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Abstract 

	

Changes	 in	 cis‐	 and	 trans‐regulatory	 elements	 are	 among	 the	 prime	 sources	 of	

genetic	and	phenotypical	variation	at	species	level.	The	introduction	of	cis‐	and	trans	

regulatory	 variation,	 as	 evolutionary	 processes,	 has	 played	 important	 roles	 in	

driving	evolution,	diversity	and	phenotypical	differentiation	in	humans.	Therefore,	

exploring	 and	 identifying	 variation	 that	 occurs	 on	 cis‐	 and	 trans‐	 regulatory	

elements	becomes	imperative	to	better	understanding	of	human	evolution	and	its	

genetic	diversity.	

	

In	this	research,	around	3360	gene	regulatory	factors	in	the	human	genome	were	

catalogued.	This	 catalog	 includes	genes	 that	 code	 for	proteins	 that	perform	gene	

regulatory	 activities	 such	 DNA‐depending	 transcription,	 RNA	 polymerase	 II	

transcription	 cofactor	 and	 co‐repressor	 activity,	 chromatin	 binding,	 and	

remodeling,	among	other	218	gene	ontology	terms.	Using	the	classification	of	DNA‐

binding	 GRFs	 (Wingender	 et	 al.	 2015),	 we	 were	 able	 to	 group	 1521	 GRF	 genes	

(~46%)	 into	 41	 different	 GRF	 classes.	 This	 GRF	 catalog	 allowed	 us	 to	 initially	

explore	and	discuss	how	some	GRF	genes	have	evolved	in	humans,	archaic	humans	

(Neandertal	and	Denisovan)	and	non‐human	primates	species.	It	is	also	discussed	

which	are	the	likely	phenotypical	and	medical	effects	that	evolutionary	changes	in	

GRF	genes	may	have	introduced	into	the	human	genome	are;	for	instance,	speech	

and	 language	 capabilities,	 recombination	 hotspots,	 and	metabolic	 pathways	 and	

diseases.		

	

In	addition,	by	exploring	genome‐wide	scan	data	for	detecting	selection,	we	built	a	

list	 of	 GRF	 candidate	 genes	 that	may	have	undergone	positive	 selection	 in	 three	

human	populations:	Utah	Residents	with	Northern	 and	Western	Ancestry	 (CEU),	

Han	Chinese	in	Beijing	(CHB),	and	Yoruba	in	Ibadan	(YRI).	We	think	this	set	gathers	

genes	 that	may	have	 contributed	 in	 shaping	 the	phenotypical	diversity	 currently	

observed	in	these	three	human	populations,	for	example	by	introducing	regulatory	

diversity	 at	population‐specific	 level.	Out	of	 the	41	DNA‐binding	GRF	 classes,	 six	
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groups	 evidenced	 enrichment	 for	 genes	 located	 on	 regions	 that	 may	 have	 been	

target	of	positive	selection:	C2H2	zinc	finger,	KRAB‐ZNF	zinc	finger,	Homeo	domain,	

Tryptophan	cluster,	Fork	head/winged	helix	and,	and	High‐mobility	HMG	domain.	

We	additionally	identified	three	KRAB‐ZNF	gene	clusters,	in	the	chromosomes	one,	

three,	and	16,	of	the	Asian	population	that	exhibit	regions	with	extended	haplotype	

homozygosity	EHH	(larger	 than	100	kb).	The	presence	of	 this	EHH	suggests	 that	

these	three	regions	have	undergone	positive	selection	in	CHB	population.	Out	of	the	

22	GRF	genes	located	within	these	three	KRAB‐ZNF	clusters,	seven	C2H2‐ZNF	GRF	

genes	 (ZNF695,	 ZNF646,	 ZNF668,	 ZNF167,	 ZNF35,	 ZNF502,	 and	 ZNF501)	 carry	

nonsynonymous	SNPs	that	code	nonsynonymous	SNPs	that	change	the	amino	acid	

sequence	 in	 their	 protein	 domains	 (linkers	 and	 cystine‐2	 histidine‐2	 amino‐acid	

sequence	motifs).	Six	GRF	genes	located	on	the	EHH	region	on	the	chromosome	16	

of	 CHB	have	 been	 associated	with	 obesity	 (KAT8,	ZNF646,	ZNF668,	FBXL19)	 and	

blood	coagulation	(STX1B	 and	VKORC1)	 in	humans.	 In	addition,	we	also	detected	

genetic	changes	at	GRF	sequence	level	that	may	have	resulted	in	subtle	regulatory	

changes	in	metabolic	pathways	associated	with	glucose	and	insulin	metabolism	at	

population‐specific	level.		

	

Finally,	acknowledging	that	a	representative	fraction	of	the	phenotypic	diversity	we	

observed	between	humans	and	 its	 closely	 related	species	are	 likely	explained	by	

changes	 in	 cis‐regulatory	 elements	 (CREs),	 putative	 binding	 sites	 of	 the	

transcription	factor	GABPa	were	identified	and	investigated.	GABPa	is	GRF	protein	

member	 of	 the	 E‐twenty	 six	 DNA‐binding	 proteins	 class.	 GABPs	 control	 gene	

expression	of	many	genes	that	play	key	roles	at	cellular	level,	 for	instance,	 in	cell	

migration	and	differentiation,	cell	cycle	control	and	fate,	hormonal	regulation	and	

apoptosis.	Using	ChIP‐Seq	data	generated	 from	a	human	cell	 line	 (HEK293T),	we	

found	11,619	putative	GABPa	CREs	were	found,	of	which	224	are	putative	human‐

specific.	 To	 experimentally	 validate	 the	 transcriptional	 activity	 of	 these	 human‐

specific	 GABPa	 CREs,	 reporter	 gene	 essays	 and	 knock‐down	 experiments	 were	

performed.	Our	results	supported	the	functionality	of	these	human‐specific	GABPa	

CREs	and	suggest	that	at	 least	1,215	genes	are	primary	targets	of	GABPa.	Finally,	

further	 analyses	 of	 the	 data	 gathered	 depict	 scenarios	 that	 bring	 together	

transcriptional	 regulation	 by	 GABPa	 with	 the	 evolution	 of	 particular	 human	



 

iii

speciation	and	traits	for	instance,	cognitive	abilities,	breast	morphology,	and	lipids	

and	glucose	metabolic	pathways	and	the	regulation	of	human‐specific	genes.		

	

By	studying	genetic	changes	in	cis‐	and	trans‐	regulatory	elements	in	humans	in	two	

different	evolutionary	time	frames,	species	evolution	and	population	genetics,	we	

were	able	to	show	how	genome	regulatory	innovations	and	genetic	variation	may	

have	contributed	to	the	evolution	of	human‐	and	population	specific	traits.	Here,	we	

conclude	that	human‐specific	changes	in	regulatory	elements	are	likely	introducing	

subtle	regulatory	variation	in	key	pathways	at	physiological	 level,	 for	instance,	 in	

glucose/insulin,	 lipids	metabolism	and	 cognitive	 abilities.	 Some	of	 these	 changes	

may	have	resulted	in	adaptive	responses	that	left	signatures	of	positive	selection	at	

human	population	specific	level.		
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Abbreviations		

	

	

	

Alu:		 	 	 mobile	elements	in	the	genome	

bp:		 	 	 base	pairs	

CEU:	 	 	 Utah	Residents	(CEPH)	with	Northern	and	Western		

Ancestry	

CHB:	 	 	 Han	Chinese	in	Bejing,	China	

ChIP‐Seq:		 	 Chromatin	immunoprecipitation	followed	by	sequencing	

CMS:		 	 	 Composite	of	multiple	signals	test	

CREs:			 	 cis‐regulatory	elements	

DE:		 	 	 Differentially	expressed		

DBDs:		 	 DNA‐binding	domains	

DNA:		 	 	 Deoxyribonucleic	acid	

EHH:				 	 Extended	Haplotype	Homozigosity.	

Eq:		 	 	 Equation	

eQTL:			 	 Expression	quantitative	trait	loci	

ETS:	 		 	 E‐twenty	six	transcription	factors	

EREs:			 	 Endogenous	repetitive	elements	

ERVs:			 	 Endogenous	retroviruses	

FDR:		 	 	 False	discovery	rate	

FPKM:		 	 Fragments	Per	Kilobase	of	transcript	per	Million	mapped		

reads	

GRFs:			 	 Gene	Regulatory	Factors	

HYK:		 	 	 Hasegawa,	Kishino	and	Yano	substitution	model 

iBAQ:			 	 Intensity‐based	absolute	quantification	

IDs:		 	 	 Stable	identifiers	

Kb:		 	 	 Kilo	base	pairs	

Kya:		 	 	 Kilo	years	ago.		

KRAB‐ZNF:	 	 Krüppel	associated	box	zinc	finger	gene	
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LCT:		 	 	 Lactose	gene	

LD:	 	 	 linkage	disequilibrium	

LINEs:		 	 long	interspersed	nuclear	elements	

lncRNA:	 	 	Long	non‐coding	RNA	

MAST:		 	 Motif	Alignment	and	Search	Tool		

MAF:		 	 	 Minor	Allele	Frequency	

MEME:		 	 Multiple	EM	for	Motif	Elicitation		

NGS:		 	 	 Next	generation	sequencing	

PWM:			 	 Position‐specific	weight	matrix	

SINE:		 	 	 Short	Interspersed	Nuclear	Elements	

SVA:		 	 	 SINE‐VNTR‐Alu,	a	composite	hominid‐specific		

retrotransposon	family	

TFs:		 	 	 Transcription	Factors	

TSS:		 	 	 Transcription	Start	Site	

UCSC:			 	 University	of	California	Santa	Cruz	Genome	Browser	

VNTR:		 	 variable	number	tandem	repeat	

YRI:		 	 	 Yoruba	population	in	Ibadan,	Nigeria	
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Introduction	
	

The	 past	 fifty	 years	 have	 seen	 the	 development	 and	 application	 of	 numerous	

experimental	techniques	and	statistical	methods	to	identify	genomic	elements	that	

might	be	playing	important	roles	in	shaping	genetic	and	phenotypical	variation,	and	

diversity	 within	 species,	 species	 diversification	 and	 speciation.	 From	 a	 broad	

perspective,	these	strategies	have	been	used	to	explore	evolution	at	different	scales	

and	in	an	extensive	range	of	organisms.	Evolutionary	events	can	be	explored	into	

two	distinct	 hierarchical	 time	 frames:	 population	 genetics	 and	 species	 evolution	

(Sesink	Clee	and	Gonder	2012)	These	different	 time	scales	encompass	either	the	

diversification	 within	 a	 given	 species,	 where	 the	 offspring	 has	 the	 very	 similar	

genetic	background	as	the	ancestor,	or	the	large‐scale	patterns	in	which	the	origin	

of	new	species	from	previously	existing	or	extinct	ancestral	types	has	taken	place	

(species	evolution)	(Eldredge	1989)	(Figure	1).	Population	genetics,	as	evolution	on	

a	 small	 scale,	 mainly	 integrates	 mechanisms	 that	 causes	 changes	 in	 the	 allele	

frequencies	 in	 the	gene	pool	 in	 a	period	of	 time	 that	 covers	 from	 few	 to	 several	

generations	 for	a	population	(Reznick	and	Ricklefs	2009).	The	main	mechanisms	

driving	 population	 genetics	 processes	 mainly	 act	 at	 population’s	 level,	 where	

mutation,	migration,	drift	and	selection	(positive,	negative,	balancing)	accumulate	

changes	over	time.	The	effects	and	intensity	of	these	processes	and	their	relation	

with	the	environment	may	lead	to	population	differentiation	or	to	the	birth	of	new	

species	trough	the	continuous	accumulation	of	small	and	horizontal	changes	over	

time	(Dobzhansky	1941)	(Figure	1).	In	contrast,	species	evolution,	understood	as	

the	evolutionary	change	at	the	level	of	species,	takes	place	at	higher	levels,	resulting	

in	large	and	complex	changes,	thus	giving	origin	to	new	groups,	for	instance,	families	

and	genera	(Valentine	and	Jablonski	2003;	McGowen	et	al.	2014).	Studying	species	

evolution	involves	the	understanding	of	processes	like	developmental	constraints,	

variation	in	the	diversification	rates	(species	selection),	speciation,	and	extinctions,	
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among	 others	 (Figure	 1).	 Nonetheless,	 the	 processes	 resulting	 in	 strong	 genetic	

differentiation	and	speciation	are	both	hard	to	be	observed.		
	

	
	Figure	1.	Hierarchical	 relations	between	population	genetics	 and	 species	 evolution	 in	 context	of	

environmental	 influence.	 The	 lower	 level	 depicts	 organisms	 arranged	 within	 populations,	 their	

interactions	and	the	association	with	the	environment.	Left	axis	(red)	indicated	the	time	scale.	(a‐f)	

describe	 some	 of	 the	 dynamics	 governing	 the	 evolutionary	 changes.	 (a)	 Mutation	 and	 local	

adaptation.	 (b)	 Insufficient	 resources	 causing	 migration.	 (c)	 Reduction	 in	 gene	 flow	 causing	

population	 differentiation.	 (d)	 Geographical	 barrier	 (isolation	 by	 distance).	 (e)	 Environmental	

challenge	to	which	the	species	cannot	rapidly	adapt	to	(ecological	success).	(f).	Speciation/Extinction	

	

1.1.	Emergence	of	modern	humans	

	
From	 a	 population	 genetics	 perspective,	 deciphering	 the	molecular	mechanisms	

that	 underlie	 the	 evolutionary	 history	 of	 anatomically	modern	 humans	 (AMHs),	

their	current	genetic	and	phenotypic	diversity,	is	among	one	of	the	most	compelling	

challenges	 in	 contemporary	 genomic	 and	 transcriptomic	 research.	 Following	 the	

advent	 of	 genetic	 data,	 three	 major	 competing	 hypothetical	 models	 of	 modern	

human	 origins	 are	 still	 widely	 used	 to	 explain	 the	 emergence	 of	 AMHs.	

The	multiregional	model	(MRE),	as	well	known	as	polycentric	hypothesis,	the	widely	

accepted	model	of	a	recent	African	origin	(“Out	of	Africa”	hypothesis;	RAO),	both	

mainly	 based	 on	 archeological	 observations,	 and	 the	 Assimilation	 model.	 The	

Assimilation	 model	 integrates	 arguments	 of	 MRE	 and	 RAO,	 and	 adds	 new	
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perspectives	 from	 recent	 ancient	 DNA	 studies	 (Figure	 2)	 (Bräuer	 et	 al.	 1997;	

Gibbons	 2011).	 The	 MRE	 suggests	 that	 the	 AMH’s	 traits	 are	 the	 result	 of	 an	

interlinked	 and	 extensive	 social	 and	 biological	 network	 first	 established	 by	

ancestral	 species	 such	 as	Homo	 erectus	 around	 1.8	million	 years	 (Wolpoff	 et	 al.	

1988).	 Such	 network	 was	 characterized	 by	 the	 constant	 social	 and	 cultural	

interaction,	and	the	gene	flow	between	the	evolving	Eurasian	AMH	populations.	It	

is	assumed	that	this	facilitated	the	species‐wide	evolutionary	change	and	promoted	

the	local	diversity	we	currently	observe	in	AMH	populations,	and	simultaneously	

prevented	speciation	(Figure	2)	(Wolpoff	et	al.	1988;	Wolpoff	et	al.	2000).		

	
Figure	2.	Diagram	representing	each	of	 the	three	competing	models.	 (a)	Multiregional	and	Out	of	

Africa	 models..	 Red	 arrows	 indicate	 gene	 flow	 between	 populations	 in	 the	 multiregional	 model	

Modified	 from	 Gibbons	 (Gibbons	 2011).	 (b)	 The	 illustration	 of	 the	 assimilation	 model.	 In	 this	

scenario.	Blue	arrows	indicate	gene	flow	between	AMHs,	Neandertal	and	Denisovan	in,	the	gene	flow	

was	 depicted	 as	 inferred	 by	 Kuhlwilm	 et	 al.	 (2016).	 Five	 interbreeding	 events	 are	 shown	 (blue	

arrows).	Inferred	gene	flow	from	a	population	closely	related	to	AMHs	towards	the	Altai	Neandertal	

(red	arrow)(Kuhlwilm	et	al.	2016).		

	

Conversely,	the	RAO	model	posits	that	AMH’s	features	descent	from	a	population	

with	 a	 geographic	 origin	 in	 Africa	 that	 spread	 throughout	 the	 continent	 and	
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migrated	 to	 Eurasia	 (Stringer	 and	 Andrews	 1988)	 substituting	 other	 hominin	

species	such	as	Neandertal	and	Denisovan	(Gibbons	2011;	Tryon	and	Bailey	2013).	

However,	new	genetic	evidence	suggests	that	interbreeding	was	common	between	

some	 AMH	 populations	 and	 archaic	 hominin	 species	 such	 as	 Neandertal	 and	

Denisovan	(Green	et	al.	2010;	Reich	et	al.	2010;	Kuhlwilm	et	al.	2016).	Such	evidence	

strongly	supports	the	work	of	Bräuer	et	al.	(1997),	the	leaky	replacement,	which	

was	 initially	 and	 for	 long	 ignored	 (Gibbons	 2011;	 Tryon	 and	 Bailey	 2013).	 This	

model	introduces	the	replacement	of	archaic	humans	while	hybridizing	with	some	

AMH	populations	followed	by	the	decline	in	the	populations	of	the	latter	two	archaic	

humans	(Figure	2).	

	

Different	 scenarios	 of	 human	dispersals	 and	 routes	 out	 of	Africa	 have	 also	 been	

recently	depicted	(Oppenheimer	2009;	Mellars	et	al.	2013;	Veeramah	and	Hammer	

2014;	Reyes‐Centeno	2016).	Independently	of	the	differences	these	scenarios	may	

represent	in	the	understanding	of	AMH’s	evolution,	it	is	clear	that	the	processes	that	

followed	 AMH’s	 migrations	 out	 of	 the	 African	 continent	 involved	 adaptation,	

colonization	and	interbreeding	with	other	hominin	species	(Green	et	al.	2010;	Reich	

et	al.	2010;	Alves	et	al.	2012;	Kuhlwilm	et	al.	2016).	While	human	adaptation	to	new	

conditions	was	taking	place,	it	is	assumed	that	an	immense	repertoire	of	genetic	and	

phenotypic	variation	was	simultaneously	shaped.	A	representative	amount	of	this	

variation	 has	 had	 a	 direct	 impact	 on	 the	 ability	 to	 face	 and	 survive	 different	

challenges	such	as	changes	in	climate	and	diet,	resistance	to	prevalent	pathogens,	

and	diseases	 (Vasseur	 and	Quintana‐Murci	 2013).	Accordingly,	 traits	 that	 confer	

particular	advantages	or	disadvantages	on	 the	 individual	 fitness	are	subjected	 to	

natural	selection	(Figure	3)	(Gillespie	1991).		

	

Several	classical	examples	on	how	particular	genes	have	bestowed	adaptive	traits	

in	AMH	populations,	for	instance,	the	Lactose	persistence	and	melanin	synthesis	in	

Europeans,	among	others,	are	well	documented.		
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Figure	3.	Types	of	selective	sweeps	observed	in	population	genomics	data.	

Selective	sweep:	An	event	in	which	a	favored	allele	rapidly	increases	in	frequency	due	to	natural	selection.	This	designation	is	frequently	used	to	refer	to	hard	sweeps,	but	may	
also	refer	to	partial	and	soft	sweeps	(Pritchard	et	al,	2009).		
Hard	sweep:	Normally	referred	as	classical	selective	sweep,	this	model	is	mainly	characterized	by	the	appearance	of	a	new	advantageous	mutation	(red	star)	that	rapidly	increases	
in	frequency	and	spreads	to	 ixation	after	the	start	of	positive	selection	(dashed	line)	(Smith	and	Haigh,	2007).	(a)	left	panel.	Here	all	populations	collapse	into	a	single	cluster,	
evidence	reduction	in	the	variability	of	the	region	under	selection,	which	also	results	in	a	skewed	allele	frequency	distribution	and	reduced	levels	of	haplotype	diversity.	(b)	left	
panel.	Near‐complete	selective	hard	sweep	in	SLC45A2	allele	G	associated	with	light	skin	pigmentation	in	European	populations.	
Soft	sweep:	this	type	of	selective	event	can	be	categorized	in	two	types,	from	de	novo	mutation	and	from	standing	variation.	(a)	middle	panel.	In	the	sweep	from	de	novo	mutation,	
the	alleles	arise	from	two	or	more	independent	mutations	at	the	same	locus,	and	sweep	through	the	populations	simultaneously.	Two	examples	for	sweeps	from	de	novo	mutation	
are	associated	with	 the	Lactose	 tolerance.	This	has	 evolved	 in	parallel	 trough	 independent	mutations	 in	 the	LCT	gene	 in	 some	European	and	African	populations.	(b)	middle	
panel.	The		C/T‐13910	mutation	where	the	persistent	T	allele	has	been	selected	in	central	Europeans	(CEU),	English	and	Scottish	(GBR)	and	other	European	populations.	(b)	right	
panel.	Similarly	 to	 the	previous	example,	 the	G/C‐14010	mutation	where	 the	persistent	C	allele	 is	 increasing	 in	 frequency	 in	Kenyans	 (LWK).	(a)	 In	 the	 sweep	 from	 standing	
variation,	adaptive	alleles	were	already	present	in	the	population	before	the	positive	selection	occurs	(Messer	and	Dmitri,	2013).			
Partial	sweep:	This	model	refers	to	cases	in	which	an	allele	increases	in	frequency	from	low	frequency,	 	but	has	not	reached	 ixation.	This	can	be	explained	because	either	the	
sweep	is	still	ongoing	or	the	selective	advantage	that	the	allele	confers	has	weakened.	i.e.	LCT	mutations	in	(b).	

LCT variant: European C/T‐13910 (rs4988235)  

CEU 

GBR 

CHB 

JPT 

YRI 

LWK 

C T CG
CEU 

LWK GBR 

CHB 

JPT 

YRI 

LCT variant: African G/C‐14010 (rs145946881) 

CEU 

GBR 

CHB 

JPT 

YRI 

LWK 

SLC45A2 variant: (rs16891982)  
C G

b) 

a) 
Hard sweep (classical sweep) So  sweep (de novo muta on) So  sweep (Standing varia on) 



In	the	first	example,	the	Lactose	gene	(LCT)	is	associated	with	the	capacity	to	assimilate	

and	 digest	 lactose,	 which	 dissipates	 during	 the	 childhood	 in	 humans.	 However,	 for	

some	 European	 populations	 the	 lactase	 metabolic	 activity	 persists	 in	 adults.	 As	

previously	mentioned,	AMH’s	genetic	population	differences	may	help	us	 to	 identify	

traits	that	have	conferred	particular	selective	advantages,	for	instance,	to	changes	in	

diet,	sun	exposure,	malaria	resistance,	among	others.	In	populations	from	the	North	of	

Europe,	two	allelic	variants	have	been	associated	with	lactase	persistence,	in	a	uniquely	

common	haplotype	that	is	present	in	around	77%	of	the	individuals.	The	frequency	and	

extension	of	this	haplotype	is	considered	a	hallmark	of	natural	selection	on	the	human	

genome	 (Figure	 3)	 (Bersaglieri	 et	 al.	 2004).	 A	 similar	 evolutionary	 event	 has	 been	

described	for	the	Solute	Carrier	Class	45	Member	2	(SLC45A2)	gene,	which	is	associated	

with	 mediating	 melanin	 synthesis	 in	 several	 species,	 including	 humans.	 This	 gene	

carries	particular	single	nucleotide	polymorphisms	(SNPs)	that	have	been	associated	

with	 light	 skin	 color	 in	 Europeans	 (Soejima	 and	 Koda	 2007),	 and	 melanin	 index	

variations	in	Indian	populations		(Jonnalagadda	et	al.	2016)	(Figure	3).		

	

1.2.	Evolutionary	changes	after	human	lineage	split	from	non‐human‐

primates	

	
From	a	species	evolutionary	perspective,	it	has	been	widely	acknowledged	that	many	

phenotypical	differences	 found	between	AMHs	and	non‐human	primates	are	mainly	

driven	by	changes	in	the	mechanisms	controlling	gene	expression	rather	than	by	the	

emergence	 of	 novel	 structural	 genes	 (Britten	 and	 Davidson	 1971;	 King	 and	Wilson	

1975).	Although,	recent	evidence	suggests	that	clade	or	species‐specific	genes	might	be	

driving	 the	 evolution	 of	 new	 physiological	 functions	 at	 reproductive,	 brain,	 and	

immunological	level,	for	instance,	in	humans	and	chimpanzees	(Sudmant	et	al.	2010;	

Zhang	et	al.	2011;	Geschwind	and	Konopka	2012).	Thus,	it	may	be	the	combinatorial	

effect	between	the	evolution	of	gene	regulatory	elements,	sequence	specific	changes	in	

protein	 domains,	 and	 the	 appearance	 of	 new	 genes,	 among	 other	 molecular	

mechanisms,	what	have	contributed	in	the	evolution	of	species‐specific	traits.	
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Studies	 of	 diversity	 by	 using	 genomics	 and	 transcriptomics	 have	 importantly	

contributed	to	the	understanding	of	the	ways	in	which	some	genomic	innovations	and	

sequence	 changes	 in	 genes	 might	 contribute	 to	 generate	 alternative	 phenotypes	

between	species.	Changes	at	genomic	level	shaping	the	mechanisms	in	which	proteins	

interact	with	DNA	or	with	other	proteins	 to	control	gene	expression	are	considered	

essential	 in	 the	 evolution	 of	 species	 heterogeneity	 and	 phenotypic	 diversity	 (Wray	

2007;	 Wittkopp	 and	 Kalay	 2012).	 Gene	 regulation	 is	 mainly	 mediated	 by	 gene	

regulatory	factors	(GRF),	a	group	of	proteins	that	directly	or	 indirectly	interact	with	

DNA	 to	 regulate	 the	expression	of	 other	genes.	Two	widely	explored	genes	 that	are	

examples	of	how	genetic	variability	on	GRF	genes	might	have	profoundly	changed	the	

evolutionary	history	of	humans	are	Forkhead	box	protein	2	(FOXP2)	(Lai	et	al.	2001;	

Enard	et	al.	2002;	Konopka	et	al.	2009;	Reimers‐Kipping	et	al.	2011;	Maricic	et	al.	2013)	

and	PR	domain‐containing	protein	9	(PRDM9).	The	FOXP2	protein	carries	two	human‐

specific	amino	acids	(Enard	et	al.	2002).	It	has	been	suggested	that	these	two	amino	

acids	are	connected	with	molecular	processes	moderating	the	evolution	of	speech	and	

language,	both	distinctive	human	 traits	 (Lai	et	 al.	2001).	Experimental	 research	has	

shown	that	the	set	of	genes	that	are	regulated	by	FOXP2	differs	between	human	and	

chimpanzee	(Konopka	et	al.	2009),	which	suggest	the	likely	effect	that	these	two	amino	

acids	caused	on	altering	regulation	of	gene	expression	and	the	evolutionary	improved	

speech	capabilities	in	humans.	Recent	evidence	suggests	that	FOXP2	variation	may	be	

important	in	language	disabilities,	but	that	the	contribution	of	common	variants	to	the	

language	capability	of	an	individual	are	unlikely	to	cause	an	appreciably	effect	(Mueller	

et	al.	2016).	In	addition,	it	was	also	found	that	FOXP2	exhibited	signatures	of	positive	

selection	in	humans	(Enard	et	al.	2002;	Zhang	et	al.	2002)	and	that	FOXP2	target	genes	

show	strong	evidence	of	positive	selection	as	well	(Fisher	et	al.	2013).	Another	example	

of	a	GRF	with	relevance	in	the	evolutionary	history	of	humans	is	PRDM9,	a	zinc	finger	

GRF	protein	with	histone	methyltransferase	activity	and	highly	variable	tandem‐repeat	

zinc	 finger	 domains.	 PRDM9	 plays	 a	 key	 role	 in	 determining	 sequence‐specific	

recombination	hot	spots	in	the	humans	genome		(Thomas	et	al.	2009)	and	other	non‐

human	primates.	PRDM9	carries	human‐specific	changes	in	amino	acids	that	determine	

its	binding	site	specificity	in	humans	when	compared	with	chimpanzee.	This	suggests	
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that	PRDM9	binds	and	regulate	different	genomic	regions	in	humans	and	chimpanzees.	

In	 addition,	 recent	 evidence	 suggest	 that	 PRDM9	 sequences	 from	 Neandertals	 and	

Denisovan	were	 closely	 related	 to	 the	 ones	 in	 present	day	humans	 (Schwartz	 et	 al.	

2014).	 Zinc	 finger	 domains	 of	 PRDM9	 display	 ubiquitous	 signatures	 of	 positive	

selection	 on	 the	 amino	 acids	 responsible	 for	 interaction	with	 DNA	 (Schwartz	 et	 al.	

2014).		

	

Despite	 the	 understanding	 of	 the	molecular	 bases	 that	 are	 driving	 the	 evolution	 of	

human	phenotypical	differences	between	populations	and	with	other	 species	 is	 still	

inceptive,	it	is	clear	that	genetic	variation	affecting	transcriptional	machinery	may	have	

a	profound	effect	on	fine‐tuning	the	expression	of	genes	involved	in	particular	traits	we	

observe	 in	 humans	 and	 non‐human	 primate	 species.	 Therefore,	 studying	 and	

identifying	genetic	changes	that	might	be	involved	in	altering	gene	expression	by	either	

introducing	 variation	 in	 non‐coding	 DNA	 regions	 involved	 in	 regulation	 of	 the	

transcription	 of	 nearby	 genes,	 or	 in	 positions	 that	 code	 for	DNA	 or	 protein‐protein	

interaction	domains,	becomes	essential	for	understanding	the	human	regulome,	and	in	

a	broader	perspective,	human	evolution.		

	

Considering	that	elucidating	how	regulatory	mechanisms	have	evolved	in	humans	from	

a	 genomic	 perspective	 still	 represents	 an	 open	 challenge	 with	 a	 vast	 repertoire	 of	

possibilities	 to	 be	 explored	 and	 identified,	 we	 defined	 and	 implemented	 different	

strategies	aiming	to	characterize	and	meaningfully	contribute	to	the	understanding	of	

the	evolution	of	human	GRFs.	These	strategies	involved	establishing	an	inventory	of	all	

putative	GRF	genes	of	the	human	genome;	the	detection	of	GRFs	that	exhibit	signatures	

of	positive	selection	in	three	different	human	populations;	and	finally,	the	identification	

of	human‐specific	transcription	factor	binding	sites	for	a	particular	GRF	protein	that	

plays	essential	roles	at	cellular,	hormonal,	neurological	and	mitochondrial	level.		

	

The	first	chapter	of	this	thesis	introduces	the	strategies	for	building	a	comprehensive	

and	up	to	date	catalog	of	GRFs	of	the	human	genome.	This	catalog	gathers	information	

from	the	most	representative	inventories	so	far	created	for	humans	in	the	last	decade.	
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We	also	grouped	all	GRFs	that	have	DNA‐binding	properties	into	41	different	classes	

according	to	Wingender	et	al,	(2015).	This	chapter	also	includes	a	literature	review	of	

the	biological	 evidence	 that	 connects	particular	GRFs	with	 the	 evolution	of	 humans	

from	three	different	evolutionary	windows.	It	also	discusses	the	likely	consequences	

that	 evolutionary	 changes	may	 have	 introduced	 in	 humans	 from	 a	 phenotypic	 and	

medical	 perspective.	 Consequently,	we	 first	 explored	 the	 evolutionary	 changes	 that	

occurred	 during	 the	 evolution	 of	 humans	 and	 non‐human	 primates,	 secondly,	 the	

genetic	 variation	 after	 AMHs	 split	 from	 archaic	 humans,	 and	 finally	 the	 genetic	

differences	 in	 GRFs	 within	 modern	 humans.	 Part	 of	 the	 results	 of	 this	 work	 was	

published	as	review	paper	in	the	journal	Current	Opinion	in	Genetics	and	Development.	

In	addition,	we	also	used	the	GRF	catalog	in	a	collaborative	research	project	that	was	

recently	published	in	the	Journal	Frontiers	in	Genetics.	Full	references:		

Perdomo‐Sabogal	A,	Kanton	S,	Walter	MBC,	Nowick	K.	2014.	The	role	of	gene	regulatory	

factors	in	the	evolutionary	history	of	humans.	Curr.	Opin.	Genet.	Dev.	29:60.	

	

Berto	S,	Perdomo‐Sabogal	A,	Gerighausen	D,	Qin	J,	Nowick	K.	2016.	A	consensus	network	

of	gene	regulatory	factors	in	the	human	frontal	lobe.	Front.	Genet.	[Internet]	7.	Available	

from:		

http://www.frontiersin.org/bioinformatics_and_computational_biology/10.3389/fgene.2

016.00031/abstract	

	

In	 the	 second	 chapter	of	 this	 thesis	we	present	 the	 results	obtained	 from	exploring	

genome	wide	data	for	detecting	GRF	genes	that	are	candidates	for	positive	selection	

occurring	in	three	human	populations.	Using	the	most	recent	catalog	for	GRFs	(Chapter	

one),	data	obtained	from	genome‐wide	scans	for	detecting	positive	selection	and	the	

information	from	the	1000	genomes	project,	we	extensively	explored	which	GRF	genes	

and	classes	are	located	in	genomic	regions	that	are	candidates	for	positive	selection	in	

three	particular	AMH	populations.	As	results,	we	present	a	set	of	GRF	candidate	genes	

for	 positive	 selection,	 and	 introduce	 six	 of	 the	 larger	 classes	 of	 GRFs	 that	 show	

enrichments	 for	 genes	 exhibiting	 signatures	 of	 positive	 selection.	We	 also	 describe	

three	 regions	 harboring	 multiple	 Krüppel	 associated	 box	 domain	 zinc	 finger	 genes	
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(KRAB–ZNF)	and	that	present	extensive	signatures	of	selection	that	are	larger	than	100	

kilo	 base	 pairs	 (kb).	 We	 finally	 present	 some	 examples	 of	 how	 single	 nucleotide	

variants	occurring	in	GRF	genes	may	introduce	regulatory	diversity	 in	humans,	thus	

possibly	leading	to	the	evolution	of	particular	traits	such	as	obesity,	blood	coagulation,	

reproduction,	and	insulin/glucose	metabolic	pathways	in	humans.	The	results	of	this	

research	are	included	in	a	manuscript	under	preparation.	

	

The	 third	 chapter	 of	 this	 thesis	 presents	 the	 results	 obtained	 from	 integrating	 five	

different	approaches	to	identify	human‐specific	binding	sites	for	the	GRF	GA‐binding	

protein	 alpha	 subunit	 (GABPa).	 From	 an	 experimental	 perspective,	 three	 strategies	

were	 implemented:	 chromatin	 immunoprecipitation	 followed	 by	 massively	 parallel	

DNA	next	generation	sequencing	(ChIP‐Seq),	RNA	interference	(siRNA)	and	reporter	

gene	 assays.	 From	 a	 computational	 perspective,	 two	 main	 approaches	 were	 used:	

comparative	 genomics	 by	 using	 multiple	 sequence	 alignments	 and	 gene	 ontology	

analysis.	As	results,	around	6000	GABPa	binds	sites	were	identified.	Among	these,	it	

was	possible	to	pinpoint	regulatory	regions	that	are	human‐specific.	 In	addition,	we	

also	 detected	 that	 GABPa	 regulates	 the	 expression	 of	 several	 KRAB‐ZNF	 genes,	 and	

human‐specific	genes.	We	also	linked	GABPa	to	the	regulation	of	human	and	primate‐

specific	 genes	 that	 have	 been	 associated	 with	 human	 cognitive	 disorders	 and	

neuromuscular	 functions,	mitochondria	biosynthesis,	and	embryo	development.	The	

results	 of	 this	 work	 were	 recently	 published	 in	 the	 journal	 Molecular	 Biology	 and	

Evolution.	Full	reference:	

Perdomo‐Sabogal	A,	Nowick	K,	Piccini	I,	Sudbrak	R,	Lehrach	H,	Yaspo	M‐L,	Warnatz	H‐J,	

Querfurth	R.	2016.	Human	lineage‐specific	transcriptional	regulation	through	GA	binding	

protein	transcription	factor	alpha	(GABPa).	Mol	Biol	Evol.33:1231–1244	

	

Special	 considerations:	 The	 chapter	 three	 include	 experimental	 data	 that	 was	

collaboratively	generated	with	research	partners.		
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Chapter	1	
	

Gene	Regulatory	Factors,	key	genes	in	the	evolutionary	

history	of	modern	humans	
	

2.1.	Introduction	

At	transcriptional	level,	gene	regulation	is	mediated	via	GRFs	that	directly	or	indirectly	

interact	with	DNA	and	other	 co‐factors	 to	 up	 or	 down	 regulate	 the	 transcription	 of	

other	 genes	 (Ryan	 et	 al.	 1999;	 Briers	 et	 al.	 2009;	 Iyengar	 and	 Farnham	 2011;	

Wingender	et	al.	2013;	Perdomo‐Sabogal	et	al.	2014).	The	GRF	proteins	are	typically	

characterized	by	the	presence	of	one	or	more	DNA‐binding	domains	or	domains	that	

moderate	 the	 interaction	 with	 DNA‐binding	 transcription	 factors	 (Hughes	 2011;	

Iyengar	and	Farnham	2011).	Genetic	changes	altering	 the	way	proteins	regulate	the	

expression	of	other	genes	or	the	configuration	of	enhancers	and	promoters,	are	thought	

to	mainly	contribute	 in	 the	evolution	and	heterogeneity	of	phenotypes	(Wray	2007;	

Wittkopp	and	Kalay	2012).	Despite	a	representative	number	of	studies	have	shown	that	

sequence	 changes	 in	 cis‐regulatory	 elements	 (CREs)	 are	 more	 frequent	 and	

significantly	contribute	in	driving	phenotypical	variation	at	species	level	(Wray	2007;	

Wittkopp	and	Kalay	2012),	a	growing	group	of	new	evidence	suggests	that	changes	in	

the	DNA	sequence	of	regions	coding	for	binding	domains	of	GRFs,	may	also	play	a	major	

role	on	shaping	phenotypic	diversity	and	evolution	at	population	level	(Nowick	et	al.	

2011;	Jacobs	et	al.	2014;	Cheatle	Jarvela	and	Hinman	2015;	Zhang	et	al.	2015;	Barrera	

et	al.	2016).	

	

In	 humans,	 GRFs	 have	 been	 cataloged	 in	 several	 different	 ways,	 either	 using	 their	

biological	 function,	 tissue‐specific	 expression,	 or	 their	 role	 as	 DNA‐binding	 or	 co‐

factors	 (Brivanlou	 and	Darnell	 2002;	 Vaquerizas	 et	 al.	 2009;	Weirauch	 and	Hughes	

2011;	Wingender	et	al.	2013).	Several	other	ways	have	also	been	considered,	either	

based	in	the	way	they	interact	for	regulating	genes	expression,	for	instance,	by	their	



	

	 16

ability	 to	 interact	with	 co‐factors	 and	 induce	 the	 reorganization	 of	 the	 nucleosome	

structure	and	chromatin	remodeling	(Figure	4)	(Messina	et	al.	2004;	Voss	and	Hager	

2014).	 As	 result,	 several	 scattered	 inventories	 of	 the	 human	 GRF	 genes	 have	 been	

produced	in	the	last	decade	(Messina	et	al.	2004;	Vaquerizas	et	al.	2009;	Ravasi	et	al.	

2010;	Nowick	et	al.	2011;	Tripathi	et	al.	2013;	Wingender	et	al.	2013;	Edgar	Wingender	

et	al.	2015).	Despite	the	different	efforts	to	identify	and	build	the	most	complete	set	of	

human	GRFs,	mainly	implemented	for	DNA‐binding	transcription	factors	(TFs)	in	the	

above‐mentioned	works,	 these	 independent	 studies	 have	 resulted	 in	 fragmented	 or	

incomplete	 information.	 In	 some	 cases,	 especially	 in	 those	 pioneering	 works,	 it	 is	

difficult	to	currently	track	back	the	information	for	such	sets	of	genes.		

Figure	4.	Illustrative	representation	of	chromatin	structure	and	chromatin‐mediated	gene	regulation.	(a)	

Dynamical	interaction	between	GRFs	to	modify	the	chromatin	architecture	and	enable	the	access	of	the	

gene	regulatory	machinery	to	the	DNA,	thus	regulating	the	initiation	of	transcription.	(b)	GRFs	bind	the	

promoter	 regions,	 recruit	 other	 co‐factors	 and	 fine‐tune	 the	 pre‐initiation	 complex	 to	 regulate	 gene	

expression.	The	pre‐initiation	complex	helps	to	position	the	RNA	polymerase	II.	(c)	GRFs	also	interact	

with	other	molecules,	for	instance,	ncRNAs,	to	down	regulate	gene	expression.	Modified	from		(Perdomo‐

Sabogal	et	al.	2014).		
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Taking	into	account	these	functional	roles	and	the	scattered	information	from	the	most	

representative	 seminal	works	 in	 the	 area	 of	 the	 human	GRFs	 (Messina	 et	 al.	 2004;	

Vaquerizas	et	al.	2009;	Ravasi	et	al.	2010;	Nowick	et	al.	2011;	Corsinotti	et	al.	2013;	

Tripathi	et	al.	2013;	Wingender	et	al.	2013;	Edgar	Wingender	et	al.	2015),	we	built	a	

comprehensive	 catalog	 of	 human	 GRF	 genes	 here.	 As	 resource	 for	 studying	 the	

evolution	of	GRFs	in	humans,	this	catalog	enabled	us	to	gather	information	about	the	

likely	 role	of	GRFs	 in	 the	evolutionary	history	of	humans,	 archaic	humans	and	non‐

human	primates	(Perdomo‐Sabogal	et	al.	2014).	In	addition,	it	was	a	useful	resource	

for	 identifying	 GRF	 genes	 that	 might	 be	 playing	 important	 regulatory	 roles	 in	 the	

human	frontal	lobe,	a	work	we	recently	published	in	Berto	et	al,	(2016).	Finally,	it	also	

allowed	us	to	extensively	look	for	candidate	genomic	regions	exhibiting	signatures	of	

positive	selection	in	genomic	regions	where	GRF	genes	are	located	for	three	modern	

human	populations.	(CEU,	CHB,	YRI)	(Chapter	II).		

	

2.2.	Results	
	

2.2.1.	An	updated	comprehensive	 catalog	of	GRFs	 for	 studying	 regulatory	

evolution	in	human	

The	catalog	presented	here	gathers	information	obtained	from	seven	different	studies	

performed	for	GRF	in	human,	and	that	are	widely	acknowledged	as	seminal	works	in	

the	 area.	 Based	 on	 the	 strategies	we	 implemented,	 our	 catalog	 of	 GRF	 includes	 the	

majority	of	genes	reported	in	these	studies	(Figure	5).	Our	catalog	includes	3037	(90%)	

of	the	GRFs	that	were	recently	reported	in	“TFcheckpoint”,	a	TFs	database	for	human	

(Tripathi	et	al.,	2013).	Twenty‐six	out	of	the	remnant	211	genes	listed	in	TFcheckpoint	

matched	 the	 criterion	 “regulation	 of	 transcription”;	 however,	 none	 of	 them	 was	

supported	by	the	literature.	Consequently,	we	decided	to	exclude	them	from	our	final	

GRF	 gene	 list.	 Genomic	 coordinates	 and	 gene	 identifiers	 of	 all	 GRFs	 in	 this	 list	

correspond	with	 the	 information	available	 for	 the	human	reference	genome	version	

GRCh37/hg19.	 In	 total,	 we	 cataloged	 3362	 GRFs	 (Supplementary	 Table	 S1,	

supplementary	data	file).	Based	on	the	strategies	implemented	here	for	building	this	

GRF	catalog,	it	additionally	includes	287	GRF	genes																													.	



	
Figure	5.	Catalog	of	GRFs	genes	present	in	the	human	genome.	Overlap	between	our	GRF	list	and	the	different	seminal	works	that	have	been	
conducted	for	humans	during	the	last	two	decades	
	

	



A	detailed	and	curated	classification	of	DNA‐binding	GRFs	into	their	functional	classes	

exists,	which	enabled	us	to	functionally	classify	1521	GRF	genes	(~46%)	into	40	out	of	

42	transcription	factor	classes	reported	(Figure	6).	Two	GRF	classes,	C6	zinc	cluster	

and	 E2‐related,	 do	 not	 have	 any	 gene	 reported	 in	 our	 list.	 Out	 of	 those	 genes	with	

available	information	about	their	class,	zinc	finger	genes	are	by	far,	the	most	abundant	

type	of	GRF	genes	(807	members).	C2H2	is	the	most	abundant	classes	of	GRFs	with	695	

members,	of	which	415	are	KRAB‐ZNF,	followed	by	Homebox	Domain	and	basic	Helix‐

Loop‐Helix	(bHLH)	genes	(229	members	and	109).		

	

For	our	own	research	interests	and	downstream	analyses,	we	decided	to	split	the	TF	

class	C2H2	into	two	separated	classes.	The	non	KRAB‐ZNF	domain	genes	were	kept	in	

the	C2H2	class,	and	we	generated	a	new	category	containing	all	C2H2	gene	that	have	a	

KRAB	domain.	The	rationale	behind	this	decision	was	based	on	several	reasons,	but	

mainly	because	there	are	some	indications	that	suggest	that	KRAB‐ZNF	genes	might	be	

undergoing	 different	 evolutionary	 processes	 than	 other	 C2H2	 genes.	 For	 instance,	

KRAB‐ZNF	genes	represents	more	than	60%	of	the	C2H2	genes	(Figure	6),	it	includes	

fast‐evolving	 genes,	 and	 copy	 number	 variations	 of	 these	 genes	 have	 resulted	 in	

genomic	innovations	in	humans	(Nowick	et	al.	2011;	Nowick	et	al.	2013).	In	addition,	

some	 members	 of	 this	 group	 have	 also	 been	 recently	 connected	 with	 important	

evolutionary	 mechanisms	 to	 down‐regulate	 retrotransposable	 elements	 in	 humans	

(Jacobs	 et	 al.	 2014;	 Lukic	 et	 al.	 2014;	 Najafabadi	 et	 al.	 2015)	 and	 human‐specific	

changes	might	be	of	interest	for	understanding	recent	human	evolution.		

	

2.2.2.	Evolutionary	changes	in	GRFs	after	humans	split	from	chimpanzees		

Genomic	 variation	 is	 a	 primary	 source	 of	 phenotypic	 diversity	within	 and	 between	

species.	At	species	level,	the	acquirement	of	new	genomic	elements	can	have	a	strong	

impact	on	the	way	particular	traits	evolve.	New	genes	play	essential	roles	in	organismal	

evolution,	as	it	is	observable	by	the	extraordinary	diversity	they	represent	in	numbers	

and	types	among	species	(Chen	et	al.	2013).	Among	the	3362	genes	 included	 in	our	

catalog,	 we	 identified	 15	 GRF	 genes	 that	 are	 uniquely	 present	 in	 humans	 (BOLA2,	
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BOLA2B,	 TCEB3C,	 BAGE2,	 ZNF138,	 SCXB,	 ZNF705B,	 FOXD4,	 ZNF658B,	 FOXD4L4,	

FOXD4L5,	ZNF322P1,	SSX1,	SSX4B,	DMRTC1)	(Perdomo‐Sabogal	et	al.	2014),	meaning	

they	 have	 no	 ortholog	 in	 other	 species	 (Zhang	 et	 al.	 2010).	 Despite	 of	 being	 in	 the	

genome	of	one	or	just	few	species,	new	genes	can	provide	new	molecular	and	cellular	

functions	with	 indispensable	 roles	at	developmental,	 reproductive,	neurological	and	

behavioral	level	(Chen	et	al.	2013).	Results	from	mRNA	expression	profiles	for	different	

human	tissues	(Wilhelm	et	al.	2014)	indicated	that	seven	out	of	the	15	human‐specific	

GRFs	are	highly	expressed	in	cerebral	cortex,	testis,	ovary,	lymphatic	and	endocrinal	

system	(Figure	7).	Therefore,	 it	will	be	 interesting	 to	discern	how	 these	15	human‐

specific	GRF	have	been	integrated	into	the	pathways	regulating	functional	programs	in	

humans	or	 if	 they	are	 involved	in	the	development	of	human‐specific	morphological	

characteristics.	

	 	
Figure 6. Classification of DNA‐binding GRF genes within our catalog according to Wingender et al, 2015. 	
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Genetic	disease	association	studies	are	frequently	used	for	understanding	how	human‐

specific	genes	or	genes	showing	copy	number	variants	in	close	related	primate	species	

could	 result	 in	 phenotypical	 traits,	 physiological	 constraints	 and	 medical	

consequences.	We	used	the	gene‐disease	association	database	“DisGeNET”	(Piñero	et	

al.	2015)	to	explore	if	some	of	these	human‐specific	genes	have	been	associated	with	

altered	phenotypes	in	humans.	Six	of	the	15	human‐specific	genes	have	been	connected	

with	diseases	such	as	aggressive	cell	sarcomas	and	nervous	system	pathologies	(SSX1	

and	 SSX4B)	 (Crew	 et	 al.	 1994;	 Yawata	 et	 al.	 2011;	 Piñero	 et	 al.	 2015),	 melanomas	

(BAGE2)	 (Xie	 et	 al.	 2002),	 and	 substance‐related	disorders	 such	 as	 tobacco	use	and	

nicotine	 dependence	 (ZNF138)	 (Rose	 et	 al.	 2010).	 In	 addition,	 putative	 roles	 of	 the	

TCEB3C	 indicate	 it	 may	 act	 as	 tumor	 suppressor	 protein	 in	 small	 intestinal	

neuroendocrine	tumors	(Edfeldt	et	al.	2014).	

	
Figure	7.	Human‐specific	genes	are	over‐expressed	in	lymph	node,	cerebral	cortex,	testis,	skin,	adrenal	

gland,	and	prostate.	Expression	 levels	of	seven	out	of	15	human‐specific	GRF	genes	are	based	on	the	

median	 RNA	 expression‐profiles(Wilhelm	 et	 al.	 2014).	 Except	 tissues	 that	 are	 sex‐specific,	 all	 genes	

represented	here	were	found	to	be	highly	expressed	in	both	males	and	females	(Wilhelm	et	al.	2014).	

Figure	adapted	from	ProteomicsDB.	(Wilhelm	et	al.	2014).	

	

Highly expressed in ovary (DMRTC1) 
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By	 comparing	 the	modern	 human	 genome	 versus	 the	 genomes	 of	 archaic	 hominin	

species,	 it	was	also	possible	 to	pinpoint	 some	GRF	 that	exhibit	higher	 copy	number	

variants	in	Neandertal	and	Denisovan.	Some	of	these	GRFs	have	strong	phenotypical	

effects	if	mutated	or	over	expressed	in	AMHs	(Table	1).	For	instance,	Histone	Cluster	1	

gene	(HIST1H2BN)	and	Tripartite	Motif	Containing	26	(TRIM26)	have	been	associated	

with	circulatory	and	cardio	vascular	diseases	such	as	Behcet	syndrome	(Piñero	et	al.	

2015),	a	common	syndrome	in	Middle	East	and	Asian	AMHs	populations	(Durrani	and	

Papaliodis	 2008).	 Another	 example	 is	 Double	 Homeobox	 4	 (DUX4),	 a	 GRF	 found	

overexpressed	at	mRNA	and	protein	levels	(Dixit	et	al.	2007)	in	facioscapulohumeral	

muscular	dystrophy	1	myoblasts.	This	altered	phenotype	results	in	progressive	skeletal	

muscle	weakness.	

	

Table	 1.	Gene	 regulatory	 factors	with	 copy	 number	 variants	 in	 archaic	 humans.	 Genetic	 association	

studies	 revealed	some	of	 the	 likely	medical	 consequences	 these	genetic	variations	could	have	had	 in	

Neandertal	and	Denisovan.	(¥)	Genes	with	higher	copy	number	variants	in	Denisovan.	(*)	Genes	showing	

higher	copy	number	variation	in	Neandertal	(Perdomo‐Sabogal	et	al.	2014)		

	

	

2.2.3.	Evolution	of	GRFs	in	AMH	population	
Genomic	comparisons	between	human	individuals	from	different	human	populations	

provide	a	great	opportunity	to	detect	evolutionary	events	associated	with	particular	

human	traits.	Since	AMHs	migrated	out	of	Africa	the	first	time,	AMHs	have	undergone	
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substantial	 morphological	 changes.	 As	 consequence,	 AMHs	 display	 particular	

population	 specific	 features	 such	 as	 lactose	 persistence,	 skin	 color,	 hair	 thickness,	

height,	among	others.		

	

Recent	genome‐wide	scans	for	signatures	of	positive	selection	have	identified	a	large	

set	of	candidate	genomic	regions	(Sabeti	et	al.	2007;	Pickrell	et	al.	2009;	Chen	et	al.	

2010;	Metspalu	et	al.	2011;	Grossman	et	al.	2013).	Overall,	 the	overlap	between	the	

genomic	regions	under	selection	reported	in	these	studies	is	not	high.	Nonetheless,	by	

using	the	genomic	coordinates	of	these	regions	and	the	ones	from	our	GRF	catalog,	it	

was	 possible	 to	 identify	 several	 GRF	 genes	 that	 are	 likely	 candidates	 for	 positive	

selection	 in	AMHs.	 In	 ten	cases,	 the	same	GRF	gene	was	reported	 in	more	 than	 two	

studies	(Table	2).	It	 is	also	interesting	that	some	of	these	GRF	are	located	in	regions	

showing	population‐specific	signatures	of	positive	selection	(Supplementary	Table	2),	

which	may	also	indicate	population‐specific	regulatory	mechanisms.		For	instance,	in	

the	WW	domain	 containing	oxidoreductase	 (WWOX)	 gene,	 a	TF	 gene	 that	has	been	

found	in	a	region	that	shows	signatures	of	a	recent	selective	sweep	(Table	2),	in	Utah	

residents	with	northern	and	western	European	ancestry,	 carry	a	SNP	 that	has	been	

associated	with	changes	in	lipid	metabolism	and	cardiovascular	disease	risk	in	humans.	

Despite	 further	 research	 is	 required,	 it	 is	possible	 that	WWOX	might	be	 involved	 in	

changes	of	lipid	metabolism	at	population	specific	level.		
	

Table	2.	GRFs	located	on	genomic	regions	that	have	been	identified	as	candidates	for	positive	selection	

in	AMHs	(Perdomo‐Sabogal	et	al.	2014).	

	

Gene	symbol	 	Number	of	genes	 Source	

WWOX	 1	
(Sabeti et	al.	2007;	Pickrell	et	al.	
2009;	Grossman	et	al.	2013)	

MYEF2,	FBN1	 2	
(Sabeti et	al.	2007;	Pickrell	et	al.	

2009)	

ZMYM6	 1	
(Sabeti et	al.	2007;	Grossman	et	

al.	2013)	

PPARA,	KCNH5	 2	
(Pickrell	et	al.	2009;	Metspalu	et

al.	2011)	

HIF1A,	SNAPC1,	DPF1	 3	
(Pickrell	et	al.	2009;	Grossman	

et	al.	2013)	

KCNH7	 1	
(Metspalu	et	al.	2011;	Grossman

et	al.	2013)	
CTNND2,	BMI1,	AFF2,	BBX,	NFE2L2	 5	 (Sabeti	et	al.	2007)	
RGS9,	ERBB4,	ATF6,	PHF19,	DUSP12,	RFX3, CIITA, NCOA7, APC,
TRIM14,	SETBP1,	POLR2K,	FOXE1,	HSF2,	YTHDC1,	HEY2	 16	 (Pickrell	et	al.	2009)	

CLOCK,	MSTN,	LIN28B,	ISX	 4	 (Metspalu	et	al.	2011)	
ANKRD45,	RRN3,	SFPQ,	SIN3A,	SLC30A9,	CCDC71,	RNF135,	NCOA1,	
PCGF1,	HIRA,	MCM6,	ASXL2,	FOXP1,	RHOA,	TERF2IP,	TAX1BP3,	
HIPK1,	KCNIP4,	RFX5,	ADNP2,	ZBTB41,	PAPOLA,	POGZ,	FMNL2,	
ACTR5,	PAWR,	LHX8,	USF1,	EBF1,	LBX2,	CHD2,	ARIH2,	PHTF1	

33	 (Grossman	et	al.	2013)	
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2.3.	Discussion	

Regulation	of	gene	expression	involves	a	wide	and	complex	repertoire	of	mechanisms	

that	are,	to	a	large	extend,	fine‐tuned	by	GRF	proteins.	As	trans‐acting	molecules,	GRFs	

directly	or	 indirectly	 interact	with	DNA	to	up	or	down	regulate	gene	expression.	As	

group,	GRFs	have	evoked	 the	 interest	 since	 they	might	be	playing	essential	 roles	 in	

determining	 species‐specific	 phenotypes.	 It	 is	 plausible	 that	 the	 appearance	 of	 new	

genetic	 changes	 occurring	 on	 GRF	 genes	 are	 a	 prime	 source	 for	 the	 molecular	

diversification	 and	divergence	 in	hominins	 and	other	non‐human	primates,	 and	 the	

effects	of	natural	selection	on	AMHs.	

	

By	 using	 several	 pre‐existing	 inventories	we	 built	 an	 updated	 list	 of	 GRF	 genes	 for	

human.	In	contrast	to	previous	works,	this	catalog	includes	genes	involved	in	different	

regulatory	 mechanisms	 such	 as	 DNA‐binding,	 co‐factors,	 histone	 and	 chromatin	

modifiers,	 among	 others.	 The	 overlapping	 strategy	 followed	 by	 batch	 coordinates	

conversion	 and	manual	 inspection	 of	 different	 databases,	 brought	 us	 to	 estimate	 in	

about	 3362	 GRF	 genes.	 Compared	with	 the	 first	 inventory	 of	 TF	 genes	 realized	 for	

humans	 by	Messina	 (2004),	 we	 additionally	 cataloged	 45	 zinc	 finger	 genes	 and	 30	

Homeobox	genes.	The	number	of	bHLH	genes	reported	in	our	catalog	is	smaller	than	

the	one	reported	in	Messina’s	study.	Nonetheless,	our	catalog	includes	the	number	of	

bHLH	 genes	 reported	 in	 the	 latest	 classification	 of	 human	 DNA‐binding	 TFs	 (109	

members)	(Wingender	et	al.	2015).	Compared	with	the	most	recent	inventory	of	human	

GRFs	“TFcheckpoint”	(Tripathi	et	al.	2013),	our	catalog	additionally	includes	287	genes.	

This	 catalog	 becomes	 the	 most	 complete	 inventory	 of	 human	 GRF.	 As	 source	 of	

information,	 this	 catalog	 is	 of	 great	 utility	 for	 exploring	 the	 roles	 of	 GRF	 in	 human	

evolution.	For	instance,	for	identifying	GRF	genes	that	might	be	involved	in	important	

regulatory	 roles	 at	 tissue‐specific	 level,	 gathering	 information	about	human‐specific	

GRFs,	 comparative	 genomics	 with	 other	 hominin	 and	 non‐human	 primate	 species,	

among	other	uses.		
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2.3.1.	Newly	evolved	GRF	in	humans	

Genomic	innovations	such	as	the	appearance	of	new	genes,	changes	in	copy	number	

variants	 or	 new	 regulatory	 elements	 such	 as	 transcription	 factor	 binding	 sites	 can	

strongly	affect	 the	way	phenotypes	evolve.	Out	of	 the	3362,	15	GRFs	correspond	 to	

human‐specific	 genomic	 innovations,	 while	 other	 17	 are	 Hominidae‐specific.	 Apart	

from	the	number	of	human	and	primate‐specific	genes	that	have	been	identified	so	far	

(Zhang	et	al.	2010),	over‐expression	of	younger	genes	in	testis	seems	to	be	a	constant	

(Chen	 et	 al.	 2013).	 Four	 human‐specific	 GRF	 genes	were	 found	highly	 expressed	 in	

human	 reproductive	 organs:	 testis	 (FOXD4,	 SSX1,	 SSX4B)	 and	 ovary	 (DMRTC1)	

(Wilhelm	et	al.	2014).			

	

The	 appearance	 of	 human‐specific	 genes	 as	 result	 of	 copy	 number	 expansions	 in	

humans	have	also	been	connected	with	the	modulation	of	brain	functions	(Fortna	et	al.	

2004;	Sudmant	et	al.	2010;	Geschwind	and	Konopka	2012).	Analyses	of	expression‐

profiles	of	 the	human	brain	have	 shown	enrichment	of	human‐specific	 genes	 in	 the	

prefrontal	cortex,	a	human	trait	that	displays	distinctive	structural	characteristics	and	

cognitive	capabilities	when	comparing	human	with	other	primates	(Zhang	et	al.	2011).	

Two	newly	evolved	GRFs	in	human	are	overexpressed	in	brain	(ZNF138	and	DMRTC1)	

(Wilhelm	 et	 al.	 2014).	 	 This	 suggests,	 although	 not	 conclusively,	 that	 some	 newly	

evolved	GRF	genes	might	be	playing	human‐specific	roles	in	tissue‐specific	regulatory	

networks	at	reproductive	and	neurological	level	in	humans.	

	

2.3.2.	Human‐specific	GRFs	and	disease	

Disease	association	studies	evidenced	that	six	of	the	human‐specific	GRF	are	connected	

with	 altered	 phenotypes	 in	 humans.	 For	 instance,	 chromosomal	 translocations	 that	

result	 in	 gene	 fusion	 between	 the	 Synaptotagmin	gene  (SYT) and members of  the 

Synovial	 Sarcoma	 X	 Breakpoint,	 genes	 SSX1	 and	 SSX4B,	 have	 been	 linked	 with	

aggressive	 cell	 sarcomas	 and	 nervous	 system	 pathologies.	 The	 gene	 B	 Melanoma	

Antigen	 (BAGE2)  is  another	 example	 of	 human‐specific	 genes	 involved	 in	 the	
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occurrence	of	tumor	of	melanin‐forming	cells.	This	gene	has been found exclusively 

expressed in 22% of melanomas (Xie et al. 2002). 	

	

GRF	 that	 exhibited	 copy	 number	 variants	 in	 Neandertal	 and	 Denisovan	 can	 have	

profound	effects	in	human	phenotypes	if	mutated	or	over	expressed.	For	instance,	some	

of	them	are	associated	with	circulatory	and	cardio	vascular	diseases	(HIST1H2BN	and	

TRIM26)	such	as	Behcet	syndrome	(Piñero	et	al.	2015),	a	pathology	characterized	by		

the	 inflammation	 of	 the	 blood	 vessels.	 Another	 example	 is	 DUX4,	 a	 GRF	 highly	

expressed	in	patients	with	muscular	dystrophy	that	results	in	the	continuous	skeletal	

muscle	weakening	(Dixit	et	al.	2007).	This	suggests	that	changes	in	GRFs	may	have	also	

resulted	 in	 detrimental	 phenotypes	 in	 archaic	 hominins.	 It	 also	 highlights	 some	

consequences	these	evolutionary	changes	could	have	had	on	individuals	carrying	copy	

number	variants	for	these	genes	in	hominin	species	(Perdomo‐Sabogal	et	al.	2014).	

	

Identifying	human‐specific	genes,	in	general,	allows	the	exploration	of	how	the	addition	

of	 new	 genes	may	 lead	 to	 phenotypic	 diversity	 and	 evolution.	 Newly	 evolved	 GRFs	

contributing	with	human‐specific	functions	may	have	a	broader	impact	on	pathways	

associated	 with	 important	 speciation	 traits	 in	 humans,	 for	 instance,	 with	 evolved	

reproductive,	 brain	 and	 immunological	 roles.	 Therefore,	 the	 identification	 of	 newly	

evolved	 genes	 that	 perform	 GRF	 functions	 in	 humans	 opens	 the	 possibility	 to	

experimentally	explore	 their	roles	or	effects	 in	human‐specific	regulatory	pathways.	

For	instance,	the	implementation	of	ChIP‐Seq,	gene	silencing,	gene	editing,	among	other	

experimental	 approaches	 on	 this	 set	 of	 genes,	 would	 be	 of	 great	 utility	 for	

understanding	their	roles	at	different	biological	levels	in	humans.		

	

2.3.3.	A	first	glance	of	evolutionary	changes	in	GRF	within	AMHs	populations	

The	occurrence	of	a	new	mutation	can	introduce	a	new	phenotypic	attribute	that	leaves	

population	 specific	 signatures	 in	 the	 genome	 after	 fixation	 (Wollstein	 and	 Stephan	

2015),	 for	 instance,	 selective	sweeps.	Main	characteristic	of	a	selective	sweep	 is	 the	

considerable	reduction	 in	 the	genetic	variability	 in	 the	neighborhood	of	a	particular	
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new	mutation	as	consequence	of	strong	natural	selection.	Selection	acting	on	particular	

gene	variant	also	has	an	effect	on	 the	neighboring	alleles	and	on	 the	recombination	

rates	of	a	given	region,	thus	resulting	in	an	overrepresentation	of	a	particular	haplotype	

(Messer	and	Petrov	2013).		

	

It	is	relevant	to	highlight	that	the	aforementioned	scans	for	positive	selection	in	human	

population	 genomic	data	have	 implemented	methods	mainly	designed	 for	detecting	

hard	 selective	 sweeps.	 In	 most	 cases,	 the	 authors	 have	 focused	 on	 those	 regions	

exhibiting	extreme	values	(strong	conservative	measures).	Therefore,	it	is	likely	that	

other	types	of	selective	events,	for	instance,	soft	sweeps	have	been	excluded	from	the	

final	reported	regions.	Thus,	three	main	general	conclusions	can	be	depicted	as	result	

of	these	studies.	First,	the	different	scans	for	positively	selected	genes	have	resulted	in	

a	non‐overlapping	list	of	candidates.	Second,	a	combinatorial	strategy	by	implementing	

different	statistical	approaches	could	help	to	reduce	the	number	of	false	positives	by	

comparing	different	values	for	particular	candidate	genes.	It	could	also	help	to	reduce	

the	effects	that	the	demographic	patterns	such	as	bottlenecks,	expansions,	genetic	flow,	

among	 others,	 can	 generate	 on	 diversity,	 thus	 disentangling	 when	 a	 signature	 of	

selection	should	be	considered	more	reliable.	Third,	overall,	regulatory	elements	seem	

to	 substantially	 contribute	 to	 both	 adaptive	 substitutions	 and	 deleterious	

polymorphisms	that	might	have	had	key	implications	for	human	evolution	(Enard	et	

al.,	2014).	

	

Due	to	the	strong	conservative	strategies	that	have	been	implemented	for	analyzing	the	

results	of	such	scans	for	selection,	we	suggest	they	might	be	ignoring	an	entire	class	of	

influential	 adaptive	 signatures	 that	 still	 remain	uncovered	 in	 the	 genomes	of	AMHs	

populations.	 Consequently,	 we	 think	 the	 implementation	 of	 these	 methods	 for	

detection	of	selection,	followed	by	less	conservative	strategies	for	detecting	positively	

selected	regions,	and	 the	 targeting	of	specific	groups	of	genes,	 for	 instance,	GRFs,	 is	

important	to	detect	some	still	not	described	signatures	of	selection.		
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2.4.	Conclusion	

Despite	in	the	last	two	decades	a	majority	of	studies	have	suggested	that	changes	in	

CREs	 elements	 is	 the	 prime	 source	 for	 species	 differentiation	 and	 phenotypical	

diversity,	recent	evidence	suggest	that	appearance	of	new	GRF	genes	and	changes	in	

the	proteins	of	these	genes	are	additional	sources	for	driving	phenotypical	diversity.	

We	presented	here	comprehensive	catalog	of	GRF	for	the	human	genome,	with	some	

examples	of	how	such	catalog	of	genes	may	contribute	to	studying	and	understanding	

the	roles	of	GRF	proteins	in	the	evolutionary	history	of	human‐specific	traits,	but	also	

we	gathered	 information	of	utility	 for	designing	new	experiments	to	deeper	explore	

and	validate	the	potential	role	of	these	genes	in	defining	human‐specific	phenotypes.		

	

2.5.	Materials	and	Methods	

	

2.5.1.	Building	the	GRF	gene	catalog	

We	brought	together	seven	different	GRF	gene	lists	previously	published	for	human.	

These	gene	sets	included	TFs	transcriptome	and	sequence	evolution	studies	and	TFs	

inventories	(Messina	et	al.	2004;	Vaquerizas	et	al.	2009;	Ravasi	et	al.	2010;	Nowick	et	

al.	 2011;	 Corsinotti	 et	 al.	 2013;	 Tripathi	 et	 al.	 2013)	 and	 functional	 classifications	

(Wingender	et	al.	2013;	Wingender	et	al.	2015)	(Figure	8).	The	whole	process	involved	

overlapping	genes	based	on	their	stable	identifiers	(IDs),	batch	coordinate	conversions	

(liftOver)	 (Karolchik	et	al.	2014),	manually	 inspection	using	different	databases	and	

gene	ontology	for	associating	gene	product	attributes.	Using	customized	Perl	scripts,	

and	information	from	ensemble	(Flicek	et	al.	2014),	UCSC	genome	browser	(Karolchik	

et	al.	2014),	UniProtKB	(The	UniProt	Consortium	2015),	and	HUGO	(Eyre	et	al.	2006)	

databases,	among	others,	we	overlapped	 the	gene	 lists	 that	provided	 the	 frequently	

recommended	stable	identifiers	(IDs).	For	instance,	we	used	identifiers	such	as	official	

gene	 symbols,	 gene	and	 transcripts	 ensemble,	UCSC,	 protein,	 and	RefSeq	 IDs.	These	

identifiers	were	used	as	keys.		



	

	
	Figure	8.		This	workflow	represents	the	step‐by‐step	procedure	for	building	the	GRF	catalog	presented	here.	The	selected	scientific	publications	

sourced	here	were	chosen	based	on	their	efforts	and	contributions	to	identify	and	categorize	human	GRFs.



In	 those	cases	where	 it	was	not	possible	 to	overlap	particular	 identifiers,	mainly	

explained	by	changes	in	the	names	due	to	updates	between	versions	of	the	reference	

genome,	we	lifted	over	the	genomic	coordinates	between	assemblies.	Subsequently,	

and	 using	 customized	 perl	 scripts	 and	 bedtools	 (Quinlan	 and	 Hall	 2010),	 we	

performed	a	new	overlap	between	sets	of	coordinates.	In	those	cases	where	none	of	

the	two	previous	strategies	was	successful,	we	used	the	gene	symbols	and	genomic	

coordinates	 to	 look	 for	 additional	 information	 in	 the	 aforementioned	 databases.	

Despite	the	efforts,	it	was	not	possible	to	track	back	all	the	information	reported	in	

some	of	these	studies.	This	is	mainly	explained	by	the	use	of	non‐official	stable	IDs	

and	failures	when	performing	the	liftOver	because	of	retired	genes	from	previous	

genome	 versions	 in	 the	 version	 GRCh37/hg19.	 In	 addition,	 there	 were	 also	

discrepancies	between	the	current	and	previous	status	of	genes,	for	instance,	loci	

that	were	previously	considered	as	genes,	but	now	cataloged	as	pseudogenes,	or	

ncRNAs.		

	

Since	some	of	the	GRFs	reported	in	the	aforementioned	studies	were	present	just	in	

one	of	these	inventories,	we	introduced	an	additional	criterion	to	consider	a	gene	

within	our	catalog.	Despite	it	is	known	that	the	molecular	mechanisms	that	regulate	

transcription	are	not	yet	fully	understood	for	many	proteins	coded	by	GRF	genes,	

we	required	that	singletons	have	to	be	associated	with	a	list	of	gene	ontology	(GO)	

terms	we	particularly	customized.	To	do	so,	we	built	a	list	of	GO	terms	to	identify	

genes	that	are	likely	to	perform	GRF	activities.	We	selected	molecular	and	biological	

GO	 terms	such	as	 regulation	of	 transcription,	DNA‐depending	 transcription,	RNA	

polymerase	II	transcription	cofactor	and	co‐repressor	activity,	chromatin	binding,	

remodeling,	among	other	218	terms,	(Supplementary	Table	S3,	supplementary	data	

file).	Then	we	sourced	the	GO	information	for	the	whole	set	of	genes	for	the	human	

reference	GRCh37/hg19,	in	total	27,993	genes	and	around	80,900	transcripts,	from	

the	 UCSC	 genome	 browser.	 This	 list	 also	 included	 information	 about	 genomic	

coordinates,	 several	 types	 of	 stable	 identifiers	 (i.e.	 Ensembl	 IDs,	 official	 gene	

symbols,	UCSC	IDs,	RefSeq,	among	others).	These	two	GO	terms	lists	allowed	us	to	

first,	overlap	identifiers	and	genomic	coordinates	between	the	singletons,	the	GO	

terms	 for	 the	whole	 set	of	human	genes	and	 the	customized	set	of	GO	 terms	we	

generated,	and	second,	cross‐validate	all	GRF	genes	versus	the	GO	customized	list.		
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For	 our	 own	 investigative	 purposes,	 we	 identified	 the	 smallest	 and	 the	 biggest	

coordinates	of	all	transcripts	of	a	gene	to	define	its	whole	genomic	region.	In	those	

cases	where	some	GRFs	presented	multiple	overlapping	transcript	coordinates,	we	

used	 the	 smaller	 gene	 start	 and	 the	 biggest	 gene	 end,	 thus	 covering	 the	 whole	

genomic	region	for	each	particular	gene	(Figure	9a).	In	cases	where	the	same	gene	

had	 one	 to	 several	 non‐overlapping	 transcripts	 (Figure	 9a),	we	 decided	 to	 keep	

them	separately.		In	such	cases	we	added	an	additional	tag	at	the	end	of	the	official	

gene	symbol.	This	tag	consists	of	a	dash	(‐)	followed	by	a	capital	letter	from	(A)	to	

the	 number	 of	 non‐overlapping	 transcripts.	 We	 also	 kept	 separately	 those	 GRF	

genes	 that	 have	 multiple	 copies	 located	 on	 the	 same	 chromosome,	 but	 do	 not	

overlap	at	all	(Figure	9b).	For	instance,	we	slightly	modified	the	names	for	copies	of	

the	gene	that	encodes	for	the	BolA‐like	protein	2	from	BOLA2B	to	BOLA2B‐A	and	

BOLA2B‐B.	 Among	 other	 particularities	 of	 the	 catalog	we	 built	 here,	 there	were	

some	 cases	 where	 GRFs	 had	 the	 same	 stable	 gene	 symbol	 but	 the	 copies	 were	

located	in	different	chromosomes,	for	instance,	the	gene	for	protein	phosphatase	2	

regulatory	subunit	B	(PPP2R3B).	This	gene	is	assigned	to	two	genomic	locations,	

one	on	the	chromosome	Y	and	the	other	on	the	chromosome	X	(Figure	9b).	In	such	

cases	 we	 slightly	 modified	 the	 names	 for	 copies	 of	 the	 gene	 from	 PPP2R3B	 to	

PPP2R3B	‐A	and	PPP2R3B‐B.	In	cases	where	alternative	gene	names	were	used	to	

address	 conjoined	 genes,	 as	 well	 as	 known	 as	 fusion	 genes	 that	 produce	

readthrough	transcripts,	we	kept	them	separately.	For	instance,	the	genes	ZNF670	

and	ZNF670‐ZNF695	(readtrough)	where	at	least	part	of	one	of	the	coding	regions	

from	each	gene	is	present	(Figure	9c),	were	kept	separately.	
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Figure	9.	Particularities	found	for	some	genomic	regions	while	building	the	GRF	catalog	for	human.	

(a)	 Genes	 having	 transcript	 variants	 that	 have	 been	 assigned	 to	 non‐overlapping	 genomic	

neighboring	regions.	(In	red)	example	of	non‐overlapping	transcript	variant	for	the	same	gene.	(b)	

Genes	having	copies	located	on	the	same	chromosome	but	in	different	locations	(i.e.	BOLA2B	gene)	

or	genes	having	two	different	genomic	locations	due	to	copies	located	on	different	chromosomes	(i.e.	

PPP2R3B	gene).	(c)	Example	of	conjoined	or	readtrough	GRF	genes	ZNF670‐ZNF695.	

	

In	addition,	and	based	on	the	results	obtained	by	Huntley	et	al,	(2006),	we	decided	

to	 keep	 several	 putative	 GRFs	within	 our	 catalog,	 even	when	 they	 are	 currently	

considered	as	pseudogenes,	 lincRNAs,	or	 in	 the	worst	 case	scenario,	 they	have	a	

retired	status.	The	rationale	behind	keeping	these	genes	in	our	catalog	lays	over	the	

manual	 curation	 Huntley	 and	 collaborators	 carried	 out	 (Huntley	 et	 al.	 2006).	

Additionally,	these	genes	show	all	the	characteristics	of	protein	coding	genes,	 for	

instance,	open	reading	frame	with	no	stop	codons	in	the	coding	sequence	(Nowick	

et	al.	2011).	For	such	cases,	22	KRAB‐ZNF	in	total,	the	official	gene	symbols	were	

tagged	as	 follows:	(+N)	 indicates	the	gene	was	reported	as	new	in	Huntley	et	al.,	

(2006)	but	now	is	either	considered	a	pseudogene,	or	has	retired	status;	(+NP)	are	

not	considered	protein	coding	genes	(i.e.	ncRNAs;	pseudogenes).	

	

	

a) 

b) 

c) 
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Chapter	2	

	
Positive	selection	on	GRF	genes	as	source	for	regulatory	

diversity	in	human	populations	

	

3.1.	Introduction	

	

3.1.1.	The	genetics	of	AMHs’	adaptation	

During	 the	 last	 95	 ka,	 AMHs	 have	 widespread	 out	 of	 the	 sub‐Saharan	 Africa	 to	

successfully	adapt	and	colonize	different	world	latitudes	(Fu	et	al.	2013).	Multiple	

factors	have	influenced	the	genome	diversity	in	AMHs	and	may	be	responsible,	to	

some	extent,	of	the	phenotypical	variation.	This	process	has	involved	adaptation	to	

a	diverse	collection	of	habitats	such	as	hot	and	cold,	dry	and	humid,	forests,	desserts,	

and	different	altitudes,	among	others	(Pritchard	et	al.	2010).	It	has	also	involved	the	

implementation	of	new	diets,	and	the	development	of	immunological	resistance	to	

diseases	and	pathogens	characteristic	of	such	environments.	These	differences	in	

climates,	 resources,	 pathogens	 exposed	 humans	 to	 strong	 changes	 that	 acted	 as	

selective	forces	(Vasseur	and	Quintana‐Murci	2013).		

	

To	what	extend	have	these	factors	influenced	genomic	adaptation	in	quantitative	

traits,	and	how	can	such	traits	rapidly	respond	to	changing	selective	pressures	by	

shifting	the	allelic	frequencies	of	a	vast	repertoire	of	polymorphic	sites?	If	they	have	

left	 signals	 in	 the	 genomes	 of	 AMHs’	 populations,	 can	 we	 identify	 the	 genes	 or	

groups	of	genes	 that	have	been	mostly	 influenced?	Our	understanding	of	human	

genome	variation	has	considerably	improved	during	last	decades.	The	continuing	

development	of	large	scaled	datasets	by,	for	instance,	SNP	arrays	and	whole	genome	

sequences	of	a	 large	number	of	 individuals	 from	multiple	AMH	populations	(The	

International	 HapMap	 Consortium	 and	 International	 HapMap	 Consortium	 2005;	

1000	Genomes	 Project	 Consortium	2012)	 have	 prompted	 the	 interest	 in	 finding	

such	genomic	regions,	especially	those	likely	to	carry	signatures	of	natural	selection.	
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Given	that	selection	acts	at	phenotype	level,	alleles	showing	evidence	of	selection	

are	likely	to	be	of	functional	relevance.		

	

Genomic	regions,	under	the	assumption	that	benign	genetic	variants	that	increase	

fitness	would	have	been	conserved	(Vasseur	and	Quintana‐Murci	2013),	are	useful	

for	interpreting	how	history	and	the	legacy	of	natural	selection	have	impacted	the	

human	 genome.	 They	 are	 also	 important	 for	 understanding	 the	 evolutionary	

dynamics	 that	 have	 governed	 the	 AMHs	 adaptation	 (Biswas	 and	Akey	 2006).	 In	

addition,	the	assessment	of	the	intensity	and	type	of	selection	acting	on	different	

human	genomic	regions	facilitates	pinpointing	of	candidate	loci	that	are	likely	to	be	

related	with	rare	or	severe	diseases,	and	genes	that	are	most	likely	to	be	involved	

in	susceptibility	or	resistance	to	diseases	(Vasseur	and	Quintana‐Murci	2013).	For	

instance,	diseases	exhibit	geographical	dissimilarities	at	population	 level	 such	as	

metabolic	and	autoimmune	medical	conditions	(Karlsson	et	al.	2014).	

	

Changes	in	the	gene	regulatory	mechanisms	and	subtle	variation	in	gene	expression	

levels	 seem	to	prevail	 in	 the	way	phenotypical	 traits	diversify,	 in	particular,	 in	a	

short	 evolutionary	 time	 scale	 (Bornberg‐Bauer	 et	 al.	 2010;	 Jones	 et	 al.	 2012).	

Therefore,	 it	 is	expected	that	a	substantial	 fraction	of	the	genetic	and	phenotypic	

differences	 we	 currently	 observe	 within	 AMH	 populations,	 are	 likely	 to	 be	 a	

consequence	of	variation	in	the	regulatory	mechanisms.	If	adaptation	is	primarily	

driven	by	regulatory	mechanisms	rather	than	the	appearance	of	new	genes,	it	could	

also	be	expected	that	some	advantageous	changes	occur	on	key	functional	parts	of	

the	protein	such	as	DNA‐	and	protein‐protein	binding	domains	of	GRFs	involved	in	

controlling	gene	transcription.	For	instance,	nucleotide	variations	on	SNPs	changing	

the	amino	acid	sequence	of	DNA‐binding	domains	(DBDs)	of	GRFs	may	alter	their	

binding	 affinity,	 thus	 introducing	 a	 source	 of	 regulatory	 functional	 variation	 in	

humans	 (Barrera	 et	 al.	 2016).	 Such	 variation	 could	 result	 in	 adaptive	 source	 of	

variation	at	population	level,	but	also	in	detrimental	traits	and	risk	disease.	If	the	

advantageous	 changes	 undergo	 positive	 selection,	 it	 is	 also	 possible	 that	 these	

selective	events	have	left	footprints	in	regions	where	these	adaptive	variations	have	

occurred.	Therefore,	a	detailed	exploration	aiming	to	identify	GRFs	and	particular	

GRF	 classes	 exhibiting	 footprints	of	 selection	 in	 the	human	genome	would	be	of	
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great	contribution	to	our	understanding	of	the	roles	of	the	regulatory	diversity	on	

the	evolutionary	history	of	AMH	populations.	

	

3.1.2.	Genome‐wide	scans	methods	for	detecting	positive	selection	

With	 the	 publication	 of	 the	 large‐scale	 study	 of	 human	 genetic	 variation	 (1000	

Genomes	 Project	 Consortium	 2012),	 humans	 are	 plausibly	 the	 best	 model	 for	

performing	genome	wide	scans	for	positive	selection.	Many	different	methods	for	

detecting	 positive	 selection	 from	 polymorphic	 data	 have	 been	 developed	 and	

implemented	in	studying	human	variation	during	the	past	decades	(Tajima	1989;	

Bustamante	et	al.	2005;	Nielsen	et	al.	2005;	Sabeti	et	al.	2007;	Sabeti	et	al.	2007;	

Pickrell	et	al.	2009;	Grossman	et	al.	2013).	Most	of	them	make	use	of	the	distortions	

positive	 selection	 causes	 on	 the	 patterns	 of	 expected	 genomic	 neutral	 variation.	

Natural	selection	also	acts	with	different	strengths	and	depending	on	the	signature	

it	produces	on	a	particular	region	it	is	possible,	to	some	extent,	to	predict	the	mode	

of	selection.	For	instance,	some	of	the	signatures	that	selection	leaves	at	population	

level	are	consistent	with	a	skew	in	the	allele	frequency	distribution,	reduced	levels	

of	haplotype	diversity,	elevated	levels	of	linkage	disequilibrium	(LD)	(Biswas	and	

Akey	2006),	increment	in	the	number	of	rare	alleles,	shifts	in	the	allele	frequencies	

between	 populations	 (Pritchard	 et	 al.	 2010),	 excess	 of	 intermediate‐frequency	

alleles,	or	reduced	neutral	variation	(Figure	10).		

	

3.1.3.	Approaches	for	detecting	positive	selection	at	species	level	

If	positive	selection	has	taken	place,	the	strength	of	this	event	produces	a	particular	

shift	 in	the	genome	diversity,	 for	 instance,	by	altering	the	nucleotide	diversity	or	

generating	extended	haplotypes.	As	previously	mentioned	(Introduction,	figure	3),	

selective	sweeps	normally	cause	a	reduction	in	the	genetic	variation	of	the	region	

undergoing	 selection	 either	 at	 metapopulation	 (group	 of	 spatially	 separated	

populations)	 wide	 or	 population‐specific	 level.	 Although,	 the	 levels	 of	 diversity	

gradually	 return	 to	 a	 baseline	 overtime	 due	 to	 new	 mutations	 generating	 new	

alleles	(Figure	10a),	the	signatures	of	positive	selection	prevails	for	thousands	of	

generations	(several	hundred	thousand	years	in	humans)	(Vitti	et	al.	2013),	and	are	

thus	still	possible	to	detect.	Different	statistical	methods	have	been	designed	and	

implemented	 for	 scanning	 and	 detecting	 such	 patterns	 of	 selection	 in	 a	 single	
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population	or	in	multiple	populations	in	humans	(Sabeti	et	al.	2007;	Nielsen	et	al.	

2009;	 Chen	 et	 al.	 2010).	 Based	 on	 different	 aspects	 of	 the	 genetic	 data,	 these	

methods	can	be	classified	into	different	groups	(Figure	10).		

	

	
Figure	10.	 Signatures	 of	 selection	on	 the	 genome	used	 for	detecting	positive	 selection.	 (a)	Allele	

frequency	 spectrum.	 A	 new	 mutation	 that	 improves	 fitness	 increases	 in	 frequency,	 and	

simultaneously	brings	nearby	alleles	to	high	frequency	until	the	region	reaches	fixation	(Selective	

sweep).	 This	 phenomenon	 is	widely	 known	 as	 genetic	 hitchhiking.	 After	 the	 selective	 event	 has	

elapsed,	new	mutations	create	a	surplus	of	rare	or	low	frequency	alleles.	(b)	A	selected	sweep	causes	

a	reduction	in	the	variation	of	particular	regions,	thus	leaving	an	Extended	Haplotype	Homozygosity	

(EHH).	This	EHH	is	conditioned	on	existing	non‐random	association	of	alleles	due	to	physical	linkage,	

as	well	referred	as	one	type	of	LD,	which	rises	across	the	genomic	region	that	contains	the	selected	

allele	 (Vitti	 et	al.	2013).	Selective	 sweeps	causing	EHH	 look	similar	 to	a	big	city	 ‘skyline’.	After	a	

selective	 sweep	 has	 passed,	 the	 appearance	 of	 new	 mutations	 and	 the	 restoration	 of	 genetic	

recombination	gradually	return	the	diversity	to	the	population.	(c)	Composite	likelihood	methods	

combine	 (multiplying)	 a	 collection	 of	 individual	 scores	 obtained	 from	 one	 or	 several	 tests	 for	

detecting	selection	for	all	positions	(markers)	within	one	region.	Thus,	the	detection	methods	can	be	

refined	by	integrating	multiple	products	of	the	probabilities	of	all	SNPs	within	one	region.		(d)	Strong	

variation	in	the	allelic	frequencies	of	particular	regions	or	SNPs	between	populations	might	reflect	

the	effect	of	selection	at	population‐specific	 level.	High	 levels	of	population	differentiation	due	to	

genetic	structure	increase	the	fixation	index	(Wright’s	Fst),	between	pair	populations.	Yellow	circles	

correspond	 to	 extant	 allelic	 variants.	 Green	 stars	 indicate	 a	 new	 allelic	 variant	 that	 increase	 in	

frequency.	Purple,	blue	and	orange	circles	indicate	new	allelic	variants	that	are	rare.	Figure	modified	

from	(Vitti	et	al.	2013).		
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Methods	based	on	allele	frequency	spectrum	calculate	if	the	selected	allele	and	it’s	

hitchhiking	effect	on	a	particular	region	has	increased	in	frequency	and	swept	to	

reach	fixation	in	one	population	(Tajima	1989;	Fay	and	Wu	2000)	(Figure	10a).	One	

widely	used	method	to	quantify	these	selective	events	is	Tajima’s	D	(Tajima	1989).	

This	 method	 quantifies	 deviation	 from	 neutrality	 by	 comparing	 the	 pair‐wise	

differences	between	individuals	within	one	population.	The	Tajima’s	D	test	allowed	

the	 identification	 of	 several	 genes	 that	 have	 undergone	 selection	 in	 human	

populations,	 for	 instance,	 the	 lactose	 gene	 (Bersaglieri	 et	 al.	 2004),	 Human	

Leucocyte	Antigen	(Hughes	and	Yeager	1998)	and	the	histo‐blood	group	ABO	locus	

(Seltsam	 et	 al.	 2003).	 Nonetheless,	 Tajima’s	 D	 scores	 computed	 on	 genotypes	

obtained	from	SNP	data,	for	instance,	next	generation	sequencing	data	(NGS),	has	

been	proven	to	lead	to	high	rates	of	false	positives	and	biased	results	(Korneliussen	

et	al.	2013).		

	

In	addition	to	site	frequency,	SNP	data	also	provide	information	about	the	LD.	As	an	

allele	is	undergoing	selection	and	its	hitchhiking	region	sweeps	through	the	entire	

population,	 it	 simultaneously	 causes	 the	 appearance	 of	 long	 extended	 regions	

characterized	 for	 their	 low	variability.	These	regions	are	normally	referred	to	as	

extended	haplotypes	 (Figure	10b).	Empirical	 and	 simulated	data	has	 shown	 that	

such	regions	stay	in	strong	LD	(Sabeti	et	al.	2002;	Kim	and	Nielsen	2004;	Stephan	et	

al.	2006;	Sabeti	et	al.	2007;	Huff	et	al.	2010).	Therefore,	additional	information	about	

the	 LD	 introduces	 additional	 discriminatory	 power	 for	 identifying	 regions	

undergoing	 selection.	 LD	 based	 approaches	 have	 also	 additional	 power	 for	

detecting	 partial	 or	 incomplete	 sweeps,	 in	 which	 some	 regions	 exhibit	 new	

mutations	that	have	increased	in	frequency,	but	have	not	yet	reached	fixation	within	

one	 population	 (Pickrell	 et	 al.	 2009;	Messer	 and	 Petrov	 2013;	 Vitti	 et	 al.	 2013).	

Methods	 that	 integrate	 the	 information	 about	 the	 haplotypes	 length	 between	

populations,	for	instance,	the	widely	implemented	cross‐population	EHH	(XP‐EHH)	

test,	 allow	 to	 additionally	 control	 for	 the	 effects	 of	 local	 variation	 and	 genetic	

recombination	rates.	XP‐EHH	measures	the	decrease	in	the	diversity	by	calculating	

the	probability	that	any	two	randomly	chosen	extended	haplotypes	around	a	given	

locus	within	the	same	population	are	identical	by	descendent	for	the	entire	region	

(see	Methods	for	XP‐EHH	model	explanation).		
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Other	types	of	computational	approaches	for	detecting	selection	include	composite	

methods.	These	methods	have	been	designed	to	increase	the	power	for	detecting	

positive	 selection	 by	 combining	multiple	metrics	 into	 a	 composite	 score	 (Figure	

10c).	 Under	 the	 assumptions	 that	 measuring	 selection	 by	 using	 one	 metric	 can	

result	 in	 a	 high	 number	 of	 false	 positives,	 and	 that	 selection	 affects	 extended	

regions,	a	consecutive	genomic	region	of	positive	markers	may	better	represent	a	

signature	of	positive	selection.	Under	 this	premise,	 composite	multilocus	 tests	of	

allele	 frequency	 differentiation	 integrate	 information	 from	 the	 same	 test	 across	

multiple	sites	to	refine	the	power	and	reduce	the	false	discovery	rate	(Nielsen	et	al.	

2005;	Vitti	et	al.	2013).	One	example	of	a	widely	implemented	composite	method	is	

the	Composite	Likelihood	Ratio	test	(CLR),	initially	proposed	by	Kim	and	Stephan	

(2002)	and	modified	by	Nielsen	et	al.	(2005).	In	the	new	implementation	of	the	CLR	

test,	Nielsen	et	al.	(2005)	treated	the	null	hypothesis	as	not	specific	to	a	particular	

population	 genetic	model,	 but	 instead,	 as	 derived	 from	 the	patterns	 of	 variation	

produced	in	the	background	from	the	data	itself.	This	implementation	additionally	

corrects	for	the	SNP	ascertainment	bias	that	may	be	introduced	by	the	nature	of	the	

data	itself	(Nielsen	et	al.	2005)	(see	Methods	for	CLR	model	explanation).	Similarly	

to	 XP‐EHH,	 another	 composite	 test	 that	 incorporates	 likelihood	 ratios	 and	

information	about	population	differentiation	is	the	XP‐CLR	test.	XP‐CLR	additionally	

includes	information	about	recombination	rates	from	the	reference	population;	and	

similarly	 identifies	 genomic	 regions	where	 shifts	 in	 the	 allele	 frequency	 rapidly	

occurred	(as	estimated	by	 the	extension	of	 the	 influenced	genomic	region)	 to	be	

explained	 by	 random	 drift	 (Chen	 et	 al.	 2010)	 (see	 Methods	 for	 CLR	 model	

explanation).		

	

An	additional	method	widely	used	to	measure	the	effects	of	selection	in	a	particular	

population,	developed	even	before	the	NGS	era,	is	the	fixation	index	(Fst)	(Weir	and	

Cockerham	 1984).	 Under	 the	 assumption	 that	 the	 selective	 prevalence	 of	 a	

particular	allele	is	affected	by	the	characteristic	environmental	conditions	in	which	

the	 individuals	 that	 carry	 it	 live	 (Vitti	 et	 al.	 2013),	 it	 is	 expected	 that	 selection	

differentially	 acts	 on	 that	 locus	 for	 different	 populations	 (Figure	 10d).	 Fst	 is	

frequently	 used	 to	 estimate	 the	 allelic	 variance	 within	 and	 between	 pairs	 of	
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populations.	High	Fst	 scores	 suggest	 high	 genetic	 differentiation,	which	may	 also	

indicate	the	effects	of	directional	selection	for	a	particular	locus.		

	

By	 integrating	 results	 obtained	 from	 the	 implementation	 of	 three	 different	

statistical	methods	for	detecting	positive	selection	(Table	3)	and	considering	their	

statistical	attributes	(XP‐EHH,	CLR	and	XP‐CLR)	(Pybus	et	al.	2013),	we	extensively	

explored	the	genomic	regions	that	contain	GRFs	for	signatures	of	selection	in	three	

AMH	populations:	Utah	Residents	with	Northern	and	Western	Ancestry	(CEU),	Han	

Chinese	in	Bejing	(CHB),	and	Yoruba	in	Ibadan	(YRI).	We	additionally	included	Fst	

results	 as	 complementary	 test	 for	 measuring	 if	 the	 candidate	 regions	 also	

experience	 strong	 genetic	 differentiation	 between	 pairs	 of	 populations.	 Since	

genetic	 variability	 is	 strongly	 affected	 by	 demographic	 processes,	 for	 instance,	

bottlenecks	 or	 population	 expansion,	 and	 by	 changes	 in	 mutation	 and	

recombination	 rates	 (Nielsen	 et	 al.	 2009),	 it	 becomes	 challenging	 to	 distinguish	

between	 evidence	 of	 selection	 and	 demography	 when	 performing	 scans	 for	

selection	genome	wide.	Considering	it	is	expected	that	demographic	events	produce	

similar	 patterns	 in	 variation	 genome	wide,	we	decided	 to	 use	Rank	 Scores	 (RS),	

which	 are	 genome	 based	 rank	 “p‐values“	 calculated	 based	 on	 the	 genome	

distribution	of	the	raw	score	for	each	particular	test	and	population.	As	a	result	of	

implementing	this	strategy,	we	expected	to	reduce	the	effects	demography	could	

have	on	the	analysis	and	interpretation	of	the	data.	

	

Table	3	Different	 statistical	methods	used	 for	 identifying	 signatures	of	positive	 selection	on	GRF	

genes	for	three	different	human	populations.	cM,	centimorgan.	CLR	and	XPCLR	tests	were	performed	

using	slide	windows	strategy,	while	XP‐EHH	and	Fst	were	SNP	based	test	(Pybus	et	al.,	2013).	

	

	
	

As	 results,	we	 present	 a	 set	 of	 candidate	 GRF	 genes	 that	might	 have	 undergone	

positive	selection	in	particular	AMHs.	We	also	identified	several	GRF	gene	families	

that	may	have	 significantly	 contributed	 to	 the	 evolution	 and	 adaptation	of	 three	

Type Methods Reference Score tail Feature

Allele frequency spectrum CLR Nielsen et al., 2005 Upper Window (variable size)
XP‐CLR Chen et al., 2010 Upper Window (0.1 cM)
Fst Weir and Cockerham, 1984 Upper SNP‐specific

Linkage disequilibrium 
structure

XP‐EHH
Sabeti et al., 2007

Upper SNP‐specific

Population differentiation
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AMH	populations.	In	addition,	we	report	several	regions,	KRAB‐ZNF	gene	clusters,	

which	 exhibit	 strong	 EHH	 in	 an	Asian	 population	 (CHB).	 Finally,	we	 discuss	 the	

potential	biological	roles	of	these	candidate	GRF	families	and	genes,	and	how	these	

findings	could	be	interpreted	in	the	sense	of	understanding	human	evolution.		

	

3.2.	Results	

	

3.2.1.	GRFs	are	over	represented	among	genes	showing	extreme	values	

for	selective	sweeps	in	AMHs		

We	first	evaluated	if	GRF	genes	exhibit	higher	scores	when	compared	with	other	

genes	by	testing	if	the	obtained	ranked	scores	of	all	four	tests	are	more	extreme	for	

all	the	GRFs	than	for	the	rest	of	the	human	genes	(non‐GRFs).	We	found	that	GRF	

genes	exhibited	higher	scores	when	compared	with	non‐GRFs	(Wilcoxon	rank	test,	

p‐value	<	0.02)	in	all	pair	comparisons,	except	for	CEU	population	for	the	CLR	tests	

(Wilcoxon	 rank	 test,	 p‐value	 >	 0.05),	 suggesting	 that	 GRF	 genes	 are	more	 often	

among	the	candidate	regions	for	selection	than	other	genes.	We	then	chose	set	of	

random	genes	(of	the	same	size	as	we	had	of	GRF	genes)	1000	times	and	performed	

the	 same	Wilcoxon	 rank	 test	 to	 evaluate	 how	 often	 random	 genes	 would	 show	

higher	 rank	scores.	Our	 results	 still	 suggested	 that	GRFs	genes	have	higher	 rank	

scores	values	for	the	CLR	test	in	the	YRI	population	(p‐value	<	0.001).	Similarly,	XP‐

CLR	results	also	indicated	enrichment	for	GRFs	in	CEU	and	YRI	populations	when	

using	CHB	as	reference	population	(p‐values	0.03	and	0.006	respectively).	Fst	results	

also	 evidenced	 enrichment	 for	 GRFs	 exhibiting	 higher	 scores	 when	 testing	 for	

genetic	differentiation	between	CEU	and	YRI	versus	CHB.	In	addition,	we	also	tested	

if	 rank	scores	 for	GRF	genes	were	enriched	among	 the	 top	5%	of	 the	rank	score	

distribution	 (>1.3	 rank	 score)	 than	 all	 genes.	 To	 reduce	 the	 confounding	

demographic	effects,	we	used	scores	based	on	the	genome	wide	distribution	(rank	

scores)	and	 threshold	corresponding	 to	an	empirical	p‐value	of	0.05.	Our	results	

show	that	for	XP‐CLR	and	CLR	tests,	GRF	genes	were	enriched	among	the	top	5%	

ranks	cores	in	all	populations	(Fisher’s	Exact	test,	p‐value	<	0.01),	except	in	CHB	for	

the	CLR	test	(Fisher’s	Exact	 test,	p‐value	>0.05).	 In	addition,	XP‐EHH	results	also	

indicated	 that	 GRF	 genes	 are	 enriched	 for	 high	 scores	 for	 all	 three	 populations	

(Fisher’s	Exact	test,	p‐value	<	0.001).		
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Differences	in	recombination	rates	and	gene	length	between	GRFs	and	the	rest	of	

the	human	genes	could	influence	the	results.	For	instance,	genetic	recombination	

highly	 contributes	 to	 maintaining	 genomic	 diversity	 by	 crossing‐over	 and	

independently	 assorting	new	 combinations	 of	 alleles	 in	 the	 chromosomes	 of	 the	

offspring	 that	were	not	previously	present	 in	 the	parental	generation.	Thus,	 it	 is	

expected	 that	 a	 region	 undergoing	 positive	 selection	 exhibits	 a	 reduction	 in	

recombination	 rates	 as	 results	 of	 the	 selection	 acting	 on	 it.	 Consequently,	 we	

evaluated	 if	 these	 two	measures	 significantly	 differ	 between	 GRF	 and	 non‐GRFs	

genes.	We	 did	 not	 find	 a	 significant	 difference	 between	 the	 distributions	 of	 the	

recombination	rates	between	GRF	and	non‐GRF	genes	(Kolmogorov–Smirnov	test;	

D	 =	 0.019;	 p‐value	 =	 0.18).	 In	 addition,	 despite	we	 found	 significant	 correlation	

between	 the	 gene	 length	 and	 the	 rank	 score	 (p‐value	<	2.2e‐16),	 the	 correlation	

value	is	extremely	small	(rho	=	0.009)	and	thus,	might	be	negligible.		

	

	3.2.2.	 GRF	 classes	 are	 enriched	 among	 candidate	 regions	 for	 positive	

selection	at	population‐specific	level		

Multiple	 GRF	 genes	 share	 similar	 sequence,	 structure,	 gene	 products	 and	 have	

diverged	from	a	common	ancestor.	Several	of	these	GRFs	classes,	or	some	of	their	

members,	 have	 been	 suggested	 as	 important	 candidates	 for	 driving	 species’	

diversity,	adaptation	(Parmacek	2007)	and	speciation	(Nowick	et	al.	2010;	Nowick	

et	 al.	 2013;	Perdomo‐Sabogal	 et	 al.	 2016).	We	 thus	 tested	next,	 if	 any	particular	

classes	 of	 GRFs	 are	 enriched	 among	 the	 GRF	 genes	 with	 high	 scores	 (top	 5%	

distribution	for	all	tests).	To	do	this,	we	performed	a	Fisher	Exact	test	for	all	of	the	

41	 DNA‐binding	 GRF	 classes	 cataloged	 so	 far	 (Chapter	 I)	 and	 adjusted	 the	

significance	levels	using	Bonferroni	correction.	We	found	that	40%	to	45%	of	the	

GRF	 classes	were	 enriched	 (adjusted	p‐value	<	 0.05),	 at	 least	 in	 one	population,	

among	the	upper	5%	tail	of	the	distribution	for	CLR	and	XP‐CLR	tests	respectively.	

This	number	was	even	higher	for	the	haplotype	SNPs	based	method	(77.5%)	(Figure	

11a	and	11b).	

	

Among	the	GRF	classes	showing	enrichment	in	the	upper	5%	tail	of	the	distribution	

for	CLR,	we	found	three	of	the	smallest	classes	of	GRFs	(less	than	20	genes):	AT‐
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hook,	 AT‐rich	 interaction	 domain	 (ARID),	 and	 Cys2‐HisCys	 zinc	 finger	 (C2HC),	

which	have	six,	12,	and	15	members	respectively	(adjusted	p‐value	<	0.001)	(Figure	

11a).	XP‐CLR	results	also	suggest	enrichments	for	two	out	of	these	three	classes,	but	

for	particular	populations.	 For	 instance,	 the	C2HC	GRF	 class	 is	 enriched	 for	CEU	

while	ARID	is	enriched	for	CEU	and	YRI	(adjusted	p‐value	<	0.001)	(figure	11b).	We	

also	 found	 three	 of	 the	 larger	GRF	 classes	 enriched	 for	 higher	 scores	 for	 CLR	 at	

population‐specific	level:	Homeo	Domain	in	CEU,	and	Tryptophan	cluster	and	High‐

mobility	factors	in	CHB	(Figure	11a).	In	addition,	several	smaller	GRF	classes	show	

population‐specific	enrichments	for	CLR,	for	instance,	Paired	box,	NonO	domain	and	

CXXC	zinc	 finger	 factors	 in	CEU	and	CHB	populations,	Basic	helix‐span‐helix,	and	

STAT	 domain	 factors	 in	 CEU,	 and	 C3H	 zinc	 finger,	 MADS	 box	 and	 Heteromeric	

CCAAT‐binding	 factors	 in	 YRI	 (Figure	 11a).	 Likewise,	 the	 XP‐CLR	 results	 also	

indicated	an	enrichment	for	Homeo	Domain,	Tryptophan	cluster,	High‐mobility,	and	

Paired	box.	 In	 addition	Fork	head/winged	helix	 factors	 class	were	 also	 enriched	

with	the	XP‐CLR	method	(Figure	11b).	

	

Using	the	same	strategy	implemented	for	analyzing	CLR	and	XP‐CLR	rank	scores,	

we	additionally	tested	if	SNPs	located	in	GRF	genes	are	enriched	for	high	XP‐EHH	

rank	scores.	The	results	indicated	a	bigger	number	of	GRF	classes	enriched	for	high	

XP‐EHH	 scores	 (Figure	 11d)	 when	 compared	 to	 CLR	 and	 XP‐XLR	 results,	 thus	

suggesting	 that	 GRF	 genes	 from	multiple	 GRF	 classes	 are	 likely	 to	 be	 located	 in	

regions	exhibiting	EHH.	The	Forkhead/winged	helix	factors	class,	one	of	the	largest	

classes	 of	 GRF	 genes,	 was	 enriched	 in	 the	 5%	 upper	 tail	 for	 all	 three	 human	

populations	(Figure	11d).		
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Figure	11.	Enrichment	analyses	for	DNA–binding	transcription	factors	classes	showing	higher	scores	

for	three	different	tests	for	detecting	positive	selection	and	one	for	detecting	genetic	differentiation.	

(a)	Composite	likelihood	ratio	test	(CLR).	(b)	Cross‐population	composite	likelihood	ratio	test	(XP‐

CLR).	(c)Fixation	index	(Fst)	test.	(d)	Cross‐population	EHH	detected	using	XP‐EHH	method.	Lower	

case	r	indicates	the	populations	that	were	used	as	reference.	Darker	blue	color	indicates	significant	

enrichment.		
	

Several	 classes	 of	 GRFs	 also	 show	 population‐specific	 XP‐EHH	 enrichments.	 For	

instance,	C2H2	zinc	finger	factors	class,	excluding	KRAB‐ZNF,	exhibits	enrichments	

for	CEU	and	YRI	populations	(Figure	11d),	while	KRAB‐ZNF,	a	subgroup	of	C2H2	

genes	that	we	treated	as	a	separate	class	(see	chapter	I),	showed	enrichment	just	

for	CHB	population.	Two	other	of	the	largest	classes	of	GRF	genes,	Basic	helix‐loop‐

helix	(bHLH)	and	Basic	leucine	zipper	factors	(bZIP),	also	show	population‐specific	

enrichment	for	YRI,	and	CEU	and	YRI	respectively.	Similarly	to	the	results	obtained	

with	CLR	and	XP‐CLR	results,	the	XP‐EHH	results	also	indicated	enrichment	for	the	

Homeo	Domain	and	Tryptophan	cluster	(CEU),	High‐mobility	(CHB,	YRI),	and	C2HC	
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(CEU,	YRI)	factors.	Since	methods	based	on	EHH	relies	on	LD,	and	this	linkage	break	

down	over	time,	XP‐EHH	attributes	allow	the	detection	of	recent	selective	sweeps;	

however,	this	test	provides	poor	power	to	detect	ancient	selective	sweeps	(Chen	et	

al.	 2010).	 Therefore,	 the	 higher	 number	 of	 enriched	 GRF	 classes	 in	 regions	

exhibiting	 EHH	 may	 indicate	 that	 recent	 selective	 sweeps	 are	 more	 common	

between	GRF	genes.	

	

To	 complement	 these	 results,	 we	 additionally	 explored	 which	 GRF	 classes	 are	

enriched	in	the	5%	upper	tail	of	the	Fst	rank	scores	distribution.	This	may	indicate	

which	GRF	classes	are	contributing	to	high	genetic	differentiation	between	pairs	of	

populations.	 Similarly	 to	 the	 results	 obtained	with	 the	 other	 three	 tests,	 the	 Fst	

results	suggest	that	at	least	three	of	the	larger	GRF	classes	(C2H2,	Homeo	Domain	

and	 High	 Mobility	 factors)	 are	 significantly	 contributing	 to	 high	 genetic	

differentiation	among	pairs	of	populations	(Figure	11c).		

	

Taken	together,	there	are	at	least	six	GRF	classes	(15%)	overrepresented	among	the	

genomic	regions	exhibiting	signatures	of	positive	selection:	C2H2	zinc	finger,	KRAB‐

ZNF	 zinc	 finger,	 Homeo	 domain,	 Tryptophan	 cluster,	 Fork	 head	 /	 winged	 helix	

and,High‐mobility	 (HMG)	 domain.	 (Figure	 11).	 The	 six	 GRF	 classes	 are	

representatives	of	the	larger	DNA‐binding	transcription	factor	classes.	Other	three	

smaller	GRF	classes,	High	Mobility,	ARID	domain,	C2HC	and	Paired	box	factors,	also	

show	enrichment	within	the	candidate	regions.	Since	each	test	for	detecting	positive	

selection	 produces	 a	 list	 of	 candidate	 regions,	 we	 further	 explored	 how	 many	

candidate	genes,	out	of	these	six	larger	GRF	families,	are	candidates	in	one	or	more	

populations.	Considering	that	three	of	the	CLR,	XP‐CLR	and	XP‐EHH	are	composite	

methods,	we	initially	subset	those	genes	that	had	at	least	one	value	in	the	5%	upper	

tail	of	the	distribution	for	each	test	in	each	population,	and	performed	an	overlap	

between	these	gene	lists.	This	produced	a	set	of	genes	that	all	three	tests	suggested	

as	 candidates	 for	 positive	 selection	 at	 population‐specific	 level	 (Supplementary	

Table	 S4,	 supplementary	 data	 file).	 We	 additionally	 checked	 if	 some	 of	 these	

putative	GRF	candidate	genes	 for	 selection	at	population‐specific	 level	were	also	

present	 as	 candidates	 in	 another	 population	 (Table	 4).	 Based	 on	 the	 strategy	

implemented	(See	Methods),	our	results	suggest	that	all	three	tests	indicated	that	
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at	least	69	(CEU),	64	(CHB)	and	98	(YRI)	genes	from	the	aforementioned	six	GRF	

classes	are	candidates	for	positive	selection	(Table	4).	We	also	detected	a	group	of	

genes	 that	 are	 candidates	 between	 pairs	 of	 populations	 (Table	 4).	 None	 of	 the	

candidate	 GRF	 genes	 was	 found	 as	 candidate	 for	 positive	 selection	 in	 all	 three	

populations	for	these	six	GRF	families.	The	C2H2	and	KRAB‐ZNF	classes	exhibited	

the	 highest	 number	 of	 candidate	 genes	 for	 positive	 selection	 with	 68	 and	 53	

respectively,	followed	by	Homeo	domain	with	31,	Tryptophan	cluster	with	22	genes,	

Fork	head/winged	helix	with	19,	and	High‐mobility	(HMG)	domain	with	nine.	Our	

results	also	suggest	that	the	majority	of	the	genes	reported	for	the	three	tests	for	

these	six	GRF	classes	presented	population‐specific	signatures	of	selection	(Table	

4).		
	

Table	4.	Members	of	six	of	the	larger	GRF	classes	enriched	among	the	high	scores	for	the	three	tests	

(CLR,	XP‐CLR	and	XP‐EHH)	for	detecting	selection	analyzed	here	(upper	5%	tail	of	the	distribution).	

The	GRF	class	of	each	gene	is	indicated	as	following:	C2H2	zinc	finger	(¢),	KRAB‐ZNF	zinc	finger	(£),	

Homeo	domain	(♯),	Tryptophan	cluster	(*),	Fork	head	/	winged	helix	and	(¥),	High‐mobility	(HMG)	

domain	(≈).	

	
	

We	also	found	that	around	121	C2H2	GRFs,	from	which	53	are	KRAB‐ZNF	genes,	are	

located	in	regions	that	exhibit	patterns	that	are	consistent	with	positive	selective	

events	 (as	 mentioned	 in	 the	 general	 introduction)	 either	 at	 population‐specific	

Population GRF genes Total

CEU, YRI ZNF280D¢, ZFHX3♯, NCOR2*, FOXO1¥, ZNF528£, RFX8¥, PGBD1£, MEOX2♯, FOXP2¥, 
ONECUT2♯

10

CHB, YRI ZNF768£, GLI3¢, ZFAT¢, ZNF668£, ELMSAN1*, ZNF521¢ 6
CEU, CHB RFX3¥, VEZF1¢, TRERF1¢, E2F4¥, ZNF511¢, FOXA2¥, MTA1*, GLI2¢, ZNF407¢, 

SMARCC2*, ZNF844£, FOXK1¥, SALL3¢
13

YRI ETS1*, MTF1¢, ZNF592¢, PRDM2¢, SOX6≈, ZNF679£, ZNF251£, SPI1*, HIC2¢, KLF12¢, 
FOX06¥, LHX5♯, FOXJ2¥, ZNF131¢, TFDP1¥, ELK3*, ZSCAN20¢, ZNF83£, CTCFL¢, 
ZBTB25¢, ZSCAN2¢, ETV6*, ERG*, PHTF1♯, ZBTB46¢, ZBTB41¢, ZNF644¢, HKR1£, 
SOX15≈, ZNF3£, ZNF827¢, SP8¢, ZNF678£, SOX5≈, ZNF250£, SOX7≈, ZNF319¢, ZBTB40¢, 
HIVEP2¢, ZNF483£, HBP1≈, ZNF77£, PRDM15¢, HOXB1♯, SATB1♯, RFX7¥, TSHZ2♯, 
KLF17¢, PRDM4¢, IKZF2¢, ZNF70¢, ZNF181£, ZNF423¢, PBX4♯, ZNF396£, ZNF217¢, 
ELF2*, TRPS1¢, PATZ1¢, MTA3*, LMX1A♯, HOXD3♯, ZNF354A£, ZSCAN16£, ELF5*, 
PKNOX1♯, ETV4*, ZNF438¢, IRF1*, ZNF311£, HIVEP1¢, FOXN2¥, E2F2¥, ZNF532¢, 
ZNF14£, TOX3≈, ZHX2♯, HMX2♯, RREB1¢, ZFP64¢, HMG20A≈, POU3F2♯

82

CEU LHX1♯, ZNF155£, IRF3*, ZNF653¢, IKZF1¢, ZNF546£, POU2F3♯, ZNF93£, ZNF277¢, 
ZSCAN25£, RFX2¥, POU6F2♯, ZNF534£, SPDEF*, CDC5L*, ZNF252¢, ZNF341¢, MKX♯, 
ZNF224£, EVX1♯, ZNF572¢, ZEB1♯, ZNF90£, PRDM9£, ZNF284£, ZNF780B£, PRDM10¢, 
ZNF707£, ZNF740¢, ZNF76¢, MECOM¢, ZNF253£, ZNF193£, DLX3♯, GABPA*, MIER2*, 
ZNF280B¢, ZKSCAN5£, ZNF536¢, FOXM1¥, ZNF780A£, GLIS1¢, CUX2♯, ZNF649£, 
ZKSCAN4£, EGR4¢

46

CHB ZNF167£, ZNF282£, ZNF197£, RFX4¥, CRX♯, ZNF425£, NCOR1*, ZNF263£, ZNF786£, 
ZNF660£, FOXJ1¥, ZNF467£, ISX♯, ZNF124£, ZNF512B¢, HESX1♯, ZNF562£, TCF7L1≈, 
ZNF445£, ZFP161¢, CUX1♯, ZNF646£, ZBTB4¢, BBX≈, ZNF695£, ZBTB20¢, GLIS2¢, 
FOXR1¥, NKX6‐3♯, ZNF317£, EMX1♯, CASZ1¢, NOBOX♯, FOXP1¥, LHX8♯, RERE*, 
ZNF398£, GFI1¢, ZBTB7B¢, PRDM6¢, ZNF579£, ZNF451¢, ZIC5¢, HIVEP3¢, IRF7*

45
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level,	or	between	pairs	of	populations.	Out	of	this	set	of	genes,	just	nine	C2H2	GRF	

genes	have	been	reported	as	 candidates	 for	positive	 selection	 in	previous	works	

(ZFAT,	 ZBTB41,	 ZNF827,	 IKZF2,	 ZNF438,	 ZNF546,	 ZNF780B,	 ZNF780A,	 ZBTB20)	

(Table	5).	 In	 total,	out	of	 the	202	GRF	genes	we	 found	as	candidates	 for	positive	

selection	for	these	six	GRF	classes,	20	genes	have	been	found	in	candidate	regions	

for	positive	selection	in	previous	studies	(Table	5).		
	

Table	5.	GRF	genes	reported	as	candidates	for	positive	selection	here	for	six	GRF	classes,	and	that	

have	been	previously	reported	in	genome	wide	scans	for	selection	in	humans.		

	
	

By	using	a	different	composite	of	multiple	signals	test	(CMS),	Grossman	et	al.	(2013)	

identified	that	the	gene	ZBTB41	is	likely	to	be	under	selection	in	YRI,	while		the	genes	

ZFAT,	IKZF2,	ZNF438,	exhibited	high	CMS	scoring	SNPs.	In	addition,	Grossman	et	al.	

(2013)	 also	 suggested	 that	 the	 genes	 ZNF827	 in	 YRI,	 and	 ZNF780A,	 ZNF780B,	

ZNF546,	and	ZBTB20	in	CEU	exhibit	population‐specific	localized	(genomic	regions	

with	a	median	size	of	27	kb)	signatures	of	positive	selection.		

	

Among	 the	candidates	 for	positive	selection	at	population	 level	 that	we	detected	

here,	and	that	have	not	been	previously	reported,	we	identified	three	GRFs	that	have	

been	associated	with	insulin/glucose	regulatory	pathways,	zinc	finger	protein	407	

(ZNF407)	 (Buchner	 et	 al.	 2015),	 and	 forkhead	 box	 O1	 and	 A2	 (FOXO1,	 FOXA2	

(Kamagate	et	al.	2008;	Wu	et	al.	2016;	Yalley	et	al.	2016).	Our	results	indicate	that	

ZNF407,	a	C2H2	GRF	type,	is	a	candidate	gene	for	positive	selection	in	CEU	and	CHB	

populations.	Further	exploration	of	this	region	evidenced	that	17	high	scoring	SNPs	

for	selection	(XP‐EHH	test)	result	in	missense	mutations	(rs183921097,	rs3794942,	

rs74861823,	 rs115368653,	 rs77518676,	 rs114313623,	 rs116304324,	

rs147684864,	 rs77006793,	 rs7227263,	 rs183172085,	 rs149806516,	 rs948615,	

rs73971116,	 rs185745193,	 rs34048449,	 rs34141917).	 None	 of	 these	 missense	

mutations	 have	 an	 effect	 on	 the	 amino	 acid	 sequence	 of	 the	 protein	 domains	 of	

GRF genes Number of GRF 
genes

Source

BBX 1 Sabeti et al. 2007
RFX3 1 Pickrell et al. 2009
ISX 1 Metspalu et al. 2011
CUX2, ETV4, FOXP1, FOXP2, IKZF2, LHX8, PHTF1, 
PKNOX1, POU2F3, ZBTB20, ZBTB41, ZFAT, ZNF438, 
ZNF546, ZNF780A, ZNF780B, ZNF827

17 Grossman et al. 2013
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ZNF407.	We	also	found	that	the	genes	FOXO1	and	FOXA2	are	candidates	for	positive	

selection	in	CEU	and	YRI,	and	CEU	and	CHB,	respectively.	Further	exploration	of	this	

genomic	regions	revealed	that	FOXO1	carries	three	missense	mutations,	two	in	YRI	

(rs148727582,	 rs70961707)	 and	 one	 that	 is	 present	 in	 all	 three	 populations	

(rs34733279).	 Regarding	 the	 gene,	 FOXA2,	 we	 did	 not	 find	 sequence	 variation	

causing	 missense	 mutations	 that	 could	 explain	 functional	 changes	 followed	 by	

positive	 selection.	We	 further	 explored	 for	 protein	 coding	 genes	 located	 around	

FOXA2	and	that	could	be	hitchhiking	this	gene;	however,	there	is	none.	We	did	find	

two	 long	 non‐coding	RNAs	 (lncRNAs)	 located	 around	 3	 kb	 and	 17	 kb	 distant	 of	

FOXA2,	LINC00261	and	LINC01384.	

	

3.2.3.	Signatures	of	selection	are	enriched	on	protein	domains	for	C2H2,	

KRAB‐ZNF	and	bHLH	GRF	classes		

Gene	regulatory	proteins,	as	single	and	independent	evolutionary	units,	can	consist	

of	either	a	single	functional	domain	or	form	more	complex	multi‐domain	proteins	

(Vogel	et	al.	2004).	Non‐synonymous	changes	in	the	protein	domains	are	expected	

to	have	an	effect	at	functional	level,	either	on	the	specificity	the	protein	binds	to	the	

DNA	or	interacts	with	other	proteins	as	cofactor.	Using	information	from	the	SNP	

based	tests	(XP‐EHH	and	Fst),	we	explored	if	higher	scores	were	mostly	occurring	in	

functional	domains,	 and	 if	 these	 correspond	 to	 synonymous	or	non‐synonymous	

SNPs.	XP‐EHH	results	suggest	a	significant	enrichment	for	synonymous	SNPs	with	

high	XP‐EHH	scores	for	the	GRF	classes	C2H2,	excluding	KRAB‐ZNF	genes,	in	CEU	

(Fisher	Exact	test,	p‐value	0.02),	while	KRAB‐domain	zinc	fingers	for	CHB	(Fisher	

Exact	 test,	 p‐value	 0.04)	 (Table	 5).	 In	 both	 cases	 YRI	was	 used	 as	 the	 reference	

population.	 We	 also	 found	 that	 the	 bHLH	 GRF	 class	 was	 almost	 significantly	

enriched	within	the	top	5%	for	YRI	when	using	CHB	as	the	reference	population	

(Fisher	Exact	test,	p‐value	0.057).	In	addition,	the	Fst	results	suggest	enrichment	for	

synonymous	SNPs	 for	the	C2H2	zinc	 finger	class,	excluding	KRAB‐ZNFs,	between	

CEU	and	CHB	when	compared	to	YRI	(Fisher	Exact	test,	p‐value	<	0.001)	and	KRAB‐

ZNF	class	between	CHB	and	CEU	(Table	6).		
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Table	6.	GRF	classes	showing	enrichment	based	on	the	Fisher’s	Exact	test	for	synonymous	SNPs	in	

the	5%	upper	tail	of	the	distribution	for	XP‐EHH	and	Fst	test.		

	

	

3.2.4.	 KRAB‐ZNF	 gene	 clusters	 exhibit	 regions	with	 EHH	 and	 high	 genetic	

differentiation	in	CHB	

Considering	 that	KRAB‐ZNF	genes	were	enriched	 for	XP‐EHH	scores	 in	CHB,	and	

that	Fst	results	also	suggested	an	enrichment	for	synonymous	SNPs	in	CHB	versus	

CEU	(Table	5),	we	further	explored	whether	particular	KRAB‐ZNF	clusters	exhibit	

EHH	regions.	We	initially	determined	where	in	the	human	genome	KRAB‐ZNF	genes	

are	located.	A	particular	characteristic	of	KRAB‐ZNF	genes	is	that	a	majority	of	them	

are	arranged	in	gene	clusters	longer	than	150	kb	(Supplementary	Table	S5),	with	

some	cases	assorted	with	non‐KRAB‐ZNF	genes.	Using	the	cluster’s	annotation	for	

KRAB‐ZNF	genes	as	described	in	Huntley	et	al.	 (2006)	(Supplementary	table	S5),	

and	the	results	obtained	using	XP‐EHH	and	Fst	tests,	we	explored	if	KRAB‐ZNF	gene	

clusters	exhibit	regions	with	uninterrupted	high	scores	for	XP‐EHH	(5%	upper	tail	

of	the	score	distribution)	(Supplementary	Figure	S1),	and	if	that	was	the	case,	we	

also	explored	if	the	Fst	scores	suggested	high	genetic	differentiation.		

	

CHB	exhibited	the	longest	EHH	regions	when	using	CEU	and	YRI	as	the	reference	

populations	 (Supplementary	Figure	S1);	with	 three	out	of	25	KRAB‐ZNF	clusters	

(one,	 three,	 and	 14,	 which	 are	 located	 in	 chromosomes	 one,	 three	 and	 16	

respectively)	exhibiting	uninterrupted	number	of	SNPs	with	high	ranked	scores	for	

XP‐EHH	(>1.3)	for	regions	larger	than	100	kb	(CHB	when	using	CEU	as	the	reference	

population)(Table	 7,	 Figure	 12).	 To	 test	 whether	 the	 number	 of	 SNPs	 with	

uninterrupted	high	XP‐EHH	scores	we	observed	in	these	regions	with	EHH>100kb	

is	more	than	expected	by	chance,	we	randomly	drew	genomic	regions	of	the	same	

size	1000	times	and	counted	 the	number	of	SNPs	with	high	XP‐EHH	rank	scores	

(>1.3)	in	these	regions.		
	

Test Populations GRF class p-value

Nonsynonymous 
SNPs in regions 

coding for 
protein domains 

Synonymous
SNPs in regions 

coding for 
protein domains 

Nonsynonymous 
SNPs in regions 

not coding 
protein domains 

Nonsynonymous 
SNPs in regions 

not coding 
protein domains 

CEU vs YRI C2H2 zinc finger 0.021 7 16 55 40

CHB vs YRI KRAB domain zinc finger 0.041 68 51 40 14
YRI vs CHB bHLH 0,0570 0 6 11 12
CEU vs CHB KRAB domain zinc finger 0,0490 41 34 21 1
YRI vs CHB C2H2 zinc finger 0,001 2 19 44 46
YRI vs CEU C2H2 zinc finger 0,0003 1 18 59 64

Fst

XP-EHH
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Table	 7.	 KRAB‐ZNF	 gene	 clusters	 exhibiting	 EHH	 haplotype	 regions	 larger	 than	 100	 kb.	 Cluster	

coordinates	based	on	Huntley	et	al.	2006.		

	
	

These	results	indicated	that	the	KRAB‐ZNF	gene	clusters	one,	three,	and	14,	harbor	

regions	exhibiting	EHH	with	higher	XP‐EHH	scoring	SNPs	than	expected	by	chance	

(Bonferroni	adjusted	p‐value	<	0.04).	Considering	that	genomic	regions	exhibiting	

signatures	of	positive	selection	also	show	low	recombination	rates,	we	tested	if	the	

rates	observed	for	these	three	EHH	regions	were	smaller	than	expected	by	chance.	

Implementing	the	same	strategy	used	above,	we	randomly	drew	genomic	regions	of	

the	 same	 size	 of	 the	 EHH	 (>100	 kb)	 1000	 times,	 calculated	 the	 mean	 of	 the	

recombination	rates,	and	counted	how	often	this	values	were	smaller	that	the	mean	

of	 the	 recombination	 rates	 for	 the	 EHH	 regions.	 The	 results	 indicated	 that	 the	

recombination	 rates	 observed	 in	 the	 EEH	 found	 within	 these	 three	 KRAB‐ZNF	

clusters	 were	 smaller	 than	 expected	 by	 chance	 (Bonferroni	 adjusted	 p‐value	 <	

0.009).		

	

In	two	out	of	these	three	KRAB‐ZNF	clusters	(one	and	three),	SNPs	from	KRAB‐ZNF	

genes	exhibited	the	highest	scores	(Figure	12a	and	b),	while	for	the	cluster	14,	the	

gene	 VKORC1	 presented	 one	 intronic	 SNP	 (rs140525321,	 first	 intron)	 with	 the	

highest	XP‐EHH	score	(4.25)	(Figure	12c).	The	KRAB‐ZNF	cluster	14	also	seems	to	

have	a	larger	EHH	region	of	251	Kbps	(chr16:30914142‐31165239)	(Figure	12c).	

However,	 the	 haplotype	 decayed	 below	 the	 1.3	 rank	 score	 threshold	 at	 position	

chr16:	31009343	up	stream	direction	of	 the	EHH,	where	one	SNP	(rs74474326)	

located	 in	 the	 fourth	 intron	of	 the	gene	STX1B	exhibited	a	 lower	ranked	XP‐EHH	

score	(1.08)	(Figure	12c).	Further	inspection	of	the	minor	allele	frequency	(MAF)	

for	this	SNP	revealed	that	the	alternative	variant	is	fixed	for	CEU,	while	the	MAF	for	

CHB	 was	 0.11,	 while	 the	 situation	 for	 the	 MAF	 for	 the	 neighboring	 SNP	

(rs80168914)	was	the	opposite	(fixed	in	CHB	while	showing	MAF	=	0.0051	for	CEU).	

Therefore,	it	is	likely	that	this	lower	peak	was	due	to	an	artifact	introduced	by	the	

1 chr1:247.14‐247.24 240 chr1:247.14‐247.24 101 644
incomplete 
ancient  

CHB

3 chr3:44.55‐44.74 400 chr3:44.55‐44.74 188 563 complete recent  CHB

14 chr16:31.01‐31.16 864 chr16:31.01‐31.16 156 445
incomplete 
ancient 

CHB

Type of signature  
(selective sweep)*

Population 

* Based on Hierarchical boosting framework and data from Pybus et al. 2015

KRAB‐ZNF 
clusters 

Genomic 
coordinates

Size region 
(Kb)

EHH coordinates
Size EHH  
(Kb)

SNP withinthe 
EHH region
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way	in	which	the	MAF	was	defined	in	one	of	the	populations.	Further	exploration	of	

the	downstream	region	of	the	EHH	in	the	KRAB‐ZNF	cluster	14	showed	continuous	

XP‐EHH	haplotype	decay	(Supplementary	Figure	S2).	Interestingly,	we	found	that	

six	of	 the	genes	(KAT8,	ZNF646,	ZNF668,	FBXL19,	STX1B	and	VKORC1)	within	the	

EHH	from	the	cluster	14	(251	kb)	have	been	recently	associated	with	obesity	(Locke	

et	al.	2015;	Yazdi	et	al.	2015)	and	anticoagulant	response	(Patillon	et	al.	2012)	in	

humans.	Two	SNPs	within	this	region,	one	located	on	the	K(lysine)	acetyltransferase	

8	 (KAT8)	 GRF	 gene	 (rs9925964),	 and	 the	 other	 on	 the	 gene	 vitamin	 K	 epoxide	

reductase	complex	subunit	1(VKORC1)	gene	(rs10871454)	have	been	suggested	to	

have	a	causative	effect	on	obesity	and	anticoagulant	effect,	respectively	(Patillon	et	

al.	2012;	Locke	et	al.	2015;	Yazdi	et	al.	2015).	

	

Similarly	 to	 the	 haplotype	 decay	 found	 in	 the	 cluster	 14,	 The	KRAB‐ZNF	 cluster	

three	also	exhibits	two	EHH	regions	around	the	larger	EHH.	These	two	regions	span	

between	50	and	80	kb	(Figure	12b).	The	decay	on	the	upstream	region	of	the	larger	

EHH	 in	 the	 KRAB‐ZNF	 cluster	 three	 is	 explained	 by	 two	 SNPs	 (rs6789709	 and	

rs6441848)	occurring	on	the	gene	ZNF445,	rank	scores	1.23	and	1.26	respectively	

(Figure	 12b).	 These	 two	 SNPs	 exhibit	 the	 very	 same	 MAF	 in	 both	 populations,	

rs6789709	and	rs6441848	(CEU	=	0.1111	and	CHB	=	0.1117).	It	possible	that	these	

two	SNPs	causing	the	haplotype	decay	in	this	region	of	the	KRAB‐ZNF	cluster	three	

obtained	a	lower	rank	based	on	the	whole	genomic	distribution,	but	they	still	belong	

to	a	larger	EHH	region	in	the	cluster	three.	On	the	downstream	region	of	the	larger	

EHH	in	the	KRAB‐ZNF	cluster	three,	the	decay	is	explained	by	95	SNPs	with	score	

values	below	the	set	1.3	rank	score	threshold.	This	region	extends	around	25	kb	

(Figure	 12b).	 This	 suggests	 that	 the	 EHH	 region	 on	 the	KRAB‐ZNF	 cluster	 three	

extends	at	least	272	kb.		
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Figure	12.	KRAB‐ZNF	gene	clusters	showing	extended	haplotype	homozygosity	(XP‐EHH)	regions	

and	high	genetic	differentiation	(Fst)	for	CHB	when	using	CEU	as	reference	population.	This	indicate	

that	 these	 regions	 have	 experienced	 selective	 sweeps.	 (a‐left	 panel)	 KRAB‐ZNF	 gene	 cluster	 one	

a) 

b) 

c) 

79181 bp 50680 bp 



	

	 52

located	on	the	human	chromosome	one.	The	extended	haplotype	region	(grey	area)	spans	around	

100	 kb	 (chr1:247142296‐247243409)	 and	 contains	 two	 GRF	 genes,	 ZNF670	 and	 ZNF695.	

Transcription	 of	 these	 two	 genes	 also	 produces	 readthrough	 or	 co‐transcribed	 genes	 (ZNF670‐

ZNF695)	 (in	 red).	 (a‐right	panel)	Rank	 score	Fst	 values	 for	 the	KRAB‐ZNF	gene	 cluster	one.	The	

majority	of	the	SNPs	showing	high	genetic	differentiation	are	located	within	the	EHH	region.		(b‐left	

panel)	 KRAB‐ZNF	 gene	 cluster	 three	 located	 on	 the	 human	 chromosome	 three.	 The	 extended	

haplotype	is	about	188	kbps	long	(chr3:44554702‐44742478)	and	harbors	four	ZNF	genes.	Vertical	

green	lines	indicate	other	two	regions	around	the	larger	EHH	region	that	also	exhibit	EHH.	Red	stars	

indicate	nonsynonymous	SNPs	located	in	genes	ZNF502	(rs185260708,	rs181738022)	and	ZNF501	

(rs150433704).	The	SNP	rs17554407	is	located	in	a	non	coding	region	(b‐left	panel).	Fst	Rank	score	

values	for	several	SNPs	suggest	high	genetic	differentiation	between	CHB	and	CEU	populations	in	

this	 region.	 (c‐left	 panel).	 KRAB‐ZNF	 gene	 cluster	 14	 located	 on	 human	 chromosome	 16.	 The	

extended	haplotype	 is	 about	 156	kbps	 long	 (chr16:31009588‐31165239)	 and	 contains	 four	GRF	

(three	being	ZNF)	and	one	non‐GRF	genes	 (VKORC1).	The	Non‐GRF	gene	(VKORC1)	exhibited	 the	

highest	scores	for	XP‐EHH	and	Fst)	within	the	EHH	region.	Light	horizontal	red	line	indicates	the	5%	

threshold	set	for	the	XP‐EHH	and	Fst	distribution	(rank	score	of	1.3).	Green	horizontal	 line	(c‐left	

panel)	 indicates	a	 region	of	 around	251	kb	 in	 length	showing	high	XP‐EHH	scores	with	one	SNP	

causing	the	EHH	decay	at	position	chr16:31009343	(rs74474326).	This	EHH	decays	around	the	gene	

STX1B	and	FBXL19	(in	green),	two	genes	that	have	also	been	associated	with	obesity	(Locke	et	al.	

2015;	Yazdi	et	al.	2015).	None	of	these	plots	shows	all	the	genes	located	within	these	three	KRAB‐

ZNF	gene	clusters.	
	

Similarly	 to	 XP‐EHH	 results,	 Fst	 scores	 suggested	 that	 the	 extended	 haplotypes	

within	 these	 three	clusters	exhibit	high	genetic	differentiation	between	CHB	and	

CEU	(Figure	12).	Besides	XP‐EHH	and	Fst	results	for	these	three	clusters,	CLR	and	

XP‐CLR	results	also	indicate	the	presence	of	extreme	values,	however,	these	do	not	

exhibit	 a	 clearly	 defined	 pattern	 within	 the	 regions	 showing	 the	 EHH	

(Supplementary	Figure	S3).	
	

Considering	that	genetic	variability	is	strongly	affected	by	demographic	processes,	

we	additionally	explored	 the	hierarchical	boosting	simulation	 framework	and	 its	

data	published	by	Pybus	et	al.	(2015).	This	boosting	framework	is	of	great	utility	in	

uncovering	scenarios	of	complete/incomplete	and	ancient/recent	selective	sweeps	

while	controlling	demography	(Pybus	et	al.	2015).	As	result,	it	was	possible	to	detect	

that	these	three	KRAB‐ZNF	clusters	(one,	three,	and	14)	contain	EHH	regions	that	

might	have	undergone	either	incomplete	and	ancient	(EHH	in	clusters	one	and	14)	

(Figure	13	 a	 and	 c)	 or	 complete	 and	 recent	 selective	 sweeps	 (EHH	 in	 cluster	 3)	

(Figure	13b).		
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Figure	 13.	 Hierarchical	 boosting	 simulation	 data	 for	 three	 KRAB‐ZNF	 gene	 clusters	 in	 CHB	

population.	(a)	KRAB‐ZNF	cluster	one,	which	is	located	in	human	chromosome	one.	(b)	KRAB‐ZNF	

cluster	three,	which	is	located	in	human	chromosome	three.	(c)	KRAB‐ZNF	cluster	14	from	human	

chromosome	 16.	 The	 four	 color	 tracks	 represent	 composite	 scores	 obtained	 for	 these	 regions:	

Complete	 (red),	 incomplete	 (orange),	 recent	 (blue)	 and	 ancient	 (violet)	 selective	 sweeps.	 As	

described	in	Pybus	et	al.	2015,	each	track	has	its	own	significance	threshold	(1%	false	discovery	rate	

(FDR).	The	recent/ancient	tracks	reference	an	approximate	age;	however,	precise	dating	demands	

more	 sophisticated	 computational	 approaches.	 Completeness/incompleteness	 of	 the	 selective	

sweep	is	represented	by	thresholds	tracks	on	the	figure.	Higher	threshold	corresponds	to	incomplete	

scores	 (orange).	The	 lower	 thresholds	correspond	to	complete	scores	 (red).	 Incomplete	boosting	

(IBT),	complete	boosting	(CBT),	Ancient	boosting	(ABT),	and	Recent	boosting	(RBT)	thresholds.		

a) 

b) 

c) 

IBT 

CBT 

RBT 

ABT 
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3.2.5.	 SNPs	 in	 KRAB‐ZNF	 protein	 domains	 as	 a	 source	 of	 regulatory	

diversity	

Despite	 the	 results	 from	 the	 XP‐EHH	 and	 Fst	 tests	 indicated	 that	 there	 is	 an	

enrichment	for	synonymous	SNPs	occurring	in	regions	coding	for	protein	domains	

of	KRAB‐ZNF	genes,	we	also	found	many	non‐synonymous	changes	in	KRAB‐ZNF	

genes	(Tables	5	and	7).	In	addition,	the	population‐specific	putative	signatures	of	

selection	 found	 for	 this	 group	 of	 genes	 suggest	 that	 these	 SNPs	may	 be	 playing	

important	roles	in	introducing	regulatory	diversity	at	AMHs.	Therefore,	we	further	

explored	 the	presence	of	non‐synonymous	SNPs	with	high	XP‐EHH	scores	 in	 the	

KRAB‐ZNF	gene	clusters	exhibiting	EHH	and	examined	potential	functional	effects	

of	such	SNPs	using	the	UCSC	genome	browser	(Karolchik	et	al.	2014)	and	UniProtKB	

(The	UniProt	Consortium	2015)	data	bases.	Within	the	whole	genomic	region	for	

these	three	KRAB‐ZNF	clusters,	between	43%	and	92%	of	the	nonsynonymous	SNPs	

are	located	in	KRAB‐ZNF	genes	(Table	8).	Among	the	regions	showing	EHH,	one	of	

the	 KRAB‐ZNF	 genes	 (ZNF646)	 located	 in	 the	 cluster	 14	 harbor	 11	 of	 the	

nonsynonymous	 SNPs	 that	 code	 for	 amino	 acids	 from	 the	 protein	 domains.	 The	

other	 two	 clusters	 harbor	 two	 (cluster	 one)	 and	 one	 (cluster	 three)	 SNPs	

introducing	missense	changes	in	regions	coding	for	protein	domains,	all	located	on	

three	KRAB‐ZNF	genes	and	one	readthrough	region	(ZNF670‐ZNF695)	(Table	8).		

	

Table	8.	Nonsynonymous	SNPs	and	GRFs	located	in	KRAB‐ZNF	clusters	exhibiting	regions	of	EHH.		

	
	

We	 further	explored	 if	 some	of	 these	non‐synonymous	SNPs	cause	to	changes	 in	

important	residues	of	the	protein	domains,	for	instance,	residues	that	are	essential	

for	the	stability	of	the	zinc	finger	folds,	or	important	for	the	interaction	between	the	

GRF	 with	 other	 co‐factors	 (KRAB	 domains)	 (Figure	 14).	 Out	 of	 the	 14	

nonsynonymous	SNPs	 found	 for	KRAB‐ZNF	genes	 in	 the	EHH	regions	previously	

1 chr1:247.14‐247.24 13 12 6 2 ZNF670‐ZNF695, ZNF695

3 chr3:44.55‐44.74 32 25 5 1 ZNF167, ZNF35

14 chr16:31.01‐31.16 83 36 27 11 ZNF646

Nonsynonymous 
SNPs (EHH)

Nonsynonymous 
SNPs in regions 

coding for protein 
domains (EHH)

ZNF Genes with 
nonsynonymous SNPs 

(EHH)

KRAB‐ZNF  
clusters

EHH regions
Nonsynonymous 

SNPs 

Nonsynonymous 
SNPs KRAB‐ZNF 

genes 
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described	in	Figure	12,	three	SNPs	introduce	missense	mutations	that	cause	amino	

acid	changes	between	two	histidine	residues	that	provide	stability	to	the	fold	of	two	

zinc	fingers	of	the	gene	ZNF646	(cluster	14):	rs35376811	(Arginine	to	Tryptophan);	

rs188200157	 (Isoleucine	 to	 Leucine)	 and	 rs3751856	 (Arginine	 to	 Glutamine).	

Other	nine	nonsynonymous	SNPs	(Supplementary	Table	S6)	were	located	in	regions	

that	code	for	amino	acid	residues	located	between	two	KRAB‐ZNF	zinc	fingers,	from	

2	 to	 16	 amino	 acids	 distant.	 Three	 out	 of	 these	 nine	 nonsynonymous	 SNPs	 are	

affecting	the	sequence	of	the	linker	regions	of	zinc	fingers	located	in	close	proximity,	

(less	than	11	amino	acids)	before	the	next	finger	starts,	for	two	genes:	rs140747159	

(ZNF695),	rs141631516	and	rs75586809	(ZNF646).	The	gene	ZNF35,	a	non‐KRAB‐

ZNF	zinc	 finger	gene	 located	on	 the	EHH	 found	 in	 the	cluster	 three,	harbors	one	

nonsynonymous	SNP	(rs191633770)	that	changes	the	amino	acid	sequence	from	

phenylalanine	to	serine.	This	change	occurs	two	residues	away	from	N‐terminal	end	

of	the	first	Cysteine	of	the	fourth	zinc	finger,	in	the	linker	region.	

	
Figure	14.	Illustrative	representation	of	a	C2H2	zinc	finger	domain.	The	two	cysteines	and	histidines,	

green	 and	 blue	 respectively,	 bind	 to	 the	 zinc	 ion,	 thus	 providing	 stability	 of	 the	 fold.	 The	 linker	

sequences	 that	 frequently	 join	 adjacent	 fingers	 (bottom)	 are	 shown	 in	 grey.	 Four	 residues	 at	

positions	‐1,	2,	3	and	6	counted	relatively	to	the	alpha	helix	provide	sequence	specificity	(orange	

circles).	 The	 black	 residues	 are	 considered	 not	 structurally	 relevant.	 The	 number	 of	 residues	

between	cysteines	and	histidines	(black	circles)	may	vary.	
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Considering	that	changes	in	the	functional	regions	within	the	three	KRAB‐ZNF	gene	

clusters	could	explain	the	type	of	selective	event	causing	the	EHH,	we	explored	the	

ancestral	 states	 of	 all	 nonsynonymous	 SNPs	 within	 the	 regions	 exhibiting	 EHH	

(>100	kb)	in	KRAB‐ZNF	clusters	one,	three	and	14.	All	nonsynonymous	SNPs	located	

in	 coding	 regions	 within	 the	 KRAB‐ZNF	 cluster	 14	 corresponded	 to	 nucleotide	

variants	 that	 differed	 from	 the	 ancestral	 state	 (Supplementary	 Table	 S6).	

Conversely,	 KRAB‐ZNF	 cluster	 one	 and	 three	 presented	 two	 and	 one	

nonsynonymous	 SNPs	 that	 correspond	with	 the	 ancestral	 allele	 (Supplementary	

Table	S6).	In	summary,	this	suggest	that	35	out	of	37	nonsynonymous	SNPs	located	

in	these	EHH	regions	may	have	resulted	from	de	novo	mutations.	

	

In	addition,	we	also	found	nonsynonymous	SNPs	located	in	the	KRAB‐ZNF	cluster	

three	(chromosome	3,	EHH	region	50	kb	long)	that	cause	changes	in	residues	that	

are	essential	for	the	stability	of	the	C2H2	zinc	finger	fold	of	two	GRF	genes	(ZNF501	

and	 ZNF502),	 and	 that	 seem	 to	 be	 population	 specific	 (Figure	 12b).	 Two	 SNPs	

(rs185260708	and	rs181738022)	corresponding	to	the	fifth	zinc	finger	of	the	gene	

ZNF502,	 which	 is	 located	 in	 the	 KRAB‐ZNF	 cluster	 three,	 introduce	 non‐

synonymous	changes	that	modify	the	amino	acid	sequence	of	the	first	Histidine	to	

Leucine.	 These	 two	 SNPs	 showed	 high	 XP‐EHH	 for	 CHB	 using	 CEU	 as	 reference	

population	 (XP‐EHH	 rank	 score	 >	 1.32).	 It	 is	 likely	 that	 these	 nonsynonymous	

mutations	 modify	 the	 function	 of	 ZNF502	 by	 rendering	 its	 fifth	 finger	 non‐

functional.	Another	example	is	the	SNP	(rs150433704)	located	in	the	region	coding	

for	the	sixth	zinc	finger	of	the	zinc	finger	gene	ZNF501.	This	SNP	changes	the	first	

Cysteine	for	Tyrosine,	thus	similarly	indicating	that	the	folding	stability	of	this	zinc	

finger	is	changed.	The	SNP	rs150433704	also	showed	a	high	XP‐EHH	score	(1.71)	

in	CHB	when	using	CEU	as	reference.	These	three	amino	acid	changes	suggests	that	

changes	in	the	zinc	finger	domains	of	particular	GRF	genes	might	have	an	important	

effect	in	introducing	regulatory	diversity	between	human	populations.		
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3.2.6.	Evolutionary	older	GRFs	are	main	candidates	for	selection	

To	 identify	 if	 human	 and	 primate‐specific	 genes	 are	 enriched	 among	 the	 genes	

located	in	regions	with	high	scores	for	all	tests	used,	we	assigned	each	gene	to	their	

particular	 evolutionary	 branch,	 from	 those	 human‐specific	 to	 those	 present	 in	

vertebrates,	by	using	gene	branch	assignments	(Zhang	et	al.	2010).	We	were	able	to	

assign	 3053	 GRF	 genes	 to	 their	 particular	 clade	 (Supplementary	 Table	 S7,	

supplementary	data	file).	In	total,	we	found	15	human	and	92	primate‐specific	GRF	

genes.	our	results	indicated	there	is	a	significant	under‐representation	of	human–

specific	GRF	genes	among	 the	genes	showing	high	scores	 for	CEU	(CLR)	and	YRI	

(CLR	and	XP‐EHH)	(Fisher	Exact	test	p‐values	=	0.02,	0.002	and	0.04,	respectively).	

We	also	 found	 that	primate‐specific	GRF	genes	were	under‐represented	 for	CHB	

(XP‐CLR)	 (Fisher	 Exact	 test	 p‐values	 =	 0.01).	 This	 suggests	 that	 rather	 old	

established	 GRFs	 are	 mainly	 among	 the	 candidates	 for	 selection	 within	 AMHs.	

Another	 possible	 reasons	 could	 be	 that	 not	 enough	 time	 has	 passed	 since	 the	

human‐specific	genes	appeared	in	the	human	genome	and	selection	still	has	not	left	

a	stronger	signature	on	these	genomic	regions.	It	is	also	likely	that	new	GRFs	are	

neutrally	evolving.		

	

3.3.	Discussion	

Using	the	results	obtained	for	three	different	methods,	we	found	that	GRF	genes	are	

enriched	 among	 the	 candidate	 genomic	 regions	 for	 positive	 selection	 in	 three	

human	populations.	We	found	that	larger	groups	of	GRF	classes	such	as	C2H2	zinc	

finger,	 KRAB‐ZNF	 zinc	 finger,	 Homeo	 domain,	 Tryptophan	 cluster,	 Fork	

head/winged	helix,	and	High‐mobility	(HMG)	domain	were	enriched	at	least	for	one	

population.	We	also	found	that	at	least	three	KRAB‐ZNF	clusters	have	regions	bigger	

than	100	kb	exhibiting	EHH	in	CHB	population.	C2H2	and	KRAB‐ZNF	classes	showed	

enrichment	for	synonymous	SNPs	in	protein	domains.	In	addition,	the	KRAB‐ZNF	

class	 exhibited	 the	major	 number	 of	 nonsynonymous	 SNPs	 occurring	 in	 protein	

domains.	 Further	 exploration	of	non‐synonymous	 SNPs	with	high	 scores	 for	XP‐

EHH	from	GRF	classes	enriched	for	positive	selection	suggest	that	KRAB‐ZNF	genes	

may	be	important	for	introducing	regulatory	diversity	in	human	populations.		
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3.3.1.	 GRFs	 classes	 enriched	 among	 candidate	 regions	 for	 positive	

selection	

The	 molecular	 bases	 to	 depict	 how	 phenotypic	 differences	 between	 human	

populations	have	been	evolutionary	shaped	are	still	far	from	being	fully	understood;	

nonetheless,	variation	in	the	transcriptional	regulome	is	likely	to	play	an	essential	

role	 in	 fine‐tuning	 the	ways	 in	which	 the	current	diversity	we	observe	 in	AMH’s	

traits	 is	 expressed	 (Wray	 2007;	 Nowick	 et	 al.	 2011;	 Albert	 and	 Kruglyak	 2015;	

Barrera	et	al.	2016).	Genomic	sequences	carrying	the	information	that	codes	for	GRF	

proteins	hold,	 to	 some	extent,	 important	 clues	of	 the	recent	human	evolutionary	

adaptation	and	diversification.	For	instance,	changes	introducing	subtle	variation	in	

the	 DNA‐binding	 affinities	 could	 have	 substantial	 functional	 effect	 in	 generating	

phenotypic	 variation	 without	 being	 deleterious	 (Barrera	 et	 al.	 2016).	 Genetic	

variation,	 especially	 the	 variation	 that	 confers	 particular	 advantages	 for	 the	

individual,	 is	 expected	 to	 be	 subjected	 to	 natural	 selection	 (Gillespie	 1991).	 our	

exploration	of	genome	wide	scans	for	signatures	of	positive	selection	suggest	that	

particular	 GRF	 classes	 have	 widely	 contributed	 to	 this	 adaptive	 variation	 at	

population‐specific	 level.	 Among	 the	 whole	 set	 of	 genes	 we	 explored	 here,	 we	

identified	 that	 six	 of	 the	 larger	 GRF	 classes	 are	 enriched	 among	 the	 regions	

exhibiting	high	scores	for	tests	for	detecting	positive	selection	in	humans:	C2H2	zinc	

finger,	 KRAB‐ZNF	 zinc	 finger,	 Homeo	 domain,	 Tryptophan	 cluster,	 Fork	

head/winged	helix	and,	and	High‐mobility	(HMG)	domain.	Twenty	out	of	the	202	

genes	we	found	as	candidates	for	positive	selection	from	six	GRF	classes	have	also	

been	reported	as	candidate	regions	for	positive	selection	in	previous	studies.	It	is	

likely	 that	methodological	 criteria	and	 levels	of	 significance	used	as	 threshold	 in	

previous	works	on	genome‐wide	scans	for	selection	(Sabeti	et	al.	2007;	Pickrell	et	

al.	2009;	Metspalu	et	al.	2011;	Grossman	et	al.	2013)	left	some	many	of	these	182	

GRF	genes	out	of	the	candidate	lists.	It	is	also	plausible	that	some	of	the	genes	we	

are	 reporting	 here	 correspond	 to	 new	 candidates	 for	 positive	 selection	 not	

previously	described.	

	

Changes	 in	diet	during	human	dispersals	Out	of	Africa	were	 likely	to	go	together	

with	 Adaptive	 molecular	 variations	 in	 metabolic	 pathways.	 One	 remarkable	

example	of	such	metabolic	adaptations	is	the	lactase	persistence	in	European	and	
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some	African	populations	(Bersaglieri	et	al.	2004).	Changes	in	carbohydrate	intake	

in	the	form	of	starch	as	a	source	of	glucose	are	thought	considerable	boosted	the	

energy	 resources	 in	 human	 tissues	 with	 high	 glucose	 requirements	 such	 as	 the	

brain,	blood	cells,	and	developing	embryos	(Hardy	et	al.	2015).	Such	variations	in	

diet	may	have	been	accompanied	by	adaptive	changes	in	gene	regulatory	pathways.	

Among	the	set	of	candidates	GRF	genes	for	positive	selection,	we	identified	three	

genes	that	play	key	roles	in	insulin/glucose	regulatory	pathways:	zinc	finger	protein	

407	(ZNF407)	(Buchner	et	al.	2015),	and	forkhead	box	O1	and	A2	(FOXO1,	FOXA2)	

(Kamagate	et	al.	2008;	Wu	et	al.	2016;	Yalley	et	al.	2016).	Insulin‐mediated	glucose	

absorption	 in	 adipocytes	 in	 essential	 for	 keeping	 the	 glucose	 homeostasis	 and	

insulin	 sensitivity	 in	 the	 whole	 body	 (Bogan	 2012).	 This	 metabolic	 pathway	 is	

greatly	mediated	by	the	solute	carrier	family	2,	member	4	(SLC2A4;	GLUT4)	gene.	It	

was	recently	discovered	that	ZNF407	GRF	protein	controls	 the	 transcription	and	

mRNA	 stability	 of	 SLC2A4,	 and	 that	 Knockdown	 experiments	 on	 gene	 ZNF407	

resulted	in	30–	40%	reduction	in	insulin‐stimulated	glucose	uptake	(Buchner	et	al.	

2015).	 In	 spite	 the	 biological	 roles	 of	 the	 majority	 of	 C2H2	 proteins	 are	 still	

unknown,	those	C2H2	genes	that	have	been	functionally	characterized	participate	

in	 a	 wide	 repertoire	 of	 molecular	 regulatory	 roles	 such	 as	 protein‐protein	

interaction,	 RNA	 binding,	 sequence‐specific	 binding	 to	 DNA.	 Some	 DNA‐binding	

C2H2,	for	instance,	KRAB‐ZNF	genes,	are	involved	in	genomic	recombination	and	

chromosome	segregation	(Stubbs	et	al.	2011).	Although	none	of	these	17	missense	

SNPs	showing	signatures	of	selection	on	ZNF407	is	affecting	the	residues	that	are	

essential	for	the	stability	of	the	zinc	finger	folds	and	the	affinity	of	the	DNA	binding	

protein	domains,	we	suggest	they	could	be	introducing	subtle	regulatory	variation	

in	the	ZNF407	protein	structure,	thus	altering	the	pathways	this	gene	is	associated	

to;	for	instance,	insulin‐mediated	glucose	uptake.		

	

The	genes	FOXO1	and	FOXA2,	other	two	GRF	candidate	genes	for	positive	selection,	

have	 been	 recently	 associated	with	 the	 regulation	 of	 Insulin‐sensitive	 pathways	

(Puigserver	 and	Dominy	2010;	Cheng	 et	 al.	 2016;	Yalley	 et	 al.	 2016).	These	 two	

genes	are	members	of	another	large	GRF	classes,	the	Fork	head/winged	helix,	an	

evolutionary	conserved	GRF	class	 that	gathers	genes	with	key	 functional	roles	 in	

glucose	metabolic	enzymes,	apoptotic	factors,	and	cell	cycle	regulators	in	multiple	



	

	 60

tissues(Ho	et	 al.	 2008).	 FOXO1	binds	 the	promoter	 region	of	 insulin‐like	 growth	

factor‐binding	protein	1	(IGFBP1)	and	glucose‐6‐phosphatase	(G6Pase)	in	response	

to	insulin	signaling	in	liver,	thus	regulating	their	expression	(Yalley	et	al.	2016).	By	

opening	 and	 remodeling	 the	 chromatin	 on	 the	 IGFBP1	 promoter	 region,	 FOXO1	

significantly	 increases	 the	 binding	 activity	 of	 RNA	 polymerase	 II	 and	 other	 two	

pioneer	GRF	proteins	(FOXA1/A2)	(Hatta	and	Cirillo	2007).	By	using	knock	down	

experiments	in	FOXO1	and	FOXA2,	Yalley	et	al.	(2016)	revealed	that	these	two	GRF	

proteins	interdependently	bind	and	regulated	the	expression	of	IGFBP1.	In	addition,	

Yalley	et	al.	(2016)	also	revealed	that	changes	in	binding	affinity	result	in	alterations	

in	chromatin	structure	and	reduction	in	the	acetylation	of	H3K27	histone	mark.	We	

found	three	missense	SNPs,	from	which	one	causes	a	mutation	(rs34733279)	that	

modifies	the	amino	acid	residue	from	aspartic	acid	to	asparagine.	This	nucleotide	

variant	 found	 is	present	 just	 in	CHB	(allele	 frequency	0.11).	 It	 is	 likely	 that	such	

missense	change	produces	a	 functional	changes	 in	 the	regulatory	mechanisms	of	

FOXO1,	 for	 instance,	 by	 decreasing	 or	 increasing	 the	 affinity	 in	 which	 FOXO1	

interact	with	 chromatin,	DNA,	with	other	pioneer	GRFs	or	 cofactors	 to	 fine	 tune	

insulin	pathways	regulation.	Single	nucleotide	variations	in	FOXO1	have	also	been	

associated	with	an	ectatic	disease	of	the	cornea	“keratoconus”	in	a	Saudi	Arabian	

population	(Abu‐Amero	et	al.	2015).		

	

To	sum	up,	based	on	the	signatures	of	positive	selection	we	detected	for	these	two	

genes,	 we	 suggest	 that	 some	 of	 the	 nonsynonymous	 variation	 we	 observed	 in	

ZNF407	and	FOXO1	are	introducing	subtle	changes	in	the	gene	regulatory	activity	of	

these	two	genes.	We	also	think	it	is	likely	that	such	variation	may	have	differentially	

contributed	 into	 the	 regulatory	 pathways	 of	 insulin	 and	 glucose	 of	 these	 three	

human	populations,	and	thus,	into	human	adaptation.		

	

3.3.2.	 EHH	 haplotypes	 in	KRAB‐ZNF	 gene	 clusters	 suggest	 selection	 on	

specific	traits	that	swept	in	AMH	populations	

The	 occurrence	 of	 long	 extended	 regions	 exhibiting	 low	 variability	 and	

recombination	 rates	 are	 normally	 considered	 as	 candidate	 regions	 for	 selective	

sweeps	(Vitti	et	al.	2013).	Three	out	of	25	KRAB‐ZNF	gene	clusters	exhibited	EHH	

regions	larger	than	100	kb	for	XP‐EHH	and	low	recombination	rates,	which	suggest	
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the	 occurrence	 of	 selective	 sweeps	 (Sabeti	 et	 al.	 2007;	 Vitti	 et	 al.	 2013).	 The	

additional	 results	 obtained	 from	 the	 Fst,	 a	 test	 based	 on	 population	 genetic	

differentiation	(Weir	and	Cockerham	1984),	also	suggests	that	these	EHH	regions	

carry	highly	differentiated	SNPs	between	CHB	and	CEU	populations.		

	

Multiple	genome	wide	scans	for	positive	selection	in	humans	available	in	published	

literature	(Sabeti	et	al.	2007;	Pickrell	et	al.	2009;	Metspalu	et	al.	2011;	Grossman	et	

al.	2013)	resulted	in	only	a	few	overlapping	regions	(Perdomo‐Sabogal	et	al.	2014).	

Out	of	all	the	genes	located	within	the	three	KRAB‐ZNF	clusters	we	identified	with	

EHH,	two	genes	have	been	previously	reported	as	candidate	regions	for	selective	

sweeps,	ZNF501	 (cluster	 three)	(Grossman	et	al.	2013)	and	VKORC1	 (non‐GRF	 in	

cluster	14)	(Ross	et	al.	2010;	Patillon	et	al.	2012).	By	using	the	CMS	test,	Grossman	

et	 al.	 (2013)	 identified	 one	 high	 scoring	 candidate	 SNP	 (rs2257995)	 for	 positive	

selection	located	in	the	promoter	region	of	the	gene	ZNF501	(179	bp	from	the	start	

of	 the	 gene).	 By	 using	 a	 similar	 complementary	 analytic	 strategy	 to	 the	 one	we	

implemented	here,	Patillon	et	al.	(2012)	suggested	the	gene	VKORC1	was	located	in	

a	region	exhibiting	EHH	in	all	Asian	populations,	as	was	initially	put	forward	by	Ross	

et	al.	(2010).		

	

Despite	 that	 the	 overlap	 between	 the	 genes	 located	 in	 the	 other	 two	KRAB‐ZNF	

clusters	(one	and	three)	and	the	genes	previously	reported	in	literature	was	small,	

the	results	we	obtained	from	CLR,	XP‐CLR	and	Fst	tests	also	showed	regions	with	

higher	 rank	 scores	 (above	 the	 threshold)	within	 the	 EHH	 regions	 located	 in	 the	

three	 KRAB‐ZNF	 clusters.	 Taken	 together,	 the	 results	 from	 these	 three	 different	

tests	for	detecting	positive	selection	in	AMH	populations,	added	to	the	patterns	of	

variation	observed	within	these	regions	(increased	haplotype	homozygosity,	high	

genetic	differentiation,	and	number	of	nonsynonymous	SNPs	with	likely	functional	

effect),	we	suggest	these	three	KRAB‐ZNF	gene	cluster	have	undergone	a	selective	

sweep	at	least	in	one	human	population	(CHB).		

	

The	demographic	processes	 that	humans	have	experienced	during	 the	migration	

out	 of	Africa	have	 influenced	 their	 genetic	 diversity	 in	many	different	ways.	 For	

instance,	 migration,	 changes	 in	 population	 size,	 bottlenecks,	 interbreeding	 with	
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archaic	 humans,	 are	 just	 a	 handful	 of	 examples	 of	 how	 demography	 could	 have	

shaped	human	 variability	 (Pybus	 et	 al.	 2015).	 It	 is	 likely	 that	 such	demographic	

events	mimic	the	signatures	that	selection	could	have	left	on	the	genome	of	different	

populations,	 thus	 leading	 to	 misinterpretations	 (Nielsen	 et	 al.	 2009).	 Using	 the	

analyses	recently	published	by	Pybus	et	al.	(2015),	who	implemented	a	hierarchical	

boosting	algorithm	for	refining	the	detection	of	signatures	of	selective	sweeps	on	

three	human	populations,	we	were	able	to	cross‐validate	the	signatures	of	selective	

sweeps	 observed	 in	 the	 three	 KRAB‐ZNF	 gene	 clusters	 one,	 three	 and	 14.	 In	

addition,	these	results	also	allowed	us	to	establish	the	type	and	approximated	age	

of	the	sweeps	observed	here.	It	is	likely	that	the	clusters	one	and	14	experienced	an	

incomplete	ancient	selective	sweep	in	CHB,	which	probably	occurred	between	45	to	

30	kilo	years	ago	(kya),	while	the	cluster	three	may	be	the	result	of	a	recent	and	

rapid	complete	selective	sweep	occurred	between	25	to	10	kya	as	well	in	CHB.	It	is	

important	 to	 highlight	 that	 calculating	 a	 more	 precise	 dating	 requires	 more	

sophisticated	 computational	 approaches	 (Pybus	 et	 al.	 2015).	 Considering	 that	 a	

majority	of	the	nonsynonymous	SNPs	located	within	these	regions	differ	from	their	

ancestral	 states,	 we	 suggest	 that	 the	 EHH	 observed	 in	 these	 three	 KRAB‐ZNF	

clusters	may	be	the	result	of	selective	sweeps	from	de	novo	mutations,	instead	of	

sweeps	from	extant	genetic	variation	(as	described	in	the	introductory	chapter).	

	

As	a	final	observation,	one	of	the	EHH	haplotypes	seems	to	extend	farther	within	

the	KRAB‐ZNF	gene	cluster	14;	however,	 the	presence	of	one	SNP	 in	an	 intronic	

region	 of	 a	 non‐GRF	 gene	 causes	 the	 EHH	 decay.	 Detailed	 exploration	 of	 the	

surrounding	SNPs	evidenced	that	this	lower	peak	could	be	explained	by	the	way	the	

MAF	was	defined	in	one	of	the	populations.	Thus,	 it	 is	 likely	that	the	EHH	region	

from	 this	 KRAB‐ZNF	 cluster	 spans	 261	 kb	 and	 not	 only	 156	 kb	 as	 we	 initially	

thought.	 Patillon	 et	 al.	 (2012)	 suggested	 that	 the	 genomic	 region	 exhibiting	

signatures	of	selective	sweep	in	all	East	Asian	populations	spans	around	505	kb;	

however,	our	analyses	for	EHH	showed	that	the	haplotype	decays	around	the	251	

kb	up	and	downstream	the	EHH	region	in	CHB.	Based	on	the	genes	that	displayed	

most	extreme	XP‐EHH	scores,	Patillon	et	al.	 (2012)	also	suggested	 that	 the	most	

likely	targets	for	selection	in	this	region	were	the	adjacent	genes	VKORC1,	BCKDK,	

MYST1,	 and	 PRSS8.	 None	 of	 them	 is	 being	 catalogued	 as	 GRF	 gene.	 However,	
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genome‐wide	association	study	on	dependency	of	phenprocoumon,	a	 long‐acting	

oral	anticoagulant	drug,	indicated	that	the	genes	STX4A	and	ZNF646	carry	variants	

that	 displayed	 strongest	 association	 with	 phenprocoumon	 maintenance	 dosage	

variation	in	European	individuals	from	Rotterdam	(Teichert	et	al.	2011).	Our	results	

showed	that	despite	ZNF646	does	not	carry	the	SNPs	with	most	extreme	values	for	

the	tests	implemented	here,	it	does	explain	51%	of	the	nonsynonymous	SNPs	(14	

variants)	 exhibiting	higher	 scores	 in	 this	EHH	 region	 (KRAB‐ZNF	 cluster	14)	 for	

CHB.	Therefore,	it	is	plausible	that	ZNF646	has	also	introduced	regulatory	diversity	

in	 the	 Asian	 regulome,	 for	 instance,	 by	 regulating	 pathways	 implicated	 in	 blood	

coagulation.	In	addition,	ZNF646,	together	with	another	five	genes	located	in	the	251	

kb	long	EHH	region,	four	GRFs	(KAT8,	ZNF646,	ZNF668,	FBXL19)	and	two	non‐GRFs	

(STX1B	and	VKORC1)	have	recently	been	associated	with	obesity	(Locke	et	al.	2015;	

Yazdi	et	al.	2015).	One	SNP	located	on	KAT8,	a	gene	that	codes	for	a	GRF	protein,	has	

been	 associated	with	 body	mass	 index	 in	 European	 individuals.	 In	 addition,	 the	

association	and	expression	quantitative	trait	loci	(eQTL)	data	suggest	that	this	SNP	

also	affects	the	gene	expression	of	ZNF646,	VKORC1	and	ZNF668	(Locke	et	al.	2015).	

Consequently,	we	suggest	it	is	likely	that	the	selective	sweep	that	occurred	in	this	

genomic	 region	 where	 this	 KRAB‐ZNF	 gene	 cluster	 is	 located	 have	 probably	

influenced	the	regulatory	pathways	associated	with	both	phenotypical	conditions,	

obesity	and	anticoagulant	response.	In	special,	considering	that	four	genes	in	this	

region	are	GRFs.	

	

3.3.3.	Positive	selection	of	C2H2	genes	as	a	potential	source	for	regulatory	

diversity	

C2H2	genes,	including	KRAB‐ZNF	genes,	have	experienced	independent	expansions	

in	 primates	 (Nowick	 et	 al.	 2011;	 Najafabadi	 et	 al.	 2015).	 Proteins	 of	 this	 DNA‐

binding	 transcription	 factor	 class	 typically	 contain	 modular	 Cys2‐His2‐ZNF	

domains	 joined	 together	 in	 tandem	arrays	 (Huntley	et	al.	2006).	Each	C2H2	zinc	

finger	contacts	three	or	more	nucleotides.	Four	amino	acids	at	positions	‐1,	2,	3	and	

6	 counted	 relatively	 to	 the	 alpha	 helix	 provide,	 to	 a	 large	 extend,	 the	 sequence	

specificity	for	the	C2H2	zinc	fingers	(Wolfe	et	al.	2000).	The	C2H2	motif	folds	into	a	

ββα	structure	where	two	highly	conserved	cysteine	and	histidine	residues	provide	

the	stability	to	the	fold	(Lee	et	al.	1989;	Brayer	et	al.	2008).	This	finger‐like	structure	
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is	essential	for	binding	to	the	DNA;	therefore,	changes	in	these	structures	are	likely	

to	be	a	source	of	human	regulatory	diversity.	Out	of	the	121	C2H2	GRF	genes	(among	

them	53	KRAB‐ZNF	genes)	that	we	found	in	regions	exhibiting	signatures	of	positive	

selection,	 just	nine	have	been	previously	reported	as	candidates	(Grossman	et	al.	

2013).	By	exploring	nonsynonymous	changes	occurring	in	the	cystidine	or	histidine	

residues	 of	 KRAB	 zinc	 fingers	 within	 KRAB‐ZNF	 clusters	 exhibiting	 EHH,	 we	

detected	three	nucleotide	changes	that	may	alter	the	functionality	or	specificity	of	

the	 zinc	 fingers	 of	 two	 KRAB‐ZNF	 genes	 (ZNF501	 and	 ZNF502)	 in	 the	 Asian	

population	(CHB).	Non‐synonymous	SNPs	on	the	fifth	and	sixth	zinc	finger	of	the	

genes	ZNF502	and	ZNF501,	respectively,	change	the	Cysteine	of	the	C2H2	structure.	

Protein	 (Intensity‐based	 absolute	 quantification,	 iBAQ)	 and	 mRNA	 expression	

(Fragments	Per	Kilobase	of	 transcript	per	Million	mapped	reads,	FPKM)	data	 for	

ZNF502	 and	 ZNF501	 suggest	 that	 these	 two	 GRFs	 are	 highly	 expressed	 in	 testis	

(iBAQ	and	mRNA),	ovary	(mRNA)	and	Lymphoid/Immune	cells/system	(ZNF501)	

(Frézal	 1998;	 Wilhelm	 et	 al.	 2014).	 Previous	 studies	 found	 that	 sequence	

differences	at	the	positions	coding	for	the	DNA‐binding	amino	acids	of	PRDM9,	a	

zinc	finger	protein,	seem	to	be	connected	to	male	sterility	risk	in	Asians	(Miyamoto	

et	al.	2008).	Despite	additional	information	about	the	functional	roles	of	ZNF502	and	

ZNF501	 genes	 is	 not	 known	 yet,	 we	 speculate	 that	 the	 SNPs	 here	 described	 for	

ZNF502	and	ZNF501	may	be	connected	with	regulatory	differences	at	reproductive	

(fertility)	and	immune	system	level	among	human	populations.	

	

We	additionally	detected	nonsynonymous	changes	in	the	linkers	of	three	KRAB‐ZNF	

genes	ZNF35,	ZNF646,	ZNF695.	KRAB‐ZNF	genes,	 together	with	 the	 rest	 of	 C2H2	

genes,	 are	 rapidly	 evolving	 within	mammals	 (Tadepally	 et	 al.	 2008).	 This	 rapid	

evolution	 has	 not	 been	 restricted	 to	mechanisms	 such	 as	 segmental	 and	 partial	

duplications,	rearrangements	and	accretion	of	C2H2	zinc	finger	motifs	(Tadepally	

et	al.	2008;	Nowick	et	al.	2010;	Najafabadi	et	al.	2015).	Variation	and	diversification	

of	the	amino	acid	residues	that	are	also	essential	for	the	folding	of	the	DNA	binding	

domains	and	regulatory	activity,	could	also	have	an	effect	in	the	regulatory	activity.	

For	 instance,	 amino	 acid	 substitutions	 in	 the	 linker	 region	have	been	previously	

found	 to	 strikingly	 affect	 DNA	 specificity	 and	 affinity	 in	 one	 GRF,	 the	 general	

transcription	 factor	 IIIA	 (Ryan	 and	 Darby	 1998),	 thus	 probably	 indicating	 the	
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regulatory	effects	of	amino	acid	changes	in	such	regions.	Another	recent	example	of	

amino	acids	changes	affecting	the	affinity	of	zinc	fingers	is	the	c.C5054G/p.S1685W	

mutation,	which	affects	2	of	the	3	ZNF407	isoforms	(Kambouris	et	al.	2014).	This	

Serine	to	Tryptophane	mutation	is	located	in	the	peptide	that	links	the	fingers	C2H2	

types	 18	 and	 19,	 causing	 cognitive	 impairment	 in	 the	 individual	 that	 carry	 it	

(Kambouris	et	al.	2014).	ZNF35,	ZNF646,	ZNF695	harbor	nonsynonymous	SNPs	in	

the	linker	regions	of	several	zinc	fingers.	ZNF35	gene	has	been	found	as	one	of	two	

non‐KRAB‐ZNF	genes	that	can	bind	and	regulate	specific	classes	of	EREs	(Najafabadi	

et	al.	2015).	ERE	families	contain	the	hominid‐specific	retrotransposon	SINE‐VNTR‐

Alu	 (SVA)	 family	 (Wang	 et	 al.	 2005),	 endogenous	 retroviruses	 (ERVs),	 and	 long	

interspersed	nuclear	elements	(LINEs).	It	has	been	suggested	that	variation	in	the	

tandem	array	of	zinc	finger	domains	may	results	in	a	diversifying	mechanisms	to	

down	regulate	the	expression	of	newly	evolved	ERVs	in	humans	(Lukic	et	al.	2014).	

Therefore,	considering	that	changes	in	the	residues	located	in	the	linker	regions	of	

particular	 zinc	 fingers	 may	 also	 introduce	 a	 source	 of	 population‐specific	

mechanism,	we	 think	 the	 changes	 found	 in	 ZNF35,	 ZNF646	 and	ZNF695	may	 be	

introducing	regulatory	mechanisms	to	repress	ERVs’	expression.		

	

Finally,	considering	the	multiple	missense	mutations	occurring	in	the	genes	ZNF695	

and	ZNF646,	six	and	14	nonsynonymous	SNPs	respectively,	and	that	these	genes	are	

located	in	a	region	with	strong	signatures	of	positive	selection	(KRAB‐ZNF	clusters	

one	 and	 14)	 in	 CHB,	 we	 also	 suggest	 that	 these	 genes	 have	 experienced	 rapid	

evolution	at	least	in	this	human	population.		

		

3.4.	Conclusions	

Using	 the	most	recent	catalog	 for	GRFs,	 the	 information	 from	the	1000	genomes	

project,	 and	 data	 obtained	 for	 multiple	 tests	 for	 detecting	 positive	 selection	 in	

humans,	we	identified	a	group	of	candidate	GRF	genes	that	might	have	undergone	

positive	 selection	 in	 three	 human	 populations.	 These	 results	 present	 several	

scenarios	where	multiple	classes	of	GRFs	may	have	contributed	to	the	regulatory	

diversity	 and	 adaptation	 of	 humans.	 At	 least	 six	 of	 the	 larger	 GRF	 classes	 are	

enriched	for	regions	exhibiting	signatures	of	positive	selection	in	humans.	Further	

inspection	of	single	nucleotide	variants	in	several	GRF	genes	suggest	how	genetic	
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variation	could	be	introducing	regulatory	diversity	in	humans,	thus	possibly	leading	

to	 the	 evolution	 of	 particular	 traits	 associated	 with	 body	 mass	 index,	 blood	

coagulation,	reproduction,	and	insulin/glucose	regulatory	pathways	in	in	humans.	

	
3.5.	Methods	

	

3.5.1.	Identifying	candidate	GRFs	for	selection	in	three	AMHs	populations	

Using	whole	genome	sequencing	data	from	1000G	project	(1000	Genomes	Project	

Consortium	2012)	and	the	data	from	1000	Genomes	Selection	Browser	1.0	(Pybus	

et	 al.	 2013),	 we	 extensively	 looked	 for	 candidate	 genomic	 regions	 that	 exhibit	

signatures	 of	 positive	 selection,	 and	 where	 GRFs	 are	 placed,	 for	 three	 AMHs	

populations:	 Utah	 Residents	 with	 Northern	 and	 Western	 Ancestry	 (CEU),	 Han	

Chinese	in	Bejing	(CHB),	and	Yoruba	in	Ibadan	(YRI).		

	

To	 better	 understand	 how	 natural	 selection	 may	 have	 shaped	 the	 diversity	 we	

currently	observe	for	GRF	genes	in	these	three	different	human	populations,	we	first	

analyzed	 the	 results	 obtained	 from	 four	 different	 statistical	 population	 genetics	

methods,	which	were	 initially	 implemented	by	Pybus	et	al.	 (2013).	Based	on	our	

particular	interest,	we	selected	three	tests	that	implement	different	strategies	for	

detecting	signatures	of	positive	selection	 in	human,	CLR,	XP‐CLR	and	XP‐EHH,	as	

previously	 described	 in	 the	 introductory	 section	 of	 this	 chapter.	 As	 additional	

strategy	to	complement	our	findings,	we	also	included	the	Fst	statistics;	a	test	is	of	

utility	 for	 estimating	 population	 genetic	 differentiation.	 By	 analyzing	 the	 results	

obtained	 from	 multiple	 methods,	 we	 expected	 to	 better	 describe	 how	 positive	

selection	may	have	influenced	the	genetic	variation	of	GRF	genes.	The	resulting	data	

covers	around	83%	of	the	GRF	genes	we	cataloged,	while	for	the	remnant	17%	there	

was	not	information	available.		

	

One	 of	 our	 main	 interests	 was	 to	 identify	 GRFs	 located	 in	 regions	 that	 have	

significantly	higher	scores	compared	to	the	rest	of	the	genomic	distribution	for	all	

the	four	tests	analyzed	here	(CLR,	XP‐CLR,	XP‐EHH	and	Fst)	(Table	3).	Considering	

that	scores	found	in	the	upper	tail	of	the	distribution	of	all	these	four	tests	indicate	

deviations	 from	neutrality,	and	suggests	regions/genes	that	are	 likely	candidates	
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for	being	under	positive	selection,	we	explored	GRFs	having	scores	in	the	high	5%	

upper	tail	of	the	distribution.	By	using	ranked	score	values,	raw	scores	ranked	based	

in	the	genome‐wide	distribution	of	scores	obtained	for	each	population	(Pybus	et	

al.	2013),	we	expected	to	identify	those	GRF	genes	with	higher	rank	score		for	each	

test.	Considering	that	a	rank	score	of	1.3	will	correspond	to	the	5%	of	the	upper	tail	

of	the	distribution,	we	used	this	value	as	threshold.	We	considered	all	genes	with	

scores	larger	than	this	threshold	as	“GRF	candidates	for	positive	selection”.		

	

3.5.2.	GRF	overrepresentation		

We	first	evaluated	if	GRFs	are	enriched	among	the	top	5%	of	all	set	of	human	genes	

for	the	four	tests	on	the	CEU,	CHB	and	YRI	populations.	From	the	whole	set	of	human	

genes,	we	selected	all	the	rank	scores	corresponding	to	GRF	genes.	To	do	this,	we	

used	 the	catalog	of	GRF	(Chapter	 I),	 thus	making	possible	 to	generate	 two	set	of	

genes.	We	then	performed	a	Wilcoxon‐rank‐test	to	test	if	GRF	genes	presented	more	

extreme	rank	scores	 than	 for	 the	rest	of	 the	human	genes	(non‐GRFs)	 in	all	 four	

tests.	Subsequently,	we	performed	permutation	test	based	on	the	Wilcoxon	rank‐

test	(1000	permutations)	to	evaluate	if	by	assigning	the	same	size	of	GRFs	genes	to	

random	data	the	number	of	scores	being	on	the	5%	upper	tail	of	the	distribution	

were	exchangeable	under	the	null	hypothesis	of	no	difference	between	our	initial	

observation	and	the	sampled	data.		

	

3.5.3.	Recombination	rates	difference	quantification	

To	evaluated	if	there	the	recombination	rates	of	GRF	genes	significantly	differ	from	

those	found	for	non‐GRF	genes,	we	used	the	standardized	recombination	maps	and	

rates	from	deCODE	for	the	human	genome	reference	GRCh37/hg19	(Masson	et	al.	

2010).	We	assigned	the	recombination	rates	to	each	gene	within	the	two	groups,	

GRFs	 and	 non‐GRF	 genes.	 Then,	 we	 quantified	 the	 distance	 between	 these	 two	

empirical	distributions	by	 implementing	a	two‐sample	Kolmogorov–Smirnov	test	

(KS).		

	

3.5.4.	GRFs	distribution	of	length	

Gene	 length	 can	 influence	 the	number	of	GRF	 regions	 that	 can	be	present	 in	 the	

upper	tail	of	the	distribution.	Knowing	that	this	variation	in	length	is	important	to	
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properly	 identify	 true	 biological	 signatures,	 instead	 of	 rather	 than	 length‐

dependent	 artifacts,	we	 assessed	 if	 the	 distribution	 of	 the	 gene	 lengths	 between	

GRFs	and	non‐GRFs	was	significantly	different.	If	the	distribution	of	lengths	of	GRF	

and	non‐GRF	genes	were	by	chance	 the	same,	 it	would	 imply	 that	 sampling	GRF	

genes	 from	 the	upper	 tail	would	not	 be	 biased	 towards	 the	distribution	 of	 their	

lengths.	We	performed	a	Spearman’s	rank	correlation	test	to	measure	it	there	was	

statistical	dependence	between	gene	length	and	the	rank	scores	obtained	for	each	

of	the	four	tests.	

	

3.5.5.	Details	of	XP‐EHH,	CLR	and	XP‐CLR	calculation	

	

3.5.5.1.	XP‐EHH	method	(Sabeti	et	al.	2007)	

For	 computing	 XP‐EHH,	 the	 initial	 step	 requires	 calculating	 EHH	 for	 each	

population.	Therefore,	for	a	bi‐allelic	SNP	with	alleles	b	and	B,	the	EHH	is	computed	

as	follows:	

	 	 	 	 	
∑

																																					(1)	

In	equation	(1)	one	nb	and	nB	represent	the	amount	of	haplotypes	with	alleles	b	and	

B	respectively;	ni	is	the	sum	of	the	ith	haplotype	in	a	particular	population	and	hx	

correspond	to	the	number	of	different	haplotypes	in	the	core	region	up	to	a	distance	

x	from	the	locus.		The	unstandardized	XP‐EHH	methods	is	then	defined	as:		

	 	 	 log
	

	

	 																		(2)			

	

In	equation	(2),	pop1	and	pop2	correspond	to	the	two	populations,	the	integration	

values	D	corresponds	to	the	cutoff	over	the	x	integration	and	is	used	for	determining	

when	EHH	has	decayed	to	sufficiently	small	values.	The	raw	XP‐EHH	scores	from	

Eq.	 (2)	are	 then	standard	normalized	and	a	p‐value	cut	off	 is	obtained.	This	also	

requires	correcting	for	multiple	testing.	Taking	into	account	that	XP‐EHH	test	is	not	

sensitive	to	allele	frequencies,	the	data	does	not	required	to	be	fit	into	frequency	

bins	before	calculating	the	significance.		
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3.5.5.2.	CLR	method	(Nielsen	et	al.	2005)	

Considering	 that	 the	 (unknown)	 probability	 of	 detecting	 a	 derived	 allele	 which	

frequency	is	j	in	the	sample	be	pj,	j=1,	2,	…,	n	–	1,	assuming	independence	genome	

wide	Pr(Xi=j)=	pj..	 Let	p	 =	 (p1,	p2,	…,	pn	 –	 1).	 For	k	SNPs,	 the	 composite	 likelihood	

function	is	formed	by	combining	(multiplying)	the	sampling	probabilities	across	the	

chromosome:		

																																													 ≡ 	 	 	 																																					 3 						

in	 equation	 (3),	 kj	 is	 the	 number	 of	 SNPs	with	 derived	 allele	 frequency	 j	 in	 the	

sample.	The	maximum	composite	of	p	is	then	given	by	 	 , 1, 2, … , 1	.		

	

3.5.5.3.	XP‐CLR	method	(Chen	et	al.	2010)	

To	reduce	the	effect	s	that	SNP	ascertainment	bias	could	introduce	when	detecting	

candidate	 regions	 for	 positive	 selection,	 Chen	 et	 al.	 (2010)	 built	 up	 the	 XP‐CLR	

method	based	on	the	multiplelocus	composite	likelihood	ratio	method	previously	

described	by	Nielsen	et	al.	(2005).		The	XP‐CLR	likelihood	is	given	by:		

	

															 , , 	 | , , , 		 														 4 		

1 	 		

in	equation	 (4),	r	corresponds	 to	 the	 recombination	 rate:	 	 	, 	,⋅⋅⋅, ,	n	 is	 the	

sample	 size,	mi	 corresponds	 to	 the	 counts	 of	 neutral	 alleles	 at	 locus	 i,	 s	 is	 the	

selection	coefficient,	k	is	the	size	defined	for	the	sliding	window,	w	is	defined	as	the	

weight	factor	which	is	based	on	information	about	the	linkage	disequilibrium	and	p	

represents	the	allele	frequency.		

	

	

	

	

	

	

	



	

	 70

Chapter	3	

	
Human	lineage‐specific	transcriptional	regulation	

through	GA	binding	protein	transcription	factor	alpha	

(GABPa)	
	

4.1.	Introduction	

Compared	 with	 other	 primate	 species,	 humans	 exhibit	 distinctive	 physical	 and	

behavioral	characteristics,	such	a	full	striding	bipedalism,	more	specialized	limbs	

and	cerebral	cortex,	a	brain	increased	in	size,	and	declarative	language.	Despite	it	

has	been	long	suggested	that	changes	in	the	ways	gene	expression	is	controlled	play	

essential	 roles	 in	 the	 evolution	 of	 such	 morphological	 traits	 (Wray	 2007),	 the	

majority	of	the	regulatory	elements	that	control	human‐specific	traits	still	remain	

unidentified.		

	

GRF	 proteins	 directly	 and	 indirectly	 interact	 with	 DNA	 to	 mediate	 gene	

transcriptional	control	(Iyengar	and	Farnham	2011;	Perdomo‐Sabogal	et	al.	2014).	

A	 particular	 group	 of	 GRFs,	 DNA‐binding	 transcription	 factors,	 recognize	 and	

directly	 interact	with	specific	DNA	sequences	 to	regulate	gene	expression.	These	

specific	DNA	sequences,	as	well	known	as	transcription	factor	binding	sites	or	CREs,	

are	normally	around	10	base	pairs	(bp)	long	in	eukaryotes,	even	though	their	length	

can	range	from	five	to	30	bp	(Galas	and	Schmitz	1978;	Stewart	et	al.	2012).	Sequence	

variations	in	CREs	can	considerable	alter	the	binding	specificity	and	recognition	of	

particular	TFs	and	hence,	switch	on/off	the	transcriptional	regulation	of	a	particular	

target	gene	(Lin	et	al.	2007).	Therefore,	genetic	changes	altering	the	configuration	

of	CREs	result	in	new	mechanisms	to	control	gene	transcriptional	regulation,	and	

thus,	they	are	expected	to	greatly	contribute	on	species	phenotypical	differentiation	

and	evolutionary	history	of	lineage‐specific	traits.	
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A	handful	of	comparative	genomics	analyses,	mainly	focused	on	particular	genes,	

have	aimed	 to	 identify	 and	 characterize	human‐	 and	primate‐specific	 changes	 in	

CREs	(Huby	et	al.	2001;	Rockman	et	al.	2005;	Romanelli	et	al.	2009).	Nonetheless,	

changes	in	the	activity	of	a	myriad	of	CREs	during	human	evolution	still	remain	to	

be	 functionally	characterized,	and	most	 importantly,	experimentally	validated	by	

exploring	different	molecular	and	computational	approaches.	

 

By	 integrating	 the	 results	 of	 different	 experimental	 and	 computational	methods	

such	as	chromatin	immunoprecipitation	followed	by	high‐throughput	sequencing	

ChIP‐seq,	 comparative	 genomics,	 reporter	 gene	 assays,	 RNA	 interference	 siRNA,	

and	gene	ontology	analyses,	we		explored	the	evolution	and	functionality	of	GABPa	

CREs	in	humans.	GABP	is	a	member	of	the	E‐twenty	six	(ETS)	transcription	factors	

group	class	and	regulates	many	genes	that	have	been	associated	with	cell	migration	

and	differentiation,	cell	cycle	control	and	fate,	hormonal	regulation	and	apoptosis.	

This	protein	consists	of	 two	subunits,	alpha	(GABPa)	and	beta	(GABPB1).	GABPa	

carries	 the	 ETS	 domain,	 while	 GABPB1	 harbors	 the	 transcriptional	 activation	

domain	(Figure	15)	(Ripperger	et	al.	2015).	Together	with	GABPB1,	GABPa	forms	a	

complex	 capable	 of	 binding	 the	 core	 consensus	 motif	 GGAA	 to	 regulate	 gene	

expression	(Batchelor	et	al.	1998).		

	 	

Figure	15.	Representation	of	GABP	subunits	corresponding	to	GABPA	and	GABPB1.	(a)	GABP	subunit	

alpha	(GABPA),	the	colored	boxes	depict	the	pointed	(orange,	168–251	aa)	and	ETS	domains	(cyan,	

320–400	aa).	(b)	GABP	subunit	beta,	the	colored	boxes	show	the	ankyrin	repeats	(green,	5–34,	37–

66,	70–99,	103–132,	and	136–166),	the	12‐aa‐isoform‐1‐and‐3‐specific	insert	(yellow,	195–206	aa),	

the	transcriptional	activation	domain	(blue,	258–327	aa),	and	several	C‐termini	of	the	long	and	short	

isoforms	(violet/pink,	N346	aa).	Modified	from	(Ripperger	et	al.	2015).	

	

As	transcriptional	regulator,	GABPa	has	also	been	associated	with	neuromuscular	

function	(Rosmarin	et	al.	2004;	Yang	et	al.	2011),	and	coordinating	the	expression	

of	many	cytochrome	c	oxidase	genes	(COX)	(Guo	et	al.	2000).	GABPa	is	also	involved	

b) 

a) 
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in	 mitochondrial	 synthesis	 and	 biogenesis	 (Yang	 et	 al.	 2014)	 in	 early	 stages	 of	

development	(Ristevski	et	al.	2004),	and	its	silencing	of	GABPa	has	been	proved	to	

induce	premature	embryonic	lethality	in	rodents	(Ristevski	et	al.	2004;	Jaworski	et	

al.	2007).	

	

GABPa	also	has	the	ability	 to	bind	promoters	harboring	bi‐directional	gene	pairs	

coded	on	opposite	strands	(Collins	et	al.	2007),	thus	regulating	the	expression	of	

two	downstream	genes	(Lin	et	al.	2007).	Importantly,	GABPa	protein	and	its	binding	

domain	are	highly	conserved	in	primate	species	and	other	mammals	(Figure	16),	

suggesting	 it	 is	possible	 that	GABPa	binds	 the	 same	 core	motif	 in	many	of	 these	

species.	Therefore,	 it	would	be	possible	 to	 identify	genetic	 changes	occurring	on	

CREs	of	GABPa	by	using	comparative	genomics,	making	possible	to	explore	CREs	

evolutionary	changes	along	the	lineages	that	lead	to	humans.		
	

	
Figure	 16.	 Genetic	 distances	 tree	 showing	 the	 protein	 conservation	 level	 of	 GABPa	 in	 different	

mammalian	 clades.	 The	 tree	 was	 produced	 using	 BLAST	 pairwise	 alignments.	 The	 evolutionary	

distance	 between	 pairs	 of	 sequences	 was	 calculated	 using	 Kimura’s	 model	 of	 neutral	 evolution	

(Kimura	1968).	Fast	Minimum	Evolution	algorithm	(Desper	and	Gascuel	2004)	was	used	to	model	

the	distances	between	the	sequences.		

	

Our	 methodological	 design	 integrated	 three	 experimental	 (ChIP‐Seq,	 siRNA	 and	

reporter	 gene	 assays)	 and	 two	 computational	 (comparative	 genomics	 by	 using	

multiple	sequence	alignment	and	gene	ontology	analysis)	approaches	(Figure	17).	

By	using	data	generated	 from	genome‐wide	assays	of	protein‐DNA	interaction	 in	

human	embryonic	kidney	cells	(HEK293T),	we	identified	a	set	of	putative	GABPa	

target	genes.	Additionally,	using	data	derived	from	GABPa	knock‐down	experiments	

in	HEK293T	cells,	we	independently	confirmed	the	functionality	of	a	representative	

number	 of	 the	 CREs	 that	 were	 initially	 detected.	 To	 identify	 GABPa	 CREs	 with	

0.01 
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human	and	primate	specificity,	we	also	performed	ancestral	reconstruction	of	the	

GABPa	CREs	using	multiple	sequence	alignment.	Finally,	performed	reporter	gene	

assays	 in	 human	 and	 non‐humans	 primate	 cells.	 The	 regulatory	 activity	 of	 the	

ancestral	states	of	promoters	missing	the	core	consensus	sequence	of	GABPa	was	

measured	 by	 introducing	 nucleotide	 changes	 in	 human/hominid‐specific	 GABPa	

binding	 sites.	 Taken	 together	 the	 results	 from	 our	 four	 previously	 mentioned	

experiments,	 we	 performed	 gene	 ontology	 enrichment	 analyses	 to	 functionally	

characterize	those	genes	that	are	putative	targets	of	GABPa.		

	

	
		
	

Figure	 17.	 Schematic	 representation	 of	 the	 multiple	 strategies	 implemented	 here	 for	 detecting	

human‐specific	 GABPa	 CREs.	 (Left)	 main	 experimental	 and	 computational	 strategies	 defined	 as	

starting	points.	 (Middle)	shows	 the	main	bioinformatics	 tools,	packages	and	databases	 that	were	

used	for	data	processing	and	analyzing.	(Right)		Main	findings	and	scientific	contributions	generated	

in	this	research	project.	
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4.2.	Results	

	

4.2.1.	 Identification	 of	 GABPa	 binding	 sites	 by	 chromatin	

immunoprecipitation		

To	 identify	 where	 GABPa	 binds	 in	 the	 human	 genome,	 we	 performed	 ChIP‐Seq	

experiments	with	a	GABPa‐specific	antibody	in	HEK293T	cells.	The	efficiency	of	this	

antibody	was	previously	 validated	by	proving	 its	 ability	 to	detect	highly	 specific	

GABPa	peaks	(Valouev	et	al.	2008).	Our	initial	ChIP‐Seq	experiments	only	included	

one	ChIP‐Seq	experiment,	which	produced	a	set	of	6,208	putative	GABPa	ChIP‐Seq	

peaks	 (Supplementary	 Table	 S8,	 supplementary	 data	 file)	 (see	 Methods).	 This	

experiment	was	posteriorly	validated	by	using	information	from	a	second	ChIP‐Seq	

experiment	 and	 additional	 comparisons	with	 ENCODE	 reported	 datasets	 for	 the	

same	protein	in	different	cell	lines	(see	below).	

	
To	 identify	 the	GABPa	consensus	core	motif,	we	 selected	200	bp	 regions	up	and	

downstream	 the	 center	 of	 the	 ChIP‐Seq	 the	 peak	 as	 input	 for	 the	de	novo	motif	

discovery	algorithm	available	in	the	Multiple	EM	for	Motif	Elicitation	(MEME)	suite	

(Bailey	et	al.	2009).	We	generated	an	11	bp	consensus	binding	sequence	and	the	

position‐specific	weight	matrix	(PWM)	for	GABPa	(Figure	18).	The	majority	of	the	

sites	 contributing	 to	 the	PWM	(93%)	were	 located	adjacent	 to	 the	peaks’	 center	

(Figure	 19a;	 Supplementary	 Table	 S9,	 supplementary	 data	 file),	 thus	 indicating	

consistency	in	our	peak	calling	results	and	giving	validity	to	our	ChIP‐Seq	results.	

Taken	together,	the	binding	sites	and	motif	identified	here	seem	to	be	reliable.		
	

	
Figure	18.			Sequence	logos	representing	the	GABPa	PWM	generated	HEK293T.		
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The	algorithm	implemented	in	the	MEME	suite,	when	the	default	options	are	used,	

considers	that	each	peak	contains	zero	or	one	sequence	motif.	Under	this	notion,	

this	 particularity	 results	 favorable	 for	 detecting	 non‐repetitive	 motif	 elements.	

However,	as	it	is	possible	that	more	than	one	GABPa	motif	is	located	within	the	same	

peak	region	(Yu	et	al.	1997)	(Figure	19b),	we	searched	for	additional	binding	sites	

by	using	 the	motif	sequence	alignment	and	the	Motif	Alignment	and	Search	Tool	

(MAST)	(Bailey	et	al.	2009)(Figure	19c).	As	result,	we	obtained	11,619	PWM	hits	in	

5,797	peak	regions	of	200	bp	in	length.	The	majority	of	the	peaks	contained	between	

one	and	two	binding	sites	(Figure	19d,	Supplementary	Table	S10,	supplementary	

data	file).	

	

By	 using	 the	 gene	 annotation	 from	 the	 UCSC	 genome	 browser	 and	 the	 genomic	

coordinates	of	 the	6,208	peaks	 for	GABPa,	we	were	able	 to	 identify	4,277	(69%)	

peaks	located	within	300	bp	up‐	and	downstream	of	the	transcriptional	start	sites	

(TSSs).	 These	 TSS	 correspond	 to	 11,848	 transcripts	 from	 3,994	 putative	 target	

genes	 (Entrez	 IDs).	The	number	of	peaks	mapping	 in	 the	neighborhood	of	genes	

increased	to	5321	(86%),	when	we	extended	the	window	to	±	5	kb	centered	to	the	

TSSs.	 These	 TSS	 correspond	 to	 15,046	 transcripts	 from	 5,218	 putative	 targets	

(Supplementary	 Table	 S11,	 supplementary	 data	 file).	 If	we	 further	 extended	 the	

window	to	±	10	kb,	the	number	of	peaks	mapping	in	the	proximity	of	genes	5,465	

peaks	(88%)	mapping	to	18,730	transcripts	and	corresponding	to	5,784	putative	

genes.	 Thus,	 the	 majority	 of	 peaks	 reside	 close	 to	 the	 TSS	 (Figure	 19d).	 For	

downstream	analyses	we	used	mappings	within	±	5	kb	centered	on	UCSC‐annotated	

TSSs.	
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Figure	19.	GABPa	binding	sites	are	located	in	the	proximity	of	the	peak	centers	and	the	TSS	sites.	(a)	

Number	and	distance	to	the	peak	center	of	the	sites	contributing	to	the	MEME	motif	discovery	(6,031	

of	 6,208	 in	 total).	 (b)	 GABPa	 motif	 distribution	 per	 each	 ChIP‐Seq	 peak.	 (c)	 Motif	 presence	

distribution	in	a	window	of	200	bp	around	the	ChIP	peak	centers.	(d)	Peak	call	distances	from	the	

closest	TSS	of	UCSC	genes	in	a	window	of	10	kb	centered	to	the	TSS.	TSS	distance	given	is	base	pairs.	

Negative	values	represent	upstream,	positive	values	downstream	regions.	

	

To	further	validate	these	results,	we	compared	our	results	with	a	second	ChIP‐Seq	

experiment	for	GABPa	in	HEK293T	cells.	Overlaps	between	the	peak	calling	results	

from	both	ChIP‐Seq	experiments	showed	that	91%	of	the	peaks	(5,647	peaks)	were	

present	 in	both	(Figure	20a).	Following	the	guidelines	suggested	by	the	ENCODE	

consortium,	we	 also	 calculated	 the	 irreproducible	 discovery	 rate	 (IDR)	 for	 both	

replicates	(Landt	et	al.	2012),	 finding	that	3,677	peaks	(~60%)	overlapped	at	an	

IDR	<0.05	(Figure	20b),	thus	demonstrating	reasonable	consistency	among	the	two	

replicates.	
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Figure	20.	Cross	validation	of	our	initial	peak	call	by	comparing	it	with	a	second	ChIP‐Seq	experiment	

for	GABPa.	(a)	Overlap	between	the	peaks	called	for	two	GABPa	ChIP‐Seq	replicate	experiments.	Out	

of	the	6,288	binding	peaks	obtained	for	the	Replicate	1	(~7	million	reads)	by	using	QuEST	2.4,	91%	

(5,647	binding	peaks)	overlapped	with	the	peaks	obtained	for	the	second	ChIP‐Seq	replicate	(~17	

million	reads,	8,311	binding	peaks).	(b).	Left	panel,	 IDR	scatter	plots	of	 the	signal	scores.	Middle	

panel,	IDR	scatter	plots	showing	the	ranks	of	the	peaks	that	overlap	in	both	replicates.	Right	panel	

corresponds	to	the	calculated	IDR	as	function	of	different	rank	thresholds.	Light	green	dots	show	the	

pairs	of	peaks	that	passed	an	IDR	threshold	of	5	percent,		

	

In	addition,	we	assessed	if	the	peaks	we	found	for	GABPa	in	HEK293T	cells	were	

also	 detected	 for	 the	 same	 protein	 in	 another	 five	 human	 cell	 lines:	 H1	 human	

embryonic	 stem	 cells	 (H1hesc),	 cervical	 ectoderm	 (HeLa‐S3),	 Lymphoblastoid	

(GM12878),	liver	(HepG2)	and	Myelogenous	leukemia	(K562)	(Wang	et	al.	2013).	

This	overlap	corroborated	that	at	least	3645	(~60%)	of	GABPa	peaks	we	reported	

here	were	also	detected	in	other	human	cell	lines	from	different	tissues	(Wang	et	al.	

2013)	(Figure	21).	We	additionally	verified	that	the	PWM	generated	for	GABPa	here	
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was	 highly	 consistent	 with	 the	 ones	 reported	 in	 the	 ENCODE	 datasets	 for	 the	

aforementioned	mentioned	cell	lines	(Figure	22).	In	addition,	we	also	designed	and	

implemented	 GABPa	 knock‐down	 experiments	 and	 reporter	 gene	 assays	 in	 the	

same	 cell	 line	 (see	 below).	 Taken	 together,	 the	 ChIP‐Seq	 experiments,	 GABPa	

binding	 sites	 and	motif	 identified	here	 seem	 to	be	 reliable	 for	performing	down	

stream	analyses.	

	

	

	

	

Figure	21.	Overlap	between	the	GABPa	peaks	reported	in	this	study	versus	the	data	available	from	

the	ENCODE	project	 for	 the	 same	protein	 in	 different	 cell	 lines.	 Cell	 lines:	H1	human	 embryonic	

stem	cells	(H1hesc),	cervical	ectoderm	(HeLa‐S3),	Lymphoblastoid	(GM12878),	 liver	(HepG2)	and	

Myelogenous	leukemia	(K562)	(Wang	et	al.	2013).		Set	size	was	defined	using	the	number	of	peaks	

in	our	dataset	(6208)	and	the	overlap	of	peaks	between	ours	and	the	other	cell	lines.		
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Figure	22.		Comparison	of	GABPs	motifs	identified	de	novo	from	different	cell	lines.	All	consensus	

core	 sequences	 were	 identified	 using	 the	 MEME‐ChIP	 suite	 of	 tools.	 	 Sequence	 logos	 represent	

different	PWM.	Cell	lines:	H1	human	embryonic	stem	cells	(H1hesc),	cervical	ectoderm	(HeLa‐S3),	

Lymphoblastoid	(GM12878),	liver	(HepG2)	and	Myelogenous	leukemia	(K562).	

	

4.2.2.	Identification	of	newly	evolved	GABPa	binding	sites	

By	combining	the	information	from	the	11,619	GABPa	binding	sites	and	the	multiple	

sequence	alignments	(MultiZ	44)	available	in	UCSC,	we	extracted	11,008	alignments	

corresponding	to	the	CREs	found	within	the	peaks	for	GABPa	(see	methods).	For	the	

remaining	611	genomic	locations	we	either	detected	that	the	sequence	had	gaps	or	

that	there	was	no	sequence	alignment	available.	To	specifically	identify	GABPa	CREs	

that	are	human‐specific,	we	first	sourced	eight	available	genomes	for	non‐human	

primates.	As	part	of	our	investigative	interests,	we	also	analyzed	three	additional	

clades	 to	 detect	 hominini‐	 (Human	 and	 Chimpanzee),	 Homininae‐	 (Homini	 and	

gorilla)	 and	 Hominidae‐	 (Homininae	 and	 Orangutan)	 specific	 GABPa	 CREs.	 We	

obtained	 hominid	 ancestral	 sequences	 for	 10,943	 binding	 sites.	 The	 remaining	

sequences	were	miss‐aligned	(Supplementary	Table	S12,	supplementary	data	file).	

We	 then	 proceeded	 to	 identify	 GABPa	 binding	 sites	 within	 these	 ancestral	

sequences	(Supplementary	Table	S13,	supplementary	data	file).		

	

Out	of	the	sequence	alignment	reconstruction	we	performed	here,	we	discovered	

224	GABPa	binding	sites	with	human	specificity.	By	using	the	coordinates	from	the	

ChIP‐Seq	 peaks,	 we	 identified	 that	 these	 224	 GABP	 binding	 sites	 contained	 219	

peaks	 located	 in	 the	 promoter	 region	 (±	5	 kb	 centered	 on	 TSSs)	 of	 217	 genes	
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(Supplementary	Table	S14,	supplementary	data	file).	We	additionally	detected	that	

three	of	these	genes	are	human‐specific	(CEP170,	RPL41	and	GUSBP4),	while	other	

three	 are	 Hominidae‐specific	 (STAG3L4,	USP6	 and	 ZNF383)	 (Zhang	 et	 al.	 2010).	

Using	UCSC	genome	browser,	we	manually	inspected	the	genomic	regions	of	those	

peaks	containing	binding	sites	and	that	did	not	map	to	know	genes.	One	of	them	is	

located	317	nucleotides	upstream	of	the	transfer	RNA	Phe	(anticodon	GAA)	gene	

(uc021qjx.1),	while	the	other	one	is	3,810	nucleotides	upstream	of	a	human	cDNA	

(uc021suf.1).	Among	the	217	promoters	that	gained	human‐specific	GABPa	binding	

sites,	we	detected	12	KRAB‐ZNF	transcription	factors.	Subsequent	test	revealed	that	

KRAB‐ZNFs	 are	 indeed	 significantly	 overrepresented	 among	 genes	with	 human‐

specific	GABPa	binding	sites	in	their	promoters	(p‐value=	0.01,	Fisher’s	exact	test).	

Using	 the	 ancestral	 reconstruction	 results,	 we	 identified	 57	 Hominini‐,	 244	

Homininae‐	and	310	and	Hominid‐specific	binding	sites	(Supplementary	Table	S15,	

supplementary	 data	 file)	 mapping	 to	 44,	 240	 and	 326	 genes	 respectively	

(Supplementary	Table	S16,	supplementary	data	file).	Binding	site	appearances	for	

all	ancestral	branches	leading	to	human	are	shown	in	Figure	23.	

	

	
	

Figure	 23.	 Phylogenetic	 three	 showing	 GABPa	 CREs	 gained	 on	 the	 ancestral	 lineages	 leading	 to	

humans.		
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To	 explore	 which	 are	 the	 biological	 and	 molecular	 functions	 of	 those	 genes	

harboring	human‐specific	GABPa	binding	sites,	we	further	performed	enrichment	

tests	 based	 on	 their	 Gene	 Ontology	 annotation	 (GO).	 Several	 GO	 terms	 were	

enriched	for	biological	and	molecular	functions	associated	with	heart	development,	

RNA	 processing	 of	 tRNAs	 and	 mRNAs,	 mammary	 gland	 morphogenesis	 and	

development,	 metabolism	 and	 biosynthesis	 of	 lipids,	 and	 signaling	 pathways	

involved	in	neurological	development	such	as	ventral	spinal	cord	interneuron	and	

spinal	 cord	motor	 neuron	 cell	 fate	 specification,	 and	 dorsal/ventral	 neural	 tube	

patterning	(Supplementary	Table	S17,	supplementary	data	file).	

	

4.2.3.	 Identification	of	differential	gene	expression	after	GABPa	knock‐

down	

To	independently	verify	the	functionality	of	the	GABPa	binding	sites	we	detected	by	

using	ChIP‐Seq,	we	performed	siRNA	experiments	to	knock‐down	GABPa	protein	in	

HEK293T	cells.	The	knock‐down	was	performed	through	transfection	of	cells	with	

two	 independent	 silencing	 molecules	 followed	 by	 genome‐wide	 expression	

profiling	at	two	different	time	points	(at	24	and	72	hours	after	transfection)	(see	

Methods).	For	the	analyses	of	the	effects	of	the	siRNA	on	the	expression	patterns,	

we	 exclusively	 accounted	 genes	 that	 were	 differentially	 expressed	 (DE)	 in	 both	

knock‐down	 experiments.	 In	 total,	 we	 had	 expression	 data	 available	 for	 14,873	

genes.	The	24h	time	point	rendered	1,156	DE	genes,	while	the	number	of	DE	genes	

was	higher	for	the	72h	time	point	(3,238	genes).	The	number	of	DE	genes	with	a	

GABPa	binding	site	in	the	promoter	region	was	higher	than	expected	by	chance	at	

the	 72h	 time	 point	 (pvalue<0.001)	 (see	 Methods).	 Consequently,	 we	 used	 the	

results	we	obtained	for	the	72h	time	point	for	downstream	analyses	of	DE	genes.	In	

total,	there	were	4,531	genes	with	expression	data	and	harboring	at	least	one	GABPa	

binding	 site	 in	 their	 promoter	 region.	 About	 a	 quarter	 of	 these	 genes	 (1,215)	

presented	 significant	 changes	 in	 expression	 after	GABPa	knock‐down	at	 the	72h	

time	 point.	 These	 genes	 are	 strong	 putative	 primary	 target	 genes	 of	 GABPa	

(Supplementary	Table	S18,	supplementary	data	file).		
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4.2.4.	 Analyses	 of	 differentially	 expressed	 genes	 after	 GABPa	 siRNA	

interference	

To	explore	the	main	biological,	cellular	and	molecular	functions	of	those	genes	that	

are	putative	primary	 targets	of	GABPa,	we	performed	a	GO	enrichment	analyses	

(see	methods).	Functional	GO	categories	associated	with	RNA	processing,	ribosome	

biogenesis,	 regulation	 of	 lipid	 metabolism,	 protein	 ubiquitination,	 neuron	

projection	development	and	innate	and	adaptive	immune	responses,	among	others,	

were	 significantly	enriched	 (Supplementary	Table	 S19,	 supplementary	data	 file).	

We	additionally	tested	for	GO	enrichment	among	those	genes	that	were	DE,	but	did	

not	harbor	a	GABPa	binding	site	in	their	promoter	region,	since	it	is	likely	they	are	

secondary	 targets	 of	 GABPa	 (2,023	 DE,	 72h	 time	 point,	 see	 methods)	

(Supplementary	 Table	 S18,	 supplementary	 data	 file).	 We	 found	 very	 similar	

enriched	GO	 terms	between	both	groups,	DE	genes	with	ChIP‐Seq	peaks	and	DE	

genes	 without	 ChIP‐Seq	 peaks	 for	 GABPa.	 This	 suggests	 that	 among	 the	 DE	

expressed	genes	we	found	a	collection	of	putative	primary	and	secondary	targets	

for	GABPa	protein,	but	also	that	both	groups	are	likely	to	be	involved	in	very	similar	

functional	pathways.	For	instance,	both	groups	showed	significant	enrichments	for	

lipid	 and	 fat	 biosynthesis	 and	 metabolism	 such	 as	 lipoprotein	 transport,	

glycosphingolipid	 metabolic	 process,	 lipid	 biosynthetic	 process,	 fatty	 acid	

transmembrane	transport,	and	regulation	of	fatty	acids,	mitochondrial	biogenesis,	

among	others	(Supplementary	Table	S20,	supplementary	data	file).	We	additionally	

found	 an	 overrepresentation	 of	 functional	 groups	 associated	 with,	 for	 instance,	

regulation	of	endothelial	tube	morphogenesis	and	endothelial	cell	proliferation,	and	

epithelial	cell	differentiation	involved	in	mammary	gland	development.		

	

A	 further	 inspection	 of	 genes	 having	 at	 least	 one	 GABPa	 binding	 site	 in	 their	

promoter	region	revealed	13	genes	that	encode	for	subunits	of	the	Cytochrome	c	

oxidase	 (COX)	enzyme	 (COX10,	COX15,	COX16,	COX17,	COX18,	COX4I1,	COX4NB,	

COX5B,	 COX6A1,	 COX6B1,	 COX7A2,	 COX7C,	 COX8A)	 (Supplementary	 Table	 S11,	

supplementary	 data	 file).	 Ten	 of	 them	 showed	 significant	 changes	 in	 expression	

after	 GABPa	 knock‐down	with	 at	 least	 one	 of	 the	 siRNA	molecules.	 Several	 COX	

subunit	 genes	 were	 also	 differentially	 expressed	 besides	 not	 having	 a	 GABPa	
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binding	 site	 in	 their	 promoter	 region	 (COX1,	 COX11,	 COX7BP1	 COX14,	 COX20,	

COX4I2,	COX5A,	COX6CP1,	COX6CP2,	COX7A2P2).	

	

4.2.5.	Differentially	expressed	genes	with	human‐specific	GABPa	binding	

sites	

We	 first	 verified	 if	 genes	 carrying	 newly	 evolved	 GABPa	 binding	 sites	 showed	

significant	changes	 in	expression	 levels	after	GABPa	knock‐down.	Out	of	 the	217	

genes	with	human‐specific	binding	sites,	there	were	177	with	expression	data	in	our	

siRNA	experiments.	We	found	that	52	out	of	the	177	were	significantly	DE	in	both	

siRNA	experiments	(72h	time	point).	Genes	carrying	human‐specific	GABPa	binding	

sites	 were	 also	 enriched	 among	 the	 genes	 exhibiting	 significant	 changes	 in	

expression	(Fisher’s	Exact	test,	p‐value=	5.79‐10).	Out	of	the	six	human‐	and	great	

ape‐specific	 genes	 carrying	 human‐specific	 binding	 sites,	 four	 (CEP170,	 RPL41,	

GUSBP4,	STAG3L4)	were	found	DE	after	knocking‐down	GABPa	with	at	least	one	of	

the	 siRNA	molecules	 (Supplementary	 Table	 S16,	 supplementary	 data	 file).	 	 This	

finding	 suggests	 that	newly	evolved	GABPa	binding	 sites	 in	human	and	apes	are	

functional.	

	

GABPa	regulatory	activity	has	been	associated	with	several	medical	consequences	

in	humans	(Piñero	et	al.	2015).	We	explored	if	the	52	DE	expressed	genes	carrying	

human‐specific	 GABPa	 binding	 sites	 share	 common	 disease	 associations	 with	

GABPa.	By	using	the	database	“DisGeNET”	(Piñero	et	al.	2015),	we	identified	17	out	

of	the	52	genes	that	have	been	associated	with	at	least	one	of	the	diseases	GABPa	

has	 been	 associated	 with	 as	 well:	 diabetes	 (PCMT1,	 UGGT2),	 Parkinson	 disease	

(RPL6,	TDP2,	HSPA8)	 and	 breast	 cancer	 (ACOT13,	ANTXR1,	BAG4,	EMG1,	HSPA8,	

NEK7,	 YPEL3,	 ZNF398),	 among	 other	 diseases	 (Supplementary	 Table	 S21,	

supplementary	data	file).		

	

4.2.6.	 Functional	 analysis	 of	 newly	 evolved	 GABPa	 binding	 sites	 using	

reporter	gene	assays	

Taking	 into	 consideration	we	 identified	 genes	 harboring	 human‐specific	 binding	

sites;	we	selected	four	promoter	regions	for	five	genes	(ZNF197,	ZNF398,	ZNF425,	

ANTXR1	and	TMBIM6)	to	further	validate	GABPa	regulatory	activity	using	reporter	
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gene	assays.	In	addition,	since	we	found	enrichment	for	members	of	the	KRAB‐ZNF	

class,	 and	knowing	 that	GABPa	binds	and	 regulates	bi‐directional	promoters,	we	

first	chose	two	promoter	regions	corresponding	to	three	KRAB‐ZNF	genes,	ZNF197	

and	bi‐directional	promoter	ZNF398	and	ZNF425.	The	gene	ZNF197	has	two	GABPa	

binding	sites	in	its	promoter	region,	one	being	specific	to	humans,	while	the	other	

one	is	conserved	among	the	mammalian	clade.	The	bi‐directional	promoter	carries	

two	overlapping	binding	sites	with	two	human‐specific	nucleotide	changes	located	

~130	bp	apart	from	the	TSSs.	To	account	for	the	bi‐directional	functionality	of	this	

promoter,	we	cloned	it	in	both	directions.	We	also	considered	the	promoter	regions	

of	 the	 anthrax	 toxin	 receptor‐1	 gene	 (ANTXR1)	 and	 the	 Transmembrane	 BAX	

Inhibitor	Motif	Containing	6	(TMBIM6)	genes.	The	promoter	region	of	the	human	

ANTXR1	 gene	carries	 three	GABPa	binding	sites,	while	chimpanzee	and	rhesus	 it	

carries	just	two.	In	addition,	this	gene	is	overexpressed	in	HEK293T	cells.	Despite	

the	 fact	 our	 main	 interests	 was	 aiming	 to	 find	 and	 understand	 the	 regulatory	

evolution	of	GABPa	at	human‐specific	level,	we	also	considered	the	promoter	region	

of	TMBIM6,	a	gene	that	harbors	a	hominid‐specific	GABPa	binding	site.	In	addition,	

TMBIM6	exhibited	a	strong	GABPa	ChIP‐Seq	peak	in	its	promoter	region	and	high	

expression	levels	(Sultan	et	al.	2008).	We	also	identified	a	highly	conserved	GABPa	

binding	 site	 located	 in	 close	 proximity	 to	 the	 hominid‐specific	 binding	 site	 for	

TMBIM6,	 nonetheless,	 this	 did	 not	 entirely	 match	 the	 GABPa	 core	 consensus	

sequence	“GGAA”	(Figure	24)	and	was	under	represented	in	the	whole	set	of	binding	

sites	found	here	(0.94%).		

	

Two	fragments	of	each	orthologous	promoter,	for	human,	chimpanzee	and	rhesus	

macaque	genomic	DNA,	were	cloned.	One	fragment	corresponded	to	the	wild	type	

(wt)	and	the	other	one	to	the	mutated	version	(mut).	In	the	mutated	types,	one	or	

two	 nucleotides	 were	 changed	 in	 the	 human	 binding	 sequence	 to	 simulate	 the	

ancestral	state.	Conversely,	chimpanzee	and	macaques	binding	sites	were	modified	

to	 mimic	 the	 human‐specific	 GABPa	 binding	 sites	 (Figure	 25).	 We	 measured	

expression	changes	for	all	constructs,	enabling	us	to	quantify	the	effects	of	different	

GABPa	binding	sites	on	the	promoter	activity	(Figure	25).	We	detected	significant	

differences	 in	 the	 promoter	 activity	 between	 human	 wt	 promoter	 and	 the	

chimpanzee	and	rhesus	macaque	wt	promoters	for	ZNF197,	and	ZNF398/ZNF425	
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genes	 (Figure	 25).	 In	 the	 case	 of	 the	 bi‐directional	 promoter	 for	 the	 genes	

ZNF398/ZNF425,	 the	 directionality	 had	 a	 cell–specific	 effect	 on	 the	 reporter	

activities.	The	wt	promoters,	for	all	three	species,	exhibited	significant	differences	

in	direction	ZNF398	in	activity	in	COS‐1	cells	and	ZNF425	in	HEK293T	cells	(Figure	

25).	 The	 insertion	 of	 one	 nucleotide	mutation	 into	 the	 chimpanzee’s	 and	 rhesus	

macaque’s	ZNF197	binding	sites	to	recreate	the	human	version	yield	a	significant	

increase	in	the	promoter	activity	in	both	cell	lines.	However,	the	modification	of	the	

human	 ZNF197	 wt	 promoter	 into	 the	 ancestral	 state	 did	 not	 cause	 significant	

changes	in	the	promoter	activity	

	
Figure	24.	View	of	 the	promoter	 region	of	 the	gene	TMBIM6,	 the	GABPa	ChIP‐Seq	 reads	and	 the	

GABPa	binding	site	predictions	for	multiple	sequence	alignment.	The	first	exon	(5’UTR)	is	shown	as	

blue	bar	with	a	black	arrow	indicating	the	transcription	start	site	(TSS)	in	HEK293T	cells.	GABPa	

binding	sites	are	represented	as	green	and	black	boxes.	GABPa	logos	and	their	counterpart	positions	

are	shown	over	the	multi	species	sequence	alignment.	For	the	sequence	alignments,	dots	represent	

sequence	conservation	to	the	human	reference.	Orange	bars	 indicate	bases	that	are	not	depicted.	

Orange	numbers	below	the	sequence	alignment	corresponds	to	the	sum	of	bases	not	depicted.	The	

blue	(C)	 illustrates	the	presence	of	a	single	cytosine	in	all	non‐haplorhini.	Taken	from	(Perdomo‐

Sabogal	et	al.	2016).	

	

This	 suggests	 that	 the	 sequence	 around	 the	 core‐binding	 motif	 might	 also	

contribute	 to	 maintain	 the	 promoter	 activity.	 Likewise,	 the	 introduction	 of	 the	

human‐specific	 GABPa	 binding	 site	 in	 the	 wt	 promoter	 of	 ZNF398/ZNF425	 for	

chimpanzee	and	rhesus	macaque	resulted	in	a	significant	increase	in	the	activity	in	

TSS in HEK239 cells 
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both	cell	lines,	while	in	both	cases	the	ancestral	mutation	in	the	human	binding	site	

significantly	reduced,	more	than	a	two‐fold,	the	promoter	activity.	

	

The	TMBIM6	and	ANTXR1	wt	promoter	activities	were	significantly	higher	as	well,	

in	at	least	one	cell	line,	when	compared	with	the	wt	promoters	from	chimpanzee	

and	 rhesus	macaque.	 Interestingly,	 the	promoter	 activity	of	 the	hominid‐specific	

GABPa	binding	site,	promoter	TMBIM6,	was	higher	in	humans	when	compared	with	

chimpanzee	 (Figure	 25),	 which	 suggests	 there	 is	 an	 effect	 of	 the	 sequence	

differences	between	human	and	chimpanzees	on	the	activity	of	this	promoter.	The	

mutation	of	the	rhesus	macaque	TMBIM6	wt	promoter	by	 inserting	the	hominid‐

specific	binding	site	resulted	in	a	significant	change	in	the	promoter	activity.	The	

insertion	of	the	hominid‐specific	binding	site	in	the	human	promoter	significantly	

decreased	the	reported	activity	below	the	 initially	reported	activity	 for	 the	wt	 in	

chimpanzee.	The	effect	was	similar	for	the	chimpanzee	promoter	activity,	which	fell	

below	the	one	reported	for	rhesus	macaque’s	wild	type	promoter.	For	the	ANTXR1	

promoter,	the	mutation	of	the	wt	promoters	from	chimpanzee	and	rhesus	macaque	

by	incorporating	the	human	GABPa	binding	site	significantly	increased	the	reporter	

activity	in	three	out	of	four	cases,	for	chimpanzee	in	both	cell	lines	and	macaque	in	

HEK293T	cells	(Figure	25).		

	
Figure	25.		Reporter	gene	assay	constructs	and	promoter	activities	given	as	log2	ratios	of	average	

normalized	firefly	luciferase	gene	expression.	The	number	of	predicted	binding	sites	is	indicated	for	

each	 gene.	 HSA:	 Homo	 sapiens,	 PTR:	 Pan	 troglodytes	 (chimpanzee)	 and	 MAC:	Macacca	mulatta	
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(rhesus	 macaque).	 wt	 and	 mut	 correspond	 to	 wild	 type	 and	 mutated	 sequences	 respectively.	

Underlined	bases	indicate	differences	from	the	human	wt	sequence.	In	green	mutated	bases	and	red	

generated	or	disrupted	of	GABPa	binding	site,	respectively.	Increase	or	decrease	in	reporter	activity	

are	 represented	 by	 green	 or	 red	 arrows,	 respectively.	 Yellow	 arrows	 represent	 no	 change.	

Significance	levels,	as	determined	by	Welch’s	t‐test	for	unequal	variances,	are	indicated	as	(*)	p‐value	

<	0.05,	 (**)	p‐value	<	0.01,	 (***)	p‐value	<	0.001	and	 (ns)	not	significant.	Taken	 from	(Perdomo‐

Sabogal	et	al.	2016).	

	

In	summary,	altering	the	GABPa	non‐human	wt	promoter	sequence	by	inserting	the	

human‐specific	mutation	resulted	in	a	significant	increase	in	the	reporter	activity,	

in	both	 cell	 lines,	 in	17	out	of	18	cases.	Conversely,	 the	disruption	of	 the	GABPa	

binding	site	in	human	and	chimpanzee	promoters	resulted	in	a	significant	decrease	

of	the	reporter	activity,	9	out	of	12	cases.	We	did	not	detected	conflicting	effects,	

meaning	that	the	insertion	of	binding	sites	did	never	result	in	a	significant	decrease	

in	activity,	and	the	disruption	did	never	result	in	significant	increases	in	activity.		

	

	

4.3.	Discussion	

Integrating	data	 from	different	experiments	allowed	us	to	determine	that	GABPa	

protein	 regulates	 a	 considerable	number	 of	 human	 genes.	 In	 total,	we	 identified	

GABPa	binding	sites	located	in	the	promoter	region	of	5,321	genes,	from	which	217	

have	a	newly	evolved	binding	site	in	humans.	By	using	expression	data	from	siRNA	

knock‐down	 experiments,	 we	 also	 detected	 that	 GABPa	 binds	 and	 regulates	

expression	of	almost	one	third	(31%)	of	the	genes	in	HEK293T	cells.	 In	addition,	

1,215	genes	harboring	at	least	one	GABPa	binding	site	exhibited	significant	changes	

in	expression	after	GABPa	knock‐down,	suggesting	this	set	of	genes	constitutes	a	list	

of	 potential	 primary	 targets	 of	 GABPa.	 Taken	 together,	 our	 results	 suggest	 that	

GABPa	is	involved	in	regulating	the	expression	of	genes	that	have	relevant	functions	

at	 neurological,	 metabolic,	 endothelial,	 epithelial,	 and	 mammary	 morphogenetic	

level.	

	

4.3.1.	Newly	evolved	GABPa	binding	sites	are	functional	

To	 detect	 newly	 evolved	 human‐	 and	 hominid‐specific	 GABPa	 binding	 sites	 in	

HEK293T	cells,	we	applied	ancestral	sequence	reconstruction	approach	for	11,008	
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human	core	consensus	sequences.	We	used	whole	genome	sequence	alignments	of	

44‐vertebrates.	The	accuracy	of	this	strategy	relies	on	UCSC	alignments,	which	for	

human‐chimpanzee	and	human‐macaque	results	suspicious	for	0.004	and	0.02%	of	

the	sequences	aligned	(Prakash	and	Tompa	2007).	Therefore,	this	suggests	that	out	

of	 the	 11,008	 human‐macaque	 alignments	 of	 11	 bp	 each,	 24	 nucleotides	 were	

ambiguously	aligned.	However,	 a	majority	of	 the	suspicious	alignments	occur	on	

intronic	and	intergenic	regions	(Prakash	and	Tompa	2007),	which	also	suggests	that	

the	 fraction	 of	 problematic	 alignments	 is	 likely	 to	 be	 smaller	 in	 our	 results.	 In	

addition,	 genic	 promoter	 regions	 are	 highly	 conserved	 in	 mammals	 and	 other	

vertebrates	(Mahony	et	al.	2007).	In	this	sense,	a	preponderant	number	of	GABPa	

binding	 sites	 were	 located	 in	 the	 close	 proximity	 of	 the	 TSSs,	 300	 bp	 up‐	 and	

downstream,	which	also	suggest	higher	accuracy	in	the	alignments.	

	

To	 further	 validate	 if	 the	 GABPa	 binding	 sites	 we	 found	 are	 functional,	 we	

experimentally	validated	the	regulatory	roles	of	four	of	them,	three	carrying	newly	

evolved	GABPa	human	binding	 sites,	 and	one	hominoid	 specific	one.	We	applied	

dual	 reporter	 gene	 assays	 for	 human,	 chimpanzee	 and	 macaque	 promoters	 in	

human	HEK293T	and	African	green	monkey‐derived	COS‐1	cell.	For	both	species‐

specific	 cellular	 backgrounds	 the	 reporter	 activity	 was	 similar,	 thus	 suggesting	

independence	of	the	cell	line	species	type.	This	indicates	that	promoter	activity	of	

human‐specific	 GABPa	 binding	 sites	 can	 also	 be	 measured	 in	 the	 biological	

background	of	an	old	world	monkey	cell	line.		

	

Our	results	indicate	that	the	insertion	of	human‐specific	GABPa	binding	sites	into	

the	 promoter	 region	 of	 ANTXR1	 and	 ZNF197	 for	 chimpanzee	 and	 macaque	

predominantly	 resulted	 in	 significant	 increases	 in	 the	 reporter	 gene	 expression,	

while	the	disruption	of	the	newly	evolved	binding	site	in	human	did	not	result	in	a	

significant	 decrease	 of	 the	 promoter	 activity.	 From	 a	 general	 perspective,	 this	

should	not	be	appraised	as	the	irrelevance	of	human‐specific	binding	sites,	since	it	

is	likely	that	under	different	biological	scenarios	these	newly	evolved	binding	site	

may	still	have	a	functional	effect.	For	instance,	the	presence	of	sequence	variations	

in	the	promoter	region	to	facilitate	the	settlement	of	the	transcriptional	machinery	

could	be	understood	as	a	compensatory	effect	that	switches	the	activity	of	the	new	
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GABPa	 binding	 site.	 The	 promoter	 regions	 of	 both	 genes	 (ZNF197	 and	ANTXR1)	

carry	human‐specific	variants	located	less	than	100	bp	of	the	newly	evolved	GABPa	

binding	site.	We	found	similar	results	for	the	promoter	of	TMBIM6,	where	despite	

human	and	chimpanzee	carrying	the	very	same	GABP	core	consensus	sequence,	the	

human	wt	promoter	drives	comparably	higher	reporter	activity.	This	could	be	the	

effect	 of	 two	 single	 nucleotide	 variants	 on	 the	 human	 promoter	 that	 are	 closely	

located	to	the	GABPa	binding	site	(Figure	24),	TMBIM6	sequence	alignments.	This	

suggest	an	evolutionary	framework	where	increases	in	gene	expression	of	TMBIM6	

was	likely	beneficial,	possibly	followed	by	a	reduction	in	the	selective	pressure.		

	

Contrary	 to	what	was	 observed	 by	 Collins,	 et	 al	 (2007),	who	 introduced	 GABPa	

binding	sites	in	the	promoter	regions	of	genes	that	are	not	targets	of	GABPa	protein,	

we	did	detect	significant	change	in	the	regulatory	activity	after	 inserting	human‐

specific	GABPa	binding	sites	into	promoters	of	chimpanzee	and	macaque.	Our	main	

conclusion	here	is	that	binding	sites	require	a	particular	genomic	context	to	produce	

an	effect	on	their	regulatory	activity.	

	

Out	of	the	4,531	genes	with	expression	data	in	our	GABPa	siRNA	experiments	and	

that	carry	at	least	one	GABPa	binding	site,	we	found	that	1,215	of	the	genes	with	at	

least	one	GABPa	binding	site	significantly	changed	in	expression	after	GABPa	knock‐

down.	Interestingly,	genes	harboring	newly	evolved	binding	sites	 in	human	were	

enriched	among	the	genes	with	DE	after	GABPa	knock‐down.	This	highlights	that	a	

representative	number	of	newly	evolved	binding	sites	in	humans	in	involved	in	the	

regulatory	activity	of	GABPa	in	humans.	This	includes,	ANTXR1	and	ZNF398,	genes	

that	we	also	tested	in	our	reporter	assays.	

	

	

4.3.2.	 Human‐specific	 GABPa	 binding	 sites	 regulate	 genes	 that	 are	

potentially	important	for	human	evolution	and	human	diseases	

Newly	evolved	binding	sites	might	result	in	changes	in	the	dynamics	in	which	genes	

are	regulated	at	species‐specific	level.	Among	the	set	of	genes	harboring	a	human‐

specific	GABPa	binding	sites,	we	found	that	KRAB‐ZNF	transcription	factors	genes	

were	 significantly	 overrepresented.	 KRAB‐ZNFs,	 considered	 a	 relatively	 young	
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group	of	genes	with	many	fast	evolving	members	(Hamilton	et	al.	2006;	Huntley	et	

al.	2006;	Nowick	et	al.	2010)	and	seem	disposed	to	gain	novel	GABPa	binding	sites.	

This	 group	 of	 genes	 has	 been	 associated	 with	 important	 biological	 process,	

including	regulatory	functions	at	brain	and	developmental	level	(Najmabadi	et	al.	

2011;	 Zhang	 et	 al.	 2011),	 thus	 becoming	 excellent	 candidates	 for	 studying	 their	

roles	 in	 post‐zygotic	 isolation,	 speciation	 in	mammals	 (Nowick	 et	 al.	 2013)	 and	

brain	function	in	humans.	Therefore,	it	would	be	interesting,	for	instance,	to	study	

the	regulatory	roles	that	newly	evolved	GABPa	binding	sites	have	introduced,	via	

regulation	of	KRAB‐ZNFs,	in	the	neurological	pathways	at	human	brain	level.		

	

We	also	found	that	genes	carrying	newly	evolved	GABPa	binding	sites	in	humans	

were	significantly	enriched	for	molecular	and	biological	processes	associated	with	

RNA	processing,	especially	tRNAs,	and	signaling	pathways	involved	in	ventral	spinal	

cord	 interneuron	 and	 spinal	 cord	 motor	 neuron	 cell	 fate	 specification	 and	

dorsal/ventral	neural	 tube	patterning	(Supplementary	Table	S17,	supplementary	

data	 file).	 As	 an	 example,	 DARS	 and	 PARS2	 genes	 carry	 human‐specific	 GABPs	

binding	sites	in	their	promoter	regions,	and	both	were	DE	after	GABPa	knock‐down.	

These	 two	 genes	 encode	 for	 aminoacyl	 tRNA	 synthetases	 (aspartyl‐	 and	 prolyl‐

tRNAs)	 and	 catalyze	 the	 incorporation	 of	 amino	 acids	 to	 their	 cognate	 tRNAs.	

Changes	affecting	the	molecular	functionality	of	DARS	and	PARS2	have	resulted	in	

neuronal	disorders	of	the	peripheral	nervous	system,	amyotrophic	lateral	sclerosis,	

and	ataxia	(Park	et	al.	2008),	brain	stem	and	spinal	cord	leukoencephalopathy	with	

cerebellar	and	dorsal	column	dysfunctions	(Sissler	et	al.	2007;	Taft	et	al.	2013),	and	

Alpers	 syndrome	 (Sofou	 et	 al.	 2015).	 GABPa	 has	 also	 been	 associated	 with	

spinocerebellar	ataxia	(Lee	et	al.	2014;	Piñero	et	al.	2015),	a	disease	that	similarly	

to	leukoencephalopathy	causes	the	progressive	deterioration	of	locomotion	during	

childhood	or	adolescence	in	humans.	Therefore,	we	suggest	that	changes	affecting	

GABPa	 expression	 could	 be	 associated	with	 progression	 deterioration	 of	 certain	

areas	of	the	brain.	

	

Further	 examples	 of	 genes	 harboring	 newly	 evolved	 GABPa	 binding	 sites	 and	

exhibiting	significant	changes	 in	expression	after	GABPa	knock‐down	are	ALDOA,	

HSPA8,	and	TP73.	We	found	that	these	three	genes,	and	also	TMBIM6,	which	carries	
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a	 hominid‐specific	 GABPa	 binding	 site	 and	 was	 tested	 in	 our	 reporter	 assays	

experiment,	have	been	 linked	 to	 the	presence	of	medical	disabilities	at	 cognitive	

level,	for	instance,	Alzheimer’s	disease	(Harris	et	al.	2007;	Kumar	et	al.	2009)	and	

Parkinson’s	diseases	(Naidoo	2009;	Lauterbach	2013),	neocortical	regionalization	

and	 loss	 of	 Cajal‐Retzius	 cells	 (Meyer	 et	 al.	 2004),	 irregular	 accumulation	 of	

cerebrospinal	fluid	in	the	brain	(Yang	et	al.	2000)	and	neuronal	abnormal	apoptosis	

(Pozniak	et	al.	2002).	We	also	found	that	GABPa	is	involved	in	the	regulation	of	at	

least	20	genes	coding	for	COX	subunits,	with	half	of	them	being	putative	primary	

targets.	COX	subunits	may	modulate	the	synthesis	of	the	cytochrome	c	oxidase,	an	

enzyme	 that	 plays	 essential	 roles	 in	 controlling	 oxidative	 phosphorylation	 in	

eukaryotes	 (Li	 et	 al.	 2006).	 Dysfunctional	 activity	 of	 the	 COX	 enzyme	 has	 been	

associated	 with	 mitochondrial	 defects	 in	 humans	 (Barrientos	 et	 al.	 2002).	 In	

correspondence	 with	 previous	 studies,	 our	 findings	 suggest	 that	 expression	

changes	 in	 GABPa	 might	 lead	 to	 mitochondrial	 dysfunction	 in	 patients	 with	

Alzheimer's	disease,	(Sheng	et	al.	2012).		

	

Genes	carrying	human‐specific	GABPa	binding	sites	and	being	DE	after	we	knocked‐

down	GABPa	protein	have	also	been	associated	with	the	very	same	diseases	that	

GABPa	 has	 been	 linked	 to.	 Decrease	 in	 the	 expression	 levels	 of	 protein‐L‐

isoaspartate	 (D‐aspartate)	 O‐methyltransferase	 (PCMT1),	 UDP‐glucose	

glycoprotein	 glucosyl‐transferase	 2	 (UGGT2)	 and	 TMBIM6,	 have	 been	 linked	 to	

diabetes	types	I	and	II.	Expression	levels	of	PCMT1,	a	gene	that	encode	for	a	repair	

enzyme,	 seem	 to	 hamper	 the	 development	 and	 acuteness	 of	 diabetes	 type	 we	

(Wägner	et	al.	2007;	Wägner	et	al.	2008).	Similarly,	UGGT2,	which	encodes	 for	a	

protein	of	the	endoplasmic	reticulum	(ER)	that	regulates	protein	transport	out	of	

the	ER,	was	 significantly	down	 regulated	 in	patients	 afflicted	by	diabetes	 type	 II	

when	 compared	 to	 non‐diabetics	 (Marchetti	 et	 al.	 2007).	 We	 also	 detected	

enrichment	for	processes	associated	with	the	appearance	and	frequency	of	other	

metabolic	 disorders.	 For	 instance,	 triglyceride	 biosynthesis	 and	 cholesterol	

transport,	 both	processes	 being	 linked	 to	 usually	 high	blood	 sugar	 levels.	 Taken	

together,	we	suggest	that	newly	evolved	GABPa	binding	sites	might	be	introducing	

novelty	 in	 metabolic	 pathways,	 thus	 possibly	 increasing	 the	 susceptibility	 for	

developing	diabetes	and	other	metabolic	disorders.		
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GABPa	protein	has	been	found	to	play	essential	roles,	for	instance,	as	co‐regulator,	

in	 controlling	 breast	 epithelial	 cell	 migration	 (Odrowaz	 and	 Sharrocks	 2012).	

Noteworthy,	we	found	that	genes	carrying	newly	evolved	GABPs	binding	sites	are	

enriched	for	processes	associated	with	cell	epithelial	and	endothelial	migration,	and	

mammary	gland	development.	For	 instance,	we	 found	 that	 the	Prohibitin	2	gene	

(PHB2),	 also	 known	 as	 Repressor	 of	 Estrogen	 Receptor	 Activity	 (REA),	 carries	 a	

GABPa	binding	site	26	bp	downstream	of	its	TSS.	This	gene	is	essential	for	mammary	

gland	 development	 including	 mammary	 gland	 cell	 proliferation,	 breast	 alveolus	

development	and	postnatal	breast	development	(Mussi	et	al.	2006).	We	additionally	

detected	that	PHB2	displayed	significant	changes	in	expression	after	GABP	knock‐

down.	Given	the	evolutionary	singularity	of	the	human	breast,	we	suggest	that	this	

GABPa	binding	site	is	a	very	promising	candidate	for	a	functional	contribution	to	

this	human	trait.		

	

4.4.	Conclusions	

Using	a	combinatorial	strategy	that	involved	the	integration	of	ChIP‐Seq	data	and	

comparative	 genomics,	 followed	 by	 experimental	 validation	 of	 human‐specific	

GABPa	binding	sites,	we	identified	and	verified	the	functionality	of	newly	evolved	

GABPa	 binding	 sites.	 Our	 contributions	 portray	 a	 scenario	 that	 bridges	

transcriptional	regulation	by	GABPa	with	the	evolution	of	particular	human	traits	

and	 speciation.	These	human‐specific	phenotypes	 include	brain	 functions,	breast	

morphology,	 and	 metabolic	 pathways	 among	 others.	 The	 integrative	 strategy	

implemented	 here	 as	 well	 serves	 as	 an	 example	 for	 combining	 bioinformatics	

approaches	with	 the	constantly	 increasing	number	of	publicly	available	datasets,	

especially	for	studying	CREs	evolution	on	a		“TF‐ome”‐wide	level.	

	

4.5.	Methods	

	

4.5.1.	Chromatin	immunoprecipitation‐sequencing	

ChIP‐Seq	 experiments	were	 performed	 according	 to	 the	 protocol	 established	 by	

Warnatz	et	al.	(2011).	In	summary,	we	cross‐linked	5x108	HEK293T	cells	for	10	min	
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at	room	temperature	with	1%	formaldehyde,	we	prepared	the	nuclei	following	the	

published	protocol	and	fragmented	the	chromatin	to	100‐500	bp	size	by	45	cycles	

of	30	sec	on/off	at	 the	highest	amplitude	using	a	Bioruptor	water	bath	sonicator	

(Diagenode).	We	immunoprecipitated	the	nucleic	acids	with	10µg	rabbit	anti‐GABP‐

α	 (H‐180X,	 Santa	 Cruz	 Biotechnology	 sc‐22810)	 and	 70	 µl	 Protein	 G‐Dynabeads	

(Invitrogen).	 After	washing	 of	 beads,	we	 eluted	 the	 protein‐DNA	 complexes,	 the	

crosslinks	were	 reversed	 overnight,	 and	 the	 DNA	was	 purified	 according	 to	 the	

manufacturer’s	 protocol.	 For	 sequencing	 library	 preparation,	 we	 subjected	 2	 ng	

ChIP	DNA	and	10	ng	Input	DNA	to	end‐repair,	addition	of	adenine	bases	and	ligation	

of	 sequencing	 adapters,	 followed	 by	 DNA	 amplification	 through	 PCR	 and	

subsequent	gel	purification	for	sequencing	on	an	Illumina	Genome	Analyzer	GAII	

according	to	the	manufacturer’s	protocol	for	36	bp	reads.	We	mapped	the	reads	the	

human	reference	genome	version	hg18	using	Eland.	Mapping	resulted	in	6,955,499	

GABPa	 ChIP	 reads	 uniquely	 mapped	 (allowing	 up	 to	 two	 mismatches)	 and	

2,948,346	 corresponding	 reads	 from	 the	 input	 DNA.	 A	 replicate	 ChIP‐seq	

experiment	 performed	 later	 for	 validation	 of	 the	 initial	 experiment	 resulted	 in	

16,856,422	GABPa	ChIP	reads	and	26,104,399	reads	from	the	input	DNA.	

	

4.5.2.	Peak	calling,	gene	mapping,	MEME	and	MAST	analysis	

To	analyze	the	ChIP‐Seq	data,	we	followed	three	steps	as	previously	suggested	by	

Valouev	 (2008).	 We	 used	 the	 peak‐calling	 package	 Quantitative	 Enrichment	 of	

Sequence	Tags	(QuEST)	to	identify	genomic	regions	with	high	density	read	coverage	

(peaks)	within	the	6.96	million	mapped	reads	from	GABPa	ChIP‐Seq.	 In	total,	we	

found	6,208	genomic	peaks	 for	GABPa	 (Supplementary	Table	 S8,	 supplementary	

data	 file).	 Analysis	 of	 the	 replicate	 ChIP‐Seq	 experiment	with	 16.8	million	 reads	

resulted	in	8,311	GABPa	peaks	that	were	used	for	determining	the	overlap	between	

both	 replicates,	 and	 for	 calculating	 the	 irreproducible	 discovery	 rate	 (IDR)	 as	

described	before	(Landt	et	al.	2012).	Using	the	6,208	peaks	obtained	for	the	first	

replicate	 and	 the	 UCSC	 annotation	 for	 82,961	 known	 transcripts	 for	 the	 human	

genome,	we	assigned	peaks	to	the	nearest	TSS	(±5	kb	of	the	transcripts)	(Karolchik	

et	 al.	 2014).	 Transcript	 IDs	 were	 converted	 to	 Entrez	 gene	 IDs	 using	 UCSC’s	

knownToLocusLink	table.	Out	of	all	the	peaks,	1,116	mapped	to	UCSC	transcripts	

that	 do	 not	 have	 an	 Entrez	 gene	 ID	 assigned	 (Supplementary	 Table	 S11,	
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supplementary	data	file	),	with	281	corresponding	to	putative	nucleic	acids	and	20	

to	human	cDNAs.	

	

We	extracted	200	bp	peak‐associated	sequences	around	the	peak	center	via	UCSC	

table	browser	(Karolchik	et	al.	2014)	and	using	the	default	parameters	we	applied	

MEME	algorithm	(Bailey	et	al.	2009)	to	identify	over‐represented	GABPa	consensus	

core	motifs.	Out	of	the	6,208	peaks,	97%	contributed	to	the	motif	found	by	MEME	

(Supplementary	Table	S9,	 supplementary	data	 file	Since	MEME	assumes	 there	 is	

none	or	one	motif	within	a	particular	sequence,	we	then	used	MAST	and	the	MEME	

derived	position	weight	matrix,	to	identify	peaks	containing	more	than	one	GABPa	

consensus	motif	within	each	peak	(Supplementary	Table	S10,	supplementary	data	

file).		

	

4.5.3.	Multiple	sequence	alignment	extraction	and	conversion	

Using	the	whole	genome	alignment	for	44	vertebrates	from	UCSC	and	the	UCSC	table	

browser,	we	 retrieved	 the	 alignments	 corresponding	 to	 the	GABPa	binding	 sites	

within	 the	 ChIP	 peak	 regions.	 The	 genome	 alignments	 consists	 of	 1‐200	 bp	 of	

multiple	 sequence	 alignments	 that	 can	 be	 concatenated.	 We	 then	 converted	

multiple	alignment	formatted	alignments	into	FASTA	format,	and	excluded	the	non‐

syntenic	blocks	and	species	with	missing	sequence	data.	For	instance,	the	insertions	

were	 not	 included	 in	 the	 alignments	 (Supplementary	 Table	 S13,	 supplementary	

data	file).	

	

4.5.4.	Ancestral	sequence	reconstruction	

For	 determining	 the	 ancestral	 sequences	 we	 used	 the	 program	 ANCESTORS	

(Blanchette	et	al.	2004).		This	program	allows,	among	other	features,	to	rebuild	the	

most	likely	scenario	of	insertions	and	deletions	within	the	sequence	alignment.	It	

also	 takes	 care	 of	 preserving	 high	 accuracy	 in	 the	 sequence	 alignment.	 To	 use	

ANCESTORS,	we	first	input	the	information	from	the	multiple	sequence	alignment	

and	the	phylogenetic	 tree,	which	already	included	the	branch	 lengths.	Phylogeny	

was	 sourced	 from	 UCSC	 (phyloP44wayPlacMammal)	

(http://hgdownload.cse.ucsc.edu/goldenPath/hg18/phastCons44way/vertebrate.

mod).	The	branch	lengths	were	estimated	by	using	baseml	program	included	in	the	
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Phylogenetic	Analysis	by	Maximum	Likelihood	(PAML)	package	(Yang	2007).	The	

Hasegawa,	Kishino	and	Yano	nucleotide	substitution	model	(HKY)	(Hasegawa	et	al.	

1985)	was	applied	 in	both	programs.	Therefore,	we	were	able	to	reconstruct	the	

ancestral	sequences	of	34	mammalian	species	using	the	genome	alignment	for	44	

vertebrates	(Diallo	et	al.	2007).		

	

4.5.5.	Cloning	and	plasmid	preparation	

We	designed	the	PCR	primers	using	the	Primer3	online	service	and	extended	by	29	

bp	Gateway	attB	tails	(Invitrogen)	at	the	5'	end	of	each	primer.	We	performed	the	

PCR	Touch‐down	PCR	as	described	previously	(Ralser	et	al.	2006),	except	for	the	

supplementation	of	each	reaction	with	0.001U	Pfu	polymerase.	We	introduced	the	

mutations	 by	 using	 primer‐mediated	 mutagenesis.	 To	 facilitate	 cloning,	 we	

amplified	the	Gateway	cloning	cassette	(Invitrogen)	with	the	forward	primer	attP1	

and	the	reverse	primer	attP2	and	cloned	into	the	pGL3	reporter	vector	(Promega).	

We	purified	 the	PCR	products	and	cloned	upstream	of	 the	 luciferase	gene	 in	 the	

modified	pGL3	vector	using	BP	Clonase	II	Enzyme	Mix	(Invitrogen)	following	the	

manufacturer’s	 instructions.	We	 transformed	 the	 plasmids	 into	 the	methylation‐

deficient	Dam–	E.	coli	 strain	GM2929.	We	validated	 the	 inserts	of	positive	clones	

using	capillary	Sanger	sequencing	(Services	in	Molecular	Biology,	Berlin,	Germany).	

The	 concentration	 of	DNA	was	measured	 on	 a	Nanodrop	UV	 spectrophotometer	

(NanoDrop	Technologies)	and	standardized	to	50	ng/µL	for	transfections.	

	

4.5.6.	 Cell	 culture,	 transient	 transfection,	 and	 reporter	 gene	 activity	

assays	

Reporter	 genes	 are	 frequently	 used	 to	 measure	 gene	 expression	 and	molecular	

processes	coupled	to	changes	in	gene	expression.	In	this	method,	the	reporter	gene	

is	cloned	together	with	the	DNA	sequence	of	interest,	in	this	case,	with	the	CREs	of	

GABPa,	 and	 then	 transfected	 into	 cells.	 Subsequently,	 cells	 are	 assayed	 for	 the	

activity	of	the	reporter	gene	by	directly	measuring	the	reporter	expression	itself.	In	

our	 experiments,	 the	 HEK293T	 and	 COS‐1	 cells	 were	 cultivated	 in	 Dulbecco's	

modified	 Eagle's	 medium	 (DMEM,	 Gibco)	 supplemented	 with	 100	 U/ml	

penicillin/G‐streptomycin	(Biochrom)	and	10%	heat‐inactivated	fetal	bovine	serum	

(Biochrom)	at	37°C	and	5%	CO2.	We	seeded	~15,000	(HEK293T)	and	~5,000	(COS‐
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1)	 cells	 per	 well	 in	 clear‐bottom	 96‐well	 plates	 (Costar).	 We	 co‐transfected	 co‐

transfected	 150	 ng	 of	 experimental	 firefly	 luciferase	 plasmid	 twenty‐four	 hours	

after	 seeding	 together	with	 10	 ng	 of	Renilla	 luciferase	 control	 plasmid	 (pRL‐TK,	

Promega)	in	five	replicates	using	Lipofectamine	2000	following	the	manufacturer’s	

recommendations.	Cells	were	lyzed	24	hours	post‐transfection.		

	

We	measured	 firefly	 luciferase	 and	Renilla	 luciferase	 activities	 using	 the	 Centro	

LB960	luminometer	(Berthold)	and	the	Dual	Luciferase	Kit	(Promega).	We	followed	

the	protocol	suggested	by	 the	manufacturer	with	 the	exception	of	 injecting	25	µl	

each	 of	 the	 firefly	 luciferase	 and	 Renilla	 luciferase	 substrate	 reagents.	 All	

measurements	 were	 performed	 at	 least	 in	 three	 technical	 and	 two	 biological	

replicates,	 including	 new	 dilution	 and	 concentration	 adjustments	 of	 reporter	

plasmids.	

	

4.5.7.	Inhibition	of	GABPa	Expression	by	RNA	Interference	

GABPa	 knock‐down	 experiments	were	 performed	 using	 two	 independent	 siRNA	

molecules,	 specifically	 one	 unmodified	 synthetic	 small	 interfering	 RNA	 (Qiagen	

SI00423311)	 and	 one	 chemically	 modified	 synthetic	 small	 interfering	 RNA	

(Invitrogen	HSS103907).	We	seeded	HEK293T	cells	in	12‐well	plates	together	with	

siRNA‐HiPerFect	 complexes	 according	 to	 the	 HiPerFect	 fast	 forward	 protocol	

(Qiagen).	For	the	mock	transfections,	we	treated	the	cells	with	HiPerFect	reagent	

only.	 We	 performed	 knock‐down	 transfections	 in	 triplicates,	 and	 mock	

transfections	were	performed	in	quadruplicates.	We	extracted	the	total	RNA	from	

cultured	cells	at	24h	and	72h	post‐transfection	using	the	RNeasy	mini	kit	(Qiagen)	

following	 the	manufacturer’s	 instructions.	 All	 RNA	 samples	were	DNase‐treated,	

purified,	quantified,	and	inspected	for	integrity.	For	hybridizations	on	microarrays,	

biotinylated	cRNA	was	synthesized	using	the	GeneChip	expression	3'	amplification	

one‐cycle	 target	 labeling	 and	 control	 reagents	 (Affymetrix).	 Following	 integrity	

control,	we	hybridized	the	cRNA	to	the	Affymetrix	GeneChip	HG‐U133Plus2.	Then	

we	 washed	 and	 stained	 the	 arrays,	 and	 scanned	 following	 the	 recommended	

protocols	from	Affymetrix.	
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To	analyze	gene	expression	we	used	the	“affy”	package	from	Bioconductor	(Gautier	

et	al.	2004).	We	then	calculated	Robust	Multi	Array	(rma)	normalized	expression	

values	 for	each	probe	set	 (Bolstad	et	al.	2003),	 included	 those	probe	sets	with	a	

reliable	 detection	 (p‐value	 <	 0.05),	 and	 merged	 the	 rma	 values	 of	 probe	 sets	

belonging	to	the	same	gene	by	obtaining	one	mean	expression	value	(Nowick	et	al.	

2009).	For	detecting	genes	that	were	differentially	expresses	between	the	knock‐

down	experiments	and	the	mock	transfected	samples	at	two	different	time	points	

(24	 and	 72	 hours),	 we	 used	 the	 package	 “multtest”	 (Pollard	 et	 al.	 2005)	 from	

Bioconductor.	 We	 considered	 as	 DE	 all	 those	 genes	 that	 exhibited	 significant	

changes	in	expression	after	GABPa	knock‐down	using	both	molecules	for	each	time	

point	(24	and	72	hours,	p‐value	<	0.05).	We	then	overlapped	the	GABPa	candidate	

target	genes	from	our	ChIP‐Seq	experiments	with	the	DE	genes,	obtaining	392	and	

1,215	overlapping	genes	for	24	and	72	hours	time	point,	respectively.	To	analyze	if	

these	overlaps	were	higher	than	expected	by	chance,	we	performed	a	permutation	

test,	which	indicated	that	the	detected	overlap	was	higher	than	expected	by	chance	

for	the	72	hours	time	point	(p‐value	=	0.001).	This	was	not	the	case	for	the	24	hours	

treatment	(p‐value	=	0.137).	Consequently,	we	selected	the	data	obtained	for	the	72	

hours	treatment	for	downstream	analyses.		

	

4.5.8.	Gene	ontology	enrichment	analyses	

Taking	into	account	that	we	obtained	three	different	gene	sets	out	of	the	ChIP‐Seq	

and	 siRNA	knock‐down	experiments	 (72	hours	 time	point),	we	performed	 three	

independent	GO	enrichment	analyzes,	one	per	gene	list,	to	functionally	characterize	

these	groups	of	genes.	To	do	so,	we	used	the	hypergeometric	test	implemented	in	

FUNC	 (Prüfer	 et	 al.	 2007).	 	With	 the	 first	 GO	 enrichment	 analysis	 we	 aimed	 to	

functionally	characterize	the	217	genes	that	harbor	human‐specific	GABPa	CREs	by	

comparing	them	with	the	whole	set	of	genes	that	have	at	least	one	GABPa	binding	

site	 in	 their	 promoter	 region	 (TSS	 ±	 5	 kb)	 (Supplementary	Tables	 S14	 and	 S17,	

supplementary	 data	 files).	 In	 the	 second	 GO	 enrichment	 analysis	 we	 tested	 for	

enrichment	of	GO	groups	among	the	genes	that	have	at	least	one	GABPa	CRE	in	their	

promoter	 regions	 and	 that	were	DE	 after	 GABPa	 knock‐down	 experiments	with	

both	 silencing	molecules	 (Qiagen:	 SI00423311	 and	 Invitrogen:	 HSS103907).	We	

compared	this	set	of	GO	groups	against	the	set	of	DE	genes	that	do	not	have	ChIP‐
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Seq	 peaks	 in	 their	 promoter	 region	 (Supplementary	 Table	 S18	 and	 S19,	

supplementary	data	files)	In	the	third	analysis,	we	tested	if	DE	genes	after	GABPa	

knock‐down	that	do	not	have	a	GABPa	CRE	in	their	promoter	region	were	enriched	

for	particular	GO	groups	(Supplementary	Tables	S18	and	S20,	supplementary	data	

files).	In	all	three	cases,	we	refined	the	initial	results	of	the	enriched	GO	groups	as	

implemented	in	FUNC	(Prüfer	et	al.	2007)	applying	a	p‐value	cutoffs	of		p<0.05	for	

the	first	and	third	tests	test	and	of	p<0.01	for	the	second	test	after	refinement.	
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Conclusions	
	

	

Deciphering	how	different	mechanisms	are	integrated	to	regulate	gene	expression,	

and	 thus,	 define	 phenotypical	 differences	 between	 and	 within	 species	 still	

represents	 a	 challenge	 with	 an	 infinite	 world	 of	 possibilities	 to	 be	 studied.	 By	

putting	together	all	the	extant	information	about	genes	involved	in	the	regulation	of	

the	expression	of	other	genes,	we	built	an	up	to	date	catalog	of	human	GRF	genes.	

This	catalog	enabled	us	to	identify	several	GRFs	that	are	good	candidates	for	playing	

a	master	key	role	in	regulating	human	physiology,	and	hence,	potentially	in	human	

adaptive	evolution	and	speciation.	By	analyzing	extant	 information	about	genetic	

changes	 that	have	occurred	since	humans	split	 from	their	 last	 common	ancestor	

with	 chimpanzee,	we	were	able	 to	portray	how	changes	 in	GRF	genes	may	have	

contributed	 to	 the	 appearance	 of	 new	 functions	 and	 thus,	 new	 species‐specific	

traits.	In	addition,	by	identifying	human‐specific	cis‐regulatory	elements	for	the	GRF	

protein	GABPa,	we	also	suggested	how	newly	evolved	genomic	regions	might	have	

driven	 towards	 the	 evolution	 of	 human‐specific	 traits;	 for	 instance,	 cognitive	

abilities	and	neurological	development;	but	also	 to	particular	medical	 conditions	

such	as	diabetes,	Alzheimer	and	Parkinson	diseases.		

	

Subtle	changes	in	GRF	proteins	may	also	result	in	fine	regulatory	changes	between	

individuals	 and	 populations	 within	 species.	 It	 is	 expected	 that	 slight	 molecular	

changes	 that	 result	 in	 a	 functional	 improvement	 of	 an	 individual’s	 fitness,	 will	

increase	in	frequency	at	population	level	due	to	positive	selection.	In	humans,	such	

changes	may	have	significantly	contributed	to	human	adaptation	while	expanding	

to	 colonize	 different	 latitudes.	 By	 exploring	 data	 from	 genome‐wide	 scans	 for	

detecting	positive	 selection,	we	draw	several	 scenarios	 in	which	 changes	 in	GRF	

sequences	 may	 have	 led	 to	 adaptive	 responses	 at	 population‐specific	 level	 in	

humans.	Our	results	suggest	that	at	least	six	of	the	larger	classes	of	GRF	genes	may	

have	differentially	contributed	to	the	diversification	of	the	human	regulome	during	

the	 Out	 of	 Africa	 human	 expansion	 by	 slight	 changes	 in	 DNA	 sequences.	 For	

instance,	 we	 found	 that	 the	 C2H2‐ZNF	 GRF	 class,	 including	 KRAB‐ZNF	 genes,	
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displays	 an	 enrichment	 of	 genes	 in	 regions	 exhibiting	 signatures	 of	 positive	

selection	at	population	specific	level.	Further	exploration	allowed	us	to	detect	that	

several	C2H2‐ZNFs	are	located	in	regions	with	reduced	haplotype	heterozygosity	

and	 contain	 many	 mutations	 causing	 nonsynonymous	 changes	 in	 their	 coding	

regions.	Despite	the	number	of	amino	acid	changes	in	the	GRF’s	protein	domains	

was	 rather	 small,	 we	 suggest	 that	 such	 changes	 could	 explain	 subtle	 regulatory	

functional	 variation.	 This	 subtle	 variation	 could	 have	 led	 to	 differences	 in	

reproduction,	insulin/glucose	and	lipids	metabolism	at	population‐specific	level.		

	

We	conclude	that	identifying	genetic	variation	that	modifies	the	ways	in	which	gene	

expression	 is	 fine‐tuned	 within	 and	 between	 species	 becomes	 essential	 to	

understand	 how	 phenotypical	 differences	 and	 human‐specific	 traits	 have	 been	

shaped	 during	 human	 evolution.	 While	 it	 is	 widely	 acknowledged	 that	 genetic	

variation	 in	 cis‐regulatory	 elements	 has	 played	 a	 key	 role	 in	 the	 evolution	 and	

diversification	of	humans,	we	think	that	changes	in	GRF	genes	have	also	significantly	

contributed	with	 the	 subtly	 tweaking	 of	 adaptive	 regulatory	pathways,	 and	 thus	

may	provide	key	clues	about	human	speciation	and	human	adaptive	evolution.		
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Supplementary	tables	
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Supplementary Table S2. GRF genes located in region exhibiting signatures of positive selection in AMH 
populations. The different symbols indicate population specific signatures of positive selection. Candidate 
genes  identified by  (*) Grossman et al, 2013;  (¥) Sabeti et al, 2007;  (£) Pickrell et al, 2009. CEU: Utah 
Residents (CEPH) with Northern andWestern European ancestry, CHB: Han Chinese in Bejing, China, YRI: 
Yoruba in Ibadan, Nigeria; JPT: Japanese in Tokyo, Japan; Bantu: Bantu‐speaking populations. Table taken 
from Perdomo‐Sabogal et al. 2014.   
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

CEU YRI CHB JPT Oceania
South 
Asia

East 
Asia

Mideast
Native 

Americans
Bantu

Biaka 
Pygmy

POGZ,MCM6, PCGF1, KCNH7, RFX5 *
ACTR5, ADNP2, ANKRD45, PAWR, HIPK1, HIRA, RRN3, RNF135, 
SIN3A, SLC30A9, USF1, TAX1BP3, ZBTB41, EBF1, KCNIP4, 
NCOA1

*

ASXL2, FMNL2, FOXP1, LHX8, PAPOLA, CHD2, TERF2IP * *
DPF1 *  £
HIF1A, SNAPC1  £ *  £  £  £
ZMYM6 *¥ 
WWOX *¥£  £
CTNND2 ¥ 
BMI1, NFE2L2 ¥ ¥ ¥ 
AFF2, BBX ¥ ¥ 
FBN1, MYEF2 ¥ £  £  £
APC  £  £  £  £
KCNH5, PHF19  £  £  £  £
ERBB4  £  £  £  £  £
RFX3  £  £  £
RGS9  £  £  £
RHOA
SETBP1  £  £  £  £  £
ARIH2
ATF6  £  £
CIITA  £  £
CLOCK
DUSP12, FOXE1, TRIM14  £
HEY2  £  £  £
HSF2  £
NCOA7  £  £  £
POLR2K  £  £
PPARA  £  £  £  £  £
SFPQ
YTHDC1  £

GRF gene
Populations
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Supplementary	Table	S5.	KRAB‐ZNF	cluster	defined	as	in	Huntley	et	al,	(2006).	Genomic	coordinates	
are	based	on	the	human	genome	reference,	version	hg19.		
	

	

	

	

	

	

	

	

	

	

	

	

	

1 chr1:247099483‐247339322 240 4 4 5
2 chr3:40383122‐40692996 310 3 3 6
3 chr3:44448334‐44848334 400 7 8 9
4 chr4:39541‐483540 444 4 5 8
5 chr5:178285305‐178462544 177 4 5 5
6 chr6:28040489‐28430489 390 10 16 17
7 chr7:63499554‐64463192 964 9 9 10
8 chr7:99049770‐99236476 187 5 5 9
9 chr7:148669510‐149580510 911 11 13 20
10 chr8:145945215‐146215827 271 6 6 8
11 chr10:38050199‐38512208 462 4 4 4
12 chr12:133481895‐133851895 370 4 5 8
13 chr16:3259999‐3509999 250 6 8 12
14 chr16:30311000‐31175239 250 12 17 43
15 chr18:32806333‐32980333 174 5 5 5
16 chr19:2805474‐2965474 160 5 5 5
17 chr19:9239000‐9889000 650 13 13 16
18 chr19:11569273‐12519495 950 17 20 23
19 chr19:19639000‐24314329 4675 41 44 79
20 chr19:35156419‐35458419 302 5 5 5
21 chr19:36640679‐38318696 1678 29 30 31
22 chr19:44008483‐45018484 1010 21 24 24
23 chr19:52350013‐54088308 1738 37 44 50
24 chr19:55978188‐56158188 180 5 9 12
25 chr19:56568969‐57378969 810 12 17 19

All genes
KRAB‐ZNF clusters 
(Huntley et al, 2006)

Genomic coordinates
Size cluster 

(Kb)

KRAB‐ZNF 
genes in the 

cluster

GRF genes in 
the cluster
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Supplementary	 Table	 S6.	 Nonsynonymous	 alleles	 located	 on	 the	 coding	 region	 of	 genes	 located	
within	 three	KRAB‐ZNF	 clusters	 (whole	 cluster)	 exhibiting	 EHH	 regions.	 Shaded	 green	 indicates	
nucleotide	variation	for	nonsynonymous	SNPs	where	the	alternative	allele	is	equal	to	the	ancestral	
allele.	

	

	

 
 
 
 
 
 
 
 

 
 

 

rs140747159 T C T 2.21
rs2642993 T G T 2.22
rs117437844 C T C 2.21
rs55762230 C T C 2.22
rs2642992 A G G 1.91
rs34437520 C T C 1.6
rs2034476 C G G 1.73
rs148794995 G C G 3.17
rs2272044 C G C 3.41
rs191633770 T C T 3.2
rs184925516 C T C 2.09
rs144183945 A G a 2.20
rs8046978 G A G 1.74 ZNF668
rs749670 A G A 1.64
rs77579502 G A G 1.63
rs35041466 A G A 1.64
rs141631516 C T C 1.66
rs78522165 G A G 1.71
rs75586809 C T C 1.67
rs149125224 T A T 1.65
rs147316630 C A C 1.67
rs35713203 G C G 1.52
rs113926102 C T C 1.83
rs35376811 C T C 1.88
rs188200157 A C A 1.85
rs3751856 G A G 1.82
rs7196726 G A G 1.62
rs7199949 G C C 1.46
rs188342896 G A G 1.74
rs11150606 T C T 1.34
rs191369353 T C T 3.96
rs138110276 C A C 3.86
rs17855606 A G a 2.6 MYST1
rs142789229 C T C 3.31 PRSS8
rs117442264 C T C 2.16
rs145749002 G A G 2.13
rs188497178 G T G 2.27

Cluster 1

Cluster 3

Cluster 14 

ZNF695

ZNF167

ZNF35

STX4

ZNF646

PRSS53

VKORC1

PRSS36
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Appendix	B	

Supplementary	Data	Files	
 
 
Description	
The following list Excel spreadsheets correspond the supplementary material that was cited in the in text 
and that could not be included within the main document. 
 
Supplementary Table S1.xlsx (Catalog of gene regulatory factors) 
Supplementary Table S3.xlsx (List of GO terms that were used for identifying gene regulatory factors) 
Supplementary Table S4.xlsx (Workbook containing information about candidate GRF genes for  

             positive selection. 
Supplementary Table S7.xlsx (GRF evolutionary branch assignment) 
Supplementary Table S8.xlsx (Genomic peaks found after performing ChIP-Seq experiments with a  

           GABPa specific antibody in HEK293T cells) 
Supplementary Table S9.xlsx (Distance of the de novo motif discovery algorithm MEME identified  
                         sites from Chip-Seq peak middlepoints) 
Supplementary Table S10.xlsx (11,619 PWM hits in 5,797 peak regions of 200 bp found by using the  

           motif alignment and scan tool MAST) 
Supplementary Table S11.xlsx (Genomic peak mapping to UCSC transcripts and entrez Ids) 
Supplementary Table S12.xlsx (11008 alignments obtained after performing multiple species  

            alignments from the UCSC MultiZ 44 vertebrate alignments) 
Supplementary Table S13.xlsx (GABPa binding sites ancestral sequences reconstruction)  
Supplementary Table S14.xlsx (217 Genes mapping ± 5kb around Human specific GABPa  

           binding sites) 
Supplementary Table S15.xlsx (Hominini-, Homininae- and Hominid-specific GABPa binding sites) 
Supplementary Table S16.xlsx (Genes harbouring Hominini-, Homininae- and Hominid-specific  

             GABPa binding sites in their promoter regions) 
Supplementary Table S17.xlsx (Gene ontology enrichment analysis for genes located ± 5 kb around   

             Human specific GABPa TFBS. All the other genes located around  ±5 kb ChIP-Seq  
             GABPa peaks were used as background set) 

Supplementary Table S18.xlsx (Deferentially expressed genes after GABPa knock-down  
            (72h treatment)). 

Supplementary Table S19.xlsx (Gene ontology enrichment analyses for 1280 deferentially expressed  
             genes having at least one GABPa binding site in our ChIP-Seq data) 

Supplementary Table S20.xlsx (Gene ontology enrichment analyses for 1934 deferentially expressed  
             genes without GABPa binding site in our ChIP-Seq data) 

Supplementary Table S21.xlsx (Disease associations for genes with a human specifc GABPa binding  
             site that changed in expression after GABPa knock down. Information sourced from     
             DisGenet) 
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Supplementary	figures	
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Figure	supplementary	S1.	Distribution	of	regions	exhibiting	EHH	with	consecutive	XP‐EHH	scores	

higher	 on	 the	 upper	 5%	 tail	 of	 the	 distribution.	 Regions	 larger	 than	 10	 kb	 in	 the	 three	 human	

populations	are	shown.	(a)	CEU	versus	CHB	(left	panel)	and	YRI	(right	panel).	(b)	CHB	versus	CEU	

(left	panel)	and	YRI	(right	panel).	 (c)	YRI	versus	CEU	(left	panel)	and	CHB	(right	panel).	XP‐EHH	

results	 indicate	 that	 just	 three	KRAB‐ZNF	gene	clusters	exhibit	EHH	 larger	 than	100	kbps	 (b‐left	

panel).		

	

	

YRI versus CHB YRI versus CEU 

CEU versus YRI  CEU versus CHB 

CHB versus CEU CHB versus YRI  

a) 

c) 

b) 
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Figure	 supplementary	 S2.	 XP‐EHH	 rank	 scores	 indicating	 the	 presence	 of	 EHH	 in	 the	KRAB‐ZNF	

cluster	14.	 Shaded	grey	 region	 indicates	 the	 region	 that	 the	EHH	span	within	 each	 cluster.	 Light	

horizontal	red	line	indicates	the	5%	threshold	set	for	the	XP‐EHH	distribution	(rank	score	of	1.3).	

Green	horizontal	line	(c‐left	panel)	indicates	a	region	of	around	251	kb	in	length	showing	high	XP‐

EHH	scores	with	one	SNP	causing	the	EHH	decay	at	position	chr16:31009343	(rs74474326).	Blue	

horizontal	lines	show	regions	with	haplotype	decay	below	the	threshold.		
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Figure	 supplementary	 S3.	 CLR	 and	 XP‐CLR	 rank	 scores	 for	 three	 KRAB‐ZNF	 clusters	 exhibiting	

extended	haplotypes.	Shaded	grey	region	indicates	the	region	that	the	EHH	span	within	each	cluster.	

(a‐left)	CLR	scores	for	the	KRAB‐ZNF	cluster	1.	There	was	no	data	available	for	this	region	for	the	

XP‐CLR	test.	(b)	Scores	obtained	for	the	KRAB‐ZNF	cluster	3	for	CLR	(left)	and	XP‐CLR	(right)	tests.	

(c)	Scores	obtained	for	the	KRAB‐ZNF	cluster	14	for	CLR	(left)	and	XP‐CLR	(right)	tests.	Despite	the	

EHH	regions	within	these	three	KRAB‐ZNF	clusters	exhibit	high	scores	for	CLR	and	XP‐CLR,	these	

results	do	not	reveal	a	clear	signature	of	selection	for	these	regions.	

a) 

b) 

c) 
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