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ABSTRACT 

When targeting a structure in three-dimensional space, the repositioning accuracy 

of the patient on the treatment table should be consistent among all radiation treatment 

sessions. Immobilization devices are used to reposition the patients, and imaging 

systems built into the radiation machine are used to correct the patient’s position prior to 

treatment.  

Radiation oncologists usually treat a margin of normal tissue around the tumor 

called planning target volume (PTV) to account for interfraction (set-up errors) and 

intrafraction motion (such as motion due to respiration). The size of the PTV margin is an 

estimate of the targeting accuracy that can be achieved using immobilization devices and 

image guidance. The PTV margin reported for stereotactic radiation therapy (SRT) and 

stereotactic radiosurgery (SRS) to treat canine brain tumors ranges from 0-3 millimeters 

(Kelsey, Gieger, and Nolan 2018; Griffin et al. 2014; Dolera et al. 2017).  

An ideal margin would be a narrow margin to minimize the chance of toxicity to the 

normal brain and wide enough to cover the entire tumor target. The size of the PTV margin 

also depends on the radiation therapy delivery technique and the fractionation scheme 

(dose of radiation for each treatment session) planned for determined tumor types and 

locations. 

Accurate patient set-up and adequate PTV margin selection are required to 

minimize the chance of radiation side effects to the normal tissue surrounding the tumor 

region and to maximize tumor control. This is particularly relevant for SRS and SRT 

treatments, as higher doses of radiation are used to treat cancers compared to 

conventional radiation protocols.  
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1. CHAPTER ONE: INTRODUCTION 

Photons are uncharged particles with zero rest mass. High energy ionizing photons 

(or X-rays) can be generated by a megavoltage linear accelerator after electrons are 

accelerated to hit a tungsten target. Photons from a linear accelerator are classified as 

an indirectly ionizing type of radiation. The photons interact with the electrons in tissues 

and cells to produce secondary electrons. These secondary electrons cause DNA strand 

breaks, which can lead to lethal chromosomal aberrations, either directly or indirectly 

(through reactive oxygen species) (Hall and Giaccia 2012). Both direct and indirect 

damage to DNA can lead to chromosomal aberrations that kill the tumor cell or impair 

tumor cell division. The energy absorbed by the tissues is measured in Gray (Gy), which 

corresponds to Joules per kilogram of tissue.  

 

1.1. External Radiation Therapy Delivery Techniques 

1.1.1. Manual dose calculations 

The radiation is delivered in an even dose distribution for cubic or rectangular 

structures (LaRue and Custis 2014), resulting in a predictable uniform dose coverage 

throughout the target volume using two parallel opposed beams.  

For this type of technique, the PTV margins are usually in the order of a few 

centimeters and it frequently results in adjacent normal tissue acute side effects, such as 

erythema and desquamation of the skin, mucositis, otitis, conjunctivitis and keratitis, 

depending on the irradiated site (LaDue and Klein 2001). Manual dose calculation does 

not utilize a computed tomography (CT) image for radiation treatment planning because 

it does not require accurate targeting of the tumor as the PTV margin is wider.  
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1.1.2. 3D-conformal radiation therapy 

This delivery technique requires a CT image to generate a treatment plan. Organs 

and structures are contoured and labeled in the CT images using a treatment planning 

software. The computer calculates the dose to each structure, creating a dose volume 

histogram, that provides a quantitative description of the tumor dose and the normal 

tissues around the radiation treatment field.  

As an attempt to reduce adjacent normal tissue toxicities, custom-made blocks or 

static multileaf collimators are used to shape the beams and avoid irradiation of normal 

structures outside the beam path (LaRue and Custis 2014). This technique allows better 

targeting accuracy, but the PTV margins are usually in the order of a few centimeters 

(AAPM Task Group 101, 2010). 

 

1.1.3. Intensity-modulated radiation therapy 

The multileaf collimator moves during the treatment, modulating the intensity of the 

beams to the tumor, and creating a nonuniform beam fluence (Khan and Gibbons 2014). 

This process results in a better accurate targeting of the tumor, sparing large volumes of 

normal tissue from being irradiated. Therefore, it can reduce the severity of both acute 

and late side effects.  

The PTV margins applied when this technique is used can vary from centimeters 

to millimeters (AAPM Task Group 101, 2010), depending on the fractionation scheme 

used and whether other types of set-up verification are performed. The types of 

fractionation schemes are further detailed in Section 1.2 Fractionation Schemes. 
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Although reducing patient discomfort, the intensity-modulated radiation therapy 

(IMRT) delivery technique does not primarily improve survival of cancer patients (LaRue 

and Custis 2014). However, by minimizing the chance of occurrence of side effects, the 

dose to the tumor can be increased, presumably leading to an increase in tumor control 

probability. 

 

1.2. Fractionation Schemes 

Different fractionation protocols have been published for both human and 

veterinary patients. Each “fraction” refers to one treatment session using radiation as a 

therapeutic modality. Fractionation schemes vary in the dose of radiation per treatment 

session. 

 

1.2.1. Conventional fractionation 

In veterinary medicine, this type of fractionation has been the mainstay type of 

radiation therapy in the last fifty years. The conventional fractionation scheme allows 

delivery of dose to treat tumors while sparing the surrounding normal tissue through 

fractionation and PTV margins are usually larger, in the order of a few centimeters. This 

is based on the fact that normal cells can better repair radiation damage than tumor cells.   

The conventional fractionation schemes consist of a relatively large number of 

fractions to treat tumors, frequently with a low dose per fraction of 2.7 to 4Gy given 3 to 

5 times per week to achieve total doses of 42 to 57Gy (Withrow, Vail, and Page 2013).  



4 

 

 

 

1.2.2. Hypofractionation 

Hypofractionated radiation treatments are defined as large doses of radiation given 

once daily or less often, over a shorter period of time compared to conventional 

fractionation schemes. Among the hypofractionated protocols, SRS (single fraction) and 

SRT (2 to 5 fractions) use IMRT technique and require high spatial accuracy. Therefore, 

SRS and SRT protocols spare normal tissue by avoidance (AAPM Task Group 42, 1995), 

and PTV margins are in the order of a few millimeters.  

 

1.3. Margin Definitions 

With smaller margins being used in SRS and SRT treatments, the targeting 

accuracy must be maximized to ensure adequate tumor coverage, and to avoid causing 

unacceptable side effects to normal tissues. The organs and the structures must be 

precisely correlated with the x-ray beam. For this reason, those volumes are contoured 

with a planning software for radiation therapy. 

The International Commission on Radiation Units and Measurements (ICRU) is a 

group composed of experts in radiation medicine. Their mission is to provide 

recommendations on radiation-related quantities and units, terminology, measurement 

procedures, and reference data for professionals involved in the medical radiation 

specialty. According to ICRU Report 62 (1999), the gross tumor volume (GTV) is an 

anatomical concept in which the shape, size, and location of the tumor is determined by 

clinical examination and/or imaging techniques (ICRU Report 62, 1999). An expansion 

from the GTV, called clinical target volume (CTV), is added based on possible extension 

of subclinical disease depending on the tumor type. The PTV is included around the CTV 
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with the goal to achieve full coverage of the prescribed dose to the tumor, accounting for 

geometrical and some technical uncertainties. Therefore, the PTV takes into 

consideration the internal margin and the set-up margin. The internal margin accounts for 

physiologic movements. Lastly, the set-up margin is defined as “uncertainties in patient 

positioning and alignment of the therapeutic beams during the treatment planning and 

through all treatment sessions” (ICRU Report 91, 2017). 

For brain tumors, it is reasonable to consider that the internal margin is very low 

(ICRU Report 62, 1999) since veterinary patients are usually treated under general 

anesthesia, which will minimize intrafraction motion. As well, motion due to respiration 

would be low in a dog that is positioned in an immobilization system that secures the head 

region. In a study by Dieterich et al. (2015), the respiratory motion in canine patients 

treated with intracranial SRS was measured using cine CT scans (Dieterich et al. 2015). 

The authors reported that less than 5% of the patients had an intrafractional motion of 

more than 1mm. For this reason, the set-up margin might have a more important 

contribution for PTV estimation than the internal margin. 

Since the publication of ICRU Report 50 (1993), the volume definitions of GTV, 

CTV, and PTV remained unchanged (ICRU Report 91, 2017). The GTV should be 

independent of the radiation technique used for treatment (ICRU Report 83, 2010). 

However, with the new technologies available and used for SRT, the size of the PTV 

margin can be decreased to a few millimeters (AAPM Task Group 101, 2010). Some 

examples of those technologies are: three-dimensional imaging for tumor delineation (e.g. 

CT and MRI), image guidance systems for patient position verification on the radiation 
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treatment table, the use of customizable immobilization devices, and the use of IMRT 

technique. 

In canine brain meningioma clinical studies, Keyerleber et al. (2013) have reported 

the use of a CTV margin of 3 to 5mm plus a PTV margin of 5mm for 3D-CRT (Keyerleber 

et al. 2013), whereas studies in SRT have reported a CTV margin of 2mm or 0mm, with 

a PTV margin of 1 to 2mm (Griffin et al. 2014), or even zero margins added to the tumor 

volume (Kelsey, Gieger, and Nolan 2018). All studies reported overall median survival 

times longer than 17 months (19.2 months (Keyerleber et al. 2013), 18.7 months (Griffin 

et al. 2014), 17.3 months (Kelsey, Gieger, and Nolan 2018)).  

In a clinical study with 42 canine gliomas treated with fractionated SRT with or 

without temozolomide chemotherapy, larger margins have been used. The CTV margin 

included peritumoral edema, and a PTV margin of 3mm was also applied (Dolera et al. 

2017). Based on the veterinary radiation oncology group (VRTOG) criteria, the authors 

reported that only one case had grade II neurotoxicity.  

An ideal PTV margin would account for all uncertainties involved in treatment 

planning and delivery which will be discussed later in Section 1.5 Sources of 

Uncertainties. Although the IMRT technique for radiation treatment allows normal tissue 

sparing, excessively large PTVs would be required in order to ensure 100% tumor 

coverage (ICRU Report 83, 2010). For this reason, it is acceptable that the PTV margin 

encompassing normal tissue (such as brain in intracranial tumors irradiation) might have 

to be compromised to reduce the risk of side effects due to the delivery of SRS or SRT 

treatments (ICRU Report 83, 2010; ICRU Report 91, 2017).  
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On the other hand, reducing the PTV size may compromise outcome. A veterinary 

clinical study has investigated 34 dogs with brain masses treated with low-dose 

multifractionated (conventional fractionation) radiation therapy based on computer-

generated plans (Bley et al. 2005). The study concluded that patients who had a larger 

PTV/brain volume ratio had a longer survival time. 

For intracranial SRS treatments, the CTV can be treated as the GTV, meaning that 

the CTV may not be contoured as a clinical choice, because targeting all the microscopic 

disease is not the goal of SRS treatments. Some authors believe that tumor cell death in 

SRS treatments occur from other mechanisms than just damage of the DNA and this is 

further discussed in Section 0  

 

New Radiobiology” Hypothesis 

. However, even though SRT leads to steep dose gradients around the tumor, 

there will be a penumbra region outside the GTV that receives a high dose, and this may 

be sufficient to target the microscopic tumor extension (ICRU Report 91, 2017). 

 

Margin calculation 

Numerous margin formulas and other methods to calculate the PTV margin to 

ensure coverage of the GTV have been studied. The American Association of Physicists 

in Medicine Radiation Therapy (AAPM) has published a 3D displacement formula based 

on translational errors in x, y, and z directions (AAPM Task Group 68, 2005). The 3D 

displacement estimates the error in three-dimensional space and uses the square root of 

the vectors’ square sum, represented by the formula below: 



8 

 

 

 

√𝑥2 + y2 + 𝑧2 ……………………………………………………………………….(1.1) 

 

van Herk (2004) has published an extensive review of the different margin 

formulas. When generating the dataset for a study that reports a formula to estimate 

margin errors, the number of measurements per patient, and differences between 

individual patients should be considered in the model to realistically represent the 

variability of patients (van Herk 2004). 

 

I.  van Herk et al. (2000) 

PTV margin = 2.5Ʃ + 0.7σ’ ………………………………………………………...(1.2) 

Ʃ = systematic errors 

σ’ = random errors  

Systematic errors are defined by the reproducibility of treatment preparation, 

because they would affect all treatment fractions in a similar way (van Herk 2004; AAPM 

Task Group 68 2005).  According to the same author, there is a high likelihood that a 

geographic miss will occur if the systematic patient positioning error is large (van Herk 

2004).  

Random errors include physiological processes, such as respiration, circulation, 

peristalsis, degree of filling of anatomical structures, and daily patient set-up differences 

(AAPM Task Group 68, 2005). Random interfractional positioning errors can be better 

estimated with larger number of fractions (AAPM Task Group 68, 2005). 
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Delineation uncertainties (GTV contouring on CT and/or MR images) are 

essentially systematic errors while set-up errors (daily patient positioning for treatment) 

are composed of both systematic and random errors (van Herk 2004). 

The systematic errors are calculated as the standard deviation of the means of all 

patients and the random errors are calculated as the root mean square of the all patients’ 

standard deviations. This model estimates the set-up margin based on calculation of 

systematic and random errors. The margin formula was created to ensure that at least 

95% of the prescribed dose to the CTV is delivered to 90% of the patients.  

This method has several limitations when applied to SRS and SRT patient margin 

estimation. Some of the assumptions when this formula is used is that the data are 

normally distributed, the patient population is homogeneous, and that many fractions are 

given. The number of fractions directly affects the random errors, in which SRS and SRT 

protocols would have random errors different from zero. If many fractions are given such 

as in conventional fractionation scheme, the random error is assumed to be zero as the 

relative values are smoothed out around the zero coordinate.  

Systematic errors were accounted in the formula, and it has been shown to cause 

more impact than random errors for large number of fractions. This information may not 

apply for SRS or SRT treatments, as the random error is different from zero. When 

systematic errors are large, it can shift the whole dose distribution and cause 

geographical misses (van Herk et al. 2000; van Herk 2004). 

 

II. Lutz et al. (1988) 
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Using the Z score to estimate the cumulative probability in a normal distribution, 

the authors estimated the margin necessary to encompass the positional accuracy error 

of radiation treatment delivery to a target localized with CT image guidance (Lutz, 

Winston, and Malleki 1988). Assuming a normal distribution of the values, the authors 

used the standard deviation of the mean to estimate the value that would represent the 

cumulative probability of 90% to estimate that the “distance error in an individual 

treatment should be less than 2.4 mm 95% of the time”. 

P(x ≤ µ + Z*σ) ………………………………………………………………………(1.3) 

Where: 

P: cumulative probability of 90% 

Z: score on the Z-Probability table 

µ: mean 

σ: standard deviation 

For a cumulative probability of 0.90, a corresponding Z score of 1.65 is attributed 

using the Z-Probability table. Therefore: P(x ≤ µ + 1.65σ). 

 

III. AAPM Task Group 68 (2005) 

Accuracy is defined as the “deviation of patient position relative to a reference 

position at the time of treatment planning” (AAPM Task Group 68, 2005). Accuracy errors 

are considered systematic when treatment plans are delivered in a single dose of 

radiation for a single individual but are stochastic for a group of patients (van Herk et al. 

2000). Precision is defined as “how well the position can be determined, i.e., the variability 

in a set of measurements” (AAPM Task Group 68, 2005).  



11 

 

 

 

The PTV margins used in conventional fractionated therapies, have been 

decreased in the order of centimeters to millimeters for SRT (AAPM Task Group 101, 

2010). This reduction has been based on the assumption of an improvement in targeting 

accuracy and precision. (AAPM Task Group 68, 2005), due to the development of better 

immobilization devices and the use of image guidance for patient repositioning. 

According to the AAPM Task Group 68, the 95th percentile of the 3D displacement 

represents the value of the PTV that would be enough to encompass the GTV in 95% of 

the patient set-ups (AAPM Task Group 68, 2005), and it refers to a margin number 

generated directly from the experimental model. For this reason, this method does not 

rely on the assumption that the data follow a normal distribution (AAPM Task Group 68, 

2005). Three veterinary studies have also reported the use of the 95th percentile to report 

margins for intracranial radiation treatments using different positioning devices (Mayer et 

al. 2010; Hansen et al. 2015; Dieterich et al. 2015). 

For conventionally fractionated treatments, a PTV margin based on 5% chance of 

missing the target could be considered acceptable because 18 or more fractions are 

delivered to the patient. For this reason, the consequence of a targeting error in one 

fraction would be relatively smaller in conventional fractionated treatments than SRS or 

SRT protocols.  

When SRS or SRT plans are delivered, a geographic miss could result in 

catastrophic consequences to the normal tissue, because larger doses per fraction are 

given. A balance must be determined between the risk of tumor miss and the chance of 

causing normal tissue toxicity. Higher percentile values than the 95th percentile could be 

aimed for SRT or SRS treatments, because improvements in image guidance 
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technologies and the use of more accurate positioning devices may be enough to 

guarantee small set-up error when the patients are positioned on the radiation treatment 

table. 

 

1.4. Patient Repositioning 

It is essential that the patients are consistently repositioned in a similar way to 

ensure highly accurate radiation treatment delivery. Patient repositioning techniques, 

such as image guidance and immobilization devices are used for accurate correlation of 

the patient to the imaging devices (CT and/or MRI), and to the radiation treatment 

machine. 

 

1.4.1. Image guidance  

Image-guided techniques can be used to achieve a more accurate patient 

positioning (ICRU Report 83, 2010). They involve using the patient’s position from the 

planning CT scan as a reference, which needs to be repeated for every radiation 

treatment.  

Before each radiation treatment delivery, the patient is positioned using the same 

immobilization device, and imaging is performed to compare the patient’s position with 

their reference CT image, which shows the position from when the CT scan was acquired 

to generate the radiation plan. The two sets of images are matched using both automatic 

software-based registration and also manual registration performed by a radiation 

therapist or a radiation oncologist.  
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There are two main types of imaging modalities for patient position verification: 

planar systems (Electronic Portal Imaging Device and kilovoltage radiographs), and 

volumetric systems (e.g. cone-beam computed tomography). 

 

I. Planar Systems 

For planar pretreatment verification, a digital reconstructed radiograph (DRR) 

generated from the reference CT image can be verified by matching megavoltage 

radiographs or kilovoltage radiographs. One potential disadvantage of this type of image 

guidance is that it only provides two-dimensional information about the patient position. 

 

o Electronic Portal Imaging Device (EPID) 

This was the first imaging system available for image guidance in radiation therapy 

(ICRU Report 91, 2017). It consists of megavoltage (MV) radiographs that use the 

radiotherapy treatment source (e.g. the gantry of a linear accelerator) to generate high-

energy x-rays. MV radiographs result in low contrast images because high energy x-rays 

are attenuated to a similar degree by bone and soft tissue. Nevertheless, bony anatomy 

can still be distinguished from soft tissue, but the image contrast is not as high as 

kilovoltage energy ranges. 

 

o Kilovoltage Radiographs 

Kilovoltage (kV) imaging usually consists of two opposed flat panels, orthogonal to 

the radiation treatment x-ray source. The energy range is much lower than MV energies, 
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and similar to what it is used for diagnostic x-ray imaging. This technology provides a high 

contrast between the bones and the soft tissue around them.  

Compared to MV port images, kV radiographs expose the patients to lower doses 

of radiation for set-up correction. However, it is possible to estimate the dose to the patient 

when EPIDs are acquired, and this dose can be subtracted from the total dose planned 

for the treatment. Therefore, exposing the patient to higher doses by acquiring MV 

radiographs should not be a limitation for its use. 

 

II. Volumetric Systems 

For three-dimensional verification, the reference CT image acquired for the 

radiation treatment plan can be matched to a kilovoltage cone-beam computed 

tomography (CBCT) scan, an in-room mounted CT scanner, an MV fan beam CT, a digital 

tomosynthesis, a three-dimensional ultrasound, and an in-room mounted MRI (ICRU 

Report 91, 2017).  

The use of the CBCT system has been reported in veterinary patients (Griffin et al. 

2014; Dolera et al. 2017; Kelsey, Gieger, and Nolan 2018). This type of image can be 

generated using the same kV x-ray source as the kV planar radiographs. One of the 

advantages of using a CBCT scan for patient position correction is that this modality 

provides spatial information of anatomical structures. For this reason, it is possible to 

evaluate positional rotations of the patient. One limitation of this method is that the image 

quality (pixel resolution) can affect the accuracy of patient positioning, because the true 

patient position may not accurately correlate to the position shown on imaging (Fu et al. 

2014).  
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Careful quality assurance procedures must be performed to ensure adequate 

spatial correlation between imaging systems and the radiation beam source. This is 

especially more relevant for kV and CBCT imaging sources, as the x-ray tube is not the 

same as the radiation machine x-ray source (e.g. the gantry of a linear accelerator).  
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1.4.2. Positioning devices 

Several positioning devices have been evaluated for immobilization of the head in 

dogs and cats for radiation therapy (Kippenes et al. 2000; Rohrer Bley et al. 2003; 

Harmon, Van Ufflen, and LaRue 2009; Kent et al. 2009; Charney et al. 2009; Kubicek et 

al. 2012; Mayer et al. 2010; Hansen et al. 2015; Dieterich et al. 2015; Nemoto et al. 2015). 

Kippenes et al. (2000) compared three types of positioning devices. Group 1 had 

a commercial headrest (Silverman supports, Med-Tec, Orange City, IA, USA) and a 

thermoplastic mask (Uniframe® system, Med-Tec, Orange City, IA, USA) secured to a 

frame, and the system was not indexed (fixed) to the treatment table. Group 2 had a head 

holder designed at Washington State University and was combined with a ventral neck 

region support and a dental mold (Polyform® splinting material. Smith & Nephew, 

Germantown, WI, USA). Group 3 had the same head holder and dental mold as Group 

2, and a vacuum-locked bag (Vac-lokTM, Med-Tec, Orange City, IA, USA) was added to 

this system to immobilize the thoracic and cervical regions. The head holder used in 

Group 2 and Group 3 was indexed to the treatment table. The authors found that Groups 

2 and 3 achieved a significantly better repositioning accuracy when compared to Group 

1. 

Three studies from the University of California have been published in which 

maxillary plates or bite blocks were not used (Kent et al. 2009; Hansen et al. 2015; 

Dieterich et al. 2015).  

In the first study published, Kent et al. (2009) evaluated the accuracy and precision 

of a positioning device that was not indexed to the treatment table. The device was 

composed by a thermoplastic mask (Klarity standard U-frame, Klarity Medical & 
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Equipment (GZ) Co. Ltd., Lan Yu, China) and a customizable head support (MoldCare 

pillow, Bionix Development Corporation, Toledo, OH, USA) that were secured to a plastic 

base frame. The mean 3D displacement±SD was 2.4±2.1mm. The authors also 

calculated the 95th percentile of the 3D displacement, which had the value of 6.4mm. 

In a second study, the results from Kent et al. (2009) were compared to another 

positioning device indexed to the treatment table (Hansen et al. 2015). The device had a 

vacuum-locked bag (SecureVac, Bionix Development Corporation, Toledo, OH, USA), 

and the same thermoplastic mask and the customizable head support from the previous 

study. The mean 3D displacement was 1.6mm, and the 95th percentile was 3.6mm.  

The third study published from the University of California (Dieterich et al. 2015) 

consisted on testing a non-indexed immobilization device with a three-piece thermoplastic 

mask system (Brainlab AG, Feldkirchen, Germany), a vacuum-locked bag, and a head 

support (Dieterich et al. 2015). The mean 3D displacement reported was 1.9mm, and the 

95th percentile was 3.5mm. 

Other studies in veterinary medicine have used maxillary plates with or without bite 

blocks (Rohrer Bley et al. 2003; Harmon, Van Ufflen, and LaRue 2009; Charney et al. 

2009; Mayer et al. 2010; Kubicek et al. 2012; Nemoto et al. 2015). Mayer et al. (2010) 

have evaluated the head-repositioning device (HRD) designed by Charney et al. (2009). 

The HRD is a non-indexed immobilization device. The study compared the use of the 

HRD versus patient positioning without the use of an immobilization device, only palpating 

bony landmarks and using the in-room laser alignment beams (Mayer et al. 2010). The 

mean 3D displacement and the 95th percentile for the HRD were 0.9mm and 1.9mm, and 

for the bony palpation method 2.6mm and 4.6mm, respectively. The device designed by 
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Charney et al. (2009) consisted of a non-indexed wooden board that had a maxillary plate 

to fit a dental mold (VP Mix Putty®, Henry Schein, Melville, NY, USA) with a rigid foam 

neck support. The maxillary plate that extended from the incisors to the molar teeth had 

customized holes to allow the dental mold to protrude through the plate.  

Another study also reported an improvement in patient positioning when the 

canines and the fourth premolars were supported by the maxillary plate, compared to the 

canine teeth alone (Nemoto et al. 2015). The maxillary plate had a groove on the top 

surface, which held the fourth premolar teeth, and the canines had to touch the flat surface 

of the plate. Based on Mayer et al. (2010) and Nemoto et al. (2015) studies utilizing 

maxillary plates that incorporated areas caudal to the fourth maxillary premolar teeth, it is 

possible that the inclusion of a greater extent could aid in better patient immobilization 

and repeatability of the position on the treatment table. 

Kubicek et al. (2012) reported that the use of a vacuum-locked bag (Vac-LokTM 

CIVCO, Orange City, IA, USA) with a maxillary support and a bite block (3M-Express STD 

PuttyTM 3M ESPE Dental Products, St. Paul, MN, USA) that is fixed to the treatment table 

resulted in a statistically better positioning accuracy than the use of the vacuum-locked 

bag without a bite block. 

Overall, immobilization devices with a maxillary plate involving the two canines and 

both fourth premolar teeth in the bite block, seem to confer a good patient repositioning 

reproducibility. Indexing the immobilization device to the treatment table seems to provide 

controversial results regarding the accuracy of patient set-up.   



19 

 

 

 

1.4.3. Positioning techniques 

When using immobilization devices, the patient’s position needs to be correlated 

to the treatment isocenter. Therefore, additional methods for patient repositioning are 

used, such as room lasers, and the treatment table index values. 

Skin reference marks with a permanent marker or alignment tattoos on the patient 

can be correlated to the room laser alignment beams. However, dogs and cats’ skin are 

particularly mobile, making this technique unreliable to accurately position the patient on 

the treatment table. For this reason, the use of room lasers combined with bony landmark 

palpation were evaluated in a veterinary study (Mayer et al. 2010). Other authors have 

reported the use of room lasers for alignment with reference marks placed on the 

positioning devices (Charney et al. 2009; Dieterich et al. 2015).  

Table index values can only be used when the positioning device is attached to 

the table (Kippenes et al. 2000). During the reference patient positioning, the reference 

table position is recorded and repeated for every treatment set-up. 

 

1.5. Sources of Uncertainties in Patient Repositioning 

Estimates of set-up error without image guidance for the canine head have been 

made using kV radiographs (Harmon, Van Ufflen, and LaRue 2009), MV radiographs 

(Hansen et al. 2015; Kent et al. 2009) and CT (Dieterich et al. 2015). The kV or MV 

radiographs were matched to the DRR, while the CT images after repositioning the patient 

were matched to the reference CT. Those methodologies assumed that image-matched 

position would be equal to the reference position. However, it is known that the set-up 

error after image-matching correction can result in residual set-up errors (Meeks et al. 
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2000; van Herk et al. 2000; Guckenberger et al. 2007; Masi et al. 2008; Dhillon et al. 

2017). Some of the reasons for the occurrence of set-up errors are the inability to correct 

rotations, the couch shift capability of correcting submillimeter differences in translational 

directions, localization accuracy of the imaging modalities used for image guidance, and 

isocenter differences within room lasers, on-board imaging (OBI) and the linear 

accelerator’s gantry. 

An inherent limitation of clinical studies is that they cannot evaluate the “true” 

position of the skull in the radiation treatment table because they are usually limited by 

reporting an estimate of the set-up error by calculating couch shifts or image 

displacements (Figure 1.1). Those methodologies completely rely on bony anatomy 

matching. One human phantom study (Chang et al. 2007) and one veterinary study 

(Mayer et al. 2010) have used fiducial markers embedded inside the skull of the phantom 

(Brown-Roberts-Wells phantom), or implanted in the surface of live dogs skulls (Suremark 

0.2 cm, The Suremark Company, Simi Valley, CA). The fiducials were measured from 

radiographic orthogonal images to measure the “true” position. 

 

Figure 1.1. Representation of an estimated set-up error based on couch shift or 

image displacement calculations, and the “true” set-up error based on implanted fiducials 

in the skull for intracranial targets. 
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Patient set-up errors have both systematic and random components. The use of 

an adequate immobilization device combined with image guidance techniques are 

believed to reduce patient set-up uncertainties. However, to our knowledge, post image 

guidance set-up errors (residual errors) have not been evaluated in the head region for 

veterinary patients. 

 

1.5.1. Localization accuracy of CT/CBCT 

The accuracy of CBCT image guidance for SRS set-up has been reported (Chang 

et al. 2007). In that study, a human head phantom containing fiducial markers was 

repositioned in a stereotactic head frame, and a CBCT of 2mm slice thickness was 

acquired to calculate the translational corrections to align the fiducial markers with the 

reference coordinates. Without performing the couch shifts calculated by the CBCT-CT 

matching, an orthogonal kV radiograph was acquired and compared to the CBCT-based 

corrections. The mean 3D difference between the CBCT and orthogonal kV radiograph 

corrections was 1.34mm.  

A CT slice thickness of 2mm introduces an uncertainty in the longitudinal direction 

of approximately 1mm, which corresponds to half of the slice thickness (Charney et al. 

2009). It is possible to reconstruct CT and CBCT scans to 1.0mm slice thickness (Huang 

et al. 2016). However, Charney et al. (2009) have mentioned that using a slice thickness 

smaller than 2mm would unlikely improve accuracy because there are other uncertainties 

introduced in patient repositioning, such as CT pixel size resolution and gantry angle 

precision, among others.  
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1.5.2. Accuracy of image registration 

Image registration or image fusion uncertainties can occur when image guidance 

is used in radiation therapy. This could possibly result in inaccuracies during treatment 

due to possible errors that can be introduced when the reference CT and the pretreatment 

images prior therapy are used for patient repositioning. A human phantom study has 

found that image registration from a conventional CT scan with a CBCT image can add a 

mean error of 0.28mm (Chang et al. 2007).  

The ICRU 91 recommends performing automated image registration using 

software tools followed by manual verification by the radiation therapist (ICRU Report 91, 

2017). 

 

1.5.3. Mechanical uncertainties of the equipment 

The laser position is considered acceptable if it is within 1mm from the radiation 

machine gantry isocenter (ICRU Report 91, 2017). 

 

Two factors can directly influence patient repositioning after image guidance: 

I. Couch shift precision 

There are commercially available radiation tables that can shift the couch top with 

0.1mm increments. The most commonly systems used to treat animals are equipped with 

couch tops capable of 1mm shifts. In those cases, a translational shift of ≤0.5mm cannot 

be precisely corrected. 
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Assuming that the use of a couch limited by 1mm shifts can contribute up to 0.5mm 

errors in each of the x, y, and z directions, the 3D displacement in this couch system can 

add up to √(0.5)2 + (0.5)2 + (0.5)2 = 0.87mm. 

 

II. Correction of rotation 

Four degrees of freedom (4DOF) tables can correct all three translational 

directions (x, y, and z vectors) and yaw rotation. The six degrees of freedom (6DOF) 

tables can correct the four degrees plus roll and pitch deviations. In theory, a 6DOF table 

would result in a better repositioning precision. The correction of rotations is even more 

important for irregularly shaped tumors because uncorrected yaw, pitch, and roll 

deviations could result in a geographic miss of the target if adequate margins are not 

added to compensate for them (Peng et al. 2010; Dhillon et al. 2017). When considering 

the volume of brain tissue and brain tumor volume ratio, intracranial tumors in dogs are 

proportionally larger than human brain tumors. For this reason, rotation may be even 

more relevant in veterinary medicine. 

Kelsey et al. (2018) have reported the outcome for canine meningiomas treated 

with stereotactic radiosurgery without CTV or PTV expansions, and using a 6DOF couch 

(Kelsey, Gieger, and Nolan 2018). However, the potential adverse events were similar to 

a study that reported canine meningioma cases treated with a fractionated SRT protocol 

using a 4DOF table (Griffin et al. 2014), even though the radiation treatments were 

planned with similar normal tissue constraint parameters.  

 

1.5.4. Dosimetric uncertainties 
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Some of the dosimetric uncertainties are related to output factors, dose calculation 

algorithm uncertainties, and penetration of the beam (ICRU Report 83, 2010; ICRU 

Report 91, 2017). These factors are not going to be further detailed in this thesis. 

 

1.5.5. Uncertainties in target delineation 

Uncertainties in target delineation relate to errors during the radiation planning 

portion and they contribute to PTV margin selection. 

I. Correlation of histopathology and diagnostic imaging 

It has been reported that the real tumor extension proven by histopathological 

evaluation can be different to the tumor area that is visible in CT or MR images (Jansen 

et al. 2000). One study has found that approximately 35% of untreated glioma patients 

had tumor cells present outside the hyperintense areas visualized in MR T2-weighted 

images (Watanabe, Tanaka, and Takeda 1992). 

 

II. Treatment policy, intra- and interobserver variability 

The treatment policy term is related to each radiation oncologist’s decision on 

treating or not the entire macroscopic and/or microscopic tumor volume (Jansen et al. 

2000). Some radiation oncologists include edema as being part of the GTV or CTV, but 

the amount of edema is partially related to steroid dose and it can be variable (Cattaneo 

et al. 2005).  

Besides differences in treatment policy, the intra- and interobserver delineation 

uncertainty is another contributor to target delineation uncertainties. The intraobserver 

variability consists on differences in contouring of the same set of images, made by the 
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same observer during distinct time frames. The interobserver variability is related to 

differences in tumor delineation between two or more observers.  

In a study by Weltens et al. (2001), MR-CT volumes were larger than on CT alone 

by 10% (p<0.01), but some volumes were delineated on CT and not on MR. For this 

reason, combination of both modalities is recommended, even though there was no 

statistical difference in the interobserver variability when CT was used alone or in 

combination with MR (Weltens et al. 2001). Furthermore, the study found maximum 

variations in the lateral, vertical, and longitudinal directions of 10.7mm, 5.3mm, and 

4.4mm, respectively. Using the 3D formula presented previously, these values would 

correspond to a 3D displacement of 12.7mm. 

 

III. CT-MR co-registration  

It has been shown that combining MR and CT tumor volume information is the best 

approach to ensure better tumor coverage in radiation therapy (Haken et al. 1992).  

In veterinary patients, MR images can be used for tumor delineation with or without 

perfect fusion with CT images (Kelsey, Gieger, and Nolan 2018). When CT and MR 

images are not co-registered with image fusion, it means that MR images are used to 

help defining tumor extension by visual comparison of the two image modalities. 

However, co-registering the MR images without image fusion means that the patient was 

not in the same position as the planning CT scan. This can contribute to inaccuracy in 

spatial resolution and errors in tumor delineation (Rosenman 2001). A study by Cattaneo 

et al. (2005) found that the interobserver concordance index for fused CT-MR was 
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significantly smaller (p<0.02) compared to when visual comparison of CT-MR scans is 

used (Cattaneo et al. 2005). 

 

1.6. Objectives 

To the author’s knowledge, there are no studies in the veterinary medicine 

literature reporting the residual set-up error for radiotherapy patients. Although this error 

has been previously hypothesized to be in the submillimeter range (Harmon, Van Ufflen, 

and LaRue 2009; Dieterich et al. 2015), studies in the human medicine have reported that 

set-up errors remain after couch shift corrections based on image guidance. 

 

1.7. Student’s Contribution to the Manuscripts 

The student has done a literature review on residual set-up error studies published 

in human patients, and a literature review on set-up errors for the canine head region. 

The selection of the six dog cadavers for this experiment was performed by the 

student and the supervisor. The implantation of the five fiducial markers in all 12 dogs’ 

skulls was done by the student. The student was responsible for the proper storage of the 

dogs during the experiments. All 414 set-ups were concomitantly performed by the 

student and the supervisor.  

The student collected all the data on the fiducial markers’ positions using the ARIA 

software (Varian Medical Systems, Palo Alto, CA) and registered the data in a 

spreadsheet. 

Initial drafting of both manuscripts was done by the student. The student and all 

the co-authors were responsible for revision of the manuscripts.  
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2. CHAPTER TWO: RESIDUAL SET-UP ERROR IN THE CANINE INTRACRANIAL 

REGION AFTER MV, KV AND CBCT ONLINE CORRECTION FOR RADIATION 

THERAPY 

This manuscript has been submitted to the Veterinary Radiology & Ultrasound on 

January 22nd, 2019 and is being evaluated for publication in the current date (Feb 28th, 

2019). The copyright of this chapter will belong to the journal it will be published in. 

 

2.1. Abstract 

The residual set-up error is not a concept that has been extensively investigated 

in the veterinary literature. This study aimed to quantify the set-up error that remains after 

MV-, kV-, and CBCT-image guidance and couch shift corrections are performed for the 

canine head region radiation therapy. Six dogs were positioned 45 times as for clinical 

treatment using a vacuum deformable body cushion, a customizable head cushion, a 

thermoplastic mask, and a maxillary plate with a dental mold. Five lead markers were 

implanted in the skull of the canine cadavers to measure the residual set-up error using 

orthogonal kV radiographs. The 95th percentiles of the 3D displacements after online MV, 

kV, and CBCT-guided correction were 2.8mm, 2.6mm and 3.6mm, respectively, and 

4.2mm for the immobilization device without image guidance. In order to avoid important 

geographical miss, residual set-up errors should be included in the planning target volume 

margin when stereotactic radiation treatments are planned. Under the conditions of this 

study, which included a 4 degrees-of-freedom couch with 1mm increment translational 

move capability, online correction of the canine head region using MV and kV guidance 

resulted in better accuracy than correction using CBCT guidance.    
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2.2. Introduction 

Image guidance aids in margin reduction to be added around the tumor volume for 

radiation treatments by increasing targeting accuracy (Dieterich et al. 2015; Hansen et al. 

2015; Harmon, Van Ufflen, and LaRue 2009; Kent et al. 2009). Two-dimensional image 

guidance, such as MV and kV radiographs, or 3D-imaging techniques (i.e. CBCT) can be 

used for pretreatment patient position verification.  

Residual set-up errors are displacements that remain after couch corrections are 

performed using image-guided techniques. They have been previously hypothesized to 

be in the submillimeter range (Harmon, Van Ufflen, and LaRue 2009; Dieterich et al. 

2015), however errors in the millimeter range have been proved to remain (Meeks et al. 

2000; van Herk et al. 2000; Guckenberger et al. 2007; Masi et al. 2008; Dhillon et al. 

2017). Residual set-up errors have not been measured in veterinary medicine prior to this 

work. 

The inaccuracies in patient repositioning are related to localization accuracy of the 

CT scan, accuracy of image registration, mechanical uncertainties of the equipment, 

variations in patient positioning, and uncertainties in target delineation. If all the possible 

uncertainties were taken into account to compose a tumor margin, the volume irradiated 

would likely be so large that an unacceptable risk of normal tissue irradiation could result. 

On the other hand, insufficient margins could also lead to treatment failure if significant 

volumes of tumor tissue are not irradiated.  

The objective of this study was to measure the residual set-up error after position 

correction guided by pretreatment MV or kV radiographs, or CBCT scans, using spherical 

lead markers implanted in the skull of six dog cadavers and a 4DOF couch. Considering 
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that CBCT allows visualization of both bones and soft tissues in three-dimensional space, 

the hypotheses were that image guidance would reduce set-up error, and that residual 

set-up error would be lower after CBCT-based correction than MV- or kV-based correction 

for the head region. 

 

2.3. Materials and Methods 

2.3.1. Subject preparation 

Six dog cadavers (median weight 24.3kg, range 21.6-30.6kg) with a 

mesaticephalic skull conformation were used to simulate canine patients in this study. 

The University of Saskatchewan’s Animal Research Ethics Board (protocol number 

20150073). 

For each dog, a cutaneous incision of 2.5cm was made, and the musculature was 

dissected in order to visualize the following regions of the cranial bones: left nasal bone, 

left cranial zygomatic bone, right temporal bone, right caudal zygomatic bone, and left 

occipital bone. Using a mechanical drill, the bones were drilled to a depth of approximately 

2mm, to fit the 2mm spherical lead markers (Suremark® X-ray labels SL-20, The 

Suremark Company, Simi Valley, CA). The lead markers were fixed with tissue adhesive 

(3M Vetbond, 3M Animal Care Products, Saint Paul, MN), and the musculature, 

subcutaneous tissue, and the skin were also closed using the tissue adhesive. 

 

2.3.2. Immobilization and reference image acquisition 

The dogs were immobilized in sternal recumbency using a vacuum deformable 

body cushion (SecureVac™, Bionix Radiation Therapy, Toldeo, OH), a thermoplastic 
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neck cushion ventral to the head and cervical region (Klarity™ Moldable AccuCushion, 

Klarity Medical Products, Newark, OH), a custom-made maxillary plate (6.0 cm width x 

9.5 cm height x 17.1cm length) with variable length of maxillary teeth immobilization 

(incisors to 1st to 4th premolar), thermoplastic bite block (EZ Bolus Thermoplastic Pellets, 

Klarity Medical Products, Newark, OH) and a thermoplastic head mask dorsal to the head 

region (Green Profile Frame Extended Head Mask, Klarity Medical Products, Newark, 

OH). The maxillary plate had three holes of 6mm on its surface that made it possible to 

fix the thermoplastic bite block. In this system, the thermoplastic head mask was not 

attached to the maxillary plate. Four screws attached the thermoplastic mask to the 

carbon fiber board. All the items were attached to a carbon fiber board that was indexed 

to the treatment table. This immobilization system (VMC device) is the same device used 

for clinical patients at the Veterinary Medical Centre (VMC), University of Saskatchewan 

(Figure 2.1). 

 

Figure 2.1. The VMC device used for immobilizing and repositioning patients with 

intracranial tumors treated with radiation therapy. A: thermoplastic neck cushion ventral 

to the head and cervical region (I), thermoplastic bite block (dotted arrow), custom-made 
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maxillary plate (II), carbon fiber board (III), vacuum deformable body cushion (IV). B: 

thermoplastic head mask (V), CT marker (solid arrow). 

 

After immobilizing the dogs, ink marks were drawn on tape placed on the mask’s 

external surface, in the approximate region centrally to the brain to be able to correlate 

the room laser isocenter to the radiation machine imaging isocenter. Three CT markers 

(Suremark® CT labels CT-23, The Suremark Company, Simi Valley, CA) were placed 

where the ink marks intersected on the dorsal and both lateral aspects of the 

thermoplastic mask.  

A Varian Clinac 21EX 6MV linear accelerator (Varian Medical Systems, Palo Alto, 

CA) with an OBI system (On-Board Imager Advanced Imaging, Varian Medical Systems, 

Palo Alto, CA), and equipped with a 4DOF couch with 1-mm shift capability in the three 

translational directions and a minimum of 0.1° yaw rotation capability. The OBI system 

has two parts: the x-ray source is positioned at 270° and the receptor at 90° relatively to 

the gantry angle (Figure 2.2). 
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Figure 2.2. The OBI system (solid arrows) and the gantry (dotted arrow) of a Varian 

Clinac 21EX 6MV linear accelerator. 

 

Using the OBI system, the reference CBCT scan was acquired sequentially after 

the immobilization procedure. The CBCT scan parameters were 100kV, 150mAs, 2mm 

slice thickness, 0.49mm x 0.49mm pixel size, and a gantry rotation from 22° to 178° 

counter-clockwise or clockwise. The reference orthogonal kV images were also acquired, 

and the imaging parameters were 70-80kVp and 200mA, with gantry angles of 0° and 

270°.  

 

2.3.3. Quality assurance 

The gantry, collimator and yaw couch angles are verified every month. The 

tolerance for this quality assurance procedure is 1mm and 0.1° in yaw rotation, which is 

in accordance to the VRTOG standards (LaDue and Klein 2001). 
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The linear accelerator, the OBI system, and the couch shift accuracy are tested 

daily at the Veterinary Medical Centre. An ion chamber-based device (CheckMate-2, Sun 

Nuclear Corporation, FL) is used for the linear accelerator output quality assurance, and 

a deviation of 2% is considered to be an acceptable tolerance. The OBI system and couch 

shifts are tested using kV radiographs on a phantom with embedded markers. The 

markers are aligned using image registration with the kV images to the isocenter, and the 

couch is moved. A 1-mm difference between the gantry isocenter and the collimator 

isocenter is considered acceptable for this quality assurance procedure. 

 

2.3.4. Test set-ups and image guidance 

In order to perform unbiased CBCT image matching, the lead markers were 

obscured using OsiriX v.3.9.3 software. Not only the lead marker, but also the area around 

the lead marker was also obscured using the software. Dorsoventral and lateral DRR 

views were reconstructed from the edited reference CBCT, using the Eclipse™ software 

(Varian Medical Systems, Palo Alto, CA). 

Using the immobilization system and the room lasers, each subject was 

repositioned 45 times simulating a clinical set-up in a canine patient treated with radiation 

therapy. The set-ups were made by an American College of Veterinary Radiology board-

certified radiation oncologist (Monique Mayer) and a graduate student (Celina Morimoto).  

Three modalities for image guidance were used: orthogonal kV radiographs, 

orthogonal MV radiographs, or CBCT. For each experimental group, 15 set-ups were 

made alternating between modalities. Using ARIA software (Varian Medical Systems, 

Palo Alto, CA), the test kV radiographs and test MV radiographs were registered to the 
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reference DRRs, while the test CBCT was matched to the reference CBCT (Figure 2.3). 

All test set-ups verified with image guidance were manually performed by a certified 

radiation therapist with five years of experience in veterinary radiation oncology (Rachel 

Bloomfield).  

 

 

Figure 2.3. Image matching for patient position correction. A: a lateral view MV 

radiograph matched with the reference DRR. B: a lateral view kV radiograph matched 

with the reference DRR. C: transverse view CBCT image matched with the reference 

CBCT. 

 

The couch shifts in the lateral, longitudinal, and vertical directions, and yaw 

rotations after image guidance were calculated by the ARIA software (Varian Medical 

Systems, Palo Alto, CA) and applied. No further imaging for couch correction was 

performed after couch shifts were made. Shifts larger than 5mm or yaw rotations larger 

than 2 degrees were considered unacceptable. For every unacceptable displacement, 

the dog was re-positioned, and image guidance performed again. Although pitch was not 

possible to correct, this rotation was assessed by comparing the displacement between 
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the palatine portion of the maxillary bone and the external occipital protuberance. If the 

vertical distance between those anatomical landmarks were ≥3mm, the set-up was 

considered unacceptable. 

After the image-guided couch correction was performed, one dorsoventral and one 

lateral orthogonal kV image was taken. 

 

2.3.5. Data collection 

The lead marker positions were measured relatively to the kV imaging isocenter. 

The set-up error (3D displacement) was defined as the difference between the reference 

kV marker positions and the marker positions on the kV radiographs when the dogs were 

repositioned using an immobilization device, with or without couch corrections following 

image guidance. 

The lead markers were measured in the three translational directions, in which the 

lateral (left to right) and longitudinal (caudal to rostral) vectors were measured from the 

dorsoventral view, acquired at a 270° gantry angle. The vertical vector (ventral to dorsal) 

was measured from the lateral radiograph view, with the gantry at 0°. 

For the kV-DRR match experimental group, the radiographs taken to match the 

dogs’ positions to the reference DRR were also used to measure the accuracy of the 

positioning device without image guidance. 

One single observer (Celina Morimoto) performed all the measurements (n = 

5,400) using the ARIA Offline Review software (Varian Medical Systems, Palo Alto, CA), 

and an interobserver variability comparison was performed to detect a possible 

subjectivity in measuring the markers on the radiographs. A second observer (Monique 
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Mayer) measured 180 data points using the same software. One pair of radiographs from 

each dog was compared to the measurements from the first observer. The two observers 

analyzed the data independently. The data were recorded using Microsoft Office Excel 

2016 software (Microsoft Corporation, Redmond, WA).  

 

2.3.6. Statistical analysis 

All data analyses were performed by an analytic epidemiologist (Cheryl Waldner). 

The data was stratified by experimental group (no image guidance, MV-, kV-, or CBCT-

image-guided correction), set-up (set-up 1-15), subject (dogs 1 to 6), lead marker location 

(1 to 5). The 3D displacement was calculated using the following formula (AAPM Task 

Group 42, 1995): 

√(𝑥𝐴 − 𝑥𝐵)2 + (𝑦𝐴 − 𝑦𝐵)2 + (𝑧𝐴 − 𝑧𝐵)2 ……………………………………………(2.1) 

where (𝑥𝐴, 𝑦𝐴, 𝑧𝐴) represent the coordinates of the fiducial markers on the reference 

images, and (𝑥𝐵, 𝑦𝐵, 𝑧𝐵), the coordinates on the test set-up images (AAPM Task Group 

68, 2005). 

The 3D displacement difference among the four experimental groups were 

estimated performing pairwise comparisons using mixed-effects linear regression with 

random effects to account for repeated measures for each subject, individual set-ups and 

lead markers (STATA/SE version 14 for Windows, StataCorp, College Station, TX).  

Using a similar mixed-effects logistic regression model, we evaluated if when the 

set-up without image guidance was greater than 1mm, the set-up after kV-guided 

correction was also more likely to be greater than 1mm. The same was performed for 
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when no image guidance was greater than 1mm, 2mm and 3mm, with the effect on the 

set-up after kV-guided correction being greater than 1mm, 2mm, and 3mm. 

The interobserver variability analysis consisted on using Lin’s concordance 

coefficient (STATA/SE version 14 for Windows, StataCorp, College Station, TX). 

For all analyses, differences with p<0.05 were considered statistically significant. 

 

2.4. Results 

2.4.1. 3D displacement before and after image guidance 

The 95th percentile of the mean 3D displacement for each experimental group was 

4.2mm, 2.8mm, 2.6mm, and 3.6mm for pre-image guidance, MV-, kV-, and CBCT-image 

guidance, respectively. 

The analysis of the mean relative to zero showed that there was a large 

displacement of 1.3mm to the ventral direction in the CBCT-image guidance experimental 

group. The remaining experimental groups showed no displacements larger than 1mm in 

any direction based on the mean relative to zero. Table 2.1 summarizes the results of this 

experimental study. The statistical analysis showed that there was no difference between 

the mean 3D displacement before image correction and after MV-image guidance 

(p=0.31). For all other comparisons, the mean 3D displacement was statistically different 

(p<0.01). 

 

2.4.2. 3D displacement and the residual set-up error 

The residual set-up error was affected by the 3D displacement prior to image-

guided couch corrections. If the 3D displacement before image-guided correction was 
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>2mm, the post-kV residual set-up error was more likely to be >2mm (OR=2.38, 95%CI 

1.17-4.82, p=0.016). Furthermore, if the 3D displacement before image-guided correction 

was >3mm, the post-kV residual set-up error was also more likely to be >2mm (OR=3.74, 

95%CI 1.38-10.15, p=0.01). 

 

2.4.3. Interobserver variability 

The interobserver variability for measuring the lead marker positions to the image 

isocenter was very small (Lin’s concordance coefficient 1.000; SE <0.001, n=177). The 

average difference was <0.001 with a SD=0.004.  
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aLeft-Right vector 
bVentral-Dorsal vector 
cCaudal-Rostral vector 
dFor calculation of the mean relative to zero, displacements to left, ventral and caudal directions were 
assigned a negative value.  
eThe absolute mean was reported so that errors in opposite directions did not cancel each other out. 
f95% Confidence Interval, calculated using the mixed effects linear regression model  

Table 2.1. Translational and 3D displacements (millimeters) prior to image-guided set-up and after 

MV-, kV-, and CBCT-image-guided couch corrections in six cadaver dogs (n = 90 set-ups for each 

condition)  

Condition   L-Ra V-Db C-Rc 3D displacement 

Before image 

guidance 

Mean Relative to Zerod 0.1 -0.4 -0.6 - 

Absolute Meane 0.7 0.9 1.1 1.7 

95%CIf 0.6, 0.8 0.6, 1.1 0.8, 1.3 1.4, 2.0 

95th Percentile 2.0 2.7 2.8 4.2 

      

MV 

Mean Relative to Zerod 0.6 0.7 0.4 - 

Absolute Meane 0.8 0.9 1.0 1.7 

95%CIf 0.7, 0.9 0.6, 1.1 0.7, 1.2 1.4, 2.0 

95th Percentile 1.8 1.9 2.1 2.8 

      

kV 

Mean Relative to Zerod 0.3 0 0 - 

Absolute Meane 0.6 0.7 0.9 1.5 

95%CIf 0.6, 0.7 0.5, 1.0 0.6, 1.1 1.2, 1.8 

95th Percentile 1.6 2.0 2.2 2.6 

      

CBCT 

Mean Relative to Zerod 0.7 -1.3 0.6 - 

Absolute Meane 0.8 1.5 1.0 2.2 

95%CIf 0.7, 0.9 1.2, 1.7 0.7, 1.2 1.9, 2.5 

95th Percentile 1.9 3.2 2.1 3.6 
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2.5. Discussion 

This study results supports our initial hypothesis that the repositioning accuracy 

based on the 95th percentile of the mean 3D displacement is improved after image 

guidance, compared to when image guidance is not used. However, we did not expect to 

find that CBCT guidance would not provide an advantage in repositioning accuracy 

compared to the other two modalities tested. 

Overall, the residual set-up error was higher than expected for the three image 

guidance technologies tested. To the authors’ knowledge, this is the first veterinary study 

that reported the set-up error after couch corrections are applied based on image 

guidance with MV, kV or CBCT. 

Among the different methods for set-up margin calculation published in the 

literature, we chose to report the 95th percentile of the 3D displacement. The mean 3D 

displacement itself would not represent a margin number as it does not represent the 

width of error probability distribution. Knowing that the data in this study did not follow a 

normal distribution, the use of the 95th percentile supports selection of a PTV margin 

generated directly from this experimental model, and it would guarantee that the GTV is 

encompassed in 95% of the patient set-ups (AAPM Task Group 68, 2005).  

Although the methods of measuring set-up error differ in the literature, other 

studies have reported the set-up positioning accuracy without image guidance (Kent et 

al. 2009; Hansen et al. 2015; Dieterich et al. 2015). Using different immobilization 

systems, the range of the 95th percentile reported in all studies were between 3.5 to 

6.4mm. Our 95th percentile of the 3D displacement of 4.2mm before image guidance falls 

within the interval reported in the veterinary literature. 
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The current study relied on laser alignment of ink marks on the thermoplastic mask. 

The authors noted that there was some variability when the screws attaching the mask to 

the carbon fiber board were tightened, and this could contribute to a larger error in patient 

positioning prior to image guidance. 

Considering the numerous sources of uncertainties that can happen during patient 

set-up and repositioning, it is unlikely that a zero error would be achieved. Some of the 

uncertainties were described in Chapter 1, and include: localization accuracy of CT and 

CBCT, accuracy of image registration, mechanical uncertainties of the equipment, 

variations in patient positioning, uncertainties in target delineation, and others. 

Two human phantom studies have used a similar methodology to evaluate set-up 

errors. For CT-guided repositioning, a mean 3D displacement±SD of 1.33±0.64mm was 

used to calculate an error of less than 2.4mm in 95% of the individual treatments (Lutz, 

Winston, and Malleki 1988). For CBCT-guided repositioning, a mean 3D 

displacement±SD of 1.34±0.33mm has been reported (Chang et al. 2007). Using the 

same methodology as reported by Lutz et al. (1988), the 95th percentile of CBCT-guided 

repositioning in a human head phantom was 1.9mm.  

Considering that both phantom studies were not limited by couch shifts, the error 

is expected to be smaller than the current study. Differently from the phantom studies 

cited, the image guidance in our experimental study was solely based on bony image 

registration, without using the lead markers for repositioning of the dogs. Larger errors 

would be expected when anatomical targets are used for image registration. 

Opposing our initial hypothesis, MV and kV image-guided repositioning resulted in 

a smaller error compared to CBCT image guidance. Although CBCT allows verification of 
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all three rotation planes, the use of a 4DOF limits patient correction in pitch and roll 

rotations. Therefore, the advantage of detecting rotations on a CBCT scan is not used to 

its full extent.  

In addition, we found a large ventral displacement after CBCT-guided correction. 

This study design eliminates the possibility of having a systematic error introduced by the 

difference in CBCT isocenter. The reference CBCT and kV images were taken 

sequentially, without moving the dogs from the table. Even with differences in the CBCT 

and the kV image isocenters, the setup error measured for CBCT guidance would not be 

influenced by those differences. This is because the reference CBCT was compared with 

the verification CBCT to correct position, and the reference kV radiograph was compared 

with the kV image for lead marker position measurement. Furthermore, we hypothesized 

that by using sagittal and dorsal reconstructions on CBCT, only a single plane of the scan 

is taken into consideration. For this reason, the fact that the overlay in the skull anatomy 

was not possible using the sagittal and dorsal planes of CBCT reconstruction, a 

systematic error during manual image registration was possibly introduced.  

Because of the nature of orthogonal kV and MV radiographs acquisition, the two 

modalities are able to capture the full anatomy of the bones, and this could have led to a 

better repositioning accuracy when these 2D imaging techniques are used for intracranial 

targets. Based on our findings, MV and kV radiographs can be considered as adequate 

repositioning image modalities, even when highly conformal targets are necessary for 

high dose hypofractionated radiation therapy. 

In our data analysis, it was found that if the 3D displacement prior to image 

guidance was small, the residual set-up error was also small. Therefore, the results 
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support that the positioning error prior to image verification should be minimized using 

immobilization systems that provide the best repositioning repeatability. 

The current PTV margin used at the Western College of Veterinary Medicine, 

University of Saskatchewan, is 1mm around the GTV with CBCT image guidance prior to 

every fraction to be delivered. Increasing the PTV margin could result in simultaneously 

increased risk of side effects to normal tissues, but also an increase in tumor control 

probability by reducing the chance of a geographical miss of the target. A larger isotropic 

PTV margin is being considered by the authors. 

The outcomes reported using high dose hypofractionated radiation therapy have 

been similar to conventionally fractionated protocols. The PTV margins reported for SRS 

or SRT have been 0mm (Kelsey, Gieger, and Nolan 2018; Mariani et al. 2013) and 1-

2mm (Griffin et al. 2014), respectively. 

Although mechanical uncertainties and human errors may vary between 

institutions, other sources of uncertainties may not be possible to extinguish, such as 

couch shift limitation to correct errors smaller than 1mm, localization accuracy of CT and 

CBCT, and image registration accuracy. The methodology of the current study did not 

capture errors from CT image transfer to the radiation machine unit or imaging isocenter 

to radiation isocenter differences. These should be taken into consideration when 

choosing the PTV margins to account for possible uncertainties in radiation treatment 

delivery. 

The error introduced by CT image isocenter transfer to the radiation isocenter was 

not quantified in our study, and it should be added separately when margins are selected 

for radiotherapy planning. The reason CBCT scans were used as a reference image was 
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because reference kV radiographs needed to measure marker position could be acquired 

at the same time without moving the dog from the treatment table. 

Some limitations of the current study are related to manual image registrations 

performed by a single observer. On the other hand, the limitation of having one individual 

measuring the lead marker positions was proven to be eliminated, as the interobserver 

variability was shown to be very small. 

Another limitation is that correction of pitch and roll rotations could lead to an 

increase in repositioning accuracy if a 6DOF couch was used. Furthermore, a couch with 

a submillimeter shift capability may contribute to a smaller residual set-up error for all 

imaging modalities for patient position verification. 

 

2.6. Conclusion 

This study confirmed that image guidance decreases the probability of errors in 

patient set-up for radiation targets in the intracranial region. When highly conformal PTV 

margins are required, such as in SRT or SRS treatments, image guidance prior to every 

radiation fraction should be performed to reduce the chance of set-up errors. However, 

this study has shown that the residual set-up errors were larger than expected, and not 

within the submillimeter range as hypothesized previous studies (Harmon, Van Ufflen, 

and LaRue 2009; Dieterich et al. 2015). Further studies exploring the use of more 

accurate immobilization devices should be conducted aiming to reduce the residual set-

up error in the current linear accelerators available for veterinary patients. 

 Under the conditions of this experimental design using a 4DOF couch with 1-mm 

shift capability, image guidance with kV or MV resulted in a better repositioning accuracy 
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compared to CBCT-image guidance. The 3D displacement found in this experimental 

design favors the use of MV and kV over CBCT for stereotactic radiosurgery protocols 

and stereotactic radiation treatments, where match is performed based only on the bony 

anatomy for the intracranial region.  
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Transition from research project 1 to research project 2 

The study described in Chapter 2 found that the 95th percentile of the 3D 

displacement that represents the residual set-up errors using image guidance with MV 

radiographs, kV radiographs, or CBCT, in combination with the VMC device was larger 

than originally expected, ranging from 2.6 to 3.6mm. The 95th percentile of the 3D 

displacement set-up error without image guidance in our initial experiment was within the 

range reported in the literature. 

Based on set-up errors reported with different immobilization devices available for 

the canine head region, the HRD has shown to provide a repositioning accuracy of 

1.9mm. For this reason, we decided to evaluate the effect of the HRD and the residual 

set-up error after MV- or CBCT-image-guidance described in Chapter 3.  
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3. CHAPTER THREE: RESIDUAL SET-UP ERROR FOR CANINE BRAIN RADIATION 

THERAPY AFTER MV AND CBCT ONLINE CORRECTION USING A HEAD-

REPOSITIONER SYSTEM FOR IMMOBILIZATION  

This chapter will be submitted for publication. The copyright of this chapter will 

belong to the journal it will be published in. 

 

3.1. Abstract 

In our first study on residual set-up error we found that if the set-up error prior to 

image guidance is small, the residual set-up error was also small. The goal of this second 

study was to quantify the residual set-up error using the HRD immobilization system 

(Charney et al., 2009) after MV-, and CBCT-image guidance and couch shift corrections 

are performed for the canine patients treated with radiotherapy in the head region. Six 

dogs were positioned 24 times using the HRD. The residual set-up error was determined 

by measuring the position of the implanted five lead markers based on kV orthogonal 

radiographs. The 95th percentiles of the 3D displacements after online MV, and CBCT-

guided correction were 2.1mm, and 2.9mm, respectively, and 2.8mm for the 

immobilization device with no image guidance procedures. There was a statistically 

significant difference in the set-up error (p=0.019) between the VMC device without 

image-guidance and the HRD without image-guidance. This is possibly attributable to the 

inclusion of all upper molar teeth in the HRD’s bite block. 
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3.2. Introduction 

Clinical studies have reported different PTV margins used to encompass set-up 

errors in canine brain tumor patients. Although statistical significance between different 

studies cannot be analyzed, good outcomes were reported in studies with canine brain 

tumors treated with different irradiation protocols (Keyerleber et al. 2013; Griffin et al. 

2014; Kelsey, Gieger, and Nolan 2018). Therefore, as the PTV margins reported for SRS 

and SRT were 0 and 1-2mm (Griffin et al. 2014; Kelsey, Gieger, and Nolan 2018), 

respectively. It is possible that tumor volumes may be missed in clinical treatments using 

SRS or SRT, but acceptable outcomes have been achieved with this newer technology 

despite the possibility of a target missed.  

A veterinary study describing the head-repositioning device (HRD) designed by 

Charney et al. (2009) has found that the mean 3D displacement and its 95th percentile 

without any type of image-guided technology was very small, measuring 0.9mm and 

1.9mm, respectively (Mayer et al. 2010). Furthermore, a better repositioning capability 

has also been reported in another veterinary study when a larger portion of the maxilla is 

immobilized (Nemoto et al. 2015). 

Our previous finding supports that the accuracy on patient position prior to image 

guidance affects the residual set-up error after couch corrections. Furthermore, 

considering that a small error is achieved when the HRD is used (Mayer et al. 2010), we 

aimed to evaluate the effect of image guidance based on MV- and CBCT-image guidance 

using the HRD to immobilize the patients. For this study, we hypothesized that there 

would be no difference between the 3D set-up errors for the head region when the HRD 

is used alone or in combination with MV or CBCT image-guided couch corrections. 
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3.3. Materials and Methods 

3.3.1. Subject preparation 

Six dog cadavers (median weight 20.0kg, range 18.6-27.6kg) with a 

mesaticephalic skull conformation were used in this experimental study. The study 

protocol was approved by the University of Saskatchewan’s Animal Research Ethics 

Board (Animal Use Protocol Number 014CatA2017). The subject preparation was similar 

to the methodology described in Chapter 2. 

 

3.3.2. Immobilization and reference image acquisition 

The dogs were immobilized in sternal recumbency using the HRD (Charney et al. 

2009). This immobilization device has a full-body wooden board that is not indexed to the 

treatment table, a plastic maxillary plate with drilled holes that allow the maxillary teeth to 

protrude through, and a moldable bite block (VP Mix Putty Regular Set, Henry Schein, 

Melville, NY) is placed on the top surface of the maxillary plate (Figure 3.1). The maxillary 

plate length covered all the teeth, and the bite block encompassed all upper incisors, 

canines and premolar teeth.  

Medical tape was placed on the skin, dorsal to the nasal bone region to hold the 

maxilla in the maxillary plate. In order to reduce possible pitch rotation, a rigid Styrofoam 

pillow was placed in the ventral neck area. 

Pen marks on masking tape were placed on the wooden board where the room 

lasers aligned during the reference set-up. In this experimental design, the HRD’s Z-plate 

was only used for laser alignment. The Z-plate consists of two lateral acrylic plastic plates 

and a removable top plate that connects the two lateral parts. The side plates are fastened 
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with plastic wing screws to the wooden board in a reproducible manner. The room lasers 

were aligned with one of the Z-plate’s left and right 1mm-grooves. When a difference in 

vertical and/or horizontal laser alignment between the two lateral surfaces of the Z-plate 

were seen during the test set-ups, the difference was split between both sides. The top 

plate was aligned with the field light from the radiation machine’s gantry.  

Three CT markers (Suremark® CT labels CT-23, The Suremark Company, Simi 

Valley, CA) were placed where the room lasers crossed on both lateral surfaces, and the 

field light simultaneously overlapped the top surface of the Z-plate (Figure 3.1). 

 

Figure 3.1. A: One CT marker on the surface of the Z-plate (asterisk); the head-

repositioning device has a full-body wooden board (I), a plastic maxillary plate (II), and a 

rigid Styrofoam pillow (III). B: the plastic maxillary plate showing the drilled holes that 

allow the maxillary teeth to protrude through. C: the moldable bite block (arrow). 

 

The same linear accelerator, OBI system, radiation treatment couch, and scan 

parameters described in Chapter 2 were used in this experiment. A reference CBCT scan 
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and reference orthogonal kV radiographs were acquired immediately after immobilizing 

each subject. 

 

3.3.3. Quality assurance 

The quality assurance protocol and the system accuracy tolerance were kept the 

same during the studies described in Chapters 2 and 3. 

 

3.3.4. Test set-ups and image guidance 

The lead markers were also obscured in this experimental design using OsiriX 

v.3.9.3 software. Not only the lead marker, but also the area around the lead marker was 

obscured using the software. The dorsoventral and lateral DRR images were generated 

from the lead marker-obscured reference CBCT scan using Eclipse™ software (Varian 

Medical Systems, Palo Alto, CA). 

Each subject was repositioned 24 times using the HRD and room lasers. All set-

ups were made by the same personnel from the experiment described in Chapter 2. All 

image registrations with MV and reference DRR (n = 12 set-ups) and CBCT with the 

reference CBCT (n = 12 set-ups) were performed by the same radiation therapist as in 

the study described in Chapter 2. The lateral, longitudinal, and vertical couch shifts, and 

yaw rotations were calculated and applied using ARIA software (Varian Medical Systems, 

Palo Alto, CA). If the couch shifts were not within the acceptable tolerance of 5mm in 

translational vectors or 2 degrees in yaw rotation, the set-up was re-done, and image 

guidance was repeated. 
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For all test set-ups, the kV images were acquired prior to the image-guided 

correction in both experimental groups to evaluate the positioning accuracy of the dogs 

without image guidance, using only the positioning device. 

After every image-guided couch correction, a pair of orthogonal kV radiographs 

was taken to measure the residual set-up error after image guidance with MV or CBCT, 

using the HRD for patient immobilization. Each pair of x-ray image consisted of one 

dorsoventral and one lateral view of the skull. 

 

3.3.5. Data collection 

The set-up error was calculated using the difference between the lead markers on 

the reference kV to the image isocenter and the markers on each test set-up to the 

isocenter. The same methodology for data collection was used from the study described 

in Chapter 2. 

One single observer (Celina Morimoto) performed all the data collection of 1,435 

measurements. One pair of kV images acquired after MV image-guided couch correction 

had failed to transfer to the ARIA system, and the lead markers distance to the image 

isocenter could not be measured. 

 

3.3.6. Statistical analysis 

Data analyses were made by an analytic epidemiologist (Cheryl Waldner). The 

data was stratified by experimental group (no image guidance, MV- or CBCT-image-

guided correction), subject (dogs 7 to 12), set-up (1 to 12), and lead marker location (1 to 

5). The 3D displacement was calculated using the square root of the sum square 
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differences in the three translational vectors (x, y, z), applying the square root of x, y, and 

z square sum.  

The 3D displacements difference between the three experimental groups were 

compared using mixed-effects linear regression, and the random effects to account for 

repeated measures for each dog, individual set-ups and lead markers (STATA/SE version 

14 for Windows, StataCorp, College Station, TX).  

For the comparison between the HRD (Chapter 3) and the VMC device (Chapter 

2), a mixed-effects linear regression was made, and the random effects to account for 

repeated measures for each dog (1-12), set-ups (1-15) and lead markers (1-5). 

For all analyses, differences with p<0.05 were considered statistically significant. 

 

3.4. Results 

3.4.1. 3D displacement before and after image guidance 

The 95th percentile of the mean 3D displacement for each experimental group was 

2.8mm, 2.1mm, and 2.9mm for pre-image guidance, MV-, and CBCT-image guidance, 

respectively. 

The analysis of the mean relative to zero showed that there was a large ventral 

displacement of 1.1mm in the CBCT group. The lateral, ventrodorsal, and cranio-caudal 

for the other groups were smaller than 1mm. This is consistent to what has been found in 

the experiment described in Chapter 2. Table 3.1 summarizes the results of this 

experimental study. 

There was no statistically significant difference between the mean 3D 

displacement for MV-image guidance and the use of the HRD alone (p=0.53). The 
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difference between the mean 3D displacement for all the other comparisons were 

statistically significant (p<0.01).  

 

Table 3.1. Translational and 3D displacements (millimeters) prior to image-guided set-up and 

after MV-, and CBCT-image-guided couch correction in six cadaver dogs (n = 72 set-ups for 

each condition).  

Condition   L-Ra V-Db C-Rc 3D displacement 

Before image 

guidance 

Mean Relative to Zerod 0.5 0 0.1 - 

Absolute Meane 0.7 0.5 0.6 1.2 

95%CIf 0.3, 1.1 0.4, 0.5 0.5, 0.6 0.9, 1.5 

95th Percentile 2.7 1.3 1.4 2.8 

      

MV 
 

Mean Relative to Zerod 0.3 0.6 0.2 - 

Absolute Meane 0.5 0.7 0.7 1.2 

95%CIf 0.1, 0.9 0.6, 0.7 0.6, 0.8 0.9, 1.5 

95th Percentile 1.0 1.6 1.6 2.1 

       

CBCT 

Mean Relative to Zerod 0.4 -1.1 0.9 - 

Absolute Meane 0.6 1.1 1.2 1.9 

95%CIf 0.2, 1.0 1.1, 1.2 1.1, 1.3 1.6, 2.2 

95th Percentile 1.5 2.2 2.3 2.9 

aLeft-Right coordinate 
bVentral-Dorsal coordinate 
cCaudal-Rostral coordinate 
dFor calculation of the mean relative to zero, displacements to left, ventral and caudal directions were 
assigned a negative value.  
eThe absolute mean was reported so that errors in opposite directions did not cancel each other out. 
f95% Confidence Interval, calculated using the mixed effects linear regression model  
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3.4.2. Comparison between two different immobilization devices 

The results obtained in the experiment using the VMC device were compared to 

the results using the HRD. Our data show that the repositioning accuracy is significantly 

better with the HRD than the VMC device (p=0.019). When MV image guidance is used, 

the repositioning accuracy was shown to be statistically better with the HRD than the VMC 

device (p=0.027). On the other hand, there was no difference between the HRD and the 

VMC device when CBCT image guidance was used (p=0.231). The data is summarized 

in Table 3.2 below:  

 

Table 3.2. Comparison between the absolute mean values of the 3D displacement of 

the VMC device and the HRD and after MV-, and CBCT-image-guided couch shifts. 

Condition 
VMC device 

Mean (95% CI) 

HRD 

Mean (95% CI) 
p-value 

No imaging 1.7 (1.4, 2.0) 1.2 (0.9, 1.5) 0.019 

MV 1.7 (1.4, 2.0) 1.2 (0.9, 1.5) 0.027 

CBCT 2.2 (1.9, 2.5) 1.9 (1.6, 2.2) 0.231 

 

3.5. Discussion 

Comparing the use of immobilization devices without the use of image-guided 

techniques in the two studies described in Chapters 2 and 3, the repositioning accuracy 

was shown to be significantly better when the HRD was used than when current VMC 

device used (p=0.019). Identical methodologies were used in both studies involving the 
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same personnel. Although different dog individuals were used in the two experiments, the 

exclusion and inclusion criteria were similar. 

It is likely that the most impactful differences between the two immobilization 

systems were the increased maxilla stability and the less mobile laser alignment method 

used in the HRD. The thermoplastic bite block in the maxillary plate from the VMC device 

did not cover the incisors to all premolar teeth while the moldable bite block from the HRD 

did. Furthermore, the HRD had larger holes in which the bite block and the subject’s teeth 

protruded, whereas the other device had only three 6mm holes to lock the thermoplastic 

material into the maxillary plate.  

The ink marks drawn on the thermoplastic mask dorsal and lateral surfaces aligned 

to the room lasers in the previously studied immobilization system (VMC device) 

contributed to some variability in positioning depending on the degree that the screws 

were tightened to the carbon fiber board. On the other hand, the authors noticed that the 

HRD had a subjectively better reproducibility alignment between the room laser and the 

Z-plate grooves.  

Another study has compared two immobilization devices with different types 

maxillary plates (Nemoto et al. 2015). The maxillary plate that supported the canines and 

all four premolar teeth had a significantly better repositioning accuracy compared to the 

maxillary plate that supported the canine teeth alone. The better repositioning accuracy 

is likely due to a greater stability of the maxilla when the premolar teeth are included in 

the maxillary plate. 

Although methodologies for measuring the 3D displacement differed, three other 

studies have reported the 95th percentile ranging from 3.5mm to 6.4mm using different 
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immobilization systems (Kent et al. 2009; Hansen et al. 2015; Dieterich et al. 2015). The 

95th percentile in this current study achieved a smaller value (2.8mm) compared to the 

range reported in the literature. 

A similar study design in this same institution (Mayer et al. 2010) reported a mean 

3D displacement without the use of image guidance which was smaller than our current 

experiment, 0.9mm and 1.2mm, respectively. The 95th percentile in the previous study 

was also smaller, measuring 1.9mm versus our current value of 2.8mm. Although both 

studies used similar methodologies, the current study had a larger sample size of 6 dogs 

and 144 set-ups whereas the previous study had used 3 dogs and 45 set-ups. For this 

reason, the current study would be a better representation of the HRD’s repositioning 

accuracy. 

The mean 3D displacement of the HRD alone was not statistically different from 

the mean 3D displacement when this immobilization device was used in combination with 

MV guidance. However, the width of the error distribution probability quantified by the 95th 

percentile value was smaller when MV guidance was used compared to when the use of 

the HRD alone.  

On the other hand, CBCT-guided corrections did not reduce the 95th percentile or 

the mean 3D displacement compared to when the HRD was used alone. It was expected 

that the use of image guidance would decrease the width of error probability distribution, 

as it happened to MV-guided corrections compared to when the immobilization device 

was used alone. One reason that might explain this result is that CBCT relies on 

reconstruction of the sagittal and the dorsal planes. Therefore, it is not possible to 

visualize the full anatomy of the skull in one single slice (Figure 3.2) as in MV radiographs 



58 

 

 

 

(Figure 3.3), and this could result in increased errors after CBCT-image-guided couch 

shifts. 

 

 

Figure 3.2. CBCT images showing the original acquisition plane (A), sagittal plane 

reconstruction (B), dorsal plane reconstruction (C). Note that each slice does not display 

the full anatomy of the skull. 

 

 

Figure 3.3. MV radiographs showing the dorsoventral (A) and the lateral (B) views 

displaying the full anatomy of the skull. 
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We compared the use of the two different immobilization devices from our 

experiments followed by MV- or CBCT-guided couch corrections. We did not assess kV-

image-guided corrections in this study to reduce the total number of set-ups necessary to 

achieve an adequate sample size. Furthermore, MV radiographs are more common to 

other veterinary radiation facilities that are not equipped with an OBI. The OBI system is 

capable of both kV and CBCT imaging. 

The repositioning accuracy was statistically higher when MV-image guidance and 

the HRD were used in combination, compared to the use of MV and the VMC device. It 

was found that there was no significant difference between the two types of immobilization 

devices when CBCT-guided corrections were performed. This is likely because a larger 

error was introduced by CBCT guidance procedure in both experiments, and the 

advantage of having a more accurate immobilization device did not overcome the error 

introduced by CBCT-image guidance. 

 

3.6. Conclusions 

According to the results of this study, on the contrary to what has been 

hypothesized in the veterinary literature (LaRue and Custis 2014; Dieterich et al. 2015), 

the use of CBCT image guidance prior to radiation therapy delivery did not provide the 

best positioning accuracy for intracranial targets in veterinary patients when a 4DOF is 

used.  

The comparison between this study and our previous experiment has found that 

the use of an accurate immobilization system is needed to minimize residual set-up error. 

Based on the results of this study, the best repositioning accuracy can be achieved when 
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the HRD is used in combination with MV image-guided couch corrections. This finding is 

limited to an EPID with an online registration software, and results cannot be applied to 

MV port films with image registrations performed without the use of a software. Limitations 

of using CBCT-guided couch corrections should be considered when this technology is 

used in the head region.  
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4. CHAPTER FOUR: GENERAL DISCUSSION 

Recent publications have discussed the validity of the linear-quadratic (LQ) model 

in predicting tumor cell kill for SRS or SRT (Garau 2017; Brown, Brenner, and Carlson 

2013; Brown, Carlson, and Brenner 2014). This model has been accepted to be an 

adequate representation of the tumor response to conventional radiation protocols (Hall 

and Giaccia 2012).  

In the LQ model, two variables that influence cell killing by radiation are combined, 

and they depend on the dose of radiation given. One variable, α, is proportional to a linear 

model, and β is proportional to a quadratic distribution. The combination of the two 

variables is named α/β ratio, and it results in a cell survival curve that is continuously 

bending (Hall and Giaccia 2012) because cell killing is exponentially increased with dose.  

Another mathematical model that uses the α/β ratio is the biologically effective 

dose (BED). The BED formula is used in clinical radiation therapy to compare the 

biological effect of different fractionation protocols. The use of IMRT techniques in SRS 

and SRT have allowed delivery of higher doses to the tumors, with minimal increase of 

occurrence of acute side effects in the peritumoral normal tissues. One possible theory 

that could explain the successful outcomes in SRS and SRT treatment is that higher BED 

can be achieved with higher doses per fraction. As a consequence, the tumor control 

probability is also expected to increase (Brown, Carlson, and Brenner 2014).  

While widely accepted for predicting tumor response to conventionally fractionated 

radiation protocols, one limitation of using the LQ model to predict cell killing by SRS and 

SRT is that the data is based on in vitro studies in tumor cells, and it only considers that 

cell death is caused by DNA strand breaks. It is hypothesized that other mechanisms of 
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cell death may occur with SRT and SRS. Furthermore, the fractional doses considered in 

the development of the LQ model were below the doses used in SRT and SRS 

treatments.  

When previous studies that reported outcomes in canine brain meningiomas 

irradiated with different techniques (conventional or SRS/SRT) are evaluated (Keyerleber 

et al. 2013; Griffin et al. 2014; Kelsey, Gieger, and Nolan 2018), the importance of 

targeting the entire GTV can be questioned, as these studies report prolonged survival 

while using PTV margins that were too small to ensure a high probability of GTV 

coverage. Our experiment described in chapter 3 has found that even when the HRD is 

used, which has shown highly accurate repositioning capability, a PTV margin of at least 

2.1mm would be required to encompass the residual set-up errors in 95% of the individual 

treatments. That is, the use of PTV margins equal to or smaller than 2mm would likely be 

resulting in a geographical miss of the tumor volumes. 

A possible explanation for the good outcomes even if the GTV was not fully 

encompassed include the  “New Radiobiology” hypothesis, which suggests that the tumor 

microenvironment also plays a role in radiation-induced cell death (Garau 2017). This 

theory supports that targeting the entire GTV with high radiation doses might not be 

necessary when SRS or SRT protocols are delivered. 

 

New Radiobiology” Hypothesis 

It has been hypothesized by Brown et al. (2014) that the tumor response to high 

dose hypofractionated radiation therapy can be explained by two main mechanisms 
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(Brown, Carlson, and Brenner 2014), beyond the classical factors that are known to affect 

tumor response to irradiation.  

 

Enhanced antitumor immunity  

Anti-tumor immune response may be induced by SRS/SRT, leading to death of 

tumor cells.  Studies in melanoma have found that irradiation of the tumor at one site 

contributes to an antitumor immunologic rejection of a metastatic lesion at a distant site. 

This phenomenon has been called the abscopal effect (Garau 2017), where ab- means 

“position”, and -scopos refers to “mark or target for shooting”. In a study by Lee et al. 

(2009), wild-type mice with implanted B16 melanoma cells were irradiated with a single 

fraction of 20Gy (Lee et al. 2009). The authors found that T cells were increased in the 

tumor area and in the lymphoid tissues 1 to 2 weeks post radiation. In nude mice (T-cell 

deficient), the tumor was radioresistant. This study concludes that high single dose of 

radiation in B16 melanoma tumors elicits T CD8+-mediated cell response. 

Another study has found that radiation enhances the antigenicity of carcinoma 

models, and it is greater for SRT treatments when compared to SRS, with 8Gy per fraction 

protocols delivered in 3 fractions being the most effective (Dewan et al. 2009). 

 

Secondary effects from injured vasculature  

The higher doses per fraction used in SRS and SRT may affect vasculature, 

leading to death of tumor cells. The secondary effects of vascular damage can occur due 

to endothelial cell apoptosis. The effect of reoxygenation of hypoxic regions is very 

important for tumor response to conventional fractionated radiation treatments. Park et 
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al. (2012) reported that the tumor vasculature of regions irradiated with conventional 

fractionated protocols appear to remain structurally intact and functional during the early 

period after irradiation, and this gradually decreases in the last treatments (Park et al. 

2012). However, the authors found that vascular damage post irradiation seems to be 

proportional to the amount of radiation delivered in single doses, with more severe effects 

when the doses used in SRS and SRT treatments are used, such as reduction in blood 

perfusion. 

 

How should errors and margins be added? 

Although in practice they are added linearly, the internal margins and set-up 

margins should be added quadratically because those variables are based on 

probabilities and they have random components (ICRU Report 91, 2017). Adding those 

margins in quadrature would represent the width of probability distributions (van Herk 

2004). 

If all sources of uncertainties described in section 1.5 Sources of Uncertainties are 

added linearly, the errors in patient set-up would be in the order of dozens of millimeters, 

or a few centimeters. However, using a large margin to account for all possible 

uncertainties during treatment planning and delivery is also not the best solution because 

of risk of damage to normal tissues surrounding the tumor (ICRU Report 91, 2017).  

In contrast, the use of zero margins around the tumor volume would likely result in 

a geographical miss, and this could result in partial tumor underdosage (van Herk 2004). 

The author also states that it is impossible to completely eliminate all geometrical errors 
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due to the multiple variables that can contribute to treatment uncertainties, and they 

cannot be accounted without the use of margins (van Herk 2004). 

We have used the 95th percentile to report the adequate margin to account for the 

set-up errors because it accounts for the width of error probability distribution of this data 

set. By using the 95th percentile method, some factors that contribute to errors in patient 

set-up were accounted for, such as localization accuracy of CT/CBCT and mechanical 

uncertainties of the equipment related to couch shift precision in translational directions 

and inability to correct roll and pitch rotations.  

We were not able to quantify other sources of uncertainties, such as accuracy of 

image registration, other mechanical uncertainties (e.g. difference in isocenter between 

room lasers, the OBI and the radiation machine gantry), and uncertainties in target 

delineation.  

Some variabilities in tumor delineation can be reduced by implementing peer-

reviewed and collaborative approaches with other specialties to achieve an individualized 

treatment plan for each patient, and to reduce the risk of a geographical miss. The 

creation of a contouring atlas, and workshops to generate contouring consensus would 

aid in decreasing intraobserver and interobserver variabilities.  
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5. CHAPTER FIVE: CONCLUSIONS AND FUTURE DIRECTIONS 

The two experiments described in this work were limited by the set-up ability to 

identify and correct errors in only one (yaw) of the three possible rotations, with a 1-mm 

couch shift capability in the translational directions.  

Using the 4DOF couch of this facility’s linear accelerator, we found that there was 

no advantage of CBCT over 2D imaging verification technologies (kV and MV 

radiographs) for correcting rotational errors. We concluded that CBCT should not be the 

first choice for image-based set-up correction in the head region. Instead, if kV 

radiographs are available for patient set-up correction, it should be preferably used over 

CBCT scans for the canine head region radiation therapy. More studies are necessary to 

evaluate the effect on the residual set-up error after kV image guidance in a 6DOF couch 

equipped with submillimeter shift capability. 

We have shown that the use of the HRD can decrease set-up error with or without 

image guidance. Therefore, we recommend using this system, with maxillary plates that 

could ensure the immobilization of all upper molar teeth in canine patients receiving 

radiation treatment in the head region. 

Survival times achieved in canine brain meningiomas treated with SRT or SRS 

treatments have been reported to be similar to conventional fractionated radiation 

therapy. Although we found that a margin of more than 2mm is necessary to guarantee 

that the GTV would be encompassed in 95% of the patient set-ups using the HRD with 

image guidance, the results in the veterinary literature have reported good outcomes 

using margins less than or equal to 2mm (Griffin et al. 2014; Kelsey, Gieger, and Nolan 

2018). Therefore, the need for targeting 100% of the GTV should be questioned when 
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SRS or SRT are used to treat intracranial tumors in dogs. On the other hand, it should 

also be considered that better outcomes might be achievable using a PTV of at least 

2mm. Multiple plans from each patient should be individually evaluated, and if the normal 

tissue tolerance is met using a margin of 2mm or more, the larger margin should be 

applied to reduce the chance of a geographical miss and to decrease the chance of tumor 

recurrence.  
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