

EFFECT OF SUBSURFACE AND SURFACE TILLAGE ON STRUCTURE AND PERMEABILITY OF SOLONETZIC AND CHERNOZEMIC SOILS OVER TWO YEARS

R. Avila, J. Schoenau, T. King, B. Si, and M. Grevers

Department of Soil Science College of Agriculture and Bioresources University of Saskatchewan

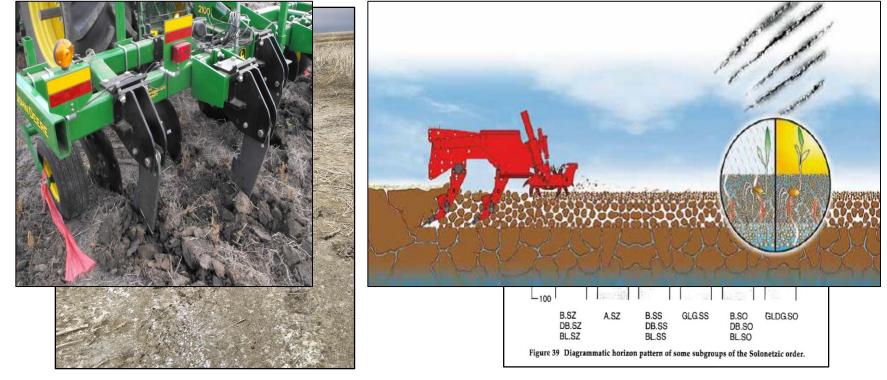
INTRODUCTION

- Saskatchewan has ~ 44% of Canada's total cultivated farmland (Statistics Canada, 2012).
- Considering soil physical attributes (permeability, structure & strength) is important: affects root growth, ability to explore for nutrients and water.
- Wheel traffic compaction, dense horizons can negatively affect root zone (Soane et al., 1994).

Tillage is one management strategy to alter water and air permeability, structure and strength, in the root zone.

Introduction (cont'd)

 In Canada, wheel traffic from heavy equipment can lead to compaction, with reduced porosity and permeability & greater resistance to root penetration.



Introduction (cont'd)

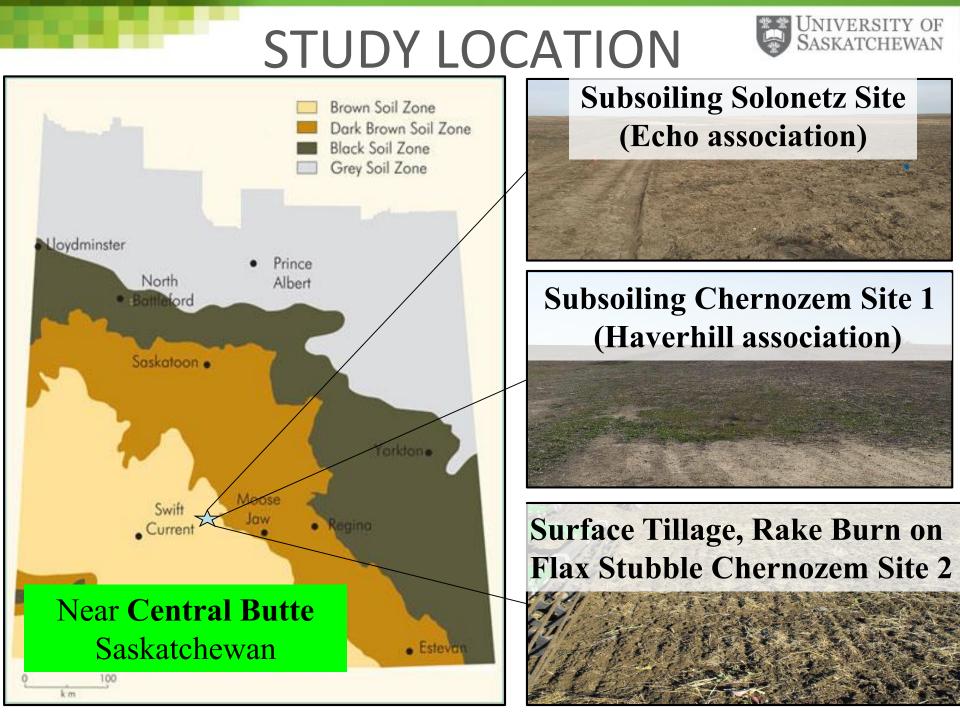
• Naturally high Na leads to clay dispersion, formation of dense Solonetzic B horizons that affect <u>productivity</u>.

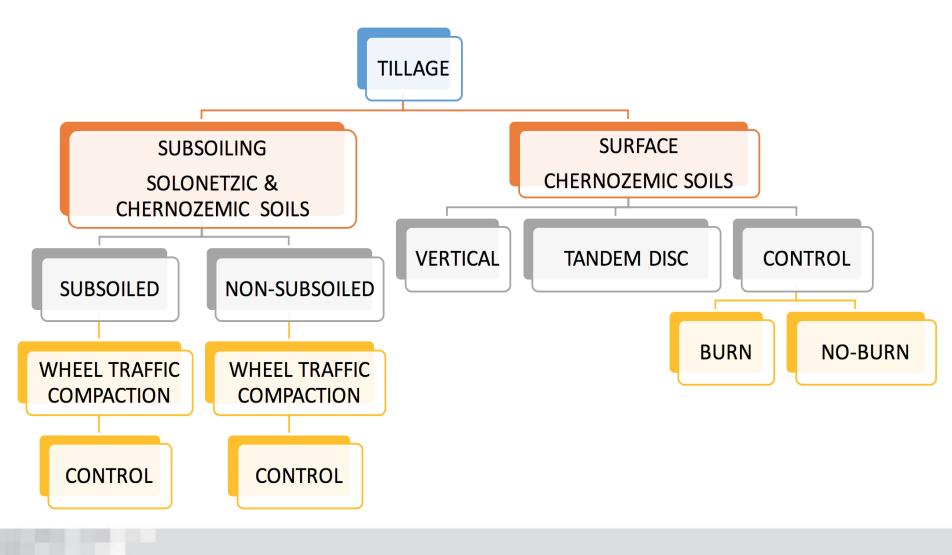
Subsoiling (15-30 cm) may improve conditions in <u>compacted</u>, <u>dense subsoils.</u>

Introduction

- Surface tillage (e.g. vertical tillage) is utilized for <u>residue</u> <u>rut management</u> and <u>alters soil conditions mainly at</u> <u>surface</u>.
- Raking and burning may also be used for management of difficult crop residues like flax straw.

 Very few recent studies on tillage strategies to address physical limitations in soils of the Northern Great Plains.


STUDY OBJECTIVES


 To assess soil water infiltration, air permeability, structural attributes, as influenced by subsurface and surface tillage treatments in compacted and non-compacted Solonetzic (sodium affected) and Chernozemic soils over two years.

STUDY DESIGN

Subsoiling Tillage Operation

• A John Deere 2100 Minimum-Till subsoiler with five shanks spaced 76.0 cm apart and set to penetrate <u>30.0 cm into the soil</u> in Fall 2015.

rrow subsoiler shank ates minimal surface disturbance

Tandem Disc and Vertical Tillage Operations

Deere Frontier TM5132 to a depth of <u>8-10 cm</u> in Fall 2015.

• Tandem disc with John • Vertical Tillage with John Deere 2623VT to a depth of 5 cm in Fall 2015 .

Raked Burn & No-Burn (Flax stubble)

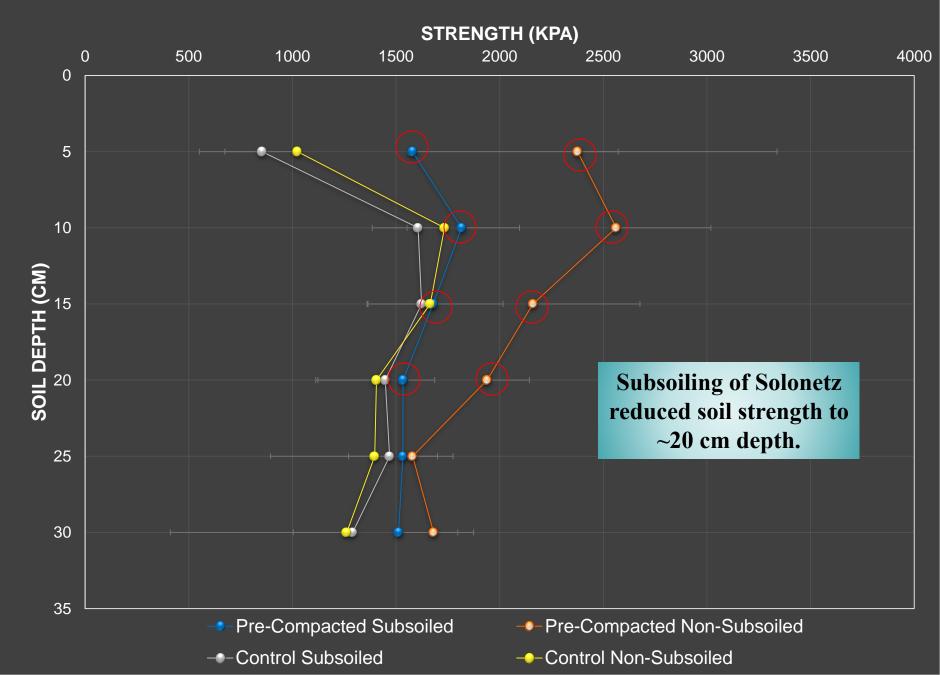
Measurements

Field Saturated Hydraulic Conductivity

Air Permeability

Measurements

Soil Strength


North Central Butte Solonetzic Site 2016-2017 Subsoiling:

Physical Measurements NCB 2016- 2017.

				Measurements		
Treatment		0-10 cm Aggregate Size MWD (mm)		0-10 cm	0-10 cm Hydraulic Conductivity (cm min ⁻¹)	
				Air Permeability		
				(m s ⁻¹)		
		2016	2017	2016 2017	2016	2017
	Subsoiled	12.99	13.66	1.15E-06 1.31E-07	6.32E-02	2.13E-01
Pre-Compacted	Non-Subsoiled	13.40	13.84	9.78E-07 1.07E-08	1.65E-02	1.67E-01
(P value)		0.7335	0.5940	0.8309 0.3445	0.4622	0.2310
	Subsoiled	12.37	14.41	5.20E-07 1.24E-07	8.32E-03	7.94E-02
Post-Compacted	Non-Subsoiled	14.05	13.64	4.15E-07 1.20E-07	5.05E-02	5.73E-02
(P value)		0.4594	0.585	0.6110 0.9537	0.1399	0.9268
	Subsoiled	10.03	11.65	4.98E-07 2.29E-07	2.86E-02	1.28E-01
Control	Non-Subsoiled	11.60	13.05	6.40E-07 6.06E-08	6.23E-03	1.17E-01
(P value)		0.1609	0.0990	0.3097 0.0657	0.1474	0.7231
(P value)	Subsoiled vs Non-Subsoiled	0.2022	0.7030	0.9125 0.0559	0.0748	0.0632

Subsoiling tended to increase air permeability, hydraulic conductivity (p<0.10).

North Central Butte <u>Solonetzic</u> Site Soil Strength (Cone Index) 2016 <u>Subsoiling:</u>

South Central Butte Chernozemic Site 1 2016-2017 Subsoiling:

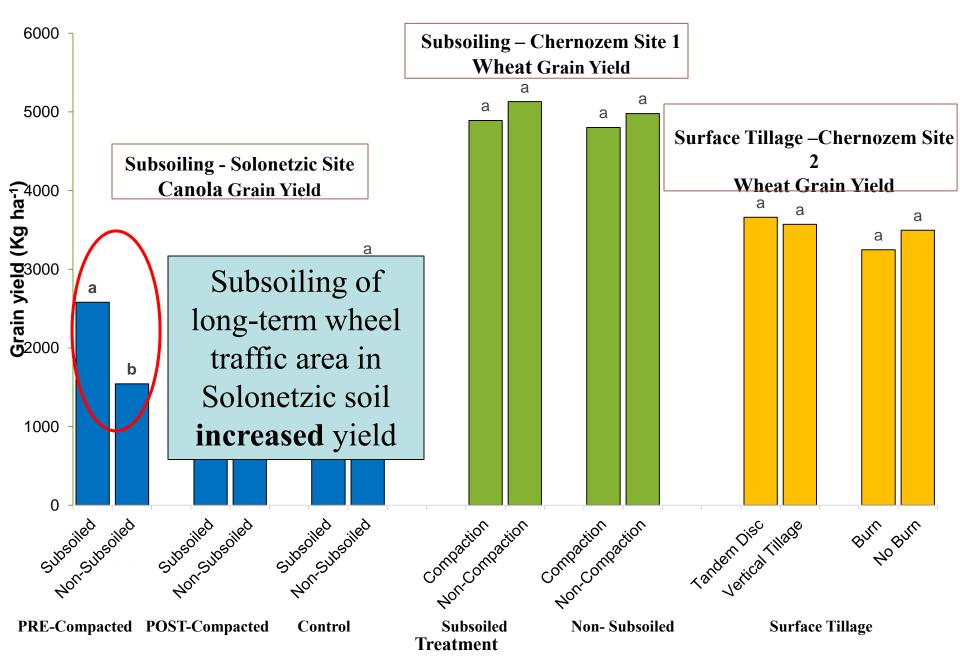
Physical Measurements SCB 2016 - 2017.

	Measurements						
Treatment		0-10 cm Aggregate Size MWD (mm)		0-10 cm	0-10 cm Hydraulic Conductivity (cm min ⁻¹)		
				Air Permeability			
				(m s ⁻¹)			
		2016	2017	2016 2017	2016	2017	
Subsoiled	Compacted	14.42	11.99	2.87E-06 1.12E-07	4.95E-02	1.20E-01	
Subsolieu	Non-Compacted	15.52	12.53	4.15E-06 1.02E-07	7.86E-02	1.42E-01	
(P value)		0.0159	0.8013	0.5685 0.8169	0.6127	0.7596	
				\frown			
Non-Subsoiled	Compacted	15.14	12.62	4.50E-07 2.05E-07	1.58E-02	1.78E-01	
Non-Subsoneu	Non-Compacted	14.29	14.42	1.38E-06 1.83E-07	4.77E-02	1.30E-01	
(P value)		0.6037	0.1484	0.0650 0.6347	0.1748	0.2342	
(P value)	Subsoiled vs Non-Subsoiled	0.7413	0.5766	0.0315 0.0745	0.2055	0.5142	
	Compaction	0.6558	0.2678	0.0007 0.2688	0.2803	0.6157	

Air permeability increased in 1st year by subsoiling of wheel traffic compacted areas

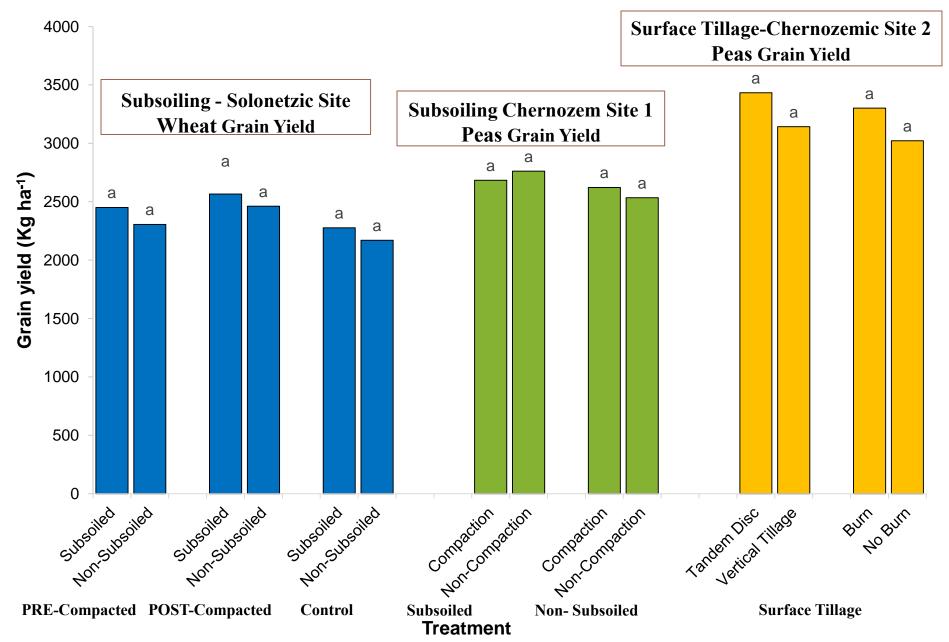
Vertical Tillage **Chernozemic** Site 2 2016-2017:

Physical Measurements VT 2016 - 2017.


				Measu	rements			
Treatment		0-10 cm Aggregate Size MWD (mm)		0-1	0-10 cm Air Permeability (m s ⁻¹)		0-10 cm Hydraulic Conductivity (cm min ⁻¹)	
				(m				
		2016	2017	2016	2017	2016	2017	
Till	Tandem Disc	12.67	12.58	1.95E-06	2.24E-07	1.09E-01	6.03E-02	
	Vertical	11.61	13.29	6.09E-07	1.31E-07	6.02E-02	8.60E-02	
(P value)		0.2439	0.7034	0.0837	0.1406	0.2140	0.1190	
No-Till	Burn	12.43	13.26	2.61E-06	3.49E-07	5.37E-02	6.88E-02	
	No Burn	12.58	12.30	3.99E-06	1.21E-07	6.91E-02	7.52E-02	
(P value)		0.9216	0.6167	0.3446	0.2410	0.6967	0.7523	
(P value)	Till vs No Till	0.6672	0.9007	0.0249	0.5817	0.3853	0.9304	

Vertical tillage decreased air permeability in first year vs untilled and tandem disc: Action of baskets increases proportion of fine pores

But what about the yield????


Crop Yield 2016

Crop Yield 2017

Summary & Conclusions

- **Subsoiling** results in increased air permeability, hydraulic conductivity, no effect on aggregate size.
- **Subsoiling** reduces soil strength.
- **Subsoiling** of compacted Solonetz increased canola yield in 2016, but no benefit to wheat yield on Chernozem.
- Vertical tillage decreased air permeability in first year.
- No effect of **vertical or tandem disc or burning** in fall of 2015 on the 2016 wheat yield or 2017 pea yield.

Most beneficial tillage strategy: subsoiling of long-term wheel traffic compacted sodium-affected (solonetzic) soils.

Acknowledgements

• Assistance lab and field:

C. Fatteicher, B. Ewen, R. Kar, J. Wiens, B. Swerhone, S. Froese, N. Rahman, J. Xie, S. Klippenstein, P. Hrycyk, R. Hangs, K. Gudkova, J. Toews.

- Saskatchewan Agriculture Development Fund
- Saskatchewan Wheat Development Commission
- Western Grains Research Foundation
- Sask Pulse Growers
- Equipment courtesy of:

and Bioresources

