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ABSTRACT 

The incompatibility between avian influenza viruses and host factors within mammalian 

hosts constitutes the major host restriction on influenza A virus polymerase complex. To overcome 

restrictions of viral polymerase complex, the virus has evolved diverse adaptive strategies. The 

PB1 gene segment originated from avian strains has recurrently appeared in 1918, 1957, and 1968 

pandemic viruses. Although this recurrent selection of the avian-origin PB1 segment has been 

correlated with enhanced viral polymerase activity in mammalian cells, the underlying mechanism 

behinds this phenomenon is still enigmatic. Using 2009 pH1N1 virus which naturally lacks the 

avian-origin PB1 segment and the canonical mammalian-signature PB2 E627K mutation, we 

demonstrate that the avian-origin PB1 can markedly enhance functions (both replication and 

transcription) of pH1N1 polymerase in human cells even in the absence of canonical PB2-

associated adaptive mutations (E627K and G590S/Q591R). Mechanistically, acquisition of avian-

origin PB1 does not change the interaction between polymerase subunits, or assembly of 

polymerase complex and viral ribonucleoprotein. In viral replication, acquisition of the avian-

origin PB1 specifically facilitates the vRNA synthesis of 2009 pH1N1 polymerase by stimulating 

the trans-activation on cRNA-associated polymerase, thereby leading to the enhanced overall 

replication and polymerase activity. 

 We extrapolate our finding to the function of acidic nuclear phosphoprotein 32 family 

member A (ANP32A), the major host factor underlying host restrictions on viral polymerase 

complex. We substantiate that the SR polymorphism (G590S/Q591R) is also deployed by viruses 

to accommodate the species difference in ANP32A, which is like the function of PB2 E627K. Our 

results also indicate that chicken ANP32A can specifically enhance vRNA synthesis of avian-like 

(PB2 627E) polymerase by promoting the trans-activating effect in replication without altering the 

genuine vRNP assembly capacity. 

Collectively, our results suggest that the trans-activation process in vRNA synthesis of un-

adapted avian influenza polymerase is a defective step that needs to be restored via mammalian 

adaptation of viral polymerase complex. 
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CHAPTER 1. LITERATURE REVIEW 

 

1.1 BIOLOGY OF INFLUENZA A VIRUS 

1.1.1 Influenza virus taxonomy and nomenclature 

Influenza viruses are negative-sense, single stranded RNA virus belonging to the family of 

Orthomyxoviridae. The viruses in Orthomyxoviridae family can be further divided into seven 

different genera: Alphainfluenzavirus (influenza A virus), Betainfluenzavirus (influenza B virus), 

Gammainfluenzavirus (influenza C virus), Deltainfluenzavirus (influenza D virus), Isavirus, 

quaranjavirus, and thogotovirus [1]. The four genera of influenza viruses are categorized by the 

antigenic difference in their internal structural proteins, matrix (M)  and nucleocapsid (NP)  [1]. 

Based on antigenicity of hemagglutinin (HA) and neuraminidase (NA), influenza A virus could be 

further divided into different subtypes. Until now, 18 different subtypes of HA and 11 types of NA 

have been identified [2]. The nomenclature system for influenza virus comprises the host of origin, 

geographical origin, strain number, and year of isolation [1]. The subtypes of HA and NA should 

also be described in parentheses for influenza A viruses. For human isolates, the host of origin can 

be omitted. For instance, A/Halifax/210/2009 (H1N1) indicates the human influenza A virus 

isolated in Halifax as strain 210 in 2009. This virus can be categorized into H1N1 subtypes based 

on antigenicity of its HA and NA proteins. 

Influenza A virus triggers outbreaks of all influenza pandemics in history. It is also the 

major pathogen that leads to annual influenza epidemics. Due to recurrent pandemics and annual 

epidemics, influenza A virus has long been the focus of research. Unlike influenza A virus, the 

host range of influenza B virus is restricted among human, seal, and ferret. Influenza B virus can 

only cause occasional epidemics. Influenza C virus is less common compared to influenza A virus 

and influenza B virus, and it is only responsible for certain minor symptoms in infected patients 

[3]. The recently identified influenza D virus is believed to primarily infect cattle [4].  

 

1.1.2 Influenza A virion 
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The virion of influenza A virus is pleomorphic. The spherical or elliptical phenotypes are 

dominant in laboratory strains, whereas clinical isolates mostly display filamentous phenotypes. 

The diameter of spherical and elliptical forms usually range from 80-120 nm, but, the diameter of 

the elongated filamentous structures can reach more than 300 nm and up to 20 μm [5]. The 

Influenza A virion is enveloped by the host-derived lipid bilayer beneath which the matrix proteins 

forms the shell lining the inner surface of the lipid envelope [6]. HA, NA, and M2 proteins are 

anchored to the lipid envelope through their transmembrane domains [7, 8]. The core of the virion 

is the viral genome packaged in eight viral ribonucleoprotein (vRNP) complexes. Each RNP is 

composed by individual viral RNA gene segment encapsidated by NP protein and the 

heterotrimeric polymerase complex consisting of polymerase basic protein 2 (PB2), polymerase 

basic protein 1 (PB1), and polymerase acidic protein (PA) [9]. Additionally, non-structural 1(NS1) 

protein and nuclear export protein (NEP) are also found inside the virion [10, 11]. The schematic 

diagram of influenza A virion is in (Figure 1.1).  

  

1.1.3 The influenza A virus life cycle 

1.1.3.1 Virus attachment 

As shown in (Figure 1.2), the life cycle of influenza A virus is started with the recognition 

and binding of sialic acid (N-acetylneuraminic acid) receptors on cell surface by the 

integral membrane protein HA. The sialic acid can bind to galactose through the linkage between 

the carbon-2 of sialic acid hexose and the carbon-3 (SAα2, 3Gal) or carbon-6  (SAα2, 6Gal) of 

galactose hexose [12, 13]. The distribution of these two types of sialic acid receptors is different 

among avian species and human, representing one of the major host-species barriers in cross-

species transmission of influenza A virus [14, 15]. The avian influenza virus preferentially binds 

to the α2, 3 linked sialic acid receptor which is dominant in the guts epithelial cells of bird or 

human lower respiratory tract. Conversely, human strains display stronger affinity to α2, 6 linked 

sialic acid receptor which is mainly found in the human upper respiratory tract [12, 16]. Due to the 

low affinity of HA of avian influenza viruses to the sialic receptor present on human upper 

respiratory tract, the virus usually requires certain adaptive mutations in its HA to accommodate 

the 2, 6 linked sialic acid receptor. For instance, E190D (glutamic acid to aspartic acid mutation 

at 190 residue) or G225E (glycine to glutamic acid mutation at 225 residue)  in HA can alter the 
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receptor binding specificity of avian influenza viruses, thus rendering avian strains the efficient 

binding affinity to 2, 6 linked sialic acid receptors present in human cells [17, 18]. Pigs are 

considered as the ‘mixing vessels’ of influenza A viruses due to the abundant distribution of both 

α2, 3 and α2, 6 linked sialic acid receptors in trachea cells [19].   

 

1.1.3.2 Virus entry, fusion, and uncoating 

 Following the attachment of hemagglutinin to sialic acid receptor, the virus is internalized 

through clathrin-mediated endocytosis [20]. In addition to virus attachment, hemagglutinin is also 

critical to virus fusion [21]. The low pH environment in the endosome triggers the conformational 

changes in HA molecule (HA1+HA2), which allows the fusion peptide in HA2 to attach to the 

endosome membrane, resulting in the fusion of virus and endosome membranes [21, 22]. The sialic 

acid receptor binding domain in HA1 mediates virus attachment; the fusion peptide at N-terminus 

of HA2 mediates virus fusion [21]. Meanwhile, the transmembrane M2 protein serves as the ion 

channel to conduct H+ ions from endosome into virus, creating the acidic environment within the 

virion. The acidification of interior environment of virion then leads to the dissociation of vRNPs 

from matrix proteins [23]. From the fusion pore formed by HA molecules, the vRNPs are released 

into cytoplasm [24].  In summary, the presence of free vRNPs in the cytoplasm is the results of 

concerted HA-mediated virus fusion and M2-mediated release of vRNPs. 

 

 1.1.3.3 Nuclear import 

As the RNA synthesis of influenza virus occurs in the nucleus, the free vRNPs in the 

cytoplasm are trafficked into nucleus using the importin-α / importin-β1 nuclear import pathway 

[25]. Although all the viral proteins (PB2, PB1, PA, and NP) constituting the vRNPs contain 

nuclear localization signals (NLSs), the NLS motifs in NP protein are believed to associate with 

importin-α, and then in turn to associate with importin-β1 to form the ternary importin-α-importin-

β1-vRNP complex. This complex subsequently traverses the nuclear pore complex [26], where 

RAN-GTP binds to importin-β1 leading to the release of importin-α-vRNP in the nucleoplasm [25, 

27]. 

 

https://en.wikipedia.org/wiki/Clathrin
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Adapted from Guanqun Liu’s original figure with permission. 

 

Figure 1.1 Schematic diagram of influenza A virion. 

Influenza A virion with HA, NA, and M2 (three envelope proteins), M1, PB2, PB1, PA, NP 

(internal proteins), and non-structural protein NEP. The lipid bilayers of the virus is from host 

cellular membrane.  
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Reprinted from Nature Reviews. Microbiology, 14(8), 479–493. (te Velthuis et al., 2016) with 

permission. 

 

Figure 1.2 The life cycle of influenza A virus [9]. 

The life cycle of influenza virus starts with the attachment of HA molecule to the sialic acid 

receptors on the cell surface. After virus enters the cytoplasm through endocytosis, vRNPs are 

released into the cytoplasm and subsequently being transferred into the nucleus for the viral 

replication and transcription. After translation of viral mRNA, the newly synthesized viral proteins 

and nascent vRNA would be used for assembly of progeny virions. 
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1.1.3.4 Virus replication and transcription 

Once the vRNPs have been in the nucleus, they are used for the subsequent replication and 

transcription [28]. The details of RNA synthesis processes will be reviewed in later sections. The 

viral transcription is a primer-dependent process in which a capped primer generated by cleaving 

the host pre-mRNA initiates the transcription and leads to the synthesis of 5’ capped and 3’ 

polyadenylated viral mRNA [29, 30]. During viral replication, the vRNA is first used as template 

to synthesize the full-length complementary RNA (cRNA), which in turn is used for the synthesis 

of progeny vRNA.  Unlike viral mRNA, cRNA lacking 5’ cap and 3’ poly (A) tail is the exact 

copy of vRNA [31]. Additionally, the synthesis of both vRNA and cRNA belongs to de novo 

replication which is independent of the primer [31]. The newly synthesized vRNA is encapsidated 

into vRNP by association with viral polymerase complex and nucleoprotein, waiting for the 

nuclear export. 

 

1.1.3.5 Nuclear export 

Following the viral RNA synthesis and RNPs assembly, the newly synthesized RNPs are 

exported from nucleus into the cytoplasma for the subsequent genome packaging and virus 

assembly [32]. The nuclear export of vRNPs is achieved using the Crm1 nuclear export pathway, 

in which both M1 protein and NEP (nuclear export protein) are involved [33-35]. It has been 

noticed that the expression of M1 protein occurs in the late stage of infection, suggesting that M1 

protein controls nuclear export until RNA synthesis is completed [36]. Similarly, the slow 

accumulation of NEP caused by utilization of erroneous splicing site is also believed to orchestrate 

the delayed timing of nuclear export. Optimization of the weak NEP 5’ splice site increases the 

production of NEP, which in turn results in premature vRNP export.  [37]. M1 protein alone cannot 

fully control RNP export, as the nuclear export signals (NESs) motif in M1 protein does not 

directly link the vRNP to Crm1 protein [38, 39]. Instead, the NES motifs in NEP mediates the 

direct interaction between NEP and Crm1-RAN-GTP, which in turn associates with M1 protein to 

form the vRNP-M1-NEP-Crm1-RAN-GTP (daisy chain complex) for nuclear export [33, 38, 40]. 

Another potential role of NEP in nuclear export is to prevent the nuclear export complex from re-

entering the nucleus by masking the NLS in M1 protein [33]. In addition to the Crm1 nuclear 

export pathway, other mechanisms are also involved in promoting the export of vRNPs. The 
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infection of influenza A virus triggers apoptosis, in which caspase 3 is activated resulting in 

increased diffusion size of the nuclear pore, thus promoting nuclear export [41]. 

The exported vRNPs are accumulated in the perinuclear cytoplasm where the microtubule 

organising centre (MTOC) is located [42, 43]. Here, vRNPs can bind to recycling endosomes 

through interaction between PB2 protein and Rab11, which in turn directs transportation of vRNPs 

to the cell periphery using vesicular transport pathway [44, 45]. 

 

1.1.3.6 Genome packaging  

To generate the infectious progeny virions, the exact eight viral genomic segments must 

be incorporated into each virion. Mechanistically, two models were proposed to explain the 

genome packaging of influenza A virus [46]. Initially, the genome packaging was believed to occur 

randomly. However, compelling evidences now favour an alternative mechanism, in which only a 

single copy of each vRNP segment is selectively incorporated into the virion. This selective 

packaging mechanism is verified by the direct observation of a ‘1+7’ configuration of vRNP 

packaging using transmission electron microscopy [47, 48]. Based on that observation, one vRNP 

in the center is circled by the remaining 7 vRNPs during packaging. Further studies on disposition 

of vRNPs show that the eight vRNPs are interconnected in a ‘transition zone’ just beneath the 

matrix later at budding tip of influenza A virion. Within this zone, the intermolecular interactions 

between vRNP/vRNP mediated by packaging signals on each vRNA segment take place and result 

in the formation of vRNP supramolecular complex which is essential for the selective packaging 

of the viral genome [49-51]. 

 

 1.1.3.7 Virus assembly, budding, and release 

Virus assembly and budding take place in the lipid rafts, microdomains of plasma 

membrane with an abundance of cholesterol and sphingolipids [52]. Following translation and 

post-translational modifications of HA and NA, these viral proteins are directed to associate with 

lipid rafts via signals in their transmembrane domains [53, 54]. With the accumulation of HA and 

NA in lipid rafts, the plasma membrane curvature is altered and virus budding is initiated [55]. 

The M1 protein is recruited to lipid rafts through binding to the cytoplasmic tails of HA and NA 
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[56]. As M1 protein also interacts with vRNPs, the polymerization of M1 protein then facilitates 

the incorporation of vRNPs [55]. M2 protein is targeted to the periphery of lipid rafts via 

interaction with M1 protein, causing the positive membrane curvature and the subsequent 

membrane scission which results in the release of progeny virions [57-59]. Once virus budding is 

completed, the HA of the nascent virions still attaches to the sialic acid receptor on the cells. At 

this point, NA is required to remove the sialic acid presenting on the cells and viral proteins, thus 

avoiding virus accumulation at the cell surface or aggregation between progeny virions [60, 61]. 

 

1.2 THE RNA SYNTHESIS MECHINERY OF INFLUENZA A VIRUS 

1.2.1 Influenza A ribonucleoprotein 

Each of the eight viral gene segments is encapsidated into viral ribonucleoprotein, which 

is the basic replication unit of influenza A virus [9].  The negative-sense viral RNA is coated by 

NP protein, and its 5’ and 3’ termini are bound by viral polymerase complex consisting of PB2, 

PB1, PA. Opposite to the polymerase-bound end, the internal vRNA is closed by forming a loop 

[28, 62]. Structural analyses on reconstituted RNPs or virion-derived RNPs show that the native 

influenza vRNP displays an antiparallel double helical conformation which is maintained by minor 

groove defined by connected NP monomer [63, 64]. Each NP monomer is bound to approximately 

24 nucleotides [65]. Similarly, the positive-sense cRNA is also encapsidated into complementary 

ribonucleoprotein (cRNP) which displays similar structure [66] as vRNP. The schematic diagram 

of vRNA is shown in (Figure 1.3) [28]. 

 

1.2.2 The RNA-dependent RNA polymerase 

The replication centre of influenza A virus is the 250 kDa heterotrimeric viral polymerase 

complex composed by polymerase basic protein 2 (PB2), polymerase basic protein 1 (PB1), and 

polymerase acidic protein (PA). Both transcription and replication of the negative-sense viral RNA 

are carried out by the polymerase complex [31].  For the assembly of trimeric polymerase complex, 

it has been demonstrated that PB1 and PA form the dimer prior to the entrance of nucleus and 

assembly with PB2 [67]. Recent crystal structure indicates that PB1 binds to PA and PB2 

respectively through its N-terminus and C-terminus, forming a U-shaped structure [68].  
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1.2.3 Viral nucleoprotein 

As the major component of RNP, NP protein is critical to the ongoing viral replication and 

transcription [69]. NP was once considered as the switcher for transition of viral polymerase from 

transcriptase to replicase [70, 71]. However, recent studies have substantiated that NP represents 

an elongation factor for viral RNA synthesis, and it is entirely dispensable for viral transcription 

and replication [72, 73]. The 56 KDa NP protein encoded by gene segment 5 displays a curved, 

crescent-like shape which can be divided into a head domain, a body domain, and tail-loop [74, 

75]. Particularly, this tail loop mediates the oligomerization of NP protein by inserting into the 

body domain of the neighbouring NP molecule. NP protein with mutations disrupting the tail loop 

could only exist as monomer [75].  Oligomerization of NP protein is also required for active RNP 

activity. Mutations in tail loop disrupting the NP oligomerization impair the vRNP activity [76]. 

Furthermore, although NP protein shows high affinity to viral RNA in a sequence-independent 

manner [77, 78], the recruit of NP protein to nascent RNP is mediated by NP oligomerization 

instead of the RNA binding ability [72]. 

 

1.2.4 Viral RNA promoter 

Prior to the available structure of viral polymerase complex binding to the viral RNA, 

different models have been proposed for influenza viral RNA promoter based on extensive 

biochemical studies. Particularly, the proposed vRNA promoter regions among all these models 

(panhandle model, fork model, and the corkscrew model) both involve the conserved 3’ terminus 

and 5′ terminus of vRNA noncoding regions. [79-82]. As expected, it has already been confirmed 

that the viral RNA promoter region is indeed composed by the highly conserved 12 nucleotides at 

3′ end and 13 nucleotides at the 5′ end of vRNA.  
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Reprinted from Nature Reviews. Microbiology, 13(1), 28 (Eisfeld et al., 2015) with permission. 

Figure 1.3 Schematic diagram of influenza vRNP complex [28]. 

vRNA is composed of the trimeric polymerase complex (PB2, PB1, and PA), a negative-sense, 

single-stranded vRNA associated with NP protein. The two termini of vRNA are partially 

complementary and form the double-stranded structure, where is also the place bound by the 

trimeric polymerase complex.  
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Due to the partial and inverted complementarity of the 3’ terminus and 5′ terminus of 

vRNA, three proposed RNA structures for the annealed ends has been proposed. In the panhandle 

model, the termini of vRNA forms a non-canonical base-paired duplex (Figure. 1.4 A) [83, 84]. 

Unlike the panhandle model, the fork model proposed the partially double stranded structure with 

two ends of vRNA remain as single-stranded. In this way, the polymerase complex binds to the 

double stranded region and 5’ end of the single-stranded region; the remaining single-stranded 3’ 

terminus serves as the template for transcription initiation (Figure. 1.4 B) [81, 85] . Later, a 

‘corkscrew model’ was proposed. In corkscrew model, the promoter region is divided into a distal 

six base pair RNA rod, a proximal two stem-loop structures at the ends of vRNA, and an unpaired 

adenosine at position 10 of 5’ end of vRNA (Figure. 1.4 C) [82, 86]. Both of fork and corkscrew 

models proposed the distal double-stranded region, even though they have discrepancies 

concerning to the existence of internal stem-loop at each strand of vRNA. The first available 

polymerase structure of a bat influenza A virus reveals that 1-10 nucleotides of 5’ end form the 

intramolecular stem-loop or the “hook” structure which is similar to the prediction of corkscrew 

model. However, the nucleotides 1-9 of 3’ end remain single-stranded as proposed by the fork 

model.  For the distal promoter element, the nucleotides 10-14 of 5’ end and nucleotides 11-15 

form the base-paired duplex [68, 87]. 

In a similar fashion, the stem-loops structure proposed in the corkscrew model is also 

required for the cRNA promoter activity [88].  This has been confirmed by the recent available 

structure of influenza polymerase binding to the 5’ cRNA, in which the 5’ end of cRNA forms the 

“hook’ and binds to the viral polymerase complex [89] . 
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Reprinted from Proceedings of the National Academy of Sciences, 111(32), E3335-E3342 

(Tomescu et al., 2014), Journal of virology, 69(7), 4012-4019. (Fodor et al., 1995) with 

permissions 

Figure 1.4 The schematic diagrams of different influenza vRNA promoter. 

The schematic diagrams of panhandle model (A), fork model (B), and corkscrew (C) model of 

vRNA promoter [85, 90]. 

 

 

 

1.3 TRANSCRIPTION 

1.3.1 Initiation  

Following the nuclear import of incoming vRNPs, the synthesis of viral mRNA occurs. 

Viral transcription is carried out by vRNP-associated polymerase which is bound to the 3’ and 5’ 

termini of vRNA [81, 91]. Viral mRNA synthesis requires primer-dependent initiation which 

involves a 5’ capped primer preferentially derived from host noncoding RNAs (promoter-
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associated capped small (cs) RNAs, small nuclear (sn) RNAs, and small nucleolar RNAs (sno) 

RNAs) by cap-snatching [92, 93]. Cap-snatching is achieved through the cap-binding function of 

PB2 protein and the endonucleolytic activity of PA protein [94]. Mechanistically, the binding of 

the 5’ end of the vRNA to the PB1 protein induces conformational changes of polymerase complex, 

which enables the PB2 protein to bind to the 5’ cap structure of the host noncoding RNAs. 

Concomitantly, the endonuclease domain of PA protein cleaves the capped RNA at approximately 

8-14 nucleotides from the cap structure. After cleavage, both the 3’ ends of capped primer and 

vRNA are transferred into the polymerase active site for the subsequent transcription initiation. By 

direction of penultimate C residue (C2) or the G residue at position 3 (G3) in vRNA, a G or C 

residue is accordingly added to the 3’end of the capped primer, and thus initiates the viral 

transcription [85]. 

 

1.3.2 Elongation and polyadenylation  

Elongation of viral mRNA chain proceeds in a template-dependent manner in which the 

vRNA template is threaded through the active site of polymerase until encountering the poly-

uridine stretch located 16 nucleotides before the 5’ end of the vRNA. At this stage, the 5’ end of 

the vRNA is still bound to the viral polymerase with the vRNA template being read in a 3’ to 5’ 

direction [9]. A 5-7 uridine residues near the 5’ end of the vRNA serve as the polyadenylation 

signal for viral mRNA synthesis, because the polymerase cannot read beyond the uridine-stretch 

due to steric hindrance caused by the 5’end of the vRNA which is still associated with the 

transcribing polymerase [30, 81, 95]. This polymerase stuttering leads to the reiterative copying of 

the poly-U stretch and thus generate the poly (A) tail of viral mRNA. In the meanwhile, the 5’ cap 

is detached from the PB2 protein and is bound by the nuclear cap-binding complex (CBC), leading 

to the assembly of host mRNP (messenger ribonucleoprotein)-like structure [96]. 

 

1.3.3 Splicing 

In eukaryotic cells, pre-mRNAs have to undergo splicing, an essential process for gene 

expression in which the introns of pre-mRNAs are removed and the exons are accurately joined 

[97]. Influenza A virus can widen its proteomic diversity via the alternative splicing by hijacking 
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the cellular splicing machinery [98]. Up to date, only the PB2, M, and NS segments are known to 

encode the viral proteins in spliced mRNA. The PB2 segment can produce PB2 mRNA and PB2-

S1 mRNA [99]; M segment respectively produces 4 mRNA transcripts (M1, M2, M3, and M42) 

[100, 101]; NS segment produces NS1 mRNA, NEP mRNA, and NS3 mRNA [102]. But, unlike 

the cellular splicing which is highly efficient, the splicing efficiency of viral mRNA has to be 

relatively lower with the ratio of spliced to unspliced transcripts at about 10% as both of them must 

be translated into viral proteins [103]. 

 

1.4 REPLICATION 

Unlike viral transcription, replication is a two-step de novo synthesis process which 

produces full-length copies of viral RNA [9]. The negative-sense vRNA would be first used as 

template to synthesize the complementary RNA (cRNA), which is the replicative intermediate 

[104]. Subsequently, the cRNA would be used for the synthesis of progeny vRNA. As vRNA acts 

as the template for both the synthesis of cRNA and mRNA, the two molecules of which are 

produced in distinct mechanisms, a switching model of polymerase from transcriptase to replicase 

has been proposed [104, 105]. In this switching model, the accumulation of NP protein is 

hypothesized to switch the viral polymerase from transcription status to replication status. 

However, this model has been challenged by the observation that polymerase alone can perform 

the cRNA synthesis even in the absence of NP protein [104]. Alternatively, a cRNA stabilization 

model has been proposed to explain these discrepancies. In the stabilization model, the vRNP-

associated polymerase is capable of synthesizing both cRNA and mRNA, but the cRNA is 

degraded due to the lack of protection from polymerase and NP protein, and thus there is a bias 

toward viral transcription at early time of viral infection [104].  

 

1.4.1 cRNA synthesis 

The first step of viral replication is the synthesis of the replicative intermediate cRNA. It 

is believed that after the incoming vRNP entered the nucleus, the vRNP-associated polymerase 

(the resident polymerase) could catalyse the synthesis of cRNA. This idea has been supported by 

biochemical studies that the virion-derived vRNP can produce the cRNA in vitro  [66, 106]. Unlike 
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mRNA which possesses the 5’ cap, vRNA contains a 5’ triphosphate, and thus its replication is 

initiated in a primer-independent way [107]. The initiation of cRNA synthesis begins with the 

translocation of 3’ end of the vRNA template into the active site of polymerase. Through terminal 

initiation on vRNA promoter, a pppApG dinucleotide is formed on U1 and penultimate C2 of the 

3’ terminus of the vRNA, and being further used for the subsequent elongation [107]. As cRNA is 

the full-length copy of the vRNA, the 5’ terminus of the vRNA template bound to the binding 

pocket needs to be released. The nascent cRNA is bound by a second, newly synthesized 

polymerase and NP protein for the assembly of complementary ribonucleoprotein (cRNP) [9]. 

 

1.4.2 vRNA synthesis 

The synthesis of vRNA using the cRNA template is the second step of viral replication. 

Although vRNA synthesis is also a primer-independent process, its initiation mechanism is 

different to the de novo initiation used in cRNA synthesis. Unlike the terminal initiation of cRNA 

synthesis, the initiation of vRNA synthesis occurs on the residues U4 and C5 of the 3’ cRNA 

template (internal initiation). The pppApG dinucleotide is then realigned to residue U1 and C2 of 

the cRNA 3’ end to allow the subsequent elongation of full-length nascent vRNA [107]. Another 

difference between the synthesis of cRNA and vRNA is that the synthesis of vRNA requires a 

second polymerase (trans-polymerase) besides the resident polymerase of cRNP [66, 91]. 

Currently, the function of this additional second polymerase is not fully clear. However, based on 

different observations, a trans-acting model [91] and a trans-activating model [66] have been 

respectively proposed to elaborate the vRNA synthesis process.In the trans-acting model, the 

second polymerase (trans-acting polymerase) is believed to perform the synthesis of vRNA [91]. 

The 3’ terminus of the cRNA template is translocated into the active site of the trans-acting 

polymerase for subsequent internal initiation and elongation. The end of the nascent vRNA is 

probably bound by a third polymerase for the assembly of vRNP. This trans-acting model is 

supported by the trans-complementation assays [91] and the observation of branched arrangement 

of RNP complexes in cryo-EM [63]. However, a later study reported that the addition of a 

catalytically inactive trans-polymerase to isolated cRNA can still drive the synthesis of vRNA 

[66]. To resolve the discrepancies among these observations, a trans-activating model is proposed. 

In the trans-activating model, the polymerase actually performing the vRNA synthesis is the 
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cRNA-associated polymerase instead of the second trans-polymerase [66]. It is proposed that the 

second polymerase (trans-activating polymerase) induces the conformational change in resident 

polymerase of cRNP and thus leads to the transfer of 3’ end of cRNA to the cRNP-associated 

polymerase for the further vRNA synthesis. In this model, the 5’ end of the nascent vRNA is bound 

by the trans-activating polymerase instead of the third polymerase proposed in trans-acting model. 

The trans-activating model is favoured by the fact that the catalytically inactive trans-polymerase 

is still potent in facilitating vRNA synthesis.  

 

1.5 HOST RESTRICTIONS AND ADAPTIVE STRATEGIES OF POLYMERASE  

The natural reservoirs of influenza A virus are aquatic birds. However, the virus in the 

avian species could sporadically jump into other mammalian hosts or even human populations 

[108]. Most of the cases of human infection with avian influenza virus are usually the dead-end 

infections which would not lead to further human to human transmission due to species barriers. 

But, on certain rare occasions such as 1918 influenza pandemic, the virus could acquire adaptive 

mutations to overcome these species barriers and establish itself as the human-adapted strain which 

can sustainably transmit among human population [109].  

To evolve into a pandemic virus, a strain must develop the countermeasures to jump the 

species barriers that severely restrict the replication of the virus. Generally, the host restrictions 

could be categorized into the low receptor binding affinity [17], poor polymerase activity [110], 

and inability to counteract host innate immune responses [111]. In the following paragraphs, the 

host restrictions and adaptation on viral polymerase complex will be mechanistically elaborated.  

 

1.5.1 The canonical PB2 E627K mutation and SR polymorphism 

PB2 subunit is one of the major determinants of host range, and its role in host adaptation 

has been intensively studied. The majority of the avian influenza polymerases possess a glutamic 

acid at 627 residue of their PB2 segment. Intriguingly, a single glutamic acid to lysine mutation at 

this PB2 627 residue (PB2 E627K) can fully restored the impaired polymerase function of avian 

influenza viruses in human cells [17]. The increased viral polymerase activity mediated by PB2 

E627K is also correlated with the enhanced pathogenicity and transmissibility [112]. Although it 
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has long been noticed that PB2 E627K is critical to host adaption of viral polymerase complex, 

the exact molecular mechanism is still unclear yet. 

Initially, the function of PB2 E627K and the defect of avian influenza polymerase were 

implicated in different body temperatures of avian and mammalian species. The avian-like 

polymerase complex (PB2 627E) is sensitive to the relatively cold environment of human upper 

respiratory tract where the temperature is lower (33 ℃) compared to the environment within avian 

species (40 ℃) [113, 114]. Alternatively, the defective vRNP assembly was speculated as the major 

defect of avian-like polymerase complex, as evidenced by the observation that acquisition of PB2 

E627K mutation increased the interaction between NP and PB2, and thus facilitates the vRNP 

formation in mammalian cells [115]. However, this view was challenged by another study showing 

that the enhanced vRNP assembly actually was the result of increased RNA synthesis by 

polymerase with PB2 627K instead of the facilitated vRNP assembly capacity [116]. Intriguingly, 

the restriction on polymerase containing PB2 627E is diminished when the vRNA template is 

shortened to 37 nucleotides, indicating that the restriction might be the results of low processivity 

of the polymerase. Moreover, introducing mutations in vRNA promoter region which disrupt 

intrastrand base pairing between nucleotides proposed to interact in the corkscrew model while 

stabilizing the panhandle structure could enhance the transcription and replication of 627E-

polymerase to the comparable level as 627K-polymerase (Figure. 1.4 A), suggesting that the 

restrictions might occur in the promoter binding by viral polymerase [82, 117]. 

Nevertheless, certain human isolates do not possess the canonical PB2 E627K mutation 

[118, 119]. The best example is the 2009 pandemic H1N1 virus which still retains the avian-

signature (PB2 627E). Interestingly, studies have found that this most recent pandemic virus has 

deployed an alternative adaptive strategy to compensate the absence of PB2 E627K. The SR 

polymorphism (PB2 590S, 591R) presented in 2009 pH1N1 virus partially restores the impaired 

function caused by the lack of PB2 E627K mutation [120]. Mechanistically, SR polymorphism 

restores the positively charged surface of PB2 627 domain, which has been hypothetically 

implicated to alter the interaction with unknown host factors [120, 121]. 

Indeed, in addition to the viral polymerase, or vRNP itself, numerous recent studies have 

demonstrated that the defective function of avian influenza polymerase is caused by the 

incompatibility between avian-like polymerase complex and host factors within mammalian cells 
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[115, 122]. Therefore, the recurrent selection of PB2 E627K among human isolates is probably to 

accommodate the viral polymerase complex to the different cellular host factors in human cells. 

The differential use of importin-α isoforms by avian-like or mammalian-like polymerases has been 

proved as one of the mechanisms underlying the host adaptation of the virus.  The activity of 

mammalian-like polymerase with PB2 627K requires importin-α1 and importin-α7, while the 

activity of avian-like polymerase (PB2 627E) depends on importin-α3 [123-125]. However, 

considering the high identity of importin-α3 in avian and mammalian cells, it is still enigmatic why 

avian and human influenza viruses display different preferences to importin-α isoforms. 

 

1.5.2 ANP32A is a host factor underlying restrictions on influenza virus polymerase  

Acidic nuclear phosphoprotein 32 family member A (ANP32A) consists of an N-terminal 

leucine‐rich repeat domain (LRR) and C-terminal low‐complexity acidic region (LCAR) mainly 

comprised of glutamic or aspartic acid. As a multifunctional protein, ANP32A is involved in the 

regulation of chromatin, cell death, phosphatase activity, and intracellular transport [126]. 

Proteomic studies have reported the interaction between ANP32A and influenza viral polymerase 

complex [127, 128]. Later study showed that this interaction is achieved by ANP32A with the full 

heterotrimeric polymerase complex instead of individual polymerase subunit or binary 

subcomplex [129]. But, both of these studies have not investigated the species differences in 

ANP32A and its potential role in host adaptation of viral polymerase complex. 

By using the chicken genome radiation hybrid panel, ANP32A has recently been identified 

as one of the positive host factors that underlies the host restrictions on influenza virus polymerase 

complex [130]. Overexpression of chicken ANP32A (chANP32A), but not human ANP32A 

protein, could restored the poor activity of avian influenza virus polymerase complex in 

mammalian cells. Avian and mammalian ANP32A display high similarity except that avian 

ANP32A harbours an additional 33 amino acid insertion (176-208) in the LCAR domain (Figure 

1.5). This avian insertion is comprised of 27 amino acid repeat of residue 149-175 and an extra of 

6 amino acids. Intriguingly, later study identified a hydrophobic SUMO interaction motif (SIM)-

like sequence within this unique 6 amino acid-long region, which seems to be critical to the 

polymerase-elevating effect of avian ANP32A [131].  
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Functionally, the defect of avian influenza polymerase in mammalian cells has been 

demonstrated in the step of vRNA synthesis. It was suspected that the avian-like polymerase (PB2 

627E) cannot provide bona fide cRNA templates for further vRNA synthesis in human cells [132]. 

Intriguingly, ANP32A was also shown as an essential factor to the vRNA synthesis [129]. 

Therefore, the observed poor polymerase activity of avian influenza polymerase in human cells 

could be the consequences of impairment in vRNA synthesis. Moreover, compared to human 

ANP32A, avian ANP32A displays much stronger interaction with viral RdRp despite the identity 

of PB2 627 residue [131]. This observation implies that the function of PB2 627K is independent 

of the species-specific interaction. 

 

 

Reprinted from Nature, 529(7584), 101. (Long. et al., 2016) with permission. 

Figure 1.5 Schematic diagram of human ANP32A and chicken ANP32A [130]. 

The schematic diagram of chicken ANP32A with 33 amino acid insertion relative to the human 

homologue. The avian-insertion in chANP32A it critical to its polymerase activity enhancing 

effect. 

 

 

1.5.3 Other critical adaptive mutations in PB2 segment 

PB2 subunit is the major determinant of influenza A virus host range. Multiple other 

adaptive mutations other than PB2 E627K have been identified in the PB2 segment. The mutation 
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of aspartic acid to asparagine at 701 residue (D701N) is also a frequently observed adaptive 

mutation in the PB2 segment among human isolates [133]. The PB2 D701N, which is similar to 

other adaptive mutation in the polymerase genes, can enhance viral polymerase activity in human 

cells. Particularly, the D701N mutation can compensate the function of PB2 E627K and increase 

viral replication and transmissibility [112]. Mechanistically, the function of PB2 D701N has been 

implicated in increased binding affinity of PB2 subunit to importin which in turn leads to the more 

efficient assembly of trimeric polymerase complex [134]. This finding is in agreement with the 

role of importin in underlying host restrictions on viral polymerase [123-125]. Moreover, the PB2 

T271A has been demonstrated as an important adaptive mutation to the triple reassortant swine 

influenza virus and 2009 pH1N1 virus. PB2 T271A can cooperatively promote viral replication 

[135] with SR polymorphism. In a word, numerous potential adaptive mutations in PB2 have been 

identified from isolates in different species. Nevertheless, the fundamental function of these 

mutations is the same which is to enhance the viral polymerase activity and thereby allowing  better 

viral replication within hosts. 

 

1.5.4 Adaptive mutations in PB1 subunit 

The PB1 subunit is the enzymatic core of viral polymerase complex [9]. Therefore, unlike 

the PB2 subunit which is versatile and susceptible to adaptive mutations, PB1 is relatively 

conserved during virus evolution. This conservation of the PB1 subunit has been suspected to 

maintain the authentic enzymatic function of viral polymerase complex, although no evidence to 

support this theory yet [136]. The PB1 segment originated from avian strains participated in the 

emergence of 1957 and 1968 pandemic viruses [137], which raises the speculation that avian-

origin PB1 might contribute to the pandemic formation. Indeed, a study showed that the avian-

derived PB1 segment facilitates viral replication and transmissibility of 1968 H3N2 pandemic 

virus. However, the enhancing effect mediated by avian-origin PB1 observed in this study was 

quite marginal and could only be detected by a highly sensitive competitive fitness experiment 

[138]. 

A couple of mutations have been identified by comparing the PB1 segments originated 

from avian or human strains. The 473V and 598P present in the PB1 segment of a H5N1 virus can 

increase the viral polymerase activity of the attenuated human isolate. Intriguingly, the human-
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derived PB1 segment of 2009 pH1N1 virus also retains these two signatures of avian-origin PB1 

segment. Substitutions of these residues with leucine which is amino acid present in most of the 

human-derived PB1 segments decreased the polymerase activity as well as the viral replication of 

2009 pH1N1 virus [139]. 

Alignment of PB1 segments of 1918, 1957, and 1968 pandemic viruses lead to the 

identification of a conserved asparagine to serine mutation at 375 residue (PB1 N375S) [140]. 

Most of the mammalian isolates including samples from swine or equine possess the serine in this 

residue, while the majority of avian isolates preferentially carry the asparagine. This N375S is 

located in in the cRNA binding domain [68]. But, the molecular mechanism of the recurrent 

selection of this N375S mutation by human isolates is still unclear.  

 

1.5.5 Adaptive mutations in PA subunit 

PA subunit is responsible for the endonucleolytic activity of the viral polymerase complex 

[9]. Multiple adaptive mutations have been identified in PA segment, indicating that PA also plays 

a critical role in overcoming the host restrictions on viral polymerase complex [120, 141-143]. A 

switch of lysine to arginine in 356 residue (PA K356R) can increase viral replication and 

pathogenicity of avian H9N2 virus in mice, demonstrating that adaptive mutation in the PA 

segment could contribute to the emergence of a pandemic strain. Different studies on the PA 

segment of 2009 pandemic H1N1 virus lead to the identification of a series of adaptive mutations 

which are critical to the active viral polymerase of this recent pandemic virus.  T85I, G186S, 

L336M, and T552S in pH1N1-PA segment both have been identified as residues which can 

increase polymerase activity and promote viral replication in mammalian hosts [142, 144]. 

Coherently, introducing the PA segment of 1918 or 2009 pandemic virus into the un-adapted 

avian-like polymerase can fully restored the restricted polymerase activity in human cells [120]. 

Probably, it is the adaptive mutations carried by human-adapted PA segments rescue the defect of 

avian-like polymerase and thus promotes the viral polymerase activity. 

 

1.6. Pandemic viruses and genetic traits of their polymerase  
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Influenza pandemic represents one of the most serious threats to public health. The best 

example is 1918 pandemic H1N1 virus outbreak 100 years ago which killed approximately 20 to 

50 million people worldwide. In the last century, there are five times of influenza pandemic 

outbreaks as shown in (Figure 1.6): 1918 Spanish flu (H1N1), 1957 Asian flu (H2N2), 1968 Hong 

Kong flu (H3N2), 1977 (Russian flu (H1N1), and  2009 pandemic flu (H1N1) [145]. As 

mammalian adaptation of viral polymerase is an essential step in evolution towards the pandemic 

strain, analysis on their polymerase genes can shed light on the conserved features used by the 

virus and thus promote the understanding of adaptive mechanism used by the virus. 

Reassortment of the gene segments from avian, swine, or human strains frequently occurs 

during the emergence of pandemic influenza viruses, as observed in all the past pandemics except 

1918 and the potential recurrent strain (1977 Russian H1N1 virus)  [145]. The reassortment process 

provides opportunities for the virus to achieve the optimal compatibility between polymerase 

subunits, and thereby enhancing the viral replication or transcription abilities [120, 146]. However, 

the deeper reason for the enhanced activity of reassortant polymerase complex might be the 

accumulative effect of multiple adaptive mutations carried within the entire gene segment [144]. 

Since the emergence of 1918 pandemic virus, all the other following pandemic viruses could be 

regarded as the descendants of 1918 virus [147]. Intriguingly, these viruses still retain the PB1 

segment derived from avian strains during reassortment, as evidenced by 1957 and 1968 pandemic 

viruses both possess the avian-origin PB1 segment [138]. Although there is speculation that avian-

origin PB1 might contribute to the pandemic formation, no mechanism has been revealed for this 

hypothesis. 

The presence of PB2 627K is another trait of these pandemic polymerases. Except the most 

recent 2009 pandemic virus, all the other past pandemic viruses contain the PB2 627K compared 

to the un-adapted avian strain. Even the 2009 pH1N1 virus lacks the PB2 627K mutation, it adopts 

SR polymorphism, an alternative adaptive strategies, to maintain the active functions of the 

polymerase [120]. Therefore, it is highly possible that the next pandemic strain would keep these 

canonical adaptations to overcome the host restrictions on its polymerase complex. 
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Reprinted from Trends in microbiology, 20 (1), 11-20. (Watanabe et al., 2012) with 

permission. 

Figure 1.6 Timeline of past influenza pandemic viruses [145]. 

The pandemic viruses emerged in the 20th century. Among these viruses, the most recent pH1N1 

virus contain avian-derived PB2, PA, and a human-derived PB1. For the rest of pandemic viruses, 

their PB1 segments are originated from avian strains. 
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CHAPTER 2. OBJECTIVE, HYPOTHESIS AND AIMS 

The main objective of this project is to identify the adaptation pathway which could be 

deployed by influenza A virus (especially the most recent 2009 pH1N1 virus) to achieve 

mammalian adaptation. Additionally, through the study on the fundamental molecular mechanism 

of influenza A viral replication machinery, we try to reveal the molecular mechanism by which 

the viral polymerase complex becomes adapted to human. 

We hypothesized that acquisition of PB1 segment from avian strains by 2009 pH1N1 virus 

can render viral polymerase the fully-adapted status in human cells. 

Aim 1: To investigate the viral polymerase activities of 2009 pH1N1 virus subsequent to 

the acquisition of avian-origin PB1 segment. 

Aim 2: To investigate the molecular mechanism by which avian-origin PB1 confers 

pandemic polymerase replication advantages in mammalian cells. 

Aim 3: To study the potential mechanism by which in the cellular factor ANP32A confers 

enhanced replication of avian-like viral RNA polymerase in mammalian cells. 
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CHAPTER 3. AVIAN-ORIGIN PB1 GENE CONFERS SELECTIVE ADVANTAGES TO 

2009 PANDEMIC H1N1 VIRUS RNA TRANSCRIPTION AND REPLICATION 

ABSTRACT 

The constant crosstalk between the large avian reservoir of influenza A viruses (IAV) and 

its mammalian hosts drives viral evolution and facilitates host switching. Direct adaption of an 

avian strain to human or reassortment of avian-origin gene segments with that of human strains 

led to the emergence of the 1918, 1957, and 1968 pandemic viruses. The avian PB1 segment, 

which encodes the catalytic subunit of IAV RNA-dependent RNA polymerase (RdRp), is 

frequently subjected to reassortment events and is present in the 1957 and 1968 pandemic viruses. 

However, the biological consequence and molecular basis of such gene exchange remain less well 

understood. Using the 2009 pandemic H1N1 polymerase naturally lacking an avian-origin PB1 

subunit, we demonstrate that the acquisition of an avian PB1 markedly facilitates viral RNA 

synthesis. This enhancement is also effective in the absence of PB2 adaptive mutations, which are 

key determinants of host switching. Mechanistically, the avian-origin PB1 does not appear to affect 

polymerase assembly but imparts the reassorted pandemic polymerase augmented viral primary 

transcription and replication. Moreover, compared to the parental pandemic polymerase, the 

reassorted polymerase displays comparable cRNA stabilizing activity but is specifically enhanced 

in progeny vRNA synthesis from cRNA in a trans-activating manner. Overall, our results provide 

the first insight into the mechanism by which avian-origin PB1 facilitates viral RNA synthesis by 

the 2009 pandemic virus polymerase. 

 

3.1 INTRODUCTION 

Influenza A virus (IAV) has a broad host range in which the avian species constitute the 

largest natural reservoir. The spillover of avian strains to mammalian hosts leads to occasional 

fatal cases and more frequently, the exchange of gene segments with mammalian counterparts 

through reassortment [148]. The reassortment event not only expands viral diversity but facilitate 

host switching and the emergence of novel viruses with pandemic potential. Except for the 1918 

pandemic virus whose genesis is under debate [136, 149-151], all the other three major pandemic 

viruses (i.e. 1957, 1968, and 2009) arose indisputably as a consequence of genetic reassortment 

[118, 137, 152]. These viral strains contain genome segments that are directly contributed by avian 
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viruses or can be traced back to avian origins. Notably, the reassortment process is subjected to 

constraints, among which the incompatibility of polymerase subunits may lead to a loss of viral 

fitness [153]. The IAV polymerase is composed of three subunits which act in concert to catalyze 

viral RNA synthesis. The PB1 subunit is the catalytic core of the polymerase complex, while the 

PB2 and PA subunits are well characterized for their roles in the cap-snatching process of viral 

mRNA synthesis[154]. Due to stronger functional constraints, PB1 exhibits lower evolutionary 

rate and limited evolutionary divergence between host-specific lineages [155]. In contrast, PB2 

and PA coevolve and encompass the majority of host adaptive mutations, such as the well-known 

host range determinant at the residue 627 of PB2 [155, 156].  

Given the relatively conserved nature of PB1, the contribution of PB1 mutations 66 to host 

adaption is less well understood. On the other hand, it has long been observed that human seasonal 

and pandemic IAV strains, such as that of 1957 and 1968, frequently contain reassorted PB1 

segments originated from avian viruses [137, 157]. While these reassortment events partially 

corroborate the genetic compatibility of avian PB1 with human PB2 and PA, the biological 

consequence and molecular basis of such frequent emergence of avian-origin PB1 remain unclear. 

In mammalian cells, introducing avian PB1 of H7N1 or H2N2 into the background of mammalian 

H1N1 and H3N2 polymerases led to increased or comparable activity [146]. An avian H5N1 PB1 

also rescued the attenuated polymerase activity and partially restored viral replication of a PB2-

627E containing mammalian H1N1 virus [139]. Moreover, the reassortment between a human 

H3N2 and an avian H5N1 virus led to the generation of an avian PB1-containing reassortant with 

increased virulence in vivo, though the reassorted polymerase activity remained unchanged in vitro 

[158]. Swapping the PB1 segment of a human seasonal H2N2 virus with that of the 1968 pandemic 

strain, which is of avian-origin, increased viral polymerase activity and facilitated replication and 

transmission of the reassortant virus in guinea pigs [138].  

The 2009 pandemic H1N1 is a “quadruple reassortant” virus resulted from the reassortment 

between the “triple reassortant” North American swine H1N2 viruses and the Eurasian “avian-like” 

swine H1N1 viruses. It contains the PB2 and PA gene segments of avian-origin, and interestingly 

the PB1 segment originated from human seasonal H3N2 viruses, unlike that of the previous 

pandemic strains. In a ferret model, the 2009 pandemic virus exhibited increased viral replication 

and pathogenicity compared to a seasonal H1N1 strain [159], whereas it showed mild to moderate 
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virulence in mice compared to the reconstructed 1918 pandemic H1N1 and a highly pathogenic 

H5N1 virus [159]. Due to the cocirculation of 2009 pandemic viruses with avian strains, it is of 

significant interest to monitor the potential reassortment events that may further confer the 2009 

pandemic H1N1 gene segments of avian-origin. Interestingly, upon the reassortment between a 

2009 pandemic N1H1 and an avian H9N2, reassortant viruses containing the avian PB1 were 

mostly more virulent than that containing the pandemic PB1 [160]. However, the underlying 

mechanism remains unknown.  

Here we further address the biological significance of the acquisition of avian PB1 by the 

2009 pandemic H1N1 virus polymerase. We found that the avian-origin PB1 significantly 

enhances pandemic polymerase activity, and such enhancement is independent of the PB2 adaptive 

mutations. Mechanistically, the avian-origin PB1 does not affect polymerase assembly but imparts 

the reassorted pandemic polymerase augmented viral primary transcription and replication. 

Moreover, the reassorted polymerase displays comparable cRNA stabilizing activity to the 

parental polymerase but is specifically enhanced in vRNA synthesis from cRNA in a trans-

activating manner. Overall, our results provide the first insight into the mechanism by which avian-

origin PB1 facilitates viral RNA synthesis by the 2009 pandemic virus polymerase. 

 

3.2 MATERIALS AND METHODS 

3.2.1 Cells 

  Madin-Darby canine kidney (MDCK) cells were cultured in minimal essential medium 

(MEM, Sigma) supplemented with 10% fetal bovine serum (FBS, Gibco).  Human embryonic 

kidney 293T (293T) cells and chicken embryonic fibroblast (DF-1) cells were cultured in 

Dulbecco’s modified Eagle’s medium (DMEM, Sigma) supplemented with 10% FBS. MDCK 

cells and 293T cells were maintained at 37 °C; DF-1 cells were grown at 39 °C. 

 

3.2.2 Plasmids 

Polymerase proteins and NP protein expressing plasmids were constructed by cloning 

coding sequences of PB2, PB1, PA, and NP segments from pH1N1, A/Turkey/Ontario/6213/1966 

(H5N1) (ON H5N1) [161], A/chicken/British Columbia/CN-6/2004 (H7N3) (BC H7N3), and 
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A/British Columbia/2015 (H7N9) (BC H7N9) [162] into pcDNA vector, generating plasmids 

(pcDNA-pH1N1-PB2, pcDNA-pH1N1-PB1, pcDNA-pH1N1-PA, pcDNA-pH1N1-NP), 

(pcDNA-ON H5N1-PB2, pcDNA-ON H5N1-PB1, pcDNA-ON H5N1-PA, pcDNA-ON H5N1-

NP), pcDNA-BC H7N9-PB1, pcDNA-BC H7N3-PB1. The pcDNA-ON H5N1-PB1 (PB1-F2 KO) 

construct was created by introducing stop codons at 12th and 58th residues of PB1-F2 ORF to 

disrupt the expression of PB1-F2 protein. For the mutant pH1N1-PB2 constructs, 627K, 590G and 

591Q were respectively introduced into pcDNA-pH1N1-PB2 to create the pcDNA-pH1N1-PB2 

(627K), pcDNA-pH1N1-PB2 (590G/591Q), pcDNA-pH1N1-PB2 (590G/591Q, 627K). For the 

construction of catalytically inactive PB1a of either pH1N1 virus or ON H5N1 virus, the double 

mutations (D445A and D446A) were introduced into the WT pcDNA-pH1N1-PB1 and pcDNA-

ON H5N1-PB1. The replication defective mutation PA E410A was introduced into pcDNA-

pH1N1-PA to create the replication defective construct pcDNA-pH1N1-PA (E410A). For vRNA 

expressing plasmids, pHH21-pH1N1-vNP and pHH21-pH1N1-vNA, the full-length vRNA of 

segment 5 and 6 of pH1N1 virus were respectively introduced into the pHH21 vector. The pPOLI-

NP-Luc constructs with species-specific polymerase I promoter and pTK-RLuc used in 

minireplicon luciferase report assay were described elsewhere [120, 163]. Chicken ANP32A gene 

(Gallus gallus, XP_413932.3) was synthesized and constructed into pcDNA vector by Genscript. 

 

3.2.3 Viruses 

2009 pandemic H1N1 virus and the recombinant pH1N1-PB1Avi virus was generated by 

using eight-plasmid reverse genetic system [164]. Viruses were propagated in MDCK cells. Virus 

titer was titrated by plaque assay. The origin of PB1 segment was verified by sequencing. 

Recombinant virus pH1N1-PB1Avi refers to the reassortant pH1N1 virus with PB1 segment from 

avian strain ON H5N1 virus. 

 

3.2.4 Viral growth kinetics 

For the single-cycle growth curve, confluent monolayers of A549 cells were infected by 

respective viruses at an MOI of 5. After 1h of adsorption at 37 °C, cells were washed with DMEM 

and cultured in viral growth medium (DMEM containing 0.2% Bovine serum albumin and 1 µg/ml 

https://www.ncbi.nlm.nih.gov/protein/XP_413932.3
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of TPCK-Trypsin). Supernatants were collected at 2, 4, 6, 8, 10 hours post infection and were 

stored at -80 °C. Viral titer of each time point was titrated in MDCK cells by plaque assay. 

 

3.2.5 Minireplicon luciferase reporter assay 

The luciferase reporter assay was performed as previously described [120]. 293T cells or 

DF-1 cells were transfected with plasmids expressing indicated PB2, PB1, PA, and NP proteins 

(50 ng each) together with pPOLI-vNP-Luc expressing firefly luciferase (50 ng) and Renilla 

luciferase expressing plasmid pTK-RLuc (50 ng) for internal control. After 24 hours incubation at 

37 °C (293T cells) or 39 °C (DF-1 cells), cells were lysed for the dual-luciferase reporter assay 

(Promega). 

 

3.2.6 Split luciferase complementation assay (SLCA) 

N-terminus (1-229) and C-terminus (230-311) of Renilla luciferase gene were respectively 

fused to different termini of full-length PB1 or PA segment of pH1N1 virus or ON H5N1 virus via 

protein linker (GGGSGGGS) as described elsewhere [165], generating plasmids LN-PB1 (pH1N1), 

PA (pH1N1)-LC, and LN-PB1 (ON H5N1). For selection of functional SLCA constructs, 293T cells were 

co-transfected with 50 ng of different PB1 SLCA constructs and PA SLCA constructs. In 

conformations of heterotrimeric polymerase complex or vRNP, 50 ng of pcDNA-pH1N1-PB2or 

with the additional 50 ng of pHH21-pH1N1-vNA and pcDNA-NP were co-transfected with SLCA 

constructs. The relative Renilla luciferase activity were measured at 24 h.p.t. by luciferase assay 

(Promega).  

 

3.2.7 vRNP reconstitution assay and primer extension analysis 

293T cells in 6-well plates were transiently transfected with expression plasmids for three 

polymerase subunits (500 ng each), NP protein (500 ng), and vRNA-expressing plasmid (500ng) 

pHH21-vNA expressing the full-length NA segment vRNA template. Forty-eight hours post-

transfection (h.p.t), cells were harvested for extraction of total RNA by Trizol. The levels of vRNA, 

cRNA, mRNA, and 5S rRNA were analyzed by primer extension as previously described [104, 
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166]. Briefly, the 5’ end of primers for probing the vRNA and 5S rRNA are labeled with Tide 

Fluor 6 which have the spectral propriety similar to IRDye 700, and the 5’ end of primer for 

probing cRNA and mRNA are labeled with Tide Fluor 8 which have the spectral propriety similar 

to IRDye 800. The expected sizes of the products are 61 nt (vRNA), 75 nt (cRNA), 100 nt (5S 

rRNA), and 85 to 88 nt depending on the length of the capped primer (mRNA). Products of primer 

extension were analysed by 15% PAGE containing 7M urea in TBE buffer and were detected by 

infrared imaging system (Odyssey, LI-COR). 

 

3.2.8 NP-cascade vRNP reconstitution assay 

 293T cells were co-transfected with 100 ng of plasmids expressing PB2, PB1, and PA 

protein along with pHH21-vNP expressing full length segment 5 RNA. Cells were lysed at 48 h.p.t 

for detection of NP protein by western blotting. 

 

3.2.9 Strand-specific real-time RT-PCR 

The relative quantification of vRNA and cRNA accumulated in cRNA stabilization assay 

were measured by strand-specific real-time RT-PCR as previously described [167]. Briefly, 350 

ng of total RNA was reverse transcribed using hot-start reverse transcription at 60 °C for 1 hour. 

The 20 μl reaction system containing 4.5 μl RNA (350 ng),  6.5 μl  saturated trehalose, 1 μl tagged 

RT primers (10 pmol), 4 μl First-strand buffer (5 ×, Invitrogen), 1 μl DTT (0.1M), 1 μl dNTP 

(10mM), 1 μl  RNaseOUT (Invitrogen), and 1 μl SuperScript III reverse transcriptase 

(200U/μl ,Invitrogen). Real-time PCR was performed in 20 μl reaction system with 2 μl of cDNA, 

1 × Power SYBR Green PCR master mix (Applied Biosystems), and 500 nM primers by 

StepOnePlus real-time PCR system (Applied Biosystems). 

 

3.2.10 cRNA stabilization assay 

As described elsewhere [104], 293T cells in 6-well plate were transiently transfected with 

plasmid expressing three polymerase subunits (250 ng) and NP protein (1000 ng) using TransIT-

LT1. 24 h.p.t, cells were infected by indicated viruses at an MOI of 10 in presence of 
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cycloheximide (100 µg/ml). 1 or 6 hours post-infection, cells were collected for total RNA 

extraction by Trizol. vRNA or cRNA were quantified by strand-specific real-time RT-PCR. 

 

3.2.11 Immunoblotting 

Viral PB1 and NP proteins were probed with homemade rabbit antibody, actin was probed 

with mouse anti-actin antibody (Cell Signaling). Standard immunoblotting protocol was 

performed as previously described [163], and the nitrocellulose membranes were visualized with 

infrared imaging system (Odyssey, LI-COR). 

 

3.2.12 Statistical analysis 

The statistical analyses were performed in GraphPad Prism 7 (GraphPad Software, Inc., 

USA) using Student’s t test, one-way ANOVA, or two-way ANOVA. Significant differences are 

denoted by the asterisks as follow: *, P < 0.05; **, P < 0.01; and ***, P < 0.001; P< 0.0001. 

 

3.3 RESULTS 

3.3.1 Avian-origin PB1 segment enhances viral polymerase activity of 2009 pH1N1 virus.  

To evaluate the effect of avian-origin PB1 segment on 2009 pH1N1 viral polymerase 

activity, we replaced the pandemic PB1 subunit, or its PB2, PA, and NP segments one at a time 

with the respective avian-origin segments derived from A/Turkey/Ontario/6213/1966 (H5N1) (ON 

H5N1). Polymerase activity of the reconstituted vRNP in either human 293T cells or avian DF-1 

cells were measured by minireplicon assay [120]. As expected, while avian polymerase functioned 

well in avian cells (Figure. 3.1B), the human pH1N1 vRNP exhibited higher level of polymerase 

activity than the avian vRNP in 293T cells (Figure. 3.1A). Exchange of individual segment resulted 

in various vRNP activity compared to that of WT pH1N1, exchanging the PB1 segment of pH1N1 

virus with avian PB1 segment markedly enhanced the polymerase activity in 293T cells (Figure. 

3.1A). This elevating effect induced by avian PB1 was also observed in DF-1 cells even though it 

was at a lesser degree (Figure. 3.1B).  
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Figure 3.1 Avian-origin PB1 enhances polymerase activity of pH1N1 virus.  

(A and B) The polymerase activity of reassortant vRNPs.  HEK-293T (A) or DF-1 cells (B) were 

co-transfected with plasmids expressing the indicated PB2, PB1, PA and NP proteins of pH1N1 

virus and avian H5N1 virus, along with a species-specific polymerase I-driven vRNA-luciferase 

reporter plasmid and a Renilla luciferase expressing plasmid. (C and D) The polymerase activity 

of reassortant pH1N1 polymerases with PB1 segments from different avian strains. Relative 

polymerase activities of reassortant pH1N1 vRNPs with PB1 segment from ON H5N1 virus, BC 

H7N3 virus, or BC H7N9 virus were measured in 293T (C) or DF-1 cells (D). (E) PB1-F2 

expressed by avian-origin PB1 segment does not affect the enhanced polymerase activity. The 

activity of ON H5N1 polymerase or the reassortant pH1N1 polymerase with mutant ON H5N1 

PB1 (PB1-F2 KO) was measured in 293T cells. In above experiments, omission of PB1 segment 

(-PB1) was used as the negative control. Firefly luciferase activities were normalized to the Renilla 

luciferase activities. The polymerase activity of 2009 pH1N1 virus was set as 100%. Error bars 

represent the standard deviation of three biological replicates (±SD); the pattern of results are 

consistent in at least three independent experiments. 
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To address whether the enhancement in viral polymerase activity mediated by PB1 derived 

from ON H5N1 virus was a strain-specific effect or not, reassortant pH1N1 vRNPs with PB1 

segment originated from different avian strains were reconstituted in both human and avian cells. 

In addition to the aforementioned low pathogenic avian influenza virus (LPAIV) ON H5N1, PB1 

segment from LPAI (A/chicken/British Columbia/CN-6/2004) (BC H7N3) or highly pathogenic 

avian influenza (HPAI) (A/British Columbia/2015 (H7N9) (BC H7N9) both markedly boosted the 

polymerase activity of 2009 pH1N1 virus in human cells (Figure. 3.1C). These avian-origin PB1 

segments also enhanced the activity of 2009 pH1N1 polymerase in avian cells; however, to a lesser 

extent (Figure. 3.1D). PB1-F2 protein encoded by PB1 segment has been shown to play a role in 

regulating viral polymerase activity in a strain-specific manner [168]. While 2009 pH1N1 virus 

does not express PB1-F2 due to the presence of three stop codons in the PB1-F2 ORF, most of 

avian-origin PB1 segments encode PB1-F2 protein. To examine whether the enhanced viral 

polymerase activity was attributable to the PB1-F2 protein encoded by avian PB1 gene or not, we 

inserted two stop codons into ON H5N1 PB1 segment to abolish the expression of PB1-F2 protein 

without disrupting the expression of PB1 protein. Abrogating PB1-F2 expression slightly 

decreased the PB1 protein expression; however, neither the activity of WT ON H5N1 vRNP nor 

the enhanced activity of reassortant pH1N1 vRNP with ON H5N1-PB1 was affected (Figure. 3.1E). 

 

3.3.2 Avian-origin PB1 segment assists pH1N1 polymerase to overcome host restriction 

conferred by PB2.  

We next investigated whether acquisition of avian-origin PB1 could enhance pH1N1 

polymerase activity in a reassortant situation where PB2 carries avian-like signatures. The 2009 

pH1N1 polymerase possesses 627E avian-like signature in PB2; however, it employs SR 

polymorphism (serine at position 590 and arginine at position 591) as an alternative mammalian 

adaptive strategy [120]. First, we confirmed the functions of these previously characterized PB2-

associated mammalian adaptive mutations in minireplicon assay. Indeed, in human cells, in the 

background of pH1N1 vRNP, while replacing SR polymorphism with GQ sequence (S590G, 

R591Q) in PB2 significantly decreased the polymerase activity, a single mutation of E627K in 

PB2 dramatically enhanced polymerase activity despite the presence of SR polymorphism (Figure. 
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3.2A). In comparison, all these PB2 variant polymerases displayed comparable level of activities 

in avian cells (Figure 3.2B).  

To explore whether the SR polymorphism is the prerequisite of the enhanced viral 

polymerase activity mediated by avian-origin PB1, we then reconstituted reassortant vRNPs using 

pH1N1 PB2 variants (different identities in 590, 591, and 627 residues) PA, NP, and avian-origin 

PB1. Avian-origin PB1 massively enhanced pH1N1 polymerase activity not only when PB2 

possessed SR polymorphism, but also when PB2 possessed GQ sequence. Even in the background 

of fully adapted pandemic PB2 carrying 627K, acquisition of the avian-origin PB1 segment still 

enhanced its activity by more than 4-fold. The enhancing effect was consistently observed by PB1 

derived from different avian strains (Figure. 3.2C). In contrast, these enhancements were less 

profound in avian cells (Figure. 3.2D). In addition to the luciferase assay, we also scrutinized the 

effect of avian-origin PB1 on the functions of pH1N1 polymerase by primer extension assay (27). 

As seen in Figure 3.2E, pH1N1 polymerases with avian-origin PB1 (lane 4 and 5) produced more 

vRNA, cRNA, and mRNA than WT pH1N1 polymerase did (lane 1 and 2). In agreement with the 

above observation, avian-origin PB1 could overcome the viral RNA synthesis restricted by PB2 

lacking SR polymorphism or PB2 lacking 627K (lane 5 vs 1 and 2). Overall, these data indicated 

that acquisition of avian-origin PB1 by pH1N1 vRNP could fully overcome the restrictions 

rendered by the absence of critical PB2-associated mammalian adaptive mutations. 
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Figure 3.2 Avian-origin PB1 compensates the function of canonical PB2-associated 

adaptive mutation in pH1N1 polymerase.  

(A and B) The effect of PB2 E627K and SR polymorphism on viral polymerase activity. 

Polymerase activities of WT pH1N1 polymerase and variant pH1N1 polymerases bearing the 

indicated mutations were respectively measured in 293T cells (A) or DF-1 cells (B). (C and D) 

Avian-origin PB1 renders optimal polymerase activity to pH1N1 polymerase. Reassortant 

polymerases with different avian-origin PB1 and pH1N1 PB2-assoicated mutations were measured 

in 293T cells (C) or DF-1 cells (D). Firefly luciferase activities were normalized to the Renilla 

luciferase activities. The polymerase activity of 2009 pH1N1 virus was set as 100%. Error bars 

represent the standard deviation of three biological replicates (±SD); the pattern of results are 

consistent in at least three independent experiments. (E) The levels of three species of viral RNAs 

produced by reassortant pH1N1 polymerases carrying PB2 mutations with or without ON H5N1-

PB1 (avian-origin PB1) were assessed by primer extension assay. 5S rRNA was served as loading 

control.  The corresponding relative signal intensity normalized to WT pH1N1 polymerase (100%) 

was analysed using Imagine J software. Error bars represent the standard deviation of two 

biological replicates (±SD). 
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3.3.3 Avian-origin PB1 does not facilitate the assembly of viral polymerase complex or 

vRNP.  

The vRNP assembly capacity has been demonstrated as the factor which affects the viral 

polymerase activity. To evaluate the effect of the avian-origin PB1 on the assembly of viral 

polymerase complex or vRNP, we established a split luciferase complementation assay (SLCA) 

as described elsewhere [165]. As PB1 and PA form the dimer prior to the assembly of trimeric 

polymerase complex with PB2 [67], each half of the Renilla luciferase gene was respectively 

tagged to PB1 and PA segments derived from pH1N1. The diagram of different tested 

combinations of PB1-PA SLCA constructs were shown in Figure. 3.3A. After co-transfection in 

293T cells, the Renilla luciferase activity at 24 h.p.t were measured by luciferase activity assay. 

The N-terminally luciferase-tagged PB1 (LN-PB1) and C-terminally luciferase-tagged PA (PA-

LC) displayed the highest Renilla luciferase activity, whereas other combinations merely showed 

background signals (Figure. 3.3B). Therefore, the LN-PB1 and PA-LC constructs were used for 

the rest of experiments, and the luciferase activity generated by these SLCA constructs was 

measured as the proxy for polymerase complex or vRNP assembly capacity. 

Co-transfection of PB1 and PA in SLCA assay revealed that the relative Renilla luciferase 

activity (normalized to WT pH1N1 constructs) generated by pH1N1-PA and avian origin-PB1 

combination was not significantly enhanced compared to that of PA with PB1 derived from pH1N1 

(Figure. 3.3C) indicating that the PB1-PA interaction is not altered followed by acquisition of 

avian-origin PB1. We next included a plasmid expressing pH1N1 PB2 in SLCA assay to assess 

the polymerase assembly capacity when all three polymerase subunits are present. Figure. 3.3D 

showed that avian-origin PB1 moderately increased the luciferase reading but statistically not 

significant. Next, we assessed the vRNP assembly capacity by including NP and viral RNA in the 

system. As shown in Fig. 3E, the avian-origin PB1 did not lead to marked enhancement on Renilla 

luciferase activity. Collectively, these data suggest that avian-origin PB1 neither strengthens the 

PB1-PA interaction nor facilitates the assembly of trimeric polymerase complex or vRNP. 
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Figure 3.3 The polymerase subunit interaction or assembly of polymerase complex and 

vRNP is not altered by avian-origin PB1. 

(A) Schematic diagram of PB1 and PA constructs used for split-luciferase complementation assay. 

(B) Selection of functional SLCA constructs. Renilla luciferase activities were measured after co-

expression of indicated SLCA constructs in 293T cells. (C) Avian-origin PB1 does not enhance 

PB1-PA interaction. 293T cells were transfected by PA (pH1N1)-LC along with the SLCA constructs 

fused to PB1 derived from either pH1N1 or ON H5N1. The Renilla luciferase were measured. (D) 

Avian-origin PB1 does not promote assembly of trimeric polymerase complex. Renilla luciferase 

activities were measured after co-transfection of the indicated combination of SLCA constructs 

along with a plasmid expressing pH1N1 PB2 protein in 293T cells. (E) Avian-origin PB1 does not 

change assembly of vRNP. 293T cells were co-transfected with the indicated combination of 

SLCA constructs together with the Pol II driven plasmids expressing pH1N1 PB2 and NP protein, 

and a Pol I driven plasmid generating a full-length vRNA of NA segment. In above experiments, 

Renilla luciferase activities were measured at 24 hr post transfection by luciferase assay. The 

Renilla luciferase activity generated by LN-PB1 (pH1N1) and PA (pH1N1)-LC in each setting was set 

as 100%. Error bars represent the standard deviation of three biological replicates (±SD); the 

pattern of results are consistent in at least three independent experiments. 
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3.3.4 Acquisition of avian-origin PB1 segment enhances RNA transcription of pH1N1 

polymerase.  

Given that PB1 functions as the catalytic core of the viral polymerase, we next 

hypothesized that avian PB1 might directly affect the synthesis of viral RNA species. Depending 

on the mode of viral polymerase, it can act as a transcriptase to catalyze viral mRNA synthesis 

from viral genomic RNA (vRNA), or a replicase to synthesize more vRNA via the replicative 

intermediate complementary RNA (cRNA). While the minireplicon assay results as shown in 

Figure. 3.1 and 3.2 directly reflected viral mRNA levels, it remained unclear which arm of the 

viral polymerase activity was enhanced as a result of an avian PB1 acquisition, since an enhanced 

replication activity (i.e. more vRNA) could also lead to more viral mRNA production. To 

specifically assess whether avian-origin PB1 enhances viral transcriptase activity, we established 

a modified minireplicon system in which the Pol II-driven NP plasmid was omitted (Figure. 3.4A). 

Since ongoing viral replication requires concurrent NP encapsidation of newly synthesized 

vRNA/cRNA, such NP-free condition would largely diminish viral replication and the production 

of full-length progeny vRNA. In contrast, NP is not required for viral primary transcription; full-

length viral mRNA is able to be synthesized from input vRNA followed by translation into viral 

proteins. Taking advantage of this property, we particularly supplied to the NP-free system a 

vRNA-expressing plasmid encoding the viral NP segment. We rationalized that if the viral 

polymerase conducted sufficient levels of primary transcription, the resulting NP mRNA would 

be translated into NP proteins to resume ongoing viral replication. This would convert the NP-free 

condition back to the standard minireplicon condition, leading to the accumulation of large 

amounts of NP. Therefore, the expression levels of NP from the NP-free minireplicon system 

would be an indicator of the primary transcription activity of the tested polymerase. Using this 

system, we showed that viral polymerases of avian origins (i.e. H5N1 and H7N3) were highly 

restricted at the level of primary transcription (Figure.3.4B, lanes 2, 3, and 8). Removal of the SR 

polymorphism within the PB2 subunit of pH1N1 polymerase also diminished primary 

transcription (Fig. 3.3.4B, lanes 6 and 7). Strikingly, under both the SR and GQ backgrounds, 

introducing an avian-origin PB1 enhanced or restored viral primary transcription (Fig. 3.3.4B, 

lanes 4, 5, 9, and 10), echoing the polymerase enhancing effect observed in Fig. 3.3.2C. 
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Collectively, these results demonstrated that avian-origin PB1 enhances the transcription activity 

of the pH1N1 polymerase. 

 

 

 

 

 

Figure 3.4 Avian-origin PB1 enhances transcription of pH1N1 polymerase in human cells. 

(A) Schematic diagram of the NP-free minireplicon system. Cells were co-transfected 

with plasmids expressing polymerases subunits PB2, PB1 and PA along with pHH21- vNP 

generating a full-length segment 5 vRNA. (B) NP protein levels generated by different 

combination of RdRp in the NP-free system were assessed by western blotting 24 h.p.t. 
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3.3.5 Avian-origin PB1 facilitates synthesis of progeny vRNA.  

Influenza virus replication is a two-step process. The first step is the synthesis of 

cRNA from the incoming vRNP in cis. The second step is the synthesis of progeny vRNA using 

the cRNA as template in trans [154] (Figure. 3.5.A). Based on the current cRNA stabilization 

model [104], the newly synthesized cRNA from incoming vRNP requires protection from 

polymerase complex and NP protein (Figure. 3.5.B).  

We next asked whether the acquisition of an avian-origin PB1 would facilitate the 

replication of pH1N1 polymerase. Given that cRNA stability is a prerequisite for ongoing viral 

replication, we first explored whether the reassorted polymerase containing an avian-origin PB1 

has a stronger ability to stabilize nascent cRNA and to prevent it from degradation. We used a 

cRNA stabilization assay in which 293T cells were pre-expressed with viral polymerase 

complex and NP before infected with the pH1N1 virus in the presence of protein synthesis 

inhibitor cycloheximide (CHX) [132]. Under this condition, nascent cRNA synthesized from 

the incoming vRNPs would be assembled into cRNP containing the pre-expressed viral protein 

components to avoid degradation. Moreover, the pre-expressed polymerase complex contained 

a catalytically inactive PB1 subunit (PB1a) to abrogate cRNP replication, which eliminated 

interference from accumulative cRNA synthesis. Consistent with previous reports, cRNA 

stabilizing effect could only be detected in cells pre-expressing an intact viral polymerase but 

not that with the PB1 subunit replaced by GFP (Figure 3.5D). Pre-expression of polymerase 

complexes containing either pH1N1 or H5N1 PB1a led to similar levels of cRNA accumulation 

as determined by a strand-specific qPCR, indicating comparable cRNA stabilization abilities. It 

is also noted that input vRNA levels remained consistent across conditions at 1-hour post-

infection (h.p.i.) and 6 h.p.i (Figure 3.5 C), ruling out the possibility of any difference in viral 

infection. The results also showed that the vRNA level at 6 h.p.i. did not increase compared to 

that at 1 h.p.i. (Figure 3.5C), indicating no progeny vRNA is produced when the pre-expressed 

polymerase is catalytically inactive. Furthermore, a much higher level of vRNA synthesis was 

observed when we exchanged the catalytically inactive polymerase with an active one (Figure. 

3.5E). Given that the nascent cRNA associated catalytically inactive polymerase incapacitates 

the synthesis of progeny vRNA, it suggests that the second step of viral RNA replication (cRNA 
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to vRNA) relies on the resident polymerase on cRNP, which is in agreement with the trans-

activating model that the polymerase does not act as a replicase in trans [66]. 

We subsequently sought to assess the effect of avian-origin PB1 on cRNA synthesis ability. 

cRNA is synthesized by vRNP-associated polymerase in cis. To provide the vRNP-associated 

polymerase containing avian-origin PB1, we resuced the recombinant pH1N1 virus with its PB1 

segment replaced by avian ON H5N1 PB1 (the virus is referred as pH1N1-PB1Avi). This 

recombinant virus showed a one-log increase in replication during a single-cycle infection in A549 

cells (Figure. 3.5F). In 293T cells pre-expressed with catalytically inactive PB1a of pH1N1, the 

recombinant virus synthesized similar levels of cRNA as the parental pH1N1, demonstrating that 

the avian PB1 as contained in the incoming vRNPs conferred no advantage to cRNA synthesis 

(Figure. 3.5G). These results together with the enhanced specifically increases the nascent vRNA 

synthesis.  

To verify whether acquisition of avian-origin PB1 could indeed provide advantages to 

vRNA synthesis step, we used the homologous combinations of pre-expressed polymerases 

(cRNP-associated polymerase) and viruses (incoming vRNP) in the cRNA stabilization assay. As 

expected, in cells infected with pH1N1-PB1Avi virus, the pre-expressed avian-origin PB1 

containing polymerase produced more vRNA and cRNA compared to the WT combinations did 

(Figure. 3.5H). Cumulatively, our results indicate that avian-origin PB1 specifically enhances the 

vRNA synthesis from cRNA template, and thereby facilitating the overall replication ability of 

pH1N1 polymerase in human cells. 
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Figure 3.5 Avian-origin PB1 facilitates vRNA synthesis from cRNA template.  

(A) Replication mechanism of influenza A virus. The schematic diagrams of trans-activation 

model of vRNA synthesis and cRNA synthesis in cis. (B) The schematic diagram of cRNA 

stabilization model for influenza viral infection. (C) Progeny vRNA synthesis is disrupted by the 

pre-expressed catalytically inactive polymerase. 293T cells were co-transfected with plasmids 

expressing indicated polymerase subunits and NP protein followed by infection of pH1N1 virus at 

an MOI of 10 in presences of CHX. vRNA levels at 1 h.p.i and 6 h.p.i were measured respectively 

by strand-specific real-time RT-PCR. The vRNA level in cells expressing catalytically inactive 

pH1N1 polymerase at 1 h.p.i was set as 100%. (D) avian-origin PB1 does not change cRNA 

stabilization ability. Same as conditions in (C), the cRNA level was measured at 6 h.p.i. The cRNA 

level in cells expressing catalytically inactive pH1N1 polymerase was set as 100%.  (E) The 

resident polymerase on cRNP carries out the vRNA synthesis. After expression of either 

catalytically inactive polymerase or active polymerase, cells were infected with pH1N1 virus at an 

MOI of 10 in presences of CHX. The vRNA levels at 6 h.p.i were measured. vRNA level in cells 

expressing inactive pH1N1 polymerase was set as 100%. (F) Growth kinetics of pH1N1 virus and 

pH1N1-PB1Avi virus in A549 cells. A549 cells were infected with the respective virus at an MOI 

of 5 and incubated at 37 ℃. Supernatants were collected at indicated time points, and virus titers 

were determined by plaque assay in MDCK cells. (G) avian-origin PB1 does not facilitate cRNA 

synthesis from vRNA template. After pre-expression of catalytically inactive pH1N1 polymerase, 

cells were infected with indicated viruses at an MOI of 10 in the presence of CHX. The vRNA and 

cRNA levels in cells infected with pH1N1 virus were measured at 6 h.p.i. The ratio of cRNA and 

vRNA in cells infected with pH1N1 virus was set as 100%. (H) avian-origin PB1 facilitate vRNA 

synthesis from cRNA template. 293T cells were transfected with plasmids expressing indicated 

polymerase subunits and NP protein and subsequently infected with pH1N1 virus or pH1N1-

PB1Avi virus at an MOI of 10 in the presence of CHX. The vRNA and cRNA levels in cells 

expressing pH1N1 polymerase and infected with pH1N1 virus was set as 100%. vRNA levels in 

both settings at 1 h.p.i. was served as control of input vRNA. The levels of vRNA and cRNA in 

all aforementioned cRNA stabilization assays were measured using strand-specific real-time PCR. 

Error bars represent the standard deviation of three biological replicates (±SD); the pattern of 

results is consistent in at least three independent experiments. 
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3.3.6 Avian-origin PB1 enhances activation of the trans-activating polymerase.   

The enhanced vRNA synthesis could be the result from adapted cRNP-associated 

polymerase, or the stronger activating effect exerted by the adapted trans-polymerase. To address 

this question, we first assessed vRNA and cRNA levels in the heterologous scenarios in which 

cells pre-expressed WT pH1N1 polymerase were infected by pH1N1-PB1Avi virus, or vice versa. 

In these two conditions, the pre-expressed polymerase would be the one that biochemically 

performs the vRNA synthesis and be subsequently incorporated into cRNP and the nascent vRNP. 

Intriguingly, the WT pH1N1 polymerase in cells infected by pH1N1-PB1Avi virus produced 

significantly higher amounts of vRNA and cRNA than avian-origin PB1 containing polymerase 

did in WT pH1N1 infected cells (Figure. 3.6A). Considering the only fully-adapted polymerase in 

the enhanced replication setting is the one carried by the incoming vRNP (pH1N1-PB1Avi), these 

results imply that the incoming vRNP-associated polymerases could also serve as the trans-

activating polymerase to cooperatively assist the cRNP-associated polymerase to perform the 

vRNA synthesis. These data also suggest that the vRNP-associated polymerase is be the major 

determinants of the final consequence of viral replication 

To corroborate whether the vRNP-associated polymerase could determine the final 

consequence of viral replication or not, we pre-expressed the WT pH1N1 polymerase (cRNP-

associated polymerase) and followed by infection of either pH1N1 virus or pH1N1-PB1Avi virus. 

As expected, the same cRNP-associated polymerase exhibited increased RNA synthesis ability 

when a fully-adapted trans-activating polymerase carried by incoming vRNP was provided (Figure. 

3.6B). To obtain direct evidences that the enhanced vRNA synthesis is not due to adaptation in 

cRNP-associated polymerases, cells were pre-expressed with NP protein along with either WT 

pH1N1 polymerase or the avian-origin PB1 containing polymerase followed by infection of same 

virus (pH1N1/ pH1N1-PB1Avi) in the presence of cycloheximide. Coherently, these two different 

polymerases displayed similar replication ability when a same trans-activating polymerase 

(incoming vRNP-associated polymerase) was provided (Figure. 3.6C and D). Collectively, these 

data indicate that the acquisition of avian-origin PB1 renders fully-adapted status to the trans-

activating polymerase, and thereby facilitating the viral replication. 
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Figure 3.6 Avian-origin PB1 promotes vRNA synthesis in a trans-activating manner. 

(A) avian-origin PB1 enhances the trans-activating effect. 293T cells were co-transfected with 

plasmids expressing indicated polymerase subunits and NP protein followed by infection of either 

pH1N1 virus or pH1N1-PB1Avi virus. The relative vRNA and cRNA levels at 6 h.p.i was measured. 

The vRNA and cRNA levels in cells expressing pH1N1 polymerase and infected with pH1N1-

PB1Avi virus were set as 100%. (B) The enhanced vRNA synthesis is mainly attributed to the 

vRNP-associated polymerase with avian-origin PB1. After pre-expression of WT pH1N1 

polymerase and NP protein, cells were infected by either pH1N1 virus or pH1N1-PB1 Avi virus. 

The relative vRNA and cRNA levels at 6 h.p.i were measured. The vRNA and cRNA levels in 

cells infected with pH1N1 virus were set as 100%. (C and D) The cRNP-associated polymerase 

was not the reason for the enhanced vRNA synthesis mediated by avian-origin PB1. After pre-

expression of NP protein with either WT pH1N1 polymerase or pH1N1 polymerase carrying 

avian-origin PB1, 293T cells were infected with pH1N1 virus (C) or pH1N1-PB1Avi virus (D). The 

relative vRNA and cRNA levels at 6 h.p.i were measured. The vRNA and cRNA levels in cells 

pre-expressing WT pH1N1 polymerase were set as 100%.  All the virus infection was performed 

at an MOI of 10 in the presence of CHX. The levels of vRNA and cRNA were measured using 

strand-specific real-time PCR. The vRNA levels at 1 h.p.i. were served as control of input. Error 

bars represent the standard deviation of three biological replicates (±SD); the pattern of results are 

consistent in at least three independent experiments. 
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3.4 Discussion 

The recurrent presence of avian-origin PB1 in past pandemic viruses has long been 

observed. Avian-origin PB1 appears to be important to the active viral polymerase activity in 

human cells, even though the underlying mechanism has never been revealed. In this study, using 

2009 pH1N1 virus naturally lacking avian-origin PB1 segment as the platform, we examined the 

role of avian-origin PB1 in polymerase adaptation. Results of vRNP reconstitution assays 

suggested that avian-origin PB1 can enhance viral RNAs synthesis of pH1N1 polymerase, or even 

the avianized pH1N1 polymerase lacking critical PB2-associated adaptive mutations (SR 

polymorphism and 627K) (Figure. 3.2 and 3.4). Furthermore, acquisition of avian-origin PB1 by 

pH1N1 virus did not alter PB1-PA interaction or assembly of polymerase complex and vRNP, 

indicating the advantage provided by avian-origin PB1 is not result from the enhanced vRNP 

assembly capacity. (Figure. 3.3). Using cRNA stabilization assay, we demonstrated that avian-

origin PB1 did not change the cRNA stabilization or synthesis abilities (Figure. 3.5). Instead, the 

resident polymerase on the incoming vRNP with avian-origin PB1 could serve as the more 

powerful trans-activating polymerase to cooperatively facilitate the vRNA synthesis performed by 

cRNP-associated polymerase (Figure. 3.6). These results revealed a possible mechanism by which 

avian-origin PB1 enhances viral polymerase activity and contributes to a potential pandemic virus 

formation in reassortment event between avian and human strains. 

Our results substantiate that acquisition of avian-origin PB1 segment by pH1N1 virus can 

result in enhanced polymerase functions in human cells. Strikingly, the stark polymerase activity 

enhancing effect was not diminished by removal of SR polymorphism in PB2 segment, suggesting 

that avian-origin PB1, together with pandemic PA, rescues the major defect of avian-like 

polymerases in human cells (Figure. 3.1 and 3.2). In agreement with these findings, other studies 

also showed that introducing avian-origin PB1 segment into the A/WSN/33 virus remarkably 

enhanced the viral polymerase activity in human cells [169]. The virulence of 2009 pH1N1 virus 

is quite mild compared to earlier pandemic viruses such as 1918 pH1N1 virus [170]. Additionally, 

introducing the missing PB2 E627K mutation into 2009 pH1N1 virus cannot enhance the viral 

replication, pathogenicity, and transmissibility, suggesting that the mild pathogenicity probably is 

due to other missing virulence markers [171].  Interestingly, a recent study using competitive 

fitness experiments showed that avian-origin PB1 promoted the replication and transmission of 
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1968 pandemic H3N2 virus [138]. Therefore, it would be tempting to evaluate the effect of avian-

origin PB1 on virulence and transmissibility of 2009 pH1N1 virus in animal models. 

Using the split luciferase complementation assay, we quantified the dynamic interactions 

of PB1-PA in different conformations (Figure. 3.3). Our results indicate that avian-origin PB1 did 

not alter PB1-PA interaction or assembly of the heterotrimeric polymerase complex and vRNP. 

These results match to the previous finding that the defective assembly of vRNP is not responsible 

for the restricted functions of avian polymerase in human cells [116, 172]. 

Assessment of viral RNAs synthesis provides insights into the mechanism by which avian-

origin PB1 enhances polymerase activity of pH1N1 virus. Primer extension results demonstrated 

that the vRNA, cRNA, and mRNA levels produced by polymerases containing avian-origin PB1 

were elevated compared to WT pH1N1 polymerase. However, due to the interdependency of viral 

replication and transcription, this result cannot rule out the possibility that the increased mRNA 

level was simply the consequence of more vRNA template involved in the transcription. Through 

a modified vRNP reconstitution system, we showed that the basal transcription ability of pH1N1 

polymerase was elevated after acquisition of avian-origin PB1. This notion was further verified by 

results acquired from regular vRNP reconstitution system with replication defective mutation 

which directly controlled the level of vRNA template used for mRNA synthesis (Figure. 3.4). 

Avian-origin PB1 did not change the cRNA stabilization effect of polymerase (Figure. 

3.5B), recapitulating the previous finding that the stabilization of nascent cRNA is probably just a 

biophysical process which is independent of the enzymatic function of polymerase [104]. Our 

observation that the pre-expressed catalytically inactive polymerase blocked the vRNA synthesis 

in cRNA stabilization assay favours the trans-activating model for vRNA synthesis, which allows 

us to further decipher the molecular mechanism of how avian-origin PB1 enhances viral replication 

(Figure. 3.5E).  We showed that avian-origin PB1 specifically enhanced vRNA but not cRNA 

synthesis (Figure. 3.5), which was same to the previously reported function of PB2 E627K [132]. 

A proposed reason for the defective vRNA synthesis of avian influenza polymerase is the inability 

of providing bona fide cRNA template [132]. However, in our experiments, cRNA was detected 

by stand-specific real-time PCR instead of primer extension assay. Therefore, it is unlikely that 

the cRNA template is defective interfering molecules which cannot be used as template for the 

subsequent vRNA synthesis. 
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Based on trans-activating model for vRNA synthesis, we next asked whether avian-origin 

PB1 provided the advantages to the cRNP-associated polymerase or another trans-activating 

polymerase. In the heterologous settings of pre-expressed polymerases and incoming viruses 

(Figure. 3.6A), we noticed the enhanced viral replication performed by cRNP-associated 

polymerase when the incoming vRNP possessing the polymerase containing avian-origin PB1. 

These results suggested a stronger trans-activating effect from incoming vRNP-associated 

polymerase with avian-origin PB1. We also analysed the replication performed by the same cRNP-

associated polymerases when different incoming vRNP-associated polymerases were provided 

(Figure. 3.6B). Coherently, the pH1N1-PB1Avi virus seemed to provide a stronger trans-activating 

polymerase, and thereby increasing the vRNA synthesis performed by the same cRNP-associated 

polymerase. Conversely, when the incoming vRNPs were the same (either pH1N1 virus or pH1N1-

PB1Avi virus), the different cRNP-associated polymerases displayed the comparable replication 

capacity (Figure. 3.6C and D). These results implied that the incoming vRNP-associated 

polymerase could serve as the trans-activating polymerase, which would exert stronger trans-

activating effect on the cRNP-associated polymerase to promoted vRNA synthesis once it acquired 

the avian-origin PB1. Intriguingly, a similar trend was observed in a study on PB2 E627K mutation 

[132]. Thus, it is plausible that the proposed model in here for avian-origin PB1 could also be 

applied to PB2 E627K or other mutations. 

Our proposed model involved the interaction between different polymerase complexes. 

Indeed, structural studies showed that oligomerization of polymerase complexes is critical to the 

viral replication and transcription [173, 174].  As all the polymerase subunits are involved in this 

oligomerization process, it is tempting to speculate that PB2 E627K or certain amino acids on 

avian-origin PB1 might facilitate the oligomerization process and thus enhance the trans-activating 

effect. If this is the case, the role of ANP32A protein in host restrictions on polymerase could be 

hypothetically linked to this polymerase-polymerase interaction. However, further studies are 

required to verify these speculations. 

In summary, we demonstrate the acquisition of avian-origin PB1 segment in reassortment 

event between avian and human influenza viruses could be a powerful adaptive strategy to 

overcome host restrictions on viral polymerase in human cells. We proposed that the polymerase 
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activity enhancing effect of avian-origin PB1 is because of the stronger trans-activating effect in 

vRNA synthesis as well as the enhanced transcription ability. 
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 TRANSITION BETWEEN CHAPTER 3 AND CHAPTER 4 

 

In above chapter, we substantiate that acquisition of avian-origin PB1 segment can lead to 

further mammalian adaptation of 2009 pH1N1 polymerase, even without the canonical PB2-

associated adaptive mutations (SR polymorphism and 627K). Mechanistically, we substantiate that 

acquisition of avian-origin PB1 enhances both viral replication and transcription. In the replication 

step, acquisition of avian-origin PB1 specially enhances the vRNA synthesis in a trans-activating 

manner. These results imply the potential reason that avian-derived PB1 segments are recurrently 

selected by past pandemic viruses. 

A recent study reported that the species difference in ANP32A (Acidic nuclear 

phosphoprotein 32 family member A) underlies the host restriction on influenza A virus 

polymerase complex [130]. Particularly, ANP32A has been demonstrated as an essential host 

factor specifically to the vRNA synthesis of influenza A virus [129].  Chicken ANP32A can boost 

the avian-like polymerase lacking the critical PB2-associated adaptive mutations, which is similar 

to the polymerase activity enhancing effect of avian-origin PB1 that we observed in pH1N1 

background. Therefore, we are interested in interrogating whether the mechanistic model we 

proposed in chapter 3 could also be applied to explain the function of ANP32A in polymerase 

adaptation. 
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CHAPTER 4. CHICKEN ANP32A SPECIFICALLY ENHANCES VRNA SYNTHESIS IN 

A TRANS-ACTIVATING MANNER 

 

ABSTRACT 

The incompatibility between influenza viral polymerase complex and host factors within 

mammalian cells defines one of the major species barriers that restrict the viral replication in 

human. Diverse adaptive strategies have been deployed by the virus to overcome the restriction on 

its polymerase complex. The preferential selection of the canonical adaptive mutation PB2 E627K 

has recently been correlated to ANP32A, the major host factor underlying host restrictions on viral 

polymerase complex. Here, we report that the SR polymorphism in PB2 segment is deployed by 

virus to accommodate the species difference in ANP32A. Our results indicate that chANP32A can 

specifically enhance vRNA synthesis of avian-like (PB2 627E) polymerase by promoting the 

trans-activating effect in replication without altering the genuine vRNA assembly capacity. 
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4.1 Introduction 

The host restriction on heterotrimeric polymerase complex of influenza A virus is one of 

the species barriers that block the virus from establishing itself among human population [156, 

175]. It has long been observed that the avian influenza polymerase displays heavily restricted 

functions in human cells prior to the acquisition of adaptive mutations in its polymerase genes. 

Among the three viral polymerase subunits, PB2 is the major determinant of virus host range [9]. 

Multiple canonical adaptive mutations in PB2 segment have been identified and characterized [110, 

120]. The PB2 E627K is recurrently selected by human-adapted strains and it is linked with 

increased viral replication, transmissibility, and pathogenicity [112, 176]. Alternatively, certain 

human isolates use SR polymorphism (serine at 590 residue, arginine at position 591 residue) in 

PB2 segment as an alternative adaptive strategy to compensate the naturally missed PB2 E627K 

mutation [120]. Although different theories have been proposed to explain the function of these 

canonical adaptive mutations [115, 130, 177], the exact molecular mechanism is not clear. 

Acidic nuclear phosphoprotein 32 family member A (ANP32A) has recently been 

identified as one of primary host factors underlying host restrictions on viral polymerase complex 

[130, 131, 178]. ANP32A from avian species partially restores the impaired function of avian-like 

polymerase (PB2 627E) in human cells, where human ANP32A does not have this enhancing 

effect due to the lack of 33 amino acids avian-insertion compared to its avian counterparts [130]. 

Intriguingly, a SUMO-interaction motif (SIM)-like sequence found within this avian-insertion 

contributes to the enhancing effect mediated by chicken ANP32A [131]. But, a more recent study 

reported that the avian splicing isoforms naturally lacking this SIM-like sequence can still enhance 

viral polymerase activity, suggesting the SIM-like sequence is entirely dispensable [178]. 

Functionally, the polymerase activity enhancing effect mediated by chANP32A has been 

implicated in the enhanced vRNP assembly, recapitulating a previous finding that the defect of 

avian-like polymerase containing PB2 627E might be the impaired vRNP assembly [115]. 

However, both of these studies did not obviate interferes from the replicating RNA which was 

involved in the vRNP assembly [116]. Therefore, the exact molecular mechanism by which 

ANP32A defines the restriction on viral polymerase complex remains unknown. 

Here, we dissect the effect of chANP32A on different steps of viral replication process as 

well as its implication in the selection of adaptive mutations at different residues. Our results 
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demonstrate that the selection of SR polymorphism in PB2 segment by the virus is also to 

accommodate the species difference in ANP32A protein. We also report that chANP32A 

specifically enhances vRNA synthesis, but not cRNA synthesis, without altering the genuine 

vRNA assembly capacity. Mechanistically, our data suggests that chANP32A can promote vRNA 

synthesis by strengthening the trans-activating effect. 

 

4.2 MATERIALS AND METHODS 

4.2.1 Cells 

  Madin-Darby canine kidney (MDCK) cells were cultured in minimal essential medium 

(MEM, Sigma) supplemented with 10% fetal bovine serum (FBS, Gibco).  Human embryonic 

kidney 293T (293T) cells and chicken embryonic fibroblast (DF-1) cells were cultured in 

Dulbecco’s modified Eagle’s medium (DMEM, Sigma) supplemented with 10% FBS. MDCK 

cells and 293T cells were maintained at 37 °C; DF-1 cells were grown at 39 °C. 

 

4.2.2 Plasmids 

Polymerase proteins and NP protein expressing plasmids were constructed by cloning 

coding sequences of PB2, PB1, PA, and NP segments from pH1N1, A/Turkey/Ontario/6213/1966 

(H5N1) (ON H5N1) (37), A/chicken/British Columbia/CN-6/2004 (H7N3) (BC H7N3) into 

pcDNA vector, generating plasmids (pcDNA-pH1N1-PB2, pcDNA-pH1N1-PB1, pcDNA-

pH1N1-PA, pcDNA-pH1N1-NP), (pcDNA-BC H7N3-PB2, pcDNA-BC H7N3-PB1, pcDNA-BC 

H7N3-PA, pcDNA-BC H7N3-NP), pcDNA-ON H5N1-PB1. For the mutant pH1N1-PB2 

constructs, 627K, 627S, 627L, 627I, 590G and 591Q were respectively introduced into pcDNA-

pH1N1-PB2 to create the pcDNA-pH1N1-PB2 (627K/S/L/I), pcDNA-pH1N1-PB2 (590G/591Q), 

pcDNA-pH1N1-PB2 (590G/591Q, 627K/S/L/I). For the construction of catalytically inactive 

PB1a of pH1N1 virus, the double mutations (D445A and D446A) were introduced into the WT 

pcDNA-pH1N1-PB1. For vRNA expressing plasmids, pHH21-pH1N1-vNP and pHH21-pH1N1-

vNA, the full-length vRNA of segment 6 of pH1N1 virus were respectively introduced into the 

pHH21 vector. The pPOLI-NP-Luc constructs with species-specific polymerase I promoter and 

pTK-RLuc used in minireplicon luciferase report assay were described elsewhere (10, 30). 
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Chicken ANP32A gene (Gallus gallus, XP_413932.3) was synthesized and constructed into 

pcDNA vector by Genscript. 

 

4.2.3 Viruses 

2009 pandemic H1N1 virus, the mutant pH1N1-PB2 (GQ) virus without SR polymorphism 

in PB2 segment, and the recombinant pH1N1-PB2 (GQ)-PB1 (Avi) virus with PB1 segment 

derived from an avian ON H5N1 virus were respectively generated by using eight-plasmid reverse 

genetic system (39). Viruses were propagated in MDCK cells. Virus titer was titrated by plaque 

assay. The origin of PB1 segment and the GQ mutations in PB2 590/591 residues were verified by 

sequencing.  

 

4.2.4 Viral growth kinetics 

For the single-cycle growth curve, confluent monolayers of MDCK cells were infected by 

respective viruses at an MOI of 0.001. After 1h of adsorption at 37 °C, cells were washed with 

MEM and cultured in viral growth medium (MEM containing 0.2% Bovine serum albumin and 1 

µg/ml of TPCK-Trypsin). Supernatants were collected at 12, 24, 36, 48, 60, and 72 hours post 

infection and were stored at -80 °C. Viral titer of each time point was titrated in MDCK cells by 

plaque assay. 

 

4.2.5 Split luciferase complementation assay (SLCA). 

N-terminus (1-229) and C-terminus (230-311) of Renilla luciferase gene were respectively 

fused to different termini of full-length PB1 or PA segment of pH1N1 virus via protein linker 

(GGGSGGGS) as described elsewhere [165], generating plasmids LN-PB1 (pH1N1) and PA (pH1N1)-

LC. For selection of functional SLCA constructs, 293T cells were co-transfected with 50 ng of 

different PB1 SLCA constructs and PA SLCA constructs. In conformations of heterotrimeric 

polymerase complex or vRNP, 50 ng of pcDNA-pH1N1-PB2or with the additional 50 ng of 

pHH21-pH1N1-vNA and pcDNA-NP were co-transfected with SLCA constructs. The relative 

Renilla luciferase activity were measured at 24 h.p.t. by luciferase assay (Promega).  
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4.2.6 vRNP reconstitution assay and primer extension analysis. 

293T cells in 6-well plates were transiently transfected with expression plasmids for three 

polymerase subunits (500 ng each), NP protein (500 ng), and vRNA-expressing plasmid (500ng) 

pHH21-vNA expressing the full-length NA segment vRNA template. Forty-eight hours post-

transfection (h.p.t), cells were harvested for extraction of total RNA by Trizol. The levels of 

vRNA, cRNA, mRNA, and 5S rRNA were analyzed by primer extension as previously described 

[104, 166]. Products of primer extension were analysed by 15% PAGE containing 7M urea in 

TBE buffer and were detected by infrared imaging system (Odyssey, LI-COR). 

 

4.2.7 Strand-specific real-time RT-PCR.  

The relative quantification of vRNA and cRNA accumulated in cRNA stabilization assay 

were measured by strand-specific real-time RT-PCR as previously described [167]. Briefly, 350 

ng of total RNA was reverse transcribed using hot-start reverse transcription at 60 °C for 1 hour. 

The 20 μl reaction system containing 4.5 μl RNA (350 ng),  6.5 μl  saturated trehalose, 1 μl tagged 

RT primers (10 pmol), 4 μl First-strand buffer (5 ×, Invitrogen), 1 μl DTT (0.1M), 1 μl dNTP 

(10mM), 1 μl  RNaseOUT (Invitrogen), and 1 μl SuperScript III reverse transcriptase 

(200U/μl ,Invitrogen). Real-time PCR was performed in 20 μl reaction system with 2 μl of cDNA, 

1 × Power SYBR Green PCR master mix (Applied Biosystems), and 500 nM primers by 

StepOnePlus real-time PCR system (Applied Biosystems). 

 

4.2.8 cRNA stabilization assay. 

As described elsewhere [104], 293T cells in 6-well plate were transiently transfected with 

plasmid expressing three polymerase subunits (250 ng) and NP protein (1000 ng) using TransIT-

LT1. 24 h.p.t, cells were infected by indicated viruses at an MOI of 10 in presence of 

cycloheximide (100 µg/ml). 1 or 6 hours post-infection, cells were collected for total RNA 

extraction by Trizol. vRNA or cRNA were quantified by strand-specific real-time RT-PCR. 

 

4.2.9 Statistical analysis 



63 

 

The statistical analyses were performed in GraphPad Prism 7(GraphPad Software, Inc., 

USA) using Student’s t test, one-way ANOVA, or two-way ANOVA. Significant differences are 

denoted by the asterisks as follow: *, P < 0.05; **, P < 0.01; and ***, P < 0.001; P< 0.0001. 

 

4.3 RESULTS 

4.3.1 The SR polymorphism in PB2 segment is to accommodate the species difference in   

ANP32A. 

To substantiate the reported enhancing effect of chANP32A on avian-like polymerase (PB2 

627E) in human cells, we respectively measured the activity of either an H7N3 avian polymerase 

(A/chicken/British Columbia/CN-6/2004) or its cognate PB2 E627K mutant in presence of 

chANP32A. As previously reported, overexpression of chANP32A in 293T cells significantly 

increased the activity of PB2 627E polymerase (>200 folds) but not PB2 627K polymerase, and a 

single PB2 E627K mutation fully restored the impaired functions of avian polymerase in human 

cells (Figure. 4.1A). The most recent 2009 pandemic virus naturally lacks PB2 E627K mutation 

[118]. Alternatively, pH1N1 virus uses SR polymorphism (PB2 590S/591R) as the compensating 

adaptive strategy to maintain its active polymerase activity within human cells, as evidenced by 

removal of SR polymorphism severely impaired the activity of pH1N1 (WT) polymerase (Figure. 

4.1B). Therefore, we thought to evaluate the effect of chANP32A on a series of mutant pH1N1 

polymerases carrying different adaptive mutations at PB2 590, 591, and 627 residues. In a similar 

fashion, chANP32A elevated polymerase activities of all mutants lacking PB2 E627K, regardless 

the presence of SR polymorphism. Once the polymerase acquired the PB2 E627K mutation, its 

functions reached the optimal level which cannot be further enhanced by chANP32A. Intriguingly, 

chANP32A increased the activity of pH1N1 (WT) polymerase and avianized pH1N1 (GQ) 

polymerase to a similar level, implying that the mutations at PB2 590/591 residues might also to 

accommodate the species difference in ANP32A (Figure. 4.1B). In order to corroborate this 

finding, we differentiated the effect of chANP32A on PB2 590/591 and 627 residues by 

substituting the original glutamic acid (E) at 627 residue into serine, leucine, or isoleucine. Unlike 

PB2 E627K, the moderate enhancing effect mediated by these uncharged amino acids substitutions 

did not mask the adaptive effect of SR polymorphism. In these scenarios, removal of SR 

polymorphism can still decrease polymerase activities (Figure. 4.1C; bar 9, 13, 17 vs 11, 15, 19), 
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meanwhile, chANP32A cannot further enhance their polymerase activity (9, 13, 17 vs 10, 14, 18). 

Thus, we have the window to test the effect of chANP32A on PB2 590/591 residues alone without 

interfere from PB2 627 residue. As expected, chANP32A fully restored the impaired activities 

caused by lack of SR polymorphism (Figure. 4.1C), indicating that SR polymorphism could assist 

the viral polymerase to accommodate the species differences in ANP32A. 
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Figure 4.1 Adaptation of SR polymorphism is to accommodate to the species differences in 

ANP32A 

(A) The effect of chANP32A on activities of avian polymerase or human-adapted polymerase in 

293T cells. Polymerase activities of BC H7N3 (PB2 627E) polymerase or BC H7N3 (PB2 627K) 

polymerase were measured after co-expression of chANP32A (50 ng) or equal amount of pcDNA-

GFP (negative control) in 293T cells. (B) The effect of chANP32A on activities of WT or mutant 

pH1N1 polymerases in 293T cells. Polymerase activities of pH1N1 (WT) polymerase or its PB2 

mutants with indicated PB2 mutations were measured in presence of chANP32A or GFP in 293T 

cells by minireplicon assay  (C) The function of SR polymorphism is to accommodate the species 

difference in ANP32A protein. E627S, E627L, and E627I were respectively introduced into 627 

residue of pH1N1-PB2 segment with or without SR polymorphism. Plasmids expressing 

chANP32A or GFP were co-expressed with the reconstituted variant pH1N1 polymerases 

possessing indicated mutations in PB2 segment. Polymerase activities were measured by 

minireplicon assay. In above experiments, firefly luciferase activities were normalized to the 

Renilla luciferase activities. The polymerase activity of 2009 pH1N1 (WT) with GFP was set as 

100%. Error bars represent the standard error of the mean of three biological replicates (±SD); the 

pattern of results are consistent in at least three independent experiments. 
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4.3.2 chANP32A does not alter the genuine assembly capacity of avian-style vRNP 

The restricted function of avian-like polymerase was once attributed to the defective vRNP 

assembly [115]. Coherently, a recent study reported that chANP32A could partially restore this 

defect and thus elevate the activity of avian influenza polymerase [178]. However, the interfere 

from the replicating viral RNA participating in the vRNP assembly, which can be easily influenced 

by chANP32A or adaptive mutations in PB2 segment, was not obviated in these studies. Therefore, 

we designed the split luciferase complementation assay to measure the effect of chANP32A on the 

genuine assembly capacity of different vRNPs. As previously reported [115, 165], the Renilla 

luciferase activity generated by the association of N-terminally tagged Renilla luciferase PB1 and 

C-terminally tagged Renilla luciferase PA can be used as proxy to monitor the vRNP assembly 

capacity (Figure. 4.2B). The PB1-PA constructs with a tag on their interacting domains 

incapacitated the RNA replication, as evidenced by the background reading observed in the 

minireplicon assay (Figure. 4.2A). Co-expressing of chANP32A with PB2 (WT, GQ, or 627K), 

NP, viral RNA, and SLCA constructs (PB1-PA) did not increase Renilla luciferase readings 

(Figure. 4.2 C-E), suggesting that the authentic vRNA assembly capacity is not altered by 

chANP32A. Therefore, the polymerase activity enhancing effect of chANP32A is not due to the 

enhanced vRNP assembly capacity. 
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Figure 4.2 chANP32A does not enhance the genuine vRNP assembly capacity 

(A) The tagged SLCA constructs (PB1-PA) disrupt the replication by viral polymerase. 

Polymerase activities of reconstituted pH1N1 (WT) vRNP with either pcDNA-PB1 and pcDNA-

PA, or tagged SLCA (PB1-PA) constructs were measured by minireplicon assay. The activity of 

pH1N1 (WT) reconstituted by normal PB1-PA without any tag on their interacting domains was 

set as 100%. (B) The schematic diagram of SLCA in vRNP conformations. 293T cells were co-

transfected each of the indicated vRNP component (50ng). The relative Renilla luciferase activity 

was measured at 24 h.p.t by luciferase assay. (C-E) chANP32A did not alter the genuine vRNP 

assembly capacity. Relative Renilla luciferase activities in 293T cells were measured at 24 hours 

after co-transfection of indicated pcDNA-pH1N1-PB2, pcDNA-pH1N1-NP, SLCA constructs 

(PB1-PA), pHH21-pH1N1-vNA expressing full-length vRNA of NA segment along with 

chANP32A or GFP. The Renilla luciferase produced by SLCA constructs with GFP was set as 

100%. Error bars represent the standard error of the mean of three biological replicates (±SD); the 

pattern of results are consistent in at least three independent experiments.  

 

4.3.3 chANP32A specifically enhances vRNA synthesis of avian-like polymerase  

Functionally, the defect of avian-like polymerase has been implicated in replication instead 

of transcription [132], which suggests that chANP32A could restored impaired viral replication of  
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avian-like polymerase. To investigate the effect of chANP32A on viral replication, the avianized 

pH1N1 (GQ) polymerase lacking SR polymorphism was reconstituted with chANP32A or GFP in  

293T cells. As shown in Figure. 4.3A, chANP32A significantly increased the accumulation levels 

of vRNA and cRNA, demonstrating that chANP32A indeed facilitates replication of avian-like 

polymerase in human. To dissect which step of viral replication was promoted by chANP32A, we 

respectively analysed the effect of chANP32A on cRNA synthesis and vRNA synthesis using 

cRNA stabilization assay as previously described [104]. The pH1N1 PB2 (GQ), PB1a 

(catalytically inactive) [140], PA, NP together with either GFP or chANP32A were pre-expressed 

prior to the infection of avianized pH1N1 (GQ) virus in presence of cycloheximide. The 

catalytically inactive polymerase disrupts the interdependency of vRNA and cRNA synthesis, 

which allows us to measure cRNA synthesis alone without interfere from newly synthesized vRNA. 

Overexpression of chANP32A did not significantly change the cRNA/vRNA ratio, demonstrating 

that the cRNA synthesis, the first step of viral replication, is not promoted by chANP32A (Figure. 

4.3B). Next, we exchanged the pre-expressed inactive polymerase into an active polymerase in the 

same experiment setting to restore the ongoing viral replication. chANP32A significantly 

increased the vRNA level and cRNA level, indicating that chANP32A can specifically enhance 

synthesis of nascent vRNA (Figure. 4.3C). 
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Figure 4.3 chANP32A specifically enhances the vRNA synthesis of avianized pH1N1 

polymerase in humans.  

(A) chANP32A enhanced viral replication of avian-like polymerase in human cells. The avianized 

pH1N1 (GQ) polymerase was reconstituted in 293T cells with either GFP or chANP32A. At 48 

h.p.t, the relative levels of vRNA and cRNA accumulations were measured by strand-specific real 

time PCR. The vRNA and cRNA levels produced by pH1N1 (GQ) polymerase with GFP was set 

as 100%. (B) chANP32A did not promote cRNA synthesis. 293T cells were co-transfected with 

plasmids expressing pH1N1-PB2, PB1a (mutant PB1 with D445A/D446A in catalytic domain 

[140]), PA, NP, along with chANP32A or GFP followed by infection of avianized pH1N1-PB2 

(GQ) virus at an MOI of 10 in presences of cycloheximide. vRNA and cRNA levels at 6 h.p.i. 

were respectively measured by strand-specific real-time PCR. The ratio of cRNA and vRNA in 

cells pre-expressed with GFP was set as 100%. (C) chANP32A specifically facilitated the 

synthesis of nascent vRNA. 293T cells were pre-expressed with active pH1N1 polymerase, NP 

protein, together with chANP32A or GFP followed by infection of avianized pH1N1-PB2 (GQ) 

virus at an MOI of 10 in presences of cycloheximide. vRNA and cRNA levels at 6 h.p.i. were 

measured by strand-specific real-time PCR. Error bars represent the standard error of the mean of 

three biological replicates (±SD); the pattern of results are consistent in at least two independent 

experiments.  

 

4.3.4. chANP32A enhances the activating effect of trans-polymerase 

The synthesis of nascent vRNA is carried out by the cRNP-associated polymerase with the 

indispensable activation from the trans-polymerase (trans-activating effect) [66]. Since 

chANP32A could facilitate the vRNA synthesis, this enhancing effect could either be exerted on 

the cRNP-associated polymerase or the trans-activating effect. As shown in Figure. 4.4A (Bar 1 

and 2), when the incoming vRNP carried the avian-like pH1N1 (GQ) polymerase, the amount of 

vRNA or cRNA produced by fully adapted cRNP-associated polymerases (627K) was at a 

comparable level as the avian-like cRNP-associated polymerase (GQ) did. Notably, by addition of 

chANP32A, the avian-like pH1N1 (GQ) polymerase even produced significantly higher level of 

vRNA and cRNA than the adapted pH1N1 (627K) polymerase did without chANP32A (Figure. 

4.4A), implying that the enhancing effect of chANP32A is not on cRNA-associated polymerase 
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but on the trans-activating effect carried out by incoming vRNP-associated polymerase. To further 

corroborate this finding, we explored the effect of chANP32A on viral replication when a fully-

adapted trans-activating polymerase carried by incoming vRNP is provided. To this end, we 

generated the reassortant pH1N1 virus, pH1N1-PB2 (GQ)-PB1 (Avi) Virus, the PB1 segment of 

which is from avian A/Turkey/Ontario/6213/1966 (H5N1) virus. As shown in Figure. 4.4B, the 

reassortant pH1N1 vRNP with avian-origin PB1 displayed significantly higher polymerase activity 

compared to pH1N1 (WT) polymerase. Addition of chANP32A cannot further enhance 

polymerase activities of these reassortant vRNPs (Figure. 4.4B), recapitulating the fully-adapted 

status mediated by avian-origin PB1. In MDCK cells, although acquisition of avian-origin PB1 

did not markedly promote the viral growth kinetics (Figure. 4.4C), it apparently changed the plaque 

phenotype as observed by the increased radium of plaque size (Figure. 4.4D). To verify whether 

the enhancing effect of chANP32A on viral replication would be diminished when the defect in 

polymerase carried by incoming vRNP is restored, we set up the similar setting as mentioned above 

but with an adapted trans-activating polymerase containing avian-origin PB1. In this scenario, all 

these cRNP-associated polymerases with different signatures produced similar levels of vRNA 

and cRNA, despite the presence of chANP32A (Figure. 4.4E). Taken together, these results 

indicate that chANP32A can promote vRNA synthesis by facilitating the trans-activating effect 

exerted on cRNP-associated polymerase. 
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Figure 4.4 chANP32A enhances the activating effect of trans-polymerase 

(A) The adaptation of cRNP-associated polymerase is not responsible for the enhanced vRNA 

synthesis by overexpression of chANP32A. 293T cells were pre-expressed with either pH1N1-

PB2 (GQ) or pH1N1-PB2 627K along with pH1N1-PB2, PA, NP, chANP32A (GFP control) 

followed by infection of avianized pH1N1-PB2 (GQ) virus at an MOI of 10 in presences of 

cycloheximide. (B) Avian-origin PB1 renders fully adapted status to pH1N1 virus. Polymerase 

activities of reassortant pH1N1 vRNP with an avian-derived PB1 and different signatures in PB2 

segment were respectively measured by luciferase assay. The activity of pH1N1 (WT) vRNP with 

GFP was set as 100%. (C) Plaque phenotypes of pH1N1 (WT) virus, pH1N1-PB2 (GQ) virus, and 

reassortant pH1N1-PB2 (GQ)-PB1 (Avi) Virus in MDCK cells. (D) Multicycle growth curve of 

pH1N1 (WT) virus, pH1N1-PB2 (GQ) virus, and reassortant pH1N1-PB2 (GQ)-PB1 (Avi) Virus in 

MDCK cells. (E) chANP32A promotes the trans-activating effect in vRNA synthesis. 293T cells 

were pre-expressed with same combination of viral polymerase and NP proteins with chANP32A 

or GFP as (A), while the subsequent infection was conducted using the reassortant pH1N1-PB2 

(GQ)-PB1 (Avi) Virus carrying the fully-adapted polymerase. In above cRNA stabilization assays, 

vRNA and cRNA levels at 6 h.p.i. were respectively measured by strand-specific real-time PCR. 

In each setting, the vRNA and cRNA levels in cells pre-expressed with pH1N1 (GQ) polymerase 

and GFP were set as 100%. Error bars represent the standard error of the mean of three biological 

replicates (±SD); the pattern of results are consistent in at least two independent experiments.  
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4.4 DISCUSSION 

The defect of avian-like polymerase is speculated in its incompatibility with mammalian 

host factors in cellular milieu [115, 122]. The species differences in ANP32A have been confirmed 

as one of the major components of host restrictions on viral polymerase complex. By 

differentiating the effect of chANP32A on PB2 627 residue, and 590, 591residues, we show that 

SR polymorphism, like PB2 E627K, is also to accommodate the species differences in ANP32A. 

Unlike previous study, we demonstrate that chANP32A can specifically enhance vRNA without 

altering the genuine vRNA assembly capacity. Instead, it is the stronger trans-activating effect 

mediated by chANP32A leads to the enhanced vRNA synthesis. 

Using different combinations of adaptive mutations at PB2 590, 591, and 627 residues, we 

showed that ANP32A also underlies the selection of SR polymorphism in PB2 segment. In fact, it 

is reasonable to substantiate that SR polymorphism and E627K in PB2 segment share the same 

adaptive pathway as both of them have been demonstrated to restore the positively charged surface 

of PB2 627-domain [120]. Thus, it is attempting to investigate whether the polymerase supporting  

effect of chANP32A represents a global effect which could be applied to explain the recurrent 

selection of other adaptive mutations in viral polymerase genes. 

Contrary to a recent finding that chANP32A could promote vRNP assembly, our results 

indicate that chANP32A actually cannot alter the genuine vRNP assembly capacity when the 

amount of vRNA template involved in vRNP assembly is constant. The application of split 

luciferase complementation assay allows us to dynamically evaluate the vRNP assembly capacity 

in different settings. Particularly, the tagged luciferase gene on PB1 and PA simultaneously 

disrupts the normal viral replication, which makes it possible to measure the authentic vRNP 

assembly capacity without interferes from replicating vRNA, a variable that could be easily 

changed by adaptive mutations or chANP32A. Therefore, our data together with a previous study 

suggests that the defective vRNP assembly actually is not responsible for the defects of avian 

influenza polymerase in human cells [116].  

ANP32A is proved as an essential factor to the vRNA synthesis of influenza A virus even 

before its role in host restriction on viral polymerase complex has been recognized. Analogously, 

our results show that chANP32A can specifically enhance vRNA synthesis of avianized pH1N1 
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(GQ) polymerase, which agrees with the previous finding that the major defect of avian-like 

polymerase in human cells is vRNA synthesis [132]. The mechanism of vRNA synthesis is not 

fully clear yet, different models (trans-acting or trans-activating) have been proposed to explain 

the molecular details in this step [66, 91]. Based on other reports [66], the trans-activating model 

in which the vRNA synthesis is actually performed by cRNP-associated polymerase is more 

closely matched with the experimental data. Based on trans-activating model, we further pinpoint 

the advantage provided by chANP32A to the trans-activating process. It has been reported that 

ANP32A can only interact with the heterotrimeric polymerase complex instead of single 

polymerase subunit or and the binary sub-complex [129]. More importantly, the species specific 

interaction of ANP32A is independent of identifies of PB2 627 residue [131]. Possibly, ANP32A 

is involved in polymerase-polymerase interaction (such as recruitment of the trans-polymerase) 

which is critical to viral replication and transcription [173, 174]. If this is the case, the function of 

PB2 E627K is purely to compensate the impaired polymerase-polymerase interaction of avian 

influenza polymerase complex in human cells. In summary, we proposed a possible mechanism 

by which chANP32A to promote viral replication of avian-like polymerase by stimulating the 

trans-activating effect in the synthesis of nascent vRNA, which sheds light on the mechanism of 

influenza polymerase mammalian adaptation. 

 

CHAPTER 5. GENERAL DISCUSSION 

5.1 SUMMARY OF THE PROJECT 

 It has long been observed that avian-origin PB1 segments are recurrently selected in 

reassortment events of previous pandemic viruses [137]. However, the underlying mechanism 

behind this phenomenon is enigmatic. In this project, by using the most recent pH1N1 virus 

naturally lacking avian-origin PB1 segment, we demonstrate that acquiring an avian-origin PB1 

indeed can promote transcription as well as replication of pH1N1 polymerase within mammalian 

cells. In the replication process, our results indicate that avian-origin PB1 can specifically enhance 

the synthesis of nascent vRNA in a trans-activating manner. The adaptive strategies deployed by 

the virus are thought to accommodate incompatibilities between avian-like polymerase and host 

factors within mammalian hosts. ANP32A has recently been identified as one of the major host 

factors underlying host restriction of the viral polymerase complex [130]. Our finding that 
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ANP32A from avian species can specifically facilitate the vRNA synthesis by promoting the trans-

activation effect recapitulates that adaptation mediated by avian-origin PB1 in reassortment.  

The replication mechanism (especially vRNA synthesis) of influenza A virus is not fully 

elucidated yet. Using polymerases bearing different adaptive signatures in cRNA stabilization 

assays, our data implies that the incoming vRNP-associated polymerase might serve as the trans-

activating polymerase to cooperatively perform the vRNA synthesis with cRNP-associated 

polymerase. More importantly, the adaptive signatures carried by the incoming vRNP-associated 

polymerase, instead of cRNP-associated polymerase, play the dominant role in determining the 

consequences of vRNA synthesis. Although there is no direct in vitro biochemical studies in this 

project to further verify our proposed RNP-RNP interaction, it is still reasonable to argue that that 

the incoming vRNP-associated polymerases with different adaptive mutations determine the first 

round of replication, which in turn would be crucial to the subsequent ongoing replication. 

 Coherently, our results pertaining to ANP32A lead us to the same conclusion that the defect 

of avian-like polymerase is in vRNA synthesis, probably due to the weak trans-activating effect 

of the trans-polymerase. Up to date, the molecular mechanism of how ANP32A regulates the viral 

polymerase activities is unknown. Our study shed light on a possible direction which is that 

ANP32A mediated the interaction between the trans-activating polymerase and cRNP-associated 

polymerase, thereby enhancing the trans-activating effect and promoting the vRNA synthesis. 

Indeed, there is emerging data showing that the polymerase-polymerase interaction might be 

critical to the RNA synthesis of influenza A virus [173, 174]. If this is the case, it is tempting to 

speculate that the general function of canonical adaptive mutation in polymerase genes is to 

maintain the efficient interaction between polymerase complexes.  

 In summary, we demonstrate the adaptive role of avian-origin PB1 in pandemic formation, 

and reveal the molecular mechanism by which avian-origin PB1 enhances viral polymerase 

activity in reassortment with human strain. Moreover, our data also incorporates the function of 

ANP32A, the recent identified polymerase supporting host factor, into the adaptation model we 

proposed for avian-origin PB1. These knowledge would promote our understanding of basic 

influenza replication mechanism as well as its polymerase adaptation mechanism.  
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5.2 FUTURE DIRECTIONS 

First, it is worthwhile to pinpoint the exact avian-signatures in PB1 segment. Sequence 

alignment results indicate that there are twenty conserved amino acid substitutions between avian-

origin PB1 segments and the 2009 pH1N1 PB1 segment (human-derived). These mutations are 

scattered among different functional domains of the entire PB1 segments. We indeed constructed 

a serial of chimeric PB1 segment to screen the critical avian-signatures. The mutations in N-

terminal domain (1-240) of avian-origin PB1 segment play the major role in the enhanced 

polymerase activity. However, due to the compounding effect of multiple different mutations, we 

did not pinpoint the avian-signatures to specific mutations. 

Second, it would be interesting to test the actual effect of avian-origin PB1 on the virulence 

or transmissibility of 2009 pH1N1 virus. Although we did not observe the stark increase in viral 

replication in cell cultures, the actual infection in animal model could be distinct from what we 

observed in cell culture. Additionally, the growth kinetics in cell culture cannot reflect the changes 

in viral transmissibility which is a critical factor in pandemic formation. 

Third, further studies on the polymerase-polymerase interaction could provide more 

insights into the fundamental mechanism of viral replication and mammalian adaptation of viral 

polymerase complex. In this project, our results suggest that acquisition of avian-origin PB1 or 

overexpression can both facilitate the trans-activating effect in vRNA synthesis, which might 

involve the interaction between two different polymerase complexes. Therefore, establishing a 

system to observe the interaction between two different trimeric polymerase complexes could 

provide more direct evidences about the role of adaptive mutations or host factors in mammalian 

adaptation of viral polymerase complex. Such a method could also be used to further corroborate 

our findings. 
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APPENDIX A SUPPLEMENTARY INFORMATION 

Table A1 List of primers for constructing plasmids pertaining to ON H5N1 virus. 

Plasmids Primer name Sequences (5’-3’) 

 

 

pcDNA-ON H5N1-PB2 

 

XhoI-ON6213 PB2 Fw 

TAGACTCGAGACCATGGAGAGAATAAAAG

AACTAAGAGACC 

 

KpnI-ON6213-PB2 Bw 

GCTTGGTACCCTAATTGATGGCCATCCGAA

TTCTTTTG 

 

 

pcDNA-ON H5N1-PB1 

 

XhoI-ON6213 PB1 Fw 

TAGACTCGAGACCATGGATGTCAATCCGAC

TTTACTC 

 

KpnI-ON6213-PB1 Bw 

GCTTGGTACCCTATTTCTGCCGTCTGAGCTC

TTC 

 

 

pcDNA-ON H5N1-PA 

 

XhoI-ON6213 PA Fw 

TAGACTCGAGACCATGGAAGACTTTGTGCG

ACAATG 

 

EcoRI-ON6213-PA Bw 

TGGTGGAATTCCTATTTCAGTGCATGTGTAA

GGAAGG 

 

 

pcDNA-ON H5N1-NP 

 

XhoI-ON6213 NP Fw 

TAGACTCGAGACCATGGCGTCTCAAGGCAC

C 

 

KpnI-ON6213-NP Bw 

GCTTGGTACCTTAATTGTCATATTCCTCTGC

ATTGTC 

 

 

pcDNA-ON H5N1-PB1a 

(D445A, D446A) 

 

ON-PB1 D445A, D446A Fw 

GATGGCCTTCAATCCTCGGCGGCTTTTGCTC

TAATTGTGAATGCACC 

 

ON-PB1 D445A, D446A Bw 

GGTGCATTCACAATTAGAGCAAAAGCCGCC

GAGGATTGAAGGCCATC 

 

 

 

 

 

pcDNA-ON H5N1-PB1 

(PB1-F2 KO) 

 

ON H5N1 PB1-F2 S12 Stop 

codon Fw 

CAGGATACACCATGGATACAGTAAACAGGA

CACATCAATATTCAGAA 

ON H5N1 PB1-F2 S12 Stop 

codon Bw 

TTCTGAATATTGATGTGTCCTGTTTACTGTA

TCCATGGTGTATCCTG 

ON H5N1 PB1-F2 W58 Stop 

codon Fw 

GTTATGCTCAAACAGACTGTGTTCTAGAGG

CAATGGCTTTCCTTGAG 

ON H5N1 PB1-F2 W58 Stop 

codon Bw 

CTCAAGGAAAGCCATTGCCTCTAGAACACA

GTCTGTTTGAGCATAAC 

 

 



90 

 

Table A2 List of primers for constructing plasmids pertaining to pH1N1 virus.  

Plasmids Primer name Sequences (5’-3’) 

pcDNA-pH1N1-PB2 
XhoI-Halifax210-PB2 Fw TAGACTCGAGACCATGGAGAGAATAAAAGAACTG 

BamHI-Halifax210-PB2 Bw GCTCGGATCCCTAATTGATGGCCATCCGAATT 

pcDNA-pH1N1-PB1 
XhoI-Halifax210-PB1 Fw TAGACTCGAGACCATGGATGTCAATCCGACTCTAC 

KpnI-Halifax210-PB1 Bw GCTTGGTACCTTATTTTTGCCGTCTGAGTTCT 

pcDNA-pH1N1-PA 
XhoI-ON6213 PA Fw TAGACTCGAGACCATGGAAGACTTTGTGCGACAATG 

KpnI-Halifax210-PA Bw GCTTGGTACCCTACTTCAGTGCATGTGTGAGGA      

pcDNA-pH1N1-NP 
XhoI-Halifax210-NP Fw TAGACTCGAGACCATGAGTGACATCGAAGCCATGG 

KpnI-Halifax210-NP Bw GCTTGGTACCTCAACTGTCATACTCCTCTGC 

pcDNA-pH1N1-PB2 

(S590G, R591Q) 

Hfx H1N1 PB2 S590G, 

R591Q Fw 

CTTGTCCCTAAGGCAATCAGAGGCCAGTACAGTGGA

TTCGTAAGGACA 

Hfx H1N1 PB2 S590G, 

R591Q Bw 

GTCCTTACGAATCCACTGTACTGGCCTCTGATTGCCT

TAGGGACAAG 

pcDNA-pH1N1-PB2 

(E627S) 

 

Hfx H1N1 PB2 E627S Fw 
CTTCTCCCCTTTGCTGCAGCTCCACCAAGCCAGAGTA

GGATGCAATTTTCCTC 

Hfx H1N1 PB2 E627S Bw 
GAGGAAAATTGCATCCTACTCTGGCTTGGTGGAGCT

GCAGCAAAGGGGAGAAG 

pcDNA-pH1N1-PB2 

(E627L) 

 

Hfx H1N1 PB2 E627L Fw 
CTTCTCCCCTTTGCTGCAGCTCCACCACTGCAGAGTA

GGATGCAATTTTCCTC 

Hfx H1N1 PB2 E627L Bw 
GAGGAAAATTGCATCCTACTCTGCAGTGGTGGAGCT

GCAGCAAAGGGGAGAAG 

pcDNA-pH1N1-PB2 

(E627I) 

 

Hfx H1N1 PB2 E627I Fw 
CTTCTCCCCTTTGCTGCAGCTCCACCAATTCAGAGTA

GGATGCAATTTTCCTC 

Hfx H1N1 PB2 E627I Bw 
GAGGAAAATTGCATCCTACTCTGAATTGGTGGAGCT

GCAGCAAAGGGGAGAAG 

pcDNA-Hfx-PB2 

(E627K) 

Hfx H1N1 PB2 E627K Fw 

TTGCTGCTGCTCCACCAAAGCAGTCTAGAATGCAATT

TTCCTCATTGACTGTG 

Hfx H1N1 PB2 E627K Bw 

CACAGTCAATGAGGAAAATTGCATTCTAGACTGCTTT

GGTGGAGCAGCAGCAA 

pcDNA-pH1N1-PB1a 

(D445A, D446A) 

HFX-PB1 D445A, D446A Fw 
GTGGGATGGGCTCCAATCATCCGCCGCTTTTGCTCTC

ATAGTGAATGCACC 

HFX-PB1 D445A, D446A Bw 
GGTGCATTCACTATGAGAGCAAAAGCGGCGGATGAT

TGGAGCCCATCCCAC 
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Table A2 List of primers for constructing plasmids pertaining to pH1N1 virus.  

Plasmids Primer name Sequences (5’-3’) 

pcDNA-pH1N1-PA 

(E410A) 

HFX-PA E410A Fw 
CTAGCAAGCTGGGTCCAAAATGCATTCAATAAG

GCATGTGAATTGACTG 

HFX-PA E410A Bw 
CAGTCAATTCACATGCCTTATTGAATGCATTTTG

GACCCAGCTTGCTAG 

pcDNA-pH1N1-PB2 

(E627K, S590G, R591Q) 

Hfx H1N1 PB2 S590G, 

R591Q Fw 

CTTGTCCCTAAGGCAATCAGAGGCCAGTACAGT

GGATTCGTAAGGACA 

Hfx H1N1 PB2 S590G, 

R591Q Bw 

GTCCTTACGAATCCACTGTACTGGCCTCTGATTG

CCTTAGGGACAAG 

Hfx H1N1 PB2 E627K Fw 
TTGCTGCTGCTCCACCAAAGCAGTCTAGAATGC

AATTTTCCTCATTGACTGTG 

Hfx H1N1 PB2 E627K Bw 
CACAGTCAATGAGGAAAATTGCATTCTAGACTG

CTTTGGTGGAGCAGCAGCAA 

 

 

 

pcDNA-pH1N1-PB2 

(E627S, S590G, R591Q) 

Hfx H1N1 PB2 S590G, 

R591Q Fw 

CTTGTCCCTAAGGCAATCAGAGGCCAGTACAGT

GGATTCGTAAGGACA 

Hfx H1N1 PB2 S590G, 

R591Q Bw 

GTCCTTACGAATCCACTGTACTGGCCTCTGATTG

CCTTAGGGACAAG 

Hfx H1N1 PB2 E627S Fw CTTCTCCCCTTTGCTGCAGCTCCACCAAGCCAGA

GTAGGATGCAATTTTCCTC 

Hfx H1N1 PB2 E627S Bw GAGGAAAATTGCATCCTACTCTGGCTTGGTGGA

GCTGCAGCAAAGGGGAGAAG 

 

 

 

pcDNA-pH1N1-PB2 

(E627L, S590G,R591Q) 

Hfx H1N1 PB2 S590G, 

R591Q Fw 

CTTGTCCCTAAGGCAATCAGAGGCCAGTACAGT

GGATTCGTAAGGACA 

Hfx H1N1 PB2 S590G, 

R591Q Bw 

GTCCTTACGAATCCACTGTACTGGCCTCTGATTG

CCTTAGGGACAAG 

Hfx H1N1 PB2 E627L Fw CTTCTCCCCTTTGCTGCAGCTCCACCACTGCAGA

GTAGGATGCAATTTTCCTC 

Hfx H1N1 PB2 E627L Bw GAGGAAAATTGCATCCTACTCTGCAGTGGTGGA

GCTGCAGCAAAGGGGAGAAG 

 

 

 

pcDNA-pH1N1-PB2 

(E627I, S590G,R591Q) 

Hfx H1N1 PB2 S590G, 

R591Q Fw 

CTTGTCCCTAAGGCAATCAGAGGCCAGTACAGT

GGATTCGTAAGGACA 

Hfx H1N1 PB2 S590G, 

R591Q Bw 

GTCCTTACGAATCCACTGTACTGGCCTCTGATTG

CCTTAGGGACAAG 

Hfx H1N1 PB2 E627I Fw CTTCTCCCCTTTGCTGCAGCTCCACCAATTCAGA

GTAGGATGCAATTTTCCTC 

Hfx H1N1 PB2 E627I Bw GAGGAAAATTGCATCCTACTCTGAATTGGTGGA

GCTGCAGCAAAGGGGAGAAG 
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Table A2 List of primers for constructing plasmids pertaining to pH1N1 virus.  

Plasmids Primer name Sequences (5’-3’) 

 

 

 

pHW-pH1N1-PB2 

(590G/591Q) 

Hfx H1N1 PB2 S590G, 

R591Q Fw 

CTTGTCCCTAAGGCAATCAGAGGCCAGTAC

AGTGGATTCGTAAGGACA 

Hfx H1N1 PB2 S590G, 

R591Q Bw 

GTCCTTACGAATCCACTGTACTGGCCTCTGA

TTGCCTTAGGGACAAG 

Ba-PB2-2341R ATATGGTCTCGTATTAGTAGAAACAAGGTC

GTTT 

Ba-PB2-1G TATTGGTCTCAGGGAGCGAAAGCAGGTC 

 

pHH21-pH1N1-vNA Ba-NA-1413R 
ATATGGTCTCGTATTAGTAGAAACAAGGAG

TTTTTT 

BsaI-NA-4G Fw TATTGGTCTCAGGGAGCGAAAGCAGGAGT 
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Table A3 List of primers for constructing plasmids used in split luciferase 

complementation assay (SLCA). 

Plasmids Primer name Sequences (5’-3’) 

 

LN-PB1 (ON H5N1) 

XhoI-ON6213 PB1 Fw TAGACTCGAGACCATGGATGTCAATCCGACTTT

ACTC 

KpnI-ON6213-PB1 Bw GCTTGGTACCCTATTTCTGCCGTCTGAGCTCTTC 

 

PB1 (pH1N1)-LC 

XhoI-Halifax210-PB1 Fw 
TAGACTCGAGACCATGGATGTCAATCCGACTCT

AC 

NotI-HFX-PB1 Bw CGCGGCGGCCGCTTTTTGCCGTCTGAGTTCTTC 

 

PB1 (pH1N1)-LN 

XhoI-Halifax210-PB1 Fw 
TAGACTCGAGACCATGGATGTCAATCCGACTCT

AC 

NotI-HFX-PB1 Bw CGCGGCGGCCGCTTTTTGCCGTCTGAGTTCTTC 

 

LN-PB1 (pH1N1) 

XhoI-Halifax210-PB1 Fw 
TAGACTCGAGACCATGGATGTCAATCCGACTCT

AC 

KpnI-Halifax210-PB1 Bw GCTTGGTACCTTATTTTTGCCGTCTGAGTTCT 

 

PA (pH1N1)-LC 

XhoI-ON6213 PA Fw 
TAGACTCGAGACCATGGAAGACTTTGTGCGACA

ATG 

NotI-HFX-PA Bw CGCGGCGGCCGCCTTCAGTGCATGTGTGAGGAA 

 

LN-PA (pH1N1) 

XhoI-ON6213 PA Fw 
TAGACTCGAGACCATGGAAGACTTTGTGCGACA

ATG 

KpnI-Halifax210-PA Bw GCTTGGTACCCTACTTCAGTGCATGTGTGAGGA 

 

LC-PA (pH1N1) 
XhoI-ON6213 PA Fw 

TAGACTCGAGACCATGGAAGACTTTGTGCGACA

ATG 

KpnI-Halifax210-PA Bw GCTTGGTACCCTACTTCAGTGCATGTGTGAGGA 
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Table A4 List of primers used in strand-specific real-time PCR. 

Target  Primer name sequences Purpose 

 

 

vRNA 

vRNAtag-HFX-NA-Fw 

GGCCGTCATGGTGGCGAATGAACACAAGA

GTCTGAATGTGC 

Reverse transcription 

vRNAtag-Fw GGCCGTCATGGTGGCGAAT Real-time PCR 

HFX-vNA-Bw ACTAGAATCAGGATAACAGGAGC Real-time PCR 

 

 

cRNA 

cRNAtag-PR8-NA-Bw 

GCTAGCTTCAGCTAGGCATCAGTAGAAAC

AAGGAGTTTTTTGAAC 

Reverse transcription 

HFX-NA-cRNA-Fw TGTATAAGACCTTGCTTCTGGG Real-time PCR 

cRNAtag-Bw GCTAGCTTCAGCTAGGCATC Real-time PCR 
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Table A5 List of primers used in primer extension assay. 

Target Primer name sequences 

vRNA 5S rRNA Bw TCCCAGGCGGTCTCCCATCC 

c/mRNA Hf09-c/mNA Bw TTCCAATTGTCATACAGACCG 

5S rRNA Hf09-vNA Fw GGTGCTGAGTTGCCATTTAC 
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