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Two different methods are used to solve the stochastic collection equation (SCE) nu­
merically. They are called linear discrete method (LDM) and bin shift method (BSM), 
respectively. Conceptually, both of them are similar to the well-known discrete method 
(DM) of Kovetz and Olund. For LDM and BSM, their concept is extended to two prog­
nostic moments. Therefore, the "splitting factors" (which are constant in time for DM) 
become time-dependent for LDM and BSM. 

Simulationsare shown for the Golovin kernel (for which an analytical solution is avail­
able) and the hydrodynamic kernel after Hall. Different bin resolutions and time steps 
are investigated. As expected, the results become better with increasing bin resolution. 
LDM and BSM do not show the anomalous dispersion which is a weakness of DM. 

Zusammenfassung 

Es werden zwei verschiedene Methoden zur numerischen Lösung der "Gleichung für 
stochastisches Einsammeln" (stochastic collection equation, SCE) vorgestellt. Sie wer­
den als Lineare Diskrete Methode (LDM) bzw. Bin Shift Methode (BSM) bezeichnet. 
Konzeptuell sind beide der bekannten Diskreten Methode (DM) von Kovetz und Olund 
ähnlich. Für LDM und BSM wird deren Konzept auf zwei prognostische Momente er­
weitert. Für LDM und BSM werden die" Aufteil-Faktoren" (die für DM zeitlich konstant 
sind) dadurch zeitabhängig. 

Es werden Simulationsrechnungen für die Koaleszenzfunktion nach Golovin (für die 
eine analytische Lösung existiert) und die hydrodynamische Koaleszenzfunktion nach Hall 
gezeigt. Verschiedene Klassenauflösungen und Zeitschritte werden untersucht. Wie er­
wartet werden die Ergebnisse mit zunehmender Auflösung besser. LDM und BSM zeigen 
nicht die anomale Dispersion, die eine Schwäche der DM ist. 

1 Introduction 

For the description of the warm cloud microphysics, the drop growth via collision and 
coalescence is the prevailing process for drops larger than 20 µm in radius. The coales­
cence is described by the stochastic collection equation (SCE). The SCE can be solved 
analytically for various kernels and initial distributions ( GOLOVIN 1963, SCOTT 1968) but 
not for the hydrodynamic kernel. Numerical solutions of the SCE are given by various 
authors (KOVETZ AND ÜLUND 1969, BLECK 1970, BERRY AND REINHARDT 1974, HALL 
1980, TZIVION ET AL. 1987, 1999, CHEN AND LAMB 1994, SEESSELBERG ET AL. 1996, 
BOTT 1998). If analytical solutions are available, they are used to evaluate the numerical 
methods. 

One can distinguish different approaches. A main difference between the different nu­
merical models is the number of prognostic moments used. Some use only one prognostic 
moment in each bin ( e. g. the drop number concentration or the liquid water content ), 
some use two moments (e. g. both of them). In a one-moment model the average mass 
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in each bin is fixed, whereas in a two-moment model it can vary within the borders. This 
is one of the most important advantages of models using two-moment methods. 

Two different two-moment approaches are presented which are conceptually and math­
ematically relatively simple. The loss terms are calculated in the same way for both of 
the methods. The first one we want to call linear discrete method (LDM) because it is 
related to the discrete method of KOVETZ AND ÜLUND (1969) and the gain terms are 
calculated via a linear approximation of the droplet distribution. The second one is a two 
step procedure. In a first step, each gain term is assigned to one single bin. In a second 
step, a certain part of the gain term is shifted to a neighbouring bin. This is a modifica­
tion of the concept of CHEN AND LAMB (1994). We call it bin shift method (BSM). Both 
methods are compared to the discrete method (DM) of KOVETZ AND ÜLUND (1969). 

SEESSELBERG ET AL. (1996) follow a totally different concept. Their stochastic 
approach is based directly on the stochastic process of colliding drops and not on the 
SCE. Every single collision in a given volume is considered. Although the results are 
physically almost perfect, the stochastic method cannot be implemented in cloud models 
because of the extremely long computing times (several hours compared to some minutes 
for "fast" spectral models based on the SCE). The merit of this method is that it can 
serve as a benchmark for the simulation results of the faster spectral models, especially 
when hydrodynamic kernels are used, for which no analytical solutions are available. 
SEESSELBERG ET AL. (1996) compare the solutions of the stochastic approach to results 
obtained with the models following BERRY AND REINHARDT (1974) and KOVETZ AND 
ÜLUND (1969), slightly modified, respectively. They conclude that the DM of KOVETZ 
AND ÜLUND (1969) shows anomalous dispersion despite their own slight modification. 
Due to the use of two prognostic moments, the two-moment methods presented here do 
not suffer from this dispersion although the concept followed is very similar. 

2 Equation for the moments 

The coalescence process is described by the stochastic collection equation (SCE, e. g. 
PRUPPACHER AND KLETT 1997). lt can be written in the form 

ßn(x, t) 
ßt 

1 rx 
2 lo n(x - y, t)n(y, t)K(x - y, y)dy 

-n(x, t) fo00 

n(y, t)K(x, y)dy 

(1) 

where n(x,t)dx is the number of drops E [x,x+dx] per unit volume at timet and K(x,y) 
is the collection kernel. 

A single drop of mass x belongs to bin k if 

(2) 

with Xk+1 = pxk and p = const > 1. In our simulations we use p = 2, 21
/

2
, 21

/
4 and 

X1 = ~1r-rip1 with r1 = 1 µm and pz = 1000 kg m-3. The centre of the interval k is given 
by Xk = (xk + Xk+1)/2. 

The lth moment of the distribution function n(x, t) in bin k is defined as 

/ 1Xk+l / Mk = x n(x, t)dx 
Xk 

(3) 

After multiplying (1) with x1 and integrating over each bin k, we obtain a set of prognostic 
equations for the moments in each bin k: 



dMl(t) 
dt 

~ 1.xk+i 1x n(x - y, t)n(y, t)K(x - y, y)dy 
2 Xk X! 

JI:x 1xk+i x1n(x, t)dx 1xi+i n(y, t)K(x, y)dy 
j=l Xk Xj 
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(4) 

with JMax being the number of bins defined. The first term on the right-handed side 
describes the gain of bin k due to collisions that result in drops belonging to bin k (gain 
term). The second term describes the loss of bin k caused by the collision of a drop of 
bin k with another drop (loss term). 

This set of equations has tobe solved numerically. For DM, the Oth moment (Mf = Nk, 
drop number density in m-3) in each bin k is the prognostic variable. For LDM and BSM, 
the Oth moment and the lst moment (M} = Mk, liquid water content in kg m-3 ) in each 
bin k are the prognostic fields. 

3 Solution of the equation 

To solve the SCE, the gain and loss terms are considered seperately. A simple Euler 
scheme is used for the time integration. 

Nk(t + ßt) 
Mk(t + ßt) 

Nk(t) + ßgainNk(t) - ßlossNk(t) 
Mk(t) + ßgainMk(t) - ßzossMk(t) 

For DM, only the terms concerning the Oth moment N are considered (eq. (5)). 

3.1 The loss term 

(5) 
(6) 

First, we consider the second term on the right-handed side of (4). lt describes the loss 
of the lth moment of bin k caused by the collision of drops out of the bins k and j, 
respectively. The interaction of each pair of bins k, j for moment l is 

The interaction term can be approximated by 

{Xk+l 1.Xj+l 
W ML(t) ~ Kk,j lxk x1n(x, t)dx xi n(y, t)dy 

Kk,jML(t)MJ(t) 

with Kk,j = K(xk, Xj)· We use the interaction terms for l = 0, 1 

W Nkj(t) = Kk,jNk(t)Nj(t) for l = 0 

W Mkj(t) = Kk,jMk(t)Nj(t) for l = 1 

Therefore, the loss terms for bin k are 

j=l 

JMax 

L WMkj(t)ßt 
j=l 

For DM, only (10) and (12) are used. 

(7) 

(8) 

(9) 

(10) 
(11) 

(12) 

(13) 
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3.2 The gain term 

Determining the gain term is mathematically more demanding than calculating the loss 
term because of the double integral in the SCE. By introducing the "splitting factors" 
G kij and H kij, the gain terms for bin k can be written as 

JMax i-1 1 JMax 

L "LGkijWNij(t)ßt+ 2 L GkiiWNii(t)ßt 
i=2 j=l i=l 

(14) 

JMax i-1 

L L Hkij(W Mij(t) + w Mji(t))ßt (15) 
i=2 j=l 

JMax 

+ "L Hkiiw Mii(t)ßt 
i=l 

The first term on the right-handed side of each equation describes the gain due to collisions 
of drops i > j, the second term describes the gain due to collisions of equal-sized drops 
i. The problem reduces to finding the appropriate "splitting factors" Gkij and Hkij for 
every possible collision. In most of the cases, Gkij = Hkij = 0. Gkij -=f. 0 (Hkij =f:. 0) means 
that a collision of two drops out of the bins i and j, respectively, contributes to bin k in 
terms of N (M). 

In the following, we describe three different ways of numerically determining Gkij and 
Hkij· First, we review the discrete method of KOVETZ AND ÜLUND (1969). Due to the 
so-called anomalous dispersion of the discrete method, a slight modification was proposed 
by SEESSELBERG ET AL. (1996). The discrete method is a one-moment scheme with a 
fixed average mass in each bin. Therefore, we only have to consider (14) and to determine 
Gkii· 

Then, we explain two conceptually similar methods. Like DM, both of our solutions 
are mathematically relatively simple. The solution for the gain term of ( 4) is derived by 
posing the question to which bin( s) the loss terms of other bins contribute. This question 
can be answered by looking at the sum of the masses of the two drops colliding. In 
contrast to DM, the splitting factors are time-dependent for LDM and BSM. This leads 
to a more realistic description of the coalescence process. 

3.2.1 Discrete method 

Two drops out of the bins k and j collide and form a new drop of mass Xn with 

(16) 

For k =f:. j we can find bins i and i + 1 with 

(17) 

The contributions resulting from the collisions of drops out of the bins k and j have to 
be split up into the bins i and i + 1. Number conservation yields 

(18) 

and mass conservation 
(19) 



Xi 

gain term 
for bin i 

I ... •-- bin i 

65 

--~------ bin i + 1 ---~ 

I gain term 
~forbini+l 

Figure 1: The linear approximation to the distribution of the loss terms of bins k, j because 
of their interaction with each other is used to calculate the part of the source terms for 
the bins i and i + 1 caused by this interaction. 

For k = j, one single bin i is found with 

(20) 

because of the choice of p. Gikj = 1 in this case. 
Due to the anomalous dispersion of the discrete method, SEESSELBERG ET AL. (1996) 

replaced (18) by the following condition 

(21) 

This modification is used in the simulations presented here. For k # j, this leads to 

(22) 

3.2.2 Linear discrete method 

The "gain bins" i and i + 1 for a collision of two drops out of the bins k and j are 
determined in the same way as for DM. For k = j, Gikj = Hikj = 1 if (20) is true and 
Gikj = Hikj = 0 otherwise. The splitting of N and M between the bins i and i + 1 for 
k > j is calculated via the linear approximation described in appendix A. lt is applied 
with 

X1 Xk + Xj (23) 

X2 Xk+l + Xj+i (24) 

N WNkißt (25) 

M (W Mki + W Mik)ßt (26) 

Two colliding drops form one new larger drop. Therefore, in (25) one of the terms W Nkj 
and W Njk is chosen (W Nkj = W Njk)· The mass of the new drop is the sum of the two 
smaller drops, therefore we have to consider both terms W Mkj and W Mjk in (26) (in 
general W Mkj f:. W Mjk)· 

After determining the parameters of the linear approximation, the gain terms are 
calculated analytically by integrating the linear approximation of the distribution function 
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from x1 to Xi+l (gain terms for bin i: !lkjNi, !lkjMi) and from Xi+I to X2 (gain terms for 
bin i + 1: !lkjNi+I, !lkjMi+I), respectively, for the Oth and the Ist moment (see :figure 1). 
Due to the time dependence of the linear aproximation, Gikj and Hikj are time-dependent 
as well. 

Giki = !lkiNif (W Nki!lt), Hiki = !lkiMi/((W Mki + W Mik)!lt) (27) 

Gi+lki = !lkiNi+i/(W Nki!lt), Hi+1kj = !lkjMi+i/((W Mki + W Mik)!lt) (28) 

3.2.3 Bin shift method 

In contrast to the methods described above, the interaction terms of the bins k, j are 
assigned only to one single bin i. This bin i is found by checking if the sum of the centres 
of the bins k, j belongs to bin i. 

X. < Xk + X . < X ·+1 i - J - i 
(29) 

Then the terms defined in (25) and (26) are considered as gain terms for bin i. In other 
words, we set Gikj = Hikj = 1 if (29) is true and Gikj = Hikj = 0 otherwise. 

In a second step, after (5) and (6) are evaluated, the bin shift (CHEN AND LAMB 

1994) is applied ( see appendix B). 

4 Results and discussion 

We present simulation results for the numerical methods described in the previous sec­
tion. We did simulations for different resolutions (p = 2 and p = 21/ 4 ) for the Golovin 
kernel (GOLOVIN 1963) and for the hydrodynamic kernel after HALL (1980). As initial 
distribution we use the same exponential function as TZIVION ET AL. (1987, 1999). 

Nox 
n(x) = 4-2 exp[-2x/x0] 

Xo 
(30) 

with N0 = 3·108 m-3 and x 0 = 3.33 .10-12 kg for the simulations with the Golovin kernel 
and N0 = 108 m-3 and x 0 = 10-11 kg for the Hall kernel. This corresponds to a liquid 
water content of 1 g m-3 in both cases. 

For all runs the water mass is conserved (except numerical inaccuracies). 

4.1 Golovin kernel 

Using the Golovin kernel, the SCE can be solved analytically for various initial distri­
butions (GOLOVIN 1963, SCOTT 1968). The Golovin or "sum of mass" kernel is given 
as 

K(x, y) = b(x + y) (31) 

with b = 1.5 m3 s-1 kg-1 and x, y the mass of the colliding drops. Out of all kernels for 
which an analytical solution of the SCE is known, the Golovin kernel is closest to the 
hydrodynamical kernel and therefore is a good test for the numerical method used. 

Figure 2 shows the mass distribution after an integration time of 15, 30, 45, and 60 
minutes for DM, LDM, and BSM compared to the analytical solution (GoLOVIN 1963) 
for p = 2 (left) and for p = 21

/
4 (right). For p = 2, one can clearly see the anomalous 

dispersion of DM, which is not shown by LDM and BSM. LDM seems to overestimate 
the coalescence growth, whereas BSM seems to underestimate this growth. LDM is closer 
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Figure 2: Mass distribution for the Golovin kerne[ using DM! LDM! and BSM with p = 2 
(left) and p = 21

/
4 (right) compared to the analytical solution. Results are shown after 0 

(initial distribution)! 15! 30! 45! and 60 min.! respectively! time step was 1 s. 

to the analytical solution than BSM. With increasing resolution (p = 21/4, fig. 2, right ), 
the analytic solution is approximated almost perfectly by all methods and the different 
solutions show nearly the same results. The time step used was 1 s. 

Figure 3 shows the simulation results for LDM (left) and BSM (right) using different 
time steps (1 s, 3 s, and 10 s). The behaviour is the same for both of the schemes: The 
growth for the 10 s time increment is slightly retarded compared to the other two (1 s 
and 3 s), which are almost identical (p = 2114 ). This means that time steps up to 10 s 
can be used in the models with only small errors. 

The results shown here are comparable to those presented by other authors using 
different numerical methods (e. g. TZIVION ET AL. 1987, 1999, SEESSELBERG ET AL. 

1996, BOTT 1998, and others). 
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Figure 3: Mass distribution for the Golovin kernet using LDM {left) and BSM {right) with 
different time steps dt = 1 s) dt = 3 s! and dt = 10 s compared to the analytical solution. 
Resolution was p = 21

/
4

. Results are shown after 0 {initial distribution), 15! 30! 45, and 
60 min.! respectively. 



68 

10• 

- DM 
............ LDM 

10' --- BSM 

~ e 
"' 6 10° 
.5 

:e ::;: 
"O 

10-2 

10-4 ~~~,_._.,_,.~~~~~~~~~~ 
10... 10-5 10-4 10-2 

rin [m] 

10
4 

102 

~ 
< 
E 

~ 10° 
.5 

:e ::;: 
"O 

10-2 

10-4 
10 ... 10-4 

rin [m] 

- DM 
·····- LDM 

--- BSM 

Figure 4: Mass distribution for the Hall kernel using DM1 LDM1 and BSM with p = 2 
(left) and p = 21

/
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min.1 respectively1 time step was 1 s. 

4.2 Hydrodynamic kerne! 

The hydrodynamic kernel is defined as 

K(x, y) = 7r(rx + ry) 2 Ecou(x, Y )Ecoaz(x, Y )lvx - Vyj (32) 

with the terminal fall velocity v and the collection efficiency E(x, y), which is given as 

E(x,y) = Ecou(x,y)Ecoal(x,y) (33) 

with collision efficiency Ecou(x,y) and the coalescence efficiency Ecoaz(x,y). Different 
datasets and theoretical investigations are used in spectral simulations (DAVIS 1972, 
JONAS 1972, LIN AND LEE 1975, HALL 1980). For our simulations we choose one of 
the most used datasets for the collision efficiency which is the one of HALL (1980). The 
coalescence efficiency is assumed to be unity and the terminal velocity is taken from 
BEARD (1976). 

Figure 4 shows the results for DM, LDM, and BSM for p = 2 (left) and p = 21
/

4 (right) 
after 20 and 40 min. simulation time, respectively. For p = 2, the solutions obtained 
using the three methods, differ very much. Again, DM shows a strong dispersion. LDM 
overestimates the growth and BSM underestimates the growth. For higher resolutions 
(p = 2114), solutions for the three methods approach each other. The real solution should 
be somewhere in between LDM and BSM and closer to LDM. This is due to the fact that 
the LDM solutions for p = 2 and p = 21

/
4

, respectively, differ not as much as the BSM 
solutions for the same resolutions ( compare fig. 4 left and right). 

Figure 5 shows the results for LDM (left) and BSM (right) using different time steps 
(1 s, 3 s, and 10 s with p = 2114 ). Like for the Golovin kernel, the use of a larger time 
step leads to a slight underestimation of the growth. The hydrodynamic kernel seems to 
be a bit more sensitive to the variation of the time step than the Golovin kernel. 

Generally, it can be said that the errors for the simulations using the hydrodynamic 
kernel are only slightly larger than those for the ones using the Golovin kernel. This 
supports the assumption that if a model shows good results for the Golovin kernel it 
will give good results for the hydrodynamic kernel as well. General tendencies are the 
same for different kernels: Strong dispersion for DM ( especially for low resolutions ), slight 
overestimation for LDM and underestimation for BSM. The weakness of each method is 
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Figure 5: Mass distribution for the Hall kerne! using LDM (left) and BSM (right) with 
different time steps dt = 1 s1 dt = 3 s, and dt = 10 s. Resolution was p = 21

/
4

. Results 
are shown after 0 (initial distribution) 1 20, and 40 min., respectively. 

seen best when using a low resolution. Solutions using high resolutions and small time 
steps are good benchmarks if there are no systematic errors included. LDM seems to give 
the best results for both kernels as well as for all bin resolutions used. 

4.3 Computation times 

Table 1 shows the computation times for the runs performed. One expects that DM 
needs less time than LDM and BSM due to the fact that DM is a one-moment method. 
This is true only for small resolutions. The time consumption of DM and LDM grows 
roughly proportional to the square of the bin number JMax when the resolution increases. 
This corresponds to the number of interaction terms. BSM needs less time than LDM 
( especially for high resolutions) because each time step the linear approximation has to be 
applied only once per bin (which is lMax), whereas for LDM it has tobe applied once per 
interaction term (which is Jkax)· Therefore, time consumption of BSM does not grow as 
strong as for DM and LDM with increasing resolution and for high resolutions, DM even 
needs more time than BSM. 

Generally, empty bins are not taken into account to save computation time. Therefore, 
underestimation of the growth saves computation time (BSM) whereas overestimation 
(LDM) or dispersion (DM) lead to longer computation times. These effects should be 
small. 

Golovin kernel Hall kernel 
p=2 p = 21/4 p=2 p = 21/4 

DM 3.86 s 53.70 s 2.50 s 36.50 s 
LDM 6.23 s 97.61 s 3.30 s 51.91 s 
BSM 5.80 s 65.91 s 3.08 s 27.27 s 

Table 1: Run times of the runs performed on an IBM RS6000. For the Golovin kerne! 
the integration time was 60 min., for the Hall kerne[ 40 min. 
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5 Summary 

Two spectral models for a numerical solution of the SCE were presented. They follow a 
similar concept as the discrete method of KOVETZ AND ÜLUND (1969). 

For the Golovin and the Hall kernel, simulations with different resolutions and 
timesteps were carried out. For the Golovin kernel, the results were compared to the 
analytical solution. For the Hall kernel, no analytical solution is available. Therefore, 
the results of different methods, time steps and bin resolutions only can be compared to 
each other. Generally, the errors for the Hall kernel are somewhat larger than for the 
Golovin kernel when using the same model parameters. For both kernels, DM shows an 
anomalous dispersion, especially for low resolutions. Despite following the same concept 
as DM, LDM and BSM do not show dispersion. This is due to the fact that two prognostic 
moments are used and therefore, the splitting factors are time-dependent. For growing 
resolution, the numerical solutions approach the real solution. 

LDM seems to give the best results (for both kernels and all resolutions ), but needs 
the most computing time as well. The one-moment method DM is faster than the two­
moment method BSM only for low resolutions; for high resolutions BSM is faster. 

Appendix 

A Linear approximation 

Using the first two moments N = Nk and M = Mk, one can calculate a linear approxi­
mation of the distribution function for each bin k. This was clone by CHEN AND LAMB 

(1994). The linear approximation is valid in for an interval with the lower border x1 = Xk, 

the upper border x 2 = Xk+i, and the centre x 0 = xk, and is defined as 

n(x) = no + a(x - xo) (34) 

Using the definition of the moments (Eq. (3) for l = 0, 1) and substituting n(x) by (34) 
we obtain 

1x2 N - (no + a(x - xo)) dx (35) 
x1 

1x2 M - x(no + a(x - xo)) dx (36) 
X1 

(a) (b) n(xi) < 0 (c) n(x2) < 0 

Figure 6: Linear approximation of the drop distribution function: (a) standard (eq. (34)), 
(b) alternative formulq,tion (eq. (39}) for n(xi) < 0 and (c} n(x2) < 0, respectively. 
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After some transformations we get the two parameters 

N 
(37) no 

Xz - X1 

a = 
12(M - x 0N) 

(x2 - x1)3 (38) 

Depending on N and M, n(xi) or n(x2 ) may become negative for the values of n0 and a 
calculated above. This is unphysically, the positiveness of the distribution over the interval 
has to be guaranteed. Therefore, if n(xi) < 0 or n(x2 ) < 0, the linear approximation is 
defined alternatively 

(39) 

Then the new parameters n* and x* are determined using 

for n(x1) < 0 ( 40) 

( 41) 

which gives 
2N 

for n(x1 ) < 0 ( 42) 

-2N 
( 43) 

The three possible linear approximations are shown in figure 6. 

B The bin shift 

Bin shift means that the whole bin k is shifted by a certain value .6.x due to the micro­
physical process. This has the consequence that if .6.x > 0 ( .6.x < 0) the largest ( smallest) 
drops of the bin are moved to the next larger (smaller) bin. CHEN AND LAMB (1994) 
describe two different ways of determining .6.x and the new borders of the shifted bin. We 
assume that the whole bin is shifted by .6.x which is determined as the difference between 
the average drop mass after the coalescence process and before, respectively. 

(44) 

i-1 i+l 

X1 + ßx 

Figure 7: Transfer of drops from bin i to bin i + 1 using the bin shift. 
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Therefore, the shifted borders are 

( 45) 

The linear approximation for this new distribution (with x1 , x2 , Nk(t + .6.t), Mk(t + .6.t)) 
is calculated as described in appendix A. The contributions for the respective bins are 
calculated by integrating over the intervals (see figure 7). So a remapping of the shifted 
intervals to the fixed bins is carried out. 
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