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ABSTRACT

Hidden Markov models are extensions of Markov models where each observation

is the result of a stochastic process in one of several unobserved states. Though fa-

vored by many scientists because of its unique and applicable mathematical structure,

its independence assumption between the consecutive observations hampered further

application. Autoregressive hidden Markov model is a combination of autoregressive

time series and hidden Markov chains. Observations are generated by a few autore-

gressive time series while the switches between each autoregressive time series are

controlled by a hidden Markov chain. In this thesis, we present the basic concepts,

theory and associated approaches and algorithms for hidden Markov models, time

series and autoregressive hidden Markov models. We have also built a bivariate au-

toregressive hidden Markov model on the temperature data from the Pacific Ocean

to understand the mechanism of El Niño. The parameters and the state path of the

model are estimated through the Segmental K-mean algorithm and the state esti-

mations of the autoregressive hidden Markov model have been compared with the

estimations from a conventional hidden Markov model. Overall, the results confirm

the strength of the autoregressive hidden Markov models in the El Niño study and

the research sets an example of ARHMM’s application in the meteorology.
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Chapter 1

HIDDEN MARKOV MODELS

1.1 General Introduction

El Niño is a disruption of the ocean-atmosphere system in the tropical Pacific. It is

characterized by a large scale weakening of the trade winds and the warming of the sea

surface in the eastern and central equatorial Pacific ocean. It was initially recognized

by fishermen in the South America when they observed the unusual warming in the

Pacific ocean. Because the phenomenon tends to arrive around Christmas, it gains

the name “El Niño” which means “The Little Boy” in Spanish.

El Niños have important consequences for weather around the globe. Not only

have they caused great reductions in marine fish and plant life along the east Pacific

coast in several years, but also they were responsible for many destructive flooding

and drought in the West Pacific which lead to the displacement of thousands from

their homes. According to the meteorologic records, El Niños occur irregularly at

intervals of 2-7 years, with an average of 3-4 years. During the past forty years, there

have been about ten major El Niño events recorded. Among those, the worst one

occured in 1997. The sea surface temperature for September 1997 was the highest in

the last 50 years. Furthermore, in late September easterly winds over the equatorial

Pacific between 150E and 120W decreased the most in the last 30 years.

There is no doubt of the existence of El Niños. As a physical occurrence it is just
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as real as rainfalls or thunderstorms. But the way it works has many theories. In

this thesis, we assume that the ocean-atmosphere system of Pacific Ocean has two

(or more) distinct states, normal state and abnormal state( or El Niño state). An

El Niño is the result of a switch from the normal state to the abnormal state. The

switches between normal state and abnormal state are unseen, but can be inferred

from the numerical observations such as the sea surface temperatures and trade wind

intensities. Furthermore, we assume that the chronological state sequence follows a

Markov process. In this way, we could utilize a sophisticated mathematical model,

autoregressive hidden Markov model (ARHMM), in the research of El Niño.

Autoregressive hidden Markov model is a natural combination of hidden Markov

model and autoregressive time series model. Following this introduction is an intro-

duction of the basic theories of Hidden Markov Models. In Chapter Two we will

present a general introduction of time series models, followed by the definition and

estimation of an advanced model, autoregressive hidden Markov model in Chapter

Three. Finally, tests and an application of ARHMM in the El Nino are performed

and related results are discussed in the Chapter Four.

1.2 Introduction of Hidden Markov Models

Imagine a coin-tossing game in which two coins are alternatively tossed in a se-

quence. The choice of a coin and the switches between the two coins are behind
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the scenes. What is observed is the outcomes of the tossing: a sequence of heads or

tails (e.g. THHHTTHTHHT...) which will be called observation sequence or simply

observations or observation data. To appreciate how the observation sequence are

influenced by the bias and the order of coin-tossing, suppose you know coin #1 has

much higher bias to produce a tail than coin #2, which is assumed to be a fair coin.

We also assume that in every turn the two coins are equally likely to be chosen, then

it is natural to expect there will be more tails than heads in the whole sequence,

especially when the observation sequence is fairly long. In turn, though you don’t

know anything about the bias or choices of the coins, when there are much more tails

appearing, you would suspect one of or both the coins are tail-biased. Actually, this

simple coin-tossing game characterize a class of probabilistic models which is called

Hidden Markov Model . In hidden Markov model, each observation is partially decided

by its current state (the current choice of coins). Since the state sequence is unseen,

we call it ”hidden”. The state sequence is assumed to follow a Markov process in

which the current state depends only on its latest previous state probabilistically. In

most applications where hidden Markov models are used, one would have to draw a

probabilistic inference about the hidden states based on the observation data.

The basic concept and theories of hidden Markov models were introduced by

Baum and his colleagues in late 1960’s. Then in the following a couple of years the

main interests of research remains purely in its mathematical structure and properties,
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probably because the inference of hidden Markov models would involve huge amounts

of computations which cannot be handled at that time. Until early 1980’s, when the

prevalence of electronic computer greatly facilitates the mathematical computation

in the whole scientific world, Rabiner, Juang and their colleagues have published a

series papers ([14]-[18]) on speech recognition based on the hidden Markov models.

In their models, every time when a word is vocalized, it essentially goes through a

series states. The sound is relatively smooth when staying in the same states and will

fluctuate when undergoing frequent state changes. Since everybody has their unique

pattern of pronunciation, it is possible to identify a man’s voices through recognizing

his particular hidden Markov model. Due to their rich and practical mathematical

structure, HMMs have become more and more popular in various important appli-

cations. For example, many recent works in economics are based on J.Hamilton’s

[10] time series model with changes in regime which is essentially a class of hidden

Markov models. In many of them, the fluctuating economic numbers such as stock

index and GDP are very much influenced by the business cycle which can be seen as

the hidden states with seasonal changes. Through the recognition and estimation of

hidden states, they could better understand the mechanism of business cycle. Another

booming application of HMMs is in the bio-technology where people use a particular

class of hidden Markov model (profile HMM) to model proteins and DNA strings, rec-

ognize genes and so on. Other applications of hidden Markov model includes optical
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characters recognitions, natural language understanding and climatological forecasts,

etc.

This introduction is followed by the formal definition and the most basic problems

of HMM.

1.3 Definition of Hidden Markov Models

The coin-tossing example in the last section gives us an intuitive idea of what a

hidden Markov model is. Now we will formally define the model.

A HMM is characterized by the following elements:

1. N , the number of states in the model. In the coin tossing example, the states

correspond to the choice of the coins (i.e. two possible states). We will denote

the state at time t as Xt throughout the thesis.

2. M , the number of distinct observation symbols in each states, namely the al-

phabet size. For the coin tossing example, the observation symbols are simply

the “head” and the “tail”. We will use Yt to denote the observation symbol at

time t.

3. T , The length of the observation sequence. So the states sequence can be written

as {X1, X2, ... , XT} and the observations sequence would be {Y1, Y2, ... , YT}.

4. A set of transition probability A ={aij}, where
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aij = P [Xt+1 = j|Xt = i], 1 ≤ i, j ≤ N .

Note {aij} subjects to the probability constraints:

aij ≥ 0 for all 1 ≤ i, j ≤ N , and

∑N
j=1 aij = 1 for all 1 ≤ i ≤ N .

5. The observation symbol probability (also called emission probability) distribu-

tion in state i : B = {bi(m)},

bi(m) = P (vm at time t|Xt = i),

where 1 ≤ i ≤ N , 1 ≤ m ≤ M and vm is the mth symbol in the observation

alphabet.

When the emission probability distribution is continuous, we denote

bi(y) = f(y|θi) the conditional probability distribution of Yt given Xt = i, where

θi is unknown parameter(s) of the distribution in state i. In the most common

case when the distribution is normal, θi = (µi, Σi), where µi and Σi stand for

the mean and covariance matrix in state i, respectively.

6. The initial state distribution π = {πi},

πi = P [X1 = i], 1 ≤ i ≤ N .

From the definitions above, it is clear that a complete specification of a HMM in-

volves three model parameters ( N ,M and T )and three sets of probability parameters
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(A, B and π). For convenience, we use a compact notation λ = (A,B, π) to represent

the complete set of parameters of the model throughout the thesis.

1.4 Three Basic Problems and Two Assumptions

To use the hidden Markov model to the real-world application, there are three

very fundamental problems need to be solved:

1. Given the HMM λ = (A,B, π), What is the probability of generating a specific

observation sequence Y={Y1, Y2, ... , YT}? i.e. How to compute P (Y|λ)?

2. Given the observation sequence Y={Y1, Y2, ... , YT}, how to determines the

states sequence X={X1, X2, ... , XT}?

3. Given the observation sequence Y={Y1, Y2, ... ,YT}, how to estimate the pa-

rameters λ = (A,B, π) of the HMM?

Throughout the whole thesis,“observation probability”, P (Y|λ), denotes the prob-

ability or likelihood of the occurrence of the observation sequence Y given the param-

eter set λ. Please note λ is not a random variable hence P (·|λ) may not be regarded

as a conditional probability. For discrete distribution, a more accurate expression

might be P (y = Y; λ) , the probability of a random variable y equals to the obser-

vation sequence Y given the parameter set λ . When the distribution of observation
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variable y is continuous, P (Y|λ) can be seen as a “probability function” of λ which

is algebraically equal to the likelihood function L(λ|Y). This succinct notation of

probability, instead of the corresponding likelihood function, has been adopted by

the major literatures of HMM to facilitate the usage of probability theorems. We will

follow this notation throughout the thesis.

To ensure the tractability of these problems, we have to make two assumptions

for the structure of HMM:

1. Markov Assumption : At any time t, the probability of generating the next

state depends only on the current state. i.e.

P (Xt+1|Xt, Xt−1, · · · , X0) = P (Xt+1|Xt) (1.1)

for all t.

2. Independency Assumption : The probability distribution of generating cur-

rent observation symbol depends only on the current state. This assumption

indicates

P (Y|X, λ) =
T∏

t=1

P (Yt|Xt, λ), (1.2)

in which Y = {Y1, Y2, · · · , YT} and X = {X1, X2, · · · , XT} denote the observa-

tion sequence and state sequence , respectively.
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The Markov assumption of HMM will be engaged throughout the thesis. But the

independency assumption will be applied in this chapter only. In Chapter Three, we

will introduce autoregressive hidden Markov Models in which the current observations

do not only depend on the current state, but also on the past observations.

Then in the next few sections, we will discuss the solutions for this three basic

questions.

1.5 Solving Problem One – Forward-Backward Method

P (Y|λ), the observation probability given the model λ = (A,B, π), can also be

seen as a measure of how well the given observation sequence Y fitting into the model.

With this measure, it allows us to choose the best HMM amongst several candidates.

The most straightforward solution of problem 1 would be evaluating P (Y|I, λ)×

P (I|λ) for a fixed states path I={i1, i2, ... , iT} and then summing up all the possible

state paths I.

P (Y|λ) =
∑

all I
P (Y|I, λ)× P (I|λ)

=
∑

i1,i2,···,iT
πi1bi1(Y1)ai1i2bi2(Y2) · · · aiT−1iT biT (YT ). (1.3)

It follows the complexity of this procedure is of order 2T ·NT . That means even

for a small value of N and T , (e.g. N=5 T=200), the computation is still intractable

for available computers. A more efficient algorithm then is called for.
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Forward-Backward Method

Let define αt(i) be the probability of partial observations up to time t and in state

i at time t, given the HMM model λ:

αt(i) = P (Y(t), Xt = i|λ), (1.4)

where Y(t) is the partial observation sequence up to time t, namely, Y(t)={Y1, Y2, ...

,Yt}.

Then

P (Y|λ) = P (Y(T )|λ)

=
N∑

i=1

P (Y(T ), XT = i|λ)

=
N∑

i=1

αT (i). (1.5)

We can solve for αT (i) inductively through the equation:

αt(j) = P (Y(t), Xt = j)

=
N∑

i=1

P (Yt,Y
(t−1), Xt = j, Xt−1 = i)

=
N∑

i=1

P (Y(t−1), Xt−1 = i)P (Yt, Xt = j|Y(t−1), Xt−1 = i)

=
N∑

i=1

P (Y(t−1), Xt−1 = i)P (Xt = j|Y(t−1), Xt−1 = i)P (Yt|Xt = j,Y(t−1), Xt−1 = i)

=
N∑

i=1

P (Y(t−1), Xt−1 = i)P (Xt = j|Xt−1 = i)P (Yt|Xt = j)

=
N∑

i=1

[αt−1(i) · aij] · bj(Yt) (1.6)
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and

α1(j) = P (Y1, Xt = j) = πjbj(Y1). (1.7)

Often αt(i) is referred as the Forward Variable and this method is called the

Forward Method . Through this method, we achieve a computation complexity of

order N2T , a huge saving compared to 2T ·NT of direct method.

Alternative to the forward method, there exists a Backward Method which is able

to solve the problem. In a very similar manner, we define the backward variable

βt(i) = P (Y∗(t)|Xt = i, λ) where Y∗(t) denotes {Yt+1, Yt+2, ... ,YT}, the partial time

series beyond time t. Then we can use βt(i) to solve P (Y|λ) as easily as forward

method:

Firstly we initialize βT (i),

βT (i) = 1. 1 ≤ i ≤ N. (1.8)

Then for t = T − 1, T − 2, · · · , 1 and 1 ≤ i ≤ N

βt(i) =
N∑

j=1

βt+1(j) · aij · bj(Yt+1). (1.9)

Finally,

P (Y|λ) =
N∑

i=1

πibi(Y1)β1(i). (1.10)

The proof for (1.8)-(1.10) can be done in a very similar way to (1.5)-(1.7).
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1.6 Solving Problem Two – Viterbi Algorithm

To solve problem 2, we have to find the optimal state sequences which could best

explain the given observations in some way. The solutions for this problem rely on

the optimality criteria we have chosen. The most widely used criterion is to maximize

P (Y,X|λ), which will be the case we discussed here. Again, the observation and state

probability P (Y,X|λ) is not a conditional probability. It represents the probability

(for discrete distribution) or likelihood (for continuous distribution) of observing ob-

servation sequence Y = {Y1, Y2, · · · , YT} and state sequence X = {X1, X2, · · · , XT}

given their joint distribution f(x, y).

Since the model λ = (A,B, π) and the observation sequence Y={Y1, Y2, ... , YT}

, the probability of the state path and observation sequence given the model would

be:

P (Y,X|λ) = P (Y|X, λ)P (X|λ)

= πX1bX1(Y1)aX1X2bX2(Y2) · · · aXT−1XT
bXT

(YT ). (1.11)

To convert the products into summations, we define U(X) as

U(X) = − ln(P (Y,X|λ))

= −[ln(πX1bX1(Y1)) +
T∑

2

ln(aXt−1XtbXt(Yt))]. (1.12)

Consequently,

max
X

P (Y,X|λ) ⇐⇒ min
X

U(X).
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Figure 1.1 A graph of weighted pathes

This reformation now enables us to view terms like − ln(aXt−1XtbXt(Yt)) as the

cost (or distance) associated to the transition from state Xt−1 to Xt. The problem

then can be seen as finding the shortest path in a graph like (1.1). In the graph, the

vertex corresponds to the states and the weight on the edge indicates the cost (or

distance) between two vertexes.

Finding-the-shortest-path problem is one of the most fundamental problems in

graph theory and can be solved by dynamic programming approaches, for example,

Viterbi Algorithm.

Let Ut(X1, X2, · · · , Xt) be the first t terms of U(X) and Vt(i) be the minimal

accumulated cost when we are in state i at time t,

Ut(X1, X2, · · · , Xt) = −[ln(πX1bX1(Y1)) +
t∑

i=2

ln(aXi−1Xi
bXi

(Yi))], (1.13)
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Vt(i) = min
X1,X2,···,Xt−1,Xt=i

Ut(X1, X2, · · · , Xt−1, Xt = i). (1.14)

Viterbi algorithm then can be implemented by four steps:

1. Initialize the V1(i) for all 1 ≤ i ≤ N :

V1(i) = − ln(πXi
bXi

(Yi)). (1.15)

2. Inductively calculate the Vt(i) for all 1 ≤ i ≤ N , from time t = 2 to t = T :

Vt(i) = min
1≤j≤N

[Vt−1(j))− ln(aXjXi
bXi

(Yi)]. (1.16)

3. Then we get the minimal vale of U(X):

min
X

U(X) = min
1≤i≤N

[VT (i)]. (1.17)

4. Finally we trace back the calculation to find the optimal state path X =

{X1, X2, · · · , XT}.

1.7 Solving Problem Three – Baum-Welch Method

The third problem of HMM is to determine the parameters λ = (A,B, π) based

on the observation sequence Y. Evaluating the parameters of HMM is not trivial. By

far there is no analytical solution to this problem. The general approach is to train

the model with the observation data using some iterative procedure until its conver-

gence. More specifically, the parameter set λ = (A,B, π) would be initialized with

appropriate guesses at first. Then a set of re-estimation formula would be repeatedly
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used in a number of iterations so that the parameter set could gradually approach

to the ideal values where the occurrence possibility of the observation sequence are

maximized.

Similar to the situation in problem 2, there are different criteria to interpret the

problem. One criterion is the maximum state optimized likelihood criterion which tries

to maximize P (Y,X∗|λ) and the X∗ here is the optimum state sequence as given by

the solution in problem 2. Based on this criterion , we could use the Segmental K-

means Algorithm to estimate the appropriate parameter set λ = (A,B, π). We will

discuss this algorithm in the next section. Another criterion is maximum likelihood

criterion which tries to maximize P (Y|λ), the observation probability of Y given

the parameter set. Based on this criterion, the problem could be solved by an itera-

tive procedure Baum-Welch Method. We will focus on this method in the this section.

Baum-Welch Method

Baum-Welch method is indeed an implementation of general EM (Expectation-

Maximization) method [5]. As indicated by its name, EM algorithm involves a two-

step (E-step and M-step) procedure which will be recursively used. But before going

into any details of EM algorithm, one need to define two variables in order to describe

the algorithm mathematically.

Let ξt(i, j) be the probability of the HMM being in state i at time t and making
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a transition to state j at time t + 1, given the model λ = (A,B, π) and observation

sequence Y={Y1, Y2, ... , YT} :

ξt(i, j) = P (Xt = i, Xt+1 = j|Y, λ). (1.18)

Using Bayes law and the independency assumption we made before, it follows:

ξt(i, j) =
P (Xt = i,Xt+1 = j, Y |λ)

P (Y |λ)

=
P (Xt = i,Y(t)|λ)P (Y∗(t), Xt+1 = j|Xt = i, λ)

P (Y|λ)

=
P (Xt = i,Y(t)|λ)P (Xt+1 = j|Xt = i)P (Y∗(t)|Xt+1 = j, Xt = i, λ)

P (Y |λ)

=
P (Xt = i,Y(t)|λ)P (Xt+1 = j|Xt = i)P (Yt+1|Xt+1 = j, λ)P (Y∗(t+1)|Xt+1 = j, λ)

P (Y |λ)

=
αt(i)aijbj(Yt+1)βt+1(j)

P (Y |λ)
, (1.19)

where forward variable αt(i) and backward variable βt(i) follows the same definition

in previous section:

αt(i) = P (Y(t), Xt = i|λ) Y(t) = {Y1, · · · , Yt},

βt(i) = P (Y∗(t)|Xt = i, λ) Y∗(t) = {Yt+1, · · · , YT}.

We also define the γt(i) as the probability in state i at time t given the observation

sequence Y and model λ = (A,B, π), then it can be proven:

γt(i) = P (Xt = i|Y, λ)

=
P (Xt = i,Y|λ)

P (Y|λ)
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=
P (Xt = i,Y(t)|λ)P (Y∗(t)|Xt = i, λ)

P (Y|λ)

=
αt(i)βt(i)

P (Y|λ)
. (1.20)

Note that

T−1∑

t=1

γt(i) = expected No. of transitions from state i. (1.21)

T−1∑

t=1

ξt(i, j) = expected No. of transitions from state i to state j. (1.22)

With the above definition, then one can outline the Baum-Welch Re-estimation

Formula:

π̂i = expected frequency in state i at time t = 1

= γ1(i) (1.23)

âij =
expected No. of transitions from state i to state j

expected No. of transitions from state i

=

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

(1.24)

b̂i(m) =
expected No. of times in state i and observating Vm

expected No. of times in state i

=

∑T
t=1,Yt=Vm

γt(i)∑T
t=1 γt(i)

. (1.25)

Equation (1.25) is in effect when the observations {Y1, Y2, · · · , YT} are discrete.

In the case of continuous distribution, when {Y1, Y2, · · · , YT} are multivariate normal

distributed, we are interested in the distribution parameters such as mean vector µi
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and covariance matrix Σi when in state i,

µ̂i =

∑T
t=1 γt(i)Yt∑T
t=1 γt(i)

(1.26)

Σ̂i =

∑T
t=1 γt(i)(Yt − µ̂i)(Yt − µ̂i)

′
∑T

t=1 γt(i)
. (1.27)

Suppose we have an initial guess of the parameters of HMM λ0 = (A0, B0, π0) and

several sequences of observations, we can use equation (1.21) and (1.22) to calculate

the expected values of transition properties of the Markov Chain (the Expectation

step of E-M algorithm). Then the maximum likelihood estimation of the model is

computed through the recursive usage of equation (1.23)-(1.27) (the Maximization

step of E-M algorithm).

Let λ̂l be the parameter estimation in lth iteration. It can be proven[20] that

either λ̂l = λ̂l−1 which means λ̂l and λ̂l−1 reaches a critical point of the likelihood

function, or P (Y|λ̂l) > P (Y|λl−1) which indicates that the observation sequences can

be better explained by the new model λ̂l.

Based on the above procedure, the λ̂ is iteratively re-estimated until it converges

to a limit point. It should be remembered that Baum-Welch method leads to a local

maximum of λ only.

In practice, to get a good solution, the initial guess λ0 is very important. Usually

several sets of starting guesses of λ0 are used and one with the greatest likelihood

value is chosen. Laird suggested a grid search method [20] which divides the searching
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domain into small grids and starts from each of the intersections. Leroux and Puter-

man argues that the grid method would generate too many initial points when high

dimensional space are involved. They suggests a clustering algorithm and a simply

implementation can be found in [19].

1.8 Solving Problem Three – Segmental K-mean Algorithm

Segmental K-mean Algorithm (SKA) is another method widely used to estimate

the parameter set λ = (A,B, π) of hidden Markov models. Know from Baum-Welch

method, SKA is based on the maximum state optimized likelihood criterion, in which

one tries to maximize L(λ|X∗,Y) , the likelihood function of λ given the optimal state

sequence X∗ and observation sequence Y . Optimal state sequence X∗ is actually the

Viterbi path in most cases.

Like Baum-Welch method, the implementation of SKA also involves iterative pro-

cedures. In each iteration, it takes us from λl to λl+1 such that L(λl+1|X∗
l+1,Y) ≥

L(λl|X∗
l ,Y) and eventually they will reach a local maximum.

Suppose there are N state symbols and a long observation sequence of length T .

The main steps of the algorithm is as follows:

Step 1: Pick up N observations as the centroids of a cluster and assigns the rest

of the T − N observations to their nearest cluster based on their distance to those

centroids. The distance is usually just the Euclidean distance.Those who falls into
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the same cluster are assumed to belong to a same state and vice versa. The initial

selection of centroids can be arbitrary but a good choice could greatly reduce the

iterations needed for convergence. Another commonly used method is to divide the

observation domain into N equally spaced segments and those falling into the same

segments form an initial cluster.

Step 2: Estimate the initial probabilities π̂ = [π̂i] and the transition probability

Â = [âij] :

π̂i =
Number of occurrences of X1 = i

Number of observation sequence
(1.28)

and

âij =
Number of transition from i to j

Number of transition from i
. (1.29)

Step 3: Calculate the distribution parameters related to B. For continuous mul-

tivariate Gaussian distribution, the mean vector and covariance matrix in state i, µi

and Σi, can be estimated by:

µ̂i =

∑
xt=i Yt

Ni

Σ̂i =
1

Ni

∑

xt=i

(Yt − µi)
′(Yt − µi),
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where Ni is the number of states i in the whole state sequence.

Step 4: Find the new optimal state sequence X∗ based on new parameter set

λ̂ = (Â, B̂, π̂) (Could use Vertibi path given in the solution of Problem 2).

Step 5: If there are any change in X∗ , repeat step 2 to step 5.

It has already been proven[18] that SKA will converges to state optimized likeli-

hood function for most commonly used distributions including the Gaussian distri-

bution.

In a sense, E-M algorithm is somewhat better than SKA since it does not use X∗,

the estimated best state path as an input of the model. But in practice, though based

on different criteria, the estimated parameters of those two are no much difference

especially when a large number of parameters are to be estimated. Compared to E-M

algorithm, SKA is usually easier to implement and more efficient when huge-amount

data are involved because of the simpler form of its re-estimation formula.

1.9 H2M:Matlab Functions of HMM

H2M is a set of MATLAB functions which implement the EM algorithm to esti-

mate the parameters of hidden Markov models. It is able to handle the multivariate

HMM with a state-depended Gaussian distribution, as well as some discrete distri-

butions such as Poisson distribution and negative binomial distribution.
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A typical usage of H2M involves the following M-codes (MATLAB language) which

well characterize the EM procedure in the case of state-depended Gaussian distribu-

tion:

for i = 1:n_iter

[alpha, beta, logscale, dens] = hmm_fb(Y, A,pi0, mu, Sigma);

logl(i) = log(sum(alpha(T,:))) + logscale;

[A, pi0] = hmm_tran(alpha, beta, dens, A, pi0);

[mu, Sigma] = hmm_dens(Y, alpha, beta, COV_TYPE);

end

In E-step, “hmm fb” calculates the forward variables (alpha) and backward vari-

ables (beta) for the given observation sequence (Y) and initialization of parameters

(A, pi0, mu, Sigma). Then the forward and backward variables are used to re-estimate

the parameter set through functions “hmm tran” and “hmm dens” (M step). This

E-M procedure are repeated until certain criteria are achieved (In above example, the

E-M procedure are repeated for n iter times which might not guarantee the conver-

gence of the parameters.). Note in each iteration, as a by-product of forward variable,

the log-likelihood values (logl(i)) of the current parameter set is stored which may be

used as a good criteria for convergence.

As in the above example, the codes of H2M are quite straight-forward. Also in
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the package there are a series of well-documented examples demonstrating its usage.

The codes are readily implementable in the hidden Markov model set up using M-file

programming.

In this section, we have provided a brief introduction to H2M. In the final chapter,

an EM procedure will be implemented using H2M to compare the model adequacy

with an autoregressive Markov model. Additional information can be found in the

file h2m.pdf available with the H2M package.



Chapter 2

TIME SERIES ANALYSIS

2.1 Introduction of Stationary Time Series

A time series is a chronological sequence of observations on a variable of interest.

The variable is observed at discrete time points, usually equally spaced. A math-

ematical description of the time sequence could be a sequence of random variables

{xt| t ∈ T}, where T is an index set of integers (say {1, 2, 3, · · ·}). The distribution of

this sequence of random variables is specified by the joint distribution of every finite

subsets of {xt| t ∈ T}, say {xt1 , xt2 , · · · , xtk}, for all integer k.

A time series {xt| t ∈ T} is stationary if the distribution of {xt1 , xt2 , · · · , xtk} is the

same as the distribution of {xt1+h, xt2+h, · · · , xtk+h} for all choices of {t1, t2, · · · , tk}

and h such that t1, t2, · · · , tk ∈ T and t1 + h, t2 + h, · · · , tk + h ∈ T . A time series

which is not stationary is called non-stationary .

Broadly speaking, a time series is said stationary if there are no systematic change

in the mean (no trend) and variance(equal breadth). More specifically, if a time series

is stationary, it can be showed that its mean value function of is a constant and the

autocorrelation between any two time points of the series depends only on the gap

between them.

E[xt] = µ (2.1)

Corr(xt, xt+h) = σ(h). (2.2)
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A time series satisfies above two conditions is weakly stationary . Note that the

stationarity guarantees the weakly stationarity, but the converse is not true.

One of the simplest examples of stationary time series is a white noise series.

{ut| t ∈ T} is a collection of identical-distributed and mutually independent random

variables with common mean zero and constant variance σ2. The stationarity of it is

apparent. Actually, white noise timer series is a purely random process. It is called

”white noise” because of the fact that it is very often been included in the more

complicated probabilistic models(e.g. Moving-Average process) in engineering as the

random error. Although we haven’t specify its distribution here, in most cases it will

be assumed to be normal distributed.

2.2 Some Time Series Models

2.2.1 Moving Average (MA) Processes

Suppose {ut| t ∈ T} is a white noise process with mean zero and variance σ2. A

process {xt| t ∈ T} said to be a moving average process of order q, written as MA(q),

if

xt = µ + α0ut + α1ut−1 + α2ut−2 + · · ·+ αqut−q t ∈ T (2.3)

where {αi} are constants. The u’s are usually scaled so that α0 = 1.

It is easy to see that

E[xt] = µ + E[ut−1] + α1E[ut−1] + · · ·+ αqE[ut−q] = µ (2.4)
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and

σ(t, t + h) = Cov(xt, xt+h)

= E((xt − µ)(xt+h − µ))

=
q∑

s=0

q∑

l=0

αsαlE[ut−sut+h−l]

=





0 h > q

σ2 ∑q−h
s=0 αsαs+h h = 0, 1, · · · , q

σ(t, t− h) h < 0

(2.5)

since

E(uiuj) = { σ2 i = j
0 i 6= j.

(2.6)

Because the autocorrelation function does not depend on the time t and the mean

µ is a constant, the moving average process is weakly stationary. Furthermore, if the

white noise {ut| t ∈ T} is normal distributed, it can be shown that the process is

stationary.

As a special case of moving average process, MA(∞) satisfies the following equa-

tion:
xt = µ + α0ut + α1ut−1 + α2ut−2 + · · · (2.7)

where {ut| t ∈ T} is a white noise time series as usual. The mean function of the

process is still the constant µ and the autocorrelation function is

σ(t, t + h) = σ2
∞∑

s=0

αsαs+h. (2.8)
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It follows the MA(∞) is weakly stationary if
∑∞

s=0 |αs| < ∞.

Let M be the linear space spanned by {xt| t ∈ T} (which can be called a Hilbert

space). The backshift operator B is a mapping from M to itself , B:M→M, and

defined by Bxt = xt−1. The backshift operator B provides another way to represent

the MA(q) on the Hilbert space.

Note that Bpxt = xt−p. Then MA(q) and MA(∞) can be written respectively as:

xt = µ + α(B)ut (2.9)

xt = µ + θ(B)ut (2.10)

where α(B) = I + α1B + α2B
2 + · · ·+ αqB

q and θ(B) = I + θ1B + θ2B
2 + · · ·. These

representations of MA(q) will facilitate our further discussion in the proceeding of

the chapter.

2.2.2 Autoregressive (AR) Processes

Let {ut| t ∈ T} be a white noise process with mean zero and variance σ2. A

process {xt| t ∈ T} is said to be an autoregressive time series of order p, written as

AR(p), if
xt = δ + β1xt−1 + β2xt−2 + · · ·+ βpxt−p + ut (2.11)

where {βi} are constants. The format of the AR process is rather like a multiple

regression model. The prefix “auto” comes from the fact that xt is regressed on the

past values of itself. Another format of AR(p) is :

β(B)xt = δ + ut (2.12)
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where β(B) = I − β1B − β2B
2 − · · · − βpB

p.

Let θ(B) = β−1(B) = I + θ1B + θ2B
2 + θ3B

3 + · · ·, in which the relationship

between βs and θs can be easily found. Then the equation (2.12) may be written as

xt = (δ + ut)/β(B)

= (δ + ut)θ(B)

= µ + utθ(B) (2.13)

= µ + ut + θ1ut−1 + θ2ut−2 + θ3ut−3 + · · ·

where the µ is a constant and can be calculated by

µ = δ/(1− β1 − β2 − · · · − βp). (2.14)

The equations show that xt can be written as a infinite MA process, it follows

that E(xt) = µ. And the autocovariance function is

σ(t, t + h) = σ2
∞∑

s=0

θsθs+h. (2.15)

A sufficient condition for its convergence and hence for stationarity, is that
∑∞

s=0 |θs| <

∞. An equivalent condition for stationarity is to say that the root of the polynomial

β(x) = 1− β1x− β2x
2 − · · · − βpx

p must lie outside the unit circle[2].

Example: AR(1) process with δ = 0

As a simple but important example, we look at the first-order case with δ = 0.

The process becomes:
xt = βxt−1 + ut.
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When |β| = 1, xt is called a random process and then

xt = x0 +
t∑

i=1

ui.

It follows that E(xt) = 0 and V ar(xt) = V ar(x0) + tσ2. As the variance changes

with t, the process is non-stationary.

When |β| > 1, since the E(ut) = 0, the random term ut will eventually disappear

and thus the equation becomes:
xt = βxt−1.

Then the process will follow a non-stationary deterministic path.

Only when |β| < 1,

E(xt) = 0

Var(xt) =
σ2

1− β2
.

The process is stationary.

2.2.3 Mixed Autoregressive Moving Average(ARMA) Models

A useful class of time series is formed by combining MA and AR process. A

mixed autoregressive moving average model containing p AR term and q MA term is

a ARMA process of order (p,q) and it is given by:

xt = β1xt−1 + β2xt−2 + · · ·+ βpxt−p + δ + ut + α1ut−1 + α2ut−2 + · · ·+ αqut−q (2.16)

where {ut| t ∈ T} as usual, is a white noise time series. Apparently, the AR(p) and

MA(q) processes we discussed in the previous two sections are degenerated cases of
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ARMA(p,q) process. Using Back-Shift operator B, the formula can be simply written

as:
β(B)xt = δ + α(B)ut (2.17)

where

β(B) = I − β1B − β2B
2 − · · · − βpB

p (2.18)

α(B) = I + α1B + α2B
2 + · · ·+ αqB

q. (2.19)

Let

ψ(B) = β−1(B)α(B) = I + ψ1B + ψ2B
2 + · · · (2.20)

φ(B) = α−1(B)β(B) = I − φ1B − φ2B
2 − · · · (2.21)

By multiplying equation (2.17) in both sides with β−1(B) and α−1(B) respectively,

we can get two different forms for ARMA(p,q) time series:

xt = µ + φ(B)ut (2.22)

ψ(B)xt = ν + ut (2.23)

where µ and ν are two constants and can be calculated easily.

Equation (2.22) write the ARMA(p,q) process to the form of a pure MA(∞)

process and sometimes referred as the random shock form of ARMA(p,q). Corre-

spondingly, equation (2.23) is actually a pure AR(∞) and can be called the inverted

form of it.
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A little bit deeper understanding about the different forms of the ARMA(p,q)

process would involve the dual relationship between AR(p) and MA(q) process. In

short, a finite-order stationary AR(p) process corresponds to an infinite MA process

and in turn, a finite stationary MA(q) process corresponds to an infinite MA process.

This dual relationship also exists in the autocorrelation and partial autocorrelation

functions.

2.2.4 Autoregressive Integrated Moving Average Models(ARIMA) and
Box-Jenkins method

Most stationary time series can be modelled as a ARMA process, but in practice

many time series, particularly those arising from economics and business area, are

non-stationary. In order to apply the appropriate models discussed in the previous

sections, non-stationary time series are often transformed into stationary ones. One

widely used approach is to difference the series, i.e. replace the xt in the equation

(2.17): with ∇dxt where ∇ = I −B and ∇d denotes the dth difference. Then:

β(B)∇dxt = δ + α(B)ut. (2.24)

Such a model is called an autoregressive integrated moving average model of order

(p,d,q) and abbreviated as ARIMA(p,d,q).

For example, in the simple case ARIMA(0,1,1), the model actually is:

xt = δ + xt−1 + ut + α1ut−1.

Since the autoregressive order is zero, it is also called integrated moving average of
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order (1,1),or IMA(1,1).

ARIMA process is capable of describing a class of non-stationary time series with

a trend. It is developed as an central part of Box-Jenkins methodology. Box-Jenkins

methodology provides a systematic procedure to identify an appropriate model for

complex time series with trends, cycles, seasonal variations and even irregular fluc-

tuations. The main approach is to examine the behaviors of sample autocorrelation

function(SAC) and sample partial autocorrelation function(SPAC) of the time series

under study. More can be found in Bowerman and O’Connell’s [1].

2.3 Maximum Likelihood Estimation for ARMA models

The ARIMA model in the last section is essentially an natural extension of ARMA

models. So in this section, we will describe the general method of finding the param-

eters of an ARMA(p,q) model.

The estimation approach is based on the Maximum Likelihood Estimation (MLE).

Loosely speaking, the likelihood of a set data is the probability of obtaining that par-

ticular set of data, given the chosen probability distribution model. The likelihood

function or its ‘log’ form (which is called the log-likelihood function) contains the un-

known model parameters. The values of these parameters that maximize the sample

likelihood are known as the Maximum Likelihood Estimators .
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Follow the notations of last section, suppose the ARMA(p,q) has the form:

xt = β1xt−1 + β2xt−2 + ... + βpxt−p + δ + ut + α1ut−1 + α2ut−2 + ... + αqut−q. (2.25)

There are totally p + q + 2 parameters to be estimated.

To use the MLE, one needs to know the likelihood function L( β1, ..., βp, α1, ..., αq,

δ, σ2|x1,x2, ..., xT ) , or L(β, α, δ, σ2|x) for short. Mathematically, the likelihood func-

tion is equal to the joint density function of x, given the parameter set, f(x; β, α, δ, σ2).

This joint density function of x is not readily available because of the autoregressive

structure of x. However, if each white noise {u1, u2, ..., uT} is known as a function

of parameter set (β, α, δ, σ2), the likelihood function can be calculated through equa-

tion (2.26) based on the fact that white noises {u1,u2,..., uT} are normally identical

independent distributed (i.i.d.) with mean µ and variance σ2:

L(β, α, δ, σ2|x) = f(x1, x2, · · · , xT ; β, α, δ, σ2)

= f(u1,u2,..., uT ; β, α, δ, σ2)

= 2π−
T
2 σ−T exp

{
− 1

2σ2

T∑

t=1

u2
t (β, α, δ, σ2)

}
. (2.26)

Since we know {xt|t ∈ T}, if given the first q values for ut, the whole white noise

process {u1, u2, ..., uT} can be solved as a function of {β, α, δ, σ2} iteratively through

equation (2.25). So the log-likelihood function is

lx(β, α, δ, σ2) = −
(

T

2
ln(2π) +

T

2
ln(σ2) +

1

2σ2

T∑

t=1

u2
t (β, α, δ, σ2)

)
. (2.27)
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The maximization of lx(β, α, δ, σ2) usually involved an iterative numerical proce-

dure which will not be discussed here. Actually , nowadays most computer statistical

packages could produce sound estimation with sophisticated routines.

2.4 Forecasting

Given all the parameters and the first T observation of an ARMA model, it is

not difficult to make the forecasts. The lth step forecast x̂T (l) = xT+l is essentially

a conditional expectation E(xT+l|xT , xT−1, ..., xt−p). To compute the forecasts, one

should use the obvious fact:

x̂T (l) = xT (l) if l ≤ 0 (2.28)

and

ût(l) =





0 if l > 0

ut+l if l ≤ 0.

(2.29)

Recall in section 2.2.3 there are three forms of a ARMA model. Corresponding

there are three forms of forecasting equation.

1. Random shock form of the forecast

For the random shock form of ARMA Model (equation (2.22)), using equation(2.28)

and (2.29), one would have:

x̂T (l) = µ + ûT (l)− φ1ûT (l − 1)− φ2ûT (l − 2)− ... (2.30)
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To obtain the forecast above, one need to compute all the error terms {uT , uT−1, ...}

from the observations {xT , xT−1, ...} by iteratively using the equation:

ut = xt − x̂t−1(1). (2.31)

Note x̂0(1) = µ .

From equation (2.30), we could directly get the errors of forecasts:

eT (l) = xt+l − x̂T (l)

= uT+l − φ1uT+l−1 − φ2uT+l−2 − φl−1uT+1. (2.32)

So the mean square error (MSE) for the l step forecasts can be calculated as:

MSE = E[(uT+l − φ1uT+l−1 − φ2uT+l−2 − φ2uT+1)
2]

= (1 + φ2
1 + φ2

2 + ... + φ2
l−1)σ

2. (2.33)

Hence

σT (l) = σ
√

1 + φ2
1 + φ2

2 + ... + φ2
l−1. (2.34)

So the (1− α)100% confidence interval for prediction xT+l are given by

(
xT (l)− Zα/2σT (l), xT (l)− Zα/2σT (l)

)
.
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2. Inverted form of the forecast

Using equation (2.23), the invert form of the forecast is:

x̂T (l) = υ +−ψ1x̂T (l − 1)− ψ2x̂T (l − 2)− · · · (2.35)

3. Difference equation form of the forecast

x̂T (l) = (1+β1)x̂T (l−1)−β2x̂T (l−2)+ûT (l)+α1ûT (l−1)+α2ûT (l−2). (2.36)

Although those three predictions would give exactly the same point predictions,

the random shock form are most commonly used because its coefficients could be

directly used in the computation of the confidence limits.

The above forecasting formula are based on the Boxs-Jenkins ARIMA models [2].

But it should be mentioned that there are many other forecasting methods available

and research shows no one could claim itself as the “best” method.



Chapter 3

AUTOREGRESSIVE HIDDEN MARKOV

MODELS

3.1 Introduction

A time series may sometimes consist of observations generated by different mech-

anisms at different times. When this happens, the time series observations would act

like switching back and forth between a couple of distinct states. When changing

into a different state, the time series may have a significant change in their means

or in their frequencies or breadthes of their fluctuations. The Autoregressive Hidden

Markov model(ARHMM ) are often being used to deal with this kind of time series.

As indicated by the name, an ARHMM is the combination of an autoregressive time

series model and a hidden Markov model. The autoregressive structure admits the

existence of dependency amongst time series observations while the hidden Markov

chain could capture the probability characteristics of the transitions amongst the

underlying states. Actually, ARHMM is also referred as time series with change in

regime(or states) by the econometricians.

To be more specific, let us see an example of ARHMM. As usual, Y = {Y1, Y2, ..., YT}

denote the observation sequence. Each Yt is a observation vector with k component

Yt = {y1, y2, ..., yk}′ . X = {X1, X2, ..., XT} is a hidden state sequence with N possi-

ble states. X is assumed to be a Markov chain with transition matrix A = [aij] and
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initial distribution vector π = [πi].

As indicated earlier, the observation sequence Y = {Y1, Y2, ..., YT} is an AR(p)

process which can be written as:

Yt = β
(Xt)
0 + β

(Xt)
1 Yt−1 + β

(Xt)
2 Yt−2 + ... + β(Xt)

p Yt−p + εt (3.1)

or

Yt = Stβ
(Xt) + εt (3.2)

where

St = (1, Yt−1, Yt−2, ..., Yt−p)

β(Xt) = (β
(Xt)
0 , β

(Xt)
1 , β

(Xt)
2 , ...β(Xt)

p )′

εt ∼ i.i.d N(0, Σ).

β
(Xt)
i is the ith parameter for the autoregressive process when in state Xt. So

the current observation Yt are not only depends on the last p observations, but also

the current states. In this example, the white noise εt are independent identical

distributed with mean zero and covariance matrix Σ. But it should be mentioned

that the ARHMM with heteroskedasticity (unequal variance) for distinct state Xt

could also be developed with more complexity. In such cases, the error term εt will

usually be replaced by εXt which depended on the value of current state Xt. For the

reason of computational tractability, we are not going into this issue in this thesis.



39

Another notation we have to make is the state-related probability distribution of

the observations B = [(bj(Y ))]. In the previous chapter, we have used probability

mass function for those discrete distribution. Now we will introduce the the proba-

bility density function (pdf) for the continuous case. The most general form of pdf

in AR-HMM is of a finite mixture form:

bj(Y ) =
M∑

m=1

CjmΨ[Y, µjm, Σjm] (3.3)

where

Y is the observation vector being modelled.

Cjm is the mth mixture coefficient in state j. Note Cjm ’s are non-negative and

satisfy the stochastic constraint:

∑M
m=1 Cjm = 1 for all 1 ≤ j ≤ N .

Ψ is any log-concave or elliptically symmetric density (e.g. Gaussian density).

µjm, Σjm are the mean and covariance vector for the mth mixture density in state

j, respectively.

As a special case of this class of mixture distribution , single component (M = 1)

Gaussian density AR(p)-HMM would have the mean vector S
′
tβ

(Xt) and covariance

matrix σ2Ik∗k, with a pdf:
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P (Y |Zt, θ) =
1√
2πσ

exp[−(Yt − S
′
tβ

(Xt))′(Yt − S
′
tβ

(Xt))

2σ2
] (3.4)

where

θ is the parameter set with respect to the probability densities B = {bjm}:

θ = {σ2, δ′, β′1, β
′
2, ...β

′
p). δ = (δ1, δ2, ..., δN) and βi = (β1

i , β
2
i , ...β

N
i ) .

Zt is the information set for the latest p + 1 states and latest past p observations,

Zt = {Xt−p, ..., Xt−2, Xt−1, Xt, Yt−p, ..., Yt−2, Yt−1} .

We will discuss this model in detail in the following sections.

With the structure described above , the parameters of the mixture AR(p)-HMM

include:

1. the transition matrix matrix A = [aij] , i, j = 1, 2, ..., N ;

2. the initial probability π = [πi] , i = 1, 2, ..., N ;

3. the matrix weight C = [Cjm] , j = 1, 2, ..., N ; m = 1, 2, ..., M ;

4. all necessary parameters defining the set of probability densities {bjm} , θ =

{σ2, δ′, β′1, β
′
2, ...β

′
p).

3.2 Juang and Rabiner’s Estimation of ARHMM

In 1980’s, B.H.Juang and L.R.Rabiner published a series papers regarding the ap-

plication of HMM to the speech recognition. A class of HMMs particularly applicable
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to speech processing, namely the finite Gaussian mixture autoregressive HMMs have

been discussed in their papers. The corresponding estimation algorithms are also

developed and applied to their speech recognizers. In this section , we will introduce

and discuss their estimation algorithms of ARHMM.

For convenience , we use another version of equations (3.1) for AR(p) process:

Yt = −
p∑

i=1

βiYt−i + εt (3.5)

where εt ∼ i.i.d N(0, I)

Note the unity variance assumption of εt implies the observation sequence Y =

{Y1, Y2, ..., YT} have already been normalized. This has been done by dividing each

sample by
√

Tσ2, where T denotes the length of the observation sequence and σ2 is

the sample variance of the observations.

It can be shown [16][17] that for large T , the density function for Y is approxi-

mately

f(Y) ' (2π)−
T
2 exp{−1

2
δ(Y; β)} (3.6)

where

δ(Y ; β) = rβ(0)r(0) + 2
p∑

i=1

rβ(i)r(i)

β = [1, β1, β2, ..., βp]
′
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rβ(i) =
p−i∑

n=0

βnβn+i with β0 = 1

r(i) =
t−i−1∑

n=0

YnYn+i.

Note rβ’s are the autocorrelations of the autoregressive coefficient and r’s are the

autocorrelation of the normalized observation samples. With this approximation, the

density is defined by an autoregressive vector β or equivalently an autocorrelation

vector rβ = [rβ(0), rβ(1), ..., rβ(p)].

As a specific realization of equation (3.3) , we also assume the ARHMM is of a

finite mixture form

bj(Y ) =
M∑

m=1

Cjmbjm(Y ) (3.7)

for which bjm(Y ) is a Gaussian p.d.f. Then it follows equation (3.7) can be approxi-

mated as:

bjm(Y ) ' (2π)−
T
2 exp{−1

2
δ(Y ; βjm)} (3.8)

where βjm is the parameter vector defining the density for the mth mixture component

in state j.

The estimation procedure of Juang and Rabiner are also based on E-M algorithm.

It begins with an initial guess of model λ = (A, π, C, θ). Based upon λ , a training

procedure is implemented which would lead to new model λ̂ . The new model λ̂ will

be better than the old one in the sense that P (Y |λ̂) ≥ P (Y |λ). After replacing the
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old model λ with the new model λ̂ , the procedure is iterated until a critical point is

achieved.

Here I will just outline the re-estimation formula for the model parameter set.

The deduction and the proof for convergence could refer to [19][20][27]:

1. The transition matrix A = [aij] , 1 ≤ i, j ≤ N :

âij =

∑T
t=1 f(Y, Xt−1 = i,Xt = j|λ)/f(Y |λ)

∑T
t=1 f(Y,Xt−1 = i|λ)/f(Y |λ)

. (3.9)

2. The mixture weight C = [cjm] , 1 ≤ j ≤ N , 1 ≤ m ≤ M :

ĉjm =

∑T
t=1 f(Y, Xt = j, ht = m|λ)/f(Y |λ)

∑T
t=1 f(Y, Xt = j|λ)/f(Y |λ)

(3.10)

where ht ∈ {1, 2, ..., M} is a random variable and denote the event that Yt is drawn

from the mixture component ht.

3. Let rjm represent the autocorrelation parameters for each mixture m in state

j, 1 ≤ m ≤ M , 1 ≤ j ≤ N . rjm’s can be used to calculate the βjm in equation (3.8)

and their re-estimation formulas are:

r̂jm(i) =

∑T
t=1 f(Y,Xt = j, ht = m|λ) · rt(i)/f(Y |λ)
∑T

t=1 f(Y,Xt = j, ht = m|λ)/f(Y |λ)
(3.11)

for i = 0, 1, 2, ..., p , j = 1, 2, ..., N and m = 1, 2, ...M .
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where rt(i) =
∑k−1+i

j=0 yt,jyt,j+1 and yt = [yt,0, yt,1, ..., yt,k−1]
′ .

To effectively calculate the likelihood function f(·) , we still adopt the backward

and forward variables βt(·) and αt(·) defined in chapter 1 :

αt(j) = P (Y (t), Xt = j|λ)

βt(j) = P (Y ∗(t)|Xt = j, λ).

Then it is not very difficult to see,

f(Y,Xt = j|λ) = αt(j)βt(j)

f(Y |λ) =
N∑

j=1

αT (j)

f(Y,Xt−1 = i,Xt = j|λ) = αt−1(i)aijbj(Yt)βt(j)

f(Y,Xt−1 = i, ht = m|λ) =
N∑

i=1

αt−1(i)aijcjmbjm(Yt)βt(j).

3.3 E-M Algorithm

In this section, I will briefly describe the theory behind the E-M algorithm and its

properties. E-M algorithm was originally designed to deal with the missing values in

the time series analysis. The unknown states in the HMM can be seen as the missing

values in the E-M algorithm.

Followed the usual notations, let Y= [Y1, Y2, ..., Yt] be the observation sequence,
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X= [X1, X2, ..., Xt] be the unknown state sequence and λ = (π, A,B) be the param-

eter set.

The goal is to maximize the observation probability P (Y|λ) by choosing appro-

priate λ. Mathematically P (Y|λ) is equivalent to the likelihood function of Y with

unknown parameter set λ and it can be written as

P (Y|λ) =
∫

X
P (Y,X|λ) =

N∑

Xt=1

N∑

Xt−1=1

...
N∑

X1=1

P (Y, X1, ..., Xt|λ). (3.12)

In this way, the observation likelihood is parameterized in terms of P (Y,X|λ). It

will prove useful to define a new expression Q(λl+1; λl,Y), the expected log-likelihood,

where the log-likelihood is parameterized by λl+1 and the expectation is taken with

respect to another parameter set λl :

Q(λl+1; λl,Y) =
∫

X
log(P (Y,X|λl+1))P (Y,X|λl). (3.13)

The E-M algorithm starts from an initial guess of parameter set λ̂0 , then we can

iteratively solve λ̂l+1 (l = 0, 1, ...) for the equation that maximizes Q(λl+1; λl, Y ):

∫

X

∂ log P (Y,X|λl+1)

∂λl+1

|
λl+1=λ̂l+1

· P (Y,X|λ̂l) = 0. (3.14)

Then it is not very difficult to prove ( [9][21] ) the following two properties of E-M

algorithm:

Proposition 1 :
P (Y|λ̂l+1) ≥ P (Y|λ̂l)

with equality only when λ̂l+1 = λ̂l.
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Proposition 2 :

If
∂Q(λl+1; λ̂l,Y)

∂λl+1

∣∣∣∣
λl+1=λ̂l

= 0

then
∂P (Y|λ)

∂λ

∣∣∣∣
λ=λ̂l

= 0.

The first proposition claims that each iteration of E-M algorithm ensures an in-

creased (or equal) value of likelihood function. The second proposition demonstrates

that the sequence
{
λ̂l

}∞
l=1

converges to the local MLE. These two propositions to-

gether justify why the E-M algorithm yields the maximum likelihood estimate λ̂.

With λ = (A,B, π), J.Hamilton [10] showed how equation (3.14) can be solved

for A, B and π and hence we get a particular form of the E-M algorithm for the

AR-HMM:

a
(l+1)
ij =

∑T
t=p+1 P (Xt = j,Xt−1 = j|Y ; λl)∑T

t=p+1 P (Xt−1 = j|Y ; λl)
(3.15)

T∑

t=p+1

N∑

Xt=1

N∑

Xt−1=1

...
N∑

Xt−p=1

∂ log P (Yt|Zt; θ)

∂θ

∣∣∣∣
θ=θl+1

P (Xt, ..., Xt−p|Y ; λl) = 0 (3.16)

π
(l+1)
ip,ip−1,...,i1 = P (Xp = ip, Xp−1 = ip−1, ..., X1 = l1|Y ; λl) i1, ..., ip = 1, 2, ...N

(3.17)
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where Zt = {Xt, Xt−1, ..., Xt−p, Yt−1, Yt−2, ..., Yt−p}′.

In each iteration , we calculate the smoothed probabilities such as P (Xt, ..., Xt−p

|Y ; λl) and then solves the λl+1 = (A(l+1), B(l+1), π(l+1)) as a function of previous

estimation λl . The calculation of equation (3.15) and equation (3.17) is quite straight-

forward. Actually we’ll see the differential in equation (3.16) often has a simpler form.

For example the Baum-Welch re-estimation formula (equations 1.23-1.25) in chap-

ter 1 is essentially a special case of equations (3.15)-(3.17) with the autoregressive

order p = 0 .

Consider the case when the Yt is i.i.d. Gaussian distributed with the mean vector

and covariance matrix depending on the current state Xt :

Yt ∼ N(µXt , ΣXt).

The p.d.f. can be written as

P (Yt|Zt; λ) =
1

(2π)n/2|ΣXt|1/2
exp[

−(Yt − µXt)
′Σ−1

Xt
(Yt − µXt)

2
]. (3.18)

So the differential part of equation (3.16) would be:

∂ log P (Yt|Zt; θ)

∂µj

= Σ−1
j (Yt − µXt) if Xt = j

= 0 otherwise

∂ log P (Yt|Zt; θ)

∂Σ−1
j

=
1

2
Σj − 1

2
(Yt − µj)(Yt − µj)

′ if Xt = j

= 0 otherwise.
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Thus the equation (3.16) would have the form (p = 0):

T∑

t=1

[Σ
(l+1)
j ]−1(Yt − µ

(l+1)
j ) · P (Xt = j|Y ; λl) = 0 (3.19)

T∑

t=1

[1

2
Σ

(l+1)
j − 1

2
(Yt − µ

(l+1)
j )(Yt − µ

(l+1)
j )′

]
· P (Xt = j|Y ; λl) = 0 (3.20)

for j = 1, 2, ...N .

Solve for Σ
(l+1)
j and µ

(l+1)
j , we have

µ
(l+1)
j =

∑T
t=1 Yt · P (Xt = j|Y ; λl)∑T

t=1 P (Xt = j|Y ; λl)
j = 1, 2, ..., N (3.21)

Σ
(l+1)
j =

∑T
t=1(Yt − µ

(l+1)
j )(Yt − µ

(l+1)
j )′P (Xt = j|Y ; λl)∑T

t=1 P (Xt = j|Y ; λl)
(3.22)

which explains where the equation (1.26) and (1.27) come from.

3.4 E-M Formula for ARHMM

Now it comes to the estimation procedure of the ARHMM. Basically we will follow

the structure and notations in the Section (3.1). Recall the autoregressive structure

of the observation vectors have been parameterized as:

Yt = S
′
tβ

(Xt) + εt (3.23)
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where

St = (1, Yt−1, Yt−2, ..., Yt−p)

β(Xt) = (δ(Xt), β
(Xt)
1 , β

(Xt)
2 , ...β(Xt)

p )

εt ∼ i.i.d N(0, σ2).

Then the conditional p.d.f of Yt can be written as:

P (Yt|Zt; λ) =
1√
2πσ

exp

[−(Yt − S
′
tβ

(Xt))2

2σ2

]
. (3.24)

To get the specific estimation formula, differentiate 3.24 with respect to βj and

σ−2:

∂ log P (Yt|Zt; θ)

∂βj

=
(Yt − S

′
tβj)St

σ2
if Xt = j

= 0 otherwise

∂ log P (Yt|Zt; θ)

∂σ−2
=

σ2

2
− (Yt − S

′
tβj)

2

2
if Xt = j

= 0 otherwise.

Then the equation (3.16) can be written as:

T∑

t=p+1

(Yt − S
′
tβ

(l+1)
j )St

σ2
(l+1)

P (Xt = j|Y ; λl) = 0 (3.25)

T∑

t=p+1

N∑

j=1


σ2

(l+1)

2
− (Yt − S

′
tβ

(l+1)
j )2

2


 P (Xt = j|Y ; λl) = 0. (3.26)
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The estimation of β
(l+1)
j which solves equation (3.25) can be found from an ordi-

nary least square (OLS) regression of Ỹt(j) and S̃t(j):

β
(l+1)
j =




T∑

t=p+1

[̃St(j)][S̃t(j)]
′


−1 


T∑

t=p+1

[̃St(j)]Ỹt(j)


 (3.27)

where

Ỹt(j) = Yt ·
√

P (Xt = j|Y ; λl)

S̃t(j) = St ·
√

P (Xt = j|Y ; λl)

and thus the estimation of σ2
(l+1) is:

σ2
(l+1) =

T∑

t=p+1

N∑

j=1

(Ỹt(j)− S̃t(j)β
(l+1)
j )2

T − p
. (3.28)

The estimation of the transition probabilities A = [aij] and the initial probabilities

π = [πj] come from the eqn(3.15) and eqn(3.17):

a
(l+1)
ij =

∑T
t=p+1 P (Xt = j, Xt−1 = j|Y ; λl)∑T

t=p+1 P (Xt−1 = j|Y ; λl)

and

π
(l+1)
j = P (Xp = j|Y ; λl), j = 1, 2, ..., N − 1

and π
(l+1)
N = 1− π

(l+1)
1 − π

(l+1)
2 − ...− π

(l+1)
N−1 .
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3.5 The Calculation of the Smoothed Probabilities

Every iteration of the re-estimation formula in the last section involves the calcu-

lation of the smoothed probabilities such as P (Xt, Xt−1|Y ) and P (Xt|Y ). Recall in

chapter 1 how we use forward variable and backward variable to effectively calculate

those probabilities for conventional hidden Markov models. When it comes to the

ARHMM case, the principles are essentially the same. But the implementation of

the calculation are inevitably more complex due to the autoregressive structure. In

this section we will outline the iterative procedures of calculation of general smoothed

probability P (Xt, Xt−1, ..., Xt−p|Y ) , where p is the autoregressive order as usual.

1. The start-up of the algorithm needs to initialize the following two probabilities:

P (Yp+1|Y (p)) =
N∑

Xp+1=1

N∑

Xp=1

...
N∑

X1=1

P (Xp+1|Xp) · P (Yp+1|Zp+1)πXp,...,X1 (3.29)

P (Xp+1, ..., X1|Y (p+1)) =
P (Xp+1|Xp) · P (Yp+1|Zp+1)πXp,...,X1

P (Yp+1|Y (p))
(3.30)

Where

Y (t) = (Y1,Y2, ..., Yt)
′

Zt = {Xt, Xt−1, ..., Xt−p, Yt−1, Yt−2, ..., Yt−p}′

πXp,Xp−1,...,X1 = P (Xp, Xp−1, ..., X1|Y ).
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2. Compute all the P (Yt|Y (t−1)) and P (Xt, Xt−1, ..., Xt−p|Y (t)) for t = p + 2, ..., T

by the formula:

P (Yt|Y (t−1)) =
N∑

Xt=1

N∑

Xt−1=1

...
N∑

Xt−p−1=1

P (Xt|Xt−1) ·P (Yt|Zt) ·P (Xt−1, ..., Xt−p−1|Y (t−1))

(3.31)

P (Xt, ..., Xt−p|Y (t)) =

∑N
Xt−p−1=1 P (Xt|Xt−1) · P (Yt|Zt) · P (Xt−1, ..., Xt−p−1|Y (t−1))

P (Yt|Y (t−1))
.

(3.32)

3. For a particular fixed t , evaluate the advanced probability for τ = t + 1, t +

2, ..., t + p :

P (Xτ , ..., Xt−p|Y (τ)) =
P (Xτ |Xτ−1) · P (Yτ |Zτ ) · P (Xτ−1, ..., Xt−p|Y (τ−1))

P (Yτ |Y (τ−1))
. (3.33)

4. Carry forward the inference for τ = t + p + 1, t + p + 2, ..., T :

P (Xτ , ..., Xτ−p, Xt, ..., Xt−p|Y (τ)) = (3.34)
∑N

Xτ−p−1=1 P (Xτ |Xτ−1) · P (Yτ |Zτ ) · P (Xτ−1, ...Xτ−p−1, Xt, ..., Xt−p|Y (τ−1))

P (Yτ |Y (τ−1))
.

5. Finally, we could finish the calculation of the smoothed probabilities by sum-

ming up the last p states :

P (Xt, Xt−1,..., Xt−p|Y ) =
N∑

XT =1

N∑

XT−1=1

...
N∑

XT−p=1

P (XT , ..., XT−p, Xt, ..., Xt−p|Y (T )).

(3.35)
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The total number of calculations required by the above algorithm is of order

N2(p+1)T 2 which is acceptable because usually N and p are fairly small.



Chapter 4

AR(1)HMM WITH APPLICATION TO TAO

DATA

In this chapter we will focus on a bivariate autoregressive order one hidden Markov

model (AR(1)HMM) with two states. Firstly we will present the model and discuss

the empirical algorithms to recognize the state sequence and estimate the parameter

set. Next we will use a set of simulated data to test the performance of the algorithm.

Then we will apply the AR(1)HMM to an El Niño study by fitting the sea surface

temperature data from Tropical Atmosphere Ocean Project (TAO) to the model.

Moreover, a conventional HMM will also be built on the same data set and, through

comparison, verify the strength of AR(1)HMM . At last, we will draw a conclusion

on this study and further research on the subject are discussed.

4.1 Introduction of AR(1)HMM

4.1.1 Specifications of The Model

As the simplest case of multivariate autogressive hidden Markov models(MARHMM),

one bivariate AR(1)HMM with two states could have the following form:

Yt = µ(Xt) + β(Xt)(Yt−1 − µ(Xt−1)) + εt (4.1)

where Yt is the bivariate observation vector in time t and µ(Xt) is the mean vector
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depending on the current state Xt :

Yt =




yt,1

yt,2


 and µ(Xt) =




µ
(Xt)
1

µ
(Xt)
2


 .

β(Xt) is the autoregressive parameter of the current state Xt . It is a 2×2 diagonal

matrix :

β(Xt) =

[
β

(Xt)
1 0

0 β
(Xt)
2

]
.

εt is the white noise with mean zero and covariance matrix Σ. It is independent

to the current state.

εt =

[
εt,1

εt,2

]
∼ N(0, Σ) = N

(
0,

[
σ11 σ12

σ21 σ22

])
.

The parameter set of the model can be written as λ = (π, A, B) for which:

1. π is the initial probability density matrix for first two states and

π = [πX1X2 ]2×2 =

[
π11 π12

π21 π22

]
.

2. A is the 2× 2 transition matrix as usual: A = [aij]2×2 =




a11 a12

a21 a22


 .

3. B = (µ, Σ, β) is the set of distribution parameter and autoregressive coefficients:

µ = [ µ(1) µ(2) ] =




µ
(1)
1 µ

(2)
1

µ
(1)
2 µ

(2)
2


 , Σ =




σ11 σ12

σ21 σ22



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and

β(i) =

[
β

(i)
1 0

0 β
(i)
2

]
.

4.1.2 The Likelihood Function

Assume that all the parameters λ = (π, A, B) are known. With the model struc-

ture described above, we have

εt = Yt − µ(Xt) − β(Xt)(Yt−1 − µ(Xt−1)). (4.2)

Since εt ∼ N(0,
∑

), is independent of t, the Jacobian of the transformation from

εt to Yt does not depend on t and it is equal to
∣∣∣Σ− 1

2

∣∣∣. Now using this Jacobian, we

can write the joint density of Y1, Y2, ..., YT as:

f(Y1, Y2, ..., YT | i1, i2, ..., iT ) = (2π)−
T
2

∣∣∣Σ−T
2

∣∣∣ exp

{
−1

2

T∑

t=1

ε′tΣ
−1εt

}
(4.3)

when the state sequence X1 = i1, X2 = i2, ..., XT = iT are given.

Hence

f(Y1, Y2, ..., YT , i1, i2, ..., iT ) = πi1ai1i2 ...aiT−1iT (2π)−
T
2

∣∣∣Σ−T
2

∣∣∣ exp

{
−1

2

T∑

t=1

ε′tΣ
−1εt

}

(4.4)

and the joint density function of Y1, Y2, ..., YT is given by

f(Y1, Y2, ..., YT ) =
∑

All I

f(Y1, Y2, ..., YT , i1, i2, ..., iT ) (4.5)
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where I = {i1, i2, · · · , iT} is any one of the state paths.

Equation (4.5) indicates that the likelihood of any realization of observations

Y1, Y2, ..., YT can be calculated through summing up the expression (4.4) for all the

possible state sequences.

Apparently this straight-forward method is computationally intractable when long

state sequences are involved. Now we have almost the same problem as in Section 1.5

when dealing with the likelihood function for conventional HMM. Though the autore-

gressive structure of AR(1)HMM makes the situation more complicated, a modified

forward-method could solve the problem efficiently.

For AR(1)HMM, let’s define the new forward variable φt(Xt−1, Xt) = f(Y1, Y2,

..., Yt, Xt−1, Xt), the joint density function of partial observations up to time t and

the most recent two states. Then it’s not hard to see:

φt+1(Xt, Xt+1) = f(Y1, Y2, ..., Yt, Xt, Xt+1)

=
∑

Xt−1

f(Y1, Y2, ..., Yt, Xt−1, Xt)aXtXt+1f(Yt+1|Yt, ..., Y1, Xt−1, Xt, Xt+1).

Then joint density function f(Y1, Y2, ..., YT ) can be calculated with the following

iterative procedures:

- Step 1: Initialization

φ2(X1, X2) = πX1X2(2π)−
1
2

∣∣∣Σ− 1
2

∣∣∣ exp
{
−1

2
ε′2Σ

−1ε2

}
. (4.6)
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- Step 2: For t = 2 to T − 1,

φt+1(Xt, Xt+1) =
∑

Xt−1

φt(Xt−1, Xt)aXtXt+1(2π)−
1
2

∣∣∣Σ− 1
2

∣∣∣ exp
{
−1

2
ε′t+1Σ

−1εt+1

}
.

(4.7)

- Step 3: Finish up

f(Y1, Y2, ..., YT ) =
∑

XT

∑

XT−1

φT (XT−1, XT ). (4.8)

When the likelihood function of AR(p)HMM (p > 1) is studied, almost the

same procedure can be employed with the definition of forward variable change to

φt(Xt−p, ..., Xt) = f(Y1, Y2, ..., Yt, Xt−p, ..., Xt) .

4.1.3 Scaling Technique

When the observation sequence is fairly long (Approximately>50), the value of

likelihood function will become extremely small that goes beyond the computational

precision of any computer system. So a scaling procedure for the calculation of

likelihood function is necessary. The idea of scaling procedure is to multiply the

forward variable φt(Xt−1, Xt) by a factor independent of the states Xt−1 and Xt .

One good choice is to divide φt(Xt−1, Xt) by its sum over all states:

φ∗t (Xt−1, Xt) =
φt(Xt−1, Xt)∑

Xt−1

∑
Xt

φt(Xt−1, Xt)
(4.9)
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where φ∗t (Xt−1, Xt) is the scaled forward variable.

If using the scaled forward variables φ∗t (Xt−1, Xt) all along the calculation, we

know the value of likelihood function (4.8) will be 1 no matter what the observations

are. The real value of the likelihood function would just be the products of all scaling

denominators. Or one could get the log-likelihood function by summing up all the

log form of them:

L = log f(Y1, Y2, ..., YT ) =
T∑

t=2

log




2∑

Xt−1=1

2∑

Xt=1t

φt(Xt−1, Xt)


 . (4.10)

4.1.4 Initialization Problem

The estimation of AR(1)HMM parameters will use the segmental K-mean algo-

rithm. As described in Section 1.8, the segmental K-mean algorithm is an iterative

procedure and the parameter set must be initialized before the iterations start.

As mentioned in the Section 1.7, either E-M algorithm or segmental K-mean

algorithms could only lead to a local maximum of the HMM likelihood function. For

AR(1)HMM, this is also true. To get the parameter estimates with a global maximum

likelihood, a grid search approach[20] might be used. In grid search approach, the

parameter space is seen as a grid with many small cells and all the vertices are used as

the initial values of the parameters. Because the parameter space is so big in the case

of AR(1)HMM, the grid search method requires considerable computational power

which is intractable for practical purposes. So in this study, we just use the simple
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method which initializes the parameters using a rough estimation of the state path.

The method will be described in the next section. Please note that our initialization

of the parameters will possibly only lead to a local maximum.

4.2 Model Estimation

The method we used to estimate the model parameters are a modified version of

conventional Segmental K-mean Algorithm (SKA) . A little more detailed description

of SKA have already been introduced in Section 1.8. So here we will focus on the

procedures of the algorithm.

The estimation can be achieved by following iterative steps:

- Step 1: Initialization.

Firstly one need to initialize the unknown state sequence by clustering all the

observations into several state groups . That means, if an observation Yt is

grouped into a state group i, we assume the corresponding state Xt be the

ith state. In case of only two possible states , we could simply assign each

observation to a state by comparing its norm (Euclidean distance to origin) to

a threshold. Those whose norm are greater than the threshold are assume to be

in state 1 and rest are assume to be in state 2. The choice of the threshold can

be the average of all the norms, or simply by guess through the visualization of
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the data.

Once we have a initial state path X∗ = {X∗
1 , X

∗
2 , · · · , X∗

T}, we could initialize

the parameter set λ = (π,A, B) by the following estimators:

(1) The transition matrix A can be initialized by:

âij =
Number of transitions from state i to state j

Number of transitions from state i
. (4.11)

(2) The the initial probabilities π can be set to be equal to transition matrix

A.

(3) µ
(i)
j , the jth element of mean vector in state i :

µ̂
(i)
j =

∑
Xt=i y

(Xt)
t,j

Ni

. (4.12)

Ni is the number of states i in the whole state sequence.

(4) β
(i)
j , the jth element autoregressive parameters in state i :

β̂
(i)
j =

∑
Xt=i(yt,j − µ̂

(Xt)
j )(yt−1,j − µ̂

(Xt−1)
j )

∑
Xt=i(yt,j − µ̂

(Xt)
j )2

.. (4.13)

(5) Σ , the covariance matrix of the white noise:
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Σ̂ =

∑T
t=1 ε̂′tε̂t

T
. (4.14)

where ε̂t = Yt − µ̂(Xt) − β̂(Xt)(Yt−1 − µ̂(Xt−1)) as defined before.

- Step 2: Calculate the smoothed probability P (Xt, Xt−1|Y ) and P (Xt|Y ) based

on the estimated parameter set λ̂ = (Â, B̂, π̂) as described in Section 3.5.

- Step 3: Find the new optimal state sequence X∗ based on the value of P (Xt|Y ):

If P (Xt = 1|Y ) > P (Xt = 2|Y )

Then X∗
t = 1

Else X∗
t = 2.

- Step 4: Re-estimate the parameters λ = (π, A, B) based on new optimal state

path X∗ :

(1)

âij =

∑T
t=2 P (Xt = j, Xt−1 = i|Y )

∑T
t=2 P (Xt−1 = i|Y )

. (4.15)

(2)

πij = P (X2 = j,X1 = i|Y ). (4.16)

(3) µ
(i)
j ,β

(i)
j and Σ would be estimated through equation 4.12 to 4.14.
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- Step 5: If there are any chance in state path X∗ , repeat step 2 to step 5.

It has been proven in [18] that the procedures above would lead to the convergence

of target state optimized likelihood function. We will evaluate the performance of

above algorithm with the test data in the next section.

4.3 Model Testing

A bivariate observation sequence of length l000 has been simulated from the model

( equation 4.1) described in Section 4.1. The values of parameters used to simulate

the data are listed in the column “Original Parameters” of Table (4.1). The total

number of parameters of real value is 20. Moreover, there are noticeable difference in

the mean µ′s and autoregressive parameters β’s between the two state to ensure the

the feasibility of state recognition.

Figure 4.1 shows a 2-D plot of the first element against and second element (yt,1

vs yt,2) of the first 100 observations. It’s obvious the points are gathering into two

clusters , but their boundary is somewhat blurry. Figure 4.2 shows the time series

plot for yt,1 and yt,2 , individually.

The estimation procedure are described in last section and repeated three times

for the first 100, first 300 and whole 1000 data. The results are reported in the Table

4.1.
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2D graph of first  100 obs

Figure 4.1 2-D Graph of First 100 Observations

Since there are only one sequence involved, the estimation of initial density matrix

of π would have 1 in one entry and 0’s in the rest entries. In fact , in most applications

, initial probability density would not have any realistic meanings because the time

series data , in most cases, don’t have a beginning point.

The last row logL in the table is the log-likelihood value log(P (Y|λ̂)) computed

from the estimated parameters and the whole 1000 observations. It is listed here as a

measure to compare the goodness-of-estimation for different data set. The calculation

of logL follows the forward-procedure in Section 4.1.2.

In the above example, as the size of test data increases from 100, 300 to 1000, the

log-likelihood value, logL, has also increased from −6174.8, −5700.9 to −5236.6. It
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is true that the estimates improve as the data set for the training model increase. For

example, the logL value archived by Training set 3 (−5236.6) are pretty close to the

real one (−5207.1) which indicates a very good estimation. But it should be pointed

out that the Segmental K-mean Algorithm are based on the maximum state optimized

criterion, namely to maximize the L(λ|Y,X∗) rather than L(λ|Y). So it would be no

surprise that sometimes the estimation with the shorter observation sequence has a

greater value of logL than the longer ones. But as a matter of fact, the estimations for

ARHMM based on the maximum state optimized criterion and maximum likelihood

Original Parameters Test set 1(100 data) Test set 2(300 data) Test set 3(1000 data)

A

[
0.85 0.15
0.3 0.7

] [
0.8937 0.1063
0.1695 0.8305

] [
0.8316 0.1684
0.2784 0.7216

] [
0.8447 0.1553
0.2715 0.7285

]

π

[
0.7 0.1
0.1 0.1

] [
0 0
0 1.0

] [
0 0
0 1.0

] [
0 0
0 1.0

]

µ(1)

[
15.2
9.3

] [
15.4663
9.3407

] [
15.2101
9.4109

] [
15.2487
9.3355

]

µ(2)

[
7.4
5.4

] [
7.4002
5.8054

] [
7.3666
5.5270

] [
7.2351
5.4436

]

β(1)

[
0.1 0
0 −0.3

] [
0.0538 0

0 −0.3001

] [
0.1765 0

0 −0.2871

] [
0.1469 0

0 −0.2731

]

β(2)

[ −0.7 0
0 0.5

] [ −0.3863 0
0 0.5006

] [ −0.3668 0
0 0.5842

] [ −0.5098 0
0 0.5187

]

Σ

[
3.3 0.3
0.3 2.4

] [
3.0161 0.3257
0.3257 1.6737

] [
3.2163 −0.0741
−0.0741 2.2021

] [
3.4496 0.1086
0.1086 2.4852

]

log L −5207.1 −6174.8 −5700.9 −5236.6

Table 4.1 Summary of Test Result
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criterion would be consistent with each other under suitable conditions, or in other

words , they will be very close.

A byproduct of the algorithm is a set of smoothed probability P (Xt = i|Y, λ̂),

the probability (or likelihood) of state i at time t based on the whole observation

sequence and estimated parameter set. In the Segmental K-mean algorithm, these

smoothed probabilities have been used to draw inferences on the state process. A

graph of smoothed probability P (Xt = 1|Y, λ̂) based on the parameter estimates from

training set 3 for the first 100 observation vectors has been reported in Figure 4.3. For

non-autoregressive univariate HMM, a proper estimation will lead to the smoothed

probability curve very similar to the time series plot of observation sequence. For

autogressive ones, this relation would also exist but somewhat less obviously.

The computer programs used in the above and following applications are designed

by the author and named AR1HMM. AR1HMM includes a set of MATLAB functions

that implement the Segmental K-mean Algorithm to estimate the model parameters

of ARHMM of order 1. Now it is only designed to handled the univariate or bivariate

AR(1) hidden Markov Model with two states. But it would be easy to extend the

programs to deal with more general AR(p) cases with more possible hidden states.

For a detailed description of AR1HMM , see Appendix I.
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Observat ions for 100 data

Figure 4.2 Time Series Plot for yt,1 and yt,2

smoothed probability for state 1

Figure 4.3 Time Series Plot for smoothed probability P (Xt = 1|Y, λ̂)
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4.4 Application to TAO data

In this section , we will use AR(1)HMM to model the sea surface temperature data

from the Tropical Atmosphere Ocean (TAO) Project. Also a conventional hidden

Markov model will also be built on the same data as a comparison.

4.4.1 Overview and Data Preparation

El Niño is a disruption of the ocean-atmosphere system in the tropical Pacific

having important consequences for weather around the globe. El Niño as a physical

phenomenon is a proven fact. But the way it works has many theories. An autore-

gressive hidden Markov model could interpret the frequent El Nino phenomena as the

results of stochastic switches between two unobserved states (normal state and abnor-

mal state). Under this assumption, we could make statistical inferences on El Nino

based on the available observations such as sea surface temperatures whose changes

have been regarded as an important measure of the occurrence of El Nino.

Between 1985 and 1994, the TAO Project Office of Pacific Marine Environmen-

tal Laboratory (PMEL) instrument the entire tropical Pacific with nearly 70 ocean

moorings which enables the real-time collection of high quality oceanographic and

surface meteorological data for monitoring, forecasting, and understanding of climate

swings associated with El Niño and La Niña. All the data can be downloaded free

from PMEL’s website (http://www.pmel.noaa.gov/tao/).

Among all the data, sea surface temperature (SST) is of most importance because
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it is the most direct measure for the occurrence the El Niño phenomena. In TAO, all

the SST data are collected from buoys placed in the water of 1-meter depth. Figure

4.4 shows the distribution of all buoys in the Pacific Ocean. Two red points in the

middle represents the positions (0N170W and 0N155W, representing 0 on the y-axis

and 170 and 155 on the x-axis respectively) where the data are going to be studied

in this section. Namely, the SST data from these two positions, in the form of time

series, are going to be the first and second entries of observation vector Yt = [y1,t, y2,t]
′.

The reasons these two sites are selected are:

1. They are both in the equator, so there will be no seasonal effect in the model.

2. The SST data available at these two sites (showed in Figure 4.5) are relatively

complete (Although there are still some missing value) and largely overlapping which

can be easily turn into a bivariate observation sequence.

3. They are relatively close, so it’s relatively more likely they will be in the same

state at same time.

Figure 4.4 Buoy Distribution and Selection
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All the SST data obtained from the TAO website are in Celsius scale, with two

places of decimal. The original data from 0N170W (sequence 1) is the daily average

temperature from 16, May 1988 to 5 Apr 2004. It is in 5 blocks and totally 5804

values , with 56 missing values. The original data from 0N155W (sequence 2) is

collected from 21, Jul 1991 to 4, Apr 2004. It has 1 block and totally 4642 values and

33 missing values.

Figure 4.5 Data Availability in Two Sites

To form the bivariate observation sequence, the sequence 1 are chopped into the

same length as sequence 2.

Since all the gaps between the blocks in sequence 1 are quite small (maximal

length of 6) , they can be seen as another sort of missing values. There are many

ways to deal with the missing values. Here we just ”smooth” the missing values with
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the average of their most closed neighbors. In total, the data have been modified are

below 2% of total.

4.4.2 Model Estimation

Now we use the AR(1)HMM described in the previous sections to model the SST

data. Hopefully the estimation can be used to interpret the recent El Niño.

Figure 4.6 and Figure 4.7 show two identical time series plots of observation y1,t

, y2,t . The blue curve in the graph represents the y1,t (the SST in 0N170W) and the

green one represents the y2,t (the SST in 0N155W).

We use [28.5, 27]′ as the threshold value for the initial guess. Namely, those

observations Yt = [y1,t, y2,t]
′ whose norms are greater than

√
28.52 + 272 will assign

to state 1 (El Niño state) and the rest will assign to state 2 (normal state) in the

initialization of algorithm. 28.5 and 27 are rounded averages for the whole SST

observation sequence at the two sites. Once the state sequence are initialized, the

parameter set can be easily initialized following the procedure of Section 4.2.

The computer program used in the estimation is still AR1HMM. The program

running the MATLAB V6.2 on a Pentium 4 2.0GHZ PC with 512M RAM, took

around 6 hours for convergence.

To compare the competence between ARHMM and conventional HMM, a two-

state HMM with bivariate Gaussian state-conditional distribution are also built for the
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same data set. For an specification of an conventional HMM, please refer to chapter

one. The initialization procedure for the HMM are almost the same as AR(1)HMM,

except for the obvious fact that there are no autoregressive coefficients in the model.

The HMM estimation is based on the EM algorithms and are implemented by

H2M. The running time for the estimation on the same computer is only 7 minutes.

4.4.3 Results and Analysis

Table 4.2 reports the estimation of parameters for both AR(1)HMM and conven-

tional HMM. The bold red straight lines in the bottom and top of Figure 4.6 and

Figure 4.7 represents the estimated state path of State 1 and State 2 respectively.

The first row of table 4.2 compares the two estimated transition matrix between

AR(1)HMM and HMM. For both matrices, the estimated transition matrix A has

very high values in the diagonal entries while the off-diagonal entries are trivial.

This feature indicates there would be no frequent jumps between two states for both

models. Once it is in a state (either in normal state or in abnormal state), it will stay

here for quite a long time before the next jump. In practice, El Niño phenomena is not

a daily weather changes like rains and fogs. It is a disruption of the ocean-atmosphere

system and its formation and dissolution takes months. The high diagonal values

of the transition matrices for both models ensure the stability of state estimates.

Comparatively, the diagonal elements of AR(1)HMM is a little bit greater than the
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Figure 4.6 Observations and the HMM estimated state path
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Figure 4.7 Observations and the AR1HMM estimated state path
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ones for HMM. Correspondingly, a comparison of their respective state paths in Figure

4.7 (AR(1)HMM) and Figure 4.6 (HMM) reveals that the state path of AR(1)HMM

are more stable and more coincident to the reality.

In the second row of Table 4.2, the stationary probability distribution of transition

matrices for both models are worked out as A. The stationary probability distribution

is important parameters for the Markov chain. The elements in the stationary prob-

ability distribution vector correspond to the long-run frequencies of the occurrence

of each state. The two elements of A for HMM is 0.5047 and 0.4953. It indicates

that by HMM prediction, the total time of being in the abnormal state and being in

the normal state would be approximately same in the long run. But this is not true,

at least for the weather situation in the last few years. Relatively, the AR(1)HMM

are close to reality. It has a stationary probability distribution [0.2157 0.7843] which

indicates only approximately one fifth of the time in the last few years were we in the

El Niño state.

The sea surface temperature (SST) is one of the most direct measure of the occur-

rence of El Niño. Hence the most important distinction between the normal state and

El Niño state lies in their difference in the mean SST values. Referred to the 4th and

5th rows of Table 4.2. The average SST of the El Niño state is 1.6C and 2.3C higher

than the normal state in the two sites respectively by AR(1)HMM estimates. Based

on our knowledge of El Niño, this difference in Centigrade should be a little greater
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Estimated Parameters by AR(1)HMM Estimated Parameters by HMM

A




0.9960 0.0040

0.0011 0.9989







0.9947 0.0053

0.0054 0.9946




A

[
0.2157 0.7843

] [
0.5047 0.4953

]

π




0.0 0.0

0.0 1




[
1.0 0.0

]

µ(1)




29.3821

28.8702







28.9935

28.0240




µ(2)




27.6562

26.5284







26.9738

25.9526




β(1)




0.9640 0

0 0.9564


 N/A

β(2)




0.9905 0

0 0.9873


 N/A

Σ




0.0248 0.0076

0.0076 0.0032


 Σ(1) =




0.4292 0.3528

0.3528 0.8349




Σ(2) =




0.7359 0.5932

0.5932 0.9740




Table 4.2 Summary of Parameter Estimation
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in reality (usually > 3 ◦C). We will see later this is mostly because the AR(1)HMM

takes sea surface temperature variations caused by the unusual warm ocean current in

1994 as random errors, rather than an occurrence of El Niño. Or in other word, due

to its relative simplicity, this AR(1)HMM has a more critical standard to admit an

El Niño than meteorologists’ standard. In a similar manner, the estimates of HMM

are a little lower for both states, but the difference is approximately the same.

Another notable feature of AR(1)HMM estimation is the high autoregressive co-

efficients. This is exactly the reason why AR(1)HMM are superior than conventional

HMM in this application. Conventional HMM assumes there are independency rela-

tion between the observations. But this is rarely the case for time series observations.

As in this application, SST data are collected on a day-by-day bases and apparently

the independency assumption is inappropriate. Comparatively , the autoregressive

structure contributes the superiority of AR(1)HMM in a way it prevents the frequent

fluctuations of state path. This difference are clearly shown in the comparison of

Figure 4.6 and Figure 4.7. Conventional HMM (Figure 4.6) are very sensitive to the

numerical swings of the current SST and hence mistakes several fluctuations of SST

as the switches of states. While for the same data, AR(1)HMM state path are more

stable and close to reality.

Very often El Niño are visualized by a graph of Sea Surface Temperature in Pacific

Ocean. Figure 4.9 is downloaded from TAO website and shows the mean and anoma-
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lies of sea surface temperature from 1986 to 2004. Time is increasing downwards from

1986 at the top of the plot, to 2004 in the bottom of plot. The red color on the left is

the warm pool of water typically observed in the western Pacific Ocean. The warm

tongue from western varies seasonally. El Niño is characterized by the exaggeration

of the usual seasonal cycle. For example in 1997-1998 there is a warm water (red)

penetrating eastward and that is a strong El Niño. From the graph, it is not difficult

to see there are El Niños 1986-1987, 1991-1992, 1993, 1994 and 1997.

The red lines uprightly placed in the left and right of the graph were added by the

author indicating the AR(1)HMM estimated state path. We can see that the state

path of El Niño (on the right) estimated from this AR(1)HMM are well consistent

with the real occurrences of El Niño in recent years except for 1994. In 1994, we can

see from the graph the warm tongue stick up to east which indicates an occurrence

of El Niño. But the AR(1)HMM does not admit it as an El Niño state.

Table 4.3 corresponds the estimated states of AR(1)HMM with their accurate

date intervals. It seems the estimation only misses the El Niño in 1994 because it is

less severe than others.

Fig 4.8 is the same graph with HMM estimated state path. Again we have the

conclusion that AR(1)HMM has a more robust estimation due to its autoregressive

structure.
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Figure 4.8 Mean and anomalies of SST with HMM estimated states 1986-2004
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Figure 4.9 Mean and anomalies of SST with AR1HMM estimated states 1986-2004
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Period State Period State

1991,07,21-1991,10,08 2 1997,05,05-1998,05,20 1

1991,10,08-1992,06,25 1 1998,05,21-2002,05,24 2

1992,06,26-1993,04,12 2 2002,05,25-2003,02,01 1

1993,04,13-1993,08,02 1 2003,02,02-2004,04,04 2

1993,08,03-1997,05,04 2

Table 4.3 State Path by Date

4.5 Conclusion

Hidden Markov model has already gained its popularity in many applications

including climatology [29] due to its flexible and rich mathematical structure. But

when it comes to the chronological data, the independency assumption of HMM are

not appropriate any more because the correlation structure is essentially a nature of

time series. Autoregressive hidden Markov model is a combination of time series and

hidden Markov chains. It is more mathematical rich. It is more applicable. It is more

complex. J.D.Hamilton has developed an estimation algorithm to solve the univariate

ARHMM based on the E-M algorithm [9]. The ARHMM estimation of L.R.Rabiner

could deal with multivariate ARHMM but it is not mathematical sound due to the

usage of a number of unconvincing numerical approximations. In this thesis, an

estimation of a simple multivariate ARHMM (with autoregressive structure of order
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1 and only 2 possible states) based on the segmental K-mean algorithm has been

developed. Also it might be the first time that the ARHMM has been engaged in the

El Niño study.

Considering only two sites (0N170W and 0N155W) with limited data have been

used in the study, the performance of the AR(1)HMM is very well. AR(1)HMM has

successfully recognized all but one El Niños in the recent years. Furthermore, the

comparisons with conventional HMM have confirmed the strength of autoregressive

structure in stabilizing the state fluctuations.

4.6 Proposal for Future Research

In this chapter we have modelled the sea surface temperature data with an autore-

gressive hidden Markov model (with only two possible states) to predict the occur-

rences of El Niños. There are many directions in which the model could be extended.

First of all, the inclusion of a third state, “La Niña state” could be both conve-

nient and beneficial. La Niña is the twin phenomena of El Niño, characterized by

unusual cold ocean temperatures in Equatorial Pacific. The inclusion of the La Niña

state would lead to a better understanding of the ocean-atmosphere system without

making extensive changes to the current model and is likely to improve the accuracy

of recognition of both El Niño and normal states. An even further extension of the

model is to fractionize the El Niño state and La Niña state into several sub-states.
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Z.Psaradakis and N.Spagnolo[26] suggest several procedures to determine the number

of states required for the ARHMM to adequately characterize the observations.

Secondly, more data should be used in the future of El Niño research. In this

study, only sea temperature data from two sites are used to train the model. More

sea temperature data, as well as some other indicators for El Niño should be used

as high dimensional observation vectors in the model. High dimensional observations

would inevitably lead to a more complex covariance structure of the model and to

solve this, some spatial techniques might be used in the study. Also larger amount

of data may require a greater computational capacity, but will lead to more accurate

and more interesting results.

Thirdly, one could improve the parameter estimation algorithm in our ARHMM

study in several ways. Firstly, one might be able to accelerate the convergence speed

by estimating the initial probability π by A, the stationary distribution of transition

matrix in the re-estimation formula. Also, one could employ more sophisticated

approaches in the initialization procedure such as the complexity-penalized likelihood

maximization approach employed in [26].

Finally, one could use different forms of autoregressive hidden Markov models. As

mentioned in Chapter 3, there are several forms of ARHMM. For instance, a form of

ARHMM may have the state dependent covariance matrix ΣXt for its error term ut.

This model would be more complex but the results might be rewarding.



Appendix A

AR1HMM : MATLAB functions for the

estimation of autogressive hidden Markov model.

A.1 Introduction

AR1HMM is a set of MATLAB functions that implement a modified version of

segmental K-mean algorithm to estimate the parameter set of an autogressive hidden

Markov model in the case of bivariate Gaussian state-depended distribution, auto-

gressive order one and two hidden states.

While autogressive hidden Markov models have several different forms, the pro-

grams are especially designed to deal with one of them, namely formula (4.1)

Yt = µ(Xt) + β(Xt)(Yt−1 − µ(Xt−1)) + εt.

The specification of the formula and the procedure of SKA are discussed in Chap-

ter 4. So I would not repeat them here. As a matter of fact, little changes would be

made to adapt the programs to other forms of ARHMM or to extend the programs

to other applications. But before using these programs , make sure you read chapter

4 first.

The codes are available upon request to the author .
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A.2 Implementation issues

A.2.1 Installation

Unzip ar1hmm.zip into a folder and then set a path of this folder in MATLAB,

then all functions would be used in the same way as build-in MATLAB functions.

The AR1HMM has been partially tested in the MATLAB 6.0 in Windows XP. No

tests have been done in other versions of MATLAB and/or under other platforms,

though it should work in any newer version of MATLAB and under any other OS.

A.2.2 Data structure

The main variables in AR1HMM are all MATLAB-matrix based. No specified

structure has been used. They are named in the way as close to their origin as

possible in Chapter 4. Here are some of them:

T The length of the bivariate observation sequence, T .

y Bivariate observation sequence, 2× T , Yt =




yt,1

yt,2


 .

x State sequence Xt, 1× T .

mu Mean vectors µ stacked as column vectors, such that mu(:,i) is the mean vector

of i-th state. For two state AR1HMM, it is 2× 2.



85

beta Autoregressive matrices β(i) =




β
(i)
1 0

0 β
(i)
2


 . beta(:,:,i) is the autoregressive

coefficient matrix of i-th state. For two state AR1HMM, it is 2 × 2 × 2. Note

that beta(1,2,i) and beta(2,1,i) must be zeros.

sigma covariance matrix of εt , Σ =




σ11 σ12

σ21 σ22


, 2× 2.

p Transition matrix A =




a11 a12

a21 a22


, where aij = P (Xt+1 = j|Xt = i), 2× 2.

p0 Initial distribution matrix π =




π11 π12

π21 π22


, where πij = P (X1 = i,X2 = j) are

represented by p0(i,j), 2× 2. Note that the sum of all entries of the p0 should

be 1.

pxx Smoothed probability P (Xt, Xt−1|Y ). For two state AR1HMM, pxx is 2×2×T

variable and pxx(j,i,t) represents P (Xt = j, Xt−1 = i|Y ). pxx are calculated by

the function ar1 smooth and the procedure are described in Section (3.5).

A.2.3 Examples

A typical SKA estimation involves the following main iteration:

for i= 1:n_iter
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pxx=ar1_smooth(y , mu , beta , sigma, p, p0);

[mu,beta,sigma,p,p0,x]=ar1hmm_est(pxx,y,p0);

end

In each iteration, one calls the function ’ar1 smooth’ to calculate the smooth

probability pxx and then use pxx , along with observations y and initial probability

p0, as input parameters of function ’ar1hmm est’ to re-estimate the parameter set.

The script ar1hmm ex1 and ar1hmm ex2 contains some codes to demonstrate

the usage of AR1HMM. ar1hmm ex1 contains the most essential codes of parameter

initialization, re-estimation procedure and estimation storage. ar1hmm ex2 provides

a more elaborate example of generating bivariate ARHMM observations , automatic

initialization, etc.

A.2.4 Initialization

Initialization of original parameters plays an important role in AR1HMM because

of the local minimum problems. init ar1hmm provides a simple and very basic way

of initialization. The observations are classified into two states based on the values of

their norms. The threshold can be set in the init ar1hmm.m . The recommendation

here is to visualize the data first and then determine the threshold through observation

and judgement.

One frequent question would be : Does the init ar1hmm works well? Regretfully



87

the answer is ‘no’ in most cases. One must realize that the initialization is heavily

depends on the application considered. For a better initialization, one may consider

to use the cluster analysis in MATLAB toolbox.

A.3 Alphabetical list of functions

ar1 loglike Calculate the log-likelihood of AR(1)HMM based on the forward proce-

dure. Because the forward variable ’sai’ are normalized in each step to avoid the

overflow problem, ’logscale’ is the real log-likelihood value instead of ’Loglv’.

ar1 smooth Calculate the smoothed probabilities P (Xt, Xt−1|Y, λ) based on the pro-

cedure described in Section 3.5.

ar1hmm chk Verify the parameters of an ar1HMM and returns the number of

states.

ar1hmm est Estimate the parameter set of AR(1)HMM based on the SKA. The

implementation of Section 4.2.

ar1hmm ex1 The first example of AR1HMM.

ar1hmm ex2 The second example of AR1HMM

ar1hmm gen Generate bivariate two-state AR(1)HMM observations based on the

parameter set in ’init par.mat’. If ’init par.mat’ doesn’t exist, then use the

parameter values in the code.
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init ar1hmm Automatic initialize the AR(1)HMM parameters.

scaler Sub-function used in ’ar1 loglike’ to rescale the forward variable to avoid the

overflow.
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