

EFFECT OF SUBSURFACE AND SURFACE TILLAGE ON STRUCTURE AND PERMEABILITY OF SOLONETZIC AND CHERNOZEMIC SOILS

R. Avila, J. Schoenau, T. King, B. Si, and M. Grevers

Department of Soil Science College of Agriculture and Bioresources University of Saskatchewan

INTRODUCTION

- Saskatchewan has 44% of Canada's total cultivated farmland (Statistics Canada, 2012).
- Considering soil physical attributes (structure, permeability) is important because it especially influences root growth, exploration volume, nutrient and water acquisition.
- Wheel traffic compaction and natural dense horizons can negatively affect the root zone (Soane et al., 1994).

Tillage is one management strategy to alter <u>structure</u>, <u>water</u> and <u>air permeability</u>

INTRODUCTION

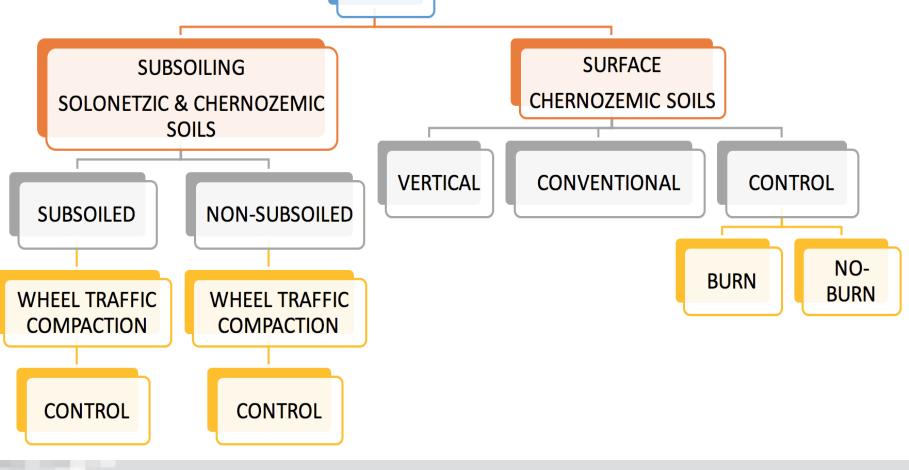
- High concentrations of Na lead to clay dispersion, formation of dense solonetzic B horizons that affect <u>productivity</u> and <u>workability</u> as the <u>air</u>, <u>water</u>, and <u>penetration</u> by <u>roots</u> and seeding tools are limited (Miller & Brierley, 2011).
- Subsoiling at depth (15-30cm) with a subsoiler may be a solution to improve conditions in <u>compacted</u>, <u>dense subsoils</u> (Thorne & Thorne, 1979; Ewen, 2015).
- Surface tillage with discs or combinations of disc + rolling basket (vertical tillage) is utilized for <u>residue management</u> and <u>alter soil conditions at surface (0-20cm)</u>.
- Raking and burning may also be used for residue management of difficult crop residues like flax.

OBJECTIVES


 To assess soil water infiltration, air permeability, structural attributes, as influenced by subsurface and surface tillage treatments in Solonetzic and Chernozemic soils.

STUDY LOCATION

Subsoiling Solonetz (Echo association)


Subsoiling Chernozem (Haverhill association)

Vertical Tillage, Rake Burn Flax stubble on Chernozem

STUDY DESIGN

TILLAGE

Subsoiling Tillage Operation

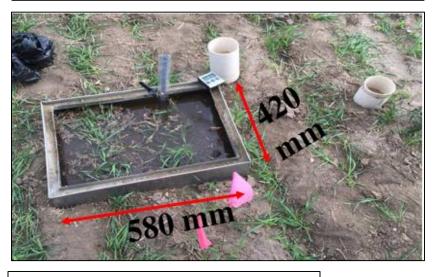
 A John Deere 2100 Minimum-Till subsoiler with five standards utilizing plow type shares spaced 76.0 cm apart and set to penetrate <u>30.0 cm into the soil</u> on October 2nd, 2015.

Vertical and Conventional Tillage Operations

 Vertical Tillage with John Deere 2623VT to a depth of <u>5 cm</u> on October 8th, 2015.

Conventional with John
Deere Frontier TM5132
tandem disk to a depth of
<u>8-10 cm</u> on October 8th,
2015.

Raked Burn & No-Burn (Flax stubble)



Measurements

Field Saturated Hydraulic Conductivity

Air Permeability

Aggregate Size

Aggregate Stability

Results to Date

North Central Butte (Solonetzic) Site 2016 Subsoiling:

Measurements NCB 2016.

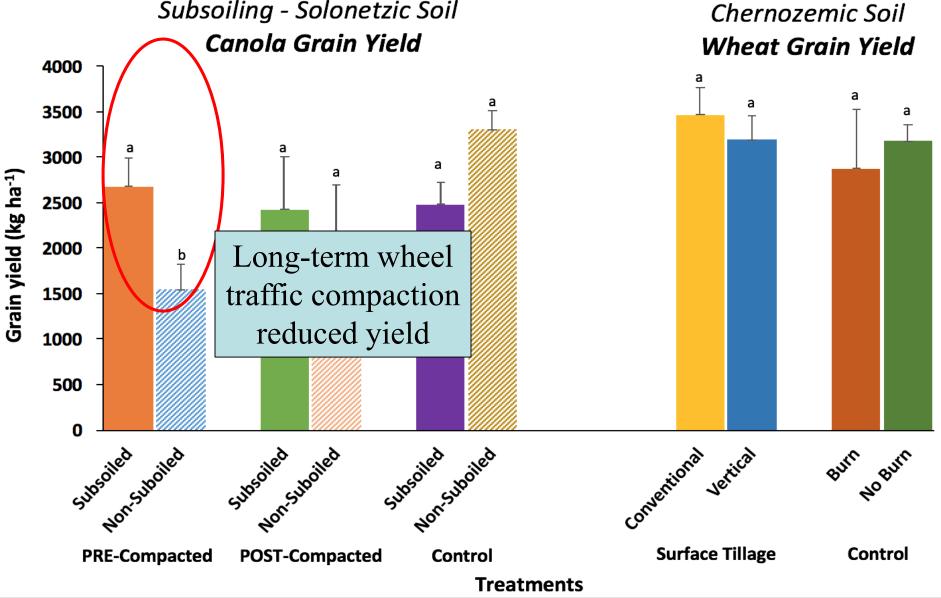
			Measurements		
	Treatment		Aggregate	Hydraulic	Air
Site			Size	Conductivity	Permeability
			MWD (mm)	(cm/min)	(m/s)
NCB	Subsoiled	Pre-Compacted	12.99	6.32E-02	1.15E-6
	Non-Subsoiled	Pre-Compacted	13.40	1.65E-02 9.78E-7	
	(P value)		0.7335	Wheel traffic on 309	
				Solonetz increa	sed
	Subsoiled	Post-Compacted	12.37	aggregate siz	e)E-7
	Non-Subsoiled	Post-Compacted	14.05	5.05E-02	4.15E-7
	(P value)		0.4594	0.1399	0.6110
	Subsoiled	Control	10.03	2.86E-02	4.98E-7
	Non-Subsoiled	Control	11.60	6.23E-03	6.40E-7
	P value		0.1609	0.1474	0.3097

South Central Butte (Chernozemic) Site 2016 Subsoiling:

Measurements SCB 2016.

			Measurements			
			Aggregate	Hydraulic	Air	
Site	Tre	atment	Size Conductivity		Permeability	
			MWD	(cm/min)	(m/s)	
			(mm)			
SCB	Subsoiled	Compacted	AP increased	2.87E-6		
		No Compacted	wheel traffic c	4.15E-6		
	Non-Subsoiled	Compacted	15.14	1.58E-02	4.50E-7	
		No Compacted	14.29	4.77E-02	1.38E-6	
		Subsoiling effects	0.7418	0.2901	0.0267	
	P value	Compaction	0.8645	0.3163	0.3028	
		Till * Compaction	0.2190	0.9625	0.8685	

Vertical Tillage (Chernozemic) Site 2016


Measurements VTB 2016.

			Measurements				
			Aggregate	Hydraulic	Air	Aggregate	e Stability
Site		Treatment	Size	Conductivity	Permeability	%Trans	mittance
			MWD	(cm/min)	(m/s)	625nm	
			(mm)		-	2 Min.	20 Min.
VTB	Till	Conventional	12.67	1.09E-01	1.95E-6	Action	ofbackata
		Vertical	11.61	6.02E-02	6.09E-7	Action of baskets	
	(P value)		0.2439	0.2140	0.0837	increases proportion	
						fine pores	
	Control	Burn	12.43	5.37E-02	2.61E-6	0.86	0.79
		No Burn	12.58	6.91E-02	3.99E-6	0.88	0.82
	(P value)		0.9216	0.6967	0.3446	0.4738	0.3072
	P value	Till vs Control	0.6672	0.3853	0.0249	0.4013	0.6503

Crop Yield 2016

Surface Tillage -Chernozemic Soil

Findings To Date

- Subsoiling increased air permeability at Solonetzic and Chernozemic sites.
- Long-term wheel traffic compaction significantly reduced yield of canola on Solonetz. Subsoiling tended to benefit canola grain yield.
- Vertical tillage decreased water and air permeability.
- No effect of vertical or conventional tillage or burning on wheat yield at the Chernozem surface site.
- I will examine 2nd year effects in 2017 with pea and wheat.

Acknowledgements

- Funding:
 - Saskatchewan Agriculture Development Fund
 - Saskatchewan Wheat Development Commission
 - Western Grains Research Foundation
 - Sask Pulse Growers

- C. Fatteicher, R. Kar, J. Wiens,
 - B. Swerhone, S. Froese, J. Xie,
 - S. Klippenstein, P. Hrycyk
- Brett Ewen for assistance in field.

