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Abstract

Background: The spirometric reference values are of great importance for diagnosis and

treatment of lung diseases. At present, there are no spirometric reference values for First

Nations children and adolescents living in Canada.

Objectives: The objectives of the present study were (1) to identify the flexible and

efficient statistical method to derive lung function reference equations that can be used to

obtain the predicted values and Lower Limit of Normal (LLN) for lung function in children

and adolescents, and (2) to obtain prediction equations for FVC, FEV1 and FEV1/FVC for

First Nations children and adolescents living in rural Saskatchewan, Canada.

Methods: Spirometric results from a prospective cohort study, ”First Nations Lung

Health Project” were used to identify 130 healthy non-smoking children and adolescents.

The predicted values and LLN of spirometric indices [Forced Vital Capacity (FVC), Forced

Expiratory Volume at one second (FEV1) and FEV1 and FVC ratio (FEV1/FVC)] were

calculated for school-going children and adolescents ages 6-17 years. The subjects partic-

ipating in the study were from two Cree First Nations on-reserve communities located in

rural Saskatchewan, Canada. All lung function values were reviewed by a respirologist for

acceptability of the test.

Following an extensive literature review, the Generalized Additive Models for Location,

Scale and Shape (GAMLSS) was identified as a flexible statistical tool to model the lung

function variables. The lung function indices were assumed to follow a Box-Cox-Cole-Green

(BCCG) distribution with median, µ, coefficient of variation, σL and skewness, ν. Akaike

Information Criteria (AIC) approach was used to obtain the reference models. The LLN

was calculated by taking the fifth percentile of the prediction equations of the lung function

variables. The above approach is recommended for the prediction of lung function of multi-

ethnic people aged 3-95 years from different ethnic groups by the Global Lung Function

Initiative (GLI).

ii



Results: Significant differences were observed in lung function (FVC, FEV1 and

FEV1/FVC) and anthropometric measurements between both boys and girls. Therefore,

fitting separate equations for both sexes are justified. In GLI, polynomial bases of order 6-7

were used for modeling the µ, σL and ν. In this study, lower order polynomial bases (up

to order 4) were enough to obtain the reference models. In GLI, the polynomial bases were

divided by 100 to let it lie within 0 to 1. In this study, the polynomials were divided by 20

to lie these between 0 and 1. The predicted values of FVC was higher than the values for

FEV1 in both boys and girls. Therefore the values of FEV1/FVC ratios is less than 100% in

this population. In girls, the difference between the curves of FVC and FEV1 was smaller

compared to boys. Thus, the total volume of air for girls during exhalation are close to the

volume of air exhaled at the first second. The estimated curves showed that the models

fitted the lung function data reasonably well.

Conclusions: The results in this study showed that the optimum model for the pre-

diction of lung function were almost similar to the ones used by GLI for the prediction of lung

function of all-age multi-ethnic populations. The predicted values and LLN values of the

lung function variables reported in this study can be recommended to health-care providers

for the use in diagnosis respiratory diseases in First Nations children and adolescents in rural

Saskatchewan. Small sample (n < 150) was a limitation of this study. This study limita-

tion can be overcome by including more individuals from the follow-up study, which will be

conducted in 2016.
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Chapter 1

Introduction

Respiratory diseases are one of the leading concerns of morbidity for children (Bulkow et

al., 2012). The prevalence of pulmonary diseases are unusually high in indigenous children

(McCuskee et al., 2014), and a large number of them require repeated hospitalization and

admission to the pediatric intensive care unit (ICU) (Banerji et al., 2001). Childhood respi-

ratory problems are associated with chronic lung diseases in adulthood (Singleton, 2000).

Lung function is monitored using a physiological test called spirometry. The test is used

to observe lung function, assess the severity of some lung diseases, and response to treatment

(Karkhanis & Joshi, 2012). The test consists of measuring flow, time and volume of exhaled

air (Moore, 2012). The most important measurements in pulmonary function testing are

the Forced Vital Capacity (FVC), Forced Expiratory Volume at the first second (FEV1),

the FEV1 and FVC ratio (FEV1/FVC) and Forced Expiratory Flow between 25% and 75%

of the FVC (FEF25%−75%). Spirometric data along with age, height, weight and ethnicity

are used to develop reference equations, based on statistical methods involving regression

analyses (Veale et al., 1997). Such equations are then used to predict lung function values

for an individual given his/her age, sex, height, weight and ethnicity.

The ethnicity of children has an effect on lung function and has been examined by

several authors (Azizi & Henry, 1994). For example, the predicted lung function values

for African-American children are lower than those for Mexican-American and Caucasian

children (Hsu et al., 1979; Hsi et al., 1983; Kirkby et al., 2013). In Australia, Caucasian

children have been shown to have higher lung function values compared to Aboriginal Aus-

tralian children (Watson et al., 1986) and children of European origins tend to have higher

lung function values compared to children of Asian origin (Wesley et al., 1989; Johnston et

al., 1987). Differences in lung function were also observed between Caucasian, Chinese and

Indian populations (Yang et al., 1991). It is evident that ethnic differences in lung function

begin in childhood due to different physical stature between different ethnic groups (Yang
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et al., 1991). For example, the reasons for predicted values between African-American chil-

dren and Caucasian children in a study by Hsi et al. (1983) was believed to be different

because of the shorter sitting heights and longer legs of African-American children compared

to Caucasian children of the same standing height.

Quanjer et al. (2012) has derived all-age multi-ethnic reference equations that can be

used globally for different ethnic groups including Caucasian, African-American, North-East

Asian, South-East Asian and Others (people with mixed ethnicity). The authors considered

an adjustment for ethnicity while modeling lung function indices. Because of potential

differences in physical statures in different ethnic groups, lung function reference equations

that are ethnic-specific can be found in the literature.

Some studies on developing spirometric reference equations for Canadians have been

conducted so far (Gutierrez et al., 2004; Tan et al., 2011; Karunanayake et al., 2015). All

studies were aimed at deriving lung function prediction equations for Caucasian adults living

in Canada. Spirometric reference equations for non-First Nations Canadian population may

not be useful for First Nations people, as the equations could largely depend on ethnicity.

Moreover, the equations for adults may not be useful for children, as lung function increases

with age until adulthood and starts to decline with age (Moore, 2012). At present, there

is no specific spirometric reference equation available for First Nations people in Canada,

including children. This research focuses on developing research questions for First Nations

children and adolescents and could fill a gap in spirometry of Canadian First Nations children

and adolescents.

1.1 First Nations Children and Adolescents in Canada

According to the National Household Survey (NHS) conducted by Statistics Canada (2011),

Aboriginal children ages 14 and less represents 28.0% of the total Aboriginal population and

7% of all Canadian children. First Nations people represent 60.8% of the total Aboriginal

population that also includes Inuit and Métis. In Saskatchewan, 38.1% of the First Nations

people are ages 14 and less, representing 20.0% of all children in this province (Statistics

Canada, 2011).

Health inequalities exist between Aboriginal and non-Aboriginal Canadians (Estey et

al., 2007; Wilson et al., 2010). According to the First Nations and Inuit Regional Health

Survey (FNIRHS), a significant proportion of Aboriginal children have bronchitis, asthma,
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wheeze, ear infections and over-weight problems (MacMillan et al., 2010). Sin et al. (2004)

conducted a pilot study to assess the prevalence of impaired lung function and asthma in

school-going First Nations children. Children living in a rural First Nations reserve located

in Northern Alberta were selected for this study. Spirometry tests were performed following

parental/guardian consent or child assent. Lung function values were obtained for FVC

and FEV1 of 36 children. The spirometric reference equations derived from the Caucasian

population in the United States (Hankinson et al., 1999) were used for First Nations children

living in the study. Observed lung function values were compared with the Lower Limit of

Normal (LLN) (Hankinson et al., 1999) for the assessment of airflow obstruction. Sin et

al. (2004) found that 25% of the First Nations children in their study showed evidence of

airflow obstruction. First Nations children also had frequent reports of asthma, compared

to non-First Nations children (Sin et al., 2004). Sin et al. (2004) suggested that asthma is

under-diagnosed and under-recognized for First Nations children.

Smoking, which can affect lung health, is prevalent in First Nations communities. The

prevalence of daily smoking is higher in mothers of Aboriginal children compared to non-

Aboriginal mothers (Gao et al., 2008). According to the study conducted by Sin et al. (2004),

73.1% children are exposed to indirect smoke in their households.

Lung function varies with ethnicity along with other demographic characteristics (age,

height, sex) (Quanjer et al., 2012); therefore, lung function prediction equations derived from

non-First Nations children may not apply to First Nations children. As mentioned earlier,

GLI was led by Ph H Quanjer (Quanjer et al., 2012) to develop lung function prediction equa-

tions for different ethnic groups globally. Although the research group developed equations

for most people from different ethnic backgrounds, they excluded people of mixed-ethnicity,

North American Indians or Aboriginal people living in different parts of the world. To ac-

commodate these groups, Quanjer et al. (2012) took the average of the equations derived for

Caucasian, African-American, North East Asian and South East Asian; and reported the

results as spirometric reference values for other populations.

Currently there is an ongoing project on lung health being conducted in Saskatchewan,

Canada. The First Nations Lung Health Project (FNLHP)- is a prospective cohort study

being conducted in two First Nations communities situated in rural Saskatchewan, Canada

(Pahwa et al., 2015). The FNLHP is actively working on potential determinants associated

with respiratory outcomes in First Nations peoples. This thesis is a part of the project that is

aimed at deriving lung function prediction equations for First Nations. The results from this

study will provide the normal values for lung function that can be used to assess respiratory
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health in First Nations children and adolescents with more accuracy.

1.2 Spirometry

This section describes key concepts related to spirometry theory, i.e., lung function testing,

the use of spirometric reference equations in the calculation of normal values to diagnose

lung diseases or abnormalities.

1.2.1 Spirometric Indices
The most common parameters/indices measured in spirometry are forced vital capac-

ity (FVC), forced expiratory volume at the first second (FEV1), the ratio of FEV1 and FVC

(FEV1/FVC) and forced expiratory flow (FEF). These parameters are used to assess ob-

struction or restriction in lung function. Obstruction represents airflow limitation in lungs

(Moore, 2012). Asthma and COPD are obstructive diseases. Restrictive disorders (or re-

striction) represents a loss of lung volume (Moore, 2012). For example, restriction occurs

in pleural disease, chest wall disorder, obesity, pulmonary oedema (Moore, 2012). A brief

description of FVC, FEV1, FEV1/FVC and FEF25%−75% are as follows

� Forced Vital Capacity (FVC). FVC is the total amount (volume) of air that can

forcibly blow out as fast as possible after full inspiration (Moore, 2012). FVC is

measured in liters. Normal or reduced value of FVC indicates obstructive diseases,

whereas, a reduced FVC means restrictive diseases (Moore, 2012).

� Forced Expiratory Volume (FEV1). FEV1 measures how much air can be exhaled

during a forced breath at the first second (Moore, 2012). This index is also measured

in liters. A reduced value of FEV1 means an obstructive disease (Moore, 2012).

� Ratio of FEV1 and FVC (FEV1/FVC). The FEV1/FVC, also known as Tiffeneau-

Pinelli index (Yao et al., 2013) ratio is used in the diagnosis of restrictive and obstruc-

tive lung diseases (Swanney et al., 2008; Sahebjami & Gartside, 1996). It represents

the proportion (or percentage) of a person’s vital capacity that they can expire in the

first second of exhalation. In healthy people, this should be above the lower limit of

normal (LLN) (Quanjer et al., 2012) (see Section 1.2.2). An FEV1/FVC below the

LLN indicates an obstruction, whereas restriction is characterized by normal-to-high

FEV1/FVC value (Moore, 2012).
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� Forced Expiratory Flow (FEF). The FEF is usually expressed as a percentage of

vital capacity. The FEF25%−75% is also known as maximal mid-expiratory flow (Koop-

man et al., 2011), which is the average flow from the time 25% of the FVC has been

exhaled to the time 75% of the FVC has been exhaled (Moore, 2012). Recent research

suggests that FEF25%−75% or FEF25%−50% may be a more sensitive measure than other

lung function indices in the detection of obstructive small airway diseases (Simon et al.,

2010; Ciprandi & Cirillo, 2010). However, use of this measure in pediatric lung func-

tion testing is controversial for children (White, 1994). Coates et al. (2013) reported

that FEF25%−75% depends on FVC and has a high degree of variability; therefore,

interpretation of this index in children requires experience.

1.2.2 Spirometric Reference Equations and Lower Limit of Nor-

mal (LLN)
Spirometric reference equations are constructed using the lung function parameters

of individuals based on their ethnicity and demographic characteristics such as age, height,

weight, sex (Quanjer et al., 2012). These equations are developed using statistical techniques

involving regression models. Only healthy individuals who are non-smokers are used as a

reference to construct these equations. This normal healthy state is then compared with the

lung function values of an individual’s test results to assess his/her lung function. Thus,

deriving appropriate reference values are crucial for interpreting pulmonary function tests

and for assessing the lung function and respiratory diseases.

In research and clinical medicine the Lower Limit of Normal (LLN) of lung function

is defined as the 5th percentile of a healthy population (Culver, 2012). For example, if a

variable follows a normal distribution, the 5th percentile (or LLN) is equivalent to mean -

1.645 × standard deviation. When the variable follows distribution other than normal, the

LLN can be calculated as the 5th percentile of that particular distribution. The observations

for healthy individuals are assumed to lie beyond the LLN. This approach for calculating the

LLN for spirometric indices are available in the documents of American Thoracic Society/

European Respiratory Society (ATS/ERS) (ATS, 1991; Clausen et al., 1980; Crapo et al.,

1981; Pallegrino et al., 2005).
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1.3 Lung Function Testing in Young Children

Lung function testing procedures and evaluation in children, particularly in younger children

can be different from adults (Coates et al., 2013). Since this testing takes considerable effort,

it is helpful to have bright and pleasant environment while conducting the lung function

testing in children. Children vary in size and the size of the mouthpieces used need to be

considered (Seed et al., 2012). A child size mouthpiece may be required if a child is very

young or with a child who has cranio-facial abnormalities (Seed et al., 2012). If the child

has missing teeth, particularly the front upper and lower central and lateral incisors, the

technician will need to pay close attention on mouth closure when the children is forcibly

exhaling during testing. Noseclips are necessary for children so that they do not breath air

in/out through their nose during testing. Moreover, the children should have adjustable

chairs, so that it allows them to sit straight with both feet planted on the floor or stool

during the testing procedure (Coates et al., 2013).

For the acceptability of any lung function test, certain criteria should be met, which are

recommended by American Thoracic Society (ATS)/ European Respiratory Society (ERS)

(Miller et al., 2005). In children, these criteria sometimes are overriden. For example, the

recommendation by ATS/ERS that the minimum exhalation time during the test is 6 seconds

for adults is reduced to 3 seconds for children ages less than 10 years. However, if a child

finishes exhalation in less than 2 seconds, it may become difficult to resist inhaling before the

technician can end the test (Coates et al., 2013). There is another challenge in inhalation

manoeuvres for children. In some procedures, the ATS/ERS recommendation is to blow all

air out of the lungs and to have a rapid inhalation with no breath hold at the beginning of

the inhalation. When the technologist asks a child to inhale, there is a possibility that the

child may hold the breath at total lung capacity (Coates et al., 2013).

The test repeatability criteria set by ATS/ERS is that if the observed value of FVC

(or FEV1) is less than 1 litre and the differences between two successive FVC (or FEV1)

is within 100mL, then the test is repeatable (Miller et al., 2005). Similarly, if the observed

value of FVC (or FEV1) is greater than 1 litre and the differences between two successive

FVC (or FEV1) is within 150mL; the test is repeatable (Seed et al., 2012). Repeatability

is often not a problem with children because of the greater consistency in lung volumes on

repeated blows. Most problems are with technique and length of forcible blows.

Spirometry in children should require special skills for technologists to obtain optimal

and useful test results for lung function (Seed et al., 2012). For the current study all research

6



assistants conducting the spirometry were certified in spirometry by the Lung Association

of Saskatchewan.

1.4 Research Objectives and Questions for the Study

The two objectives of the present study are

1. to identify flexible and efficient statistical method to derive lung function prediction

equations and LLN for children and adolescents, and

2. to obtain prediction equations for FVC, FEV1 and FEV1/FVC for First Nations chil-

dren and adolescents living in rural Saskatchewan, Canada.

The objectives of this study lead to two broad research questions, which are,

1. What are the available spirometric reference equations of lung function

variables for children and adolescents for different ethnic groups?

(a) What type of statistical methods are used to model FVC, FEV1 and FEV1/FVC?

(b) What are the ages of the children and adolescents considered for prediction of

lung function?

(c) Which variables are considered as predictor(s) to model the lung function indices?

(d) Which statistical method or formula are used to calculate the LLN?

(e) Which approach is the best one for prediction of lung function variables?

2. What would be the reference equations for the prediction of lung function

indices (FVC, FEV1, FEV1/FVC) for First Nations children and adoles-

cents, living in rural Saskatchewan?

(a) What data and variables are considered for the study?

(b) Which approach/model are considered to model lung function indices?

(c) How can the optimum models be chosen?

(d) What is the LLN for each of the spirometric indices?
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The first objective of this study was achieved by an extensive literature review on spirometric

reference equations and LLN of children and adolescents. Following the literature review,

the best approach identified in the first objective was applied to the modeling of spirometric

prediction equations and LLN for First Nations children and adolescents living in rural

Saskatchewan, Canada.

The next section gives an overall idea of the organization of the study.

1.5 Organization of the study

This study is organized into five chapters:

In Chapter 1, an introduction to spirometric reference equations, a brief description

of the respiratory health status of First Nations population and some basic terms used in

spirometry is discussed.

In Chapter 2, an extensive literature review is conducted to achieve the first objective of

this study. The focus is on the available reference equations used for children and adolescents.

Chapter 2 also shows how the spirometric reference equations revolve around regression

models, ranging from the simplest form of a simple linear regression model to the more

flexible method of generalized additive models for location, scale and shape.

In Chapter 3, a description and estimation method is provided based on the models used

for prediction of lung function values for First Nations school-going children and adolescents

living in rural Saskatchewan, Canada.

Chapter 4 provides a description of the study design, analysis of the data, application

of the model to obtain the spirometric reference values, selection of the best equations for

First Nations children and adolescents, calculation of the LLN and interpretations of the

results.

In Chapter 5, a brief discussion of the answers to the research questions is provided.

The strength, limitations, further scope and conclusion of the study is also given in Chapter 5.
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Chapter 2

Literature Review

One of the objectives of this study is to identify a flexible and efficient statistical method to

derive lung function prediction equations and LLN for children and adolescents. With this

objective in mind, an extensive literature review is presented in this chapter to provide a

thorough understanding of the theory of spirometry, and to address the research questions

for Objective 1 presented in Section 1.4. This will also help to identify gaps, if any, in the

theory of spirometry, both in the contexts of scientific content and statistical method. The

scientific concern is the implications of the anthropometric variables to predict lung function

values for different ethnic groups, whereas the statistical concern is the use of an appropriate

method to predict lung function values.

An overview of the scientific context for spirometric reference equations are summarized

by Kory et al. (1961), Cole (1975) and Wang et al. (1993). As reported in these articles, lung

functionality of children changes with their growth. Wang et al. (1993) identified growth

spurt as an important indicator to understand the status of lung health. In particular,

standing height was estimated to be the most important predictor for children’s lung function

growth. They also reported that the lung function values largely depend on age: FEV1 and

FVC grow linearly until adolescence, generally reach to the peak between the ages of 20 and

30 after which a slow decline is observed throughout adulthood. However, they observed

differences in growth spurts between boys and girls: the growth spurts for girls were generally

smaller than those for the boys. In fact, since the work by Kory et al. (1961), it has become

a standard practice to compare the distributions of lung function values in different cohorts,

summarized by age, sex and height. Therefore, a common practice is to develop prediction

equations by using regression models which relate the predictors like age and height to the

lung function values.

Statistical techniques to develop lung function prediction equations revolve around

linear regression, ranging from the simplest form of simple linear regression to the more
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flexible method of generalized additive models for location, shape and scale. We may broadly

classify the statistical methods that are used to generate spirometric reference equations into

three categories: (1) linear regression, (2) polynomial regression, and (3) generalized additive

models using smooth functions to handle curved relationship. Some significant works on

spirometric reference equations based on these three methods are reviewed in Sections 2.1,

2.2 and 2.3, respectively. In the light of the literature review, a discussion about the scientific

and the statistical contents is presented in Section 2.4, with the ultimate goal to address the

first objective of this study.

2.1 Linear Regression in Spirometry

Many authors considered linear regression to develop spirometric reference equations. Let yi

represents the value of the response variable on the ith subject, and x1i, x2i, . . . , xpi represent

the subject’s values on p explanatory variables (i.e., predictors), with i = 1, 2, . . . , n. The

linear regression model can be expressed as

yi = β0 + β1x1i + . . .+ βpxpi + εi, (2.1)

where β0, β1, . . . , βp are the unknown regression coefficients and εi is the random error com-

ponent. For purposes of testing hypotheses and calculating confidence intervals, it is assumed

that the errors are independent and identically distributed as normal with mean zero and

constant variance σ2, that is, εi ∼ N(0, σ2). The model with only one predictor (i.e., p = 1)

is commonly known as the simple linear regression model. In the theory of spirometry,

one of the lung function indices (e.g., FEV1) is taken as the response variable, and the

anthropometric measurements (e.g., age, height, weight, abdominal girth, BMI, ethnicity,

sex, etc.) are considered as the explanatory variables. Linear regression model (2.1) is then

fitted to the observed data to predict the response (i.e., the lung function values) given the

measurements of the explanatory variables. Transformation of variables [e.g., log (FEV1),

log (height)] are often used to obtain a better fit of the model and/or to remedy the vi-

olation of the assumptions underlying the regression model (i.e., linearity, normality and

homoscedasticity).

Several studies were conducted in North America to predict lung function values for

children and adolescents based on model (2.1). Dickman et al. (1971) analyzed lung function

data for 482 healthy boys and 468 healthy girls ages 5-18 years to predict FVC and FEV1.
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The sample comprised of subjects from Salt Lake County, Utah, who had no history of

respiratory disease, asthma or other chronic lung diseases. For subjects with height < 60

inches, the values of the spirometric measurements were very similar for boys and girls,

whereas noticeable differences were observed for taller subjects. For this reason, separate

analyses were conducted for subjects grouped by height and gender. Simple linear regression

was used for the shorter individuals with height as the sole predictor, whereas multiple linear

regression was used for the taller individuals with both height and age as predictors. The

authors reported that the lung function values increased until the age of 16 and then became

steady for girls. On the other hand, the lung function values for boys increased dramatically

at adolescence, peaked at the age of 18 and then started to decrease. In another study,

Hsu et al. (1979) used the simple linear regression model with logarithmic transformations

for both height and lung function indices. The study population consisted of 1,805 healthy

Mexican-American, Caucasians, and African-Americans between 7 and 20 years of age from

six public schools of Houston, Texas. The lower limit of normal (LLN) was calculated using

LLN = Lung FunctionPredicted × (1− Standard DeviationError)
2. (2.2)

Their results showed that only 2.5% individuals had lung function values less than LLN.

Accounting for ethnic differences, the standing height was found to be the most important

covariate. The predicted lung function values for the African-American children were gen-

erally lower than those for the non-African American children. Wall et al. (1982) derived

lung function reference equations for 176 North American Indian healthy children (94 girls

and 82 boys) ages 7-18 years from the town of Warm Springs in the United States. Simple

linear regression with logarithmic transformations for both height and lung function val-

ues was used for prediction. They found that the lung function predicted values for these

children were higher than those reported by Hsu et al. (1979) for Mexican-American and

African-American children. Since the ancestral background of the Indians of Warm Springs

reserve is very similar to the Indians of Pacific Northwest, the authors recommended to use

the proposed reference equations for the American Indian children living in these regions.

Coultas et al. (1988) conducted a population-based survey in New Mexico Hispanic commu-

nity to develop spirometric reference equations for 576 children and adolescents ages 6-18

years. The authors suggested that their prediction equations could be used for the Hispanics

in New Mexico and southern Colorado as their ancestries were comparable to those of the

study subjects.
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A few studies on spirometric reference equations were conducted for children and ado-

lescents of European origin. Bjure (1963) analyzed lung function data on 161 healthy Scan-

dinavian boys and girls between 7 and 17 years of age. Fitting simple linear regression model

led to the conclusion that the predicted lung function values for boys were higher than those

for the girls. Cotes et al. (1979) used height, fat-free mass and body fat to predict lung func-

tion values for 254 healthy British boys and girls between 8 and 16 years of age. Separate

models were considered for sitting height and standing height. The inclusion of body fat

and fat-free mass in the analyses helped to reduce the variability due to error and gender

differences, respectively. In another study, Roizin et al. (1993) considered lung function data

from 753 second and third generations of Israeli children of different ethnic groups (Euro-

pean, Iraqi, North African, Indian, Yemenite and Georgian). Children ages 7-14 years who

had no history of chest or heart diseases, wheezing, chest surgery, spinal deformity, concur-

rent upper or lower airway infection and smoking, and whose parents were from the same

ethnic group were considered in the final analyses. The final sample consisted of 471 children

from six different ethnic groups. Separate analyses were conducted for FVC, FEV1, and the

ratio FEV1/FVC. The authors concluded that only standing height could be used to predict

the lung function values for all but the Georgian and the Indian ethnic groups. Roizin et

al. (1993) also concluded that there was substantial variability in lung function values in

different ethnic groups, and such variability diminished after childhood. They suggested to

use different prediction equations for Indian and Georgian children. Piccioni et al. (2007)

performed spirometry on a sample of 960 healthy children ages 3 - 6 years from Turin, Italy.

They used age, sex, standing height, weight and body mass index (BMI) of these children

to predict their lung function values.

Until the study of Veale et al. (1997), a little was known about the spirometry of Aus-

tralian Aboriginal people. Veale et al. (1997) aimed at developing normal range for spiro-

metric indices for this particular ethnic group. They conducted a cross-sectional population-

based study of four rural Aboriginal communities from Queensland, Northern Territory and

South Australia. There were 261 healthy children between 7 and 19 years of age and 332

healthy adults between 20 and 80 years of age. Multiple linear regression with covariates

age, standing height, abdominal girth and the interaction between age and abdominal girth

was used to derive prediction equations for FEV1 and FVC. The findings of the study were

compared with those reported by Gore et al. (1995) for Australian Caucasians. Veale et al.

(1997) concluded that their equations were more accurate for prediction of lung function val-

ues compared to all previously published equations for Australian children and adults. The
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rural Australian Aboriginals exhibited low FEV1 and FVC compared to those of Caucasians.

As a result, Australian Caucasians had relatively higher values for FEV1/FVC ratios.

Several studies on lung function prediction equations for African children and adoles-

cents can be found in the literature. Shamssain et al. (1988) conducted a study for children

and adolescents between 6 and 19 years of age in Libya. They proposed to consider only age

and standing height to predict FVC and FEV1 for these children, and reported significantly

higher predicted values for the boys than those for the girls. Weight was not found signif-

icant in predicting the lung function values. Although reference values were recommended

for the Libyan children, they suggested to conduct an analysis of the lung function values

for other parts of Africa. In fact, Shamssain (1991) in a subsequent study considered 2,000

non-smoking healthy African school-going children and adolescents between 6 and 19 years

of age. The study was conducted in Umtata in the Republic of Transkei in Southern Africa.

This study consisted of the largest number of African children compared to any other pre-

vious studies (Schoenberg et al., 1978; Dockery et al., 1983; Miller et al., 1977; Huizinga &

Glanville, 1968). Only height was reported to be significantly associated with lung function

values for both boys and girls. The findings of this study also indicated that the forced

expiratory indices for Africans were lower than those for the United States counterparts.

The predicted lung function values obtained in this study were recommended to use for the

South African school-going children and adolescents. Bougrida et al. (2012) stressed the

need of spirometric reference values for children living in Constantine. Subsequently, data

on lung function values (FVC, FEV1, FEV1/FVC, FEF25%, FEF50% and FEF75%) and co-

variates (age, height, weight, BMI and body surface area) were obtained from 208 (107 boys

and 101 girls) healthy children and adolescents ages 5 - 15 years. Bougrida et al. (2012)

applied multiple linear regression to predict lung function values using all these covariates.

The estimated equations were recommended for Constantine children and adolescents ages

5 - 15 years.

People living in India come from diverse ethnic groups, and therefore considerable

variation in spirometric reference equations is observed in the literature. Chowgule et al.

(1995) predicted lung function values (FVC, FEV1 and FEF25%−75%) for 632 healthy children

and adolescents ages 6-15 years from Bombay, a city in the western coast of India. Separate

analyses for boys and girls were carried out, with the conclusion that age and weight were

not significantly associated with lung functionality, whereas height was the most important

covariate to predict the lung function values. Vijayan et al. (2000) obtained information on

pulmonary function tests for 246 boys and 223 girls between 7 and 19 years of age from the
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southern part of India. Covariate data on sex, age, ethnicity, standing height, weight and

smoking status were also collected for these children. Use of the multiple linear regression

model suggested only height and weight to be significantly associated with the lung function

values. Budhiraja et al. (2010) analyzed lung function data for healthy boys and girls ages 6 -

15 years from the district of Ludhiana, located in northern part of India. Age, height, weight

and sex were taken as covariates to predict lung function values. Substantial differences

were observed between the findings of this study and some of the previously published

studies in India, including Chowgule et al. (1995), Vijayan et al. (2000) and Rajkapoor

et al. (1997). Budhiraja et al. (2010) mentioned that environmental factors and regional

variations could have contributed to such differences. Doctor et al. (2010) estimated reference

values for FEV1 and FVC using data from 655 healthy boys and girls (ages 8 - 14 years)

living in south Gujarat, western India. Age, height, weight, body surface area and sex were

used to predict lung function indices. Choudhuri & Sutradhar (2015) estimated reference

equations for adolescents from Tripura, located in the northeastern part of India. The study

population consisted of 640 healthy non-smoking adolescents between 10 and 14 years of age

(320 ethnic tribal and 320 non-ethnic Bengali). The authors recommended multiple linear

regression model, using weight, BMI, waist-to-hip ratio and waist-to-height ratio to predict

lung function values for this study population.

Burity et al. (2013) selected 135 healthy preschool children (ages 3 - 6 years) from

the metropolitan areas of Brazil. Spirometric data were obtained on FVC, FEV1, FEV0.5,

FEF25%−75%, FEV1/FVC, FEV0.5/FVC and FEF25%−75%/FVC. There were Caucasians,

African and mixed-race participants in the study. For boys, age and height were used

to predict FVC, FEV1 and FEV0.5. However, these lung function indices were better ex-

plained using weight and height as covariates for the girls. On the other hand, FEF25%−75%,

FEV1/FVC, FEF25%−75%/FVC and FEV0.5/FVC were predicted using simple linear regres-

sion with height being the only covariate.

One study was conducted by Miller et al. (1977) with Jamaican children, including

African, Afro-American and European descents. The sample consisted of 54 urban children

(29 boys and 25 girls) and 54 rural children (30 boys and 24 girls) ages 7-14 years. Multiple

linear regression was used to predict the logarithmic transformations of FVC and FEV1 using

sex, ethnicity and the logarithmic transformations of age and height. Miller et al. (1977)

found that (1) the average FVC was 3% higher for children living in the rural areas compared

to those living in the urban areas, (2) the average FVC was 7% lower for the girls compared

to those for the boys, and (3) the average FVC was 16% higher in children of European
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descents compared to those of African origin.

In summary, the main points of interest for spirometric reference equations based on

linear models are described as follows.

� Linear regression is the most popular statistical method to develop spirometric refer-

ence equations (Quanjer et al., 1995), perhaps because of its simplicity and ease of

interpretation.

� Transformations of variables are often necessary to obtain a better fit of the model to

the observed data.

� A spirometric reference equation cannot be generalized for all ethnic groups. This

is because the diversity in social, environmental and economic factors often leads to

substantial variability in the lung functions, as well the predictors which describe the

lung function values (Trabelsi et al., 2008).

� Lung function values can differ substantially by gender; therefore, the usual recom-

mendation is to construct separate equations for boys and girls.

� In many studies, standing height was identified as the most important covariate to

predict lung function values.

� In general, the lung function values do not change linearly over time, and therefore

many authors developed separate reference equations for children stratified by age.

2.2 Polynomial Regression in Spirometry

In many cases, the dependent variable in a regression setting might have a non-linear relation-

ship with an independent variable. For example, FEV1 often exhibits a curved relationship

with age: an increasing trend before puberty, followed by a sudden increase during puberty

and a decreasing trend thereafter (Moore, 2012). This type of curved relationship between a

lung function measure and a predictor (e.g., age) can be modelled more appropriately using

the polynomial regression model. Mathematically, a polynomial regression model of order p

in one independent variable x (e.g., age) can be expressed as

yi = β0 + β1xi + β2x
2
i + . . .+ βpx

p
i + εi, (2.3)
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where yi is the response (e.g., FEV1) for the ith individual, β0, β1, . . . , βp are the regression

coefficients and εi is the error component. How large an order of polynomial model to consider

depends on the problem being studied and type of data being collected. For example, a first-

order model (i.e., p = 1, leading to simple linear regression model) has no bends; a second-

order model has no more than one bend, and each higher order term adds another potential

bend. Extension of (2.3) by incorporating other predictors which are linearly related with

the dependent variable is straightforward. For example, suppose the relationship between y

and x1 is linear, whereas the relationship between y and x2 is parabolic (i.e., p = 2). The

model can be written as

yi = β0 + β1x1i + β2x2i + β3x
2
2i + εi. (2.4)

Polynomial models are special cases of the general multiple regression model (2.1). For

example, if we denote x1, x2 and x22 by z1, z2 and z3, respectively, then Equation (2.4)

becomes

yi = β0 + β1z1i + β2z2i + β3z3i + εi, (2.5)

which is simply a multiple linear regression model with three independent variables.

Many authors used polynomial regression to develop spirometric reference equations.

For example, Rosenthal et al. (1993) analyzed a dataset consisting of 772 Caucasian children

and adolescents (455 males and 317 females) between 4.6 to 18.8 years of age living in the

United Kingdom. Predicted values for FEV1, FVC and FEV1/FVC were obtained using the

polynomial regression model. The authors recommended to use a polynomial of order five in

height to predict the lung function values. In another study, Parma et al. (1996) analyzed

data from 897 Caucasian boys between the ages of 7 and 18 years from the city of Rome,

Italy, to derive spirometric reference equations. The authors used weight, BMI, inspiratory

chest circumference (ICC), expiratory chest circumference (ECC), the increment in chest

and a polynomial of order two on age to predict the logarithm of the lung function indices.
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2.3 Generalized Additive Models in Spirometry

A family of regression models which can more flexibly characterize the curved relationship

is the so called generalized additive models (GAM) (Hastie & Tibshirani, 1986, 1990). This

family includes models for different types of response variables such as categorical and con-

tinuous. The basic idea is to use a flexible smooth function of a covariate to model the curved

relationship. One of the special cases of GAM is the classical normal regression model (2.1)

which assumes independent and identically distributed normal errors with mean zero and

constant variance σ2. Suppose that a flexible representation of the covariate xi is necessary

to capture the nonlinearity. Under the normality assumption of the error components, the

GAM can be expressed as

yi = β0 + β1x1i + · · ·+ βpxpi + f(xi) + εi, (2.6)

where f(·) is a smooth function of x. As described in Section 2.2, f(·) can be defined using

the polynomial model (or polynomial basis), and therefore polynomial regression is also a

special case of GAM. Another very flexible function is the cubic spline, made up of sections

of cubic polynomial, joined together so that they are continuous in value as well as first and

second derivatives. The points at which the sections join are called the knots of the spline.

One of the appealing features of the spline regression is that they can be shown to have

good theoretical properties. The cubic spline can also be defined using other basis functions

rather than the polynomials. Example include natural spline and B-spline; Different types

of basis functions can be found in Wood (2006).

The regression spline mechanism offers an amenable way to model compound depen-

dence of lung function on two growth parameters, height and age. Wypij et al. (1993)

analyzed data collected from 5,030 Caucasian boys of ages 10 to 18 years living in the

United States. The study subjects were followed for 15 years to observe the changes in

their lung function indices. The authors considered GAM to predict FEF25%−75% using the

polynomial spline on age and an interaction between this spline and the logarithmic trans-

formation of height. Hankinson et al. (1999) selected a sample of 7,429 lifelong non-smoking

individuals from the third National Health and Nutrition Examination Survey (NHANES

III, 1996) conducted during 1988-1994. They first formed four groups classified by age and

sex, and then used the second order polynomial basis to derive lung function prediction

equations for each group. These equations were recommended for prediction of spirometric
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indices for the population of the United States, including Caucasians, African-Americans

and Mexican-Americans.

Until the study conducted by Stanojevic et al. (2008), the equations derived by Hankin-

son et al. (1999) had been used for the population of the United States. However, Hankinson

et al.’s findings were limited to people over 8 years of age. Stanojevic et al. (2008) considered

a sample of 3,598 non-Hispanic Caucasian subjects of 4 to 80 years of age living in the United

States. In addition to a curved relationship between the lung function values and age and

height, the authors observed the response variable to exhibit non-uniform dispersion around

the mean (i.e., non-constant variance), as well as skew in the shape of the distribution (i.e.,

potential violation of the normal assumption). The so-called LMS (lambda-mu-sigma or λ-

µ-σ) method proposed by Cole & Green (1992) uses the ideas of GAM but does not require

a specific distributional assumption such as normality. Therefore, this class of models is

more flexible in the sense that it can deal with skewed distributions. The basic idea is to

transform the response variable with the goal of obtaining a new variable which is approx-

imately normal. The LMS method is based on the Box-Cox transformation which involves

three parameters: (1) λ to correct skewness, (2) µ, the median of the response variable,

and (3) σL, the coefficient of variation which is a standardized measure for dispersion. LMS

method is also known as the Box-Cox-Cole Green (BCCG) model (Cole & Green, 1992)

or the generalized additive models for location, shape and scale (GAMLSS). The estimated

equations proposed by Stanojevic et al. (2008) were based on the LMS method, and were

recommended for the prediction of lung function values for the non-Hispanic white subjects

between 4 and 80 years of age living in the United States. In another study, Koopman et al.

(2011) used the LMS method to analyze spirometric data from 1,042 healthy children and

adolescents between 4 and 18 years of age living in Utrecht, the Netherlands.

Researchers stressed the need of all-age multi-ethnic prediction equations that can be

used globally. With this motivation, a large number of centers have been sharing lung func-

tion data with Philip H. Quanjer (a researcher in physiology) since 2006. Later the Global

Lung Function Initiative (GLI) was established in Berlin in September 2008, which subse-

quently acquired the European Respiratory Society (ERS) Task Force status in April 2010.

The GLI was authorized for developing reference equations by several respiratory societies,

including American Thoracic Society (ATS), Australian and New Zealand Society of Res-

piratory Science (ANZSRS), Asian Pacific Society for Respirology (APSR), the Thoracic

Society of Australia and New Zealand (TSANZ) and American College of Chest Physicians

(ACCP). The Task Force derived spirometric prediction equations using data from 74,187
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healthy individuals from 72 centers in 33 countries. These equations were recommended

to use for different ethnic groups (Caucasians, African-Americans, North-East Asians and

South-East Asians) covered in this study. The work of Quanjer et al. (2012) is perhaps the

most influential work in spirometry theory to date, conducted under this task force. They

derived spirometric reference equations and the LLN of lung function indices for people

between 3 and 95 years of age coming from different ethnic groups, including Caucasians,

African-Americans and North and South East Asians. The equations were derived using the

LMS method as described in Stanojevic et al. (2008). Specifically, the following model was

considered to predict lung function indices for both males and females:

yi = β0 + β1Heighti + β2Agei + β3Ethnicityi + β4(Agei × Ethnicityi) + f(Agei) + εi, (2.7)

where yi is the response (lung function value with or without log transformation) for the

ith individual, and f(Age) is the polynomial spline on age. Depending on the type of data,

Quanjer et al. (2012) suggested to use the logarithmic transformation of the response and/or

one or more independent variables to obtain a better fit of the model. Note that model

(2.7) enables a smooth connection of the lung function values among children, adolescents

and adults. Some of the important findings of this widely acceptable work are summarized

below.

� The FEV1/FVC ratio is independent of the ethnic groups.

� FVC and FEV1 differ between the Caucasian people and other ethnic groups.

� People with mixed ethnic origins have different lung function values compared to the

rest of the study population. One recommendation was to predict the lung function

values for people with mixed ethnic origins by taking the average of the predicted

values for other ethnic groups.

� The LLN is calculated as the 5th percentile of the BCCG distribution, which can be

expressed as µ(1− 1.645λσL)1/λ (see Chapter 3 for detail).

Although the work of Quanjer et al. (2012) covers several ethnic groups, the proposed

method may not be applicable for each and every ethnicities around the globe. For example,

Rochat et al. (2013) analyzed lung function data for the central European populations,

consisting of 118,891 individuals between 8 and 90 years of age with 51% of them female. The

authors realized that a more general form of the model that takes into account both skewness
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and kurtosis would have a better fit to the observed data. For this, they recommended to

use GAM based on Box-Cox Power Exponential (BCPE) (Rigby & Stasinopoulos, 2004)

transformation of the lung function values.

2.4 Conclusion

Researchers have shown that the choice of prediction equations can have substantial impact

on the clinical interpretations of the spirometry results (Rosenfeld et al., 2001; Subbarao et

al., 2004). Therefore, rather than depending on the default lung function reference values

of commercial spirometer, a sophisticated choice should be made for different ethnic groups

(Pittman & Rosenfeld, 2011). The following scientific facts revealed through our literature

review might be of importance to the researchers.

� Anthropometric variables such as height and age can be used to predict lung function

values quite accurately.

� Prediction equations are derived from lung function data of healthy individuals.

� There is no unique reference equation to use for all ethnic groups. This is because

there could be substantial variability in the lung function values and anthropometric

variables among people of different ethnic origins.

� Height is the most important predictor of lung function values.

� Lung function values can differ substantially by gender; therefore, the usual recom-

mendation is to construct separate equations for males and females.

� Lung function values change over time, and therefore the effects of age should be taken

into account while deriving prediction equations.

Statistical methods to derive prediction equations are primarily based on regression

models. Depending on the nature of the data, different regression models are recommended.

Linear regression is used when the association between the lung function values and each

of the predictors can be reasonably approximated by a straight-line relationship. However,

lung function values often exhibit a curved relationship with age. Polynomial regression and

GAM are usually preferred in such situations to characterize a curved relationship. GAM
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has become more popular recently because of its flexibility and attractive theoretical prop-

erties. For skewed lung function data, the GAMLSS method is more appropriate to develop

prediction equations, as this method does not require a specific distributional assumption

for the response.

No work has been done so far on spirometry reference equations for First Nations

children and adolescents of Canada. As discussed in the Chapter 1, the prevalence of res-

piratory diseases is high in Indigenous children, and therefore reference equations for other

ethnic groups may not be appropriate for them. In this study, we develop lung function

prediction equations for First Nations children and adolescents. We will use the GAMLSS

method because of its flexibility of modelling different types of data. Our findings will pro-

vide a better understanding and assessment of lung functionality of First Nations children

and adolescents of Canada.
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Chapter 3

Statistical Methods

This chapter focuses on introducing the Generalized Additive Model for Location, Scale,

and Shape (GAMLSS). GAMLSS will be used to analyze the lung function data for the

First Nations children and adolescents living in rural Saskatchewan, Canada. As discussed

in Chapter 2, the GAMLSS is used for the all-age multi-ethnic people to predict their lung

function indices and to define the lower limit of normal values. In Section 3.1, an intro-

duction to GAMLSS will be described. In Section 3.2, a nonlinear semiparametric additive

GAMLSS will be described, which is used for all-age multi-ethnic population for modeling

the lung function indices. In this chapter, the estimation procedure of GAMLSS and how

the reference equations was chosen based on the model comparison criteria will be discussed.

In Section 3.3, the method for calculating the lower limit of normal of the lung function

indices will be described.

3.1 Introduction to Generalized Additive Model for

Location, Scale and Shape (GAMLSS)

Linear regression analysis is one of the most commonly used statistical method for modeling

the relationship between a response (dependent) variable and explanatory (independent)

variables. Linear regression modeling assumes that errors are independently and identically

distributed with zero mean and constant variance. More recently, Generalized Additive

Models (GAMs) (Hastie & Tibshirani, 1986, 1990) and Generalized Linear Models (GLMs)

(Nelder & Wedderburn, 1972) have become more popular. In GAM and GLM, the normal

distribution of response variable Yi is replaced by an exponential family of distribution; and a

link function µi (the mean of yi) to the linear predictor, Xi. GAMLSS are extension of GAM

and GLM, which replaces the exponential family distribution by general distribution family
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that can model both skewness and kurtosis. GAMLSS uses the concept of LMS method (L

(λ)-skewness; M (µ)-mean; S (σL)-coefficient of variation) (Cole, 1988), which is a popular

and highly cited technique for age-varying reference ranges (Cole et al., 2009) for skewed data.

In other words, this method models the location, shape and scale, simultaneously, that can

capture the age-varying changes in the response variables. GAMLSS were first introduced by

Rigby & Stasinopoulos (2001, 2005); Akantziliotou et al. (2002) and was adopted by many

authors to construct growth references in many countries (Cole, 1998; Fredriks et al., 2000;

Kuczmarski et al., 2002). GAMLSS are semi-parametric regression models, as they require

parametric distribution assumption for the dependent variable. And some non-parametric

smoothing functions are required while estimating the parameters of the distribution (which

are function of the independent variables). In GAMLSS, the distribution of the dependent

variable does not have to belong to the exponential family; GAMLSS can cover highly skewed

and kurtotic continuous and discrete distributions (Rigby & Stasinopoulos, 2010).

Some of different sub-models of GAMLSS are: semi parametric additive, parametric

linear, non-linear semi-parametric additive, and non-linear parametric. The most popular

form of GAMLSS, to predict lung function indices is non-linear semiparametric additive

GAMLSS, which will be described in section 3.2.

3.2 Estimation Technique of GAMLSS

GAMLSS is a framework for modelling the response variable (e.g., FVC, FEV1 or FEV1/FVC)

following a wide range of family of distributions, which may depend non-linearly on covariates

(e.g., age, height, weight, abdominal girth, etc.).

Let us consider the following matrices,

Y =


y1

y2
...

yn

 , X =
(
x1, x2, . . . , xn

)
, θ =

(
θ1, θ2, θ3, θ4

)

Let (xi, yi), for i = 1, 2, . . . , n be the covariate and response for individual i. We can assume

that the distribution of Y depends on parameters θ, such that θ can be modeled as a function

of covariate and the response variable. The first two parameters of θ are the location and

scale. The remaining parameters are shape parameters, i.e., skewness and kurtosis. Here
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we are emphasizing on a popular special case of GAMLSS, the LMS model (Cole & Green,

1992). For Y > 0, Y |X follows a Box-Cox Cole and Green (BCCG) distribution (Box &

Cox, 1964) with parameters [θ1(x), θ2(x), θ3(x)] = [µ(x), σL(x), ν(x)]. Which means,

Y |X ∼ BCCG [µ(x), σL(x), ν(x)]

with the transformed response

Z =


[ Y
µ(x)

]ν(x)−1
σL(x)ν(x)

, ν(x) 6= 0
1

σL(x)
log[ Y

µ(x)
], ν(x) = 0

(3.1)

for 0 < Y < ∞, where µ(x) > 0, σL(x) > 0 and −∞ < ν(x) < ∞. Z is assumed to

follow a truncated standard normal distribution with − 1
σL(x)ν(x)

< Z < ∞, if ν(x) > 0 and

−∞ < Z < − 1
σL(x)ν(x)

, if ν(x) < 0. Hence the probability density function (pdf) of Y is

given by

fY (y) =
yν(x)−1 exp(−1

2
z2)

[µ(x)]ν(x) σL(x)
√

2πφ( 1
σL(x)|ν(x)|

)
(3.2)

where z is given by equation 3.1 and φ(.) is the distribution function of a standard normal

distribution. Cole & Green (1992) assumed that Z follows a normal distribution; therefore,

the truncation probability φ( 1
σL(x)|ν(x)|

) is negligible. Here µ(x) is the median of Y for

covariate x (e. g., age), which can be modeled with log-link as follows:

log[µ(x)] = [bµ(x)]T βµ

=

p∑
j=0

bµj(x)βµj

= βµ0 + βµ1xi + βµ2x
2
i + . . .+ βµpx

p
i .

Hence, as a simple example, we have assumed that µ is believed to have a pth order polynomial

basis. Thus the space of polynomial of order p and below contains µ. A basis for this space

is, bµ0(x) = 1, bµ1(x) = xi, bµ2(x) = x2i . . . , bµp(x) = xp. Similarly, the scale (coefficient of
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variation) with log-link can be modeled as follows:

log [σL(x)] = [bσL(x)]T βσ

=

p∑
j=0

bσLj(x)βσLj

= βσL0
+ βσL1

xi + βσL2
x2i + . . .+ βσLpx

p
i .

The shape (skewness) parameter with identity link can be modeled as follows:

ν(x) = [bν(x)]T βν

=

p∑
j=0

bνj(x)βνj

= βν0 + βν1xi + βν2x
2
i + . . .+ βνpx

p
i ,

where βµ, βσL , βν ∈ R are vectors of polynomial coefficients. This type of likelihood function

was first proposed by Green (1987) in a general semi-parametric regression setting, and then

further used by Cole & Green (1992) for LMS method. The log-likelihood function, l derived

from Equation 3.1 for n independent cases for (yi, xi) is given by,

l = l(µ, σL, ν)

= log

(
n∏
i=1

[ yi
µ(xi)

]ν(xi) − 1

σL(xi)ν(xi)

)

=
n∑
i=1

(
ν(xi) log(

yi
µ(xi)

)− log(σL(xi))−
1

2
z2i

)

The GAMLSS package of R was proposed by Rigby & Stasinopoulos (2010), where the Rigby

and Statsinopoulos (RS) algorithm can carry out the iterative procedure to maximize the

log-likelihood function to obtain the estimate of the models of median, coefficient of variation

and skewness of the data.
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3.3 Lower Limit of Normal (LLN) for Lung Function

This section focuses on calculating the Lower Limit of Normal (LLN) of the lung function

indices. As described in Quanjer et al. (2012), for spirometric tests, the suggestion is to

use 90% (NOT 95%), and two-sided (NOT one-sided) for calculating the LLN. Thus the

remaining 10% are equally distributed in the two tails with 5% each side. Use of 90% lead

to the fact that 5% of the population are considered to have too low values as opposed to

2.5%, that is, a larger portion of the population (5%) have too low values.

The formula for calculating the LLN (i.e., 5th percentile of BCCG distribution) involves

the predicted values of median, skewness and coefficient of variation. For ν(x) 6= 0,

z =

[
y

µ(x)

]ν(x)
− 1

σL(x)ν(x)

=> zσL(x)ν(x) =

[
y

µ(x)

]ν(x)
− 1

=> 1 + zσL(x)ν(x) =

[
y

µ(x)

]ν(x)
=> log(1 + zσL(x)ν(x)) = ν(x) log

[
y

µ(x)

]
=> log

[
y

µ(x)

]
=

log(1 + zσL(x)ν(x))

ν(x)

=> log(y)− log[µ(x)] =
log(1 + zσL(x)ν(x))

ν(x)

=> log(y) = log[µ(x)] +
log(1 + zσL(x)ν(x))

ν(x)

=> log(y) = log[µ(x)] + log[1 + zσL(x)ν(x)]
1

ν(x)

=> log(y) = log
(
µ(x)[1 + zσL(x)ν(x)]

1
ν(x)

)
=> y = µ(x)[1 + zσL(x)ν(x)]

1
ν(x)

For ν(x) = 0, the formula for calculating LLN involves the pdf of z without the component

for skewness, as described in Equation 3.1.
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z =
1

σL(x)
log

[
y

µ(x)

]
=> zσL(x) = log

[
y

µ(x)

]
=> exp [zσL(x)] =

y

µ(x)

=> y = µ(x) [exp(zσL(x))]

Therefore, the formula for calculating lower 5th percentile becomes

y0.05 =

{
µ(x)

(
1− σL(x)ν(x)z0.05

) 1
ν(x) , ν(x) 6= 0

µ(x) exp(−σL(x)z0.05), ν(x) = 0
(3.3)

Using this formula, the LLN can be calculated for spirometric indices based on the reference

model.

3.4 Selection of the Reference Model

The Akaike information criterion (AIC), which was proposed by Akaike (1973) is widely used

for model selection. For a set of models for a given data, AIC estimates a criteria, which gives

the minimum value for the reference model. It is calculated based on the maximized value

of the likelihood function. Suppose l = log(L) be the log-likelihood estimate of the selected

model, where L is the likelihood function, and k be the number of estimated parameters in

the model. Thus the value of AIC of the particular model is as follows:

AIC = 2k − 2l.

Given a set of model, the best model can be chosen based on the minimum value of

AIC. There might be some models, whose values are almost close to each other. In such

case, the models can be compared in the following way. We can consider,

∆AIC = ∆i = AICi − AICmin,

where AICi is the value of the ith model; i.e., the model of interest and AICmin is the AIC
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value of a model, with the lowest value of AIC. As a rule of thumb, ∆i < 2 suggests significant

evidence for the model of interest. If 3 ≤ ∆i ≤ 7, it indicates that the model of interest has

considerably less support, whereas, ∆i > 10 indicates a strong support against the model of

interest (Burnham & Anderson, 2002).

This chapter gives an idea about GAMLSS and how it can be applied to a data, where

the relationship between the response and predictor variables is non-linear, the response

variable is skewed, and the error term does not necessarily follow a normal distribution. The

next chapter 4 is about how the study is designed, the methods for selecting individuals,

how the spirometry was performed, what exclusion criteria is considered to choose healthy

subjects, how the data were analyzed and the interpretations of the LLN for lung function

values.
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Chapter 4

Data Analyses: Predictions Equations for

the First Nations Children and Adolescents

Lung function data analyses for the First Nations children are presented in this chapter.

We begin with a description of the data in Section 4.1. The model selection procedure is

discussed in Section 4.2, and then the results (model fits, prediction curves and LLNs) are

presented in Section 4.3. We conclude this chapter by summarizing the important findings

in Section 4.4.

4.1 Data and Variables

The results from the Saskatchewan First Nations Lung Health Project (FNLHP) were used to

derive the reference equations for this study. FNLHP is an ongoing prospective cohort study

to identify factors associated with respiratory outcomes for the First Nations people living

on reserves (Pahwa et al., 2015). The project is being carried out by Prof. James A. Dosman

(Distinguished Research Chair, Canadian Center for Health and Safety in Agriculture) and

his team, and is funded by the Canadian Institute of Health Research (MOP: 246983-11829).

The study began in 2012 with a cohort of 874 First Nations Cree people (428 males and 446

females) from two reserves in Saskatchewan. They will be followed longitudinally until 2017

with the long-term goals to implement potential intervention programs and to address issues

that have been identified by the baseline data on respiratory health and will be re-evaluated.

The first phase of the study was completed during 2012-2013, involving survey questionnaire

and clinical assessment (see Appendix A for survey questionnaire and Appendix B for clinical

assessment form). In this study, lung function data for children and adolescents (ages between

6 to 17 years) from FNLHP were used to derive reference equations, with the ultimate goal

to derive a scientific mechanism in predicting lung function values for the population of the
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First Nations Cree children and adolescents living in two on-reserve communities. This study

was approved by the University of Saskatchewan Biomedical Research Ethics Board (Bio#

15-69; see Appendix C).

There were a total of 351 children and adolescents (47% males and 53% females),

who completed the baseline survey. The survey questionnaire included questions regarding

their past and current health conditions, lifestyles, personal and family history of chronic

diseases. The clinical component of the study assessed anthropometric variables (standing

height, weight and waist circumference), blood pressure, pulmonary function testing (FVC,

FEV1 and FEV1/FVC) and allergy skin status through skin prick testing. Parental report

of the date of birth was used to calculate the age. Height of the individual and height was

measured using a fixed tape with a participant standing on a hard surface without wearing

shoes (Chen et al., 2005). Sensormedics (Anaheim, CA) dry rolling seal spirometer was

used to measure the lung function values. Lung function testing was conducted according to

criteria set by the American Thoracic Society (ATS) (Miller et al., 2005). All lung function

testing was conducted by registered nurses certified in Spirometry by the Lung Association of

Saskatchewan. The spirometer was calibrated at the early morning and mid-day to meet the

ATS guideline. The lung function testing results were assessed by a respirologist. Results

from children who did not have acceptable curves on the first testing were retested and

the best curves were retained in the study for further analysis. A letter accompanying the

consent described the survey procedures (Appendix D). A consent form was completed by

the parent and assent form by the study participants who were of 16 years of age or over,

who were not living with a parent or guardian were considered to be emancipated and able

to complete the consents for themselves.

As described in Chapter 2, the most important covariates to predict lung function

values are height and age. Moreover, the general recommendation is to develop prediction

equations based on data from healthy individuals. Therefore, a reduced dataset of healthy

children and adolescents was considered, and height and age were used in a regression model

to derive lung function prediction equations for FVC, FEV1 and FEV1/FVC. Participants

with missing observations for any of FVC, FEV1, age and height were excluded from the

study, leading to a total of 302 children and adolescents with complete data. An individual

was then considered healthy if the answer was “no” to all of the questions stated below.

� Has your child ever had a dry cough at night or first thing in the morning, in the past

12 months?
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� Does this child usually have tightness in the chest or bring up phlegm or mucus apart

from colds?

� In the past 12 months, has this child had a wheeze or whistling noise that comes from

the chest?

� Has this child ever been diagnosed by a doctor as having asthma?

� Has a doctor ever said this child had tonsillitis?

� Has a doctor ever said this child had bronchitis?

� Has a doctor ever said this child had pneumonia?

� Has a doctor ever said this child had croup?

� Has a doctor ever said this child had sleep apnea?

� Does this child/adolescent smoke today? If yes, how many years has this child/adoles-

cent been smoking? [A participant with a history of smoking for more than one year

was excluded from the study]

The systematic procedure of selecting a sample of healthy children and adolescents is de-

scribed in Figure 4.1, which leads to a sample of 130 children and adolescents (53 boys and

77 girls).
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Total 351 participants

46 missing observations for FVC  = 305 participants

3 missing observations for height = 302 participants 

65 diagnosed with asthma = 237 participants

17 had congestion = 220 participants

31 had bronchitis = 189 participants

24 had history of wheeze = 165 participants

22 had cough = 143 participants

No one had croup = 143 participants

No one had sleep apnea = 143 participants

6 had pneumonia = 137 participants

7 had long-term history of smoking = 130 participants

Total 130 healthy children (53 males 77 females)

Figure 4.1: The process of selecting a sample of healthy individuals with no missing
observations for FVC, FEV1, age and height.
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The summary statistics of the study variables (age, height, FVC, FEV1 and FEV1/FVC)

are displayed in Table 4.1. The measurement of skewness justifies the use of GAMLSS to

analyze the data: (a) the distribution of age is right skewed for both males and females (skew-

ness is 0.40 and 0.48, respectively), (b) the distribution of standing height is right skewed

for males (skewness = 0.22) and very close to symmetric for females (skewness = -0.03), (c)

the distributions of FVC and FEV1 are right skewed for both males and females (for FVC,

skewness = 0.73 and 0.58 for males and females, respectively; and for FEV1, skewness =

1.06 and 0.58 for males and females, respectively), and (d) the distribution of FEV1/FVC

is left skewed for both males and females (skewness = -0.31 and -0.66, respectively). These

facts are also evident from the histograms of these variables displayed in Figures 4.2 and 4.3.

The t tests comparing the means of each of the study variables for boys and girls resulted in

significant differences between groups. The mean age of boys in this study was older than

girls. As a result, the height and lung function were significantly higher in boys as well. This

suggests the need for separate reference equations as well.

Table 4.1: Summary statistics of the study variables for a sample of 130 First Nations
healthy children and adolescents ages 6-17 years.

Variables
Males (n = 53) Females (n = 77) Two sample t-test

Mean SD Skewness Mean SD Skewness t p-value

Age (years) 11.04 2.67 0.40 9.97 2.98 0.48 2.09 0.02
Standing Height (cm) 151.74 15.84 0.22 146.00 15.98 - 0.03 2.01 0.02

FVC (liters) 3.14 1.02 0.73 2.68 0.93 0.58 2.66 <0.01
FEV1 (litres) 2.72 0.93 1.06 2.37 0.83 0.58 2.24 <0.01
FEV1/FVC 86.60 5.26 - 0.31 88.50 5.23 - 0.66 -2.03 0.02

4.2 Model Selection and Reference Values

Suppose that the distribution of the response variable y is defined by three parameters µ,

σL and ν such that the transformed variable

z =
(y/µ)ν − 1

ν × σL
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is a z score with distribution close to N(0,1). Here µ, σL and ν are the location (median),

scale (coefficient of variation) and shape (skewness) parameters, respectively. Any skewness

in y can be removed by a suitable choice of ν. The distribution of Z is called the Box-Cox-

Cole-Green (BCCG) distribution. Following Quanjer et al. (2012), we consider GAM based

on the BCCG distribution (i.e., GAMLSS) to develop prediction equations for FVC, FEV1

or FEV1/FVC. We apply log links for µ and σL and an identity link for ν, so that the models

can be expressed as

log(µ) = β0 + β1log(Height) + β2log(Age) +
{
α0 + α1

(
Age

20

)
+ . . .+ αp

(
Age

20

)p }
,

log(σL) = β0 + β1log(Age) +
{
α0 + α1

(
Age

20

)
+ α2

(
Age

20

)2

+ . . .+ αp

(
Age

20

)p }
,

ν = β0 + β1log(Age) +
{
α0 + α1

(
Age

20

)
+ α2

(
Age

20

)2

+ . . .+ αp

(
Age

20

)p }
,

where p is the order of a polynomial. Note that age is divided by 20 to scale down the

polynomial bases; since the ages of the participants range from 6 to 17, age/20 ∈ (0,1).

Initially, we consider several models based on the order p of the polynomial (p =

1, 2, . . . , 7). Model selection procedure reveals that the smallest AIC values are achieved for

models as displayed in Table 4.2. Then, the data are analyzed using the values of p presented

in Table 4.2 to develop reference equations for FVC, FEV1 and FEV1/FVC. As an example,

the AIC value is 22.01 for FVC (males) of the model when the order of the polynomial for ν

is 1. On the other hand, the AIC value is 23.84 for FVC (males) when the polynomial order

for ν is 2. Therefore, the the former model with lower AIC value is selected as the reference

model. (AIC values for different combinations of polynomials of the lung function indices

are presented in Appendix E; see pages 87, 90, 94, 97, 101, 104 and 105).

Once the estimates of the regression coefficients for each of the µ, σL and ν models are

obtained, we can estimate µ, σL and ν for different values of height and age. For a particular

height-age combination, the estimates of µ, σL and ν can then be used to obtain the median

reference value and LLN: given µ, σL and ν, the median reference value and the LLN are the

50th and the 5th percentiles of the BCCG distribution, respectively. The height-age adjusted

median reference curve and the LLN curve are then constructed using the estimated median

reference values and LLNs for different combinations of heights and ages. The GAMLSS

package (Stasinopoulos & Rigby, 2007) in R (R Core Team, 2015) is used to fit the models.
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Table 4.2: Order, p, of the polynomials for which the smallest AIC values are achieved.

Lung
Function

Males Females

p for the p for the p for the p for the p for the p for the
µ Model σL Model ν Model µ Model σL Model ν Model

FVC 4 3 1 3 3 1
FEV1 3 3 1 3 3 1
FEV1/FVC 3 3 2 3 2 1

All the curves are then constructed using the plot(), lines() and contour() functions in R.

The relevant R codes are presented in Appendix E.

4.3 Results

The distribution of anthropometric measurements and lung functions of both males and

females are given in Figure 4.2 and 4.3. The ages of the healthy First Nations children

and adolescents are skewed to the right and there are only few participants of 16 years of

age or older. The distributions of standing height for both males and females are symmet-

ric. The modal standing height for the males is 155 cm, indicating the most frequently

appeared height in the data set, which comprises of 26.5% of the male participants. The

modal standing height for females is 145 cm, which comprises of approximately 21.5% of

the data set of healthy female participants. Figure 4.3 indicates that the distributions of

FVC and FEV1 are both skewed to the right, whereas, the distributions of FEV1/FVC for

both males and females are slightly skewed to the left. As indicated by the scatterplots

of Figure 4.4, the observed values of FVC and FEV1 increase with both age and standing

height. However, the FEV1/FVC ratios exhibit an irregular shape and large variability.

Overall, there exists a curved relationship between each of the lung function values (FVC,

FEV1 and FEV1/FVC) and the anthropometric variables (i.e., age and standing height).

The application of GAMLSS with polynomial bases captures such curved relationships.
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(a) Age for males 

(b) Height for males 
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(d) Height for females 

  

  

Figure 4.2: Histograms of the anthropometric measurements for 130 healthy partici-
pants.
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(a) FVC for males 

(b) FEV1 for males 

(c) FEV1/FVC for males 

(d) FVC for females 

(e) FEV1 for females 

(f) FEV1/FVC for females 

 

 

 
Figure 4.3: Histograms of the lung function indices for 130 healthy participants.
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4.3.1 Model Fits and Prediction Equations
The predicted or reference models for lung function indices of First Nations boys and

girls are given below:

The predicted equations for log(FVC) for males are

log(µ) = 6.79 + 3.05 log(Height)− 101.59 log(Age)

+
{

809.65

(
Age

20

)
− 1169.67

(
Age

20

)2

+ 967.58

(
Age

20

)3

− 326.46

(
Age

20

)4 }
log(σL) = −396.32 + 720.52 log(Age)

+
{

3946.15

(
Age

20

)
+ 3500.69

(
Age

20

)2

+ 1339.53

(
Age

20

)3 }
,

ν = −514.91 + 375.72 log(Age)− 694.24

(
Age

20

)
.

The predicted equations for log(FVC) for females are

log(µ) = −4.29 + 2.04 log(Height)− 12.62 log(Age)

+
{

78.56

(
Age

20

)
− 76.48

(
Age

20

)2

+ 31.99

(
Age

20

)3 }
,

log(σL) = 60.32− 148.30 log(Age)

+
{

909.35

(
Age

20

)
− 883.73

(
Age

20

)2

+ 363.70

(
Age

20

)3 }
,

ν = 55.34− 39.35 log(Age) + 71.32

(
Age

20

)
.

The predicted equations for log(FEV1) for males are

log(µ) = −1.12 + 2.90 log(Height)− 68.82 log(Age)

+
{

562.72

(
Age

20

)
+ 833.86

(
Age

20

)2

+ 705.75

(
Age

20

)3

− 242.63

(
Age

20

)4 }
,

log(σL) = −420.40 + 784.29 log(Age)

+
{

4357.64

(
Age

20

)
+ 3925.63

(
Age

20

)2

− 1526.00

(
Age

20

)3 }
,

ν = −449.94 + 322.91 log(Age)− 581.99

(
Age

20

)
.
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The predicted equations for log(FEV1) for females are

log(µ) = −6.58 + 1.68 log(Height)− 3.34 log(Age)

+
{

21.32

(
Age

20

)
− 19.59

(
Age

20

)2

+ 7.96

(
Age

20

)3 }
,

log(σL) = 65.22− 148.93 log(Age)

+
{

886.83

(
Age

20

)
− 84.92

(
Age

20

)2

+ 339.52

(
Age

20

)3 }
,

ν = 46.15− 32.53 log(Age) + 60.10

(
Age

20

)
.

The predicted equations for log(FEV1/FVC) for males are

log(µ) = 3.54− 0.37 log(Height) + 7.90 log(Age)

−
{

52.36

(
Age

20

)
+ 54.41

(
Age

20

)2

− 23.31

(
Age

20

)3 }
,

log(σL) = −564.84 + 975.72 log(Age)

−
{

5170.95

(
Age

20

)
+ 4428.07

(
Age

20

)2

− 1638.41

(
Age

20

)3 }
,

ν = −1294.20 + 1420.90 log(Age)−
{

4837.50

(
Age

20

)
+ 1883.80

(
Age

20

)2 }
.

The predicted equations for log(FEV1/FVC) for females are

log(µ) = 2.57− 0.24 log(Height) + 6.80 log(Age)−
{

40.61

(
Age

20

)
+ 39.02

(
Age

20

)2 }
,

log(σL) = 3.79− 7.07 log(Age) +
{

24.51

(
Age

20

)
− 11.53

(
Age

20

)2 }
,

ν = −20.57 + 24.79 log(Age)− 64.72

(
Age

20

)
.

From the above equations, we can see that the polynomial order for the model of µ

in males are higher compared to girls for all the lung function indices. Therefore, the AIC

values are higher in the models of males compared to females. The reason behind this is that

the plots of lung function data in terms of anthropometric measurements in males exhibited

more curved patterns compared to females in Figure 4.4. Another interesting fact about the
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(a) FVC for males 

(b) FEV1 for males 

(c) FEV1/FVC for males 

(d) FVC for females 

(e) FEV1 for females 

(f) FEV1/FVC for females 

Figure 4.4: Observed data overlaid by the fitted curves for FVC, FEV1 and
FEV1/FVC.
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Table 4.3: Results from the GAMLSS analyses for log(FVC), log(FEV1) and
log(FEV1/FVC) with covariates height and age.

Males Females
µ Model σL Model ν Model µ Model σL Model ν Model

Lung Estimate Estimate Estimate Estimate Estimate Estimate
Function Parameters (p-value) (p-value) (p-value) (p-value) (p-value) (p-value)
log(FVC) Intercept 6.79 −396.32 −514.91 −4.29 60.32 55.34

(0.08) (< 0.01) (< 0.01) (0.70) (0.15) (0.63)

log(Height) 3.05 2.04
(< 0.01) (< 0.01)

log(Age) −101.59 720.52 375.72 −12.62 −148.30 −39.35
(< 0.01) (< 0.01) (< 0.01) (0.54) (0.06) (0.64)

Age/20 809.65 −3946.15 −694.25 78.56 909.35 71.32
(< 0.01) (< 0.01) (< 0.01) (0.53) (0.04) (0.67)

(Age/20)2 −1169.67 3500.69 −76.48 −883.73
(< 0.01) (< 0.01) (0.51) (0.02)

(Age/20)3 967.58 −1339.53 31.99 363.70
(< 0.01) (< 0.01) (0.50) (0.02)

(Age/20)4 −326.46
(< 0.01)

log(FEV1) Intercept -1.12 -420.40 -449.94 -6.58 65.22 46.15
(0.79) (< 0.01) (< 0.01) (0.33) (0.04) (0.29)

log(Height) 2.90 1.68
(< 0.01) (< 0.01)

log(Age) -68.82 784.29 322.91 -3.34 -148.93 -32.53
(< 0.01) (< 0.01) (< 0.01) (< 0.01) (0.38) (0.04)

Age/20 562.72 4357.64 -581.99 21.32 886.83 60.10
(< 0.01) (< 0.01) (< 0.01) (0.80) (0.04) (0.48)

(Age/20)2 -833.86 3925.63 -19.59 -840.92
(< 0.01) (< 0.01) (0.81) (0.04)

(Age/20)3 705.75 -1526.00 7.96 339.52
(< 0.01) (< 0.01) (0.82) (0.04)

(Age/20)4 -242.63
(< 0.01)

log(FEV1/FVC) Intercept 3.54 -564.84 -1294.20 2.57 3.79 -20.57
(< 0.01) (< 0.01) (< 0.01) (< 0.01) (0.04) (0.70)

log(Height) -0.37 -0.24
(< 0.01) (< 0.01)

log(Age) 7.90 975.72 1420.90 6.80 -7.07 24.79
(< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (0.60)

Age/20 -52.36 -5170.95 -4837.50 -40.61 24.51 -64.72
(< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01) (0.54)

(Age/20)2 54.41 4428.07 1883.80 39.02 -11.53
(< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01)

(Age/20)3 -23.31 -1638.41
(< 0.01) (< 0.01)
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estimated equations is that the signs of the polynomials are alternatively positive (+) and

negative (−). This is because the observed curves are having upward and downward peaks

in Figure 4.4 to adequately represent the observed data. Fitted curves overlaid with the

observed data are displayed in Figure 4.4, and the estimates of the regression coefficients

in Table 4.3. The estimated curves (Figure 4.4) show that the models fit the lung function

data reasonably well for all the lung function indices.

All the slope parameters for males are significant (p< 0.01), indicating that both stand-

ing height and age have substantial effects in predicting FVC. Moreover, significant slopes

for the polynomial bases suggest a curved relationship between age and FVC. For females,

only standing height is significantly associated with FVC (p < 0.01), and insignificant slopes

for the polynomial bases suggest a linear relationship between FVC and age. We see similar

FEV1 results for males: both standing height and age have significant effects in predicting

FEV1 (p < 0.01), and there is a sharp increase in FEV1 at around age 13 (Figure 4.4(b)).

However, standing height is found significantly associated with FEV1 for females (p < 0.01),

though age is not significant and there is approximately a linear relationship between age

and FEV1 (polynomial bases are not significant; also see Figure 4.4 (e)). For both males and

females, significant slopes in the µ and σL models suggest a curved relationship and large

variability in FEV1/FVC. This is also evident in Figures 4.4 (c) and (f). There is significant

variability in each of FVC, FEV1 and FEV1/FVC for males, whereas a significant variability

only in FEV1/FVC is observed for females.

A comparison among the fitted median curves for FVC and FEV1 is shown in Fig-

ure 4.5. The predicted FVC values for males (solid in red) are higher than those for females

(solid in green) for ages between 6 and 17. On the other hand, we see lower FEV1 for females

until around age 11 (dashed in green), and then very similar between 11 and 13. We see a

sudden drop in FEV1 for males at around age 13 (dashed in red), followed by a transition

until around age 15. During this transition phase, FEV1 values are higher for females than

those for males. There is a sharp increase in FEV1 for males after around age 15, leading to

higher FEV1 values for males compared to females.

4.3.2 Predicted Curves
The contour plots in Figure 4.6 represents the fitted curves for median lung function

indices adjusted for both age and height. This plot is helping us to read the 3-dimensional

relationship in a 2-dimensions. The X-axis represents the two covariates age and height. The

Y-axis represents the predicted median values for lung function index, which is represented

by contour lines. The predicted values for lung function index can be obtained from the

42



 

6 8 10 12 14 16

1
2

3
4

5
6

Age (in years)

H
e

ig
h

t-
a

g
e

 a
d

ju
st

e
d

 m
e

d
ia

n
 r

e
fe

re
n

ce
 v

a
lu

e
s 

(i
n

 li
te

rs
)

Male FVC
Male FEV 1
Female FVC
Female FEV 1

Figure 4.5: Height-age adjusted median reference values for FVC and FEV1; solid
red and green curves indicate FVC for males and females, respectively; dashed red and
green curves indicate FEV1 for males and females, respectively.

contour plots. For example, the predicted FVC value for a 6 years old boy with 130 cm

height is 2.0 liters (as the corresponding age and height fall in the line of 2.0). Similarly, the

predicted FVC value for a 6 years old girl, having 130 cm height will be approximately 1.8

liters (as the corresponding age and height fall in the line of 1.8).

The contour lines for boys are exhibiting more curved pattern compared to girls. The

same phenomena was observed in fitted curves of Figure 4.4. This is because of the fact that

boys’ lung function values had a sudden decrease at the age of 9. Again at the age of 13, the

boys’ lung function values had a sudden increase. The predicted contour plots were able to

capture such sudden increase and decrease; therefore, giving us a better fit to the data. The

density plots of Figure 4.7 confirms the residuals follow approximately normal distribution.

4.3.3 Lower Limit of Normal (LLN)
The fitted curves for the lower 5th percentile of the BCCG distribution or the lower

limit of normal (LLN) are given in Figure 4.8. One can easily find the predicted values

and LLN values for lung function indices from the red and green curves, respectively. The

red curves represent height-age adjusted values for median FVC, whereas, the green curves

represent height-age adjusted LLN. For example, the predicted value for median FVC for
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(a) FVC for males 

(b) FEV1 for males 

(d) FVC for females 

(e) FEV1 for females 

  

 

(c) FEV1/FVC for males 

 

(f) FEV1/FVC for females 

Figure 4.6: Contour plots for the fitted median lung function adjusted for age and
height.
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(a) FVC for males       (b) FVC for females 

                           

 

(c) FEV1 for males                     (d) FEV1 for females  

                    

         

(e) FEV1/FVC for males                 (f) FEV1/FVC for females 

           

Figure 4.7: Residual plots for the fitted models of lung functions (FVC, FEV1 and
FEV1/FVC).
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(a) FVC for males 

(b) FEV1 for males 

(d) FVC for females 

(e) FEV1 for females 

  

 

(c) FEV1/FVC for males 

 

(f) FEV1/FVC for females 

Figure 4.8: Lower Limit of Normal (LLN) for the median of lung function indices.
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boys of 8 years is approximately 2.0 liters, and have LLN value of approximately 1.7 liters.

Similarly for 10 years old girls, the predicted median FEV1 is approximately 2.0 liters with

a LLN value at 1.5 liters.

Only few observations were below the LLN curve, indicating that the LLN comprised

of healthy individuals. In boys, there was only one observation at the age of 6 for all the

lung function indices; therefore both the predicted curve and LLN curve intersect each other.

This means that the predicted lung function value and LLN are same for a boy ages 6 years

old. In reality, this should not happen. The same pattern was not observed in girls, as there

were more than one observations in the data at the age of 6. At age 17 in girls, there were

outlier both in the plot of FVC and FEV1. This outlier bend the curve towards it. As a

result, girls’ LLN had a sudden decrease at the age of 17. There were outliers in FEV1/FVC

ratio for both boys and girls (identified by visual examination). Those outliers are pulling

the LLN curve towards them, which was not observed in the predicted median curve.

4.4 Conclusion

The results in this chapter give new reference values for First Nations children and adolescents

living in rural Saskatchewan, Canada. The results from this study is compared with the

results from other studies (Hankinson et al., 1999; Quanjer et al., 2012). The prediction

equations by Hankinson et al. (1999) of lung function (FVC, FEV1 and FEV1/FVC) for

healthy Caucasian males < 20 years and females <18 years are given below-

FVC (Males) = −0.2584− 0.20415 Age + 0.010133 Age2 + 0.00018642 Height2

FVC (Females) = 1.2082 + 0.05916 Age + 0.00014815 Height2

FEV1 (Males) = −0.7453− 0.04106 Age + 0.004477 Age2 + 0.00014098 Height2

FEV1 (Females) = −0.8710 + 0.06537 Age + 0.00011496 Height2

FEV1/FVC (Males) = 88.066− 0.2066 Age

FEV1/FVC (Females) = 90.809− 0.2125 Age

These equations are different than the reference equations derived for First Nations children

and adolescents. The parameter estimates differed in both the studies. The fitted plots of

the lung function indices based on this study and Hankinson et al. (1999) are presented in

Figure 4.9. In all the plots, it is obvious that the fitted curve derived from Hankinson et
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al. (1999) is more linear and their equations is not able to capture the sudden change in

lung function during adolescent period. The model derived from GAMLSS is able to capture

nonlinear relationship between lung function and anthropometric measurements. The fitted

curve by Hankinson et al. (1999) on FEV1 for girls underestimated the data, since it was

going further away from the data. The LLN of FVC for a 13 years old boy with 128.63 cm

height is 1.76 litre based on our study, whereas, it is 1.89 litre based on the equations derived

for Caucasians. Therefore, the assessment of lung function of the First Nations children and

adolescents based on the reference values derived from Caucasians will not appropriate.

The lung function prediction equations by Quanjer et al. (2012) of FVC, FEV1 and

FEV1/FVC for healthy males and females ages 3-95 years of mixed/other ethnicity are given

below-

The predicted equations for log(FVC) for males are

log(µ) = −11.2281 + 2.4135 log(Height)− 0.0865 log(Age)− 0.0825 + f(Age)

log(σL) = −2.2963 + 0.0718 log(Age)− 0.0503 + f(Age)

ν = 0.9481,

The predicted equations for log(FVC) for females are

log(µ) = −10.4030 + 2.2633 log(Height) + 0.0234 log(Age)− 0.0833 + f(Age)

log(σL) = −2.3549 + 0.1017 log(Age)− 0.0503 + f(Age)

ν = 0.8236

The predicted equations for log(FEV1) for males are

log(µ) = −10.3420 + 2.2196 log(Height) + 0.0574 log(Age)− 0.0708 + f(Age)

log(σL) = −2.3268 + 0.0798 log(Age) + 0.0114 + f(Age)

ν = 0.886600 + 0.085000 log(Age)

The predicted equations for log(FEV1) for females are

log(µ) = −9.6987 + 2.1211 log(Height)− 0.0270 log(Age)− 0.0708 + f(Age)

log(σL) = −2.3765 + 0.0972 log(Age) + 0.0114 + f(Age)

ν = 1.1540
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(a) FVC for males 

(b) FEV1 for males 

(d) FVC for females 

(e) FEV1 for females 

 

(c) FEV1/FVC for males (f) FEV1/FVC for females 

 

Figure 4.9: Comparison of the fitted plots of lung function indices (FVC, FEV1)
with other study; solid red curves indicate predicted median lung function based on
GAMLSS; solid green curves indicate predicted mean lung function based on the study
of Hankinson et al. (1999) 49



The predicted equations for log(FEV1/FVC) for males are

log(µ) = 0.7403− 0.1595 log(Height)− 0.0366 log(Age) + 0.0106 + f(Age)

log(σL) = −2.9595 + 0.1156 log(Age)− 0.0860 + f(Age)

ν = 4.7101− 0.6774 log(Age)

The predicted equations for log(FEV1/FVC) for females are

log(µ) = 0.5506− 10.78 log(Height)− 0.05044 log(Age) + 0.0106 + f(Age)

log(σL) = −3.2395 + 0.1850 log(Age)− 0.0860 + f(Age)

ν = 7.032− 1.197 log(Age)

The estimated prediction equations from GLI for 3-95 years age range are different

from the reference equations derived by this study. The LLN of FVC for a 13 years old boy

with 128.63 cm height is 1.76 litre based on our study, whereas, it is 1.0043 litre based on

the equations derived for mixed ethnic group by Quanjer et al. (2012). The reason for such a

difference is that there is no polynomial basis for skewness (ν) in GLI, whereas, in our study

there is a coefficient for (Age/20) in the model for skewness. The specific form of the spline

basis for children and adolescents in not provided by any document of GLI. Quanjer et al.

(2012) provided some calculated values for the splines of age for people having <25 years

of age. The calculated values for the splines of µ, σL and ν can be found from the lookup

tables.

There are some significant findings from our study:

� Significant differences were observed in lung functions (FVC, FEV1 and FEV1/FVC)

and anthropometric measurements between both boys and girls. Therefore, fitting

separate equations for both the sexes are justified.

� The approach proposed by Quanjer et al. (2012) in Global Lung Function Initiative

(GLI) was useful in prediction of lung functions for First Nations children and adoles-

cents living in rural Saskatchewan, Canada.

� In GLI, polynomial bases of order 6-7 were used for modeling the µ, σL and ν. In this

thesis, lower order polynomial bases (upto order 4) were enough to obtain the reference

models.
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� The equations derived by Hankinson et al. (1999) for Caucasians may not be applicable

to the lung function data of Canadian First Nations children and adolescents.

� The predicted values of FVC was higher than the values for FEV1 in both boys and

girls (as presented in Figure 4.5). Therefore the values of FEV1/FVC ratios is less

than 100% in this population. In girls, the difference between the curves of FVC and

FEV1 was smaller compared to boys. Thus, the total volume of air for girls during

exhalation are close to the volume of air exhaled at the first second.

� The predicted curves were able to capture the curved relationship between lung func-

tions and anthropometric measurements.

� The LLN values obtained in this study can be used for the assessment of lung function,

their response to treatment and diagnosis of respiratory illness in First Nations children

and adolescents living in rural Saskatchewan, Canada.
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Chapter 5

Discussion

The high prevalence of respiratory diseases among First Nations children and adolescents

is a main concern in the public health sector of Canada (Bulkow et al., 2012; McCuskee et

al., 2014), as it requires repeated hospitalization and admission to the paediatric intensive

care unit (ICU) (Banerji et al., 2001). Respiratory diseases are still under-recognized and

under-diagnosed in First Nations children and adolescents living in Canada (Sin et al., 2004).

Proper statistical measurements (i.e., lung function reference equations) are needed to assess

lung function and respiratory diseases in the above mentioned population, which motivated

this research.

The two objectives of this study were

� to identify flexible and efficient statistical method to derive lung function prediction

equations and LLN for children and adolescents, and

� to obtain prediction equations for FVC, FEV1 and FEV1/FVC for First Nations chil-

dren and adolescents living in rural Saskatchewan, Canada.

An extensive literature review of spirometric prediction equations was conducted for

children and adolescents, which are available for different ethnic groups. Statistical tech-

niques to develop such equations revolved around linear regression, ranging from the simplest

form of simple linear regression to more flexible method of generalized additive models for

location, scale and shape (GAMLSS). In addition, transformation of the dependent variables

were often used to remedy if assumptions associated with the regression model (linearity,

normality and homoscedasticity) were not satisfied. The main focus of the literature review

was to introduce each of these techniques in the context of modeling lung function values

for prediction. Researchers mentioned that selecting the best prediction equations for lung

function indices is important as it has great impact on the clinical interpretations of the

results (Rosenfeld et al., 2001; Subbarao et al., 2004). Therefore, rather than depending on
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the default reference equations, which are available with commercial spirometer, a sophisti-

cated choice should be made (Pittman & Rosenfeld, 2011). In Chapter 2, it was seen that

how spirometric reference equations were improved and generalized day-by-day.

In the review of the literature, most of the studies considered participants ages 5-20

years to be children and adolescents (Bjure, 1963; Dickman et al., 1971; Miller et al., 1977;

Cotes et al., 1979; Hsu et al., 1979; Wall et al., 1982; Coultas et al., 1988; Shamssain et al.,

1988; Shamssain, 1991; Roizin et al., 1993; Wypij et al., 1993; Chowgule et al., 1995; Parma

et al., 1996; Veale et al., 1997; Rajkapoor et al., 1997; Vijayan et al., 2000; Budhiraja et al.,

2010; Rochat et al., 2013; Choudhuri & Sutradhar, 2015). Few studies derived lung function

prediction equations for children less than 6 years [(Bougrida et al., 2012), (Rosenthal et

al., 1993), (Stanojevic et al., 2008) and (Koopman et al., 2011)]. Only two studies (Quanjer

et al., 2012) and (Burity et al., 2013) considered children of 3 years of age able to perform

lung function testing and to model spirometric indices. The covariates or anthropometric

measurements considered for different studies included age, height, weight, abdominal girth,

chest circumference, BMI, sex and ethnicity. Separate equations were fitted for both boys

and girls in all the studies. Age and height were found to be most significant variables to

model lung function reference equations. This was because in children and adolescents the

biological growth rate changes more rapidly with age what is observed with adults (Wang et

al., 1993), having an important impact on the development of lungs, as well as lung function.

For several years, authors used height (or logarithmic transformation of height) covariate

along with the logarithmic transformation of lung functions. Age was then included as a

potential covariate along with logarithmic, polynomial or exponential transformation in the

model. Recently, splines of age Are being considered to capture the non-linear relationship

between age and lung function indices.

In most of the studies, the following formula was used to calculate the LLN:

LLN = Lung FunctionPredicted × (1− Residual Standard Deviation)2

Since the GLI approach was introduced, the lower 5th percentile of the predicted lung function

values are being used. If the response variable follows a normal distribution, the LLN

becomes:

LLN = Lung Functionpredicted − 1.645× SDresiduals (5.1)

When the lung function variable follows a Box-Cox-Cole-Green distribution with median µ,
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coefficient of variation σL and skewness ν, the following formula is used to calculate LLN:

µ(x)
(
1− σL(x)ν(x)z0.05

) 1
ν(x) , for ν(x) 6= 0 (5.2)

In this study, the focus was on spirometric reference equations of the children and

adolescents. Models should be flexible enough to generalize for different scenarios, i.e.,

deriving equations for all age groups from different ethnic background. Keeping this in mind,

Global Lung Function Initiative (GLI) was formed, where lung function data from different

ethnic groups of all ages people were collated together to identify a flexible approach (Quanjer

et al., 2012). GAMLSS was used to model the spirometric indices for all-age multi-ethnic

people. The GLI incorporated only logarithm of height and age, and regression spline of age

to model the lung function variables.

Following the extensive literature review, the flexible and efficient statistical method

was chosen. The method was applied to obtain the prediction equations for lung function

indices. Following the approach provided by the GLI, the GAMLSS was applied to model

the lung function indices for First Nations school-going children and adolescents. The lung

function indices were assumed to follow a BCCG distribution. This approach gave reliable

results for this study. Logarithmic transformation and polynomial bases of age were con-

sidered to capture the non-linear relationship between anthropometric and lung function

variables. Logarithmic transformation of standing height and lung function values were also

included in the models. From different combination of the order of the polynomial, the

models giving the lowest values of AIC were selected as reference models. The equations 5.1

and 5.2 were used to calculate the LLN for lung function values. The calculation of LLN are

given in Appendix E. One can easily find out the LLN value for FVC, FEV1 and FEV1/FVC

for boys and girls ages 6-17 years and within the range of the heights (123 cm - 182 cm for

boys; 113 - 179 for girls).

Significant differences were observed in lung functions (FVC, FEV1 and FEV1/FVC)

and anthropometric measurements between both boys and girls. Therefore, fitting separate

equations for both the sexes are justified. The approach proposed by Quanjer et al. (2012)

in Global Lung Function Initiative (GLI) was useful in prediction of lung functions for First

Nations children and adolescents. In GLI, polynomial bases of order 6-7 were used for

modeling the µ, σL and ν. In this thesis, lower order polynomial bases (upto order 4) were

enough to obtain the reference models. In girls, the difference between the curves of FVC and

FEV1 was smaller compared to boys. Thus, the total volume of air for girls during exhalation
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are close to the volume of air exhaled at the first second. The predicted curves were able to

capture the curved relationship between lung function and anthropometric measurements.

The LLN values obtained in this study can be used for the assessment of lung function and

their response to treatment in First Nations children and adolescents.

5.1 Strength, Limitations and Further Scope

Strengths of the study:

This is the first study to derive spirometric reference equations for First Nations chil-

dren and adolescents living in Canada. The equations derived by Hankinson et al. (1999)

for Caucasians may not be applicable to the lung function data of Canadian First Nations

children and adolescents. The recent model (i.e., GAMLSS), which is used globally to model

lung function values was applied in this study to obtain the reference models for lung func-

tion indices. The predicted values and LLN values can be provided to clinicians to assess

lung function, severity of respiratory diseases and their response to treatment of the First

Nations children and adolescents.

To ensure usable lung function information in this study, all lung function assessments

were reviewed by a respirologist to confirm their acceptability for use in deriving prediction

equations. Lung function testing was conducted by nurses who were certified in lung function

testing.

Limitations of the study:

The study has a smaller sample size that is recommended for the prediction of lung

function indices. According to the recommendation by GLI, to derive equations for the

people of new ethnic group, a minimum group size should be 150 males and 150 females

(Quanjer et al., 2015). In this study, it was only 53 males and 77 females, which implies

that the sample size is smaller than the GLI recommendation; therefore, the results of this

study cannot be incorporated in the software of GLI. Height was not included in the model

of coefficient of variation (σL) and skewness (ν). σL and ν involving height is hard to detect

unless the sample size is relatively large (Cole et al., 2007), as the change in height is more

variable than age.

There was no specific equation form for the splines of lung function reference equations

for younger age group in the studies of Quanjer et al. (2012). Therefore, graphical comparison

between the Quanjer et al. study and this study is not possible.
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There is tremendous diversity among First Nations peoples in Canada. This work

considered two Cree First Nations people in Saskatchewan. The results from this study may

not be generalizable to other First Nations groups in Canada, including Cree people in other

regions.

Lastly, smoking rates were high in the study sample. Thus, obtaining a non-smoking

healthy sample was challenging for this particular population. We cannot guarantee that

children included in this analysis, although non-smokers, were not indirectly exposed to

significant amounts of second-hand smoke.

Further scope of this study:

Further studies with other Canadian First Nations communities should be conducted

to derive spirometric reference equations for children and adolescents.

In future study, it will be useful to increase the sample size of the children and adoles-

cents or by including those 3 to 5 years, adults and older people. That way the sample size

can be increased and the model can then be generalized for most First Nations ages. In the

GLI model people from 3-95 were considered, whereas, in this study people ages 6-17 years

were considered. Thus another model including the people of this age group and beyond the

age range may generalize the model and can be recommended to the GLI software to predict

lung function values for First Nations people. Moreover, considering a large sample size may

reduce the variability in height. Studies should be conducted to see if the the modeling of

coefficient of variation and/or skewness involve height for any of the spirometric indices.

Forced Expiratory Flow (FEF25%−75%) and Peak Expiratory Flow Rate (PEFR) are

important lung function indices in children (Coates et al., 2013). There are numerous number

of studies available for deriving the reference equations for FEF and PEFR. A new study

may consider modeling of FEF and PEFR for First Nations children and adolescents to

calculate the LLN.

Human growth pattern changes with time. Today’s First Nations people may not

have the same physical stature 10 years later. Therefore, new reference range should be

re-evaluated for First Nations children and adolescents in future for a better assessment of

the lung function.

More advanced study can be done to define ethnicity based on genetic information

rather than self-declaration (Race, Ethnicity, and Genetics Working Group, 2005; Hunt,

2007).

This is a baseline study of the First Nations Lung Health Project (FNLHP). There

will be follow-up study of the FNLHP- which will include additional children, adolescents
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and adults along with the current participants. Thus another sets of spirometric reference

equations can be derived from the next follow-up study and compared with the findings from

the current study. As well these equations should be used with other First Nations children

and adolescents studies across Canada where they can be re-evaluated or confirmed.

In conclusion, spirometric reference values (FVC, FEV1 and FEV1/FVC), predicted

values and LLN values are now available for Cree First Nations children and adolescents

living in rural Saskatchewan, Canada. Until other equations are obtained, the results from

this study can be used to assess the lung function and their response to treatment in children

and adolescents.
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PART TWO – HEALTH OF THIS CHILD 

 
 

Cough  
 

1.  Has your child ever had a dry cough at 
night or first thing in the morning 
NOT because of a cold or chest 
infection?   Tick all that apply 

 
     Yes, past 12 months 

     Yes, before the last 12 months 

     No 

 
 

2. Does this child usually cough at all 
during the rest of the day? 

                 
               No ___  Yes ___  Don’t know ___ 
 
 

3. In the past 12 months, has this child 
woken up because of a cough? 

                
                No ___  Yes ___  Don’t know ___ 
 
 

Congestion and Phlegm 
 
 

4. Does this child usually have tightness 
in the chest or bring up phlegm or 
mucus apart from colds? 

                 
                 No ___  Yes ___  Don’t know ___ 
 
 

If YES, has this congestion or phlegm 
been present for 3 months in a row? 
Tick all that apply 
  
___ Yes, past 12 months 

___ Yes, before last 12 months 

___ No 

Wheezing 
 

5.  Has this child ever had a wheeze or 
whistling noise that comes from the 
chest? 

 
              No ___  Yes ___  Don’t know ___ 
 
 

If YES, at what age did this child first 
start to wheeze? 

___ years 
 
 

6. In the past 12 months, has this child 
had a wheeze or whistling noise that 
comes from the chest? 

                
              No ___  Yes ___  Don’t know ___ 
 
 

*IF NO, at what age did this child stop 
wheezing? 

   
   ___ years     GO TO QUESTION 10.  
 
 
*IF YES, CONTINUE ON TO 
QUESTION 7. 

 
 
7. Does the wheezing or whistling in the 

chest happen:   
 
___ without colds? 

___ with colds? 

___ with and without colds? 
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8.  How many attacks of wheezing or 
whistling in the chest has this child had 
in the past 12 months? 
 
___ none 

___ 1-3 

___ 4-12 

___ more than 12 

 
 

9.   Does wheezing or whistling in the 
chest happen most nights or days? 

 
___ Nights only   

___ Days only  

___ Both nights and days  

 
 

10.  Has your child's chest ever sounded 
wheezy during or after 
play/exercise/sports? Tick all that 
apply 

 

___ Yes, past 12 months 

___ Yes, before last 12 months 

___ No 

 
 
Asthma 

 
11. Has this child ever been diagnosed by 

a doctor as having asthma? 
  
               No ___  Yes ___  Don’t know ___ 
 
 

IF NO or DON'T KNOW, Please go 
to Question 18. 
 
IF YES, continue at Question 12. 

12.  At what age was the asthma first 
diagnosed?   
 
___ years of age 
 
 

13. In the past 12 months, has this child 
required care for asthma from the 
following places: 

 
Hospital inpatient        No__ Yes __ 

 Emergency room outpatient  No__Yes  __ 

Reserve Health Centre   No__ Yes  __ 

Doctor's office        No__ Yes  __ 

 
 

14.  In the past 12 months, how many 
asthma experiences has your child 
had? 

 
___  (number of experiences)  
 
An asthma experience could be 
shortness of breath or wheezing with 
or without coughing 

 
 

15.  Did your child receive medicine for 
these experiences? 
 
                   No ___ Yes ___ 

  
If YES, what was the medicine? 

  
            _______________________________ 
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16.  In the past 12 months, how many 
times has this child taken medicine 
for asthma: 

 
__ Never in the past 12 months 

__ At least once in the past 12 months  

__ At least once per month  

__ At least once per week 

__ Every day  

 
17. Has your child’s sleep been bothered 

by asthma in the past 12 months: 
           
   No ___ Yes ___ 

 
 If yes, how many times:  _______ 
 

 
Allergic disease 

 
18. Has this child ever had an allergy 

(hives, runny nose, itchiness)?  
    
  No ___ Yes ___ 
 

19. Has this child ever had an allergy (e.g. 
hives, runny nose, sneezing and ∕ 
or wheezing) to any of the 
following: 

  
 House dust  No □ Yes □ 
 Grain dust  No □ Yes □ 
 Pollen   No □ Yes □ 
 Trees   No □ Yes □ 
 Grasses   No □ Yes □ 
 Mold or mildew  No □ Yes □ 
 Dog    No □ Yes □ 
 Cat   No □ Yes □ 
 Birds/feathers  No □ Yes □ 
 Foods   No □ Yes □ 
   
 If YES, what food(s)? __________  

20. Has your child ever had a problem 
with sneezing, or a runny, or a blocked 
nose when he/she did NOT have a 
cold or the flu?   
  
         No ___ Yes ___ 

 
 
Other Illness and past illness 
 

21.  Is this child regularly taking medicine 
that your doctor prescribed for a 
breathing problem? 

 
            No ___ Yes ___ Don’t know ___ 
 

If YES, please name the medicine(s) 
below: 
_______________________________ 

_______________________________ 

_______________________________ 

 
 

22. In the past 12 months has the child 
been given antibiotics for breathing 
problems? 

 
No ___ Yes ___ Don’t know ___ 
 
 

23.  In the past 12 months has this child 
been kept at home from school for 3 or 
more days with a chest sickness? 

  
                   No ___ Yes ___ Don’t know ___ 
 
 
24. Has the parent’s or caregiver’s sleep 

been bothered because of this child’s 
asthma in the past 12 months? 
  
          No ___ Yes ___ 
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25. Has a doctor ever said this child had 
any of the following illnesses: 

  
Tonsillitis  No ___  Yes___ 

  Bronchitis   No ___  Yes___ 

  Pneumonia  No ___  Yes___ 

  Eczema         No ___  Yes___ 

  Croup     No ___  Yes___  

             Ear infection  No ___  Yes___  

  Sleep apnea   No ___  Yes___ 

 (breathing stops during the sleep)  

 Diabetes   No ___  Yes___ 

  (high blood sugar)    

 Heart condition  No ___  Yes___ 

 Whooping cough No ___  Yes___ 

 Sinus trouble                  No ___  Yes___ 

  
 
26.  Has this child ever been hospitalized 

because of breathing problems? 
    

No ___ Yes___ 
 
If YES, how many times? 
_____________ 
 
At what ages: ___________________ 

 
______________________________ 

 
 
27. Has this child had an operation to 

remove the tonsils  (adenoids)? 
    

             No ___  Yes___ 
 
 
28. Does this child snore when sleeping? 
    

No ___  Yes___ 

29. On school days this child usually goes 

to bed at ________pm and gets up at 

______am.   

 

On weekends and holidays this child 

usually goes to bed at _______pm and 

gets up at _________am. 

 
 

30. Has this child ever fallen asleep in 
school? 

   
 No_______ Yes________ 
 
 
31.  In the past 12 months, did you ever 

experience any difficulties getting the 
regular or on-going healthcare for this 
child? 

   
 No ___ Yes ___ Don’t know ___ 
 
 
32.  How far do you travel (in one 

direction)  to get ongoing  health care 
for this child?   ____ km 

 
 
33.  How far do you travel (in one 

direction) to receive emergency health 
services for this child?  ____ km 
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PART THREE – LIFESTYLE & 
ENVIRONMENT 

 
 
 
34.  On a normal day, is the MAIN part of 

your child’s trip to school made by…? 
(Please tick one box only) 

 
 ___ Walking 

 ___ Bicycle 

 ___ School bus  

 ___ Other way    

Please specify ________ 

 
 
35.  How many days per month would this 

child eat wild meat (deer, moose, 
birds, rabbit)? 

 
 _________days 
 

 
36. Does this child’s father smoke today? 

 
No ___ Yes ___ 

 
If No but he has smoked, what year 
did he quit smoking? ____ 

 
 

37. Does this child’s mother smoke today? 
 
No ___ Yes ___ 

 
 
If No but she has smoked, what year 
did she quit smoking? ___ 

 
 
 
 
 

38.       Does this child/adolescent smoke 
today? 
 
No ___ Yes ___ Don’t know ___    
 
If yes how many years__________ 

 
  

39.       Do any of this child’s/adolescent’s 
friends smoke in front of her/him? 

                          
 No ___  Yes ___  Don’t know ___   

 
 
40.  Do any people who live in your house 

smoke in the house? 
    

No ___  Yes ___  Don’t know ___   
 
 
41.  How many people regularly smoke 

cigarettes in the house? 
 

_________number of persons who  

usually live in the house 

 _________ number of regular visitors 

 
   

42. On average, how many cigarettes are 
smoked in your home a day? (Please 
think of everyone who smokes in your 
home) 

 
_____ Cigarettes/day 

 
 
43. Do people smoke while this child is in 

the car?  
 

No ___  Yes ___  Don’t know ___   
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44. During a normal week, how many days 
was this child physically active for at 
least 60 minutes per day? 

 
            ____ days 
 
 
45. During a normal week, how many 

hours a day (24 hours) does your child 
watch TV or play video games? 

 
 □ Less than 1 hour  

 □ 1 hour but less than 3 hours 

 □ 3 hours but less than 5 hours 

 □ 5 hours or more 

  
46. How many times per week would this 

child eat chips, candy or pop? 
  
 ________times 
 
 
47.  How does this child like to spend their 

time after school? 
 
 
The child’s home 
 
48.  How long has your child lived in this 

house?  
 
 __ years 
 
49.  Which best describes the type of 

housing unit in which your family 
lives?  

 
□ one family house                          

□ other, please specify: ___________ 

 
 
 
 

50. How many rooms are there in the 
home (not including bathrooms, 
porches or hallways)?  

 
                ____ number    
 
 
51. How many people live in the home? 
 
                ____ number 
 
 
52. In your house, what fuel is usually 

used for heating?  
 
             □ Natural gas/central heating 

             □ Electricity 

             □ Wood 

             □ Other, please specify _________ 

 
53. In the past 12 months, have you had 

any problems with mice or pests in 
your home? 
 
No ___  Yes ___  Don’t know ___    

 
 

54. Do you have any of the following in 
your home? 

 
  Air conditioners No □   Yes □  

  Air filter  No □   Yes □   

  Humidifier   No □   Yes □ 

(adds moisture) 

  Dehumidifier  No □   Yes □ 

(takes away dampness) 

             Wood fireplace No □   Yes □ 
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55. Does your house have any damage 
caused by dampness (e.g., wet spots on 
walls, floors)? 

 
No ___  Yes ___  Don’t know ___   
 
 

56. Are there signs of mold or mildew in 
any living areas in your home?  

   
 No ___  Yes ___  Don’t know ___    
  
 
57. During the past 12 months, has there 

been water or dampness in your home 
from broken pipes, leaks, heavy rain, 
or floods? 
 
No ___  Yes ___  Don’t know ___    

    
 
58. In the past 12 months, have you had 

any of the following pets living in your 
home?  

 
             Cat  □ No          □ Yes      

             Dog  □ No          □ Yes      

             Bird  □ No          □ Yes      

 
 
 

PART FOUR – THIS CHILD AND THE 
FAMILY HISTORY 

 
 

 
59.  Child’s sex:  Male____ Female____ 
 
 
60. Child’s age: ______________ 
 
 
 
 

 
61. How tall is your child?  

(For best results please use a tape 
measure against a wall) 

 
_____ feet _____ inches 

 
 
62. How much does your child weigh?  
 

_____ pounds  
 
 
63. Do you consider your child to be: 
  

Underweight?   ___ 

 Just about right weight? ___ 

 Overweight?   ___ 

 
 
64.  What was the child’s weight at birth?  
  
 ___ pounds ___ ounces or ____ kg 
 
 
 
65.     Was your child born by caesarean 

section operation? 
  

________No  ______ Yes 
 
 
66.  What was the mother’s age at the time 

of birth of this child? ______ 
 
 
67. Is this child the first born child in the 

family? 
 
 ____ No   ____ Yes 
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68. How many children are in the family? 
 

____children 
 
 
69. Was this child breastfed? 

 
No ___  Yes ___  Don’t know ___ 

 
 

If YES, at what age did breast feeding 
end? 

 
 ______months     or ______ years 
 
 
70.  From birth, how many times did your 

child move on and off your reserve/First 
Nation  community? 

  
____Never 

___ Once                     

 ___ 2-3 times               

 ___ 4-5 times               

 ___ 6 or more times     

 
71. At the end of the month, how much 

money do you have left over? 
 

□ Some money 

□ Just enough money 

□ Not enough money 

 
72. Type of household 
 

□ Single parent home 

□ Two parent /partner home 

 .  
 
 
 

73. Did this child’s mother smoke during 
the pregnancy of this child? (Please 
check all that apply) 

 
   ____ No   ____ Yes _____Don’t know 
 
 
74.  Does the child's birth mother or father 

have any of the following conditions? 
Tick any that apply 

 
 
  Mother Father 
Asthma   
Hayfever   
Allergies   
Eczema   
Don’t know   
 
 
 

75.  What is this child’s 
mother’s/father’s/caregiver’s highest 
level of education? 

 
 

 Mother Father Caregiver 
Less than 
Grade 12 

   

Completed 
Grade 12 or 
higher 

   

 
 

THE END 
 
Thank you for completing the 

questionnaire. 
Please make any comments you wish below. 
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Appendix B

Clinical Assessment

CHILDREN’S CLINICAL ASSESSMENT FORM 
  

FIRST NATIONS LUNG HEALTH PROJECT CLINICAL ASSESSMENT – CHILDREN’S 
EVALUATION 

 
 

 
 
 
Background information        Date:_______________  
           month/day/year 
 
Study ID:__________________________ Date of Birth _________________Sex_____  
                                            month/day/year 
Name:____________________________ 
      
Height:____________________________(cm)  Location:_________________________ 
 
Weight:___________________________ (kg)  Time:____________________________ 
 
Abdominal girth:____________________(cm)  Tester’s Initials:____________________ 
 
Blood Pressure: 1st   systolic   _____________ (mmHg)         diastolic _______________ (mmHg) 

                          2nd   systolic    _____________ (mmHg)        diastolic_______________ (mmHg) 

 
Pulmonary Function Test 
 
Exclusion Criteria YES NO 
   Do you have a cold or a cough today? (If yes, rebook tests)   
   Have you used a blue inhaler in the last 2 hours? (If yes, rebook PFT in 4 hours)   
   Have you taken an allergy pill or cough syrup? (If yes, rebook allergy test)   
   Do you have a headache today? (If yes, rebook the PFT)   
   Have you ever stayed in the hospital over night? (If yes, call parents to obtain 

further information and then consult with investigators before testing) 
  

   Do you see your doctor a lot? 
(If yes, call parents to obtain further information and then consult with 
investigators before testing) 

  

 
Lung function testing was:  
 _____ Completed  (ATTACH SPIROMETRY RESULTS TO THIS FORM) 
 _____ Not completed; If NOT, then why: _____ Subject could not perform test 
       _____ Refused 
       _____ Other 
 
Nurses’ Comments (enter comments from results sheet into database as well): 
 
 
 
 

 Page 1 of 2    
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Allergy Skin Prick Test 
 
 
Exclusion Criteria YES NO 
   Have you taken an allergy pill or cough syrup today? (If yes, rebook allergy test)   
   Does the child have eczema or a rash? (If Yes, do not test if the skin is not intact 
or feels rough or irritated) 

  

 
 
 
 
Results: 
 
Histamine Control    ____mm by _____mm Alternaria                  ____mm by _____mm 

Cat dander                ____mm by _____mm House dust mite        ____mm by _____mm 

Local grasses           ____mm by _____mm Cladosporium           ____mm by _____mm 

Aspergillus              ____mm by _____mm Saline Control           ____mm by _____mm 
 
 
Skin testing was: 
 
 _____ Completed 
 _____ Not completed; If NOT, then why: _____ Subject could not perform test 
       _____ Refused 
       _____ Other 
 
Nurses’ Comments (enter comments from results sheet into database as well): 
 

 Page 2 of 2          
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Appendix D

Parental Consent/Child Assent to Partici-

pate in the study
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 Page 2 of 2 
 

PARENTAL CONSENT/CHILD ASSENT TO PARTICIPATE 

 

FIRST NATIONS LUNG HEALTH PROJECT CLINICAL ASSESSMENT – CHILDREN’S EVALUATION 

 

o I understand the purpose and procedures and the possible risks and benefits of the project for my child 
 

o I understand that the time to complete the tests will be about 30 minutes. 
 

o I understand that my child is free to withdraw for any reason before, during, and after the testing. 
 

o I understand that I may withdraw any information about my child who has participated until his/her data pooled 

with other children data. 
 

o I give permission to use the information collected in a way that does not identify my child. 
 

o I understand that by signing this document I do not waive any of my legal rights. 
 

o I will be given a signed copy of this consent form. 

 

o I agree that my child may participate in any or all of the following tests: 
 

Please check all or any: 

 

Blood Pressure  Measurement      Yes  No 

 

Breathing Test with height, weight and waist measurements  Yes  No 

 

Allergy test on the skin      Yes  No 

 

Name of child _______________________________________________ 

 

Printed name of Parent or Caregiver:                      Signature         Date 

 

 

I have read this paper or have had it read to me. I understand what I have to do in this study and I agree to take part in it. 

 

Printed name of Child:                      Signature         Date 

 

 

FOR ADMINSTRATIVE USE ONLY 

 

Please check which statement applies (to be completed by the person administering the assent): 

 

 The child is capable of reading and understanding the assent form and has signed the above documentation of 

assent to take part in this study. 

 

 The child is not capable of reading the assent form, however, the information was explained verbally to the 

subject who has verbally given assent to take part in this study. 
 
 

Printed name of Parent or Caregiver:                      Signature         Date 
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Appendix E

Software Implementation for Data Analysis

The data was stored in the format of .sav. The data was read from statistical software
R version 3.2.2 for further analysis. The SAS version 9.4 was used to do the comparison
between the means of the study variables described in Table 4.1. The corresponding R and
SAS codes are given below:

1

2 # Update R packages
3 update . packages ( ask = FALSE, dependenc ies = c ( ’ Suggests ’ ) )
4 l i b r a r y ( f o r e i g n )
5 l i b r a r y ( zoo )
6 l i b r a r y ( nlme )
7 l i b r a r y (MASS)
8 l i b r a r y (mgcv)
9 l i b r a r y ( gamlss . data )

10 l i b r a r y ( gamlss . d i s t )
11 l i b r a r y ( s p l i n e s )
12 l i b r a r y ( p a r a l l e l )
13 l i b r a r y ( gamlss )
14 l i b r a r y ( r g l )
15 l i b r a r y ( gamlss . d i s t )
16 l i b r a r y ( s c a t t e r p l o t 3d )
17 #####################################################
18 # Read the o r i g i n a l data
19 dat <− read . sp s s ( ”FNChildren2013 RIFAT. sav” , to . data . frame=TRUE)
20 #####################################################
21 # Data con s t ru c t i on
22 dat<−dat [ which ( dat$FVC!=”NA” ) , ]
23 dat<−dat [ which ( dat$FEV1!=”NA” ) , ]
24 dat<−dat [ which ( dat$FEV1FVC!=”NA” ) , ]
25

26 dat<−dat [ which ( dat$CHILDAGE!=”NA” ) , ]
27 dat<−dat [ which ( dat$c HEIGHT!=”NA” ) , ]
28

29 dat<−dat [ which ( dat$DIAGASTHMA==’No ’ ) , ]
30 dat<−dat [ which ( dat$CURRENTCONGESTION!=’Yes ’ ) , ]
31 dat<−dat [ which ( dat$BRONCHITIS==’No ’ ) , ]
32 dat<−dat [ which ( dat$WHEEZE12MTH!=’Yes ’ ) , ]
33 dat<−dat [ which ( dat$CURRENTCOUGH==’No ’ ) , ]
34 dat<−dat [ which ( dat$PNEUMONIA==’No ’ ) , ]
35 dat<−dat [ which ( dat$SLEEPAPNEA==’No ’ ) , ]
36 dat<−dat [ which ( dat$CROUP==’No ’ ) , ]
37 dat<−dat [ which ( dat$SMOKEYEARS >= 1) , ]
38

39
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40 ## Data con s t ru c t i on f o r boys
41 datm1<−dat [ which ( dat$c SEX!=”Female” ) , ]
42 agem <− datm1$CHILDAGE
43 heightm <− datm1$c HEIGHT
44 weightm <− datm1$c WEIGHT
45 fvcm <− datm1$FVC
46 fev1m <− datm1$FEV1
47 fev1fvcm <− datm1$FEV1FVC
48 bmim <− datm1$c BMI
49 abgirthm <− datm1$c ABGIRTH
50 datm <− cbind (agem , heightm , fvcm , fev1m , fev1fvcm , weightm , bmim)
51 datm <− data . frame (datm)
52

53 ## Data con s t ru c t i on f o r g i r l s
54 dat f1<−dat [ which ( dat$c SEX!=”Male” ) , ]
55 age f <− dat f1 $CHILDAGE
56 he i gh t f <− dat f1 $c HEIGHT
57 weight f <− dat f1 $c WEIGHT
58 f v c f <− dat f1 $FVC
59 f e v 1 f <− dat f1 $FEV1
60 f e v 1 f v c f <− dat f1 $FEV1FVC
61 bmif <− dat f1 $c BMI
62 dat f <− cbind ( bmif , agef , he i ght f , f v c f , f ev1 f , f e v 1 f v c f , we ight f )
63 dat f <− data . frame ( dat f )
64

65 ### Desc r i p t i v e S t a t i s t i c s ###
66 ## Means ##
67 mean(agem)
68 mean( age f )
69 mean( heightm )
70 mean( h e i gh t f )
71 mean( fvcm )
72 mean( f v c f )
73 mean( fev1m )
74 mean( f e v 1 f )
75 mean( fev1fvcm )
76 mean( f e v 1 f v c f )
77 ## Standard Dev iat ions ##
78 sd (agem)
79 sd ( age f )
80 sd ( heightm )
81 sd ( h e i gh t f )
82 sd ( fvcm )
83 sd ( f v c f )
84 sd ( fev1m )
85 sd ( f e v 1 f )
86 sd ( fev1fvcm )
87 sd ( f e v 1 f v c f )
88 ## Skewness ##
89 skewness (agem)
90 skewness ( age f )
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91 skewness ( heightm )
92 skewness ( h e i gh t f )
93 skewness ( fvcm )
94 skewness ( f v c f )
95 skewness ( fev1m )
96 skewness ( f e v 1 f )
97 skewness ( fev1fvcm )
98 skewness ( f e v 1 f v c f )
99

100 ## Mean t e s t in SAS
101 data meantest ;
102 input x1bar s1 n1 x2bar s2 n2 ;
103 var1 = ( ( ( n1−1)* s1 * s1 ) + ( ( n2−1)* s2 * s2 ) ) / ( n1 + n2 − 2) ;
104 var2 = (1 /n1 ) + (1 /n2 ) ;
105 var = var1*var2 ;
106 sd = sq r t ( var ) ;
107 t = ( x1bar − x2bar ) / sd ;
108 da t a l i n e s ;
109 11 .04 2 .67 53 9 .97 2 .98 76
110 151 .74 15 .84 53 146 15 .98 76
111 50 .01 16 .63 53 47 .21 19 .11 76
112 21 .24 4 .28 53 21 .33 4 .88 76
113 3 .14 1 .02 53 2 .68 0 .93 76
114 2 .72 0 .93 53 2 .37 0 .83 76
115 86 .60 5 .26 53 88 .50 5 .23 76
116 run ;
117

118 proc p r in t data = meantest ;
119 run ;
120

121 #########################################################
122 gamlss . f i t<−f unc t i on (y , height , age , p1 , p2 , p3 ) {
123 i f ( p3>0){
124 f i t 0<−gamlss ( y ˜ log ( he ight ) + log ( age ) + poly ( age/ 20 ,p1 , raw=TRUE) ,
125 sigma . f o = ˜ 1+log ( age ) + poly ( age/ 20 ,p2 , raw=TRUE) ,
126 nu . f o = ˜ 1+log ( age ) + poly ( age/ 20 , p3 , raw=TRUE) , fami ly =

BCCGo)
127 }
128 i f ( p3==0){
129 f i t 0<−gamlss ( y ˜ log ( he ight ) + log ( age ) + poly ( age/ 20 ,p1 , raw=TRUE) ,
130 sigma . f o = ˜ 1+log ( age ) + poly ( age/ 20 ,p2 , raw=TRUE) ,
131 nu . f o = ˜ 1+log ( age ) , f ami ly = BCCGo)
132 }
133 i f ( p3<0){
134 f i t 0<−gamlss ( y ˜ log ( he ight ) + log ( age ) + poly ( age/ 20 ,p1 , raw=TRUE) ,
135 sigma . f o = ˜ 1+log ( age ) + poly ( age/ 20 ,p2 , raw=TRUE) ,
136 nu . f o = ˜ 1 , fami ly = BCCGo)
137 }
138 repeat {
139 i f ( f i t 0 $ converged==”TRUE” ) break
140 f i t 0<− r e f i t ( f i t 0 )
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141 }
142 re turn ( f i t 0 )
143 }
144

145 ##########################################################
146 ###########################################################
147 # BOYS: FVC
148 #########################################################
149 f i t 1 . fvcm<−gamlss . f i t ( fvcm , heightm , agem , 2 , 2 , 2 )
150 f i t 2 . fvcm<−gamlss . f i t ( fvcm , heightm , agem , 3 , 3 , 2 )
151 f i t 3 . fvcm<−gamlss . f i t ( fvcm , heightm , agem , 4 , 3 , 1 )
152 f i t 4 . fvcm<−gamlss . f i t ( fvcm , heightm , agem , 4 , 3 , 2 )
153 f i t 5 . fvcm<−gamlss . f i t ( fvcm , heightm , agem , 5 , 2 , 2 )
154 AIC( f i t 1 . fvcm , f i t 2 . fvcm , f i t 3 . fvcm , f i t 4 . fvcm , f i t 5 . fvcm )
155

156 df AIC
157 f i t 3 . fvcm 15 22.01192
158 f i t 4 . fvcm 16 23.83976
159 f i t 2 . fvcm 15 27.94295
160 f i t 5 . fvcm 16 32.28319
161 f i t 1 . fvcm 13 34.10697
162

163 f i t . fvcm<− f i t 3 . fvcm
164 summary( f i t . fvcm )
165 #####################################################
166 age<−seq (min (agem) , max(agem) , l ength = 200)
167 he ight <− seq (min ( heightm ) , max( heightm ) , l ength = 200)
168

169 newdata01<−cbind (1 , l og ( he ight ) , l og ( age ) , poly ( age/ 20 ,4 , raw=TRUE) )
170 newdata02<−cbind (1 , l og ( age ) , poly ( age/ 20 ,3 , raw=TRUE) )
171 newdata03<−cbind (1 , l og ( age ) , poly ( age/ 20 ,1 , raw=TRUE) )
172

173 pred01 . fvcm<−pred ( f i t . fvcm$mu. c o e f f i c i e n t s , newdata01 )
174 pred02 . fvcm<−pred ( f i t . fvcm$ sigma . c o e f f i c i e n t s , newdata02 )
175 pred03 . fvcm<−pred1 ( f i t . fvcm$nu . c o e f f i c i e n t s , newdata03 )
176 med . fvcm0<−qBCCG(0 . 5 , pred01 . fvcm , pred02 . fvcm , pred03 . fvcm )
177

178

179 dd<−s c a t t e r p l o t 3d (agem , heightm , fvcm , c o l o r=”dodgerblue4 ” , pch=20, xlab=”Age ( in
years ) ” , ylab=”Height ( in cm) ” , z lab=”FVC ( in l i t e r s ) ” )

180 dd$ points3d ( age , he ight ,med . fvcm0 , type=” l ” , c o l=” red ” )
181 #############################################################
182 age1 <− rep (6 ,200)
183 age2 <− rep (9 ,200)
184 age3 <− rep (12 ,200)
185 age4 <− rep (15 ,200)
186 age5 <− rep (17 ,200)
187 age6 <− rep (17 ,200)
188

189 he ight <− seq (min ( heightm ) , max( heightm ) , l ength = 200)
190
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191 newdata1<−cbind (1 , l og ( he ight ) , l og ( age1 ) , poly ( age1/ 20 ,4 , raw=TRUE) )
192 newdata2<−cbind (1 , l og ( he ight ) , l og ( age2 ) , poly ( age2/ 20 ,4 , raw=TRUE) )
193 newdata3<−cbind (1 , l og ( he ight ) , l og ( age3 ) , poly ( age3/ 20 ,4 , raw=TRUE) )
194 newdata4<−cbind (1 , l og ( he ight ) , l og ( age4 ) , poly ( age4/ 20 ,4 , raw=TRUE) )
195 newdata5<−cbind (1 , l og ( he ight ) , l og ( age5 ) , poly ( age5/ 20 ,4 , raw=TRUE) )
196 newdata6<−cbind (1 , l og ( he ight ) , l og ( age6 ) , poly ( age6/ 20 ,4 , raw=TRUE) )
197

198 newdata11<−cbind (1 , l og ( age1 ) , poly ( age1/ 20 ,3 , raw=TRUE) )
199 newdata12<−cbind (1 , l og ( age2 ) , poly ( age2/ 20 ,3 , raw=TRUE) )
200 newdata13<−cbind (1 , l og ( age3 ) , poly ( age3/ 20 ,3 , raw=TRUE) )
201 newdata14<−cbind (1 , l og ( age4 ) , poly ( age4/ 20 ,3 , raw=TRUE) )
202 newdata15<−cbind (1 , l og ( age5 ) , poly ( age5/ 20 ,3 , raw=TRUE) )
203 newdata16<−cbind (1 , l og ( age6 ) , poly ( age6/ 20 ,3 , raw=TRUE) )
204

205 newdata21<−cbind (1 , l og ( age1 ) , poly ( age1/ 20 ,1 , raw=TRUE) )
206 newdata22<−cbind (1 , l og ( age2 ) , poly ( age2/ 20 ,1 , raw=TRUE) )
207 newdata23<−cbind (1 , l og ( age3 ) , poly ( age3/ 20 ,1 , raw=TRUE) )
208 newdata24<−cbind (1 , l og ( age4 ) , poly ( age4/ 20 ,1 , raw=TRUE) )
209 newdata25<−cbind (1 , l og ( age5 ) , poly ( age5/ 20 ,1 , raw=TRUE) )
210 newdata26<−cbind (1 , l og ( age6 ) , poly ( age6/ 20 ,1 , raw=TRUE) )
211

212 pred1 . fvcm<−pred ( f i t . fvcm$mu. c o e f f i c i e n t s , newdata1 )
213

214

215 pred2 . fvcm<−pred ( f i t . fvcm$mu. c o e f f i c i e n t s , newdata2 )
216 pred3 . fvcm<−pred ( f i t . fvcm$mu. c o e f f i c i e n t s , newdata3 )
217 pred4 . fvcm<−pred ( f i t . fvcm$mu. c o e f f i c i e n t s , newdata4 )
218 pred5 . fvcm<−pred ( f i t . fvcm$mu. c o e f f i c i e n t s , newdata5 )
219 pred6 . fvcm<−pred ( f i t . fvcm$mu. c o e f f i c i e n t s , newdata6 )
220

221 pred11 . fvcm<−pred ( f i t . fvcm$ sigma . c o e f f i c i e n t s , newdata11 )
222 pred12 . fvcm<−pred ( f i t . fvcm$ sigma . c o e f f i c i e n t s , newdata12 )
223 pred13 . fvcm<−pred ( f i t . fvcm$ sigma . c o e f f i c i e n t s , newdata13 )
224 pred14 . fvcm<−pred ( f i t . fvcm$ sigma . c o e f f i c i e n t s , newdata14 )
225 pred15 . fvcm<−pred ( f i t . fvcm$ sigma . c o e f f i c i e n t s , newdata15 )
226 pred16 . fvcm<−pred ( f i t . fvcm$ sigma . c o e f f i c i e n t s , newdata16 )
227

228 pred21 . fvcm<−pred1 ( f i t . fvcm$nu . c o e f f i c i e n t s , newdata21 )
229 pred22 . fvcm<−pred1 ( f i t . fvcm$nu . c o e f f i c i e n t s , newdata22 )
230 pred23 . fvcm<−pred1 ( f i t . fvcm$nu . c o e f f i c i e n t s , newdata23 )
231 pred24 . fvcm<−pred1 ( f i t . fvcm$nu . c o e f f i c i e n t s , newdata24 )
232 pred25 . fvcm<−pred1 ( f i t . fvcm$nu . c o e f f i c i e n t s , newdata25 )
233 pred26 . fvcm<−pred1 ( f i t . fvcm$nu . c o e f f i c i e n t s , newdata26 )
234

235 med . fvcm1<−qBCCG(0 . 5 , pred1 . fvcm , pred11 . fvcm , pred21 . fvcm )
236 med . fvcm2<−qBCCG(0 . 5 , pred2 . fvcm , pred12 . fvcm , pred22 . fvcm )
237 med . fvcm3<−qBCCG(0 . 5 , pred3 . fvcm , pred13 . fvcm , pred23 . fvcm )
238 med . fvcm4<−qBCCG(0 . 5 , pred4 . fvcm , pred14 . fvcm , pred24 . fvcm )
239 med . fvcm5<−qBCCG(0 . 5 , pred5 . fvcm , pred15 . fvcm , pred25 . fvcm )
240 med . fvcm6<−qBCCG(0 . 5 , pred6 . fvcm , pred16 . fvcm , pred26 . fvcm )
241

88



242

243 p lo t ( height ,med . fvcm1 , c o l =1, type=” l ” , xlab=”Height ( in cm) ” ,
244 ylab=”Height−age adjusted median r e f e r e n c e FVC ( in l i t e r s ) ” , l t y =1, lwd=1,
245 ylim=c (min ( c (med . fvcm1 ,med . fvcm2 ,med . fvcm3 ,med . fvcm4 ,med . fvcm5 ,med . fvcm6 ) ) ,
246 max( c (med . fvcm1 ,med . fvcm2 ,med . fvcm3 ,med . fvcm4 ,med . fvcm5 ,med . fvcm6 ) ) ) )
247 l i n e s ( height ,med . fvcm2 , c o l =2, l t y =2, lwd=1)
248 l i n e s ( height ,med . fvcm3 , c o l =3, l t y =3, lwd=1)
249 l i n e s ( height ,med . fvcm4 , c o l =4, l t y =4, lwd=1)
250 l i n e s ( height ,med . fvcm5 , c o l =5, l t y =5, lwd=1)
251 l i n e s ( height ,med . fvcm6 , c o l =6, l t y =6, lwd=1)
252

253 l egend ( ” t o p l e f t ” , c ( ”age 7” , ”age 9” , ”age 11” , ”age 13” , ”age 15” , ”age 17” ) ,
254 c o l =1:6 , l t y =1:6)
255 ##################################################################
256 # Contour Plot
257 #################################################################
258 age<−seq (min (agem) ,max(agem) , l ength=500)
259 he ight<−seq (min ( heightm ) ,max( heightm ) , l ength=500)
260

261 newdata<−expand . g r id ( he ight=height , age=age )
262

263 newdata1<−cbind (1 , newdata , poly ( newdata$age/ 20 ,4 , raw=TRUE) )
264 newdata2<−cbind (1 , newdata$age , poly ( newdata$age/ 20 ,3 , raw=TRUE) )
265 newdata3<−cbind (1 , newdata$age , poly ( newdata$age/ 20 ,1 , raw=TRUE) )
266

267 newdata1 [ , 2 ]<−l og ( newdata1 [ , 2 ] )
268 newdata1 [ , 3 ]<−l og ( newdata1 [ , 3 ] )
269

270 newdata2 [ , 2 ]<−l og ( newdata2 [ , 2 ] )
271

272 newdata3 [ , 2 ]<−l og ( newdata3 [ , 2 ] )
273

274

275 pp<−qBCCG(0 . 5 , pred ( f i t . fvcm$mu. c o e f f i c i e n t s , newdata1 ) ,
276 pred ( f i t . fvcm$ sigma . c o e f f i c i e n t s , newdata2 ) , pred1 ( f i t . fvcm$nu . c o e f f i c i e n t s ,

newdata3 ) )
277

278 pp .mat<−matrix (pp , nco l=length ( age ) )
279

280 contour ( height , age , pp .mat , n l e v e l s =20, xlab=”Height ( in cm) ” , ylab=”Age ( in
years ) ” )

281

282 #################################################################
283 age1 <− seq (6 ,17 , l ength=200)
284 he ight <− seq (min ( heightm ) , max( heightm ) , l ength = 200)
285

286 newdata1<−cbind (1 , l og ( he ight ) , l og ( age1 ) , poly ( age1/ 20 ,4 , raw=TRUE) )
287 newdata2<−cbind (1 , l og ( age1 ) , poly ( age1/ 20 ,3 , raw=TRUE) )
288 newdata3<−cbind (1 , l og ( age1 ) , poly ( age1/ 20 ,1 , raw=TRUE) )
289

290
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291 Mpred1 . fvcm<−pred ( f i t . fvcm$mu. c o e f f i c i e n t s , newdata1 )
292 Spred1 . fvcm<−pred ( f i t . fvcm$ sigma . c o e f f i c i e n t s , newdata2 )
293 Lpred1 . fvcm<−pred1 ( f i t . fvcm$nu . c o e f f i c i e n t s , newdata3 )
294

295

296 med . fvcm<−qBCCG(0 . 5 ,Mpred1 . fvcm , Spred1 . fvcm , Lpred1 . fvcm )
297 LLN. fvcm<−qBCCG(0 . 0 5 ,Mpred1 . fvcm , Spred1 . fvcm , Lpred1 . fvcm )
298

299 p lo t (agem , fvcm , xlab=”Age ( in years ) ” , ylab=”FVC ( in l i t e r s ) ” )
300

301 l i n e s ( age1 ,med . fvcm , c o l =2, l t y =1)
302 l i n e s ( age1 ,LLN. fvcm , l t y =2, c o l =3)
303

304 l egend ( ” t o p l e f t ” , c ( ”Height−age adjusted median FVC” , ”Height−age adjusted LLN
f o r FVC” ) , c o l =2:3 , l t y =1:2)

305

306 ########################################################################
307 ########################################################################
308 # GIRLS : FVC
309 #################################################################
310 f i t 1 . f v c f<−gamlss . f i t ( f v c f , he i ght f , agef , 2 , 2 , 1 )
311 f i t 2 . f v c f<−gamlss . f i t ( f v c f , he i ght f , agef , 2 , 2 , 2 )
312 f i t 3 . f v c f<−gamlss . f i t ( f v c f , he i ght f , agef , 3 , 3 , 1 )
313 f i t 4 . f v c f<−gamlss . f i t ( f v c f , he i ght f , agef , 3 , 3 , 2 )
314 f i t 5 . f v c f<−gamlss . f i t ( f v c f , he i ght f , agef , 5 , 3 , 1 )
315 f i t 6 . f v c f<−gamlss . f i t ( f v c f , he i ght f , agef , 5 , 3 , 2 )
316 f i t 7 . f v c f<−gamlss . f i t ( f v c f , he i ght f , agef , 5 , 4 , 1 )
317 f i t 8 . f v c f<−gamlss . f i t ( f v c f , he i ght f , agef , 5 , 4 , 2 )
318

319 df AIC
320 f i t 3 . f v c f 14 42.69662
321 f i t 4 . f v c f 15 44.44175
322 f i t 5 . f v c f 16 46.60327
323 f i t 7 . f v c f 17 47.80257
324 f i t 6 . f v c f 17 48.32411
325 f i t 8 . f v c f 18 49.60252
326 f i t 1 . f v c f 12 50.23985
327 f i t 2 . f v c f 13 52.20455
328

329 AIC( f i t 1 . f v c f , f i t 2 . f v c f , f i t 3 . f v c f , f i t 4 . f v c f , f i t 5 . f v c f , f i t 6 . f v c f , f i t 7 . f v c f , f i t 8
. f v c f )

330

331 f i t . f v c f<− f i t 3 . f v c f
332 summary( f i t . f v c f )
333 #####################################################
334 age<−seq (min ( age f ) , max( age f ) , l ength = 200)
335 he ight <− seq (min ( h e i gh t f ) , max( h e i gh t f ) , l ength = 200)
336

337 newdata01<−cbind (1 , l og ( he ight ) , l og ( age ) , poly ( age/ 20 ,3 , raw=TRUE) )
338 newdata02<−cbind (1 , l og ( age ) , poly ( age/ 20 ,3 , raw=TRUE) )
339 newdata03<−cbind (1 , l og ( age ) , poly ( age/ 20 ,1 , raw=TRUE) )
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340

341 pred01 . f v c f<−pred ( f i t . f v c f $mu. c o e f f i c i e n t s , newdata01 )
342 pred02 . f v c f<−pred ( f i t . f v c f $ sigma . c o e f f i c i e n t s , newdata02 )
343 pred03 . f v c f<−pred1 ( f i t . f v c f $nu . c o e f f i c i e n t s , newdata03 )
344 med . f v c f 0<−qBCCG(0 . 5 , pred01 . f v c f , pred02 . f v c f , pred03 . f v c f )
345

346

347 dd<−s c a t t e r p l o t 3d ( agef , he i ght f , f v c f , c o l o r=”dodgerblue4 ” , pch=20, xlab=”Age ( in
years ) ” , ylab=”Height ( in cm) ” , z lab=”FVC ( in l i t e r s ) ” )

348 dd$ points3d ( age , he ight ,med . fvc f0 , type=” l ” )
349 ########################################################
350

351 age1 <− rep (7 ,200)
352 age2 <− rep (9 ,200)
353 age3 <− rep (11 ,200)
354 age4 <− rep (13 ,200)
355 age5 <− rep (15 ,200)
356 age6 <− rep (17 ,200)
357

358 he ight <− seq (min ( h e i gh t f ) , max( h e i gh t f ) , l ength = 200)
359

360 newdata1<−cbind (1 , l og ( he ight ) , l og ( age1 ) , poly ( age1/ 20 ,3 , raw=TRUE) )
361 newdata2<−cbind (1 , l og ( he ight ) , l og ( age2 ) , poly ( age2/ 20 ,3 , raw=TRUE) )
362 newdata3<−cbind (1 , l og ( he ight ) , l og ( age3 ) , poly ( age3/ 20 ,3 , raw=TRUE) )
363 newdata4<−cbind (1 , l og ( he ight ) , l og ( age4 ) , poly ( age4/ 20 ,3 , raw=TRUE) )
364 newdata5<−cbind (1 , l og ( he ight ) , l og ( age5 ) , poly ( age5/ 20 ,3 , raw=TRUE) )
365 newdata6<−cbind (1 , l og ( he ight ) , l og ( age6 ) , poly ( age6/ 20 ,3 , raw=TRUE) )
366

367 newdata11<−cbind (1 , l og ( age1 ) , poly ( age1/ 20 ,3 , raw=TRUE) )
368 newdata12<−cbind (1 , l og ( age2 ) , poly ( age2/ 20 ,3 , raw=TRUE) )
369 newdata13<−cbind (1 , l og ( age3 ) , poly ( age3/ 20 ,3 , raw=TRUE) )
370 newdata14<−cbind (1 , l og ( age4 ) , poly ( age4/ 20 ,3 , raw=TRUE) )
371 newdata15<−cbind (1 , l og ( age5 ) , poly ( age5/ 20 ,3 , raw=TRUE) )
372 newdata16<−cbind (1 , l og ( age6 ) , poly ( age6/ 20 ,3 , raw=TRUE) )
373

374 newdata21<−cbind (1 , l og ( age1 ) , poly ( age1/ 20 ,1 , raw=TRUE) )
375 newdata22<−cbind (1 , l og ( age2 ) , poly ( age2/ 20 ,1 , raw=TRUE) )
376 newdata23<−cbind (1 , l og ( age3 ) , poly ( age3/ 20 ,1 , raw=TRUE) )
377 newdata24<−cbind (1 , l og ( age4 ) , poly ( age4/ 20 ,1 , raw=TRUE) )
378 newdata25<−cbind (1 , l og ( age5 ) , poly ( age5/ 20 ,1 , raw=TRUE) )
379 newdata26<−cbind (1 , l og ( age6 ) , poly ( age6/ 20 ,1 , raw=TRUE) )
380

381 pred1 . f v c f<−pred ( f i t . f v c f $mu. c o e f f i c i e n t s , newdata1 )
382 pred2 . f v c f<−pred ( f i t . f v c f $mu. c o e f f i c i e n t s , newdata2 )
383 pred3 . f v c f<−pred ( f i t . f v c f $mu. c o e f f i c i e n t s , newdata3 )
384 pred4 . f v c f<−pred ( f i t . f v c f $mu. c o e f f i c i e n t s , newdata4 )
385 pred5 . f v c f<−pred ( f i t . f v c f $mu. c o e f f i c i e n t s , newdata5 )
386 pred6 . f v c f<−pred ( f i t . f v c f $mu. c o e f f i c i e n t s , newdata6 )
387

388 pred11 . f v c f<−pred ( f i t . f v c f $ sigma . c o e f f i c i e n t s , newdata11 )
389 pred12 . f v c f<−pred ( f i t . f v c f $ sigma . c o e f f i c i e n t s , newdata12 )
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390 pred13 . f v c f<−pred ( f i t . f v c f $ sigma . c o e f f i c i e n t s , newdata13 )
391 pred14 . f v c f<−pred ( f i t . f v c f $ sigma . c o e f f i c i e n t s , newdata14 )
392 pred15 . f v c f<−pred ( f i t . f v c f $ sigma . c o e f f i c i e n t s , newdata15 )
393 pred16 . f v c f<−pred ( f i t . f v c f $ sigma . c o e f f i c i e n t s , newdata16 )
394

395 pred21 . f v c f<−pred1 ( f i t . f v c f $nu . c o e f f i c i e n t s , newdata21 )
396 pred22 . f v c f<−pred1 ( f i t . f v c f $nu . c o e f f i c i e n t s , newdata22 )
397 pred23 . f v c f<−pred1 ( f i t . f v c f $nu . c o e f f i c i e n t s , newdata23 )
398 pred24 . f v c f<−pred1 ( f i t . f v c f $nu . c o e f f i c i e n t s , newdata24 )
399 pred25 . f v c f<−pred1 ( f i t . f v c f $nu . c o e f f i c i e n t s , newdata25 )
400 pred26 . f v c f<−pred1 ( f i t . f v c f $nu . c o e f f i c i e n t s , newdata26 )
401

402 med . f v c f 1<−qBCCG(0 . 5 , pred1 . f v c f , pred11 . f v c f , pred21 . f v c f )
403 med . f v c f 2<−qBCCG(0 . 5 , pred2 . f v c f , pred12 . f v c f , pred22 . f v c f )
404 med . f v c f 3<−qBCCG(0 . 5 , pred3 . f v c f , pred13 . f v c f , pred23 . f v c f )
405 med . f v c f 4<−qBCCG(0 . 5 , pred4 . f v c f , pred14 . f v c f , pred24 . f v c f )
406 med . f v c f 5<−qBCCG(0 . 5 , pred5 . f v c f , pred15 . f v c f , pred25 . f v c f )
407 med . f v c f 6<−qBCCG(0 . 5 , pred6 . f v c f , pred16 . f v c f , pred26 . f v c f )
408

409

410 p lo t ( height ,med . fvc f1 , c o l =1, type=” l ” , xlab=”Height ( in cm) ” ,
411 ylab=”Height−age adjusted median r e f e r e n c e FVC ( in l i t e r s ) ” ,
412 l t y =1, lwd=1, ylim=c (min ( c (med . fvc f1 ,med . fvc f2 ,med . fvc f3 ,med . fvc f4 ,med . fvc f5 ,

med . f v c f 6 ) ) ,
413 max( c (med . fvc f1 ,med . fvc f2 ,med . fvc f3 ,med . fvc f4 ,med . fvc f5 ,med . f v c f 6 ) ) ) )
414 l i n e s ( height ,med . fvc f2 , c o l =2, l t y =2, lwd=1)
415 l i n e s ( height ,med . fvc f3 , c o l =3, l t y =3, lwd=1)
416 l i n e s ( height ,med . fvc f4 , c o l =4, l t y =4, lwd=1)
417 l i n e s ( height ,med . fvc f5 , c o l =5, l t y =5, lwd=1)
418 l i n e s ( height ,med . fvc f6 , c o l =6, l t y =6, lwd=1)
419

420 l egend ( ” t o p l e f t ” , c ( ”age 7” , ”age 9” , ”age 11” , ”age 13” , ”age 15” , ”age 17” ) ,
421 c o l =1:6 , l t y =1:6)
422

423 ####################################################################
424 ##################################################################
425 # Contour Plot
426 #################################################################
427 age<−seq (min ( age f ) ,max( age f ) , l ength=500)
428 he ight<−seq (min ( h e i gh t f ) ,max( h e i gh t f ) , l ength=500)
429

430 newdata<−expand . g r id ( he ight=height , age=age )
431

432 newdata1<−cbind (1 , newdata , poly ( newdata$age/ 20 ,3 , raw=TRUE) )
433 newdata2<−cbind (1 , newdata$age , poly ( newdata$age/ 20 ,3 , raw=TRUE) )
434 newdata3<−cbind (1 , newdata$age , poly ( newdata$age/ 20 ,1 , raw=TRUE) )
435

436 newdata1 [ , 2 ]<−l og ( newdata1 [ , 2 ] )
437 newdata1 [ , 3 ]<−l og ( newdata1 [ , 3 ] )
438

439 newdata2 [ , 2 ]<−l og ( newdata2 [ , 2 ] )
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440

441 newdata3 [ , 2 ]<−l og ( newdata3 [ , 2 ] )
442

443

444 pp<−qBCCG(0 . 5 , pred ( f i t . f v c f $mu. c o e f f i c i e n t s , newdata1 ) ,
445 pred ( f i t . f v c f $ sigma . c o e f f i c i e n t s , newdata2 ) , pred1 ( f i t . f v c f $nu . c o e f f i c i e n t s ,

newdata3 ) )
446

447 pp .mat<−matrix (pp , nco l=length ( age ) )
448

449 contour ( height , age , pp .mat , xlab=”Height ( in cm) ” , ylab=”Age ( in years ) ” , n l e v e l s
=20)

450 #######################################################################
451 age1 <− seq (6 ,17 , l ength=200)
452 he ight <− seq (min ( h e i gh t f ) , max( h e i gh t f ) , l ength = 200)
453

454 newdata1<−cbind (1 , l og ( he ight ) , l og ( age1 ) , poly ( age1/ 20 ,3 , raw=TRUE) )
455 newdata2<−cbind (1 , l og ( age1 ) , poly ( age1/ 20 ,3 , raw=TRUE) )
456 newdata3<−cbind (1 , l og ( age1 ) , poly ( age1/ 20 ,1 , raw=TRUE) )
457

458

459 Mpred1 . f v c f<−pred ( f i t . f v c f $mu. c o e f f i c i e n t s , newdata1 )
460 Spred1 . f v c f<−pred ( f i t . f v c f $ sigma . c o e f f i c i e n t s , newdata2 )
461 Lpred1 . f v c f<−pred1 ( f i t . f v c f $nu . c o e f f i c i e n t s , newdata3 )
462

463

464 med . f v c f<−qBCCG(0 . 5 ,Mpred1 . f v c f , Spred1 . f v c f , Lpred1 . f v c f )
465 LLN. f v c f<−qBCCG(0 . 0 5 ,Mpred1 . f v c f , Spred1 . f v c f , Lpred1 . f v c f )
466

467

468 p lo t ( agef , f v c f , x lab=”Age ( in years ) ” , ylab=”FVC ( in l i t e r s ) ” )
469 l i n e s ( age1 ,med . f v c f , c o l =2, l t y =1)
470 l i n e s ( age1 ,LLN. fv c f , c o l =3, l t y =2)
471

472 l egend ( ” t o p l e f t ” , c ( ”Height−age adjusted median FVC” , ”Height−age adjusted LLN
f o r FVC” ) , c o l =2:3 , l t y =1:2)

473

474 ##########################################################
475 #########################################################
476 # BOYS: FEV1
477 #########################################################
478 #########################################################
479 f i t 1 . fevm<−gamlss . f i t ( fev1m , heightm , agem , 2 , 2 , 1 )
480 f i t 2 . fevm<−gamlss . f i t ( fev1m , heightm , agem , 2 , 2 , 2 )
481 f i t 3 . fevm<−gamlss . f i t ( fev1m , heightm , agem , 3 , 3 , 1 )
482 f i t 4 . fevm<−gamlss . f i t ( fev1m , heightm , agem , 3 , 3 , 2 )
483 f i t 5 . fevm<−gamlss . f i t ( fev1m , heightm , agem , 4 , 3 , 1 )
484 f i t 6 . fevm<−gamlss . f i t ( fev1m , heightm , agem , 5 , 2 , 2 )
485

486 AIC( f i t 1 . fevm , f i t 2 . fevm , f i t 3 . fevm , f i t 4 . fevm , f i t 5 . fevm , f i t 6 . fevm )
487
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488 df AIC
489 f i t 5 . fevm 15 14.91136
490 f i t 4 . fevm 15 18.80708
491 f i t 1 . fevm 12 20.84756
492 f i t 3 . fevm 14 23.55715
493 f i t 6 . fevm 16 24.71780
494 f i t 2 . fevm 13 26.00631
495

496 f i t . fevm<− f i t 5 . fevm
497 summary( f i t . fvcm )
498 #####################################################
499 age<−seq (min (agem) , max(agem) , l ength = 200)
500 he ight <− seq (min ( heightm ) , max( heightm ) , l ength = 200)
501

502 newdata01<−cbind (1 , l og ( he ight ) , l og ( age ) , poly ( age/ 20 ,4 , raw=TRUE) )
503 newdata02<−cbind (1 , l og ( age ) , poly ( age/ 20 ,3 , raw=TRUE) )
504 newdata03<−cbind (1 , l og ( age ) , poly ( age/ 20 ,1 , raw=TRUE) )
505

506 pred01 . fevm<−pred ( f i t . fevm$mu. c o e f f i c i e n t s , newdata01 )
507 pred02 . fevm<−pred ( f i t . fevm$ sigma . c o e f f i c i e n t s , newdata02 )
508 pred03 . fevm<−pred1 ( f i t . fevm$nu . c o e f f i c i e n t s , newdata03 )
509 med . fevm0<−qBCCG(0 . 5 , pred01 . fevm , pred02 . fevm , pred03 . fevm )
510

511

512 dd<−s c a t t e r p l o t 3d (agem , heightm , fev1m , c o l o r=”dodgerblue4 ” , pch=20, xlab=”Age ( in
years ) ” , ylab=”Height ( in cm) ” ,

513 z lab=expr e s s i on ( ’FEV ’ [ 1 ] * ’ ( in l i t e r s ) ’ ) )
514 dd$ points3d ( age , he ight ,med . fevm0 , type=” l ” )
515

516 ######################################################
517 age1 <− rep (7 ,200)
518 age2 <− rep (9 ,200)
519 age3 <− rep (11 ,200)
520 age4 <− rep (13 ,200)
521 age5 <− rep (15 ,200)
522 age6 <− rep (17 ,200)
523

524 he ight <− seq (min ( heightm ) , max( heightm ) , l ength = 200)
525

526 newdata1<−cbind (1 , l og ( he ight ) , l og ( age1 ) , poly ( age1/ 20 ,4 , raw=TRUE) )
527 newdata2<−cbind (1 , l og ( he ight ) , l og ( age2 ) , poly ( age2/ 20 ,4 , raw=TRUE) )
528 newdata3<−cbind (1 , l og ( he ight ) , l og ( age3 ) , poly ( age3/ 20 ,4 , raw=TRUE) )
529 newdata4<−cbind (1 , l og ( he ight ) , l og ( age4 ) , poly ( age4/ 20 ,4 , raw=TRUE) )
530 newdata5<−cbind (1 , l og ( he ight ) , l og ( age5 ) , poly ( age5/ 20 ,4 , raw=TRUE) )
531 newdata6<−cbind (1 , l og ( he ight ) , l og ( age6 ) , poly ( age6/ 20 ,4 , raw=TRUE) )
532

533 newdata11<−cbind (1 , l og ( age1 ) , poly ( age1/ 20 ,3 , raw=TRUE) )
534 newdata12<−cbind (1 , l og ( age2 ) , poly ( age2/ 20 ,3 , raw=TRUE) )
535 newdata13<−cbind (1 , l og ( age3 ) , poly ( age3/ 20 ,3 , raw=TRUE) )
536 newdata14<−cbind (1 , l og ( age4 ) , poly ( age4/ 20 ,3 , raw=TRUE) )
537 newdata15<−cbind (1 , l og ( age5 ) , poly ( age5/ 20 ,3 , raw=TRUE) )
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538 newdata16<−cbind (1 , l og ( age6 ) , poly ( age6/ 20 ,3 , raw=TRUE) )
539

540 newdata21<−cbind (1 , l og ( age1 ) , poly ( age1/ 20 ,1 , raw=TRUE) )
541 newdata22<−cbind (1 , l og ( age2 ) , poly ( age2/ 20 ,1 , raw=TRUE) )
542 newdata23<−cbind (1 , l og ( age3 ) , poly ( age3/ 20 ,1 , raw=TRUE) )
543 newdata24<−cbind (1 , l og ( age4 ) , poly ( age4/ 20 ,1 , raw=TRUE) )
544 newdata25<−cbind (1 , l og ( age5 ) , poly ( age5/ 20 ,1 , raw=TRUE) )
545 newdata26<−cbind (1 , l og ( age6 ) , poly ( age6/ 20 ,1 , raw=TRUE) )
546

547 pred1 . fevm<−pred ( f i t . fevm$mu. c o e f f i c i e n t s , newdata1 )
548 pred2 . fevm<−pred ( f i t . fevm$mu. c o e f f i c i e n t s , newdata2 )
549 pred3 . fevm<−pred ( f i t . fevm$mu. c o e f f i c i e n t s , newdata3 )
550 pred4 . fevm<−pred ( f i t . fevm$mu. c o e f f i c i e n t s , newdata4 )
551 pred5 . fevm<−pred ( f i t . fevm$mu. c o e f f i c i e n t s , newdata5 )
552 pred6 . fevm<−pred ( f i t . fevm$mu. c o e f f i c i e n t s , newdata6 )
553

554 pred11 . fevm<−pred ( f i t . fevm$ sigma . c o e f f i c i e n t s , newdata11 )
555 pred12 . fevm<−pred ( f i t . fevm$ sigma . c o e f f i c i e n t s , newdata12 )
556 pred13 . fevm<−pred ( f i t . fevm$ sigma . c o e f f i c i e n t s , newdata13 )
557 pred14 . fevm<−pred ( f i t . fevm$ sigma . c o e f f i c i e n t s , newdata14 )
558 pred15 . fevm<−pred ( f i t . fevm$ sigma . c o e f f i c i e n t s , newdata15 )
559 pred16 . fevm<−pred ( f i t . fevm$ sigma . c o e f f i c i e n t s , newdata16 )
560

561 pred21 . fevm<−pred1 ( f i t . fevm$nu . c o e f f i c i e n t s , newdata21 )
562 pred22 . fevm<−pred1 ( f i t . fevm$nu . c o e f f i c i e n t s , newdata22 )
563 pred23 . fevm<−pred1 ( f i t . fevm$nu . c o e f f i c i e n t s , newdata23 )
564 pred24 . fevm<−pred1 ( f i t . fevm$nu . c o e f f i c i e n t s , newdata24 )
565 pred25 . fevm<−pred1 ( f i t . fevm$nu . c o e f f i c i e n t s , newdata25 )
566 pred26 . fevm<−pred1 ( f i t . fevm$nu . c o e f f i c i e n t s , newdata26 )
567

568 med . fevm1<−qBCCG(0 . 5 , pred1 . fevm , pred11 . fevm , pred21 . fevm )
569 med . fevm2<−qBCCG(0 . 5 , pred2 . fevm , pred12 . fevm , pred22 . fevm )
570 med . fevm3<−qBCCG(0 . 5 , pred3 . fevm , pred13 . fevm , pred23 . fevm )
571 med . fevm4<−qBCCG(0 . 5 , pred4 . fevm , pred14 . fevm , pred24 . fevm )
572 med . fevm5<−qBCCG(0 . 5 , pred5 . fevm , pred15 . fevm , pred25 . fevm )
573 med . fevm6<−qBCCG(0 . 5 , pred6 . fevm , pred16 . fevm , pred26 . fevm )
574

575

576 p lo t ( height ,med . fevm1 , c o l =1, type=” l ” , xlab=”Height ( in cm) ” ,
577 ylab=expr e s s i on ( ’ Height−age adjusted median r e f e r e n c e FEV ’ [ 1 ] * ’ ( in

l i t e r s ) ’ ) , l t y =1, lwd=1,
578 ylim=c (1 , 5 ) )
579 l i n e s ( height ,med . fevm2 , c o l =2, l t y =2, lwd=1)
580 l i n e s ( height ,med . fevm3 , c o l =3, l t y =3, lwd=1)
581 l i n e s ( height ,med . fevm4 , c o l =4, l t y =4, lwd=1)
582 l i n e s ( height ,med . fevm5 , c o l =5, l t y =5, lwd=1)
583 l i n e s ( height ,med . fevm6 , c o l =6, l t y =6, lwd=1)
584

585 l egend ( ” t o p l e f t ” , c ( ”age 7” , ”age 9” , ”age 11” , ”age 13” , ”age 15” , ”age 17” ) ,
586 c o l =1:6 , l t y =1:6)
587
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588 #################################################################
589 ##################################################################
590 # Contour Plot
591 #################################################################
592 age<−seq (min (agem) ,max(agem) , l ength=500)
593 he ight<−seq (min ( heightm ) ,max( heightm ) , l ength=500)
594

595 newdata<−expand . g r id ( he ight=height , age=age )
596

597 newdata1<−cbind (1 , newdata , poly ( newdata$age/ 20 ,4 , raw=TRUE) )
598 newdata2<−cbind (1 , newdata$age , poly ( newdata$age/ 20 ,3 , raw=TRUE) )
599 newdata3<−cbind (1 , newdata$age , poly ( newdata$age/ 20 ,1 , raw=TRUE) )
600

601 newdata1 [ , 2 ]<−l og ( newdata1 [ , 2 ] )
602 newdata1 [ , 3 ]<−l og ( newdata1 [ , 3 ] )
603

604 newdata2 [ , 2 ]<−l og ( newdata2 [ , 2 ] )
605

606 newdata3 [ , 2 ]<−l og ( newdata3 [ , 2 ] )
607

608

609 pp<−qBCCG(0 . 5 , pred ( f i t . fevm$mu. c o e f f i c i e n t s , newdata1 ) ,
610 pred ( f i t . fevm$ sigma . c o e f f i c i e n t s , newdata2 ) , pred1 ( f i t . fevm$nu . c o e f f i c i e n t s ,

newdata3 ) )
611

612 pp .mat<−matrix (pp , nco l=length ( age ) )
613

614 contour ( height , age , pp .mat , xlab=”Height ( in cm) ” , ylab=”Age ( in years ) ” , n l e v e l s
=20)

615 ###################################################################
616 age1 <− seq (6 ,17 , l ength=200)
617 he ight <− seq (min ( heightm ) , max( heightm ) , l ength = 200)
618

619 newdata1<−cbind (1 , l og ( he ight ) , l og ( age1 ) , poly ( age1/ 20 ,4 , raw=TRUE) )
620 newdata2<−cbind (1 , l og ( age1 ) , poly ( age1/ 20 ,3 , raw=TRUE) )
621 newdata3<−cbind (1 , l og ( age1 ) , poly ( age1/ 20 ,1 , raw=TRUE) )
622

623

624 Mpred1 . fevm<−pred ( f i t . fevm$mu. c o e f f i c i e n t s , newdata1 )
625 Spred1 . fevm<−pred ( f i t . fevm$ sigma . c o e f f i c i e n t s , newdata2 )
626 Lpred1 . fevm<−pred1 ( f i t . fevm$nu . c o e f f i c i e n t s , newdata3 )
627

628 med . fevm<−qBCCG(0 . 5 ,Mpred1 . fevm , Spred1 . fevm , Lpred1 . fevm )
629 LLN. fevm<−qBCCG(0 . 0 5 ,Mpred1 . fevm , Spred1 . fevm , Lpred1 . fevm )
630

631

632

633 p lo t (agem , fev1m , ylim=c (1 , 5 ) , xlab=”Age ( in years ) ” ,
634 ylab=expr e s s i on ( ’FEV ’ [ 1 ] * ’ ( in l i t e r s ) ’ ) )
635 l i n e s ( age1 ,med . fevm , c o l =2, l t y =1)
636 l i n e s ( age1 ,LLN. fevm , c o l =3, l t y =2)
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637

638 l egend ( ” t o p l e f t ” , c ( exp r e s s i on ( ’ Height−age adjusted median FEV ’ [ 1 ] ) ,
639 exp r e s s i on ( ’ Height−age adjusted LLN f o r FEV ’ [ 1 ] ) ) , c o l =2:3 , l t y =1:2)
640

641 ########################################################################
642 ########################################################################
643 ########################################################################
644 # GIRLS : FEV1
645 #################################################################
646 f i t 1 . f e v f<−gamlss . f i t ( f ev1 f , he i ght f , agef , 2 , 2 , 1 )
647 f i t 2 . f e v f<−gamlss . f i t ( f ev1 f , he i ght f , agef , 2 , 2 , 2 )
648 f i t 3 . f e v f<−gamlss . f i t ( f ev1 f , he i ght f , agef , 3 , 3 , 1 )
649 f i t 4 . f e v f<−gamlss . f i t ( f ev1 f , he i ght f , agef , 3 , 3 , 2 )
650 f i t 5 . f e v f<−gamlss . f i t ( f ev1 f , he i ght f , agef , 5 , 3 , 1 )
651 f i t 6 . f e v f<−gamlss . f i t ( f ev1 f , he i ght f , agef , 5 , 3 , 2 )
652 f i t 7 . f e v f<−gamlss . f i t ( f ev1 f , he i ght f , agef , 5 , 4 , 1 )
653 f i t 8 . f e v f<−gamlss . f i t ( f ev1 f , he i ght f , agef , 5 , 4 , 2 )
654

655

656 AIC( f i t 1 . f ev f , f i t 2 . f ev f , f i t 3 . f ev f , f i t 4 . f ev f , f i t 5 . f ev f , f i t 6 . f ev f , f i t 7 . f ev f , f i t 8
. f e v f )

657

658 df AIC
659 f i t 2 . f e v f 13 24.38679
660 f i t 3 . f e v f 14 24.52449
661 f i t 4 . f e v f 15 26.52100
662 f i t 7 . f e v f 17 28.12082
663 f i t 5 . f e v f 16 28.18959
664 f i t 1 . f e v f 12 29.10914
665 f i t 8 . f e v f 18 30.12164
666 f i t 6 . f e v f 17 30.18967
667

668 f i t . f e v f<− f i t 3 . f e v f
669 summary( f i t . f e v f )
670 #####################################################
671 age<−seq (min ( age f ) , max( age f ) , l ength = 200)
672 he ight <− seq (min ( h e i gh t f ) , max( h e i gh t f ) , l ength = 200)
673

674 newdata01<−cbind (1 , l og ( he ight ) , l og ( age ) , poly ( age/ 20 ,3 , raw=TRUE) )
675 newdata02<−cbind (1 , l og ( age ) , poly ( age/ 20 ,3 , raw=TRUE) )
676 newdata03<−cbind (1 , l og ( age ) , poly ( age/ 20 ,1 , raw=TRUE) )
677

678 pred01 . f e v f<−pred ( f i t . f e v f $mu. c o e f f i c i e n t s , newdata01 )
679 pred02 . f e v f<−pred ( f i t . f e v f $ sigma . c o e f f i c i e n t s , newdata02 )
680 pred03 . f e v f<−pred1 ( f i t . f e v f $nu . c o e f f i c i e n t s , newdata03 )
681 med . f e v f 0<−qBCCG(0 . 5 , pred01 . f ev f , pred02 . f ev f , pred03 . f e v f )
682

683

684 dd<−s c a t t e r p l o t 3d ( agef , he i ght f , f ev1 f , c o l o r=”dodgerblue4 ” , pch=20, xlab=”Age ( in
years ) ” , ylab=”Height ( in cm) ” ,

685 z lab=expr e s s i on ( ’FEV ’ [ 1 ] * ’ ( in l i t e r s ) ’ ) )
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686 dd$ points3d ( age , he ight ,med . f ev f0 , type=” l ” )
687 ##################################################################
688 age1 <− rep (7 ,200)
689 age2 <− rep (9 ,200)
690 age3 <− rep (11 ,200)
691 age4 <− rep (13 ,200)
692 age5 <− rep (15 ,200)
693 age6 <− rep (17 ,200)
694

695 he ight <− seq (min ( h e i gh t f ) , max( h e i gh t f ) , l ength = 200)
696

697 newdata1<−cbind (1 , l og ( he ight ) , l og ( age1 ) , poly ( age1/ 20 ,3 , raw=TRUE) )
698 newdata2<−cbind (1 , l og ( he ight ) , l og ( age2 ) , poly ( age2/ 20 ,3 , raw=TRUE) )
699 newdata3<−cbind (1 , l og ( he ight ) , l og ( age3 ) , poly ( age3/ 20 ,3 , raw=TRUE) )
700 newdata4<−cbind (1 , l og ( he ight ) , l og ( age4 ) , poly ( age4/ 20 ,3 , raw=TRUE) )
701 newdata5<−cbind (1 , l og ( he ight ) , l og ( age5 ) , poly ( age5/ 20 ,3 , raw=TRUE) )
702 newdata6<−cbind (1 , l og ( he ight ) , l og ( age6 ) , poly ( age6/ 20 ,3 , raw=TRUE) )
703

704 newdata11<−cbind (1 , l og ( age1 ) , poly ( age1/ 20 ,3 , raw=TRUE) )
705 newdata12<−cbind (1 , l og ( age2 ) , poly ( age2/ 20 ,3 , raw=TRUE) )
706 newdata13<−cbind (1 , l og ( age3 ) , poly ( age3/ 20 ,3 , raw=TRUE) )
707 newdata14<−cbind (1 , l og ( age4 ) , poly ( age4/ 20 ,3 , raw=TRUE) )
708 newdata15<−cbind (1 , l og ( age5 ) , poly ( age5/ 20 ,3 , raw=TRUE) )
709 newdata16<−cbind (1 , l og ( age6 ) , poly ( age6/ 20 ,3 , raw=TRUE) )
710

711 newdata21<−cbind (1 , l og ( age1 ) , poly ( age1/ 20 ,1 , raw=TRUE) )
712 newdata22<−cbind (1 , l og ( age2 ) , poly ( age2/ 20 ,1 , raw=TRUE) )
713 newdata23<−cbind (1 , l og ( age3 ) , poly ( age3/ 20 ,1 , raw=TRUE) )
714 newdata24<−cbind (1 , l og ( age4 ) , poly ( age4/ 20 ,1 , raw=TRUE) )
715 newdata25<−cbind (1 , l og ( age5 ) , poly ( age5/ 20 ,1 , raw=TRUE) )
716 newdata26<−cbind (1 , l og ( age6 ) , poly ( age6/ 20 ,1 , raw=TRUE) )
717

718 pred1 . f e v f<−pred ( f i t . f e v f $mu. c o e f f i c i e n t s , newdata1 )
719 pred2 . f e v f<−pred ( f i t . f e v f $mu. c o e f f i c i e n t s , newdata2 )
720 pred3 . f e v f<−pred ( f i t . f e v f $mu. c o e f f i c i e n t s , newdata3 )
721 pred4 . f e v f<−pred ( f i t . f e v f $mu. c o e f f i c i e n t s , newdata4 )
722 pred5 . f e v f<−pred ( f i t . f e v f $mu. c o e f f i c i e n t s , newdata5 )
723 pred6 . f e v f<−pred ( f i t . f e v f $mu. c o e f f i c i e n t s , newdata6 )
724

725 pred11 . f e v f<−pred ( f i t . f e v f $ sigma . c o e f f i c i e n t s , newdata11 )
726 pred12 . f e v f<−pred ( f i t . f e v f $ sigma . c o e f f i c i e n t s , newdata12 )
727 pred13 . f e v f<−pred ( f i t . f e v f $ sigma . c o e f f i c i e n t s , newdata13 )
728 pred14 . f e v f<−pred ( f i t . f e v f $ sigma . c o e f f i c i e n t s , newdata14 )
729 pred15 . f e v f<−pred ( f i t . f e v f $ sigma . c o e f f i c i e n t s , newdata15 )
730 pred16 . f e v f<−pred ( f i t . f e v f $ sigma . c o e f f i c i e n t s , newdata16 )
731

732 pred21 . f e v f<−pred1 ( f i t . f e v f $nu . c o e f f i c i e n t s , newdata21 )
733 pred22 . f e v f<−pred1 ( f i t . f e v f $nu . c o e f f i c i e n t s , newdata22 )
734 pred23 . f e v f<−pred1 ( f i t . f e v f $nu . c o e f f i c i e n t s , newdata23 )
735 pred24 . f e v f<−pred1 ( f i t . f e v f $nu . c o e f f i c i e n t s , newdata24 )
736 pred25 . f e v f<−pred1 ( f i t . f e v f $nu . c o e f f i c i e n t s , newdata25 )
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737 pred26 . f e v f<−pred1 ( f i t . f e v f $nu . c o e f f i c i e n t s , newdata26 )
738

739 med . f e v f 1<−qBCCG(0 . 5 , pred1 . f ev f , pred11 . f ev f , pred21 . f e v f )
740 med . f e v f 2<−qBCCG(0 . 5 , pred2 . f ev f , pred12 . f ev f , pred22 . f e v f )
741 med . f e v f 3<−qBCCG(0 . 5 , pred3 . f ev f , pred13 . f ev f , pred23 . f e v f )
742 med . f e v f 4<−qBCCG(0 . 5 , pred4 . f ev f , pred14 . f ev f , pred24 . f e v f )
743 med . f e v f 5<−qBCCG(0 . 5 , pred5 . f ev f , pred15 . f ev f , pred25 . f e v f )
744 med . f e v f 6<−qBCCG(0 . 5 , pred6 . f ev f , pred16 . f ev f , pred26 . f e v f )
745

746

747 p lo t ( height ,med . f ev f1 , c o l =1, type=” l ” , xlab=”Height ( in cm) ” ,
748 ylab=expr e s s i on ( ’ Height−age adjusted median r e f e r e n c e FEV ’ [ 1 ] * ’ ( in

l i t e r s ) ’ ) , l t y =1, lwd=1,
749 ylim=c (1 , 5 ) )
750 l i n e s ( height ,med . f ev f2 , c o l =2, l t y =2, lwd=1)
751 l i n e s ( height ,med . f ev f3 , c o l =3, l t y =3, lwd=1)
752 l i n e s ( height ,med . f ev f4 , c o l =4, l t y =4, lwd=1)
753 l i n e s ( height ,med . f ev f5 , c o l =5, l t y =5, lwd=1)
754 l i n e s ( height ,med . f ev f6 , c o l =6, l t y =6, lwd=1)
755

756 l egend ( ” t o p l e f t ” , c ( ”age 7” , ”age 9” , ”age 11” , ”age 13” , ”age 15” , ”age 17” ) ,
757 c o l =1:6 , l t y =1:6)
758

759 ####################################################################
760 ##################################################################
761 # Contour Plot
762 #################################################################
763 age<−seq (min ( age f ) ,max( age f ) , l ength=500)
764 he ight<−seq (min ( h e i gh t f ) ,max( h e i gh t f ) , l ength=500)
765

766 newdata<−expand . g r id ( he ight=height , age=age )
767

768 newdata1<−cbind (1 , newdata , poly ( newdata$age/ 20 ,3 , raw=TRUE) )
769 newdata2<−cbind (1 , newdata$age , poly ( newdata$age/ 20 ,3 , raw=TRUE) )
770 newdata3<−cbind (1 , newdata$age , poly ( newdata$age/ 20 ,1 , raw=TRUE) )
771

772 newdata1 [ , 2 ]<−l og ( newdata1 [ , 2 ] )
773 newdata1 [ , 3 ]<−l og ( newdata1 [ , 3 ] )
774

775 newdata2 [ , 2 ]<−l og ( newdata2 [ , 2 ] )
776

777 newdata3 [ , 2 ]<−l og ( newdata3 [ , 2 ] )
778

779

780 pp<−qBCCG(0 . 5 , pred ( f i t . f e v f $mu. c o e f f i c i e n t s , newdata1 ) ,
781 pred ( f i t . f e v f $ sigma . c o e f f i c i e n t s , newdata2 ) , pred1 ( f i t . f e v f $nu . c o e f f i c i e n t s ,

newdata3 ) )
782

783 pp .mat<−matrix (pp , nco l=length ( age ) )
784
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785 contour ( height , age , pp .mat , xlab=”Height ( in cm) ” , ylab=”Age ( in years ) ” , n l e v e l s
=20)

786 ###################################################################
787 age1 <− seq (6 ,17 , l ength=200)
788 he ight <− seq (min ( h e i gh t f ) , max( h e i gh t f ) , l ength = 200)
789

790 newdata1<−cbind (1 , l og ( he ight ) , l og ( age1 ) , poly ( age1/ 20 ,3 , raw=TRUE) )
791 newdata2<−cbind (1 , l og ( age1 ) , poly ( age1/ 20 ,3 , raw=TRUE) )
792 newdata3<−cbind (1 , l og ( age1 ) , poly ( age1/ 20 ,1 , raw=TRUE) )
793

794

795 Mpred1 . f e v f<−pred ( f i t . f e v f $mu. c o e f f i c i e n t s , newdata1 )
796 Spred1 . f e v f<−pred ( f i t . f e v f $ sigma . c o e f f i c i e n t s , newdata2 )
797 Lpred1 . f e v f<−pred1 ( f i t . f e v f $nu . c o e f f i c i e n t s , newdata3 )
798

799 med . f e v f<−qBCCG(0 . 5 ,Mpred1 . f ev f , Spred1 . f ev f , Lpred1 . f e v f )
800 LLN. f e v f<−qBCCG(0 . 0 5 ,Mpred1 . f ev f , Spred1 . f ev f , Lpred1 . f e v f )
801

802

803

804 p lo t ( agef , f ev1 f , yl im=c (1 , 5 ) , x lab=”Age ( in years ) ” ,
805 ylab=expr e s s i on ( ’FEV ’ [ 1 ] * ’ ( in l i t e r s ) ’ ) )
806 l i n e s ( age1 ,med . f ev f , c o l =2, l t y =1)
807 l i n e s ( age1 ,LLN. f ev f , c o l =3, l t y =2)
808

809 l egend ( ” t o p l e f t ” , c ( exp r e s s i on ( ’ Height−age adjusted median FEV ’ [ 1 ] ) ,
810 exp r e s s i on ( ’ Height−age adjusted LLN f o r FEV ’ [ 1 ] ) ) , c o l =2:3 , l t y =1:2)
811

812 #########################################################################
813 ########################################################################
814 # BOYS: FEV1/FVC
815 #################################################################
816 f i t 1 . ffm<−gamlss . f i t ( fev1fvcm , heightm , agem , 2 , 2 , 0 )
817 f i t 2 . ffm<−gamlss . f i t ( fev1fvcm , heightm , agem , 2 , 2 , 1 )
818 f i t 3 . ffm<−gamlss . f i t ( fev1fvcm , heightm , agem , 2 , 2 , 2 )
819 f i t 4 . ffm<−gamlss . f i t ( fev1fvcm , heightm , agem , 3 , 2 , 0 )
820 f i t 5 . ffm<−gamlss . f i t ( fev1fvcm , heightm , agem , 3 , 2 , 1 )
821 f i t 6 . ffm<−gamlss . f i t ( fev1fvcm , heightm , agem , 3 , 2 , 2 )
822 f i t 7 . ffm<−gamlss . f i t ( fev1fvcm , heightm , agem , 3 , 3 , 2 )
823 f i t 8 . ffm<−gamlss . f i t ( fev1fvcm , heightm , agem , 4 , 2 , 1 )
824 f i t 9 . ffm<−gamlss . f i t ( fev1fvcm , heightm , agem , 4 , 3 , 2 )
825 f i t 1 0 . ffm<−gamlss . f i t ( fev1fvcm , heightm , agem , 5 , 2 , 1 )
826 f i t 1 1 . ffm<−gamlss . f i t ( fev1fvcm , heightm , agem , 5 , 3 , 2 )
827 f i t 1 2 . ffm<−gamlss . f i t ( fev1fvcm , heightm , agem ,2 ,2 ,−1)
828 f i t 1 3 . ffm<−gamlss . f i t ( fev1fvcm , heightm , agem ,3 ,2 ,−1)
829 f i t 1 4 . ffm<−gamlss . f i t ( fev1fvcm , heightm , agem ,3 ,3 ,−1)
830 f i t 1 5 . ffm<−gamlss . f i t ( fev1fvcm , heightm , agem , 6 , 2 , 1 )
831 f i t 1 6 . ffm<−gamlss . f i t ( fev1fvcm , heightm , agem , 5 , 3 , 5 )
832

833 AIC( f i t 1 . ffm , f i t 2 . ffm , f i t 3 . ffm , f i t 4 . ffm , f i t 5 . ffm , f i t 6 . ffm , f i t 7 . ffm , f i t 8 . ffm ,
f i t 9 . ffm , f i t 1 0 . ffm ,
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834 f i t 1 1 . ffm , f i t 1 2 . ffm , f i t 1 3 . ffm , f i t 1 4 . ffm , f i t 1 5 . ffm , f i t 1 6 . ffm )
835

836 df AIC
837 f i t 7 . ffm 15 316.5359
838 f i t 9 . ffm 16 316.8550
839 f i t 3 . ffm 13 316.9713
840 f i t 1 1 . ffm 17 321.2549
841 f i t 1 4 . ffm 12 327.5151
842 f i t 6 . ffm 14 328.1254
843 f i t 8 . ffm 14 329.2638
844 f i t 4 . ffm 12 330.1719
845 f i t 2 . ffm 12 330.4626
846 f i t 1 6 . ffm 20 330.4806
847 f i t 1 2 . ffm 10 331.1448
848 f i t 5 . ffm 13 332.0017
849 f i t 1 3 . ffm 11 332.3289
850 f i t 1 . ffm 11 332.9067
851 f i t 1 0 . ffm 15 333.6785
852 f i t 1 5 . ffm 16 335.5908
853

854 f i t . ffm<− f i t 7 . ffm
855 summary( f i t . ffm )
856

857 #####################################################
858 age<−seq (min (agem) , max(agem) , l ength = 200)
859 he ight <− seq (min ( heightm ) , max( heightm ) , l ength = 200)
860

861 newdata01<−cbind (1 , l og ( he ight ) , l og ( age ) , poly ( age/ 20 ,3 , raw=TRUE) )
862 newdata02<−cbind (1 , l og ( age ) , poly ( age/ 20 ,3 , raw=TRUE) )
863 newdata03<−cbind (1 , l og ( age ) , poly ( age/ 20 ,2 , raw=TRUE) )
864

865 pred01 . ffm<−pred ( f i t . ffm$mu. c o e f f i c i e n t s , newdata01 )
866 pred02 . ffm<−pred ( f i t . ffm$ sigma . c o e f f i c i e n t s , newdata02 )
867 pred03 . ffm<−pred1 ( f i t . ffm$nu . c o e f f i c i e n t s , newdata03 )
868

869 med . ffm0<−qBCCG(0 . 5 , pred01 . ffm , pred02 . ffm , pred03 . ffm )
870

871

872 dd<−s c a t t e r p l o t 3d (agem , heightm , fev1fvcm , c o l o r=”dodgerblue4 ” , pch=20, xlab=”Age (
in years ) ” , ylab=”Height ( in cm) ” ,

873 z lab=expr e s s i on ( ’FEV ’ [ 1 ] * ’ / FVC’ ) )
874 dd$ points3d ( age , he ight ,med . ffm0 , type=” l ” )
875 #############################################################
876 age1 <− rep (7 ,200)
877 age2 <− rep (9 ,200)
878 age3 <− rep (11 ,200)
879 age4 <− rep (13 ,200)
880 age5 <− rep (15 ,200)
881 age6 <− rep (17 ,200)
882

883 he ight <− seq (min ( heightm ) , max( heightm ) , l ength = 200)
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884

885 newdata1<−cbind (1 , l og ( he ight ) , l og ( age1 ) , poly ( age1/ 20 ,3 , raw=TRUE) )
886 newdata2<−cbind (1 , l og ( he ight ) , l og ( age2 ) , poly ( age2/ 20 ,3 , raw=TRUE) )
887 newdata3<−cbind (1 , l og ( he ight ) , l og ( age3 ) , poly ( age3/ 20 ,3 , raw=TRUE) )
888 newdata4<−cbind (1 , l og ( he ight ) , l og ( age4 ) , poly ( age4/ 20 ,3 , raw=TRUE) )
889 newdata5<−cbind (1 , l og ( he ight ) , l og ( age5 ) , poly ( age5/ 20 ,3 , raw=TRUE) )
890 newdata6<−cbind (1 , l og ( he ight ) , l og ( age6 ) , poly ( age6/ 20 ,3 , raw=TRUE) )
891

892 newdata11<−cbind (1 , l og ( age1 ) , poly ( age1/ 20 ,3 , raw=TRUE) )
893 newdata12<−cbind (1 , l og ( age2 ) , poly ( age2/ 20 ,3 , raw=TRUE) )
894 newdata13<−cbind (1 , l og ( age3 ) , poly ( age3/ 20 ,3 , raw=TRUE) )
895 newdata14<−cbind (1 , l og ( age4 ) , poly ( age4/ 20 ,3 , raw=TRUE) )
896 newdata15<−cbind (1 , l og ( age5 ) , poly ( age5/ 20 ,3 , raw=TRUE) )
897 newdata16<−cbind (1 , l og ( age6 ) , poly ( age6/ 20 ,3 , raw=TRUE) )
898

899 newdata21<−cbind (1 , l og ( age1 ) , poly ( age1/ 20 ,2 , raw=TRUE) )
900 newdata22<−cbind (1 , l og ( age2 ) , poly ( age2/ 20 ,2 , raw=TRUE) )
901 newdata23<−cbind (1 , l og ( age3 ) , poly ( age3/ 20 ,2 , raw=TRUE) )
902 newdata24<−cbind (1 , l og ( age4 ) , poly ( age4/ 20 ,2 , raw=TRUE) )
903 newdata25<−cbind (1 , l og ( age5 ) , poly ( age5/ 20 ,2 , raw=TRUE) )
904 newdata26<−cbind (1 , l og ( age6 ) , poly ( age6/ 20 ,2 , raw=TRUE) )
905

906 pred1 . ffm<−pred ( f i t . ffm$mu. c o e f f i c i e n t s , newdata1 )
907 pred2 . ffm<−pred ( f i t . ffm$mu. c o e f f i c i e n t s , newdata2 )
908 pred3 . ffm<−pred ( f i t . ffm$mu. c o e f f i c i e n t s , newdata3 )
909 pred4 . ffm<−pred ( f i t . ffm$mu. c o e f f i c i e n t s , newdata4 )
910 pred5 . ffm<−pred ( f i t . ffm$mu. c o e f f i c i e n t s , newdata5 )
911 pred6 . ffm<−pred ( f i t . ffm$mu. c o e f f i c i e n t s , newdata6 )
912

913 pred11 . ffm<−pred ( f i t . ffm$ sigma . c o e f f i c i e n t s , newdata11 )
914 pred12 . ffm<−pred ( f i t . ffm$ sigma . c o e f f i c i e n t s , newdata12 )
915 pred13 . ffm<−pred ( f i t . ffm$ sigma . c o e f f i c i e n t s , newdata13 )
916 pred14 . ffm<−pred ( f i t . ffm$ sigma . c o e f f i c i e n t s , newdata14 )
917 pred15 . ffm<−pred ( f i t . ffm$ sigma . c o e f f i c i e n t s , newdata15 )
918 pred16 . ffm<−pred ( f i t . ffm$ sigma . c o e f f i c i e n t s , newdata16 )
919

920 pred21 . ffm<−pred1 ( f i t . ffm$nu . c o e f f i c i e n t s , newdata21 )
921 pred22 . ffm<−pred1 ( f i t . ffm$nu . c o e f f i c i e n t s , newdata22 )
922 pred23 . ffm<−pred1 ( f i t . ffm$nu . c o e f f i c i e n t s , newdata23 )
923 pred24 . ffm<−pred1 ( f i t . ffm$nu . c o e f f i c i e n t s , newdata24 )
924 pred25 . ffm<−pred1 ( f i t . ffm$nu . c o e f f i c i e n t s , newdata25 )
925 pred26 . ffm<−pred1 ( f i t . ffm$nu . c o e f f i c i e n t s , newdata26 )
926

927 med . ffm1<−qBCCG(0 . 5 , pred1 . ffm , pred11 . ffm , pred21 . ffm )
928 med . ffm2<−qBCCG(0 . 5 , pred2 . ffm , pred12 . ffm , pred22 . ffm )
929 med . ffm3<−qBCCG(0 . 5 , pred3 . ffm , pred13 . ffm , pred23 . ffm )
930 med . ffm4<−qBCCG(0 . 5 , pred4 . ffm , pred14 . ffm , pred24 . ffm )
931 med . ffm5<−qBCCG(0 . 5 , pred5 . ffm , pred15 . ffm , pred25 . ffm )
932 med . ffm6<−qBCCG(0 . 5 , pred6 . ffm , pred16 . ffm , pred26 . ffm )
933

934
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935 p lo t ( height ,med . ffm1 , c o l =1, type=” l ” , xlab=”Height ( in cm) ” ,
936 ylab=expr e s s i on ( ’ Height−age adjusted median r e f e r e n c e FEV ’ [ 1 ] * ’ / FVC’ ) ,

l t y =1, lwd=1,
937 ylim=c (75 ,102) )
938 l i n e s ( height ,med . ffm2 , c o l =2, l t y =2, lwd=1)
939 l i n e s ( height ,med . ffm3 , c o l =3, l t y =3, lwd=1)
940 l i n e s ( height ,med . ffm4 , c o l =4, l t y =4, lwd=1)
941 l i n e s ( height ,med . ffm5 , c o l =5, l t y =5, lwd=1)
942 l i n e s ( height ,med . ffm6 , c o l =6, l t y =6, lwd=1)
943

944 l egend ( ” top r i gh t ” , c ( ”age 7” , ”age 9” , ”age 11” , ”age 13” , ”age 15” , ”age 17” ) ,
945 c o l =1:6 , l t y =1:6)
946

947 #################################################################
948 ##################################################################
949 # Contour Plot
950 #################################################################
951 age<−seq (min (agem) ,max(agem) , l ength=500)
952 he ight<−seq (min ( heightm ) ,max( heightm ) , l ength=500)
953

954 newdata<−expand . g r id ( he ight=height , age=age )
955

956 newdata1<−cbind (1 , newdata , poly ( newdata$age/ 20 ,3 , raw=TRUE) )
957 newdata2<−cbind (1 , newdata$age , poly ( newdata$age/ 20 ,3 , raw=TRUE) )
958 newdata3<−cbind (1 , newdata$age , poly ( newdata$age/ 20 ,2 , raw=TRUE) )
959

960 newdata1 [ , 2 ]<−l og ( newdata1 [ , 2 ] )
961 newdata1 [ , 3 ]<−l og ( newdata1 [ , 3 ] )
962

963 newdata2 [ , 2 ]<−l og ( newdata2 [ , 2 ] )
964

965 newdata3 [ , 2 ]<−l og ( newdata3 [ , 2 ] )
966

967

968 pp<−qBCCG(0 . 5 , pred ( f i t . ffm$mu. c o e f f i c i e n t s , newdata1 ) ,
969 pred ( f i t . ffm$ sigma . c o e f f i c i e n t s , newdata2 ) , pred1 ( f i t . ffm$nu . c o e f f i c i e n t s ,

newdata3 ) )
970

971 pp .mat<−matrix (pp , nco l=length ( age ) )
972

973 contour ( height , age , pp .mat , xlab=”Height ( in cm) ” , ylab=”Age ( in years ) ” , n l e v e l s
=10)

974 ###################################################################
975 age1 <− seq (6 ,17 , l ength=200)
976 he ight <− seq (min ( heightm ) , max( heightm ) , l ength = 200)
977

978 newdata1<−cbind (1 , l og ( he ight ) , l og ( age1 ) , poly ( age1/ 20 ,3 , raw=TRUE) )
979 newdata2<−cbind (1 , l og ( age1 ) , poly ( age1/ 20 ,3 , raw=TRUE) )
980 newdata3<−cbind (1 , l og ( age1 ) , poly ( age1/ 20 ,2 , raw=TRUE) )
981

982
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983 Mpred1 . ffm<−pred ( f i t . ffm$mu. c o e f f i c i e n t s , newdata1 )
984 Spred1 . ffm<−pred ( f i t . ffm$ sigma . c o e f f i c i e n t s , newdata2 )
985 Lpred1 . ffm<−pred1 ( f i t . ffm$nu . c o e f f i c i e n t s , newdata3 )
986

987 med . ffm<−qBCCG(0 . 5 ,Mpred1 . ffm , Spred1 . ffm , Lpred1 . ffm )
988 LLN. ffm<−qBCCG(0 . 0 5 ,Mpred1 . ffm , Spred1 . ffm , Lpred1 . ffm )
989

990

991

992 p lo t (agem , fev1fvcm , ylim=c (70 ,105) , xlab=”Age ( in years ) ” ,
993 ylab=expr e s s i on ( ’FEV ’ [ 1 ] * ’ / FVC’ ) )
994 l i n e s ( age1 ,med . ffm , c o l =2, l t y =1)
995 l i n e s ( age1 ,LLN. ffm , c o l =3, l t y =2)
996

997 l egend ( ” t o p l e f t ” , c ( exp r e s s i on ( ’ Height−age adjusted median FEV ’ [ 1 ] * ’ / FVC’ ) ,
998 exp r e s s i on ( ’ Height−age adjusted LLN f o r FEV ’ [ 1 ] * ’ / FVC’ ) ) , c o l =2:3 , l t y

=1:2)
999

1000 #########################################################################
1001 ########################################################################
1002 # GIRLS : FEV1/FVC
1003 #################################################################
1004 f i t 1 . f f f<−gamlss . f i t ( f e v 1 f v c f , he i ght f , agef , 2 , 2 , 0 )
1005 f i t 2 . f f f<−gamlss . f i t ( f e v 1 f v c f , he i ght f , agef , 2 , 2 , 1 )
1006 f i t 3 . f f f<−gamlss . f i t ( f e v 1 f v c f , he i ght f , agef , 2 , 2 , 2 )
1007 f i t 4 . f f f<−gamlss . f i t ( f e v 1 f v c f , he i ght f , agef , 3 , 2 , 0 )
1008 f i t 5 . f f f<−gamlss . f i t ( f e v 1 f v c f , he i ght f , agef , 3 , 2 , 1 )
1009 f i t 6 . f f f<−gamlss . f i t ( f e v 1 f v c f , he i ght f , agef , 3 , 2 , 2 )
1010 f i t 7 . f f f<−gamlss . f i t ( f e v 1 f v c f , he i ght f , agef , 3 , 3 , 2 )
1011 f i t 8 . f f f<−gamlss . f i t ( f e v 1 f v c f , he i ght f , agef , 4 , 2 , 1 )
1012 f i t 9 . f f f<−gamlss . f i t ( f e v 1 f v c f , he i ght f , agef , 4 , 3 , 2 )
1013 f i t 1 0 . f f f<−gamlss . f i t ( f e v 1 f v c f , he i ght f , agef , 5 , 2 , 1 )
1014 f i t 1 1 . f f f<−gamlss . f i t ( f e v 1 f v c f , he i ght f , agef , 5 , 3 , 2 )
1015 f i t 1 2 . f f f<−gamlss . f i t ( f e v 1 f v c f , he i ght f , agef ,2 ,2 ,−1)
1016 f i t 1 3 . f f f<−gamlss . f i t ( f e v 1 f v c f , he i ght f , agef ,3 ,2 ,−1)
1017 f i t 1 4 . f f f<−gamlss . f i t ( f e v 1 f v c f , he i ght f , agef ,3 ,3 ,−1)
1018 f i t 1 5 . f f f<−gamlss . f i t ( f e v 1 f v c f , he i ght f , agef , 6 , 2 , 1 )
1019 f i t 1 6 . f f f<−gamlss . f i t ( f e v 1 f v c f , he i ght f , agef , 5 , 3 , 5 )
1020 f i t 1 7 . f f f<−gamlss . f i t ( f e v 1 f v c f , he i ght f , agef , 3 , 2 , 4 )
1021

1022 AIC( f i t 1 . f f f , f i t 2 . f f f , f i t 3 . f f f , f i t 4 . f f f , f i t 5 . f f f , f i t 6 . f f f , f i t 7 . f f f , f i t 8 . f f f ,
f i t 9 . f f f , f i t 1 0 . f f f ,

1023 f i t 1 1 . f f f , f i t 1 2 . f f f , f i t 1 3 . f f f , f i t 1 4 . f f f , f i t 1 5 . f f f , f i t 1 6 . f f f , f i t 1 7 . f f f )
1024

1025 df AIC
1026 f i t 1 3 . f f f 11 464.3573
1027 f i t 4 . f f f 12 466.1543
1028 f i t 1 4 . f f f 12 466.3556
1029 f i t 1 2 . f f f 10 467.3180
1030 f i t 5 . f f f 13 467.9000
1031 f i t 8 . f f f 14 469.1194
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1032 f i t 1 . f f f 11 469.1888
1033 f i t 6 . f f f 14 469.8260
1034 f i t 1 0 . f f f 15 470.8065
1035 f i t 1 5 . f f f 16 471.1551
1036 f i t 2 . f f f 12 471.1884
1037 f i t 7 . f f f 15 471.8128
1038 f i t 9 . f f f 16 472.9948
1039 f i t 1 7 . f f f 16 473.0401
1040 f i t 3 . f f f 13 473.1880
1041 f i t 1 1 . f f f 17 473.8371
1042 f i t 1 6 . f f f 20 479.2822
1043

1044 f i t . f f f<− f i t 5 . f f f
1045 summary( f i t . f f f )
1046

1047 #####################################################
1048 age<−seq (min ( age f ) , max( age f ) , l ength = 200)
1049 he ight <− seq (min ( h e i gh t f ) , max( h e i gh t f ) , l ength = 200)
1050

1051 newdata01<−cbind (1 , l og ( he ight ) , l og ( age ) , poly ( age/ 20 ,3 , raw=TRUE) )
1052 newdata02<−cbind (1 , l og ( age ) , poly ( age/ 20 ,2 , raw=TRUE) )
1053 newdata03<−cbind (1 , l og ( age ) , poly ( age/ 20 ,1 , raw=TRUE) )
1054

1055 pred01 . f f f<−pred ( f i t . f f f $mu. c o e f f i c i e n t s , newdata01 )
1056 pred02 . f f f<−pred ( f i t . f f f $ sigma . c o e f f i c i e n t s , newdata02 )
1057 pred03 . f f f<−pred1 ( f i t . f f f $nu . c o e f f i c i e n t s , newdata03 )
1058

1059 med . f f f 0<−qBCCG(0 . 5 , pred01 . f f f , pred02 . f f f , pred03 . f f f )
1060

1061 dd<−s c a t t e r p l o t 3d ( agef , he i ght f , f e v 1 f v c f , c o l o r=”dodgerblue4 ” , pch=20, xlab=”Age (
in years ) ” , ylab=”Height ( in cm) ” ,

1062 z lab=expr e s s i on ( ’FEV ’ [ 1 ] * ’ / FVC’ ) )
1063 dd$ points3d ( age , he ight ,med . f f f 0 , type=” l ” )
1064 #################################################################
1065 age1 <− rep (7 ,200)
1066 age2 <− rep (9 ,200)
1067 age3 <− rep (11 ,200)
1068 age4 <− rep (13 ,200)
1069 age5 <− rep (15 ,200)
1070 age6 <− rep (17 ,200)
1071

1072 he ight <− seq (min ( h e i gh t f ) , max( h e i gh t f ) , l ength = 200)
1073

1074 newdata1<−cbind (1 , l og ( he ight ) , l og ( age1 ) , poly ( age1/ 20 ,3 , raw=TRUE) )
1075 newdata2<−cbind (1 , l og ( he ight ) , l og ( age2 ) , poly ( age2/ 20 ,3 , raw=TRUE) )
1076 newdata3<−cbind (1 , l og ( he ight ) , l og ( age3 ) , poly ( age3/ 20 ,3 , raw=TRUE) )
1077 newdata4<−cbind (1 , l og ( he ight ) , l og ( age4 ) , poly ( age4/ 20 ,3 , raw=TRUE) )
1078 newdata5<−cbind (1 , l og ( he ight ) , l og ( age5 ) , poly ( age5/ 20 ,3 , raw=TRUE) )
1079 newdata6<−cbind (1 , l og ( he ight ) , l og ( age6 ) , poly ( age6/ 20 ,3 , raw=TRUE) )
1080

1081 newdata11<−cbind (1 , l og ( age1 ) , poly ( age1/ 20 ,2 , raw=TRUE) )
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1082 newdata12<−cbind (1 , l og ( age2 ) , poly ( age2/ 20 ,2 , raw=TRUE) )
1083 newdata13<−cbind (1 , l og ( age3 ) , poly ( age3/ 20 ,2 , raw=TRUE) )
1084 newdata14<−cbind (1 , l og ( age4 ) , poly ( age4/ 20 ,2 , raw=TRUE) )
1085 newdata15<−cbind (1 , l og ( age5 ) , poly ( age5/ 20 ,2 , raw=TRUE) )
1086 newdata16<−cbind (1 , l og ( age6 ) , poly ( age6/ 20 ,2 , raw=TRUE) )
1087

1088 newdata21<−cbind (1 , l og ( age1 ) , poly ( age1/ 20 ,1 , raw=TRUE) )
1089 newdata22<−cbind (1 , l og ( age2 ) , poly ( age2/ 20 ,1 , raw=TRUE) )
1090 newdata23<−cbind (1 , l og ( age3 ) , poly ( age3/ 20 ,1 , raw=TRUE) )
1091 newdata24<−cbind (1 , l og ( age4 ) , poly ( age4/ 20 ,1 , raw=TRUE) )
1092 newdata25<−cbind (1 , l og ( age5 ) , poly ( age5/ 20 ,1 , raw=TRUE) )
1093 newdata26<−cbind (1 , l og ( age6 ) , poly ( age6/ 20 ,1 , raw=TRUE) )
1094

1095 pred1 . f f f<−pred ( f i t . f f f $mu. c o e f f i c i e n t s , newdata1 )
1096 pred2 . f f f<−pred ( f i t . f f f $mu. c o e f f i c i e n t s , newdata2 )
1097 pred3 . f f f<−pred ( f i t . f f f $mu. c o e f f i c i e n t s , newdata3 )
1098 pred4 . f f f<−pred ( f i t . f f f $mu. c o e f f i c i e n t s , newdata4 )
1099 pred5 . f f f<−pred ( f i t . f f f $mu. c o e f f i c i e n t s , newdata5 )
1100 pred6 . f f f<−pred ( f i t . f f f $mu. c o e f f i c i e n t s , newdata6 )
1101

1102 pred11 . f f f<−pred ( f i t . f f f $ sigma . c o e f f i c i e n t s , newdata11 )
1103 pred12 . f f f<−pred ( f i t . f f f $ sigma . c o e f f i c i e n t s , newdata12 )
1104 pred13 . f f f<−pred ( f i t . f f f $ sigma . c o e f f i c i e n t s , newdata13 )
1105 pred14 . f f f<−pred ( f i t . f f f $ sigma . c o e f f i c i e n t s , newdata14 )
1106 pred15 . f f f<−pred ( f i t . f f f $ sigma . c o e f f i c i e n t s , newdata15 )
1107 pred16 . f f f<−pred ( f i t . f f f $ sigma . c o e f f i c i e n t s , newdata16 )
1108

1109 pred21 . f f f<−pred1 ( f i t . f f f $nu . c o e f f i c i e n t s , newdata21 )
1110 pred22 . f f f<−pred1 ( f i t . f f f $nu . c o e f f i c i e n t s , newdata22 )
1111 pred23 . f f f<−pred1 ( f i t . f f f $nu . c o e f f i c i e n t s , newdata23 )
1112 pred24 . f f f<−pred1 ( f i t . f f f $nu . c o e f f i c i e n t s , newdata24 )
1113 pred25 . f f f<−pred1 ( f i t . f f f $nu . c o e f f i c i e n t s , newdata25 )
1114 pred26 . f f f<−pred1 ( f i t . f f f $nu . c o e f f i c i e n t s , newdata26 )
1115

1116 med . f f f 1<−qBCCG(0 . 5 , pred1 . f f f , pred11 . f f f , pred21 . f f f )
1117 med . f f f 2<−qBCCG(0 . 5 , pred2 . f f f , pred12 . f f f , pred22 . f f f )
1118 med . f f f 3<−qBCCG(0 . 5 , pred3 . f f f , pred13 . f f f , pred23 . f f f )
1119 med . f f f 4<−qBCCG(0 . 5 , pred4 . f f f , pred14 . f f f , pred24 . f f f )
1120 med . f f f 5<−qBCCG(0 . 5 , pred5 . f f f , pred15 . f f f , pred25 . f f f )
1121 med . f f f 6<−qBCCG(0 . 5 , pred6 . f f f , pred16 . f f f , pred26 . f f f )
1122

1123

1124 p lo t ( height ,med . f f f 1 , c o l =1, type=” l ” , xlab=”Height ( in cm) ” ,
1125 ylab=expr e s s i on ( ’ Height−age adjusted median r e f e r e n c e FEV ’ [ 1 ] * ’ / FVC’ ) ,

l t y =1, lwd=1,
1126 ylim=c (75 ,102) )
1127 l i n e s ( height ,med . f f f 2 , c o l =2, l t y =2, lwd=1)
1128 l i n e s ( height ,med . f f f 3 , c o l =3, l t y =3, lwd=1)
1129 l i n e s ( height ,med . f f f 4 , c o l =4, l t y =4, lwd=1)
1130 l i n e s ( height ,med . f f f 5 , c o l =5, l t y =5, lwd=1)
1131 l i n e s ( height ,med . f f f 6 , c o l =6, l t y =6, lwd=1)
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1132 l egend ( ” top r i gh t ” , c ( ”age 7” , ”age 9” , ”age 11” , ”age 13” , ”age 15” , ”age 17” ) ,
1133 c o l =1:6 , l t y =1:6)
1134 ####################################################################
1135 ##################################################################
1136 # Contour Plot
1137 #################################################################
1138 age<−seq (min ( age f ) ,max( age f ) , l ength=500)
1139 he ight<−seq (min ( h e i gh t f ) ,max( h e i gh t f ) , l ength=500)
1140

1141 newdata<−expand . g r id ( he ight=height , age=age )
1142

1143 newdata1<−cbind (1 , newdata , poly ( newdata$age/ 20 ,3 , raw=TRUE) )
1144 newdata2<−cbind (1 , newdata$age , poly ( newdata$age/ 20 ,2 , raw=TRUE) )
1145 newdata3<−cbind (1 , newdata$age , poly ( newdata$age/ 20 ,1 , raw=TRUE) )
1146

1147 newdata1 [ , 2 ]<−l og ( newdata1 [ , 2 ] )
1148 newdata1 [ , 3 ]<−l og ( newdata1 [ , 3 ] )
1149 newdata2 [ , 2 ]<−l og ( newdata2 [ , 2 ] )
1150 newdata3 [ , 2 ]<−l og ( newdata3 [ , 2 ] )
1151

1152 pp<−qBCCG(0 . 5 , pred ( f i t . f f f $mu. c o e f f i c i e n t s , newdata1 ) ,
1153 pred ( f i t . f f f $ sigma . c o e f f i c i e n t s , newdata2 ) , pred1 ( f i t . f f f $nu . c o e f f i c i e n t s ,

newdata3 ) )
1154

1155 pp .mat<−matrix (pp , nco l=length ( age ) )
1156

1157 contour ( height , age , pp .mat , xlab=”Height ( in cm) ” , ylab=”Age ( in years ) ” , n l e v e l s
=10)

1158 ###################################################################
1159 age1 <− seq (6 ,17 , l ength=200)
1160 he ight <− seq (min ( h e i gh t f ) , max( h e i gh t f ) , l ength = 200)
1161

1162 newdata1<−cbind (1 , l og ( he ight ) , l og ( age1 ) , poly ( age1/ 20 ,3 , raw=TRUE) )
1163 newdata2<−cbind (1 , l og ( age1 ) , poly ( age1/ 20 ,2 , raw=TRUE) )
1164 newdata3<−cbind (1 , l og ( age1 ) , poly ( age1/ 20 ,1 , raw=TRUE) )
1165

1166 Mpred1 . f f f<−pred ( f i t . f f f $mu. c o e f f i c i e n t s , newdata1 )
1167 Spred1 . f f f<−pred ( f i t . f f f $ sigma . c o e f f i c i e n t s , newdata2 )
1168 Lpred1 . f f f<−pred1 ( f i t . f f f $nu . c o e f f i c i e n t s , newdata3 )
1169

1170 med . f f f<−qBCCG(0 . 5 ,Mpred1 . f f f , Spred1 . f f f , Lpred1 . f f f )
1171 LLN. f f f<−qBCCG(0 . 0 5 ,Mpred1 . f f f , Spred1 . f f f , Lpred1 . f f f )
1172

1173 p lo t ( agef , f e v 1 f v c f , x lab=”Age ( in years ) ” ,
1174 ylab=expr e s s i on ( ’FEV ’ [ 1 ] * ’ / FVC’ ) , yl im=c (70 ,105) )
1175 l i n e s ( age1 ,med . f f f , c o l =2, l t y =1)
1176 l i n e s ( age1 ,LLN. f f f , c o l =3, l t y =2)
1177

1178 l egend ( ” t o p l e f t ” , c ( exp r e s s i on ( ’ Height−age adjusted median FEV ’ [ 1 ] * ’ / FVC’ ) ,
1179 exp r e s s i on ( ’ Height−age adjusted LLN f o r FEV ’ [ 1 ] * ’ / FVC’ ) ) , c o l =2:3 , l t y

=1:2)
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1180

1181 #########################################################################
1182 ## Comparison between the curves o f males and female s ###################
1183 #########################################################################
1184 age1 <− seq (6 ,17 , l ength=200)
1185 he ight <− seq (min ( heightm ) , max( heightm ) , l ength = 200)
1186

1187 newdata1<−cbind (1 , l og ( he ight ) , l og ( age1 ) , poly ( age1/ 20 ,4 , raw=TRUE) )
1188 newdata2<−cbind (1 , l og ( age1 ) , poly ( age1/ 20 ,3 , raw=TRUE) )
1189 newdata3<−cbind (1 , l og ( age1 ) , poly ( age1/ 20 ,1 , raw=TRUE) )
1190

1191 Mpred1 . fvcm<−pred ( f i t . fvcm$mu. c o e f f i c i e n t s , newdata1 )
1192 Spred1 . fvcm<−pred ( f i t . fvcm$ sigma . c o e f f i c i e n t s , newdata2 )
1193 Lpred1 . fvcm<−pred1 ( f i t . fvcm$nu . c o e f f i c i e n t s , newdata3 )
1194

1195 med . fvcm<−qBCCG(0 . 5 ,Mpred1 . fvcm , Spred1 . fvcm , Lpred1 . fvcm )
1196 LLN. fvcm<−qBCCG(0 . 0 5 ,Mpred1 . fvcm , Spred1 . fvcm , Lpred1 . fvcm )
1197

1198 p lo t ( age1 ,med . fvcm , type=” l ” , c o l =1, l t y =1, xlab=”Age ( in years ) ” ,
1199 ylab=”Height−age adjusted median r e f e r e n c e va lue s ( in l i t e r s ) ” , yl im=c (1 , 6 ) )
1200 l i n e s ( age1 ,med . fevm , c o l =1, l t y =2)
1201 l i n e s ( age1 ,med . f v c f , c o l =2, l t y =1)
1202 l i n e s ( age1 ,med . f ev f , c o l =2, l t y =2)
1203

1204 l egend ( ” t o p l e f t ” , c ( ”Male FVC” , exp r e s s i on ( ’Male FEV ’ [ 1 ] ) ,
1205 ”Female FVC” , exp r e s s i on ( ’ Female FEV ’ [ 1 ] ) ) , c o l=c (1 , 1 , 2 , 2 ) , l t y=c (1 , 2 , 1 , 2 ) )
1206

1207 ###############################################################
1208 #### Comaprisons with Other Study ( Hankinson et . a l , 1999) ####
1209 ###############################################################
1210 hankinson . fvcm <− −0.2584 − 0.20415 *age + 0.010133 *age*age + 0.00018642 * he ight

* he ight
1211 hankinson . fev1m <− −0.7453 − 0.04106 *age + 0.004477 *age*age + 0.00014098 *

he ight * he ight
1212 hankinson . fev1fvcm <− 88 .066 − 0 .2066 *age
1213

1214 par (mar=c (5 , 5 , 4 , 1 ) )
1215 dd<−s c a t t e r p l o t 3d (agem , heightm , fvcm , c o l o r=”dodgerblue4 ” , pch=20, xlab=”Age ( in

years ) ” , ylab=”Height ( in cm) ” , z lab=”FVC ( in l i t e r s ) ” , cex . lab =1.2 , cex . ax i s
=1.5 , cex . main=1.5 , cex . sub=1.5)

1216 dd$ points3d ( age , he ight ,med . fvcm0 , type=” l ” , lwd=2)
1217 dd$ points3d ( age , he ight , hankinson . fvcm , type=” l ” , c o l=” red ” , lwd=2)
1218

1219 dd<−s c a t t e r p l o t 3d (agem , heightm , fev1m , c o l o r=”dodgerblue4 ” , pch=20, xlab=”Age ( in
years ) ” , ylab=”Height ( in cm) ” , z lab=expr e s s i on ( ’FEV ’ [ 1 ] * ’ ( in l i t e r s ) ’ )
)

1220 dd$ points3d ( age , he ight ,med . fevm0 , type=” l ” , c o l = ” red ” )
1221 dd$ points3d ( age , he ight , hankinson . fev1m , type=” l ” , c o l = ” char t r eu se4 ” )
1222

1223 dd<−s c a t t e r p l o t 3d (agem , heightm , fev1fvcm , c o l o r=”dodgerblue4 ” , pch=20, xlab=”Age (
in years ) ” , ylab=”Height ( in cm) ” , z lab=expr e s s i on ( ’FEV ’ [ 1 ] * ’ / FVC’ ) )
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1224 dd$ points3d ( age , he ight ,med . ffm0 , type=” l ” , c o l = ” red ” )
1225 dd$ points3d ( age , he ight , hankinson . fev1fvcm , type=” l ” , c o l = ” char t r euse4 ” )
1226

1227 hankinson . f v c f <− −1.2082 + 0.05916 *age + 0.00014815 * he ight * he ight
1228 hankinson . f e v 1 f <− −0.8710 + 0.06537 *age + 0.00011496 * he ight * he ight
1229 hankinson . f e v 1 f v c f <− 90 .809 − 0 .2125 *age
1230

1231 par (mar=c (5 , 5 , 4 , 1 ) )
1232 dd<−s c a t t e r p l o t 3d ( agef , he i ght f , f v c f , c o l o r=”dodgerblue4 ” , pch=20, xlab=”Age ( in

years ) ” , ylab=”Height ( in cm) ” , z lab=”FVC ( in l i t e r s ) ” , cex . lab =1.2 , cex . ax i s
=1.5 , cex . main=1.5 , cex . sub=1.5)

1233 dd$ points3d ( age , he ight ,med . fvc f0 , type=” l ” , lwd=2)
1234 dd$ points3d ( age , he ight , hankinson . f v c f , type=” l ” , c o l = ” red ” , lwd=2)
1235

1236

1237 dd<−s c a t t e r p l o t 3d ( agef , he i ght f , f ev1 f , c o l o r=”dodgerblue4 ” , pch=20, xlab=”Age ( in
years ) ” , ylab=”Height ( in cm) ” , z lab=expr e s s i on ( ’FEV ’ [ 1 ] * ’ ( in l i t e r s ) ’ )
)

1238 dd$ points3d ( age , he ight ,med . f ev f0 , type=” l ” , c o l = ” red ” )
1239 dd$ points3d ( age , he ight , hankinson . f ev1 f , type=” l ” , c o l = ” char t r euse4 ” )
1240

1241 dd<−s c a t t e r p l o t 3d ( agef , he i ght f , f e v 1 f v c f , c o l o r=”dodgerblue4 ” , pch=20, xlab=”Age (
in years ) ” , ylab=”Height ( in cm) ” , z lab=expr e s s i on ( ’FEV ’ [ 1 ] * ’ / FVC’ ) )

1242 dd$ points3d ( age , he ight ,med . f f f 0 , type=” l ” , c o l = ” red ” )
1243 dd$ points3d ( age , he ight , hankinson . f e v1 f v c f , type=” l ” , c o l = ” char t r eu se4 ” )
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