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Abstract:

In this thesis a new three–dimensional (3D) vector radiative transfer model, the Solver for

Polarized Atmospheric Radiative Transfer Applications (SPARTA) is introduced, validated

against benchmark results, and applied to scientific problems. SPARTA employs the statis-

tical forward Monte Carlo technique for efficient column–response pixel–based radiance cal-

culations comprising polarization for 3D inhomogeneous cloudless and cloudy atmospheres.

By means of SPARTA, two scientific issues in the field of radiative transfer are investigated.

A sensitivity study has been conducted to illustrate the errors introduced by neglecting

the effects of polarization in radiation simulations. Two atmospheric scenarios have been

considered: a pure one–dimensional (1D) Rayleigh atmosphere and two–dimensional (2D)

realistic inhomogeneous dust fields. In case of a purely molecular atmosphere, these er-

rors strongly depend on molecular anisotropy, isotropic reflection, and more importantly, on

single–scattering albedo and optical thickness (saturation occurs for τ close to 1). Overall

errors in the reflected field range up to about 10.5%. On the other hand, for rather high

optical thickness, the bias induced by ignoring polarization for realistic inhomogeneous at-

mospheres is negligible (less than 1%). In addition, solar radiative transfer simulations for

LIDAR–measured fields of optical properties of Saharan dust have been performed in order

to quantify the effects induced by neglecting the horizontal photon transport and internal

inhomogeneities (3D radiative effects) in radiance simulations including polarization. Results

are presented for two exemplary mineral dust fields constructed from LIDAR observations.

For each case, three radiative calculations are investigated: a 1D calculation according to

the plane–parallel (1D mode); an Independent Pixel Approximation (IPA mode); and the

2D mode. The differences in domain–averaged normalized radiances of reflection and trans-

mission are insignificant between the 1D or IPA and 2D calculation modes. However, local

differences were observed since extinction is hinge on horizontal spatial variability. In the

areas with large spatial variability in optical thickness, the radiance fields of the 2D mode

differ about ±20% for the first and second Stokes elements (I, Q) from the fields of the

1D mode. This work points to a brand–new field: the quantification of the sensitivity of

polarization to 3D radiative effects.
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1 Introduction

Non–spherical atmospheric particles have a significant impact on climate (Liou, 1986;

Kaufman et al., 2002; IPCC, 2013). They scatter, absorb and change the polarization state

of solar radiation depending on their shape, size, chemical composition and orientation. Even

though this relationship is rather complex, its knowledge is an important condition for the in-

terpretation of remote sensing measurements. Additionally, the comprehensive investigation

of ground–based and airborne passive radiometric and polarization measurements require a

vector radiative transfer model that accounts for multiple–scattering and polarization. Thus,

the general objective of this work is the development of a new three–dimensional (3D) vec-

tor radiative transfer model to account for polarization effects due to multiple–scattering by

non-spherical particles, i.e., coarse mode dust or ice particles.

This introduction, which is partly described in Barlakas et al. (2016), outlines the importance

of non–spherical atmospheric mineral dust particles and the need to employ polarization in

radiative transfer. The challenges in radiative transfer modeling, including errors prompted

by neglecting polarization and domain heterogeneities in radiance simulations are described,

followed by the major objectives of this work.

1.1 Mineral Dust Particles

Mineral dust comprises non–spherical soil particles suspended in the atmosphere. Its global

emissions varies with location and season; estimates are in the range of 1000 and 3000Tgyr−1

(Tegen, 2003). Sea salt particles comprise another important aerosol particle type with

similar flux rates (Andreae, 1995; Tegen, 2003). Figure 1.1 depicts the dominant aerosol types

in the atmosphere (sulfate smoke, dust and sea salt particles) as analyzed by the Goddard

Earth Observing System Model, Version 5 (GEOS–5). Note the huge dust plume and its

transport from Western Africa towards the Caribbean. Anthropogenic activities, including

extended land use and constructions, lead to an increase of anthropogenic mineral dust loads;

about 30% of the total mineral dust load is related to human activities (Ginoux et al., 2012).

The majority of the dust sources are found in the Northern Hemisphere, with the Saharan

desert being the largest mineral dust arsenal.

The atmospheric climate impact of anthropogenic mineral dust particles has not been reliably

assessed, partly owing to incomplete understanding of their properties (IPCC, 2013). In ad-

dition, compared to other particles, dust particles are rather irregular in shape and structure

clouding their understanding. As a consequence, according to the latest Intergovernmental

Panel on Climate Change IPCC (2013), the radiative forcing (RF) linked to mineral dust
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Figure 1.1: Portrait of global aerosols yielded by GEOS–5 (Goddard Earth Observing System Model,
Version 5) at a 10 km resolution. Sulfate particles (white) resulting from volcano eruptions and fossil
fuel emissions, carbonaceous/smoke (green) rises from fires, dust (orange/red) is lifted from the
ground, and sea salt (blue) swirls inside cyclones. Image credit: William Putman, NASA/Goddard.

particles vary considerably (−0.1 ± 0.2Wm−2, see Figure 1.2); even the sign of RF is not

well determined (Haywood and Boucher, 2000).

Mineral dust particles have both a direct and indirect radiative effect. When they scat-

ter and absorb solar radiation, the effect is direct. The indirect radiative effect is related

to the ability of mineral dust particles to influence the cloud optical properties. Dust

particles are considered effective ice nuclei (IN) leading to the formation of ice crystals

(Cantrell and Heymsfield, 2005; Phillips et al., 2008; DeMott et al., 2010; Teller et al., 2012);

they also form cloud condensation nuclei (CCN) producing cloud droplets (Levin et al., 1996;

Zhang et al., 2007; Twohy et al., 2009). As a result, increasing the dust load in the atmo-

sphere leads to an increase of CCN and IN, and therefore, influences the cloud albedo and

changes the cloud lifetime, among others (IPCC, 2013). Note that when dust particles are

uplifted to about 3 to 10 km height (i.e., owing to deep convection), they may be transported

for thousands of kilometers before depositing (see Figure 1.1). Consequently, mineral dust

affects atmospheric chemical processes (Tegen, 2003), ocean and terrestrial biogeochemistry

(by supplying nutrients influencing the iron budget) that are far away from their source

region (Hutchins and Bruland, 1998; Chadwick et al., 1999; Bristow et al., 2010). In addi-

tion, mineral dust particles also influence human health (respiratory problems) and visibility

(Ginoux et al., 2012).

Both direct and indirect effects of atmospheric mineral dust particles are of immense impor-

tance, yet there is still low scientific understanding. Hence, in order to improve their scientific

understanding a number of German research institutions launched a set of campaigns during

the past years:
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Figure 1.2: Radiative Forcing (RF) of climate change during the period 1750-2011 shown by emitted
atmospheric components. Horizontal bars outline the overall uncertainty and the vertical bars are
for the individual components. Values are RF except for the effective radiative forcing (ERF) due to
aerosol cloud interactions. This figure is adopted from IPCC (2013); Technical summary.

• SAharan Mineral dUst experiMent (SAMUM) supported by the German Research

Foundation (Deutsche Forschungsgemeinschaft, DFG), sub–experiments, namely

SAMUM–1 (Morocco, 2006) and SAMUM–2 (Cape Verde, 2008). The aim of the

SAMUM–1 was the investigation of the microphysical, chemical, optical, and radiative

properties of the mineral dust particles in the area close to the major Saharan source

region (Heintzenberg, 2009). SAMUM-2 focused on the characterization of Saharan

dust after substantial long-range transport (Ansmann et al., 2011).

• Trans–Atlantic cruise of the research vessel METEOR from the Caribbean to the west

coast of Africa (April -May 2013) (Kanitz et al., 2014), with a special emphasis on the

characterization of mineral dust particles along their major transport route (see Fig-

ure 1.1). It was funded by the Leibniz Institute for Tropospheric Research (TROPOS)

in Leipzig, Germany.

• Saharan Aerosol Long–range Transport and Aerosol–Cloud–Interaction Experiment

(SALTRACE, http://www.pa.op.dlr.de/saltrace) aiming at the investigation of the

long–range transport of Saharan mineral dust from the West coast of Africa towards the

Caribbean (June - July 2013) (Chouza et al., 2015). It was funded by the Helmholtz
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Association, the Deutsches Zentrum für Luft- und Raumfahrt (DLR), the Ludwig–

Maximilians–Universität München (LMU), and TROPOS.

Ground–based, airborne in–situ, LIDAR (LIght Detection And Ranging), and satellite re-

mote sensing techniques, as well as modeling, have been employed to improve the charac-

terization of aerosol particles. For example, the combination of LIDAR (depolarization and

LIDAR ratios) and in–situ measurements (Ångström exponents) triggers a new approach to

characterize the aerosol type (Ansmann et al., 2011). The non–spherical shape of mineral

dust particles is introduced. Consequently, it enables the improvement and/or development

of models; the updated modeling enhances the scientific understanding of the radiative effect

linked to non–spherical mineral dust particles. Finally, the investigation of the dust long–

range transport introduces significant differences in their optical properties (Ansmann et al.,

2011; Kanitz et al., 2014).

For the purpose of this work, two LIDAR observations from SAMUM and METEOR cam-

paigns were analyzed, offering the chance to simulate the radiative transfer in realistic mineral

dust plumes. The profiles of extinction and scattering coefficients, single–scattering albedo,

and scattering phase matrix of the inhomogeneous Saharan dust were constructed on the

basis of the LIDAR measurements sharing the geometrical and optical properties of the dust

plumes; these profiles are the input of a 3D radiative transfer model.

1.2 Polarization in Remote Sensing

To correctly interpret remote sensing data and derive the properties of aerosol particles,

additional information is needed. Several studies pointed out that the use of polarization

measurements is sensitive to particle microphysical properties (e.g., Hansen and Travis, 1974;

Mishchenko and Travis, 1997; Boesche et al., 2006; Li et al., 2009). For instance, Li et al.

(2009) illustrate that polarization helps constrain both the size distribution and the real part

of the refractive index of the dust particles and outlines the higher sensitivity of polarization

to the shape of the particle as compared to the radiance measurements (see Figure 1.3).

Nowadays, several remote sensing instruments employ polarization. For example, the PO-

Larization and Directionality of the Earth’s Reflectances (POLDER) instrument includes

polarized information (Deschamps et al., 1994); it is a passive radiometer mounted on the

satellite ADEOS I (Advanced Earth Observing Satellite 1) supporting multi–directional and

polarized measurements. The Research Scanning Polarimeter (RPS) (Cairns et al., 1999,

2003), has been employed for ground–based and airborne measurements, the Multiage Spec-

troPolarimetric Imager (MSPI) (Diner et al., 2013) was built to improve the POLDER in-

strument via increasing its resolution, and the CIMEL polarized sun/sky-photometer devel-

oped by CIMEL Electronique (Paris, France) CE318-DP (Li et al., 2014) was developed for

polarization measurements.

Also, new retrieval algorithms that involve polarization have been produced

(Chowdhary et al., 2004; Li et al., 2009).
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Figure 1.3: Retrieved dust properties (dV /dlnr: particle size distribution, sphericity%: fraction of
sperical aerosol component, nre: real part of the refractive index, and SSA: single–scattering albedo)
for two measurement scenarios, small particles (left panels) and coarse mode aerosol particles (right
panels). Two AERONET inversion algorithms have been used: a. radiance–only (I) employing
sky radiance and optical depth measurements and b. polarization (P ) supplying degree of linear
polarization measurements from the CIMEL Electronique CE318–DP. This figure is adopted from
Li et al. (2009).

1.3 Challenges in Radiative Transfer Modelling

The investigation of ground–based and airborne passive radiance and polarization measure-

ments requires radiative transfer models that account for multiple–scattering, absorption,

and polarization. As a result, a growing number of one–dimensional (1D) and 3D vector

models have been developed (Kokhanovsky et al., 2010; Emde et al., 2015) and the follow-

ing two issues are discussed: errors by neglecting polarization and domain heterogeneities.

1.3.1 Errors Prompted by Neglecting Polarization

Albeit the increasing number of vector radiative transfer models, mostly scalar models are

still employed for the analysis of the remote sensing data. However, ignoring the effects of

polarization may lead to considerable errors in radiation simulations. Chandrasekhar (1960)

was the first to report that in case of a pure molecular atmosphere the scalar radiative

transfer approximation results in errors of about 10%. A comprehensive investigation of the

deviations between the vector and the scalar approaches for homogeneous Rayleigh scatter-
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ing problems is linked to the work of Mishchenko et al. (1994) and Lacis et al. (1998). In

agreement with former studies, errors up to 10% were found resulting from low–orders of

scattering. Limited research has been made for aerosol particles and realistic atmospheres

(aerosol particles +molecules). Hansen (1971b) shows that for spherical cloud particles (with

sizes of the order or greater than the wavelength of the incident electromagnetic radiation)

the errors are in the order of 1%. Kotchenova et al. (2006) investigated the errors in the

reflected radiation for two atmospheric problems, a homogeneous layer including biomass

burning smoke aerosol particles and including additional molecular scattering. The result-

ing errors are as large as 5.3% for the pure aerosol and up to 4.3% for the mixed scenario

(depending on the wavelength).

1.3.2 Radiative Effects

A full 3D radiative transfer calculation in cloudy atmospheres is computationally expensive.

Consequently, 1D radiative transfer models are employed to interpret remote sensing mea-

surements. During the last decades, there has been an inconclusive debate about whether the

1D approximation is sufficient or the neglect of horizontal photon transport and the internal

inhomogeneity of the field under investigation cause significant errors in radiance simulations

(Benner and Evans, 2001; Di Giuseppe and Tompkins, 2003).

Várnai and Davies (1999) outline two approximations/effects induced by employing 1D mod-

els:

• ”One–dimensional heterogeneity effect - 1D” denotes the errors caused by ignoring hor-

izontal internal inhomogeneities (considering only vertical changes). Simulations are

conducted for a homogeneous field by means of the domain–averaged optical properties,

meaning the properties are averaged over the whole domain leading to the horizontally

homogeneous 1D domain, omitting the horizontal variability of the domain. Alternative

it is named ”plane–parallel (PP) bias” (Cahalan et al., 1994a).

• ”Horizontal transport effect” describes the errors induced by neglecting the horizontal

photon transport between neighboring cells/pixels with different optical properties. It

may further ignore interactions between neighboring clouds, leading to illuminating

and shading effects (Di Giuseppe and Tompkins, 2003).

These two closely related physical processes, that are usually ignored in general circulation

models (GCMs) (Di Giuseppe and Tompkins, 2003), are designated as the 3D radiative ef-

fects. A widely used simplification is the so–called Independent Pixel Approximation (IPA)

(Cahalan et al., 1994b), whereby radiative transfer simulations are conducted pixel by pixel

to approximate the full 3D radiative field. In this way, the horizontal inhomogeneity is taken

into account, albeit the horizontal photon transport is still ignored. IPA has been exten-

sively utilized in remote sensing (i.e., retrievals) and climate applications (Benner and Evans,

2001). Plenty former studies have focused on investigating the horizontal variability of the

cloud (e.g., Cahalan et al., 1994b; Marshak et al., 1998) and smoothing effects (Davis et al.,

1997).
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Although there has been only limited research on the 3D radiative effects for dust fields

(Torge et al., 2011), several studies have been carried out for inhomogeneous liquid wa-

ter, mixed phase and ice clouds (e.g., Davis et al., 1997; Scheirer and Macke, 2001, 2003;

Benner and Evans, 2001; Di Giuseppe and Tompkins, 2003; Cahalan et al., 2005). However,

in these studies the issue under scrutiny was the radiative effects in the scalar radiative

transfer scheme. In this work, the discussion centers on polarization effects. There is no

compelling reason to claim that the scalar approximation is sufficient to describe the errors

by disregarding horizontal internal inhomogeneities and horizontal photon transport in a

microphysical domain. The goal of this work is to broaden such investigations by combining

the 3D aspect with the vector radiative transfer scheme in order to quantify the sensitivity

of polarization to such physical processes.

1.4 Objectives

Although several 1D and 3D vector models have been developed, the availability is usually

restricted to the 1D codes (with only a few exceptions). Therefore, the Solver for Polarized

Atmospheric Radiative Transfer Applications (SPARTA), participated in the model intercom-

parison project launched by the polarization working group of the International Radiation

Commission (IRC) (Emde et al., 2015), has been developed in order to fill this gap. The

model employs the forward Monte Carlo technique for efficient column–response pixel–based

radiance calculations including polarization for 3D inhomogeneous cloudless and cloudy at-

mospheres. SPARTA is an open source, user–friendly model. It will help to compare and

improve models (world–wide model assembly, model intercomparison). The major objective

of this work is the application of SPARTA to scientific problems with a special emphasis

on non–spherical mineral dust particles and polarization. Two scientific problems will be

investigated:

• Errors prompted by neglecting polarization in radiance simulations for two atmospheric

problems: a pure 1D Rayleigh atmosphere and 2D realistic dust fields.

• Polarization radiative effects due to the neglect of horizontal photon transport and the

internal inhomogeneity in radiative transfer simulations for LIDAR–measured inhomo-

geneous Saharan dust fields performing 1D, IPA, and 2D calculations.

1.5 Outline

The fundamentals of radiative transfer theory used in the framework of this work are de-

scribed in Chapter 2. In Chapters 3 and 4 the new three–dimensional (3D) vector radiative

transfer model, SPARTA, is introduced and validated, respectively. In Chapter 5, SPARTA

is employed to quantify polarization effects in the field of remote sensing with a special em-

phasis on polarization and non-spherical mineral dust particles. A conceptual conclusion of

the thesis and an outlook are given in Chapter 6.
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2 Theoretical Background

This chapter introduces the fundamentals of radiative transfer theory used in the framework

of this work. The basic terminology of the radiometric quantities, the single–scattering and

volumetric optical properties, plus the basic concepts of polarization are introduced. Further-

more, the vector radiative transfer equation and solution methods are reviewed. Finally, a

list of the most commonly applied vector models is given. Definitions follow the textbooks of

Stokes (1852), Chandrasekhar (1960), Hansen and Travis (1974), Seinfeld and Pandis (1998),

Liou (2002), Mishchenko et al. (2002), and Wendisch and Yang (2012).

2.1 Directions and Solid Angle

To describe the transfer of radiation, the propagation direction of a pencil of radiation should

be specified. The direction of propagation is specified by a unit vector, k̂, or by the couple

(θ, φ) utilizing the zenith θ and azimuth φ angles.

The solid angle Ω is defined as the ratio of a spherical surface that an object covers as

observed from the sphere’s center. An infinitesimal solid angle, d2Ω , is given by:

d2Ω =
d2A

r2
, (2.1)

where d2A is the differential area element and r2 the square of the radius. Note that the

square of the differential operator refers to a 2D differential element. The solid angle is

expressed in units of ”steradians” (sr). For a sphere that is characterized by a surface area

of 4π · r2, its solid angle is 4π sr. The d2Ω is expressed in spherical coordinates:

d2Ω = sin θ dθ dφ. (2.2)

2.2 Radiometric Quantities

Consider a differential area element d2A. The radiant energy Erad in a time range t+dt and

in a wavelength (λ) range λ+dλ, that crosses through this area is indicated by the spectral

radiant energy flux, Φλ:

Φλ =
d2Erad

dt dλ
. (2.3)
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The Φλ(t) is measured in J s−1 nm−1=Wnm−1. The normalized Φλ(t) over the differential

area element d2A denotes the spectral irradiance (spectral radiant energy flux density) given

by:

Fλ =
d2Φλ
d2A

=
d4Erad

d2Adt dλ
. (2.4)

Fλ in units of Wm−2 nm−1 defines the power of the electromagnetic (EM) radiation received

per unit surface area from all directions of a half sphere (hemispheric). The spectral irradi-

ance within a solid angle d2Ω , in a specific direction k̂, describes the spectral radiance, Iλ(k̂)

(in units of Wm−2 nm−1 sr−1), which is defined by:

Iλ(k̂) =
d4Φλ

cos θ d2Ad2Ω
=

d6Erad

dt dλ cos θ d2Ad2Ω
, (2.5)

where θ is the angle between k̂ and the normal unit vector of the area element n̂ (angle of

incidence, see Figure 2.1). In Eq. (2.5) the term d2A⊥ = d2A ·cos θ (see Figure 2.1) indicates
the propagation of the Φλ(t). It follows that the spectral irradiance can be obtained by a

simple integration of the spectral radiance over the solid angle:

Fλ =

∫∫

2π

Iλ(k̂) · cos θ d2Ω =

∫ 2π

0

∫ π

0

Iλ(θ, φ) · cos θ · sin θ dθ dφ. (2.6)

It is customary for atmospheric applications to differentiate between the upward irradiance

F ↑
λ and downward irradiance F ↓

λ :

n̂ k̂ =n̂
⊥

d
2
A
⊥

d
2
A

d
2Ω

θ

φ

Figure 2.1: Illustration of the definition of radiances.
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F ↑
λ =

∫ 2π

0

∫ π/2

0

Iλ(θ, φ) · cos θ · sin θ dθ dφ (2.7)

F ↓
λ = −

∫ 2π

0

∫ π

π/2
Iλ(θ, φ) · cos θ · sin θ dθ dφ. (2.8)

The downward F ↓
λ is composed of two terms, the direct (coming directly from the sun, no

scattering) and the diffuse (produced by multiple–scattering with molecules, aerosol particles,

and surface reflection). The upward F ↑
λ is related to diffuse radiation only.

At any altitude z above the surface, the dimensionless spectral albedo ρλ is defined as the

ratio of F ↑
λ and F ↓

λ :

ρλ (z) =
F ↑
λ (z)

F ↓
λ (z)

. (2.9)

ρλ describes the fraction of irradiance reflected by an object.

2.3 Polarization

2.3.1 Wave Formalism

Electromagnetic waves are characterized by specific polarization state. Starting from

Maxwell’s equations, the complex electric field vector, ~E (in units of Vm−1), propagating

along the z direction (in Cartesian coordinates) is described by:

~E = ~E0 · exp (i · k · z − i · ωc · t) , (2.10)

where ~E0 denotes the complex electric amplitude vector (in units of Vm−1), i =
√
−1,

k = 2π · ñ/λ is the wavenumber of the EM wave (for air or vacuum) with ñ representing

the complex index of refraction, ωc = 2π/λ is the circular frequency, and t is the time (in

units of seconds). Figure 2.3 illustrates an EM wave travelling through a medium. The

EM wave consists of the orthogonal electric field vector ~E and the magnetic field vector ~H,

each perpendicular to the direction of propagation. The power of the EM radiation in the

direction of propagation is given by the time–averaged Poynting vector ~F, give by:

〈
~F
〉
=

1

2
Re
(
~E× ~H⋆

)
. (2.11)

The asterisk indicates for the complex conjugate value. The absolute value of the Poynting

vector,
∣∣∣
〈
~F
〉∣∣∣ = F , has the unit of irradiance (Wm−2).
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Electric 

field 
Magnetic 

field 
Figure 2.2: Electromagnetic wave illustration. The wave consists of the electric and magnetic field
vectors. Figure is adopted from http://newsciencephysics.blogspot.de/.

The complex electric field vector consists of two orthogonal components parallel (subscript

”‖”) and perpendicular (subscript ”⊥”) with respect to the reference plane including the

direction of propagation:

~E = E‖ · ê‖ + E⊥ · ê⊥, (2.12)

where ê‖ and ê⊥ are the base vectors parallel and perpendicular to the direction of propaga-

tion. From Eqs. (2.10) and (2.12), ~E is given by:

~E =

(
E‖

E⊥

)
· exp (i · k · z − i · ωc · t) =

(
E‖ · ê‖ + E⊥ · ê⊥

)
· exp (i · k · z − i · ωc · t) . (2.13)

Since the remote sensing systems are not able to measure the complex EM field vector, but

only the power of the EM wave (Poynting vector ~F), the real part of Eq. (2.13) should be

considered:

∣∣∣
〈
~E
〉∣∣∣ =

(
E0‖ · cos

(
k · z − ωc · t+ ζ‖

)

E0⊥ · cos (k · z − ωc · t+ ζ⊥)

)
. (2.14)

E0‖ and E0⊥ are the amplitudes, and ζ‖ and ζ⊥ are the phases of the electric field vector

parallel and perpendicular to the reference plane. Polarization describes the orientation of

the EM wave along its direction of propagation. Three characteristic polarization cases are

given:

• Elliptical polarization, the tip of the EM wave vector follows an elliptical pattern in the

reference plane. It occurs when E0‖ 6= E0⊥ 6= 0 and the phase difference ζ⊥ − ζ‖ 6= 0.
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• Linear polarization, the tip of the EM wave vector follows a linear pattern in the

reference plane. It occurs when E0‖ or E0⊥ is zero, or when E0‖ = E0⊥ and ζ⊥ = ζ‖.

• Circular polarization, the tip of the EM wave vector follows a circular pattern in the

reference plane. It occurs when E0‖ = E0⊥ and ζ⊥− ζ‖ = +90◦ (clockwise rotation) or

ζ⊥ − ζ‖ = −90◦ (counter clockwise rotation).

2.3.2 The Stokes Parameters

The conventional approach to consider polarization dates back to Stokes (1852), who discov-

ered that the polarization behavior of the electromagnetic radiation can be represented by

real observables. This resulted in the Stokes vector, defined by four components:

~S =




F

Q

U

V


 , (2.15)

each of them carrying the units of irradiance (Wm−2) (Stokes, 1852). The Stokes vector

represents both irradiance and polarization.

The Stokes vector is described by the components of a transverse electromagnetic field (e.g.,

Chandrasekhar, 1960):

F =
1

2

√
ǫ

κ
·
(
E‖ · E∗

‖ + E⊥ ·E∗
⊥

)
, (2.16)

Q =
1

2

√
ǫ

κ
·
(
E‖ · E∗

‖ − E⊥ ·E∗
⊥

)
, (2.17)

U =
1

2

√
ǫ

κ
·
(
E‖ · E∗

⊥ + E⊥ · E∗
‖

)
, (2.18)

V = i · 1
2

√
ǫ

κ
·
(
E‖ · E∗

⊥ − E⊥ · E∗
‖

)
. (2.19)

Where E‖ and E⊥ are the two orthogonal electric field components parallel and perpendicular

to the direction of propagation, ǫ is the electric permeability, κ is the magnetic permittivity,

the asterisk represents the conjugate value. The first Stokes vector element, F , is the total

irradiance, Q and U describe the linear and V the circular polarization. These parameters

are defined using the local meridian plane as a plane of reference (Chandrasekhar, 1960)

expressed by the propagation and vertical directions.

The dimensionless degree of polarization P is defined as:

P =

√
Q2 + U2 + V 2

F
≤ 1. (2.20)

For completely polarized EM radiation, P = 1, and for unpolarized EM radiation, P = 0.

We may further define the degree of linear Plin and circular polarization Pcir as
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Plin =

√
Q2 + U2

F
, (2.21)

Pcir =
V

F
. (2.22)

2.4 Interactions of Electromagnetic Radiation and Single Particles

When an EM wave impinges on a single particle, plenty of distinct phenomena take place (e.g.,

scattering, absorption, thermal emission). The particle converts part of the energy of the

EM wave into other forms of energy (e.g., heat); the remaining amount is redistributed in all

directions. These phenomena are called absorption and scattering, respectively. Scattering

may change the polarization state of the incident EM wave. Absorption may further cause

thermal emission (radiation emission in all directions and frequencies), in case the absolute

temperature of the particle is non–zero. The study of the single–scattering properties of

particles is vital to interpret scattering and absorption processes and track changes in the

polarization state of the incident EM wave.

An object with a refractive index different from the adjacent medium is employed to describe

the scattering behavior of a single particle.

2.4.1 Amplitude Scattering Matrix

The geometric configuration for the scattering of an EM wave by a finite scattering object

is illustrated in Figure 2.3. The reference plane defined by the incident and scattering direc-

tions is denoted as the scattering plane. The angle between the incident and the scattering

directions is the scattering angle ϑ, and ϕ is the scattering azimuth angle relating the scat-

tering plane to the reference direction. The incident electric field vector (subscript ”inc”),

may be decomposed into a parallel and a perpendicular components:

~Einc = E‖inc · ê‖inc + E⊥inc · ê⊥inc. (2.23)

Then, the scattered electric field vector ~Esca (subscript ”sca”) at a distance r (observation

position) is associated with the two components of the incident electric field (E‖inc, E⊥inc).

Considering the far field approximation (k · r ≫ 1), the ~Esca is defined by:

(
E‖

E⊥

)

sca

=
exp[i · k · (r − z)]

−i · k · r ·
(
A11 A12

A21 A22

)
·
(
E‖

E⊥

)

inc

. (2.24)

The 2× 2 matrix

IA =

(
A11 A12

A21 A22,

)
(2.25)
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is the amplitude scattering matrix, describing the scattering and absorption processes. The

scattering matrix elements Aij (i, j = 1, 2), are the amplitude functions depending on the

particle’s shape, size, chemical composition, orientation and the λ of the incident EM field.

In case of spherical particles, the number of elements is reduced to two (A12 = A21 = 0).

2.4.2 Transformation Phase Matrix

Considering the far field approximation (k ·r ≫ 1), the scattered Stokes vector ~Ssca is derived

from the incident Stokes vector ~Sinc, applying the following transformation:

~Ssca = Z · ~Sinc. (2.26)

Where Z is the 4 × 4 transformation phase matrix. The phase matrix elements Zij (i,

j = 1, 4), are expressed in terms of the amplitude scattering matrix. Albeit all the sixteen

elements are non–zero, only nine independent relations among them exist; seven independent

phase matrix elements exist (Mishchenko et al., 2002).

The transformation phase matrix is the link between the incident and the scattered Stokes

vectors defined by their local meridional planes. Instead of Z, the scattering phase matrix

P is often used:

Scattering plane 

z 

y 

x 

Esca 

E
!sca 

Einc 

E
!inc 

Incident 

ϑ

ϕ

ϕ

Figure 2.3: Illustration of scattering of an EM wave by an object.
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P =




P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44


 . (2.27)

P describes the single–scattering process of EM radiation by a particle with respect to a

specific orientation. It is defined with respect to the scattering plane, defined by the incident

and the scattering directions (see Figure 2.3). In case of forward scattering (ϑ = 0):

P = Z. (2.28)

More information about their relation is given in Subsection 3.2.4.

2.4.3 Single–Scattering Optical Properties

Single–scattering properties of particles in the atmosphere (gas molecules, cloud, and aerosol

particles) that are crucial for radiative transfer theory are the extinction cross section Cext,

the single–scattering albedo ω̃ and the scattering phase function P. These parameters are

derived from the mass/cross–section area, the spectral complex index of refraction ñ, the

aerosol particle size distribution, as well as the shape, size, orientation and chemical compo-

sition.

The optical cross sections (in units of m2), namely the extinction cross section Cext, the

scattering cross section Csca, and the absorption cross section Cabs, describe how effective an

individual particle interacts with EM radiation.

The radiant energy flux scattered by an individual particle, Φsca, is analogous to the incident

flux density Finc:

Φsca = Csca · Finc. (2.29)

Likewise, in case of absorption radiant energy flux absorbed, Φabs, is defined:

Φabs = Cabs · Finc. (2.30)

The combination of scattering and absorption cross sections gives the extinction cross section,

defining the attenuation of the Finc due to scattering and absorption:

Cext = Csca + Cabs. (2.31)

The ratio of Csca to Cext denotes the dimensionless particle single–scattering albedo ω̃:

ω̃ =
Csca

Csca + Cabs

. (2.32)
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In other words, ω̃ describes the fraction of incident radiation that is attenuated due to

scattering over extinction. ω̃ of 0 indicates non–scattering particles (extinction only due

to absorption); conversely, ω̃ of 1 implies non–absorbing particles (extinction only due to

scattering).

In scalar radiative transfer theory, the phase function P, which represents the relative angular

distribution of the scattered radiation by a particle, is adequate to describe the scattering

behavior. Let k̂inc(θinc, φinc) be the incident direction, k̂sca(θsca, φsca) the scattering direction,

and µ = cos θ. Then, P is given by:

∫ 2π

0

∫ 1

−1

P(µinc, φinc;µsca, φsca) dµ dφ = 4π sr. (2.33)

The integral of the scattering phase function over the unit sphere is normalized to 4π. For ran-

domly oriented particles, the scattering domain is characterized as macroscopically isotropic,

meaning that there is no favored propagation direction. As a result, P depends only on the

scattering angle, ϑ, with respect to the incident direction, omitting any azimuthal angular

dependence:

ϑ = arccos
(
k̂inc · k̂sca

)
. (2.34)

ϑ ranges between 0 and π.

Other parameters applied in radiative transfer theory (for axially rotational symmetric scat-

tering) are the asymmetry parameter g and the hemispheric backscatter ratio b. g is defined

as:

g =

∫

4π
P (ϑ) · cosϑ d2Ω . (2.35)

g ranges between −1 and +1. It is a measure for the preferred scattering direction, meaning

that the more negative g is, the more radiation is scattered towards the back direction;

conversely, the more positive g is, the more radiation is directed to the forward direction.

The hemispheric backscatter ratio or just backscatter ratio is the fraction of the scattered

radiation directed towards the backward hemisphere. It is given by:

b =

∫ π
π/2 P (ϑ) · sinϑ dθ
∫ π
0
P (ϑ) · sinϑ dθ . (2.36)

2.5 Interactions of Electromagnetic Radiation and Ensembles of

Independent Particles

Consider a population of particles (i.e., gas molecules, aerosol and cloud particles) contained

in a sufficiently small volume element. The volumetric scattering properties are derived by

the single–scattering properties assuming scattering by independent scatterers. The following

approximations are considered:
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• Individual particles are independent of each other with respect to their optical effects

• Scattering by independent particles is incoherent

2.5.1 Single–Scattering Approximation

Assume that the small volume element consists of N particles. N is sufficiently small, so

that each particle is in the far–field zone of all other particles and multiple–scattering within

the volume is negligible. In addition, the scattered EM radiation linked to the particles

is incoherent. Consequently, the electric field scattered by the volume (at some large dis-

tance) is derived by the vector sum of the partial scattered field by the individual particles

(Mishchenko et al., 2002):

~Esca =

N∑

j=1

~Esca,j (2.37)

Considering the far field approximation (k ·r ≫ 1), the total volumetric amplitude scattering

matrix is:

IA(k̂, k̂inc) =
N∑

j=1

IAj(k̂, k̂inc) (2.38)

The optical properties of the volume, namely the spectral volumetric extinction βext, scat-

tering βsca and absorption coefficients βabs (in units of m−1), are determined by:

βext =

N∑

j=1

(Cext)j = N〈Cext〉, (2.39)

βsca =

N∑

j=1

(Csca)j = N〈Csca〉, (2.40)

βabs =
N∑

j=1

(Cabs)j = N〈Cabs〉. (2.41)

Where 〈Cext〉, 〈Csca〉, and 〈Cabs〉 are the average extinction, scattering, and absorption cross

sections per particle, respectively. The optical thickness τ of an optical medium is derived

by integrating over βext between medium base zbase and medium top ztop:

τ =

∫ ztop

zbase

βext(z
′) dz′. (2.42)

In a similar manner the volumetric scattering and phase matrices are derived by:
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P =

N∑

j=1

Pj = N〈P〉, (2.43)

Z =

N∑

j=1

Zj = N〈Z〉, (2.44)

where 〈P〉 and 〈Z〉 are the average scattering and phase matrices per particle.

2.5.2 Ensembles of Particles

In practice, the volume element consists of particles with different sizes, refractive indices,

and shapes. Thus, the volumetric scattering properties are derived by averaging the single–

scattering properties over the distribution of particles. Eqs. (2.37) - (2.44) are replaced by

the ensemble averages. For example, the ensemble averaged transformation phase matrix is

given by:

〈Z〉 =
N∑

j=1

nj · 〈Zj〉. (2.45)

Where 〈Zj〉 is the individual phase matrix and nj is the particle number density (weight).

2.6 Normalized Scattering and Phase Matrices

For practical reasons, instead of the regular scattering and phase matrices the normalized

matrices are employed:

P̃ =
4π

βsca
P =

4π

〈βsca〉
〈P〉, (2.46)

Z̃ =
4π

βsca
Z =

4π

〈βsca〉
〈Z〉, (2.47)

The first element of the dimensionless normalized scattering matrix corresponds to the scat-

tering phase function P̃11 = P.

2.7 Vector Radiative Transfer Equation

When the scattering and absorbing media consist of a very large number of particles,

multiple–scattering can no longer be neglected. The propagation of an EM wave through

the atmosphere and its interaction with the atmospheric components (e.g., molecules, aerosol

particles, and cloud particles) and/or the surface is described by the vector radiative transfer
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equation. Considering the complexity of such media (atmosphere), this equation is usually

simplified to macroscopically isotropic and mirror–symmetric scattering media. These me-

dia involve randomly oriented particles; each particle is mirror-symmetric or has a mirror-

symmetric counterpart. In this case, the scattering matrix depends only on the scattering

angle, ϑ, with respect to the incident direction, omitting any azimuthal angular dependence;

there is no favored propagation direction or orientation of the scattering plane.

The integro–differential monochromatic vector radiative transfer equation for the Stokes

vector of the EM wave (~S) emergent from below a layer (see Figure 2.4), considering a

plane–parallel atmosphere and macroscopically isotropic and symmetric media (randomly

oriented particles), is given by (Liou, 2002):

µdet
d~S (τ ;µdet, φdet)

dτ
= −~S (τ ;µdet, φdet)

+
ω̃

4π

∫ 2π

0

∫ 1

−1

Z̃(µinc, φinc;µdet, φdet) · ~S (τ ;µinc, φinc) dµincdφinc

+
ω̃

4π
· Z̃(−µ0, φ0;µdet, φdet) · F0 ·




1

0

0

0


 · e−τ/µ0

+(1− ω̃) ·Bλ (T ) ·




1

0

0

0


. (2.48)

Where µ is the cosine of the zenith angle θ. (µdet, φdet) stands for the viewing direction

(detector direction, subscript ”det”), (µinc, φinc) for the incident direction, and (−µ0, φ0) is

the downward solar direction. The equation consists of four self–explanatory terms:

Loss by extinction = −~S (τ ;µdet, φdet). (2.49)

This term denotes the extinction of ~S of the EM wave due to attenuation (scattering and

absorption by the atmospheric components) along the optical path towards the direction of

the detector (µdet, φdet).

Gain by multiple–scattering =
ω̃

4π

∫ 2π

0

∫ 1

−1

Z̃(µinc, φinc;µdet, φdet) · ~S (τ ;µinc, φinc) dµincdφinc.

(2.50)

This term represents the gain due to multiple–scattering of the diffuse ~S from all the different

initial directions (µinc, φinc) scattered into the direction of observation (µdet, φdet). Z̃ is the

normalized transformation phase matrix that describes the scattering procedure. This matrix

will be explained in Subsection 3.2.4 for macroscopically isotropic and mirror–symmetric



20 2. Theoretical Background
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Figure 2.4: Transfer of diffuse Stokes vector of the EM wave, ~S, emergent from below a layer: Loss
by extinction owing to attenuation along the optical path towards (µdet, φdet); gain by multiple–
scattering from all directions (µinc, φinc) to (µdet, φdet); gain by single–scattering of the incident
unpolarized extraterrestrial quasi–monochromatic electromagnetic radiation (solar irradiance) from
direction (−µ0, φ0) to (µdet, φdet); and gain by emission within the layer directed into (µdet, φdet).

scattering media. Absorption is governed by the single–scattering albedo ω0 and the division

by 4π accounts for the normalization within the solid angle of 4π sr.

Gain by single–scattering =
ω̃

4π
· Z̃(−µ0, φ0;µdet, φdet) · F0 ·




1

0

0

0


 · e−τ/µ0 . (2.51)

The ~S increases owing to single–scattering of the incident unpolarized extraterrestrial quasi–

monochromatic electromagnetic radiation (solar irradiance) from the direction (−µ0, φ0) to
(µdet, φdet). Consequently, F0 is attenuated exponentially along the photon path, according

to the law of Bouguer–Beer.
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Gain by emission = (1− ω̃) ·Bλ (T ) ·




1

0

0

0


. (2.52)

This term denotes the thermal emission. The ~S of the EM wave directed into (µdet, φdet) is

enhanced by emission within the layer. It is driven by the law of Stefan–Boltzmann, referring

to a perfect blackbody in thermodynamic equilibrium for which absorption and emission at

every wavelength are identical. The amount of the diffuse ~S absorbed is determined by (1−ω̃).
Thermal emission is described by the unpolarized Planck blackbody matrix Bλ (T ) ·(1 0 0 0)T
(superscript ”T” represents the transpose vector). Bλ (T ) is the Planck’s function, in units

of Wm−2 sr−1
µm−1, given by:

Bλ (T ) =
2h · c2
λ5

1

exp [h · c/ (kB · λ · T )]− 1
, (2.53)

where h = 6.6262 × 10−34 J s is the Planck’s constant, c = 2.997 925 × 108 ms−1 is the

velocity of light in vacuum, kB = 1.3806× 10−23 J deg−1 is the Boltzmann constant, λ is the

wavelength in m, and T is the absolute temperature given in K.

Note that the source term of thermal emission is neglected in the solar spectral region (0.2-5

µm), and, therefore, will not be considered in this work.

2.8 Numerical Methods to Solve the Radiative Transfer Equation

In order to solve the vector radiative transfer equation for complex scattering and absorbing

atmospheric conditions several numerical methods have been developed. The comprehensive

description of the methods employed to calculate the multiple–scattering of polarized light

is beyond the scope of this work. However, we will briefly outline the elementary concept of

the most common methods:

• Adding–Doubling Method (A–DM)

• Method of Successive Order of Scattering (MSOS)

• Discrete Ordinate Method (DOM)

• Spherical Harmonics Method (SHM)

• Monte Carlo Method (MCM)

For further information the reader is referred to the literature (e.g., Hovenier et al., 2004).

2.8.1 Adding–Doubling Method (A–DM)

The original idea of the adding method dates back to Stokes (1860). However, the adding

method, in the framework it is known now, is linked to the work of van de Hulst (1980). In
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Figure 2.5: A schematic representation of the adding–doubling procedure. Configuration for radia-
tion beam through two homogeneous, stacked layers of optical depths τ1 and τ2 and a black underlying
surface. The overall reflected and transmitted radiation are symbolized by R and T , respectively.

addition, Hansen (1971a,b) further extended the method so that it can handle the polariza-

tion state of the EM radiation.

Following the comprehensive description by van de Hulst (1980), the radiative properties of

a medium can be calculated assuming a plane–parallel atmosphere divided into stacks of

thin layers with known properties (namely the reflection and transmission). The principle of

this technique is illustrated in Figure 2.5. To put it more simply, imagine that there are two

layers with optical depths of τ1 and τ2, one of which overlies the other. When the reflection

and transmission for both layers are well–defined and for thin initial layers the reflection and

transmission is given in analytical form from the single–scattering approximation, the overall

reflection and transmission can be determined by calculating successive reflections back and

forth between the layers (Hansen and Travis, 1974; Wendisch and Yang, 2012). Particularly,

if both layers are characterized by the same properties, the adding method is referred to as

the doubling method.

2.8.2 Method of Successive Order of Scattering (MSOS)

The employment of the Method of Successive Order of Scattering (MSOS) involves an

atmosphere divided into optically thin layers. It is an iterative method, where the

multiple–scattering of each layer is treated as a series of single–scattering events. Basi-

cally, MSOS accounts the contribution from all orders of scattering to the total radiation

(Hansen and Travis, 1974). The larger the number of the scattering events, the smaller its

contribution to the total radiation (because of extinction). Moreover, the numerical inte-

gration for the diffuse radiation is carried out utilizing the decomposition in Fourier modes

(Wendisch and Yang, 2012) and infinite modes should lead to convergence.

The main disadvantage of MSOS lies on its principle. While being a straightforward method,



2.8. Numerical Methods to Solve the Radiative Transfer Equation 23

it becomes inefficient for complex atmospheres with high optical thickness and rather weak

absorption. In such cases, the number of orders needed to achieve convergence is excessively

high and the computation time is increasing dramatically.

2.8.3 Discrete Ordinate Method (DOM)

The concept of the Discrete Ordinate Method (DOM) is traced back to the work of Schuster

(1905) and Schwarzschild (1906) and their description of the two–stream technique. Later

on, Wick (1943), followed by Chandrasekhar (1960), further extended the technique resulting

in the method with n discrete ordinates.

DOM involves a Fourier decomposition of the radiative transfer equation and employs a

Gaussian quadrature sum (using 2n discretes, namely the number of streams). As a con-

sequence, the integro–differential form is discretized into standard differential equations of

first order over τ by substituting the integrals over the direction cosines by a finite sum. By

simulating the atmosphere as a stack of homogeneous layers a set of first order differential

equations is derived with consistent optical properties (including the surface contribution)

(Hovenier et al., 2004). The latter procedure is iterated in order to achieve convergence.

The primary advantage of the DOM is that the computational efforts are independent of the

optical depth. However, the computation time increases with increasing vertical resolution.

Another drawback is that the method itself relies heavily on mathematics and is difficult to

program (Hansen and Travis, 1974). DOM is impractical for strongly peaked phase matrices,

when high angular resolution is needed.

2.8.4 Spherical Harmonics Method (SHM)

Another efficient method to solve the vector radiative transfer equation, closely related to

the DOM, is the Spherical Harmonic Method (SHM). According to the SHM, the radiance

field is decomposed to a finite number of spherical harmonics (Hansen and Travis, 1974).

In comparison to DOM, only the decomposition of the azimuth dependence is required and,

therefore, the computation time does not increase for strongly peaked phase matrices. Know-

ing the close relation between DOM and SHM, benchmark calculations of both approaches

may generate identical results (Zdunkowski et al., 2007).

For the scalar radiative transfer equation, SHM was first introduced by Davison and Sykes

(1957) and Lenoble (1961). Later on, it was further extended to include polarization by

Benassi et al. (1985) and Garcia and Siewert (1986). The latest contribution is linked to

the work of Evans (1998), who developed the spherical harmonics discrete ordinate method

(SHDOM) model, which is applicable to 3D media. Lately, polarization was included to

SHDOM utilizing the generalized spherical harmonics method of Doicu et al. (2013).

2.8.5 Monte Carlo Method (MCM)

The statistical Monte Carlo technique was first developed in the 1940’s by

Metropolis and Ulam (1949). Thereafter, a rapidly growing literature on MCMs appeared
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(Cashwell and Everett, 1959; Kattawar and Plass, 1967; Collins et al., 1972; Marchuk et al.,

1980; Mayer, 2009). The MCM is based on probability theory and random sampling to

produce numerical results.

The Monte Carlo technique is considered a flexible approach to simulate photon transport.

Here, photons refer to imaginary discrete ”packets” or ”units” of the incident energy rather

than the physical photons (quantum electrodynamics) (Mishchenko, 2009). In brief, the

MCM goes as follows: a large number of photons are generated from a source (sun) and

traced throughout their propagation in a scattering and absorbing medium (atmosphere)

until a scattering event takes place. The nature of interaction is determined and the new

direction of propagation is calculated using the scattering phase function as the probability

density function for sampling. The photon is terminated when it is absorbed or exits the

scattering media.

The main advantages of the MCM are:

• It is based on conceptually simple physics and is simple to program.

• It is time–dependent and can handle 3D problems with arbitrary geometry.

• It calculates both vector and scalar results at the same time.

• Detectors can be placed at any position and in any direction.

The weaknesses of MCM are:

• Since the calculation is statistical, results are always subject to statistical uncertainty,

given by the inverse square root of the number of photons used for the simulations.

Increasing the selected number of photons will ameliorate the errors.

• For scattering media with large optical depths, the method requires long computation

times.

In this thesis, the method employed to solve the vector radiative transfer equation is the

Monte Carlo technique. A comprehensive description of the MCM is found in Chapter 3.

2.9 Existing Vector Radiative Transfer Models

Several 1D and 3D radiative transfer models have been developed to simulate radiative

transfer. In most cases, the 1D vector models are freely available for the scientific community,

the same does not generally hold for 3D radiative transfer models. Table 2.1 lists the most

commonly used vector radiative transfer models and tabulates their basic features. The

methods employed to solve the radiative transfer equation, as well as their availability and

references are included. Most of the models employ the DOM and can be used for 1D

atmospheres (e.g., ARTS, IPOL, MVDOM, Pstar, SCIATRAN, VDISORT). Two models

(DAK and PolRadTran) utilize the A–DM (limited to 1D applications). The SOSM, SHM

and MCM can be used for both 1D and 3D atmospheres, with the latter one being the most

flexible.
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Table 2.1: Overview on the most commonly used vector radiative transfer models. Their method-
ology, geometry, availability and references are summarized. GPL stands for the GNU General Pub-
lic License. Abbreviations: ARTS - Atmospheric Radiative Transfer Simulator, DAK - Doubling–
Adding KNMI (Koninklijk Nederlands Meteorologisch Instituut), IPOL - Intensity and POLariza-
tion, MVDOM - Modified Vectorial Discrete Ordinates Method, MYSTIC - Monte–Carlo code for
the phYSically correct Tracing of photons In Cloudy atmospheres, PolRadTran - Polarized Radiative
Transfer, Pstar - Polarized radiance System for Transfer of Atmospheric Radiation, SCIATRAN -
radiative transfer model for SCIAMACHY (SCanning Imaging Absorption SpectroMeter for Atmo-
spheric CHartographY), SOSVRT - Successive Order of Scattering Vector Radiative Transfer model,
VDISORT - Vector DIScrete Ordinate Radiative Transfer model, 3DMCPOL - Three–dimensional
polarized Monte Carlo atmospheric radiative model, 6SV1 - Second Simulation of a Satellite Signal
in the Solar Spectrum, Vector, version 1.

Model Method Geometry References Availability

ARTS 1D DOM 1D/3D Buehler et al. (2005) GPL
3D MCM

DAK A–DM 1D Stammes et al. (1989) no
IPOL DOM 1D Korkin et al. (2013) yes

ftp://climate1.gsfc.nasa.gov/
skorkin/IPOL/

MVDOM DOM 1D Budak and Korkin (2008) yes
Kokhanovsky et al. (2010)

MYSTIC MCM 1D/3D Mayer (2009) 1D -GPL
Emde et al. (2010)

PolRadTran A–DM 1D Evans and Stephens (1991) yes
Pstar DOM 1D Ota et al. (2010) yes
SCIATRAN DOM 1D Rozanov et al. (2005) yes

Rozanov and Kokhanovsky (2006)
Rozanov et al. (2014)

SHDOM SHM/DOM 1D/3D Evans (1998) yes
SOSVRT SOS 1D Min and Duan (2004) yes

Duan et al. (2010)
VDISORT DOM 1D Weng (1992a) yes

Weng (1992b)
Schulz et al. (1999)

3DMCPOL MCM 1D/3D Cornet et al. (2010) no
Fauchez et al. (2014)

6SV1 SOS 1D Kotchenova et al. (2006) yes
http://6s.ltdri.org
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3 SPARTA – Solver for Polarized

Atmospheric Radiative Transfer

Applications

In this chapter, the basic concepts and definitions of a new three–dimensional vector radiative

transfer model SPARTA (Solver for Polarized Atmospheric Radiative Transfer Applications)

are introduced. The model employs the forward Monte Carlo technique for efficient column–

response, pixel–based radiance calculations including polarization for 3D inhomogeneous

cloudless and cloudy atmospheres. SPARTA is based on the scalar Monte Carlo model of the

Leibniz Institute of Marine Sciences (now GEOMAR) at the UNIversity of Kiel (MC-UNIK,

Macke et al. 1999), which participated in the international Intercomparison of 3D Radiation

Codes (I3RC, Cahalan et al. 2005). In this thesis, MC–UNIK has been extended to account

for polarization effects due to multiple–scattering by non-spherical particles, i.e., coarse mode

dust or ice particles. The details of the implementation of polarization in MC–UNIK are

also presented; the differences between MC-UNIK and SPARTA are outlined. Parts of this

chapter, have been published in Barlakas et al. (2014) and Barlakas et al. (2016).

3.1 Monte Carlo Random Sampling

The Monte Carlo method is based on probability theory and random sampling to produce

numerical results. Following the comprehensive description by Cashwell and Everett (1959),

the fundamental principle of the Monte Carlo method involves sampling a random variable

ψ ∈ (ψ1, ψ2) from a well–defined probability density function (PDF) p(ψ) utilizing uniformly

distributed random numbers over the interval (0, 1). Let p(ψ) dψ be the probability of ψ

lying between ψ and ψ + dψ, and ψ1 ≤ ψ < ψ2, then, the PDF is a normalized density

function satisfying the following normalization:

∫ ψ2

ψ1

p(ψ) dψ = 1. (3.1)

In order to sample a variable ψ from a PDF p(ψ), the cumulative probability density function,

denoted as G(ψ), is defined by:

G (ψ) =

∫ ψ
ψ1
p(ψ′) dψ′

∫ ψ2

ψ1
p(ψ′) dψ′

. (3.2)
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Hence, ψ is sampled by drawing a uniformly distributed random number ξ (0 ≤ ξ < 1) and

inverting G:

ψ = G−1 (ξ) . (3.3)

3.2 SPARTA Description

3.2.1 Model Domain

SPARTA considers a 3D Cartesian domain, which is split into grid–boxes, defined by geo-

metrical dimensions along x-, y-, and z-directions. A total volumetric extinction βtotext and

scattering coefficient βtotsca (see Eqs. 2.39 and 2.40), a total normalized scattering phase matrix

P̃tot(ϑ) with the scattering angle ϑ, and a total single–scattering albedo ω̃tot are allocated

to each grid–box. The superscript ”tot” indicates the combined optical properties of the

different types of particles (e.g., molecules, aerosol, and cloud particles), which are contained

in each grid–box. A 2D representation of the model domain is illustrated in Figure 3.1.

Directions are specified by means of the angles θ and φ (Hovenier et al., 2004;

Mishchenko et al., 2002). The azimuth angle φ is counted clockwise when looking upwards

(positive z-direction) and the zenith angle θ is the angle with respect to the upward normal

direction (measured from the positive z-direction). As a consequence, the viewing zenith

angle θdet is measured from the upward normal, meaning it ranges between 0◦ and 90◦ for

the reflected, and between 90◦ and 180◦ for the transmitted EM radiation.

Note that SPARTA can be used as a 1D radiative transfer model performing independent

pixel by pixel simulations by simply fixing the x- and y- geometrical components of the

photons to the initial values preventing the horizontal photon transport between the pixels;

the horizontal inhomogeneity is considered. This scheme is denoted as IPAmode. In addition,

the model can run in a 2D mode accounting for the variability in only one horizontal direction

(x or y).

3.2.2 Photon Initiation

Simulations begin with a photon entering randomly at the top layer of the model domain.

The initial incident direction (subscript ”inc”) is expressed in terms of the solar position with

a direction derived from the directional cosines:

k̂inc,0 =



kxinc,0
kyinc,0
kzinc,0


 =



sin θ0 · cosϕ0

sin θ0 · sinϕ0

− cos θ0


 , (3.4)

where θ0 and ϕ0 are the solar zenith and azimuth angles, respectively.
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In the vector scheme, the incident quasi–monochromatic electromagnetic wave is considered

unpolarized and characterized by a weight, the Stokes weight, whose value is set originally

to unity:

~Sinc,0 =




1

0

0

0


 . (3.5)

3.2.3 Photon Tracing and Absorption

In the Monte Carlo technique the propagation of photons through a medium is traced until

they either leave the model domain at the top of the atmosphere (TOA) or until they are

absorbed. In case a photon reaches the edge of the domain, periodic boundary conditions are

applied, meaning the photon re–enters the domain from the exact opposite side preserving

its directional vector and conserving energy. Following Marchuk et al. (1980), the free path

lengths of a photon are simulated by random number processes with attenuation described by

β
sca/ext

tot
, ɶP

tot
, ɶω tot( )

−µ
0
,φ
0( )

ϑ

Figure 3.1: 2D representation of the scheme of the photon path within the 3D domain of the Monte
Carlo radiative transfer model: (−µ0, φ0) is the initial incident photon direction (downward solar
direction) defined by the cosine of the solar zenith (µ0 = cos θ0) and azimuth angles (φ0), β

tot
sca/ext

stands for either the total volumetric scattering (subscript ”sca”) or extinction coefficient (subscript
”ext”), P̃tot for the total normalized scattering phase matrix, and ω̃tot is the total single–scattering
albedo. The superscript ”tot” indicates the combined optical properties of the different types of
particles which are contained in each grid–box.
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the law of Bouguer–Beer. In the original MC-UNIK model, the later procedure is quantified

by the probability density function:

pext = exp

(
−
∫ l

0

βtotext dl

)
. (3.6)

βtotext is the total volumetric extinction coefficient and dl is the path element of the photon

path. At each scattering event, absorption is considered by reducing the original scalar

weight by multiplication with the single–scattering albedo. In SPARTA, the free path length

is determined by the total volumetric scattering coefficient (βtotsca) and the probability density

function is given by:

psca = exp

(
−
∫ l

0

βtotsca dl

)
. (3.7)

Absorption is taken into account by decreasing the initial Stokes weight by the estimated

total absorption coefficient (βtotabs), along the photon path, with the Bouguer–Beer law:

pabs = exp

(
−
∫ l

0

βtotabs dl

)
. (3.8)

In particular, photons are traced from the starting point on one grid–box surface to the

intersection with the nearest neighbor grid–box surface as illustrated in Figure 3.2, and as

outlined by Macke et al. (1999). This procedure is repeated ̺ times until the cumulated

optical thickness:

τcum =
∑

̺

βtotsca · l̺, (3.9)

exceeds the randomly chosen (exponentially distributed) optical thickness τrand. l̺ denotes

the step lengths within the individual grid–boxes. Subsequently, the photon steps backward

by:

lback =
τcum − τrand

βtotsca

, (3.10)

to ensure that the total photon path exactly matches τrand.

3.2.4 Anisotropic Scattering and Rotation of the Stokes Vector

A major difference between the scalar and the vector approach involves amendments in the

scattering description. In case of a scattering event the new propagation direction (scattering

direction) needs to be calculated k̂sca(θsca, φsca) from the previous direction and the scattering

zenith and azimuth angles (Marchuk et al., 1980). For scalar radiative transfer theory, the

scalar scattering phase function P (see Eq. 2.33), is adequate to describe the scattering
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Figure 3.2: Illustration of photon tracing within a regular array of cloud boxes: (µinc, φinc) stands for
the incident direction, τrand and τcum are the randomly chosen and the cumulated optical thickness,
and lback denotes the backward photon step.

process. It depends on the scattering angle (ϑ) with respect to the incident direction, omitting

any azimuthal angular dependence. Polarization introduces an anisotropy of the scattering

direction depending on the frame of reference. Consequently, the interaction between a

photon and a particle is described by a 4× 4 matrix, the normalized scattering phase matrix

P̃ (see Section 2.6). Considering an ensemble of randomly oriented particles that form a

macroscopically isotropic and mirror–symmetric scattering medium, the number of scattering

phase matrix elements is reduced to six (van de Hulst, 1981):

P̃(ϑ) =




P̃11(ϑ) P̃12(ϑ) 0 0

P̃12(ϑ) P̃22(ϑ) 0 0

0 0 P̃33(ϑ) P̃34(ϑ)

0 0 −P̃34(ϑ) P̃44(ϑ)


 , (3.11)

As it was already mentioned, the scattering phase matrix is defined with respect to the

scattering plane, defined by the incident and the scattering directions. Furthermore, it

relates the Stokes vector elements linked to the two directions, specified with respect to

their reference planes (Mishchenko et al., 2002). In order to derive the Stokes vector of the

scattered EM wave ~Ssca with respect to its plane of reference (plane containing the scattering

and vertical directions, see Subsection 2.3.2), the incident Stokes vector (expressed in a plane

defined by the incident and vertical directions) has to be transformed to the scattering plane

so that the scattering phase matrix multiplication can be carried out (see Figure 3.3). The

scattered Stokes vector is given by:

~Ssca = R(−η2) · P̃(ϑ) ·R(π − η1) · ~Sinc = Z̃(θinc, φinc; θsca, φsca) · ~Sinc. (3.12)
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Here Z̃ is the normalized transformation phase matrix that describes the scattering proce-

dure, η1 and η2 are the rotation angles, and R(η) is the rotation matrix (see Figure 3.4):

R(η) =




1 0 0 0

0 cos 2η − sin 2η 0

0 sin 2η cos 2η 0

0 0 0 1


 . (3.13)

The rotation angles are computed from k̂inc and k̂sca using spherical trigonometry

(Mishchenko et al., 2002):

cos η1 =
cos θsca − cos θinc · cos ϑ

sin θinc · sinϑ
, (3.14)

cos η2 =
cos θinc − cos θsca · cos ϑ

sin θsca · sinϑ
. (3.15)

The following relations are additionally used:

c = cos 2η = 2 · cos2 η − 1, (3.16)

s = sin 2η = ±2 ·
√
(1− cos2 η) · cos η, (3.17)

where η represents both η1 or η2. The sign depends on the difference (φsca − φinc). When

0 ≤ (φsca−φinc) ≤ π, the ”+”sign is applied. When 0 ≤ (φinc−φsca) ≤ π, the ”−” sign should

be used. Furthermore, one should take limits when the denominator of Eqs. (3.14) and (3.15)
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Figure 3.3: Illustration of the three different planes of reference under discussion: (a) Reference
plane of the incident Stokes vector defined by the incident (θinc, φinc) and vertical directions (incident
meridian plane), (b) Scattering plane defined by the incident (θinc, φinc) and scattering directions
(θsca, φsca), and (c) Reference plane of the scattered Stokes vector defined by the scattering (θsca, φsca)
and vertical directions (scattering meridian plane).
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Figure 3.4: The geometry of anisotropic scattering: incident (θinc, φinc) and scattering (θsca, φsca)
directions. η1 and η2 are the rotation angles, and φinc and φsca are the azimuth angles of the incident
and scattering directions, respectively.

vanishes. Performing the matrix multiplication in the definition of the transformation phase

matrix and taking into account Eqs. (3.13) - (3.17) (omitting the scalar products between the

parameters) leads to the following analytical form:

Z̃(θinc, φinc; θsca, φsca) =


P̃11(ϑ) c1P̃12(ϑ) s1P̃12(ϑ) 0

c2P̃12(ϑ) c1c2P̃22(ϑ)− s1s2P̃33(ϑ) s1c2P̃22(ϑ) + c1s2P̃33(ϑ) s2P̃34(ϑ)

−s2P̃12(ϑ) −c1s2P̃22(ϑ)− s1c2P̃33(ϑ) −s1s2P̃22(ϑ) + c1c2P̃33(ϑ) c2P̃34(ϑ)

0 s1P̃34(ϑ) −c1P̃34(ϑ) P̃44(ϑ)


 . (3.18)

For polarization problems, the transformation phase matrix and not just the scattering phase

function describes the volumetric scattering process and must be used as the probability

density function to sample the new direction. Particularly, the PDF could be obtained from

the Stokes vector of the scattered EM wave ~Ssca (see Eq. 3.12). By integrating ~Ssca over the

solid angle (normalization), the cumulative joint probability density function of the scattering

zenith and azimuth angles is derived:

G (ϑ,ϕ) =

∫ 2π

0

∫ π

0

~Ssca · sin θ dϑ dϕ. (3.19)

Sampling the new direction from the physically correct cumulative PDF, G (ϑ,ϕ), is rather

complicated and leads to numerical problems. Therefore, a randomly chosen angle (between 0

and 2π) is utilized to derive the scattering azimuth angle ϕ and the first normalized scattering

matrix element (P̃11 = P, as in the scalar approach), that is given in discrete steps (with
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scattering angles ϑi), is used to obtain the scattering angle ϑ according to the precalculated

cumulative probability density function:

G
i−1 < ξ < G

i
with G

i
=

i∑

j=1

P̃11 (ϑj) ·∆Ω (ϑj) , (3.20)

where ∆Ω (ϑj) is the solid angle interval corresponding to a finite scattering angle interval

(ϑi,min, ϑi,max) with center angle ϑi, and ξ stands for a random number uniformly distributed

between 0 and 1. The exact scattering angle is then interpolated by:

ϑ = ϑi,min + t · ϑi,max, (3.21)

with,

t =
ξ −G

i−1

G
i
−G

i−1
. (3.22)

The following correction should be applied:

~Ssca = P̃−1
11 · Z̃ · ~Sinc. (3.23)

Whenever a scattering event takes place, ϑ is sampled from the phase function, replacing the

normalized transformation phase matrix Z̃ with the reduced matrix P̃−1
11 ·Z̃. This approach is

called importance sampling method (Collins et al., 1972; Marchuk et al., 1980; Emde et al.,

2010).

Once the scattering zenith and azimuth angles (ϑ,ϕ) are known, the new propagation direc-

tion (scattering direction), k̂sca(θsca, φsca), is calculated from k̂inc(θinc, φinc) (or k̂inc,0 in case

of the first scattering event) using the following formulas (Marchuk et al., 1980):

kxsca = kxinc · cos ϑ− (kyinc · sinϕ+ kxinc · kzinc · cosϕ) ·
√

1− cos2 ϑ

1− (kzinc)
2
, (3.24)

kysca = kyinc · cos ϑ+ (kxinc · sinϕ− kyinc · kzinc · cosϕ) ·
√

1− cos2 ϑ

1− (kzinc)
2
, (3.25)

kzsca = kzinc · cos ϑ+ (1− (kzinc)
2) · cosϕ ·

√
1− cos2 ϑ

1− (kzinc)
2
. (3.26)

3.2.5 Surface Reflection

In scalar radiative transfer theory, the surface contribution is given by the surface Bidirec-

tional Reflection Distribution Function (BRDF), explaining the way the incoming irradiance

from one direction (θinc, φinc) is reflected by a surface into the direction of reflection (sub-

script ”refl”) (θrefl, φrefl). The BRDF is given by the ratio of the reflected radiance over the

incoming irradiance (Marshak and Davis, 2005):
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BRDF(θinc, φinc; θrefl, φrefl) =
dI(θrefl, φrefl)

dF (θinc, φinc)
. (3.27)

In the vector scheme, the BRDF is replaced by the bidirectional polarized reflectance matrix,

describing polarization due to surface reflection.

SPARTA considers either isotropic reflection (Lambertian surface) or anisotropic ocean re-

flection as outlined by Mishchenko and Travis (1997). Lambertian reflection represents a

surface, which reflects isotropically and completely depolarizes the incident radiation. The

angular distribution of the reflected radiation is uniform and independent of the incident

direction and state of polarization. Considering a surface albedo of αL, the corresponding

reflection matrix is given by:

IRL =




aL 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


 . (3.28)

To consider anisotropic and polarizing ocean reflection, the code by Mishchenko and Travis

(1997) has been implemented into SPARTA. It calculates the reflection matrix for rough

water surfaces (IRocean) utilizing the Fresnel formulas. Considering the downward incident

k̂inc(θinc, φinc) and reflection directions k̂refl(θrefl, φrefl) and µ = cos θ, the IRocean is expressed

as follows:

IRocean(µrefl, µinc, φrefl − φinc) =

∣∣∣~kd

∣∣∣
4

4µrefl · µinc ·
∣∣∣k̂refl × k̂inc

∣∣∣
4

· (kzd)2 · 2s2
· exp(−W ) ·Mrefl,

(3.29)

where,

~kd = kxd · êx + kyd · êy + kzd · êz, (3.30)

denotes the surface normal vector for specular reflection of k̂inc to k̂refl. s
2 denotes the mean

square surface slope of the waves (Cox and Munk, 1954):

2s2 = 0.003 + 0.00512 · w, (3.31)

depending on the near–surface wind velocity w (in units of m s−1). In Eq. (3.29) the term

exp(−W ) represents the Gaussian distribution of the surface slope. W is given by:

W =
(kxd)

2 + (kyd)
2

2(kzd)
2 · s2 . (3.32)
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Mrefl is a 4×4 matrix based on the Fresnel formulas and the geometrical configuration. The

Fresnel formulas describe the reflection and refraction (transmission) of the EM wave when

travelling between media of different refractive indices, i.e., ñ1 and ñ2 (Wendisch and Yang,

2012). For example, the Fresnel coefficients for reflection of an EM wave polarized perpen-

dicular and parallel to the plane of reflection are given by:

r‖ =
ñ1 · cosΘ1 − ñ2 · cosΘ2

ñ1 · cosΘ1 + ñ2 · cosΘ2

, (3.33)

r‖ =
ñ2 · cosΘ1 − ñ1 · cosΘ2

ñ2 · cosΘ1 + ñ1 · cosΘ2
, (3.34)

where Θ1 and Θ2 are the incident and refracted angles with respect to the surface normal,

respectively. For further information about the Fresnel formulas and how to derive the Mrefl

elements the reader is referred to the literature (Mishchenko and Travis, 1997). Finally,

shadowing effects are implemented into the SPARTA code. Following Tsang and Li (2001),

in order to take the shadowing effects due to waves into account, the IR is multiplied by a

bidirectional shadowing function S(µrefl, µinc):

S(µrefl, µinc) =
1

1 + Λ(µrefl) + Λ(µinc)
, (3.35)

where

Λ(µrefl) =
1

2



√

2(1− µ2refl)

π
· s

µrefl
· exp

(
− µ2refl
2s2 · (1− µ2refl)

)
− erfc


 µrefl

s ·
√

2(1− µ2refl)




 .

(3.36)

erfc denotes the complementary error function.

3.2.6 Radiance Contribution and Local Estimate Method

In order to efficiently obtain accurate radiance calculations, reducing the noise for strongly

peaked phase matrices, the Local Estimate Method (LEM) has been applied (Collins et al.,

1972; Marchuk et al., 1980; Marshak and Davis, 2005). It accounts for the probability that

the photon is scattered into the direction of the sensor at each scattering process, always

considering the attenuation τ along the photon path according to the law of Bouguer–Beer.

A 2D representation of the scheme of the Local Estimate Method is found in Figure 3.5.

Thus, the simulated Stokes vector (carrying the units of radiance; resulting from each pixel)

is given by:

~S =
1

Nph

·
∑

Nph

∑

M

Z̃ (θinc, φinc; θdet, φdet)

4π
· exp (−τ)
cos(θdet)

, (3.37)



36 3. SPARTA

Θ

β
sca/ext

tot
,P

tot
, ɶω tot( )

θ
det
,φ
det( )

Figure 3.5: 2D representation of the scheme of the Local Estimate Method (see Figure 3.1): The red
lines illustrate the contribution of each scattering event considering the extinction, integrated over all
the grid–boxes on the way towards the direction of observation (θdet,φdet).

Z̃/4π represents the scattering probability density. Dividing by cos(θdet) accounts for the

slant area in the radiance definition. Consequently, the contribution should be summed over

all the scattering events M and the number of photons Nph, and normalized over Nph.

Finally, the following normalized radiance is obtained:

Normalized Radiance =
π · ~S

µ0 · F0 · (1 0 0 0)T
. (3.38)

The normalized radiance holds for both the reflectivity and transmissivity (depending on

the viewing direction). F0 · (1 0 0 0)T is the incident unpolarized extraterrestrial quasi–

monochromatic electromagnetic radiation (solar irradiance) with µ0 being the cosine of the

solar zenith angle.

3.2.7 SPARTA Efficiency

SPARTA is written in Fortran 90 and its performance has been tested on an Intel Core i7

processor with 2.6 GHz. The computation time (Central Processing Unit, CPU ) is mostly

dependent on the grid resolution of the model domain, the solar and viewing directions,

the phase matrix, and more importantly, on the optical thickness. Three realistic atmo-

spheric scenarios were considered. Simulations were performed for 1D standard atmospheres
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Table 3.1: Computation times for 10 individual simulations. Rayleigh scattering at λ = 325nm
wavelength, Rayleigh scattering at λ = 350nm, and mixed atmosphere (Rayleigh+ spheroids) at
λ = 350nm, for one viewing direction. The errors correspond to standard deviation.

Settings Rayleigh (325 nm) Rayleigh (350 nm) Mixed (350 nm)

104 photons 0.104 s (0.224%) 0.098 s (0.209%) 1.393 s (0.821%)
105 photons 0.618 s (0.110%) 0.550 s (0.106%) 1.897 s (0.488%)

(Anderson et al., 1986) at 325 nm and 350 nm wavelengths above a black non–scattering sur-

face. The model domain consists of 30 equidistant layers and is lifted to 30 km height. The

Rayleigh optical thickness is approximately 0.96 at 325 nm wavelength and 0.62 at 350 nm

wavelength. In case of aerosol scattering, prolate spheroidal particles with an optical thick-

ness of 0.2 were added (Gasteiger et al., 2011). The corresponding CPU times for the diffuse

upward radiation at TOA are listed in Table 3.1.
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4 SPARTA Verification

Benchmark results are available from plenty of sources including Coulson et al. (1960);

Garcia and Siewert (1986, 1989); Mishchenko (1991); Wauben and Hovenier (1992);

de Haan et al. (1987); Natraj et al. (2009); Kokhanovsky et al. (2010) among others. The

performance of SPARTA has been tested for various atmospheric conditions, involving ran-

domly oriented prolate spheroids (Wauben and Hovenier, 1992), as well as Rayleigh atmo-

spheres and aerosol layers (Kokhanovsky et al., 2010) with a black non–scattering surface.

The ability of SPARTA to correctly describe effects due to isotropic surface reflection was

checked by comparison to exact results from numerical solutions of the vector radiative

transfer equation (Natraj et al., 2009) and tabulated values from de Haan et al. (1987). In

addition, SPARTA participated in the model intercomparison project that the polariza-

tion working group of the International Radiation Commission (IRC) launched (Emde et al.,

2015). This chapter addresses our attempts to validate SPARTA and quantify its accuracy.

Results and Figures presented in this chapter were published in Barlakas et al. (2014, 2016)

and Emde et al. (2015).

4.1 Comparison Against Benchmark Results

4.1.1 Rayleigh Scattering Above a Lambertian Surface

For a single Rayleigh layer above Lambertian surfaces, SPARTA was validated against data

from Natraj et al. (2009). These data have been computed utilizing a more accurate approach

to the representation of the X and Y functions introduced in Chandrasekhar (1960) and

Coulson et al. (1960). The values of the Stokes vector involve a set of different optical

thicknesses (0.02 - 1.0), surface albedos (0 - 0.8), solar zenith angles θ0 and viewing zenith

angles θdet (0
◦ - 88.85◦), and relative azimuth angles (azimuth angle between sun direction

and viewing direction), φ = φdet − φ0, (0
◦ - 180◦). In this work, the solar azimuth angle is

set to zero and, therefore, φ = φdet.

Four test cases were defined with special emphasis on surface reflection, starting from an

optically thin atmosphere (τ = 0.02) to thicker cases (τ = 1). A concise description of the

test cases is given in Table 4.1, where µ0 = cos θ0 is the cosine of the solar zenith angle,

µdet = cos θdet is the cosine of the zenith angle of the detector, φ is the relative azimuth

angle, αL is the surface albedo, and TOA and BOA (Bottom Of the Atmosphere) refer to

the output altitudes.

Simulations were conducted for homogeneous, plane-parallel, Rayleigh layers, molecular ab-

sorption was not considered. The number of photons used for all test cases was 108. Results
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Table 4.1: Test cases for comparison between SPARTA and the tabulated values by Natraj et al.
(2009) for pure molecular scattering. τ is the optical thickness, µ0 is the cosine of the solar zenith
angle, µdet is the cosine of the zenith angle of the detector, φ is the relative azimuth angle, αL is the
surface albedo, and TOA and BOA refer to the output altitude, top of the atmosphere and bottom
of the atmosphere respectively. Principal plane: fixed azimuth angle but varying zenith angles.
Almucantar plane: fixed zenith angle but varying azimuth angles.

Case τ µ0 µdet φ αL Altitude

1 0.02 0.92 0.4 almucantar 0.00, 0.25, 0.80 TOA
2 0.10 0.80 principal 90 0.00, 0.25, 0.80 TOA & BOA
3 0.50 0.80 principal 90 0.00, 0.25, 0.80 TOA & BOA
4 1.00 1.00 principal 0 0.00, 0.25, 0.80 TOA & BOA

were obtained by 10 individual Monte Carlo simulations. The Rayleigh scattering phase

matrix is given without the depolarization factor (see blue line in Figure 4.1) by:

P̃(ϑ) =
3

4




1 + cos2 ϑ cos2 ϑ− 1 0 0

cos2 ϑ− 1 1 + cos2 ϑ 0 0

0 0 2 cos ϑ 0

0 0 0 2 cos ϑ


 . (4.1)

In Figure 4.2 results for Case 1 are presented, which is a test for appropriate surface reflection.

The three left panels correspond to the Stokes vector for the diffuse upward radiation at the

TOA. The three right panels depict the relative differences in percent of SPARTA results for

the Stokes vector as related to the benchmark results. Note that the fourth Stokes parameter

is zero for molecular scattering, and it disappears at φ of 0◦ and 180◦. The absolute value

of the relative differences is less than 0.05% for I, and up to 0.08% for Q and U . The

comparison for the Case 1 confirms that the Lambertian surface has been implemented

correctly. The results for the test Cases 2 - 4 are illustrated in Figures 4.3 to 4.8. They

compare the Stokes parameters for the diffuse radiation for both the BOA and the TOA for

two solar zenith angles (0◦ and 36.87◦), and two φ (0◦ and 90◦) in the principal plane. The

relative differences are less than ±0.15% for I, and less than ±0.18% and ±0.05% for Q

and U for all test cases.

4.1.2 Layered Cloud and Haze Atmospheres

De Haan et al. (1987) report benchmark results using the adding and doubling approach,

where a set of two scattering problems has been investigated. The first scattering case

considers a homogeneous plane–parallel atmosphere with a layer of water–haze droplets,

optical thickness of 1, above a black surface. They selected the haze droplets introduced

in Deirmendjian (1969), whose scattering phase matrix expansion coefficients have been

provided by de Rooij and van der Stap (1984), also used by Brown and Xie (2012). The

second case includes an inhomogeneous atmosphere with an optical thickness of 0.6, which

is composed of two homogeneous layers and a Lambertian surface albedo of 0.1. The upper

layer consists of molecules only (no absorption) with an optical thickness of 0.1. The lower
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one consists of a mixture of haze droplets and molecules with an optical thickness of 0.4 and

0.1, respectively.

To consider Rayleigh scattering, the full scattering phase matrix representation has been

used, see Eq. (4.2) and Hansen and Travis (1974); Emde et al. (2010), whereby a depolar-

ization factor (δ) of 0.0279 was selected, that corresponds to air molecules (Chandrasekhar,

1960). The phase matrix elements for both particles are shown in Figure 4.1.

P̃(ϑ) =
3

3 + ∆




1 + ∆ · cos2 ϑ −∆ · sin2 ϑ 0 0

−∆ · sin2 ϑ ∆ · (1 + cos2 ϑ) 0 0

0 0 2∆ · cos ϑ 0

0 0 0 (3∆ − 1) · cosϑ


 , (4.2)

where

∆ =
1− δ

1 + δ
. (4.3)
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Figure 4.1: Scattering phase matrix elements for the aerosol case and for two different molecular
scattering cases. For the first Rayleigh scattering case, the depolarization factor was set to zero and
for the second, the number 0.0279 was adopted, which represents air.
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Figure 4.2: Comparison between SPARTA and the tabulated values by Natraj et al. (2009) for Case
1, test for surface reflection (αL = 0, 0.25, 0.8). Optically thin atmosphere (τ = 0.02), µ0 = 0.92,
and φ = 90◦. Left: Stokes vector at the TOA (line - Natraj, circles - SPARTA). Right: Relative
differences in percent of SPARTA as correlated to the benchmark results.
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Figure 4.3: Comparison between SPARTA and the tabulated values by Natraj et al. (2009) for Case
2, for τ = 0.1, µ0 = 0.8, φ = 90◦, and αL = 0, 0.25, 0.8. Left: Stokes vector at the TOA (line -
Natraj, circles - SPARTA). Right: Relative differences in percent of SPARTA as correlated to the
benchmark results.
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Figure 4.4: The same as in Figure 4.3, but for the Stokes vector at the BOA.
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Figure 4.5: Comparison between SPARTA and the tabulated values by Natraj et al. (2009) for Case
3, for τ = 0.5, µ0 = 0.8, and φ = 90◦. Left: Stokes vector at the TOA (line - Natraj, circles -
SPARTA). Right: Relative differences in percent of SPARTA as correlated to the benchmark results.
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Figure 4.6: The same as in Figure 4.5, but for the Stokes vector at the BOA.
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Figure 4.7: Comparison between SPARTA and the tabulated values by Natraj et al. (2009) for Case
4, for τ = 0.5, µ0 = 1, and φ = 0◦. Left: Stokes vector at the TOA (line - Natraj, circles - SPARTA).
Right: Relative differences in percent of SPARTA as correlated to the benchmark results.

The results of the comparison between the tabulated values by de Haan et al. (1987) and

those calculated by SPARTA is compiled in Tables 4.2 - 4.5. They show the Stokes param-

eters for the reflected diffuse radiation at the TOA. The errors correspond to two standard

deviations (2σ), resulting from 10 individual simulations.

The relative differences of SPARTA for all the components of the Stokes vector as compared

to the tabulated values have also been computed. Values of the Stokes components close to

zero are left out as they can artificially boost large relative differences. For the homogeneous

case, the relative differences are less than ±0.096% for the first Stokes element, less than

±0.39% for Q, and up to ±0.45% for U . The relative differences for the inhomogeneous

scattering case are less than ±0.056% for the first Stokes element, ±0.64% for the second

Stokes element, and ±0.008% for the third element. For V , the absolute values of the

relative differences for both the homogeneous and inhomogeneous cases are ±2.71% and

±1.55%, respectively (values of V bellow 0.00005 were ignored). This is due to the fact

that the Monte Carlo method results are always subject to statistical uncertainty. The

smaller the value of the Stokes vector the larger the notable Monte Carlo noise. In order

to ameliorate such noise and precisely determine V , more than 1010 photons should be used

for the simulations (increasing computation time) or variance reduction techniques should be



4.1. Comparison Against Benchmark Results 47

Table 4.2: Comparison between SPARTA and the benchmark results by de Haan et al. (1987).
Stokes vector for a homogeneous layer of water–haze droplets in the reflected diffuse radiation at
the TOA. The cosine of the solar zenith angle is 0.5 and the cosines of the three viewing directions
are µdet = 0.1, 0.5, 1.0. The viewing zenith angles φdet are 0◦ and 30◦. No ground reflection. The
errors correspond to two standard deviations (2σ).

µ0 = 0.5 µdet = 0.1 µdet = 0.5 µdet = 1.0

φdet = 0◦ de Haan SPARTA de Haan SPARTA de Haan SPARTA

I 1.10269 1.10331 ± 0.00070 0.31943 0.31953 ± 0.00010 0.03303 0.03303 ± 0.00003
Q 0.00460 0.00461 ± 0.00001 −0.00288 −0.00288 ± 0.00000 −0.00298 −0.00298 ± 0.00000
U 0.00000 0.00000 ± 0.00001 0.00000 0.00000 ± 0.00000 0.00000 0.00000 ± 0.00000
V 0.00000 0.00000 ± 0.00000 0.00000 0.00000 ± 0.00000 0.00000 0.00000 ± 0.00000

φdet = 30◦ de Haan SPARTA de Haan SPARTA de Haan SPARTA

I 0.66414 0.66438 ± 0.00067 0.25209 0.25215 ± 0.00019 0.03303 0.03304 ± 0.00003
Q 0.00030 0.00030 ± 0.00001 −0.00144 −0.00144 ± 0.00000 −0.00149 −0.00149 ± 0.00000
U −0.00277 −0.00276 ± 0.00002 −0.00414 −0.00414 ± 0.00001 −0.00258 −0.00258 ± 0.00000
V 0.00004 0.00004 ± 0.00000 0.00002 0.00002 ± 0.00000 0.00000 0.00000 ± 0.00000

Table 4.3: As in Table 4.2 but the cosine of the solar zenith angle is 0.1.
µ0 = 0.1 µdet = 0.1 µdet = 0.5 µdet = 1.0

φdet = 0◦ de Haan SPARTA de Haan SPARTA de Haan SPARTA

I 2.93214 2.93314 ± 0.00057 0.22054 0.22075 ± 0.00005 0.00929 0.00929 ± 0.00000
Q 0.00990 0.00987 ± 0.00000 0.00098 0.00098 ± 0.00000 −0.00082 −0.00082 ± 0.00000
U 0.00000 0.00000 ± 0.00000 0.00000 0.00000 ± 0.00000 0.00000 0.00000 ± 0.00000
V 0.00000 0.00000 ± 0.00000 0.00000 0.00000 ± 0.00000 0.00000 0.00000 ± 0.00000

φdet = 30◦ de Haan SPARTA de Haan SPARTA de Haan SPARTA

I 0.76910 0.76969 ± 0.00015 0.13283 0.13293 ± 0.00003 0.00929 0.00929 ± 0.00001
Q −0.00376 −0.00376 ± 0.00001 0.00022 0.00022 ± 0.00000 −0.00041 −0.00041 ± 0.00000
U 0.00314 0.00313 ± 0.00000 −0.00053 −0.00052 ± 0.00000 −0.00071 −0.00071 ± 0.00000
V 0.00001 0.00001 ± 0.00000 0.00001 0.00001 ± 0.00000 0.00000 0.00000 ± 0.00000

Table 4.4: Comparison between SPARTA and the benchmark results by de Haan et al. (1987).
Stokes vector for an inhomogeneous atmosphere of molecules and water–haze droplets in the re-
flected diffuse radiation at the TOA above a Lambertian surface with an albedo of 0.1. The cosine
of the solar zenith angle is 0.5 and the cosines of the three viewing directions are µdet = 0.1, 0.5, and
1.0. The viewing zenith angles φdet are 0

◦ and 30◦. The errors correspond to two standard deviations
(2σ).

µ0 = 0.5 µdet = 0.1 µdet = 0.5 µdet = 1.0

φdet = 0◦ de Haan SPARTA de Haan SPARTA de Haan SPARTA

I 0.53295 0.53321 ± 0.00017 0.20843 0.20851 ± 0.00006 0.09368 0.09370 ± 0.00003
Q −0.02834 −0.02835 ± 0.00004 −0.03630 −0.03630 ± 0.00002 −0.02416 −0.02416 ± 0.00001
U 0.00000 0.00001 ± 0.00004 0.00000 0.00000 ± 0.00001 0.00000 0.00000 ± 0.00000
V 0.00000 0.00000 ± 0.00000 0.00000 0.00000 ± 0.00000 0.00000 0.00000 ± 0.00000

φdet = 30◦ de Haan SPARTA de Haan SPARTA de Haan SPARTA

I 0.41814 0.41823 ± 0.00016 0.18497 0.18501 ± 0.00007 0.09368 0.09369 ± 0.00002
Q −0.00006 −0.00006 ± 0.00004 −0.01965 −0.01965 ± 0.00002 −0.01208 −0.01208 ± 0.00001
U −0.07311 −0.07311 ± 0.00004 −0.04140 −0.04140 ± 0.00002 −0.02092 −0.02092 ± 0.00001
V 0.00011 0.00011 ± 0.00000 0.00004 0.00004 ± 0.00000 0.00000 0.00000 ± 0.00000
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Table 4.5: As in Table 4.4 but the cosine of the solar zenith angle is 0.1.
µ0 = 0.1 µdet = 0.1 µdet = 0.5 µdet = 1.0

φdet = 0◦ de Haan SPARTA de Haan SPARTA de Haan SPARTA

I 0.52277 0.52297 ± 0.00007 0.10659 0.10665 ± 0.00002 0.02601 0.02601 ± 0.00000
Q 0.01151 0.01150 ± 0.00002 −0.00519 −0.00519 ± 0.00001 −0.01498 −0.01498 ± 0.00000
U 0.00000 0.00000 ± 0.00001 0.00000 0.00000 ± 0.00000 0.00000 0.00000 ± 0.00000
V 0.00000 0.00000 ± 0.00000 0.00000 0.00000 ± 0.00000 0.00000 0.00000 ± 0.00000

φdet = 30◦ de Haan SPARTA de Haan SPARTA de Haan SPARTA

I 0.27630 0.27639 ± 0.00006 0.08363 0.08366 ± 0.00002 0.02601 0.02601 ± 0.00001
Q 0.03437 0.03438 ± 0.00002 0.00384 0.00384 ± 0.00001 −0.00749 −0.00749 ± 0.00000
U −0.01604 −0.01605 ± 0.00001 −0.01449 −0.01449 ± 0.00001 −0.01298 −0.01298 ± 0.00000
V 0.00003 0.00003 ± 0.00000 0.00002 0.00002 ± 0.00000 0.00000 0.00000 ± 0.00000

implemented (truncation techniques Rozanov and Lyapustin, 2010; Buras and Mayer, 2011).

Variance reduction techniques may speed up simulations; however, they are not based on

physics.

The comparisons demonstrated that SPARTA represents multiple–scattering and surface

reflection with high accuracy and is capable of calculating polarization radiances for different

atmospheric conditions.
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Figure 4.8: The same as in Figure 4.7, but for the Stokes vector at the BOA.
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4.1.3 Homogeneous Aerosol and Cloudy Atmospheres

Kokhanovsky et al. (2010) present the findings of the model intercomparison project compris-

ing seven vector radiative transfer models, including the cases of Rayleigh, aerosol and cloudy

atmospheres with a black non–scattering surface. The benchmark data have been generated

using SCIATRAN (Rozanov et al., 2005; Rozanov and Kokhanovsky, 2006; Rozanov et al.,

2014), which is a software package based on the DOM. Simulations were conducted for 1D

non–absorbing (single–scattering albedo of 1), homogeneous, plane–parallel layers assuming

a molecular and aerosol optical thickness of 0.3262, a cloud optical thickness of 5, and a

black underlying surface (the surface albedo is 0).

In Barlakas et al. (2014), SPARTA was validated through Kokhanovsky et al. (2010) bench-

mark data for the first two cases (Rayleigh and aerosol layers). The results were obtained by

individual Monte Carlo simulations. In this thesis, the accuracy of SPARTA is quantified for

the last two cases (aerosol particles and cloud layers) because a comprehensive validation for

molecular atmosheres was carried out in Subsection 4.1.1. For the aerosol particle layer, 108,

and for the cloudy case 109 photons were used. The aerosol and cloud particle scattering

phase matrices were calculated employing Mie theory (Mie, 1908) at λ = 412 nm wavelength.

The complex scattering phase matrices are shown in Figure 4.9.

In Figure 4.10, the Stokes vector for the aerosol case in the reflected (left panels) and trans-

mitted (right panels) diffuse radiation, pertaining to a solar zenith angle of 60◦, a relative

azimuth angle (φ) of 0◦, 90◦, and 180◦ and different viewing zenith angles is presented. Note

here that for φ of 0◦ and 180◦ the third and fourth Stokes elements are 0. In addtion, a

relative azimuth angle of 0◦ corresponds to the exact backscattering direction. The com-

parison for the cloud case linked to a φ of 90◦ is illustrated in Figure 4.11. For the aerosol

atmosphere, there is an excellent agreement between SPARTA and the output from SCIA-

TRAN for I, Q, U . However, for the last Stokes element, V , a slight noise is identified (for

scattering angles close to 90◦, Figure 4.10). Similar results are found in the comparison for

the thick cloud layer. Particularly, the strongly peaked cloud scattering phase matrix (see

Figure 4.9) increases the noise in radiance simulations for V (and even for U with increasing

viewing zenith angle) (Figure 4.11). Nevertheless, there is no bias, and the strong forward

scattering peak is correctly represented.

The relative differences of SPARTA for the first three components of the Stokes vector

as compared to the benchmark results were also calculated. The last Stokes element was

excluded since its very small values (less than 0.0001 for the aerosol and below 0.00006 for

the cloud particles) lead to artificial large relative differences. In addition, where the values

of the other components of the Stokes vector tend to zero are ignored. The comparison for

both case studies for the reflected and transmitted radiation is shown in Table 4.6. Only the

maximum relative differences in percent, over the entire spectrum of the viewing directions,

are listed. SPARTA yields precise results for I, Q, U for the aerosol layer. The maximum

relative differences are less than ±0.43% for I, ±1.38% for Q (or less than ±0.82% excluding

the observation zenith angle of 89◦), and ±0.87% for U , for the used number of photons 108.

For the cloud layer, these differences are less than ±0.51% for I, and ±5.41% for Q (or below

±3.86% excluding the observation zenith angles between 63◦ and 82◦, where the values of
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Figure 4.9: Scattering phase matrix elements for the aerosol and cloud cases.

Table 4.6: Comparison between SPARTA and SCIATRAN. Maximum relative differences in percent,
over the whole spectrum of the viewing directions, for the first three Stokes components (I, Q, U)
for the aerosol and cloud cases, for both the reflected (TOA) and transmitted (BOA) radiation.

Aerosol Cloud

Altitude I Q U I Q U

TOA ±0.43 ±1.38 ±0.87 ±0.24 ±5.41 ±3.59
BOA ±0.32 ±0.82 ±0.46 ±0.51 ±3.86 ±5.19

Q are close to 0, see left panels in Figure 4.11), and ±5.19% for U . For U , and more

importantly, for V the selected number of photons, 109, were not sufficient to diminish the

noise in MC simulations. For such strongly peaked scattering phase matrices, more than

1010 photons, should be employed (Kokhanovsky et al., 2010).

4.2 Model Intercomparison Project

SPARTA participated in the model intercomparison project that the International Polar-

ized Radiative Transfer (IPRT) working group of the International Radiation Commission
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Figure 4.10: The Stokes vector for the aerosol layer in the reflected (left panels) and transmitted
(right panels) radiation (straight lines - SCIATRAN, dashed lines - SPARTA). The solar zenith angle
is 60◦ and the φ are 0◦, 90◦, and 180◦.
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Figure 4.11: The same as in Figure 4.10, but for the cloud case.
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launched (Emde et al., 2015). Six polarized radiative transfer models took part in this

project, namely 3DMCPOL, IPOL, MYSTIC, Pstar, SHDOM, and SPARTA. Their basic

features are listed in Section 2.9 (see Table 2.1); The aim of this project centers on provid-

ing benchmark results for a wide range of scenarios involving aerosol particles with realistic

scattering phase matrices, polarizing ocean reflection and standard multi–layer atmospheres.

Ten cases were considered:

A) Scenarios involving single–layers:

• A1 - Rayleigh scattering.

• A2 - Rayleigh scattering above a Lambertian surface.

• A3 - Spherical aerosol particles.

• A4 - Spheroidal aerosol particles.

• A5 - Liquid water cloud.

• A6 - Rayleigh scattering above an ocean surface.

B) Scenarios involving multi–layers:

• B1 - Rayleigh scattering for a standard atmosphere.

• B2 - Rayleigh scattering and absorption for a standard atmosphere.

• B3 - Aerosol profile and standard atmosphere.

• B4 - Standard atmosphere with a cloud layer above an ocean surface.

For further information about the test cases and the performance of the intercom-

pared models the reader is referred to (Emde et al., 2015) and the IPRT webpage

(http://www.meteo.physik.uni-muenchen.de/∼iprt/doku.php).

The performance of SPARTA in this intercomparison was excellent, considering the noise

of the Monte Carlo technique in radiance simulations. The major comparison is compiled

in Tables 4.7 and 4.8 for the single–layer and multi–layer scenarios, respectively; tables are

adopted from Emde et al. (2015). They tabulate the relative root mean square differences in

percent between MYSTIC and SPARTA over the whole spectrum of the viewing directions

(for the diffuse radiation for both the BOA and the TOA). For the scenarios involving single–

layers, these differences are less than 0.2% for I and up to 2.9% for Q and U , dominated

by case A5 due to the strong forward peak of the phase function of the water cloud droplets

(see Figure 4.12) (less than 0.14% for I, 0.36% for Q, and 0.27% for U if A5 is excluded).

Likewise, for the multi–layer cases, the corresponding differences are up to 0.3% for I, and

up to 4.4% for Q and U , but excluding the most demanding case of cloud layer above ocean

surface, namely B4, these differences are less than 0.08% for the first three Stokes elements.

The number of photons selected for all the scenarios in this intercomparison was 108; results

were obtained by individual Monte Carlo simulations.

In this work, the discussion will focus on atmospheric conditions not considered so far in this

chapter, namely, spheroidal particles, ocean reflection, and standard atmospheres including



54 4. SPARTA Verification

Table 4.7: Comparison between SPARTA and MYSTIC. Relative root mean square differences in
percent for the single–layer scenarios. Columns A5pppart, A5

al
part denote the relative root mean square

differences excluding viewing angles between 0◦ and 10◦ (solar aureole); subscripts ”pp”and ”al” stand
for the principal and almucantar planes. Abbreviation: n/a - not available.

SPARTA A1 A2 A3 A4 A5pp A5pppart A5al A5alpart A6

I 0.088 0.011 0.051 0.027 0.183 0.198 0.213 0.143 0.146
Q 0.367 0.055 0.120 0.041 2.256 1.725 2.050 2.011 0.152
U 0.275 0.042 0.084 0.060 n/a n/a 2.928 2.881 0.231
V n/a n/a 0.639 2.607 n/a n/a 67.027 64.972 n/a

Table 4.8: The same as in Table 4.7, but for the multi–layer scenarios. Columns B3part, B4part
denote the relative root mean square differences excluding viewing angles between 0◦ and 10◦ (solar
aureole). Abbreviation: n/a - not available.

SPARTA B1 B2 B3 B3part B4 B4part
I 0.020 0.013 0.055 0.026 0.344 0.326
Q 0.030 0.029 0.071 0.045 3.710 2.699
U 0.023 0.023 0.064 0.036 4.368 2.856
V n/a n/a 1.982 1.439 182.181 88.770

molecular absorption (i.e., A4, A6, B2, B3, and B4). The scattering phase matrix elements

for the three kind of particles (i.e., Rayleigh, spheroidal particles, water cloud droplets)

considered in this section are found in Figure 4.12. In addition, the comparison will be re-

stricted on the difference between SPARTA and MYSTIC. Note that for all cases normalized

radiances are compared according to (not as in Eq. 3.38):

Normalized Radiance =
~S

F0 · (1 0 0 0)T
. (4.4)

4.2.1 A4 - Spheroidal Aerosol Particles

The normalized Stokes vector in the reflected (upward at the TOA) and transmitted (down-

ward at the BOA) radiation for a single–layer atmosphere containing randomly-oriented

prolate spheroids has been calculated. No molecules were considered. The optical prop-

erties for the prolate spheroidal particles were derived at 350 nm wavelength as outlined

by Gasteiger et al. (2011), utilizing the T–matrix (Mishchenko and Travis, 1997) and ge-

ometric optics (Yang et al., 2007) codes. The corresponding scattering phase matrix, de-

scribed by Eq. (3.11), is illustrated by the black line in Figure 4.12. Computations involved

an optical thickness of 0.2, a single–scattering albedo (ω̃) of 0.787581, a solar position of

(θ0 = 40◦, φ0 = 0◦), and a black non–scattering surface (surface albedo of 0); a set of differ-

ent viewing zenith angles θdet (0
◦ - 80◦ at BOA, and 100◦ - 180◦ at TOA with 5◦ increment),

and relative azimuth angles (0◦ - 180◦ with 5◦ increment) was selected. Note that MYSTIC

follows the opposite convention for both the viewing zenith (with respect to the downward

normal) and azimuth (anti–clockwise direction) angles as compared to SPARTA (see Sub-
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Figure 4.12: Phase matrix elements for the spheroidal aerosol particles, water cloud droplets (spher-
ical), and molecular scattering (with a depolarization factor of 0.03) considered in cases A4, A6, B2,
B3, and B4.

section 3.2.1), meaning the reflection and transmission definitions are reversed and the sign

of the third and fourth Stokes components (U , V ) are opposite.

In Figure 4.13, results are presented for three φ (0◦, 45◦, and 90◦). The left panels show the

normalized Stokes vector for the diffuse upward radiation at the TOA as a function of θdet,

and the right panels illustrate the absolute differences between SPARTA and MYSTIC. Note

that for φ of 0◦, U and V are zero.

The radiation field in the left plots illustrates the agreement between the models. The lines lie

exactly on top of each other. For the last Stokes component, V , the curves could be slightly

distinguished from one another. This can be explained by the very small values of circular

polarization V (note the difference in magnitudes between the Stokes elements). Increasing

the used number of photons will improve the accuracy in simulations. The right panels

quantify the level of agreement between SPARTA and MYSTIC. For the first three Stokes

components these differences are about three orders of magnitude less than the corresponding

Stokes values. In particular, the relative root mean square differences are less than 0.06%

for the I, Q, and U and about 2.6% for the last component V (see Table 4.7).
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Figure 4.13: Comparison between SPARTA and MYSTIC for case A4: Spheroidal aerosol particles,
τ = 0.2, ω̃ = 0.787581, a solar position of (θ0 = 40◦, φ0 = 0◦), φ of 0◦, 45◦, and 90◦, and αL = 0.
Left: Normalized Stokes vector at the TOA (straight lines - MYSTIC, dashed lines - SPARTA). Right:
Absolute differences between SPARTA and MYSTIC.
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4.2.2 A6 - Rayleigh Scattering Above an Ocean Surface

To describe effects owing to anisotropic and polarizing ocean reflection, simulations were run

for a single Rayleigh layer with an optical thickness of 0.1, pertaining to a solar position

of (θ0 = 45◦, φ0 = 0◦) above rough water surface. Towards this direction, the code by

Mishchenko and Travis (1997) has been employed, calculating the reflection matrix for water

surfaces utilizing the Fresnel formulas (see Subsection 3.2.5). The complex index of refraction

in case of water is ñ = 1.33 + 0 · i, and the near–surface wind speed was set to 2m s−1. The

Rayleigh scattering phase matrix was interpreted in the analytical form, see Eq. (4.2), and

a depolarization factor of 0.03 was used (red line in Figure 4.12). Molecular absorption was

switched off.

The comparison between SPARTA and MYSTIC for the case of ocean reflection is depicted in

Figure 4.14. It corresponds to the diffuse Stokes vector in the reflected radiation. Likewise

the previous case (Figure 4.13), there is a very good agreement between the two models,

their lines are coincident. Looking at the Table 4.7, the relative root mean square differences

are less than 0.23% for the Stokes vector (V is zero due to molecular scattering.) This

case indicates that ocean reflection has been implemented correctly in SPARTA. Note that

the phenomenon sunglint has been also reproduced by both models for a φ of 0◦. This

phenomenon occurs when the sun (here with a position of (θ0 = 45◦, φ0 = 0◦)) reflects off

the ocean surface at the exact same angle at which the detector is observing the surface.

However, the sunglint is not observed for a viewing angle of 45◦, since water surface cannot

be smooth, but rather rough.

4.2.3 B2 - Rayleigh Scattering and Absorption for a Standard Atmosphere

This scenario is a proper test for molecular absorption. The 1D fields of scattering and

absorption coefficients have been generated at 325 nm wavelength for a US–standard model

atmosphere (Anderson et al., 1986). The model atmosphere consists of 30 equidistant layers

and is lifted to 30 km height. Only molecular scattering has been considered, whereby a

depolarization factor of 0.03 has been selected, and the surface albedo was set to 0 (ideal

absorbing surface). The solar position is (θ0 = 60◦, φ0 = 0◦).

Figure 4.15 depicts the results for the Rayleigh multi–layer atmosphere underlying a black

non–scattering surface for the transmitted radiation at the BOA. As for the cases of single–

layer setups, an outstanding agreement between SPARTA and MYSTIC is noticed. By

quantifying their accord, deviations of only up to 0.03% for the first three Stokes elements

were calculated (see Table 4.8). The bottom line is that molecular absorption is considered

correctly in SPARTA.

4.2.4 B3 - Aerosol Profile and Standard Atmosphere

This case is the subsequent next step after the scenario B2, meaning in a standard Rayleigh

atmosphere (with a depolarization factor of 0.03) including molecular absorption, with scat-

tering and absorption coefficients calculated at 350 nm wavelength, a profile of aerosol par-
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Figure 4.14: Comparison between SPARTA and MYSTIC for case A6: Rayleigh scattering above
an ocean surface, τ = 0.1, ω̃ = 1, a solar position of (θ0 = 45◦, φ0 = 0◦), and φ of 0◦, 45◦, and
90◦. Left: Normalized Stokes vector at the TOA (straight lines - MYSTIC, dashed lines - SPARTA).
Right: Absolute differences between SPARTA and MYSTIC.
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Figure 4.15: Comparison between SPARTA and MYSTIC for case B2: Rayleigh scattering and
absorption for a standard atmosphere at 325nm wavelength, a solar position of (θ0 = 60◦, φ0 = 0◦),
φ of 0◦, 45◦, and 90◦, and αL = 0. Left: Normalized Stokes vector at the BOA (straight lines -
MYSTIC, dashed lines - SPARTA). Right: Absolute differences between SPARTA and MYSTIC.
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ticles has been added (Emde et al., 2015). The aerosol microphysical properties correspond

to prolate spheroidal particles, adopted from Subsection 4.2.1.

Results are presented for the downward radiation field (transmission at the BOA) for a solar

position of (θ0 = 30◦, φ0 = 0◦), three φ (0◦, 45◦, and 90◦), and a black underlying surface

(see Figure 4.16). In the same way, there is an exceptional concurrence between the models,

their outputs cannot be told apart.

Both models can represent the strong forward peak of the scattering phase function of the

ensemble of spheroidal particles (see the black line in the P11 plot of Figure 4.12); it is

illustrated in the I component of the Stokes vector. Table 4.8 outlines that the largest

deviation between SPARTA and MYSTIC is 0.071% for the first three Stokes components,

or 0.045% if the solar aureole is excluded (viewing directions between 0◦ and 10◦). For V

the differences are about 2% (or 1.5% without the solar aureole regime).

4.2.5 B4 - Standard Atmosphere with a Cloud Layer Above an Ocean Surface

The final and most complicated scenario, with high demands in computation power for the

Monte Carlo models, involves a standard molecular atmosphere with a cloud layer underly-

ing ocean reflection. For Rayleigh scattering, a depolarization factor of 0.03 was considered;

molecular absorption was excluded. For ocean reflection, the same definitions and settings as

in Subsection 4.2.2 were adopted, meaning refractive index of ñ = 1.33+0·i, representing wa-
ter, and near–surface wind speed of 2m s−1. The cloud layer is characterized with an optical

thickness of 5 and stretches between 2 and 3 km height. The cloud microphysical properties,

representing water cloud droplets (spherical) with an effective radius of 10 µm, have been

calculated utilizing Mie theory at 800 nm wavelength (libRadtran package Wiscombe, 1980;

Mayer and Kylling, 2005). The resulting scattering phase matrix is depicted by the blue line

in Figure 4.12.

Figures 4.17 and 4.18 illustrate the full Stokes vector for the diffuse radiation at the BOA

and the TOA, respectively, considering a solar position of (θ0 = 60◦, φ0 = 0◦), and relative

azimuth angles of 0◦, 45◦, and 90◦. Here, the largest deviations were observed. Starting

from surface transmittance, left panels of Figure 4.17, SPARTA and MYSTIC agree very

well for I, even for the strong forward peak of the phase function of the water cloud droplets.

However, for the other Stokes components (Q, U , and V ), we can clearly observe the Monte

Carlo noise; especially for V . For this Stokes component, the MC noise in SPARTA is at the

same magnitude or even larger than its actual values.

Despite this, no systematic error was found; it is clearly the statistical uncertainty of the

MC technique. In the right panels, the differences between the models are shown. These

differences are about two orders of magnitude less than the corresponding Stokes values for

Q and U , but at the same magnitude for V . In the same direction are the findings for

the normalized Stokes vector for the upward diffuse radiation at the TOA. Going back to

Table 4.8, the relative root mean square differences are 0.34% for the I, and in the range

of 3 - 4% for linear polarization (Q, U). These differences are slightly decreased, providing

that the solar aureole is excluded (0.32% for I, and between 2 - 3% for Q and U).
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Figure 4.16: Comparison between SPARTA and MYSTIC for case B3: Aerosol profile of spheroidal
particles and a standard atmosphere at 350 nm wavelength, a solar position of (θ0 = 30◦, φ0 = 0◦),
φ of 0◦, 45◦, and 90◦, and αL = 0. Left: Normalized Stokes vector at the BOA (straight lines -
MYSTIC, dashed lines - SPARTA). Right: Absolute differences between SPARTA and MYSTIC.
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Figure 4.17: Comparison between SPARTA and MYSTIC for case B4: Standard atmosphere with a
cloud layer above an ocean surface at 800nm wavelength, a solar position of (θ0 = 60◦, φ0 = 0◦), and
φ of 0◦, 45◦, and 90◦. Left: Normalized Stokes vector at the BOA (straight lines - MYSTIC, dashed
lines - SPARTA). Right: Absolute differences between SPARTA and MYSTIC.
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Figure 4.18: The same as in Figure 4.17, but for the Stokes vector at the TOA.
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Recall that for all the cases of this intercomparison 108 photons were used; results were pro-

duced from individual simulations. For such demanding scenarios and particles with rather

asymmetric phase matrix, more than 109 photons should be employed for the simulations

(see the cloud case in Subsection 4.1.3).
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5 Applications

While in Chapters 3 and 4 a new three–dimensional vector radiative transfer model is in-

troduced and validated (respectively), in this chapter, this new tool is employed to quantify

polarization effects in the field of remote sensing. Solar radiative transfer simulations for

LIDAR–measured fields of optical properties of Saharan dust have been performed in order

to quantify the polarization effects induced by neglecting the horizontal photon transport

and internal inhomogeneities in radiance simulations. Results are presented for two LIDAR–

based measurement cases. In addition, a sensitivity study has been carried out to illustrate

the effects prompted by ignoring polarization in radiance simulations for a pure 1D Rayleigh

atmosphere. The effects of polarization for a realistic 2D scenario are also discussed. Parts

of this Chapter were published in Barlakas et al. (2016).

5.1 Polarization Radiative Effects

By means of SPARTA, polarization radiative effects for LIDAR–measured inhomogeneous

Saharan dust fields are discussed, performing 2D, IPA and 1D reflectance and transmittance

calculations at 532 nm wavelength.

5.1.1 Measurement Cases

Two case studies have been investigated. Case 1 is related to the measurements in the night

from 3 to 4 June 2008, during the second phase of the SAMUM project (Heintzenberg, 2009;

Ansmann et al., 2011; Tesche et al., 2011). Case 2 considered the nighttime measurements of

23 May 2013, from the trans–Atlantic cruise of the research vessel METEOR (Kanitz et al.,

2014).

The LIDAR measurements of extinction coefficients at 532 nm wavelength for the two mea-

surement cases are illustrated in Figure 5.1 and Figure 5.2. They correspond to the height -

time LIDAR profile in terms of the 5 and 2.3min averaged extinction coefficient in inverse

Megameters (Mm−1). The observations on 3 - 4 June 2008 record two distinct dust layers as

outlined by Tesche et al. (2011). A thin dust layer between 1 - 2 km and an elevated thicker

layer between 3 - 5 km separated by a transition layer (close to clean air, but not particle–

free). The LIDAR measurements also indicate a pure Rayleigh atmosphere above 5 km and a

marine boundary layer (MBL) that is lifted to about 1 km height. On 23 May 2013 the mea-

sured data indicate a well defined dust plume that stretched from 0.7 to 4.8 km height with

maximum extinction coefficients of 340 Mm−1. A MBL and a layer consisting of molecules

only are documented below and above the dust layer. Further information about the latter

test case can be found in Kanitz et al. (2014).
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Figure 5.1: Height - time display of LIDAR measurements during the SAMUM–2 field experiment in
terms of the 2.3 min–averaged extinction coefficient. Measurement example: Cape Verde, 3 - 4 June
2008. Courtesy of Holger Baars, TROPOS.
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Figure 5.2: Height - time display of LIDAR measurements during the METEOR cruise in terms of the
5 min–averaged extinction coefficient. Measurement example: Cape Verde, 23 May 2013. Courtesy
of Holger Baars, TROPOS.
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5.1.2 Scattering Properties of Molecules and Aerosol Particles

The 2D fields of extinction and scattering coefficients, single–scattering albedo and scattering

phase matrix of the inhomogeneous Saharan dust were constructed on the basis of the LIDAR

measurements sharing the geometrical and optical properties of dust plumes. The height -

time LIDAR aerosol extinction profiles (including molecular extinction) were converted into

vertically integrated optical thickness (see Figure 5.3). The model domains were defined by

209× 1× 168 pixels with a size of 0.96 km along the horizontal axis (overall ∼201.2 km), for

the SAMUM case, and 70 × 1× 1321 pixels with a size of 2.06 km along the horizontal axis

(overall ∼144.6 km), for the METEOR case. The vertical length of the entire grid is about

10 km for both scenarios, with a pixel size of 60m and 7.5m, respectively.

The scattering Rayleigh phase matrix was taken in the analytical form (see Eq. 4.2). The

wavelength dependent depolarization factor (δ = 0.0842 for λ = 532 nm) and the scattering

coefficients were computed using the formulation given in Bodhaine et al. (1999). Molec-

ular absorption was parameterized with the LOWTRAN band model (Pierluissi and Peng,

1985), as adopted from the SBDART code (Ricchiazzi et al., 1998). For both scattering and

absorption coefficients a tropical model atmosphere has been considered (Anderson et al.,

1986). The volumetric scattering and absorption coefficient profiles are shown in Figure 5.4.

The aerosol microphysical properties of the MBL correlate with water soluble particles for dif-
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Figure 5.3: Optical thickness at 532nm for the SAMUM measurement case (red line) and the
METEOR measurement case (black line).
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Figure 5.4: Scattering and absorption coefficient profiles at 532 nm for the Rayleigh atmopshere.

ferent relative humidity at 532 nm according to the sounding measurements (OPAC database

Hess et al., 1998; Emde et al., 2010).

For the dust scattering properties, the scattering phase matrix data by Torge et al. (2011)

were used. This study draws on research conducted on the measurements in the course

of the SAMUM project (Otto et al., 2009; Kandler et al., 2009, 2011). The optical prop-

erties of non–spherical dust particles have been calculated utilizing the MIESCHKA code

(Wauer et al., 2004), which is a T-matrix code, for rather small spheroids with a size pa-

rameter of up to 40. For larger irregular shaped particles (size parameter of up to 143),

a ray-tracing code (Macke et al., 1997) anchored in the geometric optics method has been

employed. Five particle size classes have been considered with an effective radius ranging

from 0.166 µm to 13.804 µm. A detailed explanation of the methods used to model the scat-

tering phase matrices of the mineral dust particles is given in Torge et al. (2011). Figure 5.5

illustrates the scattering phase matrix elements for the five particle size classes and the mean

scattering phase matrix elements over all the size classes examined in this study.

The total scattering phase matrix P̃tot(ϑ) at each grid box is derived by averaging the

Rayleigh scattering phase matrix, P̃r(ϑ), and the scattering phase matrix of dust particles,

P̃d(ϑ), weighted over their characteristic volumetric scattering coefficients (βrsca and βdsca for

the individual grid box):
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Figure 5.5: Scattering phase matrix elements for the five particle size classes and the mean scattering
phase matrix elements over all the different size classes considered in this study. Particle size classes
with effective radius 0.166µm (bin1), 0.501µm (bin2),1.514µm (bin3), 4.571µm (bin4), and 13.804µm
(bin5).

P̃tot(ϑ) =
βrsca · P̃r(ϑ) + βdsca · P̃d(ϑ)

βrsca + βdsca
, (5.1)

Likewise, the total single–scattering albedo is given by the sum of the Rayleigh scattering

coefficient and the scattering coefficient of the aerosol particles divided by the total volumetric

extinction coefficient.

5.1.3 Monte Carlo Simulations

Polarized radiative transfer simulations using SPARTA were conducted for three different

solar zenith angles (0◦, 47◦, and 70◦), the same viewing directions for the reflected radiation at

the TOA, and the supplementary angles (180◦, 133◦, and 110◦) for the transmitted radiation

at the BOA, and a relative azimuth angle of 0◦ above a Lambertian surface with albedo

αL = 0.05, that corresponds to an ocean surface. Besides, the number of photons was 109
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(10 individual simulations) so that the Monte Carlo noise, resulting from the strongly peaked

dust phase matrices (Figure 5.5), is diminished.

2D - 1D Comparison

The domain–averaged normalized radiances of reflection and transmission have been calcu-

lated between the 2D and 1D modes, meaning the 2D results were averaged over the whole

number of pixels and compared to the 1D counterpart. These differences are compiled in Ta-

ble 5.1. Note that this comparison illustrates the total radiative effect (internal heterogeneity

+ horizontal photon transport).

The differences in the domain–averaged reflectivity and transmissivity are insignificant be-

tween the 2D and 1D modes. Quantitatively we see in Table 5.1 that these differences are

limited to 0.316% for I, and 1.277% for Q in case of the SAMUM measurement scenario and

up to 0.141% for I, and 0.932% for Q in case of the METEOR scenario. Therefore, the 2D

normalized reflectance and transmittance fields were compared pixel by pixel with the 1D to

locate and quantify the maximum differences to the domain average. The following figures

Table 5.1: Domain–averaged differences between the 2D and 1D modes for both the reflected (TOA)
and transmitted (BOA) radiation.

TOA SAMUM METEOR

θ0 = 0◦ I Q I Q

θdet = 0◦ 0.072 0.018 0.038 0.012
θdet = 47◦ 0.074 0.005 0.058 0.030
θdet = 70◦ 0.102 0.008 0.071 0.012

θ0 = 47◦ I Q I Q

θdet = 0◦ 0.052 0.006 0.016 0.019
θdet = 47◦ 0.086 0.012 0.030 0.017
θdet = 70◦ 0.089 0.004 0.059 0.037

θ0 = 70◦ I Q I Q

θdet = 0◦ 0.026 1.277 0.008 0.932
θdet = 47◦ 0.055 0.006 0.027 0.027
θdet = 70◦ 0.087 0.015 0.029 0.001

BOA SAMUM METEOR

θ0 = 0◦ I Q I Q

θdet = 180◦ 0.122 0.014 0.079 0.048
θdet = 133◦ 0.077 0.009 0.078 0.097
θdet = 110◦ 0.451 0.665 0.045 0.043

θ0 = 47◦ I Q I Q

θdet = 180◦ 0.137 0.009 0.041 0.032
θdet = 133◦ 0.284 0.514 0.141 0.033
θdet = 110◦ 0.094 0.059 0.079 0.054

θ0 = 70◦ I Q I Q

θdet = 180◦ 0.316 0.302 0.127 0.244
θdet = 133◦ 0.137 0.085 0.074 0.060
θdet = 110◦ 0.150 0.034 0.060 0.019
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Figure 5.6: SPARTA simulated reflectance field including polarization for the SAMUM case: Relative
differences in percent between 2D and 1D calculations for three solar zenith angles 0◦, 47◦, and 70◦

at a viewing zenith angle of 0◦. Upper: first Stokes element. Lower: second Stokes element.

illustrate the relative differences (RD) in percent between the 2D calculations (horizontal +

vertical photon transport) and the 1D calculations (only vertical photon transport), for the

different sun positions (0◦, 47◦, and 70◦) as a function of the pixel number. The upper plots

depict the first Stokes component (I) and the lower plots the second component (Q).

Starting from the SAMUM measurement case, results are compiled in Figures 5.6 and 5.7

for the reflected radiation at the TOA (θdet = 0◦ and 47◦, where the observed effects are

largest). From Table 5.1, the domain–averaged reflectivity is almost identical for both the 1D

and 2D calculations. However, at the regions with large spatial gradient in optical thickness,

the radiance field of the 2D mode differs by about ±9.8% for I and ±6.9% for Q in case

of θdet = 0◦ and ±12.2% for I and ±8.1% for Q for θdet = 47◦ from the fields of the 1D

mode (see Figures 5.6 and 5.7). The combined radiative effect is more pronounced in I

rather than in Q. Note in the lower plot of Figure 5.6 that the RD corresponding to a solar

position of θ0 = 0◦ are excluded because for detector position of 0◦ the resulting values of

linear polarization (Q) are too small to derive the relative difference between the 2D and

1D modes. In general, increasing the solar zenith angle, the RD, as well as the range, and

average of RD are increasing because the photon path length is increasing and, therefore, the

number of scattering events is increasing as well (see Table 5.2). In other words, an increase

in the solar zenith angle gives the initial solar photon an increased horizontal component,

leading to enhanced of the photon propagation within the atmosphere. As a result, the total

radiative effect due to the neglected domain internal heterogeneities and horizontal photon
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Figure 5.7: The same as in Figure 5.6 but for a viewing zenith angle of 47◦.

transport is intensified.

In the same direction are the findings for the METEOR case (see Figures 5.8 and 5.9) for the

first Stokes component I, but the resulting RD are much lower, less than ±5.3% (for θdet = 0◦

and 47◦). For Q, no increase of RD with increase of the solar zenith angle were observed.

RD range up to ±3.1%. The smaller differences are explained by the lower variability that

is resolved by the larger horizontal pixel size, and more importantly, by the lower gradient

in optical thickness (see Figure 5.3). At a solar zenith angle of 0◦ and a viewing zenith angle

of 0◦, no RD were calculated for the second Stokes element, owing to its very small values

(see Figure 5.8).

A closer look at Tables 5.2 and 5.3 indicates some exceptions. For example, for the SAMUM

measurement scenario and a viewing zenith angle of 70◦, the relative difference dependency

on the solar position is not detected. RD range up to ±9.9% for I and ±6.8% for Q. For

the METEOR scenario, although for observation zenith angles of 0◦ and 47◦ no trend was

observed for Q, for 70◦ the RD dependency on the solar position holds.

For the transmitted radiation at the BOA, results are presented for observation zenith angles

of 180◦ and 110◦ (see Figures 5.10 and 5.11), for the SAMUM measurement case. Table 5.1,

shows that the differences between the 2D and 1D modes for the domain–averaged transmis-

sivity are insignificant. On the other hand, in Figures 5.10 and 5.11 extreme values of the

relative differences between the two modes (especially in Figures 5.11) are observed. These

extreme values, denoted by the shaded areas in Figures 5.10 and 5.11, could be explained

by the periodic boundary conditions employed in SPARTA. The major premise of this as-
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Table 5.2: SAMUM measurement case analysis: Maximum, minimum, range, average of positive
values, average of negative values, and average of the relative difference in percent between the 2D
and 1D modes for both the reflected and transmitted radiation. Abbreviation: n/a - not available.

I Q

Parameter θ0 = 0◦ θ0 = 47◦ θ0 = 70◦ θ0 = 0◦ θ0 = 47◦ θ0 = 70◦

TOA Viewing zenith angle of 0◦

maximum 3.6319 5.2585 6.2057 n/a 3.1451 3.8428
minimum −3.3319 −5.9833 −9.7929 n/a −4.2670 −6.9685
range 6.9638 11.2418 15.9986 n/a 7.4121 10.8113

averagepos 1.2877 1.7412 2.2464 n/a 1.0760 1.3291
averageneg −1.2546 −1.8957 −2.8721 n/a −1.2749 −1.6688
average 1.2712 1.8184 2.5592 n/a 1.1755 1.4990

TOA Viewing zenith angle of 47◦

maximum 4.4363 4.7805 4.7117 2.7352 2.4152 3.0087
minimum −4.8689 −7.9736 −12.1659 −4.3733 −6.3868 −8.0956
range 9.3051 12.7542 16.8776 7.1086 8.8020 11.1043

averagepos 1.4833 1.6953 1.8512 0.9153 0.8597 1.1160
averageneg −1.6213 −2.2697 −3.2540 −0.8772 −1.0975 −1.8750
average 1.5523 1.9825 2.5526 0.8962 0.9786 1.4955

TOA Viewing zenith angle of 70◦

maximum 2.7231 1.7930 3.5017 3.3459 2.3689 2.8512
minimum −3.5628 −5.4313 −9.8750 −3.6939 −5.4196 −6.8169
range 6.2859 7.2243 13.3767 7.0398 7.7885 9.6681

averagepos 0.9896 0.7143 1.3402 0.7295 0.6974 1.0150
averageneg −1.2759 −1.2763 −2.3029 −0.7897 −1.0025 −1.5618
average 1.1328 0.9953 1.8216 0.7596 0.8500 1.2884

BOA Viewing zenith angle of 180◦

maximum 2.7658 4.6561 4.5058 2.4165 3.0667 4.9533
minimum −3.8205 −6.2312 −10.8537 −2.8913 −7.2659 −9.5531
range 6.5863 10.8873 15.3595 5.3077 10.3326 14.5064

averagepos 0.9850 1.7541 1.7432 1.0240 1.0081 1.9122
averageneg −1.1843 −2.0074 −2.7840 −1.1155 −1.4087 −2.4726
average 1.0847 1.8808 2.2636 1.0697 1.2084 2.1924

BOA Viewing zenith angle of 133◦

maximum 7.9892 3.4031 5.9502 4.4302 8.3210 7.1574
minimum −4.0986 −10.5837 −16.8177 −4.3908 −26.3171 −15.5440
range 12.0879 13.9868 22.7680 8.8210 34.6380 22.7015

averagepos 1.6292 1.4834 2.2521 1.0300 3.3412 2.9652
averageneg −1.6598 −2.5882 −3.1336 −1.3753 −5.4702 −3.7747
average 1.6445 2.0358 2.6928 1.2026 4.4057 3.3700

BOA Viewing zenith angle of 110◦

maximum 4.2000 5.3818 17.2405 5.5535 7.7826 14.0430
minimum −2.5266 −8.7733 −49.3384 −7.1360 −19.5572 −18.5835
range 6.7266 14.1551 66.5790 12.6894 27.3398 32.6265

averagepos 1.1310 2.0860 7.7957 1.6180 3.6232 4.7148
averageneg −0.8162 −2.4659 −13.0624 −2.1078 −5.1061 −5.4186
average 0.9736 2.2760 10.4290 1.8629 4.3647 5.0667
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Table 5.3: The same as in Table 5.2 but for the METEOR measurement case.

I Q

Parameter θ0 = 0◦ θ0 = 47◦ θ0 = 70◦ θ0 = 0◦ θ0 = 47◦ θ0 = 70◦

TOA Viewing zenith angle of 0◦

maximum 2.8370 4.2780 5.3460 n/a 3.1000 2.4940
minimum −2.5610 −3.3180 −4.7640 n/a −2.6000 −2.2290
range 5.3983 7.5963 10.1102 n/a 5.6999 4.7234

averagepos 0.7276 1.0548 1.5671 n/a 1.0514 0.8309
averageneg −0.8565 −1.1279 −1.4623 n/a −0.8462 −0.7836
average 0.7921 1.0914 1.5147 n/a 0.9488 0.8072

TOA Viewing zenith angle of 47◦

maximum 3.5740 4.9560 5.3240 2.9140 3.0600 2.6250
minimum −2.6640 −3.8830 −5.1810 −2.3540 −2.4700 −2.6170
range 6.2379 8.8389 10.5051 5.2681 5.5303 5.2421

averagepos 0.9756 1.3523 1.4663 1.0265 1.0075 0.7596
averageneg −1.0621 −1.4770 −1.6661 −0.7935 −0.8566 −0.8902
average 1.0188 1.4146 1.5662 0.9100 0.9321 0.8249

TOA Viewing zenith angle of 70◦

maximum 2.7340 3.2140 3.1910 1.8080 2.0290 1.6040
minimum −2.5160 −3.0760 −3.9960 −1.3320 −1.7070 −1.9080
range 5.2501 6.2896 7.1869 3.1398 3.7361 3.5126

averagepos 1.0352 1.1145 1.3041 0.5579 0.6205 0.6316
averageneg −0.9529 −1.0826 −1.1446 −0.5081 −0.5711 −0.7083
average 0.9940 1.0985 1.2244 0.5330 0.5958 0.6700

BOA Viewing zenith angle of 180◦

maximum 4.3590 6.3886 5.7611 3.9915 3.4010 3.2048
minimum −6.2415 −6.8113 −5.9359 −5.9845 −2.6790 −2.7292
range 10.6005 13.1999 11.6969 9.9760 6.0800 5.9340

averagepos 1.6628 1.7863 1.5253 1.4933 1.1238 0.9824
averageneg −2.3841 −1.8846 −1.6864 −2.4339 −1.3027 −0.9952
average 2.0234 1.8355 1.6058 1.9636 1.2132 0.9888

BOA Viewing zenith angle of 133◦

maximum 5.7854 2.5348 2.8670 2.9435 4.6008 2.4102
minimum −5.0969 −4.5214 −3.1365 −3.0208 −7.4139 −3.7048
range 10.8823 7.0562 6.0035 5.9642 12.0147 6.1150

averagepos 1.8677 0.8783 1.0566 1.2898 1.9403 0.9464
averageneg −1.7169 −1.3984 −1.0667 −1.2393 −2.2568 −1.1782
average 1.7923 1.1383 1.0617 1.2646 2.0985 1.0623

BOA Viewing zenith angle of 110◦

maximum 3.9425 2.6291 7.3888 3.7854 2.8369 n/a
minimum −3.2817 −4.3252 −13.0474 −3.0616 −3.9055 n/a
range 7.2242 6.9543 20.4362 6.8470 6.7425 n/a

averagepos 1.3741 0.9588 3.0487 1.2255 0.9470 n/a
averageneg −1.2463 −1.1524 −3.9219 −1.1055 −1.0339 n/a
average 1.3102 1.0556 3.4853 1.1655 0.9904 n/a
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Figure 5.8: The same as in Figure 5.6 but for the METEOR measurement case.
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Figure 5.9: The same as in Figure 5.8 but for a viewing zenith angle of 47◦.
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Figure 5.10: SPARTA simulated transmittance field including polarization for Case 1 (SAMUM)
at 532nm: Relative differences in percent between 2D and 1D calculations for three different solar
zenith angles 0◦, 47◦, and 70◦ at a viewing zenith angle of 180◦. Upper: first Stokes element. Lower:
second Stokes element. Shaded areas correspond to pixels influenced by an artificial strong gradient
in optical thickness.

sumption is found in Figure 5.1, illustrating the basis on which the model domain was built,

namely the height–time LIDAR aerosol extinction profile for the SAMUM measurement case.

In the right edge of this domain the largest optical thickness is located. Consequently, the

use of periodic boundary conditions employed in SPARTA may provide an artificial strong

gradient, moving photons from the right region (location of maximum multiple–scattering

process) of the domain to the left, leading to the largest differences between the 2D and 1D.

For the pair of the first two Stokes elements (I,Q), these differences are: (±10.8%, ±9.5%)

for θdet = 180◦ (where the horizontal photon transport is less pronounced as compared to

the other viewing directions), (±16.8%, ±26.3%) for θdet = 133◦, and (±49.3%, ±19.5%)

for Q for θdet = 110◦ (see Table 5.2). Nevertheless, excluding the shaded areas, the following

RD are derived (±8.7%, ±4.9%) for θdet = 180◦, (±6.2%, ±16.5%) for θdet = 133◦, and

(±21.4%, ±18.2%) for θdet = 110◦. Similar to the findings for the reflectivity, the same

trends are noticed for the transmissivity, meaning, by increasing θ0 the horizontal photon

transport is increasing, and accordingly, the range, and average of RD are increasing (see

Table 5.2); yet, the viewing zenith angle of 133◦ poses an exception, since the average of the

maximum values of the relative differences is found for θ0 = 47◦. Note that the reflectance

field in Figures 5.6 and 5.7 may also be ”contaminated” by an artificial strong gradient in

optical thickness.
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Figure 5.11: The same as in Figure 5.10 but for a viewing zenith angle of 110◦.

Finally, Figures 5.12 and 5.13 outline the corresponding RD for the diffuse downward radia-

tion at the BOA with respect to the METEOR measurement scenario (θ0 of 180◦ and 110◦).

In this case, such extreme values of the RD were not observed. The largest gradient in opti-

cal thickness is found in the middle of the domain (see Figure 5.2), where the RD reach the

maximum for I. The maximum differences for Q are found at the right side of the domain

where a rather strong horizontal spatial gradient in optical thickness is more evident in Q

rather than in I (see Figures 5.12 and 5.13). Specifically, the resulting total bias for (I,Q) is

(±6.8%, ±5.9%) for θdet = 180◦, (±5.8%, ±7.4%) for θdet = 133◦, and (±13.1%, ±3.9%)

for θdet = 110◦ (see Table 5.3). In addition, no results are presented for Q in case of θ0 = 70◦

and θdet of 110
◦ (no relative difference is computed for rather low values of the Stokes com-

ponents). The usual trend of the relative difference dependency on the solar position is not

detected. On the other hand, sometimes, an opposite trend is identified (i.e., for θdet = 133◦

for the first Stokes element, and θdet = 180◦, 110◦ in case of linear polarization). Accordingly,

increasing the solar position, decreases the RD (and also the average of RD), indicating that

the total radiative effect is not driven by the horizontal photon transport component. This

is no suprise considering the lower horizontal spatial resolution of this scenario (2.06 km) as

compared to the SAMUM scenario (0.96 km).

In conclusion, the total radiative effect is very sensitive to the viewing direction. Moreover, its

two components do not have the same sign and the pattern introduced by the dependency

on the solar zenith angle may be violated (e.g., in case of the reflectivity the maximum

deviations are found for a detector zenith angle of 47◦). The influence of the solar zenith

angle can be seen for a fixed viewing direction and varying the sun position (see Figures 5.6
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Figure 5.12: The same as in Figure 5.10 but for METEOR measurement case.
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Figure 5.13: The same as in Figure 5.12 but for a viewing zenith angle of 110◦.
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and 5.8). In addition, the influence of the viewing geometry is better outlined when the solar

position is set to zero and varying the detector position (see Tables 5.2 and 5.3).

For the METEOR case and sun overhead (θ0 = 0◦), the RD are more pronounced for

the zenith transmitted radiation (θdet = 180◦) rather than in the nadir reflected radiation

(θdet = 0◦). Considering the variability in optical thickness (see Figure 5.3), the radiances

in the reflected field are smoothed since the photons go through the thick dust layer twice.

Consequently, the resulting total bias is lower as compared to the bias yielded for the trans-

mitted field. Increasing the solar zenith angle, the differences between the total bias found

for the zenith transmitted and nadir reflected fields are reduced (are becoming comparable,

see Tables 5.2 and 5.3), demonstrating that the optical thickness variability is represented

better. For the SAMUM case, the artificial strong gradient poses far–reaching difficulties of

interpretation. Furthermore, the differences found for the latter case are larger than in the

METEOR one, owing to the largest gradient in τ , the artificial strong gradient in τ , and the

vertical aerosol profile (see Figures 5.1 and 5.2). Last but not least, these errors are more

dominant for the first Stokes element rather than for Q. The exception to this rule is found

for a viewing zenith angle of 133◦ for both scenarios.

2D - IPA Comparison

The comparison between the full 2D inhomogeneous Saharan dust scheme and the 1D ap-

proximation introduces the combined radiative effect of horizontal inhomogeneity (HI) and

horizontal photon transport (HPT). These two close–related physical processes are rather

difficult to discriminate from each other. The subsequent step is to employ the Indepen-

dent Pixel Approximation (e.g., Cahalan et al., 1994b; Davis et al., 1997; Benner and Evans,

2001) performing 1D radiative transfer computations for each pixel/column of the 2D do-

main. In IPA mode, the horizontal heterogeneity is conserved, although the horizontal photon

transport is still ignored, and therefore, the latter effect can be quantified.

An illustration of 2D and IPA simulations for nadir reflectance (I Stokes component only since

the value of Q is in the 4th decimal) and zenith transmittance (Q Stokes component only)

radiance fields is shown in Figure 5.14. The straight lines denote the 2D mode, whereas, the

dashed lines the IPA mode. The realisitic 2D mode appears smoother as compared to IPA.

As described above (2D - 1D comparison), there should be a correlation between the gradient

in optical thickness and the magnitude of the radiative effects. However, such a correlation

was not found. This may be no suprise considering the rather low optical thickness of our

measurement cases (see Figure 5.3) and more importantly the very large horizontal pixel size

(0.96 km for the SAMUM and 2.06 km for the METEOR measurement cases). Cahalan et al.

(1994b) stated that, for rather small pixel sizes, IPA simulations lead to an increase of the

errors prompted by neglecting the horizontal photon transport. However, increasing the

horizontal pixel size results in a decrease of the horizontal transport effect and an increase

of the 1D heterogeneity effect. The latter will be analyzed later on.

To quantify the magnitude of the effect introduced owing to IPA, the relative errors in percent

between 2D and IPA simulations have been calculated as follows
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Figure 5.14: Comparison of 2D and IPA modes for sun overhead in case of nadir reflectivity (θdet = 0◦

- I Stokes component only) and zenith transmissivity (θdet = 180◦ - Q Stokes component only) as
a function of the pixel number (METEOR). The straight lines denote the 2D mode, whereas, the
dashed lines the IPA mode.

RDIPA =
2D− IPA

2D
· 100% (5.2)

The bias due to the IPA mode is listed in Tables 5.4 and 5.5 for the SAMUM and METEOR

case, respectively.

For nadir (0◦) and zenith (180◦) observations, the IPA bias follows the same behavior for

both measurement cases. In Figure 5.15 results are shown for the TOA nadir reflection for

the SAMUM case and in Figure 5.16 for the surface zenith transmission for the METEOR

case. For sun overhead (blue lines), there is a good agreement between the 2D and IPA

simulations. The relative difference in percent between the two calculation schemes is less

than 1% and 2% for the first and second Stokes components, respectively (for both measure-

ment scenarios), indicating that the effect due to the neglect of horizontal photon transport

is negligible. For larger solar zenith angles, the horizontal photon transport effect starts

playing an important role and the IPA bias is getting larger, meaning that the RD2D - IPA,

as well as the range and average of RD2D - IPA are increasing. This can be explicated by the

increased probability that a photon may hit the dust field from the side leading to illumi-

nating and shading effects enhancing the radiative effect, in agreement with Cahalan et al.

(1994a); Di Giuseppe and Tompkins (2003). The resulting bias for (I,Q) is (±9.2%, ±6.9%)

for TOA and (±10.9%, ±11.5%) for BOA for the SAMUM case. The corresponding values

for the METEOR case are (±2.5%, ±1.5%) for TOA and (±2.8%, ±2.5%) for BOA.
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Figure 5.15: SPARTA simulated reflectance field including polarization for the SAMUM case: Rel-
ative differences in percent between 2D and IPA modes for three solar zenith angles 0◦, 47◦, and 70◦

at a viewing zenith angle of 0◦. Upper: first Stokes element. Lower: second Stokes element.

A closer look at Tables 5.4 and 5.5 shows a higher sensitivity of the error to the viewing

geometry; the same pattern is found (an increase in the viewing direction leads to an increase

of the IPA bias). These dependencies of the solar and viewing directions on the radiative

effects interfere with each other causing problems coming up with concrete conclusions.

Nevertheless, Tables 5.4 and 5.5 indicate the following maximum absolute errors for (I,Q);

the maximum erros are always found for θ0 = 70◦:

• SAMUM: a. θdet = 47◦ - (12%, 8%) and b. θdet = 110◦ - (64%, 20%) or (20%,

13.6%) if the areas with possible artificial gradient in τ are excluded.

• METEOR: a. θdet = 70◦ - (4.8%, 3%) and b. θdet = 110◦ - (9.4%, n/a).

To summarize, in contrast to the findings of the 2D - 1D comparison, the errors induced by

ignoring the HPT are larger for nadir reflection at the TOA as compared to zenith surface

transmission. Increasing the solar zenith angle, the HPT is enhanced, and the divergence

between the IPA bias found for the zenith transmitted and nadir reflected fields is decreasing

(see Tables 5.4 and 5.5). The latter trend is a slightly weaker for the SAMUM case, con-

sidering the artificial gradient in optical thickness ”contamination” (see Tables 5.4 and 5.5).

Between the two measurement cases the bias is more pronounced in the SAMUM case, due to

the smaller horizontal pixel size (Di Giuseppe and Tompkins, 2003), whereby the horizontal

photon transport plays a major role for specific illumination and observation geometries.

These results are in line with those of Scheirer and Macke (2001), Benner and Evans (2001),
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Figure 5.16: The same as in Figure 5.15 but for the METEOR case for a viewing zenith angle of
180◦.

Di Giuseppe and Tompkins (2003), Cahalan et al. (2005), and Torge et al. (2011). These

authors concluded that the radiative effects are dominant in areas with strong horizontal

gradient in optical thickness.

IPA - 1D comparison

Driven by the different magnitude of the horizontal photon transport effect between the two

measurement cases, the IPA versus 1D calculations (pixel by pixel) have been investigated,

RDIPA - 1D =
IPA− 1D

IPA
· 100% (5.3)

This comparison, renders information of the significance of the horizontal inhomogeneity

effect (1D bias).

To begin with, the 1D bias in the reflected radiation for both LIDAR–measured scenarios

follows a specific pattern: for zenith solar illumination (θ0 = 0◦ and θdet = 0◦, 47◦, 70◦) and

nadir observation (θdet = 0◦ and θ0 = 0◦, 47◦, 70◦) the error owing to the optical heterogeneity

for the first Stokes component is almost the same (SAMUM: ±4.2%, METEOR: ±3.3%).

Such behavior is not evident for the 1D bias linked to the second Stokes component. An

example for the METEOR case is depicted in Figure 5.17 (nadir observation, upper left

plot); the lines lie nearly on top of each other. The 1D bias refers to the heterogeneity
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Table 5.4: SAMUM measurement case analysis: Maximum, minimum, range, average of positive
values, average of negative values, and average of the relative difference in percent between the 2D
and IPA modes for both the reflected and transmitted radiation. Abbreviation: n/a - not available.

I Q

Parameter θ0 = 0◦ θ0 = 47◦ θ0 = 70◦ θ0 = 0◦ θ0 = 47◦ θ0 = 70◦

TOA Viewing zenith angle of 0◦

maximum 0.5791 1.6546 3.7990 n/a 1.4790 2.6973
minimum −0.5331 −5.4415 −9.2395 n/a −4.8530 −6.9576
range 1.1121 7.0962 13.0385 n/a 6.3320 9.6550

averagepos 0.1870 0.5271 1.4619 n/a 0.4894 1.0166
averageneg −0.1436 −0.8278 −2.3273 n/a −0.6859 −1.6357
average 0.1653 0.6775 1.8946 n/a 0.5877 1.3262

TOA Viewing zenith angle of 47◦

maximum 5.1213 5.0711 4.7819 3.1817 2.5608 3.4405
minimum −3.2737 −6.6243 −12.0105 −3.7925 −6.4067 −8.0295
range 8.3950 11.6954 16.7925 6.9742 8.9674 11.4700

averagepos 1.0740 1.1454 1.6952 0.8115 0.8733 1.1944
averageneg −0.8946 −1.1713 −2.7733 −0.9894 −1.0163 −1.8192
average 0.9843 1.1584 2.2343 0.9005 0.9448 1.5068

TOA Viewing zenith angle of 70◦

maximum 4.3306 2.2140 3.6135 3.1714 2.3199 3.3028
minimum −2.7844 −4.5256 −10.5478 −3.3553 −5.2532 −6.9167
range 7.1150 6.7396 14.1613 6.5267 7.5731 10.2194

averagepos 1.4344 0.7125 1.4065 0.9090 0.7711 1.0985
averageneg −0.9924 −0.9833 −2.7783 −1.0312 −1.2067 −1.6258
average 1.2134 0.8479 2.0924 0.9701 0.9889 1.3622

BOA Viewing zenith angle of 180◦

maximum 0.0620 1.8263 4.4533 1.7588 2.2085 4.5936
minimum −0.0609 −6.8986 −10.9663 −1.3700 −8.6275 −11.5564
range 0.1229 8.7249 15.4196 3.1287 10.8360 16.1500

averagepos 0.0179 0.6196 1.6300 0.4113 0.7671 1.6824
averageneg −0.0182 −0.8854 −2.4607 −0.4040 −1.1220 −2.6461
average 0.0181 0.7525 2.0454 0.4076 0.9446 2.1643

BOA Viewing zenith angle of 133◦

maximum 8.0060 2.3972 6.0426 2.4965 6.3716 6.5520
minimum −2.4303 −10.6704 −20.6141 −1.8850 −26.5657 −19.2391
range 10.4364 13.0676 26.6566 4.3815 32.9373 25.7911

averagepos 1.2604 0.7815 2.0603 0.5703 2.1466 2.2851
averageneg −0.8919 −1.1472 −3.4650 −0.5326 −3.4561 −3.7250
average 1.0762 0.9643 2.7627 0.5514 2.8014 3.0050

BOA Viewing zenith angle of 110◦

maximum 4.4480 3.2393 15.2663 2.8618 6.3672 10.6766
minimum −2.5971 −11.8452 −64.3852 −5.7168 −24.0224 −20.1485
range 7.0450 15.0845 79.6515 8.5785 30.3896 30.8251

averagepos 1.1930 1.1669 6.2055 0.9198 2.5575 3.4879
averageneg −0.7337 −1.7524 −12.8525 −1.1133 −4.1138 −4.2595
average 0.9633 1.4597 9.5290 1.0165 3.3357 3.8737
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Table 5.5: The same as in Table 5.4 but for the METEOR measurement case.

I Q

Parameter θ0 = 0◦ θ0 = 47◦ θ0 = 70◦ θ0 = 0◦ θ0 = 47◦ θ0 = 70◦

TOA Viewing zenith angle of 0◦

maximum 0.2567 0.9723 2.3822 n/a 0.5206 1.5478
minimum −0.2268 −1.0661 −2.5289 n/a −0.7147 −1.5389
range 0.4835 2.0384 4.9111 n/a 1.2353 3.0868

averagepos 0.0670 0.3520 0.9823 n/a 0.1795 0.5469
averageneg −0.1034 −0.3434 −0.9206 n/a −0.2606 −0.5273
average 0.0852 0.3477 0.9515 n/a 0.2201 0.5371

TOA Viewing zenith angle of 47◦

maximum 2.4614 3.3907 3.8294 2.3969 2.3188 2.1293
minimum −2.5575 −3.0237 −3.4088 −3.1383 −2.6881 −2.0364
range 5.0189 6.4144 7.2382 5.5352 5.0069 4.1657

averagepos 1.0259 1.2253 1.2085 0.9954 0.9454 0.7587
averageneg −0.9380 −1.4061 −1.5799 −1.0014 −1.0118 −0.9284
average 0.9820 1.3157 1.3942 0.9984 0.9786 0.8436

TOA Viewing zenith angle of 70◦

maximum 3.5087 3.4146 3.6151 2.1629 2.2301 1.8669
minimum −3.5660 −4.0981 −4.8463 −2.7145 −3.0089 −2.7220
range 7.0747 7.5126 8.4614 4.8775 5.2390 4.5889

averagepos 1.4911 1.4588 1.2976 0.7187 0.7917 0.7350
averageneg −1.6641 −1.7360 −1.6218 −0.9332 −0.9048 −0.8706
average 1.5776 1.5974 1.4597 0.8260 0.8483 0.8028

BOA Viewing zenith angle of 180◦

maximum 0.0207 0.9374 2.7894 0.7146 0.9705 2.4801
minimum −0.0401 −1.0843 −2.5039 −0.6840 −1.1961 −2.3645
range 0.0607 2.0217 5.2933 1.3986 2.1666 4.8446

averagepos 0.0080 0.3475 0.8804 0.2715 0.3451 0.8832
averageneg −0.0127 −0.3280 −0.9598 −0.2880 −0.3691 −0.7779
average 0.0104 0.3378 0.9201 0.2798 0.3571 0.8306

BOA Viewing zenith angle of 133◦

maximum 2.7709 1.0987 2.7912 1.1485 1.4727 3.1850
minimum −3.0537 −0.9235 −2.4783 −1.0683 −1.1810 −3.0891
range 5.8247 2.0222 5.2695 2.2168 2.6537 6.2741

averagepos 1.1712 0.3276 1.0629 0.4745 0.4926 1.0835
averageneg −0.9060 −0.2545 −1.0322 −0.3990 −0.4430 −1.2453
average 1.0386 0.2911 1.0476 0.4368 0.4678 1.1644

BOA Viewing zenith angle of 110◦

maximum 2.7831 1.2889 9.4605 1.4094 2.1981 n/a
minimum −3.0901 −2.6222 −7.7037 −1.5506 −2.3754 n/a
range 5.8733 3.9112 17.1642 2.9600 4.5734 n/a

averagepos 1.1601 0.6165 2.7087 0.4992 0.8352 n/a
averageneg −1.1966 −0.5274 −3.3705 −0.4877 −0.8048 n/a
average 1.1784 0.5720 3.0396 0.4935 0.8200 n/a
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Figure 5.17: SPARTA simulated reflected radiation for the METEOR case: Relative differences in
percent between the IPA and PP modes for three different solar zenith angles 0◦, 47◦, and 70◦ at a
viewing zenith angle of 0◦ (upper left plot). Correlation plots (R2) between the 1D bias and τ for
nadir reflected field for the three sun positions considered (indicated by the different colors).

effect due to the optical thickness variability. As a result, it should be strongly dependent

on the optical thickness. Toward this direction, the correlation between the 1D bias and τ

has been investigated. As a demonstration, correlations are presented for the METEOR case

for nadir observation (see Figure 5.17). As expected, the trendline is linear and an excellent

correlation is found. Quantitatively, the fraction where the deviation of the bias is smaller

than the deviation of the dependent parameter, R2, is 0.96, 0.98, and 0.98 for θ0 = 0◦, 47◦,

and 70◦, respectively.

On the whole, such correlations are found for both cases, but are not shown here. In brief,

they are more pronounced in the reflected rather than in the transmitted field, and in I as

compared to Q. In most cases, for I, the R2 is in the range of 0.83 - 0.98 for METEOR

(exluding the geometry combination (θ0 = 70◦, θdet = 70◦)) and 0.5 - 0.96 for SAMUM; for

Q, R2 up to 0.99 is also found, but for different geometry combinations (θ0 = 70◦, θdet = 70◦),

which may be no surprise considering how it is derived (see Eqs 3.12 and 3.18). Note here,

that this strong dependence on the optical thickness was found also for the total bias (but

less pronounced). However, it was not shown here owing to the assumption that the 1D bias

dominates (because of the rather large horizontal pixel size).
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Figure 5.18: SPARTA simulated transmissivity for the SAMUM case: Relative differences in percent
between the IPA and 1D modes for three solar zenith angles 0◦, 47◦, and 70◦ at a viewing zenith
angle of 110◦. Upper: first Stokes element. Lower: second Stokes element. Shaded areas correspond
to pixels influenced by an artificial strong gradient in optical thickness.

The domain–averaged differences between the IPA and 1D are not shown since they are

analogous to those found between the 2D and 1D modes (see Table 5.1). The derived statistics

are tabulated for the 1D bias in Tables 5.6 and 5.7. For the diffuse upward radiation the

1D error is rather low for both measurement scenarios. Approximately within the range of

(−4.3%, 4.2%) for I, and (−2.8%, 3.1%) for Q.

For the downward radiation, the errors linked to the neglect of horizontal optical variability

are larger. Figures 5.18 and 5.19 show the 1D bias for the viewing zenith angle of 110◦ for both

cases (for METEOR and Q results are presented for a viewing zenith angle of 133◦ since for

110◦ its values are too small to derive the relative differences), where the observed effects are

most dominant. The 1D biases for the SAMUM case are: −40 < RDIPA - 1D < 20.1 for I (or

±20% if the shaded areas are excluded) and −17.7 < RDIPA - 1D < 10.3 for Q. Accordingly,

for the METEOR case: −14 < RDIPA - 1D < 9.7 for I and −7.2 < RDIPA - 1D < 4.2 for Q.

5.2 Overall Radiative Effects

The errors in the reflected and transmitted fields for two radiative transfer assumptions (IPA

and 1D) have been derived. The comparison between the full 2D inhomogeneous Saharan

dust scheme and the 1D approximation introduces the total radiative effect. To explain



5.2. Overall Radiative Effects 87

Table 5.6: SAMUM measurement case analysis: Maximum, minimum, range, average of positive
values, average of negative values, and average of the relative difference in percent between the IPA
and 1D modes for both the reflected and transmitted radiation. Abbreviation: n/a - not available.

I Q

Parameter θ0 = 0◦ θ0 = 47◦ θ0 = 70◦ θ0 = 0◦ θ0 = 47◦ θ0 = 70◦

TOA Viewing zenith angle of 0◦

maximum 3.6985 3.8796 2.5879 n/a 2.9069 3.3738
minimum −3.7519 −4.1818 −3.0825 n/a −2.6698 −1.5540
range 7.4504 8.0614 5.6703 n/a 5.5768 4.9277

averagepos 1.2594 1.4535 0.9653 n/a 0.9240 0.8978
averageneg −1.3596 −1.4473 −1.0450 n/a −0.9207 −0.6176
average 1.3095 1.4504 1.0051 n/a 0.9224 0.7577

TOA Viewing zenith angle of 47◦

maximum 3.7813 3.5781 1.2025 3.0856 2.5406 2.5140
minimum −4.2229 −4.2226 −1.3057 −2.7625 −1.8519 −1.2459
range 8.0042 7.8006 2.5082 5.8480 4.3925 3.7599

averagepos 1.4054 1.4140 0.4035 0.9767 0.7637 0.6073
averageneg −1.5028 −1.4242 −0.4273 −0.8643 −0.6737 −0.4845
average 1.4541 1.4191 0.4154 0.9205 0.7187 0.5459

TOA Viewing zenith angle of 70◦

maximum 2.6400 1.2819 1.1208 3.3595 2.3816 1.9338
minimum −2.7791 −1.3527 −1.3762 −1.6801 −1.4633 −0.9690
range 5.4191 2.6346 2.4970 5.0396 3.8450 2.9028

averagepos 1.0324 0.4260 0.3920 0.8379 0.6257 0.5321
averageneg −1.0489 −0.4248 −0.4583 −0.6708 −0.4966 −0.3649
average 1.0407 0.4254 0.4252 0.7543 0.5612 0.4485

BOA Viewing zenith angle of 180◦

maximum 2.7413 3.4079 1.4411 2.6666 2.4775 5.0307
minimum −3.8597 −4.6746 −2.0702 −3.3318 −4.1299 −8.4744
range 6.6011 8.0825 3.5113 5.9984 6.6074 13.5051

averagepos 0.9732 1.4411 0.4095 0.9309 0.8023 2.0659
averageneg −1.1939 −1.5540 −0.5483 −1.1113 −1.3450 −2.5264
average 1.0835 1.4975 0.4789 1.0211 1.0736 2.2961

BOA Viewing zenith angle of 133◦

maximum 3.5904 3.8592 5.8059 2.3698 9.8606 8.4360
minimum −4.8370 −7.0128 −10.7577 −4.7448 −14.9241 −11.9259
range 8.4275 10.8720 16.5636 7.1146 24.7847 20.3618

averagepos 1.5549 1.4898 2.3602 0.9073 3.6062 3.1482
averageneg −1.6387 −2.4835 −3.1181 −1.3928 −4.9829 −4.1739
average 1.5968 1.9866 2.7391 1.1501 4.2945 3.6611

BOA Viewing zenith angle of 110◦

maximum 2.2032 5.0464 20.8505 5.0350 9.2089 10.2662
minimum −2.8305 −9.9616 −39.8112 −9.4543 −15.7094 −17.6646
range 5.0337 15.0080 60.6617 14.4893 24.9183 27.9307

averagepos 0.6518 2.2838 8.5316 1.7403 4.0740 3.9868
averageneg −0.8660 −2.5711 −12.4503 −2.6509 −5.2122 −4.8924
average 0.7589 2.4274 10.4909 2.1956 4.6431 4.4396
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Table 5.7: The same as in Table 5.6 but for the METEOR measurement case.

I Q

Parameter θ0 = 0◦ θ0 = 47◦ θ0 = 70◦ θ0 = 0◦ θ0 = 47◦ θ0 = 70◦

TOA Viewing zenith angle of 0◦

maximum 2.9866 3.3386 3.0359 n/a 2.5925 1.3436
minimum −2.8251 −3.1247 −3.1102 n/a −2.4863 −1.2870
range 5.8116 6.4633 6.1460 n/a 5.0789 2.6306

averagepos 0.8027 0.8254 0.7804 n/a 0.8933 0.5491
averageneg −0.8104 −1.1051 −1.0321 n/a −0.8410 −0.4645
average 0.8065 0.9653 0.9063 n/a 0.8672 0.5068

TOA Viewing zenith angle of 47◦

maximum 3.3296 4.2300 2.7995 2.5852 2.2784 1.3018
minimum −3.2501 −4.3129 −3.2889 −2.6428 −2.4194 −1.2689
range 6.5797 8.5429 6.0883 5.2280 4.6978 2.5706

averagepos 0.8452 1.1291 0.8400 0.9104 0.8114 0.5391
averageneg −1.0870 −1.2409 −0.8583 −0.8478 −0.7826 −0.4150
average 0.9661 1.1850 0.8491 0.8791 0.7970 0.4771

TOA Viewing zenith angle of 70◦

maximum 3.1064 2.8838 1.5130 1.3468 1.2640 0.7922
minimum −3.1752 −3.2613 −1.9404 −1.2206 −1.3441 −0.4903
range 6.2815 6.1450 3.4534 2.5674 2.6081 1.2825

averagepos 0.8172 0.8026 0.4718 0.5667 0.5404 0.2765
averageneg −1.0130 −0.8964 −0.5169 −0.4728 −0.4323 −0.2290
average 0.9151 0.8495 0.4944 0.5198 0.4863 0.2527

BOA Viewing zenith angle of 180◦

maximum 4.3547 5.6002 3.5590 4.0586 3.2997 2.5805
minimum −6.2407 −6.6863 −4.3498 −6.1953 −2.6659 −1.7557
range 10.5954 12.2865 7.9088 10.2539 5.9657 4.3362

averagepos 1.6646 1.6301 1.0393 1.5987 1.2205 0.8341
averageneg −2.3795 −1.8301 −1.1900 −2.2473 −1.1882 −0.6728
average 2.0220 1.7301 1.1147 1.9230 1.2044 0.7534

BOA Viewing zenith angle of 133◦

maximum 5.7207 2.6868 2.0925 3.9481 4.2494 2.1302
minimum −6.7441 −4.3294 −1.6052 −2.9754 −7.2116 −3.5511
range 12.4649 7.0162 3.6977 6.9235 11.4611 5.6813

averagepos 1.7546 0.8872 0.6830 1.4215 1.8103 0.8263
averageneg −1.7982 −1.3995 −0.5945 −1.2624 −2.1378 −0.7910
average 1.7764 1.1433 0.6387 1.3420 1.9741 0.8087

BOA Viewing zenith angle of 110◦

maximum 3.6453 3.0040 9.6138 4.7643 2.8685 n/a
minimum −4.6111 −2.3555 −14.0125 −3.3926 −4.4158 n/a
range 8.2564 5.3594 23.6262 8.1568 7.2843 n/a

averagepos 1.1465 0.9988 2.8308 1.5628 1.1301 n/a
averageneg −1.2325 −0.9110 −3.4713 −1.2379 −0.9933 n/a
average 1.1895 0.9549 3.1510 1.4003 1.0617 n/a
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Figure 5.19: The same as in Figure ?? but for the METEOR case for a viewing zenith angle of 110◦

for I and 133◦ for Q.

the complex influence of these effects, the IPA and 1D biases were compared to the total

bias, RD. In Figures 5.20 and 5.21 results are presented for nadir observations (first Stokes

component only) for both LIDAR–measured fields, METEOR and SAMUM, respectively.

For the METEOR case, the total radiative effect is driven by the 1D bias. In particular, for

sun overhead, there is an excellent correlation between RD (total bias) and RDIPA - 1D (for

I), where a R2 of 0.99 was found, meaning the horizontal photon transport is negligible. In-

creasing the solar zenith angle, the horizontal photon transport is increasing, and therefore,

the correlation with IPA bias is increasing while the correlation with 1D bias is decreasing.

However, the dominant effect is always the horizontal optical variability. This can be ex-

plained by the lower variability that is resolved by the larger horizontal pixel size (2.06 km).

In the same direction are the findings for the SAMUM case. The smaller horizontal pixel

size (0.96 km) as compared to the first case makes the horizontal photon transport more

pronounced. For instance, for a solar zenith angle of 0◦ the HPT overpowers the HI. Similar

behavior is found by increasing the zenith angle of observation for both test cases (reflected

radiation). For the most complicated geometries, the bias inherent in the horizontal photon

transport is taking the lead even for a solar zenith angle of 47◦ (SAMUM). On the contrary,

for the METEOR case, it only occurs for very low sun (70◦). The exact same pattern is

followed by the second Stokes component, albeit, both effects are found a bit weaker.

Figures 5.22 and 5.23 show the transmitted field for a viewing zenith angle of 133◦ for

METEOR and SAMUM scenarios, respectively. For the METEOR case, the results are in

agreement with those obtained for the reflected field. On the other hand, the same does not
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stand for the SAMUM one. For example for a solar zenith angle of 47◦, there is no clear

evidence of which effect is dominant (R2 is very low for both effects). The available evidence

(see Figure 5.1) seems to suggest that an artificial strong gradient is induced to the RD by

the use of the periodic boundary conditions employed in SPARTA. In conclusion, increasing

the horizontal pixel size results in a decrease of the IPA effect and an increase of the PP

effect.
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Figure 5.20: SPARTA simulated field for the METEOR case: Correlation plots (R2) of the RD
(total bias) with the IPA bias (left panels) and 1D bias (right panels) for nadir observation and three
sun positions 0◦ (blue circles), 47◦ (red circles), and 70◦ (green circles).
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Figure 5.21: The same as in Figure 5.20 but for the SAMUM measurement case.
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Figure 5.22: The same as in Figure 5.20 but for the transmitted field for a viewing zenith angle of
133◦.
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Figure 5.23: The same as in Figure 5.22 but for the SAMUM measurement case.
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5.3 Errors Prompted by Neglecting Polarization in Radiance

Computations

In Chapter 3 the differences between the scalar and vector radiative transfer theory have

been outlined. In brief, ignoring the effects of polarization and replacing the Stokes vector
~S = (F QU V )T with its scalar approximation (first component only, F ), and the full phase

matrix (P̃) by its first element (P̃11) cause considerable errors in computing radiative transfer

processes in complex scattering media.

The effect of neglecting polarization in radiance simulations have been investigated, whereby

two atmospheric problems have been considered. The first one involves a homogenous

Rayleigh single–layer and the second scattering problem corresponds to realistic atmospheres

utilizing the two LIDAR–measured inhomogeneous Saharan dust schemes introduced in Sub-

section 5.1.1. Both scalar and vector calculations have been performed using SPARTA.

5.3.1 Molecular Atmosphere

To illustrate such errors, in case of a purely molecular atmosphere, a set of case studies was

defined. Simulations were performed for a homogeneous plane–parallel single Rayleigh layer.

Detailed information of the settings of the simulations are found in Table 5.8. The sensitivity

to the optical thickness, surface albedo, and single–scattering albedo was tested.

To consider Rayleigh scattering, the analytical expression of the phase matrix Eq. (4.2) was

used, and three depolarization factors were selected (0, 0.03, and 0.09). The depolarization

factor describes molecular anisotropy (polarizability, Liou, 2002). While for pure Rayleigh

scattering, meaning isotropic spherical particles, δ = 0, for real atmospheric gases (e.g.,

diatomic, triatomic), and thus anisotropic molecules, δ diverges from zero. In other words,

this factor corrects for molecular anisotropy in terms of polarization (Bodhaine et al., 1999).

The two additional values of δ correspond to the typical value for air, namely δ = 0.03, and

the value for carbon dioxide (δ = 0.09).

For example, Figure 5.24, depicts the vector versus scalar calculations in the reflected ra-

diation at the TOA as a function of the viewing zenith angle for the three values of the

surface albedo (0, 0.1, 0.4) considered, pertaining to an optical thickness of τ = 0.5 in case

Table 5.8: Simulation settings considered in case of a pure molecular atmosphere.

Input parameters

τ 0.1, 0.5
θ0 0◦

θdet 0◦, ..., 85◦ (increment 5◦)
φ 0◦

ω̃ 0.70, 0.90, 0.99, 1.00
αL 0.0, 0.1, 0.4
δ 0.00, 0.03, 0.09

Altitude TOA



5.3. Errors by Neglecting Polarization 95

0 10 20 30 40 50 60 70 80 90
0.04

0.06

0.08

0.10

0.12

0.14

0.16

θdet[
◦]

I

 

 

V − 0 S − 0 V − 0.1 S − 0.1 V − 0.4 S − 0.4

Figure 5.24: Vector (straight lines) and scalar (dashed lines) calculations in the reflected radiation
at the TOA as a function of the viewing zenith angle for three surface albedo values (0, 0.1, and 0.4)
pertaining to a solar zenith anlge of 0◦, a relative azimuth angle of 0◦, optical thickness of τ = 0.5,
for isotropic particles (δ = 0).

of pure Rayleigh scattering (δ = 0). Obviously, clear differences are pinpointed over the full

spectrum of the viewing directions. In order to quantify these errors, the relative differences

in percent between the vector (subscript ”V”) and scalar (subscript ”S”) simulations (RDV -S)

have been computed according to the following equation:

RDV- S =
Vector − Scalar

Vector
· 100% (5.4)

Note that where RDV -S are negative, the scalar scheme overestimates the radiance, where

positive, it underestimates it.

In Figure 5.25, results are presented for four scenarios. All the graphs present the relative

differences in percent between the vector and scalar calculations in the reflected diffuse

radiation as a function of the viewing direction. Scenario 1 (left upper plot) is a test for

isotropic surface reflection. The optical thickness of the pure Rayleigh atmosphere (δ = 0)

is set to 0.5, while molecular absorption was switched off. In Subsection 3.2.5, the effects

of isotropic reflection were introduced (scattering at surface completely depolarizes incident

radiation). As a result, increasing the surface albedo from zero (blue line for black non–

scattering surface) to 0.4 (green line for isotropic reflection) the RDV -S are decreasing. In

Scenario 2, the influence of molecular anisotropy on the RDV -S is observed. Simulations were

conducted for a non–absorbing (ω̃ = 0) layer with an optical thickness of 0.5 above an ideal

absorbing surface (αL = 0). The upper right plot shows that accounting for depolarization

(from δ = 0 − 0.09) corrects the scalar approximation for molecular anisotropy. The third
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Figure 5.25: Relative differences in percent between the vector and scalar calculations in the reflected
diffuse radiation as a function of the viewing direction: Scenario 1 (left upper plot) - test for isotropic
surface reflection (αL = 0, 0.1, 0.4), with settings (τ = 0.5, δ = 0, ω̃ = 1), Scenario 2 (right upper
plot) - test for molecular anisotropy (δ = 0, 0.03, 0.09), with settings (τ = 0.5, ω̃ = 1, αL = 0),
Scenario 3 (left lower plot) - test for molecular absorption (ω̃ = 0.7, 0.9, 0.99, 1), with settings
(τ = 0.5, δ = 0, αL = 0), Scenario 4 (right lower plot) - test for optical thickness (τ = 0.1, 0.5), with
settings (δ = 0, αL = 0, straight lines - τ = 0.1, and dashed lines - τ = 0.5).

case study (Scenario 3, lower left plot) checks the impact of molecular absorption on the

errors prompted by neglecting polarization in radiation simulations. A perfect Rayleigh

scattering layer (δ = 0) with τ = 0.5 was selected, and the effects of isotropic reflection

were neglected (αL = 0). Under these circumstances, increasing molecular absorption, or,

in other words, decreasing the single–scattering albedo, the vector versus scalar differences

are decreasing. Finally, Scenario 4 (lower right panel) demonstrates the RDV - S dependence

on τ . The straight lines correspond to τ=0.1, and the dashed lines to τ=0.5. Hence, it was

designed on the basis of the input for which the major errors were observed, namely, for

ω̃=1 (no molecular absorption) and a depolarization factor of zero. Results are shown for

two values of the surface albedo (0 and 0.4). It follows that the thicker the atmosphere the

more pronounced are the errors. The maximum RDV -S found in this study are in the range

of −5% - 0.4% for τ=0.1, and −10.5% - 3.5% for τ = 0.5.
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Table 5.9: Range of relative differences in percent between vector and scalar calculations for the four
scenarios presented in this work.

Cases Range of RD V - S

Scenario 1 −10.5% - 3.5%
Scenario 2 −10.5% - 6.5%
Scenario 3 −10.5% - 6.9%
Scenario 4 −5% - 0.4% for τ = 0.1

−10.5% - 3.5% for τ = 0.5

One sees from all the panels in Figure 5.25 that the scalar assumption underestimates the

simulated reflectances for viewing zenith angles up to about 48◦, and it overestimates them for

larger viewing zenith angles. Quantitatively, Table 5.9, lists the RDV -S for the four scenar-

ios presented here. Overall, errors in the reflected field prompted by neglecting polarization

were estimated. These errors could be up to about 10.5%, which is in agreement with for-

mer studies (Chandrasekhar, 1960; van de Hulst, 1980; Mishchenko et al., 1994; Lacis et al.,

1998; Kotchenova et al., 2006). For comprehensive interpretation of the relative differences

between vector and scalar calculations, the reader is referred to the work of Mishchenko et al.

(1994) and Lacis et al. (1998). In brief, these errors result from lower–order scattering; ex-

cept from first–order, but mainly from second–order scattering. These errors are more pro-

nounced at scattering angles close to 90◦, and right–angle rotations of the scattering plane

(Mishchenko et al., 1994). Consequently, they dominate in molecular scattering owing to the

special structure of the Rayleigh scattering phase matrix, meaning, considerable polarization

at scattering angles close to 90◦ (e.g., see Figure 4.1). In this thesis, simulations were carried

out for two values of τ (0.1, 0.5). Scenario 4 shows that increasing τ , the errors are increas-

ing. This trend is known to saturate for optical thickness of about 1. For thicker layers,

the increasing number of the multiple–scattering events should further diminish the errors,

depending mainly on molecular absorption, and secondly on isotropic reflection.

As a conclusion, the scalar radiative transfer approach introduces errors in simulated radi-

ances for pure Rayleigh scattering atmospheres at visible wavelengths, and thus, polarization

should be utilized as a correction scheme for remote sensing applications.

5.3.2 Inhomogeneous Saharan Dust Fields

The errors induced by neglecting polarization in radiance simulations involving a purely

Rayleigh atmosphere have been extensively discussed in Subsection 5.3.1, and more impor-

tantly, in Mishchenko et al. (1994) and Lacis et al. (1998). Limited investigations have been

made on pure aerosol particles (Hansen, 1971b; Kotchenova et al., 2006) or mixed scenarios

(aerosol +molecules) (Kotchenova et al., 2006). Hansen (1971b) reported that the corre-

sponding vector versus scalar differences in case of spherical cloud particles (with sizes of

the order or greater than the wavelength of the incident EM radiation) are up to about

1%. Kotchenova et al. (2006) found that, for an aerosol atmosphere with polydispersed ho-

mogeneous spheres with a mean radius of about 0.15 µm (biomass burning smoke aerosol

particles), the RDV- S are in the range of 1.6% - 5.3%, depending on the wavelength, mean-
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Table 5.10: Maximum relative differences in percent between vector and scalar simulations over all
the viewing directions (TOA: 0◦, 47◦, 70◦, and BOA: 180◦, 133◦, 110◦) in case of 1D and 2D modes
pertaining to solar zenith angles of 0◦, 47◦, 70◦.

SAMUM METEOR

TOA θ0 = 0◦ θ0 = 47◦ θ0 = 70◦ θ0 = 0◦ θ0 = 47◦ θ0 = 70◦

1D modes 0.78 −0.49 −0.46 0.91 −0.65 −0.62
2D modes 0.81 −0.52 −0.49 0.93 −0.66 −0.64

BOA θ0 = 0◦ θ0 = 47◦ θ0 = 70◦ θ0 = 0◦ θ0 = 47◦ θ0 = 70◦

1D modes −0.39 −0.13 −0.41 −0.43 0.13 −0.56
2D modes −0.41 −0.14 −0.44 −0.46 0.13 −0.58

ing that the effects are more pronounced at longer wavelengths; stronger polarization of the

scattering phase function of the ensemble of smoke particles. In addition, for a mixed at-

mosphere (smoke particles +molecules) and two wavelengths (λ = 470 nm and 670 nm), the

errors caused due to the neglect of polarization are up to about 4.3% at 470 nm wavelength,

owing to the stronger Rayleigh scattering.

Nevertheless, although the aforementioned studies reported errors up to 5% when comparing

scalar and vector schemes, the following discussion points to negligible deficiencies. In this

thesis, the discussion will point to realistic 1D and 2D schemes of inhomogeneous Saharan

dust fields. Towards this direction, the two measurement cases introduced in Subsection 5.1.1

have been employed. Simulations have been performed for a wavelength of 532 nm based on

the settings described in Subsection 5.1.3 and results are presented for two different modes

(1D and 2D) for both the reflected (TOA) and transmitted (BOA) radiation. The maximum

relative differences between vector and scalar calculations are listed in Table 5.10.

In contrast to pure molecular scattering, the errors induced by neglecting polarization for

realistic inhomogenous atmospheres involving molecules, water soluble and dust particles,

are insignificant. The maximum observed RDV -S are less than 1% for both measurement

scenarios (SAMUM 0.81% with averaged τ of 1.1, METEOR 0.93% with averaged τ of

0.74). As described in the first part of this section (molecular case), the errors come from

the second–order scattering. Accordingly, strongly polarized first–order scattering supplies

the second–order, and consequently, the second–order supplies the third–order, and so on.

The high–order scatterings linked to high optical thickness, and rather highly asymmetric

scattering phase matrices of the dust particles, are the reasons of the low values of the

relative differences, making the scalar assumption sufficient for remote sensing applications,

depending on the use (e.g., restricted to radiance calculations; not for retrievals).

Figure 5.26 shows the scenario for which the major RDV- S were found, namely for the

METEOR measurement case pertaining to a solar zenith anlge of 0◦ and detector position

of (θdet = 0◦, φdet = 0◦).
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TOA as a function of the pixel number, pertaining to a solar zenith anlge of 0◦ and detector position
of (θdet = 0◦, φdet = 0◦).
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6 Summary, Conclusions, and Outlook

This chapter serves as both a conceptual summary of the present work as well as providing a

prospect for future work. Partially, it was published in Barlakas et al. (2016) and Emde et al.

(2015).

6.1 A New Radiative Transfer Solver

To quantify polarization effects due to multiple–scattering by non–spherical particles (coarse

mode dust or ice particles), a new three–dimensional (3D) vector radiative transfer model,

SPARTA (Solver for Polarized Atmospheric Radiative Transfer Applications) is developed

and comprehensively validated against benchmark results. Considering the limitations in

availability of 3D vector models, SPARTA is going to be a freely available, user–friendly

model. SPARTA is built on the scalar Monte Carlo model of the Leibniz Institute of Marine

Sciences (now GEOMAR) at the UNIversity of Kiel (MC-UNIK, Macke et al. 1999) and

employs the statistical forward Monte Carlo technique for efficient column–response pixel–

based radiance calculations including polarization for 3D inhomogeneous cloudless and cloudy

atmospheres. Thus, it is well suited for use in remote sensing applications. The major

objective of this work is the application of SPARTA to scientific problems with a special

emphasis on non–spherical mineral dust particles and polarization.

Free path lengths are simulated as outlined by Marchuk et al. (1980) by random number

processes with attenuation described by the law of Bouguer–Beer. Scattering directions

are calculated according to an importance sampling method, which seems to be the fastest

approach of the different methods to the polarized radiative transfer problem (Collins et al.,

1972; Marchuk et al., 1980; Emde et al., 2010). An alternative approach for polarization

problems, which has been investigated during the development of SPARTA, is to employ the

normalized scattered Stokes vector as the probability density function (PDF) to sample the

new direction. However, this leads to a bi–variable PDF of the scattering zenith and azimuth

angles introducing numerical problems (due to the trigonometric functions) and consequently

to an increase in computational needs. Absorption is taken into account by decreasing the

initial Stokes weight by the estimated total absorption coefficient, along the photon path, with

the Bouguer–Beer Law. The surface contribution is calculated assuming isotropic reflection

(Lambertian surface) or anisotropic ocean reflection as outlined in Mishchenko and Travis

(1997). In order to obtain precise radiance calculations for each wavelength and to diminish

the noise of simulations for highly asymmetric phase matrices the Local Estimate Method has

been applied (Collins et al., 1972; Marchuk et al., 1980; Marshak and Davis, 2005). Other

variance reduction methods have not been implemented. Future work will include applying
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various variance reduction techniques (truncation techniques, Rozanov and Lyapustin 2010;

Buras and Mayer 2011).

SPARTA has been tested for different atmospheric conditions (e.g., Rayleigh scattering,

aerosol particles and randomly oriented prolate spheroids) and comprehensively compared

to benchmark results (de Haan et al., 1987; Natraj et al., 2009; Kokhanovsky et al., 2010).

It took part in the model intercomparison project launched by the polarization working

group of the International Radiation Commission (IPRT) (Emde et al., 2015). Overall, the

comparisons demonstrated that the performance of SPARTA is excellent. All deviations

found in case of highly asymmetric phase matrices can be explained by the noise of the

Monte Carlo technique in radiance calculations. The noisiness of the signal is a function of

the number of photons. Increasing the selected number of photons diminishes the noise.

6.2 Implications from Neglecting Polarization

By means of SPARTA a sensitivity study has been carried out to quantify the errors induced

by neglecting polarization in radiance simulations. Two atmospheric problems have been

considered. The first scattering problem involves a homogenous Rayleigh single–layer and

the second one corresponds to realistic atmospheres utilizing two LIDAR–measured inhomo-

geneous Saharan dust scenarios (SAMUM and METEOR). In order to quantify these errors,

the relative differences in percent between the vector and scalar simulations (RDV -S) have

been computed.

In case of a molecular atmosphere, the sensitivity of RDV -S to the optical thickness (τ),

isotropic reflection (that completely depolarizes incident radiation) characterized by different

surface albedos, single–scattering albedo, and the depolarization factor (that corrects for

molecular anisotropy in terms of polarization) was examined. Increasing the surface albedo,

the depolarization factor, and molecular absorption, the errors by ignoring polarization are

decreasing. Finally, these errors are more pronounced for higher optical thicknesses. This

dependency is known to saturate for optical thickness of about 1. For larger values of τ ,

the increasing multiple–scattering process, leads to a decrease of the bias, depending on

isotropic reflection, and more importantly, on the single–scattering albedo. Overall errors

in the reflected field up to about 10.5% were estimated. This bias is caused from lower–

order scattering; except from first–order, but mainly from second–order scattering. It is

more pronounced for molecular scattering due to the special structure of the Rayleigh phase

matrix; considerable polarization is found at scattering angles close to 90◦.

For realistic inhomogeneous atmospheres, in contrast to the Rayleigh scattering case, the

bias prompted by ignoring polarization in radiation simulations is negligible. The maximum

observed RDV- S are less than 1% for both measurement cases. As described above, the

errors come from second–order scattering. Strongly polarized first–order scattering supplies

the second–order, and as a consequence, the second–order supplies the third–order, and so on.

The high–order scatterings resulting from rather high τ values (1.1 for SAMUM, and 0.74 for

METEOR), and highly asymmetric scattering phase matrices of the mineral dust particles

results in low values of RDV -S. For such cases, the scalar radiative transfer approximation
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is adequate for a few remote sensing applications (e.g., limited to radiation computations;

not for retrievals).

Overall, the scalar assumption may lead to significant bias in radiation computations for pure

Rayleigh scattering atmospheres at visible wavelengths, and therefore, polarization should

be employed to interpret remote sensing data.

6.3 Quantification of Polarization Radiative Effects

In this study, an effort has been made to quantify the radiative effects associated with

1D scalar radiative transfer simulations for two realistic LIDAR–measured inhomogeneous

Saharan dust scenes. Clouds (and also dust plumes) interact with radiation depending

on both their microphysical properties and spatial distribution; structure is also important

(aerosol vertical profile). The objective of this application is of great importance since

there is no evidence corroborating the notion that the scalar approximation is adequate

to interpret the bias introduced by ignoring domain heterogeneities. Polarized radiance

fields were calculated for three solar zenith angles (0◦, 47◦, and 70◦), the same viewing

directions for the reflected radiation at the TOA, and the supplementary angles (180◦, 133◦,

and 110◦) for the transmitted radiation at the BOA above a Lambertian surface with albedo

αL = 0.05, corresponding to an ocean surface. The relative azimuth angle was set to 0◦. For

each measurement case, three radiative calculations were conducted at 532 nm wavelength:

an 1D calculation according to the plane–parallel assumption utilizing domain–averaged

optical properties (1D mode); an Independent Pixel Approximation (IPA mode) accounting

horizontal inhomogeneities (HI) but omitting horizontal photon transport (HPT); and the

2D mode that takes into account the variability in only one horizontal direction (x or y). The

2D versus 1D comparison assesses the total radiative effect, the 2D versus IPA comparison

renders information about the significance of the HPT, while the 1D error (IPA versus 1D)

quantifies the horizontal heterogeneity effect.

2D - 1D Major Results

The differences in domain-averaged normalized radiances of reflection and transmission are

insignificant between the 1D and 2D modes. However, local differences were observed since

extinction depends on horizontal spatial variability. In the areas with a large gradient in

optical thickness, the radiance fields of the 2D mode differ by about ±20% for I and Q from

the fields of the 1D mode (excluding the areas with artificial strong gradient in τ). In brief,

the total radiative effect is especially sensitive to the viewing direction and the gradient in

optical thickness, but the sign of its two components may differ. It is more pronounced

for the transmitted rather than for the reflected field and for the first Stokes component as

compared to the second one. The differences between 2D and 1D are larger for the SAMUM

measurement case but they are affected by an artificial gradient in optical thickness owing

to the periodic boundary conditions employed in SPARTA. This can be explained by the

lower gradient in optical thickness and the lower variability that is resolved by the larger

horizontal pixel size of the METEOR LIDAR–measured field.
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2D - IPA Major Results

The horizontal photon transport bias is larger for nadir reflection at the TOA as compared to

zenith surface transmission. Increasing the solar zenith angle the HPT is increasing, and the

divergence between the IPA bias found for the zenith transmitted and nadir reflected fields

is decreasing. The latter trend is a bit weaker for the SAMUM case, considering the artificial

gradient in optical thickness. Comparing the two measurement scenarios, the error owing to

HPT is more pronounced in the SAMUM case, because of the smaller horizontal pixel size

(Di Giuseppe and Tompkins, 2003), whereby the horizontal photon transport effect plays

a major role for specific illumination and observation geometries. Overall, the maximum

absolute IPA error is:

• SAMUM: a. θdet = 47◦ - (12%, 8%) and b. θdet = 110◦ - (64%, 20%) or (20%,

13.6%) if we exclude the areas with posible artificial gradient in τ .

• METEOR: a. θdet = 70◦ - (4.8%, 3%) and b. θdet = 110◦ - (9.4%, n/a).

IPA - 1D Major Results

For the reflected radiation at the TOA, the 1D bias is low for both measurement cases.

It is within the range of ±4.3% for I, and ±3.1% for Q. For the transmitted radiation

at the BOA, the corresponding bias is larger. The 1D biases are for the SAMUM case:

−40 < RDIPA - 1D < 20.1 for I (or ±20% if the shaded areas are excluded) and −17.7 <

RDIPA - 1D < 10.3 for Q. Accordingly, for the METEOR case: −14 < RDIPA - 1D < 9.7 for I

and −7.2 < RDIPA - 1D < 4.2 for Q. The one–dimensional heterogeneity effect is introduced

by ignoring the domain horizontal variability. Consequently, a perfect linear correlation

between the 1D error and the τ is found for both the first and second Stokes components.

The correlation for Q is a bit weaker. It is more pronounced for the reflected as compared

to the transmitted radiation. For example, the fraction where the deviation of the bias is

smaller than the deviation of the dependent parameter, R2, is in the range of 0.83 - 0.98 for

METEOR (excluding the geometry combination (θ0 = 70◦, θdet = 70◦)) and 0.5 - 0.96 for

SAMUM for the first Stokes element; for Q, R2 up to 0.99 were also found, but for different

geometry combinations (θ0 = 70◦, θdet = 70◦). The latter linear correlation may be used as

a correction scheme of the radiative effects introduced by employing 1D radiative transfer

solvers for remote sensing applications.

Overall Radiative Effects Major Results

The total radiative effect consists of two components: the horizontal photon transport and

the internal horizontal heterogeneity effects. These two physical processes do not always

have the same sign depending on the illumination and viewing directions. To interpret the

radiative effects, the IPA and 1D biases were compared to the total bias. For the reflected

radiation and the METEOR case, the total bias for the first Stokes component is driven by the

1D bias. For a solar zenith angle of 0◦, there is a perfect correlation between RD (total bias)

and RDIPA - 1D (R2 = 0.99), illustrating that the heterogeneity effect completely overbalances
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the horizontal photon transport (negligible). Increasing the solar zenith angle, the HPT is

increasing, while the HI is decreasing. Note here that for the METEOR case, the 1D bias is

always the dominant effect due to the low horizontal resolution (2.06 km). For the SAMUM

case, the HPT component is slightly more pronounced considering the higher horizontal

resolution (0.96 km). In the same direction is the outcome for the second Stokes component;

yet, both effects are found to be a bit weaker. The same holds for the transmitted field

at the surface for the METEOR case. On the other hand, the SAMUM LIDAR–measured

field poses some deviations driven by an artificial strong gradient introduced by the periodic

boundary conditions employed in SPARTA. In conclusion, increasing the horizontal pixel size

results in a decrease of the IPA effect and an increase of the 1D heterogeneity effect.

The goal of this work is to broaden such investigations by combining the 3D aspect with

the vector radiative transfer scheme, pointing to a brand–new field: the quantification of the

sensitivity of polarization to such physical processes.

6.4 Outlook

The strength of polarization is the capacity to be sensitive to particle shape, size and ther-

modynamic phase in remote sensing. Polarization effects saturate for an optical thickness

of about 2 or 3, since the final polarization state results from the first few orders of scat-

tering. Consequently, polarization measurements should be utilized to retrieve information

for aerosol and cloud particles. In essence, the new 3D vector radiative transfer solver

can be employed to interpret passive and active polarized remote sensing measurements.

For example, SPARTA can be used to quantitatively analyze the POLDER measurements

(satellite remote sensing retrieval of dust particles and cirrus clouds). By comparing the

simulated and measured total and polarized reflectances, the cirrus optical properties can be

derived (Labonnote et al., 2001). From a ground–based perspective, the model can be used

to retrieve mineral dust properties from polarized sun photometer measurements. Polarized

reflectance can be employed to discriminate between spherical water droplets (water clouds)

and non–spherical ice crystals (cirrus clouds). In addition, the shape, size and orientation of

non–spherical ice crystals can be inferred from polarization measurements (Liou and Takano,

2002).

In this work, results are presented for two LIDAR–based measurement cases. More 2D inho-

mogeneous dust LIDAR–measured fields are needed. Future work should aim at developing

correction schemes that account for observable gradients of optical thickness in the dust

fields. Applications may be extended to 2D inhomogeneous cirrus clouds from LIDAR mea-

surements (Seifert et al., 2007). Moreover, further research should be conducted in order to

explore the polarization radiative effects in 3D realistic mineral cloud schemes. Towards this

direction, more advanced scattering phase matrices and realistic dust particle shapes shall

be used.

Going even further, since polarization saturates for an optical thickness of about 2 or 3, the

polarization signature may be the same for thin, thick or very thick clouds (and dust fields).

This implies that polarization should be less sensitive to 3D effects. However, Cornet et al.
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(2010) stated that the polarized reflectance is as sensitive as the total reflectance to 3D

effects. Therefore, total and polarized reflectances from air–borne (e.g., by the Research

Scanning Polarimeter) or from space–borne (e.g., POLDER) based measurements can be

employed to investigate 3D radiative effects in dust fields.

SPARTA can also be used to investigate fundamental optical properties (e.g., photon path

statistics to characterize cloud inhomogeneities, distribution of number of scatterings, photon

densities, PDFs of spatial photon distribution).

Last but not least, the second phase of the IPRT intercomparison project (3D test cases)

has started and SPARTA is going to participate.
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List of Symbols

αL - Surface albedo

βabs m−1 Spectral volumetric absorption coefficient

βtotabs m−1 Total volumetric absorption coefficient

βext m−1 Spectral volumetric extinction coefficient

βtotext m−1 Total volumetric extinction coefficient

βsca m−1 Spectral volumetric scattering coefficient

βtotsca m−1 Total volumetric scattering coefficient

δ - Depolarization factor

ǫ AsV−1 m−1 Electric permeability

ζ rad or ◦ Phase of the electric field vector

η rad or ◦ Rotation angles

θ rad or ◦ Atmospheric zenith angle

θ0 rad or ◦ Solar zenith angle

θdet rad or ◦ Zenith angle, viewing (detector) direction

θinc rad or ◦ Zenith angle, incident direction

θrefl rad or ◦ Zenith angle, reflection direction

θsca rad or ◦ Zenith angle, scattering direction

ϑ rad or ◦ Scattering zenith angle

κ VsA−1 m−1 Magnetic permittivity

λ m Wavelength

µ - Cosine of the zenith angle

ρλ - Spectral albedo

τ - Cloud optical thickness

τcum - Cumulated optical thickness

τrand - Randomly chosen optical thickness

φ rad or ◦ Atmospheric azimuth angle

φ0 rad or ◦ Solar azimuth angle

φdet rad or ◦ Azimuth angle, viewing (detector) direction

φinc rad or ◦ Azimuth angle, incident direction

φrefl rad or ◦ Azimuth angle, reflection direction

φsca rad or ◦ Azimuth angle, scattering direction

ϕ rad or ◦ Scattering azimuth angle

ξ - Random number

ω̃ - Single–scattering albedo

ω̃tot - Total single–scattering albedo

ωc s−1 = Hz Circular frequency
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d2A m2 Infinitesimal area element

d2A⊥ m2 Infinitesimal area element perpendicular to k̂

Θj (j=1, 2) rad or ◦ Incident and refracted angles with respect to

the surface normal

Φλ J s−1 nm−1 Spectral radiant energy flux

Φabs J s−1 nm−1 Radiant energy flux absorbed by an individual

particle

Φsca J s−1 nm−1 Radiant energy flux scattered by an individual

particle

X, Y - Solutions of the two nonlinear integral equations of

radiative transfer equation

d2Ω sr Infinitesimal solid angle

b - Hemispheric backscatter ratio

c ms−1 Velocity of light in vacuum

ê1, ê2, ê3 - Euklidic base vectors

g - Asymmetry parameter

h J s Planck’s constant

k̂ - Direction of propagation

k̂inc - Incident direction

k̂inc,0 - Initital incident direction

k̂sca - Scattering direction

k̂refl - Reflection direction

k m−1 Wavenumber

kB J deg−1 Boltzmann constant

lback m Backward step

n̂ - Surface orientation of d2A

n̂⊥ - Surface orientation of d2A⊥

ñ - Complex index of refraction

nj m−3 Particle number density

nre - Real part of ñ

r m Radius of aerosol particle

s2 ms−1 Mean square surface slope of waves

t s Time

w ms−1 Near–surface wind velocity

x, y, z - Axes of Cartesian coordinate system

(z vertical altitude above ground)

zbase m Medium base, altitude

ztop m Medium top, altitude

IA m Complex amplitude scattering matrix

Aij (i, j=1, 2) m Complex scattering amplitudes

Bλ Wm−2 sr−1
µm−1 Spectral Planck function

BRDF - Bidirectional reflection distribution function

Cabs m2 Absorption cross section

〈Cabs〉 m2 Average absorption cross section per particle
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Cext m2 Extinction cross section

〈Cext〉 m2 Average extinction cross section per particle

Csca m2 Scattering cross section

〈Csca〉 m2 Average scattering cross section per particle

D m Diameter of cloud particle
~E Vm−1 Complex electric field vector
~E0 Vm−1 Complex electric amplitude vector

Erad J Radiant energy

ERF W m−2 Effective radiative forcing〈
~F
〉

Wm−2 Poynting vector

F0 Wm−2 nm−1 Extraterrestrial irradiance

Fλ Wm−2 nm−1 Spectral irradiance

F ↓
λ Wm−2 nm−1 Downward spectral irradiance

F ↑
λ Wm−2 nm−1 Upward spectral irradiance

Finc Wm−2 nm−1 Incident irradiance
~H Am−1 Complex magnetic field vector

Iλ Wm−2 nm−1 sr−1 Spectral radiance

M - Mueller matrix

Mrefl - Matrix based on Fresnel formulas

M Number of scattering events

Mij (i, j=1, 2) - Mueller matrix elements

N - Number of particles

Nph - Number of particles photons

P m2 Scattering phase matrix

P̃tot m2 Total normalized scattering phase matrix

P̃ - Normalized scattering phase matrix

〈P〉 m2 Average scattering phase matrix

P sr Phase function

P - Degree of polarization

Pij (i, j=1, 2) m2 Scattering phase matrix elements

Pcir - Degree of circular polarization

Plin - Degree of linear polarization

Q Wm−2 Parallel minus perpendicular linear polarized

irradiance

R - Rotation matrix

IRL - Lambertian (isotropic) reflection matrix

IRocean - Ocean reflection matrix

RD % Relative differences between the 2D and 1D modes

RD2D - IPA % Relative differences between the 2D and IPA modes

RDIPA - 1D % Relative differences between the IPA and 1D modes

RDV -S % Relative differences between the vector and scalar

modes

RF W m−2 Radiative forcing
~S Wm−2 Stokes vector
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~Sinc Wm−2 Incident Stokes vector
~Ssca Wm−2 Scattered Stokes vector

S - Bidirectional shadowing function

T K Absolute temperature

U Wm−2 Linear polarized irradiance under 45◦

V Wm−2 Circularly polarized irradiance

W - The exponential term of W describes the Gaussian

distribution of the surface slope

Z m2 Transformation phase matrix

Z̃ - Normalized transformation phase matrix

〈Z〉 m2 Ensemble average transformation phase matrix

〈Zj〉 m2 Ensemble average transformation phase matrix

for one particle
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List of Abbreviations

1D One–dimensional

2D Two–dimensional

3D Three–dimensional

3DMCPOL Three–dimensional polarized Monte Carlo atmospheric radiative

transfer model

6SV1 Second Simulation of a Satellite Signal in the Solar Spectrum, Vector,

version 1

ADEOS I Advanced Earth Observing Satellite 1

A–DM Adding–Doubling Method

ARTS Atmospheric Radiative Transfer Simulator

BOA Bottom Of Atmosphere

BRDF Bidirectional Reflection Distribution Function

CCN Cloud Condensation Nuclei

CPU Central Processing Unit

DAK Doubling–Adding KNMI

(Koninklijk Nederlands Meteorologisch Instituut)

DFG Deutsche Forschungsgemeinschaft

DLR Deutsches Zentrum für Luft- und Raumfahrt

DOM Discrete Ordinate Method

EM ElectroMagnetic

ERF Effective Radiative Forcing

erfc Complementary error function

GCMs General Circulation Models

GEOS–5 Goddard Earth Observing System Model, Version 5

HI Horizontal Inhomogeneity

HPT Horizontal Photon Transport

I3RC Intercomparison of 3–D Radiation Codes

IN Ice Nuclei

IPA Independent Pixel Approximation

IPCC Intergovernmental Panel on Climate Change

IPOL Intensity and POLarization

IPRT International Polarized Radiative Transfer

IRC International Radiation Commission

LEM Local Estimate Method

LIDAR LIght Detection And Ranging

LMU Ludwig–Maximilians–Universität München
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