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ABSTRACT 
 

Analysis of gene expression microarray data has traditionally been conducted using 

hierarchical clustering.  However, such analysis has many known disadvantages and 

pattern discovery (PD) has been proposed as an alternative technique.  In this work, 

three similar but different PD algorithms – Teiresias, Splash and Genes@Work –  were 

benchmarked for time and memory efficiency on a small yeast cell-cycle data set.  

Teiresias was found to be the fastest, and best over-all program.  However, Splash was 

more memory efficient.  This work also investigated the performance of four methods 

of discretizing microarray data: sign-of-the-derivative, K-means, pre-set value, and 

Genes@Work stratification.  The first three methods were evaluated on their 

predisposition to group together biologically related genes.  On a yeast cell-cycle data 

set, sign-of-the-derivative method yielded the most biologically significant patterns, 

followed by the pre-set value and K-means methods.  K-means, preset-value, and 

Genes@Work were also compared on their ability to  classify tissue samples from 

diffuse large b-cell lymphoma (DLBCL) into two subtypes determined by standard 

techniques.  The Genes@Work stratification method produced the best patterns for 

discriminating between the two subtypes of lymphoma.  However, the results from the 

second-best method, K-means, call into question the accuracy of the classification by 

the standard technique.  Finally, a number of recommendations for improvement of 

pattern discovery algorithms and discretization techniques are made. 
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1 Introduction 
A living organism is an intricate set of chemical reactions, complex compounds and 

remarkably ordered structures.  The delicate balance that is staying alive – consuming 

energy, producing metabolites, maintaining physiological integrity in a chaotic 

environment and ultimately, reproducing – is mediated by an organism’s genes.   From 

a  simple yeast with seven-thousand genes to a complex human with over twenty-

thousand genes, the ability of an organism to survive, adapt and grow is mediated by the 

environment’s interaction with its genes and the interaction of its genes with one 

another.  

 

Thanks to large-scale sequencing projects and gene prediction algorithms, the 

sequences of every gene in a number of organisms is known.  However, and perhaps 

counter-intuitively, the function of all the genes is not.  An important goal in molecular 

biology is to elucidate the function of every gene in an organism, or more generally, to 

discover genes that are important in certain biological roles, like the reaction to a stress 

such as  heat shock, the progression of a disease, for example, cancer, or the function of 

an organ, like a liver or kidney.   

 

In a very general way, the mechanism of every gene is known.  Succinctly, each gene 

encodes a product that is important to some function in a cell.  The amount of the 

produced is the gene’s expression.  As the requirements of an organism change so too 

does the expression of each gene.   Therefore, by monitoring the expression of a gene 

under some condition we can determine its importance to the function of the cell in that 

state.  More generally, genes that react similarly under a condition or set of conditions 

likely participate in the same (or a similar) biological role.  For example, if a group of 

genes are highly co-expressed in Cancer A and not highly expressed in Cancer B we 

might conclude that those genes are important in the progression, function or mediation 

of Cancer A.  We can also look at this problem from a slightly different angle: we can 

consider this group of genes to define Cancer A, and use them to differentiate (or 

classify) A from B. 
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The problem then arises of how to measure the expression of not just a single gene, but 

of every gene in an organism.  Luckily, a system called a gene expression microarray is 

capable of measuring any gene’s expression provided that the gene’s sequence is 

known.  Further, microarrays are capable of measuring tens of thousands of genes in a 

single experiment. Microarrays that can measure the expression of all (or nearly all) of 

the genes in humans, yeast and a number of other organisms are currently available.   

Because each microarray represents a single condition, disease state or tissue sample, it 

is common to refer to each experiment type as simply an array or chip. 

 

Unfortunately, there are four major difficulties encountered when measuring gene 

expression with microarrays.  Firstly, a gene’s expression is stochastically variable.  

That is, some gene that is qualitatively considered to be up-regulated (it produces more 

mRNA) may be measured in a quantitative fashion that fluctuates around some true 

value, for instance, as any of a 2.0-, 2.2-, or 3.0-fold increase.  Secondly, gene 

interactions are complex but the observable effects on an organism are simple.  A single 

observable state, such as a disease, may be mediated by different genes in different 

situations.  Thirdly, microarrays are a noisy measuring tool.  That is, the variability of a 

gene, even one that is highly consistent in its expression, may be high [Baldi, ’02].  The 

third problem is partially due to the many (unautomated) steps involved in a  microarray 

experiment which tend to build up the amount of noise.  Interestingly, each of these 

problems could be (at least partially) resolved  by performing a large number of 

replicate experiments.  This, however, highlights the fourth problem encountered when 

using microarrays: they are expensive to perform.  Despite these inherent problems, 

microarray technology is extensively used by researchers and is considered a key 

advancement in molecular biology.   

 

One problem molecular biologists have not been able to contend with is the enormous 

amount of data that is produced from a microarray experiment and the combinatorial 

nature of the analysis that is required to find relationships between the thousands of 

genes that compose an organism.  This problem has motivated the use of computers and 

data analysis techniques to analyze microarray data.  Generally, the analysis seeks to 
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group arrays and/or genes together in some biologically significant manner.  Artificial 

neural networks (ANNs), support vector machines (SVMs) and similar techniques have 

been applied to disease classification [Brazma, ’00].  Hierarchical clustering, k-means, 

and self-organizing maps (SOMs) have been used to cluster both genes and arrays into 

meaningful groups [Brazma, ’00].   

 

Pattern discovery is another technique that can be applied to creating gene/array groups.  

It is an advantageous analysis technique because it clearly indicates which genes are 

important in defining a cluster of arrays and/or the arrays that are important in defining 

a cluster of genes.  This is in contrast to the above techniques which may make it 

difficult to determine which genes/arrays are important for defining the group. 

 

Pattern discovery is not without its own concerns.  Firstly,  pattern discovery is a hard 

problem.  Searching all combinations of genes and conditions is impractical and many 

pattern discovery algorithms use heuristics (an algorithm that yields non-optimal results 

but provides a decrease in execution time) to trim the problem space.  Secondly, most 

pattern discovery techniques require the data to be composed of values from a discrete 

domain, rather than numbers from a continuous1 universe such as is found in microarray 

data.  Thus some method of discretizing the data is usually required. 

 

Teiresias [Rigoutsos, ’98], Splash [Califano, ’99] and Genes@Work [Califano, ’00] are 

three pattern discovery applications.  Teiresias and Splash use slightly different methods 

of discovering patterns in character data and likely differ in their speed and memory 

efficiency.  Interestingly, these two applications (and their underlying algorithms) have 

never been benchmarked against one another in the open literature.  Genes@Work was 

born from the work done on Splash and is designed specifically for use with microarray 

data.  Unlike the other two applications Genes@Work can discover patterns in 

continuously valued (too finely grained) data. 

 

                                                 
1 Technically, microarray data consists of “finely grained” discrete data.  However, in this work, 
“continuous” will be used to refer to data that is too finely grained for pattern discovery. 
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Generally, this thesis seeks to explore the use of patterns for gene microarray analysis in 

a breadth-first manner; rather than fully explore a single aspect of analysis it will touch 

on every step involved in analysis.  Specifically, this work has two goals.  First, it seeks 

to discover which of the three pattern discovery algorithms are the most efficient in 

terms of execution time (as measured by elapsed time) and memory efficiency for  

particular microarray data analysis problems.  Second, it endeavors to determine which 

of 4 methods of discretization results in the most interesting patterns being discovered.  

This is accomplished using two microarray data sets.  The first is typical of data found 

when relationships between genes are to be discovered, and the second when 

associations between the arrays must be discovered.  In order to achieve the second 

goal, two other aspects of gene microarray analysis using pattern discovery will be 

explored.  First, ways in which to pick patterns, based on their length and support, so as 

to favor biologically significant patterns over random ones, will be investigated and 

compared to Genes@Work’s more complicated ranking system which relies on 

measuring the probability of a pattern’s occurrence.  Second, specifically for the second 

data set, a simplistic system to classify arrays using patterns will be developed  (see 

Sections 3.1.2 & 3.2.6) and from these patterns a set of genes that appear to be good 

classifiers will be chosen. 

 

As indicated above, this thesis has broad reaching goals.  That is, it covers a number of 

areas of microarray analysis and pattern discovery, but none in an exhaustive fashion.  

The work is conducted in such a breadth-first manner for two major reasons.  Firstly, 

little work has been done using pattern discovery for microarray analysis.  By working 

with multiple data sets, applications, and binning techniques the prospect of finding a 

good technique is increased.  Secondly, it is difficult to judge the quality of the 

discovered patterns without a good way of selecting/clustering them.  This allows good 

patterns to be selected from random ones.  However, it is difficult to judge the quality of 

a selection/clustering method unless it is known that good patterns are being discovered 

by the application.  Therefore, both aspects need to be explored at some level in order to 

judge the biological significance of any binning technique in a fair manner. 
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This thesis consists of four major sections, the Background, the Data and Methodology, 

the Results and the Conclusions and Future Work.  The Background consists of five 

main subsections.  First the fundamental dogma of molecular genetics is explained in 

greater detail.  This is followed by Section 2.2 where microarrays, microarray 

experiments and the representation  of microarray data are detailed.  In Section 2.3 

various microarray data analysis techniques are quickly explored which leads into a 

discussion of what is meant by a pattern and what pattern discovery is.  The 

Background then covers different discretization techniques, which in this work is 

termed binning.  Finally, Section 2.5 explains the three different pattern discovery 

applications and concludes with a means of comparing them.    

 

The Data and Methodology section begins with a general overview of the techniques 

employed for this work.  Section 3.1 outlines the two data sources used.  Sections 3.1.1 

and 3.1.2 discuss data preprocessing.  Section 3.2.3 outlines what training data is and 

why it is required.  This leads into Section 3.2.4 which covers an approximation for one 

of the data binning techniques.  Then, taking each data set in turn, the exact 

methodology – from preprocessing to binning to pattern discovery and pattern analysis 

– is  covered in Sections 3.2.5 and 3.2.6.  This section concludes with a discussion of a 

few minor issues. 

 

The results section consists of two major subsections, one for the yeast cell-cycle data 

and one for the lymphoma data.  Any problems that were encountered in the 

methodology and the solutions to these problems are listed there along with the 

experimental results for timing, memory usage and binning techniques, as required.   

Lastly, this work finishes with some general conclusions about the applications, binning 

techniques, and usefulness of pattern discovery on each of the two data types, along 

with future work for the field. 
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2 Background 
New technologies have enabled the scientific community to sequence the entire genome 

of an organism (that is, it is possible for scientists to know of every genetic factor 

involved in growth and development, reactions to disease, and response to changes in 

environment for an entire species).  Unfortunately, this new source of information 

provides more questions than answers;  although the chemical composition of a gene (its 

sequence) and where it is located in the genome is known, it is not necessarily known 

what the gene does or how it is regulated.  Gene expression microarrays are a technology 

that attempts to answer these questions.  By monitoring all the genes in an organism, 

microarrays can serve as a basis for relating genes to one another.  However, microarray 

technology has its own problems: for any organism, thousands or tens of thousands of 

genes exist and must be monitored.  Further, most experiments require multiple 

microarrays to be used.  This leads to a large influx of information.  The problem then is 

to reduce and organize the data and ultimately to form groups of related genes; this is 

broadly termed microarray analysis. 

 

As might be expected there are many ways to analyze microarray data.  The general 

ideology is to take raw information and to distill from it knowledge and understanding.  

Indeed, many of the techniques used in microarray analysis originate from classical 

computer science methodologies dealing with high dimensional data and data clustering 

(data mining).  This research explores the use of pattern discovery for microarray 

analysis.  It concentrates on two aspects of using pattern discovery on microarrays: the 

choice of the pattern-finding application and the manipulation of the input data in order to 

yield the greatest number of meaningful patterns.  However, before any in-depth 

discussion of this can take place, a general understanding of what microarrays are, how 

they work and the data they produce is needed.  Also, comprehension of what patterns are 

and the algorithms and heuristics used to discover them will be covered.  This discussion 

begins with an outline of the central dogma, the basis of all molecular biology. 
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2.1 Central Dogma 
A fundamental tenant of all biology is that our genes make us what we are.  It is easy to 

explain the differences between two organisms, such as a bacterium and a human (or 

even differences between two humans) by saying that they have different genes.  

However, while every cell in a human body contains the exact same genes, tissues in this 

body are very distinct from one another.  This differentiation is made possible, in part, by 

different levels of expression of those genes.   Indeed, the expression of genes in a tissue 

can change over time.  After eating a meal, for instance, genes are activated in response 

to the nutrients consumed and a cascade of genes are stimulated in order to absorb and 

transport those nutrients to the rest of the body. 

 

The central dogma of molecular biology states that every gene is first transcribed 

(copied) into an intermediate form, mRNA, which is then translated into a functional 

protein.  Gene expression is a term that describes the amount of transcription taking place 

in a cell.  Expression levels can vary from cell type to cell type (a kidney compared to a 

liver), in a single cell type over time (a hair follicle going from normal to producing grey 

hair), and in a single cell type in different physiological conditions (a skin cell being 

exposed to sunlight and tanning or to darkness). 

 

Throughout this paper the term “condition” will be taken to mean any of the above three 

causes for variation in expression levels. 

 

2.2 Microarrays 
Gene expression microarrays are a recent technology that allows the measurement of the 

expression of thousands of genes to be conducted in parallel.  Microarrays effectively 

enable a biologist to get a “snap shot” of mRNA production from most or all of the genes 

in a population of cells at a given moment under a particular set of environmental 

conditions [Brazma, ‘00].  For cDNA2 microarrays gene expression is denoted as a 

floating-point number that is a ratio of the expression of the gene under a particular 

                                                 
2 Complementary DNA is DNA that is made from RNA via a reverse transcriptase. 
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condition versus the expression under some predefined “standard” state.  This ratio can 

be intuitively interpreted as “how many times more/less is the expression of this gene 

under this condition compared to its ‘normal’ (or some other) state”.  This is done 

because the inherent variability in this type of experimentation is quite high.  By taking 

the expression as a relative indicator of expression one helps to “standardize” the 

measurements across multiple experiments and from gene to gene on a single chip.  

Further, this ratio is usually expressed in log2 form.  This is done for two reasons.  First, it 

makes comparing increases and decreases in expression more symmetric: a two-fold 

increase in expression becomes “1” and a ½-times decrease in expression becomes “-1”, 

independent of the absolute measures involved.  Second, it has been shown that 

expression levels, measured multiple times, appear to come from a log-Gaussian 

distribution [Baldi, ’02].   For more information on microarray construction, types, and 

experimental protocols see the books by Draghici [Draghici, ‘03] and Baldi [Baldi, ’02]. 

 

Generally, for any microarray experiment many microarray “snap shots” are taken of a 

population of cells, each under a different condition, and together they form the raw data 

used in analysis.  The whole of this data can be visualized as a matrix, wherein the rows 

represent the expression of a single gene under various conditions (called the gene’s 

expression profile), and the columns represent the expression of all the genes under a 

specific condition (a single experiment/array/treatment).  The general goal of microarray 

analysis is to form subgroups of the rows (or columns) of the data matrix that are related 

in terms of expression.  These subgroups are useful for identifying novel relationships 

between genes (or tissues), providing information on the role of a gene by relating it to 

genes of known function, and discovering unsuspected regulation networks.  The 

underlying assumption of all microarray interpretation is that genes that are related in 

terms of expression are related in function, too. 

 

There are three main categories of microarray data.  The first, time-series data, is 

information repeatedly collected from a single population of cells over a period of time.  

Importantly, the columns in these data have order; that is, one time logically follows 

another.  It intuitively follows that permuting the columns of the data matrix makes little 
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sense from an analysis standpoint.  An example of this type of data would be collecting 

samples from a synchronized, growing population of yeast cells to monitor gene 

expression over the cell-cycle [Spellman, ’98].  In the second kind of microarray 

experiment a single type of cell is exposed to different environmental conditions (e.g. 

heat shock, the addition of hormones, irradiation, etc.)[Gash, ’01].  In this case the data 

columns have no order; any experiment could occupy any column of the data matrix and 

it would still make organizational sense.  The third type of data is where different, 

possibly related, populations of cells are collected and sampled (usually against some 

common “normal” population).  Depending on the question to be answered, this type of 

data could include different tissues from a single individual, the same tissue from 

multiple individuals, or related tissues under a common condition.  An experiment where 

different types of related cancers are tested would be an example of the third type of 

microarray experiment [Alizadeh, ’00]. 

 

For any microarray data set (matrix) two types of analysis can occur: comparison of the 

rows of the matrix to find similarity (relationships between genes), or comparison of the 

columns of the matrix to find similarity (relationships between microarrays).  When a 

researcher wishes to know “Which of these genes act similarly?” the researcher conducts 

analysis of the first type. When a researcher seeks to find relationships between the 

columns of the matrix, the researcher is attempting to answer: “Which 

times/conditions/tissues are related?”.  Occasionally analysis in both directions is pursued 

when the relatedness only holds/exists for a subset of all the genes or trials [Kluger, ’03].  

Generally, for the first two types of microarray data, one compares genes (rows) to one 

another, and in the third type of data, one compares tissue samples (columns).    

 

Relatively speaking, the number of columns in microarray data is small, consisting of 

tens of experiments.  However, the number of rows in a data set can be quite large: 

~6,000 for a yeast experiment, and up to ~20,000 or more for human experiments.  Often, 

because of the expense involved in constructing a full set of microarray experiment data, 

no replicate experiments are conducted.  Some microarrays have replicate spots on a 

single chip (which allows repeat observations of gene expression for an experiment).  
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However, these chips are less common as the need to have more genes on a single chip 

increases.  Also, there may be some (and occasionally many) missing data points in the 

matrix.  Some genes seem especially prone to giving poor results: any “signal” present is 

consistently hidden by background noise.  Because of this, a data matrix often has rows 

that are missing a large proportion of their data points. 

 

2.3 Microarray Data Analysis 
Once the data has been collected it must then be analyzed.  Many different forms of 

analysis have been used to examine microarray data.  Due to the high dimensionality of 

the data (each gene/tissue is composed of many data elements), Self-Organizing Maps 

(SOMs) and Principal Component Analysis (PCA) are obvious approaches [Baldi, ’02].  

The complexity inherent in microarray data has prompted the application of Bayesian 

networks and other small-sample statistical models for the examination of microarray 

data [Baldi, ’02].  Also, more traditional clustering techniques (K-means) have been used 

[Baldi, ’02].   

 

In particular there are two analysis techniques of special interest: hierarchical clustering 

(“HC”) [Eisen, ’98], and pattern discovery [Rigoutsos, ’00].  HC was one of the first 

analysis techniques to gain wide-spread popularity and use and is the “gold standard” to 

which other methods are compared.  Pattern discovery is a novel technique which offers 

several advantages over the more traditional approaches and is the focus of this research. 

 

2.3.1 Hierarchical Clustering with “Cluster” 
The “Cluster” application is a hierarchical clustering application that is the standard 

method for microarray data analysis by most biologists.  It was developed for microarray 

analysis and was used in one of the first and most cited papers involving microarrays 

[Eisen, ‘98].  “Cluster” does have several short comings, but despite this, it is still one of 

the most widely used microarray analysis tools. 
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“Cluster” treats each input stream (the rows or columns of the data matrix) as a point in 

high-dimensional space and groups these points using hierarchical clustering.  For each 

iteration of the program a pair-wise distance between every stream (or group of streams) 

is calculated using some distance metric (Pearson correlation coefficient, Euclidian 

distance, etc.).  The two closest points are then grouped together.  For multi-membered 

groups the distance between them can either be the average distance between all 

members of the groups (average linkage), the distance between the closest points (single 

linkage), or the distance between the farthest points (complete linkage). This process 

continues until all streams are collapsed into a single group.  In Figure 2.1, the final 

group can be seen and thought of as the root of a tree, and extending from it, all of the 

children.  The leaves of this tree are the original input streams [Eisen, ‘98].  Points that 

are collapsed earlier in the process (further from the root) are more related than points 

that are collapsed later. 

 

Figure 2.1.  The dendrogram of a hierarchical clustering tree. 

 

Despite its popularity, the use of “Cluster” has many drawbacks.  The first is in the 

selection of a distance metric on which to base the clustering. As an example in Figure 

2.2, we see the expression levels of three genes (A B and C) across 5 conditions.  If the 

Euclidian distance metric is used genes B and C are considered close, if the Pearson 

correlation coefficient is used A and B are considered close together.  Clearly the two 

methods can yield different results either of which might be capturing a real biological 

relationship.   Generally, a researcher will pick one method over another (somewhat 

arbitrarily), and will therefore miss one of the relationships. 
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Figure 2.2.  Schematic expression of 3 genes across 5 conditions to show different types of correlation. 

 

 

Further, in hierarchical clustering a choice must be made on how to calculate the distance 

between multi-membered groups (termed linkage); one linkage type may give very 

different results from another.  However, there is no way to know which linkage method 

better captures real biological relationships, and which method may simply capture 

coincidental relationships.  Often a researcher may simply pick a method that yields the 

results he wishes to find, rather than maximizes some mathematical properties of the 

clusters (such as separation between clusters, or conformity within clusters).  This may 

lead to erroneous results.  For further information on hierarchical clustering and other 

techniques see the review paper by Brazma [Brazma, ‘00] and the book by Draghici 

[Draghici, ‘03]. 

 

Lastly, “Cluster” (and most other clustering techniques) can only show binary 

relationships.  That is, all distances are only calculated between two members of the input 

set.  However, we should expect that clusters should contain many members and only 

finding pair-wise relationships between members may not be enough to form these 

clusters.  In Figure 2.3 we see 8 genes that share a few data points in common.  Taken 

together this relationship is significant.  However, when only considering any two of the 

streams at one time the relationship may not be considered significant and thus the genes 

may be placed in other groups and this may cause grouping to never form. 
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Figure 2.3.  The expression values of 8 genes across 9 conditions illustrating a close relationship at 5 
points and a highly divergent relationship at 4 points.  

 

 

 

Despite its shortcomings, hierarchical clustering has become the most common form of 

microarray analysis3 (it is available in virtually all commercial and public microarray 

analysis packages), and because of this it will be used to analyze the three types of data 

presented in the Data section.  As such it will serve to establish a basis of comparison for 

the other analysis.  That is, novel results can be confirmed or disputed by using the results 

from hierarchical clustering. 

 

 

2.3.2 Microarray analysis with pattern discovery 
Pattern discovery is another form of analysis that has been used on gene expression 

microarray data [Rigoutsos, ’00. Califano, ‘00].  Although this technique has met with 

some success, it is not very popular.  However, before pattern discovery can be discussed 

in detail what is meant by a “pattern” must first be defined. 

                                                 
3 Most commonly Pearson’s r and average-linkage is used for analysis with Cluster, although other distance 
metrics and linkages are available. 
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2.3.2.1 Patterns 
A pattern is an ordered set of one or more characters from some finite alphabet Σ (a finite 

set of symbols), shared between multiple strings (henceforth called streams) and is 

considered interesting [Rigoutsos, 00].  The definition of “interesting” is application 

specific: long or frequent patterns are commonly considered interesting, but patterns with 

certain characters or with characters in certain positions may be interesting in some cases.  

A pattern is specified by a template and a list of occurrences termed the offset list. The 

template is a series of literals optionally interspersed with a “don’t care” character (the '.' 

character).  Each item of the list of occurrences records a stream identifier and the 

position (offset) of occurrence.  No template will begin or end with a ‘.’ because the 

character provides no new information about the pattern; it simply changes values in the 

offset list.  The cardinality of the list is the support for the pattern. Patterns that occur 

with the same offset in all streams are considered aligned.  If the offsets differ by some 

finite amount  the patterns are unaligned.  In Figure 2.4, the patterns appear below the 

streams.  The characters within double-quote marks is the template.  The co-ordinate set 

following the template is the offset list.  The unaligned pattern P1 occurs in streams 1 and 

2 at an offset of 2 and 3, respectively, and the aligned pattern P2 occurs in Streams 2 and 

3 at an offset of 0. 

 

Figure 2.4.  Three data streams with one aligned and one unaligned pattern. 

 

It is important to note that unaligned patterns only make sense in sequential data: data in 

which permuting the order of the events is not allowed because its order is set.  An 

example of this type of data is time series data, because the point “10 minutes” logically 

follows “5 minutes” and precedes “15 minutes”.  An unaligned pattern from this type of 

data indicates that some set of genes share a pattern displaced in time.  In Figure 2.4, if 

we imagine the data that comprises the streams is collected in 5-minute intervals, then the 

pattern P1 occurs in both Streams 1 and 2 but it occurs in Stream 2 five minutes after it 

Stream 1  AYAJKBAY  
Stream 2  IUVAOPBA 
Stream 3  IUVPOQWE  
P1:“A..BA”{(1,2),(2,3)} 
P2: “IUV” {(2,0),(3,0)} 
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occurs in Stream 1.  An example of data where there is no order to the events in a stream 

is data collected under some environmental conditions A, B and C.  This data is 

considered unordered because it does not matter, generally, whether the data from 

condition A is listed before the data from condition B or vice versa.  In Figure 2.4, if we 

imagine the data that comprises the streams is from a set of environmental conditions 

then pattern P1 indicates that Streams 1 and 2 happen by chance to react similarly in 

unrelated environmental conditions. 

 

2.3.2.2 Pattern Discovery 
Pattern discovery is an advantageous microarray analysis technique because it finds local 

areas of similarity in each gene's expression profile whereas HC can only measure 

distance using the entire gene’s expression profile.  In HC, strong local areas of similarity 

become “diluted” when the relationship between two streams is considered “globally” 

thus masking a strong local similarity even when this relationship may be echoed by 

other genes in the data set.  This situation is just another way of thinking of the example 

in Figure 2.3.  In this figure, the expression of the 8 genes are exactly the same across 5 

different points, however, there may be suitable differences across the other time points 

to mask this similarity.  A “real world” example of this can be found in “The Emergence 

of Pattern Discovery Techniques in Computational Biology” [Rigoutsos, ’00]  where 17 

genes from a yeast cell cycle data set have the exact same expression across 17 time 

points, but are suitably divergent in the remainder of the data set to mask the presence of 

the relationship when using HC with the Pearson correlation coefficient analysis 

technique.   

 

Pattern discovery also allows the discovery of patterns that occur "out of phase"; that is, 

patterns that are displaced across treatments (i.e. displaced in time).  This type of pattern 

may occur in time-series microarray data.  Lastly, pattern discovery can intelligently 

“ignore” missing data points because pattern discovery does not require that every data 

stream have all data points whereas the Pearson correlation coefficient and many other 

distance metrics do.  This frees the researcher from having to implement a scheme to 

replace the missing data with a value. 
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Despite its advantages, pattern discovery has several drawbacks.  The first is that patterns 

(as defined here) can only be found in discrete data.  As stated above, raw microarray 

data consists of floating-point numbers.  Therefore, the first step in using pattern 

discovery to analyze microarray data is to stratify the floating-point data (which is 

continuous) into a discrete, finite alphabet.  In the context of this work, the alphabet is the 

set (or a subset) of the printable ASCII characters and the process is termed binning.  

ASCII characters are used because many pattern finding applications were developed for 

motif finding in proteins - which use the characters A-Z to represent amino acids – or 

arbitrary text.  Also, ASCII characters typically require less memory to store than 

numerical values.  The second drawback is that pattern discovery is an NP-Hard4 problem 

[Brazma, ‘98].  For even a small data set the total number of discovered patterns can be 

huge and the potential number of patterns grows exponentially with input [Rigoutsos, 

’98].  Because of this, real world application of pattern discovery requires the use of 

heuristics.  Initial work  has shown that even using heuristics on a relatively small subset 

(24x80) of a complete microarray data matrix (6000x80), pattern discovery can take a 

long time to finish.  Also, because many of the patterns must be contained in memory 

(occasionally a few can be written to disk before all patterns have been found because it 

is possible to determine the pattern is complete), the memory requirements of pattern 

discovery are sizable.   For example, using a modest data set (620x80), and modest input 

parameters to Teiresias (L=5, W=9, K=8) (see Section 2.5.1) it is possible to use more 

than 4GB of memory. 

 

2.4 Binning 
Binning floating-point numbers into ASCII characters is the first step in microarray 

pattern analysis.  Determining the number of bins and the ranges of values that fall into 

each bin is not a straight-forward task.  Three techniques, however, have shown promise.  

                                                 
4 NP-Hard problems are intrinsically harder than NP-complete problems (problems that can be solved by a 
nondeterministic Turing machine in polynomial time), and include the optimizations of NP-complete 
problems [Brassard, ’96]. 
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Although each method varies in how it bins the data, all methods are very quick and 

usually only take a few seconds to complete. 

 

2.4.1 Training 
The first method, implemented originally by Genes@Work (see Section 2.5.3), involves 

the use of two sets of data: the test data and a training set [Stolovitzky, ’03].  Each row 

(or column) of the training set is uniformly binned into B different bins; that is, each bin 

has the same number of data points in it.  The ranges of values that correspond to each of 

the B bins are then applied to the “test” data.  This has the effect of inducing a fine 

granularity in ranges where the training set has many values, and a coarse granularity in 

ranges where the training set has few values (See Sections 3.2.3 & 3.2.4).  What the 

training data “teaches” the algorithm, is the normal/expected expression of a gene.   

 

2.4.2 Sign-of-the-derivative (‘+/-/0’-technique) 
The second technique is best applied to time-series data [Rigoutsos, ‘00].  It involves 

mapping the real-valued expression levels to 3 values: ‘+’, ‘-’ and ‘0’.  The character ‘+’ 

is used for time point Tt+1 if (Tt+1 - Tt) > + ε, ‘-’ if (Tt+1 - Tt) < - ε; and ‘0’ otherwise, 

where epsilon is some arbitrarily chosen small number. 

 

2.4.3 K-means 
The third technique involves the use of K-means clustering.  The goal is to find “K 

number of means” that the input data (a single row or column from the data matrix) 

seems to cluster into.  Using some distance metric D(X, Y) for a set of values V, the K-

means algorithm can be implemented thusly: 

 

1: initialize each of the K means to Cj (j=1 … K) 

2: For each value Vi in V, place it in cluster j if D(Vi,Cj) is minimized 

3: For each cluster j, set Cj to the mean of all points in cluster j 

4: repeat steps 2 and 3 until each value Cj converges or after some large number of 

iterations 
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For more information see “Clustering Algorithms” by Hartigan [’75]. 

 

Two questions arise when using the K-means algorithm.  The first is what value of K to 

use.  The second is how to initialize the values Cj.  A solution to the second problem is to 

initialize each Cj to a uniform-randomly5 chosen value.  The second problem is much 

more difficult, in general, to solve.  We shall assume that 2<=K<=|V|/2<=N, where N is 

in the order of 100 when clustering together microarray chips and 10,000 when clustering 

together genes.   Further, the data we wish to cluster is one dimensional, and with the 

bound on K, it is trivial to find all K clusters for all values of K.  Then for each value of 

K, the “goodness of fit” of the clusters must be determined, while at the same time 

determining a cost for increasing the value of K.  This is needed because, in the trivial 

case where K= (the number of unique values in set V) all the clusters are perfect (and 

contain one unique value); yet no actual clustering has taken place. 

 

Xmeans is a program developed to solve the problem of picking K [Pelleg, ’03a].  Given 

some minimum and maximum value for K, for instance 1 and |V|/2,  Xmeans will 

iteratively apply K-means clustering to the input data with increasing values of K.  At 

each iteration Xmeans evaluates the “goodness” of the clusters using Schwarz’s Bayesian 

Information Criterion (BIC) [Wasserman, ’03].  After all values for K have been 

attempted, the K that gives the best BIC score is reported.  Xmeans is available for free 

for non-commercial use [Pelleg, ‘03b].  

 

2.4.4 Pre-set Values 
In this technique the expression of every gene is stratified based on 4 values {-1.00,         

-0.25,+0.25,+1.00}.  These delimiters are chosen to signify transitions between “large 

decrease”, “small decrease”, “no change”, “small increase”, and “large increase” in 

expression, respectively.  Unlike the other techniques presented here, this technique is not 

gene-specific (relative).  That is, similar gene expression values will always be binned 

                                                 
5 A number from the uniform distribution: P(x) = 1/(b-a); a<=x<=b.  Where a is in minimum value for the 
distribution and b is the maximum value. 



 19

similarly regardless of other factors;  whereas in the other techniques presented here the 

expression value of the previous state (such as in the ‘+/-/0’ technique), the values in the 

training data (such as with Genes@Work), or the other expression values for the gene 

(such as with K-means) will determine how values are binned.  This means that similar 

values occurring in different gene’s expression profiles may get mapped to different bins.  

Figure 2.5 shows how each of the techniques maps the same data stream to different 

values.  Given the training data {-2.2, -2.2, -2.2 …. -2.2} (see Sections 3.2.3 & 3.2.4) the 

training data technique separates the data  into 2 groups around the number -2.2.  The ‘+/-

/0’ technique is radically different from any of the others.  K-means separates the data 

into 2 groups (which may be thought of as “2ish” and “5ish”) and the Pre-set values 

technique sees only a single group (very down regulated). 

 

Figure 2.5.  The effect of 4 different binning techniques on a single data set. 

 

2.5 Pattern Discovery Applications 
Although the concept of pattern discovery is straight-forward, finding patterns in an 

efficient and concise manner can be very difficult.  The question arises, then, what 

algorithm (or application) should be used to discover patterns in the microarray data.  

Fortunately, there are 3 applications widely available for pattern discovery: Teiresias 

[Rigoutsos, ’98], Splash [Califano, ’99], and Genes@Work[Califano, ’00].  All three of 

these were developed at IBM.  The first two applications are generalized pattern finding 

algorithms, designed to find patterns in biological strings (DNA, proteins); the last is an 

adaptation of Splash specifically for pattern discovery in microarrays.  Below, the three 

applications and their algorithms are introduced and compared.  This is followed by a 

short discussion of another pattern finding program, Tuppleware, which will not be used 

in this research. 

 

Data: -5.4 -5.1 -5.2 -2.0 -2.1 -2.3 -2.6 
2.4.1:  A    A    A    B    B    A    A 
2.4.2:       +    0    +    0    -    - 
2.4.3:  A    A    A    B    B    B    B  
2.4.4:  A    A    A    A    A    A    A 
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2.5.1 Teiresias 
Teiresias implements a two-stage pattern-finding algorithm.  To avoid searching the 

entire exponentially sized problem-space involved in pattern discovery, Teiresias makes 

use of a heuristic that employs 3 parameters (L, W and K) to limit the number of patterns 

searched for.  L is the minimum number of literals required to appear in a window of size 

W (W>L).  In stage 1, it uses L and W to establish a minimum density for a given 

elementary pattern (all possible combinations of L literals from a given window W).  

Density is the ratio of the number of positions that are occupied by literals over a 

pattern’s length [Rigoutsos, ’00].  A high value of L relative to W will cause high density 

patterns to be discovered.  More precisely, a given input sequence S of length Slen, is split 

into Slen-W+1 overlapping windows of length W.   Then for each window of S, all WCL 

combinations of L literals are chosen from that window to form elementary patterns.  

Elementary patterns that do not appear at least K times in all input sequences (a condition 

termed support) are immediately discarded.  The application of these 3 parameters forms 

a heuristic that can greatly trim the otherwise exponential problem space of pattern 

discovery.  In Figure 2.6, S=“ABCDEFG” and W=4.  Thus 4 windows are possible and 

are shown.  In Figure 2.7, all 4 elementary patterns for “DEFG” with W=4, and L=3 are 

shown.  Note that “DEF” is not “DEF.” and “EFG” is not “.EFG” because templates may 

not begin or end with a ‘.’ (see Section 2.3.2.1).  

 

Figure 2.6.  The four “windows” of length W=4 from input S. 

 

 

Figure 2.7.  The 4 elementary patterns for “DEFG” with L=3. 

 

  

Each elementary pattern is associated with an offset list that details which sequences 

(starting at 0), and where in those sequences (the first column being position 0) the 

pattern appears (see Section 2.3.2.1).   After all elementary patterns are enumerated, they 

Input: S=“ABCDEFG”, W=4   
“ABCD”, “BCDE”, “CDEF”, “DEFG”

Input: “DEFG”, L=3  
“DEF”, “DE.G”, “D.FG”, “EFG” 
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are ordered into two lists, a suffix-wise and a prefix-wise list.  Rather than rigorously 

define the ordering, it will be illustrated by example.  In Figure 2.8, the pattern P2 is 

prefix-wise less than the pattern P1 because P1’s first ‘.’ character occurs in column 2 

(shown by the “‡”) whereas P2 has a literal in column 2. However, in 2.9, we see that P2 

is suffix-wise more than P1 because P2’s last ‘.’ occurs before P1’s last ‘.’ character 

(shown by the “‡”)when considering the patterns in right-to-left order. 
 

 

Figure 2.8.  Two patterns illustrating prefix-wise less ordering. 

 

 

Figure 2.9.  Two patterns illustrating suffix-wise less ordering. 

 

In the second stage of pattern discovery, Teiresias convolutes patterns which overlap by 

exactly L-1 literals (this can be determined by examining the pattern’s template and its 

offset list) into longer patterns.  A new pattern often has a smaller offset list because it 

will occur less frequently than the shorter patterns that formed it.  However, if the offset 

list of the new pattern is the same size as either one (or both) of the two patterns that 

formed it then one (or both) of those patterns is removed from the two lists, or rather, 

subsumed into the new pattern.  Teiresias begins the convolution stage with the top-most 

element on the prefix-wise list and convolutes it with the remaining patterns in the order 

they occur below it.  Each new pattern formed is placed at the top of this list and the 

process continues until no more convolutions can take place.  At that point the pattern is 

extended using the suffix-wise list in an analogous way.  When that is complete the 

resulting pattern is checked for maximality (see below), and if maximal, it is reported.  In 

either event, the pattern is removed from further consideration for convolution.  This 

process is repeated with the next, top most element from the prefix-wise (or suffix-wise) 

list until both lists are empty.  Performing convolution in this way ensures that a maximal 

P1: AS..L.JKP 
    ||‡ 
P2: AUB.K.LP 

P1:  AS..L.JKP 
           ‡||  

P2:   AUB.K.LP 
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(see below) pattern Pmax is produced before any superpattern of Pmax is produced.  A 

superpattern of Pmax is any pattern that contains the same (possibly fewer) literals in the 

same positions as Pmax.   

 

To illustrate the convolution phase of Teiresias Figure 2.10 starts with elementary 

patterns EP1, EP2 and EP3 (shown in prefix-wise order).   First, EP1 and EP2 are 

convoluted to form Pnew1 and this can be seen in Figure 2.11.  Note that Pnew1 has only 

one member in its offset list and that EP2 is subsumed by Pnew1 (the cardinality of both 

Pnew1 and EP2’s offset lists is the same).  Second, Pnew1 is convoluted with EP3 to form 

Pnew2.  Note that Pnew1 is subsumed into Pnew2 as can be seen in Figure 2.12.  At this point 

Pnew2 cannot be convoluted any further and is checked for maximality (as it is the first 

pattern to be checked for maximality it cannot be the superpattern of an existing maximal 

pattern (because there are none) and therefore is maximal).  Then EP1 and EP3 are 

convoluted to form a new pattern Psup; however this pattern is a superpattern of Pnew2.  

That is, every literal contained in Psup is already present Pnew2 (at the same positions) and 

thus is not maximal and would not be reported (and would be removed from the list). 

 

Figure 2.10.  Three elementary patterns from some theoretical input stream. 

 

 

Figure 2.11.  The convolution of EP1 and EP2 to form Pnew1 with the loss of EP2. 

 

 

Figure 2.12.  The convolution of EP1 and EP3 form the super pattern Psup. 

 

EP1: BCD    {(1,5),(2,1)} 
EP2: CD..EF {(1,6)} 
EP3: A.BC   {(1,3),(2,5)}

EP1: BCD    {(1,5,(2,1)} 
EP3: A.BC   {(1,3),(2,5)} 
Pnew1: BCD..EF {(1,5)}

EP1: BCD    {(1,5,(2,1)} 
EP3: A.BC   {(1,3),(2,5)} 
Pnew2: A.BCD..EF{(1,3)} 
Psup:  A.BCD {(1,3)} 
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As maximal patterns are discovered they are immediately written to output.  A maximal 

pattern is a pattern that cannot be extended (i.e. cannot have more patterns convoluted 

onto it) without a decline in the number of members in its offset list and that is not a 

superpattern of any other discovered pattern.  Given, EP1, EP2 and EP3 are the only 

elementary patterns in our data set, then EP1, EP2, and Pnew2 are all maximal because 

they cannot be convoluted into another pattern without losing support.  EP3 and Pnew1 are 

not maximal because they can be subsumed (convoluted without losing members of the 

offset list) into other patterns.  Psup is not maximal because it is a superpattern of Pnew2. 

 

The time complexity of Teiresias is linear in the number of patterns it generates as output 

[Floratos, ’98].  However, in the worst case, there are an exponential number of patterns 

in the output relative to the input.  A large difference between L and W, combined with 

low values of L, allow for very low-density patterns to be discovered.  As the density 

requirement K for pattern discovery is lessened more patterns are generated as output.  

Also, low values of K allow infrequent patterns to be kept for output.  Both these factors 

can cause a very large increase in execution time and memory requirements for pattern 

discovery.  In the worst case, in order to find every possible pattern in a data set, L is set 

to 2, W to the length of the data stream, and K to 2.  For all but the smallest and simplest 

data sets these parameters are unrealistic and pattern discovery is not possible with them.  

With other values for K, L and W Teiresias guarantees to return all maximal patterns that 

conform to those parameters.  

 

From previous work it is known that the generation of the elementary patterns is a quick 

and straight-forward task, usually requiring seconds, or a few minutes to complete and 

comprising a small fraction of total execution time.  The convolution phase, however, can 

require many minutes, hours or days to complete depending on the input data and 

parameters.    

 

There is some parallelism to be taken advantage of in the Teiresias  algorithm which 

allows a decrease in execution time.  The suffix-wise and prefix-wise lists can be broken 

up into multiple subsets and thus multiple machines can be tasked with the convolution of 
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elementary patterns.   Also, the act of maximality checking can be spawned as separate 

processes.  This allows the large memory requirements of maximality checking to be 

broken up across multiple machines.   

 

Teiresias is accessible through a  web interface: http://cbcsrv.watson.ibm.com/Tspd.html.  

However, to access most features Teiresias must be used from the command line.  

Teiresias has been implemented in the C programming language and is available for AIX, 

Linux, Sun and Windows operating systems.  However, only compiled binaries and not 

source code are available.   

 

Due to its parallelism Teiresias has also been implemented using MPI to work on a Linux 

workstation “Beowulf cluster”.  In such a system the pattern discovery process is broken 

up across multiple computers.  This reduces the memory and computational needs of any 

single processor and decreases total (wall clock) runtime. 

 

2.5.2 Splash 
Splash is another pattern discovery application developed at IBM [Califano, ‘99].  In 

many respects Splash is highly similar to Teiresias and a number of parallels can be 

drawn between them.  In Splash, the Teiresias parameters for support, K, minimum 

literals, L, and windows size W, become J, K and W, respectively.  Because of this 

similarity, the “Teiresias names” will be used for Splash parameters.   

 

Interestingly, although Splash and Teiresias were both developed at IBM there has been, 

to the best of the author’s knowledge, no direct performance comparison between the two 

applications and certainly no comparison between the two applications on microarray 

data. 

 

Splash begins pattern discovery by finding a set of seed patterns.  Conceptually, seed 

patterns are very similar to elementary patterns in Teiresias and are generated in the same 

way (see Section 2.5.1).  However, Splash goes about extending the seed patterns and 

checking for maximality in a very different way.  Systematically going through each 
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pattern π in the seed set, Splash checks π for left- and composition-maximality (lc-

maximality) [Califano, ‘99].  If π is left maximal, it cannot be extended any further to the 

left within the limitations set by L and W.  This is checked by “brute force” by 

referencing the original data set and seeing if any common characters can be appended to 

the left of the current pattern without reducing π’s support.  Composition maximality (c-

maximal) is ensured by checking whether a ‘.’ character in π can be derefernced to a 

literal.  If a pattern is not maximal it is removed from further consideration.  In Figure 

2.13, it can be seen from Stream 1 and Stream 2 that P1 is not left-maximal because it can 

be extended to the left by prepending an ‘A’ character to the pattern without loss of 

support, nor is P1 c-maximal because the ‘.’ character could be dereferenced to a ‘B’ 

character in Stream 1 and Stream 2, resulting in no loss of support. 

 

Figure 2.13.   Pattern P1 shared between Streams 1 & 2 is neither left- nor composition-maximal. 

 

After ensuring the maximality of π, Splash attempts to extend π to the right (within the 

limitations of L and W) by referencing the original data set in a fashion that is very 

similar to checking for left-maximality.  If π cannot be extended to the right without 

losing support, π is maximal and is reported.  In Figure 2.13, as can be seen from Streams 

1 and 2, the pattern “ABBBC” {(1, 1), (2, 1)} can be extend to the right by the addition of 

the character ‘D’ with no loss of support.  For every extension possible for π (with 

possible loss of support) a new pattern is formed and added to the seed set, where the 

patterns will again be subject to maximality checking and extension.  Splash continues in 

this fashion until the seed set is exhausted and all maximal patterns have been found.  

Califano claims [Califano, ’99] that the execution time of Splash is slightly sublinear in 

the number of patterns discovered.  For a more detailed explanation of Splash see the 

paper by Califano [’99]. 

 

When Splash was first introduced it was an improvement over Teiresias because Splash 

could form similar patterns.  Similar patterns relax the requirement of exact matching of 

characters and instead allow matches between sets of characters.  Sets of characters, a 

Stream 1: ZABBBCD 
Stream 2: ABBBCDH 
P1: BB.C {(1,1),(2,1)}
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subset of the total alphabet, which are considered equivalent are called equivalence 

classes.  When pattern discovery takes place using equivalence classes, patterns are 

allowed to form between characters that are not identical.  The output of Splash is slightly 

changed in this situation; instead of allowing a single character at any position, it is 

possible to have two or more.  In cases where two or more characters (from an 

equivalence class) form the pattern at a given position, square brackets are used to 

contain the list of characters found in that position.  For the example in Figure 2.14, 

define three equivalence classes: EQ= {{A, B}, {B, C}, {C, D}}.  The resulting aligned 

pattern is shown below the two sample input streams. 

 

Figure 2.14.  An aligned, similar pattern is shared between Streams 1 & 2. 

 

The use of equivalence classes in microarray data analysis has obvious benefits when 

considering mapping noisy (or more accurately, “stochastically variable” [Baldi, ‘02]) 

floating-point numbers to discreet values (as is needed for pattern discovery).  For any 

binning scheme, 2 arbitrarily close real numbers may be mapped to two different 

characters even though these two numbers may be considered “close enough” to be the 

same and justify having a pattern formed between the streams.  Allowing characters that 

represent arbitrarily close numbers to be part of an equivalence class helps to alleviate 

this binning-precision problem.  By allowing two bins that  contain numbers that are 

numerically close to  each other to be in the same equivalence class, we allow patterns to 

form between these close numbers.  In Figure 2.15, the following ranges apply to the 

characters A, B and C respectively: [0.1. 0.2), [0.2, 0.3), [0.3, 0.4).  This allows the 

mapping from Streams 1 and 2 to 1’ and 2’, respectively.  Pattern 1 is the result of pattern 

discovery without equivalence classes.  Note that the values 0.19 and 0.20 (which we will 

consider close) are mapped to different characters and no pattern forms between the two 

characters.  With the equivalence class EQ= {{A, B}, {B, C}} the pattern AA[AB] 

appears. 

Stream 1: ATBBC 
Stream 2: ABCAD 
Pattern:  A.[BC][AB][CD] 
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Figure 2.15.  Data streams 1 & 2 are binned into 1’ and 2’ respectively.  Pattern 1 forms without 
equivalence classes, Pattern 1’ forms when adjacent bin equivalence classes are used. 

 

 

Although the authors make no direct statements as to the performance of Splash they do 

show that it is significantly faster than Pratt [Califano, ’99], an earlier pattern discovery 

application.  However,  the time-complexity of Splash seems to be super-linear in the 

number of patterns discovered [Califano, ’99].  For given values of L, W and K, Splash 

guarantees to find all maximal patterns that fit the density requirement of L and W for 

support K.  

 

Splash is only accessible through a command line interface and is implemented in the C 

programming language.  It is available for the Sun, AIX and Windows environments and 

as pre-compiled binaries only.  

 

The other benefit of Splash is that it was implemented early on to work on symmetric 

multiprocessors (SMP) and cluster environments thanks, in part, to its “embarrassingly” 

parallel algorithm [Califano, ‘99].   Although no paper has been written pertaining to the 

implementation of Splash to run in parallel, it seems possible that each seed pattern could 

be checked individually for lc-maximality.  This would allow Splash to be ran in parallel. 

 

2.5.3 Genes@Work 
Genes@Work is a reimplementation of Splash designed specifically for the analysis of 

microarray experiments.  It is based on the work of Califano et al. [’00].  Therefore, any 

statements or conclusions pertaining to Splash also bear some relevance to 

Genes@Work.   

 

1: 0.12 0.15 0.19 0.25 
2: 0.11 0.13 0.20 0.35 
1’:   A    A    A    B 
2’:   A    A    B    C 
Pattern 1:  AA 
Pattern 1’: AA[AB]  
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Genes@Work takes a three step approach to microarray analysis.  Starting with raw 

microarray data  Genes@Work manipulates it, finds patterns in the data (using the same 

algorithm as Splash), and evaluates those patterns for statistical significance (see below).  

Finally, Genes@Work groups chips together based on discovered patterns using a greedy 

covering-set algorithm.    

 

The manner in which Genes@Work works is very rigid.  Unlike Splash and Teiresias, 

which are general pattern finding applications, Genes@Work is a task specific program.  

Because it closely ties together its data manipulation and pattern finding algorithms, it is 

very hard to separate the two.  For example, it is hard to get Genes@Work to use a 

different data manipulation technique with its existing pattern finding algorithm and vice-

versa. 

 

Genes@Work differs from Splash and Teiresias in another, very significant way.  

Genes@Work not only performs pattern discovery it also implements a supervised 

learning algorithm in order to perform classification.  Given a set of data where each 

element is labeled as being from one of two classes, supervised learning is the act of 

formulating some scheme that can separate the elements into those classes [Zurada, ’92, 

p94].  This knowledge can then be used to classify future, unlabeled data elements. 

 

Although it is possible to use Genes@Work to only discover patterns (and not to use 

those patterns to classify the microarray data), the author’s desire to make Genes@Work 

a classification tool influences many aspects of the software.  For example, although 

machine learning techniques could be used to classify both genes and chips,  in 

microarray data it is more common to only classify the arrays.  The most common 

experiment of this type is to classify tissue samples into groups. With this in mind, 

Genes@Work has been developed to only find patterns between arrays, and not between 

genes.   As a consequence of this design choice Genes@Work only searches for aligned 

patterns because unaligned patterns are meaningless when they occur between 

microarrays (see Section 2.3.2.1).  
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Although classification is often the end-goal of many types of microarray analysis it is 

not the focus of this work and thus the classification portion of Genes@Work will be 

explored only in a limited manner.  However, because of the classification focus of 

Genes@Work, it is impossible to remove the requirement that Genes@Work must have a 

data set that consists of two classes (training data, and test data).  This is because training 

data is central to Gene@Work’s binning scheme.  The fashion in which Genes@Work 

performs pattern discovery is detailed below.   

 

Unlike Splash and Teiresias, Genes@Work does not require data values to be binned into 

discrete characters.  However, it does manipulate data values to bring some numerically 

closer together and separate others, and this can be seen as a type of binning.  This 

binning procedure is implemented using a training data set and an experimental data set.  

The training data set is arbitrarily picked from one of the two classes of data.  The 

training set is used to build a probability density function P for each gene u.  This is done 

by adding together a series of Gaussian distributions which are centered at each 

expression value in the training set for u.  An example of Pu is given in Figure 2.16.  In 

this figure the x-axis represents levels of expression and the y-axis represents the 

probability of a gene expressing at that level.  The expression levels of a single gene, u,  

sampled three times, u1, u2 and u3 are shown.  Note that many more data points would be 

needed to compose Pu (not shown). 

 

The probability density function Pu, is then transformed so that the distance between two 

points p1 and p2 in the new scale is equal to the area under the curve Pu between p1 and 

p2.  This new probability density function P’u is also scaled to have domain [0, 1]. The 

transformation has the effect of causing P’u to be uniformly distributed.  An example of 

the P’u is given in Figure 2.17.  In this figure, the data from Figure 2.16 is used.  Notice 

that u1, u2 and u3 have been pushed further apart on the x-axis.   
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Figure 2.16.  A probability density distribution P for some gene u, with the amount of expression on 
the X-axis and its probability on the Y-axis.  Three particular expression amounts are shown, u1, u2 
and u3. 

 

Figure 2.17.  The same probability density distribution pictured above after transformation by 
Genes@Work. 

 

 

The most important aspect of this section is that the transformation function, which was 

formed using the training data (explained above), is then applied to the test data (the other 

data class).   This transformation which caused the training data to become uniformly 

distributed, will not cause the test data to be uniformly distributed, unless both data sets 

come from the same distribution.  Instead, some data points will become closer, and 

others will be pushed further apart, numerically.  For example, for each gene u1…n, the 

experimental data (xu1...n)can be visualized as points on a number line (for the rest of this 

example, the subscript u will be omitted for clarity).  The effect of applying this 

transformation is as follows:  Data points in x with values that correspond to a low 

probability of occurrence in the training data are pushed closer together.  Data points in x 

that occur with values that correspond to a high probability of occurrence in the training 
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data will be pushed further apart.  For instance, suppose xq < u1 and xw < utq and define 

dqw = |xq – xw|.  Then after transformation xq’ and xw’ are closer together, that is dqw’ <  

dqw.  Likewise, if we redefine xq>u3 and xw>xq then dqw’<dqw.  In the other case, where 

ute~=utr~=u2, then der’ > der.  That is, xe’ and xr’ are now further apart.       

 

Pattern discovery is then executed on the transformed test data.  Although the 

transformed data has been binned, in some sense, it still consists of floating-point data 

points.  That is, for two hypothetical data points 1.0 and 1.2, which become 1.09 and 1.11 

after transformation, respectively, they are still not the exact same value and therefore no 

pattern could form between them.  To overcome this, in addition to the standard 

parameters for Splash, a new parameter, δ, is added to Genes@Work.  All values within δ 

units of one another are considered “the same” and a pattern is formed between them.  

The δ parameter can be seen as achieving something similar to equivalence classes by 

allowing close numbers to be considered the same.   

 

The Genes@Work data-transformation process also forms the foundation of its ability to  

give a probability value to the patterns it discovers.  After transformation Pu is uniform 

(Figure 2.17) and a null-hypothesis is put forward that the genes in the test data, after 

transformation, are therefore also uniformly distributed.  With this null-hypothesis and a 

δ value one can calculate the probability of finding a pattern composed of  X number of 

genes, with Y amount of support.   

 

The direct integration of this non-linear, gene-specific transformation metric into the 

pattern discovery process is the major difference between Splash and Genes@Work. 

 

There is no time-complexity analysis available for Genes@Work.  However, because the 

pattern discovery algorithm is based on Splash it seems reasonable to suspect that they 

are of a similar order of complexity with respect to the number of patterns found in a data 

set.  That said, however, for any particular data set we might expect Genes@Work to be 

significantly faster than Splash because Genes@Work only searches for aligned patterns.  
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Although there are potentially an exponential number of aligned patterns in a data set, 

they represent only a  small fraction of the total number of patterns present.  

 

Genes@Work incorporates a number of features to ease microarray analysis. The whole 

package is accessed through a graphical user interface.  Also, Genes@Work allows the 

user to perform a hierarchical clustering and support vector machine classification on the 

input data as well as pattern analysis.  

 

Genes@Work is implemented in the Java programming language and is only available in 

compiled machine code (.class) files.  Implementation in Java gives the application good 

portability to many operating systems.  However, there are known memory and speed 

issues with Java which may yield lower performance of Genes@Work compared to 

Splash. 

 

2.5.4 Comparison 
Teiresias and Splash (the basis of Genes@Work) implement very similar algorithms.  

Both are designed to find generalized patterns in strings and both go about it in a similar 

fashion.  Immediately one is forced to ask: why does IBM support two applications that 

do essentially the same thing? Is one algorithm better than the other?  To the author’s best 

knowledge no comparison of Splash and Teiresias has ever been performed. 

 

Although Splash originally had more utility than Teiresias, since its initial release 

Teiresias has been modified to incorporate two features of Splash.  As stated above, 

Teiresias now runs in both SMP and cluster environments.  Also, Teiresias now allows 

the user to define equivalence classes.  However, an important distinction between 

Teiresias and Splash is that Splash only allows a maximum alphabet size of 22 

characters.  Teiresias, on the other hand, allows a maximum alphabet size of 181 

characters (all the printable ASCII characters).  In addition, a special version of Teiresias 

allows nearly the entire range of 32-bit integers (|Σ | ~ 4 billion) to be used as an alphabet.  

Having an alphabet of just 22 characters can be limiting to pattern discovery if many bins 
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are used for the stratification of the data and if foreign characters are inserted to break up 

unaligned patterns (see Section 3.2.2 of Data and Methodology). 

 

When contrasting Genes@Work with Teiresias and Splash it is evident that 

Genes@Work is a more straightforward program to use for microarray analysis.  With 

integrated pattern discovery and clustering as well as a graphical user interface, 

Genes@Work has a much shallower learning curve than either Teiresias or Splash.  

However, these extra features introduce a certain amount of “rigidity” to the analysis 

process.  Effectively, you can only do the exact type of analysis that the authors of the 

program intended; it is very difficult to “trick” the program into doing something 

differently.  This stands in stark contrast to the relatively open-endedness of Splash and 

Teiresias, which indeed, were not even originally intended to discover patterns in 

microarray data. 

 

2.5.5 Tupleware 
In addition to the 3 other pattern discovery applications mentioned, another pattern-

finding program called Tupleware, from Bristol-Myers Squibb [Rogers, ‘02] exists.  

Unfortunately, at the present time, only this poster outlining results from the use of 

Tupleware on serine proteases has been presented.  Further, we have been unable to get 

in touch with the authors in order to obtain a copy of Tupleware or a paper describing 

how it works.  However, it is known that Tupleware builds-up its patterns using a tree 

structure which its authors believe is more efficient than the lists used by Teiresias and 

Splash. 
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3 Data & Methodology 
 

Generally, this methodology seeks to further the understanding of the application of 

pattern discovery to gene microarray analysis.  Specifically, it concentrates on two steps 

in the analysis process, the application/algorithm used to discover patterns in the data and 

the binning (or preprocessing) of the data for pattern analysis.  Three similar but distinct 

pattern discovery applications will be compared based on ease-of-use and efficiency 

when used in the microarray analysis domain and four binning methods will be evaluated 

based on which yields more biologically significant patterns. 

 

This research, and the organization of this chapter, will follow a data-centered (as 

opposed to an application-centered) methodology.  This is done for two reasons.  Firstly, 

biologists do not select an analysis package and then choose what data to collect based on 

the capabilities of the package.  Instead, they have a field of interest and target problem, 

and need to find a package that can deal with the data that they produce.  This target 

problem can usually be distilled to one of two classes of problems, either the need to 

relate genes to one another (patterns between rows of data) or the need to relate tissues, 

or conditions to one another (patterns between columns of the matrix) and this influences 

what analysis methods as well as binning techniques are applicable.  Secondly, the type 

of data and binning method used dictates what pattern discovery applications can be 

employed; for example, the two packages Splash and Genes@Work are not applicable to 

certain types of problems because long data streams tax the limited alphabet of Splash 

and Genes@Work cannot find unaligned patterns. 

 

Figure 3.1 gives a general overview of the methodology.  First, the data is filtered in 

some way to reduce the number of genes that it contains.  In this research, two filtering 

methods are used: variational filters, which select data streams based on their statistical 

variance, and a priori knowledge, where an expert in the field can pre-select genes 

known to be important to the problem being answered.  Microarray data is filtered 

because many of the thousands of genes that are monitored by a microarray chip are not 

interesting for a particular type of experiment.  For example, genes that do not change 
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expression significantly over a course of conditions may not be considered interesting.  

Also, most microarray experiments contain far too many genes to be effectively analyzed 

using pattern discovery.   

 

 

Figure 3.1.  A flow chart of the methodology to be employed. 

 

Second, the data is manipulated by binning and foreign character introduction.  Data 

binning is needed in order to carry out pattern discovery and in this work four different 

methods are investigated (although not all ways are equally applicable to all data sets).  

Foreign characters are introduced into the data streams in order to break up unaligned 

patterns.  This is done because in some cases only aligned patterns “make sense” and  

breaking up unaligned patterns decreases execution time.   

 

Third, pattern discovery is performed on the data.  As stated above, not all applications 

(Genes@Work, Teiresias, Splash) can be applied to all kinds of data. 
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Lastly, the observations from the pattern discovery are analyzed.  The first step in this 

analysis is as simple as counting the number of patterns found, or some subset of the total 

patterns to yield rudimentary results.  In many cases these results can be extended to form 

more interesting conclusions using a more complex form of analysis.  Specifically, when 

expert knowledge can be used to confirm the discovered patterns, the more complex 

forms of analysis will take place.  When no such knowledge exists, simpler methods such 

as counting the patterns, basic clustering (including visual inspection), or cross validation 

with other methods will be used.  Results from this analysis can be used to validate or 

refute the various binning methods and determine which applications are more efficient 

and easier to use. 

 

In the following subsections the two types of data to be used in this research will be 

explained.   This will be followed by an in-depth discussion of the various steps in the 

methodology as illustrated in Figure 3.1 and the data which needs to be collected at each 

step.  Lastly, this section will discuss other issues to be considered for this research and 

the materials needed to conduct the research. 

 

3.1 Data 
Two sources of data will be used to assess the different binning methods and conduct the 

comparisons between Genes@Work, Teiresias and Splash:  a set of yeast cell-cycle data 

and a set of related human Diffuse Large B-cell Lymphoma (DLBCL) cancer samples.  

In both cases the data is the log2 ratio of gene expression between an experimental state 

and a base-state.  Each of these data sets highlights one of two classes of questions a 

researcher might ask.  Cell-cycle data is used to relate genes to one another (which 

corresponds to finding patterns between rows of the data).   However, because this data is 

collected over time, specialized procedures can be used with this data,  specifically, ‘+/-

/0’ binning.  The Lymphoma data set is representative of any data collected to relate 

tissues (not genes) to one another through gene expression (finding patterns between the 

columns of the matrix). 
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These two data sets represent a reasonably diverse collection of microarray experiments.  

Specifically, the data includes both short and long streams as well as different target 

tissues and organisms, any of which may well influence overall performance of the 

various applications.  Further, these data allow the use of four different binning schemes: 

the ‘+/-/0’ method, training-data, K-means and the pre-set value method.  Lastly, these 

data not only tie into international interests and knowledge, but also into local work and 

expertise. 

 

3.1.1 Yeast 
In general, the question “What does this gene do?” is largely unanswered for a vast 

number of genes in a huge number of organisms.  Gene microarray analysis - specifically, 

finding patterns between rows of the data matrix - serves as a method to answer this 

question by relating genes of unknown purpose to genes of known function. 

 

The yeast cell-cycle (ycc) refers to the process of yeast cell growth and reproduction.  

Although the ycc is well-studied, it is not clear whether all cell-cycle regulated genes 

have been discovered, nor is it known the exact function of every gene identified as cell-

cycle regulated.   Clearly these two questions are not specific to just yeast but can be 

asked of virtually every organism.   

 

The ycc is an ideal subject for analysis because it is a well-studied process and yeast, 

specifically Saccharomyces cerevisiae (hence forth just "yeast"), has a well understood 

and well-studied genome.  Large external data repositories such as GO [GO, ’03] and 

CYGD [CYGD, ’04] provide functional information and other annotation data for many 

of the genes in yeast.  These data allow the raw relationships formed from microarray 

analysis (“information”) to be viewed in a  biologically significant light (“knowledge”).  

Further, a well respected ycc data set exists at the Stanford microarray database, the work 

for which was conducted by the Spellman lab [Spellman, ‘98].  This data set consists of 

6178 genes over 77 conditions.  73 conditions represent 3 separate cell-cycles.  The 

remaining 4 data points are non-cell cycle conditions that show the effect of galactose on 
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a  specific yeast strain.  Each cell-cycle uses a different method of synchronizing the 

yeast cells so that they are all in the same phase of growth. 

 

3.1.2 Lymphoma 
This data set is representative of data collected to answer questions relating the columns 

of the data matrix to one another.  That is, this data is used to answer the question “which 

of these tissues is like the others” based on gene expression.  In this case, we wish to 

form multiple clusters (also known as classes or groups) of related but different B-cell 

lymphomas. 

 

Diffuse Large B-cell Lymphoma (DLBCL) refers to a diagnostic subtype of malignant 

lymphoma that are similar with respect to their light microscopic appearance and the 

expression of a limited number of protein markers (for more information see Jaffe [’01]).  

However, 60% of those diagnosed with diffuse B-cell lymphoma do not respond well to 

chemotherapy, while the remaining 40% do [Alizadeh,'00].  It has become clear that what 

is currently diagnosed as diffuse B-cell lymphoma is, in fact, 2 or more separate diseases 

with similar clinical presentations.  A number of microarray experiments have been 

performed on this type of data in the attempt to separate the multiple kinds of cancer 

based on gene expression levels [Rosenwald, ’02; Wright, ’03].  In addition, other 

methods of identifying markers that can separate subclasses of DLBCL (or predict 

outcome) have been attempted [Akasaka, ’03; Barrans, ’04; Hans, ’04; Shen ’04].  For an 

overview of discovered predictive markers see Gascoyne [’04].  However, this work will 

concentrate on microarray analysis and because we are trying to relate tissues to one 

another (as opposed to genes), patterns will be formed between columns of the data 

matrix (as opposed to rows). 

 

The lymphoma data set consists of 17,856 genes across 45 different samples of DBCL 

tissues, including patient samples and cell-lines (raw data and gene lists may be obtained 

on-line [LLMPP, ’02]).  In addition, there are 2 samples of normal Germinal Centre (GC) 

B-cells.  These latter two tissue samples have been included because they cluster strongly 

– in another, larger data set that contains many different tissue samples – with a subclass 
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of DLBCL.  This subclass is then referred to as GC B-like DLBCL and the other is called 

Activated B-cell like DLBCL.  

 

3.2 Methodology 
The goals of this research are two-fold.  The first goal is to compare four (‘+/-/0’,  K-

means, training-data and pre-set value) data binning (stratification)  methods to determine 

whether one produces more biologically significant patterns than the other.  As a sub goal 

of this an approximation of the Genes@Work training-set method will be written and 

compared to the results of the proprietary Genes@Work application.  The second goal is 

to compare the efficiency, usefulness and ease-of-use of Teiresias, Splash, and 

Genes@Work.   

 

The efficiency of these applications will be based on both the amount of memory and 

time (a.k.a. elapsed or run time) used for pattern discovery.  When dealing with data sets 

that produce tens of millions of patterns these two measures are closely related; when 

memory  runs out, the application will either finish very slowly (due to swapping) or, if 

process space runs out, will simply fail altogether.   

 

The evaluation of ease-of-use and usefulness, however, is largely qualitative and 

subjective.  Ease-of-use will be dependent upon how many parameters there are to set, 

and how easy it is to determine optimal settings for those parameters.  It will also depend 

on how much data (or other inputs) must be collected (e.g. training data) and/or created 

(e.g. equivalence classes) in order for the application to function, and how easy it is to 

create that data.  Usefulness will depend upon the functions provided by each application.  

If one application can do more types of analysis than another, it will be considered more 

useful.  Unfortunately, usefulness and ease-of-use are often inversely related to one 

another.  Generally, the more things an application is capable of, the more parameters 

there are to set or the more input there is to collect/create. 

 

Not every binning method, nor every pattern finding algorithm, is applicable to every 

data set.  For instance, although the yeast cell cycle data (Section 3.2.5) has only three 
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binning methods that is applicable to it (‘+/-/0’, K-means and pre-set value), all 3 

applications can be used to find patterns in this data set.  This makes the yeast cell cycle 

data a good data set for application comparison.  The lymphoma data set (3.2.6) can be 

successfully binned by the K-means, pre-set value and training-data stratification 

methods,  but only Teiresias and Genes@Work can successfully discover patterns in the 

data.  In Table 3.1, a summary of which binning techniques can be applied to which input 

data is presented.  The applications that work effectively with the resulting binned data 

are listed in each cell. 

 

The methodology, as can be seen in Figure 3.1, consists of a number of other steps before 

pattern discovery can be conducted: selecting a subset of the raw data to conduct analysis 

upon, binning the data and manipulating the data so that only aligned patterns are found.  

After pattern discovery takes place, analysis must be conducted on the results to help 

validate the binning technique used.  These steps are discussed in further detail in the 

following sections. 

Table 3.1.  Data, binning techniques and applicable programs. 

Data Type ‘+/ -/ 0’ Training-data K-means Pre-set value 

YCC Teiresias, 

Splash, 

Genes@Work 

No Teiresias Teiresias 

Lymphoma No Teiresias, 

Genes@Work 

Teiresias Teiresias 

 

3.2.1 Data Binning and Filtration  
Data filtration is an important step in microarray analysis.  Most microarray analysis 

takes place on a subset of all of the genes measured.  This is because many genes do not 

significantly change expression over the various conditions tested.  These genes may be 

"housekeeping genes" (genes that are always expressed at roughly the same amount over 

the life of a cell) or they may simply be genes that are not part of the phenotype being 

tested (e.g. non-cell-cycle related genes) and thus do not change significantly from 
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microarray to microarray.  Often the subset of genes that are selected is based on a priori 

knowledge about the problem area.  When no such knowledge is available, genes can be 

selected based on their variation over the conditions tested [Califano, '00].  That is, genes 

whose statistical variance exceeds some arbitrarily selected threshold are chosen for 

analysis.  The reasoning behind this approach, termed a variational filter, is that genes 

that vary a great deal over the various conditions tested are more likely to be 

"interesting", that is, they are more likely to be genes that contribute to the phenotype in 

question.  It is important to realize that this is not always the case.  Genes with low 

variability may still be important to the researcher, and will not be considered when using 

this technique.   

 

For every data set used in the research, when a subset of the full data is needed, the genes 

used will be selected via the above described variational filter.  The threshold will vary 

for each data set based on how quickly patterns can be discovered.  In general, all pattern 

discovery should take between 1 and 24 hours of run time for patterns with some 

reasonable support amount (K=2-6) when using Teiresias.  Other applications, when 

using this same data set may take a longer or shorter amount of time to finish. 

 

Before pattern discovery can take place on the filtered data, the data must also be binned: 

floating-point, continuous data must be mapped to discrete characters in order to allow 

pattern discovery.    

 

In this research four data binning techniques will be used; K-means, ‘+/-/0’, the training-

data technique (and its approximation), and the pre-set value technique.   Each technique 

has its own difficulties, but each may also have its own benefits in detecting different 

kinds of biological relationships (See Sections 2.4 – 2.4.4). 

 

The primary problem associated with all stratification (binning) techniques is selecting 

the appropriate number of bins to use to discretize the data.  The formation of too many 

bins results in no patterns being found (too much granularity); too few bins may result in 

many spurious patterns being found.  Since choosing the correct number of bins (or other 
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input parameters) may be difficult, this has a strong effect on the usefulness of a binning 

method.  Each of the four stratification techniques used here also has this problem.  The 

K-means binning method requires the researcher to select number of bins to use, K.  

Similarly, in the case of Genes@Work (the training-data method)  it is the researcher who 

must come up with an appropriate value for δ, which is related to the number of bins to 

use.   However, the ‘+/-/0’  and pre-set value methods try to circumvent this problem by  

simplifying gene expression as transitioning between any of a small number of states 

(usually 3 or 5)6.  However, there is no reason to believe that all genes conform to this 

simplified view of gene expression and these latter two techniques may poorly model 

more complicated forms of expression. 

 

When attempting to bin values using the K-means clustering method, K different bins 

result.  However, the selection of K is generally based on a priori knowledge.  As no such 

information is available for most microarray work, the Xmeans clustering program will 

be used instead [Pelleg, ’03 a].  Xmeans is simply a program that executes multiple runs 

K-means clustering on a single data set using different values of K.  Xmeans determines 

which value of K was “ideal” based on a Bayesian Information Criterion (see Section 

2.5.4).  Initial work using Xmeans with the data described in Section 3.1.2, shows that 

Xmeans will pick a K value between 3 and 16 for most genes.  These K-values seem 

reasonable (neither too high nor too low).  Further, the value of K selected is very robust 

with respect to varying input parameters.  For instance, when allowing the possible 

values of K to be from 2 to 20 (where 20 ~ |V|/2, see Section 2.5.4), Xmeans often picks 

the same value for K as when allowing K to range from 2 to 50. 

 

Another binning method, termed the “+/-/0 technique”, is most applicable to time series 

data [Rigoutsos, ’00].   The choice of which bin to place the current data point is 

dependent on whether the slope of the line between this time point and the next is 

increasing, decreasing, or staying the same.  That is ‘+’ for a positive slope, ‘-‘ for a 

negative slope and ‘0’ for a slope of zero, or more generally, when the absolute value of 

                                                 
6 The reasoning behind these numbers is the belief that genes can only increase, decrease, or have no 
change in expression.  Occasionally, “very large increase” and “very large decrease” are added to the 
allowable states. 
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the slope is below some chosen threshold (“close enough” to zero).  It is the value of this 

threshold, however, that may be difficult to determine. 

 

When using the Genes@Work approximation (training-data method)  the number of bins 

to use is inversely proportional to δ.  Califano et al. [’00] advocate δ values between 0.05 

and 0.15 which corresponds to 40 to 13 bins, respectively, under the approximation in 

Section 3.2.4.  40 bins is far past the capabilities of the publicly available versions of 

Splash (which only allows 22 characters, and therefore a maximum of 22 bins), and 

therefore a smaller number of bins will be used.  However, it is also recommended 

[Califano, ‘00] that δ values be set such that 10 to 20 statistically significant patterns are 

discovered.  Therefore, the number of bins to use will be adjusted until the number of 

statistically significant patterns, as determined by Genes@Work, is between or  close to 

10 to 20. 

 

Determining the delimiters for the pre-set value technique is done arbitrarily.  However, 

using the delimiters {-1.00,-0.25,+0.25,+1.00} leads to many values in gene expression 

data to be considered unchanged, and only a few to be considered greatly increased or 

greatly decreased and this seems reasonable. 

3.2.2 Aligned and Unaligned Patterns 
Although aligned and unaligned patterns occur in the data sets, only aligned patterns will 

be considered.  Aligned patterns, patterns that occur at the same offset, are meaningful 

for both the yeast cell-cycle and lymphoma data sets.  Unaligned patterns, which can 

occur with any combination of offsets, can have meaning for time series data (such as 

yeast cell cycle data) will not be sought and are beyond the scope of this work. 

 

Teiresias and Splash are general pattern finding applications and can find both aligned 

and unaligned patterns.  However, by introducing characters common to all streams at 

short intervals, one can “break up” unaligned patterns [Rigoutsos, ’02]. By doing this and 

focusing solely on aligned patterns, one can reduce execution times greatly because 

unaligned patterns generally form the majority of all patterns in a data set.  In Figure 3.2, 

the “raw” data is present on the left while the transformed “break” data is present on the 
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right. Notice in the left-hand column a single unaligned pattern (in bold) exists in streams 

1, 2 and 3.  The occurrence of this pattern in streams 1 and 2 is left intact after the 

addition of foreign characters, whereas the pattern is broken up in stream 3.  If the 

interval at which the foreign characters is introduced is Z, then all aligned patterns can be 

found with L=2, W=Z+2, K=2 (see Section 2.5.1 for explanation of these parameters).  

Ideally, a different foreign character is used at each insertion position in the streams.  

When this is not possible it is important that the characters not appear repeatedly in the 

same order. 

 

Figure 3.2.  Three streams before and after foreign character insertion to demonstrate the breaking-
up of unaligned patterns. 

   

The spacing at which to introduce the foreign characters is a straightforward matter to 

determine.  The base case, where Z=1, will break up the most patterns and have the 

greatest effect on execution time .  However, many streams are simply too long or an 

alphabet too small to introduce a foreign character between every other data character.  A 

compromise of Z=4 will be used for the yeast data set, but Z=1 will be used for the 

lymphoma data set.   

 

3.2.3 Training Data  
This section briefly outlines a number of problems encountered when analyzing gene 

expression microarray data and how the use of training data, as is done in Genes@Work, 

can help alleviate them.  It concludes with a short discourse on several problems 

encountered when using training data for binning microarray data with a primary focus 

on the selection of the training set. 

 

Regarding gene microarray experiments, it is intuitively understood that the researcher is 

interested in genes that are responsive to changes in the environmental condition (herein 

termed excited genes).  That is, genes whose expression remains “unchanged” across the 

Stream 1:abcdeuiw    1abcd2euiw4 
Stream 2:abcdetqk    1abcd2etqk4 
Stream 3:yyabcdeq    1yyab2cdeq4 
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varying environmental conditions are likely not important to the researcher because they 

do not contribute to the phenotype of the cell in question.  However, what is truly meant 

by “unchanged” is not necessarily that the expression of the gene does not change at all, 

but rather that if the expression does change, it does not change unexpectedly.  A simple 

standard deviation filter (see Section 3.2.1) , allows genes that change expression to pass 

through, even if the changes may be expected.  Thus the Training-Data technique can be 

seen as a refinement on this more simple filtering method. What is considered “expected” 

for a gene is how the gene acts in some predefined, application specific state or set of 

states which are considered “normal”.  In Figure 3.3 we see two genes across four 

conditions.  The expression levels of the first gene do not change significantly across the 

conditions; however, it is unknown whether even this small amount of change is a 

significant amount of variation for this gene.  The second gene has radical fluctuations in 

its level of expression; however, it is possible that these fluctuations are no different than 

what normally occurs when this gene is in its base (or normal) state.   

 

Figure 3.3.  Two genes with very different expression profiles under some experimental condition. 

 

The problem now becomes how can a researcher tell whether a gene is excited or not.  A 

potential solution is to use a data set to train a computer to differentiate between an 

excited gene and a non-excited gene.   A training set consists of data from a number of 

base (normal) states for the cell in question.  For every gene g in a given experimental 

data set E, g also exists in a training data set T.  Tg is a vector of data points consisting of 

expression values for gene g in its base state.  Every gene in E, Eg, is trained against Tg.  

This means that the training that takes place is gene specific and a consequence of this is 

that a single value can be treated differently if it occurs for two different genes.  More 

simply, Tg provides the computer an understanding of how gene g normally acts and ergo 

whether g is acting abnormally in data set E.  In Figure 3.4 the training data for the two 

genes in Figure 3.3 is provided.  We can see from this data that the slight changes in g1 

are unexpected (because the training data hardly changes at all), and the fluctuations in 

g1: 1.01 0.93 1.10 1.05 
g2: -0.87 1.05 0.24 -0.11 
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g2 are normal because the gene in its normal state alters its expression as much as it does 

in the test states. 

 

Figure 3.4.  Gene expression values for two genes from the previous figure in their base state. 

 

 

This concept is presented by Califano et al. [’00] in a slightly different manner.  In Figure 

3.5 we see the probability density function for some theoretical gene in its normal state.  

The x-axis represents the expression level of the gene, and the y-axis represents the 

probability of expression occurring at that level.  Such a probability function can be 

constructed empirically from T.  The goal of training is to use this training data, in effect, 

to indicate to the computer that gene expression as low as u1 is unexpected, expression in 

the range around u2 is common, and expression as high as u3 is also unexpected. 

 

 

Figure 3.5.  Probability density distribution of a gene’s expression values with three expression levels 
indicated. 

 

 

When considering training in the context of pattern discovery, the goal is to stop patterns 

from forming between unexcited genes and encourage patterns to form between excited 

genes.  The manner in which to do this is to allow a wide range of values to be placed in a 

single bin when expression in that range is unexpected and to allow only a small range of 

values to be placed in a single bin when expression in those ranges is expected . To state 

this in another way, we use the training set to provide fine granularity binning in high 

g1: 0.90 0.93 0.91 0.90 0.89  
 0.93 0.92 0.95 0.88 
g2: -1.02 0.72 1.22 -0.53 0.55

-0.35 0.10 -0.22 0.88 
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expression probability ranges, and coarse granularity binning in low probability ranges.  

To illustrate this, a more complex example is provided in Figure 3.6.  In this Figure we 

see the experimental data for a single gene EG and the training data for the same gene TG.  

At first, it might be concluded that the values 1.10 and 1.20 in EG are virtually the same 

value and should be placed in the same bin, while the values 4.00 and 6.00 are 

significantly different and should be placed in different bins.  However, when the training 

data is considered we see the opposite is in fact true; the values 1.10 and 1.20 are 

expected (the training data contains many values in this range) and thus should be 

mapped to different bins and the values 4.00 and 6.00 are unexpected and thus are 

mapped to the same bin.  This data set is said to provide a fine granularity in the range of 

~1.00 – ~1.30, because so many data points fall into that range in TG, and a coarse 

granularity everywhere else.  With regards to EG, TG implies that even though 1.10 and 

1.20 are numerically close together, they are significantly different and that although 4.00 

and 6.00 are numerically distant, in this context they should be considered that same.  

Vernacularly,  4.00 and 6.00 can be labeled “abnormally high”, and instead of overly 

selective they are mapped to the same bin.  The opposite also holds: if the values -3.00 

and -4.00 appeared in EG, then a similar mapping would take place.  That is, -3.00 and     

-4.00 should be considered “abnormally low” and mapped to the same bin. 

 

Figure 3.6.  Experimental and training gene expression data 

 

To fully appreciate the effects of TG in Figure 3.6 on EG, suppose that each data point in 

EG is from a different tissue.  By mapping 4.00 and 6.00 to the same bin, patterns are 

encouraged to form between these tissues due to the abnormally high expression values 

for this gene.  At the same time we discourage patterns from forming between the first 

two tissues because these genes are not acting unexpectedly.  The benefit to the latter 

effect is that if most genes act normally in a given experiment, then by discouraging 

patterns from forming between these genes the total number of patterns found is reduced 

and thus the time required for pattern discovery lessened. 

 

EG:  1.10  1.20  4.00  6.00 
TG: 1.01 1.06 1.12 1.16 1.16 1.20 1.24 
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Despite the benefits of using training data to stratify the experimental data there are also a 

number of pit-falls of which to be wary.  Firstly, the number of data points in the training 

set should exceed the number of points in the experimental set.  Califano [’00] uses at 

least twice as many training samples as experimental.  The second concern is that the 

type of data used for training, what the researcher considers a base state, will influence 

what patterns are found.  Using a base state that is too similar to the experimental state 

will cause most patterns to be destroyed, potentially destroying significant patterns, while 

using a base state that is too dissimilar to the experimental state will cause many 

uninteresting patterns to be formed.  Califano [’00] uses different subtypes of cancers 

from the NCI-60 cancer data set.  Although all the data samples are related (cancers) 

subgroups can be formed based on a number of factors (cancer type, mutation type, 

reactivity to drugs). The goal, generally, is to use a base state that has similar expression 

for genes that are not involved in the phenotype of the cell (unexcited genes), and for the 

excited genes, to have differing expression levels to encourage meaningful patterns to 

form with those genes.  However, to do this perfectly, the researcher would have to know 

a priori which genes were involved in the phenotype of the cell in question which, 

unfortunately, is the very question the researcher is attempting to answer in the first 

place.  Therefore, the best that can be hoped for is the researcher making an educated 

guess at what constitutes a “good” training set. 

 

Selection of the training data for pattern discovery in gene microarray analysis is a very 

new problem and is currently left to experts in the area of research.  Although study in 

this topic area – the effects of different training sets on discovered patterns – is very 

important to the use of this technique, it is beyond the scope of this research.  Instead, 

when a training set is required for this research, the selection of the data will be made 

with the advice of an expert in the relevant field. 

 

3.2.4 The Genes@Work (Training-Data) Approximation 
Section 2.5.3 describes Genes@Work’s method for binning and discovering patterns in 

microarray data.  Replicating this form of pattern discovery for Teiresias or Splash is not 

straight-forward.  The first step in the Genes@Work application, transforming the input 
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based on the training data, is mathematically complex and is not as easy to implement as 

presented [Califano, ’00].  However, this is less important than the fact that neither 

Teiresias nor the publicly available version of Splash can find patterns in continuously 

valued data (the initial state of microarray expression data).  That is, they cannot be made 

to form a pattern between two numbers a and b, where |a –b| < δ. 

 

It is possible to approximate both the data transformation and continuous pattern 

discovery.  It is important to note that this approximation is not perfect and will likely not 

yield the same results as Genes@Work.  The approximation is more strict than 

Genes@Work.  That is, it may result in the failure to find some aligned patterns that are 

found by Genes@Work; however, it should not result in finding aligned patterns that are 

not found by Genes@Work. 

 

A way to approximate the above transformation is to divide the training set into ⎡2/δ⎤ 

bins.  Each bin is defined by a range of numbers that fall into the bin.  Thus the nth bin Bn 

is defined as all values V that satisfy Dn < V≤Dn+1. The numeric delimiters (D1, D2, D3, 

…, Dδ*2) used to form these bins are then applied to the experimental data.  Although the 

number of items in each bin is equal, the values for Di will not be evenly spaced unless 

the distribution of V is uniform.  This has the effect of inducing a fine granularity in 

ranges where the training set has many values, and a coarse granularity in ranges where 

the training set has few values (see Sections 3.2.3 and 1.9).  In Figure 3.7, an example 

input stream is grouped equally into 4 bins (δ =0.5).  The character representing the bin 

and the delimiters for that bin are also shown.  In Figure 3.8, the delimiters from 3.2.4-1 

are used to bin the input stream shown.  Note that even though the input is uniformly 

distributed the output highly favors the “D” bin.  This is because values over 1 are so rare 

in the training data that they are considered “unexpected” and thus are “compressed” into 

one bin in the “test” data. 

 

The final step in the approximation is to execute pattern discovery using a set of 

equivalence classes EQ={{B0,B1}, {B1,B2}, {B2,B3},…}.  EQ allows two bins to be 

effectively considered as one, and because the width of each bin is ½δ, the maximum 
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difference between 2 numbers (from the training set) mapped into the nth equivalence 

class is δ (after transformation). This accomplishes a similar task as forming a pattern 

where |a–b| < δ. 

 

Figure 3.7.  Ranges for training data when sued to create 4 bins. 

 

 

Figure 3.8.  Test data and resulting characters using the training data and bin ranges from previous 
figure. 

 

3.2.5 Yeast Cell-cycle 
The data for this section is described in Section 3.1.1. 

 

Analysis of the yeast cell-cycle data traverses all the steps present in Figure 3.1.  First, 

the size of the data set will be reduced.  It will then be binned using the ‘+/-/0’ (Section 

2.4.2) , K-means (Section 2.4.3) and Pre-set value (Section 2.4.4) methods7.  This data 

will be used for  aligned pattern discovery using Teiresias, Splash and Genes@Work.  

The goals of this analysis are two fold, to benchmark each of the pattern discovery 

applications against one-another and to compare the biological significance of each of the 

binning techniques.  Patterns will be found across the genes in this data, that is, the rows 

of the data matrix.  Finally, the discovered patterns will be assessed for biological 

significance, the two binning methods will be compared based on how many significant 

patterns are found using each technique, and the efficiency of the 3 applications will be 

compared. 

 

                                                 
7 Neither Genes@Work nor its approximation will be used due to a lack of training data in this data set. 

Training Data: -4 -2 -1 -0.5 -0.3 0.0 0.1 0.5 0.75 2 5 8 
A: (-infinity, -1]  
B: (-1, 0.0] 
C: (-0.0, 0.75] 
D: (0.75, +infinity) 

Test Data:  
-2 -1 0 1 2 3 4 5 6 7 8 9 
Test Output:          
A   A B D D D D D D D D D
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Because 6178 genes is too large a data set on which to practically run pattern discovery, 

and because many genes will not modulate expression significantly over the course of a 

cell-cycle, a subset of 612 genes (~10%) over all 77 conditions will be chosen using a 

variational filter (see Section 3.2.1).  The number of genes selected for analysis will 

depend on the memory requirements for pattern discovery.  That is, using the following 

parameters, K=2 and ε=0.2 (see Section 2.5.2), pattern discovery should consume less 

than 4GB of process space (see Section 3.1.1).  This data set will be considered a 

“moderate number of streams over a moderate number of conditions (77)”. 

 

Because of the nature of time-series microarray data, unaligned patterns do make 

biological sense.  However, this work will concentrate on aligned patterns only.  Aligned 

patterns will be discovered using Z=4.  Because of the large number of genes a density of 

L=4, W=9 will be used (see Section 2.5.1).  For each input data set, pattern discovery will 

take place using different values for minimum support.  Specifically, K=2, K=3 and K=6 

will be used. 

 

Unfortunately, preliminary work on this data for benchmarking the three programs 

revealed that neither Splash nor Genes@Work could finish execution on 612 genes with 

the above parameters.  Further, it was shown that Splash did not find the same patterns as 

Teiresias (see Section 4.1.1 for more detail).  However, both Splash and Teiresias could 

find the same patterns when exhaustive pattern discovery parameters were used.  To 

provide Teiresias, Splash and Genes@Work with workable input, 4 data sets were 

constructed from the yeast cell-cycle data using the first 25, 30, 35 and 40 streams from 

the 612 streams used in the remainder of this methodology.  Each data set was 

constructed using a break value of Z=4 (see Section 3.2.2), which means with W=6 and 

L=2, all patterns can be discovered in the data set for a particular support, K.  For all 

benchmarking data sets ε =0.2 was used because, as will be shown in Section 4.1.4, 

pattern discovery is fastest with this value of ε.  For each data set 4 values of K were 

used: 2, 3, 4, and 5 and their time and space utilization was recorded. 
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This data will be binned using 3 methods: K-means , ‘+/-/0’ and pre-set value.  The K-

means binning will be performed by the Xmeans application.  Although Xmeans 

automatically selects the number of bins to use for each gene, this number will be forced 

to lie in the range of [1… 48] 8.  Data from the K-means binning scheme will be analyzed 

by Teiresias only.  This is because K-means binning requires more characters than Splash 

is capable of representing and it is very difficult to get Genes@Work, with its integrated 

binning scheme, to form the same bins as K-means.   

 

There are two issues to contend with when using Xmeans  to bin gene’s expression 

values, when intending to discover patterns between the genes.  First, two genes that are 

binned with different values for K are difficult to compare;  If one gene has 20 bins, and 

another has only 2 bins (“high” and “low”) then it is impossible to instruct any of the 

pattern discovery programs used here to allow the single “low” valued bin in one gene to 

associate with the X-number of low valued bins in another gene.  For example, in Figure 

3.9, two streams are shown before and after Xmeans binning.  The first stream has two 

centroids, one for the positive values, and another for the negative values.  Thus, in 

Stream 1’, ‘A’ means up-regulation, and ‘B’ encodes down-regulation.  In Stream 2’ 

there is three centroids.  ‘A’ still encodes up-regulation, but ‘B’ encodes  normal-

regulation and ‘C’ encodes down-regulation.  Thus, if a pattern were to form between 

Stream 1’ and Stream 2’ using the character ‘B’,  then it would be meaningless because 

the ‘B’ means two different things in each stream. 

 

 

Figure 3.9.  The effects of different values for K, the number of centroids 

 

The second problem is that with a high value of K streams become too finely binned.  If 

two streams are both binned with 20 centroids it is very unlikely they will form any 

                                                 
8 A value of 48 means that less than 2 genes need to be in each centroid.  Also, it was predetermined that no 
genes are ever mapped to more than 36 centroids.  Therefore, this value is effectively unlimited. 

Stream 1: 5.5, 5.0, 5.2, -5.0, -5.2, -5.5
Stream 2: 8.0, 7.9, 0.2, 0.1, -2.0, -2.2 
Stream 1’: A, A, A, B, B, B 
Stream 2’: A, A, B, B, C, C 
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patterns, because on average, any particular bin is only represented by 4 (of 77) 

characters. 

 

Fortunately, both problems can be solved by re-mapping the binning scheme provided by 

Xmeans to use an equal (or near equal) number of bins for all genes.  Under the 

assumption that all genes are either up, down or normally expressed we re-map the 

centroids Xmeans finds to 3 bins9: ‘A’, ‘M’ and ‘Z’ – up, normal and down.  If Xmeans 

finds 2 centroids, then they are mapped to ‘A’ and ‘Z’.  If  K(mod3)=0, then the 

centroids are split evenly into 3 bins.  If K(mod3)=1, then the extra centroid is placed 

into the “normal” bin.  If K(mod3)=2, then the extra centroids are placed in the “high” 

and “low” bins.  For example, if Xmeans finds 4 centroids (1, 2, 3, 4) then 1 gets mapped 

to ‘A’, 2 and 3 get mapped to ‘M’, and 4 gets mapped to ‘Z’.  If Xmeans finds 5 

centroids, then 1 and 2 get mapped to ‘A’, 3 gets mapped to ‘M’, and 4 and 5 get mapped 

to ‘Z’.  In Figure 3.10, we see the data from Figure 3.9, after the bins have been re-

mapped to 3 bins.  In a simple case such as this, the number of bins for each stream do 

not change.  However, Stream 1’’, ‘B’ has been re-mapped to ‘Z’, meaning that under 

those three conditions the gene expresses at its lowest levels.  This makes the meaning of 

each character in-line with the characters in Stream 2’’.  Thus, any pattern that forms 

between Stream 1’’, and Stream 2’’, will have meaning.   

 

 

Figure 3.10.  K-means binning data before and after merging into 3 bins 

 

Note that merging the bins is different from restricting the upper limit of K.  When the 

upper limit of K is restricted to some low value, then many genes are mapped to a single 
                                                 
9 Although 3 bins were chosen 5 bins (similar to the pre-set value technique below), or 2 might also be 
reasonable choices.  However, as the number of bins is increased, fewer patterns may be found, and those 
patterns will have lower densities, whereas using only 2 bins may cause many patterns to be discovered and 
cause a large increase in execution time 

Stream 1’:  A, A, A, B, B, B 
Stream 2’:  A, A, B, B, C, C 
Stream 1’’: A, A, A, Z, Z, Z 
Stream 2’’: A, A, M, M, Z, Z  
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bin.  For instance, with K limited to 5, nearly half of the 612 genes have a single bin, 

whereas with a limit of 48 (which effectively is unlimited for this data set), only 2 genes 

are mapped to a single bin. 

 

Initially, this technique may appear to be disposing of the work that Xmeans has done.  

However, this is not the case.  Although some information loss does occur in mapping a 

large number of  bins to 3, Xmeans is still very critical to this approach and results in a 

very different binning from the other techniques.  This technique still relies on Xmeans to 

determine whether there is any change in gene expression at all.  If Xmeans determines 

that the data can be accounted for by a single centroid, then as before, the gene is not 

used under this technique.  Further, the range for each bin is determined by Xmeans.  In 

Figure 3.10, ‘A’ is used for data values between 5.0 and 5.5 for Stream 1, and 7.9 to 8.0 

for Stream 2.  Thus Xmeans gives stream-specific (in this case gene-specific) delimiters 

for each bin, unlike the pre-set value technique which uses global delimiters for each bin. 

 

The ‘+/-/0’ technique has been successfully used for binning of YCC data by Teiresias 

[Rigoutsos, ’00].  However, Rigoutsos [’00] makes no recommendations for ε, therefore 3 

separate data sets will be formed using the following 3 ε values: 0.1, 0.2, and 0.4.   

 

Finally, the pre-set value technique will be used with the values {-1.00, 

-0.25,+0.25,+1.00}.  All three pattern discovery applications can be used to analyze each 

of the two data sets:  this technique was originally developed using Teiresias, the small 

number of characters required for this type of binning permits Splash to be easily applied 

to this kind of data (as Splash only supports a small, 22 character alphabet size) and 

Genes@Work is very capable at discovering patterns in this type of data.  It should be 

noted that it is slightly more difficult to get Genes@Work to use the ‘+/-/0’ binning 

technique in place of its built-in binning scheme, however it is possible and the procedure 

for manipulating Genes@Work into doing ‘+/-/0’ binning is outlined below. 

 

Although Genes@Work was not originally intended for ‘+/-/0’ binning it can be coerced 

into doing so through a two step process.  Normally, in the first step, the floating-point 
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data is transformed into ‘+/-/0’ input.  However, as Genes@Work will only accept 

numeric input, the data is instead transformed to “a large positive value”, ‘0’ and “a large 

negative value”  – for instance +10, 0, and -10 – in place of ‘+’, ‘0’ and  ‘-’, respectively.  

The next step is to ensure that Genes@Work will not form patterns between these 

different values.  That is, no value of delta should be large enough to allow +10 and 0 to 

be considered “close enough” to form a pattern between them even after normalization 

with the training set (see Section 2.5.3).  This is accomplished by using a small value for 

delta is used and by contriving a special training set is constructed that clearly separates -

10 from 0, +10 from 0 (and ergo -10 from +10).  Such a data set has a large number of 

data points that lie between -10 and 0, and 0 and +10.  For instance, many data points of -

5 and +5 would suffice.  Such a training set causes Genes@Work to regard -10 as “very 

low and unexpected”, 0 as “intermediate and unexpected”, and +10 as “high and 

unexpected”.  By using enough data points in this contrived training set, one can ensure 

that +10, 0 and -10 are all treated “atomically”. The final question to answer is how many 

contrived data points are needed to separate the three bins.  This value should be high 

enough to ensure that +10, 0 and -10 are all well-separated no matter how many data 

points are in any of the +10/0/-10 bins.  By using the same number of points for +5 and -

5 as there are in the original data set (77), we ensure separation even in the worst case by 

guaranteeing that there are more data points in the “+5” and “-5” bins then there are in 

any other bin.   

 

To conclude, in order to achieve ‘+/-/0’ binning, Genes@Work is provided with specially 

contrived training data that consists of many (77) instances of a single “intermediate 

positive value” (+5) and many (77) instances of a single “intermediate negative value” (-

5).  From this, Genes@Work will effectively break the data up into 3 bins (a “+10 bin”, a 

“0 bin”, and a “-10 bin”) .  Pattern discovery is then executed on this data with some very 

small (near zero) value for delta that does not allow patterns to form between the 3 bins. 

 

All pattern finding techniques will be used with the ‘+/-/0’ data so that timing and 

memory benchmarks can be performed.  Once that data is collected however, only 

Teiresias will be used with the pre-set value and K-means binned data. 
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To monitor the efficiency of Teiresias, Splash and Genes@Work the running time of 

each execution will be recorded using the UNIX program “time”, which measures the full 

execution time of a process.  “time” will be considered accurate for execution times of 

100 seconds or more.  For each execution the UNIX program “ps” will be used to poll the 

memory footprint of the process every minute.  This interval will provide many time 

points for a given execution, and yet will not overly tax the CPU. 

 

After execution, it will be confirmed that the longest patterns in the ‘+/-/0’-binned data 

discovered by Teiresias are also discovered by Splash and Genes@Work.  In addition, 

these patterns will be assessed for their biological significance.  This will be done by 

comparing the discovered patterns with known gene relations in the GO [GO, ’03] CYG 

[CYGD, ’04] databases.  Only clear gene relationships that are well-established will be 

considered “hits”.  Other relationships, although not necessarily “misses” will not be 

considered further as they would require biological expertise to confirm their validity and 

this is not the focus of these experiments. 

 

In addition to comparing the execution times and memory usage of Splash to Teiresias, 

the change in execution times with varying support levels (2, 3, 6) will be examined.  

Also, the change in execution times and the number of “hits” achieved with various ε 

values (0.1, 0.2, 0.4) will be examined. 

 

3.2.6 Lymphoma 
Section 3.1.2 describes the data used for these experiments.  The first step in this 

investigation is to select a subset of genes for analysis.  Fortunately, this has already been 

accomplished by Alizadeh [’00].  This smaller data set will be binned using three 

techniques, K-means, pre-set value and the Genes@Work training-data method.  Pattern 

discovery will then take place using Genes@Work – which will use its built-in binning 

scheme –  and Teiresias which will use the Genes@Work approximation, pre-set value 

and the K-means binned data. The patterns sought in this type of analysis are those that 

occur between the columns of the data matrix.  That is, we wish to relate tissues to one 
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another based on how similarly the genes express in those tissues.  Finally, the resulting 

patterns from each binning technique will be examined for biological significance. 

Genes@Work and Teiresias will be compared in terms of memory efficiency and 

execution time.  The success of the Genes@Work approximation to accurately 

approximate the results of Genes@Work will be determined. 

 

Firstly, it must be determined which genes should be used in this analysis.  Alizadeh et al. 

[Alizadeh, ’00], used a subset of 380 genes (that represent the germinal centre B-cell 

signature) of the 17,856 genes present on the microarrays used in this experiment to 

separate the two classes of disease from one another.   Although they later identify more 

genes that seem to yield a clearer separation of the two cancer types, this work will only 

consider the 380 genes identified in order to make the results more comparable.  This 

analysis will be considered “a small number (47) of long (150 character) streams”.   

 

The combination of long data stream length and the need to add foreign characters for 

aligned pattern discovery will stress the small alphabet available with Splash and thus 

Splash will not be used in this analysis.  However, Genes@Work only searches for 

aligned patterns and is well suited for this analysis.  Teiresias, because of its large 

available alphabet will have little problem dealing with the long stream lengths involved 

in this data set and will also be used to discovery patterns. 

 

After the data is selected it will be stratified in four different ways, using the 

Genes@Work approximation (for Teiresias) or Genes@Work’s built in binning scheme, 

Xmeans, and pre-set value.  The Genes@Work approximation will take place with 10, 

12, and 14 bins, which correspond to delta values of 0.20, 0.167, and 0.143, respectively.  

The data binned using Xmeans will be for use with Teiresias only as it is difficult to get 

Genes@Work to form these same bins.  When Teiresias is used, foreign characters will 

be introduced into the data at an interval Z=1.  Thus, L=2, and W=3 will allow all 

patterns of support K to be discovered (See section 2.5.1).  For both Genes@Work and 

Teiresias, K=2 will be used.  Because Genes@Work is not implemented to work on a 
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cluster, it will be executed on a Solaris machine (see Section 3.3).  However, in order to 

save time Teiresias will be executed on the Beowulf Cluster (see Section 3.3). 

 

It will be examined how well pattern discovery, using Teiresias, can cluster this data 

using Xmeans and pre-set value as stratification techniques.  An important distinction 

should be made between the use of Xmeans here and the use of it with yeast cell cycle 

data.  Previously, Xmeans was used to stratify the numeric data into characters on a gene-

by-gene basis, then pattern discovery was used to find patterns between the genes.  

Because of this it was important that characters from one gene be comparable to another 

(i.e. an ‘A’ in gene 1 should essentially mean the same thing as an ‘A’ in gene 2) and in 

order to do this, when Xmeans found more than 3 bins for a particular gene, the bins were 

“compressed” into just 3.  That problem does not exist with this data, however, because 

pattern discovery takes place between the arrays, not the genes.  Therefore, the binning 

scheme used for one gene is independent of the binning scheme used for any other gene.  

In the extreme, an entirely different set of characters could be used for each gene and the 

pattern discovery would still work.  Contrariwise, if such a thing were done with the 

yeast cell-cycle data, no patterns would be discovered at all. 

 

There is another important distinction between this work and that done with the yeast 

cell-cycle.  Because the yeast cell-cycle data set consists of time-series data, it could be 

expected that the patterns would be dense.  That is, once a set of genes begins co-

expressing, they are likely to continue co-expressing in the next time instance.  However, 

in this data the order of the genes is random with respect to any patterns they might form.  

That is, the first and last genes are just as likely to form a pattern as the first and second.  

Therefore, it is absolutely critical that exhaustive pattern discovery can take place.  This 

means that any aligned pattern discovered consists of every co-expressed gene shared 

between the supporting tissues.  Using Z=1 allows the least number of unaligned patterns 

to form.  However, with such a small value of Z, Teiresias must reuse all the break-

characters approximately 4 times.  This will cause a number of unaligned patterns to be 

discovered, but it was determined this was still faster than using Z>1.   
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Because of the length of the streams, the upper value for the number of centroids will be 

limited in order to conserve the number of characters needed for data binning.  To test the 

effect of limiting the number of centroids four values will be used: 5, 10, 15 and 20.  

 

The approach used to evaluate the quality of the patterns is a three step process.  First, a 

number of different criteria will be employed to score the patterns.  Each scoring scheme 

is an attempt to balance the number of genes in the pattern (also referred to as the length 

or density of the pattern) with the support of the pattern, a feature that was shown to be 

critical in the yeast cell-cycle results.  Second, the top 20 patterns10 for each scoring 

scheme will then be picked “blindly”.  That is, without regard to the proportion of a 

particular subtype that supports the patterns.  Third, the quality of these blindly-picked 

patterns will be evaluated based on how well they agree with the subgroups found by 

Alizadeh.  That is, if the vast majority of the tissues which support the pattern are of 

either ABC or GCB subtype then the pattern will be defined as a good classifier.  This 

approach will give some insight into the minimum number of genes and minimum 

amount of support a pattern would need to be considered a good classifier.  The 

underlying hope is that it might prove to be a general rule that could be applied to many 

kinds of data.  After the patterns that are best able to classify the two subgroups have 

been determined, they will be used to form a list of genes (candidate genes) that seem to 

be most important in separating the two classes.  Afterwards it will be considered 

whether the classification of some tissues by Alizadeh is incorrect and the implications 

that has on analysis. 

 

Analysis of the Genes@Work results will be slightly different.  Because Genes@Work is 

primarily a classification tool it must be told to which of the two classes any particular 

array belongs.  It then uses one class as the training data, and searches for patterns in the 

other class.  This means that any pattern discovered by Genes@Work will consist entirely 

of one class.  The way in which Genes@Work will be compared to Teiresias, then, will 

be in terms of the length and support levels of the most important patterns as determined 

                                                 
10 Certainly more than 20 patterns could be used for this evaluation.  In an automated approach to 
clustering, like with Genes@Work [reference], every pattern would be considered, in order, until every 
tissue was placed in a cluster.   
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by Genes@Work’s own method, as well as the highest support patterns found by 

Genes@Work.  Finally, a list of genes most important to classifying this data will be 

compiled and compared against those from Teiresias. 

3.2.7 Other Issues 
In addition to the above executions other issues will be considered when comparing 

Teiresias, Splash and Genes@Work.  The ease of use is an important issue for Biologists 

when they use utilities developed by computer scientists.  A graphical user interface 

(GUI) provides a biologist with a familiar windows-like interface but is more restrictive 

than a command prompt.  Thus issues of utility must also come under consideration.  

Both Splash and Teiresias provide other parameters to either trim the reported patterns 

further, or reorder them in some way and these parameters may or may not be useful for 

pattern discovery on microarray data.  Even specifying the equivalence classes is handled 

differently in Splash and in Teiresias. 

 

Also, when evaluating results the data requirements of each binning method must be 

taken into consideration when examining results.  Clearly, the training-data technique 

requires more data than the other methods. 

 

3.2.8 Cluster 
For each of the above data two data sets the program "Cluster" will be used to form a 

hierarchical clustering of the input.  The patterns found in the above data will be 

compared to the results from Cluster.  That is, either Cluster will confirm the results from 

these other techniques, or these other techniques will find different results than Cluster.   

 

For the yeast cell-cycle data, the gene-list from the highest support patterns with well 

defined biological roles (the “best” patterns) will be checked against the results from 

Cluster to see if the same genes are closely correlated.  For each pattern, the smallest 

group that contains all (or nearly all) the genes will be considered the equivalent grouping 

in Cluster.  For each equivalent group, the correlation value of the group, and the number 

of genes it contains will be reported.  The Cluster group will almost certainly contain 
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more genes than the pattern.  These “extra” genes will be evaluated on how well they 

agree with the biological significance associated with the pattern.    If the Cluster 

grouping contains proportionally more genes that agree with the core-function of the 

genes in the pattern, the Cluster group will be considered better.  If the Cluster group 

contains genes that dilute the core-function of the pattern, then the results will be 

considered worse. 

 

For the lymphoma data set, the classification made by Cluster will be considered correct.  

The longest patterns for various levels of support, will be evaluated against the Cluster 

results based on how well they agree. 

 

3.3 Materials  
All tests of the various applications will be conducted on either a SunBlade 1000 

(SOLARIS 5.8) or a Beowulf Cluster of 33 Pentium-3 866MHz (256KB L2 cache) with 

0.75GB of memory each.  The SunBlade has 4 GB of RAM and a single processor 

running at 600MHz with a 4MB external cache. 

 

 

4 Results 

4.1 Yeast Cell-cycle 
The yeast cell-cycle data was used for two purposes.  First, it was used to benchmark 

time and memory usage of Splash, Teiresias, and Genes@Work.  Second, it was used to 

evaluate the utility of 3 different binning techniques, ‘+/-/0’, pre-set value, and K-means.  

In all cases, unless otherwise noted, the original data set of ~6,000 genes was filtered to 

612 genes using a variational filter.  However, it became apparent that Genes@Work was 

not able to finish execution on such a large data set with the same pattern density 

requirements as Teiresias, and more alarmingly, it appeared that Splash did not find the 

same patterns as Teiresias.  The latter problem is termed “the missing pattern problem” 

and is outlined below.  However, by executing exhaustive pattern discovery on a smaller 

data set, the missing pattern problem is over-come, and the three applications can be 
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successfully benchmarked.  Finally the results from each of the 3 binning techniques, 

using the full 612 genes with Teiresias as the pattern discovery application, is presented. 

4.1.1 Missing Pattern Problem 
After executing pattern discovery on the ‘+/-/0’ data set, it became apparent that Splash 

only found a subset of the patterns found by Teiresias.  Although the reason for this is not 

known, the following example illustrates the effect concretely.  With the following input 

file for both Teiresias and Splash and parameters Z=4, K=2, L=4, W=9: 

 
>Stream 1 

ECAAAFCCACGDCADHCACAICDDAKCACALDAACMACACNACADOACACPAADCQDDDARACACSACCATC

ACAVACACWACACXACACYDCAAE 

>Stream 2 

ECCAAFCDACGDCADHACCDICCDAKAACCLCDACMACACNACACODCACPACACQDCDDRACDDSADDATC

CCAVCAACWADACXACAAYDACCE 

>Stream 3 

EACACFAADDGDCADHCCACIACACKDACALDCACMACACNACACOACACPADACQACACRACCCSACDATC

ACCVCCDAWACACXDAAAYCCAAE 

>Stream 4 

ECCAAFCACCGCCADHDACDICAAAKCDCALCDACMACACNACACOACACPADACQDDCCRACDASDDAATC

DDDVCCAAWCCACXDCAAYCCAAE 

 

Both algorithms find many patterns in this data.  However, Splash misses the following 

pattern that Teiresias finds: 

 
I..A.K..CAL..ACMACACNACACOACACPADACQ...CRAC..S...ATC...VCC.AW.CACXD.AAYC

CAAE    (Stream 3, position 20) (Stream 4, position 20) 

 

Visual inspection confirms that this pattern does exist in the data set and it is maximal 

(with L=4 and W=9).  Although Splash misses this one pattern, it does find the following 

3 patterns which involve streams 3 and 4 (the relevance of which will become clear): 

 
Pattern 1: 

ECCAAFC..CG.CADH..CDIC..AK..C.LCDACMACACNACACO.CACPA.ACQD...RACD.S.D.ATC

...VC.A.W..ACX.CAAY....E  (Stream 2, position 0) (Stream 4, position 0) 

 

Pattern 2: 
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K..C.L..ACMACACNACACO.CACPA.ACQ....RAC..S...ATC...VC...W (Stream 2, 

position 25) ( Stream 3, position 25) ( Stream 4, position 25) 

 

Pattern3: 

E.CA.F....GDCADH.C..I.C..K.AC.L..ACMACACNACACO.CACPA.ACQ.C..RAC..SA.DATC

.C.VC...WA.ACX..AAY....E ( Stream 2,  position 0) ( Stream 3,  position 

0) 

 

Here it can be seen that Splash discovers patterns between streams {2, 4}, {2, 3, 4}, and 

{2, 3}.  However, Splash does not discover a pattern between streams 3 and 4 only.  

Notice, that pattern 2 is the parent of patterns 1 and 3.  That is, by extending pattern 2 to 

the left and right, as well as dereferencing a few “don’t care” characters, patterns 1 and 3 

can be formed.  Observe also that pattern 2 is similar to the missing pattern except that it 

has not been extended to the left or right.  That is, pattern 2 is also the parent of the 

missing pattern.  Therefore it is possible that the missing pattern is absent because pattern 

2 was not extended correctly. 

 

To investigate further, Splash and Teiresias were executed with the following input, 

which is identical to the above except the first 20 characters of each stream has been 

removed: 
>Stream 1 

ICDDAKCACALDAACMACACNACADOACACPAADCQDDDARACACSACCATCACAVACACWACACXACACYD

CAAE 

> Stream 2 

ICCDAKAACCLCDACMACACNACACODCACPACACQDCDDRACDDSADDATCCCAVCAACWADACXACAAYD

ACCE 

> Stream 3 

IACACKDACALDCACMACACNACACOACACPADACQACACRACCCSACDATCACCVCCDAWACACXDAAAYC

CAAE 

>Stream 4  

ICAAAKCDCALCDACMACACNACACOACACPADACQDDCCRACDASDDAATCDDDVCCAAWCCACXDCAAYC

CAAE 

 

With this input, the missing pattern from above is now found by Splash.  This would 

suggest that Splash may be able to discover the pattern, but the pattern is lost when the 

input streams are extended to the left.  However, this effect is not seen every time a 
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pattern can be extended to the left otherwise many patterns should be missing in any 

output produced by Splash. Attempts to replicate this behavior with other, shorter, 

artificial input-streams have not shown this result.  The reason for this effect is unknown, 

but it does appear to be a genuine error in Splash.  Further investigation would likely 

require Splash’s source code and a great deal of time to determine the exact cause of this 

fault. 

 

The missing-pattern problem effectively makes it impossible to benchmark Splash 

against the other algorithms because the result set would not include all the patterns.  

Fortunately, however, this problem does not occur if pattern discovery parameters are set 

such that all aligned patterns are discovered (L=2, W=Z+2).  However, discovering every 

aligned pattern is a very computationally expensive endeavor.  In order to do it, the input 

data sets must be very small.   

 

4.1.2 Time and Space Usage 
Teiresias, Splash and Genes@Work were used to discover patterns in each of the 4 data 

sets (representing the first 25, 30, 35 or 40 streams from the data used in Section 4.1.4) 

with K ranging from 2 to 5.  The memory usage, execution time11 and number of patterns 

found for each execution is presented in Table 4.1.  In Table 4.2 the number of aligned 

and total patterns (both aligned and unaligned) found by each program is shown except 

for Genes@Work which only finds aligned patterns.  Genes@Work was unable to finish 

pattern discovery on the largest data set (40 streams) within 24 hours. 

 

                                                 
11 Elapsed or “Wall clock time” 
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Table 4.1.  Execution time and Memory usage for Teiresias, Splash and Genes@Work 

Teiresias Splash Genes@Work 

Streams K Time 

(s) 

Mem. 

(Mb) 

Time 

(s) 

Mem. 

(Mb) 

Time 

(s) 

Mem. 

(Mb) 

# of 

Aligned 

Patterns

2 118 41 124 16 1354 122 32783 

3 99 42 102 16 1433 118 32483 

4 73 35 76 15 1214 103 30343 
25 

5 54 27 45 14 989 99 24115 

2 204 58 391 23 10354 133 64027 

3 174 54 344 23 9943 145 63592 

4 135 48 266 22 9654 149 59841 
30 

5 100 40 179 20 7812 131 47797 

2 350 87 1183 37 64159 190 123547 

3 302 80 1100 37 70879 190 122952 

4 233 69 906 36 73326 148 117056 
35 

5 174 53 627 32 67177 150 96281 

2 607 128 3990 66 * * 233515 

3 515 125 3840 66 * * 232735 

4 394 103 3357 64 * * 223847 
40 

5 304 85 2450 57 * * 189355 
* = did not finish under 24 hours 
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Table 4.2.  Number of Patterns discovered by Teiresias, Splash and Genes@Work 

Teiresias Splash Genes@Work 

Streams K Aligned 

Patterns 

Total 

Patterns 

Aligned 

Patterns

Total 

Patterns

Aligned  

Patterns 

2 32783 208442 32783 209971 19724 

3 32483 187224 32483 188575 19721 

4 30343 139142 30343 140021 19374 
25 

5 24115 98398 24115 98927 17496 

2 64027 317115 64027 319478 38226 

3 63592 289548 63592 291677 38224 

4 59841 221359 59841 222785 37722 
30 

5 47797 159409 47797 160243 34536 

2 123547 483375 123547 486764 74519 

3 122952 446765 122952 449830 74516 

4 117056 349625 117056 351690 72827 
35 

5 96281 256551 96281 257800 68749 

2 233515 720116 233515 724785 * 

3 232735 674669 232735 678926 * 

4 223847 545797 223847 548664 * 
40 

5 189355 413867 189355 415645 * 
* = did not finish in 24 hours 

 

There are a number of important conclusions that can be drawn from the data in Table 4.1 

with regards to execution time, memory usage, and how this memory usage may reveal 

implementation decisions on the part of the authors.  These conclusions are discussed in 

the following four paragraphs. 

 

First, except for very short runs (e.g. K=5, Streams = 25) Teiresias is faster than Splash.  

Graphically this can be seen in Figure 4.1.  As the number of streams increases, this 

speed difference becomes more pronounced: From approximately equal run time for K=2, 
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Streams = 25, to a 100% increase in time for K=2 Streams = 30, to a 200% increase for 

K=2 Streams = 35 and a five-fold increase for K=2 Streams = 40.  Likewise, Splash is 

significantly (10x – 100x) faster than Genes@Work.  There is a caveat, however, to 

concluding that Genes@Work is 10 to 100 times slower than Splash; because 

Genes@Work is written in Java its execution time depends heavily on the Virtual 

Machine (VM) that is used to run it.  It is known, for instance, that running Genes@Work 

using the java option -server that execution times decrease by ~30%.  However, -server is 

not the default VM for most people, and the batch files provided with Genes@Work do 

not specify the -server option when invoking the VM.   Thus it was decided that 

executions of Genes@Work should be conducted with the default VM even though it 

results in worse execution time.   

 

Execution Time vs. Number of Streams (K =2)
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Figure 4.1 Log execution time of Teiresias, Splash and Genes@Work vs. Number of streams (with 
constant support, K=2) , with linear interpolation of the data points 
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Second, without exception, Splash uses (2x – 3x) less memory than Teiresias and 

Teiresias uses (3x – 4x) less memory than Genes@Work.  This can be seen in Figure 4.2 

where the memory requirements for pattern discovery on 25, 30, 35 and 40 data streams 

with K=2…5 is shown.  With regards to Genes@Work’s inefficiency, it is important to 

note that, in addition to pattern discovery, the Genes@Work application includes many 

other  features (a GUI, hierarchical clustering) that increase the memory requirements of 

the application at start-up.  However, this start-up cost is constant and does not change 

with different input data sets.  Thus, doubling the input data size does not double the 

memory requirement.  This effect is evident from Table 4.1 where going from K=2 

Streams = 25 to K=2 Streams = 35, Teiresias uses 2x more memory (41Mb to 87Mb, a 

difference of 46Mb) for pattern discovery where as Genes@Work uses only ~50% more 

memory (122Mb to 190Mb, a difference of 78Mb).  Graphically, this can be seen by 

observing the slope of the trend lines for each application in Figure 4.2.  Although 

Genes@Work has a greater slope than Teiresias, it is not 4-times greater, even though 

looking at the raw numbers would imply Genes@Work uses 4x as much memory.  In 

Figure 4.2 we can also see that not only does Splash use less memory than Teiresias, but 

as the number of patterns discovered increases, Splash also uses a smaller and smaller 

percentage of the amount of memory required by Teiresias. 
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Memory Foot Print vs. Patterns Discovered
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Figure 4.2.  Memory used vs. the number of patterns discovered for Teiresias, Splash and 
Genes@Work for 25, 30, 35 and 40 data streams and K=2…5, with linear interpolation of the data 
points 

 

Another interesting point to note is that Teiresias uses less memory per pattern 

discovered when K is high, than when K is low.  To see this effect in Figure 4.2, first 

notice that Teiresias’ data points occur in 3 clusters of 4 points each.  Each cluster 

corresponds to the number of streams in the data set used (25, 30 or 35) and each cluster, 

individually, appears to conform to an exponential curve.  In each exponential curve, the 

highest point is for the lowest value of K (K=2) and the lowest point for K=5.  It can then 

be seen, to discover ~100,000 patterns (K=5, streams = 35) takes less memory than to 

discover ~68,000 patterns (K=2, Streams = 30).  Practically, this means that pattern 

discovery with a large data set and high values of K will be more memory efficient than 

lower values of K, even with some slightly smaller data set. 
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Third, the way in which Splash and Teiresias use memory reveals potential 

implementation details.  It is known from its author that Teiresias uses a hash-table to 

store intermediate patterns [I. Rigoutsos, personal communication, Jan. 21st, 2003].  

Although no details are provided on how Splash stores intermediate patterns, it is known 

that pattern discovery lends itself to a tree-like data structure (see Section 2.5.5) and thus 

a tree could be used to store the intermediate patterns.  If Splash does use a treelike 

structure (or any other non-hashing structure) to hold intermediate patterns it would 

partially explain why Teiresias uses more memory than Splash.  Hash-tables are fast, but 

inefficient data storage structures; Splash, using a tree-like structure would be slower but 

more efficient.  This might also explain why Teiresias will occasionally require more 

memory to discover fewer patterns as outlined above.  In addition, because Teiresias 

must keep both a prefix-wise and suffix-wise list of all the patterns, it will require more 

memory than Splash to run.  Lastly, because Splash only allows 22 characters as valid 

input, it can represent patterns using only 5 bits (25 = 32) per character and thus saves on 

Teiresias’ requirement of 8 bits per character. 

 

Lastly, it can be seen in Figure 4.2 that Genes@Work has some erratic behavior with 

respect to its resource management.  Like Teiresias, it too occasionally requires more 

memory to discover fewer patterns and occasionally requires more time to discover fewer 

patterns.  The reason for this is unknown, but is in all likelihood due to the VM and the 

way in which it optimizes code at runtime and allocates memory. 

4.1.3 Pattern Properties in a subset of the YCC data 
 

Although the data collected above is useful for time and space analysis there is also 

information to be discovered about the patterns themselves which helps illustrate the 

efficiency of each program and reveals a possible way in which to select patterns for 

further analysis.  From this data we can determine the ratio of aligned patterns to all 

patterns discovered.  This is a measure of the useful work done by each application.  If 

very few of patterns discovered are aligned (the only patterns used in this work) then the 

application has wasted process time and memory on discovering unaligned patterns.  
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Further, the way in which the number and length of aligned patterns change with 

increasing support, K, is examined and a method of selecting important patterns is shown. 

 

In Table 4.2, we see a list of the number of patterns discovered by Teiresias, Splash and 

Genes@Work.  We can use the number of patterns discovered as a measure of the useful 

work done by each program.   There are 2 major points to be drawn from this data.  The 

first and most obvious result is that even with break characters, aligned patterns represent 

a small portion (15-25%) of the total patterns discovered.  This means that Teiresias and 

Splash are doing a great deal of unnecessary work because 75% of the discovered 

patterns are not useful to this analysis.  The number of discovered unaligned patterns 

could be reduced using a lower value of Z, at the cost of increasing the total stream length 

and reusing many characters as break-characters.  However, a better solution would be 

for Splash and Teiresias to have an added function of being able to find only aligned 

patterns such as an –alignedonly parameter.  Second, Genes@Work finds significantly 

fewer aligned patterns than either Teiresias or Splash.  This is because Genes@Work 

incorporates a feature whereby it attempts to remove correlated patterns.  Correlated 

patterns are described below in 4.1.4.  The exact methodology that Genes@Work uses for 

determining a correlated pattern is not known.  However, it is believed that Genes@Work 

does find all the aligned patterns that Teiresias and Splash find, but simply removes the 

correlated patterns from the final results.   

 

Table 4.3 shows some interesting properties of the yeast cell-cycle data set.  First, the 

number of aligned patterns discovered (for any value of K), as expected,  increases 

exponentially with respect to the number of streams in the data set.  Graphically this can 

be seen in Figure 4.3 , where the number of patterns discovered by Teiresias for K=2 for 

25, 30, 35 and 40 streams is shown.   
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Table 4.3. Number of aligned patterns of given length for varying support 

Support of at least K Support of at least K 
#Literals 

K=2 K=3 K=4 K=5 
#Literals

K=2 K=3 K=4 K=5 
1 0 0 0 0 29 30 53 1 0 

2 0 0 16 70 30 28 33 0 0 

3 0 0 171 710 31 40 28 0 0 

4 0 15 654 2263 32 51 6 0 0 

5 0 53 1440 3516 33 41 8 0 0 

6 0 113 2017 4039 34 28 3 0 0 

7 0 216 2266 4694 35 38 3 0 0 

8 0 310 2623 5375 36 39 0 0 0 

9 0 365 2814 5593 37 44 1 0 0 

10 0 423 2972 5627 38 35 0 0 0 

11 0 459 2950 4997 39 26 2 0 0 

12 0 535 3002 4355 40 26 0 0 0 

13 1 569 2907 3480 41 17 0 0 0 

14 1 560 2457 2455 42 14 0 0 0 

15 3 568 2124 1689 43 15 0 0 0 

16 2 562 1730 1037 44 8 0 0 0 

17 8 570 1312 724 45 7 0 0 0 

18 7 512 1059 442 46 4 0 0 0 

19 10 537 705 264 47 2 0 0 0 

20 10 449 513 137 48 1 0 0 0 

21 13 427 319 59 49 3 0 0 0 

22 18 374 211 26 50 2 0 0 0 

23 22 308 120 13 51 0 0 0 0 

24 29 239 63 0 52 1 0 0 0 

25 30 230 29 0 53 1 0 0 0 

26 33 153 12 0 54 0 0 0 0 

27 43 116 4 0 55 0 0 0 0 

28 48 88 1 0 56 1 0 0 0 
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Aligned Patterns vs. Number of Streams (K =2)
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Figure 4.3 Aligned patterns discovered by Teiresias  vs. the number of streams in the data set to show 
exponential relationship, shown as a solid line 

 

As will be seen in subsequent sections, balancing the support and length of a pattern is 

very important in determining which patterns are interesting and likely useful for 

clustering.  For example, a pattern with support 2 which contains 20 literals may be 

common and may occur at random.  However, a pattern with 20 literals and support 20 

may be very rare and thus is interesting and likely shows a real biologically significant 

relationship.  Determining the greatest length of a pattern that occurs for some particular 

K may be a way of determining their importance.  For instance, looking at Table 4.3, it 

may be concluded that patterns with support of exactly 2 and containing  at least 40 

literals may be interesting.  We use the cut-off of 40 literals because when K=3 there are 

some patterns that occur with 39 literals.  Generally, for any value of support X, the 

minimum number of literals required would be one more than the number of literals in 

the longest pattern supported by X+1 streams.  The reasoning behind this approach is that 

if a pattern of any particular length occurs at a higher support, then it is more likely to be 

interesting at the higher support than at the lower.  This does not mean that the pattern is 
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not biologically significant at the lower level of support, however.  So, this technique 

favors to minimize the false-positive rate of patterns considered interesting.  Although 

this intuitively seems like a reasonable approach, further investigation would be required 

to confirm this technique’s usefulness.  The technique used in the remainder of this work 

involves selecting the top 5 or 10 longest patterns for each level of support, which is a 

more conservative variation of the technique described here. 

 

 

 

4.1.4 Sign-of-the-derivative technique 
As mentioned in Section 2.4.2 this technique maps gene expression microarray data to +/-

/0 based on whether the level of gene expression increases, decreases, or remains the 

same between two time-points.   The amount of difference between two points in order 

for them to be considered different is defined ε.  Of the original ~6,000 genes, the 612 

genes with the highest variance were selected for pattern discovery.  From this, 3 

different data sets were constructed with ε values of 0.1, 0.2, and 0.4.   

 

 

Because timing analysis already exists for the three pattern discovery algorithms and it is 

known that Teiresias and Splash either produce the same results (for exhaustive pattern 

discovery) or Splash produces a subset of Teiresias’s results (for non-exhaustive pattern 

discovery), only Teiresias needs to be executed with this data.  Further, from preliminary 

results, it was known that only Teiresias could finish execution on this data set using L=4, 

W=9, K=2.   However, there are two aspects to Genes@Work that make it very unique 

from Teiresias.  First, it implements a global density requirement, whereas Teiresias (and 

Splash) use local density requirements.  Second, it has its own method of determining 

important patterns, or rather, a way of calculating the probability of a pattern.  To 

investigate the effects of these properties Genes@Work was also used to discover 

patterns in this data set.   
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For each data set pattern discovery was executed using L=4 W=9 (for Teiresias) –  

meaning at minimum 4 literals must be present in any 9 character span in the pattern – 

and with support values K=2.  In the following analysis patterns with a minimum support 

of 3 and 6 are examined, but executions with higher values of K are not needed because 

those same patterns will be present in K=2.  However, if for some values of ε Teiresias 

was unable to finish with K=2, then executions with K=3 and K=6 were attempted.  

Genes@Work was executed using the same three input data sets but a single density 

requirement of 30 literals12 across the length of the data streams.  Following this, the 

results of equivalent executions between pattern discovery applications were compared to 

confirm that they produced the same patterns.  However, instead of examining every 

pattern, the focus was narrowed to the 20 most interesting patterns.  Further, the most 

interesting patterns are evaluated for biological significance using GO annotation [GO].   

 

4.1.4.1 General Observations 
Before exploring specific results of pattern discovery, a few general observations will be 

noted first along with a description of problems incurred when Genes@Work and the 

workarounds used to alleviate these problems. 

 

As expected from Section 4.1.2, Teiresias runs faster than Genes@Work, which was 

unable to finish pattern discovery using a low density requirement.  Therefore, 

Genes@Work was executed on the same data sets but with a higher literal density 

requirement. 

  

As described above, after execution, it was seen if Genes@Work was capable of 

producing the same 20 longest patterns as Teiresias and vice versa.  

 

The last and most important note is that very often the longest patterns are all supported 

by the same set of genes.  As a result, if the longest pattern occurred between genes W, X 

                                                 
12 This value was chosen because it takes at least 30 characters to form a pattern that spans the entire length 
of a 77 character data stream.  It was also known from preliminary executions of Teiresias that the longest 
patterns almost always spanned the entire length of the input streams. 
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and Y then the next longest might occur between W, X and Z and the next longest 

between X, Y and Z and then W, Y and Z and so on.  This occurs because there is a long 

pattern that occurs between all 4 genes and slightly longer, more specific patterns 

between subgroups of the 4 genes.  These pattern are said to be correlated.  It is believed 

that  Genes@Work attempts to remove some of these patterns after pattern discovery.  

However, as will be shown below, Genes@Work often fails to remove a number of these 

correlated patterns.  The high occurrence rate of correlated patterns highlights a flaw in 

defining the longest patterns as the most interesting.  Because a pattern supported by 4 

genes is likely more biologically significant than a longer pattern supported by less genes.  

The solution to this problem is to use a scoring system that balances the length of patterns 

with their support (see Section 4.1.3).  However, devising such a system is difficult 

because for any particular data set long patterns may give better biological results than 

higher support pattern or vice versa.  This problem is exacerbated by the fact that a 

gene’s expression is correlated to the expression of other genes (this is effectively what is 

being determined by microarray analysis) which makes determining the probability of a 

number of genes co-expressing difficult. 

 

4.1.4.2 Execution Times and Memory Usage for Pattern Discovery 
The execution times and memory usage of Teiresias and Genes@Work are listed in Table 

4.4.  The first time listed for Genes@Work is the time taken to execute pattern discovery, 

and the second is the time taken to discover and remove correlated patterns.  It can be 

seen that when Genes@Work uses more memory (and discovers more patterns) that the 

difference between Time1 and Time2 becomes significant.  The rows in bold represent 

the executions where Teiresias, Splash and Genes@Work all finished pattern discovery. 
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Table 4.4.  The execution time and memory usage of Teiresias and Genes@Work for each value of ε 
and K for sign-of-the-derivative data binning technique. 

Teiresias Genes@Work 

ε K Time(s) Mem. 

(GB) 

Time1(s) Time2(s) Mem 

(MB) 

1 2 25572 4.2* 6360 48420 249 

1 3 24912 4.2* 4260 32880 171 

1 6 22557 3.9 742 742 85 

2 2 16659 3.5 697 3110 134 

4 2 27201 4.2* DNF DNF DNF 

4 3 24973 4.2* DNF DNF DNF 

4 6 29252 4.2* 2970 2970 87 
* indicates that execution did not finish due to memory usage 

DNF indicates that execution did not finish in <24 hours 

 

 

In terms of the number of patterns found for each execution, Teiresias finds between 11 

million and 24 million patterns.  Genes@Work finds many fewer patterns, from as little 

as 2 to a maximum of 90,000.  This is due to two causes.  First and most importantly, the 

global density constraint of 30 literals and second, the removal of patterns Genes@Work 

considers correlated.  

 

As can be seen in Table 4.4, the fastest execution times occurred on data sets where 

ε=0.2, followed by ε=0.1 and ε=0.4.  This is because when ε=0.2, the frequency of each 

data character (+/-/0) is roughly equal.  When ε=0.1 there are very few ‘0’ characters and 

when ε=0.4 the majority of the characters are ‘0’ thus increasing the number of patterns 

(and their length).  Although finding an ε value that makes the frequency of all characters 

exactly equal would minimize execution time, it is difficult to justify this approach 

biologically. 

 

Because of the different density requirements placed on Genes@Work and Teiresias, it is 

important to examine how well the results from the three applications agree with each 
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other.  Two applications are said to have found the same aligned pattern if the support list 

for that pattern is the same for both applications.  This is a valid way of determining that 

two patterns are the same because there can be only one maximal aligned pattern that is 

supported by any unique set of genes.  This method is used because it is faster than 

checking every literal in a pattern.  In all cases Teiresias discovered the same 20 most 

significant patterns found by Genes@Work.  However, Genes@Work generally failed to 

find most of the patterns found by Teiresias.     

 

When considering the results from Genes@Work we must take into consideration two 

things.  First, for the case ε=2 K=6 the shortest top-20 pattern discovered by Teiresias has 

a length of 24 characters.  This places the pattern below the density restriction placed on 

Genes@Work, and thus it is not surprising that Genes@Work does not find the top 20 

patterns that Teiresias does for these parameters.  However, for all other values of ε and 

K (where Teiresias could finish execution) the shortest top-20 pattern consists of more 

than 30 literals and therefore Genes@Work should be able to find all such patterns.  Even 

so, Genes@Work only finds between 2 and 9 of the top 20 patterns found by Teiresias for 

any data set.  This low hit-rate is believed to be due to Genes@Work removing low 

support, correlated patterns from its output.  Thus, instead of having multiple patterns 

between genes {W,X,Y}, {X,Y,Z}, {W,Y,Z}, ..., it has a single pattern between 

{W,X,Y,Z} that may be shorter than the patterns with lower support.  Unfortunately this 

is hard to check for without knowing the algorithm that Splash uses to remove correlated 

patterns.  If this explanation is indeed true, then internally, Genes@Work likely does find 

all the same top-20 patterns as Teiresias.  Unfortunately, it is not currently possible to 

stop Genes@Work from removing uncorrelated patterns after discovering all patterns. 

4.1.4.3 Biologically Significant Patterns 
This section looks into the biological significance of the most interesting patterns as 

discovered by Teiresias (where interesting means long) and Genes@Work (where 

interesting means improbable, see Section 2.5.3) on sign-of-the-derivative binned data.  

For each dataset, from each of the two applications, the set of genes that support the top 5 

most interesting patterns are investigated and presented in a table.  However, often many 

of the top 5 patterns are highly correlated to one another (see below).  In such a case the 



 79

correlated patterns are omitted from the table and thus, some tables can contain as little as 

a single pattern.  However, if all 5 of the investigated patterns appeared to have biological 

significance, or were highly correlated then the next 5 patterns were additionally 

examined.  The following 11 tables are organized from lowest values of ε and K to 

highest.  For almost every value of ε and K there are two tables.  The odd-numbered 

tables contain the most significant patterns by length – from executions by Teiresias –  

and the even-number tables contain the most significant patterns as measured by 

Genes@Work.  Because Teiresias was unable to finish pattern discovery on  ε=0.1, K=2 

(Table 4.5),  and ε=0.1, K=3 (Table 4.6) the longest patterns discovered by Genes@Work 

are used instead.  Because both Genes@Work and Teiresias were unable to finish when 

ε=0.4, K=2 and  ε=0.4, K=3 that data was omitted.  In the case of  ε=0.4, K=6, Teiresias 

was unable to finish and Genes@Work only found 2 uncorrelated patterns thus only 1 

table is presented. 

 

The table columns in this section are organized as follows.  “Rank” refers to the rank of 

the pattern’s significance with 1 being the longest (or least probable) pattern and 10 being 

the 10th longest (or 10th least probable) pattern.  Because Teiresias’ output includes the 

template of the discovered patterns, it is shown in the second column.  The break 

characters have been removed since they make reading the template  more difficult.  

Genes@Work, on the other hand, does not output the pattern’s template, so the log-

probability of the pattern is shown in the table instead.  The last column lists the genes 

that support the pattern.  When the gene’s standard name is known, it is used; otherwise 

the systematic name is used. 

 

In many cases the most interesting patterns are highly correlated to one another.  In such 

instances the patterns are replaced by a single representative pattern.  The representative 

pattern consists of the first pattern that contains the majority of the correlated genes and 

subsequent genes found in other, similar patterns are indicated by enclosure in curly 

braces.  In all of the tables it can be seen that some ranks are missing.  If a rank is missing 

it is for one of two reasons.  One, the missing pattern was highly correlated to another 

pattern already in the table. In this case, the correlated pattern is removed and any genes 
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not appearing in the representative pattern are added to it (the representative pattern).  

Two, the pattern is supported only by genes labeled “dubious” or “hypothetical”. 

 

Gene Ontology (GO) annotation [GO, ’03]  was used to confirm the biological 

significance of each gene group.  For each pattern, the genes that compose the pattern are 

submitted to the “GO term finder” (through a web interface) and a probability is assigned 

by the web service.  The probability is presented here, where applicable, in the discussion 

of each table.  Note, that this probability is different from the probability assigned to a 

pattern by Genes@Work and will be indicated by pre-fixing the probability with “p=”.  

This probability is calculated from the hypergeometric distribution and is a measure of 

how likely, at random, one would expect to find a particular group of genes that share 

some property.  A lower probability means that the set of genes has more biological 

significance.  A higher probability means that the set of genes is less biologically 

significant and more likely to have occurred at random.  This probability is dependant on 

4 values: 1) the number of genes that share some property (such as being involved in cell-

cycle); 2) the number of genes that support the pattern (as reported by the pattern 

discovery program); 3) the number of genes that contain that property in the whole 

genome, and  4) the total number of genes in the whole genome.  Calculating this 

probability is very similar to the probabilities of a scoring hand in poker.  The probability 

of having a pair of aces in a poker hand is dependant on the following values: 1) there are 

2 aces in your hand. 2) a poker hand has 5 cards. 3) there are 4 aces in the deck and 4) a 

deck consists of 52 cards.  It should be noted that the probabilities presented here are 

likely lower than they should be for the data collected here.  This is because SGD has 

annotations for ~7,700 genes, whereas the data was collected by Spellman was for only 

~6,000 genes (this is the equivalent of having a smaller deck in poker).  However, the 

probabilities serve as a guide to the likelihood of having selected these genes at random, 

and should be fairly comparable to one another.  There is no accepted value for a 

maximum allowable probability for a group of biologically significant genes.  So, the 

standard 95%-confidence interval (p=0.05) will be used. 
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Table 4.5. Longest patterns discovered by Genes@Work  for ε=0.1,  K=2    

Rank Probability 

(log10) 

Supporting Genes 

1 -25 CUP1-1 CUP1-2 

2 -47 KCC4, MSH6, YCL022C 

3 -47 RFA1, RSR1, MSH2 {MSH6} 

4 -45 MRT4, EBP2, YMR269W 

6 -45 NOP6, MRT4, UTH1 {NOP7} 

7 -10 PRM1, SCW10 

8 -10 PRM5, DIA1 

 

In  Table 4.5 we see the longest genes as discovered by Genes@Work with ε=0.1 and 

K=2 (Teiresias output was not used as Teiresias did not finish execution with these 

parameters).  The rank 1 pattern is easy to verify as biologically significant since CUP1-1 

and CUP1-2 are two copies of the same gene.  This result suggest real patterns can be 

picked out by the sign-of-the-derivative method.  The low listed probability of this (very 

biologically significant) pattern is due to its low support.  The genes in the rank 2 pattern 

share little in common except they are all cell-cycle related genes (p=0.005).  The rank 3 

pattern is highly correlated to the rank 5 pattern (supported by RFA1, RSR1, and MSH6) 

– thus MSH6 is included in the rank 3 pattern, and the rank 5 pattern is omitted.  RFA1, 

and MSH2&6 are all involved with DNA-dependant DNA-replication (p=5e-6).  RSR1 

(a gene involved in axial budding ) has less in common with the other genes except , 

generally, all these genes are involved with cell proliferation (p=4e-5).  In the 4th pattern 

MRT4 and EBP2 are both involved in rRNA processing (p=0.00153),  whereas the 

molecular function of YMR269W is unknown.  In the 6th ranked pattern, which is 

correlated to the 9th and 10th patterns, all the genes are involved in cytoplasm organization 

and biogenesis (p=9e-5) and NOP6, NOP7 and MRT4 are specifically involved in 

ribosome biogenesis (p=4e-5).  The 7th ranked pattern is supported by two genes that are 

both involved in cellular fusion during mating [SGD], but SGD does not group these two 

genes together and thus there is no probability provided.  The last pattern is supported by 

another gene that aids in mating (PRM5) and a “dubious ORF”, so it is not possible to 

comment on its bioloigcal significance. 
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Table 4.6.  Least probable patterns discovered by Genes@Work for  ε=0.1 K=2  

Rank Probability 

(log10) 

 Supporting Genes 

1 -134 NOP7, HCA4, MRT4, EBP2, MRD1, YMR269W, YPL146C 

{DIM1, NOP6} 

 

In Table 4.6 there is only 1 pattern to consider because each of the next 9 patterns are 

correlated to this one and thus are removed.  This pattern is from the same data as was 

used for generating Table 4.5, except here the least probable patterns are favored instead 

of the longest.  All the genes that support this pattern (with the exception of YMR269W 

and YPL146C – whose function is unknown) are involved in rRNA processing (p=3e-

11).  Although little is known about YMR269W it is known that it is involved in cell 

growth and maintenance and is believed to be involved in protein synthesis [SGD].  The 

grouping in the above table would strongly support that conclusion and would almost 

certainly indicate that this gene is involved with rRNA processing. 

 

Table 4.7. Longest patterns discovered by Genes@Work  for ε=0.1  K=3 

Rank Probability 

(log10) 

Supporting Genes 

1 -47 RFA1, RSR1, MSH2 

2 -47 KCC4, MSH6, YCL022C 

 

The content of  Table 4.7 is very similar to that of Table 4.5.  This is likely because 

Genes@Work removed many of the other support 2 patterns from the final output data 

set because it determined that these patterns were correlated with other, higher support 

patterns. 
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Table 4.8. Least probable patterns discovered by Genes@Work for  ε=0.1 K=3  

Rank Probability 

(log10) 

 Supporting Genes 

1 -134 NOP7, HCA4, MRT4, EBP2, MRD1, YMR269W, YPL146C 

{DIM1, NOP6} 

2 -134 MOB1, ACE2, SRC1, CDC5, HOF1 

In the first line of Table 4.8 exhibits the same rRNA-processing group that occurred in 

Table 4.6.  In the second row we also have a group of genes that seem to bare little 

functional resemblance (all are involved in cell proliferation p=3e-6).  However, MOB1, 

CDC5 and HOF1 are all localized in the bud neck region (p=2e-5) and thus may share 

some functional relationship.  Although ACE2 does not localize in the bud neck region, it 

is a transcriptional activator that mediates bud site selection, bud development, and cell 

separation and is known to interact with MOB2 [Bryce, ’03].  It is therefore possible that 

ACE2 is part of a regulation cascade that indirectly regulates the other genes.  

 

Table 4.9. Longest patterns discovered by Teiresias  for ε=0.1  K=6  

Rank Pattern Supporting Genes 
1 +.-.-..++..-...++....--.+.---.-+++.+-.-.-...++-.+..-...+...+...-...++......- HTA1, HHT1, HTB1, 

HTA2, HHF2, HHT2 

2 +..+..+.--....+.---....+.-.-..++.+-.-.-..+.+-.-.+--..-.++.-....-..++...- RFA1, KCC4, MCD1, 

MSH6, RSR1, YCL022C 

{ SPT21, ASF1} 

5 -+.-...+.+..--....++.--.+-+-+-.-..+.+-+-..+-.-....++..---.....- MOB1, ACE2, CDC5, 

HOF1, YIL158W, 

YML119W 

 

In Table 4.9 we see one of the most common, highest support patterns for all of the yeast 

cell-cycle results.  The rank 1 pattern here is supported by 6 histone genes (p=3e-9).  It 

can be seen that this pattern is only supported by 33 literals (approximately half of the 

maximum).  However, these few literals are clearly enough to form a biologically 

significant pattern.  The rank 2 pattern (similar to the rank 1 pattern in Table 4.7) is 
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largely involved in cell proliferation (RFA1, KCC4, MCD1, MSH6, RSR1; p=6e-5) but 

other genes (KCC4, RSR1)  are involved in axial budding (p=0.0002) and 3 others 

(RFA1, MSH6, ASF1) are involved in responding to DNA damage (p=0.0005).  SPT21, 

which does not seem to share many properties with the rest of the group, is required for 

transcription of HTA2, HTB2, HHF2 and HHT2.   Interestingly ASF1 binds to histones, 

so there may be biological significance to the co-regulation of SPT21 and ASF1.  The 

third pattern (similar to the rank 2 pattern in Table 4.8) has all its supporting genes 

involved in cell proliferation (p=5e-5). 

Table 4.10. Least probable patterns discovered by Genes@Work for  ε=0.1 K=6  

Rank Probability 

(log10) 

Genes 

1 -137 FIG1, PHO5, HXK1, PNC1, SPO12, RAD27, RMA1, SUN4, 

CHS1, YCRX18C, YER067W, YHR087W 

3 -129 CDC9, PCL9, RAD27, FUS2, SUN4, YDR149C, YER067W, 

YHR087W {SPO12, CHS1} 

The least probable pattern in this data set is supported by many genes.  All these genes 

have little in common with one another.  However, they seem to form subsets of 

functionally related groups.  For instance, PNC1 and RAD27 are both involved in cell 

death (p=0.00035).  PNC1, RAD27, FIG1 and CHS1 are all involved in cell development 

(p=0.002), whereas FIG1, PHO5 and SUN4 all are part of the cell wall (p=0.0003).  

There is very little biological evidence to support the grouping of genes which compose 

the second pattern shown here.  CDC9, PCL9, RAD27, SPO12 are all involved in the 

cell-cycle but there is no more specific GO term that can be applied to them. 

 

These results (and more below, see Table 4.12) highlight a problem with the 

Genes@Work scoring system when used with this data set.  The system seems to overly 

favor high support rather than length of the pattern.  If the scoring system was changed so 

that it would favor smaller, more highly related groups, their biological significance 

would be easier to confirm and the SGD probabilities would be better.  
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Table 4.11. Longest patterns discovered by Teiresias  for ε=0.2  K=2  

Rank Pattern  Supporting Genes 

1 0+-+0000..+0.+.+..--0-++-00+0.+.+-+-+-+-+-+-+--

+....0-+-+00..++--.-000000++ 

CUP1-1, CUP1-2 

5 -.0+.-.+..+..0.0.-.0..+.---+-+-+-+-+-+-+-+-+-+-.+-+-

+00+-..+000-+0++--.0..-0 

MRT4, EBP2 

6 ++-+++.+----0.++--..0--+.-.-...++0.---0-00+.0...+--..--

+++-.-+.-0+.++00-+.-- 

AXL2, CLN2 

7 -+.+--..00+..+-+-00+-+-.0.+-+-+-+-+.+-+-.+0-00.0.-

+-+--+-+..+.+-.-+-....0-.+ 

EFB1, SSA1 

8 +.-.-..++.--0-.++.0-.--.+0---.-+.+0+-0-0-..+++-+.00-.-

0+.-++.+---+.++.+-.0- 

HTB1, HHT2 

 

The rank 1 and rank 5 patterns here are similar to the rank 1 and rank 4 patterns in Table 

4.5.  The rank 6 pattern consists of genes involved in reproduction (p=0.0005).  The two 

genes in the rank 7 pattern are both a part of protein metabolism (p=0.04) and the last 

pattern are 2 of the 6 histones from Table 4.9 (p=1e-5). 

 

Table 4.12. Least probable patterns discovered by Genes@Work for  ε=0.2 K=2  

Rank Probability 

(log10) 

 Supporting Genes 

1 -128 CDC9, PCL9, RAD27, FUS2, SUN4, CHS1, YCRX18C, 

YDR149C, YER067W, YHR087W {RMA1, HXK1} 

 

Here we see one pattern, where the next 4 patterns are highly correlated to the first.  

Except for CDC9, RAD27 (DNA repair/replication  p=0.006) there is little else that 

associates these genes. 
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Table 4.13. Longest patterns discovered by Teiresias  for  ε=0.2 K=3 

Rank Pattern  Supporting Genes 

1 +.-.-.+++..-.-.++0.----++0---.-+++0+-.-.-0-+++-++..-

...+...+...-...++....0.- 

HTB1, HTA1, HHF1 

{HHT1} 

3 -.0+.-.+..+..0.0.-....+.---+-+-+-+-+-+-+-+-+-.-

...+..00....+..0-+.++.-.0..-0 

HCA4, MRT4, EBP2 

4 +.-...+.---...+.---.-0.+..--0.++.+-0-.-0.+.+-0-.+-----.+..-

...+-.+++...-0.- 

POL30, MCD1, 

MSH6 

 

Here again we see how strong patterns appear consistently across different values for K 

and ε.  The first two patterns here are smaller versions of the histone pattern (see Table 

4.9) and the rRNA processing pattern (see Table 4.6).  In the last pattern POL30 and 

MCD1 are both involved with DNA mismatch repair (p=1e-5) and all three genes are 

involved in DNA replication and the chromosome cycle (p=3e-5). 

 

Table 4.14. Least probable patterns discovered by Genes@Work for  ε=0.2 K=3 

Rank Probability 

(log10) 

 Supporting Genes 

1 -133 YRO2, PHO88, MCD1, HSP42, RNR1, OLE1, SPO16, RMA1, 

MRP8, YHR095W 

2 -129 CDC9, PCL9, RAD27, FUS2, SUN4, CHS1, YCRX18C, 

YDR149C, YHR087W 

 

There is little to associate any of the genes appearing in the rank 1 pattern.  Although, to 

be fair, little is known about YRO2, SPO16, RMA1 and YHR095W.  The second pattern, 

like the rank 3 pattern in Table 4.10, involves genes with little known to associate them  

together. 



 87

 

Table 4.15. Longest patterns discovered by Teiresias  for  ε=0.2  K=6 

Rank Pattern Supporting Genes 

1 +.-.-..++..-.-.++....--.+.-.-.-+.+.+-.-.-..+++-+...-...+ HHT1, HTB1, HTA1, 

HHF2, HHT2, HHO1 

{HTA2, SVS1} 

2 +..-....+..-...0.+...-...+.+-.-.-0.+.+-.-.+--..-.+..-...+-.++ POL30, KCC4, 

MCD1, MSH6, 

MSH2, YCL022C 

In Table 15 we see the now familiar histone group with 2 additional genes, HHO1 

(another histone associated gene) and SVS1.  The function of SVS1 is largely unknown 

but cells with null mutations in this gene show increased sensitivity to vanadate.  It is not 

clear why SVS1 is included in this gene group.  However, it is known that vanadate 

oxoanions inhibit protein tyrosine phosphatases [Faure, ’95] which effect CDC proteins, 

which in turn effect histones[Faure, ’95].  In addition, vanadate compounds are known to 

directly bind and precipitate histones in solution [Michele, ’97].  This may show a cell’s 

desire to produce proteins protective against vanadate at a time when vanadate could 

cause the most harm.   The second pattern in this table also contains many genes seen 

before.  All are involved in the cell-cycle (p=1e-6) and all, except KCC4, are involved in 

DNA replication (p=5e-6). 

 

Table 4.16.  Longest (and least probable) patterns discovered by Genes@Work  for  ε=0.4  K=6  

Rank Probability 

(log10)  

Supporting Genes 

1 -92 HTA2, HHT1, HTB1, HTA1, HHF2, HH01, {HHT2} 

Genes@Work was the only algorithm able to complete pattern discovery on this data set 

with K=6.  With a minimum requirement of 30 literals in the pattern  only 2 patterns were 

found.  The two patterns are correlated and the only difference between them was the 

presence of HHO1 and absence of HHT2, or vice versa.  The single remaining pattern 

shown in Table 4.16 is the ubiquitous histone pattern. 
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From the above 11 tables 3 general conclusions can be drawn.  First, pattern discovery in 

general and with the ‘+/-/0’ technique in particular, is a valid and useful method of gene 

microarray analysis.  With a few exceptions, the vast majority of the patterns listed above 

cluster together genes with similar function and thus can be considered biologically 

relevant.  Many of the patterns that are not biologically relevant seem to be those favored 

by Genes@Work’s scoring system: high support, low density patterns (see Tables 10, 12 

and 14).  Genes@Work’s scoring system also does not favor biologically important 

patterns.  For instance the histone group is not rated highly by Genes@Work.  

 

The second generalization that can be made from these results is that strong patterns 

(patterns that are either long, or highly improbable) seem unaffected by changes in ε and 

thus appear in multiple tables.  Consequently, the best way to pick ε may be to use the 

one that minimizes execution time by ensuring the ‘+’, ‘-’, ‘0’ characters occur with 

equal frequency.  The value of K, however, seems to have a stronger effect than ε on 

what patterns are ranked highly by Teiresias.  Even then, a subset of the histone group 

appears with multiple values of K.  K, not surprisingly, has a smaller effect on the results 

from Genes@Work.  This is because the highly ranked (improbable) patterns often have 

support values greater than the minimum required support, and thus should be expected 

to appear approximately in the same order with many values of K.  The strongest effect 

on the pattern rankings was, clearly, the use of two different scoring systems (either 

Genes@Work’s system or ranking by pattern length).  When given any multiplicity of 

patterns, Genes@Work and Teiresias never had similar patterns in the lower rankings.  

With the obvious exception of the rRNA processing pattern that was picked out by 

Genes@Work (see Table 4.6), the use of pattern length to determine significance seems 

to outperform Genes@Work’s ranking system in terms of biological relevance.  

However, because the training data required by Genes@Work was artificial, the scoring 

system may have failed. 

 

Third, the highest ranked patterns were almost always correlated to other highly ranked 

patterns.  This was true for both patterns ranked by length (as discovered by Teiresias) 

and patterns ranked by probability.  The only occasion when this did not appear to hold 
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was when the longest patterns discovered by Genes@Work were considered.  It would 

appear that Genes@Work’s removal of correlated patterns works well for the longest 

patterns and not as well for the least probable ones. 

 

Regarding the methodology that was used, it is important to remember that the way in 

which the top patterns were selected and patterns with similar genes in their support list 

were merged was not automated.  Clearly a system which would automatically merge 

lower support patterns that are supported by similar sets of genes (or better yet, a scoring 

system that weighs support vs. length in a biologically significant manner) would be 

preferable.  This would also allow the number of patterns considered to be increased and 

consequently, find more clusters of correlated genes.  Subsequently, a better over-all 

performance of the binning technique with regards to the biological significance of the 

patterns could be made.  

4.1.4.4 Biologically Significant Patterns in Pre-set Value Data 
The pre-set value technique stratifies the microarray data into 5 bins based on the 

following delimiters {-1.00, -0.25, +0.25, +1.00} (see Section 2.4.4).  In this case the 5 

bins used are represented by the characters E…A, where A represents expression levels 

>= +1.00 and E represents expression levels <= -1.00. 

 

This data set produced a large number of patterns and pattern discovery execution times 

became excessively long.  This occurred primarily because certain ranges of values (-0.25 

to +0.25) are more common than others, which causes more patterns to form.  Because 

timing analysis data for Teiresias, Splash and Genes@Work was collected in a earlier 

stage of the methodology (see 4.1.2), the excessive execution times could be tolerated.  

The goal of this work is primarily to evaluate the utility of this binning technique.  

Because Splash and Teiresias found the same patterns and it is very difficult to 

implement this kind of binning in Genes@Work, only Teiresias is used for pattern 

discovery.  However, even Teiresias was not able to complete pattern discovery using 

L=4, W=9, K=2 on this data set.  In order to decrease execution times, highly similar data 
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streams were merged together into a single stream13.  The data streams were compared in 

a pair-wise manner.  If two streams share more than a certain percentage (in this case 

90%) of characters in the same position, a single data stream is promoted as the archetype 

pattern and the other stream is removed from the data set.  Doing this removed only 9 

streams of data and had little impact on the execution times of pattern discovery.  As a 

final attempt to complete pattern discovery on this data set Teiresias was executed on the 

Beowulf cluster, a collection of 32 computers over a high-speed network.  Execution 

(wall clock) time on the cluster took 3 hours, 14 minutes and 20 seconds.  Executing 

Teiresias with other values of K is not required as patterns with higher support values are 

included in this dataset.   

 

Below are 5 tables of patterns discovered for K-values ranging from 2 to 5.  As before, 

the longest patterns are considered the most interesting and the 5 to 10 longest patterns 

for each value of K were examined.  When multiple patterns were supported by nearly the 

same genes  (correlated patterns) they are represented by a single pattern in the table and 

the added genes are shown in curly braces.  As before, the break characters have been 

removed for clarity.  Lastly, for each pattern its biological significance is evaluated using 

SGD. 

                                                 
13 This is favourable to increasing the value for K, which may result in missing lower support patterns 
which in the previous section had biological significance.  Increasing L or decreasing W is also possible, 
but doing so forces the patterns to be too dense, and very few patterns occur across the entire length of the 
streams (data not shown).   
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Table 4.17. The longest patterns discovered with K=2 

Rank Pattern Supporting Genes 

1 AAEEEDAA....E...ABC.D.EAABCD.EEBAAAA..DED

DCCCC.BA..CD.ECBB.C..EEECCBBBBBBB. 

CLN2, YOL007C 

2 .A..EEE.AAB..DDC..ABCDE.AABDEEE.DA.A.B.CDD

E..BDCBCBD..D.EB.B.B.EEEDCBAA.BBBC 

HHF1, HHF2 

3 AA.DEEED.A...D..BAA.C.EDAAACDEE..AAA..BCD

E.DCBD.B..DCDDCBECBBB....D.BB.BBBBC 

HTA1, HTA2 

4 AA.DEEE...BBDDECBAAACCE.A.A.DEEE.A.AABB.

D.DD...EBB.DCDD.B..BBBCE..D.B..BBBBC 

HTA2, HTB2 

5 AAEEEDAABB.DDDB.BC..DD.AA...EE..AAB.CCDD

D.D.C.E.AB..DEEBAB..DD..ED.B.BB..CDD 

MCD1, YOX1 

6  AAEEEDAA.CD.E.BAABCDD.EA....EEE.AAAAB.D...

C.....AB..DDE.BBEC...EE..BB.BBBB.D 

POL30, CLN2 

7 AA.DEEE..ABCCDDC..ABCD.DAAB..EEDD..A.BCC

DD...BDCBCBD.DDB..D.CBC.E.DCB.AB.B.C 

HHF2, HHT2 

8 AACDEEE..A.CCDD.BAABCD.DAA.CDEED...AB..C

D..DCBD.BC.DCDD.BE...B.DE.DCBB.B.B.C 

HTA1, HTT2 

9 AA...D.AB.DDDDBABC.CDD.AA.DEEED..AB.C.D.D

CDBC...ABCDD..BA..C..D..D.B.BBCCCDD 

MCD1, MSH6 

 

In Table 4.17 we see the 9 longest patterns with a support of 2.  The genes in the first 

pattern share nothing in common because YOL007C is uncharacterized (with possible 

role in chitin synthesis), whereas CLN2’s role in is cell-cycle start.  Patterns 2-4, 7 and 8 

are all histone patterns (as seen previously) with each pattern individually having a p-

value of 1e-5.  Not all the clusters here have been identified before, however.  Pattern 5 

consists of two genes involved in the M-phase of mitosis (p=0.0003) and although the 

gene  MCD1 has been encountered before (Table 4.9), YOX1 is a gene that was not 

highlighted by the sign-of-the-derivative technique.   Pattern 6 consists of two more 

genes in a novel grouping.  However, the closest similarity these genes share is that they 

are both expressed as a response to stimulus (p=0.0003).  The final pattern, which agrees 
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with previously found patterns (see Table 4.9) are two genes involved in DNA replication 

and the chromosome cycle (p=0.001). 

 

Table 4.18. The longest patterns discovered with K=3 

Rank Pattern Supporting Genes 

1 AAEEEDAA....E...ABC.D.EA.....EE.AAAA..D...C.....A.

..D.E.BB.C...EE..BB.BBBB 

POL30, CLN2, 

YOL007C 

2 AA.DEEE..A...D..BAA.C..DAA.CDEE....A...CD..DCB

D.B..DCDD.BE...B....D.BB.B.B.C 

HTA2, HTA1, 

HHT2 

3 A..EEE.AA...DD...ABCDE.AA...EE..A.A...CD.E..BD.B

C.D..D....B.B..EEDCB...BBBC 

HHF1, HTA1, 

HHF2, {HHT1, 

HTB1, HTA2} 

8 AAE.E..AB..DDDB.BC...D.AA...EE...AB..CDD....C.E.

A...DEE.AB..D...ED.B.BB 

MCD1, YOX1, 

TOS4, {CLN2} 

 

Table 4.18 shows the longest genes with a support of 3.  All of the histone patterns from 

the previous table have been compressed into 2 patterns, shown here as patterns 2 and 3 

(and even these might be considered correlated enough to be a single pattern).  The top 

ranked pattern here is formed from patterns 1 and 6 from the previous table.  The last 

pattern has stronger biological significance than the similar patterns seen in Table 4.17; 

MCD1, YOX1 and CLN2 are all involved in mitosis with a p-value of 2e-5.  Further 

YOX1, TOS4 [Horak, ’02]  and CLN2 are all SBF targets; [Flick, ’98] however MCD1 is 

a target of MBF and not SBF [Simon, ’01].   
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Table 4.19. The longest patterns discovered with K=4 

Rank Pattern Supporting Genes 

1 C.C....C.C...CB.CC.DDCB.BC.C..BD...C...DD..CB.B..C.

EEB.B.BB....C.....C 

RPL4A, RPS29B, 

RPP1A, RPP2B, 

{RPP0} 

2 A..EEE.A....D....AB....AA...EE..A.A...C..E..BD.BC.D..D

....B.B..EEDCB...B.BC 

HHF1, HHT1, 

HTB1, HTA1, 

{HHF2} 

3 D...C.DD..BBCC..D.....D.D.BB..B...D.....CC..BCDDD..

B...D...D..BBB.CC..D 

RSR1, POL2, DPB2, 

RAD51, {CDC45, 

MRC1} 

6 D.B..D...B..C.C.C....AA...BC...DC.C.B.....B..DC....C.C...

..E...DC..BC.CC.DD 

NOP7,  MRD1, 

YPL146C, 

YMR269W,{DIM1} 

 

Table 4.19 shows the first large group of entirely new genes.  The first pattern consists of 

genes which are all involved in protein biosynthesis (p=1e-5).  This is followed by a 

histone pattern (p=3e-13).  The third pattern also consists of genes not seen in previous 

analysis.  SGD shows a number of unique functional subgroups of these genes.  POL2, 

DPB2 and CDC45 are all involved in DNA strand elongation (p=1e-6),  whereas POL2, 

DPB2 and RAD51 are all DNA damage repair genes (p=0.0001) and RSR1, POL2, 

DPB2, RAD51 and CDC45 are all generally involved in cell proliferation (p=2e-5).  

Although SGD does not place MRC1 in a functional group at all, it is known to be an S-

phase checkpoint protein found at replication forks, required for DNA replication and 

also required for Rad53p activation during DNA replication stress.  This seems to 

correspond with functions of the other genes in this group.  The final pattern here consists 

of 2 genes with unknown function, YPL146C and the now infamous YMR269W.  This 

would likely confirm a role of YMR269W in rRNA processing.  The other three genes in 

this group are involved in rRNA processing.  This pattern agrees with patterns from the 

previous section (see Table 4.6).   
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Table 4.20. The longest patterns discovered with K=5 

Rank Pattern Supporting Genes 

1 C.DD..BBCC..D.....D.D..B..B...D.....C...B..D...B...D...D..

BBB.CC..D 

RSR1, POL2, DPB2, 

RAD51CDC45, 

{MRC1} 

2 C.C...CC.CCC....CC..D.B.B.B.B.B..DB....DDD RPL4A, RPP0, 

HXT8, UTR1, EAF6 

5 C.....CB.CC.D.CB..C....B....C...DD..CB.B....EE..B.BB RPL4A, RPS29B, 

RPP1A, RPP2B, 

RPS22A {RPP0} 

6 ....D....A.....AA...EE..A.A...C.....BD.B..D..D....B.B....D.B

...B.BC 

HTA2, HHF1, 

HHT1, HTB1, 

HTA1, HHF2 

 

The first pattern here is virtually identical to pattern 3 in the previous table.  The second 

pattern is difficult to confirm.  It consists of two proteins already seen as being involved 

in protein biosynthesis.  HXT8 is a hexose transporter, and it’s inclusion in this gene 

group seems unfounded.  The final 2 genes listed in this group have unknown functions.  

The next two patterns (not shown) are entirely supported by genes with unknown 

function (or dubious ORFs).  The 5th ranked pattern is similar to the first pattern in Table 

4.19 (p=1e-6).  The last pattern, of course, contains histones (p=1e-15). 

 

Table 4.21. The longest patterns discovered with K=6 

Rank Pattern Supporting Genes 

1 C.C...CC.CCC....CC..D.B.B.B.B....DB.....DD RPL4A, UTR5, 

HXT8, EAF6, 

GAL2, RPP0, { 

YCL048W, 

YBL108W, 

YJL038C, HES1} 
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The presence of a single pattern in this table is indicative of a strong deterioration in the 

quality of the patterns discovered.  All 10 longest patterns, were all highly correlated and 

were combined to form the one pattern seen here.  This shows a weak connection of 

genes, with a number of unknown genes and HES1 (a steroid synthesis gene).  SGD 

shows that HXT8 and GAL2 are both  carbohydrate transporters (p=0.0004).  This p-

value is only this low because so few genes are involved in carbohydrate transport.  The 

genes RPL4A, RPP0 and HES1 are all involved, generally, in macromolecule synthesis 

(p=0.05) but there is nothing to justify the placement of UTR5 in this group nor to relate 

the functional subgroups together. 

 

The above 5 tables  would seem to indicate the pre-set value binning technique allows 

one to discover meaningful patterns in microarray data.  However, the run times are 

prohibitively long for a desktop computer.  The most notable new patterns were the 

protein biosynthesis pattern (see Table 4.19) and the DNA strand elongation and DNA 

damage repair pattern (see also Table 4.19).  In addition to these novel patterns the 

ubiquitous histone grouping is evident in many of these tables (particularly Table 4.20) as 

is an rRNA processing group (Table 4.19). 

 

4.1.4.5 K-means Clustering Technique 
This technique uses the Xmeans implementation [Pelleg, ’03a] of K-means clustering to 

choose the best value of K for each gene.  Doing this allows one to take the continuously 

valued microarray data and discretize it into K bins on a gene-by-gene basis.  After 

executing Xmeans, the centroids will be merged into 3 bins (see Section 3.2.5). 

 

Merging the centroids had the side-effect of causing many patterns to form.  Pattern 

discovery was unable to finish with parameters L=4, W=9 and K=2 (support).  Even 

employing the Beowulf clustered required L to be increased to 6 before pattern discovery 

could finish in 24 hours, at 3252 seconds.  The parameters L=5, W=9 and K=6 were also 

tried but that could not finish in under 24 hours.  Using higher values of K was not 

attempted because lower values had already produced very good results with the other 

two binning techniques.  Lower values of W were not used because it places stronger 
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restrictions on the density of the patterns discovered.  Increasing both L and W was not 

attempted. 

 

The patterns discovered are presented below. 

 

Table 4.22. Longest patterns of support 2 

Rank Pattern Supporting Genes 

1 MAA...AAAAAAA.AAAAAAAAAAAAAAAA.AAAA

AAAA.AAA.AAAAAAAAAAAAAAAAAAAAAAAA

AAAAAA 

GAL3, GAL2 

2 ZZ...AAMMMMMMMMMMMMMMMAAMMMMM

MMAAM.MMMMMMMM..MA.MMMMMMMMMM

M..MMAAAAMMMM.MMMMM 

TUB1, SIM1 

3 ZZAAAAAAMZMAAAAAMZZ.AAAAZZ.AAAAAA.

.Z.MAAAAAAAAAAAA.AAAAAA.AA.AAAAAAAA

MZ..AAAA 

HTA2, HHT2 

4 MA.AAA..AAAAAAA.AAAAAAA.MAAAAAA.MZA.

AAAAAAA.AAAA.AAAAAAAZM.AAAAAAAAAA

AAAAAAAA 

KCC4, TOS2 

 

Because of the lack of diversity in the template of these patterns (the preponderance of a 

single character) one might expect these patterns to simply be noise.  However, due to 

their sheer density these patterns do convey some biological meaning.  The first pattern is 

supported by two galactose genes (p=9e-7).  In the second pattern, both genes deal with 

microtubule cytoskeleton organization and biogenesis (p=0.001).  The third pattern 

contains histones (p=1e-5) and the last patterns contains 2 genes that have little 

functional annotation but the gene-products co-locate to the bud neck (p=0.0002). 
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Table 4.23. Longest patterns of support 3  

Rank Pattern Supporting Genes 

1 AA...AAAAAAA.AAAAAA..AAAAAAA..AAAAAAA

A.AAA.A.AAAAAAA..AAAAAAAAAAAAAAAAAA

A 

GAL3, GAL2, TOS1

2 A..AAAAAAAAAAAAAAAA..AAAAAAA..AAAAA

AAAAA..AA.AAAAAAA..A.AAA.AAAAAAAAAA... 

GAL2, GSY2, TOS2 

3 AM.M..MMMM.MMM.MMMMMM..MMMM.MM.M

MMMMMMMMM.MMM.MMM.MMMMMMMM.AM

M.MMM..MM 

DIA3, PIG2, IFH1  

 

The first pattern here is the galactose pattern from above with the addition of TOS1 

whose function is unknown.  The second pattern contains GYS2, another gene involved 

in carbohydrate metabolism along with GAL2 (p=0.00246) and TOS2 which functions in 

the bud-neck.  In the last pattern, DIA3 and IFH1 are both involved in the general theme 

of development (p=0.01), whereas PIG1 is a protein phosphatase regulator.  Interestingly, 

PIG1 regulates GSY2. 

 

For all values of K > 3  the top patterns discovered have very little biological significance 

as could be determined by their GO annotations.  This somewhat disappointing result 

points to the unrefined nature of this novel microarray binning technique.  Because this 

technique involves 2 steps to bin the data (Xmeans clustering and merging of those bins 

into fewer bins) there is more room for error in the technique and more room for 

improvement.  The first possibility for improvement would be to use more bins as input 

to Teiresias.  5 or 7 bins would speed up pattern discovery and may also make the 

patterns found more specific, which in turn could increase their biological significance. 

 

 

4.1.5 Hierarchical Clustering with Cluster 
In this section, it is examined whether the biologically most relevant patterns from the 

each of the previous 3 sections are found grouped together by the hierarchical clustering 
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method of Cluster (which uses the Pearson’s correlation coefficient as a distance metric, 

see Section 3.2.8).  In order to do this Cluster was executed on the same 612 genes as 

used above.  In some cases multiple patterns are indicative of the same biological 

relationship.  For example, many patterns contained histone genes.  In such cases, the 

largest (most genes) representative pattern is selected to be studied.  In order, the patterns 

to be examined are: 

1) The rRNA processing group (from Table 4.6): NOP7, HCA4, MRT4, EBP2, 

MRD1, DIM1, YMR269W, YPL146C, NOP6. 

2) The bud-neck group (from Table 4.8): MOB1, ACE2, CDC5, HOF1, YIL158W, 

YML119W. 

3) The cell proliferation group (from Table 4.9): RFA1, KCC4, MCD1, MSH6, 

RSR1, SPT21, ASF1, YCL022C 

4) The least probable pattern found by Genes@Work (from Table 4.10): FIG1, 

PHO5, HXK1, PNC1, SPO12, RAD27, RMA1, SUN4, CHS1, YCRX18C, 

YER067W, YHR087W. 

5) The histone group (from Table 4.15): HHT1, HTB1, HTA1, HHF2, HHT2, 

HHO1 HTA2, SVS1. 

6) The DNA-replication group (from Table 4.15): POL30, KCC4, MCD1, MSH6, 

MSH2, YCL022C. 

7) The mitosis/SBF group (from Table 4.18): MCD1, YOX1, CLN2, TOS4. 

8) The DNA-damage/elongation group (from Table 4.19): RSR1, POL2, DPB2, 

RAD51, CDC45, MRC1. 

9) The protein biosynthesis group (from Table 4.18): RPL4A, RPS29B, RPP1A, 

RPP2B, RPS22A, RPP0. 

10)  The galactose group (from Table 4.23): GAL2, GAL3, TOS1. 

 

For each pattern it will be determined whether a similar group is formed in the results 

from Cluster. The results from Cluster will be considered better if the cluster in Cluster 

includes more genes that are related to the core function of the pattern’s supporting genes 

(for example, including more histone genes in a histone cluster), or if it excludes genes 

that  are not easily identified as being biologically related to the core function of the 
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group (such as excluding SVS1 from the histone group).  Cluster’s results will be 

considered worse if it excludes genes from the pattern that are central to the pattern’s 

function (such as removing NOP6 from the rRNA-processing group). 

 

Because all genes are clustered together at some point in a hierarchical tree, the 

correlation (Pearson’s r) value for the smallest cluster that contains all the genes in the 

pattern will be listed.  Also, the number of genes that did not appear in the pattern but did 

appear in the Cluster grouping will be listed.  In addition, the number of genes that are 

correlated in the entire data set at this r-value or lower, as determined by a short script, 

will also be shown.  This was done because the r-value is the only score provided by 

Cluster to determine the “goodness” of a cluster.  Although an r-value of 0.80 might 

appear significant and indeed, is statistically significant, it is important to realize that 

many genes are clustered together at that r-level and higher.  For example, at an r-value 

of 0.92, only 24 genes are involved in a relationship.  Thus any gene clustered at a value 

of 0.92 is in the top 30 of most significant clusters in this dataset.  At an r-value of 0.80, 

approximately 180 genes or 1/3 of all genes are involved in a cluster.  Therefore, there 

may be nothing to mark that cluster as significant to a researcher, and differentiate it from 

any of the other sub-trees formed by Cluster, whereas the patterns presented here are the 

most interesting of all the patterns discovered. 

 

The first 8 of 9 genes in the rRNA processing group are clustered with a an r-value of 

0.78 with one other gene (AAH1, a purine salvage gene) by Cluster.  However, to include 

NOP6 in this group requires the r-value to be lowered to 0.57.  For the smaller group, 

~230 genes are clustered together at the same or higher r-value, whereas over 500 genes 

are clustered together with an r-value of at least 0.57.  From this data it would appear that 

pattern discovery does a better job at finding this functional group than does Cluster.  

Although AAH1 has some biological significance to any set of genes involved in DNA 

metabolism or catabolism, NOP6 is more closely related to the core function of this set of 

genes. 
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The bud neck cluster is found in the Cluster results as a single group with an r-value of 

0.76 but is found with 10 other genes.  Only two of the 10 extra genes – MMO1 & 

MYR1 –  also co-localize to the bud neck, whereas the majority of the extra genes are 

involved in meiotic cell-cycle.  At such an r-value approximately 250 genes are involved 

in a group of some kind in this data.  In this case, it would appear that pattern discovery 

does a better job of picking out this bud neck group then does Cluster.  Indeed, examining 

the results from Cluster with respect to their gene ontology data would lead to the 

conclusion that this group was primarily involved in the meiotic cell-cycle (a very 

general term in which many genes fit), and had little to do with the bud neck region of the 

cell.  The merging of these distinct functions likely occurs because the expression values 

of the bud neck genes and the meiotic-genes are “close enough” to be placed in a single 

cluster.  For this case pattern discovery is more robust to this noise, and pulls out “bud 

neck” genes as being more related.  Further, unlike most of the gene clusters discussed 

here, the genes in the bud neck pattern do not share a common GO annotation in terms of 

biological process.  This might put some doubt onto the validity of this cluster but, the 

fact that 2 different analysis techniques would cluster these genes together (to varying 

degrees) would seem to confirm that they are co-regulated in the cell, combined with the 

knowledge that the products from these genes co-localize at the bud neck seems to 

confirm the biological relevance of the cluster and might imply a more tightly knit 

biological function than is currently understood for these genes.   

 

For the cell proliferation group, Cluster groups RFA1, MCD1, MSH6 and RSR1 together 

(missing 4 genes: KCC4, SPT21, ASF1, YCL022C) at an r-value of 0.85.  This cluster 

also includes 5 other genes.  Six  of the genes 9 grouped by Cluster are involved in DNA-

replication.   A large cluster which includes all of the genes from the pattern is found at 

an r-value of 0.57.  However, these genes are not well characterized as having a single, 

unifying biological role.  Because this pattern’s biological role was the general “cell 

proliferation” – it would seem that the smaller group discovered by Cluster is separating 

out the DNA-replication genes from the other genes listed in the pattern.  This result may 

indicate that the gene group discovered by Teiresias has a core function of DNA-

replication, the other genes that are clustered with these genes that are not involved in 
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DNA-replication could therefore be considered noise.  Under such a hypothesis, Cluster’s 

results are better because they highlight the DNA-replication role of these genes and 

reduce noise.   

 

The pattern found in Table 4.10 was chosen because it was the pattern determined to be 

least probable by Genes@Work in Section 4.1.4.3.  The genes in this cluster at not 

clustered together in Cluster until an r-value of 0.0027.  In this cluster are fully 2/3 of all 

the genes in the data set.  Because this pattern has very little biological significance, the 

fact that Cluster does not produce it is a point in favor of Cluster.  However, it should be 

noted that this pattern is a real occurrence in the data and not the result of some mistake 

in the algorithm.  The reason that this pattern is found at all is because of pattern 

discovery’s ability to find very subtle similarities (short patterns) because they are 

supported in many streams.  If such a small number of similarities were important to 

forming a biological relationship we might see better results from Genes@Work’s 

scoring system.  However, it appears that subtle similarity is not an important factor for 

this data.  That is, most of the biologically significant clusters as confirmable by their GO 

annotation will occur with strong correlations. 

 

The histone pattern, one of the clearest and most easy to confirm patterns, is also found 

by Cluster. Cluster, however, manages to include 2 more histones in the grouping at an r-

value of 0.81 (where approximately 180 genes have been clustered together in some 

way).  However, the cluster does not include SVS1.  With the biological information 

available, it would appear that Cluster does a better job of forming a biologically 

cohesive group than pattern discovery.  However, if SVS1 is implicated in having an 

effect on histones then it might be concluded that pattern discovery finds a different, but 

equally significant cluster. 

 

The DNA-replication group is partially found in Cluster.  All the genes except YCL022C 

and KCC4 are found together in a small group of 7 genes with a correlation value of 0.88 

(at which point only ~50 genes are clustered).  YCL022C and KCC4 are found together 

with a correlation of 0.92 (only 24 genes have been clustered at that point).  Both clusters 
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are merged at an r-value of 0.69 in a group that contains 41 genes.  The role of KCC4 in 

this group is questionable thus it’s exclusion by Cluster would favor the Cluster results. 

 

The mitosis/SBF group is found in Cluster with a  reasonable correlation of 0.78 along 

with 15 other genes.  In this super-set of genes, however, the mitosis relationship of these 

few genes is lost because many (7) of the genes in this group are DNA damage repair 

genes.  Similarly to the bud neck group above, smaller functionally related groups of 

genes are merged into a single, larger group and the relationship is lost.  By allowing 

genes to be part of many groups, pattern discovery allows the detection of more subtle 

groups of genes, as evidenced here.  In this respect, pattern discovery is superior to 

hierarchical clustering. 

 

The DNA-repair and elongation group is also found in the results from Cluster.  All the 

genes except CDC45 are found in a single group with 14 other genes at an r-value of 

0.79.  Of these 14 extra genes, only 2 are also involved in DNA-repair and only 1 is 

involved in DNA-strand elongation.  Thus, the Cluster results dilutes the DNA-

elongation characteristic of this group. CDC45 is included in the cluster at an r-value of 

0.75 along with 25 other genes.  Of these 31 total genes, 12 are involved with DNA repair 

and only two new genes are involved with DNA-elongation. Unlike some other clusters 

above, where an outlier gene (KCC4) has a questionable relationship to the function of 

the cluster, CDC45 is very functionally related to this group.  Therefore, it would seem 

that pattern discovery forms a better cluster than Cluster for these genes with respect to 

their DNA-elongation biological function. 

 

The protein biogenesis group occurs in Cluster at an r-value of 0.62 along with 5 other 

genes.  Four of these 5 genes are also involved in protein biosynthesis.  At this level of r 

over 420 genes also occur in a cluster of some kind.  This cluster is interesting because it 

is a very functionally related group, occurs at a low r-value, yet contains very few genes.  

Because of this, such a cluster would be over-looked by a researcher as it implies that the 

genes aren’t clustered together because they are similar, but excluded from other groups 

because of dissimilarity.  Yet, because these 6 genes are co-regulated tightly at a few 



 103

points in time, they form a strong pattern.  This again highlights the importance of 

balancing the pattern length with its support.   

 

The galactose group from Table 4.23 is not found with TOS1 in Cluster.  However, 

GAL2 and GAL3 are found together with GAL10 at an r-value of 0.85.  The clustering of 

TOS1 in this group is not obvious, therefore it seems that Cluster has done a better job of 

forming a biologically cohesive group. 

 

In this section the yeast cell cycle data was used to benchmark Teiresias, Splash and 

Genes@Work, as well as to evaluate 3 different binning techniques and for the sign-of-

the-derivative technique to compare 2 orderings of the patterns; the Genes@Work 

ordering and ordering by pattern length.  Finally, the most biologically significant 

patterns were compared to the results from Cluster. 

 

It was shown that with this data set, Teiresias is over 5 times faster than Splash on a data 

set, with parameters that produce a large number of patterns.  However, Splash is 

considerably more memory efficient than Teiresias on any size result set.  Genes@Work 

was considerably slower, and less memory efficient than both Teiresias and Splash.  This 

is because Genes@Work uses the java programming language which is generally slower 

than C, and less memory efficient as well.  Further, Genes@Work implements a GUI, 

and a number of other data analysis features over and above pattern discovery.  This adds 

to Genes@Work’s memory foot-print.  However, even taking this into account, 

Genes@Work is less memory efficient. 

 

In terms of utility, the sign-of-the-derivative method was the best of the three tested 

binning methods; followed by pre-set value and Xmeans.  Sign-of-the-derivative found 

many biologically significant patterns, was easy to implement and finished much more 

quickly than the other two methods.  It is likely that the sign-of-the-derivative technique 

found the best patterns because the biologically significant relationships are best captured 

by the ‘+/-/0’ mapping.  Although both pre-set value, and Xmeans methods found some 

patterns that were not found by sign-of-the derivative, the results were not significant 
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enough to make them better choices.  The Xmeans methods preformed very poorly, in 

both execution times, and in terms of biologically significant patterns found.  Further use 

of this method would require a great deal of refinement.   

 

For two cases, Genes@Work’s ordering method produced biologically significant 

patterns.  However, in many instances it did not.  Generally, biologically significant 

patterns were more highly concentrated in the longest 5 or 10 patterns for any particular 

support level.  Although the training data given to Genes@Work was artificial, the 

application still should have been able to balance support and pattern length in a 

meaningful way.  Thus for this type of pattern finding problem, Genes@Work’s ordering 

is not better than ordering by the longest pattern. 

 

Generally, Cluster found many of the same functionally related gene groups as pattern 

discovery.  In many cases it found superior groups, clustering together other genes that 

shared the same function as the pattern’s genes.  Cluster also executes much more 

quickly than pattern discovery, usually in less than 60 seconds, and is much easier to use 

than Teiresias, Splash or Genes@Work.  However, hierarchical clustering is inferior to 

pattern discovery in two ways.  First, specific gene relationships are lost in large groups; 

a pattern may find a DNA-elongation group, but Cluster will group these genes in a larger 

group who’s unifying functional relationship is a very broad or general term, such as 

“cell proliferation” or “cell cycle”.  Often, a researcher is interested in a gene group’s 

function at a finer level.  Second, hierarchical clustering only allows one gene to be part 

of one group.  Thus a gene that has multiple functions, and is therefore likely regulated 

by multiple factors, is forced to be part of one group or another.  In the worst case, it 

would be possible for the gene to be placed into a “compromise group” that was not 

involved with either function.  In such a case, the finer relationships and function of a 

gene may be lost. 

 

4.2 Lymphoma Results 
This section uses the data of Alizadeh [Alizadeh, ’00].  The original analysis of this data 

used hierarchical clustering with Cluster to form 2 subtypes of diffuse large B-cell 
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lymphoma (DLBCL):  Germinal Centre B-cell (GCB) and Activated B-cell (ABC).  This 

was done using 47 patient samples with 380 genes.  This analysis is essentially a 

classification of DLBCL by clustering and will be referred to as such.  Throughout this 

section the patient samples will be referred to by the order in which they were placed by 

Cluster.  The first 24 samples (0-23) are of the GCB type and the next 23 samples (24-46) 

are of the ABC type.  Because the work by Alizadeh is well respected and highly cited, 

with many papers building on the original work, it will be used as the benchmark to 

measure the usefulness of pattern discovery to cluster this data.  In Figure 4.4, we see the 

original clustering of DLBCL subtype, with added numbering of the tissues. 

 

 

Figure 4.4. Hierarchical clustering of DLBCL subtypes by Alizadeh, with added numbering of tissue 
subtypes. 

 

 

Section 4.2.1 examines how well pattern discovery, using Teiresias, can cluster this data 

using the Xmeans stratification technique.  Evaluating the quality of the patterns is a 4-

step process.  First, general properties, such as maximum length and support, of the 

patterns are determined.  Second, a list of the highest support patterns that agree perfectly 

with the results from Alizadeh is constructed.  From this list, the number of genes occur 

in each pattern, and the support level of the top pattern is noted.  Third, using the data 

from the first and second step, a series of orderings (rankings) with minimum support or 

length requirements is made.  These patterns are then examined to see how well they 
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agree with the results from Alizadeh.  Four, the patterns from the ordering scheme that 

yielded the most discriminating top 20 patterns are selected and used to compose a list of 

genes (candidate genes) that are believed to discriminate between the two subtypes.  This 

sections ends with a brief examination of a potential method to automatically cluster 

patterns based on their correlation and an investigation into cross-clustering tissues. 

 

Section 4.2.2 follows the same methodology as Section 4.2.1 and the candidate genes 

from both sections are compared.  The data for Sections 4.2.1 and 4.2.2 are available in 

Appendix A.  In order to save space, Appendix A does not contain all the data generated 

for these experiments, but does contain the data most pertinent to the results.  In Section 

4.2.3 the Genes@Work approximation experiment will be discussed briefly. 

 

Section 4.2.4 the results from Genes@Work will be examined.  The levels of support for 

the highest supported patterns will be compared to those found by Teiresias.  Also, the 

quality of Genes@Work’s own ordering scheme will be investigated.  Lastly, the highest 

support patterns found by Genes@Work will be used to form a list of genes that are 

believed to discriminate between the two subtypes of DLBCL. 

4.2.1 Clustering with Xmeans 
Xmeans bins each gene into K different bins (centroids).  The value for K can be different 

for each gene.  This makes this binning technique gene-specific, rather than global, such 

as the pre-set value technique.  For this data set, running Teiresias with the parameters 

Z=1, K=2, L=2, W=3 all patterns are discovered on the Beowulf cluster in <24 hours. 

 

Because so many characters are used as break-characters there is a need to limit t the 

maximum number of bins used in Xmeans by some value, Kmax.  Four upper limits were 

tried: Kmax=5, 10, 15 and 20.  However, 5 was not used for further analysis because with 

this value over 340 genes are mapped to a single bin14 and the remaining 40 genes were 

considered too few to give meaningful results.  Therefore, 3 data sets were executed on 

the Beowulf cluster.   

                                                 
14 Genes that have just one bin are non-discriminatory and therefore are removed from analysis. 
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The execution times and number of genes used are given in Table 4.24.   The execution 

times are influenced primarily by 2 things.  As Kmax increases the number of characters 

used also increases, which reduces the number of patterns found, generally, and therefore 

execution time also decreases.  However, as Kmax increases, more and more genes are 

included in the data set which will increase execution time.  This is why a decrease is 

seen in the execution times between Kmax=10 and Kmax =15, but an increase with Kmax=20.   

 

Table 4.24. For each data set the number of genes that had more than one bin, and the execution time 
on the Beowulf cluster is given 

Kmax Number of Genes Used Execution Time (s) 

5 33 Not Executed 

10 186 5994 

15 294 4141 

20 358 10479 

 

After pattern discovery was completed, each result set was analyzed in a 4-step process.  

First, for each result set, several orderings of the patterns were made.  The patterns were 

ordered by support and then by the length of the pattern.  The first ranking will show 

which genes are common to many of the tissues.  The second shows the most closely 

related tissues and gives an upper limit on the expected number of common genes that 

would be shared by any cluster.  Then a supervised ordering of the patterns was done 

where patterns were removed if not 100% supported by ABC or GCB tissue types, and 

the remainder were ordered by support.  This ranking gives an upper bound on the 

maximum support/genes a perfectly discriminatory pattern would have.  Using these 

upper bounds, two more complex types of orderings were carried out.  The first required 

the patterns to have a certain level of support, then they were ordered by length.  The 

second required the patterns to have a certain minimum length, and then were ordered by 

support.  This was done to see if there was a point where all of the top 20 patterns were 

supported only by ABC samples or GCB samples.  If this did occur the ordering could be 

used as a general guide to picking out patterns that could be used as classifiers. 
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Pattern discovery on all three data sets produced a number of genes with very high levels 

of support.  The range of support for the top 20 patterns for each data set was 23-35, 22-

34 and 21-34 for Kmax=10, 15 and 20, respectively (Table A.1 & Table A.2).   As might be 

expected, most of the patterns from all 3 data sets were poor classifiers of DLBCL 

subtypes.  None of the supporting tissues were ever compose of more than 87% of either 

class, and the majority were less than 70%.  Although these patterns are not likely to be 

useful as classifiers, these patterns have value in indicating which genes would be poor 

classifiers of DLBCL subtypes.  That is, given a list of candidate genes that could be used 

to classify subtypes of DLBCL, we would expect some of them to be genes found to have 

very high support across all tissue types.  These genes would then be removed from the 

candidate list because they have poor discrimination. 

 

Next the patterns were ordered by length (Table A.3 & Table A.4).  The top 20 patterns – 

in terms of the supported tissues –  for all three data sets were very similar, although the 

ordering was often different.  There are four important notes to make about this data.  

One, not unexpectedly, the top patterns were supported by only 2 tissues. Two, the 

longest patterns contained 76, 95 and 99 genes, for Kmax=10, 15 and 20, respectively.  

This translates into 40.9%, 32.3% and 26.8% of the maximum possible number of genes.  

Three, the majority (70%) of the top patterns were supported by ABC tissues.  This 

would seem to indicate that the ABC subtype is more tightly knit in terms of genetic 

expression than GCB when using this binning technique.  Four,  it should be expected 

that all the top 20 longest patterns would have perfect discriminatory power between 

GCB and ABC tissue types because a long pattern means that a large number of genes 

express similarly across that two or more tissues.  However, for all three data sets this 

was not the case; there were always 3 patterns (15%) that consisted of 2 tissues, one from 

each subgroup.  These same three patterns were found in each of the three data sets and 

identifies the following pairs of tissues as cross-clustering: {4,24}, {21, 33} and {21, 

41}.  These results will be discussed further below.  However, it should be noted that, in 

data that has been grouped by Cluster, tissues that are found at the boundary of a cluster 

are less correlated with the cluster than tissues that are found at the centre of the cluster.  
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Thus, the tissues 0 and 23 (boundary tissues to the GCB subtype) are less correlated to 

the GCB cluster than are tissues 12 and 13 (tissues that are central to the GCB subtype).  

Likewise, tissues 24 and 47 (boundary tissues to the ABC subtype) are less correlated 

with the ABC cluster than are tissues 35 and 36, which are central.  Thus it is more likely 

that boundary tissues could have been misclassified by Cluster.  Graphically this can be 

seen in Figure 4.4.  Observe how samples 21-23 and 0-2 join the GCB cluster later 

(higher) on the dendrogram, whereas samples 14-19 form the center of the cluster.  

Likewise, tissues 44-46 and 24 are outliers to the ABC group. 

 

 

The second step of analysis is to find the largest level of support that showed perfect 

discrimination between ABC and GCB subtypes, all patterns that were not 100% 

supported by either group were eliminated and the remaining patterns were ordered by 

support.  The top 20 patterns for each data set was examined and a summary of the data is 

in Table 4.25.  See Table A.5 & Table A.6 for more detailed results. 

 

Table 4.25. The percentage of patterns of supported only by the ABC subtype, the maximum support 
for ABC subtype patterns, and the maximum support for GCB subtype patterns from the top 20 
highest support patterns 

Kmax % Patterns ABC Max. support for ABC Max. Support for GCB 

10 80% 18 18 

15 75% 17 18 

20 100% 16 - 

 

 

As can be seen in Table 4.25 all three data sets favor patterns involving the ABC subtype.  

This would imply that the ABC subtype is more “tightly knit” than the GCB type using 

this binning technique.  However, it can be seen, because the maximum support for a 

GCB pattern is equal to or larger than the maximum support for an ABC pattern, that a 

single pattern can capture an equal or larger portion of the GCB subtype than can any 

single pattern for the ABC subtype.  In most cases the pattern consists of 2 or 3 genes, 

although patterns with 1, 4 and 5 genes are also present.  This data also gives some 
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credence to being able to classify subtypes of DLBCL using pattern discovery.  It shows 

that patterns with reasonable numbers of genes can account for a large portion (~80%) of 

a particular subtype. 

 

In step 3 of the analysis, the data from steps 1 and 2 is used as a guide to forming more 

complex orderings of the patterns.  These orderings involved selecting patterns that met 

some minimum criteria in terms of length or support, then ordering by support or length, 

respectively.  The minimum values for length were Gmin = 2, 3, 4 and 8 genes and the 

minimum values for support were Smin=5, 10, 14 and 16.  The values for Gmin were 

chosen because the highest support patterns with perfect discrimination had between 2 

and 5 genes.  So, genes in this range, or slightly above, should give patterns with good 

discrimination.  Values for Smin, were chosen to reasonably cover support values less than 

or equal to 16, because the smallest maximum support for a pattern with perfect 

discrimination is 16 (see Table 4.25).  In all cases – except Smin=16, Kmax=20, where two 

patterns were ~85% supported by GCB tissue samples –  the top 20 patterns were 

majority supported by ABC type DLBCL, and not GCB.  Because of this, the ABC 

clustering patterns will be discussed here, which will be followed by an examination of 

the GCB clustering patterns below.  In Table 4.26, we can see a summary of the ABC-

pattern orderings.  In Appendix A, more complete data is presented for Kmax=10: Gmin=8 

(Table A.7), Smin=5 (Table A.11), Smin=10 (Table A.15) and for Kmax=20: Gmin=8 (Table 

A.8), Smin=5 (Table A.12), Smin=10 (Table A.16). 
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Table 4.26. For each data set (Kmax=10, 15, 20) the number of top 20 patterns whose supporting 
tissues consist of 80%, 90% or 100% ABC subtype for each type of minimum gene criteria (Gmin=2, 
3, 4, 8) or minimum support criteria (Smin=5, 10, 14, 16) 

Kmax= 10 Kmax=15 Kmax=20 
Criteria 

80% 90% 100% 80% 90% 100% 80% 90% 100% 

Gmin=2 11 3 0 12 4 0 8 2 0 

Gmin=3 19 7 1 19 9 3 19 9 3 

Gmin=4 20 12 4 20 12 4 19 15 7 

Gmin=8 17 6 6 20 0 14 19 18 18 

Smin=5 19 19 19 18 18 18 17 17 17 

Smin=10 20 16 7 20 17 6 20 19 10 

Smin=14 20 12 3 20 12 4 17 12 3 

Smin=16 17 7 2 18 8 2 11 3 0 

 

There are three important factors that concern the data in Table 4.26.  First, the number of 

good patterns increases with increasing Gmin.  The only exception to this might be for 

Gmin=8, Kmax = 10, where there may be some deterioration in the ability of the patterns to 

discriminate between subtypes.  However, even in that case the number of 100% 

discriminating patterns increases.  The quality of the patterns improves because, as Gmin 

increases, the tissues clustered together must be more related.  Second, the discrimination 

ability of the patterns increases with decreasing Smin.  At Smin=5, for Kmax = 10, 95% of the 

patterns are 100% discriminating.  This occurs because, as the minimum required support 

decreases, the number of genes in the pattern increases – 16, 8, 5 and 4 genes for Smin=5, 

10, 14, and 16, respectively.  Third, the effect of a low Kmax is favorable with a low Smin, 

but unfavorable with a high Gmin.  The reason, generally, why a higher Kmax does a better 

job of discriminating the subtypes for increasing Gmin is because the support for patterns 

is less in Kmax=20  than for Kmax=10.  For instance the highest support pattern for Gmin=8, 

Kmax =10 and Kmax =20 is 10 and 8, respectively.  The reason why Kmax = 10 out performs 

Kmax =20 with decreasing minimum support is because the patterns with Kmax = 10 

generally have more genes in them than in Kmax = 20.  For instance, the shortest top 20 

pattern for Smin=5, Kmax=10 and Kmax =20 is 15 and 13 respectively. 

 



 112

Having examined the strongly discriminating patterns in the above table, it is also of 

interest to examine which tissues are misclassified by these patterns.  Looking at Smin=5, 

Kmax=10, there is only one poor pattern.  This pattern clusters together the following 

tissues {11, 21, 24, 33, 38}.  The situation is similar in Gmin=8, Kmax=20: Here, two 

patterns fail to discriminate at 100% efficiency.  Their supporting tissues are as follows: 

{9, 13, 35, 37, 40, 41, 44} and { 22, 28, 34, 37, 39, 41, 42, 43}.  From the data presented 

at the beginning of this section, it is perhaps not too surprising to see tissues 21 and 24 

mis-classifying.  Tissue 22 is also an outlier to the GCB cluster and therefore would be 

more expected to cluster with ABC tissue.  However, the fact that tissues 9, 11 and 13 

would misclassify seems perplexing as these should be central to the GCB cluster.  

 

Because the ABC subtype dominated the above orderings, there is no information on the 

quality of the GCB patterns.  However, in a  somewhat artificial approach, it is possible 

to remove all patterns that aren’t at least 50% GCB and examine how well those patterns 

classify the GCB subgroup.  This roughly simulates an algorithm that has already 

clustered together the stronger ABC subtype and is left with predominately GCB 

supported patterns.  Another way to regard this technique is to view patterns that are 

supported by >50% ABC tissues as patterns that “cluster ABC tissues and potentially 

cross-cluster GCB tissues”, and patterns that are supported by >50% GCB tissues as 

“clustering GCB tissues and potentially cross-clustering ABC tissues”.  Then this 

technique simply removes the patterns that cluster together ABC tissue samples and 

leaves the GCB patterns.  Because the results in Table 4.26 indicate that Kmax=10 and 

Kmax=20 yield the best results, we focus on only those two data sets in Table 4.27. In 

Appendix A more complete data is presented for Kmax=10: Gmin=8 (Table A.9), Smin=5 

(Table A.13), Smin=10 (Table A.17) and for Kmax=20: Gmin=8 (Table A.10), Smin=5 (Table 

A.14), Smin=10 (Table A.18). 
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Table 4.27. For each data set (Kmax=10, 20) the number of top 20 patterns whose supporting tissues 
consists of 80%, 90% or 100% GCB subtype for each type of minimum gene (Gmin=2, 3, 4, 8) or 
minimum support (Smin=5, 10, 14, 16) criteria 

Kmax= 10 Kmax=20 
Criteria 

80% 90% 100% 80% 90% 100% 

Gmin=2 4 3 2 3 2 0 

Gmin=3 8 7 3 9 4 0 

Gmin=4 15 13 10 12 9 3 

Gmin=8 14 14 14 10 5 5 

Smin=5 5 3 3 5 2 2 

Smin=10 15 13 10 12 8 2 

Smin=14 4 3 2 4 0 0 

Smin=16 4 3 2 3 1 0 

 

Generally, the quality of the GCB clustering patterns is less than it was for the ABC 

patterns; there are fewer patterns at every level of discrimination.  This is likely because 

the GCB subgroup is less well-defined than the ABC subgroup.  That is, its genes are not 

as “tightly” binned as those in the ABC subgroup.  It is not unexpected then, that Kmax=20 

does a worse job on this data then Kmax=10.  It would seem that Kmax=20 is simply too 

fined-gained for the variability encountered in the GCB tissue samples.  Another 

dissimilarity between the GCB and ABC results is that Smin=5 provided much worse 

results than Smin=10.  This occurs because 4 tissue samples (24, 29, 31 and 33) support 

many of the top 20 patterns and this cross-clustering reduces the discriminating power of 

the patterns.  Although these same tissue cross-cluster to some extent when Smin=10 

(along with tissues 44-46), the effect of this is diluted because of the higher minimum 

required support.  Looking to the tissues that were mis-classified in Gmin=8, Kmax=10, we 

find that tissues 24, 29, 31 and 38 are misclassified multiple times.  Tissue 24 has 

repeatedly shown problems with cross-clustering with GCB.  However, tissues 29, 31 and 

38 should be central to the ABC cluster and should not misclassify.   

 

From a clinical standpoint, the end-goal of any microarray classification analysis such as 

this is to produce a set of genes that can be indicative of the subtype a patient might 
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belong to.  Classifying patients in this manner can determine the treatment that they 

receive.  Clinically, it is important to identify the smallest set of genes that can classify a 

subgroup because a test that requires more genes to be effective is more costly.  In the 

fourth step of analysis, a list of genes is presented here that seem to do a good job of 

identifying ABC or GCB subtype.   

 

The genes used to classify the ABC subtype are the amalgamation of all genes in the top 

20 patterns from Kmax=20, Gmin=8 (see Table A.8).  Using this set of patterns keeps the 

total number of genes small.  It also reduces the number of cross-clustering tissues (false 

positives) but at the cost of reducing the number of ABC tissues included (true positives).  

Doing this clusters together the following tissue samples: 28, 30, 32, 34, 35, 36, 37, 39, 

40, 41, 42, 43, 44 and 45; or 14/23 ABC tissues.  It also cross-clusters the following GCB 

subtype tissues: 9, 13 and 22 (3/24).  This clustering is achieved with the following 

genes:  

 

• FMR2 (Fragile X mental 

retardation 2. LAF4 and AF4 

homologue) 

• MYBL1 (myb related gene A) 

• DCTD (Deoxycytidylate 

deaminase) 

• KIAA1039 

• CD10 

• ALOX (Arachidonate-5-

lipoxygenase) 

• PI3K (Phosphatidylinositol-3-

kinase) 

• BCL2 

• CD21 (B-lymphocyte CR2 

receptor) 

• TDT (Terminal Deoxynucleotide 

Transferase) 

• KIAA0870 

• ETV6 (TEL oncogene) 

• Hs.192708 (highly sim. to 

mybA) 

• Hs.106771 

• Hs.125815 

• Hs.24724 

• Hs.203866 

• Hs.124049 

• Hs.97530 

• Hs.28355 

• Hs.75859 

• Hs.224323 

• Clone.1234554 
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• Clone.825920 

• Clone.1288046 

• Clone.1334486 

 

 

The genes used to classify the GCB subtype are the amalgamation of all genes in the top 

20 patterns from Kmax=10, Gmin=8, ABC<50% (see Table A.9).  In a similar vein as 

above, this keeps the number of genes used down to a minimum, and also keeps the 

cross-clustering rate low.  Doing this clusters together the following GCB tissues: 1, 2, 3, 

4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 18, 19, 21, and 23; or 17/24 GCB tissues.  It also cross-

clusters the following ABC tissues: 24, 29, 31, 33, 38 and 39 (6/23).  The genes identified 

to do this are as follows:  

• KIAA1039 

• MYBL1 (MYB related gene A) 

• DCTD (Deoxycytidylate 

deaminase 

• TRKC (Neurotrophic tyrosine 

kinase receptor type 3) 

• ID2H (Inhibitor of DNA binding 

2) 

• PTK (NET PTK tyrosine kinase) 

• RAD50 

• CAM1 (CAM-kinase I) 

• MYOIC (Myosin IC) 

• ALOX (Arachidonate-5-

lipoxygenase) 

• CD27 

• BRCA2 

• JMJD1B (Putative zinc finger 

protein) 

• WASPIP (HS-PRPL-2-WASP 

interacting protein) 

• OGG1  (8-oxoguanine DNA 

glycosylase) 

• ALU subfamily J 

• FAK  (Focal adhesion kinase) 

• CD10 

• RGS13 (Regulator of G-protein 

signaling) 

• TCEB3 (Elongin A SIII p110 

subunit) 

• ALU subfamily C 

• TDT  (Terminal 

Deoxynucleotide Transferase) 

• CSNK1G2 (Casein kinase I) 

• Hs.28355 

• Hs.120716 

• Hs.203866 

• Hs.75859 
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• Hs.222808 

• Hs.19399 

• Hs.161905 

• Hs.124049 

• Hs.97530 

• Hs.226955 

• Clone.1339105 

• Clone.1333841 

• Clone.1334486 

• Clone.682692 

• Clone.704802 

• Clone.2015 

 

 

It is important to realized that some of the genes listed above will likely not be 

discriminatory because they express at a similar level across both subtypes.  Therefore, as 

a second step to compiling a list of classifier genes we remove the candidate genes that 

occur in the highest supported patterns, but only if they are mapped to mapped to the 

same bin.  The reason for doing this is that any gene that is supported by more tissues 

than occurs in either subtype is non-discriminatory.  For example, if the expression of 

gene Y is mapped to the same bin across all the tissues, it would appear in every pattern.    

One way to identify such genes is to look at the highest supported patterns.  In this case 

we combine all the genes that are supported by >24 tissues in Kmax=10 and Kmax=20 (see 

Table A.1 & Table A.2).  Because these patterns are supported by more tissues than occur 

in either subgroup, these genes must be similarly expressed by both GCB and ABC cell 

lines.  Ten such patterns are found in the results from Kmax=10 and 7 patterns from the 

patterns discovered in Kmax=20.  When combined these genes are (* indicates gene 

appears in either of the above lists):  

• JNK3 

• PTK* 

• MYBL1* 

• RAD50* 

• CD21* 

• Hs.203866* 

• Hs.75859* 

• Hs.120716 

• Hs.97530*

 

Notice that this list includes the 3 genes that appear as candidates for both subtypes 

(MYBL1, DCTD, Hs.75859).  For deoxycytidylate deaminase the high support level of 

expression is “C” as it is for GCB, but the level is “D” (a higher amount of expression) 
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for ABC.  For mybA the level of expression in the high support pattern is “A”, in the 

ABC pattern it is also ”A” but in the GCB pattern it is “B”.  Hs.75859 is found to express 

at the same level in all three patterns.  Therefore, the candidate genes for the ABC 

subtype are as listed above with the exception of myb A, and Hs.75859 and the candidate 

genes for the GCB subtype are as listed above with the exception of deoxycytidylate 

deaminase, and Hs.75859. 

 

 

Throughout this section a number of tissues were found to cross-cluster with tissues from 

the other subtype.  The worst of the cross-clusterings were {4, 24}, {21, 33}, and {21,41} 

because these patterns contained many co-expressing genes.  However, the tissues 9, 13, 

22, 24, 29, 31 and 38  were also found to cross-cluster frequently.  Admittedly, these 

tissues cross-clustered in patterns with fewer genes, but did cluster with more tissues of 

the other subtype.  When considering the reasons why these cross-clusterings occur, the 

first possibility to consider is that pattern discovery is simply not a good technique to use 

for this data.  However, this seems unlikely because under certain ordering schemes 

pattern discovery does a very good job of identifying and clustering the subgroups in this 

data (see Table 4.26, lines Gmin=8, Smin=10).  Second, it can be seen that a number of the 

cross-clustering tissues identified throughout this section are outliers to the GCB and 

ACB subtypes (see Figure 4.4).  This raises the possibility that the clustering method 

used by Alizadeh may have miss-clustered some of the tissues.   For tissues 21, 22 and 24 

this would likely be the case.  However, this would not explain the cross-clustering of 

tissues 9, 29, 31, 33 and 38 because these tissues should represent the core of their 

respective subtypes.  What this may indicate, however, is that there are further subtypes 

within these tissues that have not been identified.  Indeed, since the original publication 

of this article by Alizadeh, it has come to light that there is a subtype of the ABC group 

called Type III [Rosenwald, ’02].  It could be that some of the tissues identified here as 

GCB might cluster better with a subgroup of ABC then they would with either ABC as a 

whole, or the GCB subgroup. 
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4.2.2 Pre-set value binning 
Similarly to Section 4.1.4.4 this data was binned using a single set of values for every 

gene.  The values used to delimit the bins were: -1.00, -0.25, +0.25, and +1.00.  These 

values are used to form 5 bins in which to stratify the numeric data.  The total execution 

time for pattern discovery on the Beowulf cluster was 42371 seconds (~12 hours).  This 

section will examine the highest support patterns, the densest patterns, and the most 

discriminating patterns to estimate the minimum required values for support and length 

that good classifier patterns would need.  As in the previous section, orderings of these 

patterns will be made and the ability of these patterns to classify subgroups of DLBCL 

will be analyzed.  This will be followed by a discussion on any cross-classified tissues 

and a comparison made to the patterns found using Xmeans binning. 

 

The highest support patterns have support values in the 17-28 range (see Table A.19).  

With only one exception (83% supported by GCB tissues) all the patterns were poor 

discriminators of DLBCL subtypes.  The longest patterns contained from 172 to 256 

genes (45.3% to 67.4% of the maximum possible) (see Appendix A, Table 20).  With 

only 3 exceptions, all of these patterns were either 100% supported by ABC or GCB 

tissue types; with the largest proportion of patterns involving tissues 16-19.  The three 

exceptions were supported by the following pairs of tissues: {1, 27}, {21, 33}, {11, 25}.  

When looking for patterns with perfect discrimination and ordered by support, it is found 

that only 3 of the top 20 are ABC type, and the rest are GCB (see Table A.21).  All the 

patterns contain 1 to 3 genes and the highest support for both subtypes was 13. This 

means that for both ABC and GCB subtypes, approximately half of the samples could be 

classified by a single pattern containing 1 to 3 genes.  This result would imply that good 

discrimination of the tissues should occur with as few as 1 to 3 genes and slightly higher 

values should be able to provide very good discrimination.  Further, this implies that 

support values over 13 will likely not find patterns with good discrimination and 

definitely will not find patterns with perfect discrimination.  However, support values 

below 13 should be able to consists entirely of one subtype or another.  However, this 

was found to not be the case.  Support values as low as 10 did not provide good 

discrimination, although Smin=5 did.  So, in order to provide more data points for 
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changing Smin at low values, Smin=7 was also used.  In addition, a Gmin as high as 8 did not 

provide good discrimination either, so an ordering with a higher Gmin was also required.  

Therefore, the minimum genes and support values used for rankings were Gmin=6, 8, and 

12 and Smin=5, 7 and10.  More complete results for pattern discovery with data from  

Gmin=8, Gmin=12, Smin=5, and Smin=7 is available in Table A.22 through Table A.27, 

respectively. 

 

Unlike in the Xmeans binned data, the minimum gene criteria here included a fairly equal 

number of patterns that clustered both ABC and GCB subtypes (see Table A.22 & Table 

A.23).  In Table 4.28 the number of patterns that successfully classify either subtype are 

listed.  As can be seen, these patterns do a very poor job of discriminating one class from 

another.  This is due to the cross clustering of 5 tissues {24, 25, 33, 38 and 39} in 

predominately GCB supported patterns and 5 tissues {2, 11, 18, 19 and 22} in 

predominately ABC supported patterns.  The two most common genes in these cross-

clusters were RAD50 and TTG2. 

 

Table 4.28. The number of patterns that successfully classify, at the given percentage, either the ABC 
or GCB subtype for the listed minimum gene requirement 

Criteria 80% 90% 100% 

Gmin=6 2 1 1 

Gmin=8 6 2 2 

Gmin=12 6 4 4 

 

Unlike with the minimum gene requirement, the minimum support requirement did a 

much better job of selecting good patterns.  This can be seen in Table 4.29 where, for 

GCB patterns the Smin=5 ordering produces 17/20 patterns with perfect discrimination 

(see Table A.24), compared to the Gmin=12 ordering which only produces 4/20 patterns 

with perfect discrimination.  However, the top 20 patterns for each Smin were dominated 

by GCB tissues so a second ordering which only included patterns that were at least 50% 

ABC tissues was also constructed (see Table A.25 & Table A.27).  The results of these 

orderings can be seen in Table 4.29.  Although the top 20 patterns with Smin=5 did a good 
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job of predicting the GCB subtype, they required between 28 and 32 genes to do so.  At 

Smin=7 only 11 to 13 genes were required to make the classifications, but there is a 

deterioration in discrimination (10 vs. 17 perfect discriminators).  Unfortunately, as can 

be seen in Table 4.29, these patterns do a very poor job of classifying the ABC subtype.  

Even the poor results at Smin=5 for the ABC subgroup required 28 genes to accomplish. 

 

Table 4.29. The number of patterns that successfully classify, at the given percentage, the ABC and 
GCB subtypes for the listed minimum support requirement. 

At least 50% ABC At least 50% GCB Criteria 

80% 90% 100% 80% 90% 100% 

Smin=5 5 3 3 19 17 17 

Smin=7 0 0 0 13 10 10 

Smin=10 0 0 0 2 1 0 

 

The results from this section stand in stark contrast to the previous section where the 

ABC class dominated the top 20 patterns.  Here, GCB patterns seem to be the densest and 

most discriminating.  Generally speaking, however, Xmeans binning out preformed pre-

set value in a number of ways.  For instance the Xmeans binning scheme finds a higher 

support pattern with perfect discrimination than does the pre-set value technique (18 vs. 

13 tissues), and although the pre-set value technique did find patterns with more genes in 

them (67% vs.  41%), this did not translate into more patterns with good discriminating 

power.  For example, the Xmeans binned patterns can produce much better 

discrimination using 4 genes than can the pre-set value patterns using 8.  Further, Xmeans 

binning produces more patterns that are perfectly, or near-perfectly composed of just one 

subtype of another at any particular support level. 

 

Composing a succinct list of candidate classifier genes from the data is this section would 

be difficult because very few of the orderings produced good classifying patterns and the 

good orderings which did produced good classifying patterns contain many genes.  

Because no sorting criteria did an especially good job on finding classifier patterns for the 

ABC group, no candidate genes will be proposed for identifying the ABC subtype. 
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Instead of using the top 20 patterns from Smin=7 (which is used as a compromise between 

accuracy of classification and the number of genes to achieve this classification) to 

compose a list of candidate genes for the GCB subtype, only the top 5 patterns will be 

used (see Table A.26).  Doing this yields the following candidate genes for identifying 

the GCB subtype of DLBCL  (* indicates gene also occurs in Xmeans binned list):  

• KIAA1037 

• PTP4A (Protein tyrosine 

phosphatase type IVA) 

• ALU subfamily SB 

• CD10* 

• KIAA0805 

• KCNA3 (Potassium voltage 

gated channel shaker related 

subfamily member 3) 

• RAD50 

• WASPIP*  (WIP HS PRPL2 

WASP interacting protein) 

• TTG2 

• SRPK2 

• IL10RB (Cytokine receptor 

family II member 4) 

• CD44 

• CSNK1G2* (casein kinase 1) 

• BCL2* 

• PTP1B 

• ALU subfamily SQ 

• Hs.59368 

• Hs.192047 

• Hs.123294 

• Hs.97275 

• Hs.190288* 

• Hs.120716* 

• Hs.224323 

• Hs.88102 

• Hs.192738 

• Clone.825199 

• Clone.814651 

• Clone.2017 

• Clone.713158 

• Clone.1371532 

• Clone.1351325 

• Clone.1288046 

 

 

Normally these candidate genes would be pruned of any genes that occurred in a pattern 

that definitely had enough support to bridge both subclasses of DLBCL.  However, in this 

data set only one pattern has enough support to do this.  As an alternative to that 

approach, the top 10 patterns with the highest support will be used to form a list of cross-
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clustering genes (see Table A.19).  Doing so yields this set of genes (those marked with a 

* occur in the above list):  

• JMJD1B 

• SLCO3A1 

• IL2RB 

• BCL2* 

• Hs.203866 

• Hs.190288* 

• Hs.4766 

• Hs.87589 

• Hs.123318 

 

 

 

Subtracting genes in the second list from those in the first list yields the following 

candidate genes: 

 

• KIAA1037 

• PTP4A (Protein tyrosine 

phosphatase type IVA) 

• ALU subfamily SB 

• CD10* 

• KIAA0805 

• KCNA3 (Potassium voltage 

gated channel shaker related 

subfamily member 3) 

• RAD50 

• WASPIP*  (WIP HS PRPL2 

WASP interacting protein) 

• TTG2 

• SRPK2 

• IL10RB (Cytokine receptor 

family II member 4) 

• CD44 

• CSNK1G2* (casein kinase 1) 

• PTP1B 

• ALU subfamily SQ 

• Hs.59368 

• Hs.192047 

• Hs.123294 

• Hs.97275 

• Hs.120716* 

• Hs.224323 

• Hs.88102 

• Hs.192738 

• Clone.825199 

• Clone.814651 

• Clone.2017 

• Clone.713158 

• Clone.1371532 

• Clone.1351325 

• Clone.1288046 



 

Of the 32 genes determined to support the GCB subtype, 6 are shared with the list from 

Section  4.2.1 and two of these (BCL2 and Hs.190288) were pruned from both result sets.  

Interestingly JMJD1B is considered non-discriminatory in this data set but was a 

candidate classifier gene in the previous section. 

 

4.2.3 Genes@Work Approximation 
Work on the Genes@Work approximation immediately presented two major difficulties.  

First, to approximate even small delta values in Genes@Work, many characters are 

needed.  This leaves very few characters to use as break-characters.  Second, because of 

the need to find similar patterns (see Section  2.5.2), pattern discovery takes a very long 

time and cannot finish in less than 24 hours on the Beowulf cluster with K=2.  With 

higher values of support it is possible to get pattern discovery to complete, but the results 

were poor.  Many of the patterns were not similar to those found by Genes@Work.  The 

latter’s patterns being superior to the approximation; generally having more genes for any 

particular level of support and finding a pattern with higher support than any pattern 

found by the approximation.  Although it would be likely possible to improve the results 

of the approximation, time restrictions limited further development of it. 

 

4.2.4 Classification with Genes@Work 
Unlike the pattern discovery and “blind” clustering methods used above, Genes@Work 

takes a supervised clustering approach to the classification problem.  That is, 

Genes@Work requires each array in the data set to be labeled with its class.  It then uses 

one class (the training data) to help stratify the data in the other class (test data).  

Genes@Work then uses pattern discovery to find similar patterns in the test data.  

Because of the way it stratifies the data Genes@Work can estimate the probability of the 

patterns it has found of being discovered by chance.  It uses this scoring system to 

evaluate the quality of a pattern. 
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Genes@Work’s approach to microarray analysis impacts the evaluation of pattern quality 

in three ways.  First, because Genes@Work only finds patterns in a single class of 

microarrays, all its patterns perfectly segregate the two classes.  This prevents evaluating 

the quality of the patterns based on how well they discriminate between ABC and GCB 

tissue types.  However, it is still possible to compare the quality of Genes@Work’s 

results to those of Teiresias, using the other two binning methods, in terms of the length 

and support of the discovered patterns.  Also, it is possible to compose a list of candidate 

genes from Genes@Work’s patterns and compare this gene list to the genes obtained by 

the Xmeans and pre-set value techniques.  Second, because Genes@Work removes 

correlated patterns, not every pattern discovered will be listed in the final results.  It is 

believed that the most important patterns will still remain in the result set.   However, to 

offset the fact that some patterns have been removed, only the top 10 patterns for each 

ordering of support, length and probability will be considered.  Lastly, the effects of 

using Genes@Work’s scoring system are investigated. 

 

Genes@Work was executed twice on this data set.  The first time using the GCB tissues 

as the test data, and the second time using them as the training data.   

 

Discovering patterns in the GCB data took 117 seconds.  When these results are ordered 

by support (see Table 4.30), a single pattern of support 21, captures every GCB tissue 

sample except 21, 22, and 23.  No other pattern in the top 20 patterns listed by support 

supports any of these 3 tissues.  The pattern uses the following 3 genes to cluster the 

tissues: ALU subfamily SB, Hs.224323, and Hs.136345.   
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Table 4.30.  Top 10 patterns discovered by Genes@Work when ordered by support 

Rank Probability 

(log10) 

Supporting 

Tissues 

Genes 

1 -87 21 Alu subfamily SB, Hs.224323, Hs.136345, 
clone.825199 

2 -102 20 Hs.120716, ALU subfamily SB, Hs.224323, 
Hs.136345, clone.825199 

3 -102 20 Hs.136345, Hs.224323, ALU subfamily SB, 
clone.825199, ALU subfamily SB 

4 -95 19 Hs.136345, clone.825199, ALU subfamily SB, 
Hs.224323, Hs.105261 

5 -116 19 Hs.120716, Hs.136345, Hs.224323, ALU 
subfamily SB, clone.825199, ALU subfamily SB 

6 -108 18 Hs.136345, clone.825199, Hs.224323, ALU 
subfamily SB, Hs.105261, ALU subfamily SB 

7 -108 18 Hs.120716, Hs.136345, clone.825199, ALU 
subfamily SB, Hs.224323, Hs.105261,  

8 -108 18 Hs.136345, clone.825199, Hs.224323, ALU 
subfamily SB, mybA, ALU subfamily SB 

9 -82 17 Hs.136345, clone.825199, Hs.224323, ALU 
subfamily SB, Hs.222808 

10 -117 17 Hs.120716, HJs.136345, clone.825199, ALU 
subfamily SB, Hs.224323, mybA,  ALU subfamily 
SB 

 

Ordering the patterns by their length (see Table 4.31) shows that two tissues, 16 and 17, 

are very strongly related with 254 genes (which closely matches the 256-gene longest 

pattern found in Section 4.2.2).  The next 9 patterns all have support 3 or 4 and include 

tissues 16 and 17 in their support list. The other supported tissues are: 5, 9, 10, 12, 13, 

and 14.  Each pattern is composed of 102 to 156 genes.    
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Table 4.31.  Top 10 patterns discovered by Genes@Work when ordered by length 

Rank Probability (log10) # of genes Supporting Tissues 

1 -156 254 16, 17 

2 -221 156 12, 16, 17 

3 -184 137 15, 16, 17 

4 -180 135 13, 16, 17 

5 -147 117 10, 16, 17 

6 -143 115 9, 16, 17 

7 -140 113 14, 16, 17 

8 -131 108 5, 16, 17 

9 -243 103 12, 15, 16, 17 

10 -240 102 12, 13, 16, 17 

 

When using Gene@Work’s own ordering system we are presented with the following top 

10 patterns listed in Table 4.32. 

 

Table 4.32. The top 10 patterns discovered by Genes@Work when ordered by probability 

Rank Probability (log10) # of genes Supporting Tissues 

1 -249 74 12, 13, 15, 16, 17 

2 -242 103 12, 15, 16, 17 

3 -239 102 12, 13, 16, 17 

4 -238 54 12, 13, 14, 15, 16, 17 

5 -230 69 9, 12, 15, 16, 17 

6 -230 69 12, 14, 15, 16,17 

7 -230 69 10, 12, 15,16, 17 

8 -229 52 10, 12, 13, 15, 16, 17 

9 -225 41 10 12, 13, 14, 15 , 16, 17 

10 -224 51 10, 12, 14, 16, 17  

 

There are two interesting things about these results.  First, all the patterns are built around 

the tissues {16, 17}.  These agrees with the results from Cluster (see Figure 4.4), which 
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tightly clusters these two tissues before than others in the GCB subtype.  Second, the 

smallest number of genes in any of the above patterns is 41. Although these patterns may 

be the least probable to have occurred by chance, from a clinical stand point, 41 is far too 

many genes to construct a classifier upon.   

 

Because of the high number of genes in Genes@Work listing, the only effective way to 

construct a list of candidate classifier genes is from the highest support list.  Because a 

single pattern captures nearly all the tissues, this means using only one pattern to 

compose the list of candidate genes.  This one pattern is also significant because it occurs 

with the highest support of any GCB pattern discovered by any technique.  Although 

three tissues {21-23} are not in this pattern’s support list, these tissues are also least 

correlated tissues (as determined by Cluster) to the GCB group and therefore it seems 

reasonable that they might not be a part of the GCB group.  Of the three genes it 

identifies as classifiers {ALU subfamily SB, Hs.224323, and Hs.136345}, only ALU 

subfamily SB was also determined by Xmeans to be a classifier gene.  However, the pre-

set value technique agrees with two of the genes (ALU subfamily SB and Hs.224323).  

Interestingly, Hs.224323 is a candidate classifier gene for the ABC subtype in Section 

4.2.1.  The gene appears in both lists because in the ABC subtype the gene is moderately 

down-expressed and in the GCB subtype it is strongly up-expressed. 

 

Having examined the GCB patterns and composed a candidate list of genes the focus now 

changes to the ABC subclass of DLBCL.  Using Genes@Work to discover patterns in the 

ABC cell lines takes 74 seconds.  The two highest support patterns both have a support of 

17 (which compares well to the highest support pattern found with the Xmeans method 

which has 18 supporting tissues).  Between the two patterns they support every ABC 

tissue and therefore are the only patterns required to fully define the ABC subtype.  

Because of this the genes in both patterns forms the candidate gene list.  The two patterns 

are shown in Table 4.33. 
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Table 4.33. Candidate classifier genes for ABC subtype discovered by Genes@Work 

Rank Supporting Tissues Genes 

1 24, 25, 27-42, 43, 45 Clone 1353015, JAW1 

2 24, 26, 29, 31, 32, 35-47 Deoxycytidyle deaminase, ALU subfamily SB 

  

 

Neither gene in the first pattern was nominated as a classifier gene in either of the other 

two techniques.  However, both genes in the second pattern were.  ALU subfamily SB 

appeared as a classifier by the Xmeans method.  As mentioned above, it also appears as a 

classifier for the GCB subtype.  Deoxycytidyle deaminase was nominated by the Xmeans 

method as a candidate gene as well. 

 

When ordered by length we see that the longest pattern contains 104 genes.  Interestingly, 

all the uncorrelated patterns have at least 3 supporting tissues which may account for the 

smaller number of genes in the longest pattern, especially when compared to the longest 

pattern discovered in the GCB subtype.  The top ten patterns by length are listed in Table 

4.34. 
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Table 4.34. The top 10 patterns sorted by length, discovered by Genes@Work for the ABC DLBCL 
subtype. 

Rank Probability (log10) # of genes Supporting Tissues 

1 -124 104 35, 42, 43 

2 -101 90 36, 42, 43 

3 -94 86 35, 36, 43 

4 -88 82 35, 36, 42 

5 -86 81 36, 39, 43 

6 -85 80 35, 39, 43 

7 -82 78 36, 39, 32 

8 -80 77 35, 36, 39 

9 -76 74 39, 32, 32 

10 -73 72 40, 42, 43 

  

 

In the above table it can be seen that a few tissues provide the core of the ABC subtype.  

Although not as tightly knit at the core of the GCB group, tissues 39, 42 and 43 correlate 

highly to other tissues in the group. 

 

The patterns, sorted by probability are presented in Table 4.35.  Again, we see that 

patterns with low support and a high number of genes are favored. 
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Table 4.35. The top 10 patterns sorted by probability, discovered by Genes@Work for the ABC 
DLBCL subtype. 

Rank Probability (log10) # of genes Supporting Tissues 

1 -132 63 35, 36, 42, 43 

2 -127 31 35, 36, 40, 42, 43, 

3 -124 104 35, 42, 43 

4 -122 40 35, 36, 39, 42, 43 

5 -118 39 35, 36, 39, 40, 43 

6 -111 55 35, 40, 42, 43 

7 -111 37 35, 39, 40, 42, 43 

8 -109 54 35, 36, 39, 43 

9 -108 36 35, 36, 39, 40, 42 

10 -107 53 35, 39, 42, 43 

 

 

Generally, Genes@Work does an excellent job classifying this data.  This is shown by 

three things.  First, it finds patterns with higher, or nearly as high support as the other two 

methods tested.  Second, it finds patterns that are as long or longer than previous 

discovered, for both GCB and ABC subtypes.  Third, the genes in the highest support 

patterns (the candidate genes) agree reasonably well with the candidate genes from the 

other two methods.  Indeed, the patterns discovered by Genes@Work require fewer genes 

to correctly classify more tissue samples than any patterns discovered by Teiresias.  For 

this reason Genes@Work provides better candidate genes than either of the other two 

binning techniques.   

 

It should not be surprising, however, that Genes@Work discovers more discriminating 

patterns than Teiresias. Genes@Work is a supervised pattern discovery application, or 

rather, its binning technique takes advantage of the class labels provided with the data.  

Teiresias, on the other hand, was used on data that was binned without knowledge of 

which array belonged to which class.  This is likely why, although the other two 

techniques provided a similar list of candidate classifier genes, Genes@Work seemed to 
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have a much smaller, concise list, whereas Xmeans clustering and pre-set value had much 

larger lists where individual patterns had less support.  This does not necessarily mean 

that the genes listed in the other two techniques are wrong, or cannot differentiate a 

subgroup of DLBCL, but they do not separate the ABC and GCB subtypes as efficiently 

as the genes found by Genes@Work under its own binning scheme. 

 

Genes@Work also seems to confirm that some tissues have been incorrectly classified by 

cluster.  This is evidenced by the pattern used to classify the GCB subtype.  That pattern 

was supported by every tissue sample except for three.  Those three tissues (21-23) have 

already been shown, by patterns discovered by Teiresias, to cross-cluster with the ABC 

subtype.  Their failure to form a strong pattern with the rest of the GCB tissues helps 

support the hypothesis that they have been incorrectly classified. 

 

Despite its successes there are three areas where Genes@Work does not perform very 

well as a classifier of microarray data.  First, Genes@Work assumes that the class labels 

are correct.  In other fields where classification is used, this may be a very reasonable 

assumption.  However, with DLBCL, class labels may be incorrect.  For instance, in 

every technique above a number of tissues either cross-classified with the other subtype, 

or in the case of Genes@Work, failed to classify well with its own class.  These tissues 

are almost certainly mis-classified.  Mislabeled tissues highlight an advantage of taking a 

clustering, as opposed to classification approach to deciding which tissues belong 

together.  When clustering, it is possible to find data that has been mis-classified; when 

using classification approaches mis-classified data may go undetected.  Second, 

Genes@Work makes the “two class assumption”: that in any data set there are only two 

classes.  Admittedly this is a failing of almost all classification techniques.  However, 

unlike many other classification techniques, Genes@Work effectively forms a clustering 

of each class by discovering patterns in it; each pattern can be seen as its own cluster.  

Thus, Genes@Work should be able to determine subclasses that exist within the two 

main classes.  Third, Genes@Work’s probability calculation favors many genes with low 

support, over less genes with higher support.  Although this may be the correct approach 

mathematically, it fails from a clinical perspective where there is a cost associated with 
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using more genes in the classifier.  Admittedly, a user can set a minimum support level 

for any pattern (which usually reduces the number of genes in the pattern), however it 

would be ideal if Genes@Work could come up with a better listing of patterns using even 

low values for minimum support. 

 

5 Discussion and Future work 
The major goals of this project were three-fold.  The first goal was to evaluate three 

different pattern discovery methods – Teiresias, Splash and Genes@Work – in terms of 

memory and execution time efficiency.  The second goal was to evaluate, based on their 

ability to form biologically meaningful patterns, three binning techniques – the sign-of-

the-derivative, pre-set value and Xmeans – on yeast cell cycle data .  Finally, this work 

explored the ability of three binning techniques – Xmeans, pre-set value and the 

Genes@Work method – to find distinct subgroups of disease in diffuse large B-cell 

lymphoma (DLBCL) patient tissue samples.  These results were compared on the basis of 

the length (number of genes) and support of the patterns, and the pattern’s ability to 

distinguish the two subclasses (ABC and GCB)  of DLBCL.  To complete the above three 

goals, two secondary objectives were also achieved in this work.  The first, was to 

formulate an ordering scheme, based on pattern length and support, that would rank 

biologically significant patterns highly and the second was to compare the results of 

pattern discovery to the results from Cluster.   

 

The timing and space results for Teiresias, Splash and Genes@Work were very clear cut.  

The execution time for all three algorithms was linear with respect to the number of 

patterns discovered.  However, the slope of the linear relationship was very different for 

each of the three programs.  Except for very small result sets, where Teiresias and Splash 

had near identical run times, Teiresias was two to five times faster than Splash, and 

Splash was ten to 100 times faster than Genes@Work.  Further, as more patterns were 

discovered the time difference between applications becomes more pronounced.   

 

The memory requirements for each application varied.  Teiresias’ memory usage (for any 

one data set) increased exponentially with decreasing K, even if only a few more patterns 
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were discovered.  For equal values of  K across different sized data sets, the memory 

requirement increased linearly with the number of patterns discovered.  Unlike Teiresias, 

Splash’s memory requirements increased linearly with respect to the number of patterns 

discovered regardless of the value of K.  Genes@Work’s memory usage was generally 

linear in the number of patterns discovered with some variability in memory consumption 

which was most likely due to the Java virtual machine memory allocation.  For the data 

sets explored here, Splash uses 2 to 3 times less memory than Teiresias, and Teiresias 

uses 2 to 3 times less memory than Genes@Work.  Further, as the number of patterns 

increases, these differences become more pronounced. 

 

From these results it can be seen that Teiresias is significantly faster, but less memory 

efficient than Splash, Splash is slower but more memory efficient than Teiresias, and that 

Genes@Work is slower and less memory efficient than either of the other two programs.  

Deciding which of the latter two application is the best is not a simple task.  Memory 

efficiency is not an insignificant matter in pattern discovery.  In almost all cases, when 

pattern discovered failed with Teiresias it was because Teiresias ran out of available 

memory space.  However, the speed difference between Teiresias and Splash out-weighs 

the difference in memory efficiency; many executions on 612 genes of the yeast cell 

cycle simply would not finish with Splash under 72 hours, but would finish with 

Teiresias in 8 hours, even though the execution may use all available memory.  

Generally, pattern discovery on a large data set simply would not finish with Splash in a 

reasonable amount of time.  Provided with enough memory, Teiresias can finish pattern 

discovery on very large data sets in a small amount of time.  Further, providing Teiresias 

with more memory has become easier and cheaper in recent years with the advent of 

Beowulf clusters and cheap 64-bit “desktop” computers. 

 

Despite its slowness and memory inefficiency, Genes@Work has many features that 

might make it good for pattern discovery.  First, Genes@Work only discovers aligned 

patterns.  Aligned patterns account for only 25% of the total patterns discovered by 

Teiresias and Splash in this work.  This means Splash and Teiresias do four times more 

work than they need to in the context of this thesis.  Further, using break characters to 
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help remove unaligned patterns wastes characters that could be used for data bins.  

Second, Genes@Work uses a global density requirement whereas Splash and Teiresias 

use local ones.  In any application where the elements of a stream have no order, a global 

density requirement makes more sense than a local one because there is no reason to 

believe patterns will consists of elements in close proximity.  For example, in Section 

4.2.4, 2 genes (ALU subfamily SB and Deoxycytidylate deaminase) were found to be 

significant; these are separated by over 200 genes in the original data set (not shown), but 

they equally could have been further apart or closer together; their position in the data is 

arbitrary and a global density requirement better captures this fact than a local one.   The 

final beneficial feature of Genes@Work is that it allows the researcher to visualize the 

data through a GUI and to use other clustering methods to analyze input data.  Generally, 

when trying to cluster the microarrays (data columns) together, Genes@Work is a very 

good choice, but improvements could be made by increasing efficiency (time and 

memory), allowing the option of command-line execution (for automation), and 

decoupling the data-binning from the pattern finding. 

 

It should be noted that many of Genes@Work’s features could be added to Teiresias (or 

Splash).  Although implementing a global density requirement in Teiresias would be 

difficult,  implementing a system by which only aligned patterns are discovered would be 

relatively easy.  It would also be possible to make a fully-featured GUI for Teiresias 

without having to change the core algorithm in any way. 

 

Three methods of data stratification were attempted with the yeast cell-cycle data: the 

sign-of-the-derivative, the pre-set value,  and the Xmeans technique.  The quality of these 

techniques is based primarily on their capacity to capture biologically meaningful 

relationships between the data and to a lesser extent, their ability to not produce a 

relatively large number of patterns and thus overly increase execution time.  Certainly, if 

two techniques find the same, or similar biologically significant patterns, then the 

technique in which pattern discovery was fastest is better.  With regards to the second 

criterion, the sign-of-the-derivative technique was considerably faster than either of the 

other two techniques, with δ= 0.2.  The pre-set value data eventually required the use of 
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the Beowulf cluster to complete execution, and the Xmeans technique not only required 

the Beowulf cluster, but also an increase in the density requirement of the patterns for 

pattern discovery to complete.  For many of the patterns, the biological significance of 

the clusters was reasonably easy to deduce.   The most prominent of all the patterns was 

the histone pattern which contained 8 histone genes, and occurred in some form across 

multiple parameter settings.  However, genes involved in rRNA-processing and protein 

replication were also discovered.  One of the most interesting patterns was the bud-neck 

group, which involve a set of genes that are not functionally related, but rather co-

localized to the same place in the cell.   

 

Two of the discovered patterns are of particular interest because they would imply a 

biological function for genes with no functional annotation.  The first pattern (see Table 

4.6) consists of the following genes: NOP7, HCA4, MRT4, EBP2, MRD1, DIM1, NOP6, 

YMR269W and YPL146C.  All the genes except the last two are rRNA processing genes.  

This pattern would suggest that YMR269W and YPL146C are involved in the rRNA 

processing and rRNA.  Further, it is suspected [SGD] that YMR269W is involved in 

protein synthesis.  This reinforces the latter conclusion because rRNA is required to form 

ribosomes, which are used to produce proteins.  The second important pattern (see Table 

4.15) is supported by the following genes: HHT1, HTB1, HTA1, HHF2, HHT2, HHO1, 

HTA2 and SVS1.  The first 7 genes are all histone genes.  The last gene is involved in 

vanadate resistance.  This suggests a possible SVS1-histone interaction and a role for 

histones in vanadate toxicity.  Despite the strong evidence for roles for these unknown 

genes, it is important to view this data as generating a hypothesis rather than confirming a 

hypothesis.  The only way to confirm the roles of SVS1, YMR269W and YPL146C 

would be to perform (“wet-lab”) biological experiments. 

 

Many of the same biologically significant patterns occurred in both the pre-set value 

binned data and the sign-of-the-derivative data.  Xmeans binned data found very few 

patterns of biological significance with the exception of two galactose processing genes 

that were clustered together with a long pattern.  Although all techniques showed some 

degree of success, of the three, the sign-of-the-derivative technique was the best.  It 
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discovered six of the ten most biologically significant patterns, where as pre-set value 

discovered only three and Kmeans resulted in just one significant pattern.  Further, many 

of the patterns discovered by the pre-set value and Kmeans techniques were also 

discovered using sign-of-the-derivative data. 

 

In an attempt to select the biologically significant patterns from the millions discovered, 

the patterns were ordered by length.  Ordering the patterns by length, generally, seemed 

to be a good way of ranking them.  The majority of the top-ranked patterns had biological 

significance.  Genes@Work was also used to sort its own patterns by probability.  With 

one exception (an rRNA-processing group) Genes@Work did a poor job of ordering the 

patterns.  Few of the top ranked patterns held any consistent biological function across all 

the genes in the pattern.  Instead, only subsets of the genes seemed to have biological 

meaning.  It might be the case that if Genes@Work were to favor longer, lower support 

patterns, it would be more likely that these patterns would have biological meaning. 

 

After the biological significance of the discovered patterns was investigated, the gene 

groups that support each of the most biologically significant patterns were compared to 

the gene clusters formed by Cluster.  In almost all cases, Cluster found similar (although 

not exactly the same) groups to those formed by pattern discovery.  As an example, 

pattern discovery grouped together SVS1 with 8 histone genes but in Cluster, SVS1 was 

not found with the histone genes.  Instead, Cluster placed the histone genes in a better 

(the biological role was more clear) group with two more histone genes.  A similar result 

occurred a number of times; for a group of genes with some biological role, Cluster 

would find a larger group that shared the same role.  In this aspect, Cluster’s results were 

better than those of pattern discovery.   

 

However, Cluster is inferior to pattern discovery in a number of ways as well.  First, 

pattern discovery would often group genes that had some specific biological role.  

However, when the group was investigated in Cluster’s results, there would often be 

extra genes within the cluster that would “dilute” the specific biological role of the genes 

to a more general one.  Thus a group of genes determined to be regulated by SBF by 
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pattern discovery falls into the more general role of cell-proliferation in Cluster.  It is felt 

that Cluster would often lose the finer relationships between genes that can be found by 

pattern discovery.  This no doubt stems from hierarchical clustering’s inability to allow 

genes to be part of more than one cluster.  As is often the case, a single gene may be 

involved in more than one biological role.  Such a gene can be a part of many 

relationships in pattern discovery, but can only appear in a single relationship in Cluster.  

Generally speaking, Cluster seemed to out-perform pattern discovery on this data.  

Although its clusters are not superior to pattern discovery in every way, Cluster generally 

does a good job of finding the same relationships as found by pattern discovery and 

occasionally manages to refine them.  Cluster’s superiority is compounded by its 

execution times.  Cluster requires approximately 60 seconds to finish clustering the yeast 

cell cycle data set whereas pattern discovery takes hours.  Certainly, for quick, generally 

good results, Cluster is a good choice for this data set. 

 

Considering the results of the comparison with Cluster, there are a number of ways in 

which pattern discovery for this kind of data may be improved.  The success of Cluster 

seemed to be based on genes generally expressing at the same values across many time 

points.  Thus a technique that stratifies the data to fewer bins, but requires the patterns to 

be more dense, may find better results.  In addition to using fewer bins, similar patterns 

could also be searched for.  In such an approach, bins that represent adjacent  ranges of 

values would be allowed to form a pattern.  This would mean ‘A’ and ‘B’, ‘B’ and ‘C’, 

‘C and ‘D’ and so on, could form patterns.  This has a similar effect to using fewer bins.  

Both of these approaches would increase execution time for pattern discovery.  However, 

by requiring patterns to be denser and to have higher support, these time increases could 

be allayed. 

 

Compared to the other binning techniques the results from Xmeans were disappointing.  

One possibility for improving the results with Xmeans would be to use it to stratify the 

data array by array.  That is, instead of using Xmeans on a gene-by-gene basis, it could 

instead be used on an array-by-array basis.  Then pattern discovery could take place 

normally.  By using Xmeans to bin “in the opposite direction” of pattern discovery we 
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alleviate the need to compress the bins for the same reason that it did not have to be done 

with the lymphoma data (see Section 3.2.6).  This approach has the added advantage of 

being an uncommon way to analyze this type of data and thus might be able to show new 

types of patterns.    

 

In addition to the yeast cell cycle, pattern discovery was also used on the 

classification/clustering problem of DLBCL.  Teiresias was used to discover patterns in 

two different stratifications of this data stratifications using Xmeans and pre-set value.  

Genes@Work, which uses its own method of data stratification, was also used on this 

data.  When considering the quality of these techniques, both pre-set value and 

Genes@Work found longer, higher support patterns in the GCB subtype of DLBCL than 

in the ABC subtype. Xmeans, however, found better patterns in the ABC subtype.  

Compared to the pre-set value technique, Xmeans was able to find many more patterns 

that could perfectly or near perfectly discern between the two subtypes using the same 

number of genes (or less), or using patterns with higher minimum support.  Because of 

this, Xmeans is deemed the better stratification technique of the two.  However, 

Genes@Work found patterns that were better still.  For both GCB and ABC, one or two 

patterns, with 2 or 3 genes each, could capture all or nearly all the tissues in a subtype.   

 

For the GCB subtype, 21 of 24 tissues formed a pattern composed of 3 genes.  Of the 

three tissues, two were found by the other techniques to cross cluster with ABC tissues.  

Further, the three tissues are also the least correlated with the rest of the GCB subtype.  

Thus it seems very likely that they do not belong with the GCB subtype. 

 

For the ABC subtype, Genes@Work discovered 4 genes in two patterns that seem to 

successfully separate the two subtypes: Clone 1353015, JAW1 and Deoxycytidyle 

deaminase, ALU subfamily SB.  These may represent two distinct subtypes in the ABC 

class.  Both pre-set value and Xmeans identify both Deoxycytidyle deaminase, ALU 

subfamily SB as candidate classifiers of ABC but neither pick out the other genes as 

being good classifiers.  For the GCB subtype, Genes@Work discovers 3 genes that seem 

to define the cluster: ALU subfamily SB, Hs.224323, and Hs.136345.  Again, both 
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Xmeans and pre-set value techniques agree with 2 of the three genes (ALU subfamily 

SB, and Hs.224323).  Interestingly ALU subfamily SB appears in both lists.  It may be 

concluded then, that this gene provides the best discretion of all the genes for determining 

subtypes in DLBCL. 

 

Cross-clustering was a common occurrence for both Xmeans and pre-set value binned 

data.  The most frequent cross-clustering tissue samples were 1, 2, 21,24 and 25.  In all 

cases, these samples represent outliers to the central core of their respective subclasses.  

From this it may be concluded that the samples have likely been mis-classified.  This 

conclusion would not have been possible to reach using the results from Cluster.  

Because of this any future work in clustering/classification should not use Cluster as the 

definitive clustering technique and should instead use other methods to determine the 

correct classification of the samples.  On the other hand, pattern discovery can discover 

mis-classifications because pattern discovery does not force sample to be in a single 

group, and it allows samples to belong to multiple groups.  Because of this, pattern 

discovery can leave certain samples ungrouped and allow certain other samples to be part 

of both subgroups.  This allows the discovery of out-liers and “troublesome” samples.   

 

In addition, pattern discovery has other advantages over Cluster.  First, it allows for the 

possibility of discovering new subtypes of the disease and, two, when a new subtype is 

recognized, it can instantly identify which genes contribute to defining the cluster.  

Although it would be possible to achieve some of this with hierarchical clustering, none 

of the required analysis tools have been built into Cluster. 

 

Pattern discovery is an excellent tool for classification/clustering.  Even with a very 

simple approach to the problem pattern discovery managed to identify probable errors in 

the classification/clustering made by Cluster.  The stratification technique of 

Genes@Work illustrates the advantage of using a machine-learning approach (training 

data) over discretization methods which do not use training data (Kmeans, pre-set value).   

Further, Genes@Work’s approach to classification/clustering could allow for the 

detection of mis-classified samples, a problem in many biological fields.  Allowing 
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Genes@Work to discover mis-classified elements would be a marked improvement over 

many of the classification techniques commonly used in microarray analysis.  Although 

not as good as Genes@Work’s technique, Xmeans stratification showed marked 

improvement over naïve pre-set value binning on DLBCL data.  Further, the Xmeans 

binning technique might be improved by allowing the discovery of similar patterns.  

Although this would increase the execution time of Teiresias, more conservative 

parameters could also be used reduce execution time.  For instance the results from this 

section indicate that the minimum support K could be set to 1/6 or 1/10 of the number of 

streams and still yield good results.  Further, a global density requirement (currently only 

available in Genes@Work) could be set between 2 and 8 and provide good results as 

well. 

 

Another way of improving the results of pattern discovery would involve devising a 

better method of picking patterns to discover subtypes.  In this work, the identification of 

the DLBCL subtypes relied, simplistically, on using a single pattern (or a collection of 

patterns each considered individually) to separate the two subclasses.  Another approach 

that could be explored would be to cluster patterns together based on their correlation to 

one another.  This seems like a good approach because the majority of the top 20 patterns 

in any ordering were highly correlated to one another.  For instance, the top 5 patterns in 

Kmax=10, Smin=5 have the following tissues (all of which discriminate perfectly) in their 

support list: {34, 37, 39, 40, 41}, {34, 36, 39, 42, 43}, {32, 34, 36, 39, 43}, {34, 35, 39, 

42, 43}, {32, 34, 39, 40, 41}.  This high-correlation situation is quite similar to that 

encountered with the yeast cell-cycle  patterns.  One approach to clustering this data 

might be to use a number of low support, highly discriminatory patterns and merge them 

into a single cluster, based on how the patterns are correlated.  For example, merging the 

5 patterns listed above would yield a single cluster containing tissues {32, 34, 35, 36, 37, 

39, 40, 41, 42, 43}.  Note that this cluster has double the support of any of the patterns 

that it is composed from, and yet still discriminates perfectly.  

 

Although pattern discovery shows great promise in the field of classification and 

clustering, in order to improve on its success four changes in the way pattern discovery 



 141

algorithm authors approach patterns must be made.  First, it should be recognized that 

pattern discovery is a form of clustering.  Second, microarray analysis, as it stands now, 

almost exclusively involves aligned patterns only and pattern discovery algorithms 

should reflect that.  Third, aligned patterns really cluster both genes and arrays.  Lastly, 

microarray analysis packages that use pattern discovery should take advantage of more of 

the information contained in the resulting patterns. 

 

Although not often referred to as such, pattern discovery is a clustering technique.  It 

brings together different streams based on relationship contained in the template of the 

pattern.  Specifically, Genes@Work should not be thought of as a classification technique 

but as a clustering technique with hybrid-classification stratification aspects.  Further 

research with Teiresias in microarray analysis should draw upon knowledge in the 

clustering field to help form meaningful patterns. 

 

Admittedly, time-series data could contain unaligned patterns, but the majority of 

microarray clustering (and all microarray classification) studies involve aligned patterns 

only.  Genes@Work only searches for aligned patterns yet Teiresias does not have such 

an option.  If Teiresias should be used for microarray analysis it should have the ability to 

only search for aligned patterns only.  Further, when only aligned patterns are considered, 

patterns gain a three important new properties.  Firstly, all data points in a stream are 

independent of all others.  This has a practical use when running pattern discovery across 

multiple computers; the input data is now divisible across streams.  Secondly, all support 

lists need only contain the streams that contain the pattern, because aligned patterns can 

be thought of always starting at position 0 in a stream.  Thirdly, a pattern can be uniquely 

identified by its support list.  This is because only one pattern can exist between any 

unique set of streams.  This could allow for a very efficient hashing scheme (using the 

combined stream identifiers to uniquely identify the pattern) , which could be used to run 

pattern discovery in parallel.   

 

It should be recognized that an aligned pattern is not just a clustering of streams (arrays) 

but also of literals (genes).  The only difference between the two forms of pattern 
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discovery (between rows of data or between columns), is whether genes are required to 

co-express across arrays or within them.  Recognizing this allows not only the discovery 

of cross-clustering arrays (tissues) but also of cross-clustering genes.  Employing both 

types of pattern discovery could be very useful for identifying problem samples and 

increasing the accuracy of classification techniques.   

 

Much of the information in a set of patterns is ignored by most methods of microarray 

analysis.  For instance, Genes@Work pares down all the discovered patterns to a few, 

most-interesting ones and only uses these for classification.  A similar approach was used 

in this thesis, where only the top 5, 10 or 20 patterns were considered interesting.  This is 

a straightforward and easy approach but it ignores all the potential information contained 

in the remaining patterns.  For instance, the longest support-three pattern could be used to 

establish the shortest support-two pattern that would be considered interesting, or a 

higher support pattern could be used to cluster together multiple lower support patterns.  

For example, if an interesting pattern existed between streams A and B and another 

between streams C and D, then an interesting  pattern that is supported by all four streams 

could group A, B, C and D together into a single cluster.  In essence lower support 

patterns are used to reinforce the clusters made by higher support patterns. 

 

In this work, pattern discovery was successfully used on two distinct problems with two 

different data sets.  It was shown that pattern discovery could find biologically 

meaningful groups of genes in yeast cell-cycle data and that it could reasonably 

distinguish between two subtypes of lymphoma.  Unfortunately, Cluster found similar 

(occasionally better) results than pattern discovery in yeast cell-cycle data and not all of 

the selected patterns from the lymphoma data were perfect discriminators between the 

subtypes.  Despite its short-comings, however, pattern discovery was shown to be an 

effective tool for gene microarray analysis. 
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Appendix A  
 

Table A.1.  Top 20 highest support patterns with with Xmeans binning Kmax=10 

Rank Support #Genes %ABC Supporting Tissues Genes 
1 

35 1 0.657 

0, 3, 4, 8, 10, 13, 16, 17, 18, 20, 22, 23, 24, 25, 26, 
27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 
40, 41, 42, 43, 44, 45, 46,  JNK3,  

2 

34 1 0.382 

0, 1, 2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 
18, 19, 21, 22, 23, 25, 26, 28, 29, 33, 34, 38, 39, 
40, 41, 44, 45, 46,  PTK,  

3 

32 1 0.625 

1, 2, 3, 4, 8, 9, 11, 19, 20, 21, 22, 23, 24, 25, 26, 
27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 
41, 42, 43, 44,  Hs.203866,  

4 

31 1 0.516 

0, 1, 2, 3, 6, 7, 8, 9, 10, 13, 14, 15, 18, 19, 22, 28, 
29, 30, 31, 32, 34, 35, 37, 39, 40, 41, 42, 43, 44, 
45, 46,  Hs.75859,  

5 
26 2 0.769 

3, 4, 8, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 
32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44,  

JNK3, 
Hs.203866,  

6 
26 1 0.846 

9, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 
34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46,  Hs.120716,  

7 
26 1 0.615 

2, 4, 8, 11, 12, 13, 14, 21, 22, 23, 24, 25, 26, 27, 
29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42,  Hs.97530,  

8 
26 1 0.807 

0, 6, 21, 22, 23, 24, 25, 26, 28, 30, 31, 32, 33, 34, 
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,  MYBL1,  

9 
25 1 0.52 

1, 2, 4, 7, 11, 14, 15, 17, 19, 21, 22, 23, 24, 25, 26, 
27, 29, 30, 33, 35, 36, 38, 39, 42, 45,  RAD50,  

10 
25 2 0.88 

20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 
34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46,  

JNK3, 
Hs.120716,  

11 
25 1 0.72 

3, 5, 6, 7, 9, 10, 23, 24, 26, 28, 29, 30, 31, 32, 33, 
34, 35, 36, 37, 38, 40, 43, 44, 45, 46,  CD21,  

12 
24 1 0.375 

2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 18, 19, 20, 22, 
25, 29, 30, 31, 40, 41, 43, 45, 46,  ID2H,  

13 
24 2 0.875 

0, 22, 23, 24, 25, 26, 28, 30, 31, 32, 33, 34, 35, 36, 
37, 38, 39, 40, 41, 42, 43, 44, 45, 46,  JNK3, MYBL1, 

14 
24 1 0.375 

0, 1, 2, 3, 4, 7, 9, 10, 11, 12, 14, 20, 21, 22, 23, 24, 
27, 28, 30, 31, 33, 38, 40, 41,  Hs.222808,  

15 
24 1 0.25 

0, 1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14, 18, 19, 20, 
21, 23, 24, 27, 29, 32, 38, 40,  DCTD,  

16 
23 2 0.826 

9, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 
34, 36, 38, 39, 40, 41, 42, 43, 44,  

Hs.203866, 
Hs.120716,  

17 
23 1 0.826 

0, 3, 4, 9, 24, 25, 26, 29, 31, 32, 33, 34, 35, 36, 37, 
38, 39, 40, 41, 42, 43, 45, 46,  KIAA1039,  

18 
23 2 0.695 

0, 3, 8, 10, 13, 18, 22, 28, 29, 30, 31, 32, 34, 35, 
37, 39, 40, 41, 42, 43, 44, 45, 46,  

JNK3, 
Hs.75859,  

19 
23 2 0.565 

0, 3, 8, 10, 13, 16, 17, 18, 22, 23, 25, 26, 28, 29, 
33, 34, 38, 39, 40, 41, 44, 45, 46,  JNK3, PTK,  

20 
23 2 0.391 

0, 1, 2, 3, 7, 8, 9, 10, 13, 14, 15, 18, 19, 22, 28, 29, 
34, 39, 40, 41, 44, 45, 46,  

Hs.75859, 
PTK,  
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Table A.2.  Top 20 highest support patterns with with Xmeans binning Kmax=20 

Rank Support #Genes %ABC Supporting Tissues Genes 
1 

34 1 0.382 

0, 1, 2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 
18, 19, 21, 22, 23, 25, 26, 28, 29, 33, 34, 38, 39, 
40, 41, 44, 45, 46,  PTK,  

2 

32 1 0.625 

1, 2, 3, 4, 8, 9, 11, 19, 20, 21, 22, 23, 24, 25, 26, 
27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 
41, 42, 43, 44,  Hs.203866,  

3 

31 1 0.516 

0, 1, 2, 3, 6, 7, 8, 9, 10, 13, 14, 15, 18, 19, 22, 28, 
29, 30, 31, 32, 34, 35, 37, 39, 40, 41, 42, 43, 44, 
45, 46,  Hs.75859,  

4 
26 1 0.807 

0, 6, 21, 22, 23, 24, 25, 26, 28, 30, 31, 32, 33, 34, 
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,  MYBL1,  

5 
26 1 0.615 

2, 4, 8, 11, 12, 13, 14, 21, 22, 23, 24, 25, 26, 27, 
29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42,  Hs.97530,  

6 
25 1 0.72 

3, 5, 6, 7, 9, 10, 23, 24, 26, 28, 29, 30, 31, 32, 33, 
34, 35, 36, 37, 38, 40, 43, 44, 45, 46,  CD21,  

7 
25 1 0.52 

1, 2, 4, 7, 11, 14, 15, 17, 19, 21, 22, 23, 24, 25, 
26, 27, 29, 30, 33, 35, 36, 38, 39, 42, 45,  RAD50,  

8 
24 1 0.25 

0, 1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14, 18, 19, 20, 
21, 23, 24, 27, 29, 32, 38, 40,  DCTD,  

9 
24 1 0.375 

0, 1, 2, 3, 4, 7, 9, 10, 11, 12, 14, 20, 21, 22, 23, 
24, 27, 28, 30, 31, 33, 38, 40, 41,  Hs.222808,  

10 
24 1 0.375 

2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 18, 19, 20, 22, 
25, 29, 30, 31, 40, 41, 43, 45, 46,  ID2H,  

11 
23 2 0.391 

0, 1, 2, 3, 7, 8, 9, 10, 13, 14, 15, 18, 19, 22, 28, 
29, 34, 39, 40, 41, 44, 45, 46,  Hs.75859, PTK,  

12 
23 1 0.826 

0, 3, 4, 9, 24, 25, 26, 29, 31, 32, 33, 34, 35, 36, 
37, 38, 39, 40, 41, 42, 43, 45, 46,  KIAA1039,  

13 
23 1 0.434 

2, 3, 5, 6, 7, 8, 10, 12, 13, 14, 18, 19, 20, 24, 25, 
27, 28, 29, 34, 36, 38, 40, 46,  Clone.704802,  

14 
23 1 0.782 

0, 2, 3, 4, 23, 24, 25, 27, 29, 30, 31, 32, 33, 34, 
35, 36, 39, 40, 41, 42, 43, 45, 46,  CD10,  

15 
22 2 0.681 

2, 4, 8, 11, 21, 22, 23, 24, 25, 26, 27, 29, 31, 32, 
33, 34, 36, 37, 38, 39, 41, 42,  

Hs.97530, 
Hs.203866,  

16 
22 1 0.409 

0, 3, 6, 8, 9, 10, 11, 12, 14, 15, 16, 18, 19, 24, 25, 
27, 30, 31, 32, 33, 36, 38,  Hs.124049,  

17 
22 1 0.59 

0, 2, 4, 6, 8, 9, 19, 20, 21, 26, 27, 28, 29, 31, 32, 
36, 38, 39, 42, 43, 44, 45,  CAM1,  

18 
22 1 0.772 

1, 4, 19, 21, 23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 
35, 36, 37, 38, 40, 41, 43, 45,  TDT,  

19 
21 1 0.333 

0, 1, 2, 4, 7, 9, 14, 15, 16, 17, 18, 19, 20, 21, 25, 
26, 36, 39, 40, 41, 42,  RGS13,  

20 
21 2 0.857 

21, 22, 23, 24, 25, 26, 28, 30, 31, 32, 33, 34, 36, 
37, 38, 39, 40, 41, 42, 43, 44,  

Hs.203866, 
MYBL1,  
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Table A.3.  Top 20 longest patterns with Xmeans binning Kmax=10 (gene names ommitted) 

Rank Support #Genes %ABC Supporting Tissues 
1 2 76 0.5 4, 24,  
2 2 74 1 30, 31,  
3 2 73 0.5 21, 33,  
4 2 72 1 33, 34,  
5 2 71 0.5 21, 41,  
6 2 70 1 24, 27,  
7 2 70 1 45, 46,  
8 2 70 0 2, 21,  
9 2 69 1 30, 37,  
10 2 69 0 1, 2,  
11 2 68 1 27, 31,  
12 2 68 1 29, 39,  
13 2 68 1 37, 40,  
14 2 67 1 34, 37,  
15 2 67 1 29, 38,  
16 2 67 1 24, 25,  
17 2 67 0 2, 11,  
18 2 67 1 31, 46,  
19 2 67 1 33, 46,  
20 2 67 0 7, 11,  
 
 

Table A.4.  Top 20 longest patterns with Xmeans binning Kmax=20 (gene names ommitted) 

Rank Support #Genes %ABC Supporting Tissues
1 2 99 1 30, 31,  
2 2 99 1 28, 32,  
3 2 99 1 33, 46,  
4 2 99 0.5 21, 33,  
5 2 98 0.5 4, 24,  
6 2 98 1 31, 45,  
7 2 97 0 18, 19,  
8 2 95 1 37, 40,  
9 2 94 1 30, 37,  

10 2 94 0 11, 21,  
11 2 94 1 33, 34,  
12 2 94 1 36, 39,  
13 2 93 1 24, 27,  
14 2 93 0 7, 18,  
15 2 91 1 31, 37,  
16 2 91 0.5 21, 41,  
17 2 91 1 45, 46,  
18 2 90 1 26, 34,  
19 2 90 1 29, 39,  
20 2 90 1 24, 33,  
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Table A.5.  Top 20 highest support patterns with Xmeans binning, Kmax=10, with 100% ABC or GCB support 

Rank Support #Genes %ABC Supporting Tissues Genes 
1 18 3 1 24, 25, 26, 29, 31, 32, 33, 34, 35, 

36, 38, 39, 40, 41, 42, 43, 45, 46 
Clone.1356323, Clone.1340456, 
KCNN3,  

2 18 2 0 0, 1, 2, 3, 5, 7, 8, 10, 11, 12, 13, 
14, 15, 16, 17, 18, 19, 21 

KCNN3, APAF,  

3 17 4 1 24, 25, 26, 31, 32, 33, 34, 35, 36, 
38, 39, 40, 41, 42, 43, 45, 46 

Clone.1356323, Clone.1340456, 
KCNN3, WASPIP,  

4 16 4 1 24, 25, 29, 31, 32, 33, 34, 35, 36, 
39, 40, 41, 42, 43, 45, 46 

Clone.1356323, Clone.1340456, 
KCNN3, ALU subfamily SB,  

5 16 2 0 0, 1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 
14, 18, 19, 21 

KCNN3, Clone.1357636,  

6 16 3 1 25, 26, 29, 32, 34, 35, 36, 37, 38, 
39, 40, 41, 42, 43, 45, 46 

Clone.1356323, Clone.1340456, 
Hs.49614,  

7 15 4 1 24, 25, 26, 29, 31, 32, 33, 34, 36, 
38, 39, 40, 41, 42, 43 

Clone.1356323, Clone.1340456, 
Clone.1333667, KCNN3,  

8 15 4 1 24, 25, 26, 31, 32, 33, 34, 36, 37, 
38, 39, 40, 41, 42, 43 

Clone.1356323, Clone.1340456, 
Clone.1333667, WASPIP,  

9 15 4 1 25, 26, 29, 32, 34, 35, 36, 38, 39, 
40, 41, 42, 43, 45, 46 

Clone.1356323, Clone.1340456, 
KCNN3, Hs.49614,  

10 15 5 1 24, 25, 31, 32, 33, 34, 35, 36, 39, 
40, 41, 42, 43, 45, 46 

Clone.1356323, Clone.1340456, 
KCNN3, WASPIP, ALU subfamily SB,  

11 15 2 0 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 
14, 15, 18, 19 

KCNN3, WASPIP,  

12 15 4 1 25, 26, 32, 34, 35, 36, 37, 38, 39, 
40, 41, 42, 43, 45, 46 

Clone.1356323, Clone.1340456, 
Hs.49614, WASPIP,  

13 14 5 1 24, 25, 26, 31, 32, 33, 34, 36, 38, 
39, 40, 41, 42, 43 

Clone.1356323, Clone.1340456, 
Clone.1333667, KCNN3, WASPIP,  

14 14 4 1 24, 26, 29, 31, 32, 33, 34, 35, 36, 
37, 38, 40, 43, 45 

Hs.27774, Clone.1356323, 
Clone.1340456, CD22,  

15 14 4 1 24, 26, 29, 31, 32, 33, 34, 35, 36, 
38, 40, 41, 43, 45 

Clone.1356323, Clone.1340456, CD22, 
KCNN3,  

16 14 4 1 24, 26, 31, 32, 33, 34, 35, 36, 37, 
38, 40, 41, 43, 45 

Clone.1356323, Clone.1340456, CD22, 
WASPIP,  

17 14 4 1 24, 25, 26, 29, 31, 32, 33, 34, 35, 
36, 38, 39, 41, 42 

KIAA1037, Clone.1356323, 
Clone.1340456, KCNN3,  

18 14 4 1 24, 26, 29, 31, 32, 33, 34, 35, 36, 
38, 40, 43, 45, 46 

Hs.27774, Clone.1356323, 
Clone.1340456, KCNN3,  

19 14 5 1 25, 26, 32, 34, 35, 36, 38, 39, 40, 
41, 42, 43, 45, 46 

Clone.1356323, Clone.1340456, 
KCNN3, Hs.49614, WASPIP,  

20 14 3 0 1, 2, 3, 5, 7, 8, 10, 11, 12, 13, 14, 
15, 18, 19 

KCNN3, WASPIP, APAF,  
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Table A.6.  Top 20 highest support patterns with Xmeans binning, Kmax=20, with 100% ABC or GCB support 

Rank Support #Genes %ABC Supporting Tissues Genes 
1 16 2 1 25, 26, 29, 32, 34, 35, 36, 37, 38, 39, 40, 

41, 42, 43, 45, 46 
Hs.19399, ALU subfamily SB,  

2 15 3 1 24, 25, 26, 31, 32, 33, 34, 36, 37, 38, 39, 
40, 41, 42, 43 

Hs.19399, Clone.2005, FMR2,  

3 15 3 1 25, 26, 32, 34, 35, 36, 37, 38, 39, 40, 41, 
42, 43, 45, 46 

Hs.19399, ALU subfamily SB, 
FMR2,  

4 14 3 1 24, 26, 29, 31, 32, 33, 34, 35, 36, 37, 38, 
40, 43, 45 

CD21, Hs.19399, Hs.123344,  

5 14 3 1 24, 26, 31, 32, 33, 34, 35, 36, 37, 38, 40, 
43, 45, 46 

CD21, Hs.19399, FMR2,  

6 14 3 1 25, 26, 31, 33, 34, 35, 36, 37, 39, 41, 42, 
43, 45, 46 

Hs.19399, FMR2, Hs.47232,  

7 14 3 1 24, 25, 26, 31, 32, 33, 34, 35, 36, 37, 38, 
39, 41, 42 

Hs.193367, Hs.19399, FMR2,  

8 14 3 1 24, 26, 31, 32, 33, 34, 35, 36, 37, 38, 40, 
41, 43, 45 

Hs.19399, Hs.123344, FMR2,  

9 13 4 1 24, 26, 31, 32, 33, 34, 35, 36, 37, 38, 40, 
43, 45 

CD21, Hs.19399, Hs.123344, 
FMR2,  

10 13 3 1 26, 28, 30, 31, 33, 34, 35, 36, 37, 43, 44, 
45, 46 

CD21, FMR2, Hs.47232,  

11 13 3 1 25, 30, 31, 33, 34, 35, 36, 39, 41, 42, 43, 
45, 46 

FMR2, Hs.173108, Hs.47232,  

12 13 4 1 24, 25, 26, 31, 32, 33, 34, 36, 37, 38, 39, 
41, 42 

Hs.193367, Hs.19399, 
Clone.2005, FMR2,  

13 13 3 1 25, 26, 29, 32, 34, 36, 37, 38, 39, 40, 41, 
42, 43 

Hs.19399, Clone.2005, ALU 
subfamily SB,  

14 13 3 1 24, 26, 31, 32, 34, 36, 37, 38, 39, 42, 43, 
45, 46 

Hs.19399, FMR2, NME4,  

15 13 3 1 25, 29, 32, 34, 35, 36, 39, 40, 41, 42, 43, 
45, 46 

Hs.19399, ALU subfamily SB, 
Hs.173108,  

16 13 2 1 25, 26, 29, 34, 35, 36, 37, 39, 42, 43, 44, 
45, 46 

Clone.1351325, ALU subfamily 
SB,  

17 13 1 1 26, 29, 31, 32, 34, 35, 37, 38, 39, 40, 41, 
44, 45 

Hs.120716,  

18 13 2 1 24, 26, 30, 32, 35, 36, 37, 38, 39, 40, 41, 
44, 46 

Clone.1339726, FMR2,  

19 12 4 1 24, 26, 29, 31, 32, 33, 34, 36, 37, 38, 40, 
43 

CD21, Hs.19399, Hs.123344, 
Clone.2005,  

20 12 3 1 26, 29, 32, 34, 35, 36, 37, 38, 40, 43, 45, 
46 

CD21, Hs.19399, ALU subfamily 
SB,  
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Table A.7.  Top 20 highest support patterns with Xmeans binning, Kmax=10 and Gmin=8 

Rank Support #Genes %ABC Supporting Tissues Genes 
1 

10 8 1 
32, 34, 35, 36, 38, 
39, 41, 42, 43, 45,  

KIAA1039, JNK3, Hs.120716, Hs.224323, 
Hs.192708 (highly sim. to mybA), FMR2, 
MYBL1, MYBL1,  

2 
9 8 0.777 

22, 23, 32, 34, 36, 
38, 39, 41, 42,  

Hs.97530, JNK3, Hs.203866, Hs.120716, 
Hs.224323, FMR2, MYBL1, MYBL1,  

3 

9 8 0.888 
22, 32, 34, 36, 38, 
39, 41, 42, 43,  

JNK3, Hs.203866, Hs.120716, Hs.224323, 
Hs.192708 (highly sim. to mybA), FMR2, 
MYBL1, MYBL1,  

4 
9 8 0.888 

23, 28, 32, 34, 36, 
39, 41, 42, 43,  

JNK3, Hs.203866, Hs.120716, Hs.224323, 
FMR2, MYBL1, MYBL1, Hs.106771,  

5 
9 8 0.888 

23, 32, 34, 36, 39, 
40, 41, 42, 43,  

JNK3, Hs.203866, Hs.120716, Hs.224323, 
FMR2, MYBL1, CD10, Hs.106771,  

6 

9 8 0.888 
22, 32, 34, 35, 39, 
41, 42, 43, 45,  

JNK3, Hs.75859, Hs.120716, Hs.224323, 
Hs.192708 (highly sim. to mybA), FMR2, 
MYBL1, MYBL1,  

7 

9 9 1 
32, 34, 35, 36, 39, 
41, 42, 43, 45,  

KIAA1039, JNK3, Hs.120716, Hs.224323, 
Hs.192708 (highly sim. to mybA), FMR2, 
MYBL1, MYBL1, CD10,  

8 

9 8 0.888 
22, 32, 34, 35, 36, 
38, 39, 41, 42,  

Hs.97530, JNK3, Hs.120716, Hs.224323, 
Hs.192708 (highly sim. to mybA), FMR2, 
MYBL1, MYBL1,  

9 

9 8 0.888 
22, 34, 35, 36, 39, 
41, 42, 43, 45,  

JNK3, Hs.120716, Hs.224323, Hs.192708 
(highly sim. to mybA), FMR2, MYBL1, MYBL1, 
DCTD,  

10 
9 8 1 

32, 34, 35, 39, 40, 
41, 42, 43, 45,  

KIAA1039, JNK3, Hs.75859, Hs.120716, 
Hs.224323, FMR2, MYBL1, CD10,  

11 
9 8 0.888 

22, 28, 34, 35, 39, 
41, 42, 43, 45,  

JNK3, Hs.75859, Hs.120716, Hs.224323, 
FMR2, MYBL1, MYBL1, DCTD,  

12 
9 8 1 

32, 34, 35, 36, 39, 
40, 41, 42, 43,  

KIAA1039, JNK3, Hs.120716, Hs.224323, 
FMR2, MYBL1, CD10, Hs.106771,  

13 
9 8 0.888 

23, 32, 34, 35, 36, 
39, 41, 42, 43,  

JNK3, Hs.120716, Hs.224323, FMR2, MYBL1, 
MYBL1, CD10, Hs.106771,  

14 
9 8 0.888 

22, 28, 34, 37, 39, 
41, 42, 43, 45,  

JNK3, Hs.75859, Hs.124049, Hs.224323, 
FMR2, MYBL1, MYBL1, DCTD,  

15 
9 8 1 

25, 34, 35, 36, 39, 
42, 43, 45, 46,  

KIAA1039, JNK3, Hs.222808, Hs.120716, 
Hs.224323, MYBL1, CD10, DCTD,  

16 
8 8 0.875 

23, 28, 32, 34, 35, 
36, 37, 43,  

CD21, CD21, JNK3, Hs.224323, FMR2, 
MYBL1, MYBL1, Hs.106771,  

17 
8 8 0.75 

22, 23, 34, 35, 36, 
38, 39, 41,  

Hs.97530, JNK3, Hs.120716, Hs.224323, 
FMR2, MYBL1, MYBL1, Clone.1334486,  

18 
8 8 0.75 

22, 23, 34, 36, 37, 
38, 39, 41,  

Hs.97530, JNK3, Hs.203866, Hs.224323, 
FMR2, MYBL1, MYBL1, Clone.1334486,  

19 
8 8 0.875 

22, 28, 32, 40, 41, 
42, 43, 44,  

JNK3, Clone.1333519, Hs.75859, Hs.203866, 
Hs.120716, Hs.224323, Clone.825199, MYBL1, 

20 
8 8 1 

29, 32, 34, 39, 40, 
41, 42, 43,  

KIAA1039, JNK3, Hs.75859, Hs.203866, 
Hs.120716, Hs.224323, CD10, Hs.106771,  
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Table A.8.  Top 20 highest support patterns with Xmeans binning, Kmax=20 and Gmin=8 

Rank Support #Genes %ABC 
Supporting 
Tissues Genes 

1 
8 8 1 

28, 34, 35, 37, 39, 
41, 42, 43,  

Hs.75859, Hs.224323, FMR2, MYBL1, MYBL1, 
Hs.106771, DCTD, DCTD,  

2 
8 8 1 

34, 35, 36, 39, 41, 
42, 43, 45,  

KIAA1039, Hs.224323, Hs.192708 (highly sim. to 
mybA), FMR2, MYBL1, MYBL1, CD10, DCTD,  

3 
8 8 0.875 

22, 28, 34, 37, 39, 
41, 42, 43,  

Hs.75859, Hs.203866, Hs.124049, Hs.224323, 
FMR2, MYBL1, MYBL1, DCTD,  

4 

8 8 1 
32, 34, 35, 39, 41, 
42, 43, 45,  

KIAA1039, Hs.75859, Hs.224323, Hs.192708 
(highly sim. to mybA), FMR2, MYBL1, MYBL1, 
CD10,  

5 

8 8 1 
32, 34, 35, 36, 39, 
41, 42, 43,  

KIAA1039, Hs.224323, Hs.192708 (highly sim. to 
mybA), FMR2, MYBL1, MYBL1, CD10, 
Hs.106771,  

6 
7 8 1 

30, 35, 36, 37, 39, 
41, 44,  

ALOX, Hs.125815, PI3K, MYBL1, MYBL1, 
Clone.1334486, BCL2, DCTD,  

7 
7 8 0.714 

9, 13, 35, 37, 40, 
41, 44,  

ALOX, Hs.125815, PI3K, Hs.75859, Hs.24724, 
Clone.1234554, Clone.825920, Clone.1288046,  

8 
7 9 1 

32, 34, 35, 36, 37, 
40, 43,  

CD21, Hs.125815, KIAA1039, Hs.28355, TDT, 
Hs.224323, FMR2, MYBL1, Hs.106771,  

9 
7 8 1 

32, 34, 35, 37, 39, 
40, 43,  

Hs.125815, KIAA1039, Hs.28355, Hs.75859, 
Hs.224323, FMR2, MYBL1, Hs.106771,  

10 
7 8 1 

32, 34, 36, 37, 39, 
40, 43,  

Hs.125815, KIAA1039, Hs.28355, Hs.203866, 
Hs.224323, FMR2, MYBL1, Hs.106771,  

11 
7 8 1 

32, 34, 35, 36, 37, 
39, 43,  

Hs.125815, KIAA1039, Hs.28355, Hs.224323, 
FMR2, MYBL1, MYBL1, Hs.106771,  

12 
7 8 1 

32, 34, 35, 36, 39, 
40, 43,  

Hs.125815, KIAA1039, Hs.28355, Hs.224323, 
FMR2, MYBL1, CD10, Hs.106771,  

13 
7 8 1 

32, 35, 36, 37, 39, 
40, 43,  

Hs.125815, KIAA1039, Hs.28355, Hs.224323, 
FMR2, MYBL1, KIAA0870, Hs.106771,  

14 
7 8 1 

32, 34, 35, 36, 37, 
39, 42,  

Hs.97530, KIAA1039, Hs.28355, Hs.224323, 
FMR2, MYBL1, MYBL1, Hs.106771,  

15 
7 8 1 

32, 34, 37, 39, 40, 
42, 43,  

KIAA1039, Hs.28355, Hs.75859, Hs.203866, 
Hs.224323, FMR2, MYBL1, Hs.106771,  

16 
7 8 1 

32, 34, 35, 37, 39, 
42, 43,  

KIAA1039, Hs.28355, Hs.75859, Hs.224323, 
FMR2, MYBL1, MYBL1, Hs.106771,  

17 
7 8 1 

32, 34, 35, 39, 40, 
42, 43,  

KIAA1039, Hs.28355, Hs.75859, Hs.224323, 
FMR2, MYBL1, CD10, Hs.106771,  

18 
7 8 1 

32, 35, 37, 39, 40, 
42, 43,  

KIAA1039, Hs.28355, Hs.75859, Hs.224323, 
FMR2, MYBL1, KIAA0870, Hs.106771,  

19 
7 9 1 

32, 34, 36, 37, 39, 
42, 43,  

KIAA1039, Hs.28355, Hs.203866, Hs.224323, 
FMR2, MYBL1, MYBL1, Hs.106771, ETV6,  

20 
7 8 1 

32, 34, 36, 39, 40, 
42, 43,  

KIAA1039, Hs.28355, Hs.203866, Hs.224323, 
FMR2, MYBL1, CD10, Hs.106771,  
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Table A.9.  Top 20 highest support patterns with Xmeans binning, Kmax=10, ABC<50% and Gmin=8 

Rank Support #Genes %ABC 
Supporting 
Tissues Genes 

1 
6 8 0 

2, 10, 11, 13, 
14, 19,  

KIAA1039, Hs.28355, Hs.120716, MYBL1, DCTD, 
TRKC, ID2H, PTK,  

2 
6 8 0.333 

2, 21, 22, 23, 
29, 39,  

RAD50, Hs.97530, Clone.1339105, Hs.203866, 
GCAM1, Clone.1334486, Hs.226955, PTK,  

3 
6 8 0.333 

4, 11, 21, 23, 
24, 38,  

RAD50, Hs.97530, Clone.1333841, MYOIC, 
Hs.75859, Hs.203866, Hs.222808, DCTD,  

4 
6 8 0.333 

2, 7, 11, 21, 
29, 33,  

RAD50, ALOX, CD27, CD27, CD27, Hs.226955, 
Clone.682692, PTK,  

5 
6 8 0 

5, 10, 13, 14, 
18, 19,  

Clone.704802, Hs.120716, MYBL1, CD27, BRCA2, 
DCTD, ID2H, PTK,  

6 
6 8 0 

7, 10, 13, 14, 
18, 19,  

Clone.704802, Hs.75859, Hs.120716, MYBL1, 
MYBL1, BRCA2, ID2H, PTK,  

7 
6 8 0 

2, 7, 13, 14, 
18, 19,  

JMJD1B, WASPIP, Clone.704802, Hs.75859, 
Hs.120716, MYBL1, ID2H, PTK,  

8 
6 8 0 

2, 7, 10, 13, 
14, 19,  

KIAA1039, Hs.28355, Clone.704802, Hs.75859, 
Hs.120716, MYBL1, ID2H, PTK,  

9 

6 10 0 
7, 8, 13, 14, 
15, 18,  

WASPIP, Hs.75859, Hs.120716, MYBL1, MYBL1, 
OGG1, ALU subfamily J, ALU subfamily J, BRCA2, 
PTK,  

10 
6 8 0.333 

1, 3, 4, 23, 24, 
31,  

FAK, Hs.203866, Hs.222808, Hs.161905, CD10, 
RGS13, TCEB3, Clone.2015,  

11 
6 8 0.333 

8, 9, 19, 21, 
38, 39,  

Hs.19399, WASPIP, WASPIP, Hs.203866, GCAM1, 
CAM1, PTK, ALU subfamily C,  

12 
6 8 0.333 

2, 8, 19, 21, 
29, 38,  

ALOX, WASPIP, Hs.203866, GCAM1, CAM1, 
DCTD, PTK, ALU subfamily C,  

13 
6 8 0 

2, 7, 8, 13, 14, 
19,  

KIAA1039, Hs.28355, WASPIP, Clone.704802, 
Hs.75859, Hs.120716, MYBL1, PTK,  

14 
6 8 0 

7, 8, 13, 14, 
18, 19,  

WASPIP, Clone.704802, Hs.75859, Hs.120716, 
MYBL1, MYBL1, BRCA2, PTK,  

15 
6 8 0 

8, 13, 14, 15, 
18, 19,  

WASPIP, Hs.75859, Hs.120716, MYBL1, MYBL1, 
Hs.161905, BRCA2, PTK,  

16 
6 9 0 

7, 8, 10, 13, 
14, 18,  

Clone.704802, TDT, Hs.75859, Hs.120716, MYBL1, 
MYBL1, OGG1, BRCA2, PTK,  

17 
6 8 0 

3, 8, 10, 14, 
18, 19,  

Clone.704802, Hs.75859, Hs.124049, Hs.120716, 
MYBL1, MYBL1, DCTD, PTK,  

18 
6 8 0 

2, 7, 8, 10, 13, 
14,  

CSNK1G2, KIAA1039, Hs.28355, Clone.704802, 
Hs.75859, Hs.120716, MYBL1, PTK,  

19 
6 9 0 

7, 8, 10, 13, 
14, 19,  

KIAA1039, Hs.28355, Clone.704802, Hs.75859, 
Hs.120716, MYBL1, MYBL1, BRCA2, PTK,  

20 
6 8 0 

2, 8, 10, 13, 
14, 19,  

KIAA1039, Hs.28355, Clone.704802, Hs.75859, 
Hs.120716, MYBL1, DCTD, PTK,  
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Table A.10.  Top 20 highest support patterns with Xmeans binning, Kmax=20, ABC<50% and Gmin=8 

Rank Support #Genes %ABC 
Supporting 
Tissues Genes 

1 
6 8 0 

7, 8, 10, 13, 
14, 18,  

Clone.704802, TDT, Hs.75859, MYBL1, MYBL1, 
OGG1, BRCA2, PTK,  

2 
6 8 0 

7, 8, 13, 14, 
15, 18,  

WASPIP, Hs.75859, MYBL1, MYBL1, OGG1, ALU 
subfamily J, BRCA2, PTK,  

3 
6 8 0 

2, 8, 11, 14, 
21, 23,  

Hs.97530, KIAA1039, Hs.28355, WASPIP, JAW1, 
POU4F1, DCTD, PTK,  

4 
6 8 0 

7, 8, 10, 13, 
14, 19,  

KIAA1039, Hs.28355, Clone.704802, Hs.75859, 
MYBL1, MYBL1, BRCA2, PTK,  

5 
6 8 0.166 

2, 13, 14, 
18, 19, 29,  

WASPIP, Clone.704802, Hs.75859, MYBL1, 
Hs.46913, DCTD, ID2H, PTK,  

6 
6 8 0.333 

2, 8, 19, 21, 
29, 38,  

ALOX, WASPIP, Hs.203866, GCAM1, CAM1, DCTD, 
PTK, ALU subfamily C,  

7 
6 8 0.333 

4, 11, 21, 
23, 24, 38,  

RAD50, Hs.97530, Clone.1333841, MYOIC, 
Hs.75859, Hs.203866, Hs.222808, DCTD,  

8 
6 8 0.333 

8, 9, 19, 21, 
38, 39,  

Hs.19399, WASPIP, WASPIP, Hs.203866, GCAM1, 
CAM1, PTK, ALU subfamily C,  

9 
6 8 0.333 

2, 21, 22, 
23, 29, 39,  

RAD50, Hs.97530, Clone.1339105, Hs.203866, 
GCAM1, Clone.1334486, Hs.226955, PTK,  

10 
6 8 0.333 

2, 7, 11, 21, 
29, 33,  

RAD50, ALOX, CD27, CD27, CD27, Hs.226955, 
Clone.682692, PTK,  

11 
6 8 0 

2, 7, 13, 14, 
18, 19,  

JMJD1B, WASPIP, Clone.704802, Hs.75859, MYBL1, 
Hs.46913, ID2H, PTK,  

12 
6 8 0.166 

7, 13, 14, 
18, 19, 29,  

WASPIP, Clone.704802, Hs.75859, MYBL1, BRCA2, 
Hs.46913, ID2H, PTK,  

13 
6 8 0.333 

11, 18, 19, 
21, 39, 41,  

Clone.1356654, Hs.62684, WASPIP, BCL7A, OP1, 
CD44, FLICE, PTK,  

14 
6 8 0.333 

11, 18, 19, 
21, 25, 41,  

Hs.62684, WASPIP, WASPIP, BCL7A, OP1, IRF4, 
FLICE, PTK,  

15 

5 9 0.4 
4, 11, 21, 
25, 34,  

KIAA1037, Hs.97530, ALOX, Clone.1333841, MYOIC, 
KIAA0808, Hs.203866, IL4R, 
GENE15X__Unknown__Clone_2013_,  

16 
5 9 0.4 

8, 11, 21, 
25, 41,  

KIAA1037, Hs.97530, WASPIP, WASPIP, JAW1, 
Hs.203866, OP1, FLICE, PTK,  

17 

5 9 0.4 
4, 11, 21, 
25, 41,  

KIAA1037, Hs.97530, JAW1, KIAA0808, Hs.203866, 
BCL7A, IL4R, FLICE, 
GENE15X__Unknown__Clone_2013_,  

18 
5 8 0.2 

7, 8, 11, 20, 
25,  

KIAA1037, ALOX, WASPIP, WASPIP, ALU subfamily 
SB, JAW1, TDT, Hs.192708 (highly sim. to mybA),  

19 
5 8 0.2 

1, 11, 18, 
21, 41,  

KIAA1037, Clone.1356654, Hs.62684, BCL7A, IL4R, 
IRF4, GENE15X__Unknown__Clone_2013_, PTK,  

20 
5 8 0.2 

7, 11, 18, 
21, 41,  

KIAA1037, Clone.1356654, WASPIP, WASPIP, OP1, 
IL4R, IRF4, PTK,  
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Table A.11.  Top 20 longest patterns with Xmeans binning, Kmax=10, Smin=5  (gene names ommitted) 

Rank Support #Genes %ABC Supporting Tissues
1 5 16 1 34, 37, 39, 40, 41, 
2 5 16 1 34, 36, 39, 42, 43, 
3 5 16 1 32, 34, 36, 39, 43, 
4 5 16 1 34, 35, 39, 42, 43, 
5 5 15 1 32, 34, 39, 40, 41, 
6 5 15 1 31, 33, 36, 45, 46, 
7 5 15 1 34, 37, 39, 41, 42, 
8 5 15 1 34, 39, 41, 42, 45, 
9 5 15 1 34, 36, 37, 39, 42, 

10 5 15 0.6 11, 21, 24, 33, 38, 
11 5 15 1 32, 35, 36, 37, 43, 
12 5 15 1 32, 34, 35, 36, 43, 
13 5 15 1 34, 37, 39, 42, 43, 
14 5 15 1 34, 39, 41, 42, 43, 
15 5 15 1 32, 36, 39, 42, 43, 
16 5 15 1 32, 34, 35, 39, 41, 
17 5 15 1 34, 35, 39, 41, 42, 
18 5 15 1 32, 35, 36, 39, 41, 
19 5 15 1 32, 35, 36, 37, 40, 
20 5 15 1 32, 35, 36, 37, 39, 

 
 

Table A.12. Top 20 longest patterns with Xmeans binning, Kmax=20, Smin=5  (gene names ommitted) 

Rank Support #Genes %ABC Supporting Tissues
1 5 16 1 34, 37, 39, 40, 41, 
2 5 15 1 34, 35, 36, 37, 43, 
3 5 15 0.6 11, 21, 24, 33, 38, 
4 5 14 1 30, 35, 36, 37, 44, 
5 5 14 1 32, 35, 36, 37, 39, 
6 5 14 1 32, 34, 36, 39, 43, 
7 5 14 1 32, 35, 36, 37, 40, 
8 5 14 1 34, 36, 37, 39, 42, 
9 5 14 1 34, 36, 39, 42, 43, 

10 5 14 1 34, 37, 39, 42, 43, 
11 5 14 1 34, 35, 39, 42, 43, 
12 5 14 1 34, 37, 39, 41, 42, 
13 5 14 1 34, 36, 37, 39, 41, 
14 5 14 0.6 11, 21, 24, 27, 33, 
15 5 13 1 24, 27, 30, 31, 38, 
16 5 13 1 34, 35, 36, 42, 43, 
17 5 13 1 31, 33, 36, 45, 46, 
18 5 13 0.4 1, 3, 4, 24, 27,  
19 5 13 1 35, 37, 40, 41, 44, 
20 5 13 1 37, 39, 40, 41, 45, 
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Table A.13.  Top 20 longest patterns with Xmeans binning, Kmax=10, Smin=5, ABC<50%  (gene names ommitted) 

Rank Support #Genes %ABC Supporting Tissues
1 5 12 0.4 1, 3, 4, 24, 31,  
2 5 12 0.4 1, 3, 4, 24, 27,  
3 5 12 0.4 0, 3, 4, 24, 31,  
4 5 12 0.2 2, 7, 11, 21, 33,  
5 5 12 0.4 7, 11, 21, 33, 38,  
6 5 12 0 7, 8, 13, 14, 18,  
7 5 12 0.4 3, 4, 23, 24, 27,  
8 5 12 0.4 3, 4, 23, 24, 31,  
9 5 12 0 7, 8, 10, 13, 14,  

10 5 11 0 2, 11, 13, 14, 19,  
11 5 11 0.4 21, 22, 23, 30, 38, 
12 5 11 0.2 1, 2, 7, 21, 27,  
13 5 11 0.4 2, 4, 21, 29, 38,  
14 5 11 0.4 4, 21, 23, 27, 38,  
15 5 11 0.4 2, 11, 21, 29, 38,  
16 5 11 0.4 11, 21, 23, 24, 38, 
17 5 11 0.4 11, 21, 22, 33, 38, 
18 5 11 0.4 11, 21, 22, 26, 33, 
19 5 11 0.4 11, 21, 23, 24, 33, 
20 5 11 0.4 11, 21, 23, 24, 27, 

 
 

Table A.14.  Top 20 longest patterns with Xmeans binning, Kmax=20, Smin=5, ABC<50% 

Rank Support #Genes %ABC Supporting Tissues
1 5 13 0.4 1, 3, 4, 24, 27,  
2 5 13 0.4 1, 3, 4, 24, 31,  
3 5 12 0.2 2, 7, 11, 21, 33,  
4 5 11 0.4 11, 18, 21, 25, 41, 
5 5 11 0.2 1, 2, 7, 21, 27,  
6 5 11 0 7, 8, 10, 13, 14,  
7 5 11 0 7, 13, 14, 18, 19,  
8 5 11 0.4 1, 3, 4, 27, 31,  
9 5 11 0.4 11, 21, 22, 26, 33, 

10 5 11 0.4 3, 4, 23, 24, 27,  
11 5 11 0.4 4, 21, 23, 27, 38,  
12 5 11 0 2, 8, 11, 21, 23,  
13 5 11 0.4 11, 21, 23, 24, 38, 
14 5 11 0.4 2, 11, 21, 29, 38,  
15 5 11 0.4 2, 4, 21, 29, 38,  
16 5 11 0.4 21, 22, 23, 30, 38, 
17 5 11 0.4 2, 11, 21, 24, 33,  
18 5 11 0.4 7, 11, 21, 33, 38,  
19 5 10 0.4 4, 11, 23, 24, 38,  
20 5 10 0.4 11, 19, 21, 25, 38, 
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Table A.15.  Top 20 longest patterns with Xmeans binning, Kmax=10, Smin=10 

Rank Support #Genes %ABC Supporting Tissues Genes 
1 

10 8 1 
32, 34, 35, 36, 38, 39, 
41, 42, 43, 45,  

KIAA1039, JNK3, Hs.120716, Hs.224323, 
Hs.192708 (highly sim. to mybA), FMR2, 
MYBL1, MYBL1,  

2 
10 7 1 

24, 26, 31, 32, 33, 34, 
36, 38, 40, 43,  

CD21, KIAA1039, JNK3, TDT, Hs.203866, 
Hs.120716, MYBL1,  

3 
10 7 0.9 

23, 24, 30, 31, 32, 33, 
34, 36, 40, 43,  

CD21, JNK3, TDT, Hs.203866, Hs.120716, 
MYBL1, CD10,  

4 
10 7 1 

24, 25, 31, 32, 33, 34, 
36, 39, 41, 42,  

Hs.97530, KIAA1039, JNK3, Hs.203866, 
Hs.120716, MYBL1, CD10,  

5 
10 7 0.8 

22, 23, 32, 34, 36, 37, 
38, 39, 41, 42,  

Hs.97530, JNK3, Hs.203866, Hs.224323, 
FMR2, MYBL1, MYBL1,  

6 
11 7 0.818 

22, 23, 28, 32, 34, 36, 
38, 39, 41, 42, 43,  

JNK3, Hs.203866, Hs.120716, Hs.224323, 
FMR2, MYBL1, MYBL1,  

7 
10 7 0.9 

23, 28, 32, 34, 36, 39, 
40, 41, 42, 43,  

JNK3, Hs.203866, Hs.120716, Hs.224323, 
FMR2, MYBL1, Hs.106771,  

8 
10 7 0.9 

23, 28, 32, 34, 36, 37, 
39, 41, 42, 43,  

JNK3, Hs.203866, Hs.224323, FMR2, 
MYBL1, MYBL1, Hs.106771,  

9 

11 7 0.909 
22, 32, 34, 35, 36, 38, 
39, 41, 42, 43, 45,  

JNK3, Hs.120716, Hs.224323, Hs.192708 
(highly sim. to mybA), FMR2, MYBL1, 
MYBL1,  

10 
10 7 0.9 

22, 28, 32, 34, 35, 39, 
41, 42, 43, 45,  

JNK3, Hs.75859, Hs.120716, Hs.224323, 
FMR2, MYBL1, MYBL1,  

11 
10 7 1 

32, 34, 35, 36, 39, 40, 
41, 42, 43, 45,  

KIAA1039, JNK3, Hs.120716, Hs.224323, 
FMR2, MYBL1, CD10,  

12 
10 7 0.8 

22, 23, 32, 34, 35, 36, 
38, 39, 41, 42,  

Hs.97530, JNK3, Hs.120716, Hs.224323, 
FMR2, MYBL1, MYBL1,  

13 
10 7 0.9 

23, 32, 34, 35, 36, 39, 
41, 42, 43, 45,  

JNK3, Hs.120716, Hs.224323, FMR2, 
MYBL1, MYBL1, CD10,  

14 
10 7 0.9 

23, 28, 32, 34, 35, 36, 
39, 41, 42, 43,  

JNK3, Hs.120716, Hs.224323, FMR2, 
MYBL1, MYBL1, Hs.106771,  

15 
10 7 0.9 

22, 28, 34, 35, 36, 39, 
41, 42, 43, 45,  

JNK3, Hs.120716, Hs.224323, FMR2, 
MYBL1, MYBL1, DCTD,  

16 
10 7 0.9 

23, 32, 34, 35, 36, 39, 
40, 41, 42, 43,  

JNK3, Hs.120716, Hs.224323, FMR2, 
MYBL1, CD10, Hs.106771,  

17 
10 7 0.9 

22, 28, 34, 35, 37, 39, 
41, 42, 43, 45,  

JNK3, Hs.75859, Hs.224323, FMR2, MYBL1, 
MYBL1, DCTD,  

18 
10 7 1 

25, 26, 34, 35, 36, 39, 
42, 43, 45, 46,  

KIAA1039, JNK3, Hs.222808, Hs.120716, 
Hs.224323, MYBL1, DCTD,  

19 
10 7 1 

24, 31, 32, 33, 34, 35, 
36, 40, 43, 45,  

CD21, KIAA1039, JNK3, TDT, Hs.120716, 
MYBL1, CD10,  

20 
10 7 1 

32, 34, 35, 39, 40, 41, 
42, 43, 45, 46,  

KIAA1039, JNK3, Hs.75859, Hs.120716, 
Hs.224323, MYBL1, CD10,  
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Table A.16.  Top 20 longest patterns with Xmeans binning, Kmax=20, Smin=10 

Rank Support #Genes %ABC Supporting Tissues Genes 
1 

10 6 0.9 
22, 28, 34, 35, 37, 39, 
41, 42, 43, 45,  

Hs.75859, Hs.224323, FMR2, MYBL1, 
MYBL1, DCTD,  

2 
10 6 0.8 

22, 23, 32, 34, 36, 37, 
38, 39, 41, 42,  

Hs.97530, Hs.203866, Hs.224323, FMR2, 
MYBL1, MYBL1,  

3 
10 6 0.9 

23, 28, 32, 34, 36, 37, 
39, 41, 42, 43,  

Hs.203866, Hs.224323, FMR2, MYBL1, 
MYBL1, Hs.106771,  

4 
10 6 1 

32, 34, 35, 36, 38, 39, 
41, 42, 43, 45,  

KIAA1039, Hs.224323, Hs.192708 (highly 
sim. to mybA), FMR2, MYBL1, MYBL1,  

5 
10 5 0.9 

23, 24, 26, 30, 31, 36, 
37, 38, 40, 43,  

KIAA1037, CD21, TDT, Hs.203866, 
MYBL1,  

6 
10 5 1 

24, 26, 29, 31, 32, 33, 
34, 36, 37, 38,  

CD21, Hs.97530, KIAA1039, TDT, 
Hs.203866,  

7 
10 5 1 

24, 26, 31, 32, 33, 34, 
35, 36, 37, 38,  CD21, Hs.97530, KIAA1039, TDT, MYBL1, 

8 
10 5 0.9 

23, 24, 26, 31, 32, 33, 
34, 36, 37, 38,  CD21, Hs.97530, TDT, Hs.203866, MYBL1, 

9 
11 5 1 

24, 26, 31, 32, 33, 34, 
36, 37, 38, 40, 43,  

CD21, KIAA1039, TDT, Hs.203866, 
MYBL1,  

10 
10 5 1 

26, 32, 34, 35, 36, 37, 
38, 40, 43, 45,  

CD21, KIAA1039, TDT, Hs.224323, 
MYBL1,  

11 
10 5 1 

24, 31, 32, 33, 34, 35, 
36, 40, 43, 45,  CD21, KIAA1039, TDT, MYBL1, CD10,  

12 
10 5 1 

24, 26, 31, 32, 34, 36, 
37, 38, 43, 45,  CD21, KIAA1039, TDT, MYBL1, ETV6,  

13 
10 5 0.9 

23, 24, 30, 31, 32, 33, 
34, 36, 40, 43,  CD21, TDT, Hs.203866, MYBL1, CD10,  

14 
10 5 0.9 

23, 32, 34, 35, 36, 37, 
38, 40, 43, 45,  CD21, TDT, Hs.224323, FMR2, MYBL1,  

15 
10 5 0.9 

23, 28, 32, 34, 35, 36, 
37, 38, 43, 45,  CD21, Hs.224323, FMR2, MYBL1, MYBL1, 

16 
10 5 1 

28, 30, 34, 35, 37, 39, 
41, 42, 43, 44,  Hs.75859, MYBL1, MYBL1, DCTD, DCTD, 

17 
10 5 1 

28, 30, 31, 34, 37, 39, 
41, 42, 43, 44,  

Hs.75859, Hs.203866, MYBL1, DCTD, 
DCTD,  

18 
10 5 0.9 

22, 26, 34, 35, 36, 37, 
39, 41, 44, 46,  

Hs.125815, Hs.224323, MYBL1, 
Clone.1334486, DCTD,  

19 
10 5 1 

25, 34, 35, 36, 39, 41, 
42, 43, 45, 46,  

KIAA1039, Hs.224323, MYBL1, CD10, 
DCTD,  

20 
11 5 0.909 

22, 28, 34, 35, 36, 37, 
39, 41, 42, 43, 45,  Hs.224323, FMR2, MYBL1, MYBL1, DCTD, 
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Table A.17.  Top 20 longest patterns with Xmeans binning, Kmax=10, Smin=10, ABC<50% 

Rank Support #Genes %ABC Supporting Tissues Genes 
1 

10 5 0 
1, 3, 7, 8, 10, 13, 14, 15, 18, 
19,  

Hs.75859, Hs.120716, MYBL1, 
MYBL1, PTK,  

2 
10 5 0 

2, 3, 5, 8, 10, 12, 13, 14, 18, 
19,  

Clone.704802, Hs.120716, MYBL1, 
DCTD, PTK,  

3 
10 4 0.4 

2, 4, 11, 21, 22, 23, 24, 27, 
33, 38,  

RAD50, Hs.97530, Hs.203866, 
Hs.222808,  

4 
10 4 0 

2, 4, 5, 10, 11, 12, 13, 14, 
18, 19,  Hs.120716, MYBL1, DCTD, ID2H,  

5 
10 4 0.1 

2, 5, 10, 12, 13, 14, 18, 19, 
20, 29,  Clone.704802, MYBL1, DCTD, ID2H,  

6 
10 4 0.1 

2, 5, 10, 11, 12, 13, 14, 18, 
19, 29,  MYBL1, DCTD, ID2H, PTK,  

7 
10 4 0.2 

2, 5, 10, 12, 13, 14, 18, 19, 
29, 40,  Clone.704802, DCTD, ID2H, PTK,  

8 
10 4 0 

2, 5, 7, 10, 11, 12, 13, 14, 
18, 19,  Hs.120716, MYBL1, ID2H, PTK,  

9 
10 4 0.1 

2, 5, 7, 10, 12, 13, 14, 18, 
19, 29,  Clone.704802, MYBL1, ID2H, PTK,  

10 
10 4 0.3 

2, 7, 10, 13, 14, 18, 19, 29, 
40, 46,  Clone.704802, Hs.75859, ID2H, PTK,  

11 
10 4 0.4 

9, 10, 13, 18, 19, 22, 29, 41, 
45, 46,  Hs.626884, Hs.75859, ID2H, PTK,  

12 
10 4 0.2 

2, 7, 9, 13, 14, 18, 19, 22, 
45, 46,  JMJD1B, Hs.75859, ID2H, PTK,  

13 
10 4 0.4 

3, 4, 11, 20, 21, 23, 24, 27, 
38, 40,  

Clone.1333841, Hs.203866, 
Hs.222808, DCTD,  

14 
10 4 0.4 

0, 8, 10, 13, 18, 22, 28, 39, 
44, 46,  JNK3, TDT, Hs.75859, PTK,  

15 
11 4 0 

1, 2, 3, 7, 8, 10, 13, 14, 15, 
18, 19,  Hs.75859, Hs.120716, MYBL1, PTK,  

16 
10 4 0 

0, 1, 2, 3, 8, 10, 13, 14, 18, 
19,  Hs.75859, Hs.120716, DCTD, PTK,  

17 
11 4 0 

2, 3, 5, 7, 8, 10, 12, 13, 14, 
18, 19,  

Clone.704802, Hs.120716, MYBL1, 
PTK,  

18 
10 4 0 

1, 2, 7, 8, 10, 11, 13, 14, 19, 
21,  

KIAA1039, Hs.28355, Hs.120716, 
PTK,  

19 
10 4 0 

1, 2, 5, 7, 8, 10, 11, 13, 14, 
19,  KIAA1039, Hs.120716, MYBL1, PTK,  

20 
10 4 0 

1, 2, 5, 8, 10, 11, 13, 14, 19, 
21,  KIAA1039, Hs.120716, DCTD, PTK,  
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Table A.18.  Top 20 longest patterns with Xmeans binning, Kmax=20, Smin=10, ABC<50% 

Rank Support #Genes %ABC Supporting Tissues Genes 
1 

10 4 0.4 
9, 10, 13, 18, 19, 22, 29, 41, 
45, 46,  Hs.626884, Hs.75859, ID2H, PTK,  

2 
10 4 0 

1, 2, 8, 10, 11, 13, 14, 19, 
21, 23,  KIAA1039, Hs.28355, DCTD, PTK,  

3 
10 4 0.1 

1, 2, 3, 8, 10, 13, 14, 18, 19, 
29,  Hs.75859, MYBL1, DCTD, PTK,  

4 
10 4 0.1 

2, 5, 10, 12, 13, 14, 18, 19, 
20, 29,  Clone.704802, MYBL1, DCTD, ID2H, 

5 
11 4 0.09 

2, 3, 5, 8, 10, 12, 13, 14, 18, 
19, 29,  Clone.704802, MYBL1, DCTD, PTK,  

6 
10 4 0.1 

2, 5, 10, 11, 12, 13, 14, 18, 
19, 29,  MYBL1, DCTD, ID2H, PTK,  

7 
10 4 0.4 

3, 4, 11, 20, 21, 23, 24, 27, 
38, 40,  

Clone.1333841, Hs.203866, 
Hs.222808, DCTD,  

8 
10 4 0.2 

2, 3, 8, 10, 13, 14, 18, 19, 
29, 40,  

Clone.704802, Hs.75859, DCTD, 
PTK,  

9 
10 4 0.2 

2, 5, 10, 12, 13, 14, 18, 19, 
29, 40,  Clone.704802, DCTD, ID2H, PTK,  

10 
10 4 0.4 

2, 4, 11, 21, 22, 23, 24, 27, 
33, 38,  

RAD50, Hs.97530, Hs.203866, 
Hs.222808,  

11 
10 4 0.1 

2, 3, 7, 8, 10, 13, 14, 18, 19, 
29,  

Clone.704802, Hs.75859, MYBL1, 
PTK,  

12 
10 4 0.3 

2, 7, 10, 13, 14, 18, 19, 29, 
40, 46,  Clone.704802, Hs.75859, ID2H, PTK, 

13 
10 4 0.2 

2, 7, 9, 13, 14, 18, 19, 22, 
45, 46,  JMJD1B, Hs.75859, ID2H, PTK,  

14 
11 4 0 

1, 3, 7, 8, 9, 10, 13, 14, 15, 
18, 19,  Hs.75859, MYBL1, MYBL1, PTK,  

15 
10 4 0.1 

2, 5, 7, 10, 12, 13, 14, 18, 
19, 29,  Clone.704802, MYBL1, ID2H, PTK,  

16 
11 3 0.363 

1, 3, 9, 11, 20, 21, 22, 24, 
28, 31, 38,  

Clone.685761, Hs.203866, 
Hs.222808,  

17 
11 3 0.363 

1, 3, 9, 11, 19, 21, 22, 25, 
28, 38, 39,  Clone.685761, Hs.203866, PTK,  

18 
10 3 0.4 

1, 2, 11, 19, 22, 23, 24, 25, 
26, 29,  RAD50, Hs.203866, OGG1,  

19 
11 3 0.363 

1, 2, 3, 11, 19, 22, 23, 25, 
26, 29, 34,  Hs.203866, OGG1, PTK,  

20 
10 3 0.2 

7, 8, 9, 10, 13, 14, 15, 18, 
39, 40,  Hs.75859, OGG1, PTK,  
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Table A.19.  Top 20 highest support patterns with pre-set value binning 

Rank Support #Genes %ABC Supporting Tissues Genes 

1 28 1 0.5 
0, 1, 3, 5, 6, 8, 9, 10, 11, 12, 14, 15, 20, 21, 24, 25, 
28, 29, 31, 33, 34, 36, 37, 39, 40, 41, 42, 43 JMJD1B,   

2 22 1 0.636 
1, 2, 3, 8, 11, 19, 20, 22, 28, 29, 30, 31, 32, 33, 34, 
38, 39, 40, 41, 42, 43, 44 Hs.203866,  

3 21 2 0.571 
1, 3, 5, 10, 11, 12, 14, 20, 21, 24, 29, 31, 33, 34, 36, 
37, 39, 40, 41, 42, 43 JMJD1B,  Hs.190288  

4 20 1 0.4 
1, 2, 3, 4, 6, 12, 13, 16, 17, 18, 19, 20, 24, 25, 27, 
28, 33, 34, 45, 46 SLCO3A1,  

5 19 1 0.526 
1, 3, 6, 7, 14, 18, 20, 21, 23, 24, 25, 27, 31, 33, 35, 
36, 42, 45, 46 IL2RB,  

6 19 2 0.631 
1, 2, 3, 11, 19, 20, 22, 29, 30, 31, 32, 33, 34, 38, 39, 
40, 41, 42, 43 Hs.203866, Hs.190288  

7 19 1 0.473 
0, 1, 2, 3, 4, 7, 16, 17, 18, 19, 24, 26, 27, 28, 33, 34, 
35, 38, 45 BCL2,  

8 18 2 0.444 
0, 1, 3, 5, 8, 10, 11, 14, 15, 20, 25, 28, 29, 33, 36, 
37, 39, 40 Hs.4766, JMJD1B,   

9 18 2 0.555 
0, 1, 3, 5, 11, 14, 20, 21, 24, 25, 28, 31, 33, 34, 36, 
39, 41, 43 JMJD1B,  Hs.87589,  

10 18 2 0.5 
3, 5, 6, 9, 10, 12, 14, 20, 21, 24, 25, 28, 29, 33, 36, 
39, 40, 41 JMJD1B,  Hs.123318,  

11 18 1 0.166 
2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15, 16, 17, 22, 23, 26, 
28, 34 

Hs.108327 (damage spec. 
DNA-binding prot. 1),  

12 18 1 0.333 
1, 3, 4, 5, 6, 11, 13, 14, 16, 21, 22, 23, 24, 27, 34, 
35, 41, 45 Clone.1355676,  

13 17 2 0.294 
1, 2, 3, 4, 6, 12, 13, 16, 17, 18, 19, 20, 24, 25, 27, 
33, 34 TTG2, SLCO3A1,  

14 17 2 0.588 
0, 3, 5, 8, 9, 11, 21, 24, 25, 28, 29, 33, 36, 39, 41, 
42, 43 

JMJD1B,  CSNK1G2 (casein 
kinase g2),  

15 17 2 0.705 
1, 8, 9, 10, 21, 24, 25, 28, 31, 34, 36, 37, 39, 40, 41, 
42, 43 JMJD1B,  Clone.1333667,  

16 17 2 0.529 
3, 6, 8, 9, 10, 11, 12, 14, 25, 29, 31, 34, 36, 39, 41, 
42, 43 JMJD1B,  Clone.1372073  

17 17 2 0.294 
0, 1, 3, 5, 6, 8, 9, 11, 12, 14, 20, 21, 24, 25, 33, 34, 
41 JMJD1B,  TTG2,  

18 17 2 0.47 
1, 3, 6, 11, 12, 14, 15, 20, 21, 24, 31, 33, 37, 39, 40, 
41, 42 JMJD1B,  BRCA2,  

19 17 2 0.352 
1, 3, 6, 8, 9, 10, 11, 12, 14, 15, 21, 24, 25, 28, 33, 
37, 40 

JMJD1B,  PRKCD (prot. 
kinase C d),  

20 17 2 0.352 
0, 1, 3, 5, 6, 9, 10, 11, 12, 15, 21, 25, 29, 33, 39, 41, 
43 JMJD1B,  Clone.1371532,  

 
 
 



 162

Table A.20.  Top 20 longest patterns with pre-set value binning (gene names ommitted) 

Rank Support #Genes %ABC Supporting Tissues
1 2 257 0 16, 17 
2 2 174 0 18, 19 
3 2 170 0 12, 17 
4 2 168 0 11, 21 
5 2 165 0.5 21, 33 
6 2 162 0 2, 11 
7 2 161 0.5 1, 27 
8 2 160 0 10, 15 
9 2 158 0 12, 13 

10 2 157 0 13, 17 
11 2 157 0.5 11, 25 
12 2 157 0 15, 16 
13 2 156 0 5, 10 
14 2 156 0 7, 11 
15 2 156 1 36, 39 
16 2 154 1 24, 27 
17 2 154 0 11, 19 
18 2 154 1 30, 31 
19 2 152 0 12, 16 
20 2 152 0 7, 18 
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Table A.21.  Top 20 highest support patterns with pre-set value binning, with 100% ABC or GCB support 

Rank Support #Genes %ABC Supporting Tissues Genes 
1 13 2 0 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 

15, 16, 17 
Hs.120716, Hs.108327 (damage spec. DNA-
binding prot. 1),  

2 13 1 1 24, 27, 28, 29, 30, 31, 32, 
33, 34, 35, 37, 38, 39 

JAW1,  

3 12 3 0 1, 2, 3, 4, 6, 12, 13, 16, 17, 
18, 19, 20 

Hs.120716, TTG2, SLCO3A1,  

4 12 3 0 0, 1, 3, 5, 6, 8, 9, 11, 12, 14, 
20, 21 

JMJD1B,  Hs.120716, TTG2,  

5 12 4 0 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 
16, 17 

Hs.120716, TTG2, TTG2, Hs.108327 
(damage spec. DNA-binding prot. 1),  

6 12 2 0 0, 4, 7, 8, 9, 10, 11, 15, 16, 
18, 20, 21 

Hs.120716, LCK,  

7 12 3 0 0, 5, 6, 8, 9, 10, 12, 13, 14, 
15, 16, 17 

PTP-IVA, Hs.120716, Clone.713158,  

8 12 2 0 0, 1, 2, 7, 9, 11, 12, 14, 15, 
16, 17, 19 

Hs.120716, BCL2,  

9 11 4 0 2, 3, 4, 6, 12, 13, 16, 17, 18, 
19, 20 

Hs.120716, TTG2, TTG2, SLCO3A1,  

10 11 4 0 0, 1, 3, 5, 6, 9, 10, 11, 14, 
15, 20 

JMJD1B,  Hs.120716, Hs.224323, FMR2,  

11 11 4 0 0, 3, 5, 6, 8, 9, 11, 12, 14, 
20, 21 

JMJD1B,  Hs.120716, TTG2, TTG2,  

12 11 4 0 3, 5, 6, 8, 9, 10, 11, 12, 14, 
15, 21 

JMJD1B,  Hs.120716, Hs.202588, Hs.106771, 

13 11 3 0 0, 1, 3, 5, 6, 9, 10, 11, 12, 
15, 21 

JMJD1B,  Hs.120716, Clone.1371532,  

14 11 2 0 2, 3, 5, 6, 9, 11, 12, 15, 16, 
22, 23 

Clone.1371532, Hs.108327 (damage spec. 
DNA-binding prot. 1),  

15 11 4 0 2, 3, 4, 5, 6, 9, 11, 14, 17, 
22, 23 

TTG2, TTG2, SA3np, Hs.108327 (damage 
spec. DNA-binding prot. 1),  

16 11 3 0 2, 3, 4, 5, 9, 11, 12, 14, 15, 
16, 17 

Hs.120716, ALU subfamily SB, Hs.108327 
(damage spec. DNA-binding prot. 1),  

17 11 2 0 2, 5, 6, 8, 9, 12, 14, 15, 16, 
17, 23 

PTP-IVA, Hs.108327 (damage spec. DNA-
binding prot. 1),  

18 11 2 0 2, 4, 5, 8, 9, 11, 12, 14, 15, 
22, 23 

Hs.108327 (damage spec. DNA-binding prot. 
1), MZF1,  

19 11 2 1 24, 27, 28, 30, 31, 32, 33, 
34, 35, 38, 39 

JAW1, Hs.87589,  

20 11 2 1 24, 27, 29, 30, 31, 32, 33, 
34, 37, 38, 39 

JAW1, Hs.190288  
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Table A.22.  Top 20 highest support patterns with pre-set value binning, and Gmin=8 

Rank Support #Genes %ABC 
Supporting 
Tissues Genes 

1 8 8 0 3, 4, 13, 16, 17, 18, 
19, 20 

Hs.120716, ALU subfamily SB, Hs.136345, Hs.224323, 
Clone.825199, TTG2, TTG2, SLCO3A1,  

2 8 8 0.375 2, 3, 4, 17, 19, 24, 
27, 34 

Clone.684852, TTG2, TTG2, SLCO3A1, Clone.2017, 
Clone.2022, BCL2, ALU class C,  

3 8 8 0.375 2, 3, 4, 18, 19, 24, 
27, 34 

Clone.684852, TTG2, TTG2, SLCO3A1, Clone.2017, 
AIbp63, BCL2, Hs.190288  

4 8 8 0.375 2, 3, 4, 16, 19, 24, 
27, 34 

TTG2, TTG2, SLCO3A1, Clone.2017, APR, 
Clone.2022, AIbp63, BCL2,  

5 8 8 0 1, 2, 12, 13, 16, 17, 
18, 19 

CD21, PTP-IVA, Hs.120716, TTG2, SLCO3A1, 
Hs.120751, BCL2, MAPKKK5,  

6 8 8 0.25 8, 9, 11, 12, 14, 21, 
25, 33 

JMJD1B,  TTG2, TTG2, Hs.106771, Clone.1357367, 
POU4F1, PRKCD (prot. kinase C d), PCKD,  

7 8 8 0.5 1, 2, 11, 19, 33, 38, 
39, 41 

RAD50, Hs.203866, MEK1, Clone.1371532, Hs.87589, 
Hs.120751, MAPKKK5, Hs.190288  

8 8 8 0.5 2, 11, 19, 22, 30, 
33, 39, 41 

RAD50, Hs.203866, Clone.1371532, Hs.87589, 
Hs.46913, MAPKKK5, Hs.190288 Hs.24724,  

9 8 8 0.5 2, 11, 19, 22, 30, 
33, 38, 41 

RAD50, Hs.203866, Clone.1371532, Hs.87589, 
IL10RB, MAPKKK5, Hs.190288 Hs.24724,  

10 8 8 0.5 2, 11, 19, 22, 30, 
38, 39, 41 

RAD50, Hs.203866, Clone.1371532, Hs.87589, 
MAPKKK5, HKRT1, Hs.190288 Hs.24724,  

11 8 8 0.375 2, 11, 18, 19, 21, 
24, 33, 41 

RAD50, TTG2, TTG2, SRPK2, Hs.46913, Hs.120751, 
CD44, Hs.190288  

12 8 8 0.25 2, 11, 18, 19, 21, 
23, 33, 41 

RAD50, TTG2, TTG2, Clone.1371532, SRPK2, 
IL10RB, CD44, Hs.190288  

13 8 8 0.25 2, 11, 18, 19, 21, 
23, 24, 41 

RAD50, WASPIP, Hs.192738, TTG2, TTG2, SRPK2, 
CD44, Hs.190288  

14 8 8 0.25 2, 4, 11, 19, 21, 23, 
24, 41 

RAD50, Hs.193796, Hs.192738, TTG2, TTG2, SRPK2, 
CD44, Hs.190288  

15 8 8 0.25 2, 4, 11, 18, 21, 23, 
24, 41 

RAD50, Hs.192738, TTG2, TTG2, SRPK2, CD44, 
Hs.190288 TNK1,  

16 8 8 0.125 0, 9, 11, 16, 18, 21, 
22, 33 

Clone.1270568, ALU subfamily SX, TTG2, TTG2, 
KIAA0151, LCK, Clone.1371532, Hs.46913,  

17 8 8 0.125 0, 7, 9, 11, 18, 21, 
22, 33 

Clone.1270568, ALU subfamily SX, Clone.685761, 
TTG2, TTG2, LCK, Clone.1371532, Hs.46913,  

18 8 8 0.125 7, 9, 11, 16, 18, 21, 
22, 33 

Clone.1270568, ALU subfamily SX, TTG2, TTG2, LCK, 
Hs.226955, Clone.1371532, Hs.46913,  

19 8 8 0.125 0, 7, 11, 16, 18, 21, 
22, 33 

Clone.1270568, ALU subfamily SX, TTG2, TTG2, LCK, 
Clone.1371532, Hs.46913, Clone.1288046,  

20 8 8 0.375 0, 3, 11, 19, 20, 25, 
27, 33 

Clone.685761, BCL6, BCL6, TTG2, TTG2, Hs.87589, 
Hs.192047, Hs.123294,  
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Table A.23.  Top 20 highest support patterns with pre-set value binning, and Gmin=12 

Rank Support #Genes %ABC 
Supporting 
Tissues Genes 

1 7 12 0.142 2, 11, 18, 
19, 21, 23, 
41 

RAD50, WASPIP, WASPIP, WASPIP, Hs.192738, TTG2, 
TTG2, Clone.1371532, SRPK2, IL10RB, CD44, Hs.190288  

2 7 12 0 0, 3, 7, 16, 
17, 18, 19 

CSNK1G2, Hs.120716, ALU subfamily SB, Clone.825199, 
TTG2, TTG2, Clone.2017, Hs.192047, BCL2, Hs.59368, 
Hs.123294, Clone.1288046,  

3 7 12 0 5, 9, 10, 14, 
15, 16, 17 

Clone.814651, KIAA1037, PTP-IVA, Hs.120716, Hs.224323, 
Clone.825199, ALU subfamily SB, CD10, PTP1B, PTP1B, 
Clone.713158, KIAA0805,  

4 7 13 0 5, 10, 13, 
14, 15, 16, 
17 

Clone.814651, KIAA1037, Hs.97275, PTP-IVA, Hs.120716, 
Hs.224323, Clone.825199, ALU subfamily SB, Hs.88102, 
CD10, Clone.713158, KIAA0805, KCNA3,  

5 7 12 0 5, 9, 10, 13, 
14, 16, 17 

Clone.814651, KIAA1037, PTP-IVA, Clone.1351325, 
Hs.120716, Hs.224323, Clone.825199, ALU subfamily SB, 
CD10, Clone.713158, KIAA0805, ALU subfamily SQ,  

6 6 12 0.5 1, 7, 18, 27, 
33, 45 

RAD50, Clone.685761, Clone.826377, IL4R, Clone.1371532, 
Hs.192047, Hs.120751, BCL2, MAPKKK5, STK11, IL2RB, 
IL2RB,  

7 6 13 0.666 1, 7, 27, 31, 
33, 45 

Hs.27774, Hs.125815, Clone.685761, MGC5178, BRCA2, 
Hs.58297, Hs.87589, Hs.192047, Hs.120751, MAPKKK5, 
STK11, IL2RB, IL2RB,  

8 6 12 0.333 1, 3, 7, 21, 
27, 33 

KIAA1037, Clone.685761, TTG2, ALU subfamily J, BRCA2, 
IL4R, Clone.1371532, Hs.87589, Hs.123254, ID2H, IL2RB, 
IL2RB,  

9 6 12 0.666 7, 21, 27, 
31, 45, 46 

Hs.125815, Hs.228201, BRCA2, Hs.87589, Hs.46913, 
SC5DL, SLA, Clone.1369049, INPPL1, IL2RB, IL2RB,  

10 6 12 0.5 1, 7, 21, 27, 
31, 33 

Clone.1340461, Hs.125815, Clone.685761, Clone.1357367, 
MGC5178, BRCA2, Hs.87589, Hs.120751, Hs.123254, 
SP100, IL2RB, IL2RB,  

11 6 12 0.333 6, 18, 20, 
21, 27, 33 

KIAA1037, Hs.136204, Clone.685761, TTG2, TTG2, SRPK2, 
PTP1B, PTP1B, IL2RB, IL2RB, Hs.136589, Hs.128564,  

12 6 13 0.5 1, 7, 21, 27, 
33, 45 

RAD50, Hs.125815, Clone.685761, MGC5178, BRCA2, 
Clone.826377, IL4R, Clone.1371532, Hs.87589, Hs.120751, 
DCTD, IL2RB, IL2RB,  

13 6 12 0.5 1, 7, 23, 27, 
33, 45 

RAD50, Hs.125815, MGC5178, Clone.826377, IL4R, 
Hs.58297, Clone.1371532, Hs.87589, Hs.192047, DCTD, 
IL2RB, IL2RB,  

14 6 14 0.333 1, 7, 21, 23, 
27, 33 

RAD50, KIAA1037, Hs.125815, TTG2, Clone.1357367, 
MGC5178, ALU subfamily J, Clone.826377, IL4R, 
Clone.1371532, Hs.87589, DCTD, IL2RB, IL2RB,  

15 6 12 0.166 1, 7, 18, 21, 
23, 33 

RAD50, KIAA1037, Clone.1340456, TTG2, Clone.1355520, 
ALU subfamily J, Hs.226955, Clone.826377, IL4R, 
Clone.1371532, IL2RB, IL2RB,  

16 6 12 0.666 1, 7, 25, 27, 
33, 45 

Hs.27774, RAD50, Hs.125815, Clone.685761, 
Clone.1371532, Hs.87589, Hs.192047, Hs.120751, 
MAPKKK5, DCTD, STK11, IL2RB,  

17 6 13 0.666 1, 7, 25, 27, 
31, 45 

Hs.27774, Hs.125815, HIP1R, Clone.685761, Hs.173108, 
Hs.87589, SC5DL, Hs.192047, Hs.120751, MAPKKK5, 
STK11, IL2RB, ALU class C,  

18 6 13 0.5 1, 7, 21, 24, 
25, 33 

RAD50, Hs.125815, Clone.685761, TTG2, Clone.1355520, 
CD27, Hs.226955, Hs.87589, Hs.120751, SP100, 
Clone.1288046, ID2H, IL2RB,  

19 6 12 0.666 7, 21, 24, 
25, 27, 33 

RAD50, Hs.125815, Clone.685761, TTG2, TTG2, Hs.87589, 
Hs.120751, TNRF2, PTP1B, SP100, ID2H, IL2RB,  

20 6 13 0.5 1, 7, 21, 25, 
27, 33 

RAD50, KIAA1037, Hs.125815, Clone.685761, TTG2, 
Clone.1357367, Clone.1371532, Hs.87589, Hs.120751, 
DCTD, SP100, ID2H, IL2RB,  
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Table A.24.  Top 20 longest patterns with pre-set value binning (gene names ommitted), Smin=5 

1 5 32 0 10, 14, 15, 16, 17 
2 5 32 0 10, 13, 15, 16, 17 
3 5 31 0 5, 10, 15, 16, 17 
4 5 31 0 12, 13, 14, 16, 17 
5 5 30 0 12, 14, 15, 16, 17 
6 5 30 0.2 2, 11, 18, 21, 41 
7 5 30 0 5, 10, 14, 16, 17 
8 5 30 0 12, 13, 15, 16, 17 
9 5 29 0 5, 14, 15, 16, 17 

10 5 29 0.2 2, 11, 18, 19, 41 
11 5 29 0 7, 10, 15, 16, 18 
12 5 28 0 12, 13, 16, 17, 18 
13 5 28 0 7, 13, 16, 17, 18 
14 5 28 0.6 11, 21, 24, 25, 33 
15 5 28 0 2, 11, 18, 19, 21 
16 5 28 0 10, 12, 15, 16, 17 
17 5 28 0 6, 10, 15, 16, 17 
18 5 28 0 5, 10, 14, 15, 16 
19 5 28 0 10, 13, 14, 16, 17 
20 5 28 0 13, 14, 15, 16, 17 

 
 

Table A.25.  Top 20 longest patterns with pre-set value binning (gene names ommitted), Smin=5, ABC>50% 

Rank Support #Genes %ABC Supporting Tissues 
1 5 28 0.6 11, 21, 24, 25, 33 
2 5 25 0.6 11, 21, 31, 33, 39 
3 5 24 0.6 11, 21, 25, 28, 33 
4 5 23 0.6 6, 21, 24, 25, 33 
5 5 23 0.6 11, 21, 24, 25, 29 
6 5 23 0.6 11, 21, 25, 31, 33 
7 5 23 0.6 11, 21, 24, 33, 46 
8 5 23 0.6 11, 19, 25, 27, 33 
9 5 22 0.8 21, 24, 25, 33, 46 
10 5 22 1 31, 36, 37, 39, 40 
11 5 22 0.6 11, 21, 24, 29, 33 
12 5 22 0.6 11, 21, 25, 29, 33 
13 5 22 0.6 11, 21, 31, 33, 46 
14 5 21 0.6 1, 21, 24, 25, 33 
15 5 21 0.6 1, 21, 24, 25, 27 
16 5 21 0.6 20, 21, 24, 25, 27 
17 5 21 0.6 2, 19, 24, 27, 34 
18 5 21 1 36, 37, 39, 40, 43 
19 5 21 1 29, 36, 39, 42, 43 
20 5 21 0.8 21, 24, 25, 28, 33 
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Table A.26.  Top 20 longest patterns with pre-set value binning, Smin=7 

Rank Support #Genes %ABC Supporting Tissues Genes 
1 7 13 0 5, 10, 13, 14, 15, 16, 

17 
Clone.814651, KIAA1037, Hs.97275, PTP-IVA, Hs.120716, 
Hs.224323, Clone.825199, ALU subfamily SB, Hs.88102, 
CD10, Clone.713158, KIAA0805, KCNA3,  

2 7 12 0.142 2, 11, 18, 19, 21, 23, 
41 

RAD50, WASPIP, WASPIP, WASPIP, Hs.192738, TTG2, 
TTG2, Clone.1371532, SRPK2, IL10RB, CD44, Hs.190288 

3 7 12 0 0, 3, 7, 16, 17, 18, 19 CSNK1G2, Hs.120716, ALU subfamily SB, Clone.825199, 
TTG2, TTG2, Clone.2017, Hs.192047, BCL2, Hs.59368, 
Hs.123294, Clone.1288046,  

4 7 12 0 5, 9, 10, 14, 15, 16, 
17 

Clone.814651, KIAA1037, PTP-IVA, Hs.120716, 
Hs.224323, Clone.825199, ALU subfamily SB, CD10, 
PTP1B, PTP1B, Clone.713158, KIAA0805,  

5 7 12 0 5, 9, 10, 13, 14, 16, 
17 

Clone.814651, KIAA1037, PTP-IVA, Clone.1351325, 
Hs.120716, Hs.224323, Clone.825199, ALU subfamily SB, 
CD10, Clone.713158, KIAA0805, ALU subfamily SQ,  

6 7 11 0.428 2, 3, 4, 19, 24, 27, 34 Clone.684852, TTG2, TTG2, SLCO3A1, Clone.2017, APR, 
Clone.2022, AIbp63, BCL2, Hs.190288 ALU class C,  

7 7 11 0.142 8, 9, 11, 12, 14, 21, 
25 

JMJD1B,  Hs.130721, TTG2, TTG2, Hs.202588, 
Hs.106771, Clone.1357367, POU4F1, PRKCD (prot. kinase 
C d), PCKD, ALU class C,  

8 7 11 0.428 2, 11, 19, 22, 38, 39, 
41 

RAD50, WASPIP, WASPIP, Hs.203866, Clone.1371532, 
Clone.1336373, Hs.87589, MAPKKK5, HKRT1, Hs.190288 
Hs.24724,  

9 7 11 0.285 2, 11, 18, 19, 21, 33, 
41 

RAD50, TTG2, TTG2, Clone.1371532, SRPK2, Hs.46913, 
IL10RB, Hs.120751, 
GENE88X__STAT3_APRF_acute_phase_response_factor_
_Clone_1358208, CD44, Hs.190288  

10 7 11 0.285 2, 11, 18, 19, 21, 24, 
33 

RAD50, Clone.685761, TTG2, TTG2, Hs.226955, SRPK2, 
Hs.46913, Hs.120751, PTP1B, CD44, Hs.190288  

11 7 11 0.285 2, 11, 19, 21, 23, 24, 
41 

RAD50, Hs.193796, WASPIP, Hs.192738, TTG2, TTG2, 
SRPK2, Hs.87589, HKRT1, CD44, Hs.190288  

12 7 11 0.142 1, 2, 11, 18, 19, 21, 
41 

RAD50, CD21, CD21, Hs.61506, BDP1, TTG2, 
Clone.1371532, Clone.1336373, Hs.120751, CD44, 
Hs.190288  

13 7 11 0 3, 10, 11, 15, 18, 19, 
20 

Clone.1339726, BCL6, Hs.120716, ALU subfamily SB, 
Hs.224323, Clone.825199, FMR2, Clone.1336373, ERK3, 
Hs.123294, Hs.24724,  

14 7 11 0.428 0, 3, 11, 19, 25, 27, 
33 

ARHGEF1, Clone.685761, BCL6, BCL6, Hs.124049, TTG2, 
TTG2, Clone.1371532, Hs.87589, Hs.192047, Hs.123294,  

15 7 11 0 0, 3, 11, 14, 18, 19, 
20 

CSNK1G2, BCL6, Hs.120716, ALU subfamily SB, 
Hs.224323, Clone.825199, FMR2, BDP1, TTG2, TTG2, 
GENE353X__Unknown__UG_Hs_164617__ESTs__Clone_
1351973_,  

16 7 11 0.428 2, 7, 18, 19, 24, 27, 
33 

RAD50, Clone.685761, TTG2, TTG2, SRPK2, Hs.46913, 
Hs.120751, BCL2, PTP1B, Hs.123294, Hs.24724,  

17 7 11 0 3, 4, 7, 16, 17, 18, 19 Hs.120716, ALU subfamily SB, Hs.136345, Clone.825199, 
TTG2, TTG2, Clone.2017, ERK3, BCL2, Hs.59368, 
Clone.1288046,  

18 7 11 0 5, 10, 12, 14, 15, 16, 
17 

GENE144X__Unknown__Clone_1356654_, Clone.685761, 
PTP-IVA, Hs.120716, ALU subfamily SB, Hs.88102, CD10, 
PTP1B, PTP1B, Clone.713158, KIAA0805,  

19 7 11 0 9, 10, 12, 14, 15, 16, 
17 

Clone.1270568, Clone.826541, PTP-IVA, Hs.120716, ALU 
subfamily SB, CD10, PTP1B, PTP1B, Clone.713158, 
KIAA0805, SP100,  

20 7 11 0 9, 10, 13, 14, 15, 16, 
17 

Clone.814651, KIAA1037, PTP-IVA, Hs.120716, ALU 
subfamily SB, Hs.224323, Clone.825199, ALU subfamily 
SB, CD10, Clone.713158, KIAA0805,  
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Table A.27.  Top 20 longest patterns with pre-set value binning, Smin=7, ABC>50% 

Rank Support #Genes %ABC Supporting Tissues Genes 
1 7 10 0.714 7, 21, 24, 27, 31, 45, 

46 
Hs.125815, Hs.228201, BRCA2, Hs.87589, Hs.46913, 
SC5DL, SLA, INPPL1, IL2RB,  

2 7 10 0.571 1, 7, 21, 24, 27, 31, 
45 

Hs.125815, Clone.685761, MGC5178, BRCA2, Hs.87589, 
SC5DL, INPPL1, IL2RB, ALU class C,  

3 7 10 0.714 7, 21, 24, 27, 31, 33, 
45 

Hs.125815, Clone.685761, MGC5178, BRCA2, SRPK2, 
Hs.87589, Hs.46913, Hs.120751, SLA, IL2RB,  

4 7 10 0.571 1, 11, 21, 24, 25, 29, 
33 

RAD50, JMJD1B,  KIAA0151, CD27, Hs.226955, 
Hs.120751, SP100, Clone.1288046, ID2H, Hs.128564,  

5 7 10 0.714 11, 21, 24, 25, 28, 
29, 33 

JMJD1B,  CSNK1G2 (casein kinase g2), KIAA0151, PCKD, 
PCKD, Clone.1671615, HNPP, SP100, Clone.1288046, 
ID2H,  

6 7 10 0.571 1, 11, 21, 24, 25, 31, 
33 

JMJD1B,  Hs.125815, Clone.685761, KIAA0151, CD27, 
Hs.226955, Hs.87589, Hs.120751, SP100, Hs.128564,  

7 7 10 0.571 1, 11, 21, 24, 31, 33, 
39 

JMJD1B,  Clone.685761, KIAA0151, MGC5178, BRCA2, 
Hs.226955, Hs.87589, Hs.120751, Hs.190288 Hs.128564,  

8 7 10 0.571 1, 11, 21, 24, 29, 31, 
33 

JMJD1B,  KIAA0151, CD27, MGC5178, Hs.226955, 
Hs.120751, Hs.190288 SP100, Hs.136589, Hs.128564,  

9 7 10 0.571 1, 11, 21, 24, 29, 31, 
39 

JMJD1B,  KIAA0151, MGC5178, Hs.226955, SC5DL, 
Hs.190288 TNK1, Hs.128564, ALU class C,  

10 7 10 0.571 1, 11, 21, 25, 29, 31, 
39 

JMJD1B,  KIAA0151, MEK1, Hs.226955, Clone.1336373, 
SC5DL, Clone.417048, Hs.128564, ALU class C,  

11 7 9 0.714 1, 7, 25, 27, 31, 33, 
45 

Hs.27774, Hs.125815, Clone.685761, Hs.87589, 
Hs.192047, Hs.120751, MAPKKK5, STK11, IL2RB,  

12 7 9 0.571 1, 7, 21, 24, 25, 27, 
33 

RAD50, Hs.125815, Clone.685761, TTG2, Hs.87589, 
Hs.120751, SP100, ID2H, IL2RB,  

13 7 9 0.571 1, 20, 21, 24, 27, 31, 
46 

Clone.825338, BRCA2, Hs.87589, SC5DL, Hs.190288 
Clone.1372597, INPPL1, IL2RB, Hs.136589,  

14 7 9 0.571 1, 20, 21, 24, 25, 27, 
31 

Hs.136204, Clone.825338, Clone.685761, ZFM1, 
Hs.87589, SC5DL, Clone.1372597, IL2RB, Hs.128564,  

15 7 9 0.571 7, 21, 23, 25, 31, 36, 
46 

Clone.1338156, Hs.181384, Clone.684877, Clone.1357367, 
POU4F1, Hs.87589, HKRT1, Clone.417048, IL2RB,  

16 7 9 0.857 21, 24, 27, 31, 33, 
45, 46 

Hs.125815, BRCA2, Hs.87589, Hs.46913, Hs.120751, 
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