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ABSTRACT 
 

 

Oil Sands mining operations in Northern Alberta, Canada generate large areas that contain 

marginal soil conditions and must be overlaid with reclamation substrate. In order to expedite 

revegetation efforts, salvaged peat is often incorporated with mineral subsoil to compose a 

peat:mineral mix (PMM) to act as a soil cover. However, the soil water characteristics and 

physical properties of these covers are poorly understood for reclamation. Therefore, the 

objective of this study was to determine the soil physical properties and soil water 

characteristics of reclaimed covers compared to naturally disturbed sites (i.e. fire) and 

undisturbed reference sites. Soil samples were collected in the summer of 2012 and 2013 from 

three reclaimed PMM soil covers, one recently fire-disturbed natural site and one undisturbed 

reference site. Of all the nutrients analyzed, soil phosphorous (PO4
-) concentrations were 

significantly lower in the reclaimed soils compared to the disturbed and undisturbed natural 

sites. 

 

Near-saturated hydraulic conductivity (Kns) for water transmission through the soil were 

measured, along with soil water retention curves developed for describing moisture storage. 

Topsoil (0-20 cm) Kns measurements revealed no statistical difference between reclaimed and 

natural sites and extremely high variation was detected at all sites. Three different models for 

estimating Kns also revealed only minor differences between methods, although high variation 

within each site prevented conclusions on whether the mini-disc infiltrometer and associated 

Kns models was an appropriate tool for measuring hydraulic conductivity in peat-dominated 

reclaimed soils.  

 

Soil water retention curves were developed by tension table and pressure plate methods on 

intact soil cores. Five soil hydraulic models – three unimodal and two bimodal - were fit to the 

retention curves and parameterized. Bimodal models showed a superior fit compared to the 

unimodal models at all three reclaimed and one undisturbed sites. Bimodal trends are typically 

associated with natural soils exhibiting a high degree of soil aggregation and associated 
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heterogeneous pore structure. The fire-burnt site showed a unimodal trend possibly as the 

result of its sandy texture and lack of aggregation. These model fits suggest that a juvenile 

PMM have similar soil water storage characteristics to certain highly-structured natural soil as 

provided by its peat additions. Available water holding capacity was determined by both soil 

core and Land Capability Classification System methods. No differences were detected between 

techniques and a mesic soil moisture regime was predicted at all sites.  

 

This study found that juvenile PMM soil covers exhibited similar soil-water characteristics to a 

well-aggregated, undisturbed forested soil after only a few years post-placement. These results 

establish a comparative baseline for future soil research on reclaimed tailing ponds, as well as 

provide the necessary soil-water relationships for watershed and/or regional scale hydrological 

modelling.  
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1. Introduction 

 

The current active footprint of Oil Sands developments in northern Alberta is greater than 

80,000 ha (Government of Alberta, 2016). Per the Environmental Protection and Enhancement 

Act 1993 (Government of Alberta, 2010a), all disturbed land in Alberta is required to be 

reclaimed back to an equivalent productive capability to that of the pre-disturbance landscape 

before land ownership (and the associated responsibilities) can be transferred from the mining 

companies back to the Crown. Significant research has been done over the past 40 years to 

enable or expedite the reclamation processes necessary to establish these equivalent 

capabilities.  

 

One reclamation technique used extensively in the Oil Sands region is the coarse combination 

of salvaged peat with relatively infertile subsoil mineral substrate. These Peat:Mineral Mixes 

(PMM) have been shown to benefit from the peat addition through improved soil microbial 

communities (Hahn and Quideau, 2012), greater propagule bank for native species 

establishment (Mackenzie and Naeth, 2010), as a source of soil nutrients (Hemstock et al., 

2010), and can improve growth potential of possible long-term vegetation including trembling 

aspen (Populus tremuloides Michx.; Pinno et al., 2012) and jack pine (Pinus banksiana Lamb.; 

Farnden  et al., 2013). Oil sand reclaimed sites utilizing PMM appear to have the ability to reach 

natural trajectories depending on soil cover prescriptions and fertilizer patterns (Rowland et al., 

2009). 

 

Of particular interest to researchers is the ability of peat to improve the soil-water relationship 

within reclamation soils, and improve its capabilities as a vegetation growth medium. Peat can 

enhance these conditions within the soil through both increased soil organic carbon and 

increased porosity (RRTAC, 1993; Moskal et al., 2001). When comparing these PMMs to 

adjacent undisturbed topsoils, Yarmuch (2003) detected little significant differences for soil 

hydraulic conductivity and other physical properties. These similarities were attributed to soil 



2 
 

structure afforded by the peat component, although the author noted that “reclaimed soil 

structure per se is not truly equal to undisturbed soil structure”. For water storage and 

retention, previous research has suggested that the soil water retention characteristics of PMM 

follow a bimodal pattern (Shurniak, 2003), similar to that of structured aggregate loams 

(Sharma and Uehara, 1968; Smettem and Kirkby, 1990; Coppola, 2000). Examination of both 

soil water movement and retention are critical in new reclamation sites, as infiltration and 

storage of precipitation within the soil complex is the sole provider of water for all vegetation 

and accounts for nearly all ground-water recharge (Dingman, 2015). 

 

In 2010, a decommissioned tailings pond completed its intended soil coverage and re-

vegetation process; this is significant as it marks the first whole tailings pond to be successfully 

decommissioned, stabilized and reclaimed in the Oil Sands region. This event represents a 

major proof-of-scale for successful reclamation of the over 170 km2 of tailing ponds within the 

Athabasca Oil Sands region (Government of Alberta, 2013). The same year an 85 ha overburden 

dump was also reclaimed. Both sites utilized PMM for the soil cover. Up to this point the 

majority of previous research has been conducted on singular hectare-scale experimental plots 

or laboratory testing. Examining these two sites and demonstrating that large-scale, non-

experimental reclaimed soils align with the experimental reclamation paradigm enables 

reclamation planners to fill-in knowledge gaps with previous research, and ultimately have 

more confidence in long-term projections.   

 

Earlier studies by the Forest Watershed and Riparian Disturbance (FORWARD) Project 

demonstrated that disturbing the surface soil conditions of Boreal Plains watersheds through 

either natural (forest fire) or anthropogenic (winter logging) processes can have a significant 

effect on water runoff and nutrient export (Whitson et al., 2003; Burke et al., 2005). The PMMs 

utilized in Oil Sands reclamation are another form of disturbed soil conditions. Characterizing 

soil physical properties in juvenile reclaimed sites and both fire-disturbed and undisturbed 

reference sites will assist in determining the efficacy of PMM soil covers in replicating natural 

conditions, comparison of known anthropogenic and natural disturbances, and provide baseline 
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values to investigate soil structure development over time. Furthermore, future attempts at 

hydrologic modelling these reclaimed boreal watersheds (i.e. SWATBF [Watson et al., 2008]) will 

require detailed understanding of soil-water relationships. Despite this need, no data regarding 

the soil physical characteristics of intact reclaimed tailing ponds or RA1 has been published. 

Therefore, the objectives of this study were to:  

 

 

1. Characterize physical and chemical properties in large-scale PMM soil covers.  

 

2. Determine whether quantitative similarities in soil-water properties exist between the 

natural disturbance of a forest fire and reclamation activities. 

 

3. Investigate whether several common soil water tools used to determine soil water 

movement and retention in natural soils are applicable for reclaimed PMM soils.  

 

To meet these objectives, both field and laboratory experiments were conducted. Hypotheses 

tested included whether reclaimed soil properties were quantitatively comparable to natural 

reference or fire-burned sites, and whether moisture retention data from reclaimed sites can 

be fitted to hydrological models used for natural soils. This document utilizes the traditional 

thesis format with chapters: 1. Introduction, 2. Literature Review, 3. Material and Methods, 4. 

Results, 5. Discussion, and 6. Conclusion.  
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2. Literature Review 

2.1 Forest Soils in Northern Alberta 

Upland mineral soils comprise roughly half of the Oil Sands region in the Fort McMurray area 

and are dominated by Luvisolic and Brunisolic soil orders in the northern and southern regions, 

respectively (Lindsay et al., 1962; Crown and Twardy, 1970). The soils are largely determined by 

their parent material, as the Luvisolic soils form on the medium- and fine- textured glacial till 

that supports trembling aspen (Populus tremuloides), balsam fir (Abies Balsamea), and white 

spruce (Picea glauca) mixed wood forests on the drier upslopes and black spruce (Picea 

mariana) on the wet basal slopes; while Brunisols are restricted to the coarse-textured glacial 

fluvial and eolian deposits and whose drier and less nutrient-rich conditions support jack pine 

(Pinus banksiana) and black spruce on the depression (Johnson and Miyanishi, 2008). Both 

these soil types can produce commercially-viable forests (CEMA, 2009).  

 

 

2.2 Effect of Fire Disturbances on Forest Soils 

Forest fires are intrinsic natural disturbances that occur in large scope and frequency, and act as 

essential rejuvenators to the boreal landscape. On average, forest fires consumed 2.3 million ha 

a year across Canada (Natural Resources Canada, 2013). Larsen (1997) examined the temporal 

fire frequency in Wood Buffalo National Park, Northern Alberta and found that non-managed 

boreal forests have burn cycles ranging from 39 to 96 years depending on tree species. Many 

boreal plant species thrive under these conditions by adopting unique physiological adaptations 

to these frequent burn cycles (i.e. jack pine with serotinous cones). Despite the fundamental 

necessity of forest fires in the boreal plains ecosystem, many of its characteristics inherently 

alter the landscape and can be considered a natural soil disturbance. 

 

There are significant negative effects on the chemical and physical properties of soils after a 

forest fire. Chemically, the loss of soil organic matter (SOM) and subsequent disruption of 
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nutrient cycling have been well documented. The combustion of plant and soil organic biomass 

leads to the mass release of plant-available nutrients immediately following a fire; however, the 

ecosystem undergoes an overall net loss of nutrients. DeBano et al. (1998) summarised the 

mechanisms of nutrient loss - direct volatilization; particulate loss in smoke; transformation to 

ash; surface runoff and erosion losses; and downward leaching (Table 2.1). Soil physical 

properties are also affected by the intense fire temperatures (Table 2.1). From 200 to 500 ˚C 

organic compounds are combusted (DeBano et al., 1998), and temperatures exceeding 500 ˚C 

can begin to irreversibly damage clay minerals (Giovannini et al., 1988). Both organic matter 

and clay minerals are critical for the aggregation of soil particles – i.e. soil structure. Destruction 

of aggregates and overall soil structure leads to lower total porosity and a transformation of 

pore size distribution. At lower soil depths, water repellency can often be a measured effect. 

Organic matter that is vaporized close to the soil surface can migrate down the temperature 

gradient before condensing and coating soil particles lower in the soil profile. This hydrophobic 

effect can produce a water-repellent horizon (DeBano et al., 1998). 

 

The similarities between naturally (fire) disturbed and reclaimed Oil Sands sites have recently 

been revealed in the restoration of aboveground ecology. An extensive review of differently-

aged reclamation treatments was carried out by Rowland et al. (2009) to determine if similar 

ecosystems were being created to the surrounding natural sites. Across a range of ecosites on 

Oil Sands reclaimed sites (a1, b1, b3, d1, d2, and d3), plant diversity was found to decrease 

after canopy closure at about age 31 to 35, driven by a decline in understory plant species. 

Similar vegetation trends have been observed in reclaimed post-mining areas in the Czech 

Republic (Frouz et al., 2008). Interestingly, the decrease of understory biodiversity resulting 

from canopy closure is an established process in boreal forest stands recovering from a fire 

disturbance (Grandpre et al., 1993; Hart and Chen, 2008). Rowland et al. (2009) suggests that 

future long term monitoring programs should include fire-disturbed sites as a treatment to see 

whether ecosites development on naturally-disturbed soils mirror those observed on reclaimed 

soils.  
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Table 2.1 Chemical and physical effects of fire on forest soils. Summarized from DeBano et al. 
(1998). 

Type Effect Description 

Chemical Direct Volatilization Loss of gases nitrogen to the atmosphere 
 Particulate Loss Phosphorus and cations lost in smoke 
 Ash Deposition Highly plant available nutrients are released, can 

be lost through wind/water erosion 
 Erosion Loss Surface runoff and subsequent erosion can result 

in large watershed flushing events 
 Soil Leaching Loss of nutrients down through the soil profile 
   
Physical Soil Structure Loss Decrease of total porosity in topmost soil layer due 

to destruction of soil aggregation 
 Hydrophobicity Development of water-repellant layer below and 

parallel to soil surface 
 Reduced Infiltration rates Clogging of pore network from pore deposition, 

contributes to erosion losses 

 

 

 

2.3 Oil Sands Extraction and Processing 

Bitumen is extracted from the Athabasca Oil Sands Region (AOSR) of northeastern Alberta for 

the production of synthetic crude oil. The AOSR covers approximately 140,000 km2 – twice the 

size of New Brunswick – and is estimated to contain 178.7 billion barrels of initial established oil 

reserves (Government of Alberta, 2007). Since Oil Sands production was first started by the 

Great Canadian Oil Sands Limited (now Suncor Energy Inc.) in 1967, development has expanded 

exponentially and is forecasted to reach an estimated 3 million barrels of crude per year by 

2018 (Government of Alberta, 2013).  

 

The Oil Sands area is a mixture of a dense, heavily-viscous petroleum known as bitumen, clay, 

water and sand, and is found naturally occurring within largely disintegrated sedimentary 

deposits. In the Athabasca region of northern Alberta, these oil sand deposits can be found 

within 100 m of the surface, making it feasible for surface mining. To access the underlying Oil 
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Sands, the native forest is harvested, the land drained (if necessary), and the upper organic and 

mineral soil layers are scrapped and salvaged for post-mining reclamation. The additional 

material found between the surface layers and the Oil Sands is referred to as overburden (OB); 

excavated OB is either used as pit backfill or placed in dumps adjacent to the mining pits. Mine 

dumps are required to be reclaimed. 

 

Once the bitumen ore have been exposed, the Oils Sands are excavated and transported to the 

extraction plant where the oil is separated via a variation of the Clarke Hot Water Extraction 

process (Clarke, 1980). Approximately 2 tonnes of Oil Sands are required to produce one barrel 

of synthetic crude (Government of Alberta, 2007). The slurry produced after bitumen extraction 

includes sand, clay, water and residual bitumen. When deposited into a tailings pond, the sand 

settles out fairly rapidly, and can be used as a structural component in dyke construction. The 

significantly smaller portion of remaining clay/water/bitumen mixture, coerced by the 

increased pH of extraction water, produces a stable suspension defined as mature fine tailings 

(MFT). With a solid content of 30-35%, MFT lacks the shear strength required to support 

reclamation material, and it is projected that it will take centuries to de-water to the required 

solid state (Mikula, 1996). At the end of the extraction process, two predominant waste 

products are created – overburden and tailing (Figure 2.1).  
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Figure 2.1 Diagram of Oil Sands extraction, processing and reclamation process. Modified from 
Hunter et al. (2011). 
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2.4 Reclamation in the Oil Sands Region 

Reclamation, according to Alberta Environment and Parks (AEP), refers to the establishment of 

stable, non-hazardous, non-erodible, favourably drained soil conditions, which supports 

equivalent land capabilities to or better than pre-disturbance conditions (Alberta Environment, 

2002). The total active Oil Sands footprint stands at roughly 90,000 ha (Government of Alberta, 

2013). This includes mined-out pits, overburden dumps and tailing facilities. Of that disturbed 

land, roughly 6,500 ha is at some stage of active reclamation, including certified, permanent, 

temporary, and placed-soils sites (Government of Alberta, 2013). According to Alberta’s 

Environmental Protection and Enhancement Act (EPEA), mining companies on government 

leases must conserve any specified land and reclaim all disturbed land prior to returning the 

lease to the Crown (Government of Alberta, 2010a). This document also lays out additional 

regulation that must be followed during reclamation planning: 

 productive capability equivalent to that of the pre-disturbance landscape 

 commercial forest viable on an area equivalent to the pre-disturbance condition 

 upland reclamation landscapes have natural appearance characteristics of the region 

 integration of landform, topography, and water bodies with adjacent undisturbed areas. 

Successful reclamation does not try to manufacture a fully-functional landscape, but rather 

providing conditions such that the landscape can naturally redevelop towards an equivalent 

capability to that which existed prior to mining.  

 

2.4.1 Upland Boreal Reclamation 

Upland boreal reclamation is the leading form of reclamation prescription in the Oil Sands 

region. Compared to wetlands design, upland (also referred to as dryland) has been more 

widely adopted because it makes use of readily available materials (soil salvage), is less 

complicated to design, better understood, and takes significantly less time to regenerate to a 

natural state (Osko et al., 2010). Construction of more complicated peat-accumulating 



10 
 

peatlands or fens is still in its infancy and has not reached the scale of upland reclamation (Price 

et al., 2010). 

 

Through the cooperation of industry and non-government organization like the Cumulative 

Environmental Management Association (CEMA), the upland reclamation process has become 

fairly standardized throughout the region (Figure 2.1). First, the desired area is subjected to 

landform grading in order to develop the correct landscape and hydrology; heterogeneity and 

runoff performance are important characteristics to consider (MEND, 2007). Next, using the 

salvaged soil material from the mining process a soil cover of roughly 1 m depth is placed over 

either the overburden or tailings sand; the exact soil prescription varies with company and site. 

The objective of a soil cover is to act as an adequate growth medium for the vegetation 

prescription, as well as isolate the underlying materials from the biosphere (MEND, 2007). 

Vegetation is planted after the final grading of the placed soil. Barley was traditionally used as a 

nursery crop to provide soil stability against erosion without over-powering the desired long 

term woody species. Much of our knowledge regarding the conditions required for proper 

ecosite development has been synthesized in documents such as the ‘Land Capacity 

Classification System (LCCS; CEMA, 2006) and the ‘Guidelines for Reclamation to Forest 

Vegetation in the Athabasca Oil Sands Region (CEMA, 2009). In order to maximize the growth 

potential of the soil cover, peat inputs and textural layering have become universal techniques 

for upland reclamation. 

 

Currently no structure exists to describe human-modified soils in the context of the Canadian 

System of Soil Classification. Naeth et al. (2012) highlights recent efforts made to introduce a 

new soil order - Anthroposols -  that would allow the systematic description of anthropogenic 

soils dependent on factors such as intensity of disturbance and composition of anthropogenic 

materials.   
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The Land Capability Classification System for Forest Ecosystems (LCCS) manual was developed 

to help industry achieve the land capabilities required by Alberta’s Environmental Protection 

and Enhancement Act for forest ecosystems on natural and reclaimed soils. Land capability is 

determined by assigning numerical values to soil and landscape parameters deemed plant 

growth limiting. Soil physical and chemical properties, as well as nutrient and moisture regimes 

are all considered, leading to a final aggregate rating. Five land capability classes are 

established, ordered from high to non-productive, along a 100-point scale – each class is 

divided into 20 point ranges. The resulting data can be used to tentatively project the mature 

ecosystem productivity of a juvenile reclaimed soil, or confirm the long-term vitality of an 

established reclaimed site for certification purposes. However, it is important to note that the 

correlation between LCCS-predicted and actual in-situ forest productivity is not clearly 

established at this time and caution must be used when extrapolating results. 

 

2.4.2 Peat:Mineral Mix (PMM) 

The boreal plain landscape consists of roughly 50% peat-rich organic soils, broadly divided into 

marshes and fens (Bayley and Mewhort, 2004). This salvaged organic material represents a 

critical source of nutrients for a landscape. Simply placing peat in a landscape will not promote 

wetland development as organic soil growth is controlled by landscape hydrology as opposed to 

parent material. To keep this nutrient and carbon source, the salvaged peat is placed over 

secondary mineral soil then integrated by mechanical mixing (i.e. tilling) to create a suitable 

upland reclamation substrate. PMM have evolved as an effective and standardized practice for 

industry.  

 

The SOM provided by peat has a positive relationship with soil aggregation, cation exchange 

capacity, pH buffering action, a critical source of mineralized nutrients, and an overall increase 

in plant productivity (Table 2.2; RRTAC, 1993; Bronick and Lal, 2005). Peat acts as an immediate 

SOM input until vegetation-derived organic matter is deposited as the soil matures. Initially it 

was predicted that due to microbial decomposition the benefits of peat were not permanent 
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and would decrease over time (RRTAC, 1993); however, more recent measurements suggest 

that carbon inputs and outputs are nearly equal in the early years following revegetation 

(Drozdowski et al., 2010).  

 

 

 

 

Table 2.2 Summary of organic amendments used in upland boreal reclamation in the Oil Sands  
 region 

  

Organic 
Amendment 

Advantages Disadvantages Sources 

Peat  Soil tilth 

 Water holding 
capacity 

 Humus content 

 Nutrient 
Mineralization 

 Readily available 
 

 Non-permanent 

 High application 
rates 

 Micro nutrients 

 Acidic 

 Limited 
microbial 

 propagation 

 Larney and 
Angers, 2012 

 RRTAC, 1993 

    
Forest Floor 
(LFH)) 

 Microbial and fauna 
propagation 

 Combination of SOM, 
nutrients and woody 
debris 

 Low-risk (developed 
and supported boreal 
forest vegetation) 

 Non-permanent 

 Limited supply 
 

 Alberta 
Environment 
and Water, 
2012 

 Mackenzie 
and Naeth, 
2010 

 

    
Coarse Woody 
Material 

 Increased woody 
species germination 

 Soil volumetric water 
content 

 Microsite 
heterogeneity 

 Erosion Control 
 

 Non-permanent 

 Variable results 
 

 Alberta 
Environment 
and Water, 
2012 

 Brown and 
Neath, 2010 

 
 



13 
 

2.4.3 Layering 

The other technique utilized in soil cover construction is layering heterogenic-textured soil 

horizons to improve water storage conditions. It has been well-established that engineered soil 

profiles that contain strong vertical heterogeneity in soil texture can store greater amounts of 

water than vertically homogenous soils (Chaikowsky, 2003; Kelln et al., 2007; Hilderman, 2011; 

Naeth et al., 2011; Jung et al., 2014).  By increasing water storage, layering assists in both 

objectives of the soil cover – adequate soil moisture and decreasing underlying material 

interaction with the hydrosphere through the reduction of downward water movement.  

 

The improvement of available water is not restricted to engineered landscapes however, as 

similar phenomena have been measured in coarse undisturbed soils in the Ft. McMurray 

region. Zettl (2014) employed double-ring infiltrometers and real time volumetric water 

content readings to measure field capacity in coarse, undisturbed soils. She found that between 

110 to 330 additional mm of water can be stored in a 1 m soil profile as a result of layering 

multiple textures in a simulation environment. Huang et al. (2013) used pedotransfer functions 

and numerical modelling to confirm that field capacity (and therefore available water) is the 

condition most positively affected by textural layering. Furthermore, the authors found that 

computer simulated jack pine and trembling aspen productivity and leaf area index increased 

on textural layered soils as oppose to uniform ones.  

 

This hydrologic improvement is driven by two separate flow mechanisms known as hydraulic 

barrier and capillary barrier (Si et al., 2011). A hydraulic barrier occurs when water accumulates 

above the textural interface of a coarse texture soil due to the lower hydraulic conductivity of 

the underlying finer textured and/or compacted soil (Scott, 2000). Conversely, the water 

cohesion and capillary pressure in micropores of a fine-textured soil layer can prevent the 

percolation downwards into the predominantly macropores of an underlying sandy layer 

(Stormont and Anderson, 1999). The texture difference between layers can be relatively small - 

Huang et al. (2013) simulated this capillary barrier effect in the layering of fine and coarse 
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sands.  Depending on the textural difference of a given soil profile one or even both of these 

phenomena can be observed in a landscape.  

 

 

2.5 Reclaimed Soil Physical Properties 

Soil disturbance caused by mining has been shown to degrade the antecedent soil profile and 

associated chemical, biological, and physical properties. An anthropogenic soil formed by 

surface mining can attribute much of these losses to the necessary scale of the soil handling 

practices – the immense size and weight of the earth-moving equipment often leads to a 

breakdown of any antecedent soil structure. Higher bulk densities, massive soil structure, and 

lower water flow and storage rates are considered hallmarks of highly disturbed soils. Over the 

last 50 years, considerable research has been conducted to investigate the range of values that 

surface mining can impart on soil physical properties and how those values will affect 

revegetation. Much of this research has focused on the reclamation of coal minesoils (spoil) 

located in the eastern United States (Table 2.3).   

 

Pederson et al. (1980) measured numerous soil physical characteristics of a reclaimed surface-

coal mining operation in Western Pennsylvania. They found compacted soil conditions (average 

bulk density of 1.76 g cm-3) and significant amounts of spatial variation in infiltration, water 

retention and hydraulic conductivity. When combined with evapotranspiration data, these 

properties would likely produce plant stress from drought conditions during periods of the 

growing season.  

 

Expanding on previous research, Potter et al. (1988) investigated the physical properties of 

different aged (4- and 11-yr) reclaimed minesoils in North Dakota to those of surrounding 

natural, undisturbed soils. No significant differences in Field-Saturated hydraulic conductivity 

(Kfs) were detected between the reclaimed 4 yr and 11 yr treatments, suggesting that Ks 

development had stabilized by this point in time.  
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Table 2.3 Bulk density and field-saturated hydraulic conductivity (Kfs) of direct placement (DP) 
and peat:mineral mix (PMM) over secondary mineral material (2˚) reclamation prescriptions 
from two Oil Sands companies (SUN-Suncor, SYN and two other non-Oil Sands sites), in addition 
to natural Oil Sands region soils of varying texture . Depth of layers is (1) 0-20, (2) 20-50, and (3) 
50-100 cm for each treatment.   
 

Site Age Layers Bulk Density Kfs Source 
 (yrs)  (g cm-3) (cm s-1)  

SUN 31† 18 (1) DP 1.08 1.4E-04 Yarmuch (2003) 
(2) OB 1.62 1.4E-04 
(3) OB 1.67 2.2E-05 

      
SUN 32† 16 (1) DP 0.72 7.6E-04  

(2) OB 1.78 4.4E-05 
(3) OB 1.73 2.8E-05 

      
SUN 33† 16 (1) DP 0.43 8.6E-04  

(2) OB 1.57 1.9E-04 
(3) OB 1.68 2.5E-06 

      
SYN 10† 3 (1) PMM 0.75 6.1E-04  

(2) 2˚ 1.42 6.1E-05 
(3) OB 1.43 2.8E-06 

      
SYN 14† 9 (1) PMM 0.82 6.5E-04  

(2) 2˚ 1.51 5.0E-05 
(3) OB 1.56 - 

      
SYN 15†† 9 (1) PMM 1.09 3.1E-04  

(2) 2˚ 1.58 2.8E-04 
(3) TSS 1.52 3.8E-04 

      
SYN 20†† 5 (1) PMM 1.34 5.5E-04  

(2) 2˚ 1.68 2.5E-06 
(3) TSS 1.61 2.2E-04 

      
South Bison 
Hills 

1 (1) PMM 0.92 1.0E-03 Meiers 
et al. 
(2011) 

(2) 2˚ 1.28 0.1E-05 
(3) OB 1.47 0.1E-06 

      
South Bison 
Hills 

5 (1) PMM 0.92 3.0E-03 - 
(2) 2˚ 1.28 2.0E-04 
(3) OB 1.47 0.3E-05 
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†  Overlying overburden material (OB) 
††  Overlying tailings sands (TSS) 

†††   m3 of porosity per m3 volume of soil 
  

Coal mine 
(Pennsylvania) 

 (1) Ap 1.36 - Pederson 
et al. 
(1980) 

(2) Ap 1.21 - 
(3) C1 1.61 - 

      
Coal mine 
(North Dakota) 

4 (1) DP 1.35 - Potter 
et al. 
(1988) 

(2) 2˚ 1.48 - 
(3) Spoil 1.31 - 

      
Coal mine 
(North Dakota) 

11 (1) DP 1.39 -  
(2) 2˚ 1.59 - 
(3) Spoil 1.39 - 

      
SV 1  
 (Coarse) 

Natural (1) Ae 1.18 1.7E-03 Zettl et al. 
(2011)  (2) Bm 1.49 2.2E-04 

 (3) BC1 1.63 2.7E-04 
      
CU  1  
(Medium) 

Natural (1) Ae 1.59 3.6E-04 Yarmuch (2003) 
 (2) Bt 1.61 2.3E-04 
 (3) Ck 1.72 4.4E-05 

      
FU 5 
(Fine)  

Natural (1) Ae 1.66 1.3E-04  
 (2) Bt 1.61 2.6E-04  
 (2) Ck 1.66 3.5E-05  

      
FU 8 
(Fine) 

Natural (1) Ae 1.12 3.7E-04  
 (2) Bt 1.44 9.5E-04  
 (2) Bt 1.47 3.1E-05  
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As coal-mining (and associated reclamation) has been ongoing in the United States for many 

decades, they are the basis of chronosequence studies investigating the long-term genesis of 

disturbed soils. Utilizing coal minesoils aged 1 to 50 years old, Schafer et al. (1980) compared 

morphological and physical characteristics of these reclaimed soils to those of adjacent natural 

lands and had three main conclusions: 

 

1) Minesoils contain many unique properties. Revisions to the current soil taxonomy are 

required to reflect these properties. 

2) Topsoil measurements of electrical conductivity, soil structure (10-50 years), and 

organic matter levels (30 years) can approach natural levels within decades.   

3) Although disturbed soils have different properties, it does not necessarily make them 

inferior. Minesoils properly constructed with high-quality materials can surpass the 

potential of some natural soils.  

 

Schafer et al. (1980) stated that newly-placed minesoils display massive soil structure 

throughout the profile; however, old minesoils (50 yrs old) exhibit structure nearly equivalent 

to natural soils both in grade and depth. 

 

Despite the statistical difference found between reclaimed and natural soils in the coal mining 

industry, recent evidence suggests that this might not be applicable for anthropogenic soil in 

the Oil Sands region. Yarmuch et al. (2003) measured the soil physical properties of differently-

aged reclaimed and natural sites in the Oil Sands to compare soil structure quality. The 

examination of bulk density, pore size distribution, and field-saturated hydraulic conductivity 

found no soil structure limitations in reclaimed soils compared to natural sites. In addition, soil 

structure measurements were consistent between different aged reclaimed soils. This suggests 

that oil sand reclaimed soils remain stable over time in terms of physical properties.  
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2.5.1  Reclamation Certification 

A key endpoint for Oil Sands reclamation is the handing over of land ownership from the mining 

company back to the Crown. In order for this to occur, the possessing Oil Sands company must 

apply and receive a reclamation certificate from the Alberta Government. The certification 

process is formatted into three parts – Landscape, Soils parameters and Vegetation parameters 

– from which the applied reclamation site is scrutinized for a particular set of standards (AE-

SRD, 2011). A frequent requirement for the approval process is that “onsite properties must be 

comparable to offsite properties”, which is consistent with the emphasis placed on re-

establishing native ecosystems and productivity (CEMA, 2006). Seven different professional 

regulatory organizations (i.e. Alberta Institute of Agrologists) are involved in the approval 

process (AE-SRD, 2012). 

 

Many of the mentioned requirements, particularly within the vegetation parameters, need time 

after placement in order to be properly assessed and their long-term viability projected.   

Therefore, the reclamation certification process typically occurs decades after initial soil 

placement. To date only one Oil Sands site has been successfully reclaimed according to these 

requirements. In 2008, a 104-hectare parcel of land known as Gateway Hill was issued a 

reclamation certificate by the Alberta government, and possession was transferred back from 

Syncrude to the Crown as public land. Initially an overburden dump, Gateway Hill was 

decommissioned in the early 1980’s and overlaid with PMM topsoil and planted with shrubs 

and trees.  

 

 

2.6 Hydraulic Conductivity 

Darcy`s Law represents the basis for quantifying saturated flow through a porous medium 

(Darcy 1856). In the 19th century, Henri Darcy developed a simple proportional relationship 
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between instantaneous volume discharge through a one-dimensional soil column to the column 

cross-sectional area, the fluid viscosity, and the total hydraulic head seen here: 

 

 

 
  

   

 
 
    

 
 (1) 

 

 

Where the total discharge, Q (m3 s-1) is equal to the intrinsic permeability of the medium, k 

(m2), the cross-sectional area to flow, A (m2), and the total hydraulic head drop, ∆H (Pa), all 

divided by the fluid viscosity, μ (Pa·s) and the length, L (m) over which the change in hydraulic 

head is taking place. To simplify the equation for water flux proposes, both sides can be divided 

by the cross-sectional area (A) and fluid viscosity (μ) removed. This water-specific discharge rate 

is known as the flux density, q (m3 m-2 s1): 

 

 
    

    

 
 (2) 

 

Where K is a proportionality factor and is generally known as hydraulic conductivity (m s-1). A 

measure of a soils ability to conduct water, hydraulic conductivity depends on the fluid 

permeability of the soil. K is designated as Ksat for saturated soils. It is important to note that K 

is not the velocity which the water is travelling through the soil. To determine flux velocity, q 

must be divided by porosity to account for the fact that only a portion of the total volume 

cross-sectional area is available for water movement (pore space).  

 

The determination of soil water movement becomes significantly more difficult under non-

saturated conditions. In these cases – representing the bulk of field conditions – the hydraulic 

conductivity of the soil is not a concrete value, but rather is responsive to the changes in soil 

water content. This phenomenon occurs as the water within the soil pores act as both the 

product and the conduit – as water is transported out from the soil matrix the soil loses its flow 
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corridors and the K decreases. Adding to the complication, the K- θ relationship behaves non-

linearly as the largest pores are the first to empty, leaving smaller and less efficient pores to 

transmit water. Unsaturated hydraulic conductivity can be presented as K(θ) and K(h), to 

illustrate the spectrum of K values depending on the specific volumetric water content or 

matric potential, respectively. Richards (1931) developed a foundational conceptual model that 

represents the movement of water in unsaturated soils: 

 

    

  
 

 

  
⌊     (

  

  
  )⌋ (3) 

 

 

Where K(θv) is the hydraulic conductivity at any given moisture content (m s-1), θv is the 

volumetric water content (m3 m-3), h is the matric potential (Pa), z is the elevation above a 

vertical datum (m), and t is time (s). The Richards formula is based in the saturated flow 

principals established in Darcy’s law, with additional consideration to account for the dynamic 

soil moisture effects (K(θ)) and the matric ‘suction’ of the surrounding soil pores.  

 

Soil hydraulic conductivity has been an area of study in the Alberta Oil Sands region. Field-

saturated hydraulic conductivity (Kfs) is the most-frequently utilized measure of soil hydraulic 

conductivity in reclamation research – saturated conditions allow for the most straightforward 

comparisons between different treatments and the ‘field’ prefix acknowledges that full 

theoretical saturated is rarely achieved in the field due to air entrapment (Reynolds et al., 

1983). Several trends are apparent when examining Kfs between natural and reclaimed 

treatments (Table 2.3). Yarmuch (2003) found no statistical difference between the Kfs of 

reclaimed and undisturbed soils and all sites exhibited hydraulic conductivities within the 10-4 

cm s-1 range for the topsoil depths (0 – 20 cm). Examining the evolution of hydraulic 

conductivity of a peat mineral mix overlying overburden, reclaimed Oil Sands soils appear to 

experience the majority of hydraulic conductivity development early in the reclamation period. 

Meiers et al. (2011) found that Kfs increased significantly within the first three years post-

placement before leveling off in the followings two years. The underlying shale overburden 
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increased in Kfs by approximately a full order of magnitude. The authors attributed this 

improvement to the freeze/thaw cycle and its ability to promote soil structure development. As 

expected, coarse-textured soils produced relatively higher Kfs values in sandy, undisturbed 

forests (Table 2.3; Zettl et al., 2011). 

 

On a landscape scale, Kelln et al. (2007) examined the balance between unsaturated (soil 

matrix) and preferential (macropore) flow of a PMM over OB reclaimed soil. The hydrologic 

data implies that frozen ground or lower matric potentials (wet conditions) are required prior 

to large precipitation events for preferential flow to occur. This is congruent with our 

understanding of the Kfs- θv relationship, as wet antecedent soil moisture conditions are 

required to fill the largest pores.  

  

2.6.1 Mini-disc infiltrometer 

Due to the heterogeneity of macropores in a soil (cracks, wormholes, old root tunnels), Ksat is 

extremely spatially variable. This makes attaining an absolute Ksat value for a landscape a 

challenge. Soils rarely experience field conditions that are truly saturated; therefore, measuring 

infiltration under a tension prevents water transmission through the largest of the macropores 

(preferential flow). The resulting near-saturated K value is for the soil matrix, and is less 

spatially variable. 

 

The minidisc infiltrometer (Decagon Devices Inc., 2012) is an attractive choice for measuring soil 

hydraulic properties. It combines low water requirements and a compact size to provide 

extreme transportability for any number of environments, with an ability to apply 0.5 to 6 cm 

suction heads. Soil hydraulic conductivity measured at a low suction head (i.e. 0.5 cm) can be 

reported as near-saturated hydraulic conductivity (Kns) as the equivalent matric potential, -0.05 

kPa, is nearly indistinguishable from saturation on soil moisture retention curves, however with 

the ’near’ prefix acknowledging that marcopore-dominated preferential flow is deterred due to 

the slight suction applied. It must be noted that Kns would be theoretically lower than true 
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saturated conditions due to this lack of marcopore flow. Since its introduction, minidisc 

infiltrometers have been used to measure in-situ Kns (Johnson et al., 2006), water repellency 

(Lewis et al., 2006), and robustness at varying slope angles (Bodhinayake et al., 2004).  Hunter 

et al. (2011) compared the effect of disc size had on water repellency for a mini-infiltrometer 

(4.5 cm) and standard sized infiltrometer (20 cm) - no statistical differences were found 

between disc sizes mainly due to the intrinsic variance that comes with infiltration tests. 

Despite examining different phenomena, both water repellency and hydraulic conductivity use 

cumulative water infiltration’s (i) relationship with time (t) as a basis of their respective 

calculations.  

 

2.7 Soil Water Retention Curves 

Soil water retention curves (also known as soil water characteristic curves, soil water release 

curves, or soil moisture retention curves) examine the non-linear relationship between the 

matric potential and volumetric water content of a soil (Figure 2.2). Water retention in soils is 

controlled by two attracting forces: adhesion forces binding water to a soil particle’s surface, 

and cohesion forces binding water to itself. The combined strength of these forces is referred to 

as the matric potential (Pa) of the soil. The water-soil adhesion forces, called soil sorption, 

decrease the further the distance away from the mineral surface, illustrating why larger pores 

are first to empty, as the sorption forces are weaker compared to a relatively smaller pore. 

Determining the effective pore diameter at a particular soil matric potential can be 

accomplished using the Kelvin equation (Carter and Gregorich, 2008): 

 

   

 
  

      

    
 

(4) 

 

Where d is the diameter (m) of the largest pores that remain full of water after a matric 

potential (h) in meters is applied, γ is the surface tension of water (kg s-2), θ is the contact angle 
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of the water held in the pore (assumed zero); p is the density of water (kg m-3), and g is the 

gravity acceleration constant (m s-2). The influence of soil texture on effective water-filled pores 

can be seen on retention curves. Hillel (1982) found that the greater the clay content, the 

greater the water content at any particular suction.  

Soil texture and structure are the main physical influences of water retention. Soil structure 

plays a greater role at low matric suctions (or inversely high matric potentials) as water 

cohesion forces are dominant in the high water content environment. The proportional 

influence of soil texture on water retention has been shown to increase with matric suction. 

This is due to correlation between decreasing water content, soil-water sorption and the 

specific surface area of different sized soil particle (Hillel, 1982).  

 

 

 

 

Figure 2.2 Example of moisture retention curve (i.e. soil-water characteristics curve, moisture 
release curve). Illustrates the relationship between volumetric water content and matric 
potential. 
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In recent times the numerical calculation of unsaturated soils has become a pressing issue, 

particularly in the environmental field. The exponential rise in computing power has led to the 

development of many soil assessment tools that enable the spatial modelling of water and 

toxicants (for example - Soil and Water Assessment Tool [SWAT], HYDRUS-3D).  Despite the 

advances, being able to accurately express the water content-suction relationship (i.e. retention 

function) remains an important component to these models. Brooks and Corey (1964) 

developed a fitted parametrical model to express effective saturation of a porous media at 

different pressure heads based on laboratory measurements, with a theoretical pore size 

distribution. Building on this work, van Genuchten (1980) coupled his closed equation retention 

model with the earlier Mulaem (1976) equation to predict the unsaturated hydraulic 

conductivity from soil water retention data. The van Genuchten-Mulaem (1980) unsaturated 

hydraulic conductivity function is still prominently used in hydrology modelling. Many such 

parametrical retention models have been developed over the years (Brutsaert, 1996; Campbell, 

1974; Ross and Smettem, 1993; Zhang and van Genuchten, 1994; Kosugi, 1996; Poulsen et al., 

2002). Unlike the previous models that assume a homogeneous pore structure, some models 

have been specifically designed for soils that contain heterogeneous pore structures and exhibit 

bimodal retention characteristics by superimposing multiple unimodal models (Durner, 1994; 

Seki, 2007).  

 

 

2.7.1 Available Water Holding Capacity  

Available Water Holding Capacity (AWHC) is the soil water that is considered available for plant 

growth and was initially developed as a tool for determining irrigation rates (Veihmeyer and 

Hendrickson, 1927). Characterized as the soil moisture content residing between the field 

capacity (FC) and permanent wilting point (PWP), AWHC can be used to estimate the ability of a 

soil to support specific vegetation through typical climatic conditions. The matric potential for 

field capacity is meant to represent the dryness at which water removal due to gravity has 

“materially decreased”. To satisfy this somewhat vague criterion, soils of different textures use 
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different matric potentials to represent field capacity - coarse-textured soils (sand, sandy loam, 

loamy sand) utilize a matric potential of -10 kPa whilst all other use -33 kPa (Cassel and Nielsen, 

1986). The lower limit of AWHC, called the permanent wilting point (-1500 kPa), is the moisture 

content at which plant roots can no longer extract water from the soil pores.  

 

The Alberta Government requires that reclaimed landscapes share equivalent land capabilities 
to pre-disturbed sites. To estimate these land capabilities, oil sand researchers have used 
AWHC as a comparative proxy for natural and reclaimed soils (  
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Table 2.4). From a water storage perspective, the incorporation of peat significantly enhances 

the water holding capacity of reclamation soils through the increase in organic carbon (OC). 

When examining reclamation sites of different ages and prescriptions, Leatherdale et al. (2012) 

found a positive relationship between AWHC and organic matter content. In a laboratory 

experiment, Moskal et al. (2001) found that % OC was significantly correlated with field 

capacity, wilting point, and available water holding capacity in prepared PMM. Textural layering 

of a reclaimed landscape also affects AWHC (see 2.4.3). A PMM over tailings sands prescription 

has been shown to consistently store additional water due to the capillary ‘break’ at the 

textural interface (Naeth et al., 2011; Chaikowsky, 2003; Leatherdale, 2012).  Macyk et al. 

(2006) summarized that a PMM cap can considerably improve available water holding capacity, 

partially when placed over texturally heterogeneous substrates (i.e. tailings sands).  
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Table 2.4 Field Capacity (FC), Permanent Wilting Point (PWP), and Available Water Holding 
Capacity (AWHC) at different depths for reclaimed and natural soils in the Oil Sands region 

† TSS – Tailings Sands; 2˚ - Secondary Mineral Material; LOS – Lean Oil Sands 
‡ Field Capacity of coarse-textured soils (sand - loamy sand) determined at 10 kPa; Fine-
textured soils at 33 kPa 
§ Permanent Wilting Point determined at 1500 kPa  

Site Layer† Depth  Texture FC‡ PWP§ AWHC Source 

  (cm)   (m3 m-3)   

Site 1 PMM 0 - 20  Sandy Loam 0.228 0.097 0.131 Leatherdale 
et al. (2012) TSS 20 – 48 Sandy Loam 0.261 0.089 0.172 

TSS > 48 Sand 0.048 0.018 0.030 
       
Site 2 PMM 0 – 25 Sandy Loam 0.339 0.122 0.217 

2˚ 25 – 83 Sandy Loam 0.249 0.092 0.157 
2˚ > 83 Sandy Loam 0.226 0.071 0.155 

       
Site 3 PMM 0-20 Sandy Loam 0.396 0.11 0.286 

LOS 20 – 57 Sandy Loam 0.327 0.117 0.210 
LOS 57 – 120 Sand 0.062 0.008 0.054 

       
Site 4 PMM 0 - 20 Clay Loam 0.23 0.125 0.105 

2˚ 20 - 50 Loam 0.252 0.140 0.112 
2˚ 50 - 100 Loam 0.274 0.150 0.124 

        
Syn-MLSB PMM/TSS 0 - 100 - 0.311 0.106 0.205 Zettl (2014) 
       
SV62 ‘b1 ecosite’ Natural 0 - 100 Sand 0.123 0.017 0.106 
       
SV 60 ‘d1 ecosite’ Natural 0 - 100 Sand 0.149 0.019 0.130 
       
 Sand Lab - Sand 0.11 0.03 0.08 Macyk et al. 

(2006)        
Sandy Loam Lab - Sandy Loam 0.22 0.08 0.14 
       
Loam Lab - Loam 0.30 0.15 0.15 
       
Clay Loam  Lab - Clay Loam 0.34 0.17 0.17 
        
1:1 PMM Lab - Sand 0.139 0.055 0.087 Moskal et al. 

(2001)        
1:1 PMM Lab - Sandy Loam 0.263 0.09 0.173 
       
3:1 PMM Lab - Sandy Loam 0.432 0.207 0.226 
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AWHC measurements can be grouped into three categories: laboratory, field or LCCS. 

Laboratory experiments use instruments to exert a specific matric potential condition on soil 

cores (intact or packed) and measure the volumetric water content when equilibrium is 

reached. This can be done by creating either positive atmospheric pressure (pressure plate) or 

water suction (tension table) to ‘push’ or ‘pull’ water out of the soil pores, respectively (Carter 

and Gregorich, 2008). Laboratory methods generally underestimate the effective AWHC of a 

soil profile as they ignore the effects of layering (Elshorbagy and Barbour, 2007). Field 

approaches utilize excavated moisture content probes and tensiometers to measure water 

content and matric potential, respectively, in the field. Field measurements have the advantage 

of being temporally applicable across a whole season (Drozdowski et al., 2013). Finally, the Oil 

Sands-specific Land Capability Classification System (CEMA, 2006) uses key soil properties to  

estimate the AWHC of either a natural or reclaimed soil. To better capture the effective AWHC 

of a landscape, the LCCS uses layering (Table 2.5) and landscape ‘multipliers’ such as texture, 

slope %, aspect and water table depth. A comparison of these three methods by Macyk et al. 

(2006) found the following AWHC relationship: LCCS < Laboratory < Field. The LCCS estimation 

consistently underestimated the AWHC for PMMs. Compared to the two other techniques, the 

greater water content measured in-situ was partially attributed to the presence of a shallow 

water table (Macyk et al., 2006).  

 
 

Table 2.5 Estimates of increased available water holding capacity provided by textural layering 
of reclaimed soils from LCCS (2006). SCL - Sandy Clay Loam, Cl – Clay Loam, SL – Sandy Loam, S – 
Sand.  

Soil cover Prescription Moisture Enhancement (mm) 

50 cm SCL-CL Secondary  20-30 

20 cm Peat Mineral Mix /40 cm SCL-CL Secondary 30-40 

80 CL Secondary  30-110 

20, 35, 50 cm Peat Mineral Mix (SL-S)  32-47 
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Any of these measured and/or estimated AWHC can be used for ecosites prediction. The 

Guidelines for Reclamation to Forest Vegetation in the Athabasca Oil Sands Region (CEMA, 

2009) uses the cumulative AWHC of soil horizons within the top 1 m of the soil profile to 

estimate the soil moisture regime (Table 2.6). Combined with the measured nutrient regime on 

an edatopic grid, one can develop an idea of potential ecosites that could be supported by a 

particular reclaimed site (Figure 2.3). 

 

 

Table 2.6 Available water holding capacity (AWHC) of soil moisture regimes with associated 
boreal ecosites. Modified from LCCS (2006). 

Soil Moisture Regime AWHC Range Ecosite 

 mm H20 per 1 m profile  

Xeric 56 - 85 a 

Subxeric 86 - 115 a,b 

Sub-Mesic 116 - 145 b,c,d 

Mesic 146 - 175 d 
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Figure 2.3 Edatopic grid of four ecosites (a, b, c, d) and three site types (dry, moist poor, moist 
rich) most commonly found in the boreal upland forests of Northern Alberta. Modified from 
CEMA (2009). 
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3. Materials and Methods 

3.1 Research Sites 

Five sites were selected for this study including three reclaimed sites, a fire-disturbed site in the 

Oil Sands region north of Fort McMurray and an undisturbed natural site near Whitecourt, AB 

(Figure 3.1).  The two reclaimed tailing pond sites were sampled in summer of 2012, and the 

remaining sites in summer of 2013. Descriptions of the site locations are found in Table 3.1, and 

typical soil pits in Figure 3.2. 

 

 

Table 3.1 Study sites with locations, date of establishment and/or disturbance, soil descriptions. 

Sites Name Site Description Established Soils Descriptions 

WL1  Reclaimed Tailing Pond – Phase 2 2010 Peat Mineral Mixa 
WL2 Reclaimed Tailing Pond – Phase 1 2009 Peat Mineral Mixb,c 

RA1 Reclaimed Overburden Dump 2011 Peat Mineral Mixd 

Burned Oil Sands Lease 2011 Eluviated Dystic Brunisols 
Reference Forest Management Area  Natural Orthic Gray Luvisolse 

a 40 cm PMM / 10 cm mineral material / 100 cm densified tailings 
b 40 cm PMM / 10 cm mineral material / 100 cm densified tailings 
c Geosynthetic clay liner at 1.7 m  
d 40 cm PMM/ 100 cm high quality overburden 

e sporadic Eluviated Dystic Brunisols on knolls 
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Figure 3.1 Maps of study sites (a) map of Alberta with map of Canada subset; (b) Map of 
Athabasca Oil Sands regions with study sites highlighted; (c) Map of FORWARD Research 
Watersheds near Whitecourt with the Reference study site highlighted.  

1 / 2 
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Figure 3.2 Soil profiles of study sites (a) RA1 [PMM]; (b) WL1/WL2 Cover [PMM]; (c) Burned 
[Gleyed Eluviated Dystric Brunisol]; (d) Natural [Orthic Gray Luvisol].   

(a) (b) 

(d) (c) 
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3.2 Fort McMurray Area 

The Fort McMurray area is part of the Mid Boreal Mixedwood Ecoregion (Strong and Leggat, 

1992) with variable textured Gray Luvisol soils that support mixedwood forests of trembling 

aspen (Populus tremuloides) and white spruce (Picea glauca). Climatically, the region is 

characterized by long cold winters and short cool summers.  At the Fort McMurray Airport from 

1971-2000, the daily average temperature was 0.7 ˚C with an average daily maximum and 

minimum of 6.7 and -5.3 ˚C, respectively (Environment Canada, 2013). Mean annual 

precipitation was 413 mm with 316.3 mm as rainfall and 96.7 mm as snowfall (Environment 

Canada, 2013).  

 

3.2.1 Reclaimed Sites 

This study specifically collaborates with two Oil Sands Mines located 40 and 75 km north of Fort 

McMurray, respectively (Figure 3.1). Three reclaimed sites were chosen for this project: A 

reclaimed tailings pond, with two different soil covers and a reclaimed overburden dump. No 

known soil characterization data has been published at either site.  

 

The 220-hectare reclaimed tailings pond was the first operational pond in the Oil sands region 

and began construction in 1967. It demonstrates the technical and operational expertise to 

stabilize and reclaim large Oil Sands tailings ponds, as well as representing the first reclamation 

of a whole tailing pond in the Alberta Oil Sands industry. Reclamation first started in 2006 with 

the establishment of a trafficable surface. A multi-layered soil cover system was applied over 

the tailings sands to act as a growth medium.  The overlying reclamation landscape and cover 

was designed to develop a sustainable, variable boreal plains ecosystem. During its operational 

years, Pond 1 received tailings sands as well as treatment water from numerous stages of the 

bitumen extraction process. Thus, the pond exhibits different physical and chemical 

characteristics determinant on the tailings source. Due to the heterogeneity of tailing sands 
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quality within the pond, two different soil cover prescriptions were applied: Standard cover 

(WL1) and Engineered cover (WL2).  

 

Following soil cover placement, a 23.5-25-8 (N-P-K) fertilizer mix was applied via aerial 

broadcast at a rate of 300 kg per hectare to each cover. Identified noxious weeds were treated 

with locally-applied herbicide during the summer months of subsequent growing years.  

 

WL1 prescription, starting from the soil surface and moving downward, is as follows: 

 40 cm Peat/Mineral Mix (PMM) 

 10 cm Mineral subsoil material (Sandy Loam)  

Winter placement of the cover occurred in 2009-2010 and occupies roughly two-thirds of the 

total tailing pond surface ( 

Figure 3.3).  Vegetation prescriptions, planted in the spring/summer following cover placement, 

can be found in Table 3.2. 

 

WL 2 (Engineered cover) prescription, starting from the soil surface and moving downward, is 

as follows: 

 40 cm Peat/Mineral Mix (PMM) 

 10 cm Mineral subsoil material  (Sandy Loam)  

 120 cm Densified (de-watered) tailings sand 

 GCL with adhered High Density Polyethylene liner. 

Winter placement of the cover occurred in 2008-2009. Vegetation prescriptions, planted in the 

spring/summer following cover placement, can be found in Table 3.2. 
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Figure 3.3 Two Sampling transects on a reclaimed tailing pond in Northern Alberta, Canada. ‘S’ 
1-10 and ‘E’ 1-10 are the soil sampling points for WL1 and WL2 soil covers, respectively. 
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Table 3.2 Summary of Ecosite and Planting Prescription at WL and WL2. Taken from Suncor 
Energy (2011). 

Cover Ecosite Description  Area 
(ha)  

Estimated 
Number of 
Trees 

Estimated 
Number of 
Shrubs 

WL1 B1 Blueberry jack pine - aspen 8.2 16400 4100 
B4 Blueberry white spruce – jack 

pine 
5.5 11000 2750 

B3 Blueberry aspen – white 
spruce 

77.2 154400 38600 

F3 Horsetail white spruce 11.2 22400 5600 
H1/L1 Labrador tea/horsetail/black 

spruce marsh  
2.4 4800 1200 

E1 Dogwood balsam poplar – 
aspen 

0.7 1400 350 

      
WL2 B1 Blueberry jack pine - aspen 10 20000 5000 

B2 Blueberry aspen – white birch 12 24000 6000 

B3 Blueberry aspen – white 
spruce 

36 72000 18000 

B4 Blueberry white spruce – jack 
pine 

9 18000 4500 

D2 Low bush cranberry aspen – 
white spruce 

14 28000 7000 

E1 Dogwood balsam poplar – 
aspen  

4 8000 2000 
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Reclamation Area One (RA1) is a 90-hectare reclaimed overburden dump (Figure 3.4). The 

majority of soil placement on this site occurred in the winter of 2010, and a five year research 

project was started in 2011 to examine the effects of nitrogen fertilization and coarse woody 

debris (CWD) placement on soil and vegetation quality. There are multiple soil cover x 

fertilization x CWD treatments present on RA1: 

 

Peat-Mineral with N fertilization (100 kg N/ha) 

Peat-Mineral without N fertilization 

LFH with N fertilization (100 kg N/ha) 

LFH without N fertilization 

Peat-mineral with CWD amendment 

Peat-mineral with no CWD amendment 

LFH with CWD amendment 

LFH with no CWD amendment 

 

For this study, only one PMM section with no N fertilizer or CWD treatments (bolded) was 

selected.  The PMM, starting from the soil surface and moving down the profile, consists of the 

following prescription:   

 

 40 cm of Peat/Mineral Mix (PMM) 

 > 100 cm of subsoil overburden (high quality). 

 

A post-construction soil survey conducted at RA1 measured the mean PMM and subsoil (OB) 

thickness at 42.7 cm and 160 cm, receptively (Canadian Natural Resources Limited, 2012). 
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Figure 3.4 Reclaimed overburden dump in Northern Alberta, Canada. Contains both PMM and 
forest floor soil covers, along with either fertilized or unfertilized treatments. Modified from 
Canadian Natural Resources Limited (2012). 
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3.2.2 Burned site 

The Fire-disturbed (Burned) site is a Boreal Plains forest located on the northern, undeveloped 

portion of the CNRL lease. Brunisolic soils have developed on coarse-textured fluvial deposits 

originating from the nearby Athabasca River (B. Sey, personal comm. 2014). In the summer of 

2011, the Richardson forest fire burned over 700,000 ha and its southern extent reached the 

upgrader complex of CNRL’s Horizon Mine (AE-SRD, 2011). Both the RA1 and Fire sites were 

‘disturbed’ in 2011, presenting a unique opportunity to compare the soil properties of juvenile 

soils under both anthropogenic and natural disturbances within close geographical distance 

(Figure 3.1). Sampling points were chosen from wetter, finer-textured material ecosites in an 

attempt to minimize textural differences between study sites. Due to the wetter conditions and 

vegetation (i.e. trembling aspen) the fire appeared to have fairly low intensity which is 

traditionally associated with aspen forest burns (Forestry Canada, 1992). 

 

3.3 Whitecourt Area 

3.3.1 FORWARD Reference Site 

The FORWARD research watersheds near Whitecourt, Alberta were selected as the undisturbed 

forested sampling sites. Located approximately 200 km southwest of Ft. McMurray in the 

Forest Management Area of Millar Western Forest Products Ltd., these watersheds were 

initially instrumented in the early 2000’s to develop models that link water quantity, water 

quality and disturbance indicators to management practices on the Boreal Plains of western 

Canada (Smith et al., 2003). This site is classified as a Gray Luvisolic-dominated (Figure 3.2) 

Boreal Mixedwood Ecoregion, with lodgepole pine (Pinus contorta), white spruce, balsam 

poplar (Populus balsamifera) trembling aspen, jack pine (Pinus banksiana), and black spruce 

(Picea mariana) found in varying stands (Strong and Leggat, 1992). At Whitecourt from 1981-

2000, the daily average temperature was 2.6 ˚C with an average daily maximum and minimum 

of 8.3 and -3.0 ˚C, respectively. Mean annual precipitation was 544 mm, with 410 mm as rainfall 

and 134 mm as snowfall (Environment Canada, 2015). The FORWARD watershed was deemed 
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an appropriate natural analogue due to its representative ecosites (b,d), and immense database 

of historical measurements and intimate site knowledge within the FORWARD project. In 

addition, within the watershed exists undisturbed, fire-disturbed, and numerous harvested 

treatments which could fit into future research opportunities.  
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3.4 Experimental Design 

3.4.1 Transect Design 

Sampling followed a stratified random transect design, with 10 points being sampled along a 

linear transect at each site ( 

Figure 3.3 and Figure 3.4). Sampling points selected along the transect were of non-uniform 

distance and selected to represent the relative proportion of depression, toe slope, midslope 

and knoll positions within each landscape. Localized randomized was achieved by choosing soil 

pit locations by tossing a pin flag over a shoulder. This technique was used to prevent site 

selection bias at the local scale. At the Burned site some deviation from the transect was due to 

the heterogeneity of fire-disturbed conditions.   

 

The Land Capability Classification System (CEMA, 2006) recommends a minimum post-

disturbance sampling density of 10 to 50 ha per sample for selectively handled materials. The 

largest area examined was WL1 at approximately 160 ha; therefore, the sampling density (160 

ha / 10 samples = 16 ha sample-1) was appropriate for the study. 

 

3.4.2 Soil Pit Excavation and Field Measurements 

At each sample point, a 0.5 m x 0.5m soil pit was dug (using shovels) in the soil cover until 

overburden/tailings sands/C Horizon was reached. Ground disturbance permits were obtained 

prior to excavation for on-lease sites. If a suitable surface vegetation layer was present, a 

‘vegetation mat’ was cut first, removed and set aside for backfilling in order to minimize 

disturbance. Next, a bricklayers’ trowel was used to cut shallow shelves into one face of the soil 

pit in a descending pattern, allowing for sampling at each layer. The LCCS (2006) categorized 

the soil profiles into three consolidated layers: Topsoil (TS) from 0-20 cm, Upper Subsoil (USS) 

from 20-50 cm, and Lower Subsoil (LSS) from 50 – 100 cm (Figure 3.5). Sampling for each shelf 

included: near-saturated hydraulic conductivity (Kns) measurement using a mini-disc 

infiltrometer, soil strength measurements and a soil core (~5 cm dia. x 7 cm long) for 
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determining Bulk Density (BD) and Available Water Holding Content (AWHC). These sampling 

selves were cut at approximately 5 cm, 30 cm and 55 cm depth and applied to 0-20 cm, 20-50 

cm, 50-100 cm soil layers, respectively. At each soil layer, a soil sample was hand-collected from 

three faces of the soil pit to form a composite sample. These bulk soil samples were air-dried, 

sieved (2 mm) and put into vials for laboratory analysis. Intact soil cores were required for 

laboratory analysis of moisture retention curve and bulk density measurements. The 141 cm3 

aluminium soil core (60 mm dia. x 5 mm long) was placed on the cut sampling shelf and driven 

down using a rubber mallet. Next, the core was removed, covered on both ends, secured and 

properly labelled. Both the bulk soil samples and cores (BD and moisture release curve) were 

stored at 4˚C until analysis could be completed. In addition, a complete soil pit and site 

description was completed for each sample point. Once sampling was completed, the pit was 

filled back in and the vegetation mat replaced.   

 

In the first year of fieldwork, the initial sampling scheme had samples taken at each 

prescription layer within the reclamation cover ie. PMM (0-20 cm) and secondary mineral 

material (50 - 100 cm). However, after the first field season it was decided that this sampling 

scheme may by neglecting the undeveloped lower portion of the PMM. Therefore, it was 

decided that the sampling at the remaining sites should emulate the LCCS (CEMA, 2006) 

technique: Topsoil (TS) from 0-20 cm, Upper Subsoil (USS) from 20-50 cm, and Lower Subsoil 

(LSS) from 50 – 100 cm.  Due to this modification, the two sites sample during the first field 

season (WL 1 and WL2) consist of two sampling depths (0-20 cm and 50-100 cm), while the 

following three study sites (RA1, Burned, Reference) have three sampling depths (0-20 cm, 20-

50 cm, 50-100 cm).  
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Figure 3.5 Mini-disc infiltrometers measuring cumulative infiltration over time in a Burned 
Brunisol. Dashed lines represent boundaries between samplings depths - TS, Topsoil (0-20 cm); 
USS, Upper subsoil (20-50 cm); LSS, Lower Subsoil (50-100 cm).  

Mini-disc infiltrometers 

TS 

USS 

LSS 
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3.4.3 Tension Infiltrometer 

Near-saturated hydraulic conductivity (Kns) was measured with a mini-disc infiltrometer (Figure 

3.5) at 0.5 cm tension (Decagon Devices Inc., 2012). The term ‘near-saturated’ reflects that 

even a slight tension will prevent preferential flow in the widest of marcopore. In true 

saturated conditions this preferential flow mechanism accounts for a large portion of the 

overall water movement. Limiting preferential flow – hence restricting water movement 

through the soil matrix only – significant decreases the spatial variability of K values and allows 

site differences to be more easily determined. A trade-off of the Kns technique is it does not 

represent the true saturated hydraulic conductivity at each site.  

 

The starting water volume was recorded at time zero, and the infiltrometer was placed 

(assuring good contact) on the soil surface. Water volume was documented every 30 s as the 

water infiltrated from the water reservoir into the soil until a steady infiltration-state was 

observed over several minutes. Decagon Device, Inc. (2012) recommends a minimum of 15 ml 

of water needs to infiltrate in order to accurately calculated Kns. Two Kns measurement were 

taken at each sampling depth (with the exception of WL1 and WL2, where only one 

measurement per depth was taken).  

 

 The Kns estimation method proposed by Zhang (1997) uses cumulative infiltration (I) data to 

determine near-saturated hydraulic conductivity in a wide-range of dry soils. This method 

begins with the first two terms of Philip’s (1957) one-dimensional infiltration equation:  

 

          √  (5) 

 

 

Where C1 (m s-1) and C2 (m s-1/2) are coefficients that are related to soil sorption (S) and 

hydraulic conductivity, respectively. Both coefficients are determined by fitting the cumulative 

infiltration data to time (t) using a maximum neighborhood method (Marquardt, 1963). Zhang 
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(1997) suggested that C2 could be related to the near-saturated hydraulic conductivity of the 

soils surface through simple linear expressions: 

 

 
    

  

  
 (6) 

 

 

Where A2 is a unit-less value representing the sorption properties of a given soil. Using van 

Genuchten (1980) water retention model, A2 is closely related to the parameters α (cm -1), and 

n (dimensionless) which represent air entry suction and pore-size distribution, respectively. 

Zhang (1997) performed numerical experiments to estimate the empirical relationship between 

A2 and soil retention parameters, physical infiltrometer parameters and initial water content. 

Depending on the value of n, two A2 equations were derived: 

 

 
    

                               

         
                        (7) 

 

 

 
    

                              

         
                       (8) 

 

 

Where    is the negative infiltrometer suction value at the disk surface (cm), and    the disc 

radius (cm). These empirical relationships allow A2 to be estimated using only soil texture class 

and suction values for a mini-disc infiltrometer.  

 

To validate the robustness of the empirical estimations used by the Zhang (1997) method, 

Dohnal et al. (2010) ran three-dimensional axisymmetric flow simulations on a wider range of 

soils. The original Zhang (1997) simulations were performed on two hypothetical soils and four 

real soils, while the Dohnal et al. (2010) simulations included 12 soils of different soils textures, 
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modelled using the ROSETTA pedotransfer function (Schaap et al., 2001), as well as two intact 

field soils. Assessing Kh0 accuracy using relative error, the Zhang (1997) estimations were found 

to be insufficient for soils with an n < 1.35. The following modified    equation was optimized 

by Dohnal et al. (2010) utilizing a new dataset of 16 soils: 

 

 

 
    

                                  

        
                        (9) 

 

 

 

 As this study encountered a large number of soils with n < 1.35 (ie. Clayey soils), the three 

different    equations devised by Donhal et al. (2010) were used to determine near-saturated 

hydraulic conductivity. The    equation used was dependent on the n value of the soil:  n ≥ 1.9 

= Eq. [7]; 1.9 > n ≥ 1.35 = Eq. *8]; n < 1.35 = Eq. [9].  

 

Both Zhang (1997) and Dohnal et al. (2010) require the n value for each individual infiltration 

reading to be estimated based on soil texture class. Table 3.3 illustrates the soil texture 

class/van Genuchten parameter relationships used by Zhang (1997) and recommended by 

Decagon Devices Inc. (2012). As previously mentioned, the Dohnal et al. (2010) values were 

used in this section of the study.  
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Table 3.3 Summary of van Genuchten parameters (α,n) estimated for each soil texture class in 
both Zhang (1997) and Dohnal et al. (2010).  

Soil texture Class Zhang (1997)  Dohnal et al. (2010) 

Estimated 
α 

Estimated 
n 

 Estimated 
α 

Estimated 
n 

Sand 0.145 2.68  0.035 3.18 

Loamy Sand 0.124 2.28  0.035 1.75 

Sandy Loam 0.075 1.89  0.027 1.45 

Loam 0.036 1.56  0.011 1.47 

Silt 0.016 1.37  0.007 1.68 

Silt Loam 0.020 1.41  0.005 1.66 

Sandy Clay Loam 0.059 1.48  0.021 1.33 

Clay Loam 0.019 1.31  0.016 1.41 

Silty Clay Loam 0.010 1.23  0.008 1.52 

Sandy Clay 0.027 1.23  0.033 1.21 

Silty Clay 0.005 1.09  0.016 1.32 

Clay 0.008 1.09  0.015 1.25 

 

 

 

3.4.3.1 Kns Equation Comparison 

 

Soil texture tables are used to estimate the α and n van Genuchten parameters in both Zhang 

(1997) and Dohnal et al. (2010) equations (Table 3.3). This presents a problem - the significant 

hydraulic influence of the peat component within our studied PMM are ignored. Hillel (1982) 

states that organic carbon imparts similar characteristics as the clay fraction within a soil. Not 

accounting for the peat component may lead to assuming a ‘coarser’ behaviour within our 

reclaimed soils than actually exist. To explore this problem, an additional hydraulic conductivity 

calculation was completed replacing the soil-texture estimated parameters with the intact soil 

core-measured α and n van Genuchten parameters from this study’s soil water retention 

models (Section 3.4.4.2), and inserted into Dohnal et al. (2010) equation. The original Zhang 

(1997) model was also included. In total, three Kns models were developed – Zhang (1997), 
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original Dohnal et al. (2010), and Dohnal et al. (2010) with calculated α and n parameters from 

this study. A list of parameters used for each unique calculation is located in APPENDIX A. 

 

 

3.4.4 Laboratory Analysis  

A total of 1,322 discrete laboratory measurements were collected. A list of laboratory analysis 

sample size and mean values can be found in APPENDIX B and APPENDIX C, respectively. 

 

3.4.4.1 Bulk Density 

 

Within the soil moisture retention curve experiments the intact soil cores needed to be 

destructively reduced in size between the low and high tension measurements (Section 

3.4.4.4). At this time the bulk density was measured. Samples were dried at 100˚C for 48 hours 

and bulk density determined by dividing the dry sample mass by the core volume (141 cm3). 

Coarse fragments (>2 mm) were found to be greater than 5% total soil volume for the WL1 and 

WL2 sites; therefore, bulk densities were adjusted by separating coarse fragments (2 mm sieve) 

and measuring their dry weight and volume (water displacement method).    

 

3.4.4.2 Particle Size Analysis 

The modified pipette method was utilized to determine relative proportions of sand, silt, and 

clay of each soil sample (Indorante et al., 1990). Clay, silt and sand particles range from <0.002 

mm, 0.002 – 0.05 mm and 0.05 - 2 mm respectively. Briefly, 20 g samples were pre-treated with 

hydrogen peroxide to remove organic matter. Calgon® solution was added and shaken 

overnight to assist in clay dispersion. Standardizing for the air temperature within the lab, the 

samples were left to settle for approximately four hours, and then a 10 mL subsample was 

extracted with a vacuum-connected pipette from a 5 cm depth. This subsample was oven-dried, 

weighed, and then extrapolated based on liquid volume to determine soil clay content. The 
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sand-sized fraction was measured via 50 µm sieving. Finally, the silt fraction was considered the 

unaccounted weight remaining after considering the clay and sand fractions from the total 

weight.  

 

3.4.4.3 Chemistry 

 

Soil chemical analyses of soil samples included pH, electrical conductivity (EC), total carbon, 

organic carbon (OC) and extractable Nitrogen (N) and Phosphorus (P). A 2:1 water-to-soil 

dilution slurry was made to determine pH and EC on a pH/EC glass electrode meter (Model FG2, 

Mettler Toledo). Organic carbon samples were first pre-treated with a HCL fumigation to 

remove carbonates (Harris et al., 2001) and measured using a dry combustion Carbonator 

(Model CR-12, LECO). Extractable N as nitrate (NO3) and ammonium (NH4), and extractable P 

(PO4) were measured using a 2M KCl extract and Modified Kelowna extraction, respectively 

(Soon and Hendershot, 2008). Both extracts were analyzed on a Technicon AutoAnalyzer II 

(SEAL Analytical. Mequon, WI).  

 

3.4.4.4 Soil Moisture Retention Curves 

 

The soil water retention relationship between soil matric potential (h) and volumetric water 

content (θ) was examined by tension table and pressure plate methods on intact soil cores. 

Both devices operate by applying suction/pressure conditions to a saturated, cored soil sample 

and allowing excess water to be expelled. At equilibrium, all soil water is considered held at a 

tension lower than the applied tension. Tension tables are generally chosen for the 0 < h < -1 m 

range due to its stability at lower matric potentials and higher sample capacity (Reynolds and 

Topp, 2008). The tension tables used in this study were custom-built acrylic boxes measuring 

approximately 75 x 45 cm, with perpendicular grooves milled into the base to allow water 

drainage. To ensure good hydraulic contact with the cores, a layer of silt-sized (25 – 50 µm) 

tension medium was poured onto the bottom of the table with a piece of filter paper 
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separating the tension medium from the underlying drainage grooves. The tension of the table 

was achieved with a constant head.  

 

Saturating the core without creating air pockets involved a series of steps (Reynolds and Topp, 

2008). First, both ends of the core were covered with cheesecloth and placed in water 

approximately half the core’s height. After 24 hours, the core was flipped and left to saturate 

for an additional 24 hours. The water level was then raised to submerge the whole core for a 

final 24 hours. Once fully saturated, the cores were placed on the table/plate at prescribed 

tensions and the cores were measured daily for total weight. Equilibrium was achieved when < 

0.1 g daily variation was measured and the tension was then increased to the next highest 

setting. From these measurements, volumetric water content was determined by the following 

calculation: 

 

 
    

                          

                            
 (10) 

 

 

For tensions greater than 100 cm, both 5 and 15 bar pressure plate extractors (Soil Moisture 

Equipment Corp. Santa Barbara, CA) were used to determine equilibrium weight (Figure 3.6). At 

the highest two tensions (5000 cm and 15000 cm), the cores were repacked into smaller, 1.5 

cm tall sleeves at the same bulk density as the taller intact cores. The total core volume was 

reduced to improve equilibrium times and water retention at these higher tensions is 

dominated by soil particle size and not structure in these disturbed cores (Hillel, 1982). 
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Table 3.4 Tensions, methods and pore-size classification used to calculate moisture retention 
curve.  

Method Cores Set Tensions Pore Size 

Class 

Pore-size 

  cm kPa psi bar um 

Tension 

Table 

Intact 

(141 cm3) 

3 0.29 0.04 0.003 
Macropores 

1000 

30 2.93 0.43 0.03 100 

70 6.85 1.00 0.07 

Mesopores 

42 

Pressure 

Plates 

100 9.78 1.42 0.1 30 

300 29.3 4.27 0.29 9.85 

700 68.5 9.95 0.69 

Micropores 

4.22 

1500 146.7 21.33 1.47 2 

Disturbed 

(18 cm3) 

5000 489 71.1 4.90 0.6 

15000 1467 213.3 14.7 0.2 
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Figure 3.6 Photos of a) 141 cm3 intact soil core filled with PMM, b) 18 cm3 disturbed soil cores, 
and c) pressure chamber with two ceramics plates of intact soil cores.  

c) 

a) b) 
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Originally it was intended for this study to complete retention curves on all 130 soil cores 

sampled from the five sites (2 sites [WL1, WL2] x 10 pits x 2 depths + 3 sites [RA1, Burned, 

Reference] x 10 pits x 3 depths). However, due to extremely long equilibrium times and high 

instrument demand the sample size was reduced to 50 samples (5 sites x 5 pits x 2 depths [0-20 

cm, 50-100 cm]). Cores were selected based primarily on core intactness and site 

representativeness.  

 

3.4.4.1 Available Water Holding Capacity 

 

Available Water Holding Capacity (AWHC) is the mathematical difference between the water 

held at field capacity and permanent wilting point. This study defined field capacity as 10 kPa 

for coarse-textured soils (sand, sandy loam, loamy sand) and 33 kPa for fine-textured soils 

(remaining soil texture classes). The lower limit, permanent wilting point, was established at 

1500 kPa for all samples.  

 

Laboratory-derived AWHC was calculated as the difference between texture-appropriate FC 

and PWP values measured in the soil moisture retention curves study (Section 3.4.4.4). Using 

intact soil cores allows for discrete, tangible AWHC values to be measured; however, it does not 

account for field conditions effects such as landforms or water tables on the real in-situ water 

availability. 

  

Land Capability Classification System (LCCS; CEMA, 2006) is an Oil Sands-specific tool developed 

to more easily estimate the AWHC of either a natural or reclaimed soil without the time 

consuming process of determining water retentions. As shown in Table 3.5, soil texture is the 

key device used to determine the AWHC of each soil horizon – the sum of 1 m depth is 

considered the total soil profile AWHC. Furthermore, LCCS uses layering (Table 2.5) and 

landscape ‘multipliers’ such as texture, slope %, aspect and water table depth to better 

represent the in-situ water availability that a core-based method cannot capture.  
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Table 3.5 Available water (mm H2O) per thickness of soil horizon (cm-1) as determined by soil 
texture and parent material. Modified from Land Capability Classification System (LCCS; CEMA, 
2006).  

Field Capacity 
Soil Suction 

Description Texture class  mm H2O cm-

1 Soil 

n/a Organic material 
(> 17% TOC) 

Surface Natural n/a 0.0 
Reclaimed n/a 0.0 

Buried Reclaimed n/a 1.0 
    
10 kPa PMM LS, S 1.2 

SL or finer 1.7 
Tailing sands LS or S 1.0 
Sand S 0.8 
Loamy sand LS 1.1 
Sandy loam SL 1.4 

    
33 kPa Loam, sandy clay, sandy clay loam L, SC, SCL,  1.5 

Clay loam CL 1.7 
Silty loam, silt, silty sand SiL, Si, SiS 1.8 
Clay, silty clay loam, silty clay C, SiCL, SiC 1.6 
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3.4.4.2 Soil Hydraulic Models  

 

The SWRC Fit Program (Seki, 2007) was used to fit different soil hydraulic models to the soil 

water retention curves by the Levenberg-Marquardt method. Initial parameters were internally 

estimated based on soil texture and then nonlinear-fitting of each model was performed.  

Five equations for modelling soil water retention were tested, shown in their effective 

saturation (Se) derivatives: 

1. The unimodal equation proposed by Brooks and Corey (1964): 

 

 

    {(
 

  
)
  

       

                    

 (11) 

 

2. The unimodal equation proposed by van Genuchten (1980): 
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3. The unimodal equation proposed by Kosugi (1996) employing a log-normal pore size 

distribution: 
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] (13) 

 

4. The bimodal equation proposed by Durner (1994) which obtained the flexibility 

necessary to describe multimodal retention features by superimposing van Genuchten 

(1980) models. For this study, k=2:  
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5. The bimodal equation proposed by Seki (2007) that used the log-normal pore size 

distribution function of Kosugi (1996) with the multi-curve feature of Durner (1994) to 

achieve a bimodal fit. For this study, k=2:  

 

 

    ∑  

 

   

 [
    

 
   

 

  
]         ∑      (15) 

 

 

Where h is the suction head; λ is the pore-size distribution index of the medium 

(dimensionless); hb, α, n and m are calculated fitting parameters (dimensionless), where m=1-

1/n; σ is a dimensionless parameter (σ > 0) of the standard deviation of the log-normal pore 

size distribution; Q is the complementary normal distribution function; wi is the weighing factor 

used for the subcurves of the multimodal models.  

 

 

3.4.5 Statistical Analysis 

Statistical analysis was conducted using R (R project. v 3.1.1). Data exploration investigated 

normality of distribution and possible transformations. Results were visually inspected for 

normality using Quantile-Quantile plots, histograms, and box-and-whisker plots. The vast 

majority of unique treatments (site x depth x soil property) exhibited normal distribution. To 

correct for non-normal skewing, outliers were removed in order of intensity to determine if 

they were affecting normality. If the removal of an outlier did not improved normality, it was 

preserved; if deemed an enhancement of normality, it was removed. These corrected data sets 

were further verified with a Shapiro-Wilk test to ensure normality was within an adequate p 

value < 0.1 (Royston, 1995). In total, eleven of the 1,530 unique samples were removed to 

ensure normality and a note of caution was added to the analysis. Due to the extreme spatial 
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variability of near-saturated hydraulic conductivity, those measurements were log-transformed 

and presented as box-and-whisker plots to illustrate a range of naturally-occurring values. 

 

An analysis of variance within the general linear model framework was used to determine 

significant parameters for each soil property tested. To further compare between levels within 

a parameter (i.e. different depths), a Tukey’s multiple comparisons of means Post-hoc test was 

performed (R package: multicomp). For both the ANOVA and Tukey’s tests a significance level of 

p = 0.05 was used.  

 

Pseudo-replication was present within this study as each sampling transect was located within a 

single, confined field. This attribute is caused by the exclusivity of sites; only one intact 

reclaimed tailings pond in the Oil Sands region exists. Due to the uniqueness of these sites, 

there was no corresponding sampling locations that would mitigate the errors afforded by 

pseudo-replication. Therefore, the scope of inference of this analysis is directly limited to the 

sites sampled within the project. 
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4. Results 

4.1 Characterization of Research Sites 

4.1.1 Soil Profile Descriptions 

The type and depth of soil horizons measured at both the reclaimed and natural soil profiles are 

presented in Figure 4.1. The mean total soil cap thickness of WL1 and WL2 soil covers was 79 ± 

26 and 64 ± 17 cm, respectively (Table 4.1). RA1’s mean total soil cap thickness was determined 

to be ≥ 100 cm as the soil cover was too thick to measure with non-mechanical equipment. 

CNRL measured mean subsoil cap thickness on RA1 is approximately 1.6 m (CNRL, RA1 Research 

Project, 2012).  The peat mineral mix accounted for 65 %, 67 % and ≤ 39 % of the soil cover for 

the three reclaimed sites WL1, WL2, and RA1, respectively.  

 

4.1.2 Soil Particle Size Distribution 

The particle size distribution of the five study sites can be separated into two distinct texture 

categories. WL1, WL2 and Burned have statistically (p-value = 2.4 x 10-6) coarser material than 

the other sites and have sand fractions that are 54-66 %, silt 11-25 %, and clay within 18-27 % 

ranges, with a majority of sandy loam and/or sandy clay loam soil texture (Table 4.2 and Table 

4.3). Conversely, RA1 and the Reference sites consist of a larger proportion of finer materials 

that range from 22-30 % sand, 26-46 % silt and 25-48 % clay (Table 4.2). The RA1 and 

References sites are dominated by silt and clay loams textures (Table 4.3).  

 

 

 

 

 



60 
 

 

Figure 4.1 Soil profiles of three reclaimed Oil Sands soils (WL1, WL2, RA1), one fire-disturbed 
forested soil (Burned), and one undisturbed forested soil (Reference). Natural horizons were 
designated by the Canadian Soils Classification System.  
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Table 4.1 Mean thickness (cm) and standard deviation of soil cover measured on three 
reclaimed Oil Sands sites (WL1, WL2, RA1) in northern Alberta, Canada (n= 10).  

† No discernible mineral subsoil horizon present at some points 
‡ Soil cover was greater than 1m in thickness and final depth was undetermined at majority of 
sample points 
  

Site Peat mineral Mix Mineral Subsoil Total Soil cover 

 cm 

WL1 50.9±22.0 28.3±26.7† 79.2±26.3 
WL2 42.8±12.4 21.6±17.1† 64.4±16.8 
RA1 39.0±12.4 61.0±5.8‡ +100‡ 
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Table 4.2 Particle Size Analysis of three reclaimed Oil Sands soils (WL1, WL2, RA1), one fire-
disturbed soil (Burned), and one undisturbed soil (Reference) determined by pipette method 
(n=10). 

Soil  
Depth 

Reclaimed  Natural 

WL1 WL2 RA1  Burned Reference 

Sand (%) 
0-20 cm 57±13a† 66±7a 25±11b  57±15a 30±8b 
20-50 cm -‡ - 25±8b  56±14a 27±12b 
50-100 cm 54±16ab 62±10a 26±15b  65±18a 22±8b 
       

Silt (%) 
0-20 cm 17±5b 15±6b 41±19a  25±12ab 46±9a 
20-50 cm - - 40±19a  17±8b 41±12a 
50-100 cm 22±8ab 18±9ab 26±13ab  11±10b 38±20a 
       

Clay (%) 
0-20 cm 26±10ab 19±2b 34±15a  18±12b 25±7ab 
20-50 cm - - 35±20a  27±8a 32±2a 
50-100 cm 24±12b 21±6b 48±12a  24±13b 39±19a 

† Values in a row with the same letter are not significantly different at a p < 0.05. 
‡ not sampled  
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Table 4.3  Soil texture class of ten sampling points (n=10) at three reclaimed Oil Sands soils 
(WL1, WL2, RA1), one fire-disturbed soil (Burned), and one undisturbed soil (Reference). 
Number in parentheses represents number of sampling points of that soil texture class at that 
site x depth. Particle size determined by pipette method. 

Depth 
(cm) 

Reclaimed  Natural 

WL1 WL2 RA1  Burned Reference 

0-20 Sandy Loam (1) 
SCL† (7) 
Clay (2) 

Sandy Loam 
(5) 
SCL (5) 

Loam (1)  
Clay (3) 
SiL (2) 
Clay Loam   (2) 
Silty Clay (1) 
Silty Clay Loam 
(1) 

 Sandy Loam (8)  
Loam (1) 
Clay (1) 

Loam (4) 
Silty Loam (3)  
Clay Loam (2) 
Clay (1) 

 
 
 
 
 
 

  

20-50 -‡ - Clay (4) 
Clay Loam (3) 
Silty Loam (3) 

 SCL (8) 
Sandy Loam (1) 
C (1) 

Loam (2) 
   Clay Loam (2) 
   Clay (2) 
   Silty Clay (1) 
   SCL (1)  
   Silty Loam (1) 

   Silty Clay (1) 
     
50-100 SCL (5) 

Sandy Loam (3) 
Clay Loam (1) 
Clay (1) 

Sandy Loam 
(5)  
SCL (5) 

Clay (6) 
Clay Loam (2) 
Sandy Clay (1) 
Silty Clay (1) 

 SCL (4) 
Sand (2) 
Sandy Loam (2) 
Clay Loam (1) 
Clay (1) 

Clay (5) 
Loam (2) 
Clay Loam (2) 
Silt (1) 

 
 
 

  

† Sandy Clay Loam 
‡ Not sampled 
  



64 
 

4.1.3 Physical and Chemical Properties for the Sites 

Mean soil BD for topsoil (0-20 cm) at the WL2 (0.88 g cm-3), RA1 (0.60 g cm-3) and Reference 

(0.99 g cm-3) sites was significantly lower compared to the Burned (1.25 g cm-3) site (Table 4.4). 

RA1 upper subsoil (20-50 cm) exhibited the greatest variability in BD amongst all site/depth 

combinations, which may be a result of the coarse mixing of its two dissimilar substrates – fibric 

peat and clayey subsoil – leading to a ‘mosaic’ of high density and low density pockets. The 

lower subsoil (50-100 cm) in WL2 was significantly less dense at 1.12 g cm-3, (p-value = 0.00011) 

compared to the other sites, with the exception of WL1 (Table 4.4).    

 

Organic carbon for all sites showed a decreasing trend down the soil profile (Table 4.4). The 

highest mean OC % in the topsoil was found at RA1 (11.67 %), followed closely by WL2 (9.09 %). 

Burned topsoil (4.49 %) had similar OC % content to the peat-infused reclaimed sites (Table 

4.4). Additionally, topsoil within two reclaimed sites – WL2 and RA1 – had significantly (p-value 

= 6.3 x 10-5) higher OC % content than the Reference soil (1.16 %). At the 50-100 cm depth, 

both reclaimed tailings sites - WL1, WL2 - had significantly higher OC than the natural sites 

(Burned, Reference).  

 

Extractable soil NH4
+ levels were the dominant form of extractable soil N at the sites. The other 

three sites (WL1, WL2, Burned) still had larger proportions of NH4
+ compared to NO3

-, but not at 

the same proportions. The WL1 and WL2 sites had the highest mean NO3
- concentration at 2.20 

± 3.64 mg kg-1 and 3.44 ± 4.11 mg kg-1, respectively (Table 4.4).   

 

Within the top 20 cm, extractable PO4
- was significantly higher (p-value = 4.2 x 10-7) at both 

natural sites (Burned (34.1 mg kg-1) and Reference (22.9 mg kg-1)) compared to the three 

reclaimed sites. At the 50-100 cm soil depth the natural sites (Burned and Referenced) had 

significantly more extractable PO4
- compared to WL1 and WL2. The majority of extractable PO4

- 

within the natural sites was located within the 0-20 cm layer, while reclaimed sites tended to 

exhibit a more even distribution throughout the soil profile (Table 4.4).  
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Table 4.4 Mean and standard deviation of soil nutrients in three reclaimed Oil Sands soils (WL1, 
WL2, RA1), one fire-disturbed soil (Burned), and one undisturbed soil (Reference).  

† Values in a row with the same letter are not significantly different at p < 0.05 
‡ not sampled   

Soil Depth Reclaimed  Natural 

WL1 WL2 RA1  Burned Reference 

Bulk Density (g cm-3) 
0-20 1.13±0.29ab† 0.88±0.18b 0.60±0.26b  1.25±0.18a 0.99±0.25b 

20-50 -‡ - 1.08±0.52a  1.53±0.06a 1.48±0.10a 

50-100 1.47±0.19ab 1.12±0.22b 1.64±0.17a  1.54±0.07a 1.52±0.06a 

       

Organic Carbon (% wt.) 

0-20 cm 5.62±2.83ab 9.09±4.79a 11.67±10.11a  4.49±4.27ab 1.16±0.47b 

20-50 cm - - 3.89±3.90a  0.69±0.13b 0.56±007b 
50-100 cm 4.16±1.96a 5.71±4.57a 1.35±0.31ab  0.63±0.07b 0.58±0.19b 

       

pH 

0-20 cm 8.0±0.15a 7.8±0.24a 7.0±1.04ab  5.3±0.62b 5.2±0.41b 

20-50 cm - - 7.5±0.27a  5.8±0.65b 5.4±0.36b 

50-100 cm 8.1±0.14a 7.8±0.22ab 7.6±0.19ab  6.1±0.73bc 5.5±0.47c 
       

NO3
- (mg kg-1) 

0-20 cm 2.20±3.64ab 3.44±4.11ab 0.94±0.91b  1.72±1.31a 0.23±0.18b 

20-50 cm - - 0.59±0.15b  1.72±1.50a 0.17±0.05ab 

50-100 cm 1.04±0.13ab 1.38±0.89ab 0.83±0.49ab  1.86±1.33b 0.16±0.06a 

       
NH4

+ (mg kg-1) 

0-20 cm 6.2±3.19ab 5.8±3.05ab 7.5±2.40a  3.2±0.89b 9.9±9.66a 

20-50 cm - - 5.0±2.12a  2.9±0.70b 3.4±0.85ab 

50-100 cm 4.5±3.06ab 4.4±3.00ab 4.2±1.59ab  2.7±0.57b 4.8±1.42a 

       

PO4
- (mg kg-1) 

0-20 cm 1.9±1.44b 1.8±0.14b 2.5±1.20b  34.1±23.98a 22.9±18.38a 

20-50 cm - - 2.1±0.77b  11.4±12.29a 5.1±3.42ab 

50-100 cm 1.0±0.47b 1.3±0.39b 2.5±1.45ab  5.6±2.53a 7.0±4.50a 

       

Electrical Conductivity (dS m-2) 

0-20 cm 0.77±0.18b 0.71±0.37b 1.45±0.43a  0.12±0.05c 0.09±0.04c 
20-50 cm - - 1.62±0.62a  0.13±0.08b 0.04±0.01b 

50-100 cm 0.75±0.36bc 0.93±0.32b 1.82±0.90a  0.19±0.17cd 0.04±0.01d 
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Conversion of nutrient levels to volumetric totals (Mg ha-1) can be found in APPENDIX D. 

 

Both WL1 (8.0 ± 0.15) and WL2 (7.8 ± 0.24) had significantly (p-value = 2.3 x 10-7) higher soil pH 

(more basic topsoil) than the natural Burned (5.3 ± 0.62) and Reference (5.2 ± 0.41) sites. The 

Reference site demonstrated the lowest pH means at each of the three depths. Both the RA1 

and Burned sites had a slight increase in pH with increasing soil depth (Table 4.4). Reclaimed 

sites had higher mean topsoil electrical conductivity (EC) than either natural sites (Table 4.4). 

RA1 was measured as having the highest mean EC values with a trend of increasing salts deeper 

into the profile. Hill slope and aspect at each sampling point were also analysed for correlations 

with chemical and physical properties, however no significant results were revealed. Data not 

shown. 

 

 

4.2 Near-Saturated Hydraulic Conductivity 

No significant differences in near-saturated hydraulic conductivity were found between sites 

within the topsoil (Figure 4.2, p-value = 0.94) or upper subsoil depths (data not shown, p-value 

= 0.065). However, significant treatment differences (p-value = 0.0012) were detected at the 

lower subsoil depth where the RA1 and Reference sites had significantly lower near-saturated 

hydraulic conductivity compared to the Burned site. With the exception of the Burned site, all 

sites exhibited a decreasing trend of Kns with increasing depth in the soil profile. Outliers 

indicated by the box-and-whisker plots in Figure 4.2 were deemed valid based on the 

accompanying soil characteristics of that individual sample point (i.e. soil texture).  

 

The comparison of Kns results derived from utilizing three different Kns models (Zhang, 1997; 

Dohnal et al., 2010; this Study) on the same infiltration data yielded minor difference between 

sites x methods (Figure 4.3). Applying different models resulted in both increasing and 

decreasing means, with no common trend between models. Only singular visual improvements 

of outliers were seen within the boxplot plotting program.  
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Figure 4.2 Boxplots of near-saturated hydraulic conductivity (cm s-1) of three reclaimed Oil 
Sands soils (WL1, WL2, RA1), one fire-disturbed soil (Burn), and one undisturbed soil (Ref) by 
mini-disc infiltrometers on a log-transformed scale. Measurements taken at -0.5 cm tension at 
approximately 5 cm (0-20 cm) and 50 cm (20-100 cm) depths, at 10 sample points per 
treatment. RA1, Burned and Reference used two measurements per depth x sample point and 
results were averaged; WL1 and WL2 used one measurement per depth x sample point. 
Boxplots with the same letter fo reach depth are not significantly different at p<0.05.  
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Figure 4.3 Boxplots illustrating near-saturated hydraulic conductivity (cm s-1) outputs from 
three different models on a log-transformed scale. Zhang (1997) and Dohnal et al. (2010) 
utilized literature-based soil hydraulic parameters based on the soil texture of each site. Novak 
2016 (this study) used van Genuchten soil parameters calculated from the intact soil core 
results in Table A.0.1. Infiltration data was collected from three reclaimed Oil Sands soils (WL1, 
WL2, RA1), one fire-disturbed soil (Burned), and one undisturbed soil (Ref).  
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4.3 Soil Water Retention Curves (SWRC) 

The VWC of the topsoil layer at the Burned site was lower than all the other sites (Figure 4.4) at 

all matric potentials excluding the last two potentials (5000 and 15,000 cm H2O). RA1 had the 

highest mean water content at all matric potentials for the topsoil. Examining the lower portion 

(higher tension) of the subsoil SWRC, the order in terms of volumetric water content is 

Reference > RA1 > WL2 > WL1 > Burned.  

 

Full saturation of the cores was verified by comparing the measured volumetric water content 

with the theoretical saturated water content based on a 2.65 g cm-3 particle density. All 

samples were within 10% of the theoretical saturated water content (data not shown) with the 

exception of several samples with high clay content at the RA1 and Reference sites where 

measured volumetric water content was up to 18% higher (data not shown).   

 

4.3.1 Soil Hydraulic Models 

Fitting multiple soil hydraulic models to the raw SRWC data resulted in different trends 

depending on the hydraulic model and soil depth (ie. topsoil vs. subsoil; Figure 4.5). The 

unimodal-designed models by Brooks and Corey (1964), van Genuchten (1980) and Kosugi 

(1996) generally performed more poorly compared to the bimodal models of Durner (1994) and 

Seki (2007). This contrast was especially prominent within the 0-20 cm topsoil SWRCs, where 

the unimodal models commonly over or under estimated the saturated water content of the 

SWRC (Figure 4.5), and expressed considerably lower r2 values (Table 4.5). In addition, unimodal 

models were unable to calculate non-zero residual water content values for the vast majority of 

samples at both depths (Table 4.5). The success of the bimodal models within the 0-20 cm 

depth may be largely due to the inherent bimodal shape of the topsoil SWRCs at four sites – the 

topsoil at the Burned site was the only site not to exhibit a bimodal shape.  Subsoil SWRCs and 

associated models revealed the expected unimodal trends at all sites. Interestingly, despite the 
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archetypal contours of the subsoil SWRCs, the Brooks and Corey (1964) and van Genuchten 

(1980) models still extrapolated residual water contents to be essentially zero (Table 4.5).  

 

 

 

 

Figure 4.4 Soil moisture retention curves determined by tension table and pressure plate 
methods for three reclaimed Oil Sands soils (WL1, WL2, RA1), one fire-disturbed soil (Burned), 
and one undisturbed soil (Reference) at two depths. Symbol point are mean volumetric water 
content (cm-3 cm-3) with standard error bars (n=5).  
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Figure 4.5 Fitting of soil moisture retention data with five soil hydraulic models – three unimodal (Brooks and Corey (1964), van Genuchten (1980), 
Kosugi (1996)) and two bimodal (Durner (1994), Seki (2007)) for three reclaimed Oil Sands soils (WL1, WL2, RA1), one fire-disturbed soil (Burned), 
and one undisturbed soil (Reference) at two depths (0-20, 20-100 cm). Solid points and standard error bars show measured volumetric water 
content (cm3 cm-3) at 10 matric potentials. 
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Table 4.5 Calculated model parameters output for five soil hydraulic models. BC = Brooks and 
Corey (1964), VG = van Genuchten (1980), LN = Kosugi (1994), BD = Durner (1994), BL = Seki 
(2007). Soil cores collected from three reclaimed Oil Sands soils (WL1, WL2, RA1), one fire-
disturbed soil (Burned), and one undisturbed soil (Reference) at two depths (0-20, 20-100 cm). 
All treatments n=5. 
 

Hydraulic 
model w/ 
parameters 

WL1 WL2 RA1 Burned Reference 

Topsoil (0-20 cm) 
BC      
θs  0.60404 0.59136 0.66015 0.4348 0.58792 
θr  7.67E-05 6.22E-04 1.89E-06 1.06E-06 1.66E-05 
hb  2.8037 11.913 6.7108 16.971 3.6471 
λ 0.10266 0.14998 0.12041 0.23279 0.13164 
r2 0.803 0.87249 0.8974 0.98936 0.8568 
      
VG      
θs  0.56 0.56 0.63 0.44 0.49 
θr  6.57E-05 1.43E-05 1.62E-05 2.70E-02 4.00E-04 
α 0.02 0.02 0.02 0.04 0.00 
m 0.16 0.18 0.16 0.23 0.24 
n 1.18 1.22 1.19 1.30 1.31 
r2 0.88 0.90 0.96 0.99 0.86 
      
LN      
θs  0.65 0.63 0.66 0.45 0.61 
θr  0.00 0.00 0.00 0.08 0.00 
hm  842.21 684.69 1452.40 170.28 630.38 
σ 4.62 3.57 3.29 2.40 4.32 
r2 0.92 0.95 0.98 0.99 0.94 
      
BD      
θs  0.61 0.61 0.65 0.44 0.60 
r  0.07 0.03 0.16  0.05 0.00 
w1  0.46 0.63 0.63 0.97 0.59 
α1  0.33 0.11 0.02 0.04 0.83 
n1  1.36 1.27 1.62 1.32 1.20 
α2  0.00 0.00 0.00 0.00 0.00 
n2  2.74 5.65 5.75 42.25 2.82 
r2 1.00 1.00 1.00 0.99 1.00 
      
BL      
θs  0.61 0.61 0.65 0.42 0.61 
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θr  0.09 0.08 0.17 0.11 0.06 
w1  0.40 0.52 0.57 0.79 0.52 
hm1  14.27 45.49 97.23 75.33 14.79 
σ1  1.87 1.94 1.32 0.96 2.87 
hm2  2753.80 2516.50 2902.80 0.00 3861.90 
σ2  0.74 0.47 0.42 10.59 0.68 
r2 1.00 1.00 1.00 0.99 1.00 
      

Subsoil (20-100 cm) 

BC      
θs  0.38442 0.4905 0.40342 0.40667 0.42 
θr  5.23E-06 2.12E-07 2.93E-06 0.1048 1.46E-05 
hb  8.7061 4.429 48.07 40.859 22.327 
λ 0.1249 0.12058 0.09861 0.5833 0.0834 
r2 0.9744 0.98084 0.981 0.9801 0.9792 
      
VG      
θs  0.38 0.49 0.41 0.42 0.4186 
θr  7.98E-06 1.12E-04 3.28E-06 1.14E-01 1.65E-06 
α 0.07 0.13 0.01 0.02 0.0204 
m 0.11 0.11 0.11 0.43 0.09 
n 1.13 1.13 1.12 1.76 1.0998 
r2 0.97 0.98 1.00 0.97 0.9888 
      
LN      
θs  0.41 0.52 0.41 0.42 0.4213 
θr  0.00 0.08 0.17 0.13 0.19415 
hm  1695.70 328.50 1659.50 127.99 1101 
σ 4.92 4.44 2.76 1.31 2.8355 
r2 0.99 0.98 1.00 0.96 0.9923 
      
BD      
θs  0.39148 0.50 0.41 0.41 0.4204 
θr  0.11052 0.14 0.15 0.09 0.2346 
w1  0.63894 0.80 0.08 0.67 0.5349 
α1  0.11656 0.20 0.11 0.01 0.0312 
n1  1.3822 1.28 25.97 5.99 1.5557 
α2  4.44E-04 0.00 0.00 0.00 0.0007 
n2  2.2686 6.16 1.28 1.82 2.6711 
r2 1.00 1.00 1.00 1.00 0.9998 
      
BL      
θs  0.39 0.50 0.41 0.41 0.4202 
θr  0.12 0.17 0.17 0.10 0.2391 
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w1  0.53 0.66 1.00 0.69 0.4216 
hm1  30.00 26.86 1567.00 83.76 63.574 
σ1  1.57 1.90 2.86 0.29 1.1928 
hm2  2921.40 2301.10 0.00 2392.40 1750.8 
σ2  1.00 0.64 17.33 1.11 0.84892 
r2 1.00 1.00 1.00 1.00 0.9999 

 

  



 

75 

 

4.3.2 Available Soil Water Holding Capacity 

Soil cores taken from the topsoil layer (0-20 cm) had both higher Field Capacity (FC) and lower 

Permanent Wilting Point (PWP) water contents than the subsoil, resulting in a greater Available 

Water Holding Capacity (AWHC) (Table 4.6). The RA1 sites had the highest water contents at 

both FC and PWP, while the Burned site showed the lowest WC at FC and the Reference site 

had the lowest WC at PWP. The Burned site had a significantly lower (p-value < 0.01) AWHC 

compared to the WL1, WL2, and Reference sites. There were no significant differences for 

subsoil AWHCs between the different sites (p-value = 0.61).    

 

When applying the topsoil (0-20 cm) and subsoil (20-100 cm) lab-derived AWHCs values to a 

whole 1 m soil profile to calculate a total AWHC value (Table 4.7), no statistical differences were 

found between study sites (p-value = 0.96).  All the soil-core derived AWHCs fell within the 

‘mesic’ soil moisture regime of 146 - 175 mm H20 per 1 m profile as predicted by the Land 

Capability Classification System (2006). Conversely, the LCCS-Derived AWHC found significant 

differences with WL2 having lower values than both the RA1 and Burned sites (p-value = 

0.00014).   
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Table 4.6 Soil core-measured Field Capacity (FC), Permanent Wilting Point (PWP) and Available 
Water Holding Capacity (AWHC) of three reclaimed Oil Sands soils (WL1, WL2, RA1), one fire-
disturbed soil (Burned), and one undisturbed soil (Reference) at two depths (0-20, 20-100 cm).   

† Values in a column and soil depth with the same letter are not significantly different at a p < 
0.05   
  

Site FC PWP AWHC Dominant Layer 

 mm H20 per mm soil  

Topsoil (0 – 20 cm) 

WL1 0.423±0.06ab† 0.103±0.04ab 0.320±0.06a PMM 

WL2 0.394±0.08ab 0.078±0.01ab 0.316±0.08a PMM 

RA1 0.438±0.02a 0.171±0.03a 0.267±0.02ab PMM 

Burned 0.271±0.04b 0.088±0.06ab 0.183±0.03b Ahe 

Reference 0.382±0.05ab 0.067±0.02b 0.314±0.05a Ae 

     

Subsoil (20 – 100 cm) 

WL1 0.262±0.08a 0.132±0.06ab 0.130±0.04a PMM/Mineral 

WL2 0.314±0.10a 0.172±0.05ab 0.142±0.10a PMM/Mineral 

RA1 0.349±0.06a 0.222±0.05a 0.127±0.03a PMM/Mineral 

Burned 0.254±0.04a 0.100±0.04b 0.154±0.04a B/C 

Reference 0.350±0.03a 0.240±0.04a 0.110±0.03a B/C 



 

77 

 

Table 4.7 Comparison of Available Water Holding Capacity (AWHC [mm H20 per cm]) by 
laboratory measurements and LCCS (Land Capability Classification System)-derived methods for 
three reclaimed Oil Sands soils (WL1, WL2, RA1), one fire-disturbed soil (Burned), and one 
undisturbed soil (Reference) over a 1 m soil profile.  

† Values in a column with the same letter are not significantly different at a p < 0.05   
‡ Subsoil values for reclaimed sites were used for soil cap only. If the soil cap did not reach to 
1m depth, literature values of underlying materials (tailing sands = 1 mm H2O cm-1 soil, 
overburden = 1.6 mm H2O cm soil) were used for the remaining portion of the 1 m profile. 
 

Site Lab-Derived AWHC LCCS-Derived AWHC 

 mm H20 per 1 m profile 

WL1 164±27a†‡ 155±17ab 

WL2 166±52a 140±10a 

RA1 155±26a 167±3b 

Burned 160±41a 173±25b 

Reference 151±31a 161±5ab 
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5. Discussion 

5.1  Characterization of Soil covers 

5.1.1 Soil cover Thickness 

The soil covers at the reclaimed tailings pond and overburden dump were designed differently 

to accommodate the underlying waste material. The reclamation prescription at WL1 and 

WL2’s reclaimed tailing pond called for a total soil cover thickness of 50 cm (Suncor Energy, 

2011) as required by the EPEA’s Mining Approval (Government of Alberta, 2010b). Both WL1 

and WL2 were measured to be slightly greater than the required prescription. This is 

noteworthy as PMM possesses greater moisture retention per unit of volume than unmodified 

tailing sand (Moskal et al., 2001; Chaikowsky, 2003). The Land Classification Capability System 

(CEMA, 2006) recommends tailings sands are given an available water holding capacity value of 

1.0 mm available H2O per cm of material – this value amplifies to 1.7 mm available H2O per cm 

of material for a fine-textured PMM. Therefore, an increase in cover thickness will impart 

greater long-term drought resistance and overall soil moisture into the reclaimed site, as seen 

in cover thickness modelling (Keshta et al., 2010). However, it is worth noting that this 

retention growth has the potential to change the water balance of the reclamation site. For 

example, in a 1 m soil cover overlaying tailing sands, increasing the PMM portion from 50 cm 

(135 mm available H2O ) to 70 cm (149 mm available H2O ) would hypothetically convert the 

moisture regimes from submesic to mesic, according  to the Land Classification Capability 

System (CEMA, 2006). Climatic precipitation inputs have not changed in this scenario, therefore 

this increase in soil moisture availability results from less water leaving the system due to deep 

percolation, runoff, evapotranspiration, etc.  In a reclamation context this is important and will 

need to be accounted for when auditing the water needs of downstream watersheds.  

 

The mineral subsoil thickness at RA1 was undetermined at nine of the ten sampling points due 

to the restrictions of augering through clayey subsoil material; a minimum depth of 1 m was 

reached at all sampling points.  Only at one sampling site was the underlying overburden 
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reached with the hand auger (80 cm; Figure 4.1). The RA1 site was previously measured as 

having a mean PMM thickness of 40 cm and a mean subsoil depth of 1.6 m (Canadian Natural 

Resources Ltd., 2012). Subsoil thickness was designed to be greater at RA1 than the reclaimed 

tailing pond due to the risk of salt migration upwards from the underlying saline-sodic 

overburden into the soil cover. Examining different soil cover prescriptions over saline sodic 

overburden, Kessler et al. (2010) found elevated electrical conductivity and sodium absorption 

ratio within 15 to 20 cm above the overburden-soil cover interface within four years of 

placement. The upwards movement of salts was attributed to diffusion gradients and was not 

significantly related to cover thickness or slope position. Placing 1.6 m of non-saline subsoil 

above the saline sodic overburden at RA1 hopes to establish a sizeable ‘buffer’ zone to help 

prevent diffusing salts from reaching the above rooting zone and effecting vegetative growth. 

 

5.1.2 Particle Size Analysis  

The five research sites can be roughly grouped into two texture classes: Sand-dominated (S > 

50% wt.) soils found at WL1, WL2, and Burned; and the fine-textured soils (C/Si > 70% wt.) at 

RA1 and Reference (Table 4.2). This bimodal trend in particle sizes between the three 

overarching sites– reclaimed, burned and undisturbed – make comparisons difficult for soil 

texture-sensitive analysis. For example, the Burned and RA1 reclamation sites present an 

unique opportunity to directly compare natural and anthropogenic disturbances that are 

spatially adjacent (< 10 km) and temporally related (2011). The dichotomy expressed by the 

particle size analysis of the sites did however allow comparisons between fine- and coarse-

textured treatments, which was useful in explaining soil water characteristics between 

treatments.   
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5.1.3 Physical and Chemical Properties 

The physical and chemical properties of all three reclaimed sites reflected an archetypical 

consistency for PMM over tailings sands and overburden, respectively, and suggest that these 

intact sites fit within the established reclamation paradigm.  

 

Generally, the measurement of higher peat proportions within the PMM is indicated by higher 

soil organic carbon along with lower bulk densities at the reclamation sites (Table 4.4). 

Peat:mineral mixes exhibit lower soil bulk densities due to the relative lower densities of its 

peat component (Moskal, 2001). Over time, the predicted decomposition of this peat element 

will be offset by organic inputs from the developing vegetation, and SOC stocks are expected to 

remain stable in the long-term (Drozdowski et al., 2010).  However, The FORWARD Reference 

Forested sites had the lowest SOC at the 0-20 cm layer across all sites (1.16 %), but the mean 

bulk density was not different compared to any of the reclaimed sites (Table 4.4). This lack of 

relationship between SOC and bulk density when comparing all five study sites is somewhat 

unexpected. A possible explanation is that the reclaimed, fire-burned, and forested reference 

sites all have unique mechanisms within their topsoil development that overrides a potential 

SOC- bulk density positive relationship.  In reclaimed sites, the antecedent plant structures from 

the peat component of the PMM produce high SOC, low bulk density topsoils that mimic a well-

develop natural soil. In the silty topsoil of the forested reference sites, highly-structured Ae 

horizons developed by the pedogenic eluviation of organic matter downwards create a platy-

structured, high porosity and a SOC-void layer (Soil Classification Working Group, 1998). These 

are commonly encountered throughout the boreal region (Lavkulich and Arocena, 2011) and 

produce mean bulk densities less than 1.0 g cm-3 (Nyborg et al., 1991). Interestingly, the Burned 

soils exhibited the highest SOC trends that closely resemble the Reclaimed soils and yet yielded 

the highest 0-20 cm bulk densities (Table 4.4). Forest fires have been shown to increase topsoil 

SOC in the years following a burn due to volatile organic matter precipitating down the soil 

profile, carbon transformation into recalcitrant forms, increased residue incorporation, and 

reduced mineralization (Certini, 2005; DeBano et al., 1998). Conversely, a lack of strong topsoil 

structure might be responsible for the greater bulk densities, as the coarser soil textures of the 
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area’s Brunisolic soils do not promote structure development as well as the fine textured 

Reference soils (Figure 3.2; Bronick and Lal, 2005; Smith et al., 2011).  

 

Nitrogen speciation varied across sites. Mean extractable soil N concentrations illustrated a 

strong NH4
+ > NO3

- trend at both the RA1 and Reference sites while WL1, WL2 and Burned sites 

had more balanced proportions. The only two sites that were significantly different at all depths 

were the two natural sites. Rowland et al. (2009) found that Oil Sands reclaimed soils have N 

levels equal to or greater than natural sites, regardless of fertilization practices. However, these 

N concentrations were typically much more skewed towards available NO3
- and the authors 

proposed a reduction in nitrate fertilizers to help better mimic natural ecosites. In this study, 

the section of RA1 sampled received no fertilization treatment and yielded statistically-similar N 

results to the natural Reference site, while the fertilized WL1 & WL2 did not (Table 4.4). 

Comparison of the two reclaimed soil covers in this study reveals that a reduction of nitrate 

fertilizing practices may indeed promote N-speciation more akin to natural boreal forests. 

 

Extractable soil phosphorous levels were significantly lower in Reclaimed sites compared to 

either natural sites (Table 4.4). Neither the peat nor mineral components appear to be a ready 

source of available P as the levels vary little throughout the soil profile, despite the change in 

the peat:mineral ratio. Although soil N concentrations are typically regarded as the main-driver 

of boreal forest productivity (Vitousek and Howarth, 1991; Attwill and Adams, 1993; Reich et 

al., 1997), some studies have shown that soil P appear to be significantly lower or non-

detectable in OS peat:mineral mix soils (Rowland et al., 2009; Naeth et al., 2011; Pinno et al., 

2012;2015). This P deficiency appears to carry over to vegetation grown on PMM soils. When 

comparing different Oil Sands reclamation materials, Pinno et al. (2012) noted that trembling 

aspen established on PMM had the highest foliar N concentration of any material but also the 

lowest foliar P concentrations. A similar investigation found that foliar P concentrations in RA1 

vegetation were significantly lower than adjacent natural stands, contrasting foliar N 

concentrations which showed no difference (Li et al., 2015). As questions have been raised 
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regarding insufficient phosphorous stores in both reclaimed soil and vegetation, it should 

continue to be examined closely for its long-term effect on ecosite development.   

 

The inherent alkalinity of the salvaged mineral materials is the reason for the > 7.0 pH of the 

reclaimed soils (Table 4.4), as peat itself is typically highly acidic (Fung and Macyk, 2000). These 

pH differences are not extreme enough to have an effect on growing conditions. Electrical 

conductivity at RA1 approached the 2 dS m-2 limit for slight salt tolerance (CEMA, 2006). Table 

4.4 shows that RA1 has SOC % decreases strongly with soil depth, which can be associated with 

decreasing peat proportion within the PMM. Assuming that peat contributes relatively smaller 

proportions of salts than the mineral subsoil, the increase of EC with depth seen at RA1 may be 

an artifact of decreasing peat:mineral ratios, rather than an upward movement of salts from 

the underlying overburden. The overburden directly under the PMM cover is 1 m of non-saline 

sodic overburden to act as an additional buffer for upward salt migration from the farther 

underlying waste products.  

 

 

5.2 Near-Saturated Hydraulic Conductivity 

5.2.1 Comparison of Sites 

No differences in topsoil Kns values were found between any of the Reclaimed, Burned, or 

Reference sites. Across all sites Kns showed a decreasing trend with sampling depth, with the 

exception of the Burned site (Figure 4.2). As discussed in Section 5.3,  the well-structured 

topsoil horizons (Reference) or the residue plant structure in the salvaged peat (WL1, WL2, 

RA1) are plausible causes of the increased porosity and corresponding water transmission in 

the topsoil at these sites, as this effect was lost at soil depth. The Burned site lacked the topsoil 

aggregation of the Reference site due to its coarse soil texture, hence Kns was more consistent 

throughout the soil profile.  
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However, a contrarian (or possibly additive) explanation of the Burned sites Kns trend is the 

Burned site topsoil is being suppressed by fire-derived water repellency. This appears unlikely 

as both the low burn intensity and sampling depth suggest a relatively minimal treatment effect 

on the soil. A low intensity burn is mostly likely due to the moist soil conditions and subsequent 

deciduous vegetation. The Land Classification Capability System (CEMA, 2006) rated seven of 

the 10 sampling points as a subhygric moisture regime due to the presence of mottling greater 

than 20 cm down the soil profile. The moisture content of both the LFH and mineral soils are 

major determinates of fire severity (Bergeron et al., 2002; Certini, 2005), and the black spruce 

and trembling aspen inhabiting these moister soils typically produce lower severity fires 

(Larsen, 1997; Forestry Canada, 2002). Secondly, the 5 cm soil temperatures rarely exceed 

150°C even in high severity fires (Certini, 2005). This is significant as samples and 

measurements for the topsoil horizon were taken from about the 5 cm depth of the soil profile 

and therefore theoretically had relatively little fire effects. Visually the trees appeared burnt 

only at the base of the bole, and crown combustion was not apparent which would be 

indicative of hotter burns.  

 

Only one interaction was statistically significant, with the Burned soil exhibiting higher Kns than 

both the Reference and RA1 soils at the 50-100 cm depth (Figure 4.2). The two aforementioned 

causes of Kns enhancement are eliminated at this depth as the RA1 soil cover is mineral only 

(Table 4.1) and soil structure is rare, making it an almost direct comparison of fine (Reference 

and RA1) and coarse (Burned) soil textures. It is encouraging that the mini-infiltrometer method 

was able to successfully distinguished between fine and coarse soil textures; however, the 

extreme spatial variability seen in the Kns results -  even with removal of preferential flow 

(Section 3.4.3) – does raise concerns regarding this method’s ability to consistently differentiate 

between more subtle treatments. That said, these results are comparable with the OS 

reclamation literature. Yarmuch (2003) detected little to no significant differences between 

topsoil Kfs values of Undisturbed and PMM soils, with both means falling in the 10-4 cm s-1 order 

of magnitude, as did this study. 
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The evolution of these sites should also be a point of interest. On an acute timescale, reclaimed 

OS soils have been shown to increase in Kfs for up to five years’ post-placement (Meiers et al., 

2011). As the reclaimed sites in this study were between 2-3 years of age at time of 

measurement, the values of Kns may not yet have reached their equilibrium endpoint. Over 

longer periods of time the peat is thought to decompose in upland settings without the 

hydrology necessary to preserve it, suggesting that the benefits of the peat additions will be 

only temporary (RRTAC, 1993). However, Yarmuch (2003) found no difference in Kfs or other 

significant physical properties between young (5-7 yr.) and older (17-19 yr.) reclaimed soils. 

Also, the measured carbon inputs and outputs of reclaimed soils appear to be relatively equal 

up to 25 years post-placement (Drozdowski et al., 2010). Both studies attribute the offsetting of 

peat decomposing with litter inputs from the established vegetation.  

 

 

5.2.2 Comparison of Kns calculation methods 

While differences in sample Kns values can be seen between methods, the experimental 

variability is relatively minor compared to the intrinsic spatial variability (Figure 4.3). Therefore, 

conclusions and trends derived from the shared dataset would be independent of which 

method is utilized. The lack of significant difference in calculated Kns was surprising considering 

the relative differences in equations and van Genutchen parameters used as input in each 

method. This suggests that the Zhang (1997) method and its derivatives are fairly robust to 

changes in van Genuchten parameters (α and n) and the key-driver of treatment differences is 

actually the calculated cumulative infiltration (I). Furthermore, these results seem to validate 

using the literature values of the mineral component in PMM to determine van Genuchten 

parameters for the whole substrate, such as required in Zhang (1997) and Dohnal et al. (2010) 

methods; hence, avoiding the time consuming process of measuring and modelling soil 

moisture retention curves for each unique reclaimed soils.  
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5.2.3  Mini-Disc Infiltrometer  

Hydraulic conductivity is a heterogeneric measurement and prone to extreme spatial variation 

(Scott, 2000). This trait can be exacerbated when working in a coarse mixture of buoyant peat 

material and dense mineral substrate, leading to a mosaic of contrary soil properties. A tension 

infiltrometer allows the user to moderate preferential flow by preventing water transmission in 

pores greater than a certain size through the application of negative tension on the infiltrating 

water, thus smoothing spatial variability (Reynolds and Elrick, 1991). The mini-disc infiltrometer 

(Decagon Devices. Pullman, WA) is a miniaturized version of the common tension infiltrometer 

with a 4.5 cm diameter ring. It substitutes inference size for ease-of-use, and theoretically 

allows a greater number of measurements to be taken with the purpose of overcoming greater 

spatial variability with superior sample size. The mini-disc infiltrometer was chosen for its ease 

of operation, low water consumption and transportability into numerous remote sites in this 

study.  

 

The majority of previous research have utilized constant head well permeameter methods (ie. 

Guelph Permeameters [GP]) to determine the saturated hydraulic conductivity in OS reclaimed 

soils (Yarmuch, 2003; Meiers et al., 2011). Given the number of different Kfs measurement 

methods available, studies have tried to identify the differences and applicability between 

methods (Huang et al., 2016; Reynolds et al., 2000; Hunter et al., 2011; Gupta et al., 1993) – 

most have been unable to prove statistically that any method is significantly different due to 

high coefficients of variation. 

 

Rather than measuring saturated hydraulic conductivity like many previous studies, this study 

measured near-saturated hydraulic conductivity (Kns) at - 0.5 cm tension in an attempt to 

reduce macropore-derived spatial variability. The resulting Kns range-of-values were still 

prominent – often across four orders of magnitude. Any variance reduction by the applied 

negative tension appear to have been overridden by the relatively small contact area. In 

addition, the true saturated hydraulic conductivity of these soils would be higher – perhaps 

significantly – than the measured Kns results due to the inclusion of macropore water 
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transmission. This makes comparison between these Kns results and saturated hydraulic 

conductivity values from the literature incomplete.  

 

Mini-disc infiltrometers have a limited number of studies in the Oil Sands as it is a relatively 

new instrument. Overall, the Kns values derived in this study with the mini-disc infiltrometer 

were able to statistically detected soil texture differences and validated the methodology for 

peat:mineral mixes. On the downside, variation was still significant within site x depth 

treatments. As mentioned previously, spatial variation is an inherent feature of soil hydraulic 

conductivity, and measurement of such should not be necessarily seen as a failure of the 

measurement system. However, given that measuring at Kns did not seem to improve site 

variability, and that it limits the literature comparables, it could be suggested that traditional 

saturated hydraulic conductivity methods might be a better fit for site-to-site comparisons. 

Upon review, measurement variability may have been improved by using a contact sand to 

ensure good hydraulic contact (Reynolds and Zebchuk, 1996) and is recommended for similar 

measurements. 

 

 

5.3 Soil Water Retention Curves 

5.3.1 Soil Water Retention Measurements 

Similar to the Kns analysis, comparison of soil texture classes assists in solidifying effects of the 

soil origins. If the study sites are categorized into two distinct texture groups – coarse (WL1, 

WL2, Burned) and fine (RA1, Reference) – then the effects of the peat additions become 

apparent. For this analysis to take place, the Burned site could be treated as the natural 

analogue to the similarly textured WL1 and WL2 sites. This assumption, explained in Section 

5.2.1, is feasible as the 2011 forest fire was of low intensity due to antecedent moist soil 

conditions and had relatively little effect on soil characteristics. When examining the coarse 

textured soils, the volumetric water contents on the topsoil SWRCs (Figure 4.4) at the reclaimed 
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WL1 and WL2 have significantly higher values compared to the similarly textured Burned soil. In 

addition, both WL1 and WL2 have bimodal tendencies while the Burned site had a unimodal 

distribution. These differences in both shape and moisture values can be attributed to peat 

additions. Moskal et al. (2001) found that in-situ peat additions to course-texture soils can 

increase field capacity moisture content, and the bimodal characteristics of peat are well 

established (Loxham, 1980; Dettman et al., 2014; Shurniak, 2003). It would appear that the peat 

additions in coarse-textured WL1 and WL2 are allowing the site to behave similar to a fine-

textured natural soil, as opposed to a comparably-textured natural soil (Burned). The same 

cannot be said for fine-textured reclaimed soils. Little difference was seen in SWRC shape and 

value between the fine-textured RA1 and Reference sites, but it is impossible to separate the 

peat and/or clay effects at these sites. The combination of these comparisons provide evidence 

that a coarse-textured substrate, if given the proper amount of peat additives, can exhibit 

moisture retention characteristics y similar to that of a structured, fine-textured natural soil. 

 

As discussed in Ball and Hunter (1988), intact soil cores are often destructively sampled and re-

packed into smaller cores to assist in reducing prohibitively long equilibrium times. At high 

tensions moisture retention is independent of soil structure therefore reducing core volumes 

should have no effect. The low density and structured nature of many samples made packing 

the smaller cores difficult as often the required mass would not entirely fill the necessary 

volume. In addition, the more fibric peat was broken apart using a mortar and pestle in order to 

better fit the smaller core. The effect of this packing may be noticeable in the moisture content 

drop between the 1500 and 5000 cm H2O tensions in some sites – the point at which the soil 

cores were converted from the intact to the packed configurations. This theory is supported by 

the fact that the highest SOC and lowest bulk density sites in RA1 and WL2 seem to have the 

most significant drop in volumetric water content post -1500 cm H2O tensions (Figure 4.4). 

Trends related to SWRC shape are revealed prior to 5000 cm H2O tension; however, it should be 

noted that at least a portion of the bimodal curve shape might be an artifact of the SWRC 

method. 
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5.3.2 SWRC Model Comparison  

The topsoil SWRC calculated by the unimodal models were inferior to the bimodal models in 

two regards: 1) the r2 values were consistently lower in unimodal models signifying a poorer 

relationship with the retention data, and 2) unimodals predicted residual water contents (θres) 

that were essentially zero (Table 4.5). Based on the soil textures for the sites it would be 

expected that θres be in the range of 0.06 to 0.10 cm3 cm-3 water content (Nemes et al., 2001). 

The bimodal models more accurately predicted θres with a range from 0.00 to 0.17 cm3 cm-3 

Table 4.5). The inability of the unimodal models to predict residual water contents also makes 

them less desirable for extrapolating in extremely dry conditions beyond the final 15,000 cm 

H2O measurement, as well as raising questions on the interpolated data within the measured 

tension range. 

 

Durner (1994) summarized four different situations in which a traditional unimodal model will 

fail to accurately capture the moisture retention trend of a soil: 1) near-saturation conditions in 

undisturbed soils, 2) linear near-saturated trends in morainic and solifluction soils, 3) significant 

drop in water content very close to saturation in unconsolidated sands, and 4) multiple 

sigmoid-shaped (bimodal) retention curves in the mid-pore range of aggregated loams. The last 

situation described by Durner (1994) can be observed in the SWRC results (Figure 4.4) for the 

Reclaimed (WL1, WL2, RA1) and Reference soils.  

 

Two different sources can be responsible for this bimodal phenomenon. For undisturbed 

natural soils, bimodal forms are usually associated with silty loams that promote strong peds 

development and two distinct pore sizes: meso-pores in the pore network surrounding the 

peds, and micro-pores within the ped structure itself (Sharma and Uehara, 1968; Smettem and 

Kirkby, 1990; Coppola, 2000). The Reference soils fit within these criteria both quantitatively 

and qualitatively as silt was the dominate particle size at all depths (Table 4.2), and strong 

structure was visually observed at most sites. The second possible catalyst is the peat 
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component of reclaimed soils providing the secondary structure needed for heterogeneous 

pore systems. Organic soils contain a large macropore network derived from its partially-

decomposed plant origins, as well as a great number of smaller pores that enable dual porosity 

and corresponding bimodal retention characteristics (Loxham, 1980). Dettman et al. (2014) 

found that bimodal models typically had a stronger fit compared to typical unimodal models, 

particularly in the near-saturated zone for organic (peaty) soils. In an Oil Sands setting, these 

peat characteristics confirm the findings of Shurniak (2003) who found that a multimodal 

Fredlund and Xing (1994) model created a superb fit for soil water retention data from a peaty 

soil cover at Syncrude’s South Hill. It is important to note that Shurniak (2003) did not have a 

natural reference soil to directly compare the bimodal trends seen in the peaty reclamation 

soil. The consistent multimodal pattern seen in previous research and across all three different 

reclaimed soils in this study strongly suggest that the addition of peat within a reclamation 

cover is an effective method for replicating effective soil structure over a short time period.  

 

 

5.3.3 Available Soil Water Holding Capacity 

The Land Capability Classification assigns an AWHC value to a soil layer based on soil texture 

and soil origin (i.e. natural or reclaimed; CEMA, 2006). Overall, the topsoil AWHC measured by 

the soil core method had significantly higher values than those predicted by the LCCS literature. 

For example, a sandy loam PMM at WL2 had a value from the Land Capability Classification of 

1.7 mm H2O per cm of soil, yet was measured at 3.16 mm H2O per cm of soil. This trend was 

true for all five sites. The most realistic explanation is that the low bulk densities (Table 4.4) in 

the topsoil added significant macroporosity and increased water content within the field 

capacity section of the retention curve (Figure 4.4), leading to greater water holding capacity. 

This is buoyed by the fact that the greatest discrepancy was found in sites with the lowest bulk 

densities, and that the relatively high topsoil bulk density at the Burned site (1.25 g cm-3) had 

the most similar AWHC values (1.4 vs. 1.8 mm H2O per cm of soil) between methods. 

Furthermore, subsoil AWHC profile totals by the soil core method had a much greater 
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correlation with LCCS literature values (Table 4.6). While the tension table/pressure plate 

method has been shown to inflate retention water contents (Schelle et al., 2013), it would not 

explain the greater AWHC as both field capacity and permanent wilting point would be 

affected. These findings seem to suggest that the LCCS available water holding capacity values 

are more appropriate for soils within a more typical bulk density range (i.e. 1.45 to 1.55 g cm-3).  

 

Available water holding capacity values appears to be strongly dependant on bulk density in 

both this study and the literature (Scott, 2000). Caution should be used when interpolating 

these AWHC results as using one sampling point for a 20 cm thick layer (0-20 cm), and one 

more for an 80 cm thick layer (20-100 cm) assumes a lot about the homogeneity of those 

layers. Due to the prohibiting long extraction times in SWRC measurements, the number of 

samples available for any study is fairly limited. That said, extracting only two soil cores per 

sampling location will not fully capture the multiple depositions or pedogenic processes that 

could be represent in the soil profile. This caution is somewhat lessened for the reclaimed soils 

however, as the number of prescribed layers is known and substrates are fairly vertically 

homogeneous.  

 

With that in mind, comparing the full 1 m profile AWCH measured by the soil core method and 

those predicted by the Land Capability Classification System reveals that both techniques 

predict a Mesic soil moisture regime (146 to 175 mm H2O per 1 m profile) at all sites (Table 4.7). 

The LCCS is largely a texture-based method; however, the coarser-textured sites of WL1, WL2 

and Burned had AWHC modifiers that raised the predicted water holding capacity of their soils 

leading to designations in the mesic regime. In the reclaimed soils, the peat additions added 

another 30 mm H2O per 1 m profile to sandy loam or finer soils (LCCS, 2006). In addition, a fine-

over-coarse layering addition of 15 mm H2O per 1 m profile was added to three WL1 sampling 

sites due to the capillary barrier effect noted in Chaikowsky (2003) and Naeth et al. (2012). In 

the fire-disturbed soils, evidence of mottles greater than 20 cm from the soils surface was an 

indication of subhygric moisture conditions and a profile AWHC value of 190 mm H2O per 1 m 

profile was given to that particular site (CEMA, 2006). Subhygric values were specified for seven 
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of the 10 Burned sampling locations (Figure 4.1). Without these mottling effects, the mean 

profile AWHC value would have been approximately 140 mm H2O per 1 m profile and firmly in 

the submesic range. The advantage of the LCCS is that it accounts for landscape and other 

interactions allowing for a more ‘in-situ’ prediction which the soil core method cannot 

accomplish.  
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6. Conclusion 

Examination of WL1, WL2, and RA1 soil covers was completed in order to: I) characterize 

physical and chemical properties in large-scale PMM soil covers, II) determine whether 

quantitative similarities in soil-water properties exist between the natural disturbance of a 

forest fire and reclamation activities, and III) investigate whether several common soil water 

tools used to determine soil water movement and retention in natural soils are applicable for 

reclaimed PMM soils. WL1 and WL2 were particularly significant as they compose the first and 

only fully reclaimed tailing pond in the Oil Sands region. Additionally, until this study, no known 

soil characterization data has been published for all three reclaimed sites.  

 

An interesting observation from the site characterization is the significantly lower phosphorus 

concentrations found in the reclaimed soils compared to either natural soil. While this is not 

uncommon in the Oil Sands region, it does present an interesting opportunity to observe 

whether the vegetation communities would face a nutrient stress with future stand 

development. 

 

Comparisons between similar-textured natural and reclaimed sites gave indications of the 

effect of peat additions in soil-water relationships. Near-saturated hydraulic conductivity was 

found to be not statistically different within the topsoil at any of the reclaimed sites, despite 

having both fine- and coarse-textured soils. This non-significance was attributed to the reduced 

bulk density and pseudo structure afforded by the residue plant material in the peat, which 

replicates the aggregate-based soil structure found in some natural soils. Kns differences were 

measured between fine- and coarse-textured soils at subsoil depths.  For water storage, the soil 

water retention curves exhibited a bimodal release pattern accredited to its peat origins and 

documented in earlier work. The comparison of PMM soils and contrasting textured natural 

soils did however suggest bimodal similarities between the SWRC of peaty reclaimed soils and a 

structured fine-textured natural soil, which had not previously been studied.  
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Hydraulic conductivity and soil water retention curves are two important aspects of the soil-

water relationship, and therefore common parameterized models were tested for robustness 

on the non-typical peat:mineral soils. Mini-disc infiltrometers, a miniaturized version of the 

popular full-size infiltrometers, did not appear to smooth spatial variability when used at a -0.5 

cm tension.  However, a key assumption in the recommended Kns equation by Zhang (1997) that 

requires retention parameters to be estimated based on the soil texture of the mineral soil – 

which only makes up a portion of the peat:mineral mix – was tested against parameters directly 

calculated from intact soil cores. Only minor differences were found between estimated or 

calculated Kns values. The experimental variability between methods was not large enough to 

change conclusions drawn from the data, and was largely masked by the extreme spatial 

variation measured within each site.  This suggests that the recommended Kns equation may be 

suitable for all soil types studied, including PMM; although additional techniques should be 

utilized to reduce variability (i.e. contact sand to improve disc-soil connectivity). For the soil 

water retention curves, a number of different hydraulic models were applied to the curves to 

determine the best fit. Bimodal models (Durner, 1994; Seki, 2007) proved to be the most 

appropriate in terms of both r2 and estimated θres values. An area of interest might be the 

difference in field-scale hydrology modelling results when a bimodal model is used as oppose to 

a typical unimodal module, and how sensitive these models are to retention curve distinctions. 

AWHC derived from soil core measurement and the LCCS were compared. Both methods 

predicted a mesic moisture regime at all sites.  

 

There are several limitations in this study that should be noted. Due to the pseudo replication 

necessitated by the limited number of reclaimed watersheds that currently exist, results and 

outcomes brought forth by this study should not be applied to all reclaimed soils. The 

experimental design was chosen to allow a higher sampling resolution at a select few sites, with 

the trade-off being a narrower scope of interference. These limitations should also be extended 

to the temporal range of the sites. Each reclaimed sites, in addition to the Burned site, were 

juvenile soils that were within 5 years of their initial placement/disturbance. Extrapolating data 

beyond that time frame should be done with caution.  



 

94 

 

 

This study hopes to provide a groundwork for future research on WL1, WL2 and RA1, as well as 

related Oil Sands reclamation. Having creditable soils characterization data from the initial 

years of each site will grant forthcoming studies a compatible ‘time zero’ to investigate soil 

properties over time. This is buoyed by WL1 and WL2 composing the first reclaimed intact 

tailings pond; these soil covers and its self-contained landscape will continue to be oldest 

treatment in any future studies of the eventually numerous reclaimed tailing ponds in the 

region. Finally, the Forest Watershed and Riparian Disturbance Project III (FORWARD III) will 

utilize the assembled soil properties, hydraulic conductivity, and soil retention data to assist in 

the development of water-shed scale hydrological models and hopes to provide 

recommendations for benchmarks and recovery trajectories of engineered soils. 
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8. APPENDIX A 

Table A.0.1 Van Genutchen parameters (α,n) utilized in Kns calculations of three reclaimed Oil Sands soils (WL1, WL2, RA1), one fire-
disturbed forested soil (Burned), and one undisturbed forested soil (Reference). LAYER CODE: TS (Topsoil) 0-20 cm, USS (Upper 
Subsoil) 20-50 cm, LSS (Lower Subsoil) 50-100 cm. 

SAMPLE 
ID 

SITE PIT ID LAYER 
CODE 

van Genuchten 
Parameters [Zhang] 

 van Genuchten  
Parameters [Dohnal] 

 van Genuchten 
Parameters [Novak] 

α n  α n  α n 

1 WL1 1 TS 0.008 1.09  0.015 1.25  0.023 1.18 

2 WL1 1 LSS 0.019 1.31  0.016 1.41  0.066 1.13 

3 WL1 2 TS 0.059 1.48  0.021 1.33  0.023 1.18 

4 WL1 2 LSS 0.075 1.89  0.027 1.45  0.066 1.13 

5 WL1 3 TS 0.059 1.48  0.021 1.33  0.023 1.18 

6 WL1 3 LSS 0.059 1.48  0.021 1.33  0.066 1.13 

7 WL1 4 TS 0.059 1.48  0.021 1.33  0.023 1.18 

8 WL1 4 LSS NA NA  NA NA  NA NA 

9 WL1 5 TS 0.075 1.89  0.027 1.45  0.023 1.18 

10 WL1 5 LSS 0.075 1.89  0.027 1.45  0.066 1.13 

11 WL1 6 TS 0.059 1.48  0.021 1.33  0.023 1.18 

12 WL1 6 LSS 0.059 1.48  0.021 1.33  0.066 1.13 

13 WL1 7 TS 0.059 1.48  0.021 1.33  0.023 1.18 

14 WL1 7 LSS 0.059 1.48  0.021 1.33  0.066 1.13 

15 WL1 8 TS 0.008 1.09  0.015 1.25  0.023 1.18 

16 WL1 8 LSS 0.008 1.09  0.015 1.25  0.066 1.13 

17 WL1 9 TS 0.059 1.48  0.021 1.33  0.023 1.18 

18 WL1 9 LSS 0.075 1.89  0.027 1.45  0.066 1.13 

19 WL1 10 TS 0.059 1.48  0.021 1.33  0.023 1.18 

20 WL1 10 LSS 0.059 1.48  0.021 1.33  0.066 1.13 
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Table A.0.1 (Continued) 

 

 

  

SAMPLE 
ID 

SITE PIT 
ID 

LAYER 
CODE 

van Genuchten 
Parameters [Zhang] 

 van Genuchten  
Parameters [Dohnal] 

 van Genuchten 
Parameters [Novak] 

α n  α n  α n 

21 WL2 1 TS 0.059 1.48  0.021 1.33  0.017 1.22 

22 WL2 1 LSS 0.075 1.89  0.027 1.45  0.133 1.13 

23 WL2 2 TS 0.075 1.89  0.027 1.45  0.017 1.22 

24 WL2 2 LSS 0.075 1.89  0.027 1.45  0.133 1.13 

25 WL2 3 TS 0.059 1.48  0.021 1.33  0.017 1.22 

26 WL2 3 LSS 0.059 1.48  0.021 1.33  0.133 1.13 
27 WL2 4 TS 0.075 1.89  0.027 1.45  0.017 1.22 

28 WL2 4 LSS 0.075 1.89  0.027 1.45  0.133 1.13 

29 WL2 5 TS 0.059 1.48  0.021 1.33  0.017 1.22 

30 WL2 5 LSS 0.075 1.89  0.027 1.45  0.133 1.13 

31 WL2 6 TS 0.059 1.48  0.021 1.33  0.017 1.22 

32 WL2 6 LSS 0.075 1.89  0.027 1.45  0.133 1.13 
33 WL2 7 TS 0.075 1.89  0.027 1.45  0.017 1.22 

34 WL2 7 LSS 0.059 1.48  0.021 1.33  0.133 1.13 

35 WL2 8 TS 0.075 1.89  0.027 1.45  0.017 1.22 

36 WL2 8 LSS 0.059 1.48  0.021 1.33  0.133 1.13 

37 WL2 9 TS 0.059 1.48  0.021 1.33  0.017 1.22 

38 WL2 9 LSS 0.059 1.48  0.021 1.33  0.133 1.13 
39 WL2 10 TS 0.075 1.89  0.027 1.45  0.017 1.22 

40 WL2 10 LSS 0.059 1.48  0.021 1.33  0.133 1.13 
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Table A.0.1 (Continued) 

 

SAMPLE 
ID 

SITE PIT 
ID 

LAYER 
CODE 

van Genuchten Parameters 
[Zhang] 

 van Genuchten  
Parameters [Dohnal] 

 van Genuchten 
Parameters [Novak] 

    α n  α n  α n 

41 RA1 1 TS 0.019 1.31  0.016 1.41  0.020 1.19 

42 RA1 1 USS 0.020 1.41  0.005 1.66  0.011 1.12 

43 RA1 1 LSS 0.008 1.09  0.015 1.25  0.011 1.12 

44 RA1 2 TS 0.020 1.41  0.005 1.66  0.020 1.19 

45 RA1 2 USS 0.020 1.41  0.005 1.66  0.011 1.12 

46 RA1 2 LSS 0.008 1.09  0.015 1.25  0.011 1.12 

47 RA1 3 TS 0.020 1.41  0.005 1.66  0.020 1.19 

48 RA1 3 USS 0.008 1.09  0.015 1.25  0.011 1.12 
49 RA1 3 LSS 0.008 1.09  0.015 1.25  0.011 1.12 

50 RA1 4 TS 0.020 1.41  0.008 1.52  0.020 1.19 

51 RA1 4 USS 0.008 1.09  0.015 1.25  0.011 1.12 

52 RA1 4 LSS 0.027 1.23  0.033 1.21  0.011 1.12 

53 RA1 5 TS 0.008 1.09  0.015 1.25  0.020 1.19 

54 RA1 5 USS 0.019 1.31  0.016 1.41  0.011 1.12 
55 RA1 5 LSS 0.008 1.09  0.015 1.25  0.011 1.12 

56 RA1 6 TS 0.036 1.56  0.011 1.47  0.020 1.19 

57 RA1 6 USS 0.008 1.09  0.015 1.25  0.011 1.12 

58 RA1 6 LSS 0.008 1.09  0.015 1.25  0.011 1.12 

59 RA1 7 TS 0.008 1.09  0.015 1.25  0.020 1.19 

60 RA1 7 USS 0.008 1.09  0.015 1.25  0.011 1.12 

61 RA1 7 LSS 0.008 1.09  0.015 1.25  0.011 1.12 

62 RA1 8 TS 0.008 1.09  0.015 1.25  0.020 1.19 

63 RA1 8 USS 0.019 1.31  0.016 1.41  0.011 1.12 

64 RA1 8 LSS 0.019 1.31  0.016 1.41  0.011 1.12 

65 RA1 9 TS 0.005 1.09  0.016 1.32  0.020 1.19 
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66 RA1 9 USS 0.020 1.41  0.005 1.66  0.011 1.12 

67 RA1 9 LSS 0.019 1.31  0.016 1.41  0.011 1.12 

68 RA1 10 TS 0.019 1.31  0.016 1.41  0.020 1.19 

69 RA1 10 USS 0.019 1.31  0.016 1.41  0.011 1.12 
70 RA1 10 LSS 0.005 1.09  0.016 1.32  0.011 1.12 
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Table A.0.1 (Continued) 

 

SAMPLE ID SITE PIT 
ID 

LAYER 
CODE 

van Genuchten Parameters 
[Zhang] 

 van Genuchten  
Parameters [Dohnal] 

 van Genuchten 
Parameters [Novak] 

    α n  α n  α n 

71 Burned 1 TS 0.075 1.89  0.027 1.45  0.039 1.30 
72 Burned 1 USS 0.059 1.48  0.021 1.33  0.017 1.76 

73 Burned 1 LSS 0.075 1.89  0.027 1.45  0.017 1.76 

74 Burned 2 TS 0.075 1.89  0.027 1.45  0.039 1.30 

75 Burned 2 USS 0.059 1.48  0.021 1.33  0.017 1.76 

76 Burned 2 LSS 0.145 2.68  0.035 3.18  0.017 1.76 

77 Burned 3 TS 0.075 1.89  0.027 1.45  0.039 1.30 
78 Burned 3 USS 0.059 1.48  0.021 1.33  0.017 1.76 

79 Burned 3 LSS 0.145 2.68  0.035 3.18  0.017 1.76 

80 Burned 4 TS 0.075 1.89  0.027 1.45  0.039 1.30 

81 Burned 4 USS 0.059 1.48  0.021 1.33  0.017 1.76 

82 Burned 4 LSS 0.075 1.89  0.027 1.45  0.017 1.76 

83 Burned 5 TS 0.075 1.89  0.027 1.45  0.039 1.30 
84 Burned 5 USS 0.059 1.48  0.021 1.33  0.017 1.76 

85 Burned 5 LSS 0.059 1.48  0.021 1.33  0.017 1.76 

86 Burned 6 TS 0.036 1.56  0.011 1.47  0.039 1.30 

87 Burned 6 USS 0.008 1.09  0.015 1.25  0.017 1.76 

88 Burned 6 LSS 0.008 1.09  0.015 1.25  0.017 1.76 

89 Burned 7 TS 0.075 1.89  0.027 1.45  0.039 1.30 
90 Burned 7 USS 0.059 1.48  0.021 1.33  0.017 1.76 

91 Burned 7 LSS 0.019 1.31  0.016 1.41  0.017 1.76 

92 Burned 8 TS 0.075 1.89  0.027 1.45  0.039 1.30 

93 Burned 8 USS 0.059 1.48  0.021 1.33  0.017 1.76 

94 Burned 8 LSS 0.059 1.48  0.021 1.33  0.017 1.76 

95 Burned 9 TS 0.075 1.89  0.027 1.45  0.039 1.30 
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96 Burned 9 USS 0.059 1.48  0.021 1.33  0.017 1.76 

97 Burned 9 LSS 0.059 1.48  0.021 1.33  0.017 1.76 

98 Burned 10 TS 0.008 1.09  0.015 1.25  0.039 1.30 

99 Burned 10 USS 0.075 1.89  0.027 1.45  0.017 1.76 
100 Burned 10 LSS 0.059 1.48  0.021 1.33  0.017 1.76 
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Table A.0.1 (Continued) 

 

SAMPLE ID SITE PIT 
ID 

LAYER 
CODE 

van Genuchten Parameters 
[Zhang] 

 van Genuchten  
Parameters [Dohnal] 

 van Genuchten 
Parameters [Novak] 

    α n  α n  α n 

101 Reference  1 TS 0.019 1.31  0.016 1.41  0.004 1.31 

102 Reference  1 USS 0.010 1.23  0.008 1.52  0.020 1.10 

103 Reference  1 LSS 0.019 1.31  0.016 1.41  0.020 1.10 

104 Reference  2 TS 0.019 1.31  0.016 1.41  0.004 1.31 

105 Reference  2 USS 0.008 1.09  0.015 1.25  0.020 1.10 

106 Reference  2 LSS 0.008 1.09  0.015 1.25  0.020 1.10 

107 Reference  3 TS 0.036 1.56  0.011 1.47  0.004 1.31 

108 Reference  3 USS 0.036 1.56  0.011 1.47  0.020 1.10 
109 Reference  3 LSS 0.019 1.31  0.016 1.41  0.020 1.10 

110 Reference  4 TS 0.036 1.56  0.011 1.47  0.004 1.31 

111 Reference  4 USS 0.005 1.09  0.016 1.32  0.020 1.10 

112 Reference  4 LSS 0.008 1.09  0.015 1.25  0.020 1.10 

113 Reference  5 TS 0.036 1.56  0.011 1.47  0.004 1.31 

114 Reference  5 USS 0.019 1.31  0.016 1.41  0.020 1.10 
115 Reference  5 LSS 0.036 1.56  0.011 1.47  0.020 1.10 

116 Reference  6 TS 0.008 1.09  0.015 1.25  0.004 1.31 

117 Reference  6 USS 0.020 1.41  0.005 1.66  0.020 1.10 

118 Reference  6 LSS 0.008 1.09  0.015 1.25  0.020 1.10 

119 Reference  7 TS 0.036 1.56  0.011 1.47  0.004 1.31 

120 Reference  7 USS 0.008 1.09  0.015 1.25  0.020 1.10 

121 Reference  7 LSS 0.016 1.37  0.007 1.68  0.020 1.10 

122 Reference  8 TS 0.020 1.41  0.005 1.66  0.004 1.31 

123 Reference  8 USS 0.036 1.56  0.011 1.47  0.020 1.10 

124 Reference  8 LSS 0.008 1.09  0.015 1.25  0.020 1.10 

125 Reference  9 TS 0.020 1.41  0.005 1.66  0.004 1.31 
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126 Reference  9 USS 0.059 1.48  0.021 1.33  0.020 1.10 

127 Reference  9 LSS 0.008 1.09  0.015 1.25  0.020 1.10 

128 Reference  10 TS 0.020 1.41  0.005 1.66  0.004 1.31 

129 Reference  10 USS 0.019 1.31  0.016 1.41  0.020 1.10 
130 Reference  10 LSS 0.036 1.56  0.011 1.47  0.020 1.10 
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9. APPENDIX B 

Table B.0.1  Number of samples (n) analyzed for each physical and chemical test performed in this study. Analysis divided into field 
and laboratory components with total numbers in final row. Kns = Field-Saturated Hydraulic Conductivity. MRC = Moisture Retention 
Curves. PSA = Particale Size Analysis. BD= Bulk Density.  

 

 
 
 
 
 
 
  

Sites Sample Pits  Kns  MRC PSA Vol. Water Content BD OC NO3
- NH4

+ PO4
- pH EC 

 Field  Laboratory 

WL1 10  19  90 19 19 19 19 19 19 19 19 19 

WL2 10  20  90 20 20 20 19 20 20 20 20 20 

RA1 10  59  90 30 30 27 30 29 29 29 29 29 

Burned 10  60  90 30 30 30 30 30 30 30 30 30 

Reference 10  60  90 30 30 30 30 29 29 29 28 29 

Total 50  218  50 129 129 126 128 127 127 127 126 127 



 

 

 

1
1

5
 

10. APPENDIX C 

Table C.0.1 Soil physical properties of three reclaimed Oil Sands soils (WL1, WL2, RA1), one fire-disturbed forested soil (Burned), and 
one undisturbed forested soil (Reference). LAYER CODE: TS (Topsoil) 0-20 cm, USS (Upper Subsoil) 20-50 cm, LSS (Lower Subsoil) 50-
100 cm. SLOPE: 0 = 0°, 2 = 2-4°, 5 = 5-9°. 

 

 

SAMPLE 
ID 

SITE PIT 
ID 

LAYER 
CODE 

SLOPE BD  
(g cm-3) 

OC  
(%)  

NO3
- 

(mg kg-1) 
NH4

+ 

(mg kg-1) 
PO4

-
 
 

(mg kg-1) 
pH EC   

(dS m-2) 

1 WL1 1 TS 2 1.16 5.62 1.1 6.9 5.3 8.17 0.60 
2 WL1 1 LSS 2 1.82 3.74 1.0 4.1 0.9 8.1 0.72 
3 WL1 2 TS 2 1.03 9.37 1.2 5.0 1.2 8.08 1.18 
4 WL1 2 LSS 2 1.31 5.40 1.0 1.8 0.6 8.27 0.34 
5 WL1 3 TS 0 1.01 7.78 0.9 2.3 1.1 7.83 0.87 
6 WL1 3 LSS 0 1.59 6.09 1.0 2.7 1.0 8.27 1.01 
7 WL1 4 TS 2 1.08 5.50 1.0 7.9 0.5 7.98 0.65 
8 WL1 4 LSS 2 NA NA NA NA NA NA NA 
9 WL1 5 TS 0 1.35 7.03 1.0 6.3 3.5 8 0.60 

10 WL1 5 LSS 0 1.29 4.33 1.3 5.8 1.7 7.91 0.47 
11 WL1 6 TS 0 1.40 3.54 1.0 4.0 1.9 7.92 0.79 
12 WL1 6 LSS 0 1.42 3.52 1.0 4.4 0.8 8.07 0.72 
13 WL1 7 TS 2 1.37 3.70 1.0 4.3 1.2 8.02 0.78 
14 WL1 7 LSS 2 1.47 3.59 1.0 4.5 0.8 8.04 0.92 
15 WL1 8 TS 2 0.99 9.68 1.2 12.4 1.5 7.82 0.60 
16 WL1 8 LSS 2 1.28 2.65 1.2 11.6 1.6 8.04 1.00 
17 WL1 9 TS 0 1.73 2.49 1.00 2.96 1.17 8.17 0.93 

18 WL1 9 LSS 0 1.76 0.73 0.95 0.97 0.34 8.14 0.23 
19 WL1 10 TS 2 0.72 1.52 12.55 10.26 1.23 7.77 0.73 
20 WL1 10 LSS 2 1.75 7.39 0.98 4.72 1.49 7.80 1.36 
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Table C.0.1 (Continued) 

 

 

 

  

SAMPLE 
ID 

SITE PIT 
ID 

LAYER 
CODE 

SLOPE BD  
(g cm-3) 

OC  
(%)  

NO3
- 

(mg kg-1) 
NH4

+ 

(mg kg-1) 
PO4

-
 
 

(mg kg-1) 
pH EC   

(dS m-2) 

21 WL2 1 TS 0 0.72 15.11 13.13 12.81 1.69 7.71 0.46 
22 WL2 1 LSS 0 0.92 14.74 3.65 11.32 1.53 NA NA 

23 WL2 2 TS 0 0.91 8.17 7.76 6.37 0.53 7.64 1.66 
24 WL2 2 LSS 0 1.24 3.72 2.26 0.91 0.91 7.76 0.60 
25 WL2 3 TS 2 0.29 11.47 1.13 5.74 1.27 7.69 0.65 
26 WL2 3 LSS 2 1.02 11.36 1.01 7.35 1.03 7.66 1.16 
27 WL2 4 TS 5 1.23 6.88 0.93 3.45 1.56 7.80 0.60 
28 WL2 4 LSS 5 1.23 5.95 1.03 4.45 1.87 7.75 0.67 
29 WL2 5 TS 0 1.14 4.88 1.43 4.22 3.04 7.74 0.60 
30 WL2 5 LSS 0 1.07 5.46 0.98 4.07 1.54 7.49 0.97 

31 WL2 6 TS 2 1.12 5.34 1.01 3.72 1.50 7.39 0.77 
32 WL2 6 LSS 2 1.19 5.12 0.98 4.38 1.33 7.59 1.06 
33 WL2 7 TS 5 0.99 6.41 1.57 6.64 2.10 7.64 0.53 
34 WL2 7 LSS 5 1.52 NA 0.97 2.58 1.76 NA NA 
35 WL2 8 TS 0 0.82 12.35 1.18 7.54 0.63 7.80 0.81 
36 WL2 8 LSS 0 1.44 2.00 0.96 2.50 1.06 7.98 0.78 
37 WL2 9 TS 0 0.83 17.49 5.29 6.41 1.05 8.30 0.78 
38 WL2 9 LSS 0 1.43 1.30 1.02 2.27 0.65 8.03 1.54 
39 WL2 10 TS 0 1.10 2.83 0.94 1.59 4.25 7.94 0.25 

40 WL2 10 LSS 0  1.74 0.95 3.70 1.32 8.09 0.69 



 

 

 

1
1

7
 

Table C.0.1 (Continued) 

 

SAMPLE 
ID 

SITE PIT 
ID 

LAYER 
CODE 

SLOPE BD  
(g cm-3) 

OC  
(%)  

NO3
- 

(mg kg-1) 
NH4

+ 

(mg kg-1) 
PO4

-
 
 

(mg kg-1) 
pH EC   

(dS m-2) 

41 RA1 1 TS 2 0.33 7.52 2.11 5.82 3.04 7.86 1.74 
42 RA1 1 USS 2 0.52 12.04 0.73 7.43 1.28 7.85 2.15 
43 RA1 1 LSS 2 1.59 1.14 0.69 3.45 3.38 7.92 1.72 

44 RA1 2 TS 2 0.28 9.54 3.07 9.71 0.80 6.10 1.90 
45 RA1 2 USS 2 1.78 7.97 0.67 9.25 1.44 6.84 2.28 
46 RA1 2 LSS 2 NA 1.18 1.51 3.30 2.62 7.62 1.49 
47 RA1 3 TS 0 1.07 16.56 0.59 10.57 1.98 6.10 1.88 
48 RA1 3 USS 0 1.58 1.52 0.46 2.91 2.75 7.55 1.34 
49 RA1 3 LSS 0 1.69 1.86 1.84 6.65 0.96 7.50 3.12 
50 RA1 4 TS 0 0.59 5.97 0.61 6.12 1.64 7.68 0.99 
51 RA1 4 USS 0 1.56 1.12 0.49 3.56 2.04 7.61 0.74 
52 RA1 4 LSS 0 1.79 1.39 0.47 3.20 0.92 7.46 1.96 

53 RA1 5 TS 0 0.25 3.95 0.51 4.85 2.06 7.68 1.44 
54 RA1 5 USS 0 0.72  0.53 6.67 2.83 7.46 0.86 
55 RA1 5 LSS 0 1.35 1.05 0.53 4.17 5.09 7.83 0.64 
56 RA1 6 TS 0 0.88 16.90 0.46 8.12 3.50 6.59 0.88 
57 RA1 6 USS 0 1.61 0.86 0.50 3.32 2.89 7.50 2.29 
58 RA1 6 LSS 0 NA 1.21 0.49 3.80 2.71 7.41 2.75 
59 RA1 7 TS 0 0.77 3.08 0.55 6.37 3.55 7.82 0.99 
60 RA1 7 USS 0 0.86 0.77 0.50 3.26 3.04 7.73 1.28 
61 RA1 7 LSS 0 NA NA NA NA NA NA NA 

62 RA1 8 TS 0 0.56 36.93 0.13 11.58 1.81 4.80 1.88 
63 RA1 8 USS 0 0.46 3.63 0.49 4.32 1.33 7.33 1.46 
64 RA1 8 LSS 0 1.80 1.15 0.65 2.62 1.62 7.85 0.72 
65 RA1 9 TS 0 0.68 5.13 0.63 6.39 4.77 7.46 1.04 
66 RA1 9 USS 0 0.57 1.80 0.95 5.23 2.63 7.52 1.40 
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67 RA1 9 LSS 0 1.75  0.71 7.10 3.91 7.50 1.26 
68 RA1 10 TS 2 0.58 11.15 0.77 4.97 1.55 7.69 1.73 

69 RA1 10 USS 2 1.17 5.33 0.60 4.03 1.15 7.52 2.43 
70 RA1 10 LSS 2 1.49 1.80 0.62 3.31 1.19 7.51 2.72 
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Table C.0.1 (Continued) 

 

SAMPLE 
ID 

SITE PIT 
ID 

LAYER 
CODE 

SLOPE BD  
(g cm-3) 

OC  
(%)  

NO3
- 

(mg kg-1) 
NH4

+ 

(mg kg-1) 
PO4

-
 
 

(mg kg-1) 
pH EC   

(dS m-2) 

71 Burned 1 TS 0 0.94 1.09 0.65 4.74 75.92 6.71 0.11 
72 Burned 1 USS 0 1.49 0.65 0.27 2.98 5.73 5.45 0.06 
73 Burned 1 LSS 0 1.54 0.61 0.32 3.23 6.62 5.82 0.05 

74 Burned 2 TS 0 1.34 7.45 0.19 3.25 22.80 4.80 0.08 
75 Burned 2 USS 0 1.59 0.74 2.37 2.54 7.75 5.83 0.06 
76 Burned 2 LSS 0 1.59 0.74 2.49 2.50 5.96 6.05 0.03 
77 Burned 3 TS 0 1.31 14.40 2.56 2.65 47.48 4.94 0.05 
78 Burned 3 USS 0 1.50 0.67 2.45 3.40 11.61 5.12 0.05 
79 Burned 3 LSS 0 1.63 0.65 3.07 1.90 7.83 5.75 0.06 
80 Burned 4 TS 0 1.37 3.78 3.19 2.59 12.63 5.15 0.19 
81 Burned 4 USS 0 1.58 0.73 3.22 2.32 2.19 7.26 0.32 
82 Burned 4 LSS 0 1.62 0.64 2.93 2.24 1.51 7.18 0.30 

83 Burned 5 TS 0 1.26 3.61 2.33 2.11 29.08 6.00 0.09 
84 Burned 5 USS 0 1.52 0.98 3.36 3.05 11.34 6.11 0.18 
85 Burned 5 LSS 0 1.53 0.53 2.96 2.71 5.04 6.35 0.14 
86 Burned 6 TS 0 1.07 3.38 2.67 4.07 20.78 4.78 0.17 
87 Burned 6 USS 0 1.50 0.63 3.97 4.06 4.66 5.02 0.08 
88 Burned 6 LSS 0 1.39 0.71 2.45 3.66 8.90 5.18 0.10 
89 Burned 7 TS 0 1.31 1.21 2.55 3.31 14.13 5.02 0.12 
90 Burned 7 USS 0 1.56 0.71 0.48 3.46 6.13 5.70 0.15 
91 Burned 7 LSS 0 1.54 0.54 3.30 2.93 3.22 5.76 0.29 

92 Burned 8 TS 0 1.60  2.95 2.03 48.57 5.45 0.14 
93 Burned 8 USS 0 1.48 0.75 0.34 3.15 18.59 5.60 0.17 
94 Burned 8 LSS 0 1.52 0.66 0.21 2.64 4.71 5.66 0.15 
95 Burned 9 TS 0 1.18 4.74 0.07 2.82 65.44 4.83 0.11 
96 Burned 9 USS 0 1.44 0.47 0.24 2.63 43.35 5.65 0.14 
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97 Burned 9 LSS 0 1.55 0.62 0.24 3.32 8.92 5.94 0.20 
98 Burned 10 TS 0 1.11 0.74 0.04 4.00 4.65 5.09 0.18 

99 Burned 10 USS 0 1.61 0.58 0.46 1.52 2.19 6.40 0.11 
100 Burned 10 LSS 0 1.47 0.56 0.65 2.08 3.11 7.60 0.60 
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Table C.0.1 (Continued) 

 

SAMPLE 
ID 

SITE PIT 
ID 

LAYER 
CODE 

SLOPE BD  
(g cm-3) 

OC  
(%)  

NO3
- 

(mg kg-1) 
NH4

+ 

(mg kg-1) 
PO4

-
 
 

(mg kg-1) 
pH EC   

(dS m-2) 

101 Reference  1 TS 0 0.87 2.17 0.28 5.54 14.54 6.11 0.14 
102 Reference  1 USS 0 1.51 0.53 0.29 2.84 2.31 6.41 0.07 
103 Reference  1 LSS 0 1.50 0.44 0.26 1.53 1.53 6.73 0.05 

104 Reference  2 TS 5 0.60 1.22 0.20 12.94 64.54 5.28 0.11 
105 Reference  2 USS 5 1.45 0.54 0.16 3.84 6.47 5.52 0.06 
106 Reference  2 LSS 5 1.46 0.77 0.19 6.28 7.15 5.42 0.05 
107 Reference  3 TS 5 0.97 0.92 0.63 34.46 42.83 5.44 0.15 
108 Reference  3 USS 5 1.55 0.75 0.19 2.00 4.35 5.18 0.06 
109 Reference  3 LSS 5 1.51 0.27 0.18 3.64 3.86 5.22 0.04 
110 Reference  4 TS 2 1.36 1.02 0.21 4.51 10.35 5.02 0.07 
111 Reference  4 USS 2 1.46 0.55 0.21 4.72 2.59 5.33 0.04 
112 Reference  4 LSS 2 1.47 0.41 0.23 6.19 4.50 5.33 0.05 

113 Reference  5 TS 0 0.92 0.57 0.01 8.24 14.51 4.77 0.09 
114 Reference  5 USS 0 1.26 0.53 0.14 2.79 9.32 5.25 0.05 
115 Reference  5 LSS 0 1.60 0.43 0.13 4.27 16.51 5.28 0.04 
116 Reference  6 TS 0 0.75 1.34 0.13 5.92 11.88 5.05 0.08 
117 Reference  6 USS 0 1.45 0.52 0.17 3.44 5.21 5.31 0.03 
118 Reference  6 LSS 0 1.61 0.80 0.12 4.77 5.65 5.28 0.04 
119 Reference  7 TS 0 1.08 0.93 0.24 4.03 14.85 5.17 0.05 
120 Reference  7 USS 0 1.45 0.59 0.13 3.85 4.58 5.36 0.04 
121 Reference  7 LSS 0 1.57 0.78 0.17 5.97 6.80 NA 0.03 

122 Reference  8 TS 2 1.35 0.81 NA NA NA NA NA 
123 Reference  8 USS 2 1.53 0.52 0.09 4.01 2.39 5.38 0.03 
124 Reference  8 LSS 2 1.54 0.58 0.04 4.84 3.55 5.44 0.03 
125 Reference  9 TS 0 0.86 NA NA 9.38 16.92 4.75 0.06 
126 Reference  9 USS 0 1.58 0.48 0.16 2.50 1.35 5.22 0.02 
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127 Reference  9 LSS 0 1.41 0.52 0.11 5.25 7.66 5.30 0.03 
128 Reference  10 TS 0 1.18 1.45 0.17 4.19 15.60 5.06 0.05 

129 Reference  10 USS 0 1.60 0.59 0.17 4.12 12.10 5.28 0.04 
130 Reference  10 LSS 0 1.56 0.77 0.18 4.97 12.61 5.44 0.02 
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11. APPENDIX D 

Table D.0.1 Mean and standard deviation of soil nutrients in three reclaimed Oil Sands soils 
(WL1, WL2, RA1), one fire-disturbed soil (Burned), and one undisturbed soil (Reference) by total 
amounts per hectare. Bulk densities included to see multiplier effect from concentrations.   

 

 

Soil Depth Reclaimed  Natural 

WL1 WL2 RA1  Burned Reference 

Bulk Density (g cm-3) 
0-20 cm 1.13±0.29ab† 0.88±0.18b 0.60±0.26b  1.25±0.18a 0.99±0.25b 

20-50 cm -‡ - 1.08±0.52a  1.53±0.06a 1.48±0.10a 

50-100 cm 1.47±0.19ab 1.12±0.22b 1.64±0.17a  1.54±0.07a 1.52±0.06a 

       

Organic Carbon (Mg ha-1) 

0-20 cm 123±53 148±159 150±146  102±113 23±9 
20-50 cm - - 107±129  32±6 25±4 

50-100 cm 305±159 275±178 97±52  48±6 44±15 

       

NO3
- (Mg ha-1) 

0-20 cm 39±46 53±55 9±5  45±36 5±4 

20-50 cm - - 18±8  79±69 9±2 
50-100 cm 76±7 75±42 65±41  144±104 12±5 

       

NH4
+ (Mg ha-1) 

0-20 cm 130±50 95±34 93±60  76±13 181±186 

20-50 cm - - 159±122  133±30 152±39 

50-100 cm 318±188 223±119 358±161  208±39 363±105 
       

PO4
- (Mg ha-1) 

0-20 cm 43±34 33±26 31±22  837±552 396±237 

20-50 cm - - 71±42  507±528 223±154 

50-100 cm 74±31 73±26 193±121  428±192 536±360 

       


