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Abstract 

The architecture of mitochondria is closely associated with numerous functions for cell signaling, 

growth and senescence.  The overall phenomenon of mitochondrial dynamics, which include 

fusion and fission events, characterizes the fundamental mechanism governing the cell’s 

bioenergetic needs.  Mitofusins are fusogenic proteins that have emerged as key regulators of 

diverse functions such as respiration, mitochondrial biogenesis, and energy homeostasis.  Thus, 

mitochondrial dynamics and bioenergetics together control the energy demand to supply ratio.  

Mitofusins (1 and 2) are both intricately associated with mitochondria and mitochondrial 

associated membranes (MAMs).  These organellar communication sites drive and regulate 

mitochondrial metabolism and energy homeostasis.  Although both mitofusin-1 (Mfn-1) and 

mitofusin 2 (Mfn-2) share some common roles, Mfn-1 is primarily involved in the fusion of the 

outer mitochondrial membrane, while Mfn-2 primarily affects mitochondrial metabolism by 

controlling the electron transport chain, fuel oxidation and mitochondrial membrane potential.   

The research presented in this thesis centers around the Mfn-2 fusion protein.  Specifically, it 

focuses on the change in mitochondrial morphology and lipid content in the absence of Mfn-2.  

It was observed that the knockout of Mfn-2 in mouse embryonic stem fibroblasts (MEFs) 

drastically altered mitochondrial morphology and simultaneously increased lipid droplet size but 

not number.  When cells were provided a further substrate for triglyceride synthesis i.e. oleic 

acid, the Mfn-2 KO MEFs showed an enhanced capacity to increase the number of lipid droplets 

compared to WT cells.  In Mfn-2 knockout MEF cells, the ability to undergo adipogenesis is 

enhanced compared to WT MEF cells.  Surprisingly we also observed that adipogenesis was 

induced with control, non-adipogenic media, supplemented with a high concentration (20%) of 

fetal bovine serum.  In conclusion, the data suggest that Mfn-2 is a crucial protein controlling 

mitochondrial morphology, which has a major role in maintaining cellular homeostasis and lipid 

metabolism.           
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1. INTRODUCTION 

Obesity is at epidemic proportions in many regions of the world and is thought to result 

from a variety of factors including stressful lifestyles, poor eating habits, and inactivity.  

According to Statistics Canada (2010), the percentage of obese people in North America is 25% 

and in Canada it is 30%.  The percentage of overweight people is 60% and 66% in North America 

and Canada, respectively (Haffner, 2006; Hensrud and Klein, 2006; Francischetti and Genelhu, 

2007; Hill et al., 2007).  Alarmingly, the rate of obesity in adolescents and children is increasing, 

suggesting the problem will only worsen over the next decade (Dehghan et al., 2005; Belanger-

Ducharme and Tremblay, 2005; Wyatt et al., 2006; Orio et al., 2007).  Many obese people 

develop insulin resistance, which can lead to diabetes mellitus Type 2.  Insulin resistance is also 

an underlying factor for other pathologies such as atherosclerotic coronary heart conditions, 

hyperlipidemia, and liver malfunction (Tremblay et al., 2002; Katzmarzyk, 2002; Belanger-

Ducharme and Tremblay, 2005; Tjepkema, 2005).  

Mitochondria play a crucial role in lipid and energy metabolism.  Imbalances in metabolic 

pathways could cause disruption of cellular energy expenditure, substrate metabolism, and 

reactive oxygen species disposal, which in turn can lead to type 2 diabetes and obesity (Bournat 

and Brown, 2010).  For example, mitochondrial dysfunction in adipocytes leads to excessive 

accumulation of lipids, which ultimately leads to obesity and is associated with several 

pathologies such as hyperlipidemia and atherosclerosis (Santel, 2006).  Recent studies suggest 

fatty liver and its inflammation could cause stomach cancer (Rajala and Scherer, 2003; Berg, and 

Scherer, 2005; Bugianesi, 2005).   

 

1.1 Obesity: A Canadian and Global Health Issue 

Obesity is defined as excessive fat accumulation in the body.  A body is considered as 

overweight if the body mass index (BMI) exceeds 25, while the condition is referred to as clinical 

obesity if BMI is greater than or equal to 30.  According to WHO in a 2014 report 

(www.who.int/mediacentre/factsheets), the world is experiencing a severe epidemic of obesity 

and its related disorders, with more than 1.9 billion adults being reported as overweight and 600 

million as clinically obese.  Moreover, the prevalence of obesity has consistently been increasing 

and has nearly doubled since 1980.  The problem also appears to be starting at an earlier age.  

For example, worldwide obesity and overweightness in children under the age of 5 reached 42 
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million in 2013 (de Onis et al., 2010).  Two factors that are mainly responsible for the obesity 

epidemic are increased consumption of energy dense foods (especially with high-fat content) and 

physical inactivity due to a rise in the desk-bound nature of workplaces.  Obesity leads to other 

health issues, including some common non-communicable medical conditions such as 

cardiovascular disease, musculoskeletal disorders (especially osteoarthritis) and some forms of 

cancer, including breast and colon cancer.  In 2012, heart disease and stroke were the foremost 

cause of mortality.  Becoming overweight at an early age is strongly associated with an increased 

risk of premature death or disability, and hypertension in adulthood.  Thus, the alarming increase 

in obesity is leading to a subsequent increase in a variety of non-communicable diseases.   

Obesity in Canada is a rising health issue, which is anticipated to exceed smoking as the 

top reason of preventable mortality (Eisenberg et al., 2011).  A recent (2014) health survey done 

in Canada in adults over the age of 18 suggests that the percentage of obese people is growing 

rapidly for both men and women (www.statcan.gc.ca).  For overweight or obese men, the 

percentage increased from 57.3% (2003) to 61.8% (2014), and for females, the percentage 

increased from 41.3% (2003) to 46.2% (2014). Obesity in Canada rose to approximately to 20.2% 

in 2014, from 15% in 2003.  A regional snapshot of the obesity rates as of 2014 is shown in Figure 

1.1.  The proportion of obese adults was highest in The Northwest Territories at 33.7%.  The  

Canadian provinces or territories, in descending order of obese adults, are as follows: The 

Northwest Territories (33.7%), Newfoundland and Labrador (30.4%), Nova Scotia (27.8), New 

Brunswick (26.4%), Saskatchewan (25.1%) and Manitoba (24.5%).  These compare to the 

Canadian average of 20.2%.  The report suggests two critical reasons for weight gain;  a lack of 

food security (especially fresh and nutritious food), and a lack of physical activity.  It also 

highlighted that Canadian children (5%) and adults (8%) were facing food security issues, in that 

they were unable to access sufficient varieties of food, due to affordability.  A study revealed that 

current BMI of Canadians aged 20-39 is that of the people aged 40+ three decades ago (Shields 

et al., 2010).  A similar study was performed in 2010 to quantify the economic burden of obesity.  

It concluded that the direct Canadian national economic burden of obesity alone was $6 billion 

in Canada, which was 4.1% of the national health care budget.  The WHO along with many other 

organizations around the globe has determined obesity to be a chronic illness.   
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Figure 1.1. Canadian Regional Breakdown of Obese Adults in 2014.  

Provincial/Territorial breakdown of the percentage of obese adults in the year 2014.  Figure was 

adapted from Statistics Canada, 2014 (www.statcan.gc.ca). 
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2. LITERATURE REVIEW 

 

2.1 Lipid Droplets 

In eukaryotic organisms, the major form of stored energy is triacylglycerol (TAG), which 

is a neutral lipid.  Excessive accumulation of TAG as lipid droplets in adipocytes is the cellular 

basis for obesity.  In most eukaryotes, TAG and sterol esters (SE) are the main components of 

the lipid droplet core.  Apart from TAG and SE, neutral lipids also include free cholesterol, retinol 

esters, and a small fraction of xenobiotic hydrophobic chemicals like aromatic hydrocarbons 

(Brown, 2001; Greenberg and Obin, 2008).  The core is further enveloped by a monolayer of 

lipids which are polar in nature (Tauchi-Sato et al., 2002).  Lipid droplets also contain some 

attached and embedded proteins within the envelope (Figure 2.1).  Previously, lipid droplets were 

considered only as a storehouse of energy and inert in cellular functioning.  However, a 

breakthrough study identified a protein named perilipin which precisely localized to the surface 

of lipid droplets (Greenberg et al., 1991).  This research work opened the doors to study lipid 

droplets as dynamic organelles.  A study described a clear genome-wide RNAi screen in 

Drosophila melanogaster to study the dynamic nature of lipid droplets in cellular energy 

metabolism (Guo et al., 2009).   

 

Figure 2.1. The General Architecture of Lipid Droplets.   

A spherical lipid droplet containing neutral lipids enveloped by a phospholipid monolayer.  

Several proteins associated with lipid droplets are either embedded in the phospholipid layer 

or attached externally to the surface. For example, the well-known and characterized lipid 

droplet surface proteins are family of perilipin (PLIN). These consists of perilipin 1 (PLIN1), 

perilipin 2 (ADRP), perilipin 3 (TIP47), perilipin 4 (S3-12) and perilipin 5 (OXPAT/ LSDP5/ 

MLDP). Apart from PLIN family several other families of proteins from the lipid droplet coat 

are involved in vesicle docking, membrane trafficking, endocytosis and exocytosis. 
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Even though the lipid droplet’s significance in cellular energy metabolism and 

pathologies is gaining appreciation, it still remains understudied.  The latest functional and 

proteomic analyses (Bartz et al., 2007; Currie et al., 2014) of lipid droplets suggests a 

fundamentally new perspective of lipid droplets (Guo et al., 2009; Cohen et al., 2004; Vance, 

2003).  

Increased levels of TAG and thus lipid droplets are of significant concern.  For example, 

when the lipid droplets increase in hepatocytes, leading to a condition called steatosis, it can lead 

to fatty liver disease which can give rise to cirrhosis and liver failure (Neuschwander-Tetri, 2007; 

Saadeh, 2007).  It is estimated that about 75% of obese people have fatty liver (Reddy and Rao, 

2006).  When levels of TAGs are high in the blood, it may lead to atherosclerosis (Rosenbaum et 

al., 1997).  Even in non-adipose tissue, when the levels of TAGs increase, this can lead to insulin 

resistance and type 2 diabetes (Friedman, 2002; Unger, 2002).  Recently the importance of lipid 

droplets was underscored by the finding that they were found to interact with essential cellular 

organelles such as endoplasmic reticulum, mitochondria, plasma membrane, and endosomes, and 

coordinated with these organelles to dissipate metabolic energy for biochemical processes (Guo 

et al., 2009).  The size, number and distribution pattern of lipid droplets in cells strongly associate 

with several life-threatening pathologies such as myocardial infarction and diabetes (Schaffer, 

2003).  Therefore, the dynamic nature of lipid droplets and its significance in pathologies is 

gaining appreciation by the scientific community, and lipid droplets are now considered cellular 

organelles.   

 

2.1.1 Cellular Functions of Lipid Droplets 

Lipid droplets are widespread among eukaryotic cells and have occasionally been 

observed in prokaryotic cells as well (Alvarez et al., 1996).  Adipocytes are the predominant 

cells that store energy, in the form of one large lipid droplet per cell, which can comprise up to 

90% of the cell volume (Frühbeck et al., 2001).  Contrary to the established belief that lipid 

droplets are inert particles, they have been found to be highly dynamic organelles.  Lipid droplets 

buffer the energy fluctuations in and around the cells.  For example, regulation of the size and 

number of lipid droplets may contribute to overall cellular energy homeostasis (Kohlwein et al., 

2013).  In order to avoid lipotoxicity in times of excess fatty acid availability, the lipid droplets 

become a storehouse for fatty acids in the form of TAG.  When low energy conditions prevail, 
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lipid droplets can release lipids to be utilized as energy sources (Brasaemle, 2007; Ducharme 

and Bickel, 2008). The mechanisms involved in these processes remain poorly understood 

(Listenberger et al., 2003).  

Lipid droplets also regulate cellular functions apart from lipid metabolism and energy 

homeostasis, such as cellular lipid and protein trafficking.  They have been shown to serve as a 

repository for the vast amounts of histones in Drosophila melanogaster embryos, thus serving as 

protein depots during embryogenesis (Cermelli et al., 2006). Moreover, they sequester toxic 

unfolded proteins such as α-synuclein until they are degraded (Cole and Murphy, 2002).  Lipid 

droplets play a crucial role in the reproduction of various pathogens and are determinants of the 

onset of the various pathophysiological diseases.  For example, hepatitis C virus particles bind to 

cell membrane lipid droplets during their life cycle (Miyanari et al., 2007), and thus may serve 

as a potential drug target to block viral reproduction.  Also, the cellular status of lipid droplets is 

known to vary in different pathological conditions. For example, excessive accumulation during 

obesity can lead to steatosis and type 2 diabetes, while the accumulation of sterol esters in 

macrophages can lead to atherosclerosis (Brown et al., 1979). 

 

2.1.2 Lipid Droplet Formation 

In eukaryotic organisms, the formation of lipid droplets appears to take place in the 

endoplasmic reticulum (ER). While direct visualization of the initial stages of the lipid droplet 

formation process are lacking, lines of evidence support a model whereby lipid droplets are 

derived from the ER. For example, most of the enzymes involved in triacylglycerol or sterol ester 

synthesis localize to the ER. Moreover, electron microscopy data reveal close apposition between 

lipid droplets and the ER (Robenek et al., 2005; Londos et al., 1995; Wilfling et al., 2013). In 

yeast, lipid droplets are found adjacent to the ER membrane (Szymanski et al., 2007), which led 

to the proposal that lipid droplets derive from the neutral lipid accumulation between the two 

leaflets of the ER membranes and bud off from the ER, taking with it the outer leaflet of the 

membrane (Figure 2.2 A) (Ohsaki et al., 2008).  Although it is still largely unknown as to which 

proteins are involved in the budding process and regulation, the key enzymes synthesizing the 

core components (TAG and cholesterol esters (CE)) of lipid droplets are present in ER 

membranes.  On the other hand, some proteins such as seipin (Boutet et al., 2009) or PAT-protein 

TIP47 (Bulankina et al., 2009) have been identified as being involved in lipid droplet formation. 
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Genome-wide screening suggested that there may a group of proteins that work together to 

regulate lipid droplet formation (Guo et al., 2008; Szymanski et al., 2007).  A distinct model for 

lipid droplet formation was proposed by Ploegh (2007) termed the bicelle model (Figure 2.2 B). 

In this model, neutral lipids accrue between the ER leaflets and then, instead of budding, nascent 

lipid droplets are eliminated from the ER membrane, removing phospholipids from both the 

cytosolic and luminal leaflets.  There have been recent efforts to identify whether there are 

specialized regions in the ER which are responsible for lipid droplet formation.  The lipid droplet 

formation model is based on the fact that neutral lipid synthesizing enzymes such as 

Diacylglycerol acyltransferase (DGAT) are found in the punctuate pattern across the ER 

(Shockey et al., 2006). Freeze-fracture studies revealed that lipid droplets never completely 

detach from the ER and remain surrounded by the ER membrane in an egg-shaped cup (Robenek 

et al., 2006).   

 

Figure 2.2. Models of Lipid Droplet Formation. 

Two models of lipid droplet formation. A) Triglycerides and sterol esters accumulate between 

two leaflets of the endoplasmic reticulum membrane. After reaching an appropriate size, the 

lipid droplet buds off the membrane.  According to this model (Farese and Walther, 2009), the 

lipid droplet membrane is an extension of the ER membrane and therefore carries various 

proteins on its surface. B) This model (Ploegh, 2007) is described in detail (Guo et al., 2009; 

Czabany et al., 2008) and is known as bilayer excision.  As opposed to the first model, the entire 

lipid droplet buds off from the ER, leaving a temporary hole in the ER membrane.  According 

to this model, the ER membrane might leak some of its content into the cytosol. (Adapted from 

Guo et al., 2009)  TAGs: Triacylglycerol, SE: Sterol Esters. 
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2.1.3 Lipid Droplet Synthesizing Enzymes 

The glycerol phosphate pathway, also known as Kennedy pathway, defines the 

progressive esterification of fatty acyl coenzyme A (CoA) molecules to a glycerol backbone, 

generating TAG (Kennedy, 1957).  The last important step in this pathway is the conversion of 

diacylglycerol (DAG) to TAG. This step is accomplished via the establishment of an ester bond 

between the free hydroxyl group of DAG and a long chain fatty acid (Figure 2.3).  The reaction 

is considered the last step in triglyceride synthesis and thus important for adipose tissue 

formation.  This reaction is catalyzed by the microsomal enzyme DGAT (EC 2.3.1.20).  In 

mammalian cells, diacylglycerol acyltransferase (DGAT) enzymes (DGAT1 and DGAT2) are 

known to play crucial roles in TG biosynthesis.  Two DGAT genes have been identified which 

code for distinct protein products.  In addition, while both DGAT1 and DGAT2 catalyze the same 

reaction in vitro, they are very structurally dissimilar (Cases et al., 1998; Stone et al., 2006).   

 

Figure 2.3. Triglycerol Formation. 

A) DGAT is responsible for catalyzing the crucial last step in the glycerol phosphate pathway 

where diacylglycerol is acylated to form triacylglycerol. B) Mechanism of DGAT catalyzing the 

formation of an ester bond between a long chain fatty acid and the free hydroxyl group of 

diacylglycerol (Figure from Gibellini and Smith, 2010). 
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DGAT1 is a member of a large family of membrane-bound O-acyltransferases (MBOAT) 

that includes ACATs.  DGAT2 belongs to the DGAT2/acyl CoA:monoacylglycerol 

acyltransferase (MGAT) family that includes several monoacylglycerol acyltransferases and a 

wax synthase (Cases et al., 1998; Farese et al., 2000; Hofmann, 2000; Buhman et al., 2001; Cases 

et al., 2001; Yen et al., 2002; Cao et al., 2003; Cheng et al., 2003; Yen and Farese, 2003; Turkish 

and Sturley, 2007).  DGAT1 and DGAT2 are highly expressed in white adipose tissue, and play 

a role in TAG metabolism.  They are expressed to a lesser extent in the mammary gland, liver, 

skeletal muscle and small intestine. (Cases et al., 1998, 2001; Kuerschner et al., 2008; Shockey 

et al., 2006).  DGAT1 appears to be a major modulator of energy homeostasis while DGAT2 is 

responsible for the bulk synthesis of TAG.  Despite the fact that both DGATs catalyze the same 

reaction and demonstrate similar localization to the ER, these enzymes have separate roles in 

lipid metabolism. DGAT1 knockout mice are viable but have only 50% of the adipose mass of 

wild-type mice, whereas DGAT2 knockout mice die shortly after birth (Oelkers et al., 2002; 

Sorger and Daum, 2002; Stone et al., 2004).   

 
Figure 2.4.  Models of Lipid Droplet Formation and Expansion.  

DGAT and ACAT enzymes fill nascent lipid droplets with neutral lipids.  Lipid droplets can be 

attached to or detached from the ER. They also grow by the fusion process.   
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During adipogenesis, localized budding of lipid droplets occurs at several loci throughout 

the cell.  These lipid droplets grow by expansion or fusion (coalescence) into a single larger 

droplet (Figure 2.4) (Song et al., 2002).  When neutral lipids accumulate within the endoplasmic 

reticulum lipid bilayer, they form nascent lipid droplets (Robenek et al., 2004; Wolins et al., 

2006).  During lipid droplet biosynthesis, nascent lipid droplets could remain attached to the ER, 

where they are filled with TAGs by DGAT or they could separate from the ER (Figure 2.4).  

Enzymes involved in neutral lipid synthesis are found in the endoplasmic reticulum.  DGAT2 is 

known to interact with lipid droplets and also associate with the MAM (Kuerschner et al., 2008; 

Stone et al., 2009).  Several enzymes involved in lipid biosynthesis, including DGAT2, are 

enriched in mitochondria-associated membranes (MAM), which are specialized domains 

of the ER that are in physical contact with mitochondria.  In eukaryotic cells, the majority 

of membrane phospholipids are synthesized on ER membranes, which are subsequently 

trafficked to other cellular organelles by unknown mechanisms (Voelker, 2003; 2009). 

 

2.1.4 Lipid Droplet Breakdown 

The process of lipid droplet breakdown (lipolysis) is better understood relative to lipid 

droplet biogenesis.  Lipolysis is induced under conditions of high-energy need or when there is 

metabolite need for membrane synthesis.  Several hormones are known to induce lipolysis, such 

as glucagon, ghrelin, cortisol, testosterone, epinephrine and norepinephrine. However 

catecholamines are the most potent stimulator through β-adrenergic receptors. These hormones 

trigger G protein-coupled receptors on the cell surface, which further stimulate signal 

transduction by activating adenylate cyclase, resulting in increased production of cAMP, which 

activates PKA.  PKA activation is a crucial step since it regulates several other proteins involved 

in the process of lipolysis.  Perilipin, an important regulator of basal and induced lipolysis, is one 

of those proteins that is phosphorylated by PKA.  Under basal conditions, perilipin protects the 

surface of lipid droplets by localizing to the lipid droplet surface and shielding the droplet’s 

surface from lipases (Figure 2.5).  However, once the lipolysis starts, perilipin helps to gather the 

required machinery on lipid droplets in a phosphorylation-dependent manner (Brasaemle, 2007; 

Tansey et al., 2001).  In the basal state, perilipin binds to comparative gene identification-58 

(CGI-58) protein product.  CGI-58 is a coactivator of adipose triglyceride lipase (ATGL).  Upon 

phosphorylation, perilipin induces the release of CGI-58, which then forms a complex with 
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ATGL.  This process activates ATGL, which catalyzes the cleavage of the first fatty acyl chain 

from TG, thus initiating TG hydrolysis on the surface of lipid droplets (Lass et al., 2006; 

Zimmermann et al., 2009). 

 

 

Figure 2.5. Regulation of Lipolysis. 

In the basal state, neither HSL nor ATGL are bound to lipid droplets, which maintains the overall 

low lipase activity by low functional ATGL and HSL.  When CGI-58 is bound to perilipin, this 

complex prevents activation of ATGL by unbound CGI-58.  In the activated state, perilipin is 

phosphorylated, and this phosphorylated perilipin does not bind CGI-58, thus releasing CGI-58, 

which further activates ATGL and HSL.  ATGL hydrolyzes one acyl chain from triglyceride, 

producing a diglyceride.  This diglyceride acts as a substrate for HSL.  HSL hydrolyzes another 

acyl chain, producing a monoacylglycerol and free fatty acid.  Finally, monoacylglycerol 

hydrolase converts monoacylglycerol into glycerol and free fatty acid (Adapted from Frühbeck 

et al., 2014).  
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Hormone-sensitive lipase (HSL) is another important target for PKA phosphorylation.  

HSL removes the second fatty acyl chain from the TAG backbone.  Upon phosphorylation, HSL 

is targeted to lipid droplets, where it interacts with phosphorylated perilipin (Sztalryd et al., 

2003).  Monoacylglycerol lipase removes the last acyl chain.  The released glycerol can be 

further exported to the liver for further metabolism (Fredrikson et al., 1986).  The released free 

fatty acyl chains are used as a substrate for β-oxidation to generate energy in the form of 

adenosine-5'-triphosphate (ATP) in mitochondria or peroxisomes.  

Lipid droplets are often located in proximity to several organelles, particularly the ER 

(Ozeki et al., 2005; Turro et al., 2006), endosomes (Liu et al., 2007), mitochondria (Sturmey et 

al., 2006) and peroxisomes (Binns et al., 2006; Schrader, 2001). In each instance, a functional 

connection exists between lipid droplets and these organelles. However, only peroxisomes and 

mitochondria can use fatty acids released from hydrolyzed triglycerides to produce ATP by β-

oxidation. The close apposition between lipid droplets and mitochondria has been well 

documented (Sturmey et al., 2006).  It was suggested that the regions of direct membrane contact 

between lipid droplets and these organelles facilitate the direct transfer of fatty acyl chains into 

mitochondria and peroxisomes (Murphy et al., 2009).  The molecular mechanism of breakdown 

of neutral lipids in the lipid droplet core by lipases is unknown.  Two different theories have 

been put forward.  The first theory suggests the possibility of catalytic sites of lipases getting 

access to lipid droplet core (Farese and Walther, 2009).  The second theory suggests that due to 

the surface composition of lipid droplet’s phospholipid, a small segment of neutral lipids might 

constantly be getting exposed to the catalytic site of lipases, which are bound to the droplet.  

Lipid droplet fragmentation, where larger lipid droplet breaks down into smaller ones 

during lipolysis, may be one of the ways lipase getting access to lipid droplet’s interior since it 

would result in a broader surface area and more contact sites.  In one study, fragmentation of lipid 

droplets occurred only in cells that were treated with β-receptors agonists (Brasaemle et al., 

2004).  A novel pathway for lipid droplets degradation was discovered in hepatocytes (Singh et 

al., 2009).  Under starvation conditions, lipid droplets are degraded by a process known as 

macroautophagy.  Autophagosomes partially or wholly sequester lipid droplets and hydrolyze 

them in lysosomes for energy purposes.  It is yet to be understood how macroautophagy works 

to maintain lipid droplet homeostasis and whether this process is preserved among different cell 

types. 
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2.2 Mitochondria 

 

2.2.1 Role of Mitochondrial Dynamics in the Cell 

The mitochondrion is a semi-autonomous organelle because it contains circular DNA and 

ribosomes for protein synthesis, whereas its division is dependent on signaling from nuclear 

DNA.  Mitochondria play a significant role in the production of ATP by oxidative 

phosphorylation.  They are involved in many catabolic and anabolic pathways, such as the β-

oxidation of fatty acids, the oxidation of acetyl CoA through the TCA cycle, and the biosynthesis 

of essential biomolecules (such as phospholipids).  Research using yeast genetic screens has 

revealed new proteins involved in regulating the size, shape, dynamics and energy flow in 

mitochondria (Dimmer et al., 2002; Scott et al., 2003).  Mitochondria are dynamic in shape.  

They adopt a variety of shapes from small, rounded up spheres to elongated interconnected 

tubules. Mitochondria achieve these distinct shapes and sizes by the continual processes of 

mitochondrial fission and mitochondrial fusion (Figure 2.6).  The diverse functions of 

mitochondria are attributed in part to their morphology, which in turn is regulated by the 

activities of the molecular machines involved in fusion and fission.  This dynamic behavior helps 

the cell to survive and respond quickly to its continuously changing physiological and 

biochemical conditions (Nakada et al., 2002).  A shift toward fusion favors the formation of the 

interconnected mitochondrial network, which is critical for metabolically active cells, as they 

channel the dissipation of energy (Skulachev 2001).  On the contrary, a shift towards fission 

produces numerous mitochondrial fragments which are often seen as numerous short rods or 

small spheres, a characteristic of dormant or sluggish cells (Collins et al., 2002).  For example, 

when embryonic stem cells undergo differentiation, the mitochondrial network becomes 

elongated (Chung et al., 2007).  During formation of the synapses in neurons, mitochondrial 

division is increased to establish a new mitochondria in protruding neurons (Li et al., 2004).  

Moreover, whenever an apoptotic signal is triggered in a cell, the mitochondrial network 

undergoes fragmentation to facilitate remodeling of cristae to release cytochrome c (Youle and 

Karbowski, 2005).  

A particular group of proteins mediate the processes of mitochondrial fusion and fission 

(Hales and Fuller, 1997; Chen et al., 2003).  Whenever this dynamic is disturbed, it affects cellular 

functions since this dynamic mitochondrial morphology is involved in several cellular processes 
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such as apoptosis (Frank et al., 2001; Karbowski and Youle, 2003; Bossy-Wezel et al., 2003).  

For example, when mitochondria lack the ability to fuse normally, respiratory capacity is reduced, 

and as a result cell growth slows. It has been demonstrated that a mouse with a complete 

deficiency in mitochondrial fusion either by deleting Mfn-1 or Mfn-2 is embryonically lethal 

(Chen et al., 2003, 2005).  Charcot-Marie-Tooth syndrome, a  neurodegenerative disease in 

humans, is linked to a mutation in the Mfn-2 gene which codes for a mitochondrial fusion protein.  

Conversely, when the optic atrophy 1 (OPA1) gene encoding a mitochondrial fusion protein is 

mutated, autosomal dominant optic atrophy ensues (Alexander et al., 2000; Zuchner, 2004). Thus, 

both mitochondrial fusion and fission proteins play a critical role in energy metabolism.  It has 

been shown that silencing Mfn-2 in fibroblast cells leads to a reduction in oxygen consumption 

and glucose oxidation (Kawalec et al., 2015).  Meanwhile, in L6E9 muscle cells, decreased rates 

of pyruvate or palmitate oxidation were associated with Mfn-2 repression (Bach et al., 2003, 

2005).  Although the role of mitochondrial dynamics in cellular processes and energy metabolism 

is well established, its role in lipid metabolism and lipid droplet dynamics remains to be 

elucidated. 

 

Figure 2.6. Mitochondrial Dynamics of Fusion and Fission.  

Mfn-2 and Opa1 are mitochondrial fusion proteins located on the mitochondrial outer and inner 

membrane respectively.  These proteins assist in fusing two mitochondria.  Drp1 is another 

protein that is involved in the mitochondrial fission process.  
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2.2.2 Mitochondrial Fission  

Fission is the separation of an elongated mitochondrion from 3-30 µm into two or more 

segments, some as small as 0.5-0.7 µm.  Fission is a continuous process and is essential for 

various cellular processes.  It ensures that mitochondria are distributed to regions of the cell in 

which energy consumption is considerable (Chang and Reynolds, 2006).  Fission also facilitates 

the allocation of mitochondria in the mitotic and meiotic cells, as newer mitochondria rapidly 

divide and easily translocate into the new daughter cells (Jagasia et al., 2005; Youle and 

Karbowski, 2005).  Mitochondrial fission is carried out by an assembly of proteins.  The most 

important of these are Fis1 and Drp1 (dynamin-related protein 1) (Karbowski et al., 2004). Drp1 

is a cytosolic protein. However, a mini-reserve is contained in punctate spots on mitochondrial 

strands, and a subsection of these spots indicate future sites of fission (Smirnova et al., 2001). 

Inhibition of Drp1 by RNAi leads to extended length and interconnectivity of mitochondrial 

strands (Lee et al., 2004, Smirnova et al., 2001). Fis1 is another crucial factor of the mammalian 

mitochondrial fission machinery.  Studies have provided evidence showing that increased levels 

of Fis1 promote mitochondrial fragmentation while decreased levels of both Fis1 and Drp1 

promote elongation (James et al., 2003; Stojanovski et al., 2004; Santel and Fuller, 2001).  Fis1 

is small protein (16 kDa) that is evenly distributed on the outer surface of mitochondria.  Fis1 is 

embedded in the outer membrane of mitochondria via a C-terminal transmembrane domain. The 

bulk of protein extends out into the cytosol, with this domain consisting of six antiparallel helices 

that forms a helical bundle (Dohm et al., 2004; Suzuki et al., 2005).  

The mechanism whereby mitochondrial fission occurs is poorly understood in eukaryotes, 

but in yeast, the fission assembly complexes are well-studied (Griffin et al., 2005; Tieu and 

Nunnari, 2000; Zhang and Chan, 2007). Fis1 and Drp1 are essential components of the 

mitochondrial fission machinery. Drp1 is present on OMM as well as in cytosol.  As mentioned 

above, a subset of the sites on the mitochondria where Drp1 resides become actual fission sites.  

Drp1 interacts with Fis1 via another factor called Mdv1 (Ingerman et al., 2005; Okamoto and 

Shaw, 2005).  Interaction of Fis1 and Drp1 and other fission assembly factors activate fission 

(James et al., 2003; Yoon et al., 2003).  Dnm, a homolog of Drp1, covers and constricts 

mitochondria, thereby carrying out the process of fission (Roux et al., 2006). Association of Drp1 

with other fission machinery leads to constriction at fission sites on mitochondria, which 

eventually produces two separate organelles.  Four Drp1 receptors proteins are found on the 
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mitochondrial surface; mitochondrial fission factor (MFF), mitochondrial fission 1 (Fis1), and 

Mitochondrial dynamics proteins 49kDa (MID49) and 51kDa (MID51) (Mishra and Chan, 2014).  

MFF, MID49, and MID51 have key roles in fission, while Fis1 play a lesser role (Loson et al., 

2013, Otera et al., 2010). 

 

2.2.3 Mitochondrial Fusion  

In the process of mitochondrial fusion, first the outer membranes of two mitochondria 

are fused followed by the inner membrane, and eventually their internal contents are combined 

(Ishihara et al., 2004).  Mfn-1, Mfn-2, and Opa1 are membrane GTPases involved in fusion.  

Mfn-1 and Mfn-2 are present on the mitochondrial outer membrane (Knott et al., 2008; Rojo et 

al., 2002), while Opa1 is found in the intermembrane space (Alexander et al., 2000; Delettre et 

al., 2000, 2001; Olichon et al., 2002).  Mitochondrial fusion facilitates the revival of 

mitochondria, as the mixing of contents allow replacement of damaged components (Chan, 2006; 

Chen et al., 2005; Ono et al., 2001).  Elongation of mitochondria has been shown to increase the 

life span of yeast and fungus (Scheckhuber et al., 2007).  These studies have suggested that 

mitochondrial size may have a functional role in senescence. 

 

2.2.4 Mitochondrial Fusion Proteins/Machinery 

The Soluble NEM Sensitive Adaptor Receptor (SNARE) family of proteins are involved 

in most intracellular fusion events.  During fusion, Rab GTPase and its effector protein along 

with fusogenic lipids like phosphatidic acid interact in a systematic fashion to mediate the initial 

segregation and tethering of different specific compartments and membranes of vesicles (Sollner 

et al., 1993; Bonifacino and Glick, 2004). 

This process is highly regulated, which ensures that the correct membranes fuse with 

each other.  Until recently, none of these Rab GTPases or its effector proteins were known to 

play a role in mitochondrial fusion.  A superfamily of lipid-modifying enzymes called 

phospholipase D (PLD) has a mitochondrial member, which is found to play a role in 

mitochondrial fusion.  Mitochondrial PLD tethers to the mitochondrial membrane by 

hydrolyzing cardiolipin to form a fusogenic lipid, phosphatidic acid (Choi et al., 2006).  

Mammalian mitochondrial fusion is regulated by three essential GTPases (Table 1.1) (Figure 
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2.7) that are highly conserved; Mfn-1, Mfn-2 and Opa1 (Legros et al., 2002; Ishihara et al., 

2003).   

Recently, Cao et al., (2017) crystallized an Mfn-1 protein construct that contained the 

GTPase domain and a four-helix bundle. The crystal structure of this internally-modified Mfn-1 

revealed structural details and a possible mechanistic model for how Mfn-1 mediates 

mitochondrial tethering. Of particular interest was the observation that disruption of the GTPase 

domain eliminated the fusogenic activity of Mfn-1, presumably because it prevents dimerization 

of Mfn-1 which is mediated by the GTPase domain. While a crystal structure for Mfn-2 is not 

yet available, it is proposed that Mfn-2 will have similar mechanism of action given the overall 

amino acid sequence similarity shared by the two Mfn isoforms. 

    

 

Table 2.1. Mitochondrial Fusion Proteins 

Protein Location Function 

Mfn-1 

/Fzo1p/Fzo 

 

OMM GTPase from the dynamin family, with two heptad repeats, 

required for mitochondrial fusion and tethering. 

Mfn-2 

/HSG/dMfn 

 

OMM GTPase from dynamin family, 62% same identity to Mfn-1, 

exhibit regulatory properties. If mutated causes CMT2A 

Mgm1p/Opa1 

 

IMM Dynamin-like GTPase, eight different splice variants are 

found in humans. Possess a coiled-coil domain. These are 

required for inner membrane fusion and cristae structure. 

OMM-outer mitochondrial membrane, IMM-inner mitochondrial membrane. 
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Figure 2.7. Three large GTPases involved in mitochondrial fusion.   

Mfn-1 and Mfn-2 participate in the fusion of the mitochondrial outer membrane, whereas Opa1 

participates in the fusion of the inner mitochondrial membrane.  HR- heptad repeat, TM- 

transmembrane segment, MTS- mitochondrial targeting sequence.  

 

2.3 Endoplasmic Reticulum-Mitochondrial Connections 

The compartmentalization of eukaryotic cells allows segregation of membrane-bound 

organelles and their respective functions within the cytoplasm. The endoplasmic reticulum is the 

largest membrane-bound organelle and carries out or participates in many cellular functions.  It 

is the site where luminal, secretory and membrane proteins are synthesized as well as translocated 

to the secretory and endocytic compartments.  It functions as an intracellular storage site for 

calcium and also has lipid biosynthetic enzymes (Elbaz and Schuldiner, 2011).  It has become 

evident through high-resolution microscopy that the ER forms contacts with other cytoplasmic 

organelles (Friedman and Voeltz, 2011).  Specific proteins on each organelle localize to these 

contact sites to perform their specific function. Mitochondria and ER have well-characterized 

contact sites.  Various roles for ER-mitochondria junctions have been identified, such as 

regulating lipid synthesis, calcium signaling, and mitochondrial biogenesis.  Studies examining 

intracellular trafficking of various biomolecules are revealing the dynamic nature of these 

connections. 

2.3.1 Mitochondria Associated Membrane 

It is well-known that mitochondria and ER are in close apposition to each other (Franke 

and Kartenbeck, 1971).  Due to improvements in differential centrifugation and electron 
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microscopy, it has been shown that the ER makes its contact with mitochondria through 

specialized regions termed mitochondria-associated membrane or MAM (Pickett et al., 1980; 

Meier et al., 1981).  MAMs are the specialized membrane domains of ER, which are attached to 

mitochondria. They are involved in autophagosome formation, lipid transport, Ca2+ homeostasis, 

as well as other processes (Rizzuto et al., 1993, 1998).  Studies have confirmed that MAMs are 

enriched in lipid synthesizing enzymes, which suggests a possible mechanism of lipid transport 

from ER to mitochondria (Vance, 2014; Cui et al., 1993; Rusinol et al., 1994; Shiao et al., 1995, 

1998; Stone and Vance, 2000; Stone et al., 2009).   
 

 

2.3.2 Structure of the ER–Mitochondria Contacts 

Electron and fluorescence microscopy is commonly used to study MAMs.  It should be 

noted that these contact sites do not involve membrane fusion, thereby maintaining their 

individual organelle identities.  The contact site between the ER and mitochondria was found to 

be 10-30 nm wide (Csordás et al., 2006 and Friedman et al., 2011).  This suggests that the two 

organelles are tethered together by proteins which are located on opposite membranes. The 

evidence that ribosomes are extruded from the ER at contact sites supports the hypothesis that 

the contact sites are specialized regions (Csordás et al., 2006 and Friedman et al., 2011).  

Different contact regions in a given organelle may have different structural features.  In 

some cases, ER tubules circumscribe almost entirely around the mitochondrial membrane 

(Friedman et al., 2011).  Contact sites may also be stable structures, allowing two organelles to 

stay tethered to each other even as they travel along the cytoskeleton (Friedman et al., 2010).  

Live cell imaging has shown that the two organelles can be trafficked in a coordinated fashion 

without any noticeable disruption in their contact points (Friedman et al., 2010).  This 

steadfastness of the tight association between these organelles despite their dynamics suggests 

that their association is vital for the normal functioning of the cell.  Numerous functions that 

transpire at these contact sites are extensively studied to understand whether the various functions 

are carried out at specialized contact loci/domains or whether they occur synergistically through 

a common domain. 
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2.3.3 Roles of ER–Mitochondria Interactions  

Contact sites among the ER and mitochondria provide a means to coordinate the activities 

and functions of the two organelles.  It has become clear that these contacts can allow regulation 

of one organelle by the other, as well as concerted regulation of cell biological processes through 

bidirectional trafficking of factors between the two organelles.  The four primary functions that 

have been characterized for ER–mitochondria contacts include control of lipid biosynthesis, 

mitochondrial division, Ca2+ signaling and coordinated dynamics of the two organelles. 

 

2.3.3.1 Lipid Exchange During Biosynthesis  

The majority of the enzymes involved in lipid biosynthesis are located either on the ER 

membrane or on the mitochondrial membrane. In certain cases, the enzymes required for single 

phospholipid synthesis are also localized on either of these organelles. Mitochondria-associated 

membrane (MAM) is a fraction of the ER which is attached to mitochondria and which can be 

isolated biochemically. This fraction is enriched in enzymes including phosphatidylserine (PS) 

synthase which is involved in lipid synthesis (Vance, 1990; Stone and Vance, 2000; Voelker 

2000).  At the ER-mitochondria interface, the biosynthesis of two of the cell’s most abundant 

phospholipids, phosphatidylethanolamine (PE) and phosphatidylcholine (PC) is coordinated by 

largely uncharacterized molecular complexes (Van Meer et al., 2008). PS is first synthesized by 

enzymes on the ER, then translocated to the mitochondrial outer membrane (OMM), and then 

transferred again to the inner mitochondrial membrane (IMM) where it is converted to PE 

(Osman et al., 2011).  PE must be translocated from the OMM to the ER in order for it to be 

converted to PC.  The exchange of lipid between the two membranes is bidirectional and 

extensive, even if the mechanism for the exchange and the factors involved in lipid transport 

remain unclear in mammalian cells (Iwasawa et al., 2011; Kornmann, 2013; Simmen et al., 2005; 

Szabadkai et al., 2006).  

It is fascinating to contemplate how biosynthesis and lipid transfer between these two 

membranes could be regulated to maintain the steady-state ratios of phospholipids found in each 

of these organelles.  In a yeast screen, an ER-mitochondria joining complex was identified which 

might coordinate phospholipid synthesis between the two membranes (Kornmann et al., 2009).  

The aim of the synthetic screen was to identify mutants that displayed disrupted ER-mitochondria 

joining and whose phenotype might be complemented with an artificial tether.  A four-member 



 

21 
 

complex was identified, which consisted of the ER–mitochondria encounter structure (ERMES), 

which consists of maintenance of mitochondrial morphology protein 1 (Mmm1), and 

mitochondrial distribution and morphology protein 10 (Mdm10), Mdm12 and Mdm34.  On the 

mitochondria, all the four components are colocalized at punctate structures (Kornmann 2009, 

2011).  Mmm1, Mdm12, and Mdm34 belong to a group of seven yeast proteins which share a 

synaptotagmin-like mitochondrial-lipid binding protein (SMP) domain, which may be necessary 

for their localization at the ER–mitochondria junction (Toulmay and Prinz, 2012). It is predicted 

that the SMP domain belongs to the tubular lipid-binding protein superfamily (TULIP). TULIP 

family members demonstrate lipid-binding activity, and some members are known to be involved 

in lipid trafficking (Kopec et al., 2010).  It was also observed that there is a lower rate of PS 

conversion to PC in yeast strains that have mutations in components of the ERMES complex. 

This observation indicates that ERMES might also be essential for coupling at sites of lipid 

exchange (Kornmann et al., 2009). Conversely, it has been reported that there is no substantial 

effect of ERMES components deletion on PS to PE conversion (Nguyen et al., 2012).  Work in 

the future will be required to determine how many functions are performed by the ERMES at the 

ER-mitochondria contacts.  A homologue of ERMES has not yet been identified in mammalian 

cells. 

 

2.3.3.2 ER control of mitochondrial biogenesis 

No alteration in the ER-mitochondria contact occurs even when the mitochondria 

undergoes fission and fusion. Dynamin-related protein 1 (Drp1) in vertebrates drives 

mitochondrial division.  The mitochondrial membrane recruits Drp1 which is a cytoplasmic 

protein, where it circumscribes the OMM as a helical oligomer.  Drp1 hydrolyses GTP, thereby 

starting the fission. This development causes a conformational change in the oligomer, which 

allows it to clench the membrane and trigger fission (Ingerman et al., 2005; Bleazard et al., 1999; 

Labrousse et al., 1999; Smirnova et al., 2001).  There arises a question related to the factor which 

recruits this division machinery from the cytosol to a particular location along the mitochondrial 

membrane.  In yeast, Dnm1 is recruited from the cytosol to the mitochondrial membrane with the 

help of mitochondria fission-1 protein (Fis1) and mitochondrial division protein 1 (Mdv1) (Tieu 

et al., 2002; Mozdy et al., 2000; Tieu and Nunnari, 2000).  While vertebrate orthologues of Fis1 

exist, an orthologue for Mdv1 has yet to be identified (Otera et al., 2010).  Drp1 is dependent on 
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OMM protein mitochondrial fission factor (MFF) for its recruitment to the mitochondrial 

membrane (Otera et al., 2010; Gandre-babbe and van der Bliek, 2008).  A conserved complex on 

the OMM has not been identified which recruits Drp1 to fission sites. The localization of Drp1 is 

correlated with the sites of ER tubule contact with the mitochondrial membrane (Friedman, 

2011).  The ER tubules in vertebrate cells circumscribe the mitochondrial membrane at 

constriction sites which are marked by Drp1 and by the cofactor MFF (Friedman, 2011). Drp1 or 

MFF depletion does not disrupt ER-mitochondria contacts, suggesting that the fission machinery 

recruitment is independent of contacts (Friedman, 2011). This contact is also retained after fission 

occurs.  

The site of division machinery recruitment is not only marked by the ER but also marks 

the position where mitochondria constrict for a long time interval before division occurs 

(Friedman, 2011).  It has been proposed that a protein other than a dynamin family member must 

first constrict mitochondria since the mean mitochondrial diameter far exceeds the diameter of 

the helix which is formed by Drp1 (Ingerman et al., 2005; Gandre-babbe and van der Bliek, 

2008; Legesse-Miller et al., 2003).  The ER might drive initial constrictions of mitochondria 

before the division machinery is recruited.  This phenomenon is demonstrated when the ER 

contacts circumscribe mitochondrial constriction sites.  Normal fission of mitochondria is 

prevented which results in an elongated morphology, and is likely due to depletion of Drp1 or 

MFF.  However, the mitochondria are still constricted at the positions where the mitochondrial 

membrane is circumscribed by the ER tubules (Friedman, 2011).  Even before MFF and Drp1 

recruitment, the ER is located at mitochondrial constrictions.  

There is no establishment of a causal relationship between ER contact and mitochondrial 

constrictions.  One possibility is that the ER simply associates with these sites without causing 

the mitochondrial constriction.  The mitochondrial surface might be probed by the ER until it 

finds a region with the proper amount of membrane curvature which indicates a constriction 

(Figure 2.8). Alternatively, the ER might physically wrap around and squeeze the mitochondria 

at contact sites to promote constriction.  This seems reasonable, as lipid biosynthesis also occurs 

at ER-mitochondria contact sites, and the domains of lipid asymmetry generated at these contacts 

could change the shape of the OMM and IMM in a way that drives constriction.  Despite the 

mechanism used, it is evident that protein complexes localized to the OMM at the ER-
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mitochondria interface must be required to recruit the factors that regulate mitochondrial 

division.  

There is a possibility that mitochondrial fusion is also influenced by contact with the ER.  

In mammalian cells, two mitochondria are joined to direct their fusion by both Mfn-1 and Mfn-2 

proteins on OMM (Chen et al., 2003).  The contact between mitochondria and ER (De Brito and 

Scorrano, 2008) is tethered by Mfn-2.  Mouse embryonic fibroblasts lacking Mfn-2 show 

disrupted ER-mitochondria contact which can be rescued by ectopically expressing Mfn-2 (De 

Brito and Scorrano, 2008). Whether Mfn-2 promotes tethering of ER-mitochondria is unclear, 

although Mfn-2 depletion does not affect tethering of ER at constriction sites in mammalian cells 

(Friedman et al., 2011).  Considering that both mitochondrial fusion and ER-mitochondria 

tethering is affected by the Mfn-2, there is a possibility that ER contact is also required for fusion.   

 

Figure 2.8. Diagram of MAM-Enriched Proteins in the Mammalian Cell.   

A schematic representation of MAMs and related proteins in a mammalian cell and their 

interplay.  The MAM is the center for lipid metabolism (white color; represented as a top portion 

of MAM), mitochondrial fission driven by protein Drp1 (orange color; represented as the Drp1 

oligomers) and several ER-chaperones and oxidoreductases (yellow color; indicated at the base 

of MAM).  Palmitoylation plays a major role in the enrichment of MAM proteins and cytosolic 

sorting proteins (green color; represented as PACS-2 & Rab32 protein).  ER-Mito or MAM 

tethering is maintained and involves a variety of proteins like Mfn-2, Grp75, and VDAC1.  

Proteins such as SERCA2b, IP3R1 and IP3R3 are found on the MAM (blue color) and are 

involved in calcium handling (Figure was adapted from Raturi and Simmen, 2013). ERES: ER-

mito encounter structure, MAM: Mitochondria Associated Membrane.  
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2.4 ER-Mitochondria Contacts: Function of the Junction 

2.4.1 Mitofusin 

The mitofusins in yeast and metazoans are similar in domain structure and in GTPase 

activity.  They have two transmembrane regions embedded in the outer mitochondrial 

membrane, with most of the protein present in the cytosol and a short loop in the intermembrane 

space (Fritz et al., 2001; Rojo et al., 2002).  Mfn-1 and Mfn-2 are two isoforms of mammalian 

mitofusin proteins which share similar structural motifs with other members of conserved 

mitochondrial GTPases, including an N-terminal domain that has a highly conserved GTPase 

and a bipartite transmembrane domain which anchors these proteins to the outer membrane of 

mitochondria.  The carboxy terminus has a conserved domain known as a heptad repeat which 

interacts with ‘mitofusin heptad repeat’ of adjacent or approaching mitochondria for initial 

docking and fusion mechanism.  Thus, Mfn-2 is a critical GTPase for the formation of 

mitochondrial-ER contacts and forms homo- and heterodimers to tighten the contact between the 

organelles (de Brito and Scorrano, 2008).  

Research on mitochondrial dynamics has gained momentum in recent years, as 

mitochondrial dynamics has been found to be involved in many important biological processes 

including apoptosis and aging (Detmer and Chan, 2007).  The foundation of mitochondrial 

dynamics machinery involves three GTPases; Opa1, Mfn-1, Mfn-2 and their interacting factors 

(Okamoto and Shaw, 2005; Hoppins et al., 2007).  Mitofusins are involved in mitochondrial 

outer membrane fusion as well as in the tethering of mitochondria with the ER (Szabadkai, 2006; 

de Brito and Scorrano, 2008).  This spatial arrangement of mitochondria and ER facilitates the 

intake of Ca2+ released from the ER into mitochondria (Rizzuto et al., 1993, 1998).  This 

particular juxtaposition of mitochondria and ER has been shown to be essential for lipid 

synthesis.  The molecular mechanism underlying this interaction and lipid biosynthesis and 

regulation is not clear.  It is important to understand better this interaction, as it might play a 

crucial role in lipid synthesis and storage of lipid droplets.  Also, it plays a role in controlling 

Ca2+ homeostasis in mitochondria and apoptotic signaling (Ferri and Kroemer, 2001).  Several 

diseases like heart failure, obesity, neuropathies and cancer appear to be linked to mitochondrial 

dynamics (Zorzano et al., 2009).  

Mfn-1 and Mfn-2 are from a family of high-molecular-mass transmembrane GTPases. 

These proteins have homologues in diverse organisms from yeast to humans. They are present 
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in the outer mitochondrial membrane.  These proteins have large N-terminal and relatively short 

C-terminal domains (Rojo et al., 2002; Santel and Fuller, 2001). Both proteins have a coiled-coil 

domain near the C-terminal end facing the cytoplasm, two transmembrane domains, and a 

GTPase domain near the N-terminus.  Mfn-2 is 757 amino acids long compared to 741 amino 

acids long for Mfn-1.  Human Mfn-2 protein is 62% identical and 77% similar to Mfn-1 protein.  

The levels of both Mfn-1 and Mfn-2 vary between tissues. Mfn-1 is predominantly 

expressed in liver, heart, adrenal glands, pancreas and testis (Santel and Fuller, 2001; Bach et al., 

2003), whereas Mfn-2 is predominantly expressed in skeletal muscle, heart, brain, adrenal glands 

and brown adipose tissue (Santel and Fuller, 2001; Bach et al., 2003).  There are many cell types, 

for example MEFs and HeLa cells, that express both Mfn-1 and Mfn-2 proteins (Bach et al., 

2003; Chen et al., 2003; Santel et al., 2003).  In mammalian cells, both proteins co-exist, which 

raises the question as to whether they have distinct roles or have some functional redundancy. 

 

2.4.2 Function of Mitofusin-1 and Mitofusin-2 in Mitochondrial Fusion 

Functional mutagenesis studies of mitofusins have demonstrated that these proteins are 

responsible for regulating mitochondrial fusion in mammalian cells.  Overexpression of Mfn-1 

results in changes in some cell types accompanied by grapelike perinuclear clusters of 

mitochondria (Santel et al., 2003).  The mitochondrial morphology was observed to be altered 

due to overexpression of Mfn-2 in cultured cells, specially resulting in the generation of reticular 

structures and extensive perinuclear clustering (Rojo et al., 2002; Santel and Fuller, 2001; Bach 

et al., 2003; Pich et al., 2005).  MEF cells lacking Mfn-1 or Mfn-2 display different types of 

fragmented mitochondria (Chen et al., 2003; 2005).  

Loss of Mfn-1 results in either very short mitochondrial tubules or minuscule uniform 

spheres with diameters similar to that of normal tubules. In contrast, loss of Mfn-2 in cells results 

in mitochondrial spheres with varying sizes (Chen et al., 2003; 2005). These findings suggest that 

the cells that contain only Mfn-1 retain more fusion activity as compared to cells that contain 

only Mfn-2.  Hence, it can be concluded that Mfn-1 plays a larger role in mediating GTP-

dependent tethering of mitochondria compared to Mfn-2.  Consistent with this, the GTPase 

activity of Mfn-1 is greater than that of Mfn-2 (Ishihara et al., 2004).  

Mfn-1 and Mfn-2 are necessary for the process of embryonic development, and it has 

been observed that mice deficient in either of the genes die in mid-gestation.  Mfn-2 silenced 
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embryos have a striking reduction in placental trophoblast giant cells, which causes a severe and 

specific interruption of the giant cell layer, whereas placental trophoblastic giant cell layer of 

Mfn-1 deficient cells are normal (Chen et al., 2003).  These findings point towards different 

biological roles for these two proteins. 
 

 

2.4.3 Mitochondrial Metabolism is Regulated by Mitofusin-2 Protein.  

The process of mitochondrial oxidation is regulated by Mfn-2 (Bach et al., 2003; Pich et 

al., 2005) therefore Mfn-2 loss-of-function results in reduced oxygen consumption, decreased 

mitochondrial membrane potential as well as oxidation of glucose, pyruvate and fatty acids, 

without change in mitochondrial mass (Bach et al., 2003; Pich et al., 2005). In contrast, Mfn-2 

gain-of-function induces glucose oxidation and increases mitochondrial membrane potential 

(Pich et al., 2005). Surprisingly, overexpression of an Mfn-2 truncated mutant lacking the 

transmembrane domains and the C-terminal tail enhances glucose oxidation, as well as 

mitochondrial membrane potential but has no effect on mitochondrial morphology (Pich et al., 

2005). Therefore, it was suggested that mitochondrial oxidation and mitochondrial fusion are 

regulated by different mechanisms that involve Mfn-2.  The role of Mfn-1 in mitochondrial 

metabolism is still under investigation.  Specific subunits of the electron transport chain undergo 

significant alterations during experiments with Mfn-2 ‘loss-of-function’ and ‘gain-of-function’ 

(Pich et al., 2005).  Nuclear-encoded electron transport chain subunits I, II, III and V are repressed 

in Mfn-2 loss-of-function experiments, whereas subunits of electron transport chain complexes 

I, IV and V are induced in Mfn-2 gain-of-function conditions.  Therefore, mitofusin-2 is critical 

in regulating mitochondrial metabolism.  Interestingly, obesity and diabetes type 2 are 

characterized by defective mitochondrial oxidation and Mfn-2 gene expression inhibition (Bach 

et al., 2003; 2005). Conversely, it has been found that weight loss and exercise lead to an increase 

in Mfn-2 gene expression and enhanced mitochondrial oxidation (Cartoni et al., 2005; Mingrone 

et al., 2005). 
 

 

2.4.4 Mitofusin-2 Dysfunction in Neurological and Biochemical Diseases 

An impairment in mitochondrial functioning can have catastrophic consequences and is 

present in a number of human diseases such as obesity, diabetes, neurodegenerative disorders 

such as Parkinson’s disease and Alzheimer disease, and a variety of cancers (Schon and 

Manfredi, 2003).  Neuronal functions are affected primarily due to flaws in mitochondrial fusion 
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and fission dynamics.  Nerve cells need high amounts of energy and solely depend on 

mitochondria for ATP.  Thus, neurons are very sensitive to mitochondrial functioning and flaws 

in mitochondrial function lead to neurodegenerative diseases (Martens and McMohan, 2008).  

Interestingly, through investigations, a connection between Charcot-Marie-Tooth neuropathy 

type 2A (CMT2A) and human Mfn-2 gene mutations have been revealed, signifying the 

important role of mitofusins proteins in at least some neurological diseases (Zuchner et al., 2004; 

Kijima et al., 2005; Lawson et al., 2005).  

Studies in rats have clearly defined the role of Mfn-2 in maintaining a mitochondrial 

membrane potential and energy metabolism.  When Mfn-2 was repressed, it reduced oxidation 

of glucose, produced mitochondrial proton leakiness, and disrupted mitochondrial morphology 

and thus cellular respiration.  The authors also showed how suppressed expression of Mfn-2 led 

to distorted mitochondria, which might be an important factor in obesity (Bach et al., 2003). 

 

2.4.5 Transcriptional Control of Adipocyte Formation 

Cardiovascular disease and type 2 diabetes are more likely to be developed in obese 

individuals than their lean counterparts.  The increase in the adiposity in these individuals results 

from an increase in both adipocyte number and individual fat cell size.  In some people, the 

disproportionate increase in visceral adipose depots is linked to the development of certain 

metabolic disorders.   Eventually, if there is a way to understand the mechanism of adipose 

formation, this will provide valuable information to help in the fight against the growing cases 

of obesity in the world.  Scientists in the last few years have begun to define the transcriptional 

events regulating preadipocyte differentiation and adipocyte functions.  An elaborate network of 

transcriptional factors drives the differentiation of preadipocytes and adipocyte.  Transcriptional 

factors coordinate expression of hundreds of genes which are responsible for establishing the 

phenotype of mature fat cells.  PPARγ and C/EBPα are the two principal adipogenic factors at 

the center of this network.  These factors initiate the differentiation process.  It is considered that 

PPARγ is the master regulator of adipogenesis.  Studies performed in preadipocyte cell lines as 

well as mesenchyme-derived precursor cells have provided much of the information regarding 

this complex network and the importance of PPARγ and C/EBPα.  Green and associates have 

significantly advanced our understanding of the molecular mechanism controlling adipogenesis 

through their studies in 3T3-L1 and 3T3-F422A preadipocytes cell lines (Green and Kehinde, 
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1975, 1976).  Even though committed to the lineage of the adipocyte, 3T3-L1 preadipocytes 

exert similar characteristics to other 3T3 fibroblasts.  The confluent 3T3-L1 preadipocytes 

differentiate due to exposure to the adipogenic inducers like fetal bovine serum (FBS), 

dexamethasone, IBMX, and insulin.  The activation of an adipogenic program by this drug 

cocktail happens via two well-defined phases.  Clonal expansion is a phase often referred to 

when stimulated cells immediately re-enter the cell cycle and progress through at least two cell 

divisions.  During this time, PPARγ and C/EBPα expression function together to express specific 

adipogenic transcription factors as well as cell cycle regulators.  Subsequently, the cells undergo 

terminal differentiation which is manifested by lipid droplet production.  Many studies 

performed in both mouse and human tissue has supported the validity of this 3T3-L1 system as 

an appropriate model of adipocyte formation in animals (Ruiz-Ojeda et al., 2016).  

Adipogenesis is attenuated by a number of factors which serve as molecular switch to 

function in controlling the progenitor’s fate, either positively or negatively.  Both in vivo and in 

vitro studies have provided evidence that supports the role of PPARγ as the master regulator of 

adipogenesis, whereas C/EBPα lacking cells are capable of adipocyte differentiation (El-Jack et 

al., 1999; Wu et al., 1999).  Spiegelman and collaborators have demonstrated the critical role of 

PPARγ in regulating adipogenesis. They elucidated expression of adipose fatty acid binding 

protein FABP4 through transcription factors.  A series of ‘gain-of-function’ studies were 

performed, where PPARγ in non-adipogenic mouse fibroblasts was ectopically expressed. They 

were able to show that PPARγ alone can initiate the entire adipogenic program, and gave rise to 

fat cells which can perform many functions of mature adipocytes (Tontonoz et al., 1994).  

The PPARγ knockout cells failed to develop into adipocytes (in animal model), whereas 

wild type derived cells had normal adipose depots (Barak et al., 1999). Therefore, it was difficult 

to evaluate the impact of PPARγ absence on its role in adipose tissue.  The tetraploid embryo 

strategy (Barak et al., 1999) generated only one mouse, which died soon after birth but allowed 

the researchers to observe that PPARγ deficiency resulted in the absence of adipose tissue in 

these animals. A separate study where PPARγ expression was knocked down in mice resulted in 

severe lipodystrophy (Koutnikova et al., 2003).  

A number of studies have also established C/EBPα as a principal player in adipogenesis.  

Feytag and co-workers showed that the ectopic expression of C/EBPα induced adipogenesis in a 

variety of fibroblastic cells (Freytag et al., 1994).  Establishment of C/EBPα knockout mice 
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proved difficult since they died shortly after birth due to insufficient glucose supply (Wang et al., 

1995). In the absence of PPARγ, C/EBPα is incapable of driving the adipogenic program, whereas 

C/EBPα-deficient MEFs can differentiate into adipocytes via PPARγ (Rosen et al., 2002). During 

terminal adipogenesis, it appears that C/EBPα does provide a critical function of maintaining 

expression of PPARγ (Wu et al., 1999). 

 

2.4.6 MAM in Health and Disease 

It has been proposed that MAM is a site which is affected in most of the 

neurodegenerative diseases (Schon and Area-Gomez, 2010).  The role of MAM in diabetes is an 

emerging field of research (Sebastian et al., 2012).  There are many proteins from MAM 

associated with disease states such as cancer (Pinton et al., 2011).  Thus, the study of MAM has 

enormous potential for advancing our understanding of human diseases and development of new 

therapeutic approaches.  

Neuronal cells, in particular axons and dendrites, need vast amounts of energy for their 

activities. Thus, they mostly rely on mitochondria for energy.  Thus, the mitochondria are a very 

crucial for neuronal survival (Kann and Kovacs, 2007; Knott and Bossy-Wetzel, 2008; Knott et 

al., 2008) and their role in neuronal survival depends on the distribution of smooth or rough ER 

throughout axons and dendrites (Ramirez and Couve, 2011).  Similar to this finding, a number 

of studies have been able to attribute neuronal defects to mutations in a number of ER structural 

proteins.  For example, mutations in Mfn-2 can lead to a peripheral neuropathy called Charcot-

Marie-Tooth type 2A disease, wherein the longest neurons die (Zuchner et al., 2004; Zuchner 

and Vance, 2006; Cartoni and Martinou, 2009).  Along with the potential involvement of the 

MAM, it has been suggested that a defect in mitochondrial transport leads to the disease (Cartoni 

and Martinou, 2009). This defect could develop from an inability of Mfn-2 mutated neurons 

either to form the MAM or to interact with kinesin (Zhao et al., 2001). 

Reticulon-4, also called neurite outgrowth inhibitor (Nogo), promotes ER tubulation but 

may influence the calcium-dependent apposition between the ER and mitochondria (Yang and 

Strittmatter, 2007; Sutendra et al., 2011).  Such a function could potentially be assigned to many 

enzymes that regulate ER tubulation, such as receptor expression enhancing protein 1 (REEP1) 

that regulates ER network formation, and mitochondrial membrane dynamics (Park et al., 2010; 

Goizet et al., 2011).  Interestingly, REEP1 is a gene associated with hereditary spastic paraplegia, 
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which is reminiscent of the well-known role of the microtubule severing protein spastin in both 

the connection of ER tubules to the cytoskeleton (Park et al., 2010; Moss et al., 2011) and the 

trafficking of mitochondria along axons (McDermott  et al., 2003; Kasher et al., 2009). 

The dynamic membrane contacts at the MAM may require the calcium-dependent Ras 

GTPases Miro-1 and Miro-2 that promote mitochondrial clustering when active by forming a 

link between mitochondria and microtubules and kinesin heavy chain (KIF5) (Fransson et al., 

2006; Liu and Hajnoczky, 2009). These calcium-dependent interactions may provide a 

mechanism behind the ability of mitochondria to move towards calcium puffs released by IP3Rs 

(Giacomello et al., 2010).  The Miro protein complex also interacts with Mfn-2, which is also 

essential for the transport of mitochondria along the axons (Misko et al., 2010). 

Another neurodegenerative disease associated with MAM is familial Alzheimer's disease. 

Mutations in presenilin-1 and presenilin-2 can lead to reduced ER calcium content and increased 

calcium transfer from ER–mitochondria when compared to wild type (Schon and Area-Gomez, 

2010; Zampese et al., 2011).  There are many other consequences due to the increased ER–

mitochondria calcium transport in cells that results from mutation in presenilin-2. The 

consequences can include markedly increased apoptosis susceptibility. 
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2.5 Hypothesis 

Given the role of Mfn-2 in mitochondrial fusion and in the interaction of ER and 

mitochondria, as well as the importance of ER-mitochondrial contacts in lipid metabolism, it is 

hypothesized that Mfn-2 knockout MEFs will show altered mitochondrial dynamics and impaired 

TAG synthesis and storage. 

 

2.6 Rationale and Specific Objectives 

Our research group is interested in understanding the link between mitochondrial 

dynamics, ER-mitochondria interactions and lipid metabolism.  Several studies have revealed 

that ablation of Mfn-2 protein disrupts ER-mitochondria connection and impairs Ca2+ signaling 

(de Brito et al., 2008; Filadi et al., 2015).  Ca2+ homeostasis and signaling is crucial for proper 

functioning of the Kreb’s cycle in the mitochondrial matrix.  Lipid droplets are closely associated 

with the mitochondrial network to provide fatty acids for β-oxidation. Thus, by ablating Mfn-2 

expression, ER-mitochondria interactions will be disrupted and are expected to result in 

alterations in Ca2+ signaling and lipid metabolism.  The specific objectives are: 

•  To assess mitochondrial morphology in MEF WT and Mfn-2 KO cells. 

•  To assess lipid droplet morphology (size and number) in MEF WT and Mfn-2 KO cells. 

•  To assess lipid droplet morphology (size and number) in MEF WT and Mfn-2 KO cells 

in response to oleic acid and/or insulin. 

•  To assess whether Mfn-2 is required for the differentiation of MEFs into adipocytes. 
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3. MATERIALS AND METHODS 
 

3.1 Reagents  

Analytical grade or higher reagents were used for all experiments. Names of reagents, suppliers, 

and addresses of suppliers are listed in Table 3.1. 
 

Table 3.1. List of Reagents and Suppliers 

Cell Culture Reagents Supplier/Address 

Dulbecco’s Modified Eagle’s Medium – High 

Glucose with L-Glutamine and Sodium 

Pyruvate (SH30243.01) 

Fisher /Ottawa, Ontario, Canada 

Antibiotic-Antimycotic (100 X) (Penicillin and 

streptomycin) 

Invitrogen/Burlington, Ontario, Canada 

Trypsin 0.25% Thermo Fisher Scientific/ Grand Island, 

USA 

CHAPS Bio Basic/Markham, Ontario, Canada 

IBMX Sigma-Aldrich/Oakville, Ontario, Canada 

Dexamethasone  Sigma-Aldrich/Oakville, Ontario, Canada 

Insulin solution from bovine pancreas Sigma-Aldrich/Oakville, Ontario, Canada 

Troglitazone  Sigma-Aldrich/Oakville, Ontario, Canada 

 

Reagents for Confocal Imaging Supplier/Address 

Oleic Acid Sigma-Aldrich/Oakville, Ontario, Canada 

BODIPY Sigma-Aldrich/Oakville, Ontario, Canada 

Anti-Hsp70 (JG1)  Invitrogen /Burlington, Ontario, Canada 
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ProLong Diamond Antifade Mountant Invitrogen /Burlington, Ontario, Canada 

Alexa FluorR 594 antibody Invitrogen /Burlington, Ontario, Canada 

 

Protein Analysis Reagents Supplier/Address 

30% Acrylamide/Bis Solution (29:1) Bio-Rad/Hercules, California, USA 

PageRulerTM Prestained Protein Ladder Plus 

(SM1811, SM0671) 

Fermentas/Burlington, Ontario, Canada  

 

ImmobilonTM Western, Chemiluminescent 

HRP Substrate (WBKLS0100) 

Millipore/ Etobicoke, Ontario, Canada 

cOmplete Ultra, EDTA-free Protease Inhibitor 

Tablets 

Roche /Mississauga, Ontario, Canada 

Oil Red O solution (0.5% in isopropanol) cat# 

O1391 

Sigma-Aldrich/Oakville, Ontario, Canada 

 

List of Antibodies used Supplier/Address 

Anti-Mfn-1  Abcam, Toronto, Ontario, Canada 

Anti-Mfn-2  Abcam, Toronto, Ontario, Canada 

Anti-PPARγ Santa Cruz, Dallas, Texas USA 

Anti-FABP (C-15): sc-18661 Santa Cruz, Dallas, Texas USA 

Anti-Calnexin Abcam, Toronto, Ontario, Canada 

Anti-C/EBPα Santa Cruz, Dallas, Texas USA 

Anti-Hsp70 (JG1)  Invitrogen /Burlington, Ontario, Canada 

Anti-ADRP  Thermo Fisher Scientific/ Grand Island, USA 
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3.2 Cell lines 

 

3.2.1 Mouse Embryo Fibroblasts (MEF) 

MEF (CF-1) (ATCC® SCRC-1040™) cells from Mus musculus (mouse embryos) were 

used for establishing MEF cell lines.  These cells have the capacity to synthesize collagen and 

extracellular matrix, making them adherent in nature.  Wild-type (WT) and Mfn-2 protein 

knockout (Mfn-2 KO) MEFs were obtained from American Type Culture Collection (ATCC) 

Manassas, Virginia, USA. 

 

3.2.2 3T3-L1 

 3T3-L1 (ATCC® CL-173™) cells were obtained from Mus musculus (mouse embryos). 

This cell line was developed by two scientists, George Todaro and Howard Green from 

Department of Medicine, New York University.  Abbreviation 3T3 is derived from ‘3’-day 

‘T’ransfer, with rigid inoculum density of ‘3’ x 105 cells.  These cells were immortalized and 

were stable after 20-25 generations in culture.  A specific version of 3T3 is abbreviated as 3T3-

L1 (Green and Meuth, 1974).  

 

3.3 Mammalian Cell Culture  

Mammalian tissue culture and other adipogenesis experiments were performed inside a 

biosafety level 2 cabinet.  MEF WT and Mfn-2 KO MEFs were passaged in 1:10 dilutions.  Both 

WT and Mfn-2 KO cells were passaged by washing a 90-100% confluent cell culture plate with 

1X phosphate buffered saline (PBS) followed by addition of 1 mL of porcine-derived pancreatic 

trypsin (0.25%).  The cells were incubated at 37°C, 5% CO2 for 2-5 minutes to allow the cells to 

detach from the surface of the culture plate.  Appropriate amounts of pre-warmed (37°C) medium 

consisting of 10% fetal bovine serum (FBS) and Dulbecco’s Modified Eagle’s Medium (DMEM) 

– high glucose with L-glutamine and sodium pyruvate, were added to the trypsinized cells, to 

inactive the trypsin.  The cells were resuspended in various amounts of medium depending on 

the downstream experiments.  Generally, 10 mL of medium was used for culturing cells in 100 

mm plates and 2.5 mL in 6-well plates.  Antibiotic-antimycotic (penicillin and streptomycin stock 

100 X) was used at 10 μL/mL concentration in all culturing experiments.  
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3.3.1 Adipogenesis 

Many diverse actions contribute to the differentiation of a stem cell into the adipocyte 

lineage.  This includes the synchronization of an intricate network of transcription factors, co-

factors and signaling intermediates from several pathways (Rosen and MacDougald, 2006).  A 

review (Scott et al., 2011) on alternative methods on adipogenic induction and standard protocol 

was published recently.  Cells were grown to 100% confluence and day 2 post-confluent cells 

was considered day 0 of the protocol.  On day 0, cells were treated with cocktail media, which 

consisted of troglitazone (10 µM), dexamethasone (1 µM), insulin (10 µg/mL) and 3-isobutyl 1-

methylxanthine (IBMX- 500 µM) in DMEM + 20% FBS with Antibiotic-Antimycotic.  A total 

volume of 7 mL of cocktail media was added to the 100mm plate and 2 mL to 35 mm plates.  

The volume of medium per plate was reduced since adipogenesis is enhanced in the presence of 

a thin medium layer (Sheng et al., 2013).   

 For adipogenesis, cells were grown in cocktail media on day 0 until day 4.  From day 4 

to day 8 cells were treated with maintenance media consisting of troglitazone (10 µM) and insulin 

(10 µg/mL) in DMEM + 20% FBS.  On day 10 cells were harvested as described in section 3.4.1.  

For control experiments, cells were treated with DMEM + 20% FBS from day 0 of the 

experiment until harvest (day 10). 

 

Figure 3.1. Flowchart of adipogenesis  

Cells were grown in tissue culture plate to 100% confluence.  Two days post-confluence was 

considered as day 0 of the experiment.  Cells were treated with cocktail media consisting of 

adipogenic drugs (troglitazone, dexamethasone, insulin and IBMX in DMEM + FBS) on day 0 

and 2, from day 4 until day 8 cells were treated with maintenance media (troglitazone and insulin 

in DMEM + FBS). Cells were harvested at day 10. 
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3.4 Mammalian Cell Culture Protein analysis 
 

3.4.1 Preparation of Protein Extracts from Cultured Cells 

 Eight mL of 1X PBS (room temperature) was used to wash cultured cells twice before 

harvesting.  Approximately 200 to 500 μL of lysis buffer was added to the washed cell layer for 

100 mm plates, depending on cell density or thickness of cell layer. For Western blotting the cells 

were lysed in RIPA buffer (10 mM Tris-HCl (pH 8.0), 1 mM EDTA, 150 mM NaCl, 5% (v/v) 

glycerol, 0.1% sodium deoxycholate, 0.1% SDS (w/v), 1% (v/v) Triton X-100, supplemented 

with 1X cOmplete® protease inhibitor (Roche).  The cells were then incubated at 4°C for 15-30 

minutes with gentle agitation.  After incubation, cells were dislodged using a scraper and 

collected into a microcentrifuge tube.  The cells were further subjected to fine needle passage 20-

25 times, using a 25-gauge needle and mixed using a vortex intermittently for proper mixing and 

disruption of cell membranes.  Microcentrifuge tubes with cell lysate were centrifuged at 1000 x 

g for 10 minutes to pellet the cell debris.  The supernatant was collected in a separate 

microcentrifuge tube for further use.  Cells from adipogenesis experiments, especially from day 

6 and 10 were treated differently after a centrifugation step.  Since these cells have large amount 

of lipid droplets, a fat layer forms on top of the microcentrifuge tube.  Therefore, supernatant 

below fat layer and above the cell pellet was used for experiments  

 

3.4.2 Protein Quantification of Cellular Extracts 

 The prepared cell extracts were quantified for total protein concentration using the 

Bradford assay.  1 μL of initial cell lysate was added to a mixture of solution (3:1 Bradford assay 

reagent and double distilled water).  The color change due to the presence of proteins with 

Bradford reagent was read on a Bio-Rad SmartSpecTM Plus spectrophotometer at 595 nm.  The 

absorbance values obtained were compared to a standard curve derived from known BSA protein 

samples.  An appropriate amount of ddH2O was added to each sample to adjust the final protein 

concentration of the sample to 1 μg/μL.   

 

3.4.3 SDS Polyacrylamide Gel Electrophoresis 

 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was performed using the Mini Gel 

Tank system (from Life Technologies) and the Blot® system (from ThermoFischer).  1x MOPS 

(3-(N-morpholino) propanesulfonic acid) buffer from Bolt® was used as running buffer.  Ten 

well precast Bolt™ 4-12% Bis-Tris Plus Gels were used for efficient separation of proteins.  



 

37 
 

These Bis-Tris gels have a pH of 6.4 that reduces protein modifications resulting in clear and 

sharp bands.  To estimate the molecular weights of the sample, 10-170 kDa PageRulerTM 

Prestained Protein Ladder Plus was simultaneously resolved along with samples.  

 The protein samples were mixed with SDS loading buffer (50 mM Tris, pH 6.8, 2% SDS, 

10% glycerol, 0.02% bromophenol blue, and 1% β-mercaptoethanol) and boiled for 5 minutes in 

a heat block to denature protein samples before loading on the gel.  Protein samples (25 μg) were 

loaded onto the gel, and the gel was run at 150 V until the dye front reached the bottom of the 

gel. 

 

3.4.4 Western Blotting  

 For Western blotting 25 µg of protein was loaded per well.  After SDS-PAGE 

electrophoresis, the gel was removed and incubated in transfer buffer (25 mM Tris, 192 mM 

glycine, 20% methanol) at RT for 10-20 minutes before transfer.  For transfer, a Bio-Rad Mini 

Trans-Blot transfer cell or a Bio-Rad Criterion Blotter (midi format, plate electrodes) was used.  

The wet transfer method was used to transfer the proteins from the gel to the Immun-BlotR 

polyvinylidene difluoride (PVDF) membrane with 0.22 micrometers pore size (Bio-Rad).  The 

transfers were performed in transfer buffer at 70 V for 2 hours or 25 V overnight at 4°C.  

 When the wet transfer was complete, the membrane was blocked using 5% (W/V) milk 

in PBST (1X PBS, 0.05% Tween-20) for 1 hour with gentle agitation at RT. The membrane was 

subsequently probed with primary antibody for 1 hour with gentle agitation at RT or overnight at 

4°C.  The primary antibody was diluted in 5% milk in PBST (see Table 3.1).  The membrane was 

washed for 10 min with PBST three times.  The membrane was then incubated with a secondary 

HRP-conjugated antibody.  Incubation was performed for 1 hour with gentle agitation at RT 

followed by a 3X washing with PBST for 10 min each. The PVDF membrane was developed 

using ImmobilonTM Western, Chemiluminescent HRP Substrate (WBKLS0100) for 5 minutes 

and autoradiography film in a dark room. For a full list of antibodies used and dilutions see Table 

3.1. 

 

3.5 Laser Scanning Confocal Microscopy 

Biological research has evolved with advances in confocal microscopy.  Studies on 

mitochondrial network and lipid morphology require the ability to obtain excellent quality high-

resolution images on fixed cells.  Leica TCS SP5 confocal microscope was used to image fixed 
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WT and Mfn-2 KO MEF cells.  Cells were stained for lipid droplets with BODIPY 493/503 and 

for mitochondria with anti-Hsp70, a mitochondrial marker.  This microscope allows SuperZ stage 

recording of large 3D Z-stacks of MEF cells.  Images were obtained with high speed, to minimize 

bleaching of the signal. 

 

3.5.1 Treatment of Cells with Oleic Acid and Insulin 

 MEF-WT and Mfn-2KO cells were grown in 6-well plates with a glass coverslip.  Both 

cell lines were cultured at 37˚C with 5% CO2 in high glucose Dulbecco’s Modified Eagle Medium 

(DMEM) supplemented with 10% FBS.  When cells were at 30-40% confluence, that point was 

considered as 0 h.  Cells were fed with the above media containing either insulin (5 µg/mL), oleic 

acid (18:1) (0.5 mM /mL) or both and incubated for an additional 13 h.  Cells were fixed at this 

point and prepared for immunostaining as described in section 3.5.2.  The fixed cells were co-

stained with Alexa594 and BODIPY 493/503 and images were obtained as outlined in section 

3.5.2. 
 

 

3.5.2 Immunofluorescence with BODIPY and Anti-Hsp70  

Cells were fixed using 4% PFA in 1X PBS for 15 minutes, then gently washed twice with 

1X PBS.  They were then permeabilized with 0.2% Triton X-100 for 5 minutes, and then washed 

with 1X PBS twice.  Coverslips were then incubated with anti-Hsp70 (dilution 1:200) followed 

by secondary goat anti-mouse 594 (dilution 1:200) for 1 hour each. Lipid droplets were stained 

with BODIPY 493/503 (dilution 1:100).  Coverslips were washed with 1X PBS and mounted on 

slides with ProLong Diamond Antifade Mountant.  Confocal images were obtained as Z-stacks 

and analyzed using ImageJ software to quantify size and number of lipid droplets in cells. 

 

3.5.3 Image Acquisition  

US National Institute of Health released an image analysis tool ‘ImageJ’ which provides 

various options for analyzing particle size scenarios.  Images obtained by ImageJ can be analyzed 

manually or automatically. For analyzing lipid droplets in this research, automatic particle sizing 

method was employed.  

Procedure for Automatic Particle Sizing 

The automatic particle sizing method can be used for image analysis only if the particles, 

lipid droplets in this case, are spherical, well-dispersed in the plane and in high-contrast compared 
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to the background.  The green fluorescent lipid droplets meet these requirements and thus 

automatic particle analysis was used. 

I. Convert Image to Monochrome: From option ‘Image’ on the software, one can view ‘type’ 

as an option and convert the image into an 8-bit, 16-bit or 32-bit image. For particle analysis, the 

images were converted to 8-bit.  ImageJ software was set to read the image in grayscale and thus 

considered only brightness as the factor analyzed.  
 

II. Setting a Threshold Limit: The threshold limit for a given parameter was set on ImageJ 

software to read exactly what comprises a particle in a particular image. The path was 

Image→Adjust→Threshold. 

The window of brightness/darkness is more or less representative of the lipid droplets in 

the image.  For example, if the lipid droplets are dark, and the background is white, we define 

pixel brightness/darkness to be read by the software as lipid droplets (Figure 3.2).  The software 

is very sensitive to counting grainy background pixels, but this can be minimized to a great extent 

by this threshold setting.  For the threshold setting, the software has two options; manual 

threshold setting, and automatic threshold setting.  After defining the window of 

brightness/darkness, ImageJ will convert the greyscale image into black and white, where every 

lipid droplets or point on the image is either a dark particle representing lipid droplet or 

white/clear background. 

 

Figure 3.2. Threshold Panel in ImageJ  

The top slider with value 0 controls minimum brightness, whereas the bottom slider controls 

maximum brightness. By adjusting both sliders, one can fix a defined “window of 

brightness/darkness.” 
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III. Watershed Separation 

When an image is converted to a binary image, the software can read and distinguish 

between black and gray pixels based on the intensity (Figure 3.3).  The edge of the particle has 

gray pixels which are measured and considered as ultimately eroded points. In that area where 

two points are touching each other with gray pixels, a watershed line is drawn to separate them 

as individual particles. 

In binary images, particles overlapping can be easily separated using the watershed option. On 

the software menu the command can be found: Process → Binary → Watershed. 

 

 

Figure 3.3. Flowchart of Watershed Option in ImageJ  

The first panel is the actual image which could be 16-bit or 32-bit, which is converted to a binary 

image of 8-bit in second panel. Particles are connected to each other at several loci/points. If they 

are not separated, the software will read it as a single point to a group of connected particles. 

Therefore, the option watershed is used as shown in the third panel, where a line is drawn across 

the gray pixel area, and particles are separated. The fourth panel shows the outlined particles. 

      

 

 

 

 

 

 



 

41 
 

IV. Analysis of Particles 

For analyzing the particles in the binary image, the menu command Analyze → Analyze 

particles was used. This provides information about each particle in the picture (Figure 3.4).  The 

minimum and maximum size of lipid droplets can be set, as can the maximum pixel area size to 

exclude any object that is not a lipid droplet or any other contaminant/object that is of no interest 

in the image. Many objects like a line or cylindrical shape can be detected by the software. 

Therefore, roundness values are set between 0 and 1.0 as this helps to exclude unwanted objects 

from the readings.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Particle Analysis Panel in ImageJ  

The ‘Show’ drop-down menu has various options including - Nothing, Bare Outlines, Ellipses, 

Masks, Count Masks, Overlay Outlines, etc., Other options on panels include Add to Manager, 

Exclude on edges, Include holes, Record starts, etc. Option to show was selected → ‘Outlines’ 

option to help display the detected objects in the image. We also chose to ‘Display results’, 

‘Summarize’, and Record starts.  

 

3.5.4 Analysis of Lipid Droplets Size and Number by ImageJ Software 

Each cell was analyzed from the image using ImageJ software.  Data was obtained and 

analyzed.  This analysis produced an output file for each individual lipid droplet in a single cell.  

For purposes of analysis, the average size of lipid droplet per cell was copied to Excel, from 

which the average of all analyzed cells was calculated and graphed. 
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3.6 Oil Red O Staining 

Oil Red O (ORO) staining was performed for quantifying and imaging of lipids. ORO is 

a diazon dye which is hydrophobic and lipid soluble, with a maximum absorption wavelength of 

518 nm.  ORO stains not only neutral lipids but also cholesteryl esters in fixed cells.  ORO does 

not stain biological membranes.  The theory behind ORO staining is that the dye is minimally 

soluble in the solvent.  By adding this dye to water, its solubility is reduced further.  ORO stain 

mixed with water was prepared fresh because the dye separates out after a few hours.  The 

lipophilic dye therefore quickly moves out of the water and strongly associates with the lipids in 

cells or tissue sections. 

From the cell culture plate, the media was aspirated and washed with 1X PBS.  4% PFA 

in PBS was used to fix cells for 15 min.  PFA was aspirated out, and the cell layer washed 3X 

with PBS to remove any traces of PFA.  60% Isopropanol was added to plates to remove traces 

of PBS from the cell layer.  ORO stain was added to the culture plates, and cells were incubated 

for 30 min.  ORO stain was aspirated out, and plates were rinsed with 70% ethanol to remove 

excess stain.  Ultrapure water was added to the plate and images were obtained.  
 

 

3.7 Quantification of Neutral Triglycerides  

Quantification of TAGs was performed using a TAGs quantification kit from Abcam 

(Cat # ab65336).  This assay is colorimetric and therefore provides a sensitive and easy protocol 

for quantification of TAGs.  The principle behind this assay is that the triglycerides are broken 

down into free fatty acids and glycerol.  The glycerol component is further oxidized to produce 

a product which readily reacts with a probe in the kit, which develops color.  This product has a 

maximum absorption wavelength of 570 nm.  The kit is very sensitive and can detect a minimum 

of 2 micromoles to 10 micromoles of triglyceride.  This kit detects monoglycerides and 

diglycerides as well.  

A fresh set of standards was prepared before performing each experiment by diluting the 

concentrated standard in assay buffer Triglyceride standards ranging from 0 nmol to 10 nmol 

were prepared.  Cells were washed with PBS and re-suspended in 5% NP-40 in ddH2O in 

microcentrifuge tubes.  These tubes were placed in a heat block, and the temperature was 

gradually increased to 90°C.  The samples, which had turned cloudy, were removed from the heat 

block and cooled at room temperature.  These steps was repeated twice, and tubes were 

centrifuged for 2 minutes at high speed to remove cell debris or insoluble material.  Samples were 
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diluted so that the concentration fell within the range of the standards.  Lipase was added to each 

well containing either the triglyceride standard or samples, and then incubated at room 

temperature for 20 minutes which allowed the lipase to digest the tri/mono/diglycerides into 

glycerol and fatty acids.  A reaction mix was then added to each well that consisted of triglyceride 

assay buffer, triglyceride probe, and triglyceride enzyme mix in 23:1:1 ratio.  This master mix 

was prepared for all standards and samples.  Reaction mix (50 μL) was added to each well and 

the 96-well plate was incubated at room temperature for 60 minutes, protected from light by 

covering with a paper towel.  The absorbance of each well was measured at 570 nm.   
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4. RESULTS 

 

4.1 Validation of Lack of Mfn-2 Expression in Mfn-2 KO MEFs. 

 In order to validate the lack of Mfn-2 expression in the knockout cell line, Western 

analysis was performed to assess Mfn-2 protein levels in WT MEFs and in the knockout line. 

As shown in Figure 4.1, Mfn-2 expression was only observed in WT MEFs. 

 

Figure 4.1. Immunoblot of cell lines for Mfn-2 

WT and Mfn-2 KO MEF Cells were grown in DMEM + 10% FBS until 100% confluence. Cells 

were harvested, cell lysates prepared, and Western blotting performed. 

  

4.2 Mitofusin-2 Protein is Essential for Maintaining Normal Mitochondrial Morphology 

To investigate the role of Mfn-2 in normal mitochondrial morphology, an 

immunofluorescence experiment was conducted in WT and Mfn-2 KO MEF cells to visualize 

Hsp70 since this protein is a mitochondrial marker.  As shown in Figure 4.2 (WT-A), the 

mitochondrial network in WT cells had the appearance of wiry strands or long threads that 

randomly extended in various directions in the cell.  Even though mitochondrial morphology in 

WT MEFs predominantly consisted of tubular and longer mitochondrial strands, a small 

percentage of cells had shorter mitochondrial strands on the periphery as shown in Figure 4.2 

(WT-B).  
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In Mfn-2 KO cells, the mitochondrial morphology in Mfn-2 KO MEF cells was distinctly 

altered.  Most cells showed a fragmented pattern of much shorter threads (Figure 4.2, Mfn-2 A), 

although a few presented longer threads (Figure 4.2, Mfn-2 B).  This experiment confirmed the 

role of Mfn-2 in maintaining the length of mitochondrial strands and overall morphology.   

Figure 4.2. Knockout of Mfn-2 Results in Altered Mitochondrial Morphology.   

WT and Mfn-2 KO MEF cells were grown on coverslips, fixed with paraformaldehyde and 

permeabilized with Triton-X 100.  To view mitochondrial morphology, cells were incubated with 

anti-Hsp70 a mitochondria-specific marker.  WT-A and B, and Mfn-2 A and B, are representative 

of the two predominant morphologies that presented in WT and Mfn-2 cells, respectively, with 

WT-A being by far the most frequently observed.  The insets are magnified views of the region 

indicated by the box. 

 

4.3 Absence of Mitofusin-2 Protein Increases Size of Lipid Droplets 

Because the structural tether between the mitochondria and the ER is essential for lipid 

trafficking, it was felt likely that knockout of Mfn-2 might significantly interfere with overall 

lipid metabolism.  To investigate this, the number and size of lipid droplets were assessed in WT 

and Mfn-2 KO MEF cells.  

As shown in Figure 4.3, Mfn-2 KO cells showed the characteristic mitochondrial 

fragmentation pattern.  Staining with BODIPY, a neutral lipid dye, allowed visualization of the 

lipid droplets.   The droplets appeared to be localized in close proximity to mitochondria (merged 

panel), consistent with previous observations by Sturmey et al., (2006).  Subsequent analysis of 

lipid droplets in 30-50 cells indicated that the number of droplets showed little difference between 
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WT and Mfn-2 KO MEFs, averaging 43 ± 3 and 40 ± 2 per cell, respectively (Figure 4.5, control 

group).  However, lipid droplet size was significantly enlarged in Mfn-2 KO cells, averaging 0.38 

µm2 compared to 0.2 µm2 in WT cells (Figure 4.6, control group). 

 

4.4 Absence of Mfn-2 Protein Increases Triglyceride Content in MEF Cells 

Our results from earlier experiments indicated that Mfn-2 KO MEF cells had larger lipid 

droplets compared to WT cells.  This is likely to result in increased total triglyceride in the Mfn-

2 KO cells.  It was decided that this be confirmed by assessing total neutral lipid.  As expected, 

we found that Mfn-2 KO MEFs had almost twice the amount of triglycerides compared to WT 

MEF (Figure 4.4).   

.   

 
 

 

Figure 4.3. Lipid droplets localize closely to mitochondria.   

WT and Mfn-2 KO cells were grown in DMEM + 10% FBS on coverslips and stained with anti-

Hsp70 and BODIPY to stain mitochondria (in red) and lipid droplets (in green), respectively. The 

merged panel shows the relative position of mitochondrial strands and lipid droplets.  
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Figure 4.4.  Mfn-2 KO MEFs show increased triglycerides relative to WT MEFs.  

WT and Mfn-2 KO MEFs were grown to 30-40% confluency. Cells were harvested, and protein 

concentration was measured.  Neutral lipid was then assessed as described in the Materials and 

Methods section.  The results shown are averages ± SEM of three experiments.  ANOVA single 

factor was used to analyze statistical significance (*) with p values ≤ 0.05, between WT and Mfn-

2 KO cells.    

 

 

4.5 The Effect of Insulin and Oleic Acid on Lipid Droplet Morphology 

The positive effect of insulin and fatty acids on lipids formation and induction of lipid 

droplet formation is well known (Griffin and Sul 2004).  Therefore, the effects of both insulin 

and oleic acid on lipid droplet morphology were examined in WT and Mfn-2 KO MEFs. 

Treatment with insulin for 13 h had no significant effect on lipid droplet number in either 

WT or Mfn-2 KO MEFs (Figure 4.5).  Conversely, oleic acid (OA) treatment resulted in a marked 

increase in the number of lipid droplets, approximately doubling in WT cells and tripling in the 

Mfn-2 KO cells. Treatment of cells with both insulin and OA led to a decrease in droplet number 

compared to OA treatment alone, with a larger decrease seen in Mfn-2 KO cells compared to WT 

(Figure 4.5).   
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Figure 4.5. Effect of Insulin and OA on Lipid droplet number in WT and Mfn-2 KO 

MEFs. 

Top panel: WT and Mfn-2 KO MEFs were grown in DMEM + 10% FBS to 30-40% confluency, 

and then treated with insulin and/or oleic acid (OA) for 13 h.  Cells were fixed and stained with 

BODIPY.  Confocal microscopy was used to image the fixed cells, and ImageJ software was used 

to analyze the number of lipid droplets. Bottom panel: the data shown in the top panel is displayed 

differently, comparing the effect of insulin and oleic acid treatments within each cell type. The 

results shown are averages ± SEM of three experiments.  ANOVA single factor was used to 

analyze statistical significance (*) with p values ≤ 0.05, between WT and Mfn-2 KO cells (Top 

panel).  ANOVA single factor was used to analyze statistical significance (*) with p values ≤ 

0.05 between treatment within each cell type (Bottom panel). 
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Lipid droplet size in response to insulin and OA was also assessed.   The average size of 

lipid droplets was larger in Mfn-2 KO MEFs compared to WT under all treatment conditions 

(Figure 4.6).  Insulin treatment alone had no significant effect on droplet size in either cell line, 

similar to the lack of effect on droplet number.  OA treatment increased lipid droplet size by 

approximately 70% in both WT and Mfn-2 KO MEFs, while the combined treatment with both 

insulin and oleic acid resulted in only a slight, statistically insignificant increase in droplet size 

compared to oleic acid treatment alone.  The overall conclusion from these experiments is that 

the absence of Mfn-2 leads to an increase in lipid droplet size but not number, although when 

provided additional substrate for triglyceride synthesis i.e. oleic acid, the Mfn-2 KO MEFs show 

an enhanced capacity to increase the number of lipid droplets compared to WT cells.  
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Figure 4.6. Effect of Insulin and OA on lipid droplet size in WT and Mfn-2 KO MEFs.   

Top panel: WT and Mfn-2 KO MEFs were grown in DMEM + 10% FBS to 30-40% confluency 

and then treated with insulin and/or oleic acid for 13 h.  Cells were fixed and stained with 

BODIPY.  Confocal microscopy was used to image fixed cells, and ImageJ software was used to 

analyze lipid droplets.  Bottom panel: the data shown in the top panel is displayed differently, 

comparing the effect of insulin and oleic acid treatments within each cell line. The results shown 

are averages ± SEM of three experiments.  ANOVA single factor was used to analyze statistical 

significance (*) with p values ≤ 0.05 between WT and Mfn-2 KO cells (Top panel).  ANOVA 

single factor was used to analyze statistical significance (*) with p values ≤ 0.05 between 

treatment within each cell type (Bottom panel). 
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4.6 Role of Mfn-2 in Adipogenesis 

MEFs are multipotent stem cells that can be induced to differentiate into adipocytes, 

making them useful for the molecular aspects of adipogenesis.  Given that Mfn-1 and Mfn-2 are 

involved in fusion of outer mitochondrial membrane and lipid trafficking across ER and 

mitochondria and that the absence of Mfn-2 results in enhanced lipid accumulation (see above), 

it was decided to investigate the role of Mfn-2 in adipogenesis using the knockout cell line.  

Cells were cultured to 100% confluency, further cultured for an additional two days, and 

then treated with control or adipogenic media for 10 days.  The expression of adipogenic marker 

genes coding for C/EBPα, FABP, and PPARγ were assessed by Western blot analysis in WT 

MEFs (Figure 4.7, upper panel).  Interestingly, all three of the marker proteins assessed increased 

in expression over the 10 days, regardless of whether they were cultured in control or adipogenic 

media.  The main difference observed was in the expression pattern of C/EBPα, which was 

induced by day 6 in adipogenic media followed by a reduction at day 10, while in control media, 

induction of C/EBPα was not observed until day 10.  It should be noted that the doublet band 

present has been noted by others and is likely due to posttranslational modifications (Khanna-

Gupta, 2008, Trivedi et al., 2008).  

In Mfn-2 KO cells, a similar induction of adipogenic markers was observed even with 

control media, although C/EBPα was strongly induced by day 6 and no detectable FABP 

expression was observed at day 0 (Figure 4.7, lower panel).   Moreover, when cultured in 

adipogenic media, C/EBPα expression was induced slightly on day 6 but more pronounced on 

day 10, thus presenting a different response than WT MEFs.  These data suggested that 

adipogenesis could be induced in MEFs by culturing them at 100% confluency and that there is 

no need to culture them in an adipogenic medium.  Moreover, there appeared to be little impact 

on the adipogenic capability in Mfn-2 KO MEFs relative to WT cells, except for some minor 

changes in the pattern of C/EBPα induction. 
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Figure 4.7. Induction of Adipogenic Marker Proteins in WT and Mfn-2 KO MEFs.   

Cells were treated with control or adipogenic media as described in section 3.3.1. Cells were 

harvested on day 0, 6 and 10 of the experiment, cell lysates prepared, and Western blotting 

performed. Experiments were performed three times. 

 

 



 

53 
 

The expression profile of several relevant proteins including positive and negative 

regulators involved in adipogenesis was next examined in WT MEFs.  Mfn-1 expression was 

fairly constant in cells incubated in control media.   While an induction of Mfn-1 from day 0 

through day 10 was observed when cells were cultured in adipogenic media, the level reached at 

10 days was similar in cells treated with either control or adipogenic media.  Mfn-2 expression 

was similar in both groups and unchanged by culturing in either media. It was noted that the 

apparent molecular weight of Mfn-2 was slightly greater in the day 0 sample in each treatment 

group. 

 

 

Figure 4.8. Expression profile of select proteins in WT MEF cells treated with control or 

adipogenic media.    

WT MEFs were cultured in control or adipogenic media for the number of days indicated, and 

then cell lysates were prepared for Western blot analysis for the proteins indicated.  β-actin was 

assessed as a loading control. Day -2 marks the day when cells reached 100% confluency, and 

day 0 marks the day when the cells were fed control or adipogenic media. Experiments were 

performed three times.  
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Hsp70 was assessed primarily as a control since previous studies have shown that this 

protein remains constant during adipogenesis induced in 3T3-L1 cells (Baldini et al., 1995). The 

data in Figure 4.8 indicated that a steady expression of Hsp70 is observed in MEFs regardless of 

whether cells were cultured in control or adipogenic media.  ADRP has been shown to associate 

with lipid droplets and to be highly expressed in preadipocytes but to gradually decrease in 

expression as adipocyte maturation occurs (Brasaemle et al., 1997).  This same expression 

pattern was observed in WT MEFs, with highest expression seen at day -2 which decreased with 

further culturing of confluent cells in either control or adipogenic media (Figure 4.8).  These data 

provide further support that adipogenesis occurs in confluent MEFs even without the addition of 

adipogenic media.  

Grp78 is glucose related protein of 78 kDa and is also known by other names as Binding 

immunoglobulin protein (BiP) or heat shock 70 kDa protein 5 (HSPA5).  Grp78 is a chaperone 

that binds to the newly synthesized proteins in ER lumen and assists them in protein folding.  It 

is also responsible for transport of misfolded proteins for degradation by the proteasome (Lee, 

2005).  It is a protein involved in maintaining endoplasmic reticulum homeostasis and structure 

(Hendershot, 2004; Lee et al., 2005) and has been found recently to be essential for adipogenesis 

(Zhu et al., 2013).  Moreover, Grp78 expression was found to be undetectable in 3T3-L1 

preadipocytes but to increase significantly upon induction of adipogenesis (Zhu et al., 2013).  In 

Figure 4.8, it is shown that Grp78 levels increased from day 0 to day 10 in both treatment groups.  

Somewhat surprisingly, levels at day -2, when cells first reached confluency, were as high as after 

10 days of culturing in either media.  In Mfn-2 KO cells, the expression of all of the proteins 

assessed (Mfn-1, Hsp70, Grp78, β-actin) remained relatively constant throughout the culturing 

time period regardless of which media the cells were treated with (Figure 4.7).    

   

 



 

55 
 

 

Figure 4.9. Expression profile of select proteins in Mfn-2 KO MEF cells treated with 

control or adipogenic media.  

Mfn-2 KO MEFs were cultured in control or adipogenic media for the number of days indicated, 

and then cell lysates were prepared for Western blot analysis for the proteins indicated.  β-actin 

was assessed as a loading control.  Day -2 marks the day when cells reached 100% confluency, 

and day 0 marks the day when the cells were fed control or adipogenic media. Experiments were 

performed three times. 

 

We next investigated lipid accumulation in WT and Mfn-2 KO MEFs after induction of 

adipogenesis using Oil Red O staining.  The intensity of staining was similar in WT and Mfn-2 

KO MEFs on day 0, suggesting similar lipid content (Figure 4.10 A).  After 5 or 10 days of 

culturing in control media, both WT and Mfn-2 KO cells showed an increase in lipid content 

(Figure 4.10, B and C).  Surprisingly, WT and Mfn-2 KO cells cultured for 5 or 10 days in 

adipogenic media showed lower intensity of red color relative to control media.  This finding 

raised a question as to whether adipogenesis had actually been induced with adipogenic media.   
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Figure 4.10. Oil Red O Staining in MEFs Undergoing Adipogenesis.  

Adipogenesis was induced in WT and Mfn-2 KO MEFs as described in section 3.3.1.  Day 0 was 

two days post 100% confluency and when cells were fed control or adipogenic media.  Cells were 

fixed on day 0, 5, and 10 (A,B and C, respectively) and Oil Red O staining was performed.   

 

In the adipogenesis experiment, fresh media was refed every other day.  It was noted that for cells 

fed the adipogenic media, there was significant cell detachment which reduced the cell density 

on the plate and likely contributed to the reduced Oil Red O staining seen in the adipogenic media 

group shown in Figure 4.10. This reduced cell density was confirmed by phase contrast 

microscopy on day 4 and visualization of the total cell pellet on day 10 (Figure 4.11).  

Examination of WT and Mfn-2 KO cells by high-resolution microscopy (Figure 4.12) indicated 

that both appeared to have undergone differentiation when cultured for 10 days in control or 

adipogenic media. 
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Figure 4.11. Adipogenic media enhances cell detachment.   

Adipogenesis was induced in WT and Mfn-2 KO MEF cells as previously described.  Panel A 

(WT) and Panel B (Mfn-2 KO): Cells were fixed on day 4 for oil red O staining (lower), and 

images obtained by high-resolution (60X) microscopy (upper).  Panel C: On day 10 cells cultured 

in either control or adipogenic media from three 100 mm plate were harvested into a Falcon tube 

and subjected to centrifugation.  



 

58 
 

 

Figure 4.12. Oil Red O staining of WT and Mfn-2 KO MEFs in Control and Adipogenic 

media.   

Adipocyte differentiation was induced as described in the Materials and Methods section.  Cells 

were stained with Oil Red O, and images obtained by high-resolution microscopy at 100X 

magnification. (A-Control media and B-Adipogenic media) 



 

59 
 

4.7 Comparison of Adipogenesis in MEFs and 3T3-L1 Cells  

Given the uncertainty as to whether adipogenesis was actually induced in MEFs when 

cultured in adipogenic media, it was decided to compare MEFs with 3T3-L1s, the gold-standard 

(pre-adipocyte) cell line used in adipogenic studies.  

Initially, the effect of culturing the cell lines in adipogenic cocktail on lipid droplet 

number and size were assessed by immunostaining with BODIPY (Figure 4.13).  As shown in 

panels A and B, in WT and Mfn-2 KO MEFs, the lipid droplet number and size increased after 

10 days of culturing in adipogenic media.  3T3-L1 cells showed a similar response with respect 

to droplet size, although the number of droplets did not appear to increase (panel C). Figure 4.14 

shows the average lipid droplet number and size, respectively, from the analysis of 30-50 cells 

from each cell line.  MEFs (WT and Mfn-2 KO) after 10 days of adipogenesis had diverse size 

of lipid droplets, while in 3T3-L1 cells after 10 days of adipogenesis, most lipid droplets where 

of uniform size (Figure 4.13).  

In western blotting experiments surprisingly all treatments and control experiments with 

insulin, oleic acid had higher number and size of lipid droplets in Mfn-2 KO cells.  All markers 

in differentiation of Mfn-2 KO MEF were expressed either early in adipogenesis process or 

expressed at a higher level as compared to WT MEFs, but number and size of lipid droplets in 

immunofluorescence experiment Mfn-2 KO MEF had less average number and size of lipid 

droplets.   
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Figure 4.13. Comparison of adipogenesis in MEFs and 3T3-L1 cells.  

MEFs (WT & Mfn-2 KO) and 3T3-L1 cells were grown on coverslip in 6-welled plate until 100% 

confluence was reached. Cellular differentiation was induced, 2-day post 100% confluent MEFs 

(considered as day 0).  Cells were fed with adipogenic media.  Cells were fixed on day 0 and 10 

for immunofluorescence.  Cells were incubated with anti-Hsp70 to stain mitochondria and 

BODIPY 493/503 to stain lipid droplets.  Images were obtained and analyzed using ImageJ 

software for particles analysis. Total of 30-50 cells were analyzed from each group.  Lipid 

droplet’s number and size (µm2) were analyzed.  Data was statistically significant (*) with p-

value ≤ 0.05. 
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Figure 4.14. Effect of adipogenesis on lipid droplet number and size in MEFs (WT, Mfn-2 

KO) and 3T3-L1 cell lines.   

Adipogenesis experiment was carried in WT and Mfn-2 KO MEFs and 3T3-L1 cells.  Cells were 

grown on coverslip to 100% confluency and treated with adipogenic media.  Cells were fixed and 

permeabilized on day 0 and 10 and then incubated with BODIPY 493/503 (1:100) to stain lipid 

droplets.  Images were obtained with a confocal microscope and analyzed using ImageJ software 

for particles analysis. A total of 30-50 cells were analyzed from each group. Statistically 

significant (*) with P-value ≤ 0.05. 
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5. DISCUSSION  

 

5.1 Mfn-2 is Crucial for Maintaining Mitochondrial Morphology 

The size, shape, and number of mitochondria vary in different cell types.  For example, 

there is a single mitochondrion in retina cell whereas there are hundreds of mitochondria in 

hepatocytes (Tandler and Hoppel, 1986; Ogawa et al., 2003).  Mitochondrial cristae are also 

extremely diverse and can form different shapes depending on the pathophysiological state of 

the cell (Scheffler, 1999).  These are evidence that mitochondrial dynamics is complex and 

consists of continuous fission and fusion process which varies according to cellular physiological 

events (Bereiter-Hahn and Voth, 1994; Chan, 2006).  Several studies in the last two decades 

(Frank et al., 2001; Karbowski, and Youle, 2003; Bossy-Wetzel et al., 2003; Olichon et al., 2003; 

Sugioka et al., 2004; Arakaki et al., 2006) established that mitochondrial fusion and fission is 

important for cell survival and apoptosis.  Various proteins such as Mfn-1, Mfn-2, Opa1, Fis1, 

and Drp1 are involved in mediating and regulating mitochondrial dynamics.  One study 

suggested that sustaining mitochondrial morphology is crucial to normal cell function, based on 

the observation that deletion of mitochondrial fusion GTPase (Mfn-1 or Mfn-2) in mammalian 

cell causes low respiratory capacity, ultimately leading to sluggish cell growth (Chen et al., 

2005).  

Bereiter-Hahn and Voth (1994) proposed the term “mitochondrial dynamics” and that it 

encompassed fusion, fission, motility and frequent shape changes, ranging from punctate 

structures to wiry networks.  Distribution of mitochondria inside a cell can be strikingly different.  

Mitochondria are often crowded at sites of high-energy demand.  In this thesis, imaging of WT 

and Mfn-2 KO MEF cells revealed highly tubular and fragmented mitochondria, 

respectively.  The mitochondrial network in WT cells displayed the wiry strands or long threads 

that arbitrarily stretched in several directions along the cell’s length. Although WT MEFs 

predominantly consisted of tubular and longer mitochondrial strands, some cells had punctate or 

shorter mitochondrial strands on the periphery. In Mfn-2 KO cells, the mitochondrial 

morphology was markedly different, with the predominant feature being a fragmented pattern of 

much shorter threads.  Other studies using complementary approaches are supportive of this 

conclusion. Chen (2005) showed that if mitochondria were compromised for fusion activity, the 

mitochondrial network appeared more fragmented, and cells lacked normal respiration capacity. 

When mitochondrial fusion activity is lost in mice, the fetus dies in early stages of development 
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(Chen, 2003).  A study showed that overexpression of Mfn-2 resulted in significant changes in 

mitochondrial morphology (Huang et al., 2007).  A study reported visible abnormalities in 

mitochondrial morphology of cardiac myocytes after knockout of Mfn-2, including a significant 

deviation in mitochondrial size (Chen et al., 2007).  Most of the mitochondria was abnormally 

enlarged.  Similar observations were made on Mfn-2 knockout in other mouse models (Chen et 

al., 2003, 2007).  Chen et al., (2010) deleted one Mfn-1 allele and two Mfn-2 alleles from mouse 

skeletal muscle and observed formation of remarkably large mitochondria, although the total 

mitochondrial mass in cardiac myocytes was approximately the same.  In the current study, we 

also observed that Mfn-2 KO MEF cells had fragmented mitochondrial morphology throughout 

different confluency states.  However, WT MEFs cells had a wiry network which gradually 

became fragmented, especially in the post-confluence state.  Similar observations were made by 

Kita et al., (2009) in 3T3-L1 cells. Thus, the role of Mfn-2 in maintaining the length of 

mitochondrial strands and overall morphology was established. Though mitochondrial 

morphology is distorted in Mfn-2 KO MEFs, it does not affect total mitochondrial mass in a cell 

(Chen et al., 2003, 2007).  

 

5.2 Lipid Droplets are Often Co-localize with the Mitochondrial Network 

In our study, confocal microscopy confirmed the close association of lipid droplets with 

mitochondria.  Several other studies with different cell types have reported close association of 

lipid droplets with mitochondrial network (Shaw et al., 2008; Sturmey et al., 2006; Tarnopolsky 

et al., 2007).  Tarnopolsky et al., (2007) provided evidence suggesting that this association 

between lipid droplet and mitochondria could be an efficient way to transfer fatty acids destined 

for -oxidation between these organelles.  There is also evidence that the interaction of 

mitochondria with lipid droplets might vary according to the cell type, and that the release of 

fatty acids from lipid droplets might vary in cell types depending on whether lipolysis or 

lipophagy occurs.  For example, hepatocytes, which have low levels of lipase, engage in 

lipophagy instead of lipolysis (Singh et al., 2009; Walther and Farese, 2012).  

Broad exchange of lipids and their precursors continuously occurs between the 

mitochondrial and ER membranes.  Recent research on lipid transfer proteins and membrane-

tethering complexes provides insight into the mechanisms of these transport processes, which 

are fundamental for mitochondrial dynamics and cellular homeostasis (Tatsuta et al., 2013).  The 

spatial arrangement of mitochondria and ER facilitates both lipid metabolism and the uptake of 
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Ca2+ released from the ER into the mitochondria (Rizzuto et al., 1992, 1993, 1998; Voelker, 

2000, 2005).  Some studies suggested that since Mfn-2 tethers the ER and mitochondria.  

Disruption of Mfn-2 may lead to the following consequences (Chen et al., 2003; Area-Gomez et 

al., 2012).  First, it can increase the distance between two organelles.  Second, it can suppress 

phospholipid transport between the ER. Third, it results in decreased calcium metabolism in the 

mitochondria.  However, a recent report (Filadi et al., 2015) on Mfn-2 disruption suggests that 

Mfn-2 maintains the distance between ER and mitochondria.  They suggested that disrupting 

Mfn-2 brings both organelles too close, causing abnormal calcium metabolism and 

toxicity.  Thus, we know that the lipid droplets are synthesized in ER, and interact closely with 

mitochondria.  This association of ER, mitochondria and lipid droplets is disturbed in Mfn-2 KO 

cells.  Silencing of Mfn-2 thus disrupts tether between ER and mitochondria, affecting overall 

lipid and calcium metabolism. 

  

5.3 Mfn-2 Tether between ER-Mitochondria is Involved in Energy Homeostasis. 

Mitofusins are involved in mitochondrial fusion as well as in tethering mitochondria with 

the ER (Rizzuto, 2006; de Brito and Scorrano, 2008).  De Brito and Scorrano (2008) discovered 

an important structural component of the ER-mitochondria tether.  This study established the 

role of Mfn-2 in providing the physical foundation for ER-mitochondria communication and 

assisting in several biochemical processes such as Ca2+ signaling and lipid trafficking (Scharwey 

et al., 2013). Silencing of Mfn-2 in HeLa and MEF cells not only loosens ER-mitochondria 

interactions but also disrupts ER-mitochondria morphology. Thus, genetic and biochemical 

evidence suggested a model in which Mfn-2 bridges the ER and mitochondria.  These bridges 

could form a homotypic or heterotypic tether with both Mfn-1 and Mfn-2.  

Mitochondria are at the hub of several crucial cellular mechanisms (Ferri and Kroemer, 

2001; Rizzuto and Pozzan, 2006).  To accomplish these responsibilities, mitochondria are 

functionally and spatially placed in a complex grid of interconnected ER, often in close contact 

(Rizzuto and Pozzan, 2006).  These membrane contact sites between ER and mitochondria 

dictate mitochondrial Ca2+ uptake from the ER, eventually affecting cellular metabolism 

(Rizzuto et al., 1992, 1993, 1998).  Likewise, these membrane contact sites are important for the 

biosynthesis of mitochondrial lipids, which transpires at MAM patches of ER (Vance, 1990). 

The fine molecular architecture of the ER-mitochondria tether is unknown; however, it is 

probably proteinaceous (Csordás et al., 2006).  A multifunctional sorting protein (PACS2) is 
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enriched in ER and indirectly controls ER and mitochondria juxtaposition through BAP31 

(Simmen et al., 2005).  Correspondingly, the dynamin-related GTPase Drp1 is essential for ER-

mitochondria fission and can even alter tethering by perinuclear clumping of mitochondria (Pitts 

et al., 1999; Szabadkai et al., 2004). Additional GTPases include Opa1, which is involved in 

apoptosis and mitochondrial fusion (Cipolat et al., 2004; Freeza et al., 2006), and Mfn-1 and 

Mfn-2 which are essential for mitochondrial fusion (Koshiba et al., 2004).  Mfn-2 is also crucial 

not only for neuronal differentiation but also embryonic development (Chen and Chan, 2006; 

Chen et al., 2003; Chen et al., 2007).  A peripheral neuropathy, Charcot-Marie-Tooth (CMT) 

type 2A, is characterized by axonal degeneration and is caused by mutations in Mfn-2 (Zuchner 

and Vance, 2006). 

 There is a growing body of evidence that supports the hypothesis that the Mfn-2 

mediated tethering of ER and mitochondria plays a significant role in energy homeostasis. For 

example, Bach et al., (2003) showed that the silencing of Mfn-2 led to reduced oxygen 

consumption and glucose oxidation in fibroblasts.  In L6E9 rat skeletal muscle cell, decreased 

oxidation of palmitate and pyruvate was observed after knockdown of Mfn-2 expression (Bach 

et al., 2003, 2005).  A study in 3T3-L1 preadipocyte cells (Kita et al., 2009) found that when 

mitochondrial fission was silenced (Fis1 and Drp1), mitochondrial fusion activity increased and 

cellular TAG content was decreased.  In contrast when mitochondrial fusion activity was silenced 

(Mfn-2 and Opa1), mitochondrial fission increased, ultimately leading to a fragmented 

mitochondrial morphology and increased TAG content.  Mice lacking Drp1 die shortly after birth 

due to developmental anomalies, especially in the forebrain (Ishihara et al., 2009).  Drp1 and 

Fis1 null MEF cells showed elongated and highly interconnected mitochondrial morphology 

(Losón et al., 2013).  Whereas Mfn-2 and Opa1 knockout MEFs have highly fragmented 

mitochondrial morphology (Chen et al., 2003, 2005; Song et al., 2009)  

Insulin and fatty acids have positive growth effects on lipogenesis and induction of lipid 

droplet formation (Griffin and Sul, 2004).  In this study, we investigated the changes in lipid 

droplet number and size in WT and Mfn-2 KO MEF cells.  Mfn-2 KO cells in control and 

treatment (insulin, oleic acid, and the combination of both) had either a higher number or bigger 

size of lipid droplets as compared to WT cells.  Mfn-2 KO cells treated with oleic acid 

accumulated three times the number of lipid droplets as compared to WT which doubled their 

number. When cells are under starvation, the mitochondria shift to new fuel i.e. TAG from lipid 
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droplets (Berg et al., 2002). Thus, fatty acids drive oxidative phosphorylation and are used to 

produce ATP, affecting the overall number and size of lipid droplets (Finn and Dice, 2006; Kerner 

and Hoppel, 2000).  Several studies on lipid trafficking (Herms et al., 2013; Kassan et al., 2013; 

Wang et al., 2010) have suggested that incorporation of exogenously added fatty acids in cell 

culture media leads to formation of TAGs, which ultimately forms new lipid droplets or increase 

size of existing lipid droplets. Lipid droplet number and size are also affected by two distinct 

processes, lipolysis and lipophagy (Singh et al., 2009; Zechner et al., 2012). A recent study in 

Mfn-1 KO MEFs on fatty acid trafficking in starved cells revealed that cells with fragmented 

mitochondria are unable to oxidize fatty acids at the same rate as WT MEFs (Rambold et al., 

2015). Our studies further confirm that these extra fatty acids which are not oxidized at normal 

rate accumulate within a cell.  These fatty acids could cause toxicity and thus they are cycled 

back to existing lipid droplets. Absorption of these fatty acids in lipid droplets further leads to an 

increase in either lipid droplet number or size in the fragmented mitochondrial cell.  Lipid droplets 

consists primarily of triglycerides (Bartz et al., 2007), therefore in the current study we analyzed 

triglyceride content in WT and Mfn-2 KO cells.  Total lipid was twice in the Mfn-2 knockout 

cells compared to WT cells, even though they had approximately the same number of lipid 

droplets.  Thus our data indicated that in Mfn-2 KO MEF cells, the increased triglycerides were 

stored in existing lipid droplets, expanding their size instead of increasing the number of droplets 

in the cell. 

 

5.4 Loss of Mfn-2 Induces Adipogenesis 

Lipid droplets are storage depots of excess energy and are found in all organisms and in 

most cell types (Wan et al., 2007; Fujimoto et al., 2008). The lipid droplet core is composed of 

neutral TAGs (Cheng et al., 2009) and it is enveloped by a monolayer of phospholipids embedded 

with various set of proteins (Fujimoto and Ohsaki, 2006; Walther and Farese, 2009; Meex et al., 

2009).  Abnormalities in lipid droplet formation and regulation could lead to atherosclerosis (Paul 

et al., 2008; Fujimoto et al., 2008).  Lipid droplet formation and turnover is crucial for cell 

survival, however it is unclear whether regulation of these mechanisms are brought about through 

internal (cellular lipid availability) or external molecular signaling (Digel et al., 2010).  Several 

studies (Nakamura et al., 2005; Andersson et al., 2006) suggested that lipid droplet generation, 

growth and localization is dependent on the ERK pathway and phospholipase D, and it is well-
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established that lipid droplet formation signaling is stimulated in response to fatty acid exposure.  

A study (Rohwedder et al., 2014) established in Huh-7 cells that addition of exogenous fatty acids 

in cell culture media induces detectable lipid droplets.  Fatty acids are the fundamental units of 

the structural cellular membranes and functional units of lipid metabolism (Dowhan, 1997; 

Nohturfft and Zhang, 2009; Walther and Farese, 2012).  Elevated levels of free fatty acids in 

serum contribute towards the pathogenesis of metabolic abnormalities, whereas adipocyte cells 

have exceptional capacity to stock extra free fatty acids in lipid droplets as TAGs.  Excess 

accumulation of TAGs in skeletal muscle leads to insulin resistance (Shulman, 2000).  

Adipogenesis is accomplished by a number of factors which serves as a molecular switch to 

function in controlling the progenitor’s fate, either positively or negatively.  Both in vivo and in 

vitro studies provide evidence that supports the role of PPARγ as the master regulator of 

adipogenesis (El-Jack et al., 1999; Wu et al., 1999).  Our study determined that the ER-

mitochondria tether mediated by the mitofusins had a role in adipogenesis. WT and Mfn-2 KO 

MEFs were differentiated by incubating 48 hours post confluent cells with an adipogenic cocktail 

media. After several days, WT and Mfn-2 KO MEFs showed huge cytosolic lipid droplets, 

characteristic of adipocytes (Figure 4.13). Several markers characterizing adipogenesis were 

analyzed by Western blotting to confirm that the adipogenesis was induced in both WT and Mfn-

2 KO MEFs (Figure 4.7, 4.8, 4.9). However, our results indicate a slight different induction of 

adipogenesis in Mfn-2 KO cells as compared to WT. Therefore, it appears that Mfn-2 is not 

required for adipogenesis, but it could have some role in regulation of adipogenesis and needs to 

be explored.  Mesenchymal stem cells from bone marrow accumulated greater quantity of lipids 

upon exposure to a combination of dexamethasone, IBMX, insulin and indomethacin (Pittenger 

et al., 1999). During adipogenesis there is an increase in mitochondrial metabolism and ROS 

activity (Wang et al., 2015), however, it is unclear whether high mitochondrial metabolism is 

necessary for adipogenesis.  mTORC1 stimulates ROS generation during adipogenesis and 

antioxidants targeting mitochondria prevent adipogenesis (Tormos et al., 2011).  PI3-kinase 

signaling and downstream effector mTORC1 are well-known regulators of PPARγ-dependent 

adipogenesis and lipogenesis (Laplante and Sabatini, 2009).  Oxygen consumption by 

mitochondria and overall ROS levels are augmented during adipogenesis (Imhoff and Hansenn, 

2010; Wilson-Fritch et al., 2003).    Tormos et al., (2011) observed a gradual increase in the 

oxygen consumption rate, accompanied by increased ROS levels during adipogenesis.  One 
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probable reason for slightly early induction of adipogenesis in Mfn-2 KO MEFs may be low 

respiratory capacity and low oxygen consumption.   

5.5 Adipogenesis is Strongly Induced in Presence of High Concentration of FBS. 

Adipocyte physiology and adipogenesis have been extensively studied in vivo and in 

vitro. Two common cell culture models for understanding adipogenesis are 3T3-L1 and OP9 

(Green and Kehinde, 1974; Nakano et al., 1994).  The most frequently used protocol for inducing 

adipogenesis involves incubating 48 h post confluent monolayer cells with adipogenic cocktail 

media (IBMX, dexamethasone and insulin plus 10% FBS) for another 48 h.  After 48 h of cocktail 

media, cells are grown in media with insulin for another 48-72 h.  Adipogenesis using 10% FBS 

was performed, however limited differentiation was observed (data not shown).  3T3-L1 and 

OP9 cell lines easily differentiate into adipocytes after 6-7 days of treatment.  However, several 

studies on variations in adipogenesis efficiency and low yields have been reported (Mehra et al., 

2007; Wolins et al., 2006; Zebisch et al., 2012).  Some studies have observed high variation in 

Oil Red O staining, indicating variation in lipid accumulation, mostly when cells are incubated 

in different culture plates or media. One probable reason for this variation could be different 

oxygen content since low-oxygen content in media inhibits adipogenesis (Pettersen et al., 2005; 

Sheng et al., 2014; Yun et al., 2002).  

Our studies further revealed that in order for MEF cells to undergo adipogenesis, culture 

media requires (20%) of fetal bovine serum, instead of 10%.  In our study on adipogenesis, we 

also noticed an early and strong induction of cell differentiation in MEF cells with DMEM media 

+ 20% fetal bovine serum, as compared to the traditional method of using synthetic modulators 

like IBMX, dexamethasone, and troglitazone.  In Figure 4.7 and 4.10, we observed strong 

induction of FABP and PPARγ on day 6, and Oil Red O staining indicated accumulation of more 

lipids in the control media.  The complex cocktail of growth factors in serum might have a 

stimulatory effect on cell growth, allowing them to achieve greater density before attaining the 

resting state. Fat accumulation might then occur much more rapidly and to a greater degree than 

in traditional adipogenic media. A study was published (Green and Meuth, 1974) on pre-

adipocyte cell line 3T3-L1 which revealed that a high concentration (20 - 30%) of calf serum 

increased the rapidity and degree of the fat accumulation.  Even though differentiated cells easily 

detach from culture plate surface, we observed (Figure 4.11) that cells cultured in adipogenic 

media easily detached from culture plate surface as compared to cells in control media.  Several 
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studies have observed similar cell detachment in adipogenic media (Barnes et al., 2003; Gregoire 

et al., 1998). 

     

5.6 Model showing the Relationship between Mitochondrial Morphology and Lipid 

Droplet Size 

Based on data presented in this thesis, a model describing the relationship between Mfn-

2, mitochondrial morphology and lipid metabolism is proposed (Figure 5.1).  In cells expressing 

Mfn-2 (WT, upper panel), both fission and fusion processes are unimpaired. Most of the 

mitochondria adopt a wiry or tubular network appearance, and there are extensive, well-

developed contacts between the ER and mitochondria that are mediated by Mfn-1 and 2. 

Respiration and -oxidation are also unimpaired. Lipid metabolism is well-controlled, and 

includes the esterification of some free fatty acids into TAGs by the triacylglycerol synthetase 

complex (not shown) located on the ER membrane. These TAGs are stored in lipid droplets 

(yellow circles).  

In the absence of Mfn-2, the fusion process is impaired.  The resulting imbalance between 

the fission and fusion processes leaves most of the mitochondria in the fragmented state. 

Moreover, the contacts between the fragmented mitochondria and the ER are impaired, which 

affect overall lipid metabolism. Exacerbating this is the fact that fragmented mitochondria show 

impaired β-oxidation of fatty acids (Zanna et al., 2008; Schönfeld et al., 2010). This results in an 

accumulation of fatty acids, and in order to avoid fatty acid toxicity, the cell increases TAG 

synthesis. The increased TAGs, which are stored in lipid droplets, result in larger lipid droplets 

size rather than number of droplets.   
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Figure 5.1. Schematic showing mitochondrial dynamics and the relationship between 

mitochondrial morphology and lipid droplet size. 

Upper Panel (WT MEF): Mitochondria is in physical contact with ER via Mfn-1 and Mfn-2 

homodimer and heterodimers. Fission proteins such as Drp1 and Fis1 along with other fission 

factors mediate mitochondrial fission, giving rise to smaller fragmented mitochondria. 

Conversely, mitochondrial fusion proteins such as Mfn-1, Mfn-2 and Opa1 are involved in 

mitochondrial fusion, giving rise to a wiry or tubular network of mitochondria. In either form 

mitochondria are continuously interacting with the ER. In normal cells, mitochondrial fusion and 

fission are in equilibrium. Lower Panel (Mfn-2 KO MEF): In the absence of Mfn-2, cells display 

primarily fragmented mitochondria, with low O2 consumption, causing slow respiration, thus low 

ATP production and slowed β-oxidation. This leads to increased free fatty acid pool, which are 

esterified and trafficked back into existing lipid droplet as TAGs.  This re-trafficking of FA cause 

increase in lipid droplet size. ATP: adenosine triphosphate, FA: Fatty Acids, ER: Endoplasmic 

Reticulum, TAGs: triglycerols. 
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The study described in this dissertation helps to establish a crucial role for Mfn-2 in 

maintaining mitochondrial morphology and lipid metabolism.  It was shown that in the absence 

of Mfn-2, mitochondrial morphology is abnormal and appears fragmented.  Mitochondrial 

morphology and lipid droplets are associated with various pathologies, therefore to understand 

the relationship between mitochondrial morphology and lipid metabolism is crucial.  We found 

in Mfn-2 KO MEFs, lipid droplets size is almost double, likely, due to slower β-oxidation.  We 

further demonstrated that in absence of Mfn-2, adipogenesis proceeds slightly differently and 

with increased efficiency.  We also predict that the extra accumulated TAGs in Mfn-2 KO MEFs 

could act as an inducing factor for adipogenesis.   A study revealed exogenously added FAs 

could induce accumulation of TAGs in preadipocytes (Xie et al., 2006) and adipogenesis (Oster 

et al., 2010).  Several transcription factors can influence adipogenesis.  This phenomenon is 

clinically important because impaired adipogenesis may cause dysfunctional adipocyte, which 

can lead to potential risk of metabolic diseases.  We also compared adipogenesis in two different 

culture media, one with high concentration of FBS and other adipogenic media with cocktail of 

synthetic drugs (insulin, IBMX, dexamethasone and troglitazone).  We found that culture media 

with a high concentration of FBS was able to induce adipogenesis strongly as compared to 

adipogenic media.  Our studies also found adipogenic media consisting of synthetic drugs leads 

to cell detachment, when compared to culture media with high FBS. This experiment revealed 

that the study of adipogenesis in high FBS mimics better in vivo conditions, as mouse do not 

have synthetic adipogenic inducers.  Apart from that use of synthetic cocktail drugs is costly and 

are also associated with other experimental problems such as cell detachment.  Therefore, our 

version of adipogenesis-protocol is more economical and mimics better in vivo conditions.  

However, cells detached from adipogenic media were not analyzed for TAG content or 

adipogenic markers, therefore we are unable to compare both media composition for 

differentiation efficiency.  Further experimental testing is needed to confirm standard media 

composition.  

The studies presented here focus on mitochondrial morphology and lipid droplets (size & 

number). Further studies to test the model proposed are required.  Mfn-2 regulates the distance 

between ER and mitochondria, and thus could also affect phospholipid biosynthesis and 

trafficking between organelles.  Lipid droplets consists mainly of triacylglycerol, however levels 

of phospholipids are closely connected with lipid droplet formation and size.  Thus, studying 
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mitofusins and metabolism is crucial.  In summary, we know Mfn-2, a mitochondrial protein 

plays crucial role in regulating mitochondrial morphology and lipid metabolism.  Thus, cellular 

silencing of Mfn-2 not only reduces the mitochondrial membrane potential but also the rate of 

glucose oxidation and suppresses proton leak.  These observations propose that Mfn-2 plays a 

crucial role in developing obesity because silencing Mfn-2 gene in cell may account for impaired 

energy expenditure and decreased oxidative capacity, which is associated with obesity.  

Therefore, these finding offers us some understanding of the relationship between mitofusins and 

metabolism, which could be further exploited for the development of better drugs to fight against 

obesity and related problems.         
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6. FUTURE DIRECTIONS 

While this study furthers our understanding of the relationship between the mitochondria-

ER tether and lipid metabolism, there is much work needed to fully understand the role of Mfn-

1 and 2 in mitochondrial dynamics and lipid metabolism. The following section proposes areas 

of future research to advance this understanding. 

 

6.1 Examine Effects of Overexpression of Mitofusins (Mfn-1 And Mfn-2) Protein on Lipid 

Metabolism 

Changes in the levels of mitochondrial fusion and fission proteins allow mitochondria to 

react to various cellular environments, such as nutritional stress (acute and chronic), that 

ultimately affect lipid metabolism (Putti et al., 2015). Though a few mitofusin knockdown studies 

have been conducted, the role of these proteins in regulating lipid metabolism using 

overexpression approaches has not been performed.  Studies examining the effects of 

overexpression of Mfn-1 and -2 on mitochondrial dynamics and lipid metabolism are critical 

experiments to perform to advance our understanding.   

 

6.2 Identify Individual Roles of Mfn-1 and Mfn-2 in Maintaining Mitochondrial 

Morphology and Lipid Metabolism 

Mfn-1 and Mfn-2 are both essential for mitochondrial fusion and maintenance of 

mitochondrial morphology.  However, the molecular mechanisms of the GTPase-dependent 

reaction, as well as the functional division of the two Mfn proteins, are unknown.  Identifying 

individual roles of mitofusin proteins in mitochondrial dynamics and lipid metabolism would be 

of great interest. As mentioned above, this study was limited to Mfn-2 KO MEFs; therefore, 

further investigation of the Mfn-1 KO and Mfn-1and-2 KO MEFs would be of great value in 

understanding the role of mitofusins in lipid metabolism.   

 

6.3 Study Time Course Effect of Insulin and Oleic Acid on Lipid Accumulation in Mfn-2 

KO 

In the current study, we treated WT and Mfn-2 KO MEFs with insulin, oleic acid and the 

combination of both for 13 h.  Some studies suggested that exposure to fatty acids induces lipid 

droplet formation through an acute fatty-acid-receptor-mediated pathway as well as through a 

mechanism involving lipid uptake which would be anticipated to have longer time-frame 

(Rohwedder et al., 2014).  Thus a time-course study ranging from 0 to 96 hour may provide us 
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with more information on changing mitochondrial morphology and lipid accumulation at a 

different time interval in fusion compromised MEFs. 

 

6.4 Study Role of Mfn-1 and Mfn-2 in Adipogenesis 

 The current study detected a slightly different pattern of adipogenesis in Mfn-2 KO MEF 

cell when compared to WT.  It would be interesting to conduct a quantitative study, to understand 

and quantify expression of adipogenesis markers in WT and Mfn-2 MEF cells.  This detailed 

information on adipogenesis markers provide new information regarding the adipogenesis 

process.    

 

6.5 Study Effect of Different Media Composition on Adipogenesis 

Our studies demonstrated that WT and Mfn-2 KO MEFs were able to undergo 

adipogenesis in control media containing a high concentration of FBS. Results also suggested 

that as high concentration of FBS was able to induce adipogenesis strongly and early without any 

cell detachment, as compared to adipogenic media.  Thus a quantitative study with varying 

concentration of FBS or other adipogenic inducers might provide us with better and cheaper 

methods for inducing adipogenesis.   
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