of neural activity and synaptic plasticity. Similar

neurobiological approaches to melioration and the matching law can be found in

Soltani and Wang (2006) and Simen and Cohen (2009). The authors used neural

networks to model a relationship between reinforcement and neural activity. In

situations of repeated decision-making, the output of these models conforms to

the melioration process and the matching law.
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5.2 The model

In contrast to the previous models of melioration, this section presents an algorithm

that is perfectly consistent with equation 5.1 and does not require probabilities of

choice or neural networks. It is focused on the mental processing of reinforce-

ment rates, which are directly evaluated when making decisions. An extensive

comparison to other learning models is given in section 5.3.4.

More precisely, melioration is suggested to be formalised by an instance of

the Q-learning algorithm (Watkins, 1989) with ε-greedy strategy. According to

Sakai et al. (2006, p. 1102), greedy Q-learning is an “extreme case of melioration”.

Apart from that, no explicit connection between Q-learning, on the one hand, and

melioration or the matching law, on the other hand, has previously been made.

An implicit account of this connection is found in the work of Thuijsman et al.

(1995) and Seth (2002). The authors analysed foraging strategies that are similar

to Q-learning and compatible with the matching law in some situations.

Q-learning is an off-policy form of temporal-difference (TD) learning and orig-

inates from an area of research in artificial intelligence that is called reinforcement

learning or RL (Sutton and Barto, 1998). While TD models were initially used to

represent classical conditioning (Sutton and Barto, 1990), they can be “applied to

stochastic sequential decision tasks to produce an analog of instrumental learning”

(Barto et al., 1990, pp. 541-542).

agent

environment

action Xt
reward Rt+1

state St+1

Figure 5.1: A general model of sequential decision-making

A general model of sequential decision-making was given by Sutton and Barto

(1998, p. 52) and is illustrated in figure 5.1. The actor, who is called agent,

interacts with the environment by repeatedly emitting an action and awaiting a

response. The response of the environment consists of a state and a reward. A
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finite set E of choice alternatives and a finite set S of states of the environment

are assumed. The interaction takes place along discrete time steps t = 1, 2, . . . .

At each time step t, the agent inspects the current state St ∈ S and chooses an

element Xt ∈ E from the set of alternatives. Subsequently, a real-valued reward

Rt+1 is received, and the state changes to St+1 ∈ S.

5.2.1 Markov decision processes

In compliance with most of the previous work (Sutton and Barto, 1998; Wiering

and van Otterlo, 2012), it is assumed that the reinforcement learning situation

can be modelled by a Markov decision process. Markov decision processes were

introduced by Bellman (1957, cited by Sutton and Barto, 1998, p. 16). They

denote particular stochastic models of the situation of figure 5.1. This means

that {St}∞t=1, {Xt}∞t=1, and {Rt}∞t=2 are stochastic processes in which the random

variables have values in S, E, and R, respectively.

The transition between states is defined by a probability distribution. It spec-

ifies the probability of observing state s ∈ S at time t+ 1 given the realisation of

all past states St, . . . , S1 and choices Xt, . . . , X1:

Pr(St+1 = s | St = st, Xt = xt, . . . , S1 = s1, X1 = x1).

The Markov property requires that this distribution depends only on the state

and action of the previous time step t. If, additionally, the probabilities do not

change with time, the state transitions can be modelled by a transition function

ps,s′ : E → [0, 1] for each s, s′ ∈ S. At any time t, the probability of the next state

St+1 = s′ ∈ S, given the current state St = s ∈ S, the current action Xt = e ∈ E,

and all previous states and actions, is

Pr(St+1 = s′ | St = s,Xt = e, . . . , S1 = s1, X1 = x1) = ps,s′(e).

It is required that
∑

s′∈S ps,s′(e) = 1 for each e ∈ E and s ∈ S.

In an analogous manner, the expected value of the next reward Rt+1 depends

only on the current state and the current action. The reward can, therefore, be

modelled by a reward function rs : E → R, for each s ∈ S, such that the
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expected value of the next reward is

E[Rt+1 | St = s,Xt = e, . . . , S1 = s1, X1 = x1] = rs(e).

The following definition (adapted from van Otterlo and Wiering, 2012, p. 12) sum-

marises the assumptions that are made for the reinforcement learning situation.

Definition 5.4. Let S, E be finite sets, ps,s′ : E → [0, 1], for each s, s′ ∈ S, and

rs : E → R, for each s ∈ S. A Markov decision process is given by the

stochastic processes {St}∞t=1, {Xt}∞t=1, and {Rt}∞t=2 if the random variables St, Xt,

and Rt have values in S, E, and R, respectively, and if, for all t ∈ N,

1. Pr(St+1 = s′|St = s,Xt = e, . . . ) = ps,s′(e) for all s, s′ ∈ S, e ∈ E, and

2. E[Rt+1 | St = s,Xt = e, . . . ] = rs(e) for all s ∈ S, e ∈ E.

The decisions of an agent are modelled by a policy π := {qs}s∈S with

qs : E → [0, 1] and
∑
e∈E

qs(e) = 1, for each s ∈ S.

Given a state s ∈ S, qs(e) stands for the probability of choosing alternative e ∈ E.

A policy is said to be optimal for a Markov decision process if it maximises the

return of this process. In case of a decision process without determinable end, the

return at time t0 ∈ N is defined by a discounted sum:

∞∑
i=0

γiRt0+i+1.

The discount rate γ ∈ [0, 1) implies a decreasing interest in future rewards.

Let π be a policy and t0 ∈ N be any point in time. The expected return of

taking action e ∈ E in state s ∈ S and following policy π thereafter is given by

Qπ(s, e) := Eπ

[
∞∑
i=0

γiRt0+i+1

∣∣∣∣St0 = s,Xt0 = e

]
.

Eπ[·] denotes the expected value under the policy π. Qπ is called action-value

function for policy π (Sutton and Barto, 1998, p. 69). Note that this function
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is independent of the time t0 because the functions ps,s′ ,and rs are independent of

t0. The optimal action-value function is defined by

Q∗(s, e) := max
π

Qπ(s, e), for all s ∈ S, e ∈ E.

If all elements of a Markov decision process are known, the action-value function

can be calculated for a particular policy π. Furthermore, it is possible to determine

an optimal policy by dynamic programming (Sutton and Barto, 1998, pp. 89-

110). But also without the knowledge of the transition function ps,s′ or the reward

function rs, for any s, s′ ∈ S, an optimal policy is obtainable. This requires

multiple encounters with the situation and an appropriate strategy that iteratively

updates estimates of Q∗(s, e).

5.2.2 The melioration algorithm

There has been extensive research on reinforcement learning methods that guar-

antee an agent to approach the optimal policy without knowing the functions

{ps,s′}s,s′∈S and {rs}s∈S of a Markov decision process (an introduction is given by

Sutton and Barto, 1998, and a more recent review by Wiering and van Otterlo,

2012). There is no best method. Even though most algorithms converge to the

optimal policy, there are differences in efficiency, which is measured by the number

of repeated encounters that are required to be close to the optimal policy.

While the search for optimal behaviour is intriguing, this is not the goal of the

present chapter. On the contrary, it is looked for a formal model of melioration

learning, which is not necessarily optimal. Fortunately, one instance of a rein-

forcement learning method is very similar to the ideas of Vaughan and Herrnstein

(1987) about melioration learning. This instance is called Q-learning with γ = 0

and ε-greedy strategy.

The Q-learning algorithm was introduced by Watkins (1989) and is one of the

most basic and popular methods to estimate action-value functions if {ps,s′}s,s′∈S
and {rs}s∈S are not known (van Otterlo and Wiering, 2012, p. 31). It uses a table

of Q-values, Qt(s, e) for each s ∈ S and e ∈ E, that are iteratively updated.

Initially, all Q-values (Q1(s, e)) are set to zero. For every round t ∈ N, there are

realisations of St and Xt. Given the subsequent reward Rt+1 = y and the new
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state St+1 = s′, the Q-values are updated by the following rule:

Qt+1(s, e) =

{
Qt(s, e) + αt(s, e) · (y + γ · Vt(s′)−Qt(s, e)) , if St = s,Xt = e,

Qt(s, e) , else.

Each sequence (αt(s, e))
∞
t=1 is from [0, 1], and Vt(s

′) := maxe′∈E Qt(s
′, e′). It can

be shown that, for each s ∈ S and e ∈ E, Qt(s, e) converges towards the optimal

values Q∗(s, e) as t → ∞. Besides an appropriate convergence of the sequences

(αt(s, e))
∞
t=1 towards zero, it is usually assumed that the rewards Rt (or at least

their variances) are bounded and that each state-action pair occurs infinitely often

(Watkins and Dayan, 1992; Jaakkola et al., 1994; van Otterlo and Wiering, 2012).

Let Kt(s, e) indicate the frequency of having chosen e ∈ E in state s ∈ S before

time step t ∈ N. This means that K1(s, e) is zero for each s ∈ S and e ∈ E. If

γ = 0 and αt(s, e) = 1
Kt(s,e)+1

, Q-learning reduces to

Qt+1(s, e) =

{
Qt(s, e) + 1

Kt(s,e)+1
· (y −Qt(s, e)) , if St = s,Xt = e,

Qt(s, e) , else.
(5.5)

Let s ∈ S and e ∈ E, and y1, y2, . . . , yKt(s,e) ∈ R denote all rewards that were

received after choosing action e ∈ E in state s ∈ S before time step t ∈ N. In the

words of Vaughan and Herrnstein (1987), this means that, if Kt(s, e) > 0,

1

Kt(s, e)

Kt(s,e)∑
i=1

yi

denotes the local reinforcement rate of action e in state s at time t. Given equation

(5.5), it holds that

Qt(s, e) =

{
1

Kt(s,e)

∑Kt(s,e)
i=1 yi , if Kt(s, e) > 0,

0 , if Kt(s, e) = 0,
for all t ∈ N, s ∈ S, e ∈ E.

This is evident after transforming the first row of equation (5.5) (see also Sutton

and Barto, 1998, p. 37):

Qt+1(s, e) = 1
Kt(s,e)+1

· (y +Kt(s, e) ·Qt(s, e)) = 1
Kt(s,e)+1

·
(
y +

∑Kt(s,e)
i=1 yi

)
.
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Consequently, a Q-value Qt(s, e) gives the local reinforcement rate of action e ∈
E in state s ∈ S at time t ∈ N. If, additionally, an agent always chooses an action

with the currently highest value of Qt(s, e), the relative frequency of this action

increases as required by equation (5.1). Therefore, updating the local reinforcement

rates by equation (5.5) and always choosing the action with the highest Q-value

resembles melioration learning.

Algorithm 5.2.1 The melioration learning algorithm

Require: exploration rate ε ∈ (0, 1), set of alternatives E
1: t← 0
2: repeat
3: t← t+ 1
4: observe state s
5: if s is a new state then
6: initialise Qt(s, e)← 0, for all e ∈ E
7: initialise Kt(s, e)← 0, for all e ∈ E
8: end if
9: εs ← ε

1+
∑
j∈E Kt(s,j)

10: if εs > random number between 0 and 1 (uniform distribution) then
11: chose a random action e ∈ E using a uniform distribution
12: else
13: choose action e ∈ E greedily using the Q-values
14: end if
15: observe reward y
16: Kt+1(s, e)← Kt(s, e) + 1
17: Qt+1(s, e)← Qt(s, e) + 1

Kt+1(s,e)
· (y −Qt(s, e))

18: for all s′ 6= s and e′ 6= e do
19: Kt+1(s

′, e′)← Kt(s
′, e′)

20: Qt+1(s
′, e′)← Qt(s

′, e′)
21: end for
22: until termination

Algorithm 5.2.1 gives the formal model of melioration learning. The main dif-

ferences to the ideas of Vaughan and Herrnstein (1987) are the distinction between

different states of the environment and the exploration rate ε. The maximally ex-

ploiting strategy of greedily selecting an action with the highest Q-value has the

disadvantage of exclusively choosing a single alternative as soon as it has been
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reinforced by a strictly positive reward. A trade-off between the exploitation of

the currently best actions and the exploration of other actions can be made by

the ε-greedy strategy (Sutton and Barto, 1998, p. 28). The parameter ε ∈ (0, 1)

specifies the level of exploration. More specifically, the ε-greedy strategy states

that the currently best action is chosen with probability 1− ε, and a random ac-

tion otherwise. If an agent maintains an exploration parameter εs for each state

s ∈ S and these parameters decrease as specified in line 9 of algorithm 5.2.1, every

state-action pair appears infinitely often and the behaviour is greedy in the limit

t→∞ (Singh et al., 2000, p. 304).

Let there be a state s ∈ S that occurs infinitely often. For any two actions

e1, e2 ∈ E that are chosen with a strictly positive relative frequency in this state,

algorithm 5.2.1 implies that the Q-values Qt(s, e1) and Qt(s, e2) approach each

other in the long run with probability one. This resembles the condition of the

matching law, which was given in proposition 3.10.

Proposition 5.6. Consider a Markov decision process with V ar(Rt) <∞, for all

t ∈ N \ {1}. It is assumed that an agent follows algorithm 5.2.1 in order to update

a table of Q-values: Qt(s, e) for each s ∈ S and e ∈ E. For any state s ∈ S that

is visited infinitely often and any two e1, e2 ∈ E:

Pr

(
lim
t→∞

Qt(s, e1)−Qt(s, e2) = 0

∣∣∣∣ lim
t→∞

1
t
Kt(s, e1) > 0, lim

t→∞
1
t
Kt(s, e2) > 0

)
= 1.

Proof. Let i ∈ {1, 2} and

αt(s, ei) :=

{
1

Kt(s,ei)
, if St = s,Xt = ei,

0 , else.

From lim
t→∞

1
t
Kt(s, ei) > 0 follows that lim

t→∞
Kt(s, ei) = ∞. It also holds that∑∞

t=1 αt(s, ei) = ∞ and that
∑∞

t=1(αt(s, ei))
2 < ∞ (Riemann zeta functions).

This means that theorem 1 of Singh et al. (2000, p. 294) can be applied. It states

that Qt(s, ei) converges towards Q∗(s, ei), as t→∞, with probability one.

It is assumed that Q∗(s, e1) > Q∗(s, e2). Because of the convergence of Qt(s, e1)

and Qt(s, e2), there must exist a t0 ∈ N such that for all t > t0: Qt(s, e1) > Qt(s, e2)
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with probability one. According to algorithm 5.2.1, this implies that action e2 is

chosen with probability εs and independently of the previous choices at every time

step t with t > t0. And since εs converges towards zero as t→∞, it follows that

E
(
1{Xt=e2,St=s} | 1{Xt−1=e2,St−1=s}, . . . ,1{X1=e2,S1=s}

) a.s.−−→ 0 as t→∞.

Because the variance of 1{Xt=e2,St=s} is between zero and one for all t ∈ N, the

stability theorem of Loève (1978, p. 53) yields:

1

t

t∑
i=1

1{Xi=e2,Si=s} − E
(
1{Xi=e2,Si=s} | 1{Xi−1=e2,Si−1=s}, . . . ,1{X1=e2,S1=s}

) a.s.−−→ 0.

Since
1

t
Kt(s, e2) =

1

t

t∑
i=1

1Xi=e2,Si=s
a.s.−−→ 0,

a premiss is violated. In an analogous manner, a contradiction can be drawn from

the assumption Q∗(s, e1) < Q∗(s, e2). This proves the proposition.

Two short remarks conclude this section about the melioration learning algo-

rithm. First, it follows from the proof of proposition 5.6 that, instead of a Markov

decision process, the convergence of Qt(s, ei), for every i ∈ {1, 2}, would be a suffi-

cient condition of the proposition. Also in situations that violate the Markov prop-

erty, for example by containing a more complex reward structure, the behaviour

of an agent approaches the matching law as long as the Q-values converge. It is

also not necessary that the Q-values converge to the optimal action-value function

Q∗(s, ei). The proof works with any finite limit.

Second, since γ = 0, the optimal action-value function is given by

Q∗(s, ei) = max
π
{Eπ [Rt0+1 | St0 = s,Xt0 = ei]} = rs(ei),

for all i ∈ {1, 2} and t0 ∈ N. This expression is usually not understood as an

optimal result but as myopic outcome (Sutton and Barto, 1998, p. 58). A similar

conclusion was made at the end of the previous chapter: the matching law is not

optimal because it neglects the long-term effects of previous decisions.
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5.3 Discussion

This section contains several arguments that justify the usage of melioration learn-

ing in sociological research. Despite its recurrent appearance in the psychological

literature, there are very few references to melioration in sociological papers. Nev-

ertheless, learning mechanisms are relevant, especially in the fields of Rational

Choice Sociology (Braun and Gautschi, 2011) and Analytical Sociology (Hedström

and Bearman, 2009). In fact, there has been some effort to introduce reinforce-

ment learning models to sociological theory (Macy and Flache, 2009, pp. 250-251).

Melioration could constitute one of these learning models. As shown in the next

chapters, it can serve as an explanation of social phenomena. Moreover, it is argued

in section 5.3.1 that the basic ideas of melioration learning are deeply rooted in

past sociological work. Additionally, the usage of the exploration rate in algorithm

5.2.1 is motivated in section 5.3.2.

Another justification of the melioration model stems from the limitations of the

matching law. It was pointed out in the beginning of this chapter that there are

multiple equilibrium outcomes that conform to the matching law. Which outcome

finally emerges depends on the initial conditions as well as on the particular rule of

decision-making. Furthermore, it is of interest how an equilibrium state arises and

what dynamics to expect if perturbations appear. Similar arguments for the usage

of learning models are found in the economic literature (e.g. Camerer and Ho,

1999). However, in economics it is usually asked: “Does behaviour converge to an

optimum?” (Friedman et al., 1995, p. 164) rather than “Does behaviour converge

to the matching law?” Whether the first or the second question is more relevant

is an empirical question. Research regarding the empirical status of melioration

learning and its stable states is summarised in section 5.3.3.

In section 5.3.4, the particular melioration learning model of section 5.2.2,

which means Q-learning with ε-greedy, is discussed. Generally, Q-learning was re-

garded as too simple to account for real human behaviour (Shteingart and Loewen-

stein, 2014), and more appropriate learning models have been suggested in the

past. Therefore, advantages and disadvantages of the present implementation of

melioration learning are listed. Also a comparison with popular economic models

of learning is presented.
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5.3.1 Melioration and past sociological research

In the past, several attempts were made to include findings from behavioural

psychology into sociological theory. There are numerous books and articles about

the potentials of a behavioural sociology (Homans, 1961; Burgess and Bushell,

1969; Opp, 1972; Kunkel, 1975; Hamblin and Kunkel, 1977; Michaels and Green,

1978; Molm, 1981). An explicit connection between behavioural psychology and

sociology is found in the early works on social exchange theory (Emerson, 1969,

1972a; Molm and Wiggins, 1979). In particular, Emerson (1972b) attempted to

build a theory of power and dependence in exchange networks entirely on axioms

and propositions from operant conditioning.

However, in social exchange theory as well as in other fields, behavioural so-

ciology did not hold out against other schools of thought, such as rational choice

theory. A possible reason is the (previous) lack of a formal framework that allows

the derivation of empirically testable and falsifiable hypotheses from behavioural

regularities. In fact, most approaches that are able to derive testable hypotheses

about social behaviour are based on rational choice theory. Since there are many

situations in which matching behaviour clearly deviates from individually optimal

behaviour (chapter 4), the melioration model should be regarded as an alternative

to rational choice or as a theory of bounded rationality.

In contrast to many rational choice models, melioration does not require full

information or high cognitive skills. It is close to two other models of learning that

were recently introduced to sociological theory: the Bush-Mosteller and the Roth-

Erev model (Macy and Flache, 2002). The predictions of those models differ from

game-theoretic solutions: “[a]pplied to social dilemmas, both the [Bush-Mosteller]

and Roth-Erev models identify a key difference with analytical game-theoretic

solutions: the existence of a cooperative equilibrium that is not Nash equivalent,

even in Stag Hunt games where mutual cooperation is also a Nash equilibrium”

(Macy and Flache, 2002, p. 7230). The difference between these two models of

learning and the melioration model is elaborated in section 5.3.4.

Finally, the matching law was considered as an explanation of social behaviour

in early sociological theory. More specifically, Homans (1974, pp. 21-22) intro-

duced the matching law as a quantification of his first proposition of individual
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behaviour (success proposition). Additionally, his rationality proposition (Homans,

1974, p. 43) can be seen as informal description of melioration learning:

“In choosing between alternative actions, a person will choose that one for

which, as perceived by him at the time, the value, [V H(e)], of the result,

multiplied by the probability, [pH(e)], of getting the result, is the greater.”

Whether this proposition is equal to melioration depends on the meaning of the

phrase “as perceived by him at the time”. In regard to the probability pH(e),

Homans (1974, p. 44) clarifies: “[i]n case of actions repeated over time, one of the

determinants of his perception will be the actual frequency with which the past

action has been followed by the reward.” Hence, the probability pH(e) of getting

a result corresponds to the fraction of past choices of e ∈ E that were followed by

a reinforcement. Formally:

pH(e) =
S(e)

K(e)
.

K(e) is the frequency of choosing alternative e (correlating to the definition of

Kt(s, e) above, without the time index t and the state s), and S(e) denotes the

number of choices with a result (S(e) ≤ K(e)).

Homans (1974) is less clear about the meaning of the value V H(e) of the result

of an action. A possible assumption is that the value “as perceived by him at the

time” is equal to the mean value of past rewards:

V H(e) =
1

S(e)

S(e)∑
i=1

yi,

with
∑S(e)

i=1 yi standing for the sum of rewards that were received for action e.

It is clear from the quotation that V H(e) includes only strictly positive rewards.

Therefore, it is divided by S(e) and not by K(e). This distinguishes V H(e) from

the local reinforcement rate 1
K(e)

∑S(e)
i=1 yi, which also includes the zero values of

missing reinforcements. Homans (1974) captures this difference by the second

factor pH(e), such that

1

K(e)

S(e)∑
i=1

yi =
1

S(e)

S(e)∑
i=1

yi ·
S(e)

K(e)
= V H(e) · pH(e).
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It follows that the rationality proposition is equivalent to the process of melioration

learning. Consequently, also the success proposition and the value proposition of

Homans (1974, pp. 16,25) are entailed by the melioration process because they

are implied by the rationality proposition. Furthermore, the stimulus proposition

(Homans, 1974, pp. 22-23) is included by mapping different states (elements of

S) to different stimuli. It should also be noted that Herrnstein (1979) locates

any changes in value, as described by Homans’ (1974, p. 29) deprivation-satiation

proposition, in the definition of the rewards (the stochastic process {Rt}∞t=2).

5.3.2 The exploration rate

An important difference between the ideas of Vaughan and Herrnstein (1987) and

algorithm 5.2.1 is the exploration rate. While it was introduced as a technical trick

that enabled the convergence of the Q-values, the exploration rate is actually a

realistic assumption about human behaviour. First, this is evident from the ob-

servation of undermatching, which can be explained by exploration (sections 2.2.1

and 2.3). Second, actors are generally assumed to make mistakes, misinterpret sit-

uations, and occasionally try different behaviour (e.g. Selten, 1975; Bendor, 1987).

Multiple studies showed that the assumption of random perturbations in human

behaviour has significant effects on social outcomes (Macy and Tsvetkova, 2015):

it can lead to more efficiency, improve the predictability, and alter processes of

cultural assimilation, ethnic segregation, and diffusion of innovations.

In particular, it was argued that success depends on fine-tuning the trade-

off between exploration and exploitation (March, 1991). While no exploration

undermines the adaptation to changes in the environment and compromises the

long-term prosperity, high exploration misses out on the gains of emitting the

currently best actions. It is, therefore, conceivable that humans maintain a small

but effective level of exploration that balances environmental changes and helps

to learn profitable behavioural regularities.

5.3.3 Empirical studies

Empirical evidence for melioration learning was found on different levels. On the

neural level, studies confirmed the underlying logic of melioration learning. In
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particular, experiments with monkeys indicated that neural activities are in line

with the assumptions of melioration learning: individuals mentally represent the

subjective values of available alternatives and choose the most desirable action

(Dorris and Glimcher, 2004; Sugrue et al., 2004).

Further proof of melioration learning stems from behavioural experiments.

These results are less profound because other learning mechanisms can explain the

same observations. But there are only a few studies on the neural level. Therefore,

it is focused on behavioural experiments in the following.

Given a problem of distributed choice, not all elements of the matching law so-

lution emerge from melioration learning. In the first example of table 3.1 (chapter

3), the melioration process with strictly positive exploration rate (ε > 0) results

only in the distribution p = (1, 0). Since v1(p) > v2(p) for any point p = (p1, p2)

with p1 > 0, the Q-value of the second alternative is eventually lower than the Q-

value of the first alternative, and, hence, the relative frequency p2 approaches zero.

Similarly, in the second example of table 3.1, the melioration process converges to

the distribution p = (0.7, 0.3) because v1(p) > v2(p) for any point p = (p1, p2)

with 0 < p1 < 0.7 and v1(p) < v2(p) in case of 0.7 < p1 < 1. The other two

distributions of the matching law solution (0, 1) and (1, 0) are feasible only if the

actor starts with one alternative and never tries the other one (ε = 0).

In both examples, the distribution that follows from melioration is optimal in

comparison with the other elements of the matching law solution. Instead of melio-

ration learning, one could assume that individuals always end up in the matching

law distribution with the highest average value. But in some situations, meliora-

tion is in conflict with the optimal matching law distribution. An often studied

example of this situation is seen in figure 5.2. This example is sometimes called

“Harvard game” (Vaughan and Herrnstein, 1987). It describes an experiment in

which the subject chooses between two alternatives (1 and 2). While the average

value v1 of the first alternative is always three points higher than the average value

v2 of the second alternative, both values decrease with the relative frequency p1.

The dotted line shows the total average value v.

Two distributions correspond to the matching law: the exclusive choice of the

first alternative (p = (1, 0)) and the exclusive choice of the second alternative

(p = (0, 1)). According to melioration learning, the first distribution is more likely
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Figure 5.2: Illustration of the Harvard game

because an actor continuously increases the relative frequency of the alternative

with the currently highest average value. A maximising individual, on the other

hand, should consistently choose the second alternative. In Herrnstein (1997),

various experiments that implement this or a similar procedure were reported.

Most of these and other studies (e.g. Vaughan, 1981; Mazur, 1981) showed a clear

tendency to a matching distribution that deviates from the optimum (see also

Mazur, 2001, ch. 14.2). In the example of figure 5.2, this means that almost all

subjects nearly exclusively chose the first alternative.

However, a majority of these experiments were conducted with pigeons. It is

reasonable to suspect that humans are capable of maximising the overall reward

(Herrnstein, 1997, p. 93). Depending on the complexity of the situation, humans

may understand the implications of a decision or have information about the causal

processes between choice distribution and reinforcement. This claim was tested in

a series of experiments by Herrnstein et al. (1993). Similar to the experiment of

figure 5.2, the amounts of reinforcement changed with the distribution of previous

choices. Additionally, the experimental procedures differed in the recognisability

of the relationship between the distribution of previous choices and current rein-

forcements. For example, the relative frequency of previous choices was indicated

to some of the subjects, or a hint about the reinforcement mechanisms was given.

The experiments showed that the easier it was for the subjects to discover the

underlying mechanism, the closer the behaviour was to the optimum.

Furthermore, it was reasoned by Antonides and Maital (2002) that the rela-

tionship between recognisability and optimality depends on the cognitive skills of

the subjects. Experiments revealed that insufficient information about the under-
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lying mechanism of reinforcement is offset by the educational background of the

subjects (students of economics vs. students of engineering).

The experiments of Herrnstein et al. (1993) also indicated a learning process

that led from a suboptimal to an optimal distribution. Similar processes were

found in experiments by Tunney and Shanks (2002). But in other studies, neither

matching nor maximising was observed (Savastano and Fantino, 1994). Instead,

the subjects randomised between the choice alternatives. The authors hypothe-

sised that the subjects did not fully understand the cues that indicated the optimal

choice (Savastano and Fantino, 1994, p. 459). A lack of understanding might also

explain the finding that suboptimal matching was predominant if the previous

choices influenced the delay (Herrnstein et al., 1993) or the probability of rein-

forcement (Tunney and Shanks, 2002; Neth et al., 2005) instead of its amount.

Estimating the time delay or probability, instead of the amount, increases the

cognitive demand and impedes the recognition of the optimal behaviour.

In the opinion of Herrnstein (1997, p. 205), the actual prediction of meliora-

tion learning depends on the capability of the individual to redefine the choice

alternatives. If a subject is able to redefine the alternatives from pure actions

(“action 1 vs. action 2”) to distributions of actions (“90% action 1 vs. 80% action

1 vs. 70% action 1 vs. .. ”), the long-term reward increases. Herrnstein (1997, p.

205) argued that a matching individual with unlimited capability of generalising

the choice alternatives is a maximising individual. As indicated in the previously

mentioned studies, different factors can limit this capability.

In summary, melioration learning predicts animal behaviour very well. In stud-

ies with humans, the results are mixed. Cognitive skills and the accessibility of

information seem to be intervening factors. If choice alternatives can be redefined

or if the underlying mechanisms are recognised, humans are able to optimise their

behaviour. But in many situations, their behaviour is in line with melioration.

This finding has practical implications. For example, Yechiam et al. (2003)

showed that behavioural modification is more successful if a training program ac-

counts for melioration instead of optimisation. Given the former, the strengthening

of certain behaviour depends on an appropriate reinforcement structure and not

on the emphasize of anticipated future outcomes.
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5.3.4 Comparison with other learning models

Brenner (2006) distinguished two main types of learning models: reinforcement

learning models and belief learning models (a similar categorisation is found in

Camerer, 2003, ch. 6). Melioration was categorised as reinforcement learning be-

cause it is less cognitive demanding than most belief learning models. However,

melioration is also more sophisticated than simple reinforcement models, such as

the Bush-Mosteller model. It is a form of reinforcement learning and still assumes

that actors have beliefs about the consequences of different actions (Brenner, 2006,

pp. 904-905). This seemingly contradictory description of melioration is explained

in the following. Furthermore, problems of the present implementation of melio-

ration and possible solutions are identified.

Belief learning models

In the algorithm of section 5.2.2, an agent learns the value Q∗(s, e) of an action

e ∈ E in state s ∈ S. In some way, this value constitutes a belief about the envi-

ronment. Since the agent responds to these beliefs in an optimal way, melioration

learning can be seen as a rudimentary form of belief learning.

But in other aspects, melioration learning is different from the general belief

learning model. In most models, the formation of beliefs does not stop at the level

of actions. On the contrary, the values of actions are usually externally given, and

beliefs about the reinforcement mechanism or the behaviour of other agents are

acquired. For example, in a two-person game-theoretic situation, the agents may

know the structure of the game and learn the strategy of the opponent. A general

belief learning algorithm for this situation is given by the following pseudocode

(Shoham and Leyton-Brown, 2009, p. 196):

Initialize beliefs about the opponent’s strategy

repeat:

Play a best response to the beliefs

Observe the opponent’s actual choice and update beliefs accordingly

One example of belief learning is fictitious play: “in fictitious play, an agent

believes that his opponent is playing the mixed strategy given by the empirical
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distribution of the opponent’s previous actions” (Shoham and Leyton-Brown, 2009,

p. 195). In other words, the agent remembers the decisions of the opponent, forms

the corresponding relative frequencies, and chooses an action with the highest

expected reward assuming that the relative frequencies resemble the opponent’s

probabilities of choice.

Fictitious play differs from melioration learning because the latter does not

consider the behaviour of the opponent and ignores the expected future reward

of an action. Instead, it is focused on the average rewards of past actions, and

no mental model of the situation is built. An extensive model of the situation is

also attained by Bayesian learning, which is another belief learning model (e.g.

Young, 2004, ch. 7). With Bayesian learning, agents are even able to learn the

transition probabilities of a Markov decision process (Vlassis et al., 2012).

Reinforcement learning models

In contrast to belief learning, reinforcement learning is a very simple idea about

behavioural change. It can be summarised by Thorndike’s law of effect : “pleasure

stamps in, pain stamps out”. More specifically, behaviour that is followed by

a positive experience is likely to reoccur, but, if provoking negative reactions,

it diminishes over time. Two examples of reinforcement learning are the Bush-

Mosteller and the Roth-Erev model (Roth and Erev, 1995; Skyrms and Pemantle,

2000; Flache and Macy, 2002).

The Bush-Mosteller model was developed by Bush and Mosteller (1964) and

states that a probability of choice changes linearly with the level of satisfaction.

Given the notations of sections 5.1 and 5.2, an actor chooses an element e ∈ E

at time t ∈ N with probability qe(t) ∈ [0, 1]. After receiving a reward yt ∈ R, the

probability is updated by

qe(t) = qe(t− 1) +

{
(1− qe(t− 1)) · σ(yt) if σ(yt) ≥ 0

qe(t− 1) · σ(yt) if σ(yt) < 0
. (5.7)

The function σ(·) expresses the level of satisfaction with the result yt. Equation

5.7 can be found in a similar form in Macy and Flache (2002, p. 7231) or Izquierdo

et al. (2007, p. 262).
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The dynamics of Bush-Mosteller learning differ from the dynamics of meliora-

tion. This is seen when comparing the probabilities of choosing an action. Let

s ∈ S be a state and Ft(s) := arg maxe′∈E Qt(s, e
′) denote the set of alternatives

with the highest Q-value at time t. According to algorithm 5.2.1, the probability

of choosing e at time t is:

Pr
[
Xt = e | St = s

]
=

1− εs
|Ft(s)|

+
εs
|E|

. (5.8)

The Bush-Mosteller model implies that Pr
[
Xt = e | St = s

]
= qe(t). In compar-

ison with equation 5.8, behaviour that follows the Bush-Mosteller model changes

gradually, for the probability of choice qe(t) instead of the set Ft is adjusted at

each time step. Furthermore, the dynamics of equation 5.7 depend on the level of

satisfaction with the outcome yt. This is in line with the ideas of Simon (1955)

about boundedly rational behaviour but requires additional assumptions. In the

past, the level of satisfaction was implemented by comparing the actual outcome

to an aspiration level (e.g. Macy and Flache, 2002). This aspiration level is a key

factor and significantly affects the long-term behaviour (Macy, 1991; Macy and

Flache, 2002). Moreover, Bendor et al. (2007) showed that, if aspiration levels

are exogenously fixed or respond to past experiences, any outcome of a class of

iterated games is stable. Consequently, not only the dynamics but also the stable

states of the Bush-Mosteller and the melioration model are different.

The Roth-Erev model describes another process of reinforcement learning.

Given any state s ∈ S, its basic form (Roth and Erev, 1995, p. 172) specifies the

probabilities of choice by the fraction of accumulated values Kt(s, e) ·Qt(s, e):

qe(t) :=
Kt(s, e) ·Qt(s, e)∑
j∈EKt(s, j) ·Qt(s, j)

. (5.9)

The right side of equation (5.9) resembles the right side of the matching law (equa-

tion (3.7)). It may have been this coincidence that led to the association of the

matching law with the Roth-Erev model (Erev and Roth, 1998, p. 861, and Skyrms,

2010, p. 12). But when comparing the left-sided terms, equations (3.7) and (5.9)

specify different quantities. In case of the matching law, it is the relative frequency

of choosing an alternative over a period of time. The Roth-Erev model, on the
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other hand, describes the probability of choice at a particular point in time. The

relative frequencies approach the probabilities in the long run if the probabilities

converge. Given a Markov decision process and Q-learning, this holds true. Hence,

in combination with Q-learning, the Roth-Erev model leads to the matching law

and constitutes an alternative to melioration. Nevertheless, the dynamics of both

models are different, which is evident from equations 5.8 and 5.9. An exemplary

comparison of melioration and the Roth-Erev model in multi-agent situations is

presented in chapter 6.

The Bush-Mosteller and the Roth-Erev model are just two of many models of

reinforcement learning. There is a whole research field in the computer sciences

that engages in the development and analysis of reinforcement learning (RL) (Sut-

ton and Barto, 1998). Algorithm 5.2.1 describes a relatively trivial instance of

the Q-learning method, which is, in turn, just one of several RL methods. While

computer scientists are mainly interested in the design of autonomous software

that is able to control its environment in a meaningful way, some of the work on

RL is concerned with the accurate representation of human learning in situations

of sequential decision-making.

As pointed out in the previous section, melioration learning accounts for ob-

served behaviour and neural activity in situations of repeated choice (see also

Sakai et al., 2006, p. 1092). But generally, there is “tremendous heterogeneity in

reports on human operant learning” (Shteingart and Loewenstein, 2014, p. 94). In

particular, melioration was often regarded as too simple to accurately represent

the complexity of human decision-making (Barto et al., 1990, p. 593). For exam-

ple, experiments with animals revealed that changes in behaviour occur rapidly

with changes in the rates of reinforcement (Gallistel et al., 2001; Sugrue et al.,

2004). This indicates that subjects maintain a temporally local representations of

reinforcement rates, which include only the most recent outcomes. Corrado et al.

(2005) presented a dynamic model of choice that can account for rapid changes.

Their linear-nonlinear-Poisson model “differs from melioration with respect

to both the quantity that drives behavioural change and the temporal window over

which that quantity is computed” (Corrado et al., 2005, p. 611).

Other models of reward-driven behaviour were listed in Sakai et al. (2006). All

of them exhibit the matching law in their steady states. For example, Sakai and
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Fukai (2008a) argued for the usage of actor-critic learning because it exhibits

the matching law in steady states and no direct representation of the average values

(Q-values) is needed. Further advantages of this model are, first, that it requires

minimal computation and, second, that it has useful properties in competitive and

non-Markov cases (Sutton and Barto, 1998, p. 153).

A somewhat different decision rule was proposed by McDowell (2013b). The

author modelled learning as an evolutionary process within the individual.

A population of different behavioural alternatives was assumed, and successful

behaviour was selected and “reproduced”. The relative number of an alternative

in this population resembled the probability of choice. In a series of simulations,

McDowell and colleagues could show that this model leads to matching behaviour

(McDowell, 2004; McDowell and Caron, 2007; McDowell et al., 2008; McDowell and

Popa, 2010). Also behaviour that deviates from the matching law was reproduced

if this behaviour had been observed in laboratory experiments.

In summary, the empirical status of melioration learning is disputed and al-

ternative models of learning have been suggested. Because most of the mentioned

learning models entail the matching law in their steady states, there is no theoret-

ical reason to prefer one model over the others. If the most realistic representation

is wanted, a neural network model (e.g. Loewenstein and Seung, 2006) is most

appropriate because it is closer to the physical basis of human decision-making.

Any decision about the best model should be made by assessing its empiri-

cal adequacy. Since the long-term behaviour is similar, empirical findings of the

dynamics (transient effects and temporal structures) must be used to distinguish

between different models (Sakai and Fukai, 2008b, p. 241). First steps in this di-

rection have already been made (Gallistel et al., 2001; Sugrue et al., 2004; Gureckis

and Love, 2009). But more research is needed.

Even if melioration learning turns out to be too simple, it may serve as start-

ing point of further investigations. Instead of using another learning model, the

melioration algorithm of section 5.2.2 can be adjusted in order to account for em-

pirical results. For example, a rapid change in behaviour is facilitated if, instead of

all previous encounters, a smaller time window is used to calculate the Q-values.

Alternatively, the speed of learning is increased by adding eligibility traces (Sutton

and Barto, 1998, ch. 7).
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A rapid change in behaviour takes also place if a new state of the environment

is recognised. But this involves another problem of the melioration algorithm: the

discrimination of environmental states. Similar to the value of actions, the state

of the world should not be given to the agents. The agents must learn which

environmental aspects are relevant for the reinforcement mechanisms and whether

two stimuli indicate the same state or two different states. Thus, a theory of

stimulus discrimination is needed to complement the reinforcement learning

process (Shteingart and Loewenstein, 2014). Some approaches have already been

studied (e.g. Sakai et al., 2006). There are also extensions of RL techniques that

can deal with continuous state and action sets (van Hasselt, 2012) or with limited

information about the current state of the environment (Spaan, 2012).

Q-learning, like other reinforcement learning methods, is goal-dependent. The

Q-values are learned with respect to particular preferences, which are expressed by

the subjective values of the results. If the preferences change, new Q-values must

be learned. In contrast, agents can use their experiences to build a mental repre-

sentation of the environment. Subsequently, they are able to update behaviour in

the pursue of new goals. For example, associative learning denotes a process

in which the agents learn associations between states of the environment. There

is some progress in the integration of associative learning techniques in models of

reinforcement learning (Alonso and Mondragón, 2006; Veksler et al., 2014). Sim-

ilarly, agents can be designed to learn the transition and reward functions of a

Markov decision process (Sutton and Barto, 1998, ch. 9; Hester and Stone, 2012).

With these extensions, the simple ideas of reinforcement learning are aban-

doned. The presence of a mental image of the environment and the processing

of this image are properties of belief learning models. It can be speculated that,

in the end, a good model of human learning should integrate elements of both

reinforcement and belief-based models (see also Camerer and Ho, 1999).

Regret matching

Regret matching is another learning model that is found in economic literature

(e.g. Young, 2004, ch. 2). In comparison with most reinforcement learning models,

it takes counterfactual reinforcements into account. Let {Rt}∞t=2 be the stochas-
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tic process of actually obtained rewards and let {Rt(e)}∞t=2 denote the stochastic

process of partly counterfactual rewards that would be obtained if action e ∈ E is

chosen at time t. The regret from not having chosen an action e ∈ E is defined by

Zt(e) :=
1

t− 1

t∑
i=2

Ri(e)−Ri.

Regret matching specifies the probability of choosing action e at time t by

qe(t) :=
Zt(e)

+∑
j∈E Zt(j)

+
.

The +-sign indicates the non-negative part of the regret. It was shown that regret

matching ensures no regret in the limit of t (Hart and Mas-Colell, 2000):

lim sup
t→∞

Zt(e) ≤ 0 for all e ∈ E.

Also without the knowledge of the counterfactual rewards {Rt(e)}∞t=2, regret can be

eliminated (Young, 2004, pp. 22-24, referring to Foster and Vohra, 1993). Similar

to algorithm 5.2.1, this requires a stochastically independent exploration of the

consequences of different actions.

Regret matching constitutes an alternative to melioration learning because,

first, it seems that any state without regret implies the matching law. Second,

regret matching has been shown to eliminate regret irrespective of the dynamics

of the environment. This is an advantage over melioration learning, which needs

some kind of stability (e.g. a Markov decision process). A formal analysis of both

claims will be the subject of future work.

5.4 Conclusion

Melioration learning was categorised as reinforcement learning with rudimentary

beliefs about the environment. Similar to other learning models, the matching

law is a stable state of melioration. Due to its simplicity, several problems of the

melioration algorithm exist and were outlined in the previous section. This chapter
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concludes by listing several advantages of the advocated model of melioration.

1. Algorithm 5.2.1 was theoretically derived from the work of Vaughan and

Herrnstein (1987). In contrast to other models of melioration, it is closer

to its original formulation (equation (5.1)), which stated that the relative

frequencies, and not the probabilities of choice, change in accordance with

the differences in reinforcement rates.

2. The model omits probabilities of choice. Therefore, it is not necessary to

assume that humans behave stochastically (apart from the exploration rate).

3. No neural network is needed, which simplifies its implementation.

4. Q-learning is one of the most popular and widely studied RL techniques.

Many results about its convergence properties already exist and can be ap-

propriated for an application in social theory.

5. Melioration learning is connected to past sociological theory because it re-

sembles the rationality proposition of Homans (1974).

6. Q-learning is one of the simplest RL methods. In the following chapters,

social implications are derived by agent-based simulations. Simplicity is a

desired property of this kind of simulation models (Axelrod, 1997, p. 18).

The rules of decision-making should be kept simple in order to ease the

understanding of the results and to reduce the time of computation.

7. Although experiments revealed deviations from the melioration model on

the individual level, its predictions might be sufficiently accurate on a social

level. Only if deviations are observed on the social level, the introduction of

more advanced behavioural assumptions is justified.

8. The parameter γ of Q-learning supplies a convenient way to switch between

optimal and matching behaviour. Melioration (γ = 0) implies myopic be-

haviour because it considers only the short-term effects of an action. The

adjustment to γ > 0 accounts for long-term effects and guarantees optimal

behaviour in the long run.
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Chapter 6

Two-person melioration learning

Whereas the previous chapters largely referred to individual decision-making, this

chapter finally deals with the explanation of social phenomena by the matching

law. The simplest social situation is the interaction between two persons. In

past sociological research, these situations were analysed, for example, by means

of game theory. In this regard, a situation was represented as a game between

two players. Subsequently, particular game-theoretic solutions were used to derive

predictions about the players’ behaviour.

Based on this approach, the melioration algorithm of the previous chapter is

applied to various two-person games that have been studied in the sociological

literature. It is tested whether melioration leads to similar predictions as game

theory, for instance, to dominant actions, a Nash equilibrium, or a maximin out-

come. If this is the case, the game-theoretic concepts are justified by a learning

model that makes less strict assumptions about available information and the play-

ers’ cognitive skills. Additionally, in games with multiple equilibria, the problem

of equilibrium selection is solved.

However, the melioration algorithm is not guaranteed to approach a game-

theoretic solution or even to provide a prediction at all. In the previous chapter,

the convergence of melioration learning was based on a certain kind of stationarity

of the situation. This stationarity is unlikely to be found in social settings in which

multiple persons interact and reinforcements are contingent upon the decisions of

everyone. Consequently, the behaviour of the actors may not converge.

91
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Existing results about the convergence of Q-learning in multi-agent reinforce-

ment situations have been mixed (Nowé et al., 2012, p. 451). While equilibria

were reached in some instances of the prisoner’s dilemma or the coordination game

(Sandholm and Crites, 1995; Claus and Boutilier, 1998; Gomes and Kowalczyk,

2009), the behaviour failed to converge in others. The results depended on the

reward structure of the situation as well as the method of decision-making. For

example, contingent upon the particular instance of the prisoner’s dilemma, the

ε-greedy version of Q-learning may or may not converge (Wunder et al., 2010, the-

orem 6). On the other hand, the behaviour is guaranteed to converge if another

strategy of exploration is assumed (Kianercy and Galstyan, 2012, p. 7).

In the following, only particular examples of two-person situations are explored

by computer simulations. Some authors were able to analytically investigate the

whole parameter space of two-person two-action situations. But slightly different

implementations of Q-learning were used. More specifically, Kianercy and Gal-

styan (2012) applied the Boltzmann strategy instead of ε-greedy. Wunder et al.

(2010) simplified the ε-greedy version by assuming a continuous time process with

infinitesimal Q-learning, which meant that αt(s, e) → 0 at all time t ∈ (0,∞)

(compared to αt(s, e) → 0 as t → ∞; see section 5.2.2). In the case of algorithm

5.2.1, computer simulations are more convenient.

A connection to the previous literature is established by comparing melioration

to the learning model of Roth and Erev (1995). It is focused on the Roth-Erev

model because it is similar to melioration. Both models take a “mechanistic per-

spective on learning”, which means that “[p]eople are assumed to learn according to

fixed mechanisms or routines” (Brenner, 2006, p. 903). They were both categorised

as reinforcement learning and have been connected to the matching law (section

5.3.4). Most learning models that were mentioned by Fudenberg and Levine (1998)

or Young (2004) differ strongly from melioration. In their most common forms,

those models make different assumptions about the available information (section

5.3.4). This impedes a direct comparison with melioration because the models

cannot be applied to the same situation. It is possible to modify either side in

order to account for more or less information about the environment. But this

touches another broad research area (Sutton and Barto, 1998, ch. 9; Nowé et al.,

2012) and will be subject of future work.
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Other models of reinforcement learning, such as Bush-Mosteller (section 5.3.4)

or experience-weighted attraction (Camerer and Ho, 1999), require additional as-

sumptions and the specification of further parameters. In case of melioration and

Roth-Erev, simple versions with only one parameter (the exploration rate) exist.

Furthermore, learning by imitation (Nowak and May, 1992) and evolutionary al-

gorithms (Maynard Smith, 1976) are less eligible for a comparative study because

interactions with more than one partner are needed. The following simulations of

two-person games can be adapted to an evolutionary context (e.g. Axelrod, 1987)

or to a spatial game with imitation (Nowak and May, 1992). While this is also a

promising area of future research, baseline results about simple two-person games

are acquired in this chapter.

6.1 The simulation framework

In order to analyse actors who interactively learn by melioration, an extension of

NetLogo was written. NetLogo (Wilensky, 1999) is a programming environment

for the development of agent-based simulations. There are several reasons for the

usage of NetLogo as simulation platform:

1. NetLogo is free, open source, extendible, and well documented.

2. NetLogo is a convenient platform to perform experiments with simulation

models. It is possible to set parameters interactively, to monitor the be-

haviour of agents, and to plot and export results. The platform also contains

a tool for the systematic variation of model parameters.

3. With a graphical user interface and, perspectively, a Web front end, NetLogo

provides easy access to the simulations.

4. The language of NetLogo is relatively easy to learn and use, for it is based on

Logo - “an educational programming language, originally designed to train

youngsters” (Bianchi and Squazzoni, 2015, p. 301).

5. NetLogo is currently the most popular platform for agent-based modelling

(Bianchi and Squazzoni, 2015, p. 301).
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The first three points refer to practical advantages that are partly found in

other simulation platforms as well (Railsback et al., 2006; Gilbert, 2008; Lytinen

and Railsback, 2012). The last two points are relevant because simulation results

are prone to stem from mistakes in the model or implementation (Gilbert, 2008,

pp. 38-44). The usage of simulations in scientific research requires the possibility of

understanding the code and replicating the results. Both operations are facilitated

by using a widely known and easily accessible simulation language.

Nevertheless, NetLogo has disadvantages in case of advanced simulations. First,

the execution of complex calculations and simulations with many agents may run

slower on NetLogo than on other simulation platforms (Railsback et al., 2006,

p. 619). For instance, the platforms MASON and Repast are more suited for ad-

vanced simulations because they are able to distribute computations among several

processors. Second, the simplified programming environment of NetLogo forces the

user to write all code in a single file. It is difficult to apply common programming

techniques, such as modularity and reusability of code.

Both disadvantages of NetLogo can be reduced by employing its extensions API

and its controlling API (application programming interface). The extensions API

allows the implementation of new procedures in Java or Scala. These procedures

are, subsequently, available in NetLogo. With the controlling API, a NetLogo

model can be started and controlled from another program.

The following simulations make use of both APIs in order to parallelise the

calculations, employ existing Java-libraries, and organise reusable code. The soft-

ware tool, which was written for the simulations, is called ql-extension. Since

it is an extension of NetLogo, it cannot run without it. The name emphasises

that melioration is a special case of Q-learning. It is possible to analyse other

Q-learning algorithms with this NetLogo extension. The installation and usage of

the ql-extension are comprehensively described in appendix A.

The design of the simulation framework as a NetLogo extension facilitates the

research process in several ways. First, because of the advantages of NetLogo, the

specification and execution of simulation models are greatly simplified. Second, the

usage of the extensions API allows the separation of different parts of the model.

More specifically, the decision-making algorithm (e.g. melioration learning) is the

same in all of the following simulations and is sourced out to the extension. A
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researcher who uses the ql-extension does not need to worry about this part of

the model. The definition of the situation, on the other hand, changes with the

particular research question, and the researcher must be able to easily adjust it.

When employing the ql-extension, the main task of the researcher is the specifi-

cation of two components of the situation: a group structure and a reward function.

The details of implementing either component are given in appendix A. Basically,

the group structure indicates who interacts with whom. It can be statically set at

the beginning of the simulation or change dynamically during the simulation. The

reward function takes the decisions of a group of agents and calculates their re-

wards. After the specification of both components, the simulation can be started.

It runs in discrete time steps. At each time step, all agents choose one of the

given alternatives, and the reward function is called for each group to obtain the

outcome of the decisions.

6.2 The actor models

The ql-extension implements different algorithms of decision-making. In this chap-

ter, two of them are compared: stateless melioration learning and the Roth-Erev

model. Also the Boltzmann (softmax) version of Q-learning and the ε-greedy ver-

sion with decay in exploration are implemented (details are given in appendix A.1).

As already mentioned in the introduction, Boltzmann exploration entails different

results than ε-greedy. If the decay in exploration is enabled, either implementa-

tion of Q-learning converges to greedy behaviour. A rudimentary comparison of

Boltzmann and ε-greedy is included in appendix B.1.

6.2.1 Stateless melioration learning

Algorithm 6.2.1 contains a description of stateless melioration learning. The main

differences between algorithm 6.2.1 and algorithm 5.2.1 (previous chapter) are

that, first, no states of the environment are distinguished and that, second, the

exploration rate does note decay over time.

The constant exploration rate permits the acquisition of sufficient experience

with the situation. Even if algorithm 5.2.1 guarantees that each alternative is
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Algorithm 6.2.1 The stateless melioration learning algorithm

Require: exploration rate ε ∈ (0, 1), set of alternatives E
1: t← 0
2: initialise Q1(e)← 0, for all e ∈ E
3: initialise K1(e)← 0, for all e ∈ E
4: repeat
5: t← t+ 1
6: if ε > random number between 0 and 1 (uniform distribution) then
7: chose a random action e ∈ E using a uniform distribution
8: else
9: choose action e ∈ E greedily using the Q-values
10: end if
11: observe reward y
12: Kt+1(e)← Kt(e) + 1
13: Qt+1(e)← Qt(e) + 1

Kt+1(e)
· (y −Qt(e))

14: for all e′ 6= e do
15: Kt+1(e

′)← Kt(e
′)

16: Qt+1(e
′)← Qt(e

′)
17: end for
18: until termination

chosen infinitely often, this property is impeded by the finite nature of every simu-

lation. Keeping the exploration rate high supports the convergence of the Q-values

to the expected rewards. However, this also means that algorithm 6.2.1 does not

converge to greedy behaviour in the long run and that proposition 5.6 does not

hold for algorithm 6.2.1.

Hence, the matching law must be evaluated empirically. This is done by the

standard deviation of normalised Q-values after accounting for the exploration rate.

The normalised Q-value of alternative e ∈ E is defined by

Q̂t(e) :=
Qt(e)

maxj∈E |Qt(j)|
.

With m := |E| being the number of alternatives, the following statistic is used to

account for the exploration rate:

St(e) :=

√
mt

ε(1− ε
m

)

(
Kt(e)

t
− ε

m

)
.
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If an alternative e ∈ E was chosen only because of the exploration rate, the

probability distribution of this statistic is approximately standard normal (see

e.g. Collett, 1999, p. 20), and only 1% of the observations are greater than 2.33.

Conversely, if this statistic is strictly greater than 2.33, it is concluded that the al-

ternative was chosen deliberately, and the corresponding Q-value is included into

the calculation of the standard deviation. More specifically, the compliance of

an agent’s behaviour with the matching law is measured by the NetLogo imple-

mentation of the sample standard deviation sd (http://ccl.northwestern.edu/

netlogo/docs/dict/standard-deviation.html):

dML := sd
{
Q̂(e) | S(e) > 2.33

}
.

If dML < 0.05, it is said that the matching law holds empirically.

6.2.2 The Roth-Erev model

Roth and Erev (1995) introduced a simple reinforcement learning model that did “a

surprisingly good job of reproducing the major features of the experimental data”

(Roth and Erev, 1995, p. 165). Subsequent studies confirmed this conclusion,

especially in comparison to predictions of the Nash equilibrium (Ochs, 1995; Erev

and Roth, 1998; Slonim and Roth, 1998; Feltovich, 2000).

Algorithm 6.2.2 specifies the Roth-Erev learning algorithm. Similar to algo-

rithm 6.2.1, the actor holds a table of Q-values {Qt(e)}e∈E that reflect the previous

experiences with the alternatives. In Roth and Erev (1995, p. 172), the Q-values

are called propensities. At each time step, an alternative e ∈ E is chosen with

probability Qt(e)∑
e′∈E Qt(e

′)
. The parameter ε maintains some level of exploration.

There are two small differences between algorithm 6.2.2 and the original model

of Roth and Erev (1995). First, gradual forgetting is not considered because the

melioration algorithm omits this feature as well. Second, the exploration quantity
ε

|E|−1 · y is not added to just the “adjacent” but to all alternatives. The latter was

also done in Erev and Roth (1998, p. 863) in case of two-action games or if there

is no apparent linear order of the alternatives. In one example of the following

sections, a linear order is apparent. It is, nevertheless, not taken into account, for

it would distort the comparability with melioration learning.

http://ccl.northwestern.edu/netlogo/docs/dict/standard-deviation.html
http://ccl.northwestern.edu/netlogo/docs/dict/standard-deviation.html


98 CHAPTER 6. TWO-PERSON MELIORATION LEARNING

Algorithm 6.2.2 The Roth-Erev learning algorithm

Require: exploration rate ε ∈ (0, 1), set of alternatives E
1: t← 0
2: initialise Q1(e)← 1, for all e ∈ E
3: repeat
4: t← t+ 1

5: choose action e ∈ E stochastically using the probabilities
{

Qt(e)∑
e′∈E Qt(e

′)

}
e∈E

6: observe reward y
7: Qt+1(e)← Qt(e) + (1− ε) · y
8: for all e′ 6= e do
9: Qt+1(e

′)← Qt(e
′) + ε

|E|−1 · y
10: end for
11: until termination

6.3 Two-person games

In the remaining of this chapter, algorithms 6.2.1 and 6.2.2 are analysed in the

context of different two-person games. It is tested whether the aggregated choices

correspond to the matching law and which outcomes of the game occur. Most of

the two-person games are known from economic literature. All games are presented

in normal-form. The two players are labelled by “x” and “y”. Capitalised letters

or integers depict the alternatives. Further assumptions are listed in the following:

• For each game, a simulation with 20 000 pairs of agents is run. Every agent

interacts with the same partner during the whole simulation.

• Half of the pairs of agents employ algorithm 6.2.1 (melioration learning).

The other half uses algorithm 6.2.2 (Roth-Erev).

• Every agent repeatedly chooses one of the alternatives according to algorithm

6.2.1 or 6.2.2 until 1 000 choices have been made.

• Agents observe the set of alternatives and the reward of each choice. They

are not aware of the structure of the game or the partner’s choices.

• A payoff matrix shows the mean rewards. The actual reward is drawn from

a normal distribution with a standard deviation of one.

• The exploration rate ε is set to 0.1 and does not decrease with time (simu-

lations with different settings are presented in appendix B).
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Statistical tests are omitted in the comparison of the two algorithms. Even

if one excepts the quasi-randomness, which is simulated by the computer, as suf-

ficiently close to real randomness, the application of statistical tests is largely

unnecessary. Since there are 10 000 pairs of agents for each algorithm, any stan-

dard test would mark a difference as low as 150 pairs as statistically significant.

For example, in the histogram of figure 6.1, the first two bars at (A,A) show a

difference of 178 pairs. It remains a task to the reader to decide whether the

reported differences in numbers are theoretical or practical significant.

In the following, three classes of two-person games are distinguished. The

first class contains games in which at least one of the players has a (weakly)

dominant alternative. Second, games without dominant alternatives but with

several pure Nash equilibria are considered. The last class covers games with

exactly one mixed Nash equilibrium. This division is not exhaustive, but it clarifies

important properties of two-person melioration learning.

6.3.1 Games with dominant alternatives

An alternative of one player is said to be dominant if the choice of this alternative

comes with a mean reward that is strictly greater than the mean reward of any

other alternative given one choice of the partner and greater than or equal to the

mean reward of any other alternative given the other choices of the partner (cf.

weak dominance in Shoham and Leyton-Brown, 2009, p. 77). A representative

example of this first class of games is the prisoner’s dilemma. This game describes

a situation in which the individually preferred outcome is the socially least desired

one. In the example of figure 6.1, alternative B is dominant for both players. The

outcome (B,B) is, therefore, a Nash equilibrium. All other outcomes are optimal.

In figure 6.1, the frequency distribution of pairs of agents at the 1 000th round

of the simulation is shown. It is distinguished between pairs of agents who learn

by melioration (mel) and pairs of agents who use the Roth-Erev model (RE). Both

types of agents predominantly choose the Nash equilibrium. In case of melioration

learning, there is no mixing, and each agent chooses B exclusively. Because of the

exploration rates, also the non-equilibrium outcomes (A,B) and (B,A) occur. The

frequencies approximate the expected ones: 10 000 · ε
2
· (1 − ε

2
) = 475. Therefore,
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Figure 6.1: A prisoner’s dilemma and simulation results

the measures dML are strictly less than 0.01, and the matching law holds for all

agents who learn by melioration. Agents who use the Roth-Erev model show higher

frequencies of non-equilibrium outcomes, and the matching law measures dML are

greater than 0.1 for the majority of agents.
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Figure 6.2: The game “guess 2
3

of the average” and simulation results

Another example of a game with dominant alternative is called “guess 2
3

of the

average”. Figure 6.2 contains a discrete version of this game with four alternatives.

The rules state that each agent tries to guess 2
3

of the average of the guesses. The

agent who is closest to this value “wins” the game. In the particular example of

figure 6.2, one can choose an integer between 0 and 3. The choice of alternative 0 is

dominant. The reward table and the simulation results are displayed in the same

plot by heat maps. The background colour of a cell is light grey if only few pairs

of agents choose this outcome at the 1 000th round of the simulation. It is close
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to black if many pairs do so. The heat maps show that almost all agents learn to

choose the dominant alternative 0, which constitutes the only Nash equilibrium.

Similar to the prisoner’s dilemma, agents who use the Roth-Erev model end up

slightly more often in non-equilibrium outcomes.

While both actor models imply a tendency towards the dominant alternative,

the results are less pronounced for Roth-Erev. This effect is more clearly seen in

the game of figure 6.3. Alternative A is dominant for player x, and alternative B

is dominant for player y. Hence, the outcome (A,B) is a Nash equilibrium. Addi-

tionally, (A,A) and (B,B) are Nash equilibria, which are not payoff-dominated by

(A,B) because they involve the same mean rewards (Harsanyi and Selten, 1992,

p. 81). The simulations reveal that all agents prefer the first equilibrium (B,A)

instead of (A,A) and (B,B).
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Figure 6.3: A game with three optimal Nash equilibria

In case of the melioration algorithm, the choice of the dominant alternative is

due to the exploration rate. Exploration guarantees that the fourth outcome (A,B)

is selected occasionally, especially at the beginning of the simulation. This means

that, for player x, the average value of alternative A is between 0 and 10. The

value of alternative B, on the other hand, is approximately 10. The reverse holds

for player y, which leads to the combination (B,A) in rounds without exploration.

The choice of (B,A) is also most likely given the Roth-Erev model. But each

agent maintains a relatively high probability of choosing the other alternative. This

probability does not converge towards the exploration rate with further rounds of

the simulation. Consequently, the agents of the Roth-Erev model significantly

deviate from the matching law.
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6.3.2 Games with multiple pure equilibria

A result of the previous section is that melioration learning leads to the choice of

a dominant alternative even though the structure of the game is not known. A

key factor is the exploration rate, which renders dominated alternatives inferior.

In games without dominant alternative, this argument does not apply, and actors

are not drawn to a single outcome. A Nash equilibrium is still guaranteed to exist

(Nash, 1951). Games with a single Nash equilibrium are considered in the next

section. In this section, games with more than one equilibrium are analysed.

A basic game with two or more Nash equilibria is the coordination game. It

refers to a class of situations in which the agents prefer to coordinate their choices in

some way. In the particular example of figure 6.4, the outcomes (A,A) and (B,B)

are pure Nash equilibria, and (A,A) payoff-dominates (B,B) because of higher

mean rewards (Harsanyi and Selten, 1992, p. 81). This game has an additional

mixed equilibrium with probabilities
(
A : 4

9
, B : 5

9

)
for both players.
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Figure 6.4: A coordination game and simulation results

In figure 6.4, the frequency distribution of pairs of agents at the 1 000th round

of the simulation is shown. The agents choose mainly a pure Nash equilibrium

and the payoff-dominant one with a slightly higher frequency. In other words, all

pairs of agents are able to coordinate their choices. The deviations to (A,B) and

(B,A) are due to the exploration rate and, similar to the previous simulations,

more pronounced in case of the Roth-Erev model.

Further simulations reveal that the particular reward structure affects the dis-

tribution of agents among the two Nash equilibria. In particular, the frequency of
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Figure 6.5: Relationship between the rewards of (B,B) and frequencies

the suboptimal equilibrium (B,B) depends on its expected rewards. As seen in

figure 6.5, the higher the rewards, the higher this frequency.

The distribution of agents also changes with the rewards of the non-equilibrium

outcomes (A,B) and (B,A). In the game of figure 6.6, these rewards are set by

two parameters a and b. Depending on the difference b − a, the agents are more

strongly drawn to either (A,A) or (B,B). If a = 0 and b = 10, almost all agents

choose (B,B). The number of agents at (B,B) decreases with the difference b−a.
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Figure 6.6: Relationship between non-equilibrium rewards and frequencies

This correlation can be explained by considering the melioration algorithm.

The agents attach values Q(A) and Q(B) to the alternatives A and B regardless of
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the choice of the other agent. Because of the exploration rates, also the outcomes

(A,B) and (B,A) are selected occasionally. This means that the value of action

A increases with the reward a and that the value Q(B) increases with b. There-

fore, the tendency to choose (A,A) instead of (B,B) grows if either the reward a

increases or the reward b decreases (or if both happens).

The dynamic of figure 6.6 reflects a preferences for the maximin alternative.

An alternative is maximin if its choice leads to a maximum of all rewards that

are minimal over the choices of the partner (Shoham and Leyton-Brown, 2009, p.

72). It is a low-risk strategy because, regardless of the decisions of the partner,

another choice could be worse. If a = 0 and b = 10, B is the maximin alternative

for both players. On the contrary, A is their maximin alternative if a = 8 and

b = 2. In the case of a = b = 5, both alternatives are maximin. Because the

latter implies an indifference between the alternatives, all four outcomes should

occur with the same frequency. For the Roth-Erev model, this is approximately

correct. But agents who learn by melioration still coordinate their actions, and

slightly more agents end up in (A,A) (9.567 pairs) than in (B,B) (8.498 pairs).
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Figure 6.7: A “battle of the sexes” and a game of chicken

In conclusion, the melioration model is more successful in the coordination

of actions than the Roth-Erev model. In case of the Roth-Erev model, non-
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equilibrium outcomes appear more frequently than predicted by the exploration

rate. This is also apparent in the “battle of the sexes”, which is a particular kind

of coordination game. This game describes an interaction of two persons who plan

to attend an event together (e.g. a concert or a cooking class). The partners have

complementary preferences about two alternative events, but with an additional

preference for attending the same one. A sample reward matrix is given by the

left-sided table of figure 6.7. There are two pure and one mixed Nash equilibria:

(A,A); (B,B);
(
x :
(
A : 3

13
, B : 10

13

)
, y :

(
A : 10

13
, B : 3

13

))
. Both pure equilibria are

optimal. The outcome (B,A) consists of the maximin alternatives.

The simulations show that a pair of meliorating agents ends up in (A,A) or

(B,B). Because of the symmetry of the game, there is no criterion that favours one

of the two pure equilibria. Harsanyi (1977) calls this state bargaining deadlock be-

tween (A,A) and (B,B). While Harsanyi (1977, p. 279) suggests the third (mixed)

equilibrium as solution of the game, melioration leads to an equal division of the

pairs. If agents use the Roth-Erev model, also the suboptimal non-equilibrium

outcome (B,A) appears frequently.

A similar effect arises in the game of chicken (right-sided table of figure 6.7).

This game resembles a basic conflict between two parties that requires the retreat

of at least one of them to be solved. In this case, agents who learn by melioration

predominantly choose one of the two pure Nash equilibria: (A,B) or (B,A). The

Roth-Erev model implies the regular choice of the worst outcome (B,B).
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Figure 6.8: A dispersion game and simulation results
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Finally, a game with more than two pure Nash equilibria is analysed. Figure

6.8 contains heat maps of a dispersion game with four alternatives. It is, in some

respect, the opposite of a coordination game. Each agent prefers not to match

the choice of the other agent. This means that all but the diagonal outcomes

are optimal Nash equilibria. Consequently, most agents of the simulations are

distributed evenly among the non-diagonal outcomes. Agents who use the Roth-

Erev model end up slightly more often in non-equilibrium outcomes.

6.3.3 Games with a single Nash equilibrium

The games of this section have one strictly mixed Nash equilibrium. In contrast

to games with pure equilibria, it takes a higher number of decisions until the

behaviour of the agents has converged. Therefore, the following simulations are

run with only 2 000 pairs of agents but for 20 000 rounds of the game. The relative

frequencies of choice are calculated for the whole period of 20 000 rounds and for

each agent separately. The convergence to the matching law is evaluated with

respect to the whole period as well. Furthermore, a slightly higher exploration

rate (ε = 0.2) is assumed because it supports the speed of convergence (the effect

of different exploration rates is indicated in appendix B.1).
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Figure 6.9: The game “matching pennies” and simulation results
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First, zero-sum games are analysed. In these games, the gain of one of the

players equals the loss of the other player. The reference point is not necessarily

zero. For instance, in all of the following zero-sum games, the reference point

is 5. This means that the default reward of any player is 5. If the outcome of

an interaction is (0, 10), the first player looses 5 while the second player gains 5.

One example is the game “matching pennies” as shown in figure 6.9. The Nash

equilibrium is given by the probabilities (A : 0.5, B : 0.5) for both players.

According to figure 6.9, the behaviour of all agents converges to the matching

law: the measures dML approximate zero for most of the agents. The values are

even closer to zero if the simulation progresses or if a higher exploration rate is

used (see appendix B.1). Figure 6.9 also contains histograms over the relative

frequencies of alternative A. For both types of actors, the relative frequencies are

in accordance with the probabilities of the mixed Nash equilibrium. The agents

display a mix of the alternatives such that each one is chosen half of the time.

A similar result is obtained for the game “rock-paper-scissors”, which is zero-

sum with three alternatives per player. The game is specified in figure 6.10. The

agents’ behaviour approaches the matching law and the predictions of the mixed

Nash equilibrium:
(
A : 1

3
, B : 1

3
, C : 1

3

)
.
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Figure 6.10: The game “rock-paper-scissors” and simulation results
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A game that is not zero-sum is seen in figure 6.11. It has a single mixed

Nash equilibrium at
(
x :
(
A : 1

2
, B : 1

2

)
, y :

(
A : 5

7
, B : 2

7

))
. In the past, this game

was used to model the interaction between criminals and police (Tsebelis, 1990)

and was, therefore, called inspection game (Rauhut, 2009). The criminal (player x)

chooses between committing a crime (A) or not committing a crime (B). The police

or inspector (player y) either inspects the suspect (A) or not (B). Committing

a crime is beneficial only if no inspection takes place. An inspection is beneficial

only if a crime occurs. The simulations show that agents who learn by melioration

approach the matching law and the Nash equilibrium. The Roth-Erev model

deviates from from both concepts.
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Figure 6.11: An example of the inspection game and simulation results

Further simulations were run with different payoffs for player x given the out-

come (A,A). This payoff refers to the punishment of a crime. The prediction of the

Nash equilibrium for player x does not change with this reward, and the results of

the simulations remain in line with the Nash equilibrium. Consequently, criminals

who learn by melioration choose to commit a crime with a relative frequency of

0.5 regardless of the punishment.
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Laboratory experiments with humans indicated that the level of punishment

actually has an effect on the crime rate. More specifically, low punishment comes

with a higher crime rate than high punishment (Rauhut, 2009). However, the

experiments lasted for only 15 rounds of decision-making. If humans learn slowly,

the behaviour may not have converged to a stable point yet. In figure 6.12, the

temporal development of the relative frequencies of choosing A are shown for the

two games of the experiment of Rauhut (2009). All agents use the melioration

learning model, and the mean value of 1000 agents is plotted on a logarithmic

scale of time. In case of low punishment (upper row), the Nash equilibrium (0.5)

is approached from above. If punishment is high (lower row), the equilibrium is

approached from below. Hence, there is a long period of time in which crime rates

are higher for low punishment than for high punishment. Also the inspection rates

conform qualitatively to the experimental results if it is focused on early rounds.
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Figure 6.12: The inspection game with low or high punishment

Finally, there are some games in which the choices of agents who learn by

melioration or the Roth-Erev model do not converge to a stable state. One example

is presented in figure 6.13. This game is sometimes referred to as Shapley’s game

and known for its difficulties in regard to the convergence of learning algorithms

(Abdallah and Lesser, 2006). It is similar to the game “rock-paper-scissors” except
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for the diagonal rewards, which are (0, 0) instead of (5, 5). The Nash equilibrium

is given by
(
A : 1

3
, B : 1

3
, C : 1

3

)
.

As seen in figure 6.13, the agents do not approach the matching law. The

measures dML are significantly greater than zero after 20 000 choices and not con-

verging towards zero if the simulation progresses. The lower plots of figure 6.13

depict the changes in relative frequencies of two particular players. If agents learn

by melioration, the relative frequencies of all three alternatives rise and fall in se-

quence without any clear tendency towards convergence. This implies a constant

change in outcomes: from (B,A) to (C,A) to (C,B) to (A,B) to (A,C) to (B,C) and

back to (B,A). The time is on logarithmic scale, which means that the lengths of

the waves increases with time. This happens because the Q-values are calculated

as long-term averages. There is no decrease in the height of the waves, which could

lead to a stable outcome. In case of the Roth-Erev model, the dynamic is slower,

but no convergence is visible as well.
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Figure 6.13: Shapley’s game and simulation results
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6.4 Conclusion

In this chapter, the melioration learning algorithm was analysed in the context of

various two-person situations, for example the prisoner’s dilemma, the coordina-

tion game, the game of chicken, and the inspection game. The results were largely

in line with game-theoretical predictions. But less strict assumptions about avail-

able information and the agents’ cognitive skills were required. Additionally, the

problem of equilibrium selection was solved because the model specifies a distri-

bution of outcomes for a given game.

The simulations indicated that agents who learn by melioration choose the

dominant alternative of two-person games. If no alternative is dominant, mainly

pure Nash equilibria occurred, and optimal ones were preferred but not chosen

exclusively. More specifically, the structure of the game, which includes the rewards

of non-equilibria, affected the distribution of outcomes.

If no pure equilibrium existed, the agents chose several alternatives with strictly

positive probability. In some of the games, the long-term relative frequencies were

in line with the matching law and corresponded to the mixed Nash equilibrium.

But there are games that prevent the convergence of the agents’ behaviour.

In case of the Roth-Erev model, the results were qualitatively similar. But

many differences were discovered. For example, the probability of choosing a

dominant alternative increased slowly, which led to deviations from the matching

law. In coordination games, non-equilibrium outcomes appeared frequently, and

even the worst outcome was chosen regularly in the game of chicken.
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Chapter 7

Multi-person games

An advantage of the melioration learning algorithm is its applicability to a wide

range of situations. Other authors have already analysed slightly different versions

of Q-learning in the setting of two-person two-action games (Wunder et al., 2010;

Kianercy and Galstyan, 2012). But there is no work about the convergence of

Q-learning in games with more than two players. Because of the complexity of

these situations, the convergence of a learning model to a dominant alternative or

a pure Nash equilibria is more difficult than in two-person games. It is tested in

the following sections whether melioration learning enables players of multi-person

games to arrive at a Nash equilibrium or another steady state.

In section 7.1, n-way coordination games are investigated. Given one of these

situations, a player simultaneously interacts with several partners in two-person

coordination games. This model allows to explore the evolution of social conven-

tions and institutions, for the actions of multiple persons must be synchronised

in order to achieve an optimal result. The simulations reveal that, besides the

reward structure of the game, also the network structure of interactions affects the

group’s ability to coordinate its members’ choices.

In section 7.2, it is shown that the agents can learn to volunteer in the volun-

teer’s dilemma. More specifically, the relative frequencies of volunteering are in

line with the prediction of a pure or mixed Nash equilibrium. In the asymmetric

version of the dilemma, results of the simulations are more intuitive than some of

the game-theoretic predictions.

113
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Finally, a multi-person prisoner’s dilemma is explored. The actors sustain

cooperation under favourable conditions. The exploration rate plays a decisive

role in this game because incentives change if several players explore an action at

the same time. Additionally, the option to punish defectors or to abstain from an

interaction stabilises and even increases the level of cooperation.

7.1 N-way coordination games

N-way models refer to the repeated play of a two-person stage game with multiple

partners (e.g. Macy, 1991, p. 826). Depending on the particular stage game, n-way

models can be used to explain the evolution of conventions or social institutions.

In the case of a two-person coordination game, a convention (or social institution)

is said to be established if all members of a finite population agree on a pure Nash

equilibrium (see e.g. Schelling, 1960; Young, 1998).

Since a coordination game has multiple pure equilibria, a stable state with

convention may or may not emerge. Even if a convention is established, several

outcomes are possible. Furthermore, a stable outcome may be inefficient, i.e.

payoff-dominated, if its rewards are strictly smaller than the rewards of another

equilibrium. Therefore, it is analysed which conditions enable the emergence of

an efficient outcome, which means that there is no equilibrium point with strictly

greater rewards (Harsanyi and Selten, 1992, p. 81).

7.1.1 Previous research

Young (1993) analysed n-way coordination games with random interactions. In

this model, the players of each stage game were randomly drawn from a large pop-

ulation. Every actor knew the payoff structure of the stage game and considered

a random sample from the set of previous interactions. The model did not neces-

sarily describe a learning process. An agent could “ask around” instead of relying

on own experiences (Young, 1993, p. 59). Decisions were made by selecting an

alternative with the highest expected reward. The probabilities of a partner’s de-

cision were assumed to equal the corresponding relative frequencies in the random

sample of previous interactions.
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As result, Young (1993) found out that actors learn to play a risk-dominant

equilibrium of the stage game. Risk-dominance is a theoretical property of an

equilibrium that is not necessarily equivalent to payoff-dominance (Harsanyi and

Selten, 1992, pp. 88-89). It takes into account that, if the decision of the partner

is not known, the choice of one alternative may be less risky than the choice of

another one (Harsanyi and Selten, 1992, pp. 82-84).

In a related study, Kandori et al. (1993) came to the same conclusion. The

authors analysed the dynamics of n-way models by assuming a finite population

and an evolutionary process that controlled the choices of its members. Given

a certain class of coordination games, the unique stable state corresponded to a

risk-dominant equilibrium of the stage game (Kandori et al., 1993, p. 46).

The models of Young (1993) and Kandori et al. (1993) are similar to melioration

learning because the actors were assumed to be myopic, take past occurrences into

account, and make random mistakes. But, in contrast to melioration, these actors

knew the reward structure of the game and chose a “best-reply” to the given

information (see also section 5.3.4).

In addition to interactions with random partners, Young (1998, ch. 6) con-

sidered n-way games in networks. In this case, every actor had a small group

of potential partners, which were specified by a network. The information about

previous encounters was limited to this group. Similar to the model with random

interactions, only risk-dominant equilibria were stable states, and all members of

a connected component of the network chose the same alternative. A connected

component is a part of a network in which every member is reachable by every

other member via a sequence of edges.

In other words, the particular structure of the network had no effect on the

outcome of an n-way game. This result was due to random mistakes of the actors.

If decision are deterministic, the structure of the network affects the likelihood of

reaching an equilibrium (Buskens and Snijders, 2015). Even equilibria that are

risk-dominated by another outcome may occur. This depends on the density, the

centrality, and the segmentation of the network. Furthermore, it is possible that

two different conventions coexist in some networks (Berninghaus and Schwalbe,

1996). This phenomenon, which is called polarisation, is even more likely if network

connections can be endogenously changed by the actors (Buskens et al., 2008).
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7.1.2 Results

It is tested whether conventions emerge in simulations with agents who learn by

melioration (algorithm 6.2.1). Two different coordination games are analysed:

I y

A B

x
A (10,10) (0,0)

B (0,0) (b,b)

II y

A B

x
A (10,10) (0,6)

B (6,0) (b,b)

The parameter b is set to an element of {2, 4, 6, 8, 10}. Hence, (A,A) and

(B,B) are pure Nash equilibria. In game I, the outcome (A,A) is efficient and

risk-dominant as long as b < 10. If b = 10, both outcomes (A,A) and (B,B) are

efficient, and there is no risk-dominance relationship between them. Also in game

II, (A,A) is efficient. But it is risk-dominant only if b < 4. In case of b = 4, there

is no risk-dominance relationship between (A,A) and (B,B). If b > 4, (B,B)

risk-dominates (A,A), even in situations in which it is inefficient (b < 10).

It was shown in section 6.3.2 that, if these games are repeatedly played by the

same two actors, they end up in one of the Nash equilibria (A,A) or (B,B). The

latter outcome is observed even if it is payoff-dominated by the first one (b < 10).

However, given a situation in which the players alternately interact with different

partners, all agents should agree on a single alternative in order to avoid the inferior

outcomes (A,B) and (B,A).

In each of the following simulations, 200 groups of agents are created. Every

group consists of 50 agents and a network that specifies the structure of interac-

tions. The vertices of the network represent the agents. An edge exists between

two vertices if the corresponding agents repeatedly take part in the same coordi-

nation game. Since the games are symmetric, no differences between the vertices

need to be made. The exploration rate is set to ε = 0.1.

To illustrate the effect of the network structure on the agents’ behaviour, the

small-world network (β-)model of Watts (1999, p. 67) is adopted. This model

has two parameters: the average number of neighbours d ∈ {2, 4, 6, . . . } and the
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Figure 7.1: Small-world networks with different parameters

probability of rewiring β ∈ [0, 1]. With β = 0, the network is a perfect one-

dimensional lattice in which each agent has exactly d neighbours (see figure 7.1).

If β increases, more and more edges are rewired from a close neighbour to a random

agent of the network. In case of β = 1, the network is random.

First, one-dimensional lattices with d = 2 are analysed. This means that

the network is a polygon. The grey histograms of figure 7.2 show the relative

frequencies of alternative A at the 1 000th round of the simulation. A relative

frequency is calculated for each of the 200 groups. In game I, the higher the rewards

of (B,B), the more difficult it is for the agents to coordinate their decisions. If

b = 2 or b = 4, at least 80% agents choose alternative A in almost all groups. With

b > 4, there is an increasing number of groups which members choose alternative

B regularly but not exclusively. This means that also suboptimal outcomes occur

and that a convention is not established.

Unless there is no risk-dominant equilibrium (in case of b = 10), the agents’

behaviour converges to the choice of alternative A in game I with further rounds of

the simulations. This is indicated by the black histograms in some of the plots of

figure 7.2. They present the relative frequencies of A at the 100 000th round of the

simulation. Conversely, the agents predominantly learn to play alternative B in

most of the instances of game II. Only if b = 2, the outcome (A,A) risk-dominates

(B,B) and, hence, appears most often.



118 CHAPTER 7. MULTI-PERSON GAMES

Figure 7.2: Histograms of small-world networks with d = 2 and β = 0

In summary, the simulations confirm the result of Young (1998, p. 98): the

groups establish a convention by coordinating their members’ choices to the risk-

dominant equilibrium. This holds true even if the risk-dominant equilibrium is

inefficient (game II with 4 < b < 10). Without risk-dominant equilibrium, a mix

of several outcomes occurs. In game II with b = 4, the outcome (A,A) is efficient

but seen less often than (B,B). In case that (A,A) and (B,B) are efficient (game

I with b = 10), all outcomes are present with approximately the same frequency.

Figure 7.3: Simulation results for 9 networks with d = 2, β = 0, and b = 10

Figure 7.3 contains nine of the 200 groups that played game I with b = 10.

Different colours indicate different choices at the 1 000th round of the simulation.

The agents are partitioned into clusters within which some agents deviate from

the prevalent alternative because of the exploration rate. The clusters are fairly

stable over time, for agents on the edge of a cluster have no incentive to change

behaviour. These agents receive a reward of 10 from one of the partners and a

reward of 0 from the other one. Switching to the other alternative would not

change this pattern, unless exactly one of the two partners switches as well.
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Figure 7.4: Histograms of small-world networks with β = 0

The difficulty of establishing a convention as well as the slowness of conver-

gence in some games can be traced back to the restrictive structure of polygons

(small-world networks with d = 2 and β = 0). First, the convergence to a single

alternative is accelerated by adding more connections to the network. Figure 7.4

shows this effect for the most problematic cases of the previous simulations: game

I with b ∈ {8, 10} and game II with b ∈ {2, 4}. The relative frequencies are mea-

sured at the 1 000th round of the simulation. A higher number of network partners

enables a larger fraction of group members to choose the same alternative. Even

in the case of game I with b = 10, approximately half of the groups can coordinate

their choices within 1 000 rounds if d = 20. In some groups, only alternative A is

chosen, and, in other groups, only alternative B is chosen.
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Figure 7.5: Histograms of small-world networks with d = 10

Second, a high probability of rewiring facilitates the common choice of a single

alternative. Similar to a larger number of partners, connections to random agents

support the flow of information within the network. This enables a large fraction

of the group to select the same alternative. Figure 7.5 shows the effect for networks
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with d = 10 and different values of β. To make the plots accessible, the histograms

are reduced to three intervals: [0, 0.1], (0.1, 0.9], and (0.9, 1]. It is evident that the

frequency of the center interval decreases with β, which means that more and more

agents agree upon a common alternative.

In conclusion, a large number of connections or a high level of randomness

supports the establishment of a convention within an group. In game I with b = 8

and game II with b = 2, the expected convergence to alternative A is seen. In

the games without risk-dominant outcome, the results differ. While the groups

are equally divided among the two efficient outcomes in game I with b = 10, the

agents settle on the inefficient outcome (B,B) in game II with b = 4.

7.2 The volunteer’s dilemma

The volunteer’s dilemma (Diekmann, 1985) is a generalisation of the game of

chicken (figure 6.7) in respect to the number of players. It is sociologically relevant

because it captures various social conflict situations, such as the call for help in an

emergency (Diekmann, 1985, p. 606) or e-mail requests that are send to multiple

recipients (Barron and Yechiam, 2002).

The volunteer’s dilemma represents a situation with n ∈ N agents, each of

whom must decide between volunteering or being idle. A collective good is pro-

vided as soon as one member of the group volunteers. This results in a utility

u ∈ (0,∞) for every agent. But volunteering entails a cost c ∈ (0, u). The rewards

are listed in the following table from the perspective of any single agent:

number of other volunteers

0 1 2 . . . n− 1

single agent
volunteer u− c u− c u− c u− c u− c

be idle 0 u u u u

The volunteer’s dilemma has n pure Nash equilibria in which exactly one agent

volunteers. Additionally, there is a mixed Nash equilibrium. The probability of
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volunteering is given by

p = 1−
( c
u

) 1
n−1

,

for each agent (Diekmann, 1985, p. 607). If the agents choose their actions inde-

pendently of each other, there is no volunteer with probability

(1− p)n =
( c
u

) n
n−1

.

In the following, it is investigated whether melioration learning leads to outcomes

that correspond to the Nash equilibria.

7.2.1 Learning to volunteer

First, simulations are run for fixed groups of agents. This means that the same

agents interact repeatedly in a volunteer’s dilemma. This situation corresponds to

any association, department, or group of friends that regularly needs a volunteer

to, for example, complete a task or organise the annual Christmas party.

n = 2, c = 1 n = 2, c = 3 n = 5, c = 3 n = 5, c = 5

0
2000
4000
6000

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
individual frequency of volunteeringnu

m
be

r 
of

 a
ge

nt
s

Figure 7.6: Histograms over frequencies of volunteering in fixed groups

The utility of the collective good is set to u = 10 and the exploration rate to

ε = 0.1. Each simulation consists of 1 000 choices by 10 000 agents that are divided

into groups of size n. The analysis reveals that the agents learn to coordinate

their choices to a pure Nash equilibrium. This mirrors the results of the game

of chicken in section 6.3.2. The behaviour of the agents is illustrated by four

sample histograms in figure 7.6. More data is shown in appendix B.3. The x-axis

depicts the individual frequency of volunteering, which refers to all choices of an

agent during one simulation run (1 000 choices). While some of the agents always

volunteer, the remaining agents are mostly idle.
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Since there is exactly one volunteer in a pure equilibrium and all agents are

equally likely to be this one, the individual likelihood of volunteering is 1
n

and,

hence, decreases hyperbolically with the group size. This is seen in the left-sided

plot of figure 7.7. The relative frequency of volunteers decreases in accordance

with the inverse of the group size. The difference between simulation results and

the inverse of the group size can be explained by the exploration rate ε.
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Figure 7.7: The effect of group size in fixed groups

The relative frequencies of volunteers are largely independent of the costs c.

Only if c = 7 and n ≥ 8, volunteering drops more rapidly. This is an implication

of the exploration rate. Because the agents try different actions with probability

ε = 0.1, the expected value of being idle is 10 ·
(
1−

(
1− ε

2

)n)
= 10 · (1− 0.95n) if

nobody volunteers intentionally. With c = 7 and n ≥ 8, this value is greater than

the reward of volunteering (u − c = 3). Hence, melioration leads to a situation

without volunteers except for the random volunteering that is done by exploration.

Finally, since there is generally one volunteer per group, the relative frequency

of groups without volunteers is very low (unless c = 7 and n ≥ 8). This is seen in

the right-sided plot of figure 7.7.

7.2.2 Anonymous games

The simulations of the previous section are repeated in an anonymous setting,

which means that the agents interact with different partners at each round. On

the individual level, the results are similar. Most of the agents are still choosing

one alternative exclusively. This is evident from figure 7.8, which, similar to figure
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7.6, exhibits histograms of the individual relative frequencies of volunteering. It is

roughly distinguished between three types of agents: agents who mostly volunteer

(the interval (0.9, 1]), agents who almost never volunteer (the interval [0, 0.1]), and

agents who occasionally volunteer (the interval (0.1, 0.9]). A majority of agents is

either always volunteering or always idle. But there is also a considerable portion

of agents who choose both alternatives.
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Figure 7.8: Histograms over frequencies in anonymous groups

In simulations with high costs of volunteering, the agents are either always idle

or occasional volunteers. Therefore, the number of volunteers is not sufficient to

obtain at least one volunteer per group. This is seen in the right-sided plot of

figure 7.9. There are many idle groups if c is high. But also in the case of low

costs, the rate of groups without volunteers is greater than in fixed groups.
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Figure 7.9: The effect of group size in anonymous groups

Additionally, it is evident from figure 7.9 that the relative frequencies of vol-

unteering correspond to the mixed Nash equilibria. The simulation results are

plotted as points, and the predictions of the Nash equilibrium are drawn as lines.
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7.2.3 An asymmetric volunteer’s dilemma

In an asymmetric version of the volunteer’s dilemma, there are two types of play-

ers. One type is assumed to be stronger than the other one. In the following

simulations, the costs of volunteering are cut in half for the strong agents. Ac-

cording to the mixed Nash equilibrium, the probability of a strong agent being idle

is twice as high as the corresponding probability of weak agents (Diekmann, 1993,

p. 77, eq. 4). This rather counter-intuitive hypotheses does not match empirical

findings (Diekmann, 1993). A pure Nash equilibrium is a more plausible solution,

especially if a strong agent is the single volunteer.
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Figure 7.10: The effect of group size in the asymmetric volunteer’s dilemma

Simulations were run with anonymous groups and half of the agents being

strong. As seen in figure 7.10, mainly the strong agents volunteer. The relative

frequencies of volunteering correspond approximately to the mixed Nash equilib-

rium of the symmetric version of the game with costs c
2
.

In contrast to the predictions of the mixed equilibrium of the actual asymmetric

game, the strong agents are more likely to volunteer than weak agents if they

learn by melioration. In groups of size two, all the strong agents volunteer. With

increasing group size, the rate of volunteers decreases at a similar rate as in the

previous section. The weak agents cease to volunteer first.

Nevertheless, due to the anonymous groups condition, the agents cannot coor-

dinate on a pure Nash equilibrium. Especially in case of large costs c, there is a

high fraction of groups without volunteers. This is indicated by the grey lines in

the plots of figure 7.10.
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7.3 A multi-person prisoner’s dilemma

The prisoner’s dilemma is widely known and extensively studied not only in Soci-

ology, but also in Economics and Biology. It describes a social situation in which

the individually best action is not socially optimal. One reason for the game’s

popularity is the frequent occurrence of real-life situations that, on the one hand,

resemble this game and, on the other hand, are important enough to desire an

optimal solution (see e.g. Frank, 2011).

In section 6.3.1, the two-person version of the prisoner’s dilemma was analysed.

Simulations revealed that melioration leads to the only Nash equilibrium, which

is socially suboptimal. At first sight, this result is not likely to change in similar

interactions with multiple persons. Yet, the following simulations demonstrate

under which conditions the agents learn to deviate from the Nash equilibrium.

7.3.1 The basic version

The two-person prisoner’s dilemma can be extended to a similar situation with

multiple persons. A particular instance of a multi-person prisoner’s dilemma is

called public goods game (e.g. Sigmund et al., 2001). In a public goods game,

there is a group of n > 1 agents. Each agent chooses between cooperation and

defection. Every cooperator pays one unit into a common pool, which is, subse-

quently, multiplied by a factor r, with 1 < r < n. Let nc denote the number

of agents that choose to cooperate. Therefore, the common pool contains a total

amount of r · nc. This amount is divided equally among all agents of the group,

such that a cooperator obtains the payoff

r · nc
n
− 1

and a defector gets
r · nc
n

.

This model resembles the basic structure of the two-person prisoner’s dilemma

of figure 6.1. The fraction r
n

is the part of a contribution that is returned from the

common good to a cooperator. The condition 1 > r
n

implies that cooperation is
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dominated by defection. But since r > 1 and, hence, r·n
n
−1 > 0, the establishment

of the common good (with all agents contributing) is socially desired.

In the following simulations, a population of 10 000 agents is assumed, and the

exploration rate is set to ε = 0.1. It is distinguished between anonymous and

fixed groups. In the anonymous condition, groups are formed randomly before

each round by drawing agents from a large population. Fixed groups, on the other

hand, do not change. The same agents interact repeatedly with each other.

● ● ●

●

● ●

●

●

anonymous fixed

0.0

0.2

0.4

0.6

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
r n

ra
te

 o
f c

oo
pe

ra
ti

on

    n
● 5

10

20

Figure 7.11: The rate of cooperation in the public goods game

The relative frequencies of cooperation are measured at the 1 000th round of the

simulations and displayed in figure 7.11 for different group sizes n and reward ratios
r
n
. In case of randomly assembled groups, the rate of cooperation is mostly zero

and increasing with n and r
n
. Nevertheless, this development is only temporary.

If the simulations are continued, the rate of cooperation approaches zero. This

happens at a very slow rate (figure 7.12).
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Figure 7.12: The rate of cooperation over time; n = 20; r
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In contrast, the high rates of cooperation in fixed groups do not decrease with

further repetitions of the game (figure 7.12). In case of the simulation with n = 20

and r
n

= 0.8, figure 7.13 reveals a deeper look at the frequencies of cooperation.

The left-sided histogram contains the individual historical frequencies over the

first 1 000 rounds. It indicates that there are two types of agents. The first type

always chooses defection. The second type mainly cooperates. In the right-sided

histogram, the historical frequencies are shown on the group level. On average,

more than half of the members of any group cooperates. The mean of 0.57 is

displayed by the vertical line.
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Figure 7.13: Histograms of the simulation with n = 20 and r
n

= 0.8

According to the plots of figure 7.13, there is a substantial fraction of agents

in each group who choose to cooperate. Melioration learning implies that these

group members explore defection occasionally. Because of the structure of the

prisoner’s dilemma, the Q-value of defection should be greater than the Q-value of

cooperation. Why do these cooperators not necessarily change to defection with

further encounters of the prisoner’s dilemma?

The alleged tendency to defection is based on a stationary point of reference.

From the perspective of a cooperator, the reward of switching to defection is

(nc − 1) · r
n
, which is greater than the current reward: nc · rn − 1. This inequality

requires that no other group member changes his behaviour at the same time. With

two cooperators simultaneously exploring defection, the reward is (nc − 2) · r
n
. If

r
n
> 0.5, this is smaller than nc · rn − 1. Since all agents explore their alternatives

independently of each other, the probability of two or more agents changing their

behaviour simultaneously increases with the group size.
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When a cooperator explores defection, three types of states are possible. First,

nothing else has changed compared to the previous round. Second, there are

more cooperators than before. Third, there are more defectors. While defection

results in a gain in the first two states, it may come with a loss in the third state.

Therefore, the Q-value of defection is smaller than the Q-value of cooperation

if the loss of the third state counterbalances the gains from the first two states.

Besides the conditions of a large group and a high incentive of cooperation, this

also requires that the third state occurs more frequently than the second state.

The last condition is plausible in the context of a prisoner’s dilemma, for agents

are still drawn to defection. The probability that more agents defect in the next

round is always greater than the probability that more agents cooperate. Be-

sides the random changes that are due to the exploration rate, agents deliberately

choose defection because of a slightly higher Q-value. Nevertheless, because of the

mechanism described above, the choice of defection comes with a loss on average

and the Q-value of defection only temporarily exceeds the Q-value of cooperation.

This dynamic is seen in figure 7.14. It shows the Q-values of two representative

agents of a fixed group with n = 20 and r
n

= 0.8. It also contains the relative

frequencies of cooperation measured over 25 000 rounds of the simulation (the

numbers below the curves). In the first plot, the Q-value of defection is visibly

greater than the Q-value of cooperation. This agent always defects and cooperates

only in exploration rounds. The Q-values of the other agent are close to each other.

This agent cooperates most of time but also defects deliberately apart from the

exploration rate. Hence, the relative frequency of cooperation is less then 0.95.
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= 0.8
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7.3.2 The punishment of defection

In the past, multiple mechanisms have been suggested that solve the prisoner’s

dilemma by increasing the frequency of cooperation (an overview of studies with

agent-based simulations was given by Gotts et al., 2003). One prominent example

can be easily incorporated into the present model of melioration learning. This is

the possibility of punishing agents who deviate from cooperation.

By itself, the option to punish is not sufficient to solve the prisoner’s dilemma.

It merely creates a second-order dilemma (Coleman, 1990, pp. 270-272). But with

additional assumptions, punishment can be shown to support socially optimal

outcomes (e.g. Axelrod, 1984; Boyd and Richerson, 1992; Brandt et al., 2003;

Boyd et al., 2003; Hauert et al., 2007). In the following, it is demonstrated that

melioration learning is one of these assumptions. In combination with punishment,

it considerably mitigates the prisoner’s dilemma.

In reference to Hauert et al. (2007), punishment is added to the present model

by allowing a cooperator to impose a penalty s > 0 upon each defector. Every

penalty comes at a cost c ≥ 0. Let np denote the number of agents that choose to

cooperate and punish, this implies that the defectors’ payoff is reduced to

r · nc
n
− s · np

and that punisher are left with

r · nc
n
− 1− c · (n− nc).

First, it is focused on small groups (n = 5), which ended up with the lowest

rates of cooperation in the previous section. The penalty s is set to 1. In this

case, a defector gets the same payoff as a cooperator if exactly one agent carries

out the punishment (the effect of lower penalties is illustrated in appendix B.4).

The costs of punishment c are varied between 0 and 1, such that they never exceed

s. Figure 7.15 shows results from simulations with different values of r and for

the anonymous and fixed group condition. The category punishment stands for

cooperators who also punish defectors. The horizontal lines mark the levels of

cooperation without punishment (as in figure 7.11, but at the 25 000th round).
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Figure 7.15: Frequencies at the 25 000th round with punishment; n = 5

Without costs of punishment, defection is almost eliminated. If c > 0, the

results are mixed. The rates of cooperation approach zero in simulations with

anonymous groups and low values of r. This is in accordance with previous studies

(e.g. Sigmund et al., 2001; Hauert et al., 2007). The agents learn that punishment

is costly. In the first plot of figure 7.16, the temporal development of the rates of

choice is displayed for the simulation with r = 2 and c = 0.25. First, punisher

switch to cooperation. Subsequently, cooperation is replaced by defection. In

contrast, if r = 4 and costs are low, the rate of cooperation can be as high as 0.93.

This level of cooperation is stable over time, which is apparent from the second

plot of figure 7.16. In simulations with fixed groups and r > 2, a considerable

number of agents is cooperating as well.
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Figure 7.16: Frequencies over time in anonymous groups; n = 5; c = 0.25
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Similar to the situations without punishment, the high rates of cooperation are

explained by the exploration rate. If multiple cooperators simultaneously explore

defection, the average reward of cooperation can be greater than the average re-

ward of defection. The occasional penalty for defection is an additional incentive

to cooperate. More specifically, there is a negative effect of punishment on defec-

tion even though its relative frequency decreases to the exploration rate (3.3%) in

all simulations with c > 0.

The accidental punishment by a fellow group members increases the likelihood

that the reward of defection is lower than the reward of cooperation. In combina-

tion with beneficial conditions, such as low costs of punishment or high values of

r, this leads to significantly higher rates of cooperation than in situations without

punishment. It is shown in appendix B.4 that the penalty s has an impact on the

relationship between costs of punishment and cooperation.

Another relevant factor is the group size. The larger the group, the higher the

number of agents per round that punish because of the exploration rate. This

leads to outcomes with almost everyone cooperating (see figure 7.17). Compared

to the horizontal lines, which mark the levels of cooperation without punishment,

there is a significant raise in cooperation.
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Figure 7.17: Frequencies at the 25 000th round with punishment; n = 20
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7.3.3 The option to abstain from an interaction

Instead of the direct punishment of defectors, it may be possible to abstain from

an interaction of the prisoner’s dilemma. This is an indirect form of punishment

since cooperators can avoid interactions with notorious defectors. The option to

abstain from an interaction or, equivalently, the possibility of partner selection

has been shown to increase the level of cooperation in the two-person prisoner’s

dilemma (Orbell and Dawes, 1993; Macy and Skvoretz, 1998; de Vos et al., 2001).

In case of the public goods game, it was disclosed by Hauert et al. (2002) that this

option allows cooperation to persist in spatially restricted interactions as well as

in randomly formed groups. The authors deployed simulations with agents who

imitated the choices of more successful agents. In the following, it is tested whether

similar conclusions can be drawn for agents who learn by melioration.

It is assumed that, before an interaction takes place, each agent can choose

between participating in the public goods game or receiving a default payoff l

with 0 < l < r − 1. The latter choice is called loner. Because l < r − 1, it is

beneficial to be in a group without defectors instead of being a loner. But, in

dependence of the choices of the other group members, it might be better to be

a loner than to participate in a public goods game. Basically, the dilemma is

mitigated because r is kept constant and the group size n decreases if the number

of loners increases. In populations with many loners, the condition r < n may not

hold, which means that cooperation payoff-dominates defection. However, if many

agents choose to cooperate, n becomes greater than r and defection is profitable

again. A cycle of the three alternatives is expected.
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Figure 7.18: Frequencies over time in anonymous groups; n = 5; r = 3



7.3. A MULTI-PERSON PRISONER’S DILEMMA 133

Figure 7.18 refers to simulations in which small groups (n = 5) are formed

randomly before every round of a public goods game. The reward r is set to a

medium value (r = 3). Similar to the results of Hauert et al. (2002), a dynamic of

continuous adjustments is visible. The agents switch between cooperation, defec-

tion, and loner. The pattern of global adjustments depends on the loner parameter

l. If l = 0.2, there are very few cooperators, and defectors continuously change

to loners and back. In case of l = 1, the cycle is irregular at the beginning and

stable after 50 000 interactions. The last two plots of figure 7.18 indicate that a

considerable level of cooperation is possible if the loner payoff is high.
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Figure 7.19: Frequencies at the 25 000th round; fixed groups; n = 5

In simulations with fixed groups, the rates of choice are stable (appendix B.4).

Figure 7.19 shows these rates at the 25 000th round of the public goods game for

different values of r and l
r−1 . The horizontal lines indicate the levels of cooperation

in comparable simulations without the option to be a loner. The rate of cooper-

ation is higher if agents can choose to abstain from the interaction. Additionally,

it increases with l because a high loner payoff l lowers the expected group size

and raises the probability of r > n. This effect is less pronounced in large groups

because it is less likely that r > n (appendix B.4).
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7.4 Conclusion

Three sociologically relevant situations were analysed in this chapter. First, the

emergence of social conventions and institutions was explained by melioration and

an adequate structure of interactions. In the long run, the agents’ behaviour con-

vergences to the risk-dominant outcome. If there is no risk-dominance relationship,

several alternatives may coexist in restrictive structures, which means that no con-

vention is established. Less restrictive structures and a high number of partners

support the agreement on a convention.

Second, the “diffusion of responsibility” (Darley and Latané, 1968) was repro-

duced by agents who repeatedly interact in a volunteer’s dilemma. The predictions

of melioration are in line with the Nash equilibria. The larger a group, the lower

the relative frequencies of volunteering. In an asymmetric version of the game,

melioration implies more intuitive outcomes than the mixed Nash equilibrium.

Third, melioration constitutes another solution of the multi-person prisoner’s

dilemma. In combination with favourable conditions, a small or medium number of

cooperators is sustained. The occasional exploration of punishment or the option

to abstain from the interaction raises the level of cooperation even higher.

Finally, a short remark on the comparison of the simulation results with empir-

ical data is made. For example, in case of the volunteer’s dilemma, it was observed

empirically that the individual likelihood of volunteering decreases with group size

(Darley and Latané, 1968). This finding is in line with the simulations because

they reproduce the mixed or the pure Nash equilibrium. Both concepts explain a

negative relationship between group size and volunteering.

Nevertheless, the empirically observed decline in the relative frequency of vol-

unteers is generally not as sharp as implied by the mixed equilibrium or the inverse

of the group size (see for example Franzen, 1995, or Goeree et al., 2005). This also

means that the predictions of melioration are incorrect. But this conclusion should

be made with caution. There are some problems when comparing the simulation

results of the previous sections with experimental studies. For instance, in Franzen

(1995), the game was run only once. In this case, there is very limited learning,

which mainly takes place during the instructions of the experiment.
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Figure 7.20: Comparison of results from simulations and experiments

In the experiments of Goeree et al. (2005), on the contrary, subjects partici-

pated in 20 consecutive rounds of the volunteer’s dilemma. Some learning can be

assumed. Figure 7.20 shows the relative frequencies of volunteering and of groups

without volunteers for these experiments and the corresponding simulations. The

results are close to each other in the fixed groups condition. However, in the ex-

periments, the subjects interacted with randomly selected partners at each round.

The predictions of the anonymous groups condition are less accurate.

A difference between the subjects of the experiments and the agents of the

simulations is that the former had information about the structure of the game. It

can be suspected that, even in anonymous groups, the subjects tried to coordinate

their choices to a pure equilibrium, which is an obvious solution of the game.

Because of the fluctuating composition of a group, this was difficult and often

without success. As a result, the relative frequency of volunteering corresponded

to the predictions of the pure equilibrium, but the number of groups without

volunteers was slightly higher. It is presumed that, if the subjects of an experiment

are not aware of the structure of the game, the findings will correspond to the

predictions of the simulations.
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Chapter 8

The evolution of the matching law

According to chapter 4, optimal behaviour generally deviates from the matching

law in situations of repeated decision-making. From an evolutionary point of

view, this finding challenges the matching law as a general theory of individual

behaviour. A mechanism of decision-making that regularly leads to suboptimal

behaviour should be displaced by mechanisms that converge to optimal behaviour.

Hence, mechanisms that lead to the matching law, such as melioration learning,

cannot be evolutionary stable (see also Houston and Sumida, 1987).

Nevertheless, there are arguments in favour of the evolutionary success of the

matching law. For instance, Herrnstein (1997, p. 99) argued that matching “is a

cognitive realistic approximation to maximization in many natural environments

involving choices between probabilistic alternatives.” This statement is in line with

the results of the previous chapters. The matching law corresponds to optimal

behaviour under particular circumstances (proposition 4.1) and can, therefore, be

seen as an approximation to optimal behaviour.

Additionally, the matching law requires only weak assumptions about the men-

tal abilities of an actor. With the model of melioration learning, two simple con-

ditions were shown to be sufficient for the matching law to occur in the long run:

accounting for average values and choosing greedily among the alternatives. If

these processes are less cognitively demanding than any mechanism that leads to

an optimal outcome, individuals who learn by melioration may have an evolution-

ary advantage to maximising individuals.

137
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Even without the assumption of less cognitive requirements, the evolution of the

matching law can be explained. This chapter presents a justification that builds

on a theory of Ronald Heiner. In a series of papers, Heiner (1983, 1985a,b,c,

1988, 1990) forwarded an explanation of behavioural rules that frequently lead

to suboptimal results. One of his main points was that suboptimal behaviour is

evolutionary stable because of uncertainties in the actor’s environment.

8.1 Uncertainties and suboptimal behaviour

Heiner (1983) stated that uncertainties in choice are sufficient conditions for the

evolution of behavioural regularities and suboptimal behaviour. Uncertainties in

choice exists if an actor is not always able to correctly identify a decision problem

and to solve it by choosing an optimal action. Full flexibility in decision-making is

required for optimal behaviour because the actor must consider any possible action

as a solution. But if many uncertainties exist, less flexibility of choice might be

beneficial, and the application of a simple rule of choice is possibly more successful

than a complex optimal solution.

Heiner clarifies this hypothesis by the following thought experiment. Let a

be an action that is optimal in some but not all situations. Furthermore, O is a

fully flexible actor who considers action a as an alternative of choice. Because of

uncertainties, actor O is prone to two types of mistakes: first, not choosing a in

the correct situation and, second, choosing a in the wrong situation. A less flexible

actor R who does not consider action a at all makes only the first type of mistake

(but with certainty). Depending on various factors, such as the actors’ abilities

to distinguish the right from the wrong situation, the gain and loss connected to

the different choices, and the likelihood of the correct situations to occur, actor R

may have an advantage compared to actor O (Heiner, 1983, p. 566).

In other words, the overall performance in uncertain environments is not nec-

essarily improved by administering an extensive set of choice alternatives (Heiner,

1983, p. 563). If the loss of a wrong action is high, it might be better not to consider

this action at all. Consequently, behaviour that results from evolutionary processes

is inflexible and rule-governed (Heiner, 1983, 1990). Another consequence is that,

in some situations, an actor always behaves suboptimally.
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According to Heiner (1985b, p. 393), there are at least two major sources

of uncertainties. First, the actor’s ability to process information may be limited.

Second, due to a complex environment, information about the situation is possibly

unreliable. The first source is disputable in an evolutionary context. Actors with

unlimited abilities should have evolved. The second source of uncertainties is more

plausible and is studied in the following.

The theory of Heiner (1988) describes the presence and reliability of information

as crucial factors. A large amount of information allows the correct interpretation

of the situation and, therefore, the choice of an optimal action. But the consid-

eration of imperfect information can lead to worse results than ignoring it. Only

if the information is sufficiently reliable, the performance is improved by letting it

influence the decision-making.

In the following sections, it is tested whether the arguments of Heiner can be

applied to an evolutionary explanation of melioration learning. Since melioration

results in the matching law, it occasionally leads to suboptimal outcomes. The

theory is retraced by simple agent-based simulations of foraging behaviour.

The simulations illustrate that the consideration of additional information is

beneficial only in environments with low uncertainty. If uncertainties impede

decision-making, additional information leads to additional mistakes, and this

lowers the performance of an actor. As a consequence, matching behaviour is

as successful as optimal behaviour and evolves by natural selection.

8.2 A model of foraging behaviour

The evolutionary success of a particular decision rule depends on the mix of prob-

lems that are faced by the decision-maker. The matching law may have been

individually successful in the past because situations in which this behaviour is

suboptimal are very rare. Furthermore, the outcomes between matching and opti-

mising may only differ in situation that are unessential for the survival of a species.

Hence, an evolutionary justification must start with the definition of a situation

that occurred frequently in the evolution of humans and that was critical for their

survival. Subsequently, the success of different forms of behaviour can be assessed,

for example, by computer simulations.
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The simulation-based approach to evolution is common in a research field called

Artificial Life. In this field, the synthesis of life is analysed by means of computer

simulations or other human-made techniques (e.g. Langton, 1995). An example is

a series of studies by Seth (1999, 2001, 2007). The author simulated the behaviour

of battery-driven robots. Each robot consisted of a simple neural network and

three sensors that controlled its movements in a simulated environment. The

environment contained energy items, which were needed to refill a robot’s battery.

There were two different types of energy items that varied in color and probability

of refilling a battery. Additionally, the consumption of an energy item by one

robot precluded its consumption by another robot.

In the simulations of Seth (1999, 2001, 2007), a genetic algorithm induced the

development of robots that were optimally adapted to the environment. It was

shown that the optimal behaviour is the probabilistic choice of different types

of energy items. Even if one type had a higher probability of refilling than the

other types, it paid to choose the latter ones from time to time because the highly

refilling items were often depleted by other robots. Similar results were found by

Niv et al. (2002), who used artificial bees instead of robots and a field of flowers

that differed in their reward probabilities.

The examples illustrate that one of the main areas of studies in Artificial Life

is the evolution of foraging behaviour (see also Dyer, 1995, p. 123). Even the

adaptive properties of classical and instrumental conditioning have been analysed

in regard to foraging (Baldassarre and Parisi, 2000). Since the search for food

is critical behaviour in respect to the survival of a species, the following analysis

concentrates on this subject in order to justify the evolution of the matching law

and, more specifically, the evolution of melioration learning.

8.2.1 The environment

In this and the next section, a simple model of foraging behaviour is introduced. It

is inspired by the work of Seth (2001) and implemented as an agent-based model

using the NetLogo simulation framework (Wilensky, 1999) and the ql-extension

(appendix A). The two main parts of any agent-based model are the actors, which

are described in the next section, and the environment.
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An elementary environment forms the basis of the simulations. Two types of

resources, which constitute the food of the actors, are distributed randomly over

the environment. The types of resources are denoted by the set E = {1, 2}. They

differ in value, which is given by a positive real number γ1, γ2 ∈ (0,∞), and in

color (or any other characteristic recognisable by the actors). Figure 8.1 shows

the implementation of the environment in NetLogo. The resources are displayed

as squares of different grey scales. White squares are places without resource.

Figure 8.1: The environment of the NetLogo foraging model

In figure 8.1, the actors are represented by arrowheads. They are assumed to

repeatedly choose one of the two kinds of resources. After a decision was made,

an actor selects a square of the environment that contains the chosen kind and is

closest to him. During the next rounds of the simulation, the actor moves towards

the square. If he is the first to arrive at the square, the value of the resource

is received as reward. At the same time, the resource disappears. Any other

actor who has selected the same square receives no value after reaching the place.

In other words, the search for resources is competitive. The consumption of a

resource by one actor precludes its consumption by another one. Furthermore, the

resources regrow with a fixed probability, and an actor is replaced randomly before

every decision. Appendix B.5 reveals that the assumption of random replacement

is essential for the following results.
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In a first set of simulations, the characteristics of the environment are illus-

trated. A model with 1 000 actors and approximately 9 squares per actor is

analysed. All actors follow the same rule, which consists of a probability vec-

tor q = (q1, q2) ∈ [0, 1]2 with q1 + q2 = 1. The vector specifies the probability

of choosing the first and the second kind of resource. The decision rule is fixed

during a simulation run. Hence, the relative frequencies of choice approach q in

the long run.

After approximately 1 000 choices, the average values of decisions are mea-

sured. It is distinguished between the average value v1 of choosing the first re-

source and the average value v2 of choosing the second resource. The overall value

of choice (independent of the resource type) is denoted by v:

v ≈ q1 · v1 + q2 · v2

The maximum values of v1 and v2 are γ1 and γ2, respectively. But, since the

search for resources is competitive, the actors occasionally receive zero value, and

this gradually lowers v1 and v2.

γ2 = 30 γ2 = 50 γ2 = 70

25

50

75

100

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
q1

mean of v v1 v2

Figure 8.2: The model with 10% growth rate and γ1 = 100

Figure 8.2 shows the means of v, v1, and v2 in regard to the whole population

of actors and in dependence of the probability of choice q1. The value of the

first resource γ1 is set to 100 and the value of the second resource γ2 is varied

(γ2 ∈ {30, 50, 70}). Resources regrow at a rate of 10% (results from simulations

with different growth rates are presented in appendix B.5). It is seen that the
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average values depend on the probability q1. More specifically, both v1 and v2

decrease with the rate of consuming the respective resource. The parameter γ2

affects the average values by raising the maximum value of v2 and by moving the

optimal point of v closer to q1 = 0.5.

When comparing figure 8.2 with the plots of chapter 3 or 4, it becomes clear

that the foraging model is a global version of the problem of distributed choice.

It is a global version because the average values of reinforcement depend not only

on the individual frequencies of choice but also on the frequencies of other actors.

In every plot of figure 8.2, there is a maximum point q1, at which the actors

optimise their overall value of choice v. Even though this point is globally optimal,

a single actor is able to increase his performance by deviating from this point. For

example, if γ2 = 50, the maximum occurs at q1 ≈ 0.6. But v1 is strictly greater

than v at this point. Since the choice of a single actor only slightly affects these

values, it is individually beneficial to select the first resource with certainty (q1 = 1)

if all other actors remain at q1 = 0.6.

However, in case that all actors switch to q1 = 1, the overall value declines,

and the choice of the second resource becomes profitable again. Therefore, the

intersection of the curves v1 and v2 might be a stable point at which no actor

has an incentive to deviate from the global probability of choice. But in order to

specify stable points, a model of decision-making is needed.

8.2.2 The actor models

In most simulations of Artificial Life, the actors are represented by some kind

of genome that is translated into behaviour. At the beginning, a large pool of

different genome specifications constitutes the population. Subsequently, the most

successful specifications are selected by a genetic algorithm (e.g. Lindgren and

Nordahl, 1993; Mitchell, 1995).

Similarly, the actors of the following simulations evolve by natural selection.

But no genome or genetic algorithm is required. All actors follow the same decision

rule. Instead of a variety of genome specifications, there is a variance in the amount

of information that is used to make a decision. Thus, the simulations appoint the

type of actor that employs the most beneficial amount of information.
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More specifically, the melioration learning algorithm of chapter 5 is assumed.

There are two types of actors. Type A ignores the state of the environment and

considers only the rewards of previous decisions (algorithm 8.2.1).

Algorithm 8.2.1 Foraging behaviour of a type A actor

Require: exploration rate ε ∈ (0, 1), set of resource types E
1: t← 0
2: initialise Q1(e)← 0, for all e ∈ E
3: initialise K1(e)← 0, for all e ∈ E
4: repeat
5: t← t+ 1
6: if ε > random number between 0 and 1 (uniform distribution) then
7: chose a random resource type e ∈ E using a uniform distribution
8: else
9: choose resource type e ∈ E greedily using the Q-values {Qt(e)}e∈E
10: end if
11: move gradually towards one of the closest squares with resource e
12: if square still contains resource then
13: set reward y ← γe
14: else
15: set reward y ← 0
16: end if
17: Kt+1(e)← Kt(e) + 1
18: Qt+1(e)← Qt(e) + 1

Kt+1(e)
· (y −Qt(e))

19: for all e′ 6= e do
20: Kt+1(e

′)← Kt(e
′)

21: Qt+1(e
′)← Qt(e

′)
22: end for
23: until termination

Similar to algorithm 6.2.1, algorithm 8.2.1 describes stateless melioration learn-

ing with a constant exploration rate ε ∈ (0, 1). With probability ε, the actor picks

a resource type randomly. Otherwise, a resource type with the currently highest

Q-value is chosen. Subsequently, one of the closest squares of the environment

with this resource is selected, and the actor moves towards this square during the

next rounds of the simulation. If the resource is still available after reaching the

square, the actor receives the value of the resource as reward.
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In contrast, an actor of type B takes the state of the environment into account

when making a decision. This is described in algorithm 8.2.2.

Algorithm 8.2.2 Foraging behaviour of a type B actor

Require: exploration rate ε ∈ (0, 1), set of resource types E

1: t← 0

2: initialise Q1(s, e)← 0, for all s ∈ {0, 1}, e ∈ E
3: initialise K1(s, e)← 0, for all s ∈ {0, 1}, e ∈ E
4: repeat

5: t← t+ 1

6: if squares with first resource nearby then

7: s← 1

8: else

9: s← 0

10: end if

11: if ε > random number between 0 and 1 (uniform distribution) then

12: chose a random resource type e ∈ E using a uniform distribution

13: else

14: choose resource type e ∈ E greedily using the Q-values {Qt(s, e)}e∈E
15: end if

16: move gradually towards one of the closest squares with resource e

17: if square still contains resource then

18: set reward y ← γr

19: else

20: set reward y ← 0

21: end if

22: Kt+1(s, e)← Kt(s, e) + 1

23: Qt+1(s, e)← Qt(s, e) + 1
Kt+1(s,e)

· (y −Qt(s, e))

24: for all s′ 6= s and e′ 6= e do

25: Kt+1(s
′, e′)← Kt(s

′, e′)

26: Qt+1(s
′, e′)← Qt(s

′, e′)

27: end for

28: until termination
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The type B actor distinguishes states of the environment in regard to the local

presence of resources. Since there are only two types of resources, it is sufficient to

look for one of them. The state s is set to 1 if the first type is found on one of the

squares that surround the actor. Depending on the particular position, 10− 14 of

the closest squares are considered (in NetLogo: patches with [distance myself

< 2 ]). The state s is set to 0 if no resource of the first type is close by.

8.3 Simulation results

Each simulation is run with 1 000 actors, half of which are of type A and the other

half of type B. The actors explore their alternatives with probability ε = 0.05, the

value of the first kind of resource is γ1 = 100, and the growth rate is set to 10%.

For every actor, the relative frequency of selecting the first resource is measured

over 9 000 rounds after a burn-in period of 1 000 rounds. This frequency is denoted

by f1 and shown in the first plot of figure 8.3.
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Figure 8.3: Relative frequencies and average values

The boxplots indicate that type A actors select the first resource exclusively if

γ2 ∈ {30, 50}. Actor type B chooses resource 1 and 2. In case that γ2 = 70, the
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decisions of almost all actors consist of a mix of both resources. Although a high

variance in frequencies persists, actors of the same type perform equally well. This

is seen in the second plot of figure 8.3. It shows the average value v of all decisions

during the 9 000 rounds. It is also evident that type B actors are more successful

than or at least as good as type A actors. Since the former considers information

about the environment, they can react to a local scarceness of the first kind of

resource and switch to the other kind.
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Figure 8.4: The differences in Q-values for type B actors

More specifically, type B actors learn to select the first resource in state 1

and the second resource in state 0. In figure 8.4, the differences in Q-values

Q(s, 1)−Q(s, 2) are plotted for both states s. In case that the first resource is not

nearby (s = 0), this difference is less than or equal to zero. This implies the choice

of the second kind of resource or a mix of both kinds. In the other state, the first

resource is close-by and Q(1, 1) > Q(1, 2). Hence, the actor always chooses the

first resource in state s = 1.
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Figure 8.5: The matching law measures

Finally, it is tested whether the observed behaviour of the actors conform to the

matching law. Figure 8.5 presents histograms of the matching law measures dML
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(section 6.2). Only type A actors choose their resources according to the matching

law. Hence, the foraging model implies a discrepancy between the matching law

and optimal behaviour. Assuming that the model is a valid representation of

a relevant real-world situation, this finding is inconsistent with an evolutionary

explanation of the matching law.

8.3.1 Foraging with uncertainties

The results of the previous simulations are in line with the theory of Heiner (1983).

Actors are better in solving a problem of decision-making if additional information

about the situation is used. However, if this information is not reliable, the actors’

performance should deteriorate.
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Figure 8.6: The effect of uncertainty if γ2 = 50

Uncertainties in decision-making are introduced to the model by a parameter

η ∈ [0, 1] that constrains the perception of the situation. With probability η,

a type B actor specifies the current state wrongly as the opposite of the actual

state. The effect of different levels of uncertainty is displayed for simulations with

γ2 = 50 in figure 8.6. The discrepancy between the performance of the two actor

types decreases with uncertainty. The average value of type B actors drops to the

level of actor A.
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Furthermore, if η = 0.15, type A is slightly more successful than in simulations

without uncertainty. This is due to the faulty behaviour of type B actors. More

valuable resources remain in the environment if they frequently make mistakes.

For any level of uncertainty, type A actors select the first resource exclusively.

Hence, their decisions are in line with the matching law. Only in simulations with

high uncertainty, the behaviour of both types of actors correspond to the matching

law. This is seen in figure 8.7.

η = 0 η = 15 η = 30 η = 45

0

200

400

0.05 0.15 0.05 0.15 0.05 0.15 0.05 0.15
dML

nu
m

be
r 

of
 a

ct
or

s

actor type
A

B

Figure 8.7: The matching law measures under uncertainty if γ2 = 50

As a result, the matching law is evolutionary justified under the assumption of

uncertainty. If the environment is sufficiently complex and the information about

its state is unreliable, a simple rule that leads to the matching law is at least

as successful as a more sophisticated rule that is optimal in situations without

uncertainties. However, the success of an actor depends on the composition of the

population. In the previous simulations, the proportion of type A actors was fixed

at 50%. If the population evolves by natural selection, this proportion changes

over time. In a population with many type A actors, it might be beneficial to be

type B, and vice versa.

8.3.2 The evolution of actor types

The development of actor types over time is simulated by a simple evolutionary

algorithm. After approximately 100 decisions, 10 of the 1 000 actors are randomly

chosen and removed from the population. This process implements a natural

death of the actors. Subsequently, 10 actors with an above-average performance

are selected, and 10 new actors with the same type are added to the population.

In the case of one new actor, the type is randomly chosen (5% mutation rate).
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The parameters of the simulations are set to ε = 0.05, γ1 = 100, γ2 = 50, and a

growth rate of 10%. Figure 8.8 shows the relative frequency of type A actors over

time for four simulations. One time step stands for 100 decisions of the actors. It

is distinguished between different levels of uncertainty η.
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Figure 8.8: The development of type A over time

In accordance with the previous results, type A actors are displaced by type B

actors in environments of low uncertainty. If η = 0.3, the performance of all actors

is similar, and both types coexist with approximately the same relative frequency.

In case of the highest level of uncertainty, almost all type B actors are replaced by

actors of type A. In contrast to the simulations with static population, type A is

superior if the composition of the population changes with the relative success of

the actors.

8.4 Conclusion

The simulations demonstrated that the matching law is evolutionary stable in com-

petitive environments with high levels of uncertainty. The results can be seen as

an illustration of the theory of Heiner (1983). Simple rules of decision-making that

lead to inefficient outcomes are not necessarily displaced by complex rules of opti-

mal behaviour. This is also in line with empirical findings about the evolutionary

success of economic irrationality (Tsetsos et al., 2016).
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Nevertheless, the model is highly simplified. It is not claimed that, in reality,

the observation and consideration of the state of the environment is irrelevant. The

existence of type B actors is plausible because not all real situations depict a high

level of uncertainty. Furthermore, type B behaviour is consistent with empirical

findings. Experiments with humans indicated a clear disposition to the matching

law if no information about the mechanism of reinforcement was given (Herrnstein

et al., 1993). But with sufficient information, the subjects managed to optimise

their behaviour. This variation in behaviour was found in the simulations for type

B actors (figures 8.6 and 8.7).

Consequently, it is suspected that the matching law is a general regularity

of choice in uncertain environments and that humans are capable of improving

their outcomes if sufficient information is supplied, i.e. if uncertainties about the

situation are reduced.

Similar arguments are found in other studies. For example, Flache (2002)

analysed a particular social situation with rational actors, who behave optimally

by definition. But the decisions were suboptimal if an actor was uncertain about

the choices of the other actors. Likewise, a study of Sims et al. (2013) indicated

that rational actors choose a suboptimal equilibrium if only few information about

the situation is present. Sims et al. (2013, p. 139) concluded that “melioration can

be reinterpreted not as irrational choice but rather as globally optimal choice under

uncertainty”.
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Conclusion and future work

This thesis is an attempt to retrieve explanations of social phenomena from the

matching law. A short overview of past research was given, and the findings were

used to integrate the matching law into economic consumer theory. In contrast to

the earlier work, it was emphasised that hypotheses about individual behaviour

must be derived from situational properties and the preferences of the actor. Eco-

nomic theory may assist in this approach.

A characteristic of the matching law is its deviation from optimal behaviour in

many situations of repeated decision-making. Whereas this property was known

before, it has not been formally stated for the large class of situations that was

defined in proposition 4.1. Additionally, chapter 8 justified the matching law as

evolutionary stable despite its suboptimal outcomes. Uncertainties in decision-

making and low cognitive requirements might have benefited actors who applied

the matching law instead of complex optimal solutions.

Since the matching law by itself is an insufficient behavioural assumption, the

melioration learning model was introduced. For the time being, there are no

general results about the convergence of melioration learning. In simple settings

that can be described by Markov decision processes, melioration is guaranteed to

converge to the matching law. But most social situations cannot be reduced to

these models. It is still possible to analyse them by means of computer simulations.

In the previous chapters, melioration was examined in the context of various

social settings. Even without strict assumptions about available information and

cognitive skills, the actors were able to arrive at equilibria that are known from

and justified by game theory. But this is not true in general. A guaranteed

convergence to a Nash equilibrium or an optimal state requires a more advanced

learning model, such as Fictitious play or Bayesian learning.

153
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There are many open problems and ideas for future work. Most importantly,

hypotheses that were derived from the matching law and melioration learning must

be tested empirically. Laboratory experiments are a convenient method, but some

problems exist. For example, melioration requires a long period of decision-making.

Moreover, most of the existing data is not applicable because, in these experiments,

information about the structure of the situation is given to the subjects. Since this

information may affect the decisions but is not considered by actors who learn by

melioration, new experiments have to be conducted.

Observational data may also be appropriate. On online platforms, real decisions

are made repeatedly by a large set of actors. This data is, in some cases, easily

accessible. However, a problem emerges in regard to the definition of the situation.

The preferences of the actors must be estimated from the data. Furthermore, the

statistical methods of past studies are not applicable because only one data point

per actor is usually available. Thus, new methods must be developed for testing

the matching law with observational data.

Besides empirical research, various theoretical extensions of the melioration

learning model are possible. For instance, the melioration algorithm was mostly

reduced to stateless learning. If different states of the environment are considered,

actors are able to distinguish, for instance, between different partners. Thereby,

past behaviour or the reputation of a partner is taken into account.

Additionally, information about the structure of the situation or choices of other

actors can be directly included into the decision-making process. The actors may

acquire beliefs about the situation that help with the coordination of behaviour

and the achievement of optimal outcomes. While the basic ideas of behavioural

psychology and operant conditioning neglect anything that goes beyond the own

decisions and discriminative states, there are more advanced models of multi-agent

reinforcement learning, which, for example, include the estimation of Q-values for

a joint action space (Nowé et al., 2012, p. 455).

Finally, future research should apply the melioration model to further situations

of social interactions. First, simulations with other two-person games, especially

games with existing empirical results, might be performed. Second, the n-way

interactions were based on very simple coordination games and on rarely seen

network structures. The assumption of more realistic games and different network
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structures is possible. Third, enhancements can be made in regard to the multi-

person prisoner’s dilemma. More particularly, in Hauert et al. (2007), the options

of punishment and loner are analysed in combination. Also different versions of the

public goods game and other mechanisms of punishment have been investigated

in the past (e.g. Hardin, 1982; Oliver et al., 1985; Heckathorn, 1988). Fourth,

melioration learning may be applied to spatial games (Nowak and May, 1992) or

social exchange networks (Cook and Yamagishi, 1992).
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Appendix A

Simulation software

Two software tools were developed in support of the analyses of the previous

chapters. The software and sample files are available at

https://github.com/JZschache/NetLogo-ql

and

https://github.com/JZschache/NetLogo-games

The source code of both tools is found at

https://github.com/JZschache/NetLogo-Extensions

The tools were built on the NetLogo programming environment (Wilensky, 1999).

More specifically, the following software packages were used:

• NetLogo 5.2, https://ccl.northwestern.edu/netlogo/

• Java 7, http://openjdk.java.net

• Scala 2.9.3, http://www.scala-lang.org

• Scala STM 0.5, https://nbronson.github.io/scala-stm/

• Akka 2.0.5, http://akka.io

• typesafe/config 1.2.0, https://github.com/typesafehub/config

• Colt 1.2.0, https://dst.lbl.gov/ACSSoftware/colt/

• Gamut 1.0.1, http://gamut.stanford.edu
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The next section deals with the ql-extension. It is the core of all simulations of

the previous chapters, for it implements melioration learning and other learning

algorithms. The software also provides an infrastructure that simplifies the re-

search process. While the particular advantages of this tool were listed in section

6.1, the following section gives a comprehensive description of the usage and the

architecture of the ql-extension.

In section A.2, the games-extension is presented. It facilitates the definition

of two-person games as well as the calculation of optimal outcomes and the Nash

equilibrium in NetLogo.

A.1 The ql-extension

Since the ql-extension is an extension of NetLogo, the latter must be installed

first. The installation was tested for NetLogo 5.2.1. Afterwards, a directory

named ql should be created in the extensions subdirectory of the NetLogo in-

stallation (see also http://ccl.northwestern.edu/netlogo/docs/extensions.

html). All files from

https://github.com/JZschache/NetLogo-ql/tree/master/extensions/ql

should be downloaded and moved to the newly created directory extensions/ql.

For example:

git clone https://github.com/JZschache/NetLogo-ql.git

mv NetLogo-ql/extensions/ql path-to-netlogo/extensions

After starting NetLogo, a sample model from NetLogo-ql/models can be loaded.

A.1.1 A first example

Amongst other things, the ql-extension enables the simulation of agents who make

decisions by melioration learning. As explicated in chapters 6 and 7, this algorithm

can be applied in situations of repeated decision-making. The set of choice alterna-

tives should be relatively stable. A simple example is given in the NetLogo model

of listing A.1 and figure A.1 (downloadable as NetLogo-ql/models/basic.nlogo).

http://ccl.northwestern.edu/netlogo/docs/extensions.html
http://ccl.northwestern.edu/netlogo/docs/extensions.html
https://github.com/JZschache/NetLogo-ql/tree/master/extensions/ql
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1 ex t en s i on s [ q l ]

2

3 t u r t l e s−own [ exp lo ra t i on−r a t e exp lo ra t i on−method

4 a l t e r n a t i v e s q−va lue s f r e qu en c i e s r e l−f r e q s ]
5

6 to setup

7 c l ea r−a l l
8 create−t u r t l e s n−t u r t l e s [

9 setxy random−xcor random−ycor
10 s e t exp lo ra t i on−r a t e g loba l−exp l o r a t i on
11 s e t exp lo ra t i on−method ” eps i l on−greedy ”
12 s e t a l t e r n a t i v e s [ 0 1 ]

13 s e t r e l−f r e q s [ 0 0 ]

14 ]

15 q l : i n i t t u r t l e s

16 r e s e t−t i c k s
17 end

18

19 to go

20 ask t u r t l e s [

21 l e t a c t i on ql :one−of [ 0 1 ]

22 i f e l s e ( a c t i on = 0) [

23 fd 1

24 ql : set−reward ac t i on ( random−normal forward−reward 1)

25 ] [

26 r i g h t 90

27 ql : set−reward ac t i on ( random−normal r i ght−reward 1)

28 ]

29

30 l e t t o ta l−f r e q sum f r e qu en c i e s

31 i f ( t o ta l−f r e q > 0) [

32 s e t r e l−f r e q s map [ ? / to ta l−f r e q ] f r e qu en c i e s

33 ]

34 ]

35 t i c k

36 end

Listing A.1: NetLogo code of first example
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Figure A.1: NetLogo interface of first example

The agents of this model (the turtles) learn Q-values of two alternatives:

“move one step forward” (alternative 0) and “turn to the right” (alternative 1).

The reward of either alternative is drawn from a normal distribution with mean

forward-reward or right-reward and standard deviation one. Besides these

means, also the number of turtles (n-turtles) and the initial exploration rate

(global-exploration) are set by the NetLogo interface (see figure A.1).

After including the line extensions[ql] at the beginning of the NetLogo

code, the ql-extension is ready for use. Figure A.1 and listing A.1 contain a

number of special commands and reporters, which are identified by the prefix

’ql:’. In the setup procedure of listing A.1, turtles are created and randomly dis-

tributed over the NetLogo world. The ql-extension is initialised by ql:init and

an agentset (a turtleset or a patchset). If any of the variables exploration-rate,

exploration-method, or alternatives are specified before ql:init is called,

these values are used for the agents. Otherwise, default values are employed (0.05,

“epsilon-greedy”, and empty list). The default values as well as the names of the

variables are defined in the configuration file application.conf.
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The list of alternatives must be a list of integers. The exploration rate is a

positive number. Note that this rate cannot be interactively changed during the

simulation (as it is usually possible in NetLogo). With ql:decay-exploration, a

decay of this rate can be started at any point during the simulation. Afterwards,

the initial exploration rate is divided by the logarithm of the number of choices (it

starts counting the choices with the call of ql:decay-exploration).

Three methods of exploration are currently implemented:

• “epsilon-greedy” denotes the implementation of algorithm 5.2.1, but with

exploration decreasing at logarithmic speed if ql:decrease-exploration is

called: εs ← ε

log(2+
∑
j∈E Kt(s,j))

.

• “softmax” refers to Boltzmann exploration as described in section B.1. The

temperature is given by the exploration rate and decreases logarithmically if

ql:decrease-exploration is called.

• “Roth-Erev” stands for the model of algorithm 6.2.2. The exploration rate

decreases logarithmically if ql:decrease-exploration is called.

As stated in sections 5.2.2 and 6.2, the learning algorithms require the agents

to use and modify Q-values when making decisions. The current state of the

Q-values are accessed via the agent variable q-values, which is a list of num-

bers. This list is automatically updated during the simulation if defined by

turtles-own (or patches-own). Besides the Q-values, also the names of the

alternatives (alternatives), the frequencies of choice (frequencies), and the

exploration rate (exploration-rate) are continuously updated. The names of

the variables can be changed in the configuration file (application.conf). The

relative frequencies rel-freqs are not part of the ql-extension and must be im-

plemented separately (see listing A.1).

The decision of an agent and the assignment of a reward are controlled by

ql:one-of and ql:set-reward:

• ql:one-of takes a list of alternatives (integers) and returns one of them by

employing the specified exploration method.

• ql:set-reward maps a reward to a decision.
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Furthermore, the state of the environment is considered by the agents (see

section 5.2). The agent variable state keeps track of the state if it is defined by

turtles-own (or patches-own). The state is an integer and can be set for each

agent similar to the other variables (e.g. alternatives) before calling ql:init.

Otherwise, the default (0) is used. A change in state is executed by calling

ql:set-reward-and-state instead of ql:set-reward and appending a third pa-

rameter (the new state). Since the agent distinguishes between the states, the list

of alternatives becomes a list of pairs of integers after ql:init was called. The

first element of the pair indicates the state and the second element the alternative.

A.1.2 Parallelising the simulation

By building on the Akka framework, the ql-extension is able to parallelise the

simulation and utilise multiple cores (Wyatt, 2013). Akka is written in Java and

Scala. Since concurrency in Java is based on threads, also Akka uses threads.

But the difficulties of data sharing and synchronisation are handled by a message-

passing architecture. More concretely, Akka requires the implementation of “Akka

actors” that run independently and share data by sending messages to each other

(for a general introduction to the differences between thread-based and message-

passing parallel programming, see Rauber and Rünger, 2013).

In the basic example of the previous section, the simulation is already par-

allelised. First, the NetLogo threads are not used for the ql-extension, which

means that the latter runs independently of the former. Second, the learning and

decision-making of the agents take place simultaneously because the ql-extension

runs on multiple threads. The number of threads is controlled by the configura-

tion file (application.conf: akka.actor.default-dispatcher; see also http:

//doc.akka.io/docs/akka/2.0.5/general/configuration.html).

Nevertheless, many parts of the simulation are executed by NetLogo, which

does not parallelise naturally. This is a major bottleneck of the simulations because

the ql-extension must wait for NetLogo to finish its calculations. The ql-extension

solves this problem by the operation of multiple concurrently running instances

of NetLogo. The deployment of multiple NetLogo instances is enabled by setting

enable-parallel-mode to true (application.conf).

http://doc.akka.io/docs/akka/2.0.5/general/configuration.html
http://doc.akka.io/docs/akka/2.0.5/general/configuration.html


A.1. THE QL-EXTENSION 163

Given the current implementation, certain conditions must hold for the parallel

mode to work:

1. It must be possible to assemble the agents into several groups. This may

happen once at the beginning of the simulation (static groups) or repeatedly

at each round (dynamic groups).

2. The situation must permit the rewards to be calculated for each group sep-

arately at a given point in time. Only the decisions of the group members

and global variables of NetLogo can be used for this calculation.

This impedes the usage of the parallel mode, for instance, in the foraging model

of chapter 8. The reward of an agent cannot be calculated without considering all

other agents and the current state of the environment. Hence, all agents must be

member of the same group, and no parallelisation is possible.

For a better understanding of the parallel mode, the architecture of the software

is explained in the next section. It can be skipped if only the usage of the simulation

is relevant. Section A.1.4 contains an example that makes use of the parallel mode.

A.1.3 The architecture of the ql-extension

The architecture of the ql-extension is illustrated by the class diagram of figure

A.2. It clarifies the connection between the extension and the NetLogo package

org.nlogo. It also explains how concurrency is implemented by “Akka actors”.

First, each NetLogo agent (a turtle or a patch) is linked to an “Akka actor”. This is

realised by the QLAgent class, which constitutes the counterpart of a NetLogo agent

in the ql-extension. It is characterised by an exploration rate, a list of QValues,

and a decision-making algorithm (“epsilon-greedy”, “softmax”, or “Roth-Erev”).

A QValue instance is created for each alternative and specifies the current Q-value.

The decision-making algorithm returns an element of a list of alternatives (a list

of integers). It uses the exploration rate and the QValues.

Agents are grouped together by the class NLGroup. This is a subclass of

org.nlogo.api.ExtensionObject, which makes it accessible within NetLogo code.

It consists of NetLogo agents and the corresponding QLAgents.
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Figure A.2: Class diagram of the ql-extension

The main “Akka actor” of the extension is the NetLogoSupervisor. There

is only one instance of this class. The NetLogoSupervisor has mutliple tasks.

For example, it supervises all NLGroups and continuously triggers the choices of

the agents. The speed of the repeated trigger is regulated by the corresponding

slider of the NetLogo interface. When triggering the choice of the agents, the list

of all NLGroups is forwarded to the NetLogoHeadlessRouter. Depending on the

number of NetLogoHeadlessActors, the router splits this list in multiple parts.

Afterwards, the NetLogoHeadlessActors handle the choices of the agents, and

the NetLogoSupervisor is free to do other things.

More specifically, the NetLogoSupervisor also controls the main NetLogo in-

stance (org.nlogo.app.App). On the one hand, it repeatedly calls the command

update after all agents have received a reward. This command can be used to

set a new tick and, hence, to update the NetLogo interface. On the other hand,

the NetLogoSupervisor invokes the main NetLogo instance if the groups change

during the simulation (section A.1.7).
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When initialising the NetLogoSupervisor by ql:init, several headless work-

spaces of NetLogo are started in the background. Headless means that no graph-

ical user interface is deployed. The number of headless workspaces is specified

in the configuration file (application.conf). A separate “Akka actor” (the

NetLogoHeadlessActor) controls each headless NetLogo instance. This actor

continuously receives a list of NLGroups from the NetLogoSupervisor (via the

NetLogoHeadlessRouter) .

The headless NetLogo workspaces and the NetLogoHeadlessActors were added

to the ql-extension in order to improve the performance. The interaction with Net-

Logo is the main bottleneck of the ql-extension. But repeatedly invoking NetLogo

is necessary because the reward function, which maps the agents’ choices to re-

wards, should be specified in the NetLogo model and not within the ql-extension.

Therefore, multiple instances of NetLogo are run in parallel. Their only task is to

repeatedly calculate the rewards of several groups of agents.

The performance of repeatedly calling the reward function is optimised by

compiling this function only once. This is problematic because the NetLogo ex-

tensions API does currently not support the passing of arguments to a compiled

function (see https://github.com/NetLogo/NetLogo/issues/413). A solution

was mentioned by Seth Tisue in the corresponding discussion1 and is implemented

in the ql-extension. Each NetLogoHeadlessActor is identified by a unique num-

ber. This number is forwarded to the reward function when it is called by the

NetLogoHeadlessActor. The reward function calls ql:get-group-list with the

identifying number and receives a list of NLGroupChoices. Besides the agents, an

NLGroupChoice also contains a list of the agents’ decisions. The agents and their

choices are accessed by the reporters ql:get-agents and ql:get-decisions. The

rewards are set to an NLGroupChoice by ql:set-rewards. The reward function

can also be used to update the (NetLogo) agents directly, e.g. by moving the agents

within the NetLogo world or by setting variables. Since the agents are passed from

the main NetLogo instance, the changes take effect in this instance as well. Finally,

the reward function must return a new list of NLGroupChoices that correspond to

the received list but with the rewards attributes set.

1https://groups.google.com/forum/#!msg/netlogo-devel/8oDmCRERDlQ/0IDZm015eNwJ

https://github.com/NetLogo/NetLogo/issues/413
https://groups.google.com/forum/#!msg/netlogo-devel/8oDmCRERDlQ/0IDZm015eNwJ
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A.1.4 The two-armed bandit problem

In figure A.3 and listing A.2, a second NetLogo model is given (downloadable as

NetLogo-ql/models/n-armed-bandit.nlogo). It makes use of the parallel mode

and implements the two-armed bandit problem. An agent, who is represented by a

patch, chooses repeatedly between two alternatives. The reward of either choice is

drawn from a normal distribution with mean alt-1-reward or alt-2-reward and

standard deviation one. Different colors (white or grey) indicate the last decision

of an agent.

Figure A.3: NetLogo interface of the 2-armed bandit problem

The setup function of listing A.2 is similar to the one of the first example in

section A.1.1. The exploration-rate and exploration-method are set for each

agent, and the ql-extension is initialised by ql:init. Since there is no interaction

between the agents, each group consists of a single agent. In line 13 of listing A.2,

a list of groups is created, one group for each agent. At the same time, a list of

alternatives is defined. The group structure is handed over to the extension in line

14. It is a static structure because the groups do not change during the simulation.

In section A.1.7, it is demonstrated how to implement a dynamic group structure.
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1 ex t en s i on s [ q l ]

2 patches−own [ exp lo ra t i on−r a t e exp lo ra t i on−method q−va lue s ]

3

4 to setup

5 c l ea r−a l l
6 set−patch−s i z e 400 / n−patches
7 r e s i z e−world 0 (n−patches − 1) 0 (n−patches − 1)

8 ask patches [

9 s e t exp lo ra t i on−r a t e g loba l−exp l o r a t i on
10 s e t exp lo ra t i on−method ” eps i l on−greedy ”
11 ]

12 q l : i n i t patches

13 l e t groups [ q l : c reate −group ( l i s t ( l i s t s e l f [ 0 1 ] ) ) ] o f patches

14 ql : set−group−structure groups

15 r e s e t−t i c k s
16 end

17

18 to−r epor t get−rewards [ head le s s−id ]

19 l e t group− l i s t q l :get −group − l i s t head le s s−id
20 r epor t map [ reward ? ] group− l i s t

21 end

22

23 to−r epor t reward [ group ]

24 l e t agent f i r s t q l :get −agents group

25 l e t d e c i s i o n f i r s t q l : g e t −de c i s i on s group

26 i f e l s e d e c i s i o n = 0 [

27 ask agent [ s e t pco l o r blue ]

28 r epor t q l : set−reward s group ( l i s t random−normal a l t−1−reward 1)

29 ] [

30 ask agent [ s e t pco l o r red ]

31 r epor t q l : set−reward s group ( l i s t random−normal a l t−2−reward 1)

32 ]

33 end

34

35 to update

36 t i c k

37 end

Listing A.2: NetLogo code of the 2-armed bandit problem
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The simulation is started and stopped by ql:start and ql:stop. After start-

ing the simulation, two functions are called repeatedly by the ql-extension and,

hence, must be implemented in the NetLogo model. By default, the functions are

named get-rewards and update. The names of the functions can be changed in

the file application.conf. The first function is used to calculated the rewards

of a group of agents. It comes with exactly one parameter (headless-id). The

second function is executed repeatedly after every agent has received a reward. In

listing A.2, a new tick is set, which updates the NetLogo interface.

The following list describes some commands of the ql-extension in detail:

• ql:create-group is a reporter that creates a group from a list of pairs. Each

pair is a list with two elements: first, an agent and, second, a list of integers

(the alternatives). An object of type NLGroup is returned.

• ql:set-group-structure takes a list of objects of type NLGroup as param-

eter. It sets a static group structure.

• ql:start or ql:stop starts or stops the simulation.

• ql:get-group-list can only be called from the reward function and must

forward the headless-id. It returns a list of objects of type NLGroupChoice.

• ql:get-agents returns the list of NetLogo agents (turtles or patches) that

are held by a NLGroupChoice.

• ql:get-decisions returns the list of decisions that are held by a NLGroup-

Choice. The indices of the decisions correspond to the indices of the agents

that are held by the NLGroupChoice such that the decision at index i belongs

to the agent at index i.

• ql:set-rewards sets a list of rewards for the decisions that are held by a

NLGroupChoice. It returns a copy of the NLGroupChoice with the rewards

attribute set. The indices of the rewards must correspond to the indices of

the agents that are held by the NLGroupChoice such that the reward at index

i belongs to the agent at index i.
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A.1.5 Parameter sweeps

The ql-extension supports parameter sweeps with the BehaviourSpace of NetLogo

(see http://ccl.northwestern.edu/netlogo/docs/behaviorspace.html). The

setup slightly differs from the usual proceeding (see figure A.4). First, there are

no “Go commands”. Instead, ql:start is called as “Setup command”. Second,

ql:stop is added to “Final commands”. Since the BehaviourSpace recreates the

agents instantly even if the ql-extension has not finished yet, an error occurs once

in a while. By calling wait 1 after ql:stop, this error is prevented. If the Be-

haviourSpace waits for one second, the ql-extension is usually ready for new agents.

Third, a “Stop condition” must be present because the time limit does not work.

Finally, only one experiment can run simultaneously (see lower window of figure

A.4). The parallelisation is already built into the ql-extension.

This setup works as long as the measures are run at the end of the simulation.

If the option “measure runs at every step” is enabled, a “Go command” that forces

NetLogo to wait for the next tick must be added. For example:

to wait−f o r−t i c k
s e t nextTick nextTick + 1

whi le [ t i c k s < nextTick ] [

random 100

; do u s e f u l s t u f f

; e . g . update g l ob a l s here

]

end

It is also possible to run the experiments from command line ( http://ccl.

northwestern.edu/netlogo/docs/behaviorspace.html#advanced). As already

stated, the number of threads is limited to one when using the ql-extension:

java −Xmx1024m −Df i l e . encoding=UTF−8 −cp NetLogo . j a r org . nlogo .

h ead l e s s . Main −−model ql−model . n logo −−experiment performance−
experiment −−threads 1

http://ccl.northwestern.edu/netlogo/docs/behaviorspace.html
http://ccl.northwestern.edu/netlogo/docs/behaviorspace.html#advanced
http://ccl.northwestern.edu/netlogo/docs/behaviorspace.html#advanced
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Figure A.4: NetLogo interfaces of an experiment
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A.1.6 Performance

An advantage of the ql-extension is the enhanced performance of the simulations,

which is achieved by concurrency. The performance of a simulation can be mea-

sured by monitoring the NetLogoSupervisor and the NetLogoHeadlessActors.

Different measures are included in the ql-extension and obtained by the reporter

ql:get-performance. The reporter takes one of the following string parameters

and returns the time in milliseconds:

• ”HundredTicks” - the average time that is needed for 100 ticks.

• ”NLSuperIdle” - the average time of the NetLogoSupervisor being idle,

which means that it waits for the NetLogoHeadlessActors to finish the

reward calculations.

• ”NLSuperHandleGroups” - the average time of the NetLogoSupervisor for-

warding the NLGroups to the NetLogoHeadlessRouter (this becomes rel-

evant in case of a dynamic group structure because the primary NetLogo

instance needs to be invoked).

• ”NLSuperUpdate” - the average time of the NetLogoSupervisor executing

the update procedure.

• ”HeadlessIdle 1” - the average time of the first NetLogoHeadlessActor be-

ing idle, which means that it waits for the NetLogoSupervisor to forward

NLGroups or for the NetLogo headless workspaces to calculate the rewards.

• ”HeadlessHandleGroups 1” - the average time of the first NetLogoHeadless-

Actor initiating the agents to make a decision.

• ”HeadlessHandleChoices 1” - the average time of the first NetLogoHeadless-

Actor handling the agents’ decisions (calling the NetLogo headless workspace).

• ”HeadlessAnswering 1” - the average time of the first NetLogo headless

workspace waiting for the first NetLogoHeadlessActor to forward the list of

NLGroupChoices.

By changing the number of the last four parameters, the corresponding values of

the other NetLogoHeadlessActors are obtained. The usage of the performance

measures must be enabled in the configuration file (application.conf).
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In the following, it is shown that the number of NetLogoHeadlessActors is a

relevant factor in regard to the performance of the simulation. A performance leak

exists because the NetLogoSupervisor must wait for the NetLogoHeadlessActors

to finish their calculations. This means that the performance of a simulation is

optimised by increasing the number of concurrently working headless actors. With

many of them, the NetLogoSupervisor is rarely idle, and the simulation runs

faster. This should be evident by the performances measure ”NLSuperIdle” and

”HundredTicks”. In case of the two-armed bandit simulation (section A.1.4), both

measures are pictured in figure A.5 for different numbers of patches and different

numbers of concurrently working NetLogoHeadlessActors.
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Figure A.5: Performance of the two-armed bandit simulation

Figure A.5 reveals that the performance of the simulation increases with the

number of NetLogoHeadlessActors. Comparing the simulations with one and

ten NetLogoHeadlessActors, the former needs twice as long as the latter for

100 ticks. Moreover, the second graph illustrates that there is not much room

for improvement. The NetLogoSupervisor is almost never idle if ten NetLogo-

HeadlessActors work concurrently.

Furthermore, the measures ”NLSuperHandleGroups”, ”HeadlessHandleChoices”,

and ”HeadlessAnswering” are very close to zero and independent of the number

of patches or NetLogoHeadlessActors. The time that the NetLogoSupervisor

needs to execute the update procedure (”NLSuperUpdate”) increases with the

number of patches. The remaining two measures (”HeadlessHandleGroups” and

”HeadlessIdle”) show similar developments as the total performance (see figure

A.6). Since the list of NLGroups is distributed equally among the headless actors,
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the average waiting time as well as the average working time of the NetLogo-

HeadlessActors decreases with their number.
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Figure A.6: Performance of the first NetLogoHeadlessActor

The optimal number of NetLogoHeadlessActors depends on the disposable

computational resources. Every NetLogo headless workspace is started on a new

thread. If ten NetLogoHeadlessActors are used, NetLogo occupies at least ten

threads. These threads must block from time to time when waiting for the ql-

extension. It is, therefore, beneficial to have at least the same number of threads

available for the ql-extension. The minimum and maximum number of threads for

the ql-extension are set in the configuration file (application.conf). Further ex-

periments have shown that performance is best if the maximum number of threads

is slightly above the number of NetLogoHeadlessActors (for example, maximal

12 threads if 10 headless actors are employed). The optimal number of threads

and NetLogoHeadlessActors should be evaluated empirically given the maximum

number of agents.

A.1.7 Dynamic group structures

In the simulations of section 7.1, two-person games were played with multiple

partners. The simulations were run for 1 000 rounds. If the group structure had

been fixed, agents with 2 partners would have had 2 000 choices and agents with 4

partners 4 000 choices during one simulation. Since the number of choices affects

the outcome variables, such as Q-values and relative frequencies, simulations with

different numbers of partners are not comparable.
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One solution is that each agent has one choice per round regardless of the

number of partners. In simulations with multiple partners, this requires a different

group structure at each round. As stated in section A.1.3, the NetLogoSupervisor

is responsible for updating the group structure. If ql:set-group-structure is

not called after initialising the ql-extension, the NetLogoSupervisor executes the

procedure get-group before every new round of decision-making. This procedure

must, hence, be implemented in the NetLogo model (the name can be changed in

the file application.conf). An example is given in listing A.3.

1 g l oba l s [ group−s t r u c tu r e ]

2 t u r t l e s−own [ exp lo ra t i on−r a t e exp lo ra t i on−method ]

3

4 to setup

5 c l ea r−a l l

6 create−t u r t l e s 100 [

7 s e t exp lo ra t i on−r a t e 0 . 5

8 s e t exp lo ra t i on−method ” eps i l on−greedy ”
9 ]

10 q l : i n i t t u r t l e s

11 s e t group−s t r u c tu r e [ ]

12 l e t i 0

13 whi le [ i < ( count t u r t l e s ) ] [

14 ask t u r t l e i [

15 l e t anotherTurt le t u r t l e ( ( i + 1) mod ( count t u r t l e s ) )

16 l e t group ql : c reate −group ( l i s t

17 ( l i s t s e l f (n−va lue s 2 [ ? ] ) )

18 ( l i s t anotherTurt le (n−va lue s 2 [ ? ] ) ) )

19 s e t group−s t r u c tu r e lput group group−s t r u c tu r e
20 ]

21 s e t i i + 1

22 ]

23 end

24

25 to−r epor t get−groups
26 r epor t n−o f 50 group−s t r u c tu r e
27 end

Listing A.3: NetLogo code of a dynamic group structure
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Similar to the “Small Worlds” model, which is available from the NetLogo

commons (http://ccl.northwestern.edu/netlogo/models/SmallWorlds), the

procedure of listing A.3 creates 100 turtles that are embedded in a perfect 1-lattice

(see also section 7.1). After the global variable group-structure has been cre-

ated, the command ql:set-group-structure is not called. Instead, the function

get-groups is implemented.

The NetLogoSupervisor expects the function get-groups to return a list of

NLGroups. These groups are either created in this function or in the setup. If

created in the setup, ql:init must be called before the groups are created (see

listing A.3). In the example, the function get-groups is used to randomly select

50 groups at each round.

In the present implementation, not every agent has exactly one choice at any

given round. Some agents may have two choices, and some agents may have no

choice. But, on average, an agent has one choice per round. A more accurate

procedure is possible. But get-groups is one of the “performance bottlenecks” of

the simulation. It should, therefore, be implemented as simple as possible.

A.2 The games-extension

The games-extension provides a convenient way to define normal-form game-

theoretic situations. Optimal points and Nash equilibria are calculated and re-

turned to NetLogo in a well-arranged form. The games-extension is installed by

creating a directory named games in the extensions subdirectory of the NetLogo

program. All files from

https://github.com/JZschache/NetLogo-games/tree/master/extensions/games

have to be downloaded and moved to the newly created directory extensions/games.

For example:

git clone https://github.com/JZschache/NetLogo-games.git

mv NetLogo-games/extensions/games path-to-netlogo/extensions

If the games-extension is used in combination with the ql-extension, the jars

games.jar and gamut.jar must be added to the variable additional-jars in

the file extensions/ql/application.conf:

http://ccl.northwestern.edu/netlogo/models/SmallWorlds
https://github.com/JZschache/NetLogo-games/tree/master/extensions/games
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1 net logo {
2 . . .

3 p a r a l l e l {
4 . . .

5 # a l l add i t i ona l j a r s that must be loaded by NetLogo

6 add i t i ona l−j a r s = [ ” ex t en s i on s /games/games . j a r ” ,

7 ” ex t en s i on s /games/gamut . j a r ” ]

8 . . .

9 }
10 }

This holds true for every extension that is used with the ql-extension. In the

next two sections, features of the games-extension are presented, and some details

about the calculation of Nash equilibria and optima are given.

A.2.1 Defining two-person games

Given the games-extension, a two-person game can be defined manually or by a

predefined name. The first way is demonstrated with the help of figure A.7.

Figure A.7: NetLogo interface of the games-extension



A.2. THE GAMES-EXTENSION 177

In figure A.7, two NetLogo input fields named means-x and means-y are seen.

Each field contains the mean rewards for player x or player y, respectively, given

the choices of both players. Player x is the row-player in both fields. In order to

create a game from the two input fields, two game-matrices must be created by

the reporter games:matrix-from-row-list. This function takes a list of lists of

numbers as parameter, which is, for example, created by the following reporter:

1 to−r epor t read−means−matrix [ nr ]

2 l e t row− l i s t [ ]

3 l e t temp means−x
4 i f ( nr = 2) [ s e t temp means−y ]
5 whi le [ temp != ”” ] [

6 l e t l i n e−break po s i t i o n ”\n” temp

7 i f e l s e l i n e−break = f a l s e [

8 s e t row− l i s t lput temp row− l i s t

9 s e t temp ””

10 ] [

11 s e t row− l i s t lput ( sub s t r i ng temp 0 l i n e−break ) row− l i s t

12 s e t temp subs t r i ng temp ( l i n e−break + 1) ( l ength temp)

13 ]

14 ]

15 r epor t (map [ read−from−s t r i n g (word ” [ ” ? ” ] ” ) ] row−s t r i ng− l i s t )

16 end

From line 2 until line 14, a list of strings is created and saved to the local variable

row-list. Each string is a row of the input field. Afterwards, Netlogo’s reporter

read-from-string is deployed to get the required list of lists of numbers.

Using the reporter of the previous listing, a game is defined by the commands

games:matrix-from-row-list and games:two-persons-game:

1 to set−game

2 l e t m1 games:matrix−from−row−list ( read−means−matrix 1)

3 l e t m2 games:matrix−from−row−list ( read−means−matrix 2)

4 l e t game games:two−persons−game m1 m2

5 end
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The second way of creating a two-person game requires only a name and,

occasionally, the numbers of alternatives for both players:

1 l e t game games:two−persons−gamut−game game−name n−a l t−x n−a l t−y

The reporter games:two-persons-gamut-game is based on the Gamut library

(http://gamut.stanford.edu). Gamut makes over thirty games, which are com-

monly found in the economic literature, available (for details see the documen-

tation: http://gamut.stanford.edu/userdoc.pdf). The games-extension cur-

rently supports the following parameters as name of a game:

• ”BattleOfTheSexes”

• ”Chicken”

• ”CollaborationGame”

• ”CoordinationGame”

• ”DispersionGame” (considers first number of alternatives)

• ”GrabTheDollar” (considers first number of alternatives)

• ”GuessTwoThirdsAve” (considers first number of alternatives)

• ”HawkAndDove”

• ”MajorityVoting” (considers first number of alternatives)

• ”MatchingPennies”

• ”PrisonersDilemma”

• ”RandomGame” (considers both numbers of alternatives)

• ”RandomZeroSum” (considers both numbers of alternatives)

• ”RockPaperScissors”

• ”ShapleysGame”

It should be noted that some of these names do not generate the commonly

expected game. For example, the structure of a ”HawkAndDove” game resembles

a prisoner’s dilemma instead of a game of chicken.

By default, the minimum and maximum payoff is set to zero and ten, re-

spectively. The values are specified in the configuration file application.conf.

http://gamut.stanford.edu
http://gamut.stanford.edu/userdoc.pdf
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Some of the games take the numbers of alternatives into account. They are

given as additional parameters to games:two-persons-gamut-game. Only the

”RandomGame” and the ”RandomZeroSum” do not require that these numbers

match. The other games consider only the first of the two parameters. Fi-

nally, the games-extension uses integers for the reward matrices. The values

are scaled by changing the parameter int-mult in application.conf (see also

http://gamut.stanford.edu/userdoc.pdf, p. 3).

After a game has been defined via Gamut, the input fields and sliders of the

NetLogo interface can be updated as demonstrated in the following listing:

1 to−r epor t write−means−matrix [ matrix ]

2 l e t s t r i n g s games:matrix−as−pretty−strings matrix

3 l e t r e s u l t ””

4 f o r each s t r i n g s [

5 s e t r e s u l t (word r e s u l t ( reduce [ ( word ?1 ” ” ?2 ) ] ?) ”\n”)
6 ]

7 r epor t r e s u l t

8 end

9

10 to set−game

11 l e t game games:two−persons−gamut−game game−name n−a l t−x n−a l t−y
12 l e t m1 games:game−matrix game 1

13 l e t m2 games:game−matrix game 2

14 l e t m−s t r i n g s games:matrix−as−pretty−strings m1 ” ”

15 s e t n−a l t−x length m−s t r i n g s
16 s e t n−a l t−y length f i r s t m−s t r i n g s
17 s e t means−x write−means−matrix m1

18 s e t means−y write−means−matrix m2

19 s e t sample−e q u i l i b r i a games :get −so lut ions −s tr ing game ” ”

20 s e t f i e l d s games :get − f i e lds − s t r ing game ” ”

21 end

The two game-matrices are obtained by games:game-matrix (lines 12 and

13). The first matrix is used to update the numbers of alternatives n-alt-x and

n-alt-y. Since these values are not directly available, the matrix is converted

into a list of lists of strings by games:matrix-as-pretty-strings. The strings

are “pretty” because it is accounted for differences in length of the numbers by

http://gamut.stanford.edu/userdoc.pdf
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inserting offsets. In the example, two spaces (" ") are inserted before every number

with only one character. Consequently, the entries of each column are displayed

right-aligned in means-x or means-y. The reporter write-means-matrix maps the

list of lists of strings into one string. The NetLogo globals sample-equilibria

and fields (figure A.7) are updated similarly by special commands of the games-

extension. Some available commands are described in the following list:

• games:matrix-transpose takes a games-matrix as parameter and returns

the transpose of this matrix. This reporter assists when defining symmetric

games. The input matrix must be quadratic.

• games:get-reward returns an entry of a games-matrix. Therefore, three

parameters are required: the matrix, a row index, and a column index.

• games:get-solutions-string can be used to update a NetLogo input field

(see listing above and figure A.7). It prints (strictly) mixed Nash equilib-

ria (if some are found). It also prints the expected reward of each player

and indicates, by an O in the last column, whether a solution is (Pareto)

optimal compared to the other (pure and mixed) solutions. Similar to

games:matrix-as-pretty-strings, the second parameter is used to adjust

the alignment.

• games:get-fields-string can be used to update a NetLogo input field (see

listing above and figure A.7). It prints a joint payoff matrix. Each field of

the matrix contains an index and the mean rewards as specified by the game.

It also indicates the pure Nash equilibria (N) and pure (Pareto) optima (O).

Similar to games:matrix-as-pretty-strings, the second parameter is used

to adjust the alignment.

• games:pure-solutions returns a list of boolean values, one for each field

of the joint payoff matrix (as given by games:get-fields-string). The

boolean value indicates whether this field is pure Nash equilibria.

• games:pure-optima returns a list of boolean values, one for each field of the

joint payoff matrix (as given by games:get-fields-string). The boolean

value indicates whether this field is (Pareto) optimal compared to the other

(pure and mixed) solutions.
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A.2.2 The calculation of Nash equilibria and optima

While pure Nash equilibria are easily identified, the search for a Nash equilib-

rium of a normal-form game is, in general, computationally intensive (see e.g.

Shoham and Leyton-Brown, 2009, ch. 4). More specifically, the problem of finding

a Nash equilibrium of a general-sum finite game with two players is PPAD-complete

(Daskalakis et al., 2009). For the class of PPAD-complete problems, it is known

that at least one solution (Nash equilibrium) exists. But, to the best of the cur-

rent knowledge, there exists no algorithm that is guaranteed to find this solution

in polynomial time (e.g. Papadimitriou, 2014, p. 15884). Instead, the computation

time of known algorithms increases exponentially with the number of alternatives.

Nevertheless, existing algorithms run efficiently in practice (e.g. Codenotti

et al., 2008). One of the better known (but not the fastest) one (Shoham and

Leyton-Brown, 2009, p. 91) is the Lemke-Howard algorithm (Lemke and Howson,

1964). This algorithm is implemented in the games-extension (as given by Code-

notti et al., 2008). Even though the Lemke-Howard algorithm necessarily finds

a Nash equilibrium, it is generally not able to find all equilibria (Shoham and

Leyton-Brown, 2009, p. 98). The implementation of the games-extension tries to

find multiple equilibria by starting the algorithm with every possible variable that

can be part of the solution (see the pseudocode in Shoham and Leyton-Brown,

2009, p. 96). This step is repeated for every solution that has already been cal-

culated. Since not all Nash equilibria are found, the input field of the NetLogo

interface was named sample-equilibria.

Furthermore, the problem of stating whether a Nash equilibrium is also Pareto

optimal is NP-hard (Shoham and Leyton-Brown, 2009, p. 102). In other words,

this problem is “as hard as it can get”. The difficulty of this problem stems from

the necessity to search an infinite space of possible outcomes. With a finite set of

outcomes, the search for the optimal ones can be completed in polynomial time

(and, on average, even in linear time, Godfrey et al., 2007). Consequently, the

games-extension inspects only the pure and mixed Nash equilibria that are found

directly or by the Lemke-Howard algorithm. The labelling of an outcome by an O

must, hence, be understood relatively to the outcomes that are shown.
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Appendix B

Sensitivity analysis

In this appendix, the simulation results of the previous chapters are tested for

robustness. More specifically, it is checked whether the results are sensitive to

small changes in the parameters. It is focussed on the melioration learning model.

The Roth-Erev model is not tested for robustness.

B.1 Melioration learning in two-person games

In chapter 6, various two-person games were analysed. Results of simulations

with different values of the exploration rate are shown in the following. It is also

checked whether a decay in the exploration rate changes the outcome. In this case,

algorithm 5.2.1 is used, and the exploration rate decreases at logarithmic speed:

εs ←
ε

log
(

2 +
∑

j∈EKt(s, j)
) .

This ensures that all alternatives are chosen sufficiently often during a simulation.

Additionally, the softmax/Boltzmann exploration method is tested. This method

has one parameter τ ∈ (0,∞), which is called temperature. The probability qt(e)

of choosing alternative e ∈ E at time t ∈ N is given by

qt(e) =
e
Qt(e)
τ∑

j∈E e
Qt(j)
τ

.
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If τ is large, the probabilities of all alternatives are approximately equal. With a

decreasing τ , alternatives with high Q-value are preferred. In the limit to zero,

softmax approaches the greedy selection of alternatives (Sutton and Barto, 1998,

pp. 30-31). In the simulations, this limit is achieved by decreasing the temperature

logarithmically (see also Singh et al., 2000, p. 303).

B.1.1 Games with dominant alternatives

In section 6.3, the following prisoner’s dilemma was studied:

A B

A (5,5) (2,10)

B (10,2) (0,0)

The simulations of this game are repeated for different rewards of the outcome

(A,A), for different exploration rates, and with decay in exploration rate. The

results are presented in figure B.1.
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Figure B.1: Sensitivity analysis of the prisoner’s dilemma

The frequency of the outcome (A,A) slightly increases with its expected reward.

Since the outcomes (A,B) and (B,A) appear only because of exploration, they

occur less often if decay is enabled. Generally, the dominant alternatives are chosen

most of the time. This remains true in the case of softmax exploration, unless the

temperature is unrealistically high and without decay (figure B.2).
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Figure B.2: Sensitivity analysis of the prisoner’s dilemma: softmax

B.1.2 Games with multiple pure equilibria

The first game of section 6.3.2 was defined by the following reward matrix:

A B

A (10,10) (0,0)

B (0,0) (8,8)

Figure B.3 should be compared to figure 6.5. It shows the relationship between

the rewards of outcome (B,B) and the frequency distribution of pairs of agents.
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Figure B.3: Sensitivity analysis of the coordination game
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A higher exploration rate comes with higher frequencies of non-equilibria and

with an increased slope of the relationship between rewards and frequencies. In

case of a decaying exploration rate, there is no visible effect of different exploration

rates, and the relationship between rewards and frequencies diminishes.
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Figure B.4: Sensitivity analysis of the coordination game: softmax

If the agents select alternatives by softmax, the results are similar (figure B.4).

There is a positive correlation between the rewards of (B,B) and its frequency. If

the temperature is very high (τ = 5.0) and there is a decay in temperature, the

agents are most likely to find the optimal Nash equilibrium (A,A). But without

the decay, also non-equilibria are chosen frequently.

Figure B.5 contains the results of a sensitivity analysis in regard to the game

of chicken of figure 6.7:

A B

A (5,5) (2,10)

B (10,2) (0,0)

Different exploration rates or a decay in this rate only marginally affect the

results of section 6.3.2. However, in case of decay and a high reward of (A,A),

several agents end up in (A,A), which is an optimum but no equilibrium. The same

tendency is found if the agents use softmax as selection rule. Even with medium

rewards of (A,A), this outcome is frequently observed. Since (B,B) occurs as well,

a similarity between softmax and the Roth-Erev model is indicated (see figure 6.7).
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Figure B.5: Sensitivity analysis of the game of chicken

B.1.3 Games with a single Nash equilibrium

In games without a pure Nash equilibrium, a sufficiently high exploration rate is

needed for the agents to approach the matching law. This is pictured in figure

B.6 for the game “matching pennies” (figure 6.9) and the inspection game (figure

6.11):
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Figure B.6: Matching law measures of “matching pennies” and inspection game

The same effect is visible in figure B.7, which shows frequency distributions

over the relative frequencies of alternative A. A high exploration rate implies a

low variance in relative frequencies. A low variance means that the behaviour has

already converged to the mixed Nash equilibrium.
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Figure B.7: Relative frequencies of “matching pennies” and inspection game
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Since a sufficiently high exploration rate is beneficial in games without pure

Nash equilibria, a decay in exploration rate generally prevents the convergence to

the mixed Nash equilibrium.

Finally, figure B.8 provides proof that neither a high exploration rate nor a

decay in exploration can help the players of Shapley’s game to approach a stable

point. The behaviour does not converge, regardless of the level of exploration.
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Figure B.8: Sensitivity analysis of Shapley’s game

B.2 Melioration learning in n-way games

It was shown in section 7.1 that agents who learn by melioration are able to

coordinate their choices in n-way games. It was stated that this depends on the

reward b of the second equilibrium (B,B) (figure 7.2). In the simulations of figure

B.9, this result is tested for robustness by assuming different exploration rates ε ∈
{0.05, 0.1, 0.2}. The histograms are reduced to three intervals: [0, 0.1], (0.1, 0.9],

and (0.9, 1]. Similar to figure 7.2, the agents’ ability to coordinate their choices

depends on the reward b. The establishment of a convention is impeded by a high

exploration rate because there is a higher variance in decisions. Also the effect of

a larger number of connections or a higher level of randomness (figures 7.4 and

7.5) is less pronounced if exploration is high (not shown here).
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Figure B.9: Networks with d = 2, β = 0, and n = 50

In the simulations of section 7.1, every group consisted of 50 agents. A smaller

or greater group size n does not change the results (figure B.10). This in line

with a statement of Young (1998, pp. 101-102): the speed of convergence to a

risk-dominant equilibrium is independent of the number of vertices if the network

is close knit to a certain degree. The networks of the simulations are polygons

and, therefore, satisfy this condition (Young, 1998, p. 101).
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Figure B.10: Networks with d = 2, β = 0, and ε = 0.1
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However, in games without risk-dominant equilibrium, the group size is rele-

vant. The relationship between average number of connections d and distribution

of choices is pictured in figure B.11 for different group sizes n. Only the extreme

case of game I with two equally appealing equilibria (b = 10) is shown. There is

no significant effect in game II with b = 4. As stated in section 7.1, a high number

of neighbours supports the agreement on a single alternative. But this depends

on the size of the group. The larger the group, the more connections between the

agents are needed for the coordination of decisions.
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Figure B.11: Networks with β = 0 and ε = 0.1

Furthermore, in case of β > 0 and small d, a network may be disconnected.

This means that some agents cannot be reached by other agents via a sequence of

edges. It is seen in figure B.12 that no convention is established in game I with

b ∈ {8, 10} and d = 2. In comparison to figure 7.5, the relationship between the

randomness β and the distribution of choices is stronger for d = 20 than for d = 10.

This corresponds to the result of section 7.1: a large number of connections or a

high level of randomness supports the establishment of a convention.
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Figure B.12: Groups with n = 50 and ε = 0.1



192 APPENDIX B. SENSITIVITY ANALYSIS

B.3 Melioration and the volunteer’s dilemma

In section 7.2, the volunteer’s dilemma was analysed. Figure B.13 shows that, in

simulations with fixed groups, the difference between simulation results and the

inverse of the group size increases with the exploration rate.
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Figure B.13: The effect of group size in fixed groups

In reference to figure 7.6, additional data is presented in figure B.14. It con-

tains histograms of the individual relative frequencies of volunteering. Agents are

partitioned into three classes: agents who mainly volunteer (the interval (0.9, 1]),

agents who almost never volunteer (the interval [0, 0.1]), and agents who occasion-

ally volunteer (the interval (0.1, 0.9]). The plots indicate that, except for the case

of high costs of volunteering, most agents either always volunteer or are idle during

the whole simulation.
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Figure B.14: Histograms of individual frequencies; ε = 0.1

Further findings of the sensitivity analysis are omitted because they show that

the results of section 7.2 are robust in regard to different exploration rates.
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B.4 Melioration and the prisoner’s dilemma

In section 7.3, a relationship between group size and incentive of cooperation r
n
,

on the one hand, and the rate of cooperation, on the other hand, was observed.
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Figure B.15: The rate of cooperation in the public goods game

Figures B.15 and B.16 show that this result is also found in simulations with

different exploration rates and in simulations with a decay in exploration.
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Figure B.16: The rate of cooperation with decay in exploration; n = 20.

In the simulations with punishment, a penalty of s = 1 was assumed. Fig-

ure B.17 displays the relative frequencies of cooperation if s ∈ {0.1, 0.5, 1}. The

frequencies of cooperation refer to agents who cooperate, including those who

carry out the punishments. The costs of punishment are specified in relation to
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the penalty as c/s. The horizontal lines mark the levels of cooperation without

punishment. It is evident from figure B.17 that the rate of cooperation is low if

the penalty s is small. This finding confirms the hypothesis that high levels of

cooperation are due to accidental punishments of fellow group members.
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Figure B.17: Frequencies at the 25 000th round with punishment; n = 5

The effect of punishment is intensified in large groups (figure B.18). The larger

the group, the higher the number of accidental punishments. This decreases the

Q-value of defection. In many conditions, this results in a cooperation rate of 0.93.

The agents deviate from cooperation only because of the exploration rate.
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Figure B.18: Frequencies at the 25 000th round with punishment; n = 20
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In the last part of section 7.3, the option to abstain from an interaction was

analysed. First, simulations were run with anonymous groups. Similar to figure

7.18, figure B.19 shows the development of the frequencies of choice. There is no

visible pattern, but medium levels of cooperation are achieved. In large groups,

the dynamic is more stable than in small groups.
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Figure B.19: Frequencies over time in anonymous groups; r
n

= 0.6

In simulations with fixed groups, the rates of choice are stable over time (figure

B.20). The level of cooperation increases with the loner payment l. In the sim-

ulation with n = 20 and l = 9.9, this payment is too high, and all agents decide

to be a loner. The maximum reward of cooperation is r = 12. Because of the

exploration rate, this reward is never reached and it pays off to be a loner.
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Figure B.20: Frequencies over time in fixed groups; r
n

= 0.6
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Finally, figure B.21 parallels the results of figure 7.19 but with n = 20. The

effect of the loner option is less pronounced in large groups. On the one hand,

this is due to the higher level of cooperation in simulations without this option

(horizontal lines). On the other hand, it is less likely that r > n if n is large.
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Figure B.21: Frequencies at the 25 000th round in fixed groups; n = 20

B.5 The foraging model

In this section, a sensitivity analysis of the findings of chapter 8 is presented.
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Figure B.22: The foraging model with different growth rates and values of γ2
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The plots of figure B.22 extend the results of section 8.2.1 in regard to different

growth rates and values of γ2. All of the 1 000 actors follow the same rule q =

(q1, q2), which specifies the probability of choosing the first and the second type of

resource. The value of the first resource γ1 is set to 100. The optimal point q∗1 of v

is closer to 0.5 if the value of the second resource is high. The growth rate affects

the optimal value of v and the shape of the curves. In case that all actors use the

optimal rule q∗1, the performance of a single actor is usually improved by deviating

from this rule. Since v1(q
∗
1) > v(q∗1) in many situations, the actor obtains a higher

reward by choosing the first resource exclusively.

The following simulations replicate the simulations of section 8.3. Half of the

actors are of type A and the other half of type B. The value of the first kind of

resource is γ1 = 100, and the growth rate is set to 10%. Figure B.23 contains the

means of v, which are measured over a period of 5 000 time steps. It is distinguished

between the two actor types, the level of uncertainty η, the value of the second kind

of resource γ2, and a fourth parameter, which is called the waiting rate ψ ∈ [0, 1].
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Figure B.23: The effect of uncertainty η for different γ2 and ψ

In the simulations of section 8.3, the waiting rate was set to 1 (last plot of

figure B.23). It is seen that the effect of uncertainty is present for every value of

γ2. Type B actors perform as well as type A actors if a high level of uncertainty

distorts the perception of the state. In case that γ2 = 30, all actors choose the

first resource exclusively and achieve the same rewards.
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A waiting rate of 1 is equivalent to the random replacement of the actors

before every decision. If ψ < 1, the actors wait a random number of rounds before

making the next decision. The number of rounds follows a geometric distribution

with parameter 1−ψ. It is evident from figure B.23 that the effect of uncertainty

is less pronounced if ψ < 1.

Moreover, in case that the actors do not wait (ψ = 0), uncertainty has no

significant effect on success. This is due to a complex interaction between the

actors. In all simulations, the density of actors is high. Therefore, it happens

frequently that two actors choose the same resource. Since the actors learn to

follow similar rules of decision-making, this also means that two actors often follow

the same path over several rounds. In this way, the actors impede each other. It

would be better to wait a random number of rounds or to occasionally switch to

another rule of decision-making.

Type B actors are able to change their rules of decision-making. They maintain

two sets of Q-values, one for each state of the environment. One of the sets may

advice to always choose the first resource and the other set to select the second

resource. Independent of the actual state of the environment, it is beneficial to use

two different kinds of selection mechanism and switch randomly between them.

Hence, a high level of uncertainty is not harmful for type B actors if ψ = 0.



List of Symbols

(0, 1) (0, 1) = {r ∈ R | 0 < r < 1}

(0,∞) (0,∞) = {r ∈ R | r > 0}

(pj)j∈E if E = {e1, e2, . . . , em}, m ∈ N, then (pj)j∈E = (pe1 , pe2 , . . . , pem)

[0, 1] [0, 1] = {r ∈ R | 0 ≤ r ≤ 1}

[0,∞) [0,∞) = {r ∈ R | r ≥ 0}

|S| if S is a set, |S| gives the cardinality of S

N the set of all strictly positive integers {1, 2, 3, . . . }

R the set of real numbers

1{X=x} if X is a random variable: 1{X=x} =

{
1 if X = x,

0 else

P P =
{

(pe1 , pe2 , . . . , pem) ∈ [0, 1]E |
∑

j∈E pj = 1
}

X X = [0,∞)E

% %⊆ X × X

{vj}j∈E if E = {e1, e2, . . . , em}, m ∈ N, then {vj}j∈E = {ve1 , ve2 , . . . , vem}

Pr(·) the underlying probability measure

SE if E = {e1, e2, . . . , em}, m ∈ N, then SE = {(se1 , se2 , . . . , sem) |
sj ∈ S for all j ∈ E}
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Belinsky, R., F. González, and J. Stahl (2004). Optimal behavior and concurrent

variable interval schedules. Journal of Mathematical Psychology 48 (4), 247–262.

Belinsky, R., F. González, and J. Stahl (2005). Optimal behavior and concur-

rent variable ratio-variable interval schedules. Journal of Mathematical Psy-

chology 49 (4), 339–353.



REFERENCES 203

Bellman, R. E. (1957). A Markov decision process. Journal of Mathematics and

Mechanics 6 (5), 679–684.

Bendor, J. (1987). In good times and bad: Reciprocity in an uncertain world.

American Journal of Political Science 31 (3), 531–558.

Bendor, J., D. Diermeier, and M. Ting (2007). Comment: Adaptive models in

sociology and the problem of empirical content. American Journal of Sociol-

ogy 112 (5), 1534–1545.

Berger, R. and R. Hammer (2007). Die doppelte Kontingenz von Elfmeterschüssen.

Eine empirische Analyse. Soziale Welt 58 (4), 397–418.

Berninghaus, S. K. and U. Schwalbe (1996). Conventions, local interaction, and

automata networks. Journal of Evolutionary Economics 6 (3), 297–312.

Bianchi, F. and F. Squazzoni (2015). Agent-based models in sociology. WIREs

Computational Statistics 7 (4), 284–306.

Borrero, J. C., S. S. Crisolo, Q. Tu, W. A. Rieland, N. A. Ross, M. T. Francisco,

and K. Y. Yamamoto (2007). An application of the matching law to social

dynamics. Journal of Applied Behavior Analysis 40 (4), 589–601.

Boyd, R., H. Gintis, S. Bowles, and P. J. Richerson (2003). The evolution of

altruistic punishment. Proceedings of the National Academy of Sciences 100 (6),

3531–3535.

Boyd, R. and P. J. Richerson (1992). Punishment allows the evolution of coop-

eration (or anything else) in sizable groups. Ethology and Sociobiology 13 (3),

171–195.

Brandt, H., C. Hauert, and K. Sigmund (2003). Punishment and reputation in

spatial public goods games. Proceedings of the Royal Society of London. Series

B: Biological Sciences 270 (1519), 1099–1104.

Braun, N. and T. Gautschi (2011). Rational-Choice-Theorie. Weinheim und Basel:

Beltz Juventa.



204 REFERENCES

Brenner, T. (2006). Agent learning representation: Advice on modelling economic

learning. In L. Tesfatsion and K. L. Judd (Eds.), Handbook of Computational

Economics. Agent-based Computational Economics, Volume 2. North-Holland.

Brenner, T. and U. Witt (2003). Melioration learning in games with constant

and frequency-dependent pay-offs. Journal of Economic Behavior & Organiza-

tion 50 (4), 429–448.

Burgess, R. L. and D. Bushell (Eds.) (1969). Behavioral Sociology. The Experimen-

tal Analysis of Social Processes. New York and London: Columbia University

Press.

Bush, R. R. and F. Mosteller (1964). Stochastic Models for Learning (2nd ed.).

New York: Wiley.

Buskens, V., R. Corten, and J. Weesie (2008). Consent or conflict: Coevolution of

coordination and networks. Journal of Peace Research 45 (2), 205 – 222.

Buskens, V. and C. Snijders (2015). Effects of network characteristics on reaching

the payoff-dominant equilibrium in coordination games: A simulation study.

Dynamic Games and Applications , 1–18. DOI 10.1007/s13235-015-0144-4.

Camerer, C. and T.-H. Ho (1999). Experience-weighted attraction learning in

normal form games. Econometrica 67 (4), 827–874.

Camerer, C. F. (2003). Behavioral Game Theory: Experiments in Strategic Inter-

action. Princton, New Jersey: Princeton University Press.

Caron, P.-O. (2013a). On applying the matching law to between-subject data.

Animal Behaviour 85 (4), 857–860.

Caron, P.-O. (2013b). On the empirical status of the matching law: Comment on

McDowell (2013). Psychological Bulletin 139 (5), 1029–1031.

Caron, P.-O. (2015). Matching without learning. Adaptive Behavior 23 (4), 227 –

233.



REFERENCES 205

Chiappori, P.-A., S. Levitt, and T. Groseclose (2002). Testing mixed-strategy

equilibrium when players are heterogeneous: The case of penalty kicks in soccer.

The American Economic Review 92 (4), 1138–1151.

Claus, C. and C. Boutilier (1998). The dynamics of reinforcement learning in coop-

erative multiagent systems. In AAAI ’98 Proceedings of the Fifteenth National

Conference on Artificial Intelligence, pp. 746–752.

Codenotti, B., S. D. Rossi, and M. Pagan (2008, Nov). An experimental analysis

of lemke-howson algorithm. arXiv:0811.3247.

Coleman, J. S. (1990). Foundations of Social Theory. Cambridge, Mass., and

London, England: The Belknap Press of Harvard University Press.

Collett, D. (1999). Modelling binary data. Boca Raton: Chapman and Hall /

CRC.

Conger, R. and P. Killeen (1974). Use of concurrent operants in small group

research: A demonstration. The Pacific Sociological Review 17 (4), 399–416.

Cook, K. S. and T. Yamagishi (1992). Power in exchange networks: a power-

dependence formulation. Social Networks 14, 245–265.

Corrado, G. S., L. P. Sugrue, H. S. Seung, and W. T. Newsome (2005). Linear-

nonlinear-Poisson models of primate choice dynamics. Journal of the Experi-

mental Analysis of Behavior 84 (3), 581–617.
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