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Abstract

Background

The ligaments in coherence with the capsule of the hip joint are known to contribute to hip

stability. Nevertheless, the contribution of the mechanical properties of the ligaments and

gender- or side-specific differences are still not completely clear. To date, comparisons of

the hip capsule ligaments to other tissues stabilizing the pelvis and hip joint, e.g. the iliotibial

tract, were not performed.

Materials & Methods

Hip capsule ligaments were obtained from 17 human cadavers (9 females, 7 males, 13 left

and 8 right sides, mean age 83.65 ± 10.54 years). 18 iliofemoral, 9 ischiofemoral and 17

pubofemoral ligaments were prepared. Uniaxial stress-strain properties were obtained

from the load-deformation curves before the secant elastic modulus was computed. Strain,

elastic modulus and cross sections were compared.

Results

Strain and elastic modulus revealed no significant differences between the iliofemoral

(strain 129.8 ± 11.1%, elastic modulus 48.8 ± 21.4 N/mm2), ischiofemoral (strain 128.7 ±
13.7%, elastic modulus 37.5 ± 20.4 N/mm2) and pubofemoral (strain 133.2 ± 23.7%, elastic

modulus 49.0 ± 32.1 N/mm2) ligaments. The iliofemoral ligament (53.5 ± 15.1 mm2) yielded

a significantly higher cross section compared to the ischiofemoral (19.2 ± 13.2 mm2) and
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pubofemoral (15.2 ± 7.2 mm2) ligament. No significant gender- or side-specific differences

were determined. A comparison to the published data on the iliotibial tract revealed lower

elasticity and less variation in the ligaments of the hip joint.

Conclusion

Comparison of the mechanical data of the hip joint ligaments indicates that their role may

likely exceed a function as a mechanical stabilizer. Uniaxial testing of interwoven collagen

fibers might lead to a misinterpretation of the mechanical properties of the hip capsule liga-

ments in the given setup, concealing its uniaxial properties. This underlines the need for a

polyaxial test setup using fresh and non-embalmed tissues.

Introduction

Beside the stability-maintaining configured bony shape, both the passive stabilizers (hip
capsule and ligaments) and active stabilizers (external rotators, the gluteal muscles and the rec-
tus femoris) preserve hip stability [1]. The hip capsule ligaments strengthen the hip capsule
and are merged with the fibrous part of the hip capsule. Thus, only the synovial part of the hip
capsule can be removed without destroying the hip capsule ligaments [2]. For the presented
study we therefore used the term “hip capsule ligaments” intending to also investigate the
merged fibrous part of the hip capsule. The hip capsule ligaments, namely the iliofemoral liga-
ment (IF), ischiofemoral ligament (IS) and pubofemoral ligament (PF), are known to guide
and restrict the maximum possible range of motion and translation increasing hip joint stabil-
ity [3,4]. Transecting or venting these ligaments, as done in arthroplasty or arthroscopy,
enhances complications such as dislocations or iatrogenic instability, further illustrating the
pivotal role of the hip joint ligaments [5–11]. Hence, more detailed knowledge on the mechani-
cal properties of the hip joint ligaments are of legitimate interest.
Recent reports on the mechanical properties of the hip capsule ligaments yielded varying

results, especially lacking in data pertaining to the PF ligament [12–14]. Trials on gender-spe-
cific differences have to date not been performed, though clinically higher capsular laxity was
described in female patients possibly affecting the mechanical properties [9,15–17]. Previously,
data of the mechanical properties were compared to the shoulder capsule possibly leading to a
misinterpretation of their impact in joint stability [12,13,18,19]. Actually, the hip capsule liga-
ments have to date not yet been compared to other passive hip stabilizers in the pelvic ring
region like the iliotibial tract. In the given study, our group obtained stress-strain values of
human IF, IS and PF ligaments using a similar setup as used in previous studies [20,21].
Addressing these issues, we investigated the following hypotheses:

1a) The IF, IS and PF ligaments differ in their cross-sectional areas, strain, and elastic modulus.

1b) IF, IS and PF ligaments have side- and gender-dependent mechanical properties.

2) Stress-strain data of the hip capsule ligaments are comparable to the iliotibial tract because
both passively contribute to hip joint stability.

Hip Capsule Ligaments Are Similar in Stress-Strain Data
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Materials and Methods

Ethical statement

All tissue samples were obtained from human body donors who gave their signed consent
before passing away for the use of their cadavers for research and educational purposes. Institu-
tional approval was obtained and tissues were used in accordance to the Saxonian Death and
Funeral Act of 1994 (S1 Table). Signed body donor consents are available on reasonable request
from the senior author (H.S.).

Tissue preparation

Ethanol-glycerin embalmed hip capsules with adjacent ligaments were obtained from 17
cadavers (9 females [F], 7 males [M], 13 from the left [L] and 8 from the right [R] side, mean
age 83.65 ± 10.54 years; Table 1) [20,22,23]. The hip joint was dissected by removing the sur-
rounding soft tissue, presenting the complete hip capsule. Medical students completed this part
of the dissections during their anatomical dissection course. The authors completely removed
the hip capsule ligaments from the acetabular rim and the femoral attachments, namely the
intertrochanteric line and the lesser trochanter, after placing orientation markings. The syno-
vial part of the hip capsule was removed. The ligaments of the hip capsule including the fibrous
part of the synovial membrane were tested in this setup [2]. Then the directed ligaments of the
hip capsule were identified and divided, based on their superficial fiber orientation. Using this
approach, we obtained the inferior portion of the IF ligament, which was subsequently named

Table 1. Baseline data of the hip joint capsule specimens. Mean values ± standard deviation are given in the captions for all tested tissue samples (∑).

Tissue number Age [years] Gender Side Cause of death

Σ = 17 83.65 ± 10.54 F:M (9:7) L:R (13:8)

1 95 F L Chronic cardiac failure

2 78 M L Acute myocardial infarction

3 97 F L

4 85 F R Pneumonia

5 79 F L Pulmonary embolism

R

6 89 F L Pneumonia

7 68 M L Pulmonary embolism

R

8 104 F L Chronic cardiac failure

9 67 F L Acute pancreatitis

10 74 M L Heart-lung failure

R

11 87 M R Chronic cardiac failure

12 79 F L Cardiac failure

R

13 89 M R Cardiac failure

14 84 M L Pneumonia

R

16 71 M L Unclear

17 81 F L Cardiac failure

F = female, M = male, L = left and R = right.

doi:10.1371/journal.pone.0163306.t001
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as IF ligament. We cut smaller probes of obviously superficial fibers from the parts of the IF, IS
and PF ligaments to assure the test of the whole probe and reducing non-orientated parts.
After dissection, 18 IF, 9 IS and 17 PF ligaments were used for stress-strain data generation.
After dissection the ligaments of the hip capsule were stored in the conservation fluid consist-
ing of water-diluted ethanol and glycerin and after hydration frozen by -80°C [23]. To mini-
mize the dehydrating effects of the ethanol fixation with alterations of the elastic modulus as a
consequence, the tissues were washed in isotonic sodium chloride solution for 24 hours before
further procedures [20,23].

Partial plastination of tissue endings

The ends of the respective hip capsule ligaments were partially plastinated according to the
published protocol (Fig 1A) [20,21]. In brief, the ligaments’ ends were substituted with acetone
under freezing conditions and treated with a resin. Covering the ligaments’ ends with Pertinax
plates (PF CP 201, Dr. Müller GmbH, Ahlhorn, Germany) and aluminum blocks reinforced
the stability of plastination, facilitated resin penetration and created a plane area without plasti-
nation [20,21]. The aluminum blocks were covered with silicon oil to release the tissue after
polymerization. The ends of the tissue were immersed in resin, a vacuumwas applied to
extrude the acetone and the resin entered the tissue. By subjecting the tissue to 40°C-warm
water the gelatin melted and the aluminum blocks were released from the unplastinated area.

Mechanical testing

The tissue was stored in isotonic sodium chloride solution until and sprinkled during the uni-
axial tensile testing. The mechanical tests were performed using an Instron testing machine
(5566A Dual Column Table-Top Frame Testing Machine, Norwood,USA) under room tem-
perature conditions (Fig 1B).
The tests were performedwith a crosshead displacement velocity of 5 mm/min. The 1 kN

load cell had a measurement accuracy of ± 0.4% between 1 and 100% of the load capacity and
an accuracy of ± 0.5% between 0.25 and 1% of the load capacity. In an initial speed-controlled
trial, the minimum force of plastic deformation was determined from representative samples

Fig 1. Preparation and material testing setup for the investigation of the stress-strain properties of

the ilio-, ischio- and pubofemoral ligaments. (A) Partially plastinated ligaments of hip capsule. (B)

Attached partially-plastinated tissue sample to the testing machine (C) Example of a stress-strain curve. The

elastic modulus was represented by means of a secant modulus. It was calculated as ratio of Δσ10% (last

10% of stress values) and according strain values Δε: elastic modulus = Δσ10% / Δε.

doi:10.1371/journal.pone.0163306.g001
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(seen in the load-deformation graphs or macroscopically visible signs of failure; own unpub-
lished results). In the consecutive testing cycles, the force maximumwas set at 90% of the mini-
mum force causing plastic deformation from the previous trial. Furthermore, to avoid plastic
deformation of the ligament samples, a displacement rate of 12 mm/min was chosen in a static
range. Hence, the hip capsule ligaments were tested in a pre-determined range of elastic defor-
mation and failure was not investigated to reduce failure related decreases in the subsequent
determined cross section. The load-deformation curveswere recorded displaying a linear gra-
dient in the investigated range. Based on these curves, the elastic modulus was computed as a
secant modulus of the most linear region. The secant modulus of each cycle of each tissue sam-
ple was then calculated from the data in the final region of the stress-strain curves as presented
in Fig 1C. After the biomechanical tests, the ligaments were marked externally by placing metal
clamps at the respective levels of the least cross section, thereby indicating the level where the
cross sections was measured. The samples, including the metal clamps, were then fully plasti-
nated and cut perpendicularly to the ligament fiber direction, guided by the metal clamps. The
cross-sectional areas were scanned at 1200 dpi (HP Scanjet, Palo Alto, USA) and the cross sec-
tions were measured at least two times by one investigator (Datinf GmbH, Tübingen, Ger-
many; S2 Table).

Data evaluation

The recorded data of each test cycle of each sample were used for evaluation. The strain and
the elastic modulus were calculated as the mean value of the ten consecutive test cycles. Pooling
these individual mean values, the general mean values ± standard deviations (SD) were gener-
ated for the hip capsule ligaments (IF, IS, PF). The mean values ± SD of the cross sections were
derived from pooling the mean values of the two measurements (P.P, T.W.). Graphs were plot-
ted and analyzed using Graph Pad Prism software 6 (La Jolla, USA). Testing the values regard-
ing Gaussian distribution was performed using Shapiro-Wilk test yielding a non-Gaussian
distribution for strain, cross section and elastic modulus. For investigations of side- and gen-
der-specific differences a non-Gaussian distribution was presumed related to the small sample
size. Hence, for statistical analyses the Kruskal-Wallis with a Dunn´s multiple comparison test
were performed. For comparison of the iliotibial tract to the hip capsule ligaments the Mann-
Whitney U test was chosen. The same statistical tests were used investigating gender- or side-
specific differences. Significance level was set to p values of 0.05 or less.
For the comparison to the iliotibial tract, elastic modulus data were used as a secant modu-

lus in a similar setup as used here for the hip capsule ligaments on basis of the values published
previously by our group [21]. Here, the data in the range from 4 to 11 N/mm2 of the old donor
group were used related to the reported linear course of the stress-strain data indicating an
elastic behavior. The setup including partial plastination and the same testing environment
was used to assure comparable results.

Results

During the dissection,we recognized an incongruent fiber orientation between the superficial
and profound layers of the hip capsule ligaments. This observationwas proven in hip joint
plastinates cut in different orientations obtained frommedical courses (S1 Fig). The non-orien-
tated parts of the hip capsule could not be assigned to the ligaments and were thus not tested.
During testing, one IF ligament failed without any signs of non-linear deformation within the
stress-strain data. This sample was excluded from further investigations. The data were gener-
ated from 17 IF, 9 IS and 17 PF ligaments obtained from the linear part of the curves.

Hip Capsule Ligaments Are Similar in Stress-Strain Data
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The IF ligament showed a significantly larger cross section compared to

the IS and PF ligament

We determined a cross-sectional area of 53.5 ± 15.1 mm2 for the IF ligament, 19.2 ± 13.2 mm2

for the IS- and 15.2 ± 7.2 mm2 for the PF ligament (Fig 2A, S2 Table). Comparing the cross-
sectional areas yielded a significantly larger cross-sectional area of the IF ligament compared to
IS- and PF ligament (p<0.05; adjusted p values: IF vs. IS: p = 0.0016, IF vs. PB: p<0.0001).
However, the cross-sectional area between the IS- and PF ligament did not presented signifi-
cant differences (IS vs. PB: p>0.99).

Strain of the hip capsule ligaments were similar and non-significantly

different

In accordance to the above-mentioned procedure we determined the following strain data:
Mean Strain: 129.8 ± 11.1% for the IF ligament, 128.7 ± 13.7% for the IS ligament and

133.2 ± 23.7% for the PF ligament (Fig 2B, S3 Table). No significant differences between the
hip capsule ligaments regarding strain were determined (p>0.99 for each comparison).

The elastic moduli of the hip capsule ligaments were similar without

significant differences

Elastic moduli were computed as follows: 48.8 ± 21.4 N/mm2 for the IF ligament, 37.5 ± 20.4
N/mm2 for the IS ligament, and 49.0 ± 32.1 N/mm2 for the PF ligament (Fig 2C, S2 Table). Sta-
tistical analyses yielded no significant differences between the hip capsule ligaments (p>0.05,
adjusted p values: IF vs. IS: p = 0.64, IF vs. PB: p>0.99, IS vs. PB: p = 0.98).

Strain, elastic modulus and cross section of the hip capsule ligaments

displayed no gender- or side-dependent differences

Comparing the strain, elastic modulus and cross section the obtained values regarding gender-
dependent differences displayed no significant differences (Table 2; p>0.99 for cross section,
strain and elastic modulus). The following values were obtained:

Fig 2. The ligaments of the hip capsule revealed similar mechanical properties except of significant

differences in the cross-sectional area. Hip capsules of 17 cadavers were used and dissected related to

their anatomical origin. From these tissue samples 17 ilio-, 9 ischio- and 17 pubofemoral were investigated

regarding their elastic modulus, strain and cross-sectional area. (A) The cross-section of the iliofemoral

ligament (IL) is significant higher compared to ischio- (IS) or pubofemoral (PF) ligament (* indicates p<0.05

adjusted p values: IF vs. IS 0.0016, IF vs. PB <0.0001, IS vs. PB >0.999). (B) Analysis of strain values

revealed non-significant differences between the hip capsule ligaments. (C) Elastic Modulus was generated

related to the strain and stress values measured over ten cycles and present no significant differences

between iliofemoral, ischiofemoral and pubofemoral ligament.

doi:10.1371/journal.pone.0163306.g002
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Strain:

• 131.5 ± 14.96%male iliofemoral (M-IF)- vs. 128.3 ± 6.64% female iliofemoral (F-IF)
ligament,

• 126.3 ± 12.21%male ischiofemoral (M-IS)- vs. 131.6 ± 16.71% female ischiofemoral (F-IS)
ligament and

• 135.1 ± 20.02%male pubofemoral (M-PF)- vs. 131.6 ± 27.75% female pubofemoral (F-PF)
ligament.

Elastic modulus:

• 53.43 ± 27.49 N/mm2 M-IF- vs. 44.69 ± 14.72 N/mm2 F-IF ligament,

• 42.38 ± 20.43 N/mm2 M-IS- vs. 31.33 ± 21.56 N/mm2 F-IS ligament and

• 48.925 ± 23.66 N/mm2 M-PF- and 49.14 ± 39.59 N/mm2 F-PF ligament.

Cross section:

• 55.07 ± 17 mm2 M-IF- vs. 52.07 ± 14.13 mm2 F-IF ligament,

• 20.8 ± 18.29 mm2 M-IS- vs. 17.27 ± 3.34 mm2 F-IS ligament and

• 14.06 ± 5.67 mm2 M-PF- vs. 16.21 ± 8.523 mm2 F-PF ligament.

Side-specific examinations revealed the following values:

Strain:

• 129 ± 9.03% right iliofemoral (R-IF)- vs. 130.2 ± 12.45% left iliofemoral (L-IF) ligament,

• 126.3 ± 8.03% right ischiofemoral (R-IS)- vs. 129.8 ± 16.39% left ischiofemoral (L-IS) liga-
ment and

• 145.5 ± 36.79% right pubofemoral (R-PF)- vs. 126.6 ± 9.31% left pubofemoral (L-PF) ligament.

Elastic modulus:

• 64.63 ± 18.87 N/mm2 R-IF- vs. 40.16 ± 18.01 N/mm2 L-IF ligament,

• 18.21 ± 11.13 N/mm2 R-IS- vs. 47.09 ± 16.85 N/mm2 L-IS ligament and

• 39.89 ± 19.82 N/mm2 R-PF- and 54.02 ± 37.04N/mm2 L-PF ligament.

Cross section:

• 43.29 ± 11.93 mm2 R-IF- vs. 59.03 ± 14.09 mm2 L-IF ligament,

• 26.53 ± 23.7 mm2 R-IS- vs. 15.58 ± 2.71 mm2 L-IS ligament and

• 16.2 ± 10.89 mm2 R-PF- vs. 14.66 ± 4.73 mm2 L-PF ligament.

Table 2. Investigation of gender-specific differences of the hip capsule ligaments regarding strain, cross section and elastic modulus. No statisti-

cal differences were determined (p>0.05).

Iliofemoral (n = 17) Ischiofemoral (n = 9) Pubofemoral (n = 17)

Female (n = 9) Male (n = 8) Female (n = 4) Male (n = 5) Female (n = 9) Male (n = 8)

Strain [%] 128.3 ± 6.64 131.5 ± 14.96 131.6 ± 16.71 126.3 ± 12.21 131.6 ± 27.75 135.1 ± 20.02

Cross section [mm2] 52.07 ± 14.13 55.07 ± 17 17.27 ± 3.34 20.8 ± 18.29 16.21 ± 8.52 14.06 ± 5.67

Elastic modulus [N/mm2] 44.69 ± 14.72 53.43 ± 27.49 31.33 ± 21.56 42.38 ± 20.43 49.14 ± 39.59 48.92 ± 23.66

doi:10.1371/journal.pone.0163306.t002

Hip Capsule Ligaments Are Similar in Stress-Strain Data

PLOS ONE | DOI:10.1371/journal.pone.0163306 September 29, 2016 7 / 16



Side-specific investigations revealed no significant differences (Table 3, p>0.99 for cross
section and strain, elastic modulus R-IF vs. L-IF: p = 0.55, R-IS vs. L-IS p = 0.61, R-PF vs. L-PF:
p>0.99).

The ligaments of the human hip capsule were more elastic and showed

less variation than the human iliotibial tract

Based on the reported elastic behavior of the iliotibial tract, indicated by the linear course of
stress-strain data by Hammer et al. 2012 [21], the values within the range from 4–11 N/mm2

(old donor group) were compared to the given data of the hip capsule ligaments. The mean
elastic modulus of the hip capsule ligaments (46.5 ± 26.0 N/mm2) was significantly lower than
for the iliotibial tract (564.7 ± 193.8 N/mm2), respectively (Fig 3; p<0.0001).

Discussion

Comparison with previous biomechanical tests of the hip capsule

ligaments revealed varying results with implications for the test setup

In recent studies the stress-strain data, cross section and elastic modulus of the hip capsule and
their ligaments were investigated yielding varying results [12–14]. Hewitt et al. investigated the
hip capsule ligaments (n = 10 IF and n = 10 IS ligaments) in a fresh-frozen bone-ligament-
bone interface [12,13]. They found a significantly higher elastic modulus and cross section for
the IF compared to the IS ligament. We found this only for the cross section. Comparing the
here-obtained data with the data of Hewitt et al. [12,13], our data revealed lower stress-strain
values. Furthermore, data of the PF ligament were not determined. Yet, not only the IF and IS
ligament contribute to hip stability. Therefore Stewart et al. investigated the material properties
of the intact capsule (n = 10) and subsequently of eight parts cut parallel to the superficial fiber
orientation [14]. Here, the authors did not state that the ligaments were separately removed,
suggesting that they used the terminus hip capsule for the hip capsule and its surrounding liga-
ments. Hence, the hip capsule ligaments, the fibrous and the synovial part of the hip capsule
were examined. The authors did not find any significant differences between the investigated
tissue samples. Obtained data of Stewart et al. [14] revealed values that are smaller than Hewitt
et al.'s values [12,13]. Indeed, we did not used fresh-frozen tissue samples but the ethanol-glyc-
erin fixation method is known to only marginally affect the elastic modulus [20,22,23]. After
watering the samples with isotonic sodium chloride solution, the alterations of the fixation
method are clearly reduced [20]. In addition, the small sample size of all studies, including the
present study, might be a limitation leading to such varying results. A further explanation for
the differing results might also be present in the different test setup. Where Hewitt et al. used a
bone-ligament-bone interface, measuring not only the hip capsule ligaments but also the adja-
cent bone, and Stewart et al. measured the eight samples of the hip capsule possibly destroying
the fiber structure. As known from histological investigations, the IF fibers are mainly

Table 3. Investigation of side-specific differences of the hip capsule ligaments regarding strain, cross section and elastic modulus. No Statistical

differences were determined (p>0.05).

Iliofemoral (n = 17) Ischiofemoral (n = 9) Pubofemoral (n = 17)

Left (n = 11) Right (n = 6) Left (n = 6) Right (n = 3) Left (n = 11) Right (n = 6)

Strain [%] 130.2 ± 12.45 129 ± 9.03 129.8 ±16.39 126.3 ± 8.03 126.6 ± 9.31 145.5 ± 36.79

Cross section [mm2] 59.03 ± 14.09 43.29 ± 11.93 15.58 ± 2.71 26.53 ± 23.7 14.66 ± 4.73 16.2 ± 10.89

Elastic modulus [N/mm2] 40.16± 18.01 64.63 ±18.87 47.09 ± 16.85 18.21 ± 11.13 54.02 ± 37.04 39.89 ± 19.82

doi:10.1371/journal.pone.0163306.t003
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orientated parallel to one another, whereas the IS displayed a big amount of fibers perpendicu-
lar to the superficial orientation [24]. The varying fiber orientations within the hip capsule liga-
ments might reveal an attempt to explain the differing results of Hewitt et al., Stewart et al. and
the presented data here. Additionally, in these studies, specimen dimensions might have dif-
fered with effect onto the stress-strain values. Thus a difference of damaged deeper collagen
layers, possibly not parallel to the superficial orientation, of the hip capsule ligaments might be
expected.Hence, these layers and fibers cannot be measured resulting in an underestimation of
the biomechanical properties of examined sampled independent of length and cross section,
e.g. for the IS. We conclude from our data that the hip capsule ligaments in total are more elas-
tic than suggested by Hewitt et al. [12,13]. The difference between our data and that of Hewitt
et al. might be explained by the examination of larger tissue samples by Hewitt´s group. This
might be related to testing deeper collagen layers and fibers which are not in the supposed test-
ing direction. Considering the bias, a polyaxial test setup is needed to get realistic insights into

Fig 3. The ligaments of the hip joint capsule have a lower elasticity and less variation compared to

the iliotibial tract (* indicates p<0.0001).

doi:10.1371/journal.pone.0163306.g003
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the mechanical behavior of the hip capsule ligaments related to the layers formed like a wire
mesh (S1 Fig). Nevertheless, we assume our data to be reliable to generate baseline data due to
the decreasedmaterial slippage [12–14,25]. It needs to be taken into account that ethanol-fixed
tissue samples were used and that time has elapsed until the cadavers were cooled and
embalmed. Although tendons, aortic, muscle and spine samples are different from ligaments,
for these tissues no significant alterations were reported, especially in the first three days [26–
29]. Furthermore, it could be shown by others that the stress-strain and failure-load data were
minutely affected by post mortem delay up to 96 hours in a rabbit model [30]. Nevertheless,
the effects of water content, drying and fixation, as known from Thiel fixation, cannot
completely excluded and thus limit the estimation of a realistic behavior [31–33].
Beside this issue, with respect to the histological architecture of the hip joint ligaments, also

the differences in data of the anatomical course and related preparation are challenging deter-
mining realistic material properties of the hip capsule ligaments [34]. Although the anatomical
course of the hip capsule ligaments seems to be completely elucidated, reports differ. This
could be related to the interwoven structures of the ligaments or to individual findings in ana-
tomical specimens and patients [4,34–36]. In addition, the thickness of the hip capsule and
their ligaments might vary as a result of pathological alterations like femoroacetabular
impingement (FAI) also affecting the data [37,38]. Apart from these limitations, we have to dis-
card our hypothesis that the IF-, IS- and PF ligament differ in strain and elastic modulus.

The clinical importance of the hip capsule and its ligaments

Following hip joint surgery, such as arthroplasty (THA) or arthroscopy, the detrimental effects
of transecting the hip capsule ligaments are revealed by decreasing stability and increased dislo-
cation events [3,5–8,39,40]. Studies were performed investigating the effect of the surgical
approach on hip stability, yielding it as an important factor influencing hip joint stability [5,7].
Related to the approach, different parts of the hip capsule and capsule ligaments were dissected
and either left open or reconstructed, initiating an extensive discussion of the role of capsular
reconstruction,where capsular reconstruction seems to be beneficial [7]. In addition, it was
shown that the surgical approach predicts the dislocation direction of the hip prosthesis [41].
Thus, the whole hip capsule ligaments might be involved in reducing dislocation events.
Hence, the ability of hip capsule ligaments do not differ, as supported by our data and contra-
dicting previously obtained data [12–14]. The suggestion of the beneficial effect of capsular
reconstruction is supported by some finite element studies, based on the data of Hewitt et al.,
confirming the importance of the hip capsule and its ligaments [5–8,12,13]. Also, in hip
arthroscopy, the hip capsule and its ligaments are of pivotal interest [9–11]. Capsular laxity
was associated to labral tears and injuries leading to an elongation of the IF ligament [11]. Due
to increasing hip arthroscopy procedures, the recognized iatrogenic hip instabilities increased
[9,42]. Thus, McCormick et al. reported about 1.23% revisions within one year due to labral
injuries and capsular insufficiency. In these cases magnetic resonance imaging (MRI) revealed
an abnormal capsular structure without indications of FAI. All these patients did not have a
capsular repair in their first arthroscopy. These studies underline the importance of the hip
capsule ligaments and lead to the question how much the mechanical properties contribute to
their stabilizing effects.

Gender- and side-dependent differences of the hip capsule ligaments

Apart from the question, how much impact the mechanical properties have in hip stability,
previous studies offered evidence for gender-specific differences in the capsular behavior by
the observation of longer hip capsules in women compared to hip capsules of men [37]. In
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contrast to the length, men displayed a bigger capsular volume in MRI studies [43]. Further
evidence for gender-specific alterations of the stress-strain properties are given by the observa-
tions on capsular insufficiencypredominantly in female patients and hip laxity found especially
in female cadavers [3,9]. An explanation for these observations is currently not available. Data
from investigations of the collagen content and effects on ligament healing in relation to sexual
hormone receptors offered evidence for gender-specificmechanical properties and might
reveal an attempt at explanation for the clinical observations [15–17]. In our test setup we were
not able to determine gender-specific differences. These missing differencesmight be due to
the attrition of ligaments, to the postmenopausal state of the female cadavers and related
decreases in sexual hormones such as estrogen and to missing data to the weight bearing of the
cadavers. Based on the predominant unilateral occurrence of pathologies like hip laxity side-
specific differences are possible and suggested to better describe the hip joint behavior [12].
Nevertheless, in our study we were not able to determine such differences suggesting that side-
specific differences of the hip capsule ligaments do not contribute to the occurrence of such
pathologies. But so far, the affection of these properties might be changed as consecutive event
to these pathologies as seen in variations of hip capsule size and thickness [37,38].

Comparison of the mechanical properties of the hip capsule ligaments

with other ligamentous tissue

In recent studies the mechanical properties of the hip capsule were compared to the shoulder
capsule and on this basis graded as pivotal stabilizer [13]. A comparison to an adjacent passive
hip stabilizer, namely the iliotibial tract, is in our view preferable, because the iliotibial tract is
known to transfer high loads [44]. Thus, we compared the elastic modulus of the hip capsule
ligaments with previously- obtained data of the iliotibial tract [21]. The hip capsule ligaments
were less stiff and their stiffness showed less variation when compared to the iliotibial tract. In
contrast to the hip capsule ligaments, the iliotibial tract consists of mainly parallel-aligned col-
lagen fiber bundles [44,21]. In our view, the interwoven structures of the hip capsule ligaments
might be necessary to preserve an elastic hip stability. However, if the system is in pre-load, it
could be rigid, like a tensioned wire mesh. This leads to the assumption that not only the
mechanical force transduction of the hip capsule contributes to hip stability, especially regard-
ing hip arthroscopy and the occasional small defects. The effect of capsular release might be
due to a loss of the synergistic effects of passive and active stabilizers (external rotators, the glu-
teal and rectus femoris muscles), as known from the concept of form and force closure of the
sacroiliac joint [1,45–49]. Although the majority of patients displayed at least proximal or distal
contact after capsule closure in hip arthroplasty, the mechanical behavior of the neo-capsule
might not be comparable to the preoperative capsule as seen in their re-organized structure
[7,50,51]. Hence, the natural repair of the capsule might also have other implications. Other
theories were established such as the reduction of cavities surrounding the implant neck avoid-
ing fluid-filled rooms as an elastic mechanical block. In the hip capsule a sealing was seen to
obtain a pressure dependent stability [6,52–57]. Our values underline such theories. The lower
elastic moduli calculated from our data support the hip capsule ligaments to fulfill such func-
tions. This may also explain the merging and strengthening of the fibrous part by the IF-, IS-
and PF ligament. However, it needs to be mentioned that our study has a number of limita-
tions. By investigating exclusively elderly cadavers originating and in a very limited sample size
[33] we are unable to determine the potential effects of aging, which are well known to alter the
mechanical properties of the hip capsule [12–15,17,18,24,34,46].We also did not use a polyax-
ial test setup, which would have been necessary to measure a wire-mesh-like collagen arrange-
ment as presumably existent in the capsular ligaments of the hip joint [2]. Another potential
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bias of the data was introducedmeasuring the middle part of the ligament only, which is
known to be weaker than its attachments [31]. Another drawback of the present study is the
missing separation of the hip capsule ligaments and the fibrous part of the hip capsule [2].
Thus, the damage resulting from different preparation techniques in relation to the subse-
quently used test setup might result in the differing data presented by Hewitt et al., Stewart
et al. and the present study [12–14]. In addition, the fixation by dehydration with ethanol and
acetone and the post mortem delay have affected the data [20,22,23,31]. Furthermore, our
mechanical data are limited by the missing data of ultimate stress. Thus, the elastic properties
of the hip capsule ligaments may be overestimated. Although the displacement rates were cho-
sen in a static range in the given study to allow for comparability to previous studies and to
examine the samples externally during the mechanical testing, micro-damage of the samples
cannot be excluded. These limitations might be an attempt at explanation of the differences to
the previously-obtained data of the hip capsule ligaments [12–14] In future, data obtained in a
fresh and non-embalmed condition, also from younger and in a larger sample size may be of
interest so substantiate our findings.

Summary

The obtained elastic modulus of the hip capsule ligaments was lower compared to the previ-
ously- obtained elastic modulus of the iliotibial tract and presented data lie in between previ-
ously-performed studies [12–14]. We found no gender- and side-specific differences in the hip
capsule ligaments. Discussing our results with previous studies, polyaxial testing of the liga-
ments of the human hip joint are necessary to address the different fiber orientations. Our val-
ues indicate that the hip-stabilizing effect of the ligaments might not only be due to their
involvement in load transfer. There seems to be an interaction between the passive and active
hip stabilizers. If the capsule is as elastic as our data suggest, the capsule may be adhere to the
joint without high tension during hip movement. Thus, we conclude that the hip capsule
together with its (elastic) ligaments functions like a cuff that is tautened by the active stabilizers
of the hip. Therefore, we reject the hypothesis that the mechanical properties of the hip capsule
are solely responsible for the stabilizing effect of the hip capsule to hip stability.
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23. Hammer N, Löffler S, Feja C, Sandrock M, Schmidt W et al. (2012) Ethanol-glycerin fixation with thy-

mol conservation: a potential alternative to formaldehyde and phenol embalming. Anatomical sciences

education 5 (4): 225–233. doi: 10.1002/ase.1270 PMID: 22434588

24. Sato K, Uchiyama E, Katayose M, Fujimiya M (2012) Microscopic analysis of the iliofemoral and ischio-

femoral ligaments in the hip joint: collagen fiber direction and crimp distribution. Anatomical science

international 87 (1): 50–55. doi: 10.1007/s12565-011-0117-7 PMID: 22006046
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