
An Aspect Refactoring Tool for The Observer

Pattern

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of MSc

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Fatima Alawami

©Fatima Alawami, May/2012. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from

the University of Saskatchewan, I agree that the Libraries of this University may make it freely

available for inspection. I further agree that permission for copying of this thesis in any manner,

in whole or in part, for scholarly purposes may be granted by the professor or professors who

supervised my thesis work or, in their absence, by the Head of the Department or the Dean of

the College in which my thesis work was done. It is understood that any copying or publication

or use of this thesis or parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to the University

of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part

should be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i

Abstract

Current integrated development environments such as Eclipse provide strong support for object-

oriented automatic refactorings; however, the same cannot be said about aspect-oriented refactor-

ings. Refactoring of design patterns is one area where aspect refactoring automation remains to be

explored in depth and few current tools are available to support it. To support aspect refactoring

tools we present the AJRefactor plug-in, a semi-automatic refactoring tool for the observer pattern,

a widely-used solution in the design of object-oriented programs. Aspect refactoring of the observer

pattern allows aspects to capture pattern-specific code into a more modularized unit, and local-

izes the code of participating classes. After applying AJRefactor on two Java projects JHotDraw

and Prevayler, the results showed that AJRefactor was able to refactor 75% of the total observer

instances found in both projects. Also, the refactoring enhanced the modularity and loosens the

coupling of the pattern classes. Finally, the results showed a significant time savings and a small

reduction in code size when refactoring with AJRefactor.

ii

Acknowledgements

I would like to use this opportunity to give special thanks to several people who contributed to

the completion of this work.

• I am heartily thankful to my supervisor, Christopher Dutchyn , whose encouragement, guid-

ance and support from the initial to the final level enabled me to develop a deep understanding

of the subject of my thesis. I really appreciate your enlightening advice through the entire pe-

riod of my master’s studies. Working with my supervisor has improved my writing, thinking

and learning skills.

• I would like to sincerely thank the Ministry of High Education of Saudi Arabia for supporting

this work financially.

• I wish to avail myself of this opportunity, to express a sense of gratitude and love to my

husband and my beloved parents for their continuous support.

• Lastly, I offer my regards and blessings to all of those who supported me in any respect during

the completion of my thesis.

iii

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents iv

List of Tables vii

List of Figures viii

List of Abbreviations ix

1 Introduction 1
1.1 Thesis Statement . 2
1.2 Outline . 2

2 Background 3
2.1 AspectJ . 3

2.1.1 Pointcut and Join Points . 4
2.1.2 Advice . 8
2.1.3 Inter-type Declaration . 10
2.1.4 Aspect . 10

2.2 Observer Pattern . 10
2.3 Eclipse Platform . 11

2.3.1 Eclipse Plug-ins . 12
2.3.2 Java Refactoring Framework . 13
2.3.3 Java Source Manipulation . 14

2.4 Related Work . 18
2.4.1 Aspect Mining Tools . 20
2.4.2 Aspect Refactoring Tools . 23

2.5 Summary . 26

3 AJRefactor 28
3.1 AJRefactor Functionality . 28

3.1.1 Observer Pattern Following Pushing Technique 28
3.2 AJRefactor GUI . 32

3.2.1 Observer Update . 34
3.3 AJRefactor Implementation . 35

3.3.1 Refactoring Action . 35
3.3.2 Refactoring Wizard . 35
3.3.3 Refactoring Class . 36

3.4 Refactoring Observer Pattern Starting with Subject 38
3.4.1 Refactoring Action . 39
3.4.2 Refactoring Wizard . 40
3.4.3 Refactoring Class . 40

3.5 Refactoring Java API Observer Pattern Starting with Subject 46
3.5.1 Refactoring Action . 46
3.5.2 Refactoring Wizard . 47

iv

3.5.3 Refactoring Class . 47
3.6 Refactoring Observer Pattern Starting with Observer 49

3.6.1 Refactoring Action . 49
3.6.2 Refactoring Wizard . 49
3.6.3 Refactoring Class . 49

3.7 Refactoring Java API Observer Pattern Starting with Observer 51
3.7.1 Refactoring Action . 51
3.7.2 Refactoring Wizard . 51
3.7.3 Refactoring Class . 52

3.8 Summary . 53

4 AJRefactor Design 54
4.1 Refactoring Observer Pattern Implemented with Pushing Technique 54

4.1.1 Protocol Aspect . 58
4.1.2 Observer Update Instance Aspect . 59
4.1.3 Generating Pointcut and Advice . 61
4.1.4 Limitations . 65

4.2 Refactoring Update Calls . 66
4.2.1 MethodDecSubjectChange - multiInvocations 68
4.2.2 IfExpSubjectChange - multiInvocations . 68
4.2.3 ThenStmntSubjectChange - multiInvocations 68
4.2.4 Limitations . 69

4.3 Summary . 70

5 Results and Evaluation 72
5.1 Results by Instance Shape . 72

5.1.1 Observer Pattern Implemented with Pushing Technique 73
5.1.2 Refactoring Update Calls . 73

5.2 LOC Assessment . 74
5.3 Modularity Assessment . 76

5.3.1 JHotDraw . 76
5.3.2 Prevayler . 78

5.4 Time Assessment . 79
5.4.1 Observer Pattern Implemented with Pushing Technique 79
5.4.2 Refactoring Update Calls . 81

5.5 Reflection and Refactoring . 81
5.6 Refactoring and Program Correctness . 83
5.7 AspectJ Performance Overhead . 83
5.8 Multithreading and Refactoring . 84
5.9 Volatile Variables and Refactoring . 86
5.10 Java Annotations . 88
5.11 Summary . 90

6 Summary 91
6.1 Summary . 91
6.2 Contribution . 92
6.3 Future Work . 93

References 94

A Observer Pattern Instances 96
A.1 Observer Pattern Implemented with Pushing Technique 96
A.2 Refactoring Update Calls . 96

B Dependency Structure Matrix 99

v

B.1 DSM of Prevayler Before Refactoring . 99
B.2 DSM of Prevayler After Refactoring . 99

C AJRefactor Plugin Source Code 102

vi

List of Tables

2.1 Mapping of exposed join points to pointcut construct 6
2.2 Example pointcuts with Description . 9
2.3 Node Type of the Expression of Method Invocation 18

4.1 Shape of the Method Changing Subject State by Observer Pattern 71

5.1 Results of refactoring the observer pattern - The pushing technique 74
5.2 Update Calls Refactoring Results . 74
5.3 JHotDraw and Prevayler Metrics . 76

vii

List of Figures

2.1 Java Model Overview . 15
2.2 Workflow of AST Manipulation . 16

3.1 Java Observer Program Before Refactoring . 29
3.2 Aspect Refactoring for the observer pattern . 30
3.3 Coordinate Aspect of setY . 32
3.4 AJRefactor GUI . 33
3.5 Summary of the Refactoring Class Methods Implementation 39
3.6 Aspect Refactoring for the observer pattern . 41
3.7 Observer Pattern Implemented with Java API . 47

4.1 Observer Example Following GOF . 55
4.2 Compilation Error Message . 56
4.3 No Observer Message . 57
4.4 Parent of the subject change and notify method . 62
4.5 MethodDecSubjectChange - NoifyCall . 64
4.6 IfExpSubjectChange - NotifyCall . 65
4.7 ThenStmntSubjectChange - NotifyCall . 66
4.8 Observer Update: MethodDecSubjectChange - multiInvocations 69
4.9 Observer Update: IfExpSubjectChange - multiInvocations 70
4.10 Observer Update: ThenStmntSubjectChange - multiInvocations 71

5.1 DSM - JHotDraw . 77
5.2 DSM - AJHotDraw . 78
5.3 DSM of Prevayler . 79
5.4 Refactoring Time - Pushing Technique . 80
5.5 Refactoring Time - Observers Update Methods . 82
5.6 Example of Synchronized block . 86

A.1 Details of refactoring pattern instances implemented with pushing technique to aspects 97
A.2 Details of refactoring observers’ update calls to aspects 98

B.1 DSM of Prevayler Before Refactoring . 100
B.2 DSM of Prevayler After Refactoring . 101

viii

List of Abbreviations

AST Abstract Syntax Tree page 14
ITD Inter-Type Declaration page 10
CC Crosscutting Concerns page 20
GUI Graphical User Interface page 32
SLOC/LOC Source Lines of Code page 74
API Application Programming Interface page 21
DSM Dependency Structure Matrix page 76
AspectBrowser Set of tools to help developers focus on software mod-

ification task page 20
ConcernMapper Maps program elements into concern constructs cre-

ated by the user page 20
FEAT Feature Exploration and Analysis Tool page 21
The Prism Aspect Miner A generative based aspect mining tool that mine as-

pects using a probabilistic approach by extending the
page ranking algorithm page 22

Fan-in Analysis Tool Mines for aspects by calculating methods fan-in met-
ric and then filtering the results until those that are
more likely to be part of a concern ramains page 22

Dynamo Mines for crosscutting concerns based in the formal
concept analysis, a branch of lattice theory. page 23

AJaTS An AspectJ transformation and code generation tool
page 23

AspectRefactor A refactoring tool that automatically refactors the
Java authentication and authorization part of the
code page 24

CRAFT An open infrastructure to automatically refactor
Java programs into aspects page 24

JastAddJRefactoring A refactoring tool that make use of the analysis fea-
tures of the JastAddJ compiler page 25

The Aspect-orinted Migrator Tool A refactoring tool with six refactoring actions to mi-
grate programs from Java to aspects page 25

ix

Chapter 1

Introduction

In software engineering, we try to keep the code as simple as possible. System complexity is

reduced by breaking it down into smaller modules (e.g. methods and procedures) each focusing on

one single task. This is often combined with performing a series of source code transformations with

the intent of improving the internal design of the system while maintaining its external behaviour,

a process known as code refactoring. Improving system structure helps achieving more modular

code that is easier to comprehend, read and maintain.

Developers are recommended to perform a refactoring in a step-by-step fashion along with a

group of unit tests for each step to ensure the system still works correctly. For example, when

renaming a method to meaningful name that reflects its functionality, the developer should

(1) create a new method with an empty body.

(2) copy the old method’s body into the newly created method and test.

(3) replace the old method’s body with a call to the new one and test.

(4) replace all references to the old method with the new one and test and finally.

(5) given that all tests have passed, it is now safe to remove the old method.

Even for a simple refactoring (e.g. renaming a method), manual refactoring is time consuming

and error prone, which raises the need for a safe and reliable tool that automates the refactoring

process. Tools not only save development time and effort but also improve productivity. For that

reason many integrated development environments such as Eclipse provide developers with a set of

refactoring tools.

A key benefit of refactoring is modularity. Modularization keeps program constructs focused

around one specific task, this increases their reusability. In the context of object-oriented program-

ming we find two types of behaviours and concerns: core concerns and crosscutting concerns. Core

concerns capture the main functionality of a module (e.g. customer and account management in a

bank system) while crosscutting ones capture system-level functionality (e.g. authentication). To

authenticate the person performing any kind of transactions in a bank system, the developer has

to call the authentication module before every transaction. Although this is one of the cleanest to

1

implement the authentication feature, it can still benefit from extra modularity. Aspect-oriented

programming constructs provide a better opportunity to modularize crosscutting concerns by cap-

turing each concern into its own module and then loosely coupling them to a limited number of

other modules.

In the context of object-oriented programs, the developer often faces some common problems for

which an effective solution is unlikely to be found. Many of these problems are solved using design

patterns [17, p. 2]. Java implementations of the design patterns presents some issues, including

fragmentations, invasiveness and obscurity. Adding a pattern tends to spread over many classes

making such change difficult to revert. Although the design patterns are reusable, their implemen-

tations are not. Often the pattern implementation is invasive, tracking the pattern instances is a

difficult task, and leads to obstacles in documentation. This is especially true if the class is involved

in more than one pattern.

According to Hannemann and Kiczales [20], refactoring Java systems that make a good use of

design patterns into AspectJ, showed that 17 of 23 design patterns gained better modularity, and

12 allowed the core part of the pattern implementation to be abstracted into a reusable module. In

addition, localizing the pattern participant code and freeing it from any pattern-related code has

two advantages. First, the participant can be transparently composed in multiple patterns without

the need to change its code. Second, it is easy to add or remove the participant from the pattern

at any moment. Complex patterns, where

• a single object plays multiple roles, or

• multiple objects play the same role,

show the most improvement [20].

1.1 Thesis Statement

Aspect refactoring of the observer pattern allows

• aspects to capture pattern-specific code into a more modularized unit, and

• localizes the code of participating classes.

1.2 Outline

The rest of the thesis is as follows: chapter two discusses background and similar research done on

the area of aspect refactoring; chapter three explains our tool in depth in terms of its functionality

and implementation; chapter four explains the tool design; chapter five discusses the results of the

case studies and chapter six summarizes this thesis and outlines our future work.

2

Chapter 2

Background

Object-oriented programs work well for modelling common behaviours; but, they fall short

when dealing with certain kind of behaviour that spans multiple, often unrelated, modules, known

as crosscutting behaviours or crosscutting concerns. One of the areas that the Java programming

platform does not support an effective modularity for is the implementation of many of the design

patterns as they span multiple classes making the implementation fade into the participating classes.

Having multiple classes carry part of the pattern code makes those classes tightly-coupled. This

makes these classes hard to maintain or even to change; but, also makes documenting such system

a challenging task. Additionally, when the same set of classes take part in multiple patterns, that

renders the system harder to understand. Hannemann et. al.[20] observed introducing aspects not

only enhances its implementation but also eases the documentation and composition of the classes.

Our work involves showing the effectiveness of AspectJ constructs in enhancing the modularity

of Java programs. Therefore, the first part of this chapter illustrates with code examples the use

of each one of these constructs. We use aspects to particularly reveal how we can completely

move the observer pattern implementation into aspects. The second part of this chapter discusses

the structure of the observer pattern along with its two common implementations. Then, we

move into explaining the different tools and features provided by the Eclipse platform that help

us in implementing our tool (AJRefactor). Finally, we review related work in the area of aspect

refactoring tools and how it differs from our own work.

2.1 AspectJ

The discussion of AspectJ and its constructs is driven from AspectJ in Action[23]. AspectJ, an

extension of Java, provides a new opportunity for breaking Java programs down into modules.

AspectJ introduces new constructs that can improve the refactoring of Java programs. These

constructs are of two types: dynamic and static [23]. Dynamic constructs are aspect, pointcut,

and advice, while the static construct is the inter-type declaration. We use code listings in 2.1, 2.2

and 2.3 to illustrate the use and function of each of these constructs.

The Point class in listing 2.1 represents a point in two-dimensional space. It has the methods

3

1 class Point {
private int x , y ;

3

Point (int x , int y) {
5 this . x = x ;

this . y = y ; }
7

void setX (int x) { this . x = x ; }
9 void setY (int y) { this . y = y ; }

11 int getX () { return x ; }
int getY () { return y ; }

13 }

Listing 2.1: Point Class

1 public c lass Screen {
. . .

3 public void erase () { . . . }

5 public void redraw () { . . . }
}

Listing 2.2: Screen Class

to set and get the values of the (x) and (y) co-ordinates respectively. Listing 2.2 shows the Screen

class that display these points. The screen needs to update itself if the point moves. Before the

screen can redisplay itself, it has first to erase its previous contents and then redisplay the new

content. Using this scenario, we explain how this behaviour is captured with aspects.

2.1.1 Pointcut and Join Points

The first aspect construct, pointcuts select regions in code that correspond to identifiable points

called join points in the execution of the program. Pointcuts are used primarily to determine where

new behaviour, called advice, should be activated. They can be composed using boolean operators

to build other pointcuts. Below, we explain several join points that AspectJ exposes to weave in

this new, crosscutting behaviour along with the pointcut constructs used to capture each of them.

Join Points

• field read and write access: this join point identifies the write and read access to non-static

fields of a class or an aspect. This does not include setting or referencing a method lo-

cal variable. An example of a reference of (x) member of the Point class is in the body

of the getX() method (i.e. return x;). The statement (this.x = x) represents a

write access to the x field of the Point class. The constructs set(FieldPattern) and

get(FieldPattern) are used to capture the write and read access join points respectably.

4

• method call: this join point identifies the places in code where a method is called. For example,

calling the method setX with an int argument from any other method (point.setX(5)).

• method execution: the scope of this join point is the whole body of a method. For ex-

ample. the body of the setX method, ({this.x = x;}) is the scope of the join point

matched by an execution(void setX(int)) pointcut. This can be captured with the

execution(MethodPattern) construct where

MethodPattern represents the signature of the method we want to intercept.

Previous examples show how method execution and method call pointcuts can be used to

match the execution and call to instance methods. They can also be used to capture execu-

tions and calls of statically declared methods as well. For example, call (static void

*.foo()) matches all static methods named foo().

• constructor call: this join point is exposed when an object is instantiated. That is when

calling the new operation on an object. For example,

Point point = new Point(x, y);

This can be captured with the call(ConstructorPattern) construct. ConstructorPa-

ttern represents the signature of the constructor we want to capture.

• constructor execution: similar to the method execution join point, this join point exposes the

body of the constructor of an object. This can be captured with the

execution(ConstructorPattern)

construct. ConstructorPattern represents the signature of constructor we want to cap-

ture. For example, execution(Point.new(int,int)).

• class initialization: this join point exposes the static initialization of an object. This can be

captured with the staticinitialization(TypePattern) construct.

• exception handler execution: this join point exposes the handler block of an exception type

(i.e. the catch block). This can be captured with the handler(TypePattern).

• advice execution: this join point exposes the execution of the body of an advice. The construct

adviceexecution() is used to capture the advice execution join point.

Table 2.1 maps exposed join points to pointcut designators.

Various pointcuts build on textual patterns in the program code. FieldPattern, MethodPat-

tern, TypePattern, and ConstructorPattern are used to specify the signature of a field, a

method, a constructor, or a type to be selected. The pattern can have wildcard characters such as

* which means any. For example, the statement call(public * *(int)) selects any method

that takes an int argument regardless of its name and its return value.

5

Table 2.1: Mapping of exposed join points to pointcut construct

Join Point Type Pointcut Syntax

Method call call(MethodPattern)

Method execution execution(MethodPattern)

Constructor call call(constructorPattern)

Constructor execution execution(ConstructorPattern)

Field read access get(FieldPattern)

Field write access set(FieldPattern)

Object initialization initialization(ConstructorPattern)

Object pre-initialization preinitialization(ConstructorPattern)

Class initialization staticInitialization(TypePattern)

Exception handler execution handler(TypePattern)

Advice execution adviceexecution()

Pointcuts

Pointcuts identify or name join points. Here we explain the usage of the different pointcuts.

Pointcuts are divided into six categories.

Control-flow Based Pointcuts This kind of pointcut captures join points that are defined in the

control flow of other pointcuts. Control-flow pointcuts take a pointcut as an argument and comes

in two variations: cflow(pointcut) and cflowbelow(pointcut). The cflow(pointcut)

pointcut matches all join points matched by the defined pointcut and all the join points in their

control flow. For example, cflow(call(* Point.setX(int))) matches all join points in the

control flow of any call to setX(int) in the Point class including the call to setX(int) method

itself. These join points will be encountered in the following order:

• Method call of setX(int)

• Method execution of setX(int)

• Field set i.e. this.x=x

The cflowbelow(pointcut) pointcut in the other hand matches all join points in the control

flow of those join points matched by the defined pointcut excluding those ones matched by the

supplied pointcut. In the example, a cflowbelow(call(* Point.setX(int))) will match

the same join points matched by cflow excluding the call to setX(int) method itself.

Lexical-structure Based Pointcuts The scope of these pointcuts is a block of source code of a

class, aspect, or a method. This kind of pointcut captures join points of the code as it is written when

6

matched against the scope of the code during the execution, that is the dynamic scope. There are

two types of lexical pointcuts within(TypePattern) and withincode() which has two forms:

withincode(MethodPattern) and withincode(ConstructorPattern). Join points are

picked in the block of code of any class or aspect who is signature matches TypePattern or the

source code of a method body or constructor body who is signature matches MethodPattern and

ConstructorPattern respectively.

Conditional Check Pointcuts This pointcut captures each join point where the conditional

expression of an if statement evaluates to true. It takes the form if(BooleanExpression).

The boolean expression can be but not limited to a constant value, a methods call, an api method

call, and a variable. The context of the boolean expression should be collected by other parts of

the pointcut. This include any object, class field, or method argument. For example,

if(point.getX()>5).

This join point picks any join point where (x) co-ordinate of a point is greater than five. The point

object must be a context collected by other parts of the pointcut.

Argument Pointcuts This pointcut captures join points based on the type and position of

the arguments of the join point. The argument pointcut is used to capture context and pass

it to the advice. For constructor and method join points, the arguments are the method and

constructor arguments. For exception handler join points the handled exception object is considered

the argument. For a field-write access join points the new value of that field is considered an

argument. This pointcut takes the form args(argsName) where argName is a user defined for

the declared argument.

Executing Object Pointcuts This pointcut captures join points based on the types of objects

at the execution time. It takes two forms: this(Type) captures join points where the currently

executing object is Type while the from target(Type) captures join points where the target is

an instance of Type. The target pointcut is usually used with method call pointcut and the target

object is the receiver of the method invocation.

Table 2.2 shows an example of these pointcuts along with a description of their scope.

Pointcut Composition Using logical operators we can compose different pointcuts to build

additional pointcuts.

• to capture each join point not exposed within a pointcut we use !pointcut.

• to capture the join points exposed by number of pointcuts we use the && operator. For

example, p1 && p2.

7

• to capture the join points exposed by any of the pointcuts we use the || operator. For example,

p1 || p2.

The example aspect in listing 2.3 declares a pointcut called subjectChange. The statement

call(void setX(int)) defines that the pointcut selects the call to a method that return no

value, take an int argument and has setX identifier. Similarly, call(void setY(int)) means

the pointcut selects a call to a method with an identifier setY with an int argument and return no

value. Now, either one of them can be selected because of the or operation but the calling object

should be of type Point. This is what the target construct is used for.

Each pointcut identifies a collection of join points, each is a place where an action called an

advice can take effect.

2.1.2 Advice

Advice is the code executed when any of the join points identified by the pointcut is reached. This

action can be executed before, after or around the execution of the selected join point.

• before advice is executed prior to the execution of the join point.

• after advice is executed after the execution of the join point.

• around advice surrounds the join point. It can replace the execution of the selected join

point, bypass, or continue it. An empty body of an around advice means there is no action to

be executed when the join point is matched. Using the proceed() construct allows the exe-

cution of the joint point to take place, possibly more than once. The signature of the proceed

construct matches the signature of the parameter list of the around advice specification. The

around advice can change the context in which the join point can proceed with by altering

the value of the arguments passed to proceed() call. Since an around advice requires a

return type which should match the type retuned by the matched join point, around advice

can also alter this returned value.

The around advice in listing 2.3 shows the actions taken by screen object whenever a point

moves (i.e. sets the value of its co-ordinates). The screen needs to update itself accordingly. It

first erases itself and then redraw the points in their new positions. This scenario can be easily

captured in the body of the around advice. Before the execution of the setX or setY methods,

the screen erases itself. The proceed() allows the execution of setX and setY to take place.

After their execution the screen can now redraw itself.

8

Table 2.2: Example pointcuts with Description

Pointcut Example Description

within(Point) any join point inside the Point class’s lexical scope.

withincode(Point.setX(int)) any join point inside the lexical scope of the method

setX(int) in the Point class.

this(Point) all join points where this is instance of Point. This

construct matches all join points where current execut-

ing object is Point such as method calls.

target(Point) all join points where the receiver of the method call is

an instance of class Point. This matches all join points

where the target object is a Point or any of its sub-

classes.

args(name, .. , age) this construct matches all methods where the first ar-

gument is of type String and the last argument is of

type int.

args(RemoteException) all join points that takes a single argument of type

RemoteException. It would match a method taking

a single RemoteException argument, a field being set

with a value of type RemoteException or an excep-

tion handler triggered by RemoteException.

if(x>0) matches all conditional tests where (x) greater than zero

evaluates to true.

cflow(subjectChange()) all join points in the control flow of the join points cap-

tured by subjectChange() pointcut.

cflowbelow(subjectChange()) all join points in the control flow of the join points

capture by subjectChange() excluding the call to

setX(int) itself.

9

1 public aspect CoordinateObserver extends ObserverProtocol {

3 protected pointcut subjectChange (Subject s) :
(call (void Point . setX (int)) | |

5 call (void Point . setY (int)) &&
target (s) ;

7

void around (Subject s) : subjectChange (s){
9 Screen . erase () ;

proceed () ;
11 Screen . update () ;

}
13 }

Listing 2.3: CoordinateObserver Aspect

2.1.3 Inter-type Declaration

Recall that AspectJ supports static aspects also. Inter-type declarations (ITD) allow the developer

to alter the static structure of the program or alter inheritance hierarchy. For example, ITDs intro-

duce new class members (e.g. fields and methods). For example, aspect ObservableOfChangeSo-

mething in figure 3.7 on page 47 declares a new method update(Observable, Object) to

the MyView. The same aspect declares MyView to implement the Observer from Java utility

package java.util.Observer.

2.1.4 Aspect

An aspect is the main unit of modularity for aspect-oriented programs. It behaves much like a

class and can have fields and methods as well as pointcuts and advice. When compiling a Java

program being extended by aspects, the aspects are woven into the Java program as if they were

part of it. Similar to classes, aspects can be part of an aspect hierarchy. They can be declared as

abstract and then extended by other aspects. Aspects can also declare abstract methods and

abstract pointcuts which must be concretely specified in sub-aspects.

2.2 Observer Pattern

To demonstrate and evaluate how aspect refactoring for the design patterns achieves the features

mentioned in chapter 1, we have chosen to implement an aspect refactoring tool for the observer

design pattern. This pattern is one of the behavioural design patterns that defines one-to-many

relationship between pattern participants [17, pp. 293-299]. Its main components are

• the observer class

• the subject class

10

• the subject interface, that the subject implement to be able to add, remove and notify its

observers when a particular change to its state has occurred;

• the observer interface, which the observer class implements to update its state after being

notified by any of the subject classes that it observes.

Although this is the most general form an observer pattern could take, it is not the only possible one.

The implementation of the pattern can vary dramatically; there are two ways to trigger the update,

and it is possible not to have the subject and observer interfaces. Two notable methodologies to

trigger the update pushing or pulling. In the pushing technique the subject is the entity responsible

for notifying its observers of state change while in the pulling technique observers have to query

the subject state and then update its own state accordingly.

Hannemann et. al. [20] showed the kinds of improvements possible with AspectJ when refac-

toring the observer pattern to aspects. These improvements result in code that is:

• localized : every subject and observer is free of any pattern-related code.

• reusable: the functionality of the pattern is encapsulated into an abstract aspect while a

particular instance of the pattern is easily implemented with a custom Aspect.

• transparently composed : the same class can play observer and subject role at the same time

with its code remaining intact. It also can take part in other patterns easily.

• unpluggable: It is easy to add or remove a class from any pattern without needing to change

the class base code.

2.3 Eclipse Platform

Our refactoring tool will be constructed as a plug-in to the popular Eclipse integrated development

environment. It has a set of tools needed to develop Java applications including Eclipse itself. These

include source code editors, compilers and debuggers. Eclipse also supports developing applications

in many other languages such as C, C++, PHP and COBOL. This support is provided through

the use of the plug-in platform.

Currently, there is wide support for object-oriented refactoring tools in many integrated develop-

ment environments including Eclipse. However, the same is not true for aspect-oriented refactorings.

Much effort has been put into documenting aspect refactorings [28] and conducting refactoring case

studies on large object-oriented projects to extract crosscutting concerns into aspects, [27] but little

progress has been achieved on supporting tools that provide some level of automation as most of

them are research prototype and now are defunct. Therefore, our goal is is to provide support

for aspect refactoring tools by building a semi-automatic eclipse plugin (AJRefactor) so it can be

publicly available.

11

1 ISelectionService selectionService = (ISelectionService) IServiceLocator . getSite () .
getService (ISelectionService . class) ;

Listing 2.4: The Selection Service

2.3.1 Eclipse Plug-ins

We have chosen to implement a plug-in for Eclipse platform (AJRefactor). A plug-in is a group

of software components that provide additional features and functionalities to a larger framework

[14]. Eclipse is built from number of subsystems that are essentially built as one or more plug-ins.

Plug-ins connect to the Eclipse framework by connecting to extension points. An extension point is

a contract constructed of XML markups and Java interfaces that allow other plug-ins to extend or

customize its functionality by simply complying to the extension point rules defined in that contract

(i.e. implementing the interfaces). Using Eclipse extension point and extension mechanisms with

the help of Java development tools, one can create, develop, test, debug, build and deploy plug-ins

that add a variety of abilities and features to Eclipse platform.

When an Eclipse plug-in loads, Eclipse parses the manifest file of the plugin. Manifest file

describes how the plug-in extends the Eclipse platform, what extension points it extends and how

it implements its functionality. When loading the plug-in, Eclipse searches for the information

needed to display the plug-in in the user interface. The classes that implements the plug-in are

loaded only when the plug-in needs to run.

Our tool contributes to Eclipse workbench, a set of editors and views. Eclipse groups those

editors and views into perspectives. For example, the Java perspective consists of

• project view,

• Java editor, and

• outline view.

In the plug-in development perspective user has another set of editors and views. The workbench of-

fers a number of services. One can get any of these services using org.eclipse.ui.services.I-

ServiceLocator. Services facilitate retrieving information about the workbench components

without the need to use PlatformUI.getWorkbench(). Listing 2.4 shows an example.

AJRefactor uses the selection service to track the selection within the Java editor.

Commands and Actions

Eclipse provides two different frameworks to contribute to the workbench: the command and the

action frameworks. These allows the plug-in to contribute many different behaviours and actions

12

to the workbench (e.g. views, editors and menus). Both allow part of code to execute when the

user clicks a tool bar icon, or a menu item, or a key combination.

Commands declare a semantic behaviour which can be associated with a particular handler.

Handlers which implement the command behaviour are defined using the org.eclipse.ui.han-

dlers extension point. Activating the handler requires less code as this get declared in the manifest

file. To place a command in any of the workbench parts only one extension point has to be defined

org.eclipse.ui.menus.

Actions in the other hand declares both the manifest part and the code to be executed when

action activates. The selection event is passed to the action to change the enablement state of the

action based on the current selection.

To provide the functionality intended for our AJRefactor tool, we conform to the Eclipse refac-

toring framework. It also make intensive use of Eclipse source code manipulation facilities. Here we

give a brief description of each. To place an action in the different parts of the workbench, program-

mer needs to extends different extension points depending on which part he wants to contribute an

action to. For example, programmer needs to extend org.eclipse.ui.viewActions extension

point to contribute an editor action while she needs to extend org.eclipse.ui.popupMenus

extension point to contribute a popup menu.

2.3.2 Java Refactoring Framework

The Eclipse refactoring framework has two plug-ins: the core plugin org.eclipse.ltk.core.r-

efactoring and its user-interface counterpart org.eclipse.ltk.ui.refactoring. The

core plugin provides an infrastructure to contribute refactorings to the refactoring history, the

refactoring scripting facility, and to the Eclipse workbench. It also provides the facility to test

the refactoring in a local workspace, internally perform the precondition checking, and create and

validate the change object. The refactoring interface provides abstract wizard and user input pages

implementations, shows error messages and change preview.

Most of the refactorings executed are performed interactively as the user initiates them; but,

some could be executed at different points of time using the refactoring script. This is possible by

creating an object of type org.eclipse.ltk.core.refactoring.RefactoringDescrip-

tor, which collets specific data that is specific to every refactoring instance. This data includes

• a human- readable description of the refactoring instance.

• the time it took to execute the refactoring.

• a unique id that is composed of the name of the refactoring being executed (Refactor Observer)

and the refactoring unique id. For example, ca.usask.se.ajrefactor.refactorObse-

rver

13

This descriptor is used to integrate the refactoring instance into Eclipse’s workspace global

history. Now, that the descriptor is created, the refactoring script can launch the refactoring as if

the refactoring was generated by the user.

2.3.3 Java Source Manipulation

Our AJRefactor plug-in needs to manipulate Java elements to recognize pattern components. This

can be done by using a combination of Eclipse’s Java model and the traditional abstract syntax

tree (AST).

Java Model

Java model is a collection of classes that represents the different objects that are involved in

initiating, modifying and building Java programs. The structure of a Java program is formu-

lated from a set of elements. These elements are modelled by a number of classes defined in

org.eclipse.jdt.core package. Programs structure, which is obtained from the project’s

class path, is hierarchal as some elements are children of other elements. Some of these elements

include

• IJavaModel the root java element. its children are all Java projects.

• IJavaProject a child of IJavaModel. It represents a Java project in the workspace.

• IPackageFragmentRoot represents a folder, a JAR, or a ZIP file that is composed of a

number of package fragments.

• IPackageFragment a package fragment is a child of IPackageFragmentRoot and is

composed of a number of packages declarations.

• IPackageDeclaration a child of ICompilationUnit that represents a package decla-

ration.

• ICompilationUnit represents java source code file.

• IType which represents a java type whether it is a top, local or anonymous type.

• IMethod and IField which represent class members methods and fields respectively.

Figure 2.1 shows the various elements of Java model.

14

Figure 2.1: Java Model Overview

Abstract Syntax Tree

An abstract syntax tree is a tree representation of the source code produced primarily by the system-

provided parser . We parse the code using the org.eclipse.jdt.core.dom.ASTParser pro-

vided by the Eclipse Java development tools. The application that uses the AST goes under the

following steps [22]. Figure 2.2 gives a complete overview of the workflow of the AST manipulation.

(1) Obtain the concrete syntax as an array of characters from the source code or from the underlying

ICompilationUnit or the binary type (.class file).

(2) Parse the code. The parser parses the given code into a tree structure reflecting the original text.

It can take a block of code or a particular statement. When asking the parser to resolve type-

binding, complete information about the different types of nodes is provided in the resulting

AST. This includes the scoping of all the fields, methods and their formal parameters and local

variables.

(3) Manipulate the AST by adding, deleting, and modifying the nodes in AST. The AST can be

modified directly (4 A) or the changes can be recorded using the ASTRewrite mechanism (4

B).

(4) Write the modification back. Source code changes need to be applied to the underlying docu-

ment that represents the source file. This is done by retrieving an object of type TextEdit

15

Figure 2.2: Workflow of AST Manipulation

either by asking the ASTRewrite to write the changes back or calling rewrite on the compi-

lationUnit (AST resulting from the parsing step)

AST Nodes In this section we give a brief description of some of the tree nodes as we need them

in the next chapters. This is by no means an extensive list of AST nodes. A complete description

of all nodes can be found in Eclipse documentation [14].

Eclipse type org.eclipse.jdt.core.dom.ASTNode is the abstract superclass of all the

AST node types. This type provides each node with a number of operations. Some of these

operations include getting a node AST, accepting a visitor, deleting a node from its parent node

and getting a node parent node. Each node can be traversed down to its children or vice versa.

Below we briefly describe some of these nodes using the TextFigure type in figure 2.5. Lets start

with the declaration of the class TextFigure.

Type Declaration After parsing the ICompilationUnit, which is a representation of a

Java file, the resulting node is of type CompilationUnit which a representation of Java source

code. CompilationUnit is composed of a number of AbstractTypeDeclaration nodes. The

node TypeDeclaration is a child of AbstractTypeDeclaration. The TypeDeclaration

of TextFigure class is composed of a list of BodyDeclaration nodes. BodyDeclaration

nodes are of three kinds:

• FieldDeclaration e.g. (private int fOriginX;)

• MethodDeclaration which represents a method. Method declaration is composed of

the method header (access modifier, return type, name, parameters list and throw decla-

16

rations) and a body. TextFigure has two method declarations removeBy(int, int)

and changed().

• TypeDeclaration such as internally declared types: classes and interfaces. This kind of

types are also known as member types. For example, the class EventDispatcher.

Method Declaration Each one of the method parameters is of type SingleVariableDec-

laration. The body of a method declaration consists of a number of ExpressionStatement

nodes and VariableDeclarationStatement nodes. Declared local variables in method body

are of type VariableDeclarationStatement. Every other statement is of type Expression-

Statement.

ExpressionStatement is of many types. For example,

• if statement,

• assignment statement,

• method invocation, and

• postfix expressions.

Below we give some examples using code from figure 2.5

• The call to willChange() and changed() from MoveBy(int,int) is of type MethodIn-

vocation. The call super.changed() from changed() method is of type SuperMetho-

dInvocation.

• The if within the body of moveBy() is of type IfStatement. The conditional expression is

of type Expression. Expression can be either an InfixExpression, PostfixExpres-

sion, PrefixExpression or MethodInvocation. The expression (fLocator != null)

is of type InfixExpression. InfixExpression is an expression that is made up of two

operands: left and right and an operator. The right operand of this expression (null) is of

type NullLiteral.

• SimpleName node is a name of a field, method name, method parameter or local variable

declared in a method. For example, in the method call fLocator.moveBy(x, y), fLocator

is a simple name of a field, x and y are simple names of method parameters and moveBy is a

simple name of a method name.

• The expression statement (++y;) in method moveBy(int, int) is of type PrefixExpre-

ssion. PrefixExpression is made up of one operand and an operator. Prefix operators

are

17

Table 2.3: Node Type of the Expression of Method Invocation

Expression Node Type Example

void as in the call updateLocation() called from the body

of the method changed().

ThisExpression as in this.changed() called from the body of the

method moveBy(int, int).

SimpleName as in fLocator.moveBy(x, y); called from the body

of the method moveBy(int, int).

MethodInvocation as in getEventDispatcher().fireCommand-

ExecutableEvent(). The expression of the method

call fireCommandExecutableEvent() is the method

call getEventDispatcher(). The expression of

getEventDispatcher() is null. This process is it-

erative until the expression is null, simple name or this

expression.

· ++ Increment

· -- Decrement

· + Plus

· - Minus

· ~ Complement

· ! Not

• The expression statement (x--;) in method moveBy(int, int) is of type PostfixExp-

ression. There are two postfix operators in Java. The increment (++) and the decrement

(--).

Method Invocation A method call is made up of an expression and a call. The expression

is the receiver. This receiver can have one of the following cases shown in table 2.3.

This list of AST nodes is not comprehensive as we only explained the ones we need when

explaining the following chapters.

2.4 Related Work

The research on aspect refactoring tools is divided into two phases: aspect mining and aspect

refactoring. Aspect mining techniques aim at finding the candidates for refactoring step, which

18

1 public c lass TextFigure {

3 private int fOriginX ;
private int fOriginY ;

5 private AbstractCommand . EventDispatcher myEventDispatcher ;

7 public void moveBy (int x , int y) {
willChange () ;

9 ++y ;
x−−;

11 i f (fLocator != null) {
fLocator . moveBy (x , y) ;

13 }
this . changed () ;

15 }

17 public void changed () {
super . changed () ;

19 updateLocation () ;
}

21

public void removeCommandListener (CommandListener oldCommandListener) {
23 getEventDispatcher () . removeCommandListener (oldCommandListener) ;

}
25

protected AbstractCommand . EventDispatcher getEventDispatcher () {
27 return myEventDispatcher ;

}
29

public stat ic c lass EventDispatcher {
31 . . .

public void fireCommandExecutableEvent () { . . . }
33 }

35 }

Listing 2.5: TextFigure

19

performs the actual transformation of the candidate into aspect. Aspect miners are of two types:

query-based or generative-based. Query-based aspect-mining approaches depend on some textual

input from the user while generative-based ones are usually dynamic and generate the concern

candidate based on the structural information taken from the source code. Because of the impor-

tance and the necessity of the mining stage, we give an intensive overview of aspect-oriented mining

tools, although our work focuses mainly on automating the process of aspect-orinted refactoring

and providing tool support for concern separation.

2.4.1 Aspect Mining Tools

Developers face difficulties understanding code pieces that interact to implement a concern and how

different concerns interact with each other. To support developers in finding these pieces of code

and identifying crosscutting concerns (CC), much research has tackled this problem and supported

developers with a number of mining tools with the objective of finding those different pieces of the

puzzle to start restructuring the code.

Query Based Approaches

AspectBrowser

AspectBrowser [19, 33] was initially implemented as a standalone tool until the discovery of the

useful Eclipse plug-in framework; it has been retargeted to work as an Eclipse plug-in. Aspect-

Browser is a set of tools that help the developer focus on software modification tasks including

Aspect Emacs and Nebulous. Aspect Emacs, a Lisp extension to GNU Emacs, represents each

aspect as a pair of regular expression and a colour with the help of two external tools: redundan-

cyfinder and aspectfinder, which both result in a set of candidates and their count of occurrences in

the source code. Aspect Emacs allows for adding, deleting and annotating each candidate aspect.

The Nebulous tool provides a global view that shows how the different elements that are part of a

CC crosscuts the source code. Nebulous view shows files that are part of the aspect as a strip. The

first row of the strip represents the first line of code in the file. If the same line has more than one

aspect, Nebulous shows the row in red. When clicking any of the lines, the corresponding code get

opened and highlighted in the Aspect Emacs view.

ConcernMapper ConcernMapper [31] maps program elements (e.g. field, method, statement)

into a concern construct. A concern construct is a representation of a functionality that involves

several programs entities including fields, methods, and statements. ConcernMapper is a plug-in

implemented as a view where the user can create a concern and then use Java development tools to

query for the concern’s elements. Once an element is found, it then can be added by dragging and

dropping it into the desired concern. In the case where searching results involves an element that

20

was already mapped, the name of the concern where it was mapped is displayed beside it. Other

features of this plug-in include editing, deleting and modifying concerns; renaming a concern and

moving elements between concerns. This plug-in was built with two main objectives: to support a

developer with a tool to simplify software modification task and to provide a framework that allows

plug-in to extend ConcernMapper through its Application Programming Interface (API) .

Feature exploration and analysis tool (FEAT) [30] is based on concern graphs, which are

programming language, independent, mathematical models based on relational algebra. FEAT is

composed of two views: concern graphs and participants views. Concern graph views show concerns

and their sub-concerns and, when clicking any concerns, displays the concern’s participants in the

participants view. A participant is organized as classes and their members that are part of the

concerns. Clicking on any participant displays its source code and selecting it shows how it relates

(e.g. one method calls another) to other participants in the active concern in the relations view.

The user starts the process of querying the program for concerns by creating an empty concern

graph. FEAT internally builds a database for the whole selected project and creates a program

model which is a set of relation labels (e.g. declares, calls, calledBy) over all the program elements

(classes, interfaces and methods) which produces a set of relations.

For example, a relation on a class A with two methods b and c is specified as ({A,b}, {A,c}).

FEAT uses 23 predefined relation labels. Selecting any element from any of Java views or even FEAT

views, the user can query the program model by choosing from the tool-provided set of queries.

The result of the queries is displayed in projection view. The query is internally represented as

a projection over any fragment. To illustrate, a fragment is a domain, a label, a range and a

projection i.e., (Domain, label, Range, projection). Using class A as an example, a fragment can be

specified as ({A}, declares,{}, {A,b}, {A,c}). Clicking an element in the projection view displays

its declaration in the editor, while selecting it shows its relation with the other elements (e.g. only

the actual call to a method in the call’s relation is highlighted) in the relation view.

As described, the FEAT plug-in was implemented as a complete perspective with five main

views, which mainly assists the developer to identify the participating elements in implementing a

particular concern. Since FEAT uses a stored database of the program, it has implemented a way

to keep the stored model consistent with different versions of the program after modification.

Five case studies were performed to validate three different features of the concern graph: func-

tionality, robustness and cost-effectiveness. Concern graph is functional if it eases the modification

of a code that implements crosscutting concern. This is because FEAT allows the programmer to

document the elements (e.g. methods) that are part of a concern. This eases the modification task.

Also, FEAT is robust if the concern graph can identify concerns over multiple versions of a system.

Applying FEAT on five Java projects showed that only one of them was robust and around half of

21

them were functional and cost-effective.

Generative Based Approaches

The Prism Aspect Miner The Prism Aspect Miner [36] uses a probabilistic approach that

extends the page-ranking algorithm [24] to generate ranks for the popularity (frequency in which

an element is visited by other elements) and significance (if an element references a large number

of elements) of the program’s elements based on the coupling graph of the underlying program.

Finding the popularity and the significance is done randomly when a random element is chosen

to start the algorithm. Running the algorithm creates the coupling graph with vertices referring

to program’s elements (e.g. method, package, class) and edges referring to the relations (calls,

references, extends superclass, implements an interface) between various program elements. There

is a high probability for a vertex to represent a crosscutting concern, if it is referenced by a large

number of other elements or by elements that are more likely to be considered CC ones. Alterna-

tively, there is a higher probability for an element to represent a core concern if it references a large

number of other elements, or if it references elements that are more likely to be considered as core

elements. In short, the algorithm selects the CC based on the natural order of their popularity and

significance value.

Fan-in Analysis Tool Fan-in Analysis Tool [25], which is based on method fan-in, is composed

of three steps to seek for CC “seeds”. It first finds the number of callees (fan-in metric) for each

method; second, it filters these results so only those that are most likely related to the concern

remain; third, further analysis is made to the remaining methods to make sure only those parts

of the concern implementation are reported in the result set. To calculate the fan-in metric the

abstract syntax tree is built for the selected source and then the call graph is also generated. After

calculating the fan-in metric value for every method, methods are ordered according to their metric

value, and then a number of filters are applied; methods with metric value less than a user defined

threshold, getters and setters and utility methods are eliminated. The analysis step follows several

rules (e.g. calls always occur at the beginning or end of the method) to generate the final set of

methods that are most likely to implement a concern. The Fan-in analysis plug-in uses the fan-in

view to display the fan-in metric in which methods can either be ordered alphabetically or according

to the fan-in value. The same view is used for the filtering step where the user has to supply the

threshold value or some naming conventions to exclude callers or setters and getters methods from

the result set. The user can inspect these results and manually add those that he thinks are part

of a concern to the seeds view with the ability to annotate each seed. Applying this tool to a

number of Java projects such as JHotDraw, PetStore and Tomcat server indicates that the tool can

positively identify seeds with probability of 50% to 75%.

22

Dynamo Dynamo [34] uses formal concept analysis, a branch of lattice theory that can be

used to provide meaningful groupings for a group of objects with shared attributes. Formal concept

analysis takes a context as input, which is a boolean relationship over a large but finite set of objects

O (e.g. Java, C++, Smalltalk, scheme) and their attributes A (e.g. functional, object-oriented,

static typing). Given such context, formal concept analysis finds the maximal groups of objects and

their associated attributes, known as concepts, such that all objects share the same attributes and

those attributes should hold for every object in the concept, no other object outside the group has

the same attributes, and no other attribute outside the group holds for any object inside the group.

Each group or context has an intent and extent, which represent the boolean relation. Concept

intent is the objective of the concept while the extent is the concrete representation of that intent

(objective). For example, a language is “object-oriented” as intent will result in the set {Java,

C++, Smalltalk} as the extent. Partial order set over all the concepts intent or extent produces

the lattice. In the case of aspect mining, the lattice results from the execution traces for a number

of scenarios (use cases) of a program where methods that share common attributes are grouped as

concepts and then partially ordered to determine if a possible candidate implementing a concern

calls for code restructuring. This can be derived from two situations: a concept is labelled with

methods that belong to different classes or when a concept is labelled with many methods from

the same class. Although the entire process of creating the lattice from the execution traces is

semi-automatic, the inspection of the graph to confirm if the candidates calls for code restructuring

is manual.

Given the background on aspect mining, we review current efforts in aspect refactoring of those

entities found by mining.

2.4.2 Aspect Refactoring Tools

Refactoring tools can be divided into automatic and semiautomatic tools. In Eclipse extension

platform, many aspect refactoring tools have been prototyped as plug-ins that manipulate the

program’s AST.

AJaTS

The AJaTs template based language [8] is an AspectJ transformation and code generation tool that

provide refactoring templates to refactor general concerns such as persistence in Java programs, and

AspectJ to AspectJ transformation to better structure the AspectJ code. AspectJ code generation

and Java code transformation both require a template source, AspectJ/Java (AJ/J) source and

a destination file where the template is matched against the AJ/J source and the result of the

transformation is another program stored in the destination file. To determine if the template

matches the AJ/J source, the AST for both files is traversed for type compatibility where each node

23

in the AJ/J source is checked against a AJaTS variables in the template source. AJaTS Refactoring

is semi-automatic; the user interacts with a wizard where he can choose from those templates

originally provided by the plug-in and also can add his own ones. Unlike AJaTS, AJRefactor does

not use templates but refactors the program by analyzing its abstract syntax tree. Also, AJRefactor

only refactors Java to AspectJ.

AspectRefactor

For this tool there was no supporting documentation other than a text file. This file basically states

that AspectRefactor [29] performs special purpose refactorings with several different automated

actions, the main ones being refactoring Java Authentication and Authorization Security part of

the code. Unlike AspectRefactor, AJRefactor is a general purpose refactoring tool.

CRAFT

CRAFT [18] is built as an open infrastructure that can automatically refactor Java into Aspects.

After a manual experience of refactoring two large Java systems (Prevayler and HSQL), CRAFT

has identified 35 aspect-oriented patterns or code smells [16] that can be recognized in any system.

Hence, they can be refactored using CRAFT. Each pattern was given a name, typical situation

in which this refactoring is needed and the recommended action to be taken with a motivation

example. CRAFT uses a trigger to specify these patterns, which are used to search for possible

matches (footprint) in the source code. Triggers are of three levels: statement level (e.g. declaration,

if statement), method level (e.g. method signature and return statement) and class level (e.g. a

class implementing an interface that is part of crosscutting concern). Running a trigger against

the code results in many footprints that activate a number of Craftlets which are a sequence of

refactoring steps. A single footprint might activate more than a Craftlet, in which case the CRAFT

runtime asks for a user interference either to select the appropriate Craftlet or to preview the code

before the actual refactoring can take place. This process is iterative until no footprints activate

any Craftlets. During this sequence and after a number of Craftlets have been executed, object-

oriented refactorings might take place. This is because refactoring might open up an opportunity

to recognise additional footprints. CRAFT supports developers with the ability to write their

own triggers and Craftlets with the help of the CRAFT API to create the required sequence of

refactorings. CRAFT uses a query based mining technique to identify refactoring candidates based

on the CRAFT trigger language, which consists of a set of trigger constructs. A trigger is simply a

text file written using trigger constructs which is then parsed and matched the source code. Trigger

constructs follow some rules to accurately find matching footprints. CRAFT uses triggers as input

to match the program code against but in AJRefactor the program is not matched against any

input but its AST is analyzed instead.

24

Any refactoring operation requires an intensive analysis where the code to be refactored under-

goes a number of precondition check to determine if the refactoring should take place or should

stop and report an error message explaining the reason of failure.

JastAddJRefactoring

JastAddJRefactoring [15, 5] is one of the tools that take advantage of the analysis features of the

compiler (JastAddJ). It has been implemented as a framework for extensible refactoring and was

built by extending the JastAddJ compiler. Building it this way permits using compiler features, such

as renaming analysis and data and control flow analysis, as building blocks providing a developer

with reusable components that would ease implementing refactoring instead of implementing them

from scratch. These primitive refactorings include renaming for all declarations (e.g. field, method,

type etc.), extract method, and encapsulate field. Unlike AJRefactor, JastAddJRefactoring is not

built as Eclipse plug-in but can be run under Eclipse.

The aspect-oriented migrator tool

The aspect-oriented migrator tool [9, 10, 12] migrates code into aspects through two steps: first, dis-

covery and transformation; second, selection and refactoring. In the discovery and transformation

step the TXL language was used to perform source-to-source transformation using grammar based

rules. A rule is composed of a replace part, matching pattern; and a “by” part, the replacement.

A pattern is composed of pattern variables, followed by their type (from the Java Grammar), and

terminals. The matching is done at the AST level. The output of applying these is all the code areas

matching the six different grammar rules as this tool performs six refactorings. In the selection and

refactoring step, the algorithm selects which refactoring to apply in case the same code is marked

with different refactorings. The selection is based on the efficiency of performing the refactoring on

the base code and on the quality of the resulting aspect code. After deciding which refactoring to

apply, the refactoring starts by creating advice and pointcuts for all refactorings identified in the

selection. All pointcuts and advice are then merged into one advice if possible, using the pointcut

abstraction refactoring. Aspect Migrator implements six refactorings:

• extract beginning/end of method/handler;

• extract before/after call, refactors code that is either before or after a method call;

• extract conditional, a conditional statement which controls the execution of the code to be

refactored;

• pre return, code to be refactored is just before the return statement;

• extract wrapper, code to be refactored is part of a wrapper pattern; and

25

• extract exception handling.

These refactorings make an intensive use of statement reordering and extract method object-

oriented refactorings. The total percentages of refactored code when Aspect Migrator was applied

to four Java projects, i.e. JHotDraw, PetStore, JSpider and Jaccounting was 20% for begin/end

refactoring, 16% for before/after call refactoring, 3% for conditional refactoring, 1% for pre return

refactoring, 4% for wrapper refactoring and 14% for exception refactoring. The reduction of the

code size was as follows: JHotDraw 5%, PetStore 4%, JSpider 3.7% and Jaccounting 16%. Unlike

this tool, AJRefactor refactors programs in one step and does not include any source-to-source

transformation.

These are the set of tools we have found since the beginning of this research in 2009 and there

were newer tools prior to finishing of this thesis.

Other Related Work

More research interest was put into building refactoring tools that are aware of the existence of

aspect code [11, 32, 35] such that whenever the Java code changes, the refactoring tool should

account for the possibility that changing the code might change a point cut. Specifically, it might

exclude or include some join points that were/were not previously part of the existing pointcuts.

In [21] a method to rejuvenate pointcut expressions was implemented.

Several efforts have identified different patterns that frequently occur in object-oriented and

aspect-oriented programs. For example, CRAFT [18] has identified 35 different patterns which

they implement to refactor any code that calls for restructuring. In terms of design patterns,

they can be refactored using these small refactorings [26] but this means for a pattern such as the

observer the user has to analyze the code to find pattern participants, identify the steps and the

corresponding code changes that would transform the pattern into aspect. AJRefactor tackles the

issue of identifying and analyzing pattern elements and if the refactoring can take place.

2.5 Summary

The implementation of design patterns in Java presents some issues; modularity being one of

them. Some patters implementation tend to spread over multiple classes resulting in a code that is

difficult to understand, read, and maintain. Carrying part of the pattern implementation hinders

the cohesion of the classes. The solution we propose is to separate the primary functionality of the

classes from the crosscutting behaviour using aspects.

We contribute an Eclipse refactoring plug-in (AJRefactor) to refactor the observer pattern

implemented in Java to AspectJ. Since many people have explored the area of aspect refactoring

26

tools, we review related work along with a brief description of how our work differs from each one

of them.

Overall, our goal is to show the power of aspects and aspect constructs that AspectJ offers to

enhance the modularity of Java programs. Following chapters dive into the details of AJRefactor

implementation and design. Furthermore, we discuss the results of the case studies of applying

AJRefactor on two Java projects.

27

Chapter 3

AJRefactor

3.1 AJRefactor Functionality

Before diving into design decisions and implementation details of AJRefactor tool, it is valuable to

understand its use. First, we look at the pattern implementation in Java. Second, we explain the

transformation steps to better modularize this code using aspects. There are mainly two different

observer implementations we refactor with AJRefactor. One where the pattern is implemented

following the pushing technique and one where observers observes a change and then performs an

update by calling their update methods. Below we explain the refactoring details of each one of

these cases.

3.1.1 Observer Pattern Following Pushing Technique

The original program in figure 3.1 shows a sample implementation of the observer pattern. It has

four classes:

• the Point class represents the subject. Point class declares three fields: x, y co-ordinates

and a list to store the point observers. It also declares a number of setter and getter methods.

• the Screen class represents the observer. The Screen displays these points.

• the Subject interface. This interface allows the Point to add and remove and notify the ob-

servers through its three methods: addObserver, removeObserver, and notifyObser-

vers.

• the Observer interface. This interface allows the Screen to update itself, when notified of

a change in a point state, by implementing the refresh method.

The Screen needs a mechanism to update its display and relocate those points once they

move. For that, the screen needs first to register itself as one of the point observers using the

point’s addObserver method. Second, it has to implement the observer interface update method

that gets called by the subject to notify its observers of a change. Now, every time the point sets

its co-ordinates it calls its notifyObservers which loop s over the list of observers and call their

28

refresh method. The refresh method executes the action related to each observer which is in this

sample program the redisplay action of the screen.

Figure 3.1: Java Observer Program Before Refactoring

Although this is one of the cleanest ways to implement this pattern in Java, it still can benefit

from more modularization such that the observers can still be updated without the point being

responsible for the notification. We explain how we achieve clearer code with all the notification and

updating oblivious to the Point and Screen. We explain refactoring details shown in figure 3.2.

The yellow part of the figure has two aspects: CoordinateObserver and ProtocolAspect.

We refer to the former as the instance aspect and the latter as the protocol aspect.

Instance Aspect

This aspect captures each observer relationship. For example, the screen redisplay itself when the

point sets its x. We have two actions: the point moves and the screen redisplays itself. This is

implemented in the Coordinate aspect as follow:

• We declare Screen to implement Observer and Point to implement Subject

• We declare the subjectChanged pointcut to capture the call to setX join point.

• We add the refresh method declaration to this aspect as inter-type declaration of Screen.

29

pu
bl

ic
 c

la
ss

 P
oi

nt
 im

pl
em

en
ts

 S
ub

je
ct

 {
pr

iv
at

e
H

as
hS

et
<

O
bs

er
ve

r>
 o

bs
er

ve
rs

;

 ..
.

 p
ub

li
c

vo
id

 s
et

X
(i

nt
 x

)
{

th
is

.x
 =

 x
;

no

ti
fy

O
bs

er
ve

rs
()

;

}

 ..
.

 p
ub

li
c

vo
id

 a
dd

O
bs

er
ve

r(
O

bs
er

ve
r

o)
 {

th
is

.o
bs

er
ve

rs
.a

dd
(o

);
 } ..

.
}

P
oi

n
t c

la
ss

 a
ct

 a
s

th
e

su
bj

ec
t

 p
ub

li
c

cl
as

s
S

cr
ee

n
im

pl
em

en
ts

 O
bs

er
ve

r
{

 …

pu

bl
ic

 v
oi

d
di

sp
la

y(
S

tr
in

g
s)

 {
S

ys
te

m
.o

ut
.p

ri
nt

ln
(n

am
e

+
 "

: "
 +

 s
);

 }

 p

ub
li

c
vo

id
 r

ef
re

sh
(S

ub
je

ct
 s

)
{

...

 d
is

pl
ay

("
up

da
te

 r
ec

ei
ve

d
fr

om
 a

 "
 +

 s
ub

je
ct

N
am

e)
;

 }

}

pu
bl

ic
 a

sp
ec

t
C

oo
rd

in
at

eO
bs

er
ve

r
ex

te
nd

s
O

bs
er

ve
rP

ro
to

co
l{

 d
ec

la
re

 p
ar

en
ts

:
P

oi
nt

 i
m

pl
em

en
ts

 S
ub

je
ct

;

 d
ec

la
re

 p
ar

en
ts

:
S

cr
ee

n
im

pl
em

en
ts

 O
bs

er
ve

r;

pr

ot
ec

te
d

po
in

tc
ut

 s
ub

je
ct

C
ha

ng
e(

P
oi

nt
 p

oi
nt

):
 (

ca
ll

(v
oi

d
P

oi
nt

.s
et

X
(i

nt
))

&

&
 t

ar
ge

t(
po

in
t)

;

af

te
r(

P
oi

nt
 p

oi
nt

):
 s

ub
je

ct
C

ha
ng

e(
po

in
t)

{

 p
oi

nt
.n

ot
if

yO
bs

er
ve

rs
()

;

}

 p

ub
li

c
vo

id
 S

cr
ee

n.
re

fr
es

h(
S

ub
je

ct
 s

)
{

 d

is
pl

ay
("

up
da

te
 r

ec
ei

ve
d

fr
om

 a
 "

 +
 s

ub
je

ct
N

am
e)

;

 }
} pu

bl
ic

 a
bs

tr
ac

t a
sp

ec
t O

bs
er

ve
rP

ro
to

co
l{

 p
ub

li
c

in
te

rf
ac

e
S

ub
je

ct
 {

 p

ub
li

c
vo

id
 a

dd
O

bs
er

ve
r(

O
bs

er
ve

r
o)

;

 p
ub

li
c

vo
id

 r
em

ov
eO

bs
er

ve
r(

O
bs

er
ve

r
o)

;

 p
ub

li
c

vo
id

 n
ot

if
yO

bs
er

ve
rs

()
;

 }

 p

ub
li

c
in

te
rf

ac
e

O
bs

er
ve

r
{

 p

ub
li

c
vo

id
 r

ef
re

sh
(S

ub
je

ct
 s

);

 }

 p
ri

va
te

 H
as

hS
et

<
O

bs
er

ve
r>

 P
oi

nt
.o

bs
er

ve
rs

;

 p
ub

li
c

vo
id

 P
oi

nt
.a

dd
O

bs
er

ve
r(

O
bs

er
ve

r
ob

se
rv

er
){

th

is
.o

bs
er

ve
rs

.a
dd

(o
);

 }

 p
ub

li
c

vo
id

 P
oi

nt
.r

em
ov

eO
bs

er
ve

r(
O

bs
er

ve
r

ob
se

rv
er

)
{

th
is

.o
bs

er
ve

rs
.r

em
ov

e(
ob

se
rv

er
);

}

 v
oi

d
pu

bl
ic

 P
oi

nt
.n

ot
if

yO
bs

er
ve

rs
()

 {

 f

or
 (

C
ha

ng
eO

bs
er

ve
r

e:
 o

bs
er

ve
rs

){
 e

.r
ef

re
sh

(t
hi

s)
;

}

 }

}

 pu
bl

ic
 i

nt
er

fa
ce

 S
ub

je
ct

 {

 p
ub

li
c

vo
id

 a
dd

O
bs

er
ve

r(
O

bs
er

ve
r

o)
;

 p

ub
li

c
vo

id
 r

em
ov

eO
bs

er
ve

r(
O

bs
er

ve
r

o)
;

 p
ub

li
c

vo
id

 n
ot

if
yO

bs
er

ve
rs

()
;

} pu
bl

ic
 in

te
rf

ac
e

O
bs

er
ve

r
{

pu

bl
ic

 v
oi

d
re

fr
es

h(
S

ub
je

ct
 s

);
}

Set of Observers

S
cr

ee
n

 c
la

ss
 O

bs
er

ve
s

P
oi

n
t

S
cr

ee
n

 a
ct

io
n

 is
 e

xe
cu

te
d

by
 th

e
ad

vi
ce

ad
dO

bs
er

ve
r

an
d

re

m
ov

eO
bs

er
ve

r
ar

e

m
ov

ed
 to

 th
e

ab
st

ra
ct

O

bs
er

ve
r

P
ro

to
co

l a
sp

ec
t

S
u

bj
ec

t I
n

te
rf

ac
e

O
bs

er
ve

r
In

te
rf

ac
e

su
bj

ec
t s

ta
tu

s
ob

se
rv

ed
 b

y
th

e
sc

re
en

 c
ap

tu
re

d
by

 th
e

su
bj

ec
tC

h
an

ge
 p

oi
n

tc
u

t

Figure 3.2: Aspect Refactoring for the observer pattern

• We delete the call to notify from the setX method and move it into the aspect so that it get

executed as the advice.

This would be enough to capture this specific instance of the pattern but we want the pattern to

disappear completely from the point and screen classes. Therefore we declare the protocol aspect.

Protocol Aspect

This aspect declares the parts that are common to every observer and every subject. It declares two

interfaces Subject and Observer. It declares the methods that manipulates the list of observers:

add, remove and notify. Finally, it declares a field to store the list of observers. This aspect is

abstract. Each instance aspect of the pattern should extend this aspect. In our example this aspect

30

is created gradually during the refactoring.

• The point implements the Subject interface. We declare this interface internally in the

protocol aspect.

• We move add, remove and notify observers methods from the point to the protocol aspect.

• We remove the Subject interface implementation from the point.

• We move the list of observers field declaration into the aspect as inter-type declarations on

Point

• The screen implements the Observer interface. We move this interface and its operation

into the protocol aspect; we declare this interface in the protocol.

• We remove the observer interface implementation from the Screen.

The last remaining step is to go back to the instance aspect and make the instance aspect a sub-

aspect of the protocol. The purpose of having the declaration of the subject and observer interfaces

moved into the protocol aspect is to completely isolate the observer pattern implementation into

aspects.

At this point the transformation is complete. If we want to capture the observer relationship

between the point and the screen when point sets its y co-ordinate, we only need to create a new

instance aspect similar to the CoordinateAspect and make the pointcut captures the call to

setY as in figure 3.3. The protocol aspect needs to be created once and then reused for each

instance aspect. The same figure shows that the only coupling remaining is within the advice as

the method notifyObserver() get called only within the after advice. This method get called

after any of the two methods setX(int) and setY(int) get executed.

This aspect could be broken into two different aspects where the first has the Observer and

Subject interfaces and the second declares the different methods of the Point class as inter-type

declarations but we have created it this way for simplicity.

Declaring AspectOfSetY as privileged is not needed at this aspect but this is a design decision.

Instead of increasing the overhead by examining each method declared as inter-type declaration to

see if it references any methods or fields that require privileged access we decide to declare every

instance aspect as privileged.

The parent declaration of the Screen class is not needed in the aspect AspectOfSetY as we

have already declared it in the coordinate aspect. This is a design decision because it is possible

for one subject to have multiple observers that might watch for different changes in the subject

state. For each instance aspect we would declare the parent of the observer and whether it is a

direct implementor of the observer interface or it implements an interface that extends the observer

31

interface. The same apply for the inter-type declaration of the method that the observer implements.

These are some of the limitations of our tool. We explain these in details in the design chapter 4.

Figure 3.3: Coordinate Aspect of setY

3.2 AJRefactor GUI

Next, we turn our attention to the user-level view of our tool. Figure 3.4 shows the Graphical User

Interface (GUI) of AJRefactor. Our tool adds a new menu item called AJRefactor that has one

sub-item named Refactor Observer. AJRefactor is a separate menu because the existing refactor

menu is built into the base Eclipse system using actions and we did not want to change that core.

Our menu instead in incorporated using the command extension point facility. When a developer

selects our new menu item, our refactoring interface is displayed as in figure 3.4.

• The process starts when the programmer selects the statement that changes subject state

and presses the refactor observer menu. If the selection changes a field in the selected class,

AJRefactor considers the class where the selection occurs the subject.

• Calculating the types of the subject class fields, types of the parameters of the subject con-

structor and types of the parameters of the method that changes the state of the subject,

AJRefactor populates the list of potential observers and presents them in the first page of

the wizard. The wizard pops up to the user only when the initial conditions checking phase

32

Figure 3.4: AJRefactor GUI

passes successfully. We explain the details of the initial conditions checking phase on the

AJRefactor implementation section 3.3.

• The user then can select the actual observers. After calculating the observers, AJRefactor

counts the number of statements that follow the selected expression. Here we distinguish four

different cases.

– If it is one and of type a method call, it retrieves the method binding to find the type

of the class defining that method and whether it is a super class, super interface or the

subject class itself. This is used in identifying the other components of the pattern.

– If it is more than one this would turn into the second type of the observer pattern that

we handle in our tool. We call this observer update case. We explain this in the next

section 3.2.1.

– If there is only one statement whose type is not method invocation. For example,

an assignment statement. The refactoring would terminate indicating that there is no

observer instance. This is also the case when there is no statements after the selected

expression.

– There might be some cases where the programmer has to do some changes whether

manual or automatic for the refactoring to take one of the shapes that could be refactored

with AJRefactor. For example, when the method is not well modularized as it changes

the subject state and then loops over the list of observers and notify them of the change.

33

To fix this, the programmer has to perform an extract method refactoring before applying

AJRefactor. Now, AJRefactor deals with the first case.

• In all cases, AJRefactor tries to find the method declaration of the method that notifies the

observers and examine its body closely. This method calls the observer update method where

the observer updates itself in response to the subject change.

• The wizard provides the user with an option to find all the pattern instances in the subject.

• Once the tool collects all the pattern parts and the final condition checking passes successfully,

the user can preview code changes or just press the finish button.

• Once the user confirms the changes to the participating classes, AJRefactor starts rewriting

the whole pattern into aspects. Specifically,

– It moves the operations that manipulate the list of observers (i.e. registering and un-

registering them from observing the subject and notifying them of any change to the

subject state) if they exist into the abstract aspect. If these operations do not exist,

the refactoring still continues as intended as these operations are not required for the

refactoring to complete.

– It also captures the call to the method that changes the subject state in the pointcut,

and

– Executes the call to notify in the advice.

• By creating these aspects the refactoring is considered complete and the change can effect the

workspace. The user can now run tests to verify correct behaviour.

3.2.1 Observer Update

This type of observer pattern is very simple. Observers watches a change in the subject state that

when happens observers performs an update in their state too. This is done by immediately invoking

their update operation. Figure 3.6 shows an example with steps to refactor it using AJRefactor.

After a number of checks and calculations AJRefactor determines that it is dealing with observer

update pattern. AJRefactor displays these update method invocations to the programmer. She

selects the ones involved in the update. The selected invocation are marked for deletion from the

subject class. Then, AJRefactor creates an aspect where these invocations get executed in the

advice. The pointcut is created based on the location of the update invocations in the method that

changes the subject state. Details of the heuristics used are given in our design chapter 4.

34

3.3 AJRefactor Implementation

There are three required components to implement a refactoring:

1. a refactoring action,

2. a refactoring wizard,

3. and a refactoring class.

To describe AJRefactor implementation we first start by explaining the general functionality of

each of three components. Then, we describe our implementation of the pattern which we divide

into two based on the type where user selection occurs. That is either the subject or the observer

class.

3.3.1 Refactoring Action

Refactoring actions are used to launch the tool after listening to user selections. It also enables

the refactoring based on the changes to the selection provided by the workbench selection service.

AJRefactor contributes a menu to the workbench using the command framework. The choice was

to contribute a menu next to the workbench window menu such that it activates only when Java

editor is active. In case many menus contributes to the workbench main menu, this would clutter

the user interface but using perspectives the user can manage which menus can appear.

When the user selects some text in the Java editor and pushes the refactoring menu button,

user selection is validated. Based on the selection, AJRefactor constructs the prober refactoring

class. Once the refactoring object has initiated, AJRefactor would check for a number of a initial

conditions. If these conditions pass successfully, the refactoring wizard pops up waiting for user

input, otherwise the refactoring terminates and a message pops up indicating the reason of failure.

3.3.2 Refactoring Wizard

Our ObserverWizard refactoring wizard extends org.eclipse.ltk.ui.refactoring.Refa-

ctoringWizard and provides the facility to implement the error pages, input pages and preview

pages that should be of type RefactoringWizardPage. It also provides the facility to add

pages to the wizard based on the user input. The first page displayed for the user depends on the

number and type of statements that come after the selection. This analysis is done in the initial

conditions checking phase. This page can be either one that asks the user to select from the list

of potential observers, one that asks the user to select from the list of potential subjects, or one

that asks the user to select the method invocations that are part of observe update. Beside the list

of potential observers, the user can choose to find all notifications to the observers. The preview

35

button is activated when the user selects at least one observer, one subject or one update operation.

Clicking this button activates the final condition checking that finds all other pieces of the pattern

and calculates the changes to be performed for the refactoring to take place.

3.3.3 Refactoring Class

My RefactorObserver refactoring class implements org.eclipse.ltk.core.refactoring.

Refactoring and provides the core functionality for the refactoring through its three main meth-

ods:

• checkInitialConditions: checks the refactoring initial conditions and determines if the refac-

toring wizard can appear to the programmer in case the refactoring implements one.

• checkFinalConditions: this method is invoked after the initial conditions passes. It checks

programmer inputs and does further calculations.

• createChange: this method is invoked after the final condition passes. It calculates and

performs the required changes to the compilation units effected by the refactoring.

We describe each below.

Initial Conditions Checking

The method checkInitialConditions takes IProgressMonitor as a parameter and returns

RefactoringStatus which indicates whether the conditions checking passed or not. Refactor-

ingStatus is of five kinds:

• RefactoringStatus.ERROR,

• RefactoringStatus.OK,

• RefactoringStatus.INFO,

• RefactoringStatus.WARNING, and

• RefactoringStatus.FATAL.

Failing to satisfy the following conditions will result in a fatal refactoring status that immediately

terminates the refactoring with a message indicating the reason of failure. Below are the checks we

perform in all refactoring classes regardless of the starting type i.e. subject or observer type.

• The underlying ICompilationUnit is error-free as the refactoring framework cannot change

a type that has compilation errors. Also, calculating the binding of fields, methods and types

in that compilation unit may fail.

36

• The project can be converted into AspectJ project. The tool refactors the observer pattern

to aspects which requires the project to have AspectJ nature enabled. The tool adds this

capability to the project using Java API [14] which might fail for reasons such as the AspectJ

plug-in is not installed.

Assuming the initial condition checking has passed, checkInitialConditions returns a Refa-

ctoringStatus.OK and the refactoring framework calls the checkFinalConditions method.

Final Conditions Checking

Similar to checkInitialConditions, checkFinalConditions takes IProgressMonitor

as an argument and returns a RefactoringStatus indicating whether the condition checking

has passed or failed. The Refactoring class calls this method after the initial conditions check passes

and after the user provides the necessary data. It validates user inputs and collects some important

data for the change generation step. This method can be called more than once according to the

interaction with the user-interface, but it has to be called after the initial conditions checking and

before the create change step. This method also calculates the change in the classes participating

in the pattern. During change calculation if a RefactoringStatus.FATAL has returned, the

programmer is presented with the unsatisfied-precondition checking-message; otherwise the method

createChange(IProgressMonitor) is called.

Following are some of the conditions that AJRefactor perform and what might cause them to

fail and terminate the refactoring.

• Creating aspect files Creating the aspect file is performed for all refactoring instances regard-

less of the starting type i.e. subject or observer. Creating these files is done by examining the

access modifier of each one of the observer files. If they are publicly accessible, AJRefactor

creates a new package for the newly created aspects including the protocol one. If any of the

types is only accessible within its package, the aspect is created within its package. Now, if

both types are in two different packages and both are accessible within their own package,

AJRefactor terminates the refactoring with a message. For example, the message is “one

of the types participating in the refactoring instance is inaccessible within the aspect, please

change the access modifier for the refactoring to proceed”

• Finding pattern participants AJRefactor depends on Java search engine to find pattern com-

ponents. This engine might through JavaModelException. We handle this exception by

terminating the refactoring which a fatal error refactoring status. The refactoring status takes

a string which the message we present to the programmer after termination.

• Registering changes to compilation units of affected classes Registering and rewriting changes

to the classes affected by the refactoring might also fail. Failing at this stage also terminates

37

the refactoring and produces an error message. For example, “There was an error while

registering changes to the Foo class”

Creating the Change

This method is called after the final conditions check passes successfully. It returns an object

of type org.eclipse.ltk.core.refactoring.Change that is used later by the refactoring

user-interface to generate the change preview. We use the same change object to rewrite the classes

affected by the refactoring once the programmer confirms these changes. We accomplish this by

applying the ASTRewrite on each one of these classes. The refactoring terminates after the change

applies to the workspace. If the change object is not empty, we create the different aspects.

According to the current state of the AspectJ plug-in, it was not possible to create an aspect

from scratch using AspectJ AST API. This is because these APIs are still under development.

Therefore we copied and modified the code that AspectJ development tools use when users need

to create a new aspect using the create new aspect wizard. This involves referencing some of the

classes that are used internally and not part of the public API. This is one of the places where the

plug-in needs to improve.

Similar to Java classes, aspects are created using the org.eclipse.jdt.core.IType class.

We add pointcuts, advice and inter-type declarations using the different methods provided by the

IType class. Pointcuts and advice are added with createMethod while inter-type declarations

are added using createField method. One of the arguments that these methods take is a string

representing the declaration of the element to be created.

Figure 3.5 summarizes the implementation details of the refactoring class methods: checkIni-

tialConditions, checkFinalConditions and createChange.

We divide the implementation of AJRefactor into two: pattern refactoring starting with subject

type and pattern refactoring starting with observer. We also refactor the pattern implemented

with the common Java API (java.util.Observable and java.util.Observer) whether

the starting type is the subject or the observer. Below we describe the implementation of each

one of these refactorings through the three components that we have described earlier. These

components are refactoring action, refactoring wizard and refactoring class.

3.4 Refactoring Observer Pattern Starting with Subject

We explain the implementation through the three components of an eclipse refactoring.

38

Figure 3.5: Summary of the Refactoring Class Methods Implementation

3.4.1 Refactoring Action

When the user selects some text in the Java editor and pushes the refactoring menu button, user

selection is validated. AJRefactor constructs the refactoring instance based on the selected node

type. If the selection is one of the following cases, AJRefactor considers the type where the selection

occurs is the subject and the refactoring process continues searching for observer and the other

components of the pattern.

(1) The node is a method invocation whose declaring type is the same type where the selection

occurs or any of its super classes or any of its member classes.

(2) The node is a method invocation where the expression is a simple name of a field, this

expression, or null.

(3) The node is a statement of type super-method invocation. For example, super.foo().

(4) The node is an assignment statement where the left side is a field.

(5) If the operand of a postfix expression is a simple name of a field.

(6) The node is an if-expression and the expression

• is a method invocation as in 1,2 or 3.

• is an operand of an infix, postfix or prefix expression whose node type is a SimpleName

of a field, this expression or a method invocation as in 1,2 or 3.

39

If the selection was evaluated to be one of the aforementioned cases, AJRefactor would check if

the observer is implemented using Java API. To check for this, AJRefactor checks if the subject

extends the java.util.Observable. If it does not, AJRefactor continues as we describe below.

Once the refactoring object has initiated, AJRefactor would check for a number of a precondi-

tions. If these conditions passes successfully, the refactoring wizard pops up waiting for user input,

otherwise the refactoring terminates and a message pops up indicating why the checking fails. By

this we have the first component of the pattern that is the subject class. From this, the refactoring

can analyze the statements after the selection. Based on the number and type of theses statements

AJRefactor either presents the user with list of potential observers or with list of observer update

calls.

3.4.2 Refactoring Wizard

• If the subject change is followed by a single method call whose explicit or implicit receiver is

this, the wizard presents the programmer with a list of potential observers.

• If the subject change is followed by a one or more method calls whose receiver is not this

whether explicit or implicit, AJRefactor presents the user with list of observer update calls.

3.4.3 Refactoring Class

Initial Conditions Checking

Aside from ensuring the project has AspectJ capability and the subject type is compiler-error

free, AJRefactor checks for the following conditions. Failing to satisfy any of them results in a

fatal refactoring status that immediately terminates the refactoring with a message indicating the

reason of failure.

• Subject type is writable. This is essential because the refactoring cannot modify source code

of a file that is read-only or binary. A read-only type is a type whose underlying source code

is not modifiable. This is the case for .class files or files that are part of a zip or a jar.

In this case the refactoring needs to delete or add nodes to the abstract syntax tree of the

subject when the refactoring take place. An example of a type modification would be deleting

the update call from the method that changes the subject state.

• There is at least one observer in the list of potential observers. Potential observers list is

calculated from three different sources:

1. subject class fields,

2. parameters of user selected method, and

40

3. parameters of the subject constructor.

In all of these cases there might be some added complexity when fields and parameters type

is parameterized. In this case we check if the parameter type is an interface type (e.g. field of

type HashMap<T>). If it is we find interface implementers and their subclasses. The process

is iterative if any of the implementors is an interface. The implementors and their subtypes

get added to the list of potential observers. This supports situations where the subject has

multiple observers that are stored in some sort of data structure (e.g. HashSet, Set, Array)

whose parameter type is an interface implemented by observers.

• The type of statement that comes after the selection is a method invocation. If there is

no statements after the selection or the there is one but it is not of type method invocation,

AJRefactor terminates the refactoring and presents the user with a message stating that there

is no observer pattern.

• If a single method invocation whose declaring type is the subject or any of its super classes,

AJRefactor continues finding pattern participants. If a single method invocation where the

receiver is not this or if there is more than one method invocation, AJRefactor considers

this an observer update case where the user need to interfere to select the actual updates.

Figure 3.6 shows an example of this type of observer pattern.

Figure 3.6: Aspect Refactoring for the observer pattern

41

Assuming the initial condition checking has passed, checkInitialConditions returns a

RefactoringStatus.OK and the refactoring framework calls the checkFinalConditions

method.

Final Conditions Checking

We refer to the example code in figure 3.2 to illustrate the following points as needed.

• update pointcut When the user selects the code that changes subject state, the method that

encloses the selection is the one that is intercepted in the pointcut.

• subject interface The tool first checks the number of statements after the statement that

changes the subject state; in this case, the x value. If it is one then it checks the type of

that statement. If it is a method invocation then AJRefactor resolves the method binding

and determines the declaring class. If the declaring class is the subject; in this case, the

Point class, AJRefactor finds if it is an implementation of an interface type. This is because

the interface type disappears during class loading. Therefore, we needed a way to find out

if the method that notifies observers is an implementation of interface operation. Eclipse

offers a general search engine that can be used to search the different projects defined in

the workspace for java elements such as method references, field declarations and interface

implementors. Using this engine we search for types that declares the update method; in

this case the notify method, and then check if the subject type implements any of these

resulting types. If so, we have located the second component of the observer pattern that is

the subject interface. Algorithm 1 explains the process of finding the subject interface.

Algorithm 1 find the subject interface

if countOfStatementsAfterSubjectChange = 1 then

if statementType = methodInvocation then

if methodBinding = subjectType then

results←findTypesDeclaringMethod

for all result in results do

if isInterfaceType(result) and doesSubjectImplementsType(result) then

return result

end if

end for

end if

end if

end if

42

• Observer Interface Retrieving the body of the notify method, we examine its code closely.

The whole process of finding the components of the observer is done by traversing the AST

and examining its nodes. Applying the visitor pattern, AJRefactor examines the type of each

node. In most cases the body iterates over the list of observers i.e. the body can be one of

following cases.

– For loop. For example,

1 for (Iterator e = observers . iterator () ; e . hasNext () ;) {

((ChangeObserver)e . next ()) . refresh (this) ;

3 }

Listing 3.1: Notify body - For loop

– Enhanced for loop. For example,

1 for (ChangeObserver obs : observers){obs . refresh (this) ;}

Listing 3.2: Notify body - Enhanced For loop

– While loop. For example,

1 Iterator<ChangeObserver> obs= observers . iterator () ;

while (obs . hasNext ()){obs . next () . refresh (this) ;}

Listing 3.3: Notify body - While loop

– Do-while loop. For example,

Iterator<ChangeObserver> obs= observers . iterator () ;

2 i f (obs . next != null){

do{ obs . next () . refresh (this) ;} while (obs . hasNext ())

4 }

Listing 3.4: Notify body - Do-While loop

We first check for generic types included in the iterator. If it is an interface then we examine

if the actual observers selected by the user implements that interface. If no generics are used,

then we check the body of the loop. In particular, we look for the receiver of the method

invoked within the loop body. If the receiver type is an interface implemented by the actual

observers, then we consider this type the observer interface.

43

Finding the observer and subject interfaces is not essential as they might not exist. It is

possible for the subject to have only one observer and immediately call its update method.

Another possibility is that the subject notify method is provided by one of the subject super

classes or it is one of its own methods or it overrides this method. AJRefactor accounts for

those cases as the two most important pieces are the method call that would be intercepted

in the aspect pointcut and the update method of the observer that the advice executes.

• Observer Update Method This method is called within the body of notify. Using Eclipse

search engine we search for classes that declare this method. The result is a list of methods.

We examine each method for declaring type and if it is an actual observer, one of the types

selected by the programmer, we store the method declaration. This declaration is used to

create inter-type declaration when creating the aspect for each one of these observers.

• Observers List Field From the body of the notify we find the observers list depending on the

type of the loop. We use the visitor pattern to visit the loop initializers and body to find

the observer list. The process of finding the observers list depends on the type of the loop

statement.

– Enhanced for loop The enhanced for is composed of three parts. Listing 3.2 shows these

components which we explain below.

∗ a parameter which comes before the colon (e.g. ChangeObserver obs),

∗ an expression which comes after the colon (e.g. observers),

∗ and a body (e.g. obs.refresh(this);).

We check the expression node type. If it is a simple name of a field, we retrieve its type

binding and if it is one of the following cases we consider this simple name the observer

list.

∗ binding is the subject class.

∗ binding is the subject interface.

∗ binding is a member type of the subject.

∗ binding is a parametrized type whose parameter type is the observer interface (if

parameter type is provided).

– For loop For statement is composed of four parts. The first three parts are separated by

the semicolon. Listing 3.1 shows these components which we explain below.

∗ The initializers (e.g. Iterator e = observers.iterator()). This initializer

is of type VariableDeclarationExpression. It is possible to declare more

than one variable at the same time. These declaration are of type VariableDecla-

rationFragment. For example, int x=0, y=3;. Fragment is made up of a

44

SimpleName and an initializer. The initializer node is of type Expression. Ex-

pression can be but not limited to one of the following cases.

· NullLiteral

· MethodInvocation

· ThisExpression

If the initializer node is of type method invocation whose expression is a simple

name of a field, we retrieve its type binding. If the binding is one of these bindings

we have mentioned in the enhanced for loop case, we consider this simple name the

observers list.

∗ an expression (e.g. e.hasNext())

∗ an updaters. In the example there are no updaters but increasing (x++) or decreeing

(x--) an int is an example of an updater.

∗ a body

– While loop and Do-while loop If any of these two statements were found, we check the

node proceeding them looking for a node of type VariableDeclarationStatement

which represents the declaration of an iterator over the list of observers. As Variable-

DeclarationExpression might declare many variables, the VariableDeclarat-

ionStatement might also declare more than one variable at a time. Each declaration

is of type VariableDeclarationFragment. As we mentioned earlier in the for loop

case, fragment is made up of a SimpleName and an initializer where the initializer node

is of type Expression. Similar to the for loop, if the initializer node is of type method

invocation whose expression is a simple name of a field, we retrieve its type binding. If

the binding is one of these bindings we have mentioned in the enhanced for loop case,

we consider this simple name the observers list.

• Changing Patterns Participants Eclipse provides an ASTRewrite class which records changes

to the compilation units participating in the pattern implementation and then applies these

changes back to the underlying files. The changes depends on the type of the observation

relationship.

– For observer instances implemented using the pushing technique, AJRefactor register

the following to the ASTRewrite

∗ removing the invocation to the notify from setX(int x),

∗ moving the observers list and all methods that manipulates it into the protocol

aspect,

∗ moving the method that notifies observers to the protocol aspect,

45

∗ moving observer update method into the aspect, and finally

∗ replace the implement phrase for both the subject and observer interfaces with

inter-type declarations.

– For observer update case AJRefactor only removes the calls selected by the programmer

from the method that changes subject state.

During change calculation, if a RefactoringStatus.FATAL has returned, the programmer is

presented with the unsatisfied-precondition checking-message; otherwise the method createChan-

ge(IProgressMonitor) is called.

Creating the Change

This method is called after the final conditions check passes successfully. It returns an object

of type org.eclipse.ltk.core.refactoring.Change that is used later by the refactoring

user-interface to generate the change preview. We use the same change object to rewrite the classes

affected by the refactoring once the programmer confirms these changes. After the programmer

confirms these changes, AJRefactor creates the different aspects. If the observer pattern is imple-

mented using the pushing technique, AJRefactor creates a protocol aspect to capture the list of

observers and the methods that handles them including adding, removing and notifying the ob-

server and an instance aspect for each observer. For the case where there a number of observer

update invocations, AJRefactor would create one aspect with a pointcut and advice to execute

these update calls.

3.5 Refactoring Java API Observer Pattern Starting with

Subject

We consider this case a variation of the observer pattern starting with subject. Figure 3.7 shows

an example.

3.5.1 Refactoring Action

If AJRefactor examines user selection and finds out it is one of the cases where the selected type

is the subject type, AJRefactor performs one further check. AJRefactor checks if the pattern is

implemented using common Java API. AJRefactor does this by checking if the subject extends

the java.util.Observable type from the Java utility. If it does, AJRefactor constructs the

refactoring instance that handles the refactoring of the pattern implemented using Java API starting

with subject type.

46

Figure 3.7: Observer Pattern Implemented with Java API

Once the refactoring object has initiated, AJRefactor checks for a number of a preconditions. If

these conditions pass successfully, the refactoring wizard pops up waiting for user input, otherwise

the refactoring terminates and a message pops up indicating the reason of failure. By this we have

the first component of the pattern that is the subject class.

3.5.2 Refactoring Wizard

After calculating the types that implements java.util.Observer, AJRefactor presents them

to the programmer to select the actual observers of the subject.

3.5.3 Refactoring Class

Initial Conditions Checking

AJRefactor performs the same checks it performs for the non-API observer pattern starting with

subject.

Final Conditions Checking

In addition to the checks we perform when initiating the pattern, this method performs the follow-

ing:

47

• Method Invocations of Observable AJRefactor finds the method invocations of setChanged(),

notifyObservers(Object arg) or notifyObservers(). These invocations get exe-

cuted by the advice in the aspect.

• Rewriting Subject When calculating the change in the subject, we check if there any references

to java.util.Observable other than this in the method where user selection occurs. If

no references are found, AJRefactor removes Observable class references from the subject.

This includes

– removing Observable from the import declarations,

– removing Observable from the list of the classes the subject extends, and

– removing invocations to Observable methods from the method that observers observe.

– it is possible that Observable methods that observers use to register or unregister

themselves from observing the subject are called any where in the program. These

methods are Although registration of observer methods is not shown in figure 3.7, they

can still be refactored. As is the case with the non API pattern. The methods dele-

teObservers() and addObserver(Observer) can be refactored as an observer update

method case.

• Rewriting Observers for each observer, AJRefactor moves the implementation of java.uti-

l.Observer into aspect. This includes

– removing the Observer from the list of interfaces the observer implements and replace

it with an inter-type declaration in the created aspect.

– removing the Observer from the list of import declarations.

– moving the update(Observable, Object) declaration into aspect. AJRefactor cre-

ates inter-type declaration in the declared aspect.

During change calculation if a RefactoringStatus.FATAL has returned, the programmer is

presented with the unsatisfied-precondition checking-message; otherwise the method createCha-

nge(IProgressMonitor) is called.

Creating the Change

This method is called after the final conditions check passes successfully. It returns an object

of type org.eclipse.ltk.core.refactoring.Change that is used later by the refactoring

user-interface to generate the change preview. We use the same change object to rewrite the classes

affected by the refactoring once the programmer confirms these changes. The last step is to create

an aspect that captures observer implementation to java.util.Observer. A proper pointcut

48

is created to capture where in the method that changes subject state Observable methods get

called. These invocations get executed by the advice.

3.6 Refactoring Observer Pattern Starting with Observer

3.6.1 Refactoring Action

When the selection is one of the following cases, AJRefactor considers the type where the selection

occurs one of the observers.

• The node is a method invocation where the receiver is a method parameter.

• The node is a SingleVariableDeclaration of a method parameter.

If the selection was evaluated to be one of the aforementioned cases, AJRefactor constructs the

refactoring object. Once the refactoring object has initiated, AJRefactor would check for a number

of a preconditions. If these condition checks pass successfully, the refactoring wizard pops up

waiting for user input, otherwise the refactoring terminates and a message pops up indicating the

reason of failure.

3.6.2 Refactoring Wizard

During the initial check, AJRefactor uses Java search engine to find the types that references the

method where the selection occurs in the observer. AJRefactor considers this method observer

update method. We filter the resulting methods by type. For each type if the number of methods

is one, we check its body for loop statement. If it does have one, AJRefactor calculates the list of

potential subjects. Then, the wizard presents these subjects to the programmer. Otherwise, the

wizard involves the user in the update selection for each one of these methods.

3.6.3 Refactoring Class

Initial Conditions Checking

Aside from ensuring the project has AspectJ capability and the observer type is compiler-error

free, AJRefactor checks for the following conditions. Failing to satisfy any of them results in a

fatal refactoring status that immediately terminates the refactoring with a message indicating the

reason of failure.

• Observer type is writable.

• There is at least one subject in the list of potential subjects or there is at least one method

declaration in the list of the methods that calls the observer update. The refactoring considers

49

the method where programmer selection occurs the observer update method. Based on the

references to this method in the entire project, the refactoring distinguishes two different

cases.

– An observer pattern implemented using the pushing technique. This is when the observer

method is referenced within a loop statement. The refactoring adds the declaring type

of the referencing method to the potential list of subjects.

– An observer update case. When the observer method is not referenced within a loop

statement, we consider the referencing method an instance of observer update.

Assuming the initial condition checking has passed, checkInitialConditions returns a

RefactoringStatus.OK and the refactoring framework calls the checkFinalConditions

method.

Final Conditions Checking

This method performs the following:

• Finding Subject Changing State Methods For each type in the subjects list, if the number

of referencing methods is one and observer update is referenced within a loop statement,

AJRefactor considers this the notifier method. Then, it searches for methods that calls the

notifier within the subject. These methods are the methods that change the subject state

and calls the notify method. The final condition checks section in 3.4 discusses the details of

finding these instances.

• When finding the observer interface, observers list, and observers list handling methods, we

follow the same procedure when finding the same entities for refactoring instances initiated

starting with the subject class.

• Observer Update Method This method is the method where user selection occurs, in contrast

to initiating the subject focused refactoring in section 3.4. This method get added as an inter-

type declaration in the aspect. If this update is an implementation of an interface operator, we

also add to the aspect type an inter-type declaration to declare the observer an implementor

of this interface.

• Changing Patterns Participants Since this instance looks the same as the one we constructed,

starting with subject class, we also register the same changes to each one of the subject

classes. These changes are mentioned in 3.4

• Observer update invocations If observer update method is not referenced within a loop state-

ment, AJRefactor presents the user with invocations found within same enclosing node i.e. the

50

parent node. This is to involve the user in the selection of observer update calls. When regis-

tering changes to this type of observer pattern, AJRefactor removes user selected invocations

and move them into the advice created for this observer instance.

During change calculation if a RefactoringStatus.FATAL has returned, the programmer is

presented with the unsatisfied-precondition checking-message; otherwise the method createCha-

nge(IProgressMonitor) is called.

Creating the Change

This method is called after the final conditions check passes successfully. It returns an object

of type org.eclipse.ltk.core.refactoring.Change that is used later by the refactoring

user-interface to generate the change preview. We use the same change object to rewrite the classes

affected by the refactoring once the programmer confirms these changes. After the programmer

confirms the changes, AJRefactor creates the different aspect.

3.7 Refactoring Java API Observer Pattern Starting with

Observer

We consider this case a variation of the observer pattern starting with observer.

3.7.1 Refactoring Action

If AJRefactor examines user selection and finds it is one of the cases where the selected type is

the observer type, AJRefactor performs one further check. AJRefactor checks if the pattern is

implemented using the Java API. AJRefactor does this by checking if the observer implements

java.util.Observer from the Java utility. If it does, AJRefactor constructs the class that

handles the refactoring of the pattern implemented using Java API starting with observer type.

Once the refactoring object has initiated, AJRefactor checks for a number of a preconditions. If

these conditions pass successfully, the refactoring wizard pops up waiting for user input, otherwise

the refactoring terminates and a message pops up indicating the reason of failure.

3.7.2 Refactoring Wizard

Similar to the refactoring starting with observer class, this wizard displays the list of possible

subjects but this list is very limited to those types that extend the java.util.Observale

51

3.7.3 Refactoring Class

Initial Conditions Checking

This method performs the same checks we perform in the refactoring instance created starting from

the observer with only one difference: the list of potential subjects is calculated by finding classes

that extends java.util.Observable class.

Final Conditions Checking

This method performs the same checks and calculations performed in the refactoring instance

created starting with the subject and implemented using the common Java API classes: java.uti-

l.Observable and java.util.Observer except for the following:

• Finding methods that change subject state For each subject in the list of subjects selected by

the programmer, we search for all methods that references the Observable class methods:

setChanged(), notifyObservers(Object arg), or notifyObservers(). This is

unlike refactoring the observer implemented using the Java API where the starting type is

the subject class, as we only find Observable method references in one method. This

method is the one where the programmer selection occurs. When the refactoring starts

with the subject it is known that the method where the programmer makes the selection

notifies observers and has the references to observable methods. This permits working on

a smaller set of methods which is simpler and more efficient. This is unlike the opposite case

when the programmer selection is made from the observer update method as we need to know

what subject this observer is watching. This is done by finding observer update referencing

methods. This allows to find all subject methods that changes the subject state and notifies

the observer.

• Rewriting subjects The changes we register are exactly the same but instead of rewriting one

subject, we now register changes to all the subjects selected by the programmer.

• Rewriting observers These changes are also the same but in this refactoring we have only one

observer which is the one where the initial selection occurs.

During change calculation if a RefactoringStatus.FATAL has returned, the programmer is

presented with the unsatisfied-precondition checking-message; otherwise the method createCha-

nge(IProgressMonitor) is called.

Creating the Change

This method is called after the final conditions check passes successfully. It returns an object

of type org.eclipse.ltk.core.refactoring.Change that is used later by the refactoring

52

user-interface to generate the change preview. We use the same change object to rewrite the

classes affected by the refactoring once the programmer confirms these changes. The last step is

to create an aspect for each method references the Observable. Each aspect captures observer

implementation to java.util.Observer. Also, a proper pointcut is created to capture join

points of the Observable methods invocations. An advice is created to execute these invocations.

3.8 Summary

This chapter discusses implementation details of AJRefactor. The implementation is handled based

on the starting type and whether the pattern is implemented using the common Java API classes

used to implement the observer pattern or not. Each requires user input to help in identifying

pattern participants, but one case begins with the programmer selecting the observers and another

with the programmer selecting the subjects. The other variation of the pattern occurs when subject

change is followed by one or more method calls, whose recover is not this. In this case tdxhe

user input involves selecting the invocations involved in the update. The pattern implementation

involves how we find the different parts of the pattern, changes we make to the types participating

in pattern implementation and a description of the various aspect we create as the final phase of

refactoring the pattern. Appendix C explains how to get the source code of AJRefactor.

53

Chapter 4

AJRefactor Design

In this chapter we explain how we analyze the observer pattern components and move them

into aspects. We create the various pointcuts and advice in order to capture the observed change.

There are mainly two different shapes of the observer pattern that we deal with in AJRefactor.

• The first one is when the subject notifies its registered observers of a particular change in its

state. This notification usually involves looping over the observers and calling their update

operation. Aside from notifying the observers, subject has other methods that would allow

the classes to register or unregister themselves from this observation relationship. Also, it is

possible for the observer to have multiple updates based on the subject change it observers.

Figure 4.1 shows an example.

• The second one is when one or more observer update methods are called in response to a

subject change. These updates might be for one observer or for different observers.

in the following sections we explain using code examples how we refactor each form of the

implementations we mentioned above. First we start with observer pattern implemented with the

pushing technique.

4.1 Refactoring Observer Pattern Implemented with Push-

ing Technique

To explain this refactoring we use the example code in figure 4.1. In the example, the class

StandardDrawingView represents the subject where the method clearSelection() notifies

StandardDrawingView observers by calling the method fireSelectionChanged(). These

observers are the AbstractCommand and DrawApplet classes. Each one of them implements the

method figureSelectionChanged() to perform the update. This method is declared by the

interface type FigureSelectionListener which represents the observer interface. Also, we find

that StandardDrawingView implements the two methods addFigureSelectionListener(-

FigureSelectionListener) and removeFigureSelectionListener(FigureSelecti-

onListener) that are declared in the interface type DrawingView. StandardDrawingView

54

Figure 4.1: Observer Example Following GOF

declares the field fSelectionListeners of type vector which stores the observers. These are the com-

ponents that AJRefactor tries to find and then create the required aspects to isolate the pattern

parts into aspects.

• Once the programmer presses refactor observer button after selecting a statement from the

method that changes subject state, AJRefactor examines user selection in this case (fSelec-

tionHandles = null;). If the selection represents a change in the subject state, AJRefactor

initiates the refactoring.

• AJRefactor examines the ICompilationUnit of the type where the refactoring was initi-

ated. If it is free of any of errors the refactoring continues finding pattern components other

wise AJRefactor terminates the refactoring presenting the programmer with a message stat-

ing that the refactoring cannot be performed in a class containing compilation errors and the

programmer is requested to fix them before proceeding with the refactoring. Figure 4.2 shows

an example.

• AJRefactor retrieves statements of the method that comes immediately after the selection.

If their count is one and of type method invocation, AJRefactor checks its declaring class.

It checks if the declaring type is the subject, any of it super classes or any of its internal

classes. The method fireSelectionChanged() is declared by StandardDrawingView

55

Figure 4.2: Compilation Error Message

which is the subject class. If the method declaring class is not the subject or any of its super

classes or any of its local classes or if the statements count is more than one then AJRefactor

considers this case is the one where the update is a number of invocations and the user has

to be involved in selecting this update. For the cases where there are no statements following

the statement that changes subject state or if the statement is not a method call, AJRefactor

terminates the refactoring presenting the programmer with a message stating that there is no

observer instance as in figure 4.3

• AJRefactor finds the potential observers from the parameters of the method clearSelect-

ion() which has none. Also, we add the StandardDrawingView field types. This is done

by eliminating primitive types but adding any other type that is not an interface and not

parametrized. If the field type is an interface or parametrized type whose parameter type

is an interface, AJRefactor searches for its implementers and their subtypes. The process is

iterative if any of the implementors is an interface type. This is particularly useful when the

observer does not implement the observer interface directly but instead it implements another

interface who extends the observer interface. This occurs very often.

56

Figure 4.3: No Observer Message

• After selecting the actual observers, AJRefactor starts examining the method fireSelect-

ionChanged(). Using Java searching engine, AJRefactor searches for types declaring this

method. This is to find out if the method is declared by an interface type implemented

by the subject or by any of its super classes. Also, AJRefactor examines the body of

fireSelectionChanged(). In most of the cases, this method loops over the list of ob-

servers and calls their update method. Based on the loop type, AJRefactor finds the observer

interface by examining the loop initializers or from its body as we explained in section 3.4.3.

• AJRefactor finds the observers list (fSelectionListeners) from the body of fireSelection-

Changed() which is then used to find the methods that add and remove the observers. If

the type of the observers list is sub-type of Java Collection, AJRefactor searches for the

methods that call add and remove method from the collection type where the receiver is

the observer list. The refactoring continues to work as intend even if these methods are not

present in the subject class.

• AJRefactor finds the observer update method from the body of the loop statement. Details

57

on how we find them can be found in the final conditions checking section of the observer

refactoring starting with subject type 3.4.

• After finding patten components, AJRefactor register the changes of StandardDrawingView

and its observers i.e. AbstractCommand and DrawApplet to the ASTRewrite object.

AJRefactor marks for deletion fSelectionListeners, fireSelectionChanged(),

addFigureSelectionListeners() and removeFigureSelectionListener() only

when they are not referenced in the StandardDrawingView or any of its subclasses.

AJRefactor removes FigureSelectionListener implementation from AbstractCommand

and DrawApplet when figureSelectionChanged() is the only method declared in

FigureSelectionListener. Observer interface cannot be removed if it declares more

than one method. When the programmer needs to refactor the other update methods, the

interface implementation is needed to know the declaring types of this update method.

• When user is ready to apply the changes by clicking the ok button. AJRefactor creates three

different aspects: protocol aspect where we move the components that define the subject

interface into, and an instance aspect for each one of the observers. The instance aspect

captures each observer and its implementation to FigureSelectionListener.

4.1.1 Protocol Aspect

This aspect contains the pattern components found in the subject. By analyzing the body of

fireSelectionChanged(), AJRefactor finds the observers field, observer update method and

observer interface. AJRefactor uses the method clearSelection() to declare the pointcut and

the advice. Steps are as follow.

• We first declare a public privileged aspect.

• We move the declaration of fSelectionListeners field as an inter-type declaration of Standa-

rdDrawingView.

• We move the method declaration of fireSelectionChanged as an inter-type declaration

of StandardDrawingView.

• We move the method declaration of the two methods that add and remove observers as an

inter-type declaration of StandardDrawingView.

• The add and remove methods are primarily an interface operations declared in DrawingView.

Beside these two methods, DrawingView has many other operations therefore we remove

them from DrawingView and declare an interface IDrawingView in the protocol aspect

with these two operations. Finally, we declare DrawingView to extend this interface. This

58

public privileged aspect StandardDrawingViewProtocol{
2

public interface IDrawingView {
4 public void addFigureSelectionListener (FigureSelectionListener fsl) ;

public void removeFigureSelectionListener (FigureSelectionListener fsl) ;
6 }

8 declare parents : DrawingView extends IDrawingView ;

10 private Vector<FigureSelectionListener> StandardDrawingView . fSelectionListeners =
new Vector<FigureSelectionListener>() ;

12 public void StandardDrawingView . addFigureSelectionListener (FigureSelectionListener
fsl) {
fSelectionListeners . add (fsl) ;

14 }

16 public void StandardDrawingView . removeFigureSelectionListener (FigureSelectionListener
fsl) {

fSelectionListeners . remove (fsl) ;
18 }

20 private void StandardDrawingView . fireSelectionChanged () {
i f (fSelectionListeners != null) {

22 for (int i = 0 ; i < fSelectionListeners . size () ; i++) {
FigureSelectionListener l = (FigureSelectionListener) fSelectionListeners .

elementAt (i) ;
24 l . figureSelectionChanged (this) ;

}
26 }

}
28 }

Listing 4.1: StandardDrawingView Protocol Aspect

would prevent breaking the hierarchy of the classes that implements the DrawingView. This

operation is currently not supported in AJRefactor and we had to do it manually. That is

after creating the protocol and the instance aspects, we manually add a declaration of a new

interface that holds the method declarations of the methods that adds to and removes from

the list of observers. This is for the cases where the subject interface is not declared as a

separate type. This makes it difficult to isolate the subject interface.

Now the protocol aspect is considered complete but the pattern refactoring is not. We must

declare a separate aspect for each observer.

4.1.2 Observer Update Instance Aspect

For each observer, this aspect captures the observer interface implementation. It also declares the

pointcut that captures the call to fireSelectionChanged() based on its location in clearSe-

lection(). Returning to the example, part of changing AbstractCommand and DrawApplet

involves moving the implementation of FigureSelectionListener into the instance aspect.

Listings 4.5 and 4.4 are the instance aspects for the AbstractCommand and DrawApplet respec-

tively.

• We first declare a public privileged aspect because we require access to private members used

59

1 public privileged aspect DrawAppletOfClearSelection{

3 declare parents : DrawingEditor extends FigureSelectionListener ;

5 public pointcut clearSelectionPointcut (StandardDrawingView sdw) :
call (void clearSelection ()) &&

7 target (sdw) ;

9 after (StandardDrawingView sdw) : clearSelectionPointcut (sdw){
sdw . fireSelectionChanged () ;

11 }

13 public void DrawApplet . figureSelectionChanged (DrawingView view) {
setupAttributes () ;

15 }
}

Listing 4.4: DrawApplet Instance aspect

within the body of the observer update method.

• Declaring observer inter-type declaration depends on the observer itself. The observer can

have one of three cases:

– It can be a direct implementor of the observer interface FigureSelectionListener

such as AbstractCommand. In the instance aspect of AbstractCommand we declare:

1 declare parents : AbstractCommand implements FigureSelectionListener ;

Listing 4.2: AbstractCommand Intertype decalration

– It might implement an interface that extends the observer interface such as DrawApplet.

DrawApplet implements DrawingEditor which extends FigureSelectionLis-

tener. In this case we remove extends FigureSelectionListener from the Draw-

ingEditor and replace it with the following inter-type declaration.

1 declare parents : DrawingEditor extends FigureSelectionListener ;

Listing 4.3: DrawApplet Intertype declaration

– It might be a sub-type of any of the previous two types. In this case we leave the type

as it is because it will be handled when its super type is handled.

• We add the inter-type declaration of the figureSelectionChanged().

• We define the pointcut and the relative advice.

This refactoring helps isolating the pattern into the aspect protocol which is now entirely re-

sponsible for the whole notification while each one of the instance aspects now serves the role of

60

public privileged aspect StandardDrawingViewAspectOfAbstractCommand {
2

declare parents : AbstractCommand implements FigureSelectionListener ;
4

public pointcut clearSelectionPointcut (StandardDrawingView sdw) :
6 call (void clearSelection ()) &&

target (sdw) ;
8

after (StandardDrawingView sdw) : clearSelectionPointcut (sdw){
10 sdw . fireSelectionChanged () ;

}
12

public void AbstractCommand . figureSelectionChanged (DrawingView view) {
14 }

}

Listing 4.5: AbstractCommand Instance Aspect

updating each observer. These observers need not to worry about this update as it is now handled

by the aspect.

4.1.3 Generating Pointcut and Advice

We divide the general shape of methods that notifies a subject observers into three different shapes

bases on the parenting node of the statement that represent the subject change and the statement

that represent the call to the notify method. Since the abstract syntax tree is a tree of nodes where

some nodes might have children nodes, Eclipse allows the programmer to query each node for its

children and for its parent nodes. The top node is known as the parent node. For example, the

call fireSelectionChanged() is a child node to the Block that represent the method body of

clearSelection() method in figure 4.4. This means we can say that the Block is the parent

node of the fireSelectionChanged() invocation. Because the Block node itself is a child

node of clearSelection() method declaration, this MethodDeclaration is also an indirect

parent to the call fireSelectionChanged(). Below we describe these three shapes.

• In this shape, both statements, the one that changes the state of the subject and the notify

method invocation (e.g. fireSelectionChanged()) are parented by the method decla-

ration. The method clearSelection() in figure 4.4 is an example. To refer to this shape

later we call it (MethodDecSubjectChange - NotifyCall).

• In this shape both subject change and notify call are parented by an if statement. Subject

change is the if expression while the method invocation to notify is located in the then part

of the if. The method removeFromSelection() in figure 4.4 shows an example. To refer

to this shape later we call it (IfExpSubjectChange - NotifyCall).

• In this shape both subject change and notify call are parented by the then statement of an

if. The method addToSelection() in figure 4.4 shows an example. To refer to this shape

61

later we call it (ThenStmntSubjectChange - NotifyCall). For cases where both statements

are part of an else statement, we manually reverse the condition for AJRefactor to be able to

refactor it.

Figure 4.4: Parent of the subject change and notify method

Below we explain how AJRefactor creates the pointcut and advice for each shape. We also

explain the changes we had to make before refactoring in order for AJRefactor to work.

MethodDecSubjectChange - NotifyCall

The method toggleSelection in figure 4.5 shows an example of this shape. The body of

this method has an if statement before calling fireSelectionChanged(). Before we can use

AJRefactor, we used extract method Java refactoring to extract the if statement into a method.

The new method call will be the subject change we start refactoring with. Method invocation to

fireSelectionChanged() comes at the end of the toggleSelection body, therefore, AJRefac-

tor creates an after advice that executes when toggleSelection get called by an object of type

StandardDrawingView. Before adding the pointcut and advice to the aspect body, AJRefac-

tor creates each one of them as a string. Examining the call to fireSelectionChanged(),

AJRefactor adds an object of type StandardDrawingView to the pointcut arguments as it is the

62

target object when toggleSelection() get called. This object is also attached as the receiver of

fireSelectionChanged() because its expression is void. For other expression cases we perform

the following analysis.

• If the expression is this, AJRefactor replaces this with the target object.

• If the expression is a simple name of a subject field, AJRefactor attaches the object type

StandardDrawingView to the method call.

• If the expression is a simple name of a method argument, AJRefactor adds this argument to

the pointcut declaration and to the args construct of the pointcut declaration.

• If the expression is a simple name of a locally-declared variable. We manually change this

variable by inlining the value that was originally assigned to it before applying AJRefactor.

This value can be one of the following cases:

– a field,

– a method argument,

– a method call where the receiver is a field,

– a method call where the receiver is this or

– a method call where the receiver is a method argument.

– a method call where the receiver is the super expression.

IfExpSubjectChange - NotifyCall

The method in figure 4.6 is an example of this shape. Before refactoring, we extracted the value

of the two local variables into method declarations then we used them in the if expression. The

call to getEventDispatcher().fireCommandExecutableEvent() is the only statement in

then statement body. AJRefactor examines this call and the if expression to calculate pointcut

parameters. The expression in the if statement is an infix expression with an && operator. The

expression of each method invocation is the null expression; AJRefactor adds AbstractCommand

to the pointcut parameters. Also, each call uses an object of type DrawingView (oldView and

newView) which also get added to the pointcut parameters list. The final pointcut is the execution

of viewSelectionChanged() when the if expression evaluates to true where the arguments are

oldView and newView and the target object is of type AbstractCommand. After this pointcut

reaches its join point, the call getEventDispatcher().fireCommandExecutableEvent()

get executed. Figure 4.6 shows viewSelectionChanged before and after refactoring.

63

Figure 4.5: MethodDecSubjectChange - NoifyCall

ThenStmntSubjectChange - NotifyCall

The method removeFromSelection in figure 4.7 is an example of this shape. The state-

ment figure.invalidate() does not change a subject state. We want to advise the call to

fireSelectioChanged(). Yet there is nothing wrong with statements before this call. Selecting

the assignment statement (fSelectionHandles = null;) will cause AJRefactor to consider

this case as there are multiple updates and user involvement is needed to select them. That would

work except that we want to refactor this instance as one that takes the first from of the observer

pattern we handle with AJRefactor (i.e. implemented with the pushing technique), therefore, we

make a small change to make it work as intended. We exchange between (fSelectionHandles =

null) and (figure.invalidate()). Now, we can select (fSelectionHandles = null) as

the change statement and advice the call fireSelectioChanged() with an after advice. Since

this call is within an if statement, AJRefactor creates an if pointcut when removeFromSelection

get executed by an object of type StandardDrawingView. AJRefactor creates this pointcut with

one parameter of type Figure. Figure object is used in the expression of if statement. Figure 4.7

shows the refactoring of the method removeFromSelection.

64

Figure 4.6: IfExpSubjectChange - NotifyCall

4.1.4 Limitations

There are some limitations when refactoring this form of the observer pattern. These limitations

are

• One of the sources that AJRefactor calculates the potential observers from is the list of fields.

When the type of the list of observers field is of parametrized type and the parameter type

is not provided then AJRefactor cannot find these observers and list them when the wizard

pops up. Therefore, we had to manually add the parameter type of the parametrized type

before starting the refactoring with AJRefactor so we can get these observers.

• AJRefactor does not refactor the calls to the methods that adds and removes the observers

from the observers list as part of the refactoring process. Yet these can still be refactored

using AJRefactor as an observer update call as long as they are parented by an if statement

or by a method declaration and if not these must be refactored manually.

• AJRefactor implementation uses the Java searching engine in different steps of the refactoring

process. For example, finding implementors of a type, finding types declaring a method and

65

Figure 4.7: ThenStmntSubjectChange - NotifyCall

finding types referencing a method. Although we used this engine as described in Java API

documentation, there are some cases where this engine does not give all the desired results.

• In the example aspect in figure 4.4, clearSelection method calls fireSelectionCha-

nged. Another method (toggleSelection for example) also calls fireSelectionCha-

nged, AJRefactor would create an aspect for each one of these methods for each observer.

This means when any of these two methods get executed, the method figureSelectionCh-

anged get called. Although valid, AJRefactor, creates two different aspects for each method.

Each aspect has the inter-type declaration of the method figureSelectionChanged. This

causes the AspectJ compiler to complain because there are two declarations of the same

method. One possible solution for this is to create a pointcut for each one of the subjects’

methods in one aspect along with the observer update method. Figure 4.6 shows an example.

In its current version, AJRefactor design does not handle this situation.

Below we explain with examples the refactoring of observer updating calls or the calls to remove

and add observers.

4.2 Refactoring Update Calls

This is the second form of observer pattern we tackle in AJRefactor. When the number of statements

after the selection is more than one or it is one statement of type method call whose declaring type

is not the subject or any of its super types or local types. We display these statements to the

programmer so she can select the one that updates observers. This implementation of observer

pattern also takes three different shapes. These shapes are

66

1 public privileged aspect StandardDrawingViewAspectOfDrawApplication{

3 declare parents : DrawingEditor extends FigureSelectionListener ;

5 public pointcut clearSelectionPointcut (StandardDrawingView sdw) :
call (void clearSelection ()) &&

7 target (sdw) ;

9 after (StandardDrawingView sdw) : clearSelectionPointcut (sdw){
sdw . fireSelectionChanged () ;

11 }

13 public pointcut fireSelectionChangedPointcut (StandardDrawingView sdw) :
call (void DrawingView . toggleSelection (Figure)) &&

15 target (sdw) ;

17 public pointcut removeFromSelectionPointcut (Figure figure , StandardDrawingView sdw) :
execution (void StandardDrawingView . removeFromSelection (Figure)) &&

19 i f (sdw . isFigureSelected (figure)) &&
args (figure) &&

21 target (sdw) ;

23 after (Figure figure , StandardDrawingView sdw) : removeFromSelectionPointcut (figure , sdw){
sdw . fireSelectionChanged () ;

25 }

27 pointcut addToSelectionPointcut (Figure figure , StandardDrawingView sdw) :
execution (void StandardDrawingView . addToSelection (Figure)) &&

29 i f (! sdw . isFigureSelected (figure) && sdw . drawing () . includes (figure)) &&
args (figure) &&

31 target (sdw) ;

33 after (Figure figure , StandardDrawingView sdw) : addToSelectionPointcut (figure , sdw){
sdw . fireSelectionChanged () ;

35 }

37 public void DrawApplet . figureSelectionChanged (DrawingView view) {
setupAttributes () ;

39 }
}

Listing 4.6: DrawApplet Complete Instance Aspect

67

• In this shape the subject change and observers update are parented by the method declaration.

We call this MethodDecSubjectChange - multiInvocations.

• In this shape the subject change and observers update are parented by an if statement. If

expression is the subject change while observers update is in the then statement. We call this

IfExpSubjectChange - multiInvocations.

• In this shape the subject change and observers update are parented by an if statement.

Both subject change and observers update is in the then statement of an if. We call this

ThenStmntSubjectChange - multiInvocations. For the case when both the subject change

statement and the notify call are both parented by an ElseStatement, we reverse the

condition before we can apply AJRefactor as it does not handle the ElseStatement case.

4.2.1 MethodDecSubjectChange - multiInvocations

The method connect in figure 4.8 represents an example of this shape. The method connect

calls addFigureChangeListener(FigureChangeListener) on an fObservedFigure ob-

ject. This call is located just before the call to updateLocation() declared by TextFigure,

therefore, AJRefactor creates a pointcut to capture the call to updateLocation() of type

TextFigure when executed within code of connect of type TextFigure. The expression

(fObservedFigure) of the call fObservedFigure.addFigureChangeListener(this) is

a field declared by TextFigure. AJRefactor adds an Object of type TextFigure to pointcut pa-

rameters. A before advice is created to execute the call fObservedFigure.addFigureChange-

Listener(this) when the pointcut reaches its join point. Figure 4.8 shows the method connect

before and after refactoring.

4.2.2 IfExpSubjectChange - multiInvocations

Figure 4.9 shows an example of this shape. The method change calls figureRequestUpd-

ate(new FigureChangeEvent(this)) when if’s expression evaluates to true. Therefore,

AJRefactor creates an execution pointcut for the method change with an if join point. AJRefactor

adds an object of type GraphicalCompositeFigure to parameters of the pointcut. The method

call figureRequestUpdate(new FigureChangeEvent(this)) is the last statement in then

statement, therefore, we declare an after advice to execute when the pointcut reaches its join point.

Figure 4.9 shows the method change before and after refactoring.

4.2.3 ThenStmntSubjectChange - multiInvocations

Figure 4.10 shows an example of this shape. The two statements clearSelection() and

fDrawing.removeDrawingChangeListener(this) are part of then statement of the first if

68

Figure 4.8: Observer Update: MethodDecSubjectChange - multiInvocations

statement in the method 4.10. We want to execute the invocation to fDrawing.removeDrawing-

ChangeListener(this) which is the last statement of then statement. AJRefactor adds only

one object of type StandardDrawingView to the pointcut parameters. We use this object to

replace this expression. Also it is used to access the call to remove as its expression is a field

declared by StandardDrawingView. AJRefactor defines an after advice that get executed when

the method setDrawing executes on an object of type StandardDrawingView and fDrawing

does not equal to null. Figure 4.10 shows the method setDrawing before and after refactoring.

4.2.4 Limitations

When refactoring the observer update calls there are some cases that AJRefactor could not refactor

due to the following reasons.

• During the refactoring we found cases where the observer update calls were parented by the

try/catch block or by the synchronize block. Current version of AJRefactor does not handle

these situations.

• There are cases when the update calls or even the call to the method that notifies observers

uses a method-local variable. Since AJRefactor does not analyze these cases, we try to make

these situations work as possible. We manually change the code before applying AJRefactor.

This is done by inlining the local variable with the value that was assigned to it.

69

Figure 4.9: Observer Update: IfExpSubjectChange - multiInvocations

4.3 Summary

This chapter explains the different heuristics that AJRefactor can refactor and how AJRefactor

refactors each one of them. In general AJRefactor handles tow different shapes of the observer

pattern. One where the observer is implemented with the pushing technique. The other one is

when observers watches for a change in the subject state and then call their update method. When

creating the advice and the pointcut we divide the method that changes subject state into three

different forms based on the parenting node. Table 4.1 summarizes these shapes. We also point

out the tool limitations and their different sources. The source of these limitations can be one of

the following:

• AJRefactor implementation.

• The way the source code is written and shaped.

• Java API, though it is very limited.

In the next chapter we present our experiment results and evaluation.

70

Figure 4.10: Observer Update: ThenStmntSubjectChange - multiInvocations

Table 4.1: Shape of the Method Changing Subject State by Observer Pattern

Observer Pattern Shape

Implemented with pushing technique MethodDecSubjectChange - NotifyCal

IfExpSubjectChange NotifyCall

ThenStmntSubjectChange - NotifyCall

Observer Update MethodDecSubjectChange - multiInvocations

IfExpSubjectChange - multiInvocations

ThenStmntSubjectChange - multiInvocations

71

Chapter 5

Results and Evaluation

Using case studies we tested AJRefactor on two well-known Java projects: JHotDraw [2] and

Prevayler [3].

JHotDraw is an open source graphical editor. It has been developed with a heavy use of design

patterns including the observer pattern. There are many refactoring projects that used JHotDraw

as a bench mark to perform manual and automatic refactorings. Although there is newer version

of this project, we used 5.3 the last packaged version. This version of JHotDraw was developed

with a total of 398 classes and a total of 40,022 lines of code. JHotDraw was manually refactored

to AspectJ. The refactored version is publicly available for download from [6]. The refactoring

experiment is completely described in [27]. We have used the refactored version as a guide to find

the observer pattern instances and refactor them using our tool.

Prevayler is an open source object persistence library for Java. Prevayler is part of Brekely

Software Distribution (BSD) which is a Unix operating system. We used version 2.5 of Prevayler.

This version was developed with a total of 53 classes and 1745 lines of code. Prevayler is distributed

through Apache Maven. We found some sites supporting developers who use Prevayler library.

We selected these two projects in order to test AJRefactor on Java applications with varying

size. JHotDraw is a medium size project; while Prevalyer is a small one. Furthermore, JHotDraw is

well studied??, and well-accepted decompositions into design patterns are available. This include

the observer pattern. This gives us confidence on the coverage and correctness of AJRefactor.

Prevayler is intended to provide another real-world application, and give metrics for novel systems.

We report our refactoring results based on different criteria to show the value of refactoring the

observer pattern with AJRefactor.

5.1 Results by Instance Shape

In this section we evaluate AJRefactor functionality by reporting the cases that tool was able to

refactor and also the ones could not be refactored. The discussion also involves describing the

reasons behind the tool being unable to refactor some of these cases. We divide the discussion into

two parts based on the main shape of the pattern instance.

72

5.1.1 Observer Pattern Implemented with Pushing Technique

In both projects, we found 70 instances implemented using the pushing technique(66 in JHotDraw

and four in Prevayler). The 66 cases where previously identified by others[27]. Sixty of the 70

instances were successfully refactored by AJRefactor and 10 of them failed to be refactored. We

found two (from JHotDraw) of these 10 could not be refactored because Eclipse Java search engine

could not retrieve the observer update methods. We depend on Eclipse Java searching engine to

find several entities of the pattern. Although we use this engine as described in the documenta-

tion, there are a few situations where this engine does not provide all the expected results. We

have encountered this with two observers: CH.ifa.draw.standard.AbstractCommand and

CH.ifa.draw.standard.AbstractTool that observe the change in the view of the

CH.ifa.draw.application.DrawApplication class. For these two observers, the engine

could not retrieve the observer’s update method. The other eight instances could not be refactored

by AJRefactor for several reasons. These include the following:

• the instance does not take a shape that can be refactored with AJRefactor. For example, the

parenting node of the notify method is a try/catch block.

• there was no subject change that can be selected to trigger the refactoring.

In total, AJRefactor was able to refactor 60 of these instances which represents 85% of the total

cases. This percentage is respectable. This is because this shape is the first shape we considered

when we first started implementing the tool. Hence, we were able to analyze the different cases this

shape might take. Also, we were able to analyze the different implementations the notify method

could take. Overall, this shape is well covered by AJRefactor. Refactoring this shape gives the

most benefit as it completely isolates the observer pattern into the different aspects. It also frees

the observers from needing to update themselves and from the observer interface implementation.

Table 5.1 shows the refactoring results of this type of observer pattern. Results are categorized by

instance shape.

For detailed information about each of these instances, please refer to appendix A.

5.1.2 Refactoring Update Calls

The results we report in table 5.2 includes both the call of the update methods and the call to

the methods that adds and removes the observers. We found in total 45 instances of which 28

instances were successfully refactored with AJRefactor. There were 17 instances which could not

be refactored with AJRefactor for several reasons. These include

• the method does not change a subject field, or

73

Table 5.1: Results of refactoring the observer pattern - The pushing technique

Shape Total Found Refactored by AJRefactor

IfExpSubjectChange - NotifyCall 36 36

ThenStmntSubjectChange - NotifyCall 16 14

MethodDecSubjectChange - NotifyCall 10 10

Others 8 0

Total Instances 70 60

% 85

Table 5.2: Update Calls Refactoring Results

Shape Total Found Refactored by AJRefactor

IfExpSubjectChange - multiInvocations 14 14

ThenStmntSubjectChange - multiInvocations 1 1

MethodDecSubjectChange - multiInvocations 13 13

Others 17 0

Total Instances 45 28

% 62

• the update method is called from the constructor which is not handled by AJRefactor, or

• the instance does not take one of the shapes we explained in chapter 4.

In total, AJRefactor was able to refactor 62% of the cases.

Adding support for these shapes currently not supported by AJRefactor is not hard. It only

requires implementing a visitor to visit these nodes (e.g. try/catch block node and synchronization

block node) and then finding the pattern instance within these node types. Based on the refac-

toring experience of JHotDraw and Prevayler, there was no observer instances within a try/catch

block or within synchronized block in JHotDraw while in Prevayler there was two instances within

synchronized block ad one instance within try/catch block.

5.2 LOC Assessment

There are two different metrics to measure a program’s of code: SLOC and LOC. The SLOC

measures the source lines of code including blank and comment lines. However, the LOC measures

the program’s source lines that represents an executable statement in any particular language.

Blank and comment lines are excluded. We used the Metric tool provided by the CodePro Analytix

Eclipse plug-in [4]. LOC metric in CodePro only exclude comments and blank lines but everything

74

package org . prevayler ;
2

/∗∗
4 ∗ Te l l s the time .

∗/
6 public interface Clock {

8 /∗∗ Te l l s the time .
∗ @return A Date g r e a t e r or equal to the one returned by the l a s t c a l l to t h i s

method . I f the time i s the same as the l a s t c a l l , the SAME Date ob j e c t i s
returned ra the r than a new , equal one .

10 ∗/
public java . util . Date time () ;

12

}

Listing 5.1: LOC Metric in CodePro Analytix plug-in

else is counted as part of the code including lines with single or double curly brackets. For example,

the LOC metric for the Clock class in listing 5.1 is four.

This section evaluates the code size before and after refactoring. The question which rises is

whether refactoring to aspects reduces Java code size or not. In most of the cases, observer pattern

implementation involves many classes. Aspects encapsulate pattern entities by moving them from

their original classes into aspects. This suggests the code size might decrease. To answer this

question we discuss the numbers in table 5.3. The table shows the total number of lines, fields and

methods of JHotDraw and Pevayler before and after the refactoring. These numbers clearly shows

a small reduction in the total number of lines for both projects. The code size of JHotDraw has

reduced by 1.3%, while Prevayler code size decreased by 1.8%.

After the refactoring the number of classes has reduced by 3% in JHotDraw while the classes

remained unchanged in Prevayler. Classes are only deleted when there are no direct references to

them or to any of their methods. As discussed later, reflective access is not be recognized, so this

is a place for potential improvement.

The number of methods has reduced by 5% for JHotDraw while they remain the same for

Prevayler. After the refactoring we move all subject methods that notify, add and remove observers

and observers’ update methods to be part of the aspect code. Now, the classes are oblivious to

the observation relationship and are more focus on their original task. Overall, we see that aspect-

oriented refactoring has decreased the code size by a small percentage.

Table 5.3 also shows the code size including aspects. These results are reported by the column

total for both projects. Similar to any application, the LOC metric does not include library classes

included in the project class path, and so the total excludes the abstract aspects. The reason is

these aspects are now considered a library aspects that can be referenced and extended by any

aspect to be part of the observer relationship represented by that abstract aspect. The aspect

column represents the different metrics for the created aspects rustling from the refactoring. It

75

is clear that LOC with aspects has increased as well as the number of methods. However, the

complexity of the existing code is improved, as the DSM analysis shows below.

Table 5.3: JHotDraw and Prevayler Metrics

Application JHotDraw Prevayler

Metric Before After Aspect Total Before After Aspects Total

LOC 14,611 14,425 1,245 15,670 1,745 1,713 108 1821

Classes/Aspects 273 266 26 292 53 53 6 59

Fields 489 471 0 471 107 107 0 107

Methods 2,034 1,942 76 2018 199 199 1 200

5.3 Modularity Assessment

To assess code modularity of the classes before and after the refactoring, we analyze the Dependency

Structure Matrix (DSM). We used The analyze Dependency Matrix tool from the IntelliJ IDEA

integrated development environment [7]. Below we evaluate code modularity for JHotDraw and

Prevayler.

5.3.1 JHotDraw

Figure 5.1 is the DSM of JHotDraw in its original version. The number in each cell represents

the column dependency on the row. Types presented are those involved in the pattern refactoring.

There is a tight coupling between different classes of the project. Part of this dependency is related

to the observer pattern. After refactoring the observer pattern, DSM now looks like the one shown

in 5.2. The black boxes and the red circles in both figures highlights the most notable dependencies

related to the different observer instances and how they change after the refactoring.

After aspect-refactoring modularization of the pieces of code related to the observer pattern,

there is a dramatic change in the DSM. This is specially true for the types from the framework

package. Before refactoring the pattern there was a tight coupling between these types but after

refactoring this coupling has loosened. Some of these types represent the different interfaces that

observers implement to be able to update themselves when their target subject has changed its

state.

Before refactoring into aspects, there is a great dependency on the type FigureChangeList-

ener but after the refactoring this coupling has completely eliminated except for the following

• the dependency of the type FigureChangeEventMulticaster on FigureChangeLis-

tener has reduce by one

76

• the type AbstractFigure still has two dependencies on FigureChangeListener

The coupling between the observer classes and their observer interface ViewChangeListener

has completely eliminated except for the type JavaDrawViewer it remained unchanged.

There is a tight coupling between the classes DrawingView, StandardDrawingView, and

StandardDrawing and DrawingChangeListener before the refactoring. After the refactoring

this coupling has been almost eliminated. The same can be said about the coupling between the

classes UndoableCommand, AbstractCommand, and CommandMenu on their observer interface

CommandListener. This coupling has almost eliminated.

Also, there is a great dependency on DrawingEditor and DrawingView before the refactor-

ing but after the refactoring into aspects many of these dependencies has loosened. Another notable

tight coupling can be seen between the types ToolButton, AbstractTool, and UndoableTool

on their observer interface ToolListener. After the refactoring this coupling has almost elimi-

nated. As a result, the classes no longer depend on the other classes that implements the observer

pattern.

Figure 5.1: DSM - JHotDraw

77

Figure 5.2: DSM - AJHotDraw

5.3.2 Prevayler

For the Prevayler, we found few instances of the observer pattern(three instances of the observer

update shape and four instances from the pushing shape). Figure 5.3 shows the DSM for the

classes where we found the pattern instances before and after the refactoring. Before aspect-

refactoring modularization of the pattern instances, we see a tight coupling between the the

CentralPublisher, AbstractPublisher, POBox, PrevalentSystemGuard, Transact-

ionTimestamp and TransactionSubscriber. The first four types depend on the last two. A

great deal of this dependency is caused by these types having to implement the observation func-

tionality. For the classes AbstractPublisher and PrevalentSystemGuard, this coupling

disappeared completely while it has reduced by one for POBox. Overall, aspect modularization of

the observer pattern loosens the coupling between the types implementing the pattern.

Loose coupling is a sign of a well-designed and a well-structured software system. Loose coupling

makes system maintenance much easier even over the evolved versions of the system.

The DSM of the entire Prevayler project can be found in appendix B.

78

Figure 5.3: DSM of Prevayler

5.4 Time Assessment

As we mentioned in chapter 4, AJRefactor handles two kinds of observer pattern. Here we discuss

the time required to refactor these two variations manually and with AJRefactor. We have used a

wall-clock to track this time, beginning from the moment we see a pattern instance. For the manual

refactoring most of the time was thinking versus typing. In both cases, the programmer needs to

be aware of the entities involved in the refactoring. This includes the method that changes the

subject state. Also, the different observers so he can correctly select them when AJRefactor pops

up the wizard. When selecting wrong observers, AJRefactor is able to detect that this type is not

eligible observer. Therefore, AJRefactor won’t perform any changes to that type and no aspect will

be created for it.

5.4.1 Observer Pattern Implemented with Pushing Technique

Figure 5.4 shows the time taken when refactoring the pattern instances implemented following the

pushing technique to aspects. These instances encompass all of the occurrences, not just a subset.

We measured the time in minutes. Each type in the Y-axis represents a completely observer

instance. This means the subject and all of its observers and the different methods that changes

the subject state and notifies the observers. As shown in the chart, AJRefactor could not refactor

79

0" 20" 40" 60" 80" 100" 120" 140" 160" 180" 200"

CH.ifa.draw.standard.StandardDrawingView"

CH.ifa.draw.standard.AbstractCommand"

CH.ifa.draw.standard.AbstractTool"

CH.ifa.draw.standard.AbstractFigure"

CH.ifa.draw.applicaCon.DrawApplicaCon"

CH.ifa.draw.standard.StandardDrawing"

org.prevayler.implementaCon.publishing.CentralPublisher"

org.prevayler.foundaCon.DurableInputStream"

AJRefactor"

Manual"

Figure 5.4: Refactoring Time - Pushing Technique

some of them for reasons we discussed in section 5.1.

The time consumed when manually refactoring observer pattern to aspects depends on the

instance and the number of observers. Two-thirds of this time was dedicated to thinking wheres the

other third was dedicated to typing. For example, when we refactored CH.ifa.draw.applicat-

ion.DrawApplication it took around 23 minutes as this type has only two observers. These two

observe two different methods. The largest instances were CH.ifa.draw.standard.Abstract-

Figure with nine different observers and CH.ifa.draw.standard.StandardDrawingView

with six different observers. It took 176 (2.9 hours) and 163 minutes (2.7 hours) respectively to

manually refactor them while it took around 8 and 7 minutes respectively to automatically refactor

them with AJRefactor. The time it takes to refactor these instances using AJRefactor also involves

a human thinking. The reported time is mostly thinking versus this taken by the AJRefactor

computations.

Comparing the manual refactoring experiment to the one performed with AJRefactor, we noticed

that the time it takes to automatically refactor an instance represents on average 7% of the total

time it takes to manually refactor the same instance. This percentage is very small which suggests

there is a big time saving when refactoring with AJRefactor.

80

5.4.2 Refactoring Update Calls

Figure 5.5, shows the time in seconds for the update calls found in the different methods represented

by the Y axis. When analyzing this time we found that on average it took 62 seconds to refactor

observers’ update calls with AJRefactor while on average it took three and a half minutes (215

seconds) to manually refactor these calls.

If we look at the total time it takes to refactor these instances as a whole, it takes 29 minutes

automatically and 98 minutes manually. We see the automatic time is nearly the third of the time

when manually refactoring these instances. Hence, cutting the refactoring time by the third. This

considerably saves the programmer a good amount of time.

These results are for the instances that we were able to refactor with AJRefactor. The total

time it took to manually refactor the ones that AJRefactor was not able to automatically refactor

is 68 minutes. Manually refactoring these instances takes on average the same time it takes to

manually refactor those that AJRefactor was able to refactor. This time is around four minutes.

Since these instances still have to be manually refactored as they are not covered by AJRefactor,

it is reasonable to compare the total refactoring time for all instances found when AJRefactor was

used and when not used. That is a total of 166 minutes for a complete manual refactoring and

97 minutes for partially manual and partially semi-automatic. Again the time shows that we were

able to cut the refactoring time by the third.

5.5 Reflection and Refactoring

Java reflection allows an executing Java program to examine and modify itself during the runtime.

By first obtaining the java.lang.Class object, information about the class super type, the

different fields and methods it has can be obtained. Using reflection might hinder the refactored

code correctness. Part of refactoring the observer pattern involves deleting some fields and methods

from the subject and observer classes. For example, observers field, the method that informs the

observer of a change in the subject state, methods that manipulate observers, and the method that

observers use to update their state. Although we delete these different elements from the subject and

observer classes after ensuring they are not referenced elsewhere in the program, there are situations

where deleting these entities might break the code correctness after refactoring. AJRefactor uses

Eclipse searching engine to find references to any of these methods but unfortunately it cannot

detect those used in reflection. Listing 5.2 shows an example. The code tries to get the method

notifyObservers() from the class MySubject. Searching for references to this method does

not include those used in reflection. Hence, deleting the method breaks code correctness. This

special situation requires programmer awareness when refactoring a pattern in a program that uses

reflection to make sure the program behaves the same after refactoring.

81

0"

50"

100"

150"

200"

250"

300"

350"

400"

450"

(2)
"pu
bli
c"v
oid
"co
nn
ec
t(F
igu
re
)"

pu
bli
c"v
oid
"ad
dN
od
e(F
igu
re
"no
de
)"

pu
bli
c"v
oid
"re
ad
Ob
jec
t(O
bje
ctI
np
ut
Str
ea
m)
"

(1)
"pu
bli
c"v
oid
"re
ad
(St
or
ab
leI
np
ut
"dr
)"

pu
bli
c"v
oid
"de
co
rat
e(F
igu
re
"fig
ur
e)"

pu
bli
c"v
oid
"se
tE
na
ble
d(
bo
ole
an
"ne
wI
sE
na
ble
d)
"

pu
bli
c"s
yn
ch
ro
niz
ed
"Fi
gu
re
"or
ph
an
(Fi
gu
re
"fig
ur
e)"

pu
bli
c"v
oid
"se
tD
raw

ing
(D
raw

ing
)"

pu
bli
c"v
oid
"di
sp
os
e()
"

pu
bli
c"b
oo
lea
n"i
ma
ge
Up
da
te
(Im
ag
e,"
int
,"in
t,"
int
,"in
t,"
int
)"

(1)
"pu
bli
c"v
oid
"co
nn
ec
t(F
igu
re
)"

pu
bli
c"v
oid
"se
tD
raw

ing
(D
raw

ing
)"

pu
bli
c"v
oid
"ex
ec
ut
e()
"

pu
bli
c"v
oid
"di
sco
nn
ec
tE
nd
()"

(1
)"p
ub
lic
"vo
id"
ex
ec
ut
e()
"

pu
bli
c"s
yn
ch
ro
niz
ed
"Fi
gu
re
"re
pla
ce
(Fi
gu
re
","F
igu
re
)"

pu
bli
c"v
oid
"co
nn
ec
tE
nd
(C
on
ne
cto
r"n
ew
En
dC
on
ne
cto
r)"

(2)
"pu
bli
c"v
oid
"re
lea
se
()"

pr
iva
te
"sy
nc
hr
on
ize
d"T
ur
n"d
ie(
)"

pr
iva
te
"sy
nc
hr
on
ize
d"v
oid
"al
low

()"

pu
bli
c"v
oid
"re
lea
se
()"

pr
ot
ec
te
d"v
oid
"ad
dM
en
uIt
em
(C
om
ma
nd
,"JM

en
uIt
em
)"

pr
ot
ec
te
d"v
oid
"ch
an
ge
()"

pu
bli
c"v
oid
"ex
ec
ut
e()
"

pu
bli
c"v
oid
"co
nn
ec
tSt
ar
t(L
ine
Co
nn
ec
Po
n"c
on
ne
cP
on
)"

pu
bli
c"F
igu
re
"ad
d(
Fig
ur
e"fi
gu
re
)"

(1)
"pu
bli
c"v
oid
"re
lea
se
()"

(2
)"p
ub
lic
"vo
id"
ex
ec
ut
e()
"

Manual" AJRefactor"

Figure 5.5: Refactoring Time - Observers Update Methods

82

1 try {

Class clazz = MySubject . class ;

3 Method updateMethod = clazz . getClass () . getMethod (” not i f yObse rve r s ” , null) ;

} catch (Exception ex) {

5 // handle except ion case

}

Listing 5.2: Referencing Subject Methods through Reflection

5.6 Refactoring and Program Correctness

Based on our experience with both manual and semi-automatic refactoring of JHotDraw and Pre-

vayler, we found that manual refactoring not only slower but also more error prone. Hence, auto-

matic refactoring is more reliable. Although automatic refactoring is not 100% error free, one can

anticipate the situations where program correctness might be at risk. AJRefactor helps with this

by providing the following features

• Previewing the change AJRefactor features a change preview option for the classes effected

by the refactoring before the refactoring can take place. Previewing these changes helps the

programmer decide whether to accept these changes or just cancel the whole refactoring if

there is a risk of breaking the program correctness and changing its behaviour.

• Undoing the change The programmer has previewed the changes and ensured the program

behaves the same. After accepting the changes and completing the refactoring, there were

errors that could not be anticipated before the refactoring. The simplest fix in this situation

is to undo the whole refactoring and reverse the changes.

This is not the case for manual refactorings as errors can be easily introduced hindering program

correctness with no chance to preview the changes before applying them or to undo them correctly

after being applied.

5.7 AspectJ Performance Overhead

AspectJ community believes that code generated by AspectJ has insignificant performance over-

head. Dufour et.al. [13] performed a study on the dynamic behaviour of eight different AspectJ

applications. The performance of four of these projects confirmed the AspectJ community belief

while three of them showed extremely high overhead, though the performance was comparing the

base program (original Java program) to its equivalent aspect program. Depending on what and

how AspectJ constructs being used the performance might get affected. The following gives some

insights into the constructs that might impose an extra overhead.

83

• Inter-type declarations impose a very little overhead unless used to introduce new construc-

tors.

• The cflow and cflowbelow constructs also increase the overhead. This is because AspectJ

compiler (ajc) internal implementation of these constructs uses a stack data structure to track

the matched join points. Bearing in mind the stack implementation has no equivalent in the

base program.

• An around advice when it applies to itself. AspectJ has two different implementations to

handle the call to proceed() either by inlining the code of the matched method or by using a

closure. Closure is a function with an environment that allows this function to access all local

variables declared in the scope where it was created. Closures are very expensive. Declaring

an around advice that applies to itself enforces ajc to use closures strategy instead of inlining

strategy which is more effective.

• Pointcuts that are very generic also impose a high performance overhead. Limiting the scope

of the pointcut to match specific join points reduces the overhead.

• ajc tries to match join points based on the static context as possible but for some pointcuts

such as if a runtime test still need to be performed which degrades the performance.

AJRefactor uses inter-type declarations to introduce methods and fields but not constructors.

These aspects only employ after and before advice. The pointcut that our tool uses to match join

points are call, execution, if, target, and withincode. Except for the if pointcut

these pointcuts impose very little or no overhead. Hence, this leads us to believe there a little

overhead imposed when introducing aspects to JHotDraw and Prevayler projects using our tool.

5.8 Multithreading and Refactoring

Java allows an application to handle two events at the same time. Each event has its own execution

path. This is known as multithreading. There are two ways to implement threads in Java:

• by extending the java.lang.Thread class, or

• by implementing the java.lang.Runnable interface

Each thread needs to be started for it to run. This means calling the start() method on the

thread object. The logic that the thread runs when started resides in the public void run()

method that the thread should implement regardless of the way followed to implement the thread.

The class MyThread in listing 5.3 implements the Runnable interface and implements the run

method. This method prints the message associated with the MyThread object. In the main

84

class MyThread implements Runnable {
2 private String msg ;

private Thread t ;
4

public MyThread (String s) {
6 msg = s ;

t = new Thread (this) ;
8 t . start () ;

}
10

public Thread getThread () { return t ; }
12

public void run () { System . out . println (msg) ; }
14

public void synchronized synchronizedMethod () { . . . }
16

public stat ic void main (String args []) {
18 new MyThread (”He l lo ”) ;

new MyThread (” Synchronized ”) ;
20 new MyThread (”World”) ;

}
22 }

Listing 5.3: Thread Example

method three instances of the MyThread are created. Each instance has its own thread which get

started after being created. Starting each thread means executing the run method which inturn

prints the message associated with the currently executing MyThread object.

There are cases when two or more threads require access to a shared resource. Java provides

a mechanism to synchronize the access to the shared resource. In non-synchronized multithreaded

applications multiple threads might modify the shared resource at the same time which leaves the

data in an inconsistent state. A thread needs to acquire the lock on the object associated with the

shared resource. If more than one object needs to acquire the object lock, the system makes sure

that only one thread acquire the object lock at a time. The thread holds the object lock till it

completes the execution either normally or by throwing uncaught exception. There are two ways

in which a synchronization can be implemented.

• executing a synchronized instance method of an object. Method synchronizedMethod in

listing 5.3 shows an example.

• executing the body of a synchronized block on which an object synchronizes. The method

subscribe in figure 5.6 shows an example

One question might arise in this situation is whether the refactoring would affect these running

threads. Will they still run as intended? For all kinds of refactorings, a rule of thumb is to maintain

program’s correctness. Refactoring with AJRefactor is no exception. When the advised code is

supposed to run as part of a synchronized method or block, the advice code will still only execute

when the program reaches these join points defined in the pointcut. In case of a synchronized

method, the refactoring will maintain the synchronized keyword; the pointcut and the advice will

85

be created as any other non-synchronized method. Also, in the case of the synchronized block, the

refactoring will maintain the synchronized block and only the action that the advice executes when

the program reaches its join point is moved into the advice part of the aspect. This means aspects

maintains the execution path of any code resides in a synchronized method or a synchronized

block. Figure 5.6 shows an example. The method subscribe updates the journal as part

of a synchronized block accessed by multiple threads. Now, when we advise this invocation with

an after advice, this invocation will still be executed as part of the synchronized block when the

subscribePointcut reaches its join point. The synchronized block remains untouched even

after the refactoring. Overall, aspect-refactoring of an observer pattern that is part of a separate

thread does not break the way these processes are supposed to be executed.

As we mentioned in chapter 4, AJRefactor currently does not recognize neither refactors situ-

ations where the subject change and the invocation of the method that notifies the observers are

contained within a synchronization block.

Figure 5.6: Example of Synchronized block

5.9 Volatile Variables and Refactoring

Java volatile keyword can only be used with variables. Declaring a variable as volatile tells threads

not cache the variable and access its value from the main memory instead. For non-volatile variables,

Java caches a copy of the variable in a register to enhance performance. If multiple threads modify

this variable at the same time, each would see its own copy of the variable. One of the solutions

86

public c lass DelayWrite implements Runnable {
2 private volat i le String str ;

4 void setStr (String str) {
this . str = str ;

6 }

8 public void run () {
System . out . println (”Thread ” + Thread . currentThread () . getName () + ” i s running ”) ;

10 while (str == null)
;

12 System . out . println (str) ;
System . out . println (”Thread ” + Thread . currentThread () . getName () + ” terminated ”) ;

14 }

16 public stat ic void main (String [] args) {
DelayWrite delay = new DelayWrite () ;

18 new Thread (delay , ”A”) . start () ;
try {

20 Thread . sleep (1000) ;
new Thread (delay , ”B”) . start () ;

22 } catch (InterruptedException e) {
e . printStackTrace () ;

24 }
delay . setStr (”He l lo world ! ! ”) ;

26 }
}

Listing 5.4: Volatile Variable in Multithreaded Program

to this issue would be to define the variable as volatile ensuring the most concurrent value of the

volatile variable is visible to other threads. Listing 5.4 illustrates the use of volatile keyword in

multi threaded program. Without declaring the String variable str as volatile, threads A and B

will run forever because they won’t be able to see the change in the value of str. Using volatile

guarantees that the two threads will terminate after the str value being set to the string "Hello

world".

In the context of the observer pattern it is possible for this pattern to be used in multi threaded

application. This means the observers list might be declared as volatile. This represents no issue

when refactoring the pattern using AJRefactor. This is because the refactoring maintains variable

declaration including its access modifiers. The filed fSelectionListeners in listing 5.5 is

declared in the subject as volatile. When refactoring the pattern the field is moved into the aspect

where its declaration as volatile variable maintained.

1 public c lass StandardDrawingView{

private volat i le Vector<FigureSelectionListener> fSelectionListeners =

3 new Vector<FigureSelectionListener>() ;

. . . }

5 public aspect StandardDrawingViewProtocol{

private volat i le Vector<FigureSelectionListener> StandardDrawingView .

fSelectionListeners = new Vector<FigureSelectionListener>() ;

7 . . . }

Listing 5.5: Declaring Observers List as Volatile

87

1 public @interface MyAnnotation{
String doSomething () ;

3 }

5 @MyAnnotation (”What to do”)
public void foo () { }

Listing 5.6: User Defined Annotation Declaration

5.10 Java Annotations

Annotations provides information about the program but it does not affect the semantic of the

program or how it suppose to run. Annotations has many uses, some of which include providing

information to the compiler. These information helps the compiler detect errors or suppress warn-

ings. Annotations can be used to annotate the declarations of program elements. For example,

types , methods, fields, packages, local variables. The annotation declaration start with an sign

followed by interface keyword followed by the annotation type name and a pair of brackets.

The body of an annotation types can be empty, have a single element, or have multiple elements.

An element of type MethodDeclaration cannot have parameters or throw declarations. The

method return type must be one of the following types.

• primitive types (e.g. int, double, char)

• enum

• String

• an array of any of the previous types

The code listing below shows the declaration of a MyAnnotation annotation type and how we can

use to annotate a foo method declaration. Since the annotation is declared with a single element,

we can omit the element name or use the value keyword instead. The annotation of the foo

method takes a single value which is the string ”What to do”.

There are mainly two types of annotation:

• Simple type annotations. These annotations are provided by Java Development Tool Kit

(JDK) and are of three types.

– Override: using this annotation type tells the compiler that this method should override

a method from a super class. The compiler will detect an error if the method name was

misspelled.

– Deprecated: annotating a method with this annotation type helps the compiler detect

an error if the deprecated method was reference else where in the program.

88

– Suppresswarnings: tells the compiler to suppress a warning

• Annotation of annotations. These are used to annotate an annotation type and are of four

types.

– Target: states the element type that the annotation applies on. For example,

∗ @Target(ElementType.TYPE) annotates a type and its laments

∗ @Target(ElementType.FIELD) annotates a field.

∗ Other targets are method, parameter, constructor, local variable and an annotation

type.

– Retention: this annotation is used to state for how long and where an annotation will

be retained which can be one of three types. Theses are

∗ RetentionPolicy.SOURCE states that the annotation is retained at the source

level and is ignored by the compiler.

∗ RetentionPolicy.CLASS states that the annotation is retained by the compiler

but is ignored by the Java virtual machine.

∗ RetentionPolicy.RUNTIME states that the annotation is retained by the Java

virtual machine at runtime.

– Documented: states that annotations should be documented by javadoc tool which pro-

duces HTML documents for types.

– Inherited: types annotated with this annotation means that subtypes inherits all the

annotations from their super type.

When Java source code is compiled, annotations are processed by compilers plug-ins known

as annotation processors. For example, Java 5 compiler has an annotation processing tool called

APT. This tools produces additional Java source files and .class files. Java source files can be also

compiled by Java compiler (javac). The apt tools is standard part of Java 6. This means no need

for it to be used separately.

Since the annotation information are only available at the class files after the source code get

compiled, it is possible for the observer pattern components to be part of an annotation declaration.

For example, It is possible to use annotation to declare the the method that notifies the observer of

subject state change. AJRefactor analyses the AST of the source code. In case of annotations, these

information is not available to AJRefactor. Hence, pattern components declared using annotations

are not applicable to our tool

89

5.11 Summary

Refactoring observer pattern instances to aspects improves programs modularity making them

more focus on their original task. This modularity brings a few other enhances to the code. These

includes

• reducing code size (LOC)

• reducing the total number of methods and classes

• loosening the coupling and decreasing the dependency between types involved in the pattern

AJRefactor provides an automatic support to refactor the observer pattern. Refactoring two Java

applications JHotDraw and Prevayler with AJRefactor not only showed all the aforementioned

benefits, but also speeds up the refactoring process. We also discuss the some of the features and

technologies provided by and whether our tool to handle them in special way. Also, we discussed

whether refactoring hinders the correctness of the program in general an in special situations such as

when the pattern is implemented in a multithreaded application or when the observer or observers

list is declared as volatile.

90

Chapter 6

Summary

This chapter summarizes our work relating to providing a tool support to automatically refactor

the observer pattern to aspects. We begin by giving a brief overview of the problem and our solution

to it. Then, we point out the contribution of our work along with the results of applying our tool

on two Java applications: JHotDraw and Prevayler. Finally, we explain our future work.

6.1 Summary

Java code can improve modularization using aspects for situations where existing modularization

techniques is not sufficient. Some of these situations include the implementation of design patterns.

Implementing design patterns in Java makes programs more complex as the participating classes

have to play more than one role at a time. This makes programs less readable and more difficult

to maintain. Refactoring Java programs to aspects improves their modularity. AspectJ constructs

provide a new opportunity to break programs down into modules. This is specially true when

refactoring design patterns to aspects. Therefore, we contribute an Eclipse plug-in that semi-

automates the refactoring of the subject pattern from Java to AspectJ. Refactoring the observer

pattern into aspects allows the pattern participants to be free of any pattern code, easy to read

and easy to maintain. Also, it permits the pattern participants to play more than one role at a

time. Furthermore, it allows the participating classes to take part in multiple patterns.

Our plug-in AJRefactor refactors two different shapes of observer pattern: one where the pattern

implementation follows the pushing technique and the other is where the observer calls its update

method after the subject changes its state. For each case we handle three situations based on the

location of subject notify call or observers update calls i.e. based on the parenting node. These

situations are

• subject change and the call to subject notify or observer’s update method are directly parented

by the method declaration that hosts them, or

• subject change is the expression of an if statement while the call to subject notify or observer’s

update is in the then statement of this if, or

91

• subject change and the call to subject notify or observer’s update method are both parented

by a then statement of an if.

AJRefactor uses the Eclipse Java searching engine to find observer pattern elements. Unfor-

tunately, this engine does not recognize AspectJ constructs. This means our tool applicability is

limited to Java classes. Hence, it currently cannot be applied to AspectJ projects; i.e. it cannot

perform AspectJ to AspectJ refactorings until AspectJ.org[1] extends the search engine. This is a

place for AJRefactor improvement.

6.2 Contribution

The intended contribution of this thesis is to determine the value of refactoring Java code into

aspects for appropriate situations where Java modularization methods are not sufficient. Our

contribution to show these benefits includes the following.

• An Eclipse plug-in, AJRefactor, to automatically refactor the observer pattern using case

studies. AJRefactor refactors mainly two shapes of the pattern. One that is implemented

with the pushing technique and the other one is when the observer calls its update method

after a subject changes its state.

• A measurement of the total instances AJRefactor was able to refactor. AJRefactor was able to

refactor 85% of the pattern cases implemented with the pushing technique found in JHotDraw

and Prevayler Java applications. In the other hand, AJRefactor was able to refactor 62% of

the pattern cases where observers’ call their update methods.

• A complete manual and semi-automatic refactorings of two Java applications with a mea-

surement of the time it took in both cases. These applications vary in their size; One small

and the other is medium. On average the time it takes to refactor observer instances with

AJRefactor is 7% of the total time it takes to refactor the same instances manually. This

shows there is a big time savings when automatically refactoring a pattern instance.

• A measurement of the Dependency Structure Matrix for each project before and after the

refactoring. After refactoring to aspects, the dependency between types that are part of the

observer pattern was loosened if not completely eliminated.

• A measurement of the number of lines of code before and after the refactoring. There was a

reduction in the number of lines of code by 1.27% after refactoring JHotDraw and by 1.8%

after refactoring Prevayler. Also, the number of methods has reduced by 5% in JHotDraw

while the number of methods has remained the same for Prevayler. Finally, the number of

types has reduced by 3% in JHotDraw while this number remained unchanged in Prevayler.

92

6.3 Future Work

In its current state, AJRefactor refactors only one pattern which is the observer pattern. Although,

we tried to cover many common shapes that an observer instance could take, we found there is still

some shapes that AJRefactor need to cover. Below, we outline our future work.

1. Adding more coverage to the cases that AJRefactor can refactor. Currently, AJRefactor

refactors notify call or observer update calls where the parent node either a method declaration

or an if statement. We would like to cover the cases below.

• when the update call is contained within a try/catch block, or

• when the notify call or an observer update call is contained within a synchronization

block, or

• when the observer update call is made from a class constructor, or

• when the update call is parented by any of the loop blocks i.e. while, for, do-while, or

enhanced for loop.

2. Modularity issues still persist when implementing other design patterns such as iterator,

memento and strategy. Refactoring these patterns into aspects is one way to improve Java

code modularity. Therefore, we would like to expand the tool functionality by adding the

support to refactor more patterns.

3. Refactoring the calls to add and remove observer methods as part of the refactoring process.

93

References

[1] AspectJ Technology Project. http://www.eclipse.org/aspectj/.

[2] JHotDraw as Open-Source Project. http://www.jhotdraw.org/.

[3] Prevayler. http://prevayler.org/.

[4] CodePro AnalytiX. http://code.google.com/javadevtools/codepro
/doc/features/metrics/metrics.html, Nov 2011.

[5] JastAddJRefactoring. http://jastadd.org, March 2011.

[6] AJHotDraw. http://ajhotdraw.sourceforge.net/, June 2012.

[7] IntelliJ IDEA. http://www.jetbrains.com/idea/, April 2012.

[8] Roberta Arcoverde, Patŕıcia Lustosa, Adeline Sousa, Sérgio Soares, and Paulo Borba. AJaTS
AspectJ Transformation System: Tool Support for Aspect-Oriented Development and Refac-
toring. XXI Brazilian Symposium on Software Engineering, 2007.

[9] Dave Binkley, Mariano Ceccato, Mark Harman, Filippo Ricca, and Paolo Tonella. Automated
Refactoring of Object Oriented Code into Aspects. In ICSM, pages 27–36, 2005.

[10] David Binkley, Mariano Ceccato, Mark Harman, Filippo Ricca, and Paolo Tonella. Tool-
Supported Refactoring of Existing Object-Oriented Code into Aspect. IEEE Software,
32(9):698–717, September 2006.

[11] Paulo Borba and Sergio Soare. Refactoring and Code Generation Tools for AspectJ. In Tools
for Aspect-Oriented Software Development, November 2002.

[12] Mariano Ceccato. Migrating Object Oriented code to Aspect Oriented Programming. PhD
thesis, University of Trento, 2000.

[13] Bruno Dufour, Christopher Goard, Laurie Hendren, Oege De Moor, Ganesh Sittampalam,
and Clark Verbrugge. Measuring the Dynamic Behaviour of AspectJ Programs. In In Conf.
Object-Oriented Programming Systems, Languages, and Applications, pages 150–169, 2004.

[14] Eclipse. Eclipse Documentation. http://help.eclipse.org/indigo/index.jsp.

[15] Torbjörn Ekman, Max Schäfer, and Mathieu Verbaere. Refactoring is not (yet) about trans-
formation. In Proceedings of the 2nd Workshop on Refactoring Tools, pages 1–5, 2008.

[16] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refactoring
Improving The Design Of Existing Code. Addison Wesley, 1999.

[17] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[18] Irum Iqbal Godil. An Open Infrastructure for Refactoring Aspects. PhD thesis, University of
Torno, 2006.

94

[19] William G. Griswold, Yoshikiyo Kato, and Jimmy J. Yuan. Aspect Browser: Tool Support for
Managing Dispersed Aspects. In First Workshop on Multi-Dimensional Separation of Concerns
in Object-oriented Systems, volume 99, pages 1–6, 1999.

[20] Jan Hannemann and Gregor Kiczales. Design Pattern Implementation in Java and AspectJ.
In OOPSLA, volume 37, pages 161–173, November 2002.

[21] Raffi Khatchadourian, Phil Greenwood, Awais Rashid, and Guoqing Xu. Pointcut Rejuvena-
tion: Recovering Pointcut Expressions in Evolving. In ASE, pages 575–579, 2009.

[22] Thomas Kuhn and Olivier Thomann. Abstract syn-
tax tree. http://www.eclipse.org/articles/article.php?file=Article-
JavaCodeManipulation AST/index.html, November 2006.

[23] Ramnivas Laddad. AspectJ in Action. Manning Publications, Greenwich, CT, 2003.

[24] Rajeev Motwani Lawrence Page, Sergey Brin and Terry Winograd. The PageRank Citation
Ranking: Bringing Order to the Web. Technical report, Stanford InfoLab, 1999.

[25] Marius Marin. Identifying Crosscutting Concerns Using Fan-in Analysis. TOSEM, 17(1):1–37,
December 2007.

[26] Marius Marin, Leon Moonen, and Arie van Deursen. An Approach to Aspect Refactoring
Based on Crosscutting Concern Types. In MACS ’05 Proceedings of the 2005 workshop on
Modeling and analysis of concerns in software, volume 30, pages 1–5, July 2005.

[27] Marius Marin, Leon Moonen, and Arie van Deursen. An Integrated Crosscutting Concern
Migration Strategy and its Application to JHotDraw. In Proceedings of the Seventh IEEE
International Working Conference on Source Code Analysis and Manipulation, pages 101–110,
2007.

[28] Miguel Pessoa Monteiro. Catalogue of Refactorings for AspectJ. Technical report, Minho
University, December 2004.

[29] Ricardo Nusca. AspectRefactor. http://sourceforge.net/projects/aspectrefactor, June 2006.

[30] Martin P. Robillard and Gail C. Murphy. Representing Concerns in Source Code. TOSEM,
16(1):1–38, 2007.

[31] Martin P. Robillard and Frederic WeigandWarr. ConcernMapper: Simple ViewBased Sepa-
ration of Scattered Concerns. In OOPSLA workshop on Eclipse technology eXchange, pages
65–69, 2005.

[32] Shimon Rura and Barbara Lerner. A Basis for AspectJ Refactoring. 2004.

[33] Macneil Shonle, Jonathan Neddenriep, and William Griswold. AspectBrowser for Eclipse: A
Case Study in Plug-in Retargeting. In OOPSLA workshop on eclipse technology eXchange,
pages 78–82, 2004.

[34] Paolo Tonella and Mariano Ceccato. Aspect Mining through the Formal Concept Analysis of
Execution Traces. In 11th Working Conference on Reverse Engineering, pages 112–121, 2004.

[35] Jan Wloka. Aspect-aware Refactoring tool support. Third ACM Workshop on Refactoring
Tools, October 2009.

[36] Charles Zhang and Hans-Arno Jacobsen. Efficiently Mining Crosscutting Concerns through
RandomWalks. In AOSD, pages 226–238, 2007.

95

Appendix A

Observer Pattern Instances

This appendix shows the the observer pattern instances we have refactored in details along with
those ones we could not refactor.

A.1 Observer Pattern Implemented with Pushing Technique

Table A.1 shows the details of each of the observer instances we found in both projects JHotDraw
and Prevayler. Dark grey highlighted cells are this ones that AJRefactor was not able to refactor.

A.2 Refactoring Update Calls

Table A.2 shows the details of the observers’ update calls found in both applications JHotDraw
and Prevayler. Dark grey highlighted cells are this ones that AJRefactor was not able to refactor.

96

SR# Subject Observers Subject Interface Changing Method ِِِChanging Method Shape Observer Interface
1 CH.ifa.draw.standard.StandardDrawingView CH.ifa.draw.standard.AbstractCommand CH.ifa.draw.framework.DrawingView public void clearSelection() MethodDecSubjectChange121NoifyCall CH.ifa.draw.framework.FigureSelectionListener
2 CH.ifa.draw.standard.StandardDrawingView CH.ifa.draw.samples.javadraw.JavaDrawViewer CH.ifa.draw.framework.DrawingView public void clearSelection() MethodDecSubjectChange121NoifyCall CH.ifa.draw.framework.DrawingEditor
3 CH.ifa.draw.standard.StandardDrawingView CH.ifa.draw.applet.DrawApplet CH.ifa.draw.framework.DrawingView public void clearSelection() MethodDecSubjectChange121NoifyCall CH.ifa.draw.framework.DrawingEditor
4 CH.ifa.draw.standard.StandardDrawingView CH.ifa.draw.application.DrawApplication CH.ifa.draw.framework.DrawingView public void clearSelection() MethodDecSubjectChange121NoifyCall CH.ifa.draw.framework.DrawingEditor
5 CH.ifa.draw.standard.StandardDrawingView CH.ifa.draw.util.UndoableCommand CH.ifa.draw.framework.DrawingView public void clearSelection() MethodDecSubjectChange121NoifyCall CH.ifa.draw.framework.FigureSelectionListener
6 CH.ifa.draw.standard.StandardDrawingView CH.ifa.draw.standard.AbstractCommand CH.ifa.draw.framework.DrawingView public void toggleSelection(Figure figure) MethodDecSubjectChange121NoifyCall CH.ifa.draw.framework.FigureSelectionListener
7 CH.ifa.draw.standard.StandardDrawingView CH.ifa.draw.util.UndoableCommand CH.ifa.draw.framework.DrawingView public void toggleSelection(Figure figure) MethodDecSubjectChange121NoifyCall CH.ifa.draw.framework.FigureSelectionListener
8 CH.ifa.draw.standard.StandardDrawingView CH.ifa.draw.samples.javadraw.JavaDrawViewer CH.ifa.draw.framework.DrawingView public void toggleSelection(Figure figure) MethodDecSubjectChange121NoifyCall CH.ifa.draw.framework.DrawingEditor
9 CH.ifa.draw.standard.StandardDrawingView CH.ifa.draw.applet.DrawApplet CH.ifa.draw.framework.DrawingView public void toggleSelection(Figure figure) MethodDecSubjectChange121NoifyCall CH.ifa.draw.framework.DrawingEditor
10 CH.ifa.draw.standard.StandardDrawingView CH.ifa.draw.application.DrawApplication CH.ifa.draw.framework.DrawingView public void toggleSelection(Figure figure) MethodDecSubjectChange121NoifyCall CH.ifa.draw.framework.DrawingEditor
11 CH.ifa.draw.standard.StandardDrawingView CH.ifa.draw.standard.AbstractCommand CH.ifa.draw.framework.DrawingView public void addToSelection(Figure figure) ThenStmntSubjectChange121NotifyCall CH.ifa.draw.framework.FigureSelectionListener
12 CH.ifa.draw.standard.StandardDrawingView CH.ifa.draw.samples.javadraw.JavaDrawViewer CH.ifa.draw.framework.DrawingView public void addToSelection(Figure figure) ThenStmntSubjectChange121NotifyCall CH.ifa.draw.framework.DrawingEditor
13 CH.ifa.draw.standard.StandardDrawingView CH.ifa.draw.applet.DrawApplet CH.ifa.draw.framework.DrawingView public void addToSelection(Figure figure) ThenStmntSubjectChange121NotifyCall CH.ifa.draw.framework.DrawingEditor
14 CH.ifa.draw.standard.StandardDrawingView CH.ifa.draw.application.DrawApplication CH.ifa.draw.framework.DrawingView public void addToSelection(Figure figure) ThenStmntSubjectChange121NotifyCall CH.ifa.draw.framework.DrawingEditor
15 CH.ifa.draw.standard.StandardDrawingView CH.ifa.draw.util.UndoableCommand CH.ifa.draw.framework.DrawingView public void addToSelection(Figure figure) ThenStmntSubjectChange121NotifyCall CH.ifa.draw.framework.FigureSelectionListener
16 CH.ifa.draw.standard.StandardDrawingView CH.ifa.draw.standard.AbstractCommand CH.ifa.draw.framework.DrawingView public void removeFromSelection(Figure) ThenStmntSubjectChange121NotifyCall CH.ifa.draw.framework.FigureSelectionListener
17 CH.ifa.draw.standard.StandardDrawingView CH.ifa.draw.util.UndoableCommand CH.ifa.draw.framework.DrawingView public void removeFromSelection(Figure) ThenStmntSubjectChange121NotifyCall CH.ifa.draw.framework.FigureSelectionListener
18 CH.ifa.draw.standard.StandardDrawingView CH.ifa.draw.applet.DrawApplet CH.ifa.draw.framework.DrawingView public void removeFromSelection(Figure) ThenStmntSubjectChange121NotifyCall CH.ifa.draw.framework.DrawingEditor
19 CH.ifa.draw.standard.StandardDrawingView CH.ifa.draw.application.DrawApplication CH.ifa.draw.framework.DrawingView public void removeFromSelection(Figure) ThenStmntSubjectChange121NotifyCall CH.ifa.draw.framework.DrawingEditor
20 CH.ifa.draw.standard.StandardDrawingView CH.ifa.draw.util.UndoableCommand CH.ifa.draw.framework.DrawingView public void removeFromSelection(Figure) ThenStmntSubjectChange121NotifyCall CH.ifa.draw.framework.FigureSelectionListener
21 CH.ifa.draw.standard.AbstractCommand CH.ifa.draw.util.CommandMenu CH.ifa.draw.util.CommandListener viewSelectionChanged(DrawingView, DrawingView)IfExpSubjectChange1–1NotifyCall CH.ifa.draw.util.CommandListener
22 CH.ifa.draw.standard.AbstractCommand CH.ifa.draw.util.UndoableCommand CH.ifa.draw.util.CommandListener viewSelectionChanged(DrawingView, DrawingView)IfExpSubjectChange1–1NotifyCall CH.ifa.draw.util.CommandListener
23 CH.ifa.draw.standard.AbstractCommand CH.ifa.draw.util.CommandMenu CH.ifa.draw.util.CommandListener viewSelectionChanged(DrawingView, DrawingView)IfExpSubjectChange1–1NotifyCall CH.ifa.draw.util.CommandListener
24 CH.ifa.draw.standard.AbstractCommand CH.ifa.draw.util.UndoableCommand CH.ifa.draw.util.CommandListener viewSelectionChanged(DrawingView, DrawingView)IfExpSubjectChange1–1NotifyCall CH.ifa.draw.util.CommandListener
25 CH.ifa.draw.standard.AbstractTool CH.ifa.draw.standard.ToolButton ITool activate() ThenStmntSubjectChange121NotifyCall CH.ifa.draw.framework.ToolListener
26 CH.ifa.draw.standard.AbstractTool CH.ifa.draw.standard.ToolButton ITool deactivate() ThenStmntSubjectChange121NotifyCall CH.ifa.draw.framework.ToolListener
27 CH.ifa.draw.standard.AbstractTool CH.ifa.draw.standard.ToolButton ITool setUsable(boolean) IfExpSubjectChange1–1NotifyCall CH.ifa.draw.framework.ToolListener
28 CH.ifa.draw.standard.AbstractTool CH.ifa.draw.standard.ToolButton ITool setUsable(boolean) IfExpSubjectChange1–1NotifyCall CH.ifa.draw.framework.ToolListener
29 CH.ifa.draw.standard.AbstractTool CH.ifa.draw.standard.ToolButton ITool setEnabled(boolean) IfExpSubjectChange1–1NotifyCall CH.ifa.draw.framework.ToolListener
30 CH.ifa.draw.standard.AbstractTool CH.ifa.draw.util.UndoableTool ITool activate() ThenStmntSubjectChange121NotifyCall CH.ifa.draw.framework.ToolListener
31 CH.ifa.draw.standard.AbstractTool CH.ifa.draw.util.UndoableTool ITool deactivate() ThenStmntSubjectChange121NotifyCall CH.ifa.draw.framework.ToolListener
32 CH.ifa.draw.standard.AbstractTool CH.ifa.draw.util.UndoableTool ITool setUsable(boolean) IfExpSubjectChange1–1NotifyCall CH.ifa.draw.framework.ToolListener
33 CH.ifa.draw.standard.AbstractTool CH.ifa.draw.util.UndoableTool ITool setUsable(boolean) IfExpSubjectChange1–1NotifyCall CH.ifa.draw.framework.ToolListener
34 CH.ifa.draw.standard.AbstractTool CH.ifa.draw.util.UndoableTool ITool setEnabled(boolean) IfExpSubjectChange1–1NotifyCall CH.ifa.draw.framework.ToolListener
35 CH.ifa.draw.standard.AbstractFigure CH.ifa.draw.figures.TextFigure Ifigure release() IfExpSubjectChange1–1NotifyCall CH.ifa.draw.framework.FigureChangeListener
36 CH.ifa.draw.standard.AbstractFigure CH.ifa.draw.contrib.GraphicalCompositeFigure Ifigure release() IfExpSubjectChange1–1NotifyCall CH.ifa.draw.framework.FigureChangeListener
37 CH.ifa.draw.standard.AbstractFigure CH.ifa.draw.standard.FigureChangeEventMulticasterIfigure release() IfExpSubjectChange1–1NotifyCall CH.ifa.draw.framework.FigureChangeListener
38 CH.ifa.draw.standard.AbstractFigure CH.ifa.draw.standard.FigureChangeAdapter Ifigure release() IfExpSubjectChange1–1NotifyCall CH.ifa.draw.framework.FigureChangeListener
39 CH.ifa.draw.standard.AbstractFigure CH.ifa.draw.standard.DecoratorFigure Ifigure release() IfExpSubjectChange1–1NotifyCall CH.ifa.draw.framework.FigureChangeListener
40 CH.ifa.draw.standard.AbstractFigure CH.ifa.draw.standard.CompositeFigure Ifigure release() IfExpSubjectChange1–1NotifyCall CH.ifa.draw.framework.FigureChangeListener
41 CH.ifa.draw.standard.AbstractFigure CH.ifa.draw.samples.pert.PertFigure Ifigure release() IfExpSubjectChange1–1NotifyCall
42 CH.ifa.draw.standard.AbstractFigure CH.ifa.draw.standard.StandardDrawing Ifigure invalidate() IfExpSubjectChange1–1NotifyCall CH.ifa.draw.framework.Drawing
43 CH.ifa.draw.standard.AbstractFigure CH.ifa.draw.figures.LineConnection Ifigure invalidate() IfExpSubjectChange1–1NotifyCall CH.ifa.draw.framework.ConnectionFigure
44 CH.ifa.draw.standard.AbstractFigure CH.ifa.draw.figures.TextFigure Ifigure invalidate() IfExpSubjectChange1–1NotifyCall CH.ifa.draw.framework.FigureChangeListener
45 CH.ifa.draw.standard.AbstractFigure CH.ifa.draw.util.GraphLayout Ifigure invalidate() IfExpSubjectChange1–1NotifyCall CH.ifa.draw.framework.FigureChangeListener
46 CH.ifa.draw.standard.AbstractFigure CH.ifa.draw.contrib.GraphicalCompositeFigure Ifigure invalidate() IfExpSubjectChange1–1NotifyCall CH.ifa.draw.framework.FigureChangeListener
47 CH.ifa.draw.standard.AbstractFigure CH.ifa.draw.standard.FigureChangeEventMulticasterIfigure invalidate() IfExpSubjectChange1–1NotifyCall CH.ifa.draw.framework.FigureChangeListener
48 CH.ifa.draw.standard.AbstractFigure CH.ifa.draw.standard.FigureChangeAdapter Ifigure invalidate() IfExpSubjectChange1–1NotifyCall CH.ifa.draw.framework.FigureChangeListener
49 CH.ifa.draw.standard.AbstractFigure CH.ifa.draw.standard.DecoratorFigure Ifigure invalidate() IfExpSubjectChange1–1NotifyCall CH.ifa.draw.framework.FigureChangeListener
50 CH.ifa.draw.standard.AbstractFigure CH.ifa.draw.standard.CompositeFigure Ifigure invalidate() IfExpSubjectChange1–1NotifyCall CH.ifa.draw.framework.FigureChangeListener
51 CH.ifa.draw.standard.AbstractFigure CH.ifa.draw.figures.BorderDecorator Ifigure invalidate() IfExpSubjectChange1–1NotifyCall CH.ifa.draw.framework.FigureChangeListener
52 CH.ifa.draw.standard.AbstractFigure CH.ifa.draw.figures.LineConnection Ifigure changed() IfExpSubjectChange1–1NotifyCall CH.ifa.draw.framework.ConnectionFigure
53 CH.ifa.draw.standard.AbstractFigure CH.ifa.draw.figures.TextFigure Ifigure changed() IfExpSubjectChange1–1NotifyCall CH.ifa.draw.framework.FigureChangeListener
54 CH.ifa.draw.standard.AbstractFigure CH.ifa.draw.util.GraphLayout Ifigure changed() IfExpSubjectChange1–1NotifyCall CH.ifa.draw.framework.FigureChangeListener
55 CH.ifa.draw.standard.AbstractFigure CH.ifa.draw.standard.FigureChangeEventMulticasterIfigure changed() IfExpSubjectChange1–1NotifyCall CH.ifa.draw.framework.FigureChangeListener
56 CH.ifa.draw.standard.AbstractFigure CH.ifa.draw.standard.FigureChangeAdapter Ifigure changed() IfExpSubjectChange1–1NotifyCall CH.ifa.draw.framework.FigureChangeListener
57 CH.ifa.draw.standard.AbstractFigure CH.ifa.draw.standard.DecoratorFigure Ifigure changed() IfExpSubjectChange1–1NotifyCall CH.ifa.draw.framework.FigureChangeListener
58 CH.ifa.draw.standard.AbstractFigure CH.ifa.draw.standard.CompositeFigure Ifigure changed() IfExpSubjectChange1–1NotifyCall CH.ifa.draw.framework.FigureChangeListener
59 CH.ifa.draw.standard.AbstractFigure CH.ifa.draw.samples.pert.PertFigure Ifigure changed() IfExpSubjectChange1–1NotifyCall
60 CH.ifa.draw.application.DrawApplication CH.ifa.draw.standard.AbstractCommand Iview createDrawingView(Drawing) CH.ifa.draw.framework.ViewChangeListener
61 CH.ifa.draw.application.DrawApplication CH.ifa.draw.standard.AbstractTool Iview createDrawingView(Drawing) CH.ifa.draw.framework.ViewChangeListener
62 CH.ifa.draw.application.DrawApplication CH.ifa.draw.standard.AbstractCommand Iview setView(DrawingView) ThenStmntSubjectChange121NotifyCall CH.ifa.draw.framework.ViewChangeListener
63 CH.ifa.draw.application.DrawApplication CH.ifa.draw.standard.AbstractTool Iview setView(DrawingView) ThenStmntSubjectChange121NotifyCall CH.ifa.draw.framework.ViewChangeListener
64 CH.ifa.draw.application.DrawApplication CH.ifa.draw.application.DrawApplet Iview
65 CH.ifa.draw.standard.StandardDrawing CH.ifa.draw.standard.StandardDrawingView IDrawing remove(Figure figure) CH.ifa.draw.framework.DrawingChangeListener
66 CH.ifa.draw.standard.StandardDrawing CH.ifa.draw.standard.NullDrawingView IDrawing remove(Figure figure) CH.ifa.draw.framework.DrawingChangeListener
67 org.prevayler.implementation.publishing.CentralPublisherorg.prevayler.implementation.publishing.POBox org.prevayler.implementation.publishing.TransactionSubscribernotifySubscribers(TransactionGuide)
68 org.prevayler.implementation.publishing.CentralPublisherorg.prevayler.implementation.PrevalentSystemGuardorg.prevayler.implementation.publishing.TransactionSubscribernotifySubscribers(TransactionGuide)
69 org.prevayler.foundation.DurableInputStreamorg.prevayler.foundation.monitor.LoggingMonitor subscribe(TransactionSubscriber, long)
70 org.prevayler.foundation.DurableInputStreamorg.prevayler.foundation.monitor.NullMonitor subscribe(TransactionSubscriber, long)

Figure A.1: Details of refactoring pattern instances implemented with pushing
technique to aspects

97

Subject Update Calls Declaring Method Shape
1 CH.ifa.draw.util.UndoableCommand getDrawingEditor().figureSelectionChanged(view()); public void execute() ifExpSubjectChange - multiInvocations
2 CH.ifa.draw.standard.StandardDrawingView fDrawing.removeDrawingChangeListener(this) public void setDrawing(Drawing) ifExpSubjectChange - multiInvocations
3 CH.ifa.draw.standard.StandardDrawingView fDrawing.addDrawingChangeListener(this); public void setDrawing(Drawing) ifExpSubjectChange - multiInvocations
4 CH.ifa.draw.standard.AbstractCommand view().removeFigureSelectionListener(this); public void dispose() ifExpSubjectChange - multiInvocations
5 CH.ifa.draw.figures.TextFigure fObservedFigure.addFigureChangeListener(this); public void read(StorableInput dr) ifExpSubjectChange - multiInvocations
6 CH.ifa.draw.figures.TextFigure fObservedFigure.addFigureChangeListener(this); public void readObject(ObjectInputStream s) ifExpSubjectChange - multiInvocations
7 CH.ifa.draw.figures.TextFigure fObservedFigure.removeFigureChangeListener(this); public voidconnect(Figure) ifExpSubjectChange - multiInvocations
8 CH.ifa.draw.figures.LineConnection startFigure().removeFigureChangeListener(this); public void release() ifExpSubjectChange - multiInvocations
9 CH.ifa.draw.figures.LineConnection endFigure().removeFigureChangeListener(this); public void release() ifExpSubjectChange - multiInvocations
10 CH.ifa.draw.contrib.GraphicalCompositeFigure listener().figureRequestUpdate(new FigureChangeEvent(this)); public void change() ifExpSubjectChange - multiInvocations
11 CH.ifa.draw.figures.ImageFigure listener().figureRequestUpdate(new FigureChangeEvent(this)); public void imageUpdate(Image, int, int, int, int, int) ifExpSubjectChange - multiInvocations
12 CH.ifa.draw.standard.AbstractTool getEventDispatcher().fireToolDisabledEvent(); public void setEnabled(boolean newIsEnabled) ifExpSubjectChange - multiInvocations
13 CH.ifa.draw.standard.CompositeFigure replacement.addToContainer(this); figure.removeFromContainer(this); public synchronized Figure replace(Figure, Figure) ifExpSubjectChange - multiInvocations
14 CH.ifa.draw.standard.CompositeFigure figure.removeFromContainer(this); public synchronized Figure orphan(Figure figure) ifExpSubjectChange - multiInvocations
15 CH.ifa.draw.util.UndoableCommand view().addFigureSelectionListener(this); public void execute() MethodDecSubjectChange !""multiInvocations
16 CH.ifa.draw.util.RedoCommand getDrawingEditor().figureSelectionChanged(lastRedoable.getDrawingView()); public void execute() MethodDecSubjectChange !""multiInvocations
17 CH.ifa.draw.util.GraphLayout node.addFigureChangeListener(this); public void addNode(Figure node) MethodDecSubjectChange !""multiInvocations
18 CH.ifa.draw.util.CommandMenu command.addCommandListener(this); protected void addMenuItem(Command, JMenuItem) MethodDecSubjectChange !""multiInvocations
19 CH.ifa.draw.standard.DecoratorFigure getDecoratedFigure().removeFromContainer(this); public void release() MethodDecSubjectChange !""multiInvocations
20 CH.ifa.draw.figures.TextFigure fObservedFigure.addFigureChangeListener(this); public void connect(Figure) MethodDecSubjectChange !""multiInvocations
21 CH.ifa.draw.figures.LineConnection connection.startFigure().addFigureChangeListener(connection); public void connectStart(LineConnection connection) MethodDecSubjectChange !""multiInvocations
22 CH.ifa.draw.figures.LineConnection endFigure().addFigureChangeListener(this); public void connectEnd(Connector newEndConnector) MethodDecSubjectChange !""multiInvocations
23 CH.ifa.draw.figures.LineConnection endFigure().removeFigureChangeListener(this); public void disconnectEnd() MethodDecSubjectChange !""multiInvocations
24 CH.ifa.draw.standard.DecoratorFigure fComponent.addToContainer(this); public void decorate(Figure figure) MethodDecSubjectChange !""multiInvocations
25 CH.ifa.draw.util.UndoCommand getDrawingEditor().figureSelectionChanged(lastUndoable.getDrawingView()) public void execute() MethodDecSubjectChange !""multiInvocations
26 CH.ifa.draw.standard.CompositeFigure figure.addToContainer(this); public Figure add(Figure figure) ThenStmntSubjectChange"!"multiInvocations
27 org.prevayler.foundation.Turn notifyAll(); private synchronized Turn die() MethodDecSubjectChange !""multiInvocations
28 org.prevayler.foundation.Turn notifyAll(); private synchronized void allow() MethodDecSubjectChange !""multiInvocations
29 CH.ifa.draw.standard.DecoratorFigure getDecoratedFigure().addToContainer(this); private void readObject(ObjectInputStream s)
30 CH.ifa.draw.figures.TextFigure disconnectFigure.removeFigureChangeListener(this); public void disconnect(Figure disconnectFigure)
31 CH.ifa.draw.util.UndoableTool getWrappedTool().addToolListener(tool) UndoableTool
32 CH.ifa.draw.util.UndoableCommand getWrappedCommand().addCommandListener(this) UndoableCommand(Command)

if (nodes != null) {
 Enumeration nodeEnum = nodes.keys();
 while (nodeEnum.hasMoreElements()) {
 Figure node = (Figure) nodeEnum.nextElement();
 node.removeFigureChangeListener(this);
 }
 nodes = null;
 edges = null;
 }

34 CH.ifa.draw.standard.StandardDrawingView fSelectionListeners = new Vector(); StandardDrawingView(DrawingEditor, int, int)
35 CH.ifa.draw.standard.StandardDrawingView addFigureSelectionListener(editor()); StandardDrawingView(DrawingEditor, int, int)
36 CH.ifa.draw.standard.StandardDrawingView fSelectionListeners = new Vector<FigureSelectionListener>() public void readObject(ObjectInputStream s)
37 CH.ifa.draw.standard.DecoratorFigure getDecoratedFigure().removeFromContainer(this) public Figure peelDecoration()
38 CH.ifa.draw.figures.LineConnection startFigure().removeFigureChangeListener(this); public void disconnectStart()
39 CH.ifa.draw.standard.StandardView figure.listener().figureRequestRemove(new FigureChangeEvent(figure, null)); public synchronized Figure remove(Figure figure)
40 org.prevayler.implementation.publishing.CentralPublisher_journal.update(subscriber, initialTransaction); subscribe(TransactionSubscriber, long)
41 CH.ifa.draw.standard.AbstractFigure removeFigureChangeListener(c); public void removeFromContainer(FigureChangeListener c)
42 CH.ifa.draw.standard.AbstractFigure addFigureChangeListener(c); public void addToContainer(FigureChangeListener c)

43 CH.ifa.draw.standard.CompositeFigure

FigureEnumeration fe = figures();
 while (fe.hasMoreElements()) {
 Figure figure = fe.nextFigure();
 figure.addToContainer(this);
 }

public void readObject(ObjectInputStream)

44 CH.ifa.draw.standard.CompositeFigure FigureEnumeration fe = figures(); public void removeAll()
45 CH.ifa.draw.standard.AbstractCommand getDrawingEditor().addViewChangeListener(this); public AbstractCommand(String, DrawingEditor , boolean)

33 CH.ifa.draw.util.GraphLayout public void remove()

Figure A.2: Details of refactoring observers’ update calls to aspects

98

Appendix B

Dependency Structure Matrix

This appendix shows the DSM of entire Prevayler project before and after the refactoring.

B.1 DSM of Prevayler Before Refactoring

Figure B.1 shows the complete DSM of the Prevayler project before refactoring the observer pattern.

B.2 DSM of Prevayler After Refactoring

Figure B.1 shows the complete DSM of the Prevayler project after refactoring the observer pattern.

99

Figure B.1: DSM of Prevayler Before Refactoring

100

Figure B.2: DSM of Prevayler After Refactoring

101

Appendix C

AJRefactor Plugin Source Code

To get a copy of AJRefactor source code please contact my supervisor Professor Christopher
Dutchyn at cjd032@cs.usask.ca

102

	Permission to Use
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Thesis Statement
	Outline

	Background
	AspectJ
	Pointcut and Join Points
	Advice
	Inter-type Declaration
	Aspect

	Observer Pattern
	Eclipse Platform
	Eclipse Plug-ins
	Java Refactoring Framework
	Java Source Manipulation

	Related Work
	Aspect Mining Tools
	Aspect Refactoring Tools

	Summary

	AJRefactor
	AJRefactor Functionality
	Observer Pattern Following Pushing Technique

	AJRefactor GUI
	Observer Update

	AJRefactor Implementation
	Refactoring Action
	Refactoring Wizard
	Refactoring Class

	Refactoring Observer Pattern Starting with Subject
	Refactoring Action
	Refactoring Wizard
	Refactoring Class

	Refactoring Java API Observer Pattern Starting with Subject
	Refactoring Action
	Refactoring Wizard
	Refactoring Class

	Refactoring Observer Pattern Starting with Observer
	Refactoring Action
	Refactoring Wizard
	Refactoring Class

	Refactoring Java API Observer Pattern Starting with Observer
	Refactoring Action
	Refactoring Wizard
	Refactoring Class

	Summary

	AJRefactor Design
	Refactoring Observer Pattern Implemented with Pushing Technique
	Protocol Aspect
	Observer Update Instance Aspect
	Generating Pointcut and Advice
	Limitations

	Refactoring Update Calls
	MethodDecSubjectChange - multiInvocations
	IfExpSubjectChange - multiInvocations
	ThenStmntSubjectChange - multiInvocations
	Limitations

	Summary

	Results and Evaluation
	Results by Instance Shape
	Observer Pattern Implemented with Pushing Technique
	Refactoring Update Calls

	LOC Assessment
	Modularity Assessment
	JHotDraw
	Prevayler

	Time Assessment
	Observer Pattern Implemented with Pushing Technique
	Refactoring Update Calls

	Reflection and Refactoring
	Refactoring and Program Correctness
	AspectJ Performance Overhead
	Multithreading and Refactoring
	Volatile Variables and Refactoring
	Java Annotations
	Summary

	Summary
	Summary
	Contribution
	Future Work

	References
	Observer Pattern Instances
	Observer Pattern Implemented with Pushing Technique
	Refactoring Update Calls

	Dependency Structure Matrix
	DSM of Prevayler Before Refactoring
	DSM of Prevayler After Refactoring

	AJRefactor Plugin Source Code

