
 

Utility of redesigned cpn60 UT primers and novel fungal 

specific cpn60 primers for microbial profiling 

 

 

 

 

A Thesis Submitted to the College of 

Graduate Studies and Research 

In Partial Fulfillment of the Requirements 

For the Degree of Master of Science 

In the Department of Microbiology and Immunology 

University of Saskatchewan 

Saskatoon 

By 

NEERZA BANSAL 

 

 

 

 

 

 

 

 © Copyright Neerza Bansal, December, 2015. All rights reserved. 

 

 

 

 



I 
 

PERMISSION TO USE 

 In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the 

University of Saskatchewan, I agree that the Libraries of this University may make it freely available for 

inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for 

scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in 

their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. 

It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall 

not be allowed without my written permission. It is also understood that due recognition shall be given to 

me and to the University of Saskatchewan in any scholarly use which may be made of any material in my 

thesis. 

 Requests for permission to copy or to make other use of material in this thesis in whole or part should be 

addressed to: 

Head of the Department of Microbiology and Immunology 

2D01, Health Sciences Building  

107 Wiggins Rd 

 University of Saskatchewan 

 Saskatoon, Saskatchewan (S7N 5E5)  

Canada. 

 

 

 

 



II 
 

Abstract 

The cpn60 gene is a DNA barcode for bacteria. Recently, the PCR primers that have been used 

extensively to amplify the cpn60 Universal Target (UT) region of bacteria were redesigned to 

improve their utility for fungal taxa. Additional novel primers were designed to amplify other 

regions of the cpn60 gene, specifically from fungal genomes. Design of the redesigned and novel 

primers was based on 61 nucleotide full-length cpn60 reference sequences available in 2012, 

including Ascomycota (51), Basidiomycota (5), Chytridiomycota (2), Glomeromycota (1), and 

Oomycota (2). The research described here investigated the utility of these primers for detecting 

and identifying fungal taxa and for profiling mixed communities of bacteria and fungi. The 

redesigned primers were used to discover cpn60 UT sequences for Ascomycota (1), 

Basidiomycota (2), and Chytridiomycota (1). The novel primers were used to discover new 

cpn60 sequence data for Ascomycota (3), Basidiomycota (1), and Zygomycota (1). To be 

adopted for use in studies of microbial communities that are predominantly bacterial, the 

redesigned cpn60 UT primers must perform at least as well as the original primers for bacterial 

profiling. Bacterial profiles, created using the original and redesigned primers and two DNA 

template samples created by pooling DNA extracts from vaginal swabs from individual women, 

were compared. These included comparisons of diversity indices, rarefaction curve analysis and 

Operational Taxonomic Unit abundances. Diversity indices and rarefaction curve analysis for 

bacterial profiles with original and redesigned primers were similar. OTU abundance estimates 

with the original and redesigned primers were compared at higher and lower taxonomic levels. 

The overall patterns produced were similar. For one template only, the phylum Bacteroidetes had 

a greater apparent abundance with the original primers than with the redesigned primers. The 

greater apparent abundance of Bacteroidetes taxa was balanced by a lesser apparent abundance 

of taxa that were not assigned to a phylum. These differences may reflect differences in the 
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performance of the two primer sets. At lower taxonomic level, most OTU were represented with 

apparently equal abundances with redesigned and original primers in same template. Very few 

OTU were represented with different proportional abundances with redesigned and original 

primers. Different OTU having same reference cpn60 UT sequence as best hit were sometimes 

represented by different proportional abundance with same primer in same template that made 

the analysis difficult. On the whole, the redesigned cpn60 UT primers behaved at least as good as 

the original cpn60 UT primers. The overall results showed that the redesigned and novel primers 

used in this study had substantial utility for the identification of fungal samples and mixed 

microbial communities.  
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1.0 Introduction and Review of Literature 

Although life first emerged on earth 3.8 billion years ago, microorganisms were recognised as 

life forms only relatively recently by Robert Hooke (in 1660) and Leeuwenhoek in about 1673, 

where they used simple microscopes that could magnify 50 to 300 times. Development of 

microscopy set out to be the key to recognition of microorganisms at that time but is non-specific 

as stained smears of microorganisms do not lead to species identification. Further progress in the 

study of microorganisms was made when among other discoveries, Louis Pasteur gave his 

"Germ theory of disease" in 1857 stating that diseases can be caused by microorganisms. His 

theory was further proved by Robert Koch in 1882. Koch provided Koch`s postulates that could 

be used to identify the causative agent of an infectious disease. A microbiologist in his 

laboratory, Julius Richard Petri, invented the indispensable petri-dish in 1887, that led to the 

rigorous isolation and identification of bacteria in Koch`s laboratory (Bulloch, 1938). This ability 

to isolate microorganisms and study them in pure cultures was key to development of methods to 

study their physiology and genetics. The ability to study microbes in pure cultures added much 

information between 1960s and 1980s to the then existing knowledge of microbiology. But the 

scientific community soon realized that pure culturing alone cannot give them the full spectra of 

microbial diversity. It was  not sufficient to reveal the unimaginable diversity of 8.7 million 

(±1.3 million SE) species existing in the microbial communities (Whitman et al., 1998) that are 

found in nature as it is not possible to culture all microbes using standard methods. Moreover, 

the actual interactions among microbes in a microbial community cannot be studied under a 

microscope or in pure cultures. Exploration of this tremendous diversity is necessary for the 

advancement of microbiology and improving of our understanding of the vast and complex 

microbial world.  
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The constraints associated with microscopy and pure cultures, methods that provided 

us information about the microbes based only on morphological and nutritional criteria, were 

alleviated, although not fully, by development of molecular tools like gene sequencing. The basic 

step to this was the discovery of DNA structure by Watson and Crick in 1953. The 

differentiation between prokaryotes and eukaryotes came later in 1962. Then in 1977, Carl 

Woese and George Fox reported three domains of life as Eukaryotes, Bacteria and Archaea. This 

was done by comparing the rRNA gene sequences of organisms and that has become the 

standard approach to classify and identify organisms. This was followed by development of  

molecular sequencing methods that are based on comparing the nucleic acid sequences of 

specific gene targets from different organisms (O'Sullivan, 2000; Hill et al., 2002). These 

methods exploit the polymerase chain reaction (PCR) for gene isolation and amplification. The 

most popular gene target for identification of bacteria using molecular methods has been 16S 

rRNA (Stahl et al., 1984; Lane et al., 1985) and for identification of fungi has been 18S rRNA 

and ITS regions (Guo et al., 2012; Schmidt et al., 2013).  There has been a large scale 

development of high throughput sequencing methods using different gene targets. The next 

generation sequencing methods like pyrosequencing can now give up to million sequencing 

reads with an average read length of ~700 bp with 99.9% accuracy (www.454.com). In spite of 

such a boom in sequencing methods, a study estimates that out of the ~8.7 million species (±1.3 

million SE) predicted to exist on earth, there may be 86% species on Earth and 91% species in 

oceans that have still not been described (Mora et al., 2011).  A combination of culture-

dependent and culture independent techniques can prove useful in describing this unrevealed 

diversity. 

 

http://www.454.com/
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1.1 Culture Dependent Techniques for Characterizing Microbial Communities 

 Standard methods of culturing used to characterize microbial communities involve isolation and 

culturing of microbes using media like Luria-Bertani medium, nutrient agar, Tryptic Soy agar 

(Kirk et al., 2004). The limitation of this method is that >99% of the viable microorganisms from 

any environment observed under microscopes fail to produce visible colonies on plates  (Staley 

and Konopka, 1985; Hugenholtz, 2002).  To improve the cultivable fraction in a given microbial 

sample, several culture media and cultivation conditions are used that imitate the natural 

conditions for that sample, like nutrient composition, oxygen concentration and availability, pH, 

temperature requirements, long incubation conditions for slow growing bacteria (da Rocha et al., 

2009; Vartoukian et al., 2010). These methods have been further combined with sophisticated 

high throughput techniques like micro-chip based culturing or encapsulating microbes in agar 

droplets so that they are physically separated from one another but interact with environment and 

one another (Ben‐Dov et al., 2009). In spite of applying all these methods in combination, the 

ratio of uncultured to cultured microbes still remains high. This difference between the number 

of microbes actually present in a particular community to the number of microbes that can be 

cultured on plates has been termed as "the great plate count anomaly" (Staley and Konopka, 

1985).  

Taxonomic diversity of small eukaryotes like fungi has been suggested to be around 

1.5 million species (Hawksworth, 1991) to around as much as 6 million species (Taylor et al., 

2014). Out of the estimate of 6 million fungal species, results by Taylor et al., 2014 suggest that 

98% still remain undescribed. One of the major problems in detecting fungi from environmental 

communities like soil is that they are fastidious in nature and estimates show that only 17% of 

known fungi can be grown in culture. Moreover, just one type of media does not suffice for the 
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growth of all the fungi. Different taxonomic groups may need different types of media. For 

example, benomyl or dichloran added to potato dextrose agar, which otherwise is a general 

purpose media for fungi, is more effective for the general isolation of basidiomycetes (Worrall, 

1991). Therefore, culture dependent methods bias the results for diversity towards those fungi in 

a microbial sample that can be grown in culture. Therefore, scientists shifted focus on culture 

independent methods for detecting fungi and bacteria in microbial samples. 

1.2 Culture Independent Techniques for Characterizing Microbial Communities 

The culture independent techniques include polymerase chain reaction based methods (PCR). In 

these methods, DNA or RNA is extracted from microbial samples and is used as a template for 

detection of microorganisms. The main source of information from uncultured microorganisms 

in culture independent techniques is their biomolecules such as nucleic acids, lipids and proteins. 

PCR amplification of conserved genes using universal primers is widely used for microbial 

profiling by nucleic acid approach and protein encoding gene approach. Among these, the 

nucleic acid approach includes the analysis of 16S rRNA and 18S rRNA from prokaryotes and 

eukaryotes respectively. In the lipid analysis approach, microbial cells in a community have their 

own distinctive FAME (Fatty acid methyl ester) profiles that can be used for their taxonomic 

classification. This method has been used to study whole cell FAME profiles of 605 E.coli 

isolates to establish their host specificity (Haznedaroglu et al., 2007). Protein based approaches 

use the genes encoding proteins as targets for microbial identification.  Two protein encoding 

genes that have been used for microbial profiling are rpoB (Mollet et al., 1997) and cpn60 (Goh 

et al., 1996).  The PCR products obtained as a result of amplification can be analysed in one or 

all of these ways: the clone library method, genetic fingerprinting and DNA microarrays. 
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1.2.1 Clone Library Method 

The original method used to analyze amplified PCR products from environmental microbial 

samples was to clone and sequence the obtained amplicons for species identification. This 

method produces a high phylogenetic resolution by direct species identification or comparing the 

conserved gene sequences from microbial sample to a reference sequence database and finding 

the closest similarity to a known species. The clone library method revealed phylogenetic 

diversity in microbial community samples  (Singleton et al., 2001). But since this method is 

labour intensive, expensive and time consuming; therefore, for some types of studies the clone 

library method has been supplanted by methods based on next generation sequencing. However, 

the method remains an important approach in many labs. 

1.2.2 Genetic Fingerprinting 

Genetic fingerprinting techniques are used to compare profiles of microbial communities 

although they do not provide any direct taxonomic information about the microbes present in 

those communities. They allow the simultaneous analysis of multiple samples for example, while 

comparing the genetic diversity of microbial samples from different environments or studying 

microbial succession in a particular community over time. The analysis is based on the 

"fingerprints" produced by gene variants for an individual species assumed to be present in a 

microbial community. These "fingerprints" from different samples are then compared using 

software packages like GelCompar (Stahl and Capman, 1994; Muyzer, 1999; Rastogi and Sani, 

2011). Some of the commonly used genetic fingerprinting techniques are discussed here. 

1.2.2.1 Denaturing Gradient Gel Electrophoresis (DGGE) 

In DGGE, the PCR products obtained from environmental DNA samples are separated 

electrophoretically on a polyacrylamide gel that already contains a linear gradient of denaturing 
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agents like urea and formamide. The DNA extracted from a complex group of microorganisms is 

amplified using primers specific for molecular markers like 16S rRNA. To prevent the complete 

separation of double strands, a 5'- GC clamped (30-50 nucleotide) forward primer is used during 

PCR reaction. The denaturants in the gel melt the double helical form of DNA, as a result, the 

mobility of denatured DNA decreases which is dependent on the nucleotide variation present 

among DNA from different species in a microbial community sample. Therefore DNA 

molecules with different sequences stop migrating on the gel at different positions. Migrating 

patterns formed by different samples on the same gel can be compared to see apparent 

differences or similarities in the behaviour of those communities. For phylogenetic identification, 

the bands can be excised from the gel, re-amplified and sequenced. Another variation of the 

same technique is TGGE, temperature gradient gel electrophoresis, where temperature gradient 

is used instead of chemical denaturants. The disadvantages of both techniques are that relatively 

short fragments (~500 bp) can be separated, which provide limited phylogenetic information 

about the microbes. Different DNA molecules can have similar melting points; sequence 

variation among multiple RNA copies in same species can produce multiple bands leading to 

over-estimation of diversity. DGGE was applied to study soils collected from different 

agricultural fields. One of the soil samples from these fields was highly contaminated with 

polyaromatic hydrocarbons (PAH). Bacterial and archaeal profiles were generated using 16S 

rRNA primers. It was found that overall bacterial diversity was much more than archaeal 

diversity in different soil samples except in samples from soils with high PAH content (Nakatsu 

et al., 2000). 
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1.2.2.2 Single Strand Conformation Polymorphism (SSCP) 

In SSCP, the DNA amplicons are denatured to single stranded DNA fragments and then are 

separated electrophoretically in a non-denaturing gel (Schwieger and Tebbe, 1998). The 

separation of single stranded DNA is based on their nucleotide differences that may be as little as 

a single base pair. This may lead to different secondary structure conformations and thus 

mobility in the gel. Unlike DGGE, it is simpler, as it does not require 5'-GC clamped forward 

primers or gradient gels. Also, the bands can be excised as in DGGE and the DNA can be 

extracted, re-amplified and sequenced. The technique can be further redesigned for determining 

the predominant bacterial population in the community by hybridizing the DNA strands with 

taxon-specific probes. But this technique is suitable for the separation of small fragments (150-

400 nucleotides) only (Muyzer, 1999). Another disadvantage is that the DNA strands can 

reanneal after initial denaturation step during electrophoresis. Although this has been overcome 

by using phosphorylated primers during PCR, and later on, phosphorylated strands can be 

specifically digested using lambda exonuclease. SSCP analysis was applied to study the 

rhizosphere bacterial populations associated with two plants growing in the same soil, Medicago 

sativa and Chenopodium album. The analysis showed that both plants had different rhizosphere 

bacteria inspite of their growth in same soils (Schwieger and Tebbe, 1998).  

1.2.2.3 Random Amplified Polymorphic DNA (RAPD)  

RAPD uses very short primers (5-10 nucleotides) that randomly anneal at different positions on 

genomic DNA thereby generating amplicons of variable lengths that are separated on a 

polyacrylamide gel. The annealing occurs at very low temperature (≤ 35oC) and separation is 

based on genetic complexity of microbial community sample used. The advantage is that it has a 

high speed and is easy to use (Franklin et al., 1999). The disadvantages are that it is very 



8 
 

sensitive to experimental conditions like MgCl2 concentration, annealing temperatures, 

differences in quality and quantity of template DNA and primers (Hadrys et al., 1992). 

Therefore, to reveal the differences or similarities between different microbial communities, 

several combinations of experimental conditions and primers need to be evaluated. As part of a 

study, changes in microbial diversity in soil samples that were treated with pesticides and 

chemical fertilizers were assessed using 14 random primers. The results showed that pesticide 

treated soils maintained the same level of microbial diversity as uncontaminated soil (control) 

whereas chemical fertilizer treated soil had decreased levels of microbial diversity than control 

(Yang et al., 2000). In another study, DNA diversities of soil microbial communities in 

rhizosphere and non-rhizosphere in plant Panax ginseng were evaluated using RAPD. Total 

genomic DNA from soil samples was amplified by 24 primers. The study revealed that microbial 

diversity of rhizosphere soil was lower than that of non-rhizosphere soil (Yong et al., 2012).  

1.2.2.4 Amplified Ribosomal DNA Restriction Analysis (ARDRA) 

In ARDRA, DNA fragments are generated using PCR primers for a molecular target which are 

then digested with restriction enzymes and separated on an agarose or polyacrylamide gel. The 

technique is based on the principle that the restriction sites on the RNA operons are conserved 

according to phylogenetic patterns (Massol-Deya et al., 1995). It has proved useful for studying 

the changes in microbial communities happening over a course of time, estimating number of 

OTU in clone libraries or for identifying unique clones (Smit et al., 1997). In one of the studies, 

the ARDRA technique allowed the recognition of 3-4 Gardnerella vaginalis genotypes. Some 

genotypes were found to be more prevalent in certain areas from which they were collected 

(Ingianni et al., 1997).  In another study, ARDRA was used to study the community composition 

of normal and bulking activated sludge. It was found that the microbial community composition 
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of normal and bulking sludge was different, although it was not possible to determine the exact 

species or strains of filamentous bacteria responsible for bulking of sludge (Blaszczyk et al., 

2011). Therefore, ARDRA is suitable for comparing the microbial diversities but it provides 

little or no information about the identity of microorganisms present in sample. Sometimes, the 

restriction profiles generated from microbial communities are too complex to be resolved on 

electrophoretic gels. 

1.2.2.5 Terminal- Restriction Fragment length Polymorphism (T-RFLP) 

T-RFLP is a modification of ARDRA. T-RFLP uses 5' fluorescently labelled primers during the 

PCR reaction. The amplicons are digested using restriction enzymes and the resulting fragments 

are separated on an automated DNA sequencer. Only those bands that are fluorescently labelled 

are detected. This produces a much simplified pattern of bands, thus allowing better analysis of 

complex microbial communities. A study was conducted to understand how bacterial 

communities develop in Apis species (honey bee) midgut. PCR amplification was done using 

16S rRNA primers. T-RFLP analysis resulted in 16 distinct terminal restriction fragments (T-

RFs). The T-RFs belonged to Beta and Gammaproteobacteria, Firmicutes and Actinomycetes. 

Gammaproteobacteria were found to be present in all stages of honey bee and Firmicutes were 

present in only worker bees additionally (Disayathanoowat et al., 2012). The advantages of using 

T-RFLP for microbial analysis are that it has a high resolution of separation on automated DNA 

sequencer, comparison between different samples can be done by using different fluorescent 

labels on different lanes, the bands or peaks can be quantified directly. The drawbacks of using 

T-RFLP are that the bands cannot be excised and sequenced and the automated DNA sequencer 

used for separation of T-RFs is very expensive.  
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1.2.3 DNA Microarrays 

A microarray is an orderly arrangement of molecular probes (with known identity) that can be 

DNA, cDNA or oligonucleotides and are immobilized on a solid support (a microscope glass 

slide, silicon chips or nylon membrane). The PCR products amplified from total environmental 

DNA are fluorescently labelled and can be directly hybridized to the molecular probes. DNA 

microarrays exploit the fact that complimentary strands of nucleic acid base pair with each other 

and bind. The unbound molecules are then washed away. Positive or negative signals of 

hybridization are scored by the use of confocal laser scanning microscopy (Gentry et al., 2006; 

Rastogi and Sani, 2011). A microarray method was developed to differentiate between two 

taxonomic neighbours, Helicobacter and Campylobacter species, and to identify clinically 

relevant Helicobacter species. Helicobacter species are responsible for many hepatic, biliary and 

enteric diseases. Both these species are often misidentified under clinical settings. Amplicons 

were produced using cpn60 and 16S rRNA universal primers from a complex human waste 

sludge DNA samples spiked with Helicobacter species. The amplicons were hybridized to 

specific cpn60 and 16S rRNA fragents from Helicobacter and Campylobacter species 

immobilized on plastic chips. The study resulted in accurate Helicobacter species identification 

with no cross-hybridization to either 16S rRNA and cpn60 fragments obtained from closely 

related strains of Campylobacter species (Masson et al., 2006). Using DNA microarrays for 

microbial profiling has many advantages. The samples can be rapidly evaluated with replication. 

The hybridization signal intensity is directly proportional to the abundance of the target species. 

The major limitation of using microarrays with environmental samples is cross-hybridization; 

moreover, it is not helpful in detection of novel taxa that may be present in microbial community 

samples if there is no matching probe on the array.    
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1.2.4 Fluorescent In situ Hybridization (FISH)  

FISH allows in situ detection and identification of individual microbial cells with the help of 

fluorescent oligonucleotide probes that bind to those DNA or RNA sequences in the cells that are 

highly complementary to the probes. The sample is fixed to stabilize the microbial cells using 

fixatives like formaldehyde or ethanol, and then cells are permeablized, the protocol for which 

really depends on the composition of cell wall, for example, use of lysozyme for digestion of 

peptidoglycan, protease for proteinaceous cell walls, removal of wax by solvents etc. Then the 

probe is added which is around 18-30 nucleotides long and contains a fluorescent dye at the 5' 

end. The probe binds to its intracellular targets before the excess probe is washed away. The 

fluorescent probe bound to its intracellular target is then detected by epifluorescence microscopy 

(Amann and Fuchs, 2008; Rastogi and Sani, 2011). This method was used to study the dynamics 

of bacterial communities in crop soils treated with herbicides (Caracciolo et al., 2010). Molecular 

probes targeted at phylogenetic groups α, β, γ and δ of bacteria were made. The herbicide treated 

soils were incubated with soil samples for 14 days. It was observed that in comparison to control 

soil (untreated with herbicide), γ-proteobacteria diminished sharply after 14 days, β-

proteobacteria populations remained higher than control and α and δ populations were not really 

affected by use of herbicides.  

1.2.5 Immunological Detection Methods 

 Immunological detection methods are being increasingly used in microbial ecology for 

identification of specific organisms and for microbial community analysis. The sensitivity of 

advanced immunological methods is similar to PCR techniques. The detection of microbes by 

these methods is based on antigen-antibody interaction, where a particular antibody will bind to 

its specific antigen. However, for a reliable use of these techniques, the monoclonal antibodies or 
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polyclonal antibodies used have to fulfill several quality criteria.  These methods can be used for 

the identification of specific microbes in samples as well as for the visualization of cells in situ. 

They are fast, specific and can be automated to make them more labor-saving and time-efficient. 

However, cross-reactivity with closely related antigens is a problem as it may lead to non-

specific reactions. Different methods are used for immunological detection, some of them are 

ELISA (Enzyme –Linked ImmunoSorbent Assay and lateral flow assay 

(Immunochromatographic assays). The sensitivity and specificity for these methods depends on 

antibody, for example, the detection limit is usually around 105 bacteria per mL in ELISA and 

107 bacteria per mL using a lateral flow assay. The time taken by lateral flow assay is 10 min 

and by ELISA is several hours (Schloter et al., 1995). Immunological method can be used to 

detect both bacteria (Law et al., 2014) and fungi (Yeo and Wong, 2002) from environmental 

samples. 

 1.3 Gene Targets for Characterizing Bacterial Communities 

The most important part of molecular microbial analysis is selection of an appropriate gene 

target. The gene should have a variable segment that should be common to the group or 

subgroup of interest being studied and it should be flanked by conserved regions. The conserved 

regions are the ones on which the DNA sequencing primers are based and they make the gene 

universal. These primers amplify the variable regions during PCR and generate amplicons that 

are unique to different species. The amplicon sequences are compared to reference sequences in 

a database. If the target gene is too long, it is difficult to sequence it completely and if the gene is 

too short, its sequence may not be enough to decide the genus or species to which it belongs. An 

ideal target gene should be present as single copy gene for accurate quantification purposes. 

Multicopy genes may not give accurate quantification and, if there is intragenomic variation 
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among these copies, it may also over-estimate diversity in microbial communities. Some of the 

gene targets used for microbial analysis are discussed briefly here.  

1.3.1 16S rRNA  

In 1980s, Woese et al. developed a new method to identify bacteria based on the genes encoding 

5S, 16S and 23S rRNA; although, the 16S rRNA gene is the part most commonly used, 

presently, for taxonomic purposes and microbial community analysis (Olsen et al., 1986; Pace et 

al., 1986; Woese, 1987; Suau et al., 1999; Hopkins et al., 2001; Matsuki et al., 2002; Salzman et 

al., 2002; Bartram et al., 2011; Poretsky et al., 2014). 16S rRNA is universal in bacteria and is 

targeted by sets of broad range PCR primers that can be used for the amplification of large 

number of variable regions. It also has a large reference database. In spite of these positive 

features, the comparison of 16S rRNA gene sequences allows differentiation between bacteria at 

genus level but it has a low phylogenetic power at species level owing to insufficient sequence 

variation (Fox et al., 1992; Clayton et al., 1995; Goh et al., 1996; Coenye et al., 2003) and poor 

differentiating power for some genera (Zeigler, 2003; Sundquist et al., 2007). Also, presence of 

multiple gene copies along with evolutionarily diverged copies of 16S rRNA is one of the 

disadvantages of using it as gene target (Goh et al., 1996). In an in silico study done by 

Vetrovsky and Baldrian, 7,081 16S rRNA sequences were extracted in silico from 1,690 

available genomes. It was observed that sequence diversity increases with increasing copy 

numbers, whereas, in some cases, sequences may be common to multiple species, thereby, 

complicating the studies involving abundance counts and not providing a clear picture of 

bacterial community composition (Větrovský and Baldrian, 2013). 
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1.3.2 Internal Transcribed Spacer Region 

The Internal transcribed spacer region in rRNA in bacteria is the region between 16S and 23S 

rRNA gene. Since variation in 16S rRNA gene is insufficient to identify all bacteria below genus 

level, 16S-23S ITS region was investigated as a potential alternative target for bacterial 

identification since it has more extensive sequence variation than 16S rRNA gene. This led to the 

observation that the spacer region can be good source of species specific sequences. The spacer 

sequences can be amplified by making oligonucleotide primers based on the 16S and 23S rRNA 

sequences that flank spacer regions (Barry et al., 1991). ITS region sequences were compared for 

then known Bartonella species. It was observed and confirmed that each species had a single 

species-specific ITS sequence, thereby confirming usefulness of ITS region for subtyping of 

Bartonella species of human and animal origins and understanding the epidemiology of these 

bacteria (Houpikian and Raoult, 2001). Hoffman et al., used this region, also called as intergenic 

spacer region or IGS region for the accurate and rapid identification of different Vibrio species. 

They used capillary gel electrophoresis to analyze the PCR products from IGS regions and IGS- 

typing patterns for each strain were tested. It was found that each Vibrio species had a unique 

typing pattern that could be used to identify each species in the complex Vibrio genus (Hoffmann 

et al., 2010).  

1.3.3 rpoB gene 

The rpoB gene is a protein-encoding gene that encodes the β-subunit of RNA polymerase in 

bacteria and is used for the phylogenetic analysis and identification of bacteria. The universality 

of rpoB gene was first reported by Morse et al. in 1996. The main advantages of using rpoB over 

16S rRNA are that due to more sequence variation within rpoB gene, it provides higher 

resolution among closely related species. It is a single copy gene which makes it more useful for 
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quantification of species or measuring relative abundance of different species in a microbial 

community (Rowland et al., 1993). A study on marine environment microbial community was 

done to see if use of rpoB as gene target could avoid limitations of using 16S rDNA as gene 

target, like intraspecies heterogeneity. As a part of this study, 16S rRNA and rpoB DGGE based 

comparison of microbial community analysis was done on samples from marine red alga. Eight 

out of 14 isolates displayed multiple bands by 16S rRNA DGGE analysis whereas rpoB did not 

show any intraspecies heterogeneity on DGGE analysis (Dahllöf et al., 2000). rpoB has also 

been used to profile bacterial diversity from tropical soils (Peixoto et al., 2002), kefir grains 

(Wang et al., 2006), goat rumen (Shi et al., 2007) etc. The disadvantages associated with use of 

rpoB as a gene marker are that it is not conserved enough to be a universal marker, although it 

can be used to target a particular subset of microbial community. Taxonomic identification of 

sequences is a problem due to unavailability of appropriate an database as of 2012 (Vos et al., 

2012).  

1.3.4 gyrB gene 

The gyrB is another target gene used as DNA probe and has a higher specificity than rRNA 

based probes. gyrB genes encode the subunit B protein of DNA gyrase also known as 

topoisomerase type 2. It is necessary for DNA replication and it regulates supercoiling of double 

stranded DNA. It is distributed universally among bacterial species. It has been shown to be a 

suitable phylogenetic marker for study of taxonomic relationships at species level in microbial 

communities found in activated sludge (Watanabe et al., 1998), acid mine drainage in copper 

mines in China (Yin et al., 2008). Although a database of gyrB sequences was published (Kasai 

et al., 1998), it is limited to bacterial sequences and it remains doubtful if it is currently being 

maintained (Hill et al., 2004).  
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1.3.5 recA gene 

Another alternative to 16S rRNA that can be used as a gene probe is the recombinase A gene 

(recA). This protein is universally present in bacteria and is also one of the most conserved 

proteins across bacteria. This protein is required for homologous recombination, DNA repair and 

the SOS response (Karlin et al., 1995). The recA gene has been used to identify six 

Bifidobacteria species from human intestinal tract isolates (Kullen et al., 1997).  The recA based 

gene analysis was also applied to maize rhizosphere where it revealed novel diversity among 

Burkholderia genus (Payne et al., 2006). It has also been shown to be a useful tool in addition to 

16S rRNA for revealing the evolutionary relationships between Rapidly Growing 

Mycobacterium (RGM) species.  Presently, no database is available for recA genes. 

1.3.6 cpn60, Proposed DNA Barcode for Bacteria 

Another target used for microbial profiling methods is the cpn60 (groEL) gene that has been 

recently proposed to be adapted as a barcode for the identification of bacteria (Links et al., 

2012). The cpn60 gene encodes a 60 kDa protein and is present in all bacteria, and in 

mitochondria and chloroplasts of eukaryotes. The name ‘chaperonin’ (cpn) was proposed for this 

ubiquitous and conserved protein that assists in the correct post-translational assembly of other 

polypeptides into oligomeric complexes (Hemmingsen et al., 1988). This gene encodes Group 1 

chaperonins, has either a 552, 555 or 558 bp segment that can be amplified with universal PCR 

primers and is called the “universal target” region. Original universal degenerate primers (H279 

and H280) were designed based on highly conserved regions within the cpn60 gene (or hsp60 or 

groEL) from different organisms. Inosines were added to these primers at specific locations to 

decrease the degeneracy of the primers (Goh et al., 1996). The original primers have also been 

modified to make them suitable for the amplification of difficult templates like those rich in G+C 
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content. These modified primers when used in addition to the regular universal primers, have 

been able to represent the diversity in microbial communities more accurately (Hill et al., 2006).  

The cpn60 gene has been initially exploited in many studies for species-specific 

identification like identification of Staphylococcus species and subspecies (Goh et al., 1996; Goh 

et al., 1997), Streptococcus suis serotypes (Brousseau et al., 2001), Enterococcus species from 

phenotypically similar Lactococcus and Vagococcus species (Goh et al., 2000). Later on, in 

additional studies, it has proved to be a useful tool in the characterization of microbial 

communities from different environments like pig intestinal microbial community (Hill et al., 

2002), activated sludge communities (Dumonceaux et al., 2006b), vaginal microbial 

communities (Hill et al., 2005; Schellenberg et al., 2011; Chaban et al., 2014), faecal 

communities of different animals (Dumonceaux et al., 2006a; Desai et al., 2009). 

The cpn60 gene provides many advantages over 16S rRNA as gene target. The cpn60 

based sequencing provides more discriminating and phylogenetically informative data than the 

16S rRNA target, especially between closely related species (Goh et al., 1996; Brousseau et al., 

2001; Zeigler, 2003). The cpn60 gene usually occurs as a single copy gene in bacteria, making it 

attractive quantitative target. Even if it occurs as multiple a copy gene, the copies are sufficiently 

different from each other, thus, acting as independent phylogenetic targets. The cpn60 UT is of 

relatively small size, which facilitates the study of microbial communities where large libraries 

of fragments are sequenced or in pyrosequencing where short sequence read lengths are 

obtained. Finally, the sequences can be compared with the cpn60 database (Hill et al., 2004).  

Recently, cpn60 was evaluated for its status as a DNA barcode for bacteria (Links et 

al., 2012). Barcodes are short and specifically designed DNA sequences that can be used to 

identify organisms by comparing the barcode sequence from an unknown organism to a 
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collection of known sequences from a reference database. The cpn60 gene was shown to fulfill 

the requirements for a gene to be classified as a barcode for bacteria. It is universal among 

bacteria and universal primers have already been developed that can amplify the universal target 

from cpn60 gene of any bacteria. A huge collection of reference sequences (cpnDB) is available 

for robust identification of organisms. Species-level and even subspecies identification is 

provided by cpn60 gene in metagenomic studies whereas such identification is not reported with 

16S rRNA. However, species level identification is desirable in some studies. For example, 

human vaginal microbiome is dominated by Lactobacilli, and many efforts have been made in 

research studies to resolve the Lactobacilli species using 16S rRNA (Hummelen et al., 2010; 

Srinivasan et al., 2012) whereas, species resolution of Lactobacilli has been easy and rapid using 

cpn60 UT, by sequence comparison with the reference database. In another study on human 

vaginal microbiota, cpn60 UT data has been used to resolve G. vaginalis into subspecies 

(Jayaprakash et al., 2012). Additionally, the inter-specific distance is greater than the intra-

specific distance for cpn60 sequence, which is one of the important criterias for a gene  to be 

defined as a barcode . The separation between the average interspecific and intraspecific distance 

for a given locus is called a ‘barcode gap’ Moreover, the absence of length variation in cpn60 UT 

sequences (552, 555 or 558 bp) makes it suitable to use either local or global alignment when 

comparing sequences.  
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1.4 Gene Targets for Characterizing Fungal Communities 

1.4.1 18S rRNA 

 For fungi, sequences of the nuclear ribosomal RNA genes (nrDNA) are the most commonly 

used genetic markers for phylogenetic and taxonomic identification (Hibbett et al., 2007). 18S 

rRNA gene has been the most widely used nuclear ribosomal gene, using both variable and 

conserved regions (White et al., 1990; Smit et al., 1999; Borneman and Hartin, 2000; Vainio and 

Hantula, 2000; Zheng et al., 2013; Buse et al., 2014). Taxonomic identification of fungi with 18S 

rRNA has been limited to genus and family level, due to lack of variation within 18S rRNA gene 

between closely related fungal species (Hugenholtz and Pace, 1996). An absence of an extensive 

reference database further adds to its limitation. But the variation in 18S rRNA gene for 

Glomeromycota has been fairly sufficient to differentiate between species (SCHÜßLER et al., 

2001). They have been used to differentiate Arbuscular Mycorrhizal fungi (belong to 

Glomeromycota) up to species and subspecies level (Vandenkoornhuyse and Leyval, 1998). 

1.4.2 Internal Transcribed Spacer Region 

The ITS sequences have been proposed to be adapted as the fungal barcode for identification of 

fungal species at lower levels (Schoch et al., 2012).  The ITS region (Figure 1) includes the ITS1 

and ITS2 regions, separated by the 5.8S gene and is situated between the small subunit (SSU: 

18S) and large subunit (LSU: 28S) genes in the nrDNA gene. Fungal  metagenomic studies may 

target different regions of ITS in parallel for identification of all the constituent species (multi-

region approach) as targeting a single region may not be sufficient to reveal all the diversity 

(Bellemain et al., 2010). ITS primers may be biased towards some taxa, therefore, it has been 
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suggested that they should be used in combination with LSU and SSU primers (Toju et al., 

2012). Targeting of ITS1 and ITS2 regions biases the amplification towards Ascomycota 

whereas targeting only the ITS1 region may lead to bias towards ‘non-dikarya’ fungi and LSU 

has been adopted as a gene marker for yeasts.  The fungal rDNA is present as a multicopy gene 

in fungal genomes. This increases the sensitivity of PCR assay, but during analysis of a 

microbial community sample, due to the variability in copy number among different fungal 

species (from tens to several hundred), the number of sequence reads attributed to any fungal 

species may be wrongly magnified (Black et al., 2013). Another problem currently faced with 

profiling fungal communities is the limited availability of reference data for comparison of 

experimental sequences. As of 2012, there were only ~172,000 full length fungal ITS sequences 

in Genbank. Although ITS is useful in discriminating phylogenetically distant species, its ability 

to distinguish closely related fungal species is doubtful because of the substantial intragenomic 

variability present within the species (Nilsson et al., 2008; Kiss et al., 2012).  
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Figure 1: Generalized structure of fungal rRNA locus as represented on the fungal 

rRNA gene in Serpula himantioides (AM946630) modified from Bellemain et al., 2010.  

The figure shows positions of primers and expected length of sequences obtained with 

different primers. Grey boxes show the small subunit (18S), 5.8S and large subunit (28S) 

regions of rRNA. White boxes are the internal transcribed spacer regions (ITS1 and ITS2). 

The expected lengths of sequences are depicted by black lines. ITS3-LR3 (1000bp), ITS1-

ITS2 (300bp), ITS1-ITS4 (~610bp), NS7-ITS2 (~600bp).  
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1.4.3 Protein Coding Genes 

Protein coding genes are also used for species identification in fungi. In fact, for Ascomycota 

they have been able to determine the taxonomic levels in a finer way than the rRNA genes 

(Schoch et al., 2009). RPB1 and RPB2 (RNA polymerase II largest and smallest subunit), 

Elongation factor 1 alpha (EF1-α) and cpn60 are the protein coding genes that have been 

largely sequenced and used for microbial analysis. When the performance of protein coding 

genes was tested and compared with that of ribosomal RNA genes, it was found that RPB1 

and RPB2 gave the best resolution under most of the situations (Liu et al., 2006; Hofstetter et 

al., 2007) than rRNA genes. In spite of protein coding genes having better species resolving 

power than rRNA genes, PCR and sequencing failures limit their use as gene targets for 

identification of fungi. Recently, the cpn60 gene was used for simultaneous profiling of 

bacteria and fungi associated with seeds (Links et al., 2014). 

1.4.4 cpn60 as Gene Target for Detection of Fungi 

A potential advantage of using cpn60 as a gene target for profiling microbial communities is 

that it can be used simultaneously to identify both bacteria and fungi, unlike other gene 

targets like 16S rDNA that are limited to bacteria or 18S rDNA and ITS, that are used to 

identify fungi and other eukaryotes. As vaginal microbiome may have both bacteria and 

fungi, cpn60 can be a useful gene target to profile the same. It has already been used to 

obtain bacterial profiles from vaginal samples in a variety of studies (Hill et al., 2005; 

Schellenberg et al., 2011; Chaban et al., 2014). The cpnDB had 19,667 entries as of 4 

August, 2014.  In 2012, cpnDB had 61 full length fungal cpn60 sequences (Hemmingsen, 

unpublished). These numbers show the obvious lag cpnDB has in the context of fungal 

sequences. The original cpn60 primers are known to amplify the fungal cpn60 UT gene from 
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microbial community samples, but they had not been studied systematically to determine 

their ability to amplify fungal cpn60 gene sequences from environmental samples. An in 

silico approach showed that 33 of these 61 sequences should be amplified by the original 

primers. In the remaining 28 cases, there is a one amino acid difference (serine (S) instead of 

threonine (T)) in the C-terminal residue of the coding amino acid consensus sequence as 

compared to the original forward primer (H279) amino acid consensus sequence (Figure 2).  
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Primer cpnDB 
ID 

Aligned Amino Acid Sequences Description 

H279  - E/D X A G D G T T T Original Consensus Sequence 

 b1554 N E V A G D G T T T S. pombe 

 b198 N E S A G D G T T S C. albicans 

 b10353 N E A A G D G T T S S. cerevisiae 

H1780  N E/D X A G D G T T - Revised Consensus Sequence 

 

Figure 2: Region of cpn60 amino acid sequences used for design of primers H279 and 

H1780. The amino acid consensus sequence at the top (in red) was used for design of original 

degenerate primer H279. The consensus sequence used for primer H1780 is based on sequences 

for 61 full length cpn60 sequences for fungi in cpnDB out of which three are shown here. The C-

terminal residue of the amino acid sequence consensus is serine (S) instead of threonine (T) in 

many fungi including C. albicans and S. cerevisiae. For H1780, the consensus sequence for 

primer is moved one codon to left, so that the C-terminal residue of the consensus amino acid is 

threonine only and so that this does not affect the length of the primer, "N" (asparagine) is 

included as the first N-terminal amino acid of this primer. "X" can be any amino acid. 
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The consensus sequence for the H279 primer shows that it should not be able to 

amplify these 28 sequences including C. albicans and S. cerevisiae. Hemmingsen redesigned 

primer H279 to accommodate this difference (unpublished). The resulting primer is H1780. For 

H1780, the consensus sequence for primer is moved one codon to the left, so that the C-terminal 

residue of the consensus amino acid sequence is threonine only and so that this does not affect 

the length of the primer. In addition, he designed novel primers to amplify regions of cpn60 from 

fungal templates. The novel fungal primers may anneal at regions conserved among fungi and 

they may be able to amplify the UT from any fungal isolate that may be present in environment 

samples (Hemmingsen, unpublished).  

1.5 The Rare Biosphere Concept 

The complex microbial communities of mucosa are dominated by a relatively small number of 

species, a larger number of low abundance species or OTUs also exist that form ‘the rare 

biosphere’.  For example in human faeces, the fungal microbiome forms the rare biosphere as 

compared to the bacterial microbiome (Huffnagle and Noverr, 2013). Some members of this 

fungal microbiome can become potentially pathogenic if the mucosal environment is disturbed. 

This holds true for the vaginal mucosa too. Therefore, complete profiling of both the dominating 

and the low abundance species in a microbial community is essential for complete understanding 

of the disease. It is easier to identify the dominating taxa in a community but real challenge is 

posed by the rare microbes.  

1.6 Next Generation Sequencing Technologies 

The completion of the Human Genome Project in 2003 used the first generation sequencing 

called the Sanger sequencing (dideoxy chain termination method) which remained the 
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fundamental method of large scale genome sequencing for many years. Another first generation 

sequencing method by Maxam and Gilbert involved nucleobase specific chemical modification 

of DNA, followed by cleavage of DNA at site adjacent to redesigned nucleotide. This method 

used hazardous radioactive materials and was technically complex; therefore, is no longer in 

widespread use. Except for the Maxam and Gilbert sequencing method, all other methods use 

sequencing by synthesis. The Human Genome project stimulated improvements in Sanger 

sequencing like the use of fluorescent dyes, polymerases specifically designed for sequencing 

and improvements in software packages for sequence analysis and made it a high throughput 

method of sequencing. It took 13 long years to accomplish the project, and this led to the demand 

for faster and cheaper sequencing methods. This led to the development of next generation 

sequencing (NGS) where millions of fragments of DNA from a single sample are sequenced 

simultaneously. NGS permits massive sequencing with a much higher throughput than Sanger 

sequencing. The most currently used NGS technologies include 454 sequencing (Roche applied 

science, Basel, Switzerland), Illumina/Solexa genome analyzer (Illumina, San Diego, CA, USA), 

SOLiD (Applied Biosystems, Foster City, CA, USA), HeliScope Single Molecular Sequencer 

(Helicose Biosciences, Cambridge, MA, USA), and the Single Molecule Real Time Technology 

(SMRT, Pacific Biosciences, Menlo Park, CA, USA). All these platforms perform massive 

parallel sequencing. The first three platforms sequence clonally amplified products and the last 

two, sequence single DNA molecules.  

1.6.1 Pyrosequencing 

Pyrosequencing is a widely used next generation sequencing technology. The Sanger sequencing 

approach is considered the first generation technology and is associated with high cost and 

technical difficulties like analyzing large numbers of clones from large numbers of samples. 
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Also, the method is expected to reveal only the dominant members of the microbial community 

and the sampling depth is low. An advantage is that it is capable of sequencing 900-1200bp. 

Pyrosequencing provides large numbers of sequence reads in a single run, giving very large 

sampling depth and allowing detection of both dominant as well as rare taxa present in a 

microbial community. Pyrosequencing eliminates the need for cloning the amplicons generated 

by PCR, thereby removing at least one of the biases. Although the output read length is shorter 

than that obtained by Sanger sequencing (~250 bp for GS-FLX and ~800 bp for GS-FLX 

Titanium series and ~900 bp using Sanger) (454.com), for cpn60 amplicons, sequences of  >150 

bp are sufficient to determine organism identities (Schellenberg et al., 2009). The latest addition 

to the sequencing technology with long-read sequencing performance is the 454 GS-Junior 

System that gives an average read length of ~400 bp and the accuracy is 99%. The run time is 

only 10 hours for sequencing and 2 hours for data processing. The number of amplicon reads it 

gives per run is 70,000 (http://www.454.com/). One of the disadvantages of  454-pyrosequencing 

is a high error rate in the homopolymer regions (three or more consecutive identical DNA bases). 

The 454-pyrosequencing has now phased out due to the advent of lower cost and higher 

throughput sequencing technologies like Illumina-Solexa Miseq is capable of generating 25 

million reads with 98% accuracy in ~55h and Life Technologies SOLiD 5500 series can generate 

1.2-1.4 billion reads in 1-2 weeks at a low cost (Gilles et al., 2011). 

Principle of pyrosequencing: Sequencing is by synthesis and it involves light generation after 

nucleotides are incorporated in a growing chain of DNA. PCR amplicons are amplified using 

MID (multiplexing identifier) tagged primers. The use of MIDs enables the simultaneous 

sequencing of multiple libraries and generates microbial profiles for large number of samples in 

a single sequencing reaction. Libraries are made by ligating short DNA sequencing adaptors to 

http://www.454.com/
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MID-tagged amplicons. The DNA libraries thus made are immobilized on DNA capture beads. 

Each bead has a unique ssDNA oligonucleotide sequence that is complementary to the sequence 

of adaptors. The bead-bound library is emulsified with amplification reagents in a water-in-oil 

mixture resulting in micro-reactors containing one bead bound to one DNA fragment. The 

emulsion PCR (emPCR) amplification takes place inside this microreactor. After amplification, 

the emulsion is broken. DNA is denatured, beads having ssDNA are transferred to picotitre 

plates where one bead rests in one picotitre well.  

Inside the well, a DNA fragment attached to a bead is the template which is 

hybridized to the sequencing primers. One of the dNTPs (N=A,T,C,G) is added to the reaction. 

DNA polymerase catalyses the addition of this dNTP if it is complementary to the base on the 

template strands and a pyrophosphate (PPi) is released. ATP sulfurylase converts PPi to ATP in 

the presence of substrate adenosine 5` phosphosulfate (APS). The released ATP provides energy 

for conversion of luciferin to oxyluciferin catalysed by luciferase. Oxyluciferin produces visible 

light proportional to amount of ATP which is detected by a CCD chip as a peak in the program 

output. Apyrase (ATP diphosphatase) degrades ATP and unincorporated dNTP after which 

another cycle of nucleotide addition starts (http://www.454.com/ ). 

1.6.2 Other Next Generation Sequencing technologies 

In the Sequencing by Oligonucleotide Ligation and Detection (SOLiD), sequencing is obtained 

by measuring ligation of an oligonucleotide to a sequencing primer by a DNA ligase enzyme. 

DNA fragments are ligated to oligonucleotide adapters that are attached to beads. DNA 

fragments are then amplified by emulsion PCR until it provides sufficient signal for the 

sequencing reactions.  Beads are deposited on a flow cell surface. Sequencing primers are 

annealed to the adapter sequences on each amplified fragment and, with this, the ligase mediated 

http://www.454.com/
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sequencing begins.  Each ligation step is accompanied by fluorescence detection. A regeneration 

step prepares the extended primer for the next ligase reaction. 

With Illumina sequencing, in each sequencing cycle, a single labelled 

deoxynucleoside triphosphate is added to nucleic acid chain (the four dNTPs have different 

labels). The labels, such as a fluorescent dye, acts as a terminator. Dye is imaged to identify the 

dNTP added and is enzymatically cleaved so that next dNTP can be added. 

The HeliScope Biosystem is a single molecule sequencing system. It also utilizes the 

sequencing by synthesis principle. The DNA sample is fragmented and polyadenylated at the 3` 

end and final adenine is labelled with Cy3 fluorescent dye. PolyT oligos are immobilized on flow 

cell surface and polyA template molecules get attached to them by hybridization. The labels can 

be imaged to identify the DNA molecule and then cleaved. The cycle is repeated by adding each 

of Cy3 labelled nucleotides to flow cell. 

1.7 Metagenomics 

Metagenomics literally means ‘beyond the genome’ (Gilbert and Dupont, 2011). It is the 

cultivation independent analysis of the collective genomes of microbes within a given 

environment. Therefore, metagenomics has made it possible to sequence libraries from a mixture 

of organisms. It is now feasible to conduct sequence based studies on organisms that were 

previously considered to be inaccessible like obligate pathogens and symbionts, that do not 

survive outside their hosts; microorganisms in environmental samples that cannot be grown in 

pure cultures and primitive organisms for which information is only available in their fossilized 

remains (Tringe and Rubin, 2005). Metagenomic studies are useful in increasing our 

understanding of structure (gene and species richness) and function of environmental microbial 

communities. The metagenomic approach involves the extraction and isolation of DNA from 
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environmental samples and the DNA samples should be representative of the population of all 

organisms present in the environment to be studied. However, DNA obtained from community 

of microbes may or may not provide the complete genomic picture of the microorganisms in that 

environment, as this mostly depends on our ability to sample (Wooley et al., 2010). This is 

because the genomic material from the more abundant organism dominates the sample (Tringe 

and Rubin, 2005).  Study of organisms that make up an acid-mine biofilm was the first 

environmental metagenomic study (Tyson et al., 2004). The acid-mine biofilms are formed when 

FeS2 from mining drainage is exposed to water and sulphuric acid is produced. Microbial 

communities with low diversity flourish in these biofilms due to extreme acidic conditions. 

Tyson et al., generated 76.2 million bp of sequence from biofilm bacteria and archeans. Almost 

two complete genomes and three partial genomes were assembled from this data. In one of the 

other prominent studies, a project to sequence the entire metagenome of Sargasso Sea surface 

waters was taken up by Venter et al., and unexpected community diversity and complexity was 

revealed (Venter et al., 2004). Metagenomics has also been used to study the differences in 

fungal communities present in healthy and dandruff affected human scalp using 26S rDNA as 

gene target. The study showed that Acremonium (Ascomycete) was abundant on both the healthy 

and affected individuals, Cryptococcus (Basidiomycete) was abundant on healthy scalp and 

Filobasidium sp. (Basidiomycete) was mostly present on dandruff affected scalp (Park et al., 

2012).  

1.8 Fungi 

The fungi are a group of diverse organisms that are characterized by non-motile bodies (thalli) 

made of elongated walled filaments (hyphae), both sexual and asexual reproduction, 

heterotrophic nutrition, chitin and glucans as cell wall components. Spindle pole bodies are 
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associated with the nuclear envelope during cell division (Griffin, 1994). Some of the well-

known exceptions to these characteristics are chytrids, that have flagella at some stage of their 

life cycle and have centrioles associated with cell division instead of spindle bodies (Morgan et 

al., 2007).  Some members of Ascomycota, Basidiomycota and Mucoromycotina do not have 

hyphal growth during part or all of their life cycles. A few species of Ascomycota are 

characterized by cellulose in their cell walls (Alexopoulos et al., 1996). 

The diversity of fungi has been estimated to be 1.5 to 5.1 million species (Taylor et 

al., 2010; Blackwell, 2011) out of which only about 100,000 have been described. The study of 

morphological characteristics and advances in the molecular sequencing methods have 

revolutionized the classification of such a large diversity of fungi. According to O`Brein et al., it 

may still take about 4000 years to describe all these species using the current approach, so that 

all of them may be discovered before becoming extinct (O'Brien et al., 2005). Therefore, the 

need to quicken the process of describing fungi is becoming crucial.  

Fungi were initially categorized as a subkingdom in the Kingdom Plantae. The 

subkingdom had two divisions, Myxomycota (for plasmodial forms) and Eumycota (for non-

plasmodial forms) (Ainsworth et al., 1973). Eumycota included subdivisions Mastigomycotina 

(Chytridiomycetes, Hyphochytridiomycetes, Oomycetes), Zygomycotina (Zygomycetes, 

Trichomycetes), Ascomycotina, Basidiomycotina and Deuteromycotina. Myxomycota were 

categorized separately under Kingdom Protista. Later, fungi were considered entirely distinct 

from plants and were classified into a separate kingdom, Kingdom Fungi (Whittaker and 

Margulis, 1978). In 1993, Baldauf and Palmer provided evidence that fungi are more closely 

related to animals than plants by examining sequences from 25 proteins. Among other evidence, 

it was found by them that four insertions/deletions are uniquely shared by animals and fungi 
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relative to plants, protists, and bacteria (Baldauf and Palmer, 1993). Kirk et al. (2001) further 

redesigned the classification by accepting phyla Ascomycota, Basidiomycota, Chytridiomycota 

and Zygomycota within the Kingdom fungi (Ainsworth, 2008) while Myxomycota and 

Oomycota were excluded from the Kingdom (Berbee and Taylor, 1993; Berbee and Taylor, 

1995). Recently, Hibbet et al., proposed a broad phylogenetic classification of Kingdom Fungi. 

This classification accepts one kingdom, one subkingdom, seven phyla, ten subphyla, 35 classes, 

12 subclasses and 129 orders. Dikarya is a sub-kingdom classified into phyla Ascomycota and 

Basidiomycota. The other five phyla are Chytridiomycota, Neocallimastigomycota, 

Blastocladiomycota, Microsporidia and Glomeromycota. The traditional phyla Zygomycota and 

Chytridiomycota have undergone many key changes. The taxa that were originally included in 

Zygomycota have been distributed between Glomeromycota and four subphyla incertae sedis 

(term used for classifying taxa of uncertain position). Members of Neocallimastigomycota, 

Blastocladiomycota, and Microsporidia were traditionally placed under Chytridiomycota and 

have now been elevated to phylum based on their morphology and molecular phylogeny (Hibbett 

et al., 2007). 

1.9 The Human Vaginal Microbiome 

The human vaginal microbiome plays an important role in reproductive health and disease. 

Studies have shown that the dominant bacteria present in vagina are Lactobacilli species L. 

crispatus, L. gasseri, L.jensenni and L.iners, the major component being L.iners. Sometimes the 

healthy vaginal flora may also  be  replaced  by  other  lactic  acid  producing  bacteria  like  

Atopobium vaginae,  Megasphaera and Leptotrichia species. These organisms maintain 

reproductive health by resisting infection, that may be caused by various pathogens, by 

producing many factors, for example, they excrete lactate thus reducing the pH of vagina and  
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production of H202 and bacteriocin  by some strains is also known to discourage the growth of 

some bacterial genera like Streptococcus, Gardnerella vaginalis, Prevotella/Bacteroides species, 

Peptostreptococcus species, Mycoplasma hominis, Ureaplasma urealyticum and Mobiluncus 

species which may be normally present in vagina, but may lead to an abnormal  state if they tend 

to overgrow (Drell et al., 2013).  This shift in the vaginal microbiota from a Lactobacilli 

dominated community to a community rich in aerobic/anaerobic potential pathogens present in a 

dense biofilm leads to a condition called bacterial vaginosis (BV) that is also clinically 

characterized by a thin, malodorous vaginal discharge. BV additionally leads to many negative 

impacts on a woman`s health like pelvic inflammatory disease, preterm births, and acquisition of 

sexually transmitted diseases (Hill et al., 2005). The information regarding the fungal component 

of the vaginal microbiome is exclusively derived from culture based investigations. The most 

frequently occurring fungal species in normal vaginal microbiota is Candida albicans that can 

cause vulvovaginal candidiasis in immunocompromised patients. Some non–albicans species are 

also identified in vaginal cultures like Candida kefyr, Candida glabrata and Candida tropicalis 

and are responsible for causing acute recurrent or chronic vulvovaginitis (Drell et al., 2013). 

Several novel bacterial species have been detected both in normal vaginal flora and in BV using 

the techniques mentioned above, but no study has concentrated on the detection of fungal species 

except the already known Candida albicans or some non-albicans Candida species.  Recently, it 

has been shown that about 101 fungal species are present in the oral mycobiome as against the 

general perception that only Candida albicans or non albicans Candida are present in oral 

microflora. Some unexpected fungal species found were Fusarium, Aspergillus and 

Cryptococcus (Ghannoum et al., 2010). A recent culture independent study comparing fungal 

vaginal flora of healthy women and women suffering from RVC (recurrent vaginal candidiasis) 
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using 18S rDNA as gene target reveals 10 phylotypes of fungi in healthy women and 28 

phylotypes in all, although this study was not able to identify them at the species level (Guo et 

al., 2012). The cpn60 gene has not been yet systematically tested for profiling of fungal 

communities. Although it has been proposed to be the fungal DNA barcode, the ITS region has 

many drawbacks as a gene target like presence as multiple copies in the genome, intragenomic 

variability, variable length etc. Whether cpn60 can overcome these drawbacks as a fungal gene 

target, can be determined by using it for analysing fungal DNA samples and subsequently for 

fungal microbial communities like the vaginal mycobiome. 
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2.0 Goals 

The overall goal of this study was to investigate the utility of the cpn60 gene for the detection 

and identification of Fungi. Already published primers have utility for detection and 

identification of bacteria and for generation of sequence based profiles of bacterial communities. 

There were no phylogenetic gaps found in their utility for these purposes except for Mollicutes 

like Mycoplasma and Ureaplasma which lack the cpn60 gene. In this study, it was evaluated if 

this was also true for fungal taxa. Redesigned versions of the forward UT primers were designed 

(Hemmingsen, unpublished) to address known deficiencies in the published primers for 

amplification of the UT from fungal templates. In addition, novel primers putatively specific for 

fungi were designed (Hemmingsen, unpublished). In section 3, these redesigned and novel 

primers were tested for their ability to amplify the cpn60 gene sequence from diverse fungal 

taxa. If the redesigned UT primers were to be introduced for use in mixed bacterial and fungal 

microbial communities, their performance with respect to the bacterial community must be 

unaffected by the introduced modification. This question is addressed in section 4.  
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3.0 Assessment of Redesigned and Novel PCR Primers for Amplification of cpn60 Gene 

Sequences from Phylogenetically Diverse Fungal Taxa 

3.1 Hypotheses and Experimental Approach 

3.1.1 The redesigned cpn60 UT primers should be able to amplify the cpn60 UT gene present in 

DNA extracts from pure cultures of S. pombe and S. cerevisiae and a broad range of fungal phyla 

from environmental samples. 

3.1.2 The novel cpn60 primers (based on regions within and flanking the cpn60 UT) should be 

able to amplify the respective sequences flanking the cpn60 UT in DNA extracts from pure 

cultures of S. pombe and S. cerevisiae and a broad range of fungal phyla from DNA extracts 

from environmental samples. The following experimental approach was used to frame these 

hypotheses. 

 In 2012, cpnDB had 61 full length fungal cpn60 sequences (Hemmingsen, 

unpublished). An in silico approach showed that 33 of these 61 sequences should be amplified by 

the original primers. In the remaining 28 cases, the C-terminal residue is serine (S) instead of 

threonine (T), which would seriously impair base pairing between the original primers and the 

coding template at the 3` end of the primers (Figure 2). The consensus sequence for H279 primer 

shows that it should not be able to amplify these 28 sequences including C. albicans and S. 

cerevisiae. Hemmingsen redesigned primer H279 to accommodate this difference (unpublished). 

The resulting primer is H1780. For H1780, the consensus sequence for primer is moved one 

codon to left, so that the C-terminal residue of the consensus amino acid is threonine only. This 

does not affect the length of the primer. In addition, he designed novel primers to amplify 

regions of cpn60 from fungal templates. The novel fungal primers may anneal at regions 
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conserved among fungi and they may be able to amplify the UT from any fungal isolate that may 

be present in environment samples (Hemmingsen, unpublished). 

3.2 Objectives 

3.2.1 Assessment of redesigned UT primers for amplification of cpn60 UT from fungal taxa 

represented in cpnDB:  S. pombe and S. cerevisiae were chosen for this study 

3.2.2 Ability of redesigned primers and novel primers to amplify cpn60 UT or portions of the 

cpn60 gene from DNA extracts from phylogenetically diverse fungal taxa and for other fungal 

taxa chosen for this study 

3.3 Materials and Methods 

3.3.1 DNA Extraction from S. pombe and S. cerevisiae Pure Cultures  

YS Media (BIO101 systems) was prepared (500mL broth and 500mL with agar) and autoclaved 

at 121°C for 15 min. Two YS plates were inoculated with S. pombe strain 922 and two plates 

were inoculated with S. cerevisiae strain 1285. The plates were incubated for 48 h at 30°C. 

Isolated colonies from these plates were inoculated in two tubes containing 2mL YS broth for S. 

pombe and two tubes containing 2 mL YS broth for S. cerevisiae. The inoculated tubes were 

incubated in shaker at 30°C for 24 h. 2 mL of this culture growth was inoculated into 40 mL YS 

broth, and incubated in shaker at 30°C for 24 h. The culture was then centrifuged in corning 

tubes at 4000 rpm for 10 min. The cells were resuspended in 2 tubes each containing 365 µL 

Buffer B1 (50 mM Tris-Cl+50 mM EDTA with 0.5% Tween 20 and 0.5% Triton X-100) with 40 

µL RNaseA. The cell suspensions were divided into two parts in bead beating tubes. Qiagen 

Genomic DNA buffer kit reagents were used in this experiment. The DNA was extracted from 

these suspended cells by following the yeast genomic DNA isolation procedure, that uses a 
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combination of chemical, physical and enzymatic treatments to maximize DNA recovery 

(Apajalahti et al., 1998; Hill et al., 2002). 7.5 µL lysozyme (100mg/ml in water) and 20 µL 

proteinase K (20 mg/ml in water) was added to each tube and incubated at 37°C for 30 min. 

Added 135 µL Buffer B2 (3 M guanidine HCl with 20% Tween 20), mixed and incubated at 

50°C for 30 min and put them at -70°C for 30 min. In fume hood, put 700 µL 25:24:1 

phenol:chloroform:isoamyl alcohol (by volume). After placing tubes on ice, used Bead Beater 

Fast prep unit (20 s, 5 speed) 3 times and centrifuged at 14,000 rpm for 15 min. Removed top 

phase in fume hood (~500 µL) in 1.5 mL tubes while avoiding the white interphase. Added 

0.1volume (50 µL) of 3M Sodium acetate and 1.1 volume (550  µL) of isopropanol to each tube, 

mixed and centrifuged for 15min at 1400rpm. Poured off supernatant, washed pellet with 1mL 

70% ethanol, and centrifuged at 14,000rpm for 5min. Poured off supernatant, dried pellet for 10-

20 min and resuspended pellet in 50-100 µL 10mM TE buffer. Dissolved the pellet and stored 

DNA at -20°C until use. 

3.3.2 Quantification of DNA using Quant iT dsDNA kit (Qubit dsDNA BR assay; Life 

Technologies, Burlington, Canada). Set up the required number of 0.5 mL thin-wall, clear 

Qubit® assay tubes for standards and samples. The Qubit® dsDNA BR assay requires 2 

standards. Made the Qubit® working solution by diluting the Qubit® dsDNA BR reagent 1:200 

in Qubit® dsDNA BR buffer so that the final volume in each assay tube was 200 µL. Prepared 

sufficient Qubit® working solution to accommodate all standards and samples (for 2 standards 

and 4 samples in this case, 1200 µL of working solution (6 µL of Qubit® reagent plus 1994 µL 

of Qubit® buffer). Loaded 190 µL of Qubit® working solution into each of the tubes used for 

standards. Added 10 µL of each Qubit® standard to the appropriate tube, then mixed by 

vortexing 2–3 s.  Loaded the Qubit® working solution into individual assay tubes so that the 
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final volume in each tube after adding sample was 200 µL. Added each of samples to assay tubes 

containing the correct volume of Qubit® working solution (prepared in step 6), then mixed by 

vortexing 2–3 s. Allowed all tubes to be incubated at room temperature for 2 min. Noted the 

reading for each tube on the home screen for Qubit fluorometer. Concentration of sample was 

calculated as reading on screen (QF) multiplied by 200 and divided by number of microlitres of 

sample added to the Qubit assay tube. 

3.3.3 Polymerase Chain Reaction 

For a 50 µL reaction, 10X PCR buffer (5 µL), 50 mM MgCl2 (2.5 µL), 10 µM primer1 (2 µL), 

10 µL primer2 (2 µL), 10 mM dNTPs (1 µL), 5 U/ µL Taq (0.5 µL), water (36 µL), template (1 

µL) were added. The thermocycling parameters used were 5 min at 94°C, 40 cycles of 30 s at 

94°C, 30 s at annealing temp, 45 s at 72°C, and 10 min at 72°C. Primers H1780, H1781, H280, 

H1613, 1786, H1787, 1788, 1789 were used in this experiment and their sequences are given in 

Table 1a and the regions they amplify are explained in Table 1b. The primer site positions and 

the amplicon sizes they amplify are shown in Figure 3. The redesigned and novel primers were 

designed by Dr. Sean Hemmingsen. 

To know the range of temperatures over which the primers amplify S. pombe and S. 

cerevisiae DNA templates, temperature gradient experiments were performed on the DNA 

extracts with all the different primer sets. The PCR was run for 40 cycles and at temperatures 42, 

43.3, 45.5, 48.6, 53.3, 56.5, 58.7 and 60˚C. The PCR product was observed for positive or 

negative amplification by running the PCR products on 1% agarose gel at 90 V and observing 

under UV light. In previous studies cpn60 primers have been found to work well between 

temperatures range of 46˚C to 50˚C. The temperatures at which these primers were effective 

were tested by studying the behaviour of these primers at a range of temperatures around   46˚C 
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to 50˚C,   so 42˚C to 60˚C was chosen. Results were interpreted on the basis of visibility of the 

resulting amplicon under UV light on agarose gel. This is an end-point assay where the results 

depend on whether or not expected PCR products are obtained. Therefore, this is not the most 

sensitive assay for knowing the effect of temperatures. 

To confirm that the sequences amplified by these primers were the same as we had 

anticipated, PCR products from each template were agarose gel purified and ligated into pGEM 

T-easy vector (Kobs, 1997).  Ligation mixtures were used to transform E. coli strain JM109 

(Messing et al., 1981). 100 μl of transformed cells were plated on Luria broth agar plates (X-

gal/Amp) and 4 colonies were picked up for each primer set and inoculated into 5 mL LB 

overnight/300 rpm. The resulting cultures were prepared using a Qiagen miniprep kit. The DNA 

so obtained was quantified using Quant iT dsDNA kit and sent for sequencing (3.4.2). 
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Table 1a: Sequences of oligonucleotide primers used for PCR amplification of regions of 

cpn60. 

Primer 
Function 

Table 1b 
1Primer sequence (5`-3`) *Reference                                                                                                                                                                                                               

H279 A GAIIIIGCIGGIGAYGGIACIACIAC  2 

H1780 B AAYGAIIIIGCIGAYGGIACIAC 3 

H1782 C ACGAGTGCGTAAYGAIIIIGCIGAYGGIACIAC 3 

H1784 D ACGCTCGACAAAYGAIIIIGCIGGIGAYGGIACIAC 3 

H280 E YKIYKITCICCRAAICCIGGIGCYTT  2 

H1786 F CCIAARATHACIAARGAYGGIGTIACIGTIGC 3 

H1787 G GCIATGGARIIIGTIGGIAARGARGGIGTIAT 3 

H1788 H ATIACICCYTCYTTICCIACIIIYTCCATIGC 3 

H1789 I GCIACICCICCIIIIARYTTIGCIARICKYTC 3 

H1612 J GAIIIIGCIGGYGACGGYACSACSAC  4 

H1613 K CGRCGRTCRCCGAAGCCSGGIGCCTT  4 

H1781 L AAYGAIIIIGCIGGYGACGGYACSAC 3 

H1783 M ACGAGTGCGTAAYGAIIIIGCIGGYGACGGYACSACSAC 3 

H1785 N ACGCTCGACAAAYGAIIIIGCIGGYGACGGYACSAC 3 
 

1Nucleotide 

code 

Name of Base 

 

A Adenine  

C Cytosine  

G Guanine  

T Thymine  

R A or G  

Y C or T  

S G or C  

K G or T  

I Inosine  

 

*References 
2 Goh et al., 1996 

3 Hemmingsen, 2012 (unpublished) 

4 Hill et al., 2006 
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Table 1b: Description of functions for cpn60 primers given in Table 1a. 

Function Description of function 

A Original forward UT primer. Amplification of region 1. (Fig.3) 

B Redesigned version of H279 to include more fungal taxa. Amplification of 

regions 2,3,4 (Fig.3) 

C H1780 with MID 1 for multiplex sequencing. Amplification of regions 2, 3, 4. 

(Fig.3) 

D H1780 with MID 2 for multiplex sequencing. Amplification of regions 2, 3, 4. 

(Fig.3) 

E Reverse UT primer. Amplification of regions 1,2,5,6. (Fig.3) 

F Fungal primer upstream to UT forward primer. Amplification of regions 5, 8, 9. 

(Fig.3) 

G Fungal forward primer between UT forward and UT reverse primer sites. 

Amplification of regions 6, 7. (Fig.3) 

H Fungal reverse primer between UT forward and UT reverse primer.  

Amplification of regions 3, 9. (Fig.3) 

I Fungal primer downstream of UT reverse primer. Amplification of regions 4, 7, 8. 

(Fig.3) 

J "Strong" version of H279 primer to enable amplification of GC rich templates. 

Amplification of region 1. (Fig.3) 

K "Strong" version of H280 primer to enable amplification of GC rich templates. 

Amplification of region 1,2,5,6. (Fig.3) 

L "Strong" version of H1780 UT primer to enable amplification of GC rich 

templates. Amplification of regions 2, 3, 4. (Fig.3) 

M "Strong" version of H1780 primer with MID1 to enable amplification of GC rich 

templates. Amplification of regions 2, 3, 4. (Fig.3) 

N "Strong" version of H1780 primer with MID2 to enable amplification of GC rich 

templates. Amplification of regions 2, 3, 4. (Fig.3) 

 

  



43 
 

 
 

Figure 3:  Fungal cpn60 primer site positions and amplicon sizes.  

Original cpn60 universal primer names (H279 and H1612) are shown in red and their position 

with a red arrow. Universal reverse primer (H280 and H1613) position is shown with a reverse 

red arrow. Redesigned cpn60 universal forward primer is shown in green and its position is 

shown shifted a little to left owing to its modification from original forward primer. Expected 

amplicon with original primers is shown with red line. Expected amplicon with redesigned 

universal primers is shown with green line. Expected amplicons produced by novel fungal 

specific primers are shown with black lines.  The numbers (1-9) above the lines refer to the 

regions mentioned in Table 1b. 
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3.3.4 Protocol for Ligations Using the pGEM®-T Easy Vectors and Transformation using   

JM109 High Efficiency Competent Cells (Promega, Madison, Wisconsin) 

Ligation Protocol and Transformation Protocol were followed as recommended in the technical 

manual of p-GEM T easy vector systems (www.promega.com/protocols/ ) 

Six fungal DNA extract samples, sent by Dr. Andre Levesque from Agriculture and 

Agri Food Canada, Ottawa, which had already been amplified using the ITS4 and ITS5 primers 

in his lab, were amplified using our redesigned and novel primers. The amplicons were cloned 

and the DNA extracts were sent for sequencing and results were analyzed. Three fungal DNA 

extract samples, sent by Dr. Tim Dumonceaux, Agriculture and Agri Food Canada Saskatoon, 

were also amplified using our redesigned and novel primers. The amplicons were cloned and the 

DNA extracts were sent for sequencing and results were analyzed. Diversity of fungal genomes 

tested for amplification of cpn60 gene sequences is shown in a cladogram in Figure 4. 

 

  

http://www.promega.com/protocols/
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Figure 4: Diversity of fungal genomes tested for amplification of cpn60 gene sequences. 

The cladogram shows the three domains of life (in black), four groups of eukaryotes (in red) and 

four fungal phyla (in green). Species tested in this study are in purple. 
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3.3.5 Sequence Analysis  

 The DNA was sequenced in the NRC-PBI sequencing lab using Sanger sequencing. The 

sequences were analyzed using FASTA and BLASTP (after converting nucleotide to peptide 

sequence using Transeq in EMBOSS) in cpnDB and blastn and blastx in NCBI under default 

parameters. 

3.4 Results  

3.4.1 Amplification of S. pombe and S. cerevisiae cpn60 Gene Sequences Using Redesigned 

and Novel Primer Sets. 

The redesigned UT primers were tested with respect to their phylogenetic reach, that is, for their 

ability to amplify phylogenetically divergent fungal cpn60 sequences. S. pombe and S. cerevisiae 

are yeasts with an ancient last common ancestor. The S. pombe cpn60 peptide sequence was in 

the original alignment that formed the basis for the design of the original primers. In 2012, 

cpnDB had 61 full length fungal cpn60 sequences. An in silico approach showed that in 33 of the 

61 cases, the cpn60 UT sequences should be amplifiable by the original primers including that of 

S. pombe. In the remaining 28 cases, the C-terminal amino acid residue of the consensus 

sequence is serine (S) as compared to threonine (T) (Figure 2). Therefore, these 28 sequences 

would not be expected to amplify using the original primers. These included C. albicans and S. 

cerevisiae sequences. Candida species were of specific interest because of the focus on the 

human vaginal mycobiome. For reasons of convenience, S. cerevisiae was used as a stand in for 

Candida albicans, which is of more direct interest with respect to the human vaginal 

microbiome. Therefore, S. pombe and S. cerevisiae DNA extracts were used as genomic 

templates for the following experiments. Various primer combinations were used in PCR to 

amplify cpn60 gene regions for each template. Amplicons were cloned in an E. coli plasmid 
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vector and sequenced. However, some sequences were not obtained because of the technical 

problems like failure of cloning or failing of ligation of amplicon in spite of repeated attempts; 

although, the templates produced a PCR product of expected size on gel. 

Redesigned primers designed to amplify the cpn60 UT sequences (region 2, Figure 

3) were used on both yeast templates. PCR products of the expected sizes were observed in both 

cases. The identity of the S. pombe and S. cerevisiae products was confirmed by cloning and 

sequencing. Amplification may have been less productive for the S. pombe template at higher 

temperatures. Annealing temperature appeared to have little effect for the S. cerevisiae template 

(Figure 5-A1,B1). 

The novel primers designed to amplify regions of cpn60 from fungal templates were 

also tested with respect to their ability to amplify regions of the cpn60 gene from these two 

templates. One of these novel fungal primer pairs (H1780,H1781/H1788) was designed to 

specifically amplify a part of fungal cpn60 region (region 3, Figure 3) in both yeast templates. A 

PCR product of the expected size was the predominant band observed in each case. Amplicon 

production may have decreased with increase in annealing temperature for both yeast templates. 

Cloning and sequencing of amplicons for both yeasts produced vector sequences only. This was 

not pursued further (Figure 5-A2,B2). 

The redesigned cpn60 UT primer and novel fungal reverse primer H1789 designed 

for the amplification of region 4 (Figure 3) produced two major PCR products with the S. pombe 

template. The larger product was confirmed to be correct by sequencing. With S. cerevisiae 

template, multiple bands were observed, one of these was of the expected size. Sequencing of 

selected clones produced only vector sequence. This was not pursued further. The amplification 

appeared to be more productive at lower temperatures in both cases (Figure 5-A3,B3). 
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Region 5 of both the yeast templates was amplified with another novel fungal 

forward primer H1786 and reverse primers H280 and H1613. Amplification of region 5 

produced two major PCR products with the S. pombe template. The smaller product was 

confirmed to be correct by sequencing. The corresponding S. cerevisiae sequencing produced 

vector sequence only. The annealing temperatures did not seem to influence amplicon 

productivity of both yeast templates except for the absence of any PCR product at highest 

temperature in the given gradient (60˚C). Absence of a PCR product at one of the temperatures 

for S. cerevisiae was attributed to the accidental loss of amplicon while loading the gel (Figure 5-

A4,B4). 

The novel fungal primer H1787 was used along with reverse primers H280 and 

H1613 on both the yeast templates to amplify region 6 (Figure 3). PCR products of expected size 

were observed for both S. pombe and S. cerevisiae. The identity of the S. pombe product was 

confirmed by cloning and sequencing. The corresponding S. cerevisiae sequencing produced 

vector sequence only. The amplification was observed to be more productive at lower annealing 

temperatures for both the yeast templates (Figure 5-A5,B5). 

 The novel fungal primer pair H1787/H1789 was used to amplify the cpn60 region 7 

(Figure 3) in both the S. pombe and S. cerevisiae templates. The size of the PCR products 

observed were as expected for both the yeast templates. The sequence of the respective cpn60 

region of the S. pombe template was confirmed by cloning and sequencing. The corresponding 

region of the S. cerevisiae amplicon generated only vector sequence. Amplification products 

were clearly visible at lower annealing temperatures whereas higher temperature gradients failed 

to produce any visible amplicon in either of the cases (Figure 5-A6,B6).  
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The novel fungal primer pair H1786/H1789 was tested to amplify the cpn60 region 8 

(Figure 3) in both the S. pombe and S. cerevisiae templates. PCR products of expected size were 

observed for the S. pombe templates. PCR product for S. cerevisiae was of the expected size but 

the visible productivity of the amplicon was very low or negligible. Cloning and sequencing in 

either case produced only vector sequence. Amplification may have been less productive at 

higher annealing temperatures for S. pombe whereas for S. cerevisiae it was negligible at higher 

and very low at lower annealing temperatures (Figure 5-A7,B7).  

The novel fungal primer pair H1786/H1788 was tested to amplify the cpn60 region 9 

(Figure 3) in both the S. pombe and S. cerevisiae templates. PCR products of expected size were 

observed for both the yeast templates. Cloning and sequencing in both the cases produced only 

vector sequence. Amplification may have been less productive for both the templates at the 

higher annealing temperatures (Figure 5-A8,B8). 
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Figure 5: Electrophoretic analysis of S. pombe and S. cerevisiae PCR products. Ethidium 

Bromide fluorescence images showing electrophoresis of (A) S. pombe and (B) S. cerevisiae 

PCR products (See Figure 3) amplified with primers (1) H1780, H1781 and H1788 (2) H1780, 

H1781 and H280, H1613 (3) H1780, H1781 and H1789 (4) H1786 and H280 (5) H1787 and 

H280 (6) H1787 and H1789 (7) H1786 and H1789 (8) H1786 and H1788 at temperatures (60°C 

to 42°C). Gel was made with 1% agarose. (M) is the DNA molecular weight markers loaded at 

100 ng. Ten μL of PCR reaction was loaded in each well for each of the templates. (N) is the no-

template control. The number of base pairs indicated by yellow arrows indicate migration of 

correct PCR amplicon. 
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3.4.2 Utility of Redesigned cpn60 UT Primers and Novel Primers for Phylogenetically 

Diverse Fungal Taxa 

 Dr. A.Lèvesque provided us with DNA samples from a number of fungi from phylogenetic 

groups that were poorly represented in cpnDB. The identities of these fungi had been determined 

by phenotypic methods and confirmed by analysis of their ITS region sequences. The Genbank 

accession numbers for these fungi based on the ITS region sequences sent by Dr.A.Lèvesque 

were D. hansenii (KP132002.1), M. vinacea (EF434083.1), P. fastigiata (FM999988.1), P 

.graminis (DQ417378.1) and R. littoreum (DQ485604.1). 

The redesigned UT primers and combinations of novel cpn60 primers and 

redesigned UT primers were used to amplify cpn60 sequences from these templates. Amplicons 

were cloned and clones were subjected to Sanger sequencing. The experimental sequences were 

compared to known fungal cpn60 sequences to determine if they were derived from the fungi 

identified by Dr. Levesque or if they were derived from contaminating templates. 

 Samples studied are listed in Table 2. The redesigned UT primers were used with 

each DNA template. For four of the seven templates, amplicons of the expected size were 

generated. These were for F. avenaceum (ascomycota), D. hansenii (ascomycota), P. graminis 

(basidiomycota), and R. littoreum (chytridiomycota). In the cases of the first three templates, 

sequence analysis of the cloned amplicons confirmed their expected identities (Table 2). In the 

case of R. littoreum, determination that the amplified product represented the target fungus rather 

than a contaminant was not as obvious.  A putative intron was found in the experimental 

sequence that is discussed below. If this putative intron sequence is removed and resulting 

sequence is compared to known cpn60 fungal sequences, best hits were to N. patriciarum and B. 

dendrobatidis (73% and 72% respectively). These numbers are low, however, both of these fungi 
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belong to Chytridiomycota suggesting that the experimental sequence is from the R. littoreum 

genome. Furthermore, the amino acid sequence identity was 81% to B.dendrobatidis that further 

supported the analysis. Fungal primers H1787/1789 were also used with each of the DNA 

templates. For five of these seven DNA templates, amplicons of the expected size were 

generated. These were for A. alternata (Ascomycota), C. purpurea (Ascomycota), D. hansenii 

(Ascomycota), F. avenaceum (Ascomycota) and M. vinacea (Zygomycota). Except for F. 

avenaceum, sequence analysis of the other four cloned amplicons confirmed their expected 

identities. Sequence analysis of Fusarium sample generated vector sequence only. Fungal 

primers H1786/H1788 were tried on each of seven DNA templates and amplicons of expected 

size were generated for three of these seven DNA samples, C. purpurea, D. hansenii and 

Phialophora fastigiata. Sequence analysis confirmed the expected identities of C. purpurea, D.  

hansenii DNA samples. The C. purpurea sample was amplified by two sets of primers 

H1786/H1788 and H1787/1789. When the sequences amplified by both the primer sets were put 

together, there was a 32 bp gap formed where primer landing sites for 1787 and 1788 primers 

overlapped (Figure 3). Reference sequence for P. fastigiata is present neither in cpnDB nor in 

NCBI database. The closest nucleotide hit for its experimental nucleotide sequence was 

Marssonina brunnea (NCBI:XM_007293454.1), also an ascomycete and the identity was 87%.  
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Table 2: PCR amplification of the cpn60 UT or portions of the cpn60 gene from DNA 

extracts from phylogenetically diverse fungal taxa not represented in cpnDB using 

redesigned or novel cpn60 primers. 

Sample 

ID 

Taxonomy cpn60 

regions 

sequenced 

(Fig.3) 

Comparison of experimental sequences to 

reference sequences 

Alternaria 

alternate 

Ascomycota 

A. alternata 

7 Experimental nucleotide sequence was 99% 

identical to A. alternata (NCBI:EU285274.1). 

Ergot Ascomycota  

Claviceps  

purpurea 

 

7, 9 Experimental nucleotide sequence was 95% 

identical to C. purpurea reference nucleotide 

sequence (NCBI: XM_003716778.1) and 

translated experimental sequence was 96% similar 

to C. purpurea (NCBI:CCE28256.1).  

Fusarium Ascomycota  

F. avenaceum 

 

2 Experimental nucleotide sequence was 97.7% 

identical to Gibberella avenaceum (cpnDB 

:b7306), an ascomycete. F. avenaceum is an 

anamorphic form of G. avenaceum (Cook, 1967). 

KS-81 Ascomycota 

Phialophora 

fastigiata 

 

9 Experimental nucleotide sequence was 87% 

identical to Marssonina brunnea 

(NCBI:XM_007293454.1) that is an ascomycete. 

The translated experimental sequence was 100% 

identical to M. brunnea (NCBI:XP_007293516.1) 

an ascomycete. cpnDB and NCBI do not have P. 

fastigiata reference sequence (as of 2012). 

KS-45 Ascomycota 

Debaryomyces 

hansenii  

2, 7, 9 Experimental nucleotide sequence was 100% 

identical to D. hansenii (cpnDB:b5730). 

RSA1924

B-3B 

Basidiomycota  

Puccinia  

Graminis 

2 Experimental nucleotide sequence was 99% 

identical to P. graminis (NCBI: 

XM_003334157.2).  

LEV5712 Chytridiomycota 

Rhizophydium  

littoreum 

 

2 Experimental nucleotide sequence was 73% 

identical to Neocallimastix patriciarum (cpnDB: 

b4156) and 72% identical to Batrachochytrium 

dendrobatidis (NCBI: XM_006682509.1) and 

translated sequence was 81% identical to B. 

dendrobatidis (NCBI: XP_006682572.1), a 

chytridiomycete. cpnDB and NCBI do not have  

R. littoreum cpn60 sequence (as of 2012). 

LEV1641 Zygomycota  

Mortierella 

 vinacea 

 

7 The experimental nucleotide sequence was 88% 

identical to Mucor circinelloides 

(NCBI:KE124010.1) and translated sequence was 

88% identical to  M. circinelloides ( 

NCBI:EPB85507.1), a zygomycete. cpnDB does 

not include M. vinacea sequence (as of 2012). 



55 
 

 3.4.3 Putative Intron in cpn60 Sequence of Rhizophydium littoreum (LEV5712).  

An alignment of the experimental R. littoreum UT nucleotide sequence and its best hit match N. 

patriciarum was produced (Figure 6). The R. littoreum sequence appeared to include a 20 base 

internal addition relative to the reference sequence N. patriciarum which would produce a frame-

shift in the experimental sequence. The alignment in Figure 7 was adjusted to maximize the 

amino acid sequence similarity between the experimental sequence and reference sequence. The 

20 base addition is discussed further in Figure 7 and in 3.6. 
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A  T  V  L  T  R  A  I  F  T  E  G  L  K  N  V  S  A  G  V    

gctactgtcttgactcgtgctatctttaccgaaggtttaaagaacgtctctgccggtgtc  60   

||||||||  |  |  | || || ||  | |||||||||||||  |||||||| ||||| 

gctactgttcttgccagagccattttcgctgaaggtttaaagaatgtctctgctggtgtt  60   

A  T  V  L  A  R  A  I  F  A  E  G  L  K  N  V  S  A  G  V    

 

N  P  N  D  L  R  R  G  V  Q  Q  A  V  E  L  V  V  A  Y  L    

aacccaaatgacttgagacgcggtgttcaacaagcggtagaactcgttgttgcctactta 120  

||||||  |||  | ||| | ||||||||| | || || ||  | |||||||  | | |  

aacccagttgaacttagaagaggtgttcaaaaggctgttgatgttgttgttgatttcctt 120  

N  P  V  E  L  R  R  G  V  Q  K  A  V  D  V  V  V  D  F  L    

 

K  A  N  A  Q  P  I  T  T  S  Q  E  I  A  Q  V  A  T  I  S    

aaggcaaatgctcaaccaatcactaccagtcaagaaattgctcaagttgccaccatctct 180  

|| | | | ||||| ||||| | |||   | |||||||||||||||| |  ||||| |||  

aaagaacaagctcatccaattagtacttttgaagaaattgctcaagtcggtaccatttct 180  

K  E  Q  A  H  P  I  S  T  F  E  E  I  A  Q  V  G  T  I  S    

 

A  N  G  D  K  H  V  G  E  M  I  A  K  A  M  D  K  V  G  K   

gccaacggtgacaagcatgtcggtgaaatgattgcaaaggccatggacaaggttggcaaa 240  

|| || ||||| |||||| | ||||   |  | ||  | |||||| | |||||||| || 

gctaatggtgataagcatattggtggtcttttagctgaagccatgaaaaaggttggtaag 240  

A  N  G  D  K  H  I  G  G  L  L  A  E  A  M  K  K  V  G  K    

 

E  G  V  I  T  C  Q  E  G  K  T  L  V  D  E  L  D  I  T  E    

gaaggtgtcattacctgccaagaaggaaagactcttgttgatgaattggacattaccgaA 300  

|| ||||| |||| |   || ||||| || |||||||  ||||||||   |||||| || 

gatggtgttattaacattcatgaaggtaaaactcttgaagatgaattaaccattactga. 299  

D  G  V  I  N  I  H  E  G  K  T  L  E  D  E  L  T  I  T  E 

 

                    G  M  R  F  D  R  G  F  I  S  P  Y  F  M    

GGTATTCGATTTCTAATTCaggtatgagattcgatagaggtttcatttctccatacttta 360  

                   |||||||| ||||||||  |||||| | |||| | |||| |  

...................aggtatgaaattcgataacggtttcttatctccacacttca 340  

                    G  M  K  F  D  N  G  F  L  S  P  H  F  I 

 

  T  N  N  K  S  Q  K  V  E  F  E  K  P  L  V  L  L  S  E  G 

tgaccaacaacaagtcccaaaaggttgaatttgaaaagcctttggttttgctttccgagg 420  

| ||  | || |||    | ||   |||| | ||||| || |   ||||  || |||| | 

ttactgataataagggtaagaaatgtgaactcgaaaatccatacattttaattaccgaag 400  

  T  D  N  K  G  K  K  C  E  L  E  N  P  Y  I  L  I  T  E  E 

 

  K  I  S  Q  L  Q  D  L  L  P  A  M  E  I  A  A  Q  S  R  R 

gaaagatctctcaattgcaagatttgcttcctgccatggaaattgctgctcaatcccgtc 480  

 ||| || |||    | |||||| |  |||| ||  | |||||||||||| |   |||| 

aaaaaatttctgctgttcaagatattgttccagctttagaaattgctgctaacaaccgta 460  

  K  I  S  A  V  Q  D  I  V  P  A  L  E  I  A  A  N  N  R  R 

 

  P  L  L  I  I  A  E  D  V  D  G  E  A  L  A  A  C  I  L  N 

gtccattgttgattattgctgaagatgttgatggtgaagctttggctgcttgtatcctca 540  

| ||| | || ||||||||||| |||||||| ||||| ||||| ||| ||||| | || | 

gaccacttttaattattgctgatgatgttgaaggtgatgctttagctacttgtgttctta 520  

  P  L  L  I  I  A  D  D  V  E  G  D  A  L  A  T  C  V  L  N 

 

  K  L  R  G  Q  L  Q  V  A  C  V    

acaagcttagaggacaattgcaagtcgcttgtgta 575  

||||| || | || ||| | |||||   |||  | 

acaagattcgtggtcaagtccaagtttgttgtatt 555  

  K  I  R  G  Q  V  Q  V  C  C  I   

 

Figure 6: Aligned R. littoreum (upper sequence) and N. patriciarum (lower sequence) cpn60 

UT sequence. 
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Figure 7: Proposed origin of putative intron in R. littoreum cpn60 UT sequence. The figure 

is superimposed on the original figure by Yenerall and Zhou, 2012, showing one of the modes of 

intron gain called transposon insertion.

GACATTACCGAAGGTATGAGATTCGATAG 
CTGTAATGGCTTCCATACTCTAAGCTATC 

GACATTACCGAAGGT    ATGAGATTCGATAG 
CTGTAATGGCT    TCCATACTCTAAGCTATC 

GACATTACCGAAGGT ATTCGATTTCTAATTC     ATGAGATTCGATAG 
CTGTAATGGCT                      TCCATACTCTAAGCTATC 

GACATTACCGAAGGTATTCGATTTCTAATTCAGGTATGAGATTCGATAG 
CTGTAATGGCTTCCATAAGCTAAAGATTAAGTCCATACTCTAAGCTATC 

GACAUUACCGAAGGUAUUCGAUUUCUAAUUCAGGUAUGAGAUUCGAUAG 

GACAUUACCGAAG GUAUUCGAUUUCUAAUUCAG GUAUGAGAUUCGAUAG 

GACAUUACCGAAGGUAUGAGAUUCGAUAG 

Generation of sticky ends at AGGT 

Insertion of transposon 

Filling of gaps by DNA polymerase (repeats underlined) 

Transcription (without processing) 

Possible recognition pattern by spliceosome 

Pre-mRNA processing 
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3.5 Discussion 

The universality of the cpn60 gene, its demonstrated utility to differentiate closely related species 

and subspecies because of the sufficient sequence difference present in cpn60 UT from closely 

related species (Hill et al., 2004) and its recent evaluation as a DNA barcode for bacteria (Links 

et al., 2012), led us to investigate whether the redesigned and novel cpn60 primers amplify cpn60 

gene from a broad range of fungal taxa.  

The redesigned cpn60 universal primers amplified UT sequence both from S. pombe 

and S. cerevisiae as expected and DNA sequence analysis evidence was available for both the 

templates. With novel primers, based on amplicon sizes, all appeared to have worked on both the 

templates. DNA sequence evidence was available for some templates. Multiple bands were 

observed in few cases, out of these, DNA sequence analysis evidence was obtained for S. pombe 

templates.  

For taxa not represented in cpnDB, little reference data was available for comparison 

to experimental data. The experimental sequences were probably of the same taxonomic group as 

identified in Dr.Lèvesque`s lab unless and until there was another fungal contaminant in these 

samples. Low level contamination by commensal fungi or environmental spores can be a 

problem when using universal primers.  Previously, in the Hemmingsen lab, DNA extracts 

prepared from spores of Arbuscular Mycorrhizal (AM) Fungi were analyzed. In some cases, 

cpn60 sequences were amplified from these extracts that were consistent with a fungal source but 

not consistent with an AM fungal source. In these cases the most abundant template in the 

extract (AM fungal genomic DNA) failed to produce an amplicon while a template representing 

a minor contaminant did. That means, great caution must be taken while analyzing sequence data 

to avoid false positive results. Some cases where reference cpn60 sequence was not available in 
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databases, identification of fungal taxa will get more specific as more of fungal sequences are 

deposited in cpnDB or NCBI database.  

The cpn60 universal target sequence was amplified from F. avenaceum 

(ascomycota), D. hansenii (ascomycota), P. graminis (basidiomycota), and R. littoreum 

(chytridiomycota). Three other ascomycetes and a zygomycete did not amplify with UT primers. 

Other cpn60 gene parts were also amplified from different samples using novel cpn60 primers 

that were designed specifically for fungal cpn60, although some regions were not amplified in 

these different samples. Novel fungal primers H1787/1789 generated DNA sequences for A. 

alternata (Ascomycota), C. purpurea (Ascomycota), D. hansenii (Ascomycota), and M. vinacea 

(Zygomycota), except for F. avenaceum (Ascomycota). The cpn60 UT region seemed to be more 

often amplified (in seven out of eight samples) than other regions (three out of eight samples on 

5` end and four out of eight samples on 3` end). Sequence analysis identified C. purpurea and D. 

hansenii as expected when novel fungal primers H1786/H1788 were used. With same primers, P. 

fastigiata, an ascomycete, was identified to be 87% identical to another ascomycete in the 

absence of any reference sequence. 

In cases where expected sequences were obtained upon analysis of experimental 

sequence, it was possible to obtain the exact sequence of the degenerate primers. As an example, 

if expected sequence is generated by primers H1787/H1789 for DNA sample of A. alternata, the 

exact sequence of primer H1780 can be known from it and can be used to make more specific 

primers for A. alternata and this can be helpful to know another part of its cpn60 sequence.  

This study produced substantial evidence that redesigned cpn60 UT primers and novel primers 

specific for fungi have utility for detecting and identifying fungal taxa from phylogenetically 

diverse fungi. Therefore, the cpn60 UT can be useful for the detection of both bacterial and 
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fungal taxons unlike other gene targets for detection of micro-organisms that can detect either 

fungi or bacteria. 

The chytrid sample, LEV5712 was identified as Rhizophydium littoreum by ITS. 

Chytrids belong to phylum Chytridiomycota. They are characterized by the formation of 

zoospores and a posterior flagellum at some stage of their lifecycle. They are mostly parasites on 

marine algae, other chytrids and invertebrates. The interest in chytrids was heightened in 1998, 

when a vertebrate parasite Batrachochytrium dendrobatidis (Bd) was discovered which was 

devastating populations of amphibians (Longcore et al., 1999). There were only three chytrid 

sequences in cpnDB (2 Piromyces and one Neocallismatix) and although there were 6 

Rhizophydium sequences in Genbank, none were cpn60. Redesigned cpn60 UT primers were 

able to amplify the UT part of the Rhizophydium DNA and the best nucleotide hit was 

Neocallimastix patriciarum (74%) and the best peptide hit was Bd (81%) in NCBI. The sequence 

on analysis showed a 20 bp insertion as compared to the cpnDB entries (Figure 6). Since the 

number of inserted nucleotides is not a multiple of three, this insertion should cause a frameshift 

mutation in the gene and render it non-functional in which case it may be a pseudogene. But if it 

is not making the gene non-functional, the insertion may be an intron occurring as a result of 

transposon insertion, a type of intron gain (Figure 7). In this type of intron creation, a transposon 

sequence inserts itself into sequence AGGT which is believed to be the preferential site for 

intron gain and the coding sequence of the gene is not altered (Yenerall and Zhou, 2012). 

Whether this insertion is an intron can be demonstrated using a simple experiment of amplifying 

the cDNA, obtained by reverse transcription of mRNA extracted from chytrid sample, with 

cpn60 primers. On further cloning and sequencing, the insertion believed to be an intron will no 

longer be present in the final sequence. 
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The presence of a putative intron in the Rhizophydium sequence was interesting because 

intron was short i.e. 20 bp. Minimum length of introns in two of the most studied fungi, S. 

cerevisiae is 52 bp (Spingola et al., 1999) and in S. pombe is 35 bp. The intron size distribution 

in fungi is biased towards shorter introns with 33% of the introns being shorter than 100bp (41 to 

60 nt). The intron observed in the Rhizophydium sample was 20 bp long. In one of the studies on 

Rhizophydium tubulin genes, 4 introns were found with lengths of 22, 23, 25 and 37 bp. From 

these findings, it suggests that Rhizophydium chytrid seems to have very short introns. This is the 

first time that cpn60 gene has been systematically studied as a target for fungal identification; 

therefore, not much literature is available for the same. According to standard protocol followed 

for amplification of bacterial templates, amplicons obtained from PCR are run on ethidium 

bromide gel and bands of appropriate size are cut. In case of eukaryotic templates, the size of 

required PCR products may not appear to be of appropriate size on gel due to the presence of 

insertions in them, as a result, the product can be discarded although it is the right PCR product. 

Therefore, the standard protocols should be redesigned for the appropriate detection of 

eukaryotic PCR products on gel. Chytrid amplicon in our lab had a 20 base internal addition that 

was very short and the difference between size of PCR product with and without this addition 

was not very visible on gel, and therefore the PCR product was extracted expecting it to be of the 

expected cpn60 size.  

3.6 Conclusions 

The redesigned cpn60 UT fungal primers amplified cpn60 UT from fungal DNA extracts of both 

S. pombe and S. cerevisiae that represent the sequences present in cpnDB as confirmed by 

sequencing.  Based on the observation of PCR products of expected sizes in all cases and 

confirmation by sequencing in few cases, we have reasonable evidence to show that the novel 
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fungal primers specific for fungi, amplified most parts of the cpn60 gene from fungal DNA 

extracts of both S. pombe and S. cerevisiae. The redesigned cpn60 UT and novel fungal primers 

also amplified many parts of the cpn60 gene including cpn60 UT from fungal DNA extracts 

from fungal species that are not represented in cpnDB (diverse phylogeny in the fungal 

kingdom). Although more number and wider diversity of fungal samples could have been tested 

using the redesigned and novel cpn60 primers in this study, it is worthwhile to say that these 

primers can be useful for the amplification of cpn60 from a wide if not all diversity of fungi. 

Therefore, here we show that the cpn60 UT region is useful for the detection of both bacterial 

and fungal sequences. This also gives it the advantage over 16S rRNA encoding gene that can be 

used just for bacterial detection or 18S rRNA encoding gene that can be used just for the fungal 

detection. The cpnDB is a sparsely populated database with regard to fungal kingdom, we hope 

to expand it using the redesigned and novel fungal cpn60 primer sets. The results from 

temperature studies for redesigned primers and novel primers may not provide very useful 

information for future studies. The amplifications may have been carried out by choosing one or 

two temperatures already used successfully in many previous studies to save time, resources and 

labour. As in cases where no amplification was obtained, other factors like presence of secondary 

structures in templates, number of PCR cycles, Mg2+ concentration may have been involved.  
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4.0 Utility of Redesigned cpn60 UT PCR primers for Microbiome Profiling 

4.1 Hypotheses and Experimental Approach 

To be useful, for a given microbial community comprised of both fungal and bacterial taxa, the 

redesigned cpn60 UT primers should produce similar bacterial profiles, and similar or improved 

fungal profiles as compared to the original cpn60 UT primers. To test these hypotheses, bacterial 

and fungal profiles were generated using the original and redesigned cpn60 UT primers and two 

independent vaginal metagenomic DNA templates. Two DNA templates with distinct 

community structures were produced by pooling aliquots of selected DNA samples obtained 

from 100 individual women. 

4.2 Objectives 

To test the efficacy of redesigned cpn60 UT primers on vaginal microbiome, DNA templates 

from healthy and unhealthy women as representative complex microbial communities with 

different profiles and compare the profile so obtained on same templates with original cpn60 UT 

primers. 

4.3 Material and Methods 

4.3.1 Vaginal Sample Pools (metagenomic DNA templates) 

The current study was a part of a larger ongoing study of the vaginal microbiome (Vaginal 

Microbiome Group initiative). In the larger study, vaginal samples were collected from 100 

women who were classified as either HIV negative or HIV positive. It should be noted that as a 

result of treatment with retroviral drugs, the woman in the latter category were largely healthy. 

DNA was extracted from these samples using MagmaxTM Total Nucleic Acid Isolation Kit 

(http://tools.lifetechnologies.com/content/sfs/manuals/cms_055603.pdf). DNA extraction was 

http://tools.lifetechnologies.com/content/sfs/manuals/cms_055603.pdf
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done by Dr. Bonnie Chaban in the laboratory of Dr. Janet Hill, University of Saskatchewan. 

This method included a bead beating step to shear/tear open cells. Supposedly it should have 

extracted DNA from all types of cells including fungal cells if present in the vaginal samples. 

300 µL of sterile 1X Phosphate Buffered Saline (PBS) Buffer (pH 7.4) was initially added to 

the vaginal swab in the dry swab container. The swab was vortexed for 30 seconds and 200 µL 

of the sample solution was removed from the swab container and placed into a 1.5 mL tube.  At 

this step, the original swab and swab container were discarded. 235 µL of MagMAX 

Lysis/Binding Solution Concentrate was added to a prepared tube of zirconia beads in a 

guanidinium thiocyanate-based solution. 175 µL of the sample solution was then transferred 

from the 1.5 mL tube and added to the prepared tube of zirconia beads. This tube was then 

vortexed for 15 minutes and then centrifuged for 3 minutes at 16,000 x g using the Eppendorf 

Centrifuge 5430. This procedure allowed the zirconia beads to mechanically disrupt the cells, 

releasing nucleic acid content. Guanidinium thiocyanate was present to inactivate the nucleases 

present in sample solution. 115 µL of this sample supernatant was transferred to a well of the 

processing plate (96-well plate). 65 µL of 100% isopropanol was added to each sample in 

processing plate and the plate was shaken for 1 min on the orbital multi-well plate shaker. 20 

µL of freshly vortexed bead mix was added to the sample. It was shaken for 5 min so that 

nucleic acid could bind to the nucleic acid binding beads in the bead mix. The plate was then 

moved to the magnetic stand and left there for 5 min. When the beads formed a pellet in the 

magnetic stand, the supernatant was aspirated and discarded without disturbing the bead pellet 

and the processing plate was removed from the magnetic stand. 150 µL of Washing solution 1 

(12mL 100% isopropanol added to bottle labelled Washing solution 1) was added and the plate 

was shaken until mixture was clear (~1 min). Supernatant was again aspirated and discarded 
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without disturbing the beads. Washing with washing solution 1 was repeated. The next washing 

was done with 150 µL Washing Solution 2 (32mL 100% ethanol added to bottle labelled 

Washing Solution 2) twice in the same way. The beads were dried by shaking the plates until 

all the alcohol had evaporated. Elution buffer was brought to 65°C and ~30 µL was added to 

sample and shaken vigorously for ~3min, so that beads are evenly suspended in solution. The 

beads were captured by placing the plate on magnetic stand. The supernatant containing DNA 

was transferred to a nuclease free container. Two DNA pools were created from these extracted 

samples, an HIV negative pool (V1A) and HIV positive pool (V1B) with 10 µL aliquots from 

12 women each (personal communication Dr.Bonnie Chaban). The resulting 2 pools had 

distinct metagenomic profiles. The prepared pools were stored at -80°C until further use. 

4.3.2 Amplicon Libraries for Next-Generation Sequencing 

The PCR amplification was done with cpn60 MID-tagged UT primers. A MID (Multiplex 

IDentification) tag is a member of a set of unique 10 bp sequences that is added to primer sets to 

be used in the amplification of DNA templates. The MID allows for the differentiation of unique 

samples in future processing steps. The cpn60 UT was amplified from the pools using 5’MID-

tagged cpn60 UT original and redesigned primers on each of DNA template V1A and V1B 

resulting in four libraries. PCR was done on an Eppendorf Mastercycler EP gradient 

thermocycler. For PCR amplification, a separate master mix solution was created for each of the 

subsequent four libraries that will be made as a result of PCR amplification. This master mix 

consisted of:  477.4 µL of Ultrapure Water, 70 µL of 10 x PCR Buffer (In vitrogen), 35 µL of 50 

mM MgCl2 (In vitrogen), 14 µL of 10 mM dNTP, and 5.6 µL of 5 U/ µL Platinum Taq (In 

vitrogen) so that the final concentrations of reagents in the master mix were PCR buffer 1X, 

MgCl2 2.5 mM, dNTPs 200 µM and Platinum Taq 2.5 U/reaction and final volume of the master 
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mix was 602 µL. The MID-tagged primer stocks were made as follows: For V1A, original 

primers with MID20 i.e. 3 µL of 100 mM H279, 3 µL of 100 mM H280, 9 µL of 100 mM 

H1612, 9 µL of 100 mM H1613 and 276 µL of Ultrapure Water were mixed and 70 µL of this 

MID-primer mix added to master mix later. For V1B, original primers with MID4, i.e. 3 µL of 

100 mM H279, 3 µL of 100 mM H280, 9 µL of 100 mM H1612, 9 µL of 100 mM H1613 and 

276 µL of Ultrapure Water were mixed and 70 µL of this MID-primer mix added to master mix 

later. For V1A, redesigned primers with MID1, i.e. 3 µL of 100 mM H1782, 3 µL of 100 mM 

H280, 9 µL of 100 mM H1783, 9 µL of 100 mM H1613 and 276 µL of Ultrapure Water were 

mixed and 70 µL of this MID-primer mix added to master mix later. For V1B, redesigned 

primers with MID2, i.e. 3 µL of 100 mM H1784, 3 µL of 100 mM H280, 9 µL of 100 mM 

H1785, 9 µL of 100 mM H1613 and 276 µL of Ultrapure Water were mixed and 70 µL of this 

MID-primer mix added to master mix later. The sequence and function of these primers have 

been explained in Table 1a.  The primers H279 and H280 fail to amplify GC rich templates such 

as Bifidobacteria from complex mixture of templates. The reason for the inclusion of the primer 

set of H1612 and H1613 was that this primer set has proven to improve the representation of 

templates with high GC contents when used with previously developed degenerate cpn60 

primers (Hill et al., 2006). A No Template Control tube or “NTC,” was also set up to test for any 

potential contamination that may occur in course of study protocol as well as to ensure that 

reagents were free of contamination.  The master mix solution, the primer working stock solution 

and the sterile PCR tubes were then placed under an ultraviolet (UV) light in a “Cleanspot” UV 

cabinet for 10 minutes to allow for the inactivation of any DNA products through the formation 

of thymine dimers (Schreier et al., 2007). 70 µL of the MID-primer mix was then added to the 

tube of master mix solution.  48 µL of this complete master mix solution was then added into the 
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NTC tube.  24 µL of the vortexed sample solution was then added to this complete master mix 

solution.  50 µL of this mixed solution was aliquoted into each of the 12 PCR tubes. These 12 

PCR tubes were then added to the top row of the Eppendorf Mastercycler EP Gradient Thermal 

Cycler over temperature gradient. Annealing temperatures were 41.9, 42.3, 43.4, 45.1, 47.2, 

49.6, 52.0, 54.4, 56.5, 58.3, 59.5 and 60.1°C. The NTC tube was added to column 12 of the 

second row of the thermal cycler. PCR conditions were:  95°C – 5min, 40 cycles (95°C – 30s, 

41.9-60.1°C Gradient – 30s, 72°C – 30s), 72°C – 2min, 10°C – hold.  After the PCR program 

was complete, the amplified cpn60 target samples in all 12 of the PCR tubes were pooled 

together into a single microfuge tube. The names of the resulting four libraries were: V1A with 

original primers, V1A with redesigned primers, V1B with original primers and V1B with 

redesigned primers. In order to check for any contamination that may have occurred during 

following the protocol, the pooled PCR samples were run on 1% agarose gel along with NTC. 1 

µL of ethidium bromide was added to the gel wells for its DNA visualization under UV light. 5 

µL PCR sample and NTC was mixed with 2 µL DNA electrophoresis sample buffer and run on 

the gel.  A DNA ladder was also added to one of the wells to indicate the size of the DNA in the 

sample. The gel was run at 100 volts for ~35 min. An image of the exposed gel was captured 

with Alpha Innotech AlphaImager instrument. The NTC lanes were blank with no visible bands 

showing absence of any contamination. The samples were ready for concentration and 

purification. 

The amplified samples were concentrated using Amicon Ultra 0.5 Centrifugal Filters 

Units with Ultracel-30 membranes. This concentrated PCR product was then purified by gel 

purification by using a rainbow tracking dye.  Rainbow tracking dye composition was: 0.5 mL of 

0.5 M EDTA (pH 8.0), 12 g Sucrose, 0.06 g Bromophenol Blue, 0.07 g Xylene Cyanol FF, 0.06 
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g Cresol Red, 0.11 g Orange G, and Ultrapure Water to a total volume of 25 mL. 5 µL of this 

Rainbow tracking dye was added to ~30 µL of each amplified sample. The gel was run at 100 V 

for ~30min. To get the relevant cpn60 amplicons, the entire red band (has the 600-900 bp region) 

and the top part of the purple band (has the 300-600 bp region) were cut out. Each gel fragment 

was then purified using Qiagen`s Q1AEX II gel extraction kit (catalog no. 20021). Each 

purification resulted in ~20 µL PCR product. The amount of DNA present in each tube was 

quantified using Quant iT dsDNA kit (Qubit dsDNA BR assay; Life Technologies, Burlington, 

Canada) as described in section 3.4.2. The concentration of samples was: V1A with original 

primers-365 µg/mL, V1A with redesigned primers-53.8 µg/mL, V1B with original primers-151 

µg/mL and V1B with redesigned primers-196 µg/mL. 

4.3.3 Pyrosequencing of cpn60 UT Amplicons 

 The four libraries were pooled and a single pool was created so that each sample contributed 

1250 ng DNA and the concentration of the sample was 28.3 µg/ µL. The 3 major stages involved 

in the preparation of these samples included: fragment end repair and adaptor ligation, emulsion 

PCR and bead enrichment, and PicoTiterPlate preparation.  The 3 manuals followed for this 

processing can be found at (http://454.com/downloads/my454/documentation/gs-junior.pdf). 

 In the first step, Rapid Library preparation was performed using the GS_Junior 

Titanium series Rapid Library preparation method. In the manual in section 3.2 for fragment end 

repair at step 2, 16 µL of pooled 28.3 µg/ µL sample was used (500 ng of DNA).  AMPure bead 

preparation was done using steps 5-8 from section 3.3 and then adaptor ligation was done using 

section 3.4, unligated adaptor removed in section 3.5 and library quality assessed in section 3.6.2 

using Agilent bioanalyzer. The assessment showed that the average fragment length was between 

600~900 bp (715 bp) and the lower size cut off was less than 10% below 350 bp as expected. 

http://454.com/downloads/my454/documentation/gs-junior.pdf
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In the second step, Emulsion PCR (emPCR) amplification was performed by 

following the GS-Junior emPCR Amplification method. Here ssDNA is annealed to excess of 

DNA capture beads. Then DNA capture beads and PCR reagents were emulsified in water-in-oil 

microreactors where amplification took place. The method was followed from section 2.1. In 

Section 3.1, Live Amp Mix was prepared according to Table 1a of manual in section 3.1.2. In 

section 3.2, step 6, 50 µL of 2.7x107 copies/ µL of adaptor ligated library was put into a PCR 

tube and heat denatured and in step 8, 10 µL of DNA library was added to the tube of washed 

capture beads. And then steps were thoroughly followed till section 3.7.  

The third step is the sequencing step, for which the sequencing method manual was 

thoroughly followed. The emPCR amplicons were sequenced on a picotiter plate (PTP). The PTP 

is loaded into the GS junior sequencer for sequencing. The resulting sequence data was then 

sorted by the unique multiplexing ID (MID).  

4.3.4 Data Analysis using Microbial Profiling of Metagenomic Samples.  

Pyrosequencing data was analysed using a bioinformatic pipeline called mPUMA (Links et al., 

2013) (Figure 8). Sequence assembly and chimera checking was performed with gsAssembler 

(Grabherr et al., 2011) and Bowtie2 (Langmead and Salzberg, 2012) was used for reference 

mapping to map each experimental read on to reference OTU sequences assembled with 

gsAssembler. Removal of PCR primer sequences was done with seqclean (sourceforge). Non-

chimeric OTU and non-redundant peptide sequences were clustered at 100% identity by CD-hit 

(Li and Godzik, 2006) to remove redundant sequences. BLASTX (Altschul et al., 1997) was 

used to identify the correct reading frame for translation of OTU and then translate it to 

corresponding peptide OTU. Libraries were compared in a taxonomic context using classifier 
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results loaded into MEGAN (Huson et al., 2007). Abundance files, rarefaction curves and indices 

of diversity for OTU were created using MOTHUR (Schloss et al., 2009). 
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Figure 8: Microbial profiling of metagenomic assemblies pipeline (Links et al., 2013) (with 

permission from authors) showing mPUMA workflow.  

mPUMA workflow. Programs used at each step in the pipeline are shown in red. A. User-

defined protocol options for assembly and read-to-operational taxonomic unit (OTU) tracking 

include gsAssembler for both processes (green arrows), gsAssembler plus Bowtie 2 for read 

tracking (blue arrows), and Trinity assembly plus Bowtie 2 for read tracking (purple arrows). B. 

Post-assembly analysis of OTU and abundance data. Gray boxes indicate possible downstream 

analysis tools for which input is generated by mPUMA. The horizontal broken line indicates the 

transition from analysis of nucleotide OTU ((nt) OTU) and translated peptide OTU ((aa)OTU). 

WateredBLAST is a combination of BLAST and Smith-Waterman alignments (Links et al., 

2013). 
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4.3.5 Phylogenetic Trees 

cpn60 reference sequences that were identified as best hits for experimental sequences were used 

to generate a phylogenetic tree. Experimental sequences having the same best hit were clustered 

for this analysis. Thus, a number distinct sequences, each sequence being most similar to a given 

reference sequence were clustered.  Sequences for this tree were aligned using ClustalW (gap 

opening penalty=10, gap extension penalty=0.10) (Thomopson et al., 1994), followed by 

utilization of the Phylip software package (Felsenstein, 1989) to calculate a distance matrix using 

dnadist and construct a tree using neighbor. The final tree was obtained from the bootstrapped 

consensus of 300 trees and was visualized using Treeview (Page, 1996). The abundance of 

experimental sequences were represented using http://itol.embl.de/  (Letunic and Bork, 2007). 

The tree for G. vaginalis sequences was made using all the G. vaginalis reference 

sequences from cpnDB including those used in (Jayaprakash et al., 2012) along with all the 

experimental G. vaginalis sequences obtained in our study. Sequences for both the trees were 

aligned using ClustalW (gap opening penalty=10, gap extension penalty=0.10), followed by 

utilization of the Phylip software package to calculate a distance matrix using dnadist and 

construct a tree using neighbor. The final tree was obtained from the bootstrapped consensus of 

300 trees and was visualized using Treeview. The abundance of experimental G. vaginalis 

sequences were represented using http://itol.embl.de/  (Letunic and Bork, 2007). 

 4.4 Results  

4.4.1 Bacterial Profiles for Vaginal Samples. 

 A total of 71,552 reads was generated from four amplicon libraries. The number of reads in each 

library were: V1A with original primers-15274, V1A with redesigned primers-9163, V1B with 

original primers-34878 and V1B with redesigned primers-12237. The reads were assembled into 

http://itol.embl.de/
http://itol.embl.de/
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504 OTU where each OTU was a unique cpn60 UT nucleotide sequence. Two OTU may have 

differed by as little as one nucleotide over the UT.   

4.4.1.1 Rarefaction Curves for Amplicons produced using Original and Redesigned cpn60 

UT Primers and Vaginal Metagenomic DNA Templates. To assess if the sampling of each 

vaginal sample was thorough and well represented, rarefaction curves were generated using 

MOTHUR (Figure 9). Subsampling was performed to normalize sequence reads as each library 

had different number of sequence reads. This was done to avoid biases introduced by unequal 

sampling effort (Gihring et al., 2012). To accomplish this, OTU abundance data for each sample 

was sub-sampled at random to the size of the smallest library. In other words, random selection 

of number of sequence reads from each sample was done that pertained to lowest sequence 

abundance among all samples. Here the number of reads ranged from 9163 to 34878 and the 

number was normalized to 8900 sequence reads. The rarefaction curves were generated using 

MOTHUR by plotting the number of OTUs as a function of the number of sequence reads. The 

number of normalized sequence reads sampled were plotted on the X-axis of graph and the no. of 

OTUs observed for that number of sequence reads were plotted on Y-axis. As the number of 

sequences analysed leads to completion, the curve will flatten if all the species present in the 

samples have been discovered and further analysis will not give additional taxa. In the present 

results, pyrosequencing of the cpn60 UT resulted in nearly complete sampling of the taxonomic 

richness of the samples meaning that most unique taxa were identified by sampling effort 

applied. In Figure 9, for DNA template V1A, the curve for redesigned primers exactly followed 

the curve generated for original primers, indicating that both primers produced equal species 

richness. The same was the case with curves generated for template V1B with original and 

redesigned primers, where both of them showed nearly equal species richness (labelled 
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'difference between primers').  If one primer set had amplified more taxa than the other primer 

set, than the curves would have been far apart. Also, the large difference between the curves 

from samples V1A and V1B (labelled 'difference between templates') showed that we used 

samples from two microbial communities with very distinct profiles. The difference between the 

DNA templates (V1A and V1B) from two microbial communities is obvious and greater than the 

difference between the working of redesigned and original primers on the same microbial 

community.  
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Figure 9: Rarefaction curves for amplicons produced using original and redesigned cpn60 

UT primers and vaginal metagenomic DNA templates. The figure shows that the difference 

between diversity of templates V1A and V1B is more than the difference between the behaviour 

of original and redesigned primers  
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4.4.1.2 Comparison of Diversity Indices for cpn60 UT Amplicon Sequences produced using 

Original and Redesigned Primers and Vaginal Metagenomic DNA Templates. 

There are a handful of indices for looking at diversity of samples. One of these is Shannon`s 

diversity index the value for which falls between 1.5-3.5 (Shannon, 1948). It takes into account 

both the number and relative evenness of OTU in a given sample. A greater number of species 

and a more even distribution of species both increase the Shannon`s diversity. Simpson`s 

dominance index value ranges from 0 (all taxa are equally present) to 1.0 (one taxon dominates 

the community completely) (Simpson, 1949). Diversity indices were generated using MOTHUR. 

The Simpson and Shannon indices were similar with both the original and redesigned cpn60 UT 

primers (Table 3). This indicates that the primers behaved similarly for detecting bacterial 

diversity. 
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Table 3: Comparison of diversity indices for cpn60 UT amplicon sequences produced using 

original and redesigned primers and vaginal metagenomic DNA templates.  

 

*Number of sequences- randomly downsampled to model equal sampling effort. 

αSimpson diversity index range 0 to 1.0 

βShannon diversity index range 1.5 to 3.5 

Original1   H279,H1612/H280,1613 

Redesigned2   H1780,H1781/H280,H1613 

  

Primers DNA template *Number of 
sequences  

αShannon index βSimpson index 

  
Original1  
 

V1A 

9030 2.9 .10 

Redesigned2 

 
8934 2.8 .13 

 
Original1 

 
 V1B 

8979 3.3 .11 

Redesigned2 

 
8966 3.2 .13 
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4.4.1.3 Comparison of Bacterial Profiles produced by Original and Redesigned cpn60 UT 

Primers and Vaginal Metagenomic DNA Templates. As a starting point for comparison of 

bacterial profiles produced from each DNA template with the original or redesigned cpn60 UT 

primers, comparisons were made after clustering experimental sequences according to phyla. 

The percentage abundance profiles for these phyla were obtained from mPUMA in the classifier 

profiles directory which includes text files for each library that describe the library in terms of its 

taxonomic composition. The taxonomic distribution of bacterial phyla in all 4 libraries is 

summarized in Table 4 and represented graphically in Figure 10. The graphical representation is 

included here since it has been used in published studies. In one of such studies by Schellenberg 

et al., a variation of ~2 fold was considered within normal range for a given species where 

pyrosequencing was done on technical replicates of cpn60 amplicons from a vaginal sample 

from an individual (Schellenberg et al., 2009).  
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Table 4: Comparison of bacterial profiles at the phylum level produced by original and 

redesigned cpn60 UT primers and vaginal metagenomic DNA templates. 

Original1   H1782,H1783/H280,1613 

Redesigned2   H1784,H1785/H280,H1613 

 

  

Primers DNA template Proportion of reads in phylum (%) 

Bacteroidetes Firmicutes Actinobacteria   Proteobacteria Unknown 

 
Original1  
 

V1A 

15.06 30.47 52.76 0 1.72 

Redesigned
2 14.62 25.72 57.35 0 2.31 

 
Original1  
 

V1B 

24.86 35.74 15.42 .04 23.93 

Redesigned
2 

 
15.48 39.0 12.31 .08 33.13 
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Figure 10: Graphical comparison of bacterial profiles at the phylum level produced by 

original and redesigned cpn60 UT primers and vaginal metagenomic DNA templates. Y-axis 

– Primer bias observed using ratio of bacterial phylum abundance estimates using original and 

redesigned cpn60 UT primers. X-axis - phylum. This graphical comparison is based on the data 

used to produce Table 4. 
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The proportion of reads in each phylum were similar with the original and redesigned 

primers for template V1A. When used on template V1B, the proportion of bacteroidetes was 

greater with the original primers than with the redesigned primers and the proportion of unknown 

sequences was greater with the redesigned primers than with the original primers. These 

differences may reflect differences in the performance of the two primer sets. A possibility for 

this difference is that for V1B template, the sequences obtained for bacteroidetes had no 

reference sequences present in cpnDB and that the bacteroidetes sequences in V1B are actually 

the unknown sequences that could not be identified. For template V1A, the proportion of 

unknown sequences was only 2% and similar for each primer set tested. In contrast, the unknown 

reads for template V1B represented a significant proportion of the total. Unknown sequences 

were those sequences which were cpn60 but had no match in the cpnDB reference database. No 

statistical tests could be done in absence of replicates.  

The above analysis was done by defining OTU to be phylum. Thus each of the 

originally defined 504 unique nucleotide sequences were assigned to one of the four phyla or as 

unknown. To analyse the OTU at a lower phylogenetic level, each of the 504 original OTU were 

assigned the identities of their closest reference sequence match. Therefore for this analysis, 

OTU was defined as the cpn60 reference sequence that was the closest hit to given experimental 

sequences. As shown in figure 11, the number of OTU observed with both primers in the same 

template are the same.  25 OTU were observed for V1A and 35 OTU for V1B and these OTU 

were represented proportionally on log2 graph (Figure 11) to compare our observations with 

published studies (Schellenberg et al., 2009) already mentioned. The proportional abundance of 

majority of OTU showed maximum of or less than 4 fold variation with both primers. Only one 

OTU in V1A and 3 OTU in V1B are more than the four fold variation. With V1A, Atopobium 
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vaginae (b13654) showed more than 32 fold abundance with original primers than with 

redesigned primers. With V1B, Mobiluncus mullieris (b13762) was more than 8 times and 

Prevotella amnii (b17632) was 16 times more abundant with redesigned primers and Atopobium 

vaginae (b13654) was 8 times more abundant with original primers. We compared our results 

with a similar study where results from pooled samples from 4 individuals were compared 

between cpn60 and 16S rRNA GS-FLX sequencing and then the results were represented in a 

graphical way (Schellenberg et al., 2009). In our study, the proportional difference between the 

taxa amplified using original and redesigned primers was somewhere between these two studies, 

one showing maximum proportional abundance between technical replicates of same sample as 

~4 fold and other showing maximum proportional abundance between 4 pooled samples 

amplified using different gene targets as ~128 folds (for 2 taxa) and ~16 folds for remaining 13 

taxa. The differential representation of some of the templates may be due to the efficiency with 

which various species are amplified by the universal primers.  
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Figure 11:  Graphical comparison of bacterial profiles produced by original and redesigned 

cpn60 UT primers with vaginal metagenomic DNA templates. Y-axis – Primer bias observed 

using ratio of bacterial OTU abundance estimates observed using original and redesigned cpn60 

UT primers*. X-axis – OTU (OTU- defined as cpn60 UT reference sequences) (Appendix 1a and 

b). 

*The OTU showing no bar on the graph is either due to same value of % reads with original and 

redesigned primers or because one of these values was zero and the log2 ratio did not give valid 

result for the ratio. 
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OTU may also be defined as a unique cpn60 UT sequence where two OTU may differ by as little 

as one nucleotide over the UT.  For this type of analysis, reads were assembled into OTU in 

mPUMA using gsAssembler and read mapping was done using Bowtie 2. The relative 

proportions of each OTU were quantified in each library while normalizing for library size and 

the log2 of the ratio of the percentage of each OTU in its corresponding library was determined. 

A value of “0” means that both the libraries have same proportions of that OTU. A positive value 

means the OTU is more abundant with original primer and a negative value indicates the OTU is 

less abundant with original primer. In case of template V1A, for ~50% of OTUs (33 out of 65), 

the variation was less than or equal to 2 fold. As shown in figure 12, proportional abundance of 

majority of OTU is concentrated within the 2 fold variation range. The rest of the 32 OTU, 

showed more than 2 fold variation which for one of the OTU was 32 fold (Atopobium vaginae) 

(Figure 12).  Different OTU having the same reference cpn60 UT sequence as best hit were 

sometimes represented by different proportional abundance with the same primer in the same 

template, for example  OTU108, OTU110  and OTU123 were identified as G. vaginalis, when 

template V1A was amplified with original and redesigned primers. OTU108 was ~16 fold less 

abundant with original primers, OTU110 was less than 2 fold abundant with original primers and 

OTU123 was more than 4 fold abundant with original primers. In case of template V1B, for 

majority of OTU (95 out of 131), the variation was less than or equal to 2 fold. The rest of the 36 

OTU, showed more than 2 fold variation which for one of the OTU was 32 fold (Atopobium 

vaginae). In this template also, same primers behaved differently on different OTU that had same 

cpn60 reference sequence as best hit, therefore, the testing of hypothesis is not addressed very 

closely here that the original and redesigned primers produced indistinguishable profiles. Some 

OTU produced no bar on the graph, either due to same value of % reads with original and 
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redesigned primers or because one of these values was zero and the log2 ratio did not give valid 

result for the ratio. Therefore, the log2 ratios with invalid (undefined) values were not shown in 

graph at all. 

The OTU analysis above was done from higher to lower taxonomic level. The 

analysis at phylum level showed the variation between the relative abundance of four phyla and 

unknown sequences to be within a normal variation as 2 fold was the normal variation between 

technical replicates in a similar study with same primers. Therefore, the primers behaved 

similarly at higher taxonomic levels. For lower taxonomic levels, the proportional abundance 

was within variation of 4 fold for majority of OTU in both the templates showing that primers 

behaved similarly for them. The species that showed a proportional difference of more than 

fourfold were the ones that represented real differences in their representation in the two 

templates, since this is the maximal variation that was seen in the technical replicates in study by 

Schellenberg et al. in 2009, but the number of such species showing greater variability were very 

few in our data. 
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Figure 12: Graphical comparison of bacterial profiles at OTU level (OTU=cpn60 UT 

sequence reads) produced by original and redesigned cpn60 UT primers and vaginal 

metagenomic DNA templates. Y-axis –Primer bias observed using ratio of bacterial OTU 

abundance estimates observed using original and redesigned cpn60 UT primers. X-axis - OTU. 

(For description of OTU see Appendix 2a and 2b). 
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4.4.1.4 Phylogenetic Representation of Bacterial Profiles.  

The above analysis was done to compare and analyze the results among broader categories of 

bacterial classification. Here, the same data analysis and comparison on a finer scale for different 

species of bacteria found in this study was done and the phylogenetic relationship among 

clustered experimental sequences was explored. The cpn60 reference sequences that were 

identified as best hits for experimental sequences were used to generate a phylogenetic tree 

(Figure 13) as explained in Materials and Methods 4.3.5. Experimental sequences having the 

same best hit were clustered for this analysis. Thus, a number of distinct sequences, each 

sequence being most similar to a given reference sequence were clustered. For example, b291 

identifies 24 distinct sequences with range of sequence identities to b291 (92-99%). 86% of 

reads were in 3 OTU that were 98-99% identical to b291 (Appendix 3c). A graphical 

representation of the relative abundance of each clustered OTU was superimposed on the tree 

using an online program called iTol (Letunic and Bork, 2007). The size of the bar for an OTU in 

the graph is directly proportional to the normalized count of that OTU. See Appendix 3a and 3b 

for values of normalized counts. The bacterial abundance profiles produced by both original and 

redesigned primers for both templates V1A and V1B were observed to be similar. Except for 

Atopobium vaginae b13654, which was more abundant with original primers in template V1A. 

 

 

 

 

 

 

 



88 
 

Figure 13: Phylogenetic representation of bacterial profiles.  

A phylogenetic tree was generated from cpn60 reference sequences that were the best hits for 

experimental sequences observed in the library. The experimental sequences were produced 

using either redesigned or original cpn60 UT primers on vaginal templates V1A and V1B. 

Experimental sequences having the same best hit were clustered for this analysis. Thus, a number 

of distinct sequences, each sequence being most similar to a given reference sequence were 

clustered. For example, b291 identifies 24 distinct sequences with range of sequence identities to 

b291 (92-99%). 86% of reads were in 3 OTU that were 98-99% identical to b291 (Appendix 3c). 

A graphical representation of the relative abundance of each clustered OTU was superimposed 

on the tree (Bacteria V1A and Bacteria V1B). The size of the bar for an OTU in the graph is 

directly proportional to the normalized count of that OTU. See Appendix 3a and 3b for values of 

normalized counts. 
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4.4.1.5 Phylogenetic Representation of G. vaginalis Profiles. 

Recently, cpn60 UT has been proved to be a robust tool to resolve the available G. vaginalis 

strains into four sub-groups. There has also been evidence shown that may eventually lead to 

reclassification of these four sub-groups into four species (Jayaprakash et al., 2012). A 

phylogenetic tree of G. vaginalis reference and experimental sequences was overlain with a 

graphical representation of the relative abundances of each G. vaginalis OTU observed using 

either redesigned or original cpn60 UT primers (Figure 14). Reference sequences were from 

cpnDB including those described in Jayaprakash et al. 2012. It is a rooted tree with 

Alloscardovia omnicolens as outgroup (b10027A.om). The size of the bar for an OTU in graph is 

directly proportional to the normalized count of that OTU in its library. The values of normalized 

counts is shown in Appendix 4a and 4b. Four subgroups similar to those observed in Jayaprakash 

et al., 2012 were observed in this study. The G. vaginalis abundance profiles with original and 

redesigned primers were observed to be similar. Some OTU observed to be showing extreme 

variation with original primers were balanced by similar sequences observed to be showing 

opposite trend with original primers.  In template V1A, OTU 010b291 was observed to be most 

abundant with redesigned primers whereas OTU 049b291 showed very low abundance with 

same primers. The abundance trend for both these OTU was opposite with original primers. Both 

these OTU were 98% similar to G. vaginalis reference sequence (cpnDBID:b291).   

As 010b291 and 049b291 OTU were most abundant in DNA template V1A and V1B (see 

figure 14a and 14b), another phylogenetic tree was made where 010b291 and 049b291 were not 

included to see whether they are masking any difference in abundance comparisons among other 

G. vaginalis OTU. It was observed that the abundance profiles without 049b291 and 010b291 on 

bar graph looked similar for other sequences as well (Figure 15).  
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4.4.2 Fungal Profiles for Vaginal Samples 

In the metagenomic templates used in our study, no fungal sequences were observed in the 

vaginal samples either with original or redesigned primers in both the V1A and V1B templates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



93 
 

Figure 14: Phylogenetic representation of G. vaginalis profiles.  

A phylogenetic tree was generated from G. vaginalis like experimental sequences observed in the 

study and reference G. vaginalis sequences. A graphical representation of the relative abundances 

of each G. vaginalis OTU was superimposed on the tree (G. vaginalis V1A and G. vaginalis V1B). 

The experimental sequences were produced using either redesigned or original cpn60 UT primers 

on vaginal templates V1A and V1B. Reference sequences were obtained from cpnDB including 

those described in Jayaprakash et al., 2012. Names of experimental sequences in the tree are 

represented by their OTU numbers followed by the cpnDB ID of the reference sequence it looks 

like. Reference sequences are highlighted in the tree. It is a rooted tree with Alloscardovia 

omnicolens as outgroup (b10027A.om). The size of the bar for an OTU in the graph is directly 

proportional to the normalized count of that OTU in its library. See Appendix 4a and 4b for values 

of normalized counts. 
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Figure 15: Phylogenetic representation of selected G. vaginalis profiles.   

A phylogenetic tree of G. vaginalis reference and experimental sequences was overlain with a 

graphical representation of the relative abundance of each G. vaginalis OTU (except 010b291 and 

049b291) observed using either redesigned or original cpn60 UT primers (G. vaginalis 

(minor)V1A and G. vaginalis (minor) V1B). The experimental sequences were produced using 

either redesigned or original cpn60 UT primers on vaginal templates V1A and V1B.  Reference 

sequences were from cpnDB including those described in Jayaprakash et al. 2012. It is a rooted 

tree with Alloscardovia omnicolens as outgroup (b10027A.om). The size of the bar for an OTU in 

the graph is directly proportional to the normalized count of that OTU in its library. See Appendix 

4a and 4b for values of normalized counts. As 010b291 and 049b291 OTU were most abundant in 

DNA template V1A and V1B (see figure 14a and 14b), they were not included in this tree to see 

whether they are masking any abundance comparisons between other G. vaginalis OTU. 
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4.5 Discussion 

Most of the taxonomic markers available presently are either suitable to identify prokaryotes or 

eukaryotes. A gene marker that can identify both prokaryotes and eukaryotes from the same 

microbial sample can be of an immense advantage. The cpn60 gene is such a phylogenetic 

marker that can be used simultaneously to profile both bacteria and fungi from microbial 

communities (Links et al., 2014) using its cpn60 UT region that can be amplified by a set of PCR 

primers (Hill et al., 2006). It is a protein coding gene that is present in all prokaryotes (except 

Mollicutes) and eukaryotes. It helps in the formation and maintenance of protein structures 

acting as a molecular chaperone, hence, the name, chaperonin (Hemmingsen et al., 1988). The 

cpn60 UT sequence identities are also strong interpreters of genome-scale sequence identities 

(Verbeke et al., 2011). The cpn60 UT has almost always a uniform length of 555bp±1 codon that 

makes sequence alignments an easy task (Hill et al., 2004). The cpn60 gene has been recently 

proposed to be the preferred barcode for bacteria (Links et al., 2012). The cpn60 gene also has 

the following disadvantages. The primers are degenerate and the targets have to be amplified 

with a cocktail of primers and a range of annealing temperatures have to be used so that all the 

community members are amplified (Hill et al., 2006). Moreover, the Ribosomal Database is 

quiet vast and includes reference sequences from diverse environments and taxa as compared to 

cpnDB that still needs to be expanded.  

In this experiment, the taxonomic profiles and the relative proportions of taxa 

generated by original or redesigned cpn60 primers at phylum level, were nearly identical as 

indicated by rarefaction curve, the diversity indices and log2 graph for relative abundance. The 

purpose of this study was to compare the performance of primers and not the difference in 

microbial profiles among HIV-ve and HIV+ve women. The four phyla (Bacteriodetes, 

Firmicutes, Actinobacteria, Proteobacteria) are well known to be present in vagina in studies 
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using cpn60 (Hill et al., 2005; Schellenberg et al., 2009; Schellenberg et al., 2011) and using 16S 

rRNA   (Ling et al., 2010). For majority of OTUs, the variation was less than 2 fold. In the 

absence of any statistical tests, we wanted a rationale, based on which we could interpret our 

results. We interpreted our results on a similar study where pyrosequencing was done on 

technical replicates of cpn60 amplicons from a vaginal sample from an individual and where 

variation of ~2 fold was considered within normal range for a given species. In same study, 

results from pooled samples from 4 individuals were compared between cpn60 and 16S rRNA 

GS-FLX sequencing and then the results were represented in a graphical way (Schellenberg et 

al., 2009). The maximal variation extended ~2 fold between these datasets. The proportional 

difference between the relative abundance of OTU in template V1A produced by original and 

redesigned primers in our study was somewhere between these two studies for majority of OTU, 

one showing proportional abundance between technical replicates of same sample that was < 2 

fold and other showing proportional abundance between 4 pooled samples amplified using 

different gene targets that was ~2 fold. The differential representation of some of the templates 

may be due to the efficiency with which various species are amplified by the universal primers. 

In conclusion, although a few species were represented with different proportional abundances 

within their respective datasets, most of them were represented with almost equal abundances as 

is apparent from figures 11 and 12, the majority of OTU relative abundance bars are 

concentrated around 2 fold change. Our study does not address the hypothesis very conclusively, 

but the results still point to the absence of any differences between the performance of primers. 

Fungal sequences have been observed in the vaginal mucosa using 18S rRNA (Guo 

et al., 2012) and ITS (Drell et al., 2013) sequencing. The inability to observe any fungal 

sequences in this study may be due various reasons discussed below, although we found them 
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successful when used on pure fungal DNA extracts. Since cpn60 has the advantage of 

simultaneous profiling of both prokaryotes and eukaryotes from microbial communities (Links et 

al., 2014), the major reason for unobserved fungal sequences may be their mere absence in the 

given samples.  

The other probable reasons for the un-observed fungal species in the vaginal 

samples using the redesigned primers are discussed here. Vaginal mycobiome exists as a 'rare 

biosphere' (Huffnagle and Noverr, 2013) or low abundant species in the vaginal mucosa that is 

primarily dominated by Lactobacilli bacteria. Such low abundance taxa are under-represented 

when microbial communities are profiled using PCR-based methods. Reason being that the PCR 

reaction reagents are diminished rapidly by the dominant species that have high template 

abundance in the high diversity samples (Amend et al., 2010). The same concept can be applied 

to the representative microbial sample from vaginal mucosa used in our study. We used a 12 

sample pool with 10 µL of each sample. As fungal sequences are already rare in the vagina, we 

are further diminishing their presence by using only 10 µL of one sample, thereby, increasing the 

chances of missing out on the rarer sequences. 

 In another experiment (Gonzalez et al., 2012), two experimental artificial microbial 

communities from the human oral cavity were prepared. Both experimental communities were 

sequenced by shotgun sequencing (no PCR) and also after their PCR amplification by 16S 

rRNA. Since shotgun or direct sequencing involved no PCR amplification, it was assumed to 

represent the closest data available to the oral microbial community.  33 OTUs (664reads) and 28 

OTUs (1302 reads) were obtained by direct sequencing of experimental communities 1 and 2. 17 

OTUs (230 reads) and 15 OTUs (2056 reads) were obtained by sequencing 16S rRNA 
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amplicons. Although the experiment is based on 16S rRNA primers, the idea here is that some of 

the OTUs present in low abundance remained undetected after PCR amplification.  

PCR bias due to secondary structures in DNA templates  

Presence of secondary structures in DNA templates can lead to folding of the DNA 

template which may have resulted in failure of the primers to amplify the UT in the vaginal 

samples. This has already been observed in another experiment in our lab (unpublished, 

Hemmingsen lab) where redesigned primers were used. Our lab received samples of total DNA 

purified from AMF spores from another collaborating lab. When these samples were amplified 

using cpn60 UT redesigned primers, bacterial and other fungal cpn60 UT sequences were 

obtained but there were no AMF sequences in the sequence results. But, when novel cpn60 

1786-1788 primers were used, AMF sequences were obtained, pointing to the presence of 

secondary structures in the cpn60 UT of AMF DNA which may have impeded the amplification 

of AMF UT by cpn60 UT primers. In this study, only cpn60 UT primers were used, that may 

have failed to amplify the fungal sequences present in the vaginal samples because of the 

presence of secondary structures in the UT part. 

Inhibition of amplification by humic acids 

Co-extraction of humic acids along with DNA from microbial samples may decrease 

amplification efficiency by inhibiting PCR. Humic acids inhibit amplification by binding to the 

polymerase, target DNA or co-factor magnesium ions  (Wilson, 1997; Roose-Amsaleg et al., 

2001). When it binds to target DNA, it does sequence specific binding and in this study it may 

have been the fungal DNA to which it bound and made it unavailable for PCR (Opel et al., 

2010). The protocol used to extract DNA from vaginal samples in our study, although not done 

in our lab, used the MagmaxTM total DNA extraction kit which had no additional step to remove 
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humic acids or other inhibitors. A combination of different DNA extraction procedures may have 

been used to get a more realistic view of the microbial diversity present in vaginal samples. 

There was a possibility to include a positive control in our study in the form of 

“mock community” having known sequences of fungal species that were expected to be found in 

vagina. We could also have used ITS or 18S rRNA primers to see if the issue is cpn60 primers or 

not. This could have revealed whether the fungal species were not observed in our samples due 

to other reasons or because the fungi were just absent in the samples.   

4.6 Conclusions 

Original cpn60 UT primers have already been extensively used to profile microbial communities 

from diverse environments like pig faeces, dog faeces, vaginal samples and intestinal 

communities. Most of the analysis of the above mentioned microbiomes has been limited to 

bacteria. In this study, the original cpn60 primers were redesigned to amplify universal target and 

some parts from any cpn60 gene, including most of the cpn60 genes from fungal species present 

in cpnDB. The redesigned primers were to be considered useful if they produced the same 

bacterial profiles and abundances as produced by original primers and additionally, if the 

redesigned primers also amplify the fungal templates if present in given microbial samples. 

When these primers were used on microbial samples in the present study, the bacterial profiles 

and abundances obtained with original and redesigned primers were the same, possibly 

indistinguishable. Also, these primers were successful in amplifying cpn60 gene parts from 

diverse fungal phylogeny like Ascomycota, Basidiomycota, Chytridiomycota and Zygomycota. 

Although in this study fungal sequences in the complex microbial sample were not observed 

using cpn60, the utility of cpn60 gene to successfully and simultaneously detect both bacteria 

and fungi cannot be denied (Links et al., 2014). Also, the fungal sequences in microbial 
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community samples may have stayed undetected due to the co-extraction of humic-acids along 

with DNA from vaginal samples or presence of secondary structures in the templates or may be 

due to the rarity of fungal templates in the vaginal samples which were further diminished by the 

few µL (10 µL each from 12 samples) used to make synthetic pool sample. 

 There were some limitations to our study which, if overcome, could have addressed 

our hypothesis more conclusively. We could have used technical replicates and it would have 

helped in testing the statistical significance of our results. In the absence of replicates, we 

interpreted our results based on a similar study where pyrosequencing was done on technical 

replicates of cpn60 amplicons from a vaginal sample from an individual (Schellenberg et al., 

2009). We could have chosen a different and more diverse microbial sample rich in fungal 

templates for getting better interpretable results. 

Any set of primers, ribosomal RNA based (like 16S, 18S) or ITS or protein based 

(like cpn60) are not self-sufficient for complete profiling of microbial communities and some of 

them may also be biased towards amplification of particular phylum. Therefore, they have to be 

used in combination with each other for best results. In future, the redesigned or original cpn60 

primers may also be used in combination with other gene targets where the cpn60 gene may 

provide an increased level of resolution as compared to structural rRNA encoding genes and at 

the same time facilitating simultaneous detection of prokaryotes and eukaryotes from same 

microbial samples. Since only about 5% of fungal species have been described out of the 

estimated 1.5 million species, it is becoming more urgent to describe the remaining species 

before they become extinct, since habitats of many species including those of fungi are destroyed 

each year (L HAWKSWORTH, 2001; Blackwell, 2011). Therefore, a gene target that can 
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identify both eukaryotes and prokaryotes can be of immense utility to reveal the diversity of 

microbes present in our environment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



106 
 

References 

AINSWORTH, G. C. 2008. Ainsworth & Bisby's dictionary of the fungi, Cabi. 
AINSWORTH, G. C., SPARROW, F. K. & SUSSMAN, A. S. 1973. The Fungi. An advanced treatise. Vol. IV B. A 

taxonomic review with keys: Basidiomycetes and lower fungi. The Fungi. An advanced treatise. 
Vol. IV B. A taxonomic review with keys: Basidiomycetes and lower fungi. 

ALEXOPOULOS, C., MIMS, C. W. & BLACKWELL, M. 1996. Introductory Mycology. John Willey and Sons. 
Inc., New York, 868. 

ALTSCHUL, S. F., MADDEN, T. L., SCHÄFFER, A. A., ZHANG, J., ZHANG, Z., MILLER, W. & LIPMAN, D. J. 1997. 
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic 
acids research, 25, 3389-3402. 

AMANN, R. & FUCHS, B. M. 2008. Single-cell identification in microbial communities by improved 
fluorescence in situ hybridization techniques. Nature Reviews Microbiology, 6, 339-348. 

AMEND, A. S., SEIFERT, K. A. & BRUNS, T. D. 2010. Quantifying microbial communities with 454 
pyrosequencing: does read abundance count? Molecular Ecology, 19, 5555-5565. 

APAJALAHTI, J. H., SÄRKILAHTI, L. K., MÄKI, B. R., HEIKKINEN, J. P., NURMINEN, P. H. & HOLBEN, W. E. 
1998. Effective recovery of bacterial DNA and percent-guanine-plus-cytosine-based analysis of 
community structure in the gastrointestinal tract of broiler chickens. Applied and Environmental 
Microbiology, 64, 4084-4088. 

BALDAUF, S. L. & PALMER, J. D. 1993. Animals and fungi are each other's closest relatives: congruent 
evidence from multiple proteins. Proceedings of the National Academy of Sciences, 90, 11558-
11562. 

BARRY, T., COLLERAN, G., GLENNON, M., DUNICAN, L. K. & GANNON, F. 1991. The 16s/23s ribosomal 
spacer region as a target for DNA probes to identify eubacteria. Genome Research, 1, 51-56. 

BARTRAM, A. K., LYNCH, M. D., STEARNS, J. C., MORENO-HAGELSIEB, G. & NEUFELD, J. D. 2011. Generation 
of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by 
assembling paired-end Illumina reads. Applied and environmental microbiology, 77, 3846-3852. 

BELLEMAIN, E., CARLSEN, T., BROCHMANN, C., COISSAC, E., TABERLET, P. & KAUSERUD, H. 2010. ITS as an 
environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. Bmc 
Microbiology, 10, 189. 

BEN-DOV, E., KRAMARSKY-WINTER, E. & KUSHMARO, A. 2009. An in situ method for cultivating 
microorganisms using a double encapsulation technique. FEMS microbiology ecology, 68, 363-
371. 

BERBEE, M. & TAYLOR, J. 1993. Ascomycete relationships: dating the origin of asexual lineages with 18S 
ribosomal RNA gene sequence data. The fungal holomorph: mitotic, meiotic and pleomorphic 
speciation in fungal systematics, 67-78. 

BERBEE, M. L. & TAYLOR, J. W. 1995. From 18S ribosomal sequence data to evolution of morphology 
among the fungi. Canadian Journal of Botany, 73, 677-683. 

BLACKWELL, M. 2011. The Fungi: 1, 2, 3… 5.1 million species? American Journal of Botany, 98, 426-438. 
BLASZCZYK, D., BEDNAREK, I., MACHNIK, G., SYPNIEWSKI, D., SOLTYSIK, D., LOCH, T. & GALKA, S. 2011. 

Amplified Ribosomal DNA Restriction Analysis (ARDRA) as a Screening Method for Normal and 
Bulking Activated Sludge Sample Differentiation. Polish Journal of Environmental Studies, 20. 

BORNEMAN, J. & HARTIN, R. J. 2000. PCR primers that amplify fungal rRNA genes from environmental 
samples. Applied and environmental microbiology, 66, 4356-4360. 

BROUSSEAU, R., HILL, J. E., PRÉFONTAINE, G., GOH, S.-H., HAREL, J. & HEMMINGSEN, S. M. 2001. 
Streptococcus suis serotypes characterized by analysis of chaperonin 60 gene sequences. Applied 
and environmental microbiology, 67, 4828-4833. 



107 
 

BULLOCH, W. 1938. THE HISTORY OF BACTERIOLOGY. The American Journal of the Medical Sciences, 196, 
868. 

BUSE, H. Y., LU, J., LU, X., MOU, X. & ASHBOLT, N. J. 2014. Microbial diversities (16S and 18S rRNA gene 
pyrosequencing) and environmental pathogens within drinking water biofilms grown on the 
common premise plumbing materials unplasticized polyvinylchloride and copper. FEMS 
microbiology ecology, 88, 280-295. 

CARACCIOLO, A. B., BOTTONI, P. & GRENNI, P. 2010. Fluorescence in situ hybridization in soil and water 
ecosystems: a useful method for studying the effect of xenobiotics on bacterial community 
structure. Toxicological & Environmental Chemistry, 92, 567-579. 

CHABAN, B., LINKS, M. G., JAYAPRAKASH, T. P., WAGNER, E. C., BOURQUE, D. K., LOHN, Z., ALBERT, A. Y., 
VAN SCHALKWYK, J., REID, G. & HEMMINGSEN, S. M. 2014. Characterization of the vaginal 
microbiota of healthy Canadian women through the menstrual cycle. Microbiome, 2, 23. 

CLAYTON, R. A., SUTTON, G., HINKLE, P. S., BULT, C. & FIELDS, C. 1995. Intraspecific variation in small-
subunit rRNA sequences in GenBank: why single sequences may not adequately represent 
prokaryotic taxa. International journal of systematic bacteriology, 45, 595-599. 

COENYE, T., VANDAMME, P. & LIPUMA, J. J. 2003. Ralstonia respiraculi sp. nov., isolated from the 
respiratory tract of cystic fibrosis patients. International Journal of Systematic and Evolutionary 
Microbiology, 53, 1339-1342. 

DA ROCHA, U. N., VAN OVERBEEK, L. & VAN ELSAS, J. D. 2009. Exploration of hitherto-uncultured bacteria 
from the rhizosphere. FEMS microbiology ecology, 69, 313-328. 

DAHLLÖF, I., BAILLIE, H. & KJELLEBERG, S. 2000. rpoB-Based Microbial Community Analysis Avoids 
Limitations Inherent in 16S rRNA Gene Intraspecies Heterogeneity. Applied and Environmental 
Microbiology, 66, 3376-3380. 

DESAI, A. R., MUSIL, K. M., CARR, A. P. & HILL, J. E. 2009. Characterization and quantification of feline fecal 
microbiota using cpn60 sequence-based methods and investigation of animal-to-animal variation 
in microbial population structure. Veterinary microbiology, 137, 120-128. 

DISAYATHANOOWAT, T., YOUNG, J. P. W., HELGASON, T. & CHANTAWANNAKUL, P. 2012. T-RFLP analysis 
of bacterial communities in the midguts of Apis mellifera and Apis cerana honey bees in Thailand. 
FEMS microbiology ecology, 79, 273-281. 

DRELL, T., LILLSAAR, T., TUMMELEHT, L., SIMM, J., AASPÕLLU, A., VÄIN, E., SAARMA, I., SALUMETS, A., 
DONDERS, G. G. & METSIS, M. 2013. Characterization of the vaginal micro-and mycobiome in 
asymptomatic reproductive-age Estonian women. PLoS One, 8, e54379. 

DUMONCEAUX, T. J., HILL, J. E., BRIGGS, S. A., AMOAKO, K. K., HEMMINGSEN, S. M. & VAN KESSEL, A. G. 
2006a. Enumeration of specific bacterial populations in complex intestinal communities using 
quantitative PCR based on the chaperonin-60 target. Journal of microbiological methods, 64, 46-
62. 

DUMONCEAUX, T. J., HILL, J. E., PELLETIER, C. P., PAICE, M. G., VAN KESSEL, A. G. & HEMMINGSEN, S. M. 
2006b. Molecular characterization of microbial communities in Canadian pulp and paper activated 
sludge and quantification of a novel Thiothrix eikelboomii-like bulking filament. Canadian journal 
of microbiology, 52, 494-500. 

FELSENSTEIN, J. 1989. PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics, 5, 164-166. 
FOX, G. E., WISOTZKEY, J. D. & JURTSHUK, P. 1992. How close is close: 16S rRNA sequence identity may 

not be sufficient to guarantee species identity. International Journal of Systematic Bacteriology, 
42, 166-170. 

FRANKLIN, R. B., TAYLOR, D. R. & MILLS, A. L. 1999. Characterization of microbial communities using 
randomly amplified polymorphic DNA (RAPD). Journal of Microbiological Methods, 35, 225-235. 

GENTRY, T., WICKHAM, G., SCHADT, C., HE, Z. & ZHOU, J. 2006. Microarray applications in microbial 
ecology research. Microbial ecology, 52, 159-175. 



108 
 

GHANNOUM, M. A., JUREVIC, R. J., MUKHERJEE, P. K., CUI, F., SIKAROODI, M., NAQVI, A. & GILLEVET, P. 
M. 2010. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS 
pathogens, 6, e1000713. 

GIHRING, T. M., GREEN, S. J. & SCHADT, C. W. 2012. Massively parallel rRNA gene sequencing exacerbates 
the potential for biased community diversity comparisons due to variable library sizes. 
Environmental Microbiology, 14, 285-290. 

GILBERT, J. A. & DUPONT, C. L. 2011. Microbial metagenomics: beyond the genome. Annual Review of 
Marine Science, 3, 347-371. 

GILLES, A., MEGLÉCZ, E., PECH, N., FERREIRA, S., MALAUSA, T. & MARTIN, J.-F. 2011. Accuracy and quality 
assessment of 454 GS-FLX Titanium pyrosequencing. BMC genomics, 12, 245. 

GOH, S. H., FACKLAM, R. R., CHANG, M., HILL, J. E., TYRRELL, G. J., BURNS, E. C., CHAN, D., HE, C., RAHIM, 
T. & SHAW, C. 2000. Identification of Enterococcus Species and Phenotypically Similar Lactococcus 
andVagococcus Species by Reverse Checkerboard Hybridization to Chaperonin 60 Gene 
Sequences. Journal of clinical microbiology, 38, 3953-3959. 

GOH, S. H., POTTER, S., WOOD, J. O., HEMMINGSEN, S. M., REYNOLDS, R. P. & CHOW, A. W. 1996. HSP60 
gene sequences as universal targets for microbial species identification: studies with coagulase-
negative staphylococci. Journal of Clinical Microbiology, 34, 818-823. 

GOH, S. H., SANTUCCI, Z., KLOOS, W. E., FALTYN, M., GEORGE, C. G., DRIEDGER, D. & HEMMINGSEN, S. M. 
1997. Identification of Staphylococcus species and subspecies by the chaperonin 60 gene 
identification method and reverse checkerboard hybridization. Journal of clinical microbiology, 
35, 3116-3121. 

GONZALEZ, J. M., PORTILLO, M. C., BELDA-FERRE, P. & MIRA, A. 2012. Amplification by PCR artificially 
reduces the proportion of the rare biosphere in microbial communities. PLoS One, 7, e29973. 

GRABHERR, M. G., HAAS, B. J., YASSOUR, M., LEVIN, J. Z., THOMPSON, D. A., AMIT, I., ADICONIS, X., FAN, 
L., RAYCHOWDHURY, R., ZENG, Q., CHEN, Z., MAUCELI, E., HACOHEN, N., GNIRKE, A., RHIND, N., 
DI PALMA, F., BIRREN, B. W., NUSBAUM, C., LINDBLAD-TOH, K., FRIEDMAN, N. & REGEV, A. 2011. 
Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotech, 
29, 644-652. 

GRIFFIN, D. 1994. Fungal physiology. 
GUO, R., ZHENG, N., LU, H., YIN, H., YAO, J. & CHEN, Y. 2012. Increased diversity of fungal flora in the 

vagina of patients with recurrent vaginal candidiasis and allergic rhinitis. Microbial ecology, 64, 
918-927. 

HADRYS, H., BALICK, M. & SCHIERWATER, B. 1992. Applications of random amplified polymorphic DNA 
(RAPD) in molecular ecology. Molecular ecology, 1, 55-63. 

HAWKSWORTH, D. L. 1991. The fungal dimension of biodiversity: magnitude, significance, and 
conservation. Mycological research, 95, 641-655. 

HAZNEDAROGLU, B. Z., YURTSEVER, D., LEFKOWITZ, J. R. & DURAN, M. 2007. Phenotypic characterization 
of Escherichia coli through whole-cell fatty acid profiling to investigate host specificity. Water 
research, 41, 803-809. 

HEMMINGSEN, S. M., WOOLFORD, C., VAN DER VIES, S. M., TILLY, K., DENNIS, D. T., GEORGOPOULOS, C. 
P., HENDRIX, R. W. & ELLIS, R. J. 1988. Homologous plant and bacterial proteins chaperone 
oligomeric protein assembly. 

HIBBETT, D. S., BINDER, M., BISCHOFF, J. F., BLACKWELL, M., CANNON, P. F., ERIKSSON, O. E., HUHNDORF, 
S., JAMES, T., KIRK, P. M. & LÜCKING, R. 2007. A higher-level phylogenetic classification of the 
Fungi. Mycological research, 111, 509-547. 

HILL, J. E., GOH, S. H., MONEY, D. M., DOYLE, M., LI, A., CROSBY, W. L., LINKS, M., LEUNG, A., CHAN, D. & 
HEMMINGSEN, S. M. 2005. Characterization of vaginal microflora of healthy, nonpregnant women 



109 
 

by chaperonin-60 sequence-based methods. American journal of obstetrics and gynecology, 193, 
682-692. 

HILL, J. E., PENNY, S. L., CROWELL, K. G., GOH, S. H. & HEMMINGSEN, S. M. 2004. cpnDB: a chaperonin 
sequence database. Genome research, 14, 1669-1675. 

HILL, J. E., SEIPP, R. P., BETTS, M., HAWKINS, L., VAN KESSEL, A. G., CROSBY, W. L. & HEMMINGSEN, S. M. 
2002. Extensive profiling of a complex microbial community by high-throughput sequencing. 
Applied and environmental microbiology, 68, 3055-3066. 

HILL, J. E., TOWN, J. R. & HEMMINGSEN, S. M. 2006. Improved template representation in cpn60 
polymerase chain reaction (PCR) product libraries generated from complex templates by 
application of a specific mixture of PCR primers. Environmental microbiology, 8, 741-746. 

HOFFMANN, M., BROWN, E. W., FENG, P. C., KEYS, C. E., FISCHER, M. & MONDAY, S. R. 2010. PCR-based 
method for targeting 16S-23S rRNA intergenic spacer regions among Vibrio species. BMC 
microbiology, 10, 90. 

HOFSTETTER, V., MIADLIKOWSKA, J., KAUFF, F. & LUTZONI, F. 2007. Phylogenetic comparison of protein-
coding versus ribosomal RNA-coding sequence data: a case study of the Lecanoromycetes 
(Ascomycota). Molecular phylogenetics and evolution, 44, 412-426. 

HOPKINS, M., SHARP, R. & MACFARLANE, G. 2001. Age and disease related changes in intestinal bacterial 
populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid 
profiles. Gut, 48, 198-205. 

HOUPIKIAN, P. & RAOULT, D. 2001. Molecular phylogeny of the genus Bartonella: what is the current 
knowledge? FEMS Microbiology Letters, 200, 1-7. 

HUFFNAGLE, G. B. & NOVERR, M. C. 2013. The emerging world of the fungal microbiome. Trends in 
microbiology, 21, 334-341. 

HUGENHOLTZ, P. 2002. Exploring prokaryotic diversity in the genomic era. Genome Biol, 3, 1-0003.8. 
HUGENHOLTZ, P. & PACE, N. R. 1996. Identifying microbial diversity in the natural environment: a 

molecular phylogenetic approach. Trends in biotechnology, 14, 190-197. 
HUMMELEN, R., FERNANDES, A. D., MACKLAIM, J. M., DICKSON, R. J., CHANGALUCHA, J., GLOOR, G. B. & 

REID, G. 2010. Deep sequencing of the vaginal microbiota of women with HIV. PloS one, 5, e12078. 
HUSON, D. H., AUCH, A. F., QI, J. & SCHUSTER, S. C. 2007. MEGAN analysis of metagenomic data. Genome 

research, 17, 377-386. 
INGIANNI, A., PETRUZZELLI, S., MORANDOTTI, G. & POMPEI, R. 1997. Genotypic differentiation of 

Gardnerella vaginalis by amplified ribosomal DNA restriction analysis (ARDRA). FEMS Immunology 
& Medical Microbiology, 18, 61-66. 

JAYAPRAKASH, T. P., SCHELLENBERG, J. J. & HILL, J. E. 2012. Resolution and characterization of distinct 
cpn60-based subgroups of Gardnerella vaginalis in the vaginal microbiota. PLoS One, 7, e43009. 

KARLIN, S., WEINSTOCK, G. M. & BRENDEL, V. 1995. Bacterial classifications derived from recA protein 
sequence comparisons. Journal of bacteriology, 177, 6881-6893. 

KASAI, H., WATANABE, K., GASTEIGER, E., BAIROCH, A., ISONO, K., YAMAMOTO, S. & HARAYAMA, S. 1998. 
Construction of the gyrB database for the identification and classification of bacteria. Genome 
Informatics, 9, 13-21. 

KIRK, J. L., BEAUDETTE, L. A., HART, M., MOUTOGLIS, P., KLIRONOMOS, J. N., LEE, H. & TREVORS, J. T. 2004. 
Methods of studying soil microbial diversity. Journal of microbiological methods, 58, 169-188. 

KISS, L., SCHOCH, C. L., SEIFERT, K. A., CALDEIRA, K., MYHRVOLD, N. P., ALVAREZ, R. A., PACALA, S. W., 
WINEBRAKE, J. J., CHAMEIDES, W. L. & HAMBURG, S. P. 2012. Limits of nuclear ribosomal DNA 
internal transcribed spacer (ITS) sequences as species barcodes for Fungi. Proc Natl Acad Sci USA, 
109, 10741-10742. 

KOBS, G. 1997. Cloning blunt-end DNA fragments into the pGEM®-T Vector Systems. Promega Notes, 62, 
15-18. 



110 
 

KULLEN, M. J., BRADY, L. J. & O'SULLIVAN, D. J. 1997. Evaluation of using a short region of the recA gene 
for rapid and sensitive speciation of dominant bifidobacteria in the human large intestine1. FEMS 
microbiology letters, 154, 377-383. 

L HAWKSWORTH, D. 2001. The magnitude of fungal diversity: the 1· 5 million species estimate revisited. 
Mycological research, 105, 1422-1432. 

LANE, D. J., PACE, B., OLSEN, G. J., STAHL, D. A., SOGIN, M. L. & PACE, N. R. 1985. Rapid determination of 
16S ribosomal RNA sequences for phylogenetic analyses. Proceedings of the National Academy of 
Sciences, 82, 6955-6959. 

LANGMEAD, B. & SALZBERG, S. L. 2012. Fast gapped-read alignment with Bowtie 2. Nature methods, 9, 
357-359. 

LAW, J. W.-F., AB MUTALIB, N.-S., CHAN, K.-G. & LEE, L.-H. 2014. Rapid methods for the detection of 
foodborne bacterial pathogens: principles, applications, advantages and limitations. Frontiers in 
Microbiology, 5, 770. 

LETUNIC, I. & BORK, P. 2007. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display 
and annotation. Bioinformatics, 23, 127-128. 

LI, W. & GODZIK, A. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or 
nucleotide sequences. Bioinformatics, 22, 1658-1659. 

LING, Z., KONG, J., LIU, F., ZHU, H., CHEN, X., WANG, Y., LI, L., NELSON, K. E., XIA, Y. & XIANG, C. 2010. 
Molecular analysis of the diversity of vaginal microbiota associated with bacterial vaginosis. BMC 
genomics, 11, 488. 

LINKS, M. G., CHABAN, B., HEMMINGSEN, S. M., MUIRHEAD, K. & HILL, J. E. 2013. mPUMA: a 
computational approach to microbiota analysis by de novo assembly of operational taxonomic 
units based on protein-coding barcode sequences. Microbiome, 1, 1-7. 

LINKS, M. G., DEMEKE, T., GRÄFENHAN, T., HILL, J. E., HEMMINGSEN, S. M. & DUMONCEAUX, T. J. 2014. 
Simultaneous profiling of seed-associated bacteria and fungi reveals antagonistic interactions 
between microorganisms within a shared epiphytic microbiome on Triticum and Brassica seeds. 
New phytologist, 202, 542-553. 

LINKS, M. G., DUMONCEAUX, T. J., HEMMINGSEN, S. M. & HILL, J. E. 2012. The chaperonin-60 universal 
target is a barcode for bacteria that enables de novo assembly of metagenomic sequence data. 
PloS one, 7, e49755. 

LIU, Y. J., HODSON, M. C. & HALL, B. D. 2006. Loss of the flagellum happened only once in the fungal 
lineage: phylogenetic structure of kingdom Fungi inferred from RNA polymerase II subunit genes. 
BMC Evolutionary Biology, 6, 74. 

LONGCORE, J. E., PESSIER, A. P. & NICHOLS, D. K. 1999. Batrachochytrium dendrobatidis gen. et sp. nov., 
a chytrid pathogenic to amphibians. Mycologia, 219-227. 

MASSOL-DEYA, A. A., ODELSON, D. A., HICKEY, R. F. & TIEDJE, J. M. 1995. Bacterial community 
fingerprinting of amplified 16S and 16–23S ribosomal DNA gene sequences and restriction 
endonuclease analysis (ARDRA). Molecular microbial ecology manual. Springer. 

MASSON, L., MAYNARD, C., BROUSSEAU, R., GOH, S.-H., HEMMINGSEN, S. M., HILL, J. E., PACCAGNELLA, 
A., ODA, R. & KIMURA, N. 2006. Identification of pathogenic Helicobacter species by chaperonin-
60 differentiation on plastic DNA arrays. Genomics, 87, 104-112. 

MATSUKI, T., WATANABE, K., FUJIMOTO, J., MIYAMOTO, Y., TAKADA, T., MATSUMOTO, K., OYAIZU, H. & 
TANAKA, R. 2002. Development of 16S rRNA-gene-targeted group-specific primers for the 
detection and identification of predominant bacteria in human feces. Applied and Environmental 
Microbiology, 68, 5445-5451. 

MESSING, J., CREA, R. & SEEBURG, P. H. 1981. A system for shotgun DNA sequencing. Nucleic acids 
research, 9, 309-321. 



111 
 

MOLLET, C., DRANCOURT, M. & RAOULT, D. 1997. rpoB sequence analysis as a novel basis for bacterial 
identification. Molecular microbiology, 26, 1005-1011. 

MORA, C., TITTENSOR, D. P., ADL, S., SIMPSON, A. G. & WORM, B. 2011. How many species are there on 
Earth and in the ocean? PLoS biology, 9, e1001127. 

MORGAN, J. A., VREDENBURG, V. T., RACHOWICZ, L. J., KNAPP, R. A., STICE, M. J., TUNSTALL, T., BINGHAM, 
R. E., PARKER, J. M., LONGCORE, J. E. & MORITZ, C. 2007. Population genetics of the frog-killing 
fungus Batrachochytrium dendrobatidis. Proceedings of the National Academy of Sciences, 104, 
13845-13850. 

MUYZER, G. 1999. DGGE/TGGE a method for identifying genes from natural ecosystems. Current opinion 
in microbiology, 2, 317-322. 

NAKATSU, C. H., TORSVIK, V. & ØVREÅS, L. 2000. Soil community analysis using DGGE of 16S rDNA 
polymerase chain reaction products. Soil Science Society of America Journal, 64, 1382-1388. 

NILSSON, R. H., KRISTIANSSON, E., RYBERG, M., HALLENBERG, N. & LARSSON, K.-H. 2008. Intraspecific ITS 
variability in the kingdom Fungi as expressed in the international sequence databases and its 
implications for molecular species identification. Evolutionary bioinformatics online, 4, 193. 

O'BRIEN, H. E., PARRENT, J. L., JACKSON, J. A., MONCALVO, J.-M. & VILGALYS, R. 2005. Fungal community 
analysis by large-scale sequencing of environmental samples. Applied and environmental 
microbiology, 71, 5544-5550. 

O'SULLIVAN, D. J. 2000. Methods for analysis of the intestinal microflora. Current issues in intestinal 
microbiology, 1, 39-50. 

OLSEN, G. J., LANE, D. J., GIOVANNONI, S. J., PACE, N. R. & STAHL, D. A. 1986. Microbial ecology and 
evolution: a ribosomal RNA approach. Annual Reviews in Microbiology, 40, 337-365. 

OPEL, K. L., CHUNG, D. & MCCORD, B. R. 2010. A Study of PCR Inhibition Mechanisms Using Real Time 
PCR*,†. Journal of forensic sciences, 55, 25-33. 

PACE, N. R., OLSEN, G. J. & WOESE, C. R. 1986. Ribosomal RNA phylogeny and the primary lines of 
evolutionary descent. Cell, 45, 325-326. 

PAGE, R. D. 1996. TreeView. An application to display phylogenetic trees on personal computer. Comp Appl 
Biol Sci, 12, 357-358. 

PARK, H. K., HA, M.-H., PARK, S.-G., KIM, M. N., KIM, B. J. & KIM, W. 2012. Characterization of the fungal 
microbiota (mycobiome) in healthy and dandruff-afflicted human scalps. PLoS One, 7, e32847. 

PAYNE, G. W., RAMETTE, A., ROSE, H. L., WEIGHTMAN, A. J., JONES, T. H., TIEDJE, J. M. & 
MAHENTHIRALINGAM, E. 2006. Application of a recA gene-based identification approach to the 
maize rhizosphere reveals novel diversity in Burkholderia species. FEMS microbiology letters, 259, 
126-132. 

PEIXOTO, R., DA COSTA COUTINHO, H., RUMJANEK, N., MACRAE, A. & ROSADO, A. 2002. Use of rpoB and 
16S rRNA genes to analyse bacterial diversity of a tropical soil using PCR and DGGE. Letters in 
applied microbiology, 35, 316-320. 

PORETSKY, R., RODRIGUEZ-R, L. M., LUO, C., TSEMENTZI, D. & KONSTANTINIDIS, K. T. 2014. Strengths and 
limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community 
dynamics. PloS one, 9, e93827. 

RASTOGI, G. & SANI, R. K. 2011. Molecular techniques to assess microbial community structure, function, 
and dynamics in the environment. Microbes and microbial technology. Springer. 

ROOSE-AMSALEG, C., GARNIER-SILLAM, E. & HARRY, M. 2001. Extraction and purification of microbial DNA 
from soil and sediment samples. Applied Soil Ecology, 18, 47-60. 

ROWLAND, G., ABOSHKIWA, M. & COLEMAN, G. 1993. Comparative sequence analysis and predicted 
phylogeny of the DNA-dependent RNA polymerase beta subunits of Staphylococcus aureus and 
other eubacteria. Biochemical Society transactions, 21, 40S-40S. 



112 
 

SALZMAN, N. H., DE JONG, H., PATERSON, Y., HARMSEN, H. J., WELLING, G. W. & BOS, N. A. 2002. Analysis 
of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal 
bacteria. Microbiology, 148, 3651-3660. 

SCHELLENBERG, J., LINKS, M. G., HILL, J. E., DUMONCEAUX, T. J., PETERS, G. A., TYLER, S., BALL, T. B., 
SEVERINI, A. & PLUMMER, F. A. 2009. Pyrosequencing of the chaperonin-60 universal target as a 
tool for determining microbial community composition. Applied and environmental microbiology, 
75, 2889-2898. 

SCHELLENBERG, J. J., LINKS, M. G., HILL, J. E., DUMONCEAUX, T. J., KIMANI, J., JAOKO, W., WACHIHI, C., 
MUNGAI, J. N., PETERS, G. A. & TYLER, S. 2011. Molecular definition of vaginal microbiota in East 
African commercial sex workers. Applied and environmental microbiology, 77, 4066-4074. 

SCHLOSS, P. D., WESTCOTT, S. L., RYABIN, T., HALL, J. R., HARTMANN, M., HOLLISTER, E. B., LESNIEWSKI, 
R. A., OAKLEY, B. B., PARKS, D. H. & ROBINSON, C. J. 2009. Introducing mothur: open-source, 
platform-independent, community-supported software for describing and comparing microbial 
communities. Applied and environmental microbiology, 75, 7537-7541. 

SCHLOTER, M., AßMUS, B. & HARTMANN, A. 1995. The use of immunological methods to detect and 
identify bacteria in the environment. Biotechnology Advances, 13, 75-90. 

SCHMIDT, P.-A., BÁLINT, M., GRESHAKE, B., BANDOW, C., RÖMBKE, J. & SCHMITT, I. 2013. Illumina 
metabarcoding of a soil fungal community. Soil Biology and Biochemistry, 65, 128-132. 

SCHOCH, C. L., SEIFERT, K. A., HUHNDORF, S., ROBERT, V., SPOUGE, J. L., LEVESQUE, C. A., CHEN, W., 
BOLCHACOVA, E., VOIGT, K. & CROUS, P. W. 2012. Nuclear ribosomal internal transcribed spacer 
(ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy 
of Sciences, 109, 6241-6246. 

SCHOCH, C. L., SUNG, G.-H., LÓPEZ-GIRÁLDEZ, F., TOWNSEND, J. P., MIADLIKOWSKA, J., HOFSTETTER, V., 
ROBBERTSE, B., MATHENY, P. B., KAUFF, F. & WANG, Z. 2009. The Ascomycota tree of life: a 
phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and 
ecological traits. Systematic biology, syp020. 

SCHREIER, W. J., SCHRADER, T. E., KOLLER, F. O., GILCH, P., CRESPO-HERNÁNDEZ, C. E., SWAMINATHAN, 
V. N., CARELL, T., ZINTH, W. & KOHLER, B. 2007. Thymine dimerization in DNA is an ultrafast 
photoreaction. Science, 315, 625-629. 

SCHÜßLER, A., SCHWARZOTT, D. & WALKER, C. 2001. A new fungal phylum, the Glomeromycota: 
phylogeny and evolution. Mycological research, 105, 1413-1421. 

SCHWIEGER, F. & TEBBE, C. C. 1998. A New Approach To Utilize PCR–Single-Strand-Conformation 
Polymorphism for 16S rRNA Gene-Based Microbial Community Analysis. Applied and 
Environmental Microbiology, 64, 4870-4876. 

SHANNON, C. 1948. A mathematical theory of communication, bell System technical Journal 27: 379-423 
and 623–656. Mathematical Reviews (MathSciNet): MR10, 133e. 

SHI, P., BAI, Y., YUAN, T., YAO, B. & FAN, Y. 2007. [Use of rpoB and 16S rDNA genes to analyze rumen 
bacterial diversity of goat using PCR and DGGE]. Wei sheng wu xue bao= Acta microbiologica 
Sinica, 47, 285-289. 

SIMPSON, E. 1949. Measurement of Diversity Nature 163.•. 
SINGLETON, D. R., FURLONG, M. A., RATHBUN, S. L. & WHITMAN, W. B. 2001. Quantitative comparisons 

of 16S rRNA gene sequence libraries from environmental samples. Applied and environmental 
microbiology, 67, 4374-4376. 

SMIT, E., LEEFLANG, P., GLANDORF, B., VAN ELSAS, J. D. & WERNARS, K. 1999. Analysis of fungal diversity 
in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and 
temperature gradient gel electrophoresis. Applied and Environmental Microbiology, 65, 2614-
2621. 



113 
 

SMIT, E., LEEFLANG, P. & WERNARS, K. 1997. Detection of shifts in microbial community structure and 
diversity in soil caused by copper contamination using amplified ribosomal DNA restriction 
analysis. FEMS Microbiology Ecology, 23, 249-261. 

SPINGOLA, M., GRATE, L., HAUSSLER, D. & ARES, M. 1999. Genome-wide bioinformatic and molecular 
analysis of introns in Saccharomyces cerevisiae. Rna, 5, 221-234. 

SRINIVASAN, S., HOFFMAN, N. G., MORGAN, M. T., MATSEN, F. A., FIEDLER, T. L., HALL, R. W., ROSS, F. J., 
MCCOY, C. O., BUMGARNER, R. & MARRAZZO, J. M. 2012. Bacterial communities in women with 
bacterial vaginosis: high resolution phylogenetic analyses reveal relationships of microbiota to 
clinical criteria. PloS one, 7, e37818. 

STAHL, D. & CAPMAN, W. 1994. Application of molecular genetics to the study of microbial communities. 
In: STAL, L. & CAUMETTE, P. (eds.) Microbial Mats. Springer Berlin Heidelberg. 

STAHL, D. A., LANE, D. J., OLSEN, G. J. & PACE, N. R. 1984. Analysis of hydrothermal vent-associated 
symbionts by ribosomal RNA sequences. Science, 224, 409-411. 

STALEY, J. T. & KONOPKA, A. 1985. Measurement of in situ activities of nonphotosynthetic microorganisms 
in aquatic and terrestrial habitats. Annual Reviews in Microbiology, 39, 321-346. 

SUAU, A., BONNET, R., SUTREN, M., GODON, J.-J., GIBSON, G. R., COLLINS, M. D. & DORÉ, J. 1999. Direct 
analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular 
species within the human gut. Applied and environmental microbiology, 65, 4799-4807. 

SUNDQUIST, A., BIGDELI, S., JALILI, R., DRUZIN, M. L., WALLER, S., PULLEN, K. M., EL-SAYED, Y. Y., TASLIMI, 
M. M., BATZOGLOU, S. & RONAGHI, M. 2007. Bacterial flora-typing with targeted, chip-based 
Pyrosequencing. BMC microbiology, 7, 108. 

TAYLOR, D. L., HERRIOTT, I. C., STONE, K. E., MCFARLAND, J. W., BOOTH, M. G. & LEIGH, M. B. 2010. 
Structure and resilience of fungal communities in Alaskan boreal forest soils This article is one of 
a selection of papers from The Dynamics of Change in Alaska's Boreal Forests: Resilience and 
Vulnerability in Response to Climate Warming. Canadian Journal of Forest Research, 40, 1288-
1301. 

TAYLOR, D. L., HOLLINGSWORTH, T. N., MCFARLAND, J. W., LENNON, N. J., NUSBAUM, C. & RUESS, R. W. 
2014. A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche 
partitioning. Ecological Monographs, 84, 3-20. 

THOMOPSON, J., HIGGINS, D. G. & GIBSON, T. 1994. ClustalW. Nucleic Acids Res, 22, 4673-4680. 
TOJU, H., TANABE, A. S., YAMAMOTO, S. & SATO, H. 2012. High-coverage ITS primers for the DNA-based 

identification of ascomycetes and basidiomycetes in environmental samples. PLoS One, 7, 
e40863. 

TRINGE, S. G. & RUBIN, E. M. 2005. Metagenomics: DNA sequencing of environmental samples. Nature 
reviews genetics, 6, 805-814. 

TYSON, G. W., CHAPMAN, J., HUGENHOLTZ, P., ALLEN, E. E., RAM, R. J., RICHARDSON, P. M., SOLOVYEV, 
V. V., RUBIN, E. M., ROKHSAR, D. S. & BANFIELD, J. F. 2004. Community structure and metabolism 
through reconstruction of microbial genomes from the environment. Nature, 428, 37-43. 

VAINIO, E. J. & HANTULA, J. 2000. Direct analysis of wood-inhabiting fungi using denaturing gradient gel 
electrophoresis of amplified ribosomal DNA. Mycological research, 104, 927-936. 

VANDENKOORNHUYSE, P. & LEYVAL, C. 1998. SSU rDNA sequencing and PCR-fingerprinting reveal genetic 
variation within Glomus mosseae. Mycologia, 791-797. 

VARTOUKIAN, S. R., PALMER, R. M. & WADE, W. G. 2010. Strategies for culture of ‘unculturable’bacteria. 
FEMS microbiology letters, 309, 1-7. 

VENTER, J. C., REMINGTON, K., HEIDELBERG, J. F., HALPERN, A. L., RUSCH, D., EISEN, J. A., WU, D., 
PAULSEN, I., NELSON, K. E. & NELSON, W. 2004. Environmental genome shotgun sequencing of 
the Sargasso Sea. science, 304, 66-74. 



114 
 

VERBEKE, T. J., SPARLING, R., HILL, J. E., LINKS, M. G., LEVIN, D. & DUMONCEAUX, T. J. 2011. Predicting 
relatedness of bacterial genomes using the chaperonin-60 universal target (cpn60 UT): 
Application to Thermoanaerobacter species. Systematic and Applied Microbiology, 34, 171-179. 

VĚTROVSKÝ, T. & BALDRIAN, P. 2013. The variability of the 16S rRNA gene in bacterial genomes and its 
consequences for bacterial community analyses. PLoS One, 8, e57923. 

VOS, M., QUINCE, C., PIJL, A. S., DE HOLLANDER, M. & KOWALCHUK, G. A. 2012. A comparison of rpoB and 
16S rRNA as markers in pyrosequencing studies of bacterial diversity. PLoS One, 7, e30600. 

WANG, Y., LI, H., JIA, S., WU, Z. & GUO, B. 2006. [Analysis of bacterial diversity of kefir grains by denaturing 
gradient gel electrophoresis and 16S rDNA sequencing]. Wei sheng wu xue bao= Acta 
microbiologica Sinica, 46, 310-313. 

WATANABE, K., TERAMOTO, M., FUTAMATA, H. & HARAYAMA, S. 1998. Molecular detection, isolation, 
and physiological characterization of functionally dominant phenol-degrading bacteria in 
activated sludge. Applied and Environmental Microbiology, 64, 4396-4402. 

WHITE, T. J., BRUNS, T., LEE, S. & TAYLOR, J. 1990. Amplification and direct sequencing of fungal ribosomal 
RNA genes for phylogenetics. PCR protocols: a guide to methods and applications, 18, 315-322. 

WHITMAN, W. B., COLEMAN, D. C. & WIEBE, W. J. 1998. Prokaryotes: the unseen majority. Proceedings 
of the National Academy of Sciences, 95, 6578-6583. 

WHITTAKER, R. H. & MARGULIS, L. 1978. Protist classification and the kingdoms of organisms. Biosystems, 
10, 3-18. 

WILSON, I. G. 1997. Inhibition and facilitation of nucleic acid amplification. Applied and environmental 
microbiology, 63, 3741. 

WOESE, C. R. 1987. Bacterial evolution. Microbiological reviews, 51, 221. 
WOOLEY, J. C., GODZIK, A. & FRIEDBERG, I. 2010. A primer on metagenomics. PLoS computational biology, 

6, e1000667. 
WORRALL, J. J. 1991. Media for selective isolation of hymenomycetes. Mycologia, 296-302. 
YANG, Y.-H., YAO, J., HU, S. & QI, Y. 2000. Effects of agricultural chemicals on DNA sequence diversity of 

soil microbial community: a study with RAPD marker. Microbial Ecology, 39, 72-79. 
YENERALL, P. & ZHOU, L. 2012. Identifying the mechanisms of intron gain: progress and trends. Biol Direct, 

7, 29. 
YEO, S. F. & WONG, B. 2002. Current Status of Nonculture Methods for Diagnosis of Invasive Fungal 

Infections. Clinical Microbiology Reviews, 15, 465-484. 
YIN, H., CAO, L., QIU, G., WANG, D., KELLOGG, L., ZHOU, J., LIU, X., DAI, Z., DING, J. & LIU, X. 2008. Molecular 

diversity of 16S rRNA and gyrB genes in copper mines. Archives of microbiology, 189, 101-110. 
YONG, L., YIXIN, Y., DONGYUE, Z. & WANLONG, D. 2012. Microbial community diversity analysis of Panax 

ginseng rhizosphere and non-rhizosphere soil using randomly amplified polymorphic DNA 
method. Open Journal of Genetics, 2012. 

ZEIGLER, D. R. 2003. Gene sequences useful for predicting relatedness of whole genomes in bacteria. 
International journal of systematic and evolutionary microbiology, 53, 1893-1900. 

ZHENG, N.-N., GUO, X.-C., LV, W., CHEN, X.-X. & FENG, G.-F. 2013. Characterization of the vaginal fungal 
flora in pregnant diabetic women by 18S rRNA sequencing. European journal of clinical 
microbiology & infectious diseases, 32, 1031-1040. 

 

 

 



115 
 

Appendices 

Appendix 1: Primer bias produced by original and redesigned cpn60 UT primers with vaginal 

metagenomic DNA templates (OTU is defined as the best cpn60 UT reference sequence) (Figure 

11). 

(a) V1A 

OTU 
Bias Log2(Original primers/ 

 Redesigned primers)  

b10199 0.89 

b1025 -0.32 

b13654 4.85 

b14122 -0.77 

b1432 -1.01 

b15282 -1.79 

b15977 1.98 

b17589 0.95 

b17590 -0.26 

b17619 -0.02 

b17630 0.57 

b17634 -0.01 

b18214 0.36 

b18216 1.98 

b18713 -1.37 

b18814 -1.16 

b19134 0.35 

b291 -0.34 

b6841 -0.002 

UNKNOWN -0.34 
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(b)  V1B 

OTU 
Bias Log2( Original primers / 

Redesigned primers) 

b10199 1.58 

b1025 -0.76 

b13654 -2.91 

b13689 -0.004 

b13762 3.66 

b13779 -0.85 

b14122 1.61 

b1432 -0.11 

b14417 0.99 

b14562 -0.01 

b15282 -0.83 

b15920 -0.09 

b15977 0.07 

b17590 0.43 

b17619 0 

b17630 1.30 

b17632 3.98 

b17634 -0.01 

b18214 -0.23 

b18216 0.58 

b18280 0.41 

b18713 -0.45 

b18814 -0.64 

b19134 0.13 

b291 -0.009 

b3363 1.58 

b3402 -0.79 

b3459 -0.81 

b5843 0.84 

b6817 0.58 

b6839 -0.26 

b6841 0.34 

b6847 0.33 

b7450 -0.10 

UNKNOWN -0.49 

Normalized - Due to differences in library size, the actual read counts (used to calculate log2 

values) are not comparable between libraries, therefore, comparisons are based on normalized 

counts. 
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Appendix 2a: Log2 values produced by original and redesigned cpn60 UT primers with vaginal 

metagenomic DNA templates. (Figure 12). 

a) V1A 

Isotig Bias Log2 isotig Bias Log2 

00001 1.58 00136 0.69 

00010 -0.76 00142 -1.31 

00014 -2.91 00143 -0.25 

00022 -0.004 00150 -2.21 

00028 3.66 00156 -0.01 

00033 -0.85 00157 0.69 

00038 1.61 00158 -1.31 

00039 -0.11 00159 -0.25 

00049 0.99 00166 -0.91 

00050 -0.01 00170 -0.15 

00051 -0.83 00182 -3.41 

00053 -0.09 00189 -3.51 

00060 0.07 00199 -3.82 

00061 0.43 00201 1.31 

00065 0 00203 1.55 

00067 1.30 00207 -0.02 

00069 3.98 00216 -0.24 

00070 -0.01 00222 1.98 

00071 -0.23 00223 -1.04 

00080 0.58 00233 -1.68 

00087 0.41 00239 0.99 

00090 -0.45 00240 -1.08 

00097 -0.64 00244 4.14 

00100 0.13 00247 0.005 

00103 -0.009 00250 0.89 

00105 1.58 00266 4.15 

00107 -0.79 00271 3.26 

00108 -0.81 00274 2.98 

00110 0.84 00275 2.57 

00112 0.58 00277 2.21 

00119 -0.26 00279 -1.34 

00123 0.34   

00126 0.33   

00128 -0.10   

00131 -0.49   
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b) V1B 

Isotig Bias Log2 isotig Bias Log2 

00008 0.00 00076 0.00 

00010 -1.42 00080 -0.50 

00012 -0.38 00082 -0.43 

00016 0.41 00084 -0.01 

00020 2.80 00088 -1.91 

00026 -0.87 00090 0.01 

00030 2.99 00092 0.00 

00032 -0.55 00097 1.00 

00033 -0.76 00100 -0.59 

00039 -0.19 00102 Error 
00041 1.37 00108 -0.01 

00044 1.19 00115 0.99 

00045 0.18 00118 -0.59 

00046 -1.48 00120 0.70 

00047 -2.01 00126 -0.59 

00049 -2.58 00127 0.33 

00051 -1.40 00128 0.00 

00052 0.17 00131 2.52 

00053 0.00 00133 -0.83 

00055 0.78 00134 1.27 

00056 1.00 00135 -0.01 

00058 -0.42 00136 -0.69 

00059 0.00 00137 0.84 

00060 0.25 00138 0.03 

00061 1.62 00142 0.99 

00062 1.99 00143 -0.19 

00063 3.98 00144 0.47 

00064 -0.17 00145 -0.50 

00065 0.32 00150 0.17 

00066 -2.91 00152 0.58 

00067 -1.00 00154 -0.26 

00069 -0.83 00155 -0.11 

00070 0.00 00156 0.00 

00071 -0.70 00157 -1.01 

00072 -0.55 00158 0.58 

 

 



119 
 

isotig Bias log2 isotig Bias log2 isotig Bias log2 

00159 0.14 00220 0.59 00273 2.48 

00161 -0.81 00221 1.17 00275 0.74 

00163 -1.00 00223 -0.24 00276 -0.17 

00164 0.00 00224 0.51 00278 -0.01 

00165 0.99 00225 -0.74 00279 1.99 

00168 -0.68 00226 -0.30 00281 0.58 

00172 2.99 00228 -0.60 00288 -1.32 

00174 0.00 00229 -1.03 00289 0.75 

00177 0.58 00230 -0.46 00293 1.00 

00179 -1.00 00231 -0.42 00295 0.20 

00180 1.58 00232 -0.32 00296 2.62 

00181 0.00 00234 -3.33 00273 2.48 

00183 0.19 00238 0.00 00275 0.74 

00186 -0.49 00240 -0.21 00276 -0.17 

00187 -1.75 00243 1.91 00278 -0.01 

00188 0.58 00244 1.63 00279 1.99 

00190 -0.42 00247 0.32 00281 0.58 

00192 -0.07 00248 -1.00 00288 -1.32 

00194 0.00 00249 0.73 00289 0.75 

00195 0.25 00250 -0.01 00293 1.00 

00197 0.68 00251 1.58 00295 0.20 

00198 -2.32 00252 -0.79 00296 2.62 

00200 0.12 00253 3.66   

00203 -0.25 00254 0.30   

00204 2.00 00255 0.73   

00206 -1.00 00256 -1.33   

00208 0.39 00258 -0.46   

00209 0.00 00259 -1.37   

00210 1.58 00260 -1.45   

00211 0.55 00262 0.41   

00214 -0.01 00263 0.41   

00215 0.00 00265 1.58   

00216 0.99 00267 -0.75   

00217 0.35 00269 0.55   

00218 -0.10 00270 -0.85   
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Appendix 2b: Description of OTU used as labels in Figure 12. 

isotig 

 

cpnDB ID Genbank Genus Species 

isotig00001 b291 AF240579 Gardnerella vaginalis 

isotig00006 b19134 NZ_AFIJ01000035 Megasphaera sp. 

isotig00007 b19134 NZ_AFIJ01000035 Megasphaera sp. 

isotig00008 b17590 AB547633 Prevotella timonensis 

isotig00010 b291 AF240579 Gardnerella vaginalis 

isotig00011 b291 AF240579 Gardnerella vaginalis 

isotig00012 UNKNOWN   

isotig00014 b291 AF240579 Gardnerella vaginalis 

isotig00016 b1432 AY608421 Lactobacillus jensenii 

isotig00020 UNKNOWN   

isotig00022 b291 AF240579 Gardnerella vaginalis 

isotig00026 UNKNOWN   

isotig00028 b291 AF240579 Gardnerella vaginalis 

isotig00030 b18713 AEJD00000000 Gardnerella vaginalis 

isotig00032 b15920 CP001849 Gardnerella vaginalis 

isotig00033 b1025 AF440233 Prevotella bivia 

isotig00036 UNKNOWN   

isotig00038 b291 AF240579 Gardnerella vaginalis 

isotig00039 b18214 NZ_AENT01000025 Dialister microaerophilus 

isotig00041 b17630 AB547593 Prevotella bergensis 

isotig00044 b17630 AB547593 Prevotella bergensis 

isotig00045 b15977 FJ577599 Actinobacteria sp. 

isotig00046 b1432 AY608421 Lactobacillus jensenii 

isotig00047 b15920 CP001849 Gardnerella vaginalis 

isotig00048 b17590 AB547633 Prevotella timonensis 

isotig00049 b291 AF240579 Gardnerella vaginalis 

isotig00050 b17589 AB547634 Prevotella veroralis 

isotig00051 b18814 AFBB01000007 Dialister micraerophilus 

isotig00052 b15920 CP001849 Gardnerella vaginalis 

isotig00053 b19134 NZ_AFIJ01000035 Megasphaera sp. 

isotig00055 b17590 AB547633 Prevotella timonensis 

isotig00056 b15920 CP001849 Gardnerella vaginalis 

isotig00058 b1432 AY608421 Lactobacillus jensenii 

isotig00059 b1432 AY608421 Lactobacillus jensenii 

isotig00060 b18713 AEJD00000000 Gardnerella vaginalis 

isotig00061 b14122 ACCG01000008 Bifidobacterium breve 

isotig00062 b15977 FJ577599 Actinobacteria sp. 

isotig00063 b17632 AB547591 Prevotella amnii 

isotig00064 b291 AF240579 Gardnerella vaginalis 

isotig00065 UNKNOWN   

isotig00066 b13654 ACGK01000047 Atopobium vaginae 

isotig00067 b291 AF240579 Gardnerella vaginalis 
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isotig00068 b291 AF240579 Gardnerella vaginalis 

isotig00069 b15282 NZ_ACLN01000008 Lactobacillus iners 

isotig00070 b15977 FJ577599 Actinobacteria sp. 

isotig00071 UNKNOWN   

isotig00072 UNKNOWN   

isotig00075 UNKNOWN   

isotig00076 b13689 CP001682 Cryptobacterium curtum 

isotig00080 b18814 AFBB01000007 Dialister micraerophilus 

isotig00082 UNKNOWN   

isotig00084 b18216 NZ_AENP01000025 Peptoniphilus harei 

isotig00085 UNKNOWN   

isotig00086 b15924 ADFR01000007 Bulleidia extructa 

isotig00087 b291 AF240579 Gardnerella vaginalis 

isotig00088 b15920 CP001849 Gardnerella vaginalis 

isotig00089 b3384 AY123736 Finegoldia magna 

isotig00090 b17634 AB547589 Porphyromonas uenonis 

isotig00092 b291 AF240579 Gardnerella vaginalis 

isotig00093 UNKNOWN   

isotig00097 b291 AF240579 Gardnerella vaginalis 

isotig00100 b18713 AEJD00000000 Gardnerella vaginalis 

isotig00102 b17630 AB547593 Prevotella bergensis 

isotig00103 b18814 AFBB01000007 Dialister micraerophilus 

isotig00105 b13654 ACGK01000047 Atopobium vaginae 

isotig00107 b17590 AB547633 Prevotella timonensis 

isotig00108 b291 AF240579 Gardnerella vaginalis 

isotig00110 b291 AF240579 Gardnerella vaginalis 

isotig00112 b18713 AEJD00000000 Gardnerella vaginalis 

isotig00115 b17590 AB547633 Prevotella timonensis 

isotig00118 UNKNOWN   

isotig00119 b13654 ACGK01000047 Atopobium vaginae 

isotig00120 b15977 FJ577599 Actinobacteria sp. 

isotig00122 b1025 AF440233 Prevotella bivia 

isotig00123 b291 AF240579 Gardnerella vaginalis 

isotig00126 b18713 AEJD00000000 Gardnerella vaginalis 

isotig00127 b6847 AY691286 Prevotella oris 

isotig00128 b18814 AFBB01000007 Dialister micraerophilus 

isotig00130 b15282 NZ_ACLN01000008 Lactobacillus iners 

isotig00131 b17630 AB547593 Prevotella bergensis 

isotig00133 b18713 AEJD00000000 Gardnerella vaginalis 

isotig00134 b15920 CP001849 Gardnerella vaginalis 

isotig00135 b18214 NZ_AENT01000025 Dialister microaerophilus 

isotig00136 b19134 NZ_AFIJ01000035 Megasphaera sp. 

isotig00137 b5843 AY691313 Eubacterium dolichum 

isotig00138 b17634 AB547589 Porphyromonas uenonis 

isotig00142 b17590 AB547633 Prevotella timonensis 
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isotig00143 b17590 AB547633 Prevotella timonensis 

isotig00144 b17590 AB547633 Prevotella timonensis 

isotig00145 b15920 CP001849 Gardnerella vaginalis 

isotig00150 b291 AF240579 Gardnerella vaginalis 

isotig00151 UNKNOWN   

isotig00152 b14122 ACCG01000008 Bifidobacterium breve 

isotig00154 b6839 AY691278 Prevotella buccalis 

isotig00155 b1432 AY608421 Lactobacillus jensenii 

isotig00156 b17590 AB547633 Prevotella timonensis 

isotig00157 b18713 AEJD00000000 Gardnerella vaginalis 

isotig00158 b18713 AEJD00000000 Gardnerella vaginalis 

isotig00159 b19134 NZ_AFIJ01000035 Megasphaera sp. 

isotig00161 b3459 AB071388 Campylobacter rectus 

isotig00162 UNKNOWN   

isotig00163 b291 AF240579 Gardnerella vaginalis 

isotig00164 UNKNOWN   

isotig00165 b14417 CP002122 Prevotella melaninogenica 

isotig00166 b18713 AEJD00000000 Gardnerella vaginalis 

isotig00167 b17590 AB547633 Prevotella timonensis 

isotig00168 b15920 CP001849 Gardnerella vaginalis 

isotig00169 b1432 AY608421 Lactobacillus jensenii 

isotig00170 b19134 NZ_AFIJ01000035 Megasphaera sp. 

isotig00172 b17630 AB547593 Prevotella bergensis 

isotig00173 UNKNOWN   

isotig00174 b1432 AY608421 Lactobacillus jensenii 

isotig00176 b1432 AY608421 Lactobacillus jensenii 

isotig00177 b291 AF240579 Gardnerella vaginalis 

isotig00179 UNKNOWN   

isotig00180 b17630 AB547593 Prevotella bergensis 

isotig00181 b17634 AB547589 Porphyromonas uenonis 

isotig00182 b18713 AEJD00000000 Gardnerella vaginalis 

isotig00183 b15920 CP001849 Gardnerella vaginalis 

isotig00184 b1432 AY608421 Lactobacillus jensenii 

isotig00185 b15977 FJ577599 Actinobacteria sp. 

isotig00186 b15920 CP001849 Gardnerella vaginalis 

isotig00187 UNKNOWN   

isotig00188 b1432 AY608421 Lactobacillus jensenii 

isotig00189 b291 AF240579 Gardnerella vaginalis 

isotig00190 b15920 CP001849 Gardnerella vaginalis 

isotig00191 b6839 AY691278 Prevotella buccalis 

isotig00192 UNKNOWN   

isotig00194 b1432 AY608421 Lactobacillus jensenii 

isotig00195 b1432 AY608421 Lactobacillus jensenii 

isotig00197 b1432 AY608421 Lactobacillus jensenii 

isotig00198 b18814 AFBB01000007 Dialister micraerophilus 
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isotig00199 b18713 AEJD00000000 Gardnerella vaginalis 

isotig00200 b1432 AY608421 Lactobacillus jensenii 

isotig00201 UNKNOWN   

isotig00203 b18214 NZ_AENT01000025 Dialister microaerophilus 

isotig00204 b10199 EF571590 Lactobacillus gasseri 

isotig00205 UNKNOWN   

isotig00206 b15920 CP001849 Gardnerella vaginalis 

isotig00207 b291 AF240579 Gardnerella vaginalis 

isotig00208 b1432 AY608421 Lactobacillus jensenii 

isotig00209 b17619 AB547604 Prevotella disiens 

isotig00210 UNKNOWN   

isotig00211 b1432 AY608421 Lactobacillus jensenii 

isotig00212 UNKNOWN   

isotig00214 UNKNOWN   

isotig00215 b291 AF240579 Gardnerella vaginalis 

isotig00216 b6841 AY691280 Prevotella denticola 

isotig00217 b17590 AB547633 Prevotella timonensis 

isotig00218 b7450 AY562570 Lactobacillus crispatus 

isotig00219 b13606 NC_013203 Atopobium parvulum 

isotig00220 b15977 FJ577599 Actinobacteria sp. 

isotig00221 b1432 AY608421 Lactobacillus jensenii 

isotig00222 b18216 NZ_AENP01000025 Peptoniphilus harei 

isotig00223 b18814 AFBB01000007 Dialister micraerophilus 

isotig00224 b1432 AY608421 Lactobacillus jensenii 

isotig00225 UNKNOWN   

isotig00226 b1432 AY608421 Lactobacillus jensenii 

isotig00227 b15977 FJ577599 Actinobacteria sp. 

isotig00228 UNKNOWN   

isotig00229 UNKNOWN   

isotig00230 UNKNOWN   

isotig00231 b17634 AB547589 Porphyromonas uenonis 

isotig00232 UNKNOWN   

isotig00233 b291 AF240579 Gardnerella vaginalis 

isotig00234 UNKNOWN   

isotig00235 b17590 AB547633 Prevotella timonensis 

isotig00238 UNKNOWN   

isotig00239 b19134 NZ_AFIJ01000035 Megasphaera sp. 

isotig00240 b19134 NZ_AFIJ01000035 Megasphaera sp. 

isotig00241 UNKNOWN   

isotig00242 b13654 ACGK01000047 Atopobium vaginae 

isotig00243 b17590 AB547633 Prevotella timonensis 

isotig00244 b19134 NZ_AFIJ01000035 Megasphaera sp. 

isotig00247 b6841 AY691280 Prevotella denticola 

isotig00248 b15977 FJ577599 Actinobacteria sp. 

isotig00249 b18216 NZ_AENP01000025 Peptoniphilus harei 
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isotig00250 b10199 EF571590 Lactobacillus gasseri 

isotig00251 b3363 AY123698 Aerococcus urinae 

isotig00252 b3402 AY123679 Mobiluncus curtisii 

isotig00253 b13762 NZ_ACKW01000052 Mobiluncus mulieris 

isotig00254 b19134 NZ_AFIJ01000035 Megasphaera sp. 

isotig00255 UNKNOWN   

isotig00256 b1432 AY608421 Lactobacillus jensenii 

isotig00258 UNKNOWN   

isotig00259 UNKNOWN   

isotig00260 UNKNOWN   

isotig00262 UNKNOWN   

isotig00263 b18280 AEPD01000033 Prevotella buccae 

isotig00265 UNKNOWN   

isotig00266 b291 AF240579 Gardnerella vaginalis 

isotig00267 b15920 CP001849 Gardnerella vaginalis 

isotig00268 UNKNOWN   

isotig00269 UNKNOWN   

isotig00270 b13779 NZ_ACGU01000113 Lactobacillus ultunensis 

isotig00271 b291 AF240579 Gardnerella vaginalis 

isotig00273 b17630 AB547593 Prevotella bergensis 

isotig00274 b291 AF240579 Gardnerella vaginalis 

isotig00275 b17590 AB547633 Prevotella timonensis 

isotig00276 b1432 AY608421 Lactobacillus jensenii 

isotig00277 b291 AF240579 Gardnerella vaginalis 

isotig00278 b14562 GG698804 Lactobacillus coleohominis 

isotig00279 b291 AF240579 Gardnerella vaginalis 

isotig00280 UNKNOWN   

isotig00281 b6817 AY691256 Eubacterium ventriosum 

isotig00284 UNKNOWN   

isotig00286 b18394 ACWN01000067 Eggerthella sp. 

isotig00288 UNKNOWN   

isotig00289 b17590 AB547633 Prevotella timonensis 

isotig00293 b15920 CP001849 Gardnerella vaginalis 

isotig00295 b15920 CP001849 Gardnerella vaginalis 

isotig00296 UNKNOWN   
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Appendix 3a: Normalized read counts associated with OTU used for production of bacterial 

profiles shown in Figure 13a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OTU 

(cpnDB ID) 

Number of reads (normalized) 

Redesigned 

primers Original primers 

b291 45.49 35.88 

b17590 8.31 6.94 

b19134 21.27 27.05 

b18713 10.74 4.15 

b6841 2.41 2.41 

b17589 2.26 4.37 

b18814 2.33 1.03 

b1025 1.57 1.25 

b18214 1.41 1.81 

b14122 0.66 0.39 

b15282 0.63 0.19 

b13654 0.43 12.28 

b10199 0.18 0.33 

b17619 0.03 0.03 

b7450 0.02 0 

b18394 0.02 0 

b17630 0.02 0.03 

b15920 0.02 0.01 

b1432 0.01 0.01 

b17634 0.01 0.01 

b6839 0.01 0 

b15977 0.01 0.04 

b18216 0.01 0.04 

b6847 0 0 

b13779 0 0 

b3402 0 0 

b3459 0 0 

b5843 0 0 

b6817 0 0 

b17632 0 0 

b3384 0 0 

b13762 0 0 

b13689 0 0 

b18280 0 0 

b14562 0 0 

b3363 0 0 

b14417 0 0.01 

b13606 0 0 

b15924 0 0 
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Appendix 3b: Normalized read counts associated with OTU used for production of bacterial 

profiles shown in Figure 13b. 

OTU 

cpnDB ID 
Number of reads (normalized) 

Redesigned 

primers Original primers 

b291 2.34 2.29 

b17590 5.89 8.07 

b19134 1.25 1.36 

b18713 1.31 0.96 

b6841 0.55 0.69 

b17589 0 0 

b18814 1.44 0.92 

b1025 0.25 0.14 

b18214 0.46 0.39 

b14122 1.78 5.44 

b15282 0.18 0.11 

b13654 0.39 0.08 

b10199 0.03 0.1 

b17619 0.02 0.02 

b7450 0.17 0.16 

b18394 0 0 

b17630 4.37 10.68 

b15920 4.91 4.61 

b1432 34.84 32.24 

b17634 2.86 2.84 

b6839 0.41 0.36 

b15977 1.26 1.33 

b18216 0.04 0.07 

b6847 1.04 1.3 

b13779 0.4 0.22 

b3402 0.21 0.12 

b3459 0.08 0.04 

b5843 0.06 0.1 

b6817 0.04 0.07 

b17632 0.04 0.7 

b3384 0.04 0 

b13762 0.03 0.42 

b13689 0.03 0.03 

b18280 0.03 0.04 

b14562 0.01 0.01 

b3363 0.01 0.03 

b14417 0.01 0.02 

b13606 0 0.07 
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b15924 0 0.01 

Appendix 3c: Normalized read counts and range of identity associated with b291 like OTU, used 

to represent clustered b291 in Figure 13a and 13b. 

Isotigs clustered  

as b291-like 

Normalized count % identity to 

b291 

isotig00010 3298.63 98 

isotig00049 400.72 98 

isotig00097 208.19 99 

isotig00067 164.54 95 

isotig00233 152.23 98 

isotig00150 71.64 99 

isotig00279 55.97 98 

isotig00189 50.37 97 

isotig00001 41.41 98 

isotig00022 21.27 97 

isotig00038 15.67 98 

isotig00108 14.55 96 

isotig00110 10.07 98 

isotig00087 7.84 98 

isotig00028 5.6 98 

isotig00123 5.6 98 

isotig00274 5.6 99 

isotig00207 4.48 98 

isotig00271 3.36 98 

isotig00277 3.36 99 

isotig00014 2.24 98 

isotig00092 2.24 94 

isotig00068 1.12 92 

isotig00266 1.12 98 
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Appendix 4a: Normalized read counts associated with OTU used for production of G. vaginalis 

profiles shown in Figure 14a and 15a. 

OTU Number of reads (normalized) 

Redesigned 

primers Original primers 

001b291 0.41 1.54 

010b291 32.99 3.99 

022b291 0.21 0.19 

028b291 0.06 0.11 

032b15920 0 0 

038b291 0.16 0.08 

047b15920 0 0 

049b291 4.01 24.13 

052b15920 0 0 

064b291 0 0 

067b291 1.65 0.91 

087b291 0.08 0.25 

088b15920 0 0 

092b291 0.02 0 

097b291 2.08 2.09 

100b18713 1.35 0.89 

112b18713 0.37 0.16 

123b291 0.06 0.29 

133b18713 0.13 0.03 

134b15920 0 0 

145b15920 0 0 

150b291 0.72 0.16 

157b18713 0.75 0.49 

158b18713 2.71 0.4 

163b291 0 0 

166b18713 0.44 0.23 

168b15920 0 0 

177b291 0 0.01 

182b18713 0.24 0.02 

183b15920 0 0 

186b15920 0 0 

189b291 0.5 0.04 

190b15920 0 0 

199b18713 0.16 0.01 

206b15920 0.01 0 

207b291 0.04 0.04 

215 0 0 

233b291 1.52 0.48 
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266b291 0.01 0.2 

267b15920 0 0 

271b291 0.03 0.32 

274b291 0.06 0.44 

277b291 0.03 0.16 

279b291 0.56 0.22 

293b15920 0 0 

295b15920 0 0.01 

30b18713 0 0 

56b15920 0.01 0 

60b18713 4.57 1.92 
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Appendix 4b: Normalized read counts associated with OTU used for production of G. vaginalis 

profiles shown in Figure 14b and 15b. 

OTU Number of reads (normalized) 

Redesigned primers Original primers 

001b291 0.01 0 

010b291 0.09 0.03 

022b291 0 0.01 

028b291 0.01 0 

032b15920 0.49 0.33 

038b291 0 0 

047b15920 0.04 0.01 

049b291 0.13 0.02 

052b15920 1.74 1.96 

064b291 0.41 0.37 

067b291 0.04 0.02 

087b291 0 0 

088b15920 0.17 0.04 

092b291 0.13 0.13 

097b291 0.03 0.07 

100b18713 0.03 0.02 

112b18713 0.01 0 

123b291 0 0 

133b18713 0.07 0.04 

134b15920 0.21 0.51 

145b15920 0.99 0.7 

150b291 1.23 1.38 

157b18713 0.02 0.01 

158b18713 0.02 0.03 

163b291 0.07 0.03 

166b18713 0 0 

168b15920 0.09 0.06 

177b291 0.07 0.1 

182b18713 0 0 

183b15920 0.16 0.18 

186b15920 0.16 0.11 

189b291 0 0 

190b15920 0.04 0.03 

199b18713 0 0.01 

206b15920 0.09 0.04 

207b291 0 0 

215 0.07 0.07 
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233b291 0.02 0 

266b291 0 0 

267b15920 0.52 0.31 

271b291 0 0 

274b291 0 0 

277b291 0 0 

279b291 0.01 0.04 

293b15920 0.03 0.07 

295b15920 0.14 0.17 

30b18713 0.01 0.09 

56b15920 0.04 0.09 

60b18713 0.18 0.21 

 


