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Abstract 

Molecular breeding involves the use of molecular markers to identify and characterize genes 

that control quantitative traits. Two of the most commonly used methods to dissect complex traits 

in plants are linkage analysis and association mapping. These methods are used to identify markers 

associated with quantitative trait loci (QTL) that underlie trait variation, which are used for marker 

assisted selection (MAS). Marker assisted selection has been successful to improve traits 

controlled by moderate to large effect QTL; however, it has limited application for traits controlled 

by many QTL with small effects. Genomic selection (GS) is suggested to overcome the limitation 

of MAS and improve genetic gain of quantitative traits. GS is a type of MAS that estimates the 

effects of genome-wide markers to calculate genomic estimated breeding values (GEBVs) for 

individuals without phenotypic records. In recent years, GS is gaining momentum in crop breeding 

programs but there is limited empirical evidence for practical application. The objectives of this 

study were to: i) evaluate the performance of various statistical approaches and models to predict 

agronomic and end-use quality traits using empirical data in spring bread wheat, ii) determine the 

effects of training population (TP) size, marker density, and population structure on genomic 

prediction accuracy, iii) examine GS prediction accuracy when modelling genotype-by-

environment interaction (G × E) using different approaches, iv) detect marker-trait associations 

for agronomic and end-use quality traits in spring bread wheat, v) evaluate the effects of TP 

composition, cross-validation technique, and genetic relationship between the TP and SC on GS 

accuracy, and vi) compare genomic and phenotypic prediction accuracy. Six studies were 

conducted to meet these objectives using two populations of 231 and 304 spring bread wheat lines 

that were genotyped with the wheat 90K SNP array and phenotyped for nine agronomic and end-

use quality traits. The main finding across these studies is that GS can accurately predict GEBVs 

for wheat traits and can be used to make predictions in different environments; thus, GS should be 

applied in wheat breeding programs. Each study provides specific insights into some of the 

advantages and limitations of different GS approaches, and gives recommendations for the 

application of GS in future breeding programs. Specific recommendations include using the GS 

model BayesB (especially for large effect QTL) for genomic prediction in a single environment, 

across-year genomic prediction using the reaction norm model, using a large TP size for making 

accurate genomic predictions, and not making across-population genomic predictions except for 

highly related populations. 
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1. Introduction 

Wheat (Triticum aestivum L.) is an important cereal crop that accounts for more than 20% 

of the total calories consumed by humans globally and is a staple food for about 35% of the world’s 

population (Breiman and Graur, 1995). Canada is the sixth largest wheat producing country in the 

world with a total production of 29.3 million tonnes in 2014 (FAOSTAT, 2015). In Canada, most 

of the wheat production is in the prairie provinces of Alberta, Saskatchewan and Manitoba, and a 

small proportion is grown in British Columbia and eastern Canada (McCallum and DePauw, 2008; 

Randhawa et al., 2013). Canada is the second largest exporter of wheat after the United States of 

America; 19.8 million of the 37.5 million tonnes of wheat grain produced in Canada in 2013 was 

exported (FAOSTAT, 2015). Canadian wheat is recognized globally for its high-quality end-use 

properties.  

Wheat yields have increased to keep up with rising food demands from population growth 

(Gustafson et al., 2009). The increase in grain yield can be attributed to several factors but two of 

the commonly cited factors include the adoption of new cultivars and improved management 

practices (Rudd, 2009). Efforts to increase wheat grain yield must continue to meet projected food 

demands from a growing world population and increasing challenges from climate change, 

resource limitations and incidence of biotic and abiotic stresses. A large proportion of the 

anticipated yield increase will likely come from efforts in plant breeding to develop high yielding, 

stress tolerant and disease resistant cultivars with acceptable quality standards. This calls for the 

integration of conventional breeding approaches with innovative and new strategies to accelerate 

the breeding cycle and improve the precision and efficiency of selection strategies.  

Wheat breeding involves the creation of new genetic variability through controlled 

hybridization of two or more parents followed by self-crossing and advancing generations by 

selecting offspring with desirable agronomic, disease resistance and end-use quality traits. These 

advanced wheat lines then undergo repeated field testing, and if they meet appropriate standards 

are released as new cultivars. This process normally takes 10 to 15 years and is resource intensive. 

Traditionally, selection of desirable plants within segregating populations is based on visual 

assessment of agronomic traits and laboratory tests of end-use quality traits, which are laborious 

and expensive. For quantitative traits, selection based on phenotype alone is subject to confounding 

effects from G × E so entries are evaluated over multiple locations and years. This makes 

phenotypic selection time consuming and expensive. Moreover, the short growing season of the 



 

2 
 

Canadian prairies (a frost-free period of 90 to 120 days) presents a challenge for large scale field 

evaluation and selection of a breeding material. The advent of molecular marker systems greatly 

improved the precision and speed of the breeding process through marker assisted breeding. When 

markers that are genetically linked to target genes are identified, they can be used for MAS. Marker 

assisted selection was developed to overcome the limitations of conventional breeding by changing 

the selection criteria from phenotypes to genes, either directly or indirectly (Francia et al., 2005).   

The most commonly used methods for marker-trait association analysis have been QTL 

mapping with experimental populations and association mapping using natural populations. 

Quantitative trait loci mapping involves linking QTL underlying trait variation with known 

molecular markers in a segregating population developed through hybridization of inbred parental 

lines that are genetically variable for one or more target traits (Mackay, 2001). Association 

mapping is a method that relies on linkage disequilibrium (LD) to study the relationship between 

phenotypic variation and genetic polymorphisms across a set of germplasms with wide genetic 

diversity (Flint-Garcia et al., 2003). Association mapping exploits historic recombination and 

natural genetic diversity for high resolution mapping (Zhu et al., 2008). Linkage based QTL 

mapping has relatively lower resolution than association mapping because there are fewer 

recombination events (Mackay, 2001). Both QTL and association mapping studies are used to 

detect markers significantly associated with QTL underlying trait variation that can be used for 

MAS. Moreover, the genetic architecture revealed from these methods can be used to enhance 

genomic prediction of quantitative traits.  

Several QTL for disease resistance, agronomic and end-use quality traits have been 

identified and molecular markers linked with these QTL were deployed for selection of these traits 

in several wheat cultivars released for commercial cultivation in Canada (Cuthbert et al., 2006; 

Knox et al., 2009; Randhawa et al., 2013; Wiebe et al., 2010). When few QTL that explain a large 

proportion of the variance of a quantitative trait are identified, the breeding strategy is to 

introgress/pyramid these QTL into elite germplasm through MAS (Bernardo, 2008). However, 

most traits of agronomic importance in wheat are quantitatively inherited and are regulated by 

many genes with small effects. For such traits, MAS has limited application because of the 

difficulty to identify and manipulate multiple genomic regions at the same time (Francia et al., 

2005). Even when major genes or QTL underlie a trait, a large portion of the genetic variance may 
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be due to several minor effects QTL and introgression of the major genes or QTL will not capture 

the effects of minor QTL (Bernardo, 2014).  

Advances in high-throughput genotyping technologies have resulted in the availability of 

abundant molecular markers covering the whole genome in many species. This new development 

has allowed the use of whole genome dense marker maps for the prediction of breeding values of 

individuals without phenotypic records (Heffner et al., 2009; Meuwissen, 2009; Meuwissen et al., 

2001). This approach is commonly referred to as genomic selection or genome-wide selection 

(Meuwissen et al., 2001). Genomic selection is a type of MAS but is unique in that there is no need 

to identify marker-trait associations (Bernardo and Yu, 2007; Meuwissen, 2007). Genomic 

selection involves the estimation of marker effects from a training or reference population (TP) 

that has both genotypic and phenotypic data to predict GEBVs of selection candidates (SC) by 

combining their marker genotypes with the estimated marker effects (Meuwissen, 2009). These 

GEBVs are used to select breeding lines that should be removed or retained in future crosses 

(Jannink et al., 2010). The main assumption of GS is that by using dense genome-wide markers, 

all QTL will be in LD with at least one nearby marker and potentially all the genetic variance can 

be explained by markers (Calus, 2010; Goddard and Hayes, 2007).   

Several approaches and models have been proposed for implementing GS (de los Campos et 

al., 2009a; de los Campos et al., 2010; Gianola et al., 2006; Gianola and van Kaam, 2008; Habier 

et al., 2011; Meuwissen et al., 2001; Park and Casella, 2008; VanRaden, 2008). Originally, GS 

models focused on prediction of a single trait evaluated in a single environment or averaged across 

environments. In recent years, multi-environment models that account for G × E (Burgueño et al., 

2011; Burgueño et al., 2012; Crossa et al., 2015; Cuevas et al., 2017; Heslot et al., 2014; Jarquín 

et al., 2014a; Jarquín et al., 2017; Lopez-Cruz et al., 2015; Pérez-Rodríguez et al., 2015; 

Sukumaran et al., 2017; Technow et al., 2015) and multiple-trait GS models (Aguilar et al., 2011; 

Calus and Veerkamp, 2011; Guo et al., 2014a; Hayashi and Iwata, 2013; Hayes et al., 2017; Jia 

and Jannink, 2012; Jiang et al., 2015) have been proposed. Moreover, models that combine the 

results of genome-wide association study (GWAS) with GS have been proposed (Bentley et al., 

2014; Bernardo, 2014; Spindel et al., 2016; Zhang et al., 2014; Zhao et al., 2014). These studies 

reported improved prediction accuracy using multi-environment and multiple-trait analysis. The 

performance of single and multiple-trait prediction models, models that account for G × E, and 
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methods that combine GWAS with GS have not been evaluated using the same cross-validation 

folds in wheat.  

Simulation and empirical studies from plant and animal breeding programs indicated that 

GS accuracy depends on several factors including the marker type and density (Combs and 

Bernardo, 2013; Heffner et al., 2011a; Moser et al., 2010), TP size (Calus and Veerkamp, 2007; 

Combs and Bernardo, 2013; Heffner et al., 2011a; VanRaden et al., 2009), trait heritability (Combs 

and Bernardo, 2013; Moser et al., 2010), genetic relationship between the TP and SC (Solberg et 

al., 2008; VanRaden et al., 2009; Wientjes et al., 2013), population structure (de los Campos et al., 

2015; de Roos et al., 2009; Guo et al., 2014b; Isidro et al., 2015), G × E (Burgueño et al., 2012; 

Crossa et al., 2015; Jarquín et al., 2014a; Jarquín et al., 2017; Lopez-Cruz et al., 2015; Pérez-

Rodríguez et al., 2015; Sukumaran et al., 2017) and the statistical method used for prediction 

(Calus, 2010). These factors are interrelated in a complex manner (Desta and Ortiz, 2014). Genetic 

relationship between the TP and SC was cited as one of the factors that affect prediction accuracy. 

However, it is not clear what measure of genetic relationship is appropriate and the extent of 

genetic relationship that is sufficient to obtain an acceptable level of accuracy. Moreover, most of 

these factors are population and environment specific and it is important to assess different 

statistical models and model parameters for their predictive ability in different breeding 

populations and environments.  

In recent years, GS is gaining momentum in crop breeding programs. Despite a growing 

interest, there remain uncertainties in the practical application of GS for crop improvement. Most 

studies in GS evaluated model prediction accuracy based on simulated data but increasing numbers 

of studies are now reporting empirical evidence, with mixed results. Model prediction accuracy is 

commonly evaluated through a cross-validation approach by systematically partitioning the same 

population into training and validation folds or based on k-fold cross-validation methods (Lorenz 

et al., 2011). However, successful implementation of GS in crop breeding programs largely 

depends on its potential to accurately estimate GEBVs of individuals in a population different from 

the one used to estimate marker effects. Moreover, it is often difficult to extrapolate the results 

reported in previous studies because the statistical methods, model parameters, population 

characteristics, and environments are variable.  

This research was conducted to evaluate different GS approaches, statistical models and 

model parameters to design selection strategies for complex traits in wheat under the short growing 
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seasons of western Canada. The primary hypothesis was that GS has the potential to accurately 

predict GEBVs for wheat lines and facilitate rapid gains from selection. The objectives of this 

study were to i) evaluate the performance of various statistical approaches and models to predict 

agronomic and end-use quality traits using empirical data in spring bread wheat, ii) determine the 

effects of TP size, marker density, and population structure on genomic prediction accuracy, iii) 

examine GS prediction accuracy when modelling G × E using different approaches, iv) detect 

marker-trait associations for agronomic and end-use quality traits in spring bread wheat, v) 

evaluate the effects of TP composition, cross-validation technique, and genetic relationship 

between the TP and SC on GS accuracy, and vi) compare genomic and phenotypic prediction 

accuracy.  
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2. Literature Review 

2.1 Wheat Production 

Wheat is the most widely grown cereal crop in the world, with a total harvested area of 221.6 

million ha in 2014 (FAOSTAT, 2015). In 2014, wheat ranked third in production (729 million 

tonnes) among the world grain crops after maize (Zea mays) and rice (Oryza sativa) (FAOSTAT, 

2015). Wheat is a staple food for about 35% of the world’s population and accounts for more than 

20% of the total calories consumed globally (Breiman and Graur 1995). It is grown throughout the 

temperate, tropical and sub-tropical parts of the northern and southern hemispheres (Zohary and 

Hopf, 2000). Canada is the sixth largest wheat producing country in the world with the total 

production of 29.3 million tonnes in 2014 (FAOSTAT, 2015). In Canada, nearly all the wheat is 

grown in the prairie provinces of Alberta, Saskatchewan and Manitoba, and a small proportion is 

grown in British Columbia and eastern Canada (McCallum and DePauw, 2008; Randhawa et al., 

2013). Both spring wheat, planted in the spring and harvested in late summer or early fall, and 

winter wheat, planted in the fall and harvested in summer, are grown in Canada. Of the total wheat 

produced in Canada in 2016, spring hexaploid wheat accounted for 62%, winter hexaploid wheat 

accounted for 13%, and durum wheat accounted for 25% (Statistics Canada, 2017). Canada is the 

second largest exporter of wheat after the United States of America; 19.8 million of the 37.5 

million tonnes of wheat grain produced in Canada in 2013 was exported (FAOSTAT, 2015).  

Canadian wheat is classified into different market classes based on end-use quality 

parameters of grain protein content, gluten strength, and kernel colour (DePauw et al., 2011). 

Currently, the wheat grown in western Canada is classified into nine milling classes, including 

Canada Northern Hard Red (CNHR), Canada Prairie Spring Red (CPSR), Canada Prairie Spring 

White (CPSW), Canada Western Amber Durum (CWAD), Canada Western Extra Strong (CWES), 

Canada Western Hard White Spring (CWHWS), Canada Western Red Spring (CWRS), Canada 

Western Red Winter (CWRW), and Canada Western Soft White Spring (CWSWS) (Canadian 

Grain Commission, 2015). Each of these classes have unique characteristics and end-uses. CWRS 

and CWAD are the predominant classes of wheat grown in western Canada (McCallum and 

DePauw, 2008). The CWRS cultivars have a premium price in world trade due to their superior 

milling and baking quality under different manufacturing conditions (McCallum and DePauw, 

2008). The CWAD cultivars are mainly used for semolina production for making pasta and 
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couscous. Breeding efforts in western Canada developed CWAD cultivars with high semolina 

yield, high yellow pigment content, strong gluten and low cadmium content which led to durum 

wheat selling at a price premium over CWRS wheat (McCallum and DePauw, 2008).   

2.2 Evolution of Wheat    

Wheat is one of the first domesticated food crops. While some species of wheat contain a 

single genome, others have multiple homoeologous genomes that resulted from natural 

hybridization. Diploid genomes from ancestral grasses that have been involved in hybridization 

events are labelled using letter codes, with ‘A’, ‘D’, and ‘S’ genomes. There are two species of 

wheat at the diploid level, Triticum monococcum L. (AmAm), which is also called einkorn wheat 

and Triticum urartu (AA) (Nevo et al., 2002). Triticum monococcum includes cultivated sub-

species (ssp.) monococcum and wild ssp. aegilopoides, while T. urartu exists only in its wild form 

(Nevo et al., 2002). The diploids are the most primitive wheats and have limited range of 

morphology (Riley, 1975).  

There are two species of wheat at the tetraploid level, T. turgidum L. (BBAA) and T. 

timopheevi (GGAA), each having cultivated and wild ssp. (Riley, 1975). The wild forms in T. 

turgidum L. and T. timopheevi are designated ssp. dicoccoides and araraticum, respectively (Riley, 

1975). The cultivated tetraploids include, ssp. dicoccum, timopheevi, durum, turgidum, polonicum, 

carthlicum and orientale (Riley, 1975). It is believed that the cultivated forms in the diploid and 

tetraploid groups are derived from their respective wild forms (McFadden and Sears, 1946). 

Studies have shown that the ‘A’ genome of the polyploid wheats are equivalent to that of T. urartu 

(Dvorak et al., 1988; Petersen et al., 2006). The ‘B’ genome in T. turgidum and the ‘G’ genome in 

T. timopheevi are believed to have originated from an annual diploid species Aegilops speltoides 

(genome type: S) or its close relatives (Dvorak and Zhang, 1990). The ‘B’ and ‘G’ genomes are 

widely considered to be modified ‘S’ genomes that have undergone massive changes following 

polyploid formation (Gustafson et al., 2009). T. turgidum ssp. durum (durum wheat) is the second 

most commonly grown domesticated wheat and it is used for making pasta and couscous. 

Hexaploid wheat also has two species, T. aestivum L. (BBAADD) and T. zhukovskyi 

(GGAAAmAm), which are both cultivated forms (Riley, 1975). T. zhukovskyi is morphologically 

similar to the tetraploid wheat T. timopheevi and it is believed to have originated following 

hybridization involving T. timopheevi and T. monococcum (Riley, 1975). T. aestivum L. is believed 
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to have originated in the Caspian Sea region about 9,000 years ago from a hybridization between 

domesticated emmer wheat (T. turgidum ssp. dicoccum) and the diploid Aegilops tauschii (DD), 

which contributed the D genome (Peng et al., 2011). T. aestivum ssp. vulgare is commonly known 

as bread wheat and the other ssp. in this group are compactum, sphaerococcum, spelta, macha, 

and vavilovii (Riley, 1975). T. aestivum ssp. vulgare is the most commonly grown domesticated 

wheat and it is valued for the baking of high rising bread. 

2.3 Molecular Markers in Wheat Breeding  

Markers can be classified into three broad classes: 1) morphological markers based on 

visually assessable traits, 2) biochemical markers based on allelic variants of enzymes (isozymes), 

and 3) molecular markers based on Deoxyribonucleic acid (DNA) assay (Collard et al., 2005; 

Koebner and Summers, 2003). Morphological markers are simple but seldom used because most 

phenotypes are determined by allelic variation at more than one locus and are also affected by the 

environment (Koebner and Summers, 2003; Winter and Kahl, 1995). Biochemical markers are 

single-locus-based but are rare because each marker requires its own biochemical assay (Koebner 

and Summers, 2003). Moreover, the expression of biochemical markers is often restricted to 

specific developmental stages or tissues (Winter and Kahl, 1995). Molecular markers are the most 

widely used markers since their discovery in the 1980s. Molecular markers score different types 

of sequence variation, such as single nucleotide polymorphisms (SNPs), rearrangements, 

insertions and deletions, or length differences (Paterson, 1996). Molecular markers have 

advantages since they are not influenced by the environment and can be detected at any stage of 

the plant development. 

Over the years, several DNA-based marker analysis methods have been developed. 

Hybridization-based restriction fragment length polymorphisms (RFLP) were the first to be 

discovered and applied in human genome mapping (Botstein et al., 1980), and subsequently 

applied for linkage mapping in plants (Helentjaris et al., 1985; Paterson et al., 1988). Restriction 

fragment length polymorphisms detect DNA polymorphisms as the difference in the length of 

DNA fragments after digestion of DNA with sequence specific endonucleases (Botstein et al., 

1980). Restriction fragment length polymorphisms are unlimited in number and are not 

confounded by polyploidy; they are co-dominant markers and are able to detect individual loci in 

each of the three genomes of hexaploid wheat simultaneously (Chao et al., 1989). However, RFLPs 
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have been relatively less useful in wheat because they are time-consuming and labor-intensive 

(Gupta et al., 1999).  

With advances in biotechnology, other markers systems based on the polymerase chain 

reaction (PCR) were developed (Saiki et al., 1988). Some of the commonly used PCR-based 

markers include random amplified polymorphic DNA (RAPD) based on amplification of random 

DNA segments with single primers of arbitrary nucleotide sequence (Williams et al., 1990), 

amplified fragment length polymorphism (AFLP) based on selective PCR amplification of 

restriction fragments from a total digest of genomic DNA (Vos et al., 1995), and amplification of 

microsatellites or simple sequence repeats (SSR) (Weber and May, 1989). Compared to RFLPs, 

PCR-based markers offer the potential to reduce the time, effort and expense required for 

molecular mapping (Gupta et al., 1999). However, in wheat, RAPD technology has not been 

widely used due to the complexity of the large wheat genome, low level of polymorphisms, and 

lack of reproducibility of results (Gupta et al., 1999). Similarly, AFLP markers were not widely 

used in molecular breeding due to the lengthy and laborious detection method which was not 

amenable to automation (Mammadov et al., 2012). Microsatellite markers were the most popular 

and useful molecular markers for wheat before the discovery of SNP markers because they are 

abundant, easy to detect, dispersed throughout the genome, and show higher levels of 

polymorphism relative to RFLP and RAPD markers (Gupta et al., 1999; Langridge et al., 2001). 

As more DNA sequence information became available, new marker systems that detect 

SNPs were developed (Chee et al., 1996; Wang et al., 1998). Single nucleotide polymorphisms are 

variations detected at the level of a single nucleotide base in the genome, which are the most 

abundant source of variation in plant and animal genomes (Xu and Crouch, 2008). Single 

nucleotide polymorphisms are the marker system of choice in most plant species due to their 

abundance and amenability to high-throughput automation (Mammadov et al., 2012). In wheat, 

high-density SNP arrays, such as the 9K (Cavanagh et al., 2013), 90K (Wang et al., 2014a), and 

820K (Winfield et al., 2016) gene associated SNPs, have provided an enormous opportunity to 

dissect complex traits and advance marker assisted breeding. Moreover, advances in next-

generation sequencing (NGS) technologies (Shendure and Ji, 2008), have made whole genome 

sequencing feasible in many species. This has also led to genotyping-by-sequencing (GBS), which 

combines SNP discovery and genotyping (Elshire et al., 2011; He et al., 2014). Genotyping-by-

sequencing uses restriction enzymes to capture a reduced representation of the target genome 
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which is sequenced by NGS platforms (Poland et al., 2012). Currently, several marker systems are 

used in wheat, with several emerging high-throughput systems producing dense marker data sets 

that span the whole genome. 

2.4 Traditional Applications of Molecular Markers in Wheat: Mapping and MAS 

One of the main challenges in modern genetic analysis is determining the genetic basis of 

quantitative trait variation. The regions within genomes that contain genes associated with a 

quantitative trait are called quantitative trait loci (Collard et al., 2005). Two of the most commonly 

used methods to dissect complex traits in plants are linkage analysis (QTL mapping) and 

association mapping, also called LD mapping (Zhu et al., 2008). Linkage analysis has been used 

to map qualitative and quantitative traits. In plants, linkage analysis is normally conducted by 

establishing experimental (biparental) mapping populations such as F2 populations, backcross 

populations, RILs, and doubled haploids (Collard et al., 2005; Flint-Garcia et al., 2003). Linkage 

analysis in these populations detects only those QTL that are polymorphic in the population 

(Bernardo, 2008). Association mapping is a method that relies on LD to study the relationship 

between phenotypic variation and genetic polymorphisms across a set of germplasms with wide 

genetic diversity (Flint-Garcia et al., 2003). The main principle of association mapping is that LD 

tends to be maintained over many generations between loci that are genetically linked to one 

another (Neumann et al., 2011). Linkage disequilibrium, also known as gametic phase 

disequilibrium, is the non-random association of alleles at different loci, which in random mating 

populations is generated by mutation and genetic drift, and decays by recombination (Breseghello 

and Sorrells, 2006a). Two common approaches for association analysis are candidate gene 

association mapping and genome-wide association mapping. Candidate gene association mapping 

tests the relation between DNA polymorphism of a candidate gene with the trait of interest; 

whereas, genome-wide association mapping scans the whole genome for casual genetic variation 

using dense genome-wide markers (Rafalski, 2002; Zhu et al., 2008). Unlike linkage analysis, 

association mapping evaluates genetic diversity across natural populations to identify 

polymorphisms that correlate with phenotypic variation (Flint-Garcia et al., 2003). The advantage 

of association mapping over linkage analysis is that it uses a more diverse population, and therefore 

examines a broader set of genetic variation for marker-trait correlations; this results in enhanced 

mapping resolution and broader allele coverage (Abdurakhmonov and Abdukarimov, 2008; 
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Neumann et al., 2011; Zhu et al., 2008). Association mapping panels can also be used to study 

several traits within a breeding program and can save time and money because there is no need to 

develop a biparental mapping population for each trait (Abdurakhmonov and Abdukarimov, 2008; 

Neumann et al., 2011; Zhu et al., 2008). However, association analysis may lead to a high 

frequency of false-positive associations due to population structure and cryptic relatedness that 

may arise from the origins and history of the populations used for mapping. Therefore, statistical 

methods that account for multiple levels of relatedness need to be used to detect true associations. 

Both linkage and association mapping studies are useful to identify genomic regions associated 

with traits and are often used together as complementary approaches. 

Many agriculturally important genes have been mapped using different types of molecular 

markers. Molecular markers that are genetically linked to target genes can be used for MAS. 

Marker assisted selection can accelerate the breeding cycle because it can be carried out at the 

seedling stage or on single plants in early generations (Collard and Mackill, 2008). Marker assisted 

selection also improves the efficiency and precision of conventional plant breeding by indirectly 

selecting molecular markers linked to target genes (Collard and Mackill, 2008; Gupta et al., 1999). 

Molecular markers are also important for marker-assisted evaluation of breeding material, marker-

assisted backcrossing, and pyramiding of several disease resistance genes into a single cultivar 

(Collard and Mackill, 2008). Marker assisted evaluation of breeding material includes confirming 

the identity of cultivars, assessing genetic diversity, parent selection, and confirmation of hybrids 

(Collard and Mackill, 2008). In wheat, several QTL have been identified that affect disease 

resistance, agronomic performance, and end-use quality traits (Cuthbert et al., 2006; Cuthbert et 

al., 2008; Knox et al., 2009; McCartney et al., 2005). However, markers identified in preliminary 

genetic mapping studies require further testing and development before they can be used in MAS 

(Collard et al., 2005). Further development includes high resolution mapping, marker validation 

in different genetic backgrounds, and marker conversion when there are problems with 

reproducibility or when the marker technique is complicated, time consuming and expensive 

(Collard et al., 2005). High resolution mapping identifies markers that are closely linked with the 

desired trait (Mohan et al., 1997). Suitable markers for MAS should be tightly linked to the target 

loci (preferably less than 5 cM genetic distance), highly polymorphic in the breeding material, and 

amenable to high-throughput detection methods that are cost effective (Collard and Mackill, 2008).  
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Genetic analysis in wheat is challenged by the size and complexity of the wheat genome; 

however, recent advances in molecular techniques, NGS, and bioinformatics tools have 

accelerated marker discovery and analysis of the wheat genome. To date, more than 30 genes have 

been cloned in common wheat and its relatives, and 97 functional (gene-specific) markers for 

wheat agronomic, disease resistance and end-use quality traits have been developed (Liu et al., 

2012). Most of these markers are available in the public domain (http://maswheat.ucdavis.edu) and 

can be used for MAS. Functional markers are derived from polymorphic sites within gene coding 

sequences that cause phenotypic trait variation (Bagge and Lübberstedt, 2008; Varshney et al., 

2005). These markers can be used for MAS in different genetic backgrounds without revalidating 

the marker-QTL associations (Varshney et al., 2005). Unlike random markers linked to a locus, 

functional markers are more reliable for MAS because there is no recombination between the 

marker and the target locus (Bagge and Lübberstedt, 2008). Currently, international efforts are 

underway to complete a high-quality genome sequence of all 21 chromosomes in wheat 

(http://www.wheatgenome.org/). An ordered draft sequence of the 17-gigabase hexaploid wheat 

genome has been produced and 124,201 gene loci have been annotated across the homologous 

chromosomes (International Wheat Genome Sequencing Consortium, 2014). Moreover, more than 

3.6 million marker loci have been identified; these include all publicly available molecular 

markers, insertion site-based polymorphism and SNP markers identified from recent whole-

genome shotgun and transcriptome sequencing, and GBS tags that have been mapped on individual 

chromosomes of the bread wheat genome (International Wheat Genome Sequencing Consortium, 

2014). Recently, Avni et al. (2017) reported a 10.1-gigabase assembly of the genome of wild 

emmer wheat (T. turgidum ssp. dicoccoides), a tetraploid wheat known to be the direct ancestor of 

economically important wheats. This allowed detection of casual mutations in genes controlling 

shattering, an important domestication trait in wheat (Avni et al., 2017). This shows that the advent 

of fully assembled genome will facilitate the discovery of additional genes and markers associated 

with important traits which will enhance the precision and efficiency of MAS in wheat.  

In plant breeding, MAS has been successful to improve traits controlled by few QTL with 

large effects. When few QTL with large effects explain much of the variation of a quantitative 

trait, the breeding strategy is to find and introgress/pyramid these QTL into elite cultivars through 

MAS (Bernardo, 2008). However, when a trait is controlled by many QTL with small effects, 

MAS has limited application because estimates of effects for minor QTL are often unreliable 

http://maswheat.ucdavis.edu/
http://www.wheatgenome.org/
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(Bernardo, 2008). Most agriculturally important traits in cereals are quantitatively inherited, which 

makes identification of the genes underlying variation for these traits difficult (Neumann et al., 

2011). In this case, it is necessary to utilize all QTL affecting the trait in MAS (Meuwissen et al., 

2001). The methodology for this approach, called genomic selection, was first proposed by 

Meuwissen et al. (2001).  

2.5 Prospects for Genomic Selection 

Traditional MAS has been successful at identifying and selecting major effect QTL; 

however, complex traits involving many small effect QTL are more difficult to monitor using 

MAS or phenotypic selection alone, and GS offers an attractive solution. Genomic selection differs 

from the traditional MAS strategies in that instead of only using markers that have a significant 

association with a trait based on a predefined significance threshold, all markers are used to predict 

GEBVs for individuals without phenotypic records (Heffner et al., 2009; Meuwissen et al., 2001). 

The GEBVs are calculated as the sum of the effects of markers or marker haplotypes across the 

entire genome, thereby potentially capturing all the QTL that underlie trait variation (Hayes et al., 

2009c). Fitting all markers simultaneously avoids multiple testing and bias when estimating the 

effects of minor and major effect QTL (Jia and Jannink, 2012). The advantage of GS is its potential 

to predict GEBVs with an accuracy that is sufficient for selection over several generations without 

repeated phenotyping, which reduces the cost and generation intervals (Habier et al., 2007). 

Heffner et al. (2010) indicated that GS can dramatically accelerate genetic gain through short 

breeding cycles if moderate selection accuracies can be achieved. Genomic selection uses a 

training population that has both genotypic and phenotypic data to develop a statistical model that 

takes genotypic data from a candidate population and calculates GEBVs of untested individuals 

(Heffner et al., 2011a; Jannink et al., 2010). These GEBVs say nothing of the function of the 

underlying genes but selection of new breeding lines is based on these values (Jannink et al., 2010). 

Usually a unique set of individuals, commonly called a validation population, that have phenotypic 

and genotypic data are used to assess the predictive performance of the models. Genomic estimated 

breeding values are predicted for individuals in the validation population and the correlation of 

these values to the actual phenotype is considered as prediction accuracy of the model. In theory, 

the prediction accuracy is the correlation between the true breeding value (TBV) and GEBVs. 

However, the TBV is known only in simulated data and in real data sets the actual phenotype is 
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used to measure prediction accuracy (Charmet and Storlie, 2012). Together, GS is an emerging 

tool that provides several advantages over traditional MAS. 

In recent years, there is a growing interest to implement GS in crop breeding programs; 

however, there is still limited information regarding the practical application of GS for crop 

improvement. Since the first simulation study that reported prediction accuracies in the range of 

0.73 to 0.85 (Meuwissen et al., 2001), the application of GS has been evaluated in animal breeding, 

plant breeding and human genetic studies using both simulated and empirical data. The potential 

of GS was evaluated in a number of annual and perennial plant species such as maize (Albrecht et 

al., 2011; Bernardo and Yu, 2007; Bernardo, 2009; Beyene et al., 2015; Mendes and de Souza, 

2016; Windhausen et al., 2012; Zhao et al., 2012); rice (Grenier et al., 2015; Onogi et al., 2016; 

Spindel et al., 2015; Xu et al., 2014); wheat (Charmet and Storlie, 2012; Charmet et al., 2014; 

Crossa et al., 2014; Crossa et al., 2016; Daetwyler et al., 2014; Dawson et al., 2013; de los Campos 

et al., 2009b; Gianola et al., 2011; He et al., 2016; Heffner et al., 2011a; Huang et al., 2016; Lado 

et al., 2016; Longin et al., 2015; Michel et al., 2016; Pérez-Rodríguez et al., 2012; Poland et al., 

2012; Rutkoski et al., 2015; Rutkoski et al., 2012; Rutkoski et al., 2011; Rutkoski et al., 2014; 

Storlie and Charmet, 2013); barley (Iwata and Jannink, 2011; Zhong et al., 2009); oat (Asoro et 

al., 2011); rye (Wang et al., 2014b); rapeseed (Würschum et al., 2014); pea (Burstin et al., 2015); 

soybean (Jarquín et al., 2014b); alfalfa (Annicchiarico et al., 2015); intermediate wheatgrass 

(Zhang et al., 2016); sugarcane (Gouy et al., 2013); sugar beet (Würschum et al., 2013); tomato 

(Yamamoto et al., 2016); apple (Kumar et al., 2012a; Kumar et al., 2012b); cassava (de Oliveira 

et al., 2012; Ly et al., 2013); oil palm (Wong and Bernardo, 2008); loblolly pine (Resende et al., 

2012b); white spruce (Beaulieu et al., 2014) and eucalyptus (Denis and Bouvet, 2013; Resende et 

al., 2012a). These studies reported that GS has a potential to accelerate the breeding cycle and 

increase genetic gain.  

2.6 Statistical Methods for Genomic Selection 

Genomic selection has been increasing in popularity; as a result, numerous statistical 

methods have been developed to estimate marker effects and compute GEBVs. These methods 

differ primarily in the way the marker data are weighted in the models and in their underlying 

assumptions about the variance of marker effects. In GS models, phenotypes are regressed on 

genome-wide markers, which is often challenging because the number of markers (p) greatly 
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exceeds the number of phenotyped individuals (n). When p is large relative to n (p >> n), it may 

result in overfitting of the model and poor prediction of GEBVs (de los Campos et al., 2013; Pérez 

and de los Campos, 2014). If marker effects are fitted as fixed effects, p >> n increases the variance 

of estimates and the pooled experimental error (i.e. mean square error; MSE) (de los Campos et 

al., 2013). To overcome this problem, whole genome regression models use estimation methods 

that perform variable selection, shrinkage of estimates, or a combination of both to reduce the 

dimensions of the marker data (de los Campos et al., 2013). These procedures introduce bias but 

reduce the variance of estimates and when p >> n, the use of shrinkage yields smaller MSE than 

that of standard estimation procedures such as ordinary least squares (OLS), or maximum 

likelihood (de los Campos et al., 2013). In GS, marker genotypes are treated as random variables 

and prior assumptions are made about the variance explained due to their effects (Clark and van 

der Werf, 2013). The various GS models can be grouped into shrinkage models, variable selection 

models, and kernel methods (Lorenz et al., 2011). The three groups of models are described below.  

2.6.1 Ridge regression best linear unbiased prediction 

Ridge regression best linear unbiased prediction (RR-BLUP), also called ridge regression or 

best linear unbiased prediction (BLUP), was one of the first models proposed for the prediction of 

total genetic value using genome-wide markers (Meuwissen et al., 2001). This method was 

proposed to overcome the limitations of OLS analysis where the effects of loci are set either to 

zero or their full effect, based on whether they are below or above an arbitrarily chosen significance 

threshold (Meuwissen et al., 2001). Ridge regression was first proposed by Whittaker et al. (2000) 

for genomic prediction as an alternative to variable selection procedures and provided a method 

that includes all markers in a regression model. Whittaker et al. (2000) introduced a penalty 

parameter ‘λ’ in an OLS estimator that shrinks marker effects uniformly towards zero assuming 

every marker has equal contribution to the genetic variance. The assumption that all loci explain 

equal amount of variance requires estimation of only the total genetic variance and the variance 

per locus is obtained by dividing the total variance by the number of loci (Meuwissen et al., 2001). 

Although this assumption is unrealistic, RR-BLUP performs well when predictions are made for 

traits controlled by many loci with small effects (Lorenz et al., 2011). However, Gianola (2013) 

reported that in RR-BLUP, shrinkage is allele frequency and sample size dependent but effect-size 

independent. There is some differential shrinkage in small sample sizes, but with little or no 
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differential shrinkage otherwise unless alleles are rare (Gianola, 2013). For fixed sample sizes, 

BLUP performs less shrinkage of markers that have intermediate allelic frequencies (Gianola, 

2013).  

Genetic relationships between individuals can be estimated from SNPs and can readily be 

incorporated into BLUP models (Habier et al., 2013; VanRaden, 2008). In this case, the genomic 

relationship matrix (GRM), which estimates the realized proportion of the genome that is shared 

by two individuals, is used to predict the genetic merit of individuals (Goddard et al., 2011). This 

method was first proposed by VanRaden (2008) and is referred to as genomic BLUP (G-BLUP). 

G-BLUP is equivalent to RR-BLUP, but it is computationally more efficient because the 

dimension of the marker data is reduced in the mixed model equations (Clark and van der Werf, 

2013).  

2.6.2 Bayesian regression models 

The Bayesian approach was proposed for GS to overcome the limitation of homogenous 

shrinkage of marker effects, a characteristic of BLUP. The main difference between BLUP and 

the Bayesian models is the prior distribution for the variance of marker effects (Asoro et al., 2011). 

In Bayesian approach, the variance explained by each locus can vary and is assumed to come from 

a prior distribution (Meuwissen et al., 2001). This allows it to perform marker specific shrinkage 

of estimates by specifying an appropriate prior density. This assumption agrees with the fact that 

some chromosome segments contain QTL with large effects, some contain QTL with small effects, 

and some have no QTL. The prior density of marker effects determines the extent and type of 

shrinkage induced and whether the model will induce variable selection and shrinkage or shrinkage 

only (de los Campos et al., 2013). In Bayesian methods, parameter estimates cannot be obtained 

analytically and Markov chain Monte Carlo (MCMC) sampling is commonly used to approximate 

parameter estimates through repeated sampling from their posterior distributions and compute 

appropriate summary statistics, such as the mean or median of the distributions (Kärkkäinen and 

Sillanpää, 2012; Lorenz et al., 2011). This process increases the computational time compared to 

ridge regression. There are several Bayesian regression models proposed to date for GS. Gianola 

et al. (2009) used the term ‘Bayesian alphabet’ to denote the various letters of the alphabet used to 

name these methods. The first Bayesian models proposed for GS were BayesA and BayesB 

(Meuwissen et al., 2001). Since then, several Bayesian models were developed that include 



 

17 
 

Bayesian Lasso (BL) (Park and Casella, 2008); Bayesian ridge regression (BRR) (Pérez et al., 

2010); BayesCπ and Dπ (Habier et al., 2011); BayesR (Erbe et al., 2012); weighted Bayesian 

shrinkage regression (wBSR), which is a fast version of BayesB (Hayashi and Iwata, 2010); 

MCBayes and varBayes (Hayashi and Iwata, 2013), etc. Moreover, there are different models 

denoted by variants of the same letter such as Bayes-B1 and B2 (Zhong et al., 2009); BayesD0, 

D1, D2 and D3 (Wellmann and Bennewitz, 2012); EBL (Mutshinda and Sillanpää, 2010); 

BayesTA, TB and TCπ (Wang et al., 2013), etc. The main difference among these models is the 

assumption of the prior distribution of variances of marker effects. The assumptions of some of 

the Bayesian models assessed in this thesis are described below.  

BayesA, BayesB and BayesCπ assign non-uniform variances to markers with different levels 

of effect. In BayesA, proportion of markers with no effect (π) are treated as zero so that all markers 

have non-zero effect and are included in the model but estimates of their effects are shrunk by 

assuming a normal distribution with mean of zero and locus-specific variances (Habier et al., 2011; 

Hayashi and Iwata, 2013). Whereas in BayesB, π is greater than zero to accommodate the 

assumption that many SNPs have no effect and are excluded from the model (Habier et al., 2011). 

Habier et al. (2011) indicated that BayesA and BayesB have drawbacks because these models treat 

π, which affects shrinkage of SNP effects, as known and proposed another model called BayesCπ 

in which π is treated as an unknown that is inferred from the data. In BayesB and BayesCπ it is 

assumed that only a fraction of loci of 1 – π contribute to the genetic variance (Zhao et al., 2013). 

The prior used in BayesA has a scaled-t distribution (Meuwissen et al., 2001; Pérez and de los 

Campos, 2014; Zhao et al., 2013), while BayesB and BayesCπ use a mixture of two priors with a 

point of mass at zero and a slab that can either be a Gaussian in BayesCπ (Habier et al., 2011) or 

a scaled-t in BayesB (Meuwissen et al., 2001). Previous studies indicated that Bayesian models 

that differ in their prior assumptions produce different inferences about individual marker effects 

and GEBVs; however, they often have similar predictive performance in cross-validation studies 

(Gianola, 2013; Heslot et al., 2012). 

The least absolute shrinkage and selection operator (Lasso) was proposed by Tibshirani 

(1996) for estimation of linear models. This method combines the good features of ridge regression 

and variable selection by shrinking some coefficients and setting others to zero (Tibshirani, 1996). 

Tibshirani (1996) reported that the prediction accuracy of Lasso is superior to variable selection 

and ridge regression when there are small to moderate number of medium-sized effects, but ridge 
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regression outperforms Lasso when there are large number of small effects. The BL was first 

proposed by Park and Casella, (2008) using conditional Laplace (double-exponential) priors. This 

method was later extended by de los Campos et al. (2009b) to accommodate pedigree information 

and covariates other than markers. 

Bayesian ridge regression is the Bayesian counterpart of RR-BLUP which was proposed by 

Pérez et al. (2010). Bayesian ridge regression and RR-BLUP have similar assumptions where 

marker effects are shrunk to a similar extent, but the level of shrinkage in BRR is estimated in a 

Bayesian hierarchical model (Heslot et al., 2012; Pérez and de los Campos, 2014). The main 

difference between BRR and BL is in the shrinkage priors applied in these methods. Bayesian 

ridge regression uses a Gaussian prior that shrinks the effects of all markers more heavily than the 

double-exponential prior density used in BL (de los Campos et al., 2013; Park and Casella, 2008; 

Pérez et al., 2010). 

2.6.3 Kernel models 

Kernel based statistical approaches have been proposed for GS to capture non-additive 

genetic effects. Reproducing kernel Hilbert spaces (RKHS) regression is a common kernel method 

used for GS. This method was first proposed by Gianola et al. (2006) and later elaborated by 

Gianola and van Kaam (2008). The RKHS regression model is a semi-parametric approach which 

captures both the additive and non-additive effects among loci by creating a kernel matrix that 

includes interactions among markers (Gianola and van Kaam, 2008). It uses a kernel function to 

convert the marker data set into a set of distances between pairs of observations that results in a 

square matrix to be used in a linear model (Heslot et al., 2012). de los Campos et al. (2009a) later 

presented a Bayesian view of RKHS regression using Gaussian processes. In Bayesian RKHS 

regression, the genetic values are regarded as random variables coming from a Gaussian process 

with a covariance function proportional to the evaluations of a reproducing kernel (Crossa et al., 

2010; de los Campos et al., 2009a; de los Campos et al., 2010). The kernel function implemented 

in Bayesian RKHS is the Gaussian kernel evaluated as the average squared-Euclidean distance 

between genotypes: 

𝐾(x𝑖, x
𝑖′) = exp {−ℎ × 

∑ (𝑥𝑖𝑘−𝑥
𝑖′𝑘

)
2𝑝

𝑘=1

𝑝
}                                                                                  (2.1) 
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where 𝑥𝑖 and  𝑥𝑖′ are the pairs of vectors of genotypes, 𝑝 refers to the total number of markers and 

ℎ is a bandwidth parameter that controls how fast the co-variance function drops as the distance 

between pairs of vector genotypes increases (de los Campos et al., 2009a; Pérez and de los 

Campos, 2014). No specific interpretation can be attached to the bandwidth parameter because the 

co-variance function is not derived from mechanistic consideration (de los Campos et al., 2010). 

The value of h can be chosen either through cross-validation or with Bayesian methods (Pérez and 

de los Campos, 2014). The cross-validation approach involves fitting models by assigning 

different values of h and identifying the value that maximizes the likelihood function, while for 

the Bayesian approach, h is estimated from the data (Pérez and de los Campos, 2014). The 

Bayesian approach is computationally intensive because the reproducing kernel needs to be re-

estimated every time h is updated (de los Campos et al., 2010; Pérez and de los Campos, 2014). 

Kernel methods also allow the use of multiple kernels by evaluating the Gaussian kernel over a 

range of ℎ values, which was termed kernel averaging (KA) (de los Campos et al., 2010). Kernel 

averaging offers a computationally convenient method for kernel selection to overcome the 

computational demand when selecting h either through cross-validation or the Bayesian approach. 

Kernel averaging involves defining a set of kernels based on sensible values of h and fitting a 

multi-kernel model with the number of random effects equal to the number of kernels used (Pérez 

and de los Campos, 2014). When the variance parameters associated with each kernel are known, 

KA is equivalent to a model with a single-kernel 𝐾, where 𝐾 is the weighted average of all kernels 

used in multi-kernel model (de los Campos et al., 2010; Pérez and de los Campos, 2014). 

2.6.4 Multiple-trait prediction models  

Originally, GS models were developed for single-trait analysis; however, models now exist 

that allow for GEBVs to be estimated across multiple traits. When developing elite breeding 

material, plant breeders need to select for several important traits simultaneously to ensure that 

standards are met for registration. Several multiple-trait prediction models have been reported in 

recent years, mainly from livestock breeding programs (Aguilar et al., 2011; Calus and Veerkamp, 

2011; Guo et al., 2014a; Hayashi and Iwata, 2013; Hayes et al., 2017; Jia and Jannink, 2012; Jiang 

et al., 2015; Tsuruta et al., 2011). Improved prediction accuracies were reported when multiple-

trait GS models were used instead of single-trait prediction models (Calus and Veerkamp, 2011; 

Guo et al., 2014a; Hayes et al., 2017; Jiang et al., 2015; Tsuruta et al., 2011). The advantage of 
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multiple-trait models is that they use genetic correlation between traits to improve prediction 

accuracy (Guo et al., 2014a; Hayashi and Iwata, 2013; Jia and Jannink, 2012). However, the 

increase in accuracy comes at a cost because multiple-trait models greatly increase the 

computational burden depending on the TP size and the number of traits incorporated into the 

model (Calus and Veerkamp, 2011; Hayashi and Iwata, 2013; Tsuruta et al., 2011).     

Several studies have shown that the prediction accuracy for traits with low heritability (h2 < 

0.2) can be increased when a correlated trait with higher heritability (h2 ≥ 0.5) is included in 

multiple-trait prediction models (Guo et al., 2014a; Hayashi and Iwata, 2013; Jia and Jannink, 

2012; Jiang et al., 2015). For uncorrelated traits, multiple-trait prediction was either less accurate 

or comparable with single-trait prediction (Hayashi and Iwata, 2013; Jia and Jannink, 2012). This 

could be due to a non-zero estimate of genetic correlation between traits in the TP and using that 

erroneous information to predict traits in the validation population (Jia and Jannink, 2012). Studies 

also showed that multiple-trait models had higher prediction accuracy than single-trait models 

when phenotypic records are missing for some of the individuals and traits (Calus and Veerkamp, 

2011; Guo et al., 2014a; Jia and Jannink, 2012). Calus and Veerkamp (2011) indicated that for 

individuals with missing phenotypes, an increase in accuracy was observed when using multiple-

trait models compared to single-trait analysis. Missing phenotypes of individuals in the TP can be 

inferred from a correlated trait in a multiple-trait models (Calus and Veerkamp, 2011; Jia and 

Jannink, 2012). However, Hayashi and Iwata (2013) reported that the technique of imputing 

missing phenotypes in a multiple-trait prediction model was inconclusive. In contrast, multiple-

trait models were not better than single-trait models for traits with a higher heritability and 

complete phenotypic data (Guo et al., 2014a; Hayashi and Iwata, 2013; Jia and Jannink, 2012). 

The genetic architecture of a trait is another factor that affects the relative advantage of multiple-

trait models over single-trait models (Jia and Jannink, 2012). Jia and Jannink (2012) reported that 

under a major QTL genetic architecture, multiple-trait analysis performed well but for polygenic 

traits, multiple-trait analysis provided a slight improvement; this may indicate that multiple-trait 

prediction models capture the genetic correlation between traits more efficiently when major QTLs 

are present.  
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2.7 Factors Affecting GS Model Prediction Accuracy 

Simulation and empirical studies, both from plant and animal breeding programs, indicated 

that the accuracy of GS model prediction depends on a number of factors related to the marker 

type and density (Combs and Bernardo, 2013; Heffner et al., 2011a; Moser et al., 2010), TP size 

(Calus and Veerkamp, 2007; Combs and Bernardo, 2013; Heffner et al., 2011a; VanRaden et al., 

2009), trait heritability (Combs and Bernardo, 2013; Moser et al., 2010), genetic relationships 

between individuals in the training and validation population (Solberg et al., 2008; VanRaden et 

al., 2009; Wientjes et al., 2013), population structure (de los Campos et al., 2015; de Roos et al., 

2009; Guo et al., 2014b), G × E (Burgueño et al., 2012; Crossa et al., 2015; Jarquín et al., 2014a; 

Jarquín et al., 2017; Lopez-Cruz et al., 2015; Pérez-Rodríguez et al., 2015; Sukumaran et al., 2017), 

and the statistical method used for prediction (Calus, 2010). Each of these factors are discussed 

below. 

2.7.1 Training population size and composition 

The TP size and composition are key elements in determining the prediction accuracy of GS 

(Bassi et al., 2016). Several studies reported that increasing the TP size increases the accuracy of 

GS by providing more data to estimate marker effects (Asoro et al., 2011; Bentley et al., 2014; 

Meuwissen et al., 2001; Muir, 2007; Saatchi et al., 2010; VanRaden et al., 2009). Meuwissen et 

al. (2001) showed that TP sizes of 500, 1000 and 2200 gave prediction accuracy of 0.58, 0.66, and 

0.73 for the BLUP estimation method and 0.71, 0.79, and 0.85 for BayesB, respectively. Similarly, 

Saatchi et al. (2010) showed that a TP of 500, 1000, and 2000 gave prediction accuracy of 0.57, 

0.63, and 0.69, respectively, based on the BLUP estimation method. Bentley et al. (2014) tested 

the effect of TP size on the prediction of agronomic and end-use quality traits in European wheat 

based on bootstrap resampling of 50, 100 and 200 individuals as the TP. Improved prediction 

accuracy was reported for flowering time, thousand-kernel weight and protein content as the TP 

increased, but no marked improvement in accuracy was observed for grain yield (Bentley et al., 

2014). This suggests that the benefit of increasing TP size to improve accuracy may depend on the 

characteristics of the trait. In winter wheat, Heffner et al. (2011a) reported that decreasing the TP 

size from 288 to 192 and 96 reduced the average GS prediction accuracy across all traits by 11 and 

30%, respectively. Taken together, increasing the TP size has a positive effect on GS prediction 

accuracies. 
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The composition of the TP is another factor that affects the accuracy of GS. The TP needs 

to be diverse to reflect the whole range of phenotypes and genotypes for a reliable prediction across 

a wide variety of lines (Calus, 2010; Daetwyler et al., 2014). Based on simulated data, Saatchi et 

al. (2010) reported that reduced number of phenotypic records from recent generations in the TP 

resulted in higher accuracy than larger phenotypic records from distant generations. However, 

increasing phenotypic records by combining older and recent generations in the TP resulted in 

small increase in accuracy (Saatchi et al., 2010). Using empirical data, Asoro et al. (2011) grouped 

oat lines based on their first year of entry into uniform trials to evaluate the effect of including 

older (historical) lines in the TP on prediction accuracy. The results showed that the older lines 

resulted in lower accuracy for two out of five traits, but showed no difference for the remaining 

traits when compared to more recent populations in the TP. This showed that the effect of including 

older lines in the TP was variable for different traits and may have confounding effect from LD 

and genetic relationship with the SC. However, Asoro et al. (2011) also showed that increasing the 

TP size by adding older lines increased or maintained prediction accuracy indicating that older 

generations retained useful information. In recent years, algorithms based on the prediction error 

variance and the coefficient of determination were reported for sampling of an optimized TP from 

a larger population to maximize the reliability of prediction in the SC (Akdemir et al., 2015; Isidro 

et al., 2015; Rincet et al., 2012; Rincet et al., 2017). These algorithms sample an optimized TP 

based on the marker information and estimate a priori the reliability of predictions in the SC using 

the selected individuals (Rincet et al., 2012). Optimization of the TP is especially useful when 

genotypic data is available for many lines, but phenotyping resources are limited (Akdemir et al., 

2015; Rincet et al., 2012), or when there is strong population structure in the dataset (Isidro et al., 

2015; Rincet et al., 2017). Several studies tested these methods in maize, rice, wheat, and 

Arabidopsis datasets and reported more accurate predictions when an optimized TP is used 

compared to randomly sampled individuals in the TP (Akdemir et al., 2015; Isidro et al., 2015; 

Rincet et al., 2012; Rincet et al., 2017). These algorithms can be helpful to reduce the bias due to 

TP composition and its relatedness to the SC when making genomic predictions in wheat. 

2.7.2 Marker type and density  

Different types of genetic markers can be used in GS but the most common ones are SNPs, 

Diversity Array Technology (DArT) markers, microsatellites, and GBS markers. Studies have 
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shown that the type of marker used influences GS prediction accuracy (Poland et al., 2012; Solberg 

et al., 2008). In a simulation study, Solberg et al. (2008) showed that SNP markers required two 

to three times higher density compared with microsatellites to achieve a similar accuracy using the 

same genetic architecture. Using comparable numbers of GBS and DArT markers, Poland et al. 

(2012) also showed that GBS markers led to higher genomic prediction accuracies compared to 

DArT markers in advanced breeding lines of wheat. Gains in accuracy up to 0.15 were obtained 

for yield and heading date with the GBS platform, but for thousand-kernel weight no difference 

was observed in accuracy between the GBS and DArT markers (Poland et al., 2012). The higher 

accuracy with the GBS platform could be because the GBS markers are free of the genotypic 

ascertainment bias that is found with fixed array genotyping or due to increased genome coverage 

from a more uniform distribution of GBS markers than DArT markers (Poland et al., 2012). 

Overall, marker type is an important factor that affects genomic prediction accuracies, but its effect 

may vary with traits and the density of markers.  

Several studies reported that lower marker densities reduce the accuracy of predicting 

GEBVs (Heffner et al., 2011a; Moser et al., 2010; Solberg et al., 2008). However, it was suggested 

that a low-density assay of evenly spaced SNPs can deliver similar gains as a high-density SNP 

assay (Moser et al., 2010). Heffner et al. (2011a) reported that reducing marker density from 1158 

to 768 and 384 resulted in a small decrease in GS accuracy in winter wheat; however, a further 

reduction to 192 reduced the average GS accuracy by 10%. The benefit of increasing marker 

density is to maximize the number of QTL in LD with at least one marker, which also maximizes 

the number of QTL whose effects will be captured by markers (Heffner et al., 2009). Based on a 

simulation study, Solberg et al. (2008) reported that the accuracy of prediction for both 

microsatellite and SNP markers increased about 1.04 to 1.07-fold when the marker density was 

doubled. A recent study on biparental and mixed populations of maize, barley and wheat also 

indicated that the accuracy of genomic predictions increased as the number of markers increased; 

however, gains in the accuracy began to plateau at 40 to 80% of the total marker density (Combs 

and Bernardo, 2013). Gains in accuracy began to plateau despite the small number of markers used 

in the study: 1213 markers (maize biparental population), 223 markers (barley biparental 

population), 1178 markers (barley mixed population), and 731 markers (wheat mixed population) 

(Combs and Bernardo, 2013). Similarly, Moser et al. (2010) showed that prediction accuracy for 

several traits in cattle reached a plateau when SNP density exceeded 1,000. Other studies in cattle 
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also reported that prediction accuracy for several traits was not significantly different when as 

many as 75% of the original markers were masked (Luan et al., 2009; VanRaden et al., 2009). 

Bassi et al. (2016) indicated that uniform distribution of markers across the genome and their 

ability to tag the QTL underlying traits are important considerations for GS than marker number. 

Increasing the number of markers without increasing the TP size may also reduce accuracy because 

it increases collinearity among markers (Muir, 2007). Increasing the TP size has a more important 

effect on accuracy than marker number (Lorenz et al., 2011; VanRaden et al., 2009).  

Genomic predictions can be made using single markers, haplotypes of markers, or using an 

identical by descent (IBD) approach (Calus et al., 2008; Goddard and Hayes, 2007; Meuwissen et 

al., 2001). The computational burden increases as one moves from using single marker genotypes 

to haplotypes or further to IBD probabilities (Goddard and Hayes, 2007). Based on a simulation 

study, Solberg et al. (2008) compared the effects of using singe marker or haplotypes of two 

neighbouring markers on prediction accuracy using microsatellites and SNP markers. The results 

showed that for both marker types, using haplotypes resulted in similar or reduced accuracies 

compared with using direct marker effects. Similarly, Calus et al. (2008) compared different ways 

of including marker information in GS using single marker, haplotypes of two adjacent markers, 

and haplotypes of two or ten surrounding markers with IBD probabilities between different 

haplotypes at the same locus. The results indicated that the model with individual marker 

genotypes yielded the lowest accuracy at low marker density and the highest accuracy at high 

marker density. At low marker density, the advantage of using haplotypes instead of single markers 

is that a QTL that is not in complete LD with any individual marker may be in complete LD with 

a multi-marker haplotype (Goddard and Hayes, 2007). However, there does not seem to be a 

benefit to use marker haplotypes if marker density is sufficiently high and some SNPs are closely 

linked to important QTL (Calus et al., 2008). 

2.7.3 Genetic relationships and marker-QTL LD 

Genomic selection models can encompass the information from marker-QTL LD as well as 

genetic relationships among individuals to estimate GEBVs (Habier et al., 2007). Therefore, the 

accuracy of GS depends on the extent of marker-QTL LD (Calus, 2010; Toosi et al., 2010). In GS, 

GEBVs are estimated from marker genotypes instead of the actual QTL (Goddard and Hayes, 

2007). This requires that markers are in LD with the actual QTL controlling traits. The assumption 
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of GS is that by using dense marker coverage, each QTL is in LD with at least one nearby marker 

and potentially all the genetic variance can be explained by markers (Calus, 2010; Goddard and 

Hayes, 2007; Meuwissen et al., 2001). The breakup of marker-QTL LD in subsequent generations 

requires re-estimation of marker effects to maintain the accuracy of GS (Calus, 2010).  

The degree of genetic relationship between the TP and SC is another important factor that 

affects the accuracy of GS prediction (Clark et al., 2012; Habier et al., 2010; Habier et al., 2007; 

Hayes et al., 2009; Riedelsheimer et al., 2013). This genetic relationship is influenced by and 

results from generations of descent or population stratification (Asoro et al., 2011). When the TP 

is closely related to the SC, prediction of GEBVs is more reliable (Calus, 2010; Clark et al., 2012). 

The reliability of genomic predictions across populations is determined by the extent of marker-

QTL LD phase between the TP and the SC and is related to the divergence between the two 

populations (de Roos et al., 2009). The SC are assumed to come from the same population as the 

TP, so the marker-QTL LD persists from the TP to the SC (de Roos et al., 2009). Several studies 

reported very low accuracy when GEBVs were predicted using unrelated populations (Charmet et 

al., 2014; Crossa et al., 2014; Riedelsheimer et al., 2013; Windhausen et al., 2012). In the absence 

of close relationships, prediction accuracy is driven by distant relationships which will be useful 

when there is strong LD in the population (Clark et al., 2012). Prediction of breeding values of 

unrelated individuals requires a substantially higher marker density and number of training records 

than when making prediction for offspring of training individuals (Meuwissen, 2009). Based on a 

simulation study, Meuwissen (2009) reported that breeding values of unrelated individuals can be 

predicted with accuracies of 0.88 to 0.93 using 2×Ne×L number of records and 10×Ne×L markers, 

where Ne refers to effective population size and L the genome size in Morgan.  

2.7.4 Heritability and genetic architecture of traits  

When the same TP is used to predict multiple traits, the prediction accuracy will be lower 

for some traits than for the other traits, in the same way that h2 is lower for some traits than for 

others (Combs and Bernardo, 2013). There is strong relationship between the accuracy of genomic 

prediction and the h2 of a trait, with the prediction being more accurate for traits with higher h2 

(Combs and Bernardo, 2013; Heffner et al., 2011a; Moser et al., 2010; Saatchi et al., 2011). 

However, this is not always the case, because higher prediction accuracies were reported for traits 

with low h2 (Combs and Bernardo, 2013). Combs and Bernardo (2013) indicated that the product 
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of h2 and TP size is the key factor that determines prediction accuracy. Hayes et al. (2009b) 

estimated that nearly 9,000 individuals are required to get a prediction accuracy of 0.7 for a trait 

with h2 = 0.2 but about 1,000 individuals are required to get similar prediction accuracy when h2 

= 0.8. This suggests that a decrease in the accuracy of prediction due to low h2 can be compensated 

by using a larger number of observations to estimate marker effects (Combs and Bernardo, 2013; 

de Roos et al., 2009; Heffner et al., 2011a; Saatchi et al., 2010).  

The genetic architecture of traits is another factor that needs to be considered when choosing 

statistical method for GS. Genetic architecture refers to the number and position of loci affecting 

a trait, the magnitude of their effects, and the relative contributions of additive and non-additive 

gene effects (Holland, 2007). Lorenz et al. (2011) reported that when traits are controlled by many 

loci with small effects, models such as RR-BLUP or G-BLUP are expected to work well but for 

traits that are controlled by few large effects QTL, Bayesian variable selection methods such as 

BayesB should be preferred. This agrees with the assumptions made by these models and is 

supported by several studies which assessed various models using simulated data (Clark et al., 

2011; Daetwyler et al., 2010). On the other hand, studies based on real data reported that RR-

BLUP has similar performance to Bayesian variable selection models for traits with different 

genetic architectures (Heslot et al., 2012; Riedelsheimer et al., 2012). The difference in results 

between simulation and empirical studies might be because the effect sizes of the QTL used in 

simulation may be substantially larger than the effect sizes of real QTL (Goddard and Hayes, 

2007). Lorenz et al. (2011) also reported that the number of QTL has a strong influence on marker 

density and TP size. This indicates that the different factors affecting GS accuracy are interrelated, 

which is why multiple GS models are usually tested to select a model that performs optimally 

given the architecture of a trait.   

2.7.5 Genotype-by-environment interaction and population structure 

Genotype-by-environment interaction is a key issue in plant breeding. Multi-environment 

trials play an important role for studying G × E and genotype stability, and for predicting the 

performance of untested individuals (Burgueño et al., 2012). Originally, GS models were 

developed for the prediction of a single trait evaluated in a single environment (Crossa et al., 2015; 

Lopez-Cruz et al., 2015). However, plant breeding trials are designed to capture the variability 

across environments, and selection is made for multiple traits to develop lines that perform well 
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across certain agro-ecological regions. The most important G × E interactions are those in which 

genotype rank changes across environments, also known as crossover interaction (Crossa et al., 

2004). The presence of crossover interaction might affect GS in a similar way that it affects 

phenotypic selection. Traits that have weak G × E were reported to have higher GS prediction 

accuracy than traits with strong G × E (Heffner et al., 2011a). In recent years, several studies 

reported improved prediction accuracy by modelling G × E in GS (Crossa et al., 2015; Cuevas et 

al., 2017; Heslot et al., 2014; Jarquín et al., 2014a; Jarquín et al., 2017; Lopez-Cruz et al., 2015; 

Pérez-Rodríguez et al., 2015; Sukumaran et al., 2017; Technow et al., 2015).  

In GS, G × E can be modelled using different techniques. Integration of crop growth models 

and environmental covariates (ECs) into GS predictions was suggested to model G × E and predict 

performance in different environments (Heslot et al., 2014; Technow et al., 2015). Crop growth 

models are equations developed using growth data for a few genotypes under a range of growing 

conditions, while also integrating environment data such as weather and soil characteristics (Heslot 

et al., 2014). Crop growth models can explain the effect of G × E on phenotypes by explaining the 

impact of functional relationships between plant physiology and the environment (Technow et al., 

2015). Genotype-by-environment interaction can also be incorporated in GS by modelling marker-

by-environment interactions (M × E) when genomic and environmental covariate data are 

available (Lopez-Cruz et al., 2015). Lopez-Cruz et al. (2015) indicated that the prediction accuracy 

of the M × E GS model was substantially higher than that of an across-environment model that 

ignores G × E. Crossa et al. (2015) extended the M × E GS model into a Bayesian approach and 

reported that the M × E GS model performed better than the across-environment model. In another 

study, Jarquín et al. (2014a) developed reaction norm models that integrate G × E in GS by 

modelling interactions between markers and environments or ECs using covariance functions. 

Jarquín et al. (2014a) reported a 17-34% increase in prediction accuracy when G × E terms were 

included in the model. Pérez-Rodríguez et al. (2015) assessed the reaction norm models for 

prediction of cotton yield using pedigrees instead of molecular markers and reported a 2.7-fold 

increase in prediction accuracy when incorporating G × E terms. Recently, Sukumaran et al. (2017) 

also used the reaction norm models with pedigree-based relationship matrices to predict grain yield 

of spring bread wheat lines and obtained the highest accuracy when modelling G × E. Similarly, 

Jarquín et al. (2017) applied the reaction norm models to predict grain yield in winter wheat and 

reported 16 to 82% higher accuracy when G × E terms were included in the model. This indicates 
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that modelling G × E can enhance the accuracy of GS for similar training and prediction target 

environments.  

Population structure is another important factor that affects the accuracy of genomic 

predictions (Asoro et al., 2011; Guo et al., 2014b; Isidro et al., 2015). Population structure is known 

to cause spurious associations between a phenotype and unlinked candidate loci in association-

mapping studies (Pritchard and Rosenberg, 1999). In GS, however, rare spurious associations will 

not affect the accuracy of prediction but consistency of LD across subpopulations is important 

(Lorenz et al., 2011). In GWAS, the focus is to avoid false positive associations due to population 

structure but in GS the focus shifts to maintaining prediction accuracy despite a structured TP 

(Lorenz et al., 2011). Population structure and differences in allele frequencies and marker-QTL 

LD between subpopulations are likely to induce heterogeneity of marker effects even under the 

assumption that QTL effects are homogeneous (de los Campos et al., 2015). Guo et al. (2014b) 

reported that the effect of population structure on genomic prediction accuracy varies based on 

prediction strategies, genetic architectures of traits and populations. In the presence of strong 

population structure, accuracy is generally low when predicting the performance of one 

subpopulation based on marker effects estimated in the other subpopulations (Akdemir et al., 2015; 

Windhausen et al., 2012). de los Campos et al. (2015) reported improved prediction accuracy by 

modelling marker effects in subpopulations as the sum of an effect that is group specific and other 

that is common to all groups. On the other hand, Guo et al. (2014b) reported that when population 

structure existed in both training and validation sets, correcting for population structure led to a 

significant decrease in genomic prediction accuracy, but when prediction was limited to a specific 

subpopulation, population structure showed little effect on accuracy. Similarly, Crossa et al. (2016) 

reported that accounting for population structure decreased prediction accuracy by 15-20% as 

compared to prediction accuracy obtained when not accounting for population structure. This 

suggests that the benefit of accounting for population structure in GS may vary based on the 

prediction approach and other population characteristics, and thus incorporation of structure into 

GS models should be assessed on a case by case basis.   

2.8 Reported Genomic Prediction Accuracies in Wheat 

Several studies highlighted the potential application of GS in wheat. The application of GS 

for plant breeding was first demonstrated using simulation studies in maize by Bernardo and Yu 
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(2007). de los Campos et al. (2009b) later showed the application of GS for prediction of wheat 

yield using empirical data. Since then, several studies evaluated GS models for the prediction of 

agronomic, end-use quality and disease resistance traits in wheat and varying levels of accuracies 

have been reported depending on the population, trait characteristics, marker type and density, G 

× E, the statistical method and cross-validation techniques used for prediction. It is difficult to 

make direct comparisons of the reported accuracies from different studies, even for similar traits 

and statistical models, because model parameters and cross-validation designs are often different 

(Daetwyler et al., 2013). In wheat, GS has been reported for the prediction of several traits, 

including grain yield, spike grain number, heading date, plant height, lodging, preharvest 

sprouting, test weight, thousand-kernel weight, flour yield and softness, protein content, gluten 

strength, water absorption, damaged starch, arabinoxylan and partially hydrated gliadin content, 

time to young microspore, and resistance to fungal diseases (wheat rust, fusarium head blight, and 

septoria tritici blotch) (Charmet et al., 2014; Charmet and Storlie, 2012; Crossa et al., 2010; 

Daetwyler et al., 2014; Dawson et al., 2013; Heffner et al., 2011a; Heffner et al., 2011b; Miedaner 

et al., 2013; Ornella et al., 2012; Poland et al., 2012; Rutkoski et al., 2011; Rutkoski et al., 2012; 

Rutkoski et al., 2014; Rutkoski et al., 2015; Thavamanikumar et al., 2015; Zhao et al., 2013; Zhao 

et al., 2014). Heffner et al. (2010) reported that the genetic gain for GS would be twofold higher 

than that of MAS if prediction accuracies of 0.5 could be achieved in wheat. Various GS schemes 

in wheat were shown to have similar cost to phenotypic selection, but the potential of increasing 

the genetic gain is the main deriving force for GS in wheat breeding (Bassi et al., 2016).    

Grain yield is the most important trait in crop breeding and is controlled by many minor 

effect QTL. The potential of GS for predicting wheat grain yield has been evaluated in several 

studies. Crossa et al. (2010) evaluated six different GS models in 599 historical wheat lines for 

prediction of grain yield and reported accuracies ranging from 0.36 to 0.61 based on a tenfold 

cross-validation. Gianola et al. (2011) applied machine learning algorithms for genomic prediction 

in the same data set used by Crossa et al. (2010) and reported accuracies in the range of 0.48 to 

0.59. Similarly, Long et al. (2011) used the same wheat data set and reported prediction accuracies 

for grain yield in the range of 0.50 to 0.58 averaged over 50 training-testing replicates based on 

BL and support vector regression, a machine learning algorithm developed for classification and 

regression. In a different study, Charmet and Storlie (2012) evaluated ridge regression, G-BLUP, 

BRR and Lasso for the prediction of wheat grain yield and reported accuracies around 0.5 based 
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on the average of 100 cross-validations. Charmet et al. (2014) also evaluated G-BLUP, BRR, BL, 

RKHS and Random Forest regression, a machine learning method that could capture non-additive 

effects, in three bi-parental wheat populations and reported grain yield prediction accuracies in the 

range of 0.2 to 0.5 depending on the cross-validation technique and populations used. On the other 

hand, Heffner et al. (2011a) reported very low accuracy (0.17 to 0.22) for grain yield in a 

population of 374 soft winter wheat varieties and F5 derived advanced breeding lines using RR-

BLUP, BayesA, BayesB and BayesCπ. Historical data from regular breeding trials have also been 

used in several GS studies. Dawson et al. (2013) used a highly unbalanced historical data set from 

a period of 17 years for prediction of wheat grain yield in G-BLUP and reported accuracies in the 

range of 0.43 to 0.56 depending on the cross-validation methods. Similarly, He et al. (2016) 

compared RR-BLUP, G-BLUP, extended G-BLUP and RKHS and reported grain yield prediction 

accuracy up to 0.65 averaged across 100 different combinations of training and test sets in 2325 

historic elite winter wheat lines. In hybrid wheat, Zhao et al. (2013) compared five different models 

(RR-BLUP, BayesA, BayesB, BayesC and BayesCπ) and reported accuracies in the range of 0.58 

to 0.63 for grain yield based on fivefold cross-validation, but when unrelated individuals were used 

for cross-validation the accuracy decreased on average by 44%. Taken together, the literature 

suggests that GS shows promise for predicting wheat grain yield with moderate accuracy. 

Moderate to high GS prediction accuracies were reported for wheat agronomic traits other 

than yield. Heffner et al. (2011a) reported accuracies for heading date (0.72 to 0.76), height (0.72 

to 0.75), and lodging (0.23 to 0.28) based on ridge regression and three Bayesian models in winter 

wheat. Pérez-Rodríguez et al. (2012) compared various linear and non-linear models for the 

prediction of heading date and reported accuracies ranging from 0.48 to 0.60 averaged over 12 

environments but in each environment the accuracy ranged from 0.02 to 0.69. Charmet et al. (2014) 

also reported a prediction accuracy of approximately 0.7 for heading date in three bi-parental wheat 

populations. Based on two bi-parental doubled haploid (DH) wheat populations, Thavamanikumar 

et al. (2015) reported prediction accuracies of 0.51 to 0.84 for time to young microspore, a 

flowering time related trait, and 0.10 to 0.45 for spike grain number based on tenfold cross-

validation. In hybrid wheat, Zhao et al. (2014) reported accuracies in the range of 0.4 to 0.6 for 

heading date and plant height using RR-BLUP, BayesCπ and W-BLUP and a cross-validation 

technique where training and validation sets were not related via shared parental lines. Though 
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methods and accuracies were highly variable across studies, populations, and environments, GS 

may be suitable for making more accurate predictions for some agronomic traits other than yield. 

In wheat, end-use quality traits are also prime targets for GS. Despite the development of 

several indirect tests to measure quality traits in wheat, these methods require enormous time and 

resources for accurate phenotyping. Moreover, many of the end-use quality traits in wheat are 

evaluated in advanced generations because their tests often require a large amount of grain which 

is not available in early generations (Battenfield et al., 2016). The application of GS enables wheat 

breeders to assess end-use quality traits early in the breeding cycle and advance only lines with 

promising quality standards which saves both time and resources. The superiority of GS over 

conventional MAS was shown by Heffner et al. (2011a) who reported 28% higher accuracy in GS 

than conventional MAS averaged across 13 agronomic and end-use quality traits in winter wheat. 

Heffner et al. (2011a) compared RR-BLUP, BayesA, BayesB and BayesCπ, and reported a wide 

range of prediction accuracies across different traits and models ranging from 0.17 (for grain yield 

in BayesCπ) to 0.76 (for flour yield in BayesA). However, only slight differences were reported 

among the evaluated models for each trait, with BayesA having the highest mean accuracy across 

all traits (Heffner et al., 2011a). Similarly, Heffner et al. (2011b) evaluated ridge regression and 

BayesCπ for the prediction of nine different grain quality traits in two DH winter wheat 

populations and reported accuracies ranging from 0.27 (flour softness in RR) to 0.74 (damaged 

starch in BayesCπ). Test weight is another important quality trait in wheat, which is a measure of 

grain density, and accuracies for test weight were in the range of 0.5 to 0.6 by Heffner et al. (2011a, 

b) while Charmet et al. (2014) reported accuracies ranging from 0.3 to 0.7. Battenfield et al. (2016) 

also evaluated five GS models for prediction of ten processing and end-use quality traits in 

advanced spring bread wheat lines. The reported accuracies ranged from 0.32 (grain hardness) to 

0.62 (mixing time) based on forward prediction where data in one year were used to make 

predictions in the following year (Battenfield et al., 2016). Because of the increased selection 

intensity with GS, Battenfield et al. (2016) reported genetic gain that was 1.4 to 2.7 times higher 

across all traits than phenotypic selection. Recently, Hayes et al. (2017) evaluated single and 

multiple-trait models for prediction of 19 end-use quality traits in diverse bread wheat accessions 

and reported accuracies ranging from 0 to 0.69 using different cross-validation designs. Multiple-

trait analysis improved the accuracy compared to single-trait analysis and the reported accuracies 

were greater than 0.5 for many of the evaluated traits (Hayes et al., 2017). This indicates that end-
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use quality traits can also be amendable to GS and provide increased accuracy over conventional 

MAS. 

Disease resistance is another important trait of interest for wheat breeders. The potential of 

GS for predicting quantitative disease resistance in wheat has been evaluated in several studies. 

Based on 1,055 elite wheat hybrids, Miedaner et al. (2013) reported prediction accuracy of 0.28 

and 0.32 for septoria tritici blotch resistance using BayesCπ and RR-BLUP, respectively. This low 

accuracy could be due to the cross-validation technique used, where training and validation sets 

were not related to each other via common parental lines. The reported accuracies were corrected 

by dividing the correlation between GEBVs and observed phenotypes by the square root of h2. 

Lorenz et al. (2011) indicated that adjusting the correlation by h2 would result in upwardly biased 

estimates of accuracy when training and validation data were collected in the same environment. 

Daetwyler et al. (2014) assessed the accuracy of GS for the prediction of leaf rust, stem rust and 

stripe rust in diverse landraces of wheat collected from 32 countries. Based on fivefold cross-

validation, the accuracy of genomic prediction averaged across years was 0.35, 0.27 and 0.44 for 

leaf rust, stem rust and stripe rust using G-BLUP and 0.33, 0.38 and 0.30 for leaf rust, stem rust 

and stripe rust using BayesR, respectively (Daetwyler et al., 2014). Rutkoski et al. (2012) reported 

prediction accuracies for mycotoxin (deoxynivalenol) levels produced by a fungus causing 

fusarium head blight, ranging from 0.2 to 0.65 across different models and marker types using a 

fivefold cross-validation. The highest mean accuracy was obtained from a random forest 

regression model that combined markers and correlated traits such as disease incidence, severity, 

and, kernel quality index as predictor variables. Similarly, Arruda et al. (2015) evaluated three GS 

models (RR-BLUP, Lasso and elastic net) to predict six traits related to fusarium head blight 

resistance in winter wheat. The reported accuracies ranged from 0.40 (Lasso for disease severity) 

to 0.82 (RR-BLUP for fusarium-damaged kernels) based on the maximum number of SNPs and a 

fivefold cross-validation. For all traits except disease incidence, the highest prediction accuracies 

were obtained in RR-BLUP (Arruda et al., 2015). Overall, these studies showed that there are 

differences in the accuracy of genomic predictions for different traits, populations and statistical 

methods. Therefore, it is important to evaluate different statistical models and model parameters 

for each breeding population and environment.   
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2.9 Thesis Objectives and Outline 

The goal of this thesis was to investigate various GS approaches, statistical models, and 

model parameters to design selection strategies for complex traits in wheat under the short growing 

seasons of western Canada. The specific objectives were to i) evaluate the performance of various 

statistical approaches and models to predict agronomic and end-use quality traits using empirical 

data in spring bread wheat, ii) determine the effects of TP size, marker density, and population 

structure on genomic prediction accuracy, iii) examine GS prediction accuracy when modelling G 

× E using different approaches, iv) detect marker-trait associations for agronomic and end-use 

quality traits in spring bread wheat, v) evaluate the effects of TP composition, cross-validation 

technique and genetic relationship between the TP and SC on GS accuracy, and vi) compare 

genomic and phenotypic prediction accuracy.  

Six studies were conducted to meet these objectives based on a TP of 231 spring bread wheat 

lines and SC composed of 304 RILs. The results from these studies are organized into six 

experimental chapters in this thesis. The first experimental chapter (Chapter three) addresses the 

first objective. We compared various single and multiple-trait GS models and a GS model that 

incorporates the results from de novo GWAS using a fivefold cross-validation design in the TP. 

The best statistical model identified from this study was then used in Chapter four to evaluate the 

effects of TP size, marker density, and population structure on GS prediction accuracy in the TP 

(second objective). In Chapter five, a subsample of 81 lines from the TP were used to evaluate the 

benefit of modelling G × E in GS using two different approaches (third objective). In Chapter six, 

genome-wide association mapping was conducted for nine agronomic and end-use quality traits in 

the TP (fourth objective). Similarly, in Chapter seven, QTL analyses were conducted for six 

agronomic traits in the SC. Markers significantly associated with the QTL underlying the evaluated 

traits were fitted as fixed effects to enhance the accuracy of genomic predictions in the TP (Chapter 

three) and SC (Chapter eight). In Chapter eight, we used the statistical models and model 

parameters evaluated in the previous chapters for genomic predictions in the SC using different 

cross-validation techniques and a TP with varying levels of relatedness (fifth objective). Moreover, 

across-year genomic and phenotypic prediction accuracies were compared in the SC (sixth 

objective). Finally, the results from all experimental chapters were discussed and conclusions and 

future directions are presented in Chapter nine.  
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3. Genomic Selection for Wheat Improvement: Comparison of Methods Based on 

Empirical Data 

3.1 Introduction 

Genomic selection is a novel MAS approach that is shown to improve the genetic gain of 

quantitative traits in plant and animal breeding programs. Genomic selection estimates all marker 

effects across the genome to calculate GEBVs for individuals having only marker data (Meuwissen 

et al., 2001). Traditional MAS involves estimating the effects of QTL that are significantly 

associated with a trait of interest. Genomic selection differs from traditional MAS strategies in that 

instead of using markers that have a predefined significant correlation with a trait, all markers are 

used to estimate breeding values of individuals (Heffner et al., 2009; Jannink et al., 2010). The 

main assumption of GS is that by using dense marker coverage, each QTL is in LD with at least 

one nearby marker and potentially all the genetic variance can be explained by markers (Calus, 

2010; Goddard and Hayes, 2007; Meuwissen et al., 2001). Fitting all markers simultaneously 

avoids multiple testing and ensures that marker-effect estimates are unbiased (Jia and Jannink, 

2012).  

Genomic selection uses a training (reference) population that has been genotyped and 

phenotyped to develop a statistical model that takes genotypic data from a candidate population of 

untested individuals and calculates GEBVs (Heffner et al., 2011a; Jannink et al., 2010). These 

GEBVs say nothing about the function of the underlying genes but selection is subsequently based 

on these values (Jannink et al., 2010). The advantage of GS is its potential to predict GEBVs with 

an accuracy that is sufficient to allow selection over several generations without repeated 

phenotyping; this reduces the cost and generation intervals of breeding programs (Habier et al., 

2007). 

Originally, GS models were developed for prediction of a single trait evaluated in a single 

environment or averaged across environments. In recent years, several multiple-trait prediction 

models have been reported (Aguilar et al., 2011; Calus and Veerkamp, 2011; Guo et al., 2014a; 

Jia and Jannink, 2012; Jiang et al., 2015; Tsuruta et al., 2011). Multiple-trait GS models take 

advantage of genetic correlation between traits to improve the accuracy of prediction (Guo et al., 

2014a; Hayashi and Iwata, 2013; Jia and Jannink, 2012). In the absence of genetic correlation 

between traits, multiple-trait models were inferior to single-trait models (Jia and Jannink, 2012). 

Studies mainly based on simulated data reported increased prediction accuracy when multiple-trait 
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prediction models were used instead of single-trait prediction models (Calus and Veerkamp, 2011; 

Guo et al., 2014a; Jiang et al., 2015; Tsuruta et al., 2011). Recently, Hayes et al. (2017) reported 

improved prediction accuracy for wheat end-use quality traits by including values of the same trait 

measured by either near infrared or nuclear magnetic resonance as a correlated trait in a multiple-

trait model. Their aim was to develop a large TP using quality traits predicted by near infrared or 

nuclear magnetic resonance and to combine these with the available end-use quality data based on 

standard assays in a multiple-trait analysis. However, there is no empirical evidence on the 

performance of multiple-trait models for genomic prediction of two or more correlated traits in 

wheat. 

Statistical methods used for genomic prediction treat markers as random effects and assign 

prior assumptions about the variance explained due to their effects (Clark and van der Werf, 2013). 

Fitting markers as random effects and shrinking their effects uniformly as performed in BLUP do 

not explicitly model the effects of major QTL versus unknown background QTL with minor effects 

(Bernardo, 2014). Bernardo, (2014) suggested that when a few major genes each accounting for 

more than 10% of the genetic variance are present for a quantitative trait, these major genes should 

be fitted as fixed effects instead of random effects in GS models. In recent years, methods that 

combine GWAS and GS have been proposed (Bernardo, 2014; Rutkoski et al., 2014; Spindel et 

al., 2016; Spindel et al., 2015; Zhang et al., 2014). These methods have advantages because GS 

and GWAS can be performed on the same population and highly significant SNPs identified from 

GWAS can be fitted as fixed effects in a GS model without shrinking their effects while the 

remaining genome-wide markers are treated as random effects (Begum et al., 2015; Rutkoski et 

al., 2014; Spindel et al., 2016; Zhang et al., 2014). Alternatively, markers tagging candidate genes 

or previously identified QTL can also be included in GS as fixed effects (Bentley et al., 2014; 

Spindel et al., 2016). Several studies have reported improved genomic prediction accuracy by 

integrating the results from GWAS (Begum et al., 2015; Spindel et al., 2016; Spindel et al., 2015; 

Zhang et al., 2014). Moreover, the genetic architecture of a trait identified from the GWAS can be 

used to inform GS models (Begum et al., 2015). However, the performance of this new approach 

has not been evaluated thoroughly for genomic prediction in wheat.  

With increasing application of GS, numerous statistical methods have been proposed to 

estimate marker effects and compute GEBVs. Many of these models have been validated mainly 

in animal breeding programs using computer simulation studies and empirical data. However, 
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there is limited information on the use of GS for practical application in wheat breeding. The 

objective of this study was to evaluate the performance of various GS approaches and statistical 

models to predict agronomic and end-use quality traits using empirical data in spring bread wheat.    

3.2 Materials and Methods 

3.2.1 Plant material and phenotypic data 

A training and validation population of 231 spring hexaploid wheat varieties and advanced 

breeding lines was used to assess the accuracy of various GS models (Appendix A). Data for these 

lines were obtained from two different experiments. The first experiment was a variety comparison 

(hereafter called varcomp) experiment composed of 100 commercial wheat varieties that were 

evaluated at Kernen Crop Research Farm, Saskatoon, SK, (lat 52°08', long 106°32') from 2011 to 

2014 and at Swift Current, SK (lat 50°16', long 107°44') from 2012 to 2014. This population was 

composed of both contemporary and historic Canadian bread wheat varieties. The field 

experiments were laid out in 200 plots, each plot having an area of 4.25 m2, with five seeded rows 

at Kernen and an area of 3.65 m2, with four seeded rows at Swift Current. A seeding rate of 300 

and 275 seeds per m2 were used at Kernen and Swift Current, respectively. The second experiment 

was composed of 200 spring hexaploid wheat varieties and advanced breeding lines (hereafter 

called Co-op) that were selected from the Central (Manitoba and eastern Saskatchewan), Western 

(southern Saskatchewan and Alberta) and Parkland (northern Alberta, Saskatchewan and 

Manitoba) Bread Wheat Co-operative Tests, grown to provide data for registration and 

commercialization of new spring hexaploid wheat cultivars. Each of these lines were evaluated in 

2014 at the Seed Farm of the Crop Development Centre (CDC) in Saskatoon, SK (lat 52°08' long 

106°36') on a 0.74 m2 plot area, with two seeded rows and again in 2015 at Kernen and Rosthern, 

SK (lat 52°41' long 106°19') on a 4.25 m2 plot area, with five seeded rows. The seeding rate of 

plots was 300 seeds per m2. The two experiments were connected through 27 common lines. Both 

experiments were arranged in an alpha-lattice design with two replications in each environment. 

The field experiments were seeded in early to mid-May and harvested in mid to late September in 

each year.   

Traits including heading date, plant height, maturity, grain yield, test weight, thousand-

kernel weight, grain protein content, falling number, and SDS sedimentation volume were 

measured. Heading date was recorded for each plot as the number of days from seeding to when 
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50% of the heads emerged out of the flag leaf sheath. Plant height was measured for each plot 

when the plants approached physiological maturity by taking the length of the main stem from the 

soil surface to the tip of the spike, excluding the awns. Maturity was recorded as the number of 

days from seeding to when 50% of the spikes in a plot turn to a straw color. Plots were harvested 

using a small plot combine at harvest maturity. Grain yield was measured by taking the mass of 

grain harvested from each plot after the grains were air dried to constant moisture. Test weight was 

measured as the weight of dockage-free grain in grams required to fill a level 0.5 L container. 

Grain yield and test weight were reported in kg ha-1 and kg hL-1, respectively. Thousand-kernel 

weight in grams was determined from a sub-sample of 200 kernels that were free from foreign 

material and broken kernels. For quality analysis, grain samples were ground using a UDY 

Cyclone mill (UDY Corp., Fort Collins, CO, USA). Grain protein content (%) was determined by 

combustion N analysis (AACCI approved method 46-30.01) using a LECO model FP-528 (Leco 

Instruments Corp., St. Joseph, MI, USA). Falling number was determined according to AACCI 

approved method 56-81.03. SDS sedimentation volume was measured following the method of 

Axford et al. (1978). 

3.2.2 Genotypic data 

Genomic DNA was extracted from fresh leaves of one-week-old seedlings using a modified 

CTAB approach (CIMMYT, 2005). DNA quality was assessed on agarose gels in a standard gel 

electrophoresis. All lines were genotyped using the wheat 90K SNP array (Wang et al., 2014a). 

Genotype calling was performed using the GenomeStudio Polyploid Clustering Module v1.0 

(Illumina, San Diego, CA), and erroneous lines and markers were filtered from the analysis 

(Appendix B). A total of 28,081 polymorphic SNPs were generated. After filtering SNPs with call 

frequency (CF) less than 90% (0.52%) and minor allele frequency (MAF) smaller than 10% 

(35.78%), 17,887 polymorphic SNPs remained for this analysis. Missing marker genotypes were 

replaced with the population mean for that marker using the function ‘A.mat’ in R package 

rrBLUP, v4.4 (Endelman, 2011). 

3.2.3 Phenotypic data analysis 

The varcomp and Co-op data sets were analyzed separately as well as combined and 

analyzed simultaneously. The phenotypic data were analyzed using ANOVA with SAS Mixed 
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models, v9.4 (SAS Institute Inc., 2015). Genotypes (i.e. lines) were considered as fixed effects, 

while replication nested in environment, block nested in replications and environment, 

environment (site-years), and G × E were considered as random effects. The Kenward-Roger 

degrees of freedom approximation method (DDFM=Kr) was used to compute the degrees of 

freedom for means. The phenotypic data analyses included all lines in the varcomp and Co-op 

datasets for a better estimate of (co)variances, but lines with genotyping errors and lines from the 

CWAD and CWSWS wheat classes were excluded and LS-means of the remaining 231 lines were 

used for this study. The phenotypic data were inspected and met the assumptions of ANOVA. 

Broad-sense heritability (H2) of traits were calculated across environments using the equation 

σg
2/(σg

2 + σɛ
2), where σg

2 and σɛ
2 are the estimated genetic and residual variance components, 

respectively. The variance components were calculated using the ‘lmer’ function in the R package 

lme4, v1.1-7 (Bates et al., 2016). Pearson correlation coefficients were estimated in SAS among 

the evaluated traits.  

3.2.4 Single-trait GS model prediction 

Genomic predictions were made using trait phenotypes and 17,887 polymorphic SNP 

markers. Nine single-trait prediction models, RR-BLUP, G-BLUP, BayesA, BayesB, BayesCπ, 

BL, BRR, RKHS, and RKHS-KA were evaluated. These models were fitted in R (R Development 

Core Team, 2016), using the Bayesian generalized linear regression (BGLR) package, v1.0.4, 

(Pérez and de los Campos, 2014), and the ridge regression and other kernels for genomic selection 

(rrBLUP) package, v4.4 (Endelman, 2011). The default settings of BGLR (5 degrees of freedom 

and the scale parameter based on sample variance of the phenotypes) were used (Pérez and de los 

Campos, 2014). The rrBLUP package was developed mainly for genomic prediction with mixed 

models (Endelman, 2011). The main function of the package is ‘mixed.solve’, which calculates 

maximum-likelihood solutions for mixed models with a single variance component other than the 

error (Endelman, 2011). Assumptions of the various single-trait prediction models evaluated in 

this study are described in Section 2.6. For the G-BLUP model, the GRM was computed as XXʹ 

(VanRaden, 2008), where X is a matrix containing scaled and centered marker genotypes. Marker 

genotypes were centered by subtracting the sample mean of each marker from the original 

genotypes and standardized by dividing the resulting centered genotypes by the sample standard 

deviation of the marker (de los Campos et al., 2015). For RKHS, we followed recommendations 
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by Pérez and de los Campos (2014) and used the Gaussian kernel (Equation 2.1) with an arbitrarily 

chosen bandwidth parameter of 0.5 for the single-kernel RKHS and h = 1/M × {1/5, 1, 5} for the 

RKHS-KA, where M is the median squared Euclidean distance between all lines calculated using 

off-diagonals only.  

3.2.5 Multiple-trait GS model prediction 

Joint predictions of multiple traits were made using antedependence-based multiple-trait 

BayesA (Jiang et al., 2015), and multiple-trait BayesA (Jia and Jannink, 2012) models. Multiple-

trait BayesA model takes advantage of the genetic correlation between traits to improve prediction 

accuracy (Jia and Jannink, 2012). The antedependence-based multiple-trait BayesA considers 

correlations between multiple traits as well as between SNP effects simultaneously to achieve 

higher prediction accuracy (Jiang et al., 2015). The antedependence model considers the potential 

nonstationary correlations between SNP effects near to the QTL and was developed to overcome 

the limitation of the standard GS approaches where marker effects are assumed to be independently 

distributed (Yang and Tempelman, 2012). The antedependence-based multiple-trait BayesA has 

two different approaches by setting the antedependence parameter as either a matrix or a scalar 

(Jiang et al., 2015). Detailed description of the matrix and scalar models has been provided in Jiang 

et al. (2015). In this study, the prediction performance of multiple-trait BayesA, and multiple-trait 

BayesA scalar and matrix models were compared with the standard single-trait BayesA model 

(Meuwissen et al., 2001) using different trait combinations. All multiple trait predictions were 

made using C language programs, available at, https://sites.google.com/site/jicaijiang/mtgenpred 

(Jiang et al., 2015).  

3.2.6 Genomic prediction with significant markers from GWAS fitted as fixed effects 

This study was based on a GS + de novo GWAS model that combines RR-BLUP with 

significant markers identified from GWAS fitted as fixed effects on the RR-BLUP training data 

(Spindel et al., 2016). The GS + de novo GWAS model is equivalent to the standard RR-BLUP 

when no marker is included as fixed effect. Spindel et al. (2016) provided a detailed description of 

this method. In this study, the prediction performance of the GS + de novo GWAS model was 

evaluated using a fivefold cross-validation technique. In each fold, marker-trait associations were 

determined in TASSEL, v3.0 (Bradbury et al., 2007) based on the phenotypic and genotypic data 

https://sites.google.com/site/jicaijiang/mtgenpred
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of the training set using a mixed linear model (MLM) that combines both population structure 

information and kinship as covariates. Genome-wide association study was conducted based on a 

subset of 1908 evenly spaced SNPs that were selected from the full marker density based on 

genetic distance (mean genetic distance of 1.8 cM between SNPs) using MapThin, v1.11 (Howey 

and Cordell, 2011). Population structure was accounted using five marker-derived principal 

components (PCs). Principal components and kinship were computed from the marker data using 

TASSEL. The MLM analysis was conducted using the default settings of TASSEL (optimum 

compression level and PD3 variance component estimation). The P-value from the GWAS output 

were sorted from low to high and multiple testing correction was performed for all SNPs based on 

a False Discovery Rate (FDR) using the function “p.adjust” and “BH” method (Benjamini and 

Hochberg, 1995), in R (R Development Core Team, 2016). Up to three most significant markers 

(FDR = 0.2) were selected separately for each fold in the fivefold cross-validation method. In cases 

where no marker met this threshold, the most significant marker was selected. The selected 

markers were then included in the GS + de novo GWAS model as fixed effects while all the 

remaining markers from the full marker density (17,887 SNPs) were included as random effects. 

The GS + de novo GWAS model was fitted in R (R Development Core Team, 2016) using the 

function ‘kinship.BLUP’ in the rrBLUP package (Endelman, 2011). 

3.2.7 Cross-validation techniques 

The cross-validation technique is used in GS to assess the performance of a model and its 

ability to predict the breeding value of individuals that are different from the ones used to train the 

model. In this study, two cross-validation techniques were used to assess the prediction accuracy 

of the evaluated models. The first technique involved a fivefold cross-validation that randomly 

partitioned the data into five mutually exclusive groups of approximately equal sizes. In each fold, 

four groups were combined to form the training set and the one remaining group was used as the 

validation set. The process was repeated until each of the five groups was used as a validation set. 

In each fold, the prediction accuracy of the models was assessed by computing Pearson’s 

correlation (r) and Spearman’s rank correlation (ρ) between the predicted GEBVs and observed 

phenotypes of the individuals in the validation set. This technique was used to assess single-trait, 

multiple-trait, and GS + de novo GWAS models. For each model-trait combination, the reported 

accuracies were the averages across the five folds. Analysis of variance and student's t-test were 
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conducted on the cross-validation results for each trait separately to determine differences in 

prediction accuracy among the statistical models. For a reliable comparison of these models, the 

same cross-validation folds were used in each model-trait combination. This technique increases 

the computation load but the difference in estimates across groups will help to estimate uncertainty 

due to random sampling of the training and validation sets (Morota and Gianola, 2014; Pérez and 

de los Campos, 2014).  

The second technique involved cross-validation using an independent population. In this 

case, marker effects were estimated using one population and genomic predictions were made for 

a population different from the one used to estimate marker effects. For this approach, the varcomp 

population was used as training set while the Co-op population was used as validation set and vice 

versa. GEBVs were calculated for lines in the validation population by multiplying the vector of 

the marker scores for each line by the vector of marker effects estimated from the TP. Prediction 

accuracy of the models was assessed by computing Pearson’s correlations (r) between the 

predicted GEBVs and observed phenotypes of the individuals in the validation set. In this case, 

there is only one prediction accuracy measurement. Across-population genomic prediction 

accuracy was used to assess performance of single-trait prediction models. Inferences for all 

Bayesian models were based on 50,000 iterations obtained after discarding 5,000 samples as a 

burn-in.  

3.3 Results and Discussion 

3.3.1 Phenotypic evaluation 

Analysis of variance indicated that there were significant differences among lines (P < .001) 

for all traits (Table 3-1). There was also significant G × E for all traits, indicating that the 

environment also had strong influence on measured phenotypes (Table 3-1). Frequency 

distributions of the various traits were broad and normally distributed, except for sedimentation 

volume which is skewed to the left because of the low sedimentation volume (40 ml) of a historical 

wheat cultivar (Red Fife) (Fig. 3-1).  

For each trait, broad sense heritability was estimated using the combined varcomp and Co-

op data sets. The highest heritability was observed for thousand-kernel weight (0.84) and 

sedimentation volume (0.84) followed by heading date (0.82) and grain protein content (0.64) 

(Table 3-2). Moderate to high heritability estimates were obtained for grain yield (0.51), test 



 

42 
 

weight (0.57), falling number (0.57), maturity (0.58), and plant height (0.62) (Table 3-2). These 

results suggest that most of the observed phenotypic variation in these traits is heritable and has a 

genetic cause. Cross et al. (2014) reported that when trait heritability is low, genomic information 

does not improve prediction accuracy. Because the trait data from this study has high heritability, 

accurate genomic predictions can be made using these data sets. 

The correlation among the agronomic and end-use quality traits agrees with the commonly 

known trait relationships in wheat. Heading date was positively correlated with days to maturity 

(r = 0.612) (Table 3-3). Plant height was negatively correlated with grain yield (r = -0.295) and 

positively correlated with grain protein content (r = 0.364), indicating that shorter varieties were 

high yielding but with lower protein content (Table 3-3). Also, grain yield was negatively 

correlated with grain protein content (r = -0.329). There was also significant positive correlation 

of grain protein content with falling number (r = 0.319) and sedimentation volume (r = 0.426).  

Table 3-1. P-values from mixed model ANOVA F-tests for nine agronomic and end-use quality 

traits as affected by genotype and covariance parameters.  

Source of variation  HD† HT MAT YLD TWT TKW PRO FN SDS 

 days cm days kg ha-1 kg hL-1 g % sec ml 

Genotype (G) *** *** *** *** *** *** *** *** *** 

Covariance parameter          

Environment (E) * * * * * * * * * 

Replication (Env) NS * NS * * * * * * 

Block (Rep × Env) *** *** *** *** *** *** *** ** *** 

G × E *** *** *** *** *** *** *** *** *** 

*, **, ***, Significant at the 0.05, 0.01 and 0.001 probability level, respectively, and NS not significant.  

†HD: heading date, HT: plant height, MAT: maturity, YLD: grain yield, TWT: test weight, TKW: 

thousand-kernel weight, PRO: grain protein, FN: falling number, SDS: sedimentation volume. 
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Fig. 3-1. Frequency distributions of nine agronomic and end-use quality traits used to estimate 

marker effects in the training population. Data were averaged across all environments.  

Table 3-2. Broad-sense heritability estimates for nine agronomic and end-use quality traits. 

Trait† Number of environments Heritability 

HD 7 0.82 

HT 9 0.62 

MAT 8 0.58 

YLD 10 0.51 

TWT 9 0.57 

TKW 10 0.84 

PRO 9 0.64 

FN 9 0.57 

SDS 9 0.84 

†HD: heading date, HT: plant height, MAT: maturity, YLD: grain yield, TWT: test weight, and TKW: 

thousand-kernel weight, PRO: grain protein, FN: falling number, SDS: sedimentation volume.  
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Table 3-3. Correlations among trait phenotypes averaged across environments. 

   Pearson's correlations, N = 271   

Trait† Mean SD‡ HD HT MAT YLD TWT TKW PRO FN 

HD 55.7 1.5 1        

HT 94.3 6.0 0.096NS 1       

MAT 96.3 1.6 0.612*** -0.126* 1      

YLD 4190.0 371.8 0.073NS -0.295*** 0.286*** 1     

TWT 80.9 1.0 -0.018NS -0.004NS 0.379*** 0.204*** 1    

TKW 36.5 3.1 0.301*** -0.189** 0.407*** 0.242*** -0.017NS 1   

PRO 14.3 0.9 -0.204*** 0.364*** -0.233*** -0.329*** 0.165** -0.256*** 1  

FN 425.7 41.8 -0.024NS 0.215*** -0.337*** -0.212*** -0.113NS -0.370*** 0.319*** 1 

SDS 65.1 9.7 -0.356*** 0.116NS -0.430*** -0.051NS 0.122* -0.314*** 0.426*** 0.185** 

*, **, ***, Significant at the 0.05, 0.01 and 0.001 probability level, respectively, and NS not significant. 

†HD: heading date, HT: plant height, MAT: maturity, YLD: grain yield, TWT: test weight, and TKW: thousand-kernel weight, PRO: grain protein, 

FN: falling number, SDS: sedimentation volume.  

‡SD: Standard deviation of the trait. 
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3.3.2 Accuracy of single-trait genomic predictions  

Prediction accuracies were different among the evaluated traits. The average prediction 

accuracies, based on Pearson’s correlation, ranged from 0.55 to 0.77 across different model-traits 

combinations (Fig. 3-2). This was expected, because when the same TP is used to predict multiple 

traits, the prediction accuracy will be lower for some traits than for the other traits, in the same 

way that heritability is lower for some traits than for others (Combs and Bernardo, 2013). The 

accuracy obtained for thousand-kernel weight was better than accuracies obtained for all other 

traits. This indicates that some traits may be more amenable to GS in future breeding programs. 

 

Fig. 3-2. Average prediction accuracy (from fivefold cross-validation) based on Pearson’s 

correlation (r) between GEBVs estimated from nine statistical models and phenotypes for nine 

traits. HD: heading date, HT: plant height, MAT: maturity, YLD: grain yield, TWT: test weight, 

TKW: thousand-kernel weight, PRO: grain protein, FN: falling number, SDS: sedimentation 

volume.   

  

Although prediction accuracies were different among traits, they were not significantly 

different among different models (Fig. 3-2). These results agree with Heslot et al. (2012) who also 

reported a similar level of accuracy among eleven GS models and machine learning methods 

evaluated using wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), Arabidopsis thaliana, 

and maize (Zea mays L.) data sets. Similarly, Daetwyler et al. (2013) compared several GS 
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methods using both simulated and real data sets and reported that based on simulated data, most 

methods performed similarly in traits influenced by large number of QTL, but in traits influenced 

by fewer QTL, variable selection methods did have some advantages. However, based on real data 

sets all methods had very similar accuracies. Charmet et al. 2014 also reported very similar 

accuracies with different prediction methods for heading date and test weight in a RIL population 

and two DH populations of wheat. Heslot et al. (2012) reported that the level of overfitting, 

computation time and the distribution of marker effect estimates varied widely among the models, 

although the level of accuracy was similar.  

In this study, all models generated similar prediction accuracies perhaps because the 

evaluated traits are controlled by many minor effect loci. The main difference among the models 

is how they treat the prior distribution of the variance of marker effects. Ridge regression BLUP 

assigns uniform variance to all markers while Bayesian methods allow non-uniform variances for 

markers (Asoro et al., 2011; Meuwissen et al., 2001). Lorenz et al. (2011) indicated that models 

such as RR-BLUP are expected to work well for traits that are controlled by many loci with small 

effects, but variable selection methods such as BayesB should be preferred for traits that are 

controlled by few large effects QTL. In this study, BayesB showed 7 to 8% and 4 to 8% higher 

accuracies compared to the other models for plant height and sedimentation volume, respectively 

(Fig. 3-2). However, the average prediction accuracy was not significantly different among the 

evaluated methods across all traits. Similarly, Hayes et al. (2009c) reviewed the progress of GS 

for dairy cattle breeding in three different countries and concluded that for most dairy traits, the 

BLUP method with the assumption of many genes of small effects and few or none with moderate 

to large effects is close to reality.  

We applied the RKHS to determine if including non-additive effects improves prediction 

accuracy. The RKHS captures both the additive and non-additive effects among loci; therefore, 

the predicted values are not GEBVs (Heslot et al., 2012). In this study, the RKHS and RKHS-KA 

models were not superior to the other models (RR-BLUP, G-BLUP, BayesA, BayesB, BayesCπ, 

BRR and BL), which are based on additive effects. The absence of significant difference between 

RKHS and other models in this study could be because the contribution of non-additive genetic 

effects to the total genetic variance was too small to be captured by the models. There are 

inconsistent reports on the benefit of including non-additive effects to improve GS prediction 

accuracy. Sallam et al. (2015) reported similar accuracies among simple additive models (RR-
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BLUP and BayesCπ) and models that account for both additive and non-additive effects for the 

prediction of fusarium head blight resistance, yield and plant height using empirical data in barley. 

Lorenzana and Bernardo (2009) also reported no advantage of including epistatic effects for the 

prediction of genetic values using biparental maize, Arabidopsis and barley data sets. In contrast, 

Zhao et al. (2013) reported either equal or improved prediction accuracy when ignoring dominance 

effects in simulated and commercial hybrid wheat data sets. On the other hand, Pérez-Rodríguez 

et al. (2012) reported better predictive accuracy in RKHS compared to BL, BRR, BayesA and 

BayesB using empirical wheat data sets. Improved prediction accuracy was also reported in wheat 

when predictions were made using models that include epistasis (Crossa et al., 2010; He et al., 

2016; Jiang and Reif, 2015; Wang et al., 2012). The discrepancies in the usefulness of including 

non-additive effects to improve accuracy of predictions could be due to the nature of the traits 

investigated or the population used in these studies. However, models that capture non-additive 

genetic effects may not be attractive for practical application of GS because gains from selection 

might be lower than expected in the long term. 

The most appropriate model for GS may be different depending on the nature of trait and 

population of interest. Heslot et al. (2012) suggested that GS in plant breeding could use a reduced 

set of models, such as the BL, wBSR, and random forest regression. However, Daetwyler et al. 

(2013) indicated that no single method can serve as a benchmark for genomic prediction and 

recommended comparing accuracy and bias of new methods to results from G-BLUP and a 

variable selection approach such as BayesB, because these methods are appropriate for a range of 

genetic architectures. Lorenz et al. (2011) also indicated that there is no single best model across 

traits and populations because these models assume different genetic architectures. When models 

have comparable accuracies, it may also be advantageous to select a model that is less 

computationally demanding. In this study, the computation time for the Bayesian models was 

much longer because parameter estimates cannot be obtained analytically and must be estimated 

through repeated sampling from their posterior distributions, which requires several thousands of 

iterations. 

3.3.3 Effect of trait heritability on prediction accuracy  

In this study, there was no direct relationship between trait heritability and prediction 

accuracy (Table 3-2, Fig. 3-2). Based on heritability the traits can be ranked as: thousand-kernel 
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weight = sedimentation volume > heading date > grain protein > plant height > maturity > test 

weight = falling number > grain yield (Table 3-2). However, the prediction accuracy based on 

Pearson’s correlation was comparable for all traits except for thousand-kernel weight (Fig. 3-2). 

Previous studies reported a strong relationship between the accuracy of genomic predictions and 

trait heritability, with the prediction being more accurate for traits with higher heritability than for 

traits with low heritability (Combs and Bernardo, 2013; Heffner et al., 2011a; Moser et al., 2010; 

Saatchi et al., 2010). However, this is not always the case because Combs and Bernardo (2013) 

reported situations where high prediction accuracy was attained for traits with low heritability. The 

lack of a direct relationship between trait heritability and prediction accuracy in this study could 

be because of the high heritability estimates obtained for all traits (Table 3-2).  

3.3.4 Assessment of prediction accuracy based on rank correlation  

Two different methods were used to assess model prediction accuracy in this study, 

Spearman’s rank correlation and Pearson’s correlation. Spearman’s rank correlation was used to 

test for rank agreements for lines based on GEBVs and observed phenotypes. There was no 

significant difference in the average prediction accuracy based on Spearman’s rank correlation 

among the evaluated methods for all traits (Fig. 3-3). However, BayesB showed 3 to 7% and 10 to 

17% higher accuracies than the other models for plant height and sedimentation volume, 

respectively (Fig. 3-3). Rank correlations were generally lower for all traits except for heading 

date, test weight and falling number where the results were comparable to Pearson’s correlations 

(Fig. 3-2 and 3-3). Rank correlation was low for grain protein content (in the range of 0.33 to 0.36) 

compared to Pearson’s correlation (in the range of 0.59 to 0.60). Similarly, rank correlation was 

low for sedimentation volume (in the range of 0.43 to 0.46) compared to Pearson’s correlation (in 

the range of 0.62 to 0.66). This indicated that the GEBVs did not capture the rankings of lines 

based on the actual phenotypes and this might affect selection decisions for these traits, especially 

when making truncation selection. Li et al. (2015) also reported that accuracies based on rank 

correlations were slightly lower than accuracies based on Pearson’s correlation, but the rankings 

obtained for all methods exhibited the same trend for both correlations. This suggests that ranking 

of different models is similar based on Pearson’s or rank correlations. 
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Fig. 3-3. Average prediction accuracy (from fivefold cross-validation) based on Spearman’s rank 

correlation (ρ) between GEBVs estimated from nine statistical models and phenotypes for nine 

traits. HD: heading date, HT: plant height, MAT: maturity, YLD: grain yield, TWT: test weight, 

TKW: thousand-kernel weight, PRO: grain protein, FN: falling number, SDS: sedimentation 

volume.  

 

In addition to using different metrics for assessing prediction accuracies, we also performed 

cross-validation using two different methods; fivefold cross-validation and cross-validation using 

an independent validation set. The cross-validation results using an independent population were 

inconclusive. When the varcomp population was used as TP and the Co-op population for 

validation, prediction accuracy was substantially lower or comparable to fivefold cross-validation. 

Accuracies using the independent cross-validation method were lower for height (0.39-0.41), grain 
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0.61), grain protein (0.54-0.64), and falling number (0.64-0.67) compared to the accuracy based 

on fivefold cross-validation (Fig. 3-5). Generally, a larger TP (Co-op) gave improved accuracy, 

except for test weight and sedimentation volume where slightly higher accuracy was obtained 

when the varcomp was used as TP. Previous reports also indicated that validation using an 

independent population of unrelated individuals is inferior to randomly drawn subsets of the same 

population (Goddard and Hayes, 2007; Thavamanikumar et al., 2015). This may be because some 

markers are correlated with a QTL in one population but not in the other (Goddard and Hayes, 

2007). However, Habier et al. (2007) indicated that accuracy is non-zero even without LD because 

the accuracy of GEBVs depends on both tight LD between QTL and markers as well as the 

information from genetic relationships among individuals. The results of cross-validation using an 

independent population were satisfactory for most traits because we used elite breeding materials 

characterized by complex pedigrees and different levels of relatedness. Although the varcomp and 

Co-op populations were evaluated in the field separately, individuals in both populations have 

various levels of relatedness and cannot be considered as totally unrelated.  

 

Fig. 3-4. Prediction accuracy based on Pearson’s correlation (r) between GEBVs estimated from 

nine statistical models and phenotypes for nine traits. The varcomp population (77 lines) was used 

to estimate marker effects and the Co-op population (154 lines) was used as a validation set. HD: 

heading date, HT: plant height, MAT: maturity, YLD: grain yield, TWT: test weight, TKW: 

thousand-kernel weight, PRO: grain protein, FN: falling number, SDS: sedimentation volume.  
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Fig. 3-5. Prediction accuracy based on Pearson’s correlation (r) between GEBVs estimated from 

nine statistical models and trait phenotypes. The Co-op population (154 lines) was used to estimate 

marker effects and the varcomp population (77 lines) was used as a validation set. HD: heading 

date, HT: plant height, MAT: maturity, YLD: grain yield, TWT: test weight, TKW: thousand-

kernel weight, PRO: grain protein, FN: falling number, SDS: sedimentation volume. 

 

3.3.5 Accuracy of multiple-trait genomic predictions  

Breeders are often tasked with selecting for multiple traits simultaneously. Originally most 

GS models were designed for assessing a single trait; however, some multiple-trait prediction 

models have recently been developed which we assessed for their performance in making joint 

predictions for important traits in wheat. Predictive performance of the evaluated multiple-trait 

prediction models varied depending on the traits selected for joint prediction. Overall, none of the 

evaluated multiple-trait models gave consistently higher prediction accuracy than the single-trait 

BayesA model across different combinations of traits.  

The prediction accuracy of the multiple-trait models was comparable to the single-trait 

model for joint prediction of grain yield and protein content (trait combination one) (Table 3-4). 

Lack of improvement in accuracy when yield and protein were jointly predicted could be due to 

negative correlation between these traits (Table 3-3). The negative correlation between traits in the 

TP might negatively affect the prediction of traits in the validation population. Jia and Jannink, 

(2012) indicated that multiple-trait models take advantage of genetic correlation between traits, 

whether it is favorable or unfavorable, but they are not designed to break the undesirable genetic 
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correlation. However, the observed negative correlations between grain yield and protein content 

may not have genetic causes. Earlier studies suggested that the negative phenotypic correlation 

between grain yield and protein content in wheat were not caused by genetic factors, but because 

of environmental factors, source-sink interactions and dilution of protein by carbohydrates (Kibite 

and Evans, 1984). When joint prediction was made for grain yield, test weight and thousand-kernel 

weight (trait combination two), multiple-trait models were not better than the single-trait model 

for prediction of grain yield, but slightly lower or comparable accuracy were obtained for test 

weight and thousand-kernel weight (Table 3-4). Similarly, when predictions were made for trait 

combination three (height, grain yield, and grain protein) and four (heading date, maturity and 

grain yield), no obvious benefit was obtained from all three multiple-trait models compared to the 

single-trait model for all traits (Table 3-4). Finally, when joint prediction was made for all nine 

traits (trait combination five), prediction accuracies of the multiple-trait models were either 

comparable or lower than the single-trait model for all traits except for sedimentation volume, 

where multiple-trait BayesA and multiple-trait BayesA Matrix models gave a slightly higher 

accuracy (Table 3-4).  

The poor performance of the multiple-trait models may be because the traits in this study are 

controlled by several minor effect loci. Grain yield is a complex trait that is often difficult to 

maintain or improve while enhancing other correlated traits, as such it is an ideal candidate for 

multiple-trait prediction. However, the evaluated multiple-trait models performed poorly 

compared to the single-trait model for the prediction of grain yield in all trait combinations (Table 

3-4). Jia and Jannink (2012) reported that the genetic architecture of a trait affects the relative 

advantage of multiple-trait models over single-trait models and multiple-trait genomic prediction 

captures the genetic correlation between traits more efficiently when major QTL are present. Jiang 

et al. (2015) also showed that the antedependence-based models were superior to the multiple-trait 

BayesA model when the number of simulated QTL was 30 but there was no difference in accuracy 

between these models when 300 QTL each having small effects were simulated. Overall, there 

was no advantage of the evaluated multiple-trait prediction models over the single-trait BayesA 

for all trait combinations, possibly because the traits in this study, including grain yield, are 

controlled by many QTL with small effects.  
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Table 3-4. Average and standard deviation of prediction accuracy (from fivefold cross-validation) 

based on Pearson’s correlation (r) between trait phenotypes and GEBVs estimated using a single-

trait and three multiple-trait prediction models. Prediction was made for different trait 

combinations. 

Trait 

combination Trait† 

Single-trait 

BayesA 

Multiple-trait 

BayesA 

Multiple-trait 

BayesA Matrix 

Multiple-trait 

BayesA Scalar 

1 YLD 0.603(0.089) 0.589(0.093) 0.583(0.095) 0.571(0.130) 

 PRO 0.597(0.149) 0.577(0.174) 0.593(0.156) 0.581(0.172) 

2 YLD 0.603(0.089) 0.542(0.148) 0.559(0.141) 0.578(0.116) 

 TWT 0.631(0.070) 0.630(0.079) 0.623(0.069) 0.637(0.078) 

 TKW 0.775(0.042) 0.762(0.057) 0.758(0.058) 0.768(0.047) 

3 HT 0.593(0.129) 0.610(0.127) 0.568(0.134) 0.627(0.102) 

 YLD 0.603(0.089) 0.551(0.162) 0.528(0.115) 0.570(0.099) 

 PRO 0.597(0.149) 0.606(0.113) 0.581(0.127) 0.582(0.150) 

4 HD 0.592(0.110) 0.588(0.102) 0.586(0.086) 0.593(0.110) 

 MAT 0.552(0.076) 0.563(0.083) 0.552(0.087) 0.559(0.084) 

 YLD 0.603(0.089) 0.554(0.118) 0.580(0.084) 0.548(0.113) 

5 HD 0.592(0.110) 0.581(0.110) 0.582(0.112) 0.583(0.116) 

 HT 0.593(0.129) 0.598(0.109) 0.563(0.109) 0.554(0.097) 

 MAT 0.552(0.076) 0.537(0.087) 0.533(0.085) 0.534(0.093) 

 YLD 0.603(0.089) 0.575(0.089) 0.548(0.086) 0.556(0.087) 

 TWT 0.631(0.070) 0.619(0.079) 0.608(0.074) 0.603(0.065) 

 TKW 0.775(0.042) 0.763(0.035) 0.764(0.047) 0.763(0.040) 

 PRO 0.597(0.149) 0.574(0.135) 0.573(0.149) 0.543(0.155) 

 FN 0.622(0.049) 0.531(0.046) 0.553(0.076) 0.507(0.111) 

 SDS 0.629(0.129) 0.647(0.125) 0.650(0.120) 0.624(0.138) 

†HD: heading date, HT: plant height, MAT: maturity, YLD: grain yield, TWT: test weight, and TKW: 

thousand-kernel weight, PRO: grain protein, FN: falling number, SDS: sedimentation volume. 

 

Genetic correlation between traits and physical correlation between markers may also affect 

multiple-trait GS model performance. Several studies reported improved prediction accuracy when 

multiple-trait GS models were used instead of single-trait models in the presence of genetic 

correlation between traits (Calus and Veerkamp, 2011; Guo et al., 2014a; Jiang et al., 2015; Tsuruta 

et al., 2011). However, in the absence of genetic correlation, multiple-trait models were inferior to 
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single-trait models (Jia and Jannink, 2012). This could be due to a nonzero estimate of genetic 

correlation between traits in the TP and using this wrong information to predict traits in the 

validation population (Jia and Jannink, 2012). The two antedependence-based multiple-trait 

prediction models evaluated in this study (Multiple-trait BayesA Matrix and Scalar) were designed 

to benefit from correlations between traits as well as between SNP effects to enhance whole 

genome prediction (Jiang et al., 2015). Based on simulated and real mice data sets, Yang and 

Tempelman (2012) reported that the prediction accuracy of antedependence-based models (ante-

BayesA and ante-BayesB), which consider SNP effects as being spatially correlated based on their 

relative physical location along the chromosome, was up to 3.6% higher compared to their classical 

counterparts (BayesA and BayesB). Similarly, based on simulated data, Jiang et al. (2015) reported 

that the prediction accuracy of the antedependence-based model was 2.8 to 8.6% higher compared 

to the accuracy of the best single-trait prediction model. However, based on real mice data set, the 

antedependence-based models were slightly better than the single and multiple-trait BayesA 

models (Jiang et al., 2015). In this study, there was no consistent benefit of the antedependence-

based models compared to the single-trait model or multiple-trait BayesA model that only takes 

advantage of the genetic correlation between traits.  

Heritability also has an important role in making accurate multiple-trait predictions. Based 

on simulated data, several studies reported improved prediction accuracy for traits with low 

heritability (h2 < 0.2) when a correlated trait with higher heritability (h2 ≥ 0.5) was included in 

multiple-trait prediction models (Guo et al., 2014a; Hayashi and Iwata, 2013; Jia and Jannink, 

2012; Jiang et al., 2015). Jia and Jannink, (2012) reported that the prediction accuracy for a low 

heritability trait (h2 = 0.1) increased from 0.49 obtained from a single-trait model to 0.67 and 0.70 

when it was jointly predicted with a medium (h2 = 0.5) and a high heritability trait (h2 = 0.8) using 

multiple-trait prediction model. However, the prediction accuracy for the medium or high 

heritability traits did not change as the heritability of the correlated trait changed and when the 

genetic correlation between traits increased from 0.1 to 0.9 (Jia and Jannink, 2012). Similarly, 

Jiang et al. (2015) reported that a low heritability trait (h2 = 0.1) benefited from joint prediction of 

multiple-traits but no obvious advantage was observed for a high heritability trait (h2 = 0.5). Using 

a Bayesian multiple-trait prediction model, Hayashi and Iwata (2013) also reported increased 

prediction accuracy for a low heritability trait (h2 = 0.1) that had genetic correlation of 0.7 with a 

high heritability trait (h2 = 0.8); however, there was no difference in prediction accuracy between 
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multiple-trait and single-trait models for the high heritability trait. Guo et al. (2014a) also showed 

that the multiple-trait model gave more accurate prediction than the single-trait model for a low 

heritability trait (h2 = 0.05), but there was no difference between these models for a high heritability 

trait (h2 = 0.3). In our study, the lowest heritability estimate was obtained for grain yield (H2 = 

0.51) (Table 3-2), which was equivalent to the highest heritability considered in these simulation 

studies. The high heritability estimates of the traits in our study could be the reason why we did 

not find improved prediction accuracy when multiple-trait models were used instead of the single-

trait prediction model.  

3.3.6 Prediction accuracy of GS + de novo GWAS model 

Another GS approach assessed in this study used significant markers from GWAS as fixed 

effects when making genomic predictions. Prediction accuracies were evaluated for the standard 

RR-BLUP and GS + de novo GWAS model that included one to three of the most significant SNPs 

identified from fold-specific GWAS as fixed effects. Strong marker trait associations were not 

detected after FDR-based multiple testing correction for all traits except plant height and 

sedimentation volume (Appendix C). After including significant markers as fixed effects, no 

significant difference was observed between accuracies obtained from the standard RR-BLUP and 

GS + de novo GWAS models for all traits (Fig. 3-6). However, including up to three significant 

markers detected from GWAS resulted in 13 and 7% higher accuracy for plant height and 

sedimentation volume, respectively. In contrast, Spindel et al. (2016) reported that the GS + de 

novo GWAS model outperformed the standard RR-BLUP in all cases. Gains in prediction 

accuracy up to 30% were reported for flowering time, for which a large GWAS peak was identified 

(Spindel et al., 2016). Spindel et al. (2016) reported that GS + de novo GWAS works best for traits 

with one or more medium to large effect QTL segregating in the population but it has no advantage 

if a trait has no significant GWAS peaks or peaks that are very near the significance threshold after 

applying multiple testing correction. Spindel et al. (2016) recommended the GS + de novo GWAS 

model over alternatives such as RR-BLUP or random forest regression when the -log (FDR 

corrected P-values of the most significant SNPs) ≥ 2.0. Plant height and sedimentation volume 

were the only traits from this study to have an observed increase in accuracy for GS + de novo 

GWAS when compared to RR-BLUP, likely because these were also the only traits that had 

significant markers in all five folds after accounting for the FDR. 
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Fig. 3-6. Average prediction accuracy (from fivefold cross-validation) based on Pearson’s 

correlation (r) between GEBVs estimated using RR-BLUP and GS + de novo GWAS models and 

trait phenotypes. HD: heading date, HT: plant height, MAT: maturity, YLD: grain yield, TWT: 

test weight, TKW: thousand-kernel weight, PRO: grain protein, FN: falling number, SDS: 

sedimentation volume.   

 

Trait heritability and the proportion of genetic variance explained by the QTL are important 

considerations when deciding to fit markers associated with known genes or QTL as fixed effects. 

Based on a simulation study, Bernardo (2014) indicated that fitting markers associated with a 

known major gene as fixed effect is more advantageous in GS when the percentage of the genetic 

variance explained by the gene (R2) and trait heritability (h2) are high. Bernardo (2014) reported 

that the ratios of selection response when one or more major genes had a fixed effect versus when 

none of the major genes had a fixed effect was always significantly greater than one with R2 ≥ 

25% and h2 ≥ 0.50. In this study, estimates of broad-sense heritability ranged from 0.51 to 0.84 for 

all traits (Table 3-2), while the R2 values of the markers fitted as fixed effects ranged from 7 to 

11% (heading date), 7 to 15% (plant height), 6 to 8% (maturity, grain yield and test weight), 5 to 

7% (thousand-kernel weight), 7 to 12% (grain protein and sedimentation volume), 6 to 12% 

(falling number) (Appendix C). Bernardo (2014) reported that modelling a single major gene as 

fixed effect was never disadvantageous, except when R2 < 10%. Spindel et al. (2016) also indicated 

that adding fixed markers identified from GWAS never decreased accuracy compared to RR-

BLUP or other statistical methods tested. Similarly, modelling markers having R2 < 10% as fixed 
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effects never reduced accuracy in this study. Because heritability for most traits was high in this 

study, lack of improvement in accuracy of GS + de novo GWAS could be due to the small R2 value 

of the markers fitted as fixed effects. 

In addition to fitting significant markers from GWAS in the TP as fixed effects, as was 

performed in this study, significant markers from a different population could also be incorporated 

into GS as fixed effects. Markers of known effect, markers tagging candidate genes, or markers 

tagging previously identified QTL can also be included in GS models as fixed effect (Bentley et 

al., 2014; Spindel et al., 2016; Zhang et al., 2014). However, Bentley et al. (2014) indicated that 

significant marker selection can lead to bias because some of these markers may not have any 

effect within the TP. Zhang et al. (2014) used existing GWAS results from publicly available 

databases to build trait-specific GRM by assigning large weights to significant markers to account 

for the variance explained by the corresponding loci. Zhang et al. (2014) tested this new approach 

using real cattle and rice data sets and reported improved accuracy of genomic predictions 

compared to the standard G-BLUP and BayesB models. Spindel et al. (2016) also compared GS + 

de novo GWAS model with GS + historical GWAS model, a method equivalent to the first model 

but the markers fitted as fixed effects were selected from previously published GWAS results. The 

results indicated that the accuracy of GS + historical GWAS model was either similar or worse 

than the GS + de novo GWAS model depending on the trait and environment. This indicates that 

significant SNPs identified from previously published GWAS results may not always be relevant 

to a given population. On the other hand, Zhao et al. (2014) reported improved prediction accuracy 

using a different approach that assigns larger weights to known functional markers (less shrinkage) 

independently of the genome-wide markers. This suggests that instead of fitting random markers 

associated with a trait, modelling functional markers or markers located within gene coding 

sequence as fixed effects might enhance GS prediction accuracy.   

3.4 Conclusion 

We evaluated single-trait, multiple-trait and GS + de novo GWAS models for the prediction 

of several agronomic and end-use quality traits using empirical data in spring bread wheat. 

Comparison of different statistical methods in this study suggested that GS can be implemented in 

wheat using either G-BLUP or BayesB models. G-BLUP is computationally efficient because the 

dimension of the marker data is reduced when using the GRM. Though more computationally 
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demanding, BayesB gave more accurate predictions for plant height and sedimentation volume. 

Prediction accuracy of multiple-trait and single-trait models was similar. For some traits, multiple-

trait prediction accuracy was lower than single-trait prediction accuracy, but this was dependent 

on the inter-trait correlation and the genetic architecture of the traits. The GS + de novo GWAS 

model that included up to three significant SNPs as fixed effects performed similar to the standard 

RR-BLUP for most traits, likely because few large effect QTL were identified in this population. 

The GS + de novo GWAS model might be promising when major genes exist and should be 

investigated further. 

Overall, the prediction accuracies based on fivefold cross-validation are encouraging given 

the small size of the TP used in this study. Different cross-validation techniques gave variable 

results indicating that it is important to choose a cross-validation technique that mimics the actual 

prediction problem. In GS, prediction accuracy is commonly assessed by systematically 

partitioning the same population into training and validation sets. However, the ultimate use of GS 

is to predict breeding values in a population different from the one used to estimate marker effects. 

Therefore, the cross-validation technique should resemble the actual application of GS and across-

population cross-validation would be more realistic when the intention is to make genomic 

predictions in a population different from the one used to estimate marker effects. 
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4. Effects of Marker Density, Training Population Size and Population Structure on GS 

Accuracy in Wheat 

4.1 Introduction 

Genomic selection is growing in popularity as a tool for crop breeding, but empirical studies 

outlining the factors influencing GS prediction accuracy in wheat are limited. With the increasing 

application of GS, numerous statistical methods have been proposed to predict GEBVs from 

genotypic data. In Chapter three, we investigated some of these methods and determined that, for 

the most part, models have similar prediction accuracies and single-trait models such as G-BLUP 

and BayesB may offer the best trade-offs for computational demand and accuracy for the wheat 

populations used in this study. Studies based on simulated and empirical data indicated that the 

accuracy of GS model prediction depends on a number of other factors related to the marker type 

and density (Combs and Bernardo, 2013; Heffner et al., 2011a; Moser et al., 2010; Poland et al., 

2012; Solberg et al., 2008), size of the TP (Calus and Veerkamp, 2007; Combs and Bernardo, 

2013; Heffner et al., 2011a; VanRaden et al., 2009), trait heritability (Combs and Bernardo, 2013; 

Moser et al., 2010), genetic relationships between individuals in the training and validation 

populations (Solberg et al., 2008; VanRaden et al., 2009; Wientjes et al., 2013), population 

structure (de los Campos et al., 2015; de Roos et al., 2009; Guo et al., 2014b; Isidro et al., 2015), 

G × E  (Burgueño et al., 2011; Crossa et al., 2015; Heslot et al., 2014; Jarquín et al., 2014a; Lopez-

Cruz et al., 2015; Pérez-Rodríguez et al., 2015) and the statistical method used for prediction 

(Calus, 2010). These factors are interrelated in a complex manner (Desta and Ortiz, 2014). 

Moreover, most of these factors are population and environment specific and it is imperative to 

assess the predictive ability of different statistical models and model parameters for different 

breeding populations and environments. Therefore, the objectives of this study were to i) determine 

GS model prediction accuracy under increasing TP size and marker density, and ii) examine the 

effect of population structure on prediction accuracy.  

4.2 Materials and Methods 

A population of 231 hexaploid wheat varieties and advanced breeding lines were used in this 

study to assess the effects of TP size, marker density and population structure on genomic 
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prediction accuracy. Detailed descriptions of the phenotypic and genotypic data are provided in 

Chapter three. 

4.2.1 Effect of training population size on genomic prediction accuracy  

To determine the effect of TP size on model prediction accuracy, three TP sizes (NTP = 50, 

100, and 200) were used with the full marker density (17,887 SNPs) to predict GEBVs using G-

BLUP. Predictions were made for heading date, plant height, maturity, grain yield, test weight, 

thousand-kernel weight, grain protein content, falling number and sedimentation volume using 

each TP size. For each trait-TP size combination, prediction accuracy was assessed using a cross-

validation design of five random training-validation partitions. Models were fitted using the R 

package BGLR, v1.0.4 (Pérez and de los Campos, 2014). In each fold, prediction accuracy was 

assessed by calculating Pearson’s correlation between GEBVs and observed phenotypes of the 

lines in the validation set. The averages of the five folds were reported. 

4.2.2 Effect of marker density on genomic prediction accuracy  

The effect of marker density on prediction accuracy was assessed using five marker densities 

(770, 3K, 13K, 15K, and 18K SNPs). The first two marker densities were selected from 15K 

polymorphic SNPs, that have position on the hexaploid wheat consensus map (Wang et al., 2014a), 

based on genetic distances using the software MapThin, v1.11 (Howey and Cordell, 2011). The 

770 SNPs were selected based on a density of one marker for every 4.5 cM distance on average 

(770 SNPs on a 3,535-cM map). The 3K set was based on a density of one marker for every 1.2 

cM distance on average (2,817 SNPs on a 3,535-cM map). The 13K set was obtained by removing 

markers that were in complete LD (i.e. r2 between marker scores equal to one) from the 18K set. 

The 15K set included 15,248 SNPs that have a position on the hexaploid wheat consensus map, 

and the 18K set included all 17,887 polymorphic SNPs. Separate predictions were made for 

heading date, plant height, maturity, grain yield, test weight, thousand-kernel weight, grain protein 

content, falling number and sedimentation volume using these sets of markers. The G-BLUP 

model was fitted in R using the package BGLR (Pérez and de los Campos, 2014). Prediction 

accuracy was assessed using fivefold cross-validation and Pearson’s correlation, as described in 

chapter three.  
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4.2.3 Effect of population structure on genomic prediction accuracy  

Distance-based phylogenetic analysis was performed to determine population structure using 

DARwin, v5.0.158 (Perrier and Jacquemoud-Collet, 2006). A dissimilarity matrix was calculated 

from the marker data based on Manhattan distance using a bootstrap test with 1,000 cycles of 

resampling. These bootstrapped dissimilarities were used to construct a phylogenetic tree based 

on neighbour-joning method and the weighted pair group method using average (WPGMA) 

clustering criteria (Saitou and Nei, 1987). The phylogenetic tree was displayed on the tree 

generator iTOL, v3 (Letunic and Bork, 2016). Based on the number of subpopulations identified 

from the tree, lines were clustered using marker-based K-means clustering (Hartigan and Wong, 

1979). The function ‘kmeans’ was used in R (R Development Core Team, 2016), to partition the 

231 lines into three groups. The effect of population structure on the prediction of grain yield was 

assessed by modelling genetic heterogeneity into components that are constant across groups and 

components that are group specific as described in de los Campos et al. (2015). Three approaches 

were compared using 18K markers: i) interaction model, ii) across-group model and, iii) stratified 

or within-group model.  

i) Interaction model: In this model, marker effects are decomposed into components that are 

constant across groups (𝑏0𝑘 where 𝑘 = 1, 2, …  𝑝 refers to markers) and components that are group 

specific (𝑏1𝑘, 𝑏2𝑘 and 𝑏3𝑘 for groups 1, 2 and 3, respectively). The marker effects for the three 

groups are indicated by: 𝛽1𝑘 = 𝑏0𝑘 + 𝑏1𝑘,  𝛽2𝑘 = 𝑏0𝑘 + 𝑏2𝑘 and 𝛽3𝑘 = 𝑏0𝑘 + 𝑏3𝑘. The regression 

equation can be indicated in a matrix format as: 

[

𝑦1

𝑦2

 𝑦3

]  =  [
1𝜇1

1𝜇2

1𝜇3

]  +  [ 
𝑋1

𝑋2

𝑋3

  ] 𝑏0  +  [
𝑋1

0
0

       
0

𝑋2

0
       

0
0

𝑋3

] [ 

𝑏1

𝑏2

𝑏3

 ]  +  [

𝜀1

𝜀2

 𝜀3

]                                      (4.1) 

Where 𝑦1, 𝑦2, 𝑦3, and 𝑋1, 𝑋2, 𝑋3 represent the phenotypes and genotypes of the individuals in 

groups 1, 2 and 3, respectively,  𝜇1, 𝜇2, and 𝜇3 are group specific intercepts, 𝑏0, 𝑏1, 𝑏2, and 𝑏3 are 

vectors of marker effects and 𝜀1, 𝜀2, and 𝜀3 represent model residuals.  

ii) Across-group model: This model assumes constant marker effects across groups and can be 

obtained by setting 𝑏1 = 𝑏2 = 𝑏3 = 0. This approach is equivalent to fitting a model to the whole 

data set ignoring population structure. The regression equation in a matrix format becomes: 
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[

𝑦1

𝑦2

𝑦3

]  =  [

1𝜇1

1𝜇2

1𝜇3

]  +  [
𝑋1

𝑋2

𝑋3

  ] 𝑏0  +  [

𝜀1

𝜀2

𝜀3

]                                                                                      (4.2) 

iii) Stratified or within-group model: In this model, regression of phenotypes on markers was 

conducted separately in each group. This can be achieved by setting 𝑏0 = 0; and the regression 

equation in a matrix format becomes: 

 

[

𝑦1

𝑦2

𝑦3

]  =  [
1𝜇1

1𝜇2

1𝜇3

]  +  [
𝑋1

0
0

       
0

𝑋2

0
       

0
0

𝑋3

 ]  [

𝑏1

𝑏2

𝑏3

]  +  [

𝜀1

𝜀2

𝜀3

]                                                              (4.3) 

The interaction, across-group and stratified approaches were fitted using BRR and BayesB 

models implemented in the R package BGLR, v1.0.4 (Pérez and de los Campos, 2014). Prediction 

was made using 50 random training-validation partitions. In each training-validation partition, 187 

lines (24 in group one, 76 in group two and 87 in group three) were used as a training set and 44 

lines (6 in group one, 17 in group two and 21 in group three) for cross-validation. Prediction 

accuracy was assessed within each group using Pearson’s correlation between predicted GEBVs 

and phenotypes of individuals in the validation sets. In each training-validation partition, 

predictions were based on 50,000 iterations obtained after discarding 5,000 samples as a burn-in.    

4.3 Results and Discussion 

4.3.1 Genomic prediction with increasing training population sizes  

The size of the TP is the most important factor that affects genomic prediction accuracy. 

Increasing the TP from 50 to 100 increased the prediction accuracy for all traits on average by 

11% (ranging from 3 to 18%), except for grain yield (Fig. 4-1). When the TP was increased from 

100 to 200, the average prediction accuracy increased for all traits on average by 18% (Fig. 4-1). 

The highest increase was observed for grain yield (36%), while the lowest increase was observed 

for thousand-kernel weight (7%). The small increase for thousand-kernel weight was because a 

high prediction accuracy (r = 0.73) was already obtained using 100 lines in the TP (Fig. 4-1). 

Overall, increasing the TP size from 50 to 200 resulted in an increase in prediction accuracy 

ranging from 20 to 35% and an average increase of 28% for all traits. The benefit of increasing 

sample size to increase the power of a statistical test is a well-established principle in statistics. In 
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GS, several studies reported that increasing the TP size increases the accuracy of GS by providing 

more data to estimate marker effects (Asoro et al., 2011; Meuwissen et al., 2001; Muir, 2007; 

Saatchi et al., 2010; VanRaden et al., 2009). Meuwissen et al. (2001) showed that reducing the TP 

from 2200 to 500 reduced prediction accuracies by 61, 27, and 17% for least square, BLUP, and 

BayesB estimation methods, respectively. In winter wheat, Heffner et al. (2011a) reported that 

decreasing the TP size from 288 to 192 and 96 reduced the average genomic prediction accuracy 

by 11 and 30%, respectively. In a similar study, Bentley et al. (2014) tested the effect of TP size 

on the prediction of agronomic and end-use quality traits in European wheat based on bootstrap 

resampling of 50, 100 and 200 individuals as TP. Improved prediction accuracy was reported for 

flowering time, thousand-kernel weight and protein content as the TP size increased, but no 

marked improvement in accuracy was observed for grain yield (Bentley et al., 2014). Goddard and 

Hayes (2007) speculated that the accuracy of estimating marker effects will approach one as the 

total number of individuals with phenotypes and marker genotypes increases.  
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Fig. 4-1. Average prediction accuracy (from five training-validation partitions) based on Pearson’s 

correlation (r) between GEBVs and trait phenotypes plotted against training population size. HD: 

heading date, HT: plant height, MAT: maturity, YLD: grain yield, TWT: test weight, TKW: 

thousand-kernel weight, PRO: grain protein, FN: falling number, SDS: sedimentation volume.  

When TP size is sufficiently large, even traits of low h2 can be predicted quite accurately 

(Lorenz et al. 2011). Combs and Bernardo (2013) indicated that the product of h2 and TP size is 

the key factor that determines prediction accuracy rather than h2 and TP size individually. This 

suggests that traits with initially low h2 can be evaluated with larger TP size to maximize prediction 

accuracy (Combs and Bernardo, 2013). Hayes et al. (2009b) showed that nearly 9,000 individuals 

are required to get a prediction accuracy of 0.7 for a trait with h2 = 0.2, but when h2 = 0.8, about 

1,000 individuals are required to get similar prediction accuracy. A decrease in prediction accuracy 

due to reduced h2 can be compensated by using a larger number of observations to estimate marker 

effects (de Roos et al., 2009; Saatchi et al., 2010; Solberg et al., 2008). However, the correlation 

of GEBVs with phenotype can never exceed the square root of h2 (Charmet and Storlie, 2012). 
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Heritability is the upper limit of the phenotypic variance that can be explained based on genetic 

markers (Wray et al., 2013). In addition, genomic prediction never accounts for all phenotypic 

variation because the upper limit can be achieved only if all genetic variants that affect the trait are 

known and if their effects are estimated without error (Wray et al., 2013). Together, there is 

interplay between h2 and TP size, both of which are desired for making accurate genomic 

predictions.  

4.3.2 Genomic prediction with increasing marker density  

In this study, five different marker densities were used to predict agronomic and end-use 

quality traits in wheat. The results showed that there was no difference in prediction accuracy for 

all traits when we adjusted the number of markers (Fig. 4-2). Mean accuracy for all traits ranged 

from 0.57 to 0.75 and 0.57 to 0.76 when genomic predictions were made using 770 and 3K evenly 

spaced SNPs, respectively. Similarly, prediction accuracy ranged from 0.56 to 0.77 when 

predictions were made using 13K, 15K or 18K SNPs indicating no improvement in accuracy with 

increasing marker density.  

 

Fig. 4-2. Average prediction accuracy (from fivefold cross-validation) based on Pearson’s 

correlation (r) between GEBVs estimated for different marker densities and trait phenotypes. HD: 

heading date, HT: plant height, MAT: maturity, YLD: grain yield, TWT: test weight, TKW: 

thousand-kernel weight, PRO: grain protein, FN: falling number, SDS: sedimentation volume.   
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The reason why prediction accuracy did not increase when more markers were used could 

be because only 770 SNPs were sufficient to accurately estimate the genomic relationships among 

the lines. We used G-BLUP to evaluate the effect of marker density on genomic prediction 

accuracy. Meuwissen et al. (2016) indicated that G-BLUP is expected to yield little improvement 

in accuracy with increasing marker density. This is because genomic relationships can be 

accurately estimated using lower marker density and further increase in marker density barely 

improves the accuracy of estimating genomic relationships and thus GEBVs (Meuwissen et al., 

2016). However, Bayesian variable selection models that attempt to identify the casual SNPs are 

expected to benefit more from a higher marker density (Meuwissen et al., 2016). In this study, 

prediction accuracies were similar among the evaluated marker densities when we used BayesB. 

This could be because only 770 SNPs were sufficient to capture the effects of most QTL affecting 

the traits. Heffner et al. (2009) indicated that the benefit of increasing marker density is to 

maximize the number of QTL in LD with at least one marker, which also maximizes the number 

of QTL whose effects will be captured by markers, and this may have already been maximized at 

770 SNPs in this study. Moser et al. (2010) reported that a low-density assay of evenly spaced 

SNPs can provide sufficient prediction accuracies if the information content of the subset of SNPs 

is sufficient to estimate effects of distinct haplotypes. Bassi et al. (2016) also indicated that even 

marker distribution across the genome and their ability to capture important QTL underlying traits 

are important considerations for GS than marker number. Heffner et al. (2011a) reported that 

reducing marker density from 1158 to 768 and 384 resulted in a small decrease in prediction 

accuracy in winter wheat; however, a further reduction to 192 reduced the average GS accuracy 

by 10%. Asoro et al. (2011) used 1,005 DArT markers for the prediction of agronomic and quality 

traits in oat and reported improved prediction accuracy when the number of markers was increased 

from 300 to 600 and from 600 to 900. However, the increase in accuracy with marker number was 

dependent on traits, and for some traits accuracy reached a plateau at 600 markers (Asoro et al., 

2011). In cattle, Moser et al. (2010) showed that accuracies were very sensitive when fewer than 

1,000 SNPs were used, but accuracy reached a plateau when SNP density exceeded 1,000. An 

empirical study based on biparental and mixed populations of maize, wheat, and barley also 

indicated that the accuracy of GS predictions increased as the number of markers increased; 

however, gains in prediction accuracy began to plateau at 40 to 80% of the total marker density 

(Combs and Bernardo, 2013). Gains in accuracy began to plateau despite the small number of 
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markers used: 1213 markers (maize biparental population), 223 markers (barley biparental 

population), 1178 markers (barley mixed population), and 731 markers (wheat mixed population) 

(Combs and Bernardo, 2013). The lack of increase in prediction accuracies after a certain number 

of markers indicated marker saturation in the populations (Combs and Bernardo, 2013). Lorenz et 

al. (2011) also observed no difference in accuracy when prediction was made for plant height and 

grain yield using three randomly sampled marker numbers (300, 600, and 900) in barley, oat and 

wheat data sets. Similarly, in cattle, the accuracy of prediction for several traits was not 

significantly different when up to 75% of the original markers were masked (Luan et al., 2009; 

VanRaden et al., 2009). Overall, our results agree with other studies, which indicate that a reduced 

subset of evenly spaced markers can be sufficient for GS. This suggests that a reduced subset of 

SNP arrays could be designed for GS, which would reduce the genotyping cost and computational 

time for genomic predictions.  

Other explanations for the minimal effect of marker density on GS prediction accuracy could 

be the size of the TP. When considering the TP size, there may not be enough degrees of freedom 

to benefit from the increase in marker number. Sample size is one of the most important factors 

limiting GS prediction accuracy (de los Campos et al., 2015). Muir (2007) reported that increasing 

the number of markers without increasing the TP size may reduce accuracy because it increases 

collinearity among markers. Other research indicated that increasing the number of phenotypic 

records has a more important effect on accuracy than marker number (VanRaden et al., 2009; 

Lorenz et al., 2011). Although we achieved maximum accuracies using the smallest number of 

SNPs, 770, including additional SNPs may improve accuracy if we also increase the TP size. 

4.3.3 Genomic prediction accounting for population structure  

The population was divided into three major clusters using neighbor-joining and a Manhattan 

dissimilarity matrix (Fig. 4-3). Cluster one (blue) and cluster two (pink) were more related to each 

other than cluster three (green). Then, marker-based K-means clustering was performed to 

partition the 231 wheat lines into three groups, with the aim of increasing within-group and 

decreasing between-group relatedness for cross-validation (Fig. 4-4). The clustering based on the 

K-means mostly coincided with the clustering obtained with the phylogenetic tree except for a few 

lines at the edges of the clusters, which could be attributed to differences between the two 
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approaches. There were 30, 93, and 108 wheat lines in groups one, two, and three, respectively 

(Fig. 4-4).  

 

 

 

 

Fig. 4-3. A phylogenetic tree based on neighbor-joining and a Manhattan dissimilarity matrix 

showing clustering of the 231 wheat lines into three groups represented in different colors. 
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Fig. 4-4. First two principal components showing marker-based K-means clustering of the 231 

wheat lines into three groups (Group one = 30 lines, group two = 93 lines, and group three = 108 

lines). 

In this study, we assessed three approaches to account for population structure; i) interaction 

model, ii) across-group model, and iii) stratified or within group model. The prediction accuracy 

of the interaction model was similar to an across-group model that ignored population structure 

(Fig. 4-5). On average, the interaction model consistently showed similar results to the across-

group model in all three groups using both BRR and BayesB, which indicated that accounting for 

population structure did not improve prediction accuracy (Fig. 4-5). On the other hand, estimating 

marker effects separately within each group greatly reduced prediction accuracy in both methods. 

Most of the negative correlation in the stratified analysis could be the result of fitting nearly 18K 

SNPs on small number of phenotypes, which may have resulted in overfitting and poor predictive 
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performance. de los Campos et al. (2015) evaluated these methods using a wheat data set that had 

two clearly defined clusters and a pig data set with less marked differentiation between groups, 

similar to what we observed in our data. In both data sets, the interaction model was either the best 

performing method or was comparable to either the stratified or across-group analyses (de los 

Campos et al., 2015). In the pig data set, there was an overall advantage towards across-group 

analysis relative to stratified analysis, but the relative rankings of the three approaches varied 

between traits (de los Campos et al., 2015). Similarly, in the wheat data set differences between 

the stratified, across-group, and interaction models were small, but the rankings of these methods 

differed between environments (de los Campos et al., 2015). Overall, the method that accounted 

for population structure was not advantageous in this study. 

 

 

Fig. 4-5. Box plots showing prediction accuracy for grain yield estimated from 50 random training-

validation partitions using Across-group, Within-group and Interaction BRR (top) and BayesB 

(bottom) models.   

 

The results also showed that there was no difference between BRR and BayesB for all three 

approaches (Fig. 4-5). Similarly, de los Campos et al. (2015) reported very small differences 

between BRR and BayesB. BRR is the Bayesian counterpart of RR-BLUP, which includes all 
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markers and shrinks their effects uniformly, while BayesB considers most loci to have no effect 

on the trait and most markers are excluded from the model (Lorenz et al., 2011). In theory, BRR 

is expected to outperform BayesB for the prediction of traits, such as grain yield that are controlled 

by many loci with small effects, while BayesB is expected to perform well for traits controlled by 

few large effect QTL (Lorenz et al., 2011). The similar performance of the two methods in our 

study might be because of the absence of large effect QTL in the population. The other reason 

might be due to the small TP size used in this study. We used 231 wheat lines while de los Campos 

et al. (2015) used 599 and 3534 records in the wheat and pig data sets, respectively.  

The effect of TP size on prediction accuracy was also observed in this study. There was an 

increase in the average prediction accuracy with increasing the TP size for the interaction and 

across-group models (Fig. 4-5). Groups one, two, and three had 30, 93 and 108 lines, respectively. 

In each training-validation partition, 24, 76 and 87 lines were used as TP and 6, 17 and 21 lines 

were used as a validation set for groups one, two, and three, respectively. Group three had the 

largest TP size and had the highest average prediction accuracies, which is consistent with the 

results above and with previous research. 

4.4 Conclusion  

In this study, we evaluated different parameters that can affect GS prediction accuracy. 

Increasing the TP size always improved the prediction accuracy, indicating that TP size is the most 

important factor that can affect genomic predictions. On the other hand, marker density did not 

affect prediction accuracy. This suggests that a reduced subset of evenly distributed markers across 

the genome can be sufficient to achieve optimal prediction accuracy. Correcting for population 

structure did not improve prediction accuracy. In this population, models that borrow information 

across subpopulations, either by considering constant marker effects or using interaction terms, 

are equally effective to account for population structure. However, the stratified analysis greatly 

reduced prediction accuracy and this method should not be considered in the future. 
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5. Modelling Genotype-by-Environment Interaction for Genomic Prediction in Wheat 

5.1 Introduction 

Genotype-by-environment interaction is an important issue when dealing with multi-

environment plant breeding trials. Multi-environment plant breeding trials play an important role 

to assess G × E and genotype stability, and to predict the performance of untested lines (Burgueño 

et al., 2012). In multi-environment trials, G × E is expressed either as inconsistent responses of 

some genotypes relative to others due to genotypic rank change (crossover interaction) or as 

changes in the absolute differences between genotypes without rank changes (non-crossover 

interaction) (Crossa, 2012). Crossover G × E is most important in plant breeding because it affects 

selection decisions across environments (Crossa et al., 2004).  

Genomic selection is a novel approach suggested to improve genetic gain of quantitative 

traits but is also affected by G × E interaction (Burgueño et al., 2012; Crossa et al., 2015; Jarquín 

et al., 2014a; Jarquín et al., 2017; Lopez-Cruz et al., 2015; Pérez-Rodríguez et al., 2015; 

Sukumaran et al., 2017). The effect of G × E on GS model prediction could be due to differential 

response of chromosome regions associated with phenotypic variation, its indirect effects on trait 

heritability, or both. The variance of G × E is part of the phenotypic variance and is included in 

the equation to estimate heritability of traits in a multi-environment trial.  

Many of the studies on GS use data from a single environment or average LS-means across 

environments. However, in recent years, several GS models that incorporate G × E have been 

reported (Burgueño et al., 2012; Crossa et al., 2015; Dawson et al., 2013; Jarquín et al., 2014a; 

Jarquín et al., 2017; Lopez-Cruz et al., 2015; Pérez-Rodríguez et al., 2015; Sukumaran et al., 2017). 

Genotype-by-environment interaction can be incorporated into GS models using different 

techniques. Burgueño et al. (2011) used mixed-effect linear models that consider G × E as a 

random effect via factor analysis, while considering other factors such as sites as either fixed or 

random effects. In another approach, Heslot et al. (2014) extended factorial regression and 

developed a new machine learning approach that integrates ECs and crop models into the GS 

framework to account for G × E. Crop models are sets of equations developed by extensively 

studying the behavior of a few genotypes under a range of growing conditions and this information 

is used to reduce the daily weather variables to a few covariates per crop growth stage (Heslot et 

al., 2014). Similarly, Technow et al. (2015) used approximate Bayesian computation that allowed 
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them to incorporate crop growth models directly into the estimation of whole genome marker 

effects in GS. Jarquín et al. (2014a) proposed another approach to incorporate high-dimensional 

ECs into GS using a reaction norm model where the main and interaction effects of markers and 

environments or ECs were included in GS using covariance structures. Several other studies 

applied the reaction norm model for prediction of traits in wheat and cotton using genetic markers 

or pedigree relationships (Jarquín et al., 2017; Pérez-Rodríguez et al., 2015; Sukumaran et al., 

2017). Recently, Lopez-Cruz et al. (2015) reported that G × E can be modelled using a M × E GS 

model when genomic and environmental covariate data are available. Crossa et al. (2015) reported 

an extension of the M × E model using priors that induce shrinkage (BRR) and variable selection 

(BayesB). These studies reported substantial increases in genomic prediction accuracy when multi-

environment prediction models that incorporate G × E were used because these methods allow 

information to be borrowed across environments (Crossa et al., 2015; Jarquín et al., 2014a; Jarquín 

et al., 2017; Lopez-Cruz et al., 2015; Pérez-Rodríguez et al., 2015; Sukumaran et al., 2017). Thus, 

the objectives of this study were to i) examine GS prediction accuracy when modelling G × E, and 

ii) evaluate different methods of accounting for G × E when making genomic predictions.  

5.2 Materials and Methods 

The varcomp data set was used to assess the effects of modelling G × E on genomic 

prediction accuracy. All lines were genotyped using the wheat 90K SNP array, which generated 

17,887 polymorphic SNP markers. Genomic predictions were made for grain yield and protein 

content. Detailed description of the phenotypic and genotypic data sets used in this study are 

provided in Chapter three.   

5.2.1 Phenotypic data analysis 

Phenotypic data in each environment were analyzed using ANOVA with SAS Mixed models 

v9.4 (SAS Institute Inc., 2015). Genotypes were considered as fixed effect, while replication and 

block nested in replication were considered random effects. The DDFM=Kr option was used for 

approximating the degrees of freedom for means. LS-means of lines in each environment were 

used for model prediction and validation. The phenotypic data analyses included all 100 lines in 

the varcomp dataset for a better estimate of (co)variances, but five lines with genotyping errors 
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and 14 lines from the CWAD wheat class were excluded and LS-means of the remaining 81 lines 

were used for this study.  

5.2.2 Statistical models used to incorporate genotype-by-environment interaction in GS 

The effect of modelling G × E on GS model prediction accuracy was assessed using two 

different approaches. The first approach involved modelling G × E using a M × E GS model as 

implemented in Lopez-Cruz et al. (2015). The second approach involved modelling G × E using a 

class of reaction norm models that incorporate the main and interaction effects of molecular 

markers and ECs using covariance functions as implemented in Jarquín et al. (2014a).  

5.2.2.1 Marker-by-environment interaction GS model  

In this approach, the performance of the M × E model was compared to a combined analysis 

(across-environment model) and a stratified (single-environment) model. These models were fitted 

using the G-BLUP model implemented in the R package BGLR, v1.0.4 (Pérez and de los Campos, 

2014).  

i) M × E model: For this model, marker effects are decomposed into components that are constant 

across environments (main effects) and components that are environment specific (interaction). 

This model allows information across environments to be borrowed, while permitting marker 

effects to vary across environments (Lopez-Cruz et al., 2015). The effects of the 𝑘th marker in the 

𝑗th environment (𝛽𝑗𝑘) is a combination of the main effect (𝑏0𝑘) common to all environments and 

an interaction term (𝑏𝑗𝑘) specific to the 𝑗th environment. The regression equation that fits the 

phenotype of the ⅈth individual in 𝑗th environment is indicated by:  

 

𝑦𝑖𝑗 = 𝜇𝑗 + ∑ 𝑋𝑖𝑗𝑘

𝑃

𝑘=1
(𝑏0𝑘 + 𝑏𝑗𝑘) + 𝜀𝑖𝑗                                                                              (5.1) 

 

where ⅈ = 1,2,……,n refers to individuals; 𝑗 = 1,2,. . .,s refers to environments; 𝑘 = 1,2,...,p refers 

to markers; 𝜇𝑗 is an intercept; 𝑋𝑖𝑗𝑘 is a matrix of centered and standardized marker genotypes; 𝑏0𝑘 

is a vector of marker effect common to all environments; 𝑏𝑗𝑘 is an interaction term specific to the 

𝑗th environment, and 𝜀𝑖𝑗 is a vector of model residuals.  

The M × E model is similar to the interaction model used in Section 4.2.3 to model 

population structure in GS. When modelling population structure, marker effects were 



 

75 
 

decomposed between subpopulations, while in the M × E model the marker effects are decomposed 

between environments. The main difference between these approaches is that in the M × E model, 

individuals can have phenotypic records in all environments but when modelling population 

structure, individuals belong to only one cluster (de los Campos et al., 2015).   

ii) Across-environment model: In this model, marker effects are assumed to be constant across 

environments (no interaction). This approach is equivalent to fitting a regression model using the 

averages of phenotypes from combined analysis of balanced data across environments (Lopez-

Cruz et al., 2015). This model also allows information to be borrowed across environments, but 

unlike the M × E model, this is achieved by forcing marker effects to be constant across 

environments (Lopez-Cruz et al., 2015). The regression equation is indicated by:  

 

𝑦𝑖𝑗 = 𝜇𝑗 + ∑ 𝑋𝑖𝑗𝑘𝑏0𝑘

𝑃

𝑘=1
+ 𝜀𝑖𝑗                                                                                            (5.2)  

  

where ⅈ = 1,2,……,n refers to individuals; 𝑗 = 1,2,. . .,s refers to environments; 𝑘 = 1,2,...,p refers 

to markers; 𝜇𝑗 is an intercept; 𝑋𝑖𝑗𝑘 is a matrix of centered and standardized marker genotypes; 𝑏0𝑘 

is a vector of constant marker effects across environments, and 𝜀𝑖𝑗 is a vector of model residuals.                                                                      

iii) Stratified or single-environment model: In this model, phenotypes are regressed on markers 

separately in each environment using a linear model. This is a special case of the model in Equation 

5.1 obtained by removing the main effects of markers, 𝑏0= 0.  The regression equation is indicated 

by:    

 

𝑦𝑖𝑗 = 𝜇𝑗 + ∑ 𝑋𝑖𝑗𝑘𝑏𝑗𝑘

𝑃

𝑘=1
+ 𝜀𝑖𝑗                                                                                             (5.3)   

 

where ⅈ = 1,2,……,n refers to individuals; 𝑗 = 1,2,. . .,s refers to environments; 𝑘 = 1,2,...,p refers 

to markers; 𝜇𝑗 is an intercept; 𝑋𝑖𝑗𝑘 is a matrix of centered and standardized marker genotypes; 𝑏𝑗𝑘 

is a vector of marker effects specific to the 𝑗th environment, and 𝜀𝑖𝑗 is a vector of model residuals.  

For each trait, the prediction accuracy of the three models was assessed using a total of 50 

random training-validation partitions. Within each training-validation partition, 80% of the records 

were used as TP and the remaining 20% were used to assess the prediction accuracy. The same 

training-validation partitions were used to assess the accuracy of M × E, across-environment and 
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single-environment models. The average and the standard deviation of the 50 partitions were 

reported. Two cross-validation designs (CV1 and CV2) were tested to simulate real situations 

faced by plant breeders (Burgueño et al., 2012). Cross-validation one (CV1) involved predicting 

phenotypes of lines that have never been tested in any of the environments, mimicking newly 

developed lines. Cross-validation two (CV2) involved predicting phenotypes of lines that were 

evaluated in some environments but not in others, thus, mimicking incomplete field trials. For each 

cross-validation technique and training-validation partition, predictions were based on 50,000 

iterations obtained after discarding 5,000 samples as a burn-in. Within each training-validation 

partition, prediction accuracy was assessed by calculating Pearson’s correlation between the 

predicted values and phenotypes of lines in the validation set within environment.  

5.2.2.2 Reaction norm models that incorporate environmental covariates 

In addition to implementing the M × E model, we also tested a class of reaction norm models 

that were developed by Jarquín et al. (2014a) to account for G × E in GS. These models can be 

considered as an extension of the standard G-BLUP and can be interpreted as reaction norm models 

in which genetic and environmental factors are described using a linear regression on genetic 

markers and ECs (Jarquín et al., 2014a). The main effects of markers and ECs were modelled using 

techniques similar to the standard G-BLUP, while the interaction terms were included using a 

reaction norm model (Jarquín et al., 2014a).  

Environmental covariate data were obtained from weather data for each environment. Data 

were obtained from a weather station located within 10 km of the experimental sites (Environment 

Canada, 2016). The crop growing season was divided into four months (May to August), and 13 

ECs based on temperature, humidity and precipitation were obtained for each of the four months 

yielding a total of 52 distinct ECs for the entire growing season (Table 5-1). Environmental 

covariates that were not significantly correlated with each trait were removed and the remaining 

43 and 48 ECs were included for the prediction of grain yield and protein content, respectively.  
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Table 5-1. Environmental covariate data used for modelling G × E using reaction norm models. 

Number Variable name Description 

1 MinT Minimum temperature (°C) 

2 MaxT Maximum temperature (°C) 

3 AvgT Average temperature (°C) 

4 TCl20 Number of hours with temperature < 20°C 

5 TCg20 Number of hours with temperature > 20°C 

6 TCg25 Number of hours with temperature > 25°C 

7 TCg30 Number of hours with temperature > 30°C 

8 AvgRH Average relative humidity (%) 

9 RHl50 Number of hours with RH < 50% 

10 RHg50 Number of hours with RH > 50% 

11 RHg75 Number of hours with RH > 75% 

12 RHg90 Number of hours with RH > 90% 

13 TotPCP Total precipitation (mm) 

 

The reaction norm model incorporates the main and interaction effects of molecular markers, 

environments and ECs using a covariance function. The covariance function is the cell-by-cell 

product of two relationship matrices, one based on markers (the GRM used in standard G-BLUP) 

and the other one based on ECs (Jarquín et al., 2014a). A brief description of these models is given 

below: 

i) Model 1 (EG): This is a linear random effects model in which phenotypes (𝑦𝑖𝑗) are described 

as the sum of an overall mean (𝜇) plus a random deviation due to the environment (𝐸𝑖), which is 

a combination of site-years, plus the marker covariates using marker-derived GRM (g𝑗) and a 

residual term (𝜀𝑖𝑗). This model is equivalent to the standard G-BLUP with the addition of a random 

environmental effect (Jarquín et al., 2014a). The regression equation is indicated using the 

following formula: 

𝑦𝑖𝑗 = 𝜇 + 𝐸𝑖 + g𝑗 + 𝜀𝑖𝑗                                             (5.4) 

with  𝐸𝑖 ~ 𝑁(0, 𝜎𝐸
2),  g ~ 𝑁(0, 𝐺𝜎g 

2) and  𝜀𝑖𝑗 ~ 𝑁(0, 𝜎𝜀
2). 
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ii) Model 2 (EGW): This model is an extension of model 5.4 with the addition of ECs (W). The 

regression equation is given by: 

 

𝑦𝑖𝑗 = 𝜇 + 𝐸𝑖 + g𝑗 + 𝑤𝑖𝑗 + 𝜀𝑖𝑗                                                                                               (5.5) 

 

iii) Model 3 (EG-G×E): Models 5.4 and 5.5 only included the main effects of markers (G), 

Environment (E), and ECs without G × E. This model extends on model 5.4 by including an 

interaction term between the marker-based relationship matrix and environments (G × E). The 

regression equation is given by: 

 

𝑦𝑖𝑗 = 𝜇 + 𝐸𝑖 + g𝑗 + g𝐸𝑖𝑗 + 𝜀𝑖𝑗                                                                                             (5.6) 

 

iv) Model 4 (EGW-G×W): This model is an extension of model 5.5 that includes a random effect 

that represents interactions between the marker-based relationship matrix and the ECs (G × W). 

This is achieved using covariance structures. The equation of this model is given by: 

 

𝑦𝑖𝑗 = 𝜇 + 𝐸𝑖 + g𝑗 + 𝑤𝑖𝑗 + g𝑤𝑖𝑗 + 𝜀𝑖𝑗                                                                                   (5.7) 

 

v) Model 5 (EGW-G×E): This model is similar to model 5.7; except in this case, the interaction 

term is between the effects of markers and environments. Since the ECs may not fully explain the 

differences in environmental conditions, some portion of G × E may not be accounted for when 

modelling the interaction between markers and ECs (Jarquín et al., 2014a). An alternative way of 

modelling G × E is to include an interaction term between environments and the random effect of 

markers. The regression equation is indicated by: 

 

𝑦𝑖𝑗 = 𝜇 + 𝐸𝑖 + g𝑗 + 𝑤𝑖𝑗 + g𝐸𝑖𝑗 + 𝜀𝑖𝑗                                                                                   (5.8) 

 

vi) Model 6 (EGW-G×WG×E): This is the most comprehensive model that includes the main 

effects of markers, environments and ECs plus the interaction of markers with environments and 

ECs. The regression equation is given by:  

 

𝑦𝑖𝑗 = 𝜇 + 𝐸𝑖 + g𝑗 + 𝑤𝑖𝑗 + g𝑤𝑖𝑗 + gE𝑖𝑗 + 𝜀𝑖𝑗                                                                       (5.9) 
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All models were fitted using the R package BGLR, v1.0.4 (Pérez and de los Campos, 2014). 

The prediction accuracy of these models was assessed using the two cross-validation designs (CV1 

and CV2) described earlier. For each trait, CV1 and CV2 were implemented in a fivefold cross-

validation design. Inferences for all models were based on 50,000 iterations obtained after 

discarding 5,000 samples as a burn-in. Prediction accuracy was assessed by calculating Pearson’s 

correlation between the predicted values and phenotypes of lines in the validation set within each 

environment and fold. 

5.3 Results and Discussion 

5.3.1 Large phenotypic variations were observed among environments  

Analysis of data in each environment showed that there were highly significant differences 

among lines for both grain yield and protein content (P < 0.001). Phenotypic correlations among 

the seven environments are indicated in Table 5-2. Overall, the pair-wise environments had strong 

positive correlations for both traits, except for grain yield where correlations were slightly lower 

for the environment pairs SWC-2012/Kernen-2012 (r = 0.43) and SWC-2012/SWC-2014 (r = 

0.38) (Table 5-2). Correlations of grain yield among environments ranged from 0.38 to 0.72 while 

correlations of protein content ranged from 0.52 to 0.86. This shows that there was G × E for both 

traits. The average grain yield and protein content from two replications were assessed in each 

environment. For both traits, there was variability among the environments. The average grain 

yield was low in Kernen-2012 (3015 kg ha-1) and SWC-2012 (3789 kg ha-1), was moderate in 

SWC-2014 (4200 kg ha-1), high in Kernen-2011, Kernen-2013 and Kernen-2014 (ranged between 

4698 and 4784 kg ha-1), and very high in SWC-2013 (5060 kg ha-1) (Fig. 5-1A). Average grain 

protein content was the highest in Kernen-2012 and SWC-2014 (15.7 and  15.3%, respectively), 

was lower in Kernen-2013, Kernen-2014, SWC-2012 and SWC-2013 (range of 13.1 to 14.1%), 

and lowest in Kernen-2011 (12.6%) (Fig. 5-1B).  
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Table 5-2. Phenotypic correlations across seven environments for grain yield (upper diagonal) and 

protein content (lower diagonal) of 81 lines. 

Environment† 

Kernen-

2011 

Kernen-

2012 

Kernen-

2013 

Kernen-

2014 

SWC-

2012 

SWC-

2013 

SWC-

2014 

Kernen-2011 ‒ 0.59 0.65 0.61 0.68 0.67 0.53 

Kernen-2012 0.74 ‒ 0.68 0.49 0.43 0.61 0.72 

Kernen-2013 0.81 0.79 ‒ 0.58 0.54 0.71 0.67 

Kernen-2014 0.66 0.68 0.67 ‒ 0.55 0.65 0.53 

SWC-2012 0.80 0.70 0.79 0.61 ‒ 0.61 0.38 

SWC-2013 0.60 0.59 0.66 0.53 0.61 ‒ 0.70 

SWC-2014 0.86 0.86 0.80 0.68 0.83 0.67 ‒ 

†SWC: Swift Current. 

 

 

 

Fig. 5-1. Boxplots for (A) grain yield and (B) grain protein content of 81 lines across seven 

environments. Data within each environment are averages of two replications. SWC: Swift 

Current. 
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5.3.2 Genomic predictions using the marker-by-environment interaction model 

The prediction accuracy of the M × E model showed no consistent improvement compared 

to the single-environment and across-environment models when assessing grain yield. The results 

indicated that prediction accuracy for grain yield was generally lower for the M × E model 

compared to the single-environment model in CV1, but it was 24.8 to 62.8% higher than the single-

environment model in CV2 (Table 5-3). However, the M × E model showed slightly higher or 

similar prediction accuracy compared to the across-environment model in both cross-validation 

designs; this indicated that there was no benefit of modelling G × E for grain yield (Table 5-3). In 

a similar study, Dawson et al. (2013) also reported no difference in accuracy between models that 

accounted for G × E and global models that ignored G × E for the prediction of wheat grain yield 

based on unbalanced historic data over a period of 17 years. Similarly, no significant 

improvements in accuracy were observed for the M × E model when predicting grain protein 

content. The M × E model gave consistently lower prediction accuracy than the single-

environment model for prediction of grain protein content in CV1, but the results were variable 

compared to the across-environment model (Table 5-4). In CV1, the M × E model showed 8.9% 

higher accuracy compared to the across-environment model in Kernen-2012, while it was either 

lower or similar to the across-environment model in the other environments (Table 5-4). However, 

in CV2 the accuracy of the M × E model was 12.7 to 29.4% higher compared to the single-

environment model, but the results were similar to the across-environment model (Table 5-4).  

For both traits, the benefit of M × E over the single-environment model varied based on the 

cross-validation design used, but the performance of the M × E model was similar to the across-

environment model that ignored G × E. Generally, the single-environment model gave better 

prediction for both traits in CV1 compared to the M × E and across-environment models in all 

environments, except for grain yield in Kernen-2014 where the results were comparable for all 

three models (Tables 5-3 and 5-4). However, both the across-environment and the M × E models 

gave substantially higher prediction accuracy than the single-environment model in CV2. This was 

because both models allow borrowing of information for the same line across environments, 

although the mechanisms of achieving this are different. In the across-environment model, the 

borrowing of information is achieved by considering marker effects to be constant across 

environments, while in M × E model marker effects are decomposed into components that are 

constant across environments and others that are environment-specific (Lopez-Cruz et al., 2015). 
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Crossa et al. (2014) also reported that modelling G × E in GS improves prediction accuracy by 

borrowing information from correlated environments. The benefit of a multi-environment model 

over single-environment models comes from modelling genetic correlations between 

environments (Burgueño et al., 2012). The M × E model is based on the variance component 

estimation of marker main effects and effects that are environment-specific (Crossa et al., 2015; 

Lopez-Cruz et al., 2015). The proportion of genomic variance explained by the main effects of 

markers was shown to have a direct relationship with the phenotypic correlation between 

environments; therefore, the M × E model performs best for prediction of traits in a set of 

environments that have positive and similar correlation (Crossa et al., 2015; Lopez-Cruz et al., 

2015). Crossa et al. (2015) showed that the M × E model gave higher prediction accuracy for traits 

that had positive correlations between environments (heading date and thousand-kernel weight) 

than for traits that had close to zero or negative correlations between environments (grain yield 

and test weight). In this study, the observed phenotypic correlations among the environments were 

high for both traits (Table 5-2). Although the prediction accuracy of the M × E model was 

substantially higher than the single-environment model in CV2, it had almost similar performance 

with the across-environment model for both traits suggesting that there was no benefit of modelling 

G × E in this dataset. 
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Table 5-3. Average and standard deviation of prediction accuracy based on Pearson’s correlation 

between predicted and actual grain yield. Genomic predictions were made using 50 training-

validation partitions and two cross-validation techniques (CV1 and CV2) across seven 

environments.  

Grain yield 

Environment† Single-environment  Across-environment M × E 

% Change‡ 

SE; AE 

CV1 

Kernen-2011 0.596(0.205) 0.548(0.231) 0.564(0.220) -5.4%; 2.9% 

Kernen-2012 0.596(0.164) 0.528(0.196) 0.553(0.181) -7.3%; 4.7% 

Kernen-2013 0.478(0.262) 0.465(0.255) 0.462(0.262) -3.2%; -0.6% 

Kernen-2014 0.515(0.169) 0.523(0.226) 0.519(0.183) 0.8%; -0.8% 

SWC-2012 0.454(0.267) 0.399(0.250) 0.413(0.261) -9.0%; 3.6% 

SWC-2013 0.563(0.199) 0.531(0.226) 0.534(0.219) -5.1%; 0.5% 

SWC-2014 0.507(0.180) 0.489(0.198) 0.498(0.188) -1.8%; 1.8% 

CV2 

Kernen-2011 0.659(0.190) 0.829(0.090) 0.822(0.097) 24.8%; -0.8% 

Kernen-2012 0.587(0.160) 0.721(0.126) 0.731(0.127) 24.4%; 1.3% 

Kernen-2013 0.527(0.243) 0.851(0.100) 0.857(0.092) 62.8%; 0.7% 

Kernen-2014 0.540(0.178) 0.737(0.104) 0.748(0.103) 38.5%; 1.5% 

SWC-2012 0.445(0.269) 0.640(0.166) 0.640(0.165) 43.9%; 0.0% 

SWC-2013 0.544(0.206) 0.843(0.089) 0.846(0.084) 55.4%; 0.4% 

SWC-2014 0.486(0.173) 0.739(0.111) 0.757(0.109) 55.7%; 2.4% 

†SWC: Swift Current. 

‡Change in prediction accuracy of the M × E model compared to the prediction accuracy of the single-

environment (SE) and the across-environment (AE) models. 
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Table 5-4. Average and standard deviation of prediction accuracy based on Pearson’s correlation 

between predicted and actual grain protein. Genomic predictions were made using 50 training-

validation partitions and two cross-validation techniques (CV1 and CV2) across seven 

environments.  

Grain protein 

Environment† Single-environment Across-environment M × E 

% Change‡ 

SE; AE 

CV1 

Kernen-2011 0.629(0.274) 0.627(0.292) 0.610(0.276) -2.9%; -2.7% 

Kernen-2012 0.737(0.168) 0.638(0.211) 0.695(0.179) -5.7%; 8.9% 

Kernen-2013 0.669(0.269) 0.634(0.267) 0.642(0.271) -3.9%; 1.3% 

Kernen-2014 0.583(0.290) 0.591(0.284) 0.567(0.299) -2.8%; -4.1% 

SWC-2012 0.618(0.232) 0.617(0.262) 0.586(0.251) -5.1%; -5.1% 

SWC-2013 0.619(0.224) 0.585(0.214) 0.576(0.217) -6.9%; -1.5% 

SWC-2014 0.750(0.186) 0.723(0.171) 0.724(0.176) -3.4%; 0.2% 

CV2 

Kernen-2011 0.642(0.224) 0.835(0.099) 0.831(0.099) 29.4%; -0.5% 

Kernen-2012 0.781(0.131) 0.862(0.091) 0.880(0.077) 12.7%; 2.1% 

Kernen-2013 0.789(0.186) 0.917(0.076) 0.932(0.062) 18.0%; 1.6% 

Kernen-2014 0.671(0.209) 0.815(0.126) 0.804(0.135) 19.7%; -1.3% 

SWC-2012 0.666(0.186) 0.835(0.085) 0.817(0.096) 22.6%; -2.2% 

SWC-2013 0.643(0.165) 0.797(0.122) 0.801(0.119) 24.6%; 0.6% 

SWC-2014 0.779(0.157) 0.910(0.068) 0.908(0.071) 16.7%; -0.2% 

†SWC: Swift Current. 

‡Change in prediction accuracy of the M × E model compared to the prediction accuracy of the single-

environment (SE) and the across-environment (AE) models. 
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Prediction accuracy also varied depending on the cross-validation design. Prediction 

accuracy for grain yield was generally lower in CV1 compared to the accuracy in CV2 except for 

Kernen-2012, SWC-2012, SWC-2013 and SWC-2014 where the accuracy of the single-

environment model was slightly lower in CV2 (Table 5-3). But for grain protein content, the 

accuracy in CV2 was substantially higher than the accuracy obtained in CV1 for all three methods 

(Table 5-4). These results agree with Burgueño et al. (2012) who reported 31, 17.5 and 21.8% 

higher accuracy in CV2 compared to CV1 for models based on pedigree, marker, and pedigree 

plus marker, respectively. Crossa et al. (2015) also reported that all predictions in CV1 were lower 

than in CV2 for grain yield and heading date. This is because CV2 uses information within lines 

across environments, while this is not possible in CV1 because the lines have not been evaluated 

in any environment (Burgueño et al., 2012).  

Similar GS studies in wheat indicated that the performance of the GS models is highly 

variable and is influenced by the environment and populations used. Based on three extensive 

bread wheat data sets, Lopez-Cruz, et al. (2015) reported that the accuracy of the M × E model 

was substantially higher than that of the across-environment model, but it was either similar or 

greater than the single-environment model depending on the cross-validation design and 

correlation between environments. Lopez-Cruz et al. (2015) suggested that the M × E model is 

more effective when applied to subsets of environments that have positive and similar correlations. 

The single-environment and the M × E models performed similarly in CV1, but the M × E gave 

higher prediction accuracy in CV2; however, in both cross-validation designs the across-

environment model was the worst performing method (Lopez-Cruz et al., 2015). Crossa et al. 

(2015) extended the M × E method using BRR and BayesB in a multi-parental durum wheat 

population characterized for grain yield, test weight, thousand-kernel weight and heading date. 

The reported accuracies were variable for each trait, cross-validation design and environment, but 

overall the M × E or single-environment models performed better for all traits in CV1 while the 

M × E and across-environment models were better than the single-environment model in CV2. 

BayesB generally gave higher prediction accuracy than BRR for most model-trait combinations 

(Crossa et al., 2015). Some of the differences between the results obtained in this study and the 

results of Lopez-Cruz et al. (2015) and Crossa et al. (2015) could be due to differences in 

environments, TP size, or other characteristics of the populations used in these studies. 

Collectively, the results of this study showed that the performance of the evaluated models was 
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variable based on the cross-validation design, but overall, there was no benefit of modelling G × 

E using the M × E model in this population.    

5.3.3 Genomic predictions using reaction norm models  

We evaluated six different reaction norm models for their prediction accuracies. The Model 

EG included only the main effects of environments and markers without interaction terms. 

Similarly, model EGW included only the main effects of environments, markers and ECs without 

interactions, while the other four models included interaction terms of G × E, G × W or both G × 

W and G × E in addition to the main effects. The results indicated that adding the main effects of 

the ECs to the main effects of markers and environments did not improve prediction accuracy of 

both grain yield and protein content (Tables 5-5 and 5-6). Similar results were reported by Pérez-

Rodríguez et al. (2015), where adding the main effects of ECs resulted in no change in accuracy 

because ECs did not vary within the environment. Moreover, adding the interaction terms did not 

improve prediction accuracy in both cross-validation designs, except in CV1 for grain protein 

where the most comprehensive model (EGW-G×WG×E) gave 2 to 11% higher prediction accuracy 

when compared to models that included only the main effects (Tables 5-5 and 5-6). This suggests 

that most of the variability within environments was explained by the main effects of markers and 

environments.   

Previous studies in wheat reported substantial increases in genomic prediction accuracy 

using the reaction norm model that included G × E (Jarquín et al., 2014a; Jarquín et al., 2017; 

Sukumaran et al., 2017). Jarquín et al. (2014a) reported that adding interaction terms between 

markers, environments and ECs resulted in 35% increase in accuracy when compared to a model 

that accounted only for the main effects of these terms. Recently, Jarquín et al. (2017) showed that 

a model that included G × E terms resulted in 16 to 82% higher accuracy when compared to a 

model that accounted for the main effects of markers and environments. Similarly, Sukumaran et 

al. (2017) obtained the highest prediction accuracy when G × E was included in the model. In 

cotton, Pérez-Rodríguez et al. (2015) reported up to 2.7-fold increase in prediction accuracy when 

interaction terms were included in the model that was based only on the main effects. In our study, 

including the interaction terms did not have a large effect on prediction accuracy because a high 

accuracy was obtained using the model that included only the main effects of markers and 

environments. Despite the small TP size in this study, the overall prediction accuracies were higher 



 

 
 

8
7

 

Table 5-5. Average and standard deviation of prediction accuracy (from fivefold cross-validation) based on Pearson’s correlation 

between predicted and actual grain yield. Genomic predictions were made using six statistical models and two cross-validation 

techniques (CV1 and CV2) across seven environments.  

Grain yield 

Environment† EG‡ EGW EG-G×E EGW-G×E EGW-G×W EGW-G×WG×E 

CV1 

Kernen-2011 0.516(0.233) 0.516(0.235) 0.519(0.231) 0.516(0.235) 0.518(0.233) 0.519(0.228) 

Kernen-2012 0.540(0.181) 0.540(0.185) 0.542(0.178) 0.537(0.182) 0.543(0.179) 0.536(0.183) 

Kernen-2013 0.439(0.306) 0.434(0.307) 0.436(0.303) 0.437(0.307) 0.438(0.301) 0.437(0.306) 

Kernen-2014 0.487(0.205) 0.485(0.203) 0.484(0.204) 0.484(0.201) 0.487(0.200) 0.485(0.204) 

SWC-2012 0.372(0.299) 0.370(0.303) 0.373(0.296) 0.371(0.303) 0.373(0.298) 0.374(0.300) 

SWC-2013 0.491(0.261) 0.490(0.262) 0.491(0.259) 0.488(0.264) 0.498(0.259) 0.492(0.258) 

SWC-2014 0.402(0.261) 0.404(0.259) 0.407(0.258) 0.400(0.262) 0.413(0.257) 0.404(0.261) 

CV2 

Kernen-2011 0.843(0.059) 0.843(0.060) 0.842(0.059) 0.840(0.059) 0.843(0.059) 0.842(0.059) 

Kernen-2012 0.739(0.144) 0.739(0.143) 0.739(0.144) 0.739(0.144) 0.739(0.144) 0.738(0.144) 

Kernen-2013 0.847(0.050) 0.848(0.050) 0.847(0.049) 0.847(0.050) 0.847(0.050) 0.848(0.050) 

Kernen-2014 0.773(0.105) 0.773(0.104) 0.772(0.105) 0.771(0.105) 0.772(0.105) 0.772(0.105) 

SWC-2012 0.708(0.065) 0.708(0.066) 0.709(0.066) 0.709(0.068) 0.709(0.067) 0.709(0.067) 

SWC-2013 0.808(0.100) 0.808(0.101) 0.809(0.099) 0.808(0.100) 0.808(0.100) 0.807(0.101) 

SWC-2014 0.705(0.104) 0.705(0.103) 0.705(0.105) 0.704(0.104) 0.704(0.103) 0.706(0.103) 

† SWC: Swift Current. 

‡E: main effect of environments, G: main effect of marker covariates, W: main effect of environmental covariates (ECs), G×E: interactions between 

markers and environments, G×W: interactions between markers and ECs.    
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Table 5-6. Average and standard deviation of prediction accuracy (from fivefold cross-validation) based on Pearson’s correlation 

between predicted and actual grain protein. Genomic predictions were made using six statistical models and two cross-validation 

techniques (CV1 and CV2) across seven environments.   

Grain protein 

Environment† EG‡ EGW EG-G×E EGW-G×E EGW-G×W EGW-G×WG×E 

CV1 

Kernen-2011 0.710(0.212) 0.711(0.208) 0.708(0.212) 0.709(0.210) 0.711(0.209) 0.791(0.185) 

Kernen-2012 0.758(0.079) 0.760(0.076) 0.755(0.081) 0.756(0.080) 0.759(0.082) 0.774(0.085) 

Kernen-2013 0.784(0.128) 0.782(0.127) 0.780(0.130) 0.781(0.126) 0.782(0.129) 0.842(0.118) 

Kernen-2014 0.771(0.076) 0.771(0.075) 0.770(0.073) 0.769(0.074) 0.771(0.076) 0.785(0.053) 

SWC-2012 0.697(0.162) 0.696(0.160) 0.694(0.164) 0.695(0.158) 0.697(0.162) 0.751(0.097) 

SWC-2013 0.666(0.138) 0.661(0.140) 0.662(0.143) 0.661(0.139) 0.662(0.139) 0.729(0.109) 

SWC-2014 0.793(0.090) 0.793(0.087) 0.790(0.093) 0.793(0.091) 0.793(0.088) 0.813(0.098) 

CV2 

Kernen-2011 0.846(0.102) 0.846(0.102) 0.847(0.102) 0.846(0.103) 0.847(0.102) 0.846(0.102) 

Kernen-2012 0.862(0.081) 0.862(0.081) 0.861(0.081) 0.861(0.081) 0.861(0.081) 0.861(0.081) 

Kernen-2013 0.910(0.055) 0.910(0.055) 0.910(0.056) 0.910(0.056) 0.911(0.055) 0.910(0.056) 

Kernen-2014 0.833(0.082) 0.832(0.082) 0.832(0.083) 0.832(0.083) 0.832(0.082) 0.832(0.083) 

SWC-2012 0.874(0.037) 0.875(0.038) 0.874(0.037) 0.874(0.037) 0.874(0.037) 0.874(0.037) 

SWC-2013 0.627(0.345) 0.627(0.344) 0.627(0.345) 0.628(0.341) 0.626(0.345) 0.628(0.342) 

SWC-2014 0.877(0.082) 0.876(0.082) 0.877(0.081) 0.876(0.082) 0.876(0.082) 0.876(0.082) 

† SWC: Swift Current, SK. 

‡E: main effect of environments, G: main effect of marker covariates, W: main effect of environmental covariates (ECs), G×E: interactions between 

markers and environments, G×W: interactions between markers and ECs.    
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compared to the previously reported values in wheat (Jarquín et al., 2014a; Jarquín et al., 2017; 

Sukumaran et al., 2017). This could be because we used data generated from a balanced 

experimental design across two locations and four years for a total of seven environments, while 

the previous studies were based on diverse multi-environment trials. Jarquín et al. (2014a) 

implemented these models to predict grain yield for 139 wheat lines evaluated in 134 locations 

and eight years for a total of 340 environments. The lines used in Jarquín et al. (2014a) were 

obtained from different commercial breeding programs and had weaker genetic relationships. 

Moreover, Jarquín et al. (2014a) used data from a single plot, while we used the mean of two 

replications in each environment. Similarly, Jarquín et al. (2017) used a highly unbalanced 

historical data from 31 environments. Sukumaran et al. (2017) also used data generated from 136 

environments across eight countries. Moreover, Sukumaran et al. (2017) tested the reaction norm 

models using pedigrees instead of molecular markers. Previous studies showed that GS models 

that include molecular markers have more accurate predictions compared to pedigree-based 

models (Arruda et al., 2015; Crossa et al., 2010). Overall, interaction terms typically improve 

prediction accuracies, but in our study the main effects of marker and environments were sufficient 

to achieve higher accuracies and there was no real benefit of including the interaction terms.  

The two methods tested for cross-validation also differed in their prediction accuracies. 

Cross-validation one consistently gave lower prediction accuracy (ranging from 0.37 to 0.54) 

compared to CV2 (ranging from 0.70 to 0.84) for grain yield (Table 5-5). Similar results were 

observed for grain protein content, except for SWC-2013 where prediction in CV2 was lower 

compared to CV1 for all models (Table 5-6). This has been observed in several studies that used 

similar cross-validation designs (Burgueño et al., 2012; Crossa et al., 2015; Jarquín et al., 2014a; 

Jarquín et al., 2017; Lopez-Cruz et al., 2015; Pérez-Rodríguez et al., 2015). This indicates that 

including information from correlated environments is important to improve prediction accuracy.  

5.3.4 Comparing the accuracy of marker-by-environment interaction and reaction norm 

models 

The overall performance of the M × E model compared to the reaction norm models appear 

to be inconsistent and varied based on the trait and cross-validation design. Modelling G × E using 

the M × E model gave a slightly higher prediction accuracy compared to modelling G × E using 

the reaction norm models for grain yield in CV1 (Tables 5-3 and 5-5). However, the single-
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environment model was superior to all other models for grain yield (Table 5-3). In CV2, the results 

were inconsistent when predictions were made for grain yield. In three environments (Kernen-

2013, SWC-2013 and SWC-2014) the M × E model slightly outperformed the reaction norm 

models, while in three other environments (Kernen-2011, Kernen-2014 and SWC-2012) the 

reaction norm models were better, but results were similar using both approaches in Kernen-2012 

(Tables 5-3 and 5-5). For grain protein, the reaction norm models gave substantially higher 

prediction accuracy compared to the M × E, single-environment and across-environment models 

using CV1 in all environments (Tables 5-4 and 5-6). In CV2, the M × E was better in four 

environments (Kernen-2012, Kernen-2013, SWC-2013 and SWC-2014), while the reaction norm 

models were better in the other three environments (Kernen-2011, Kernen-2014 and SWC-2012). 

Overall, the prediction accuracy of the different models that accounted for G × E varied across the 

two traits and cross-validation designs, indicating that model selection is an important process for 

GS when choosing to incorporate G × E. 

5.4 Conclusion 

In this study, we evaluated M × E and reaction norm GS models to account for G × E when 

making predictions for grain yield and protein content. For both traits, the single-environment 

model was either the best or similar to the other best model in CV1, while in CV2 the M × E and 

across-environment models were considerably better than the single-environment model. 

However, comparable results were obtained between the M × E and across-environment models 

in CV2. In the reaction norm models, adding the interaction terms of either G × E, G × W or both 

G × W and G × E did not improve prediction accuracy. This indicates that there was no advantage 

of modelling G × E in GS using both approaches in the population used in this study.
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6. Genome-Wide Association Mapping of Agronomically Important Traits in Wheat 

6.1 Introduction 

Molecular plant breeding tools are used to identify genes controlling complex traits. The two 

most commonly used tools for dissecting complex traits in plants are linkage analysis (QTL 

mapping) and association mapping, also known as LD mapping (Zhu et al., 2008). Linkage 

disequilibrium is the non-random association of alleles at two genetic loci, which in random mating 

populations is mostly generated by mutation and genetic drift, and decays by recombination 

(Breseghello and Sorrells, 2006a). Linkage analysis with experimental populations derived from 

bi-parental crosses detects QTL that are segregating in the population and provides relevant 

information about traits that are specific to the same or genetically related populations, while 

results from association mapping are relevant to a wider germplasm base (Zhu et al., 2008).  

Association mapping is a method that relies on gametic phase disequilibrium to study the 

relationship between phenotypic variation and genetic polymorphisms across a set of germplasms 

(Flint-Garcia et al., 2003). The main principle of this method is that LD tends to be maintained 

over many generations between loci that are genetically linked to one another (Neumann et al., 

2011). Unlike the classical linkage analysis that uses experimental (bi-parental) mapping 

populations, association mapping evaluates genetic diversity across natural populations to identify 

polymorphisms that correlate with phenotypic variation (Flint-Garcia et al., 2003). Association 

mapping is further classified into two categories: 1) candidate gene association mapping, and 2) 

genome-wide association mapping (GWAM). Candidate gene association mapping tests the 

relation between DNA polymorphism of a candidate gene with the trait of interest, while GWAM 

surveys the whole genome for casual genetic variations using dense genome-wide markers 

(Rafalski, 2002; Zhu et al., 2008). The advantage of association mapping over linkage analysis is 

that it uses a more diverse population, and therefore examines a broader set of genetic variation 

for marker-trait correlations; this results in enhanced mapping resolution and broader allele 

coverage (Abdurakhmonov and Abdukarimov, 2008; Neumann et al., 2011; Zhu et al., 2008). 

Association mapping panels can also be used to study several traits within a breeding program and 

can save time and money since there is no need to develop a biparental mapping population for 

each trait (Abdurakhmonov and Abdukarimov, 2008; Neumann et al., 2011; Zhu et al., 2008). In 

plant breeding, germplasm bank collections, elite breeding materials, and synthetic or specialized 
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populations are used for association mapping (Breseghello and Sorrells, 2006a). Association 

mapping with pedigree-based elite breeding material is likely to identify superior alleles that have 

been captured by breeding practices and facilitates MAS (Zhu et al., 2008). Quantitative trait loci 

detected from elite breeding materials are relevant for a breeding program and can be directly 

utilized for MAS. However, in elite breeding materials, population structure and cryptic 

relationships between lines can lead to spurious associations (Pritchard and Rosenberg, 1999). 

Methods that account for population structure and genetic relatedness must be used to minimize 

false positive associations between phenotypes and unlinked loci. 

Linkage analysis and association mapping are applied in plant breeding to identify moderate 

to large effect QTL underlying trait variation that are then used in MAS. In recent years, genomic 

selection has become an alternative to standard MAS (Meuwissen et al., 2001). In GS, genome-

wide SNP variation is modelled without identifying loci or their association with the phenotype 

(Cobb et al., 2013). Genomic selection and GWAS can be performed on the same population and 

highly significant SNPs identified from GWAS can be fitted as fixed effects in GS models without 

shrinking their effects (Begum et al., 2015; Rutkoski et al., 2014; Spindel et al., 2016; Spindel et 

al., 2015). Thus, the objective of this study was to detect marker-trait associations in spring bread 

wheat for nine agronomic and end-use quality traits.  

6.2 Materials and Methods 

6.2.1 Plant material, phenotypic and genotypic data 

This study used a mapping population of 231 spring bread wheat varieties and advanced 

breeding lines (Appendix A). The combined phenotypic data across all environments were used in 

this study. Detailed description of the plant materials and phenotypic data are provided in Section 

3.2.1. For all traits, extreme values that fell beyond 1.5 times the interquartile range of a box plot 

were excluded from the association analysis. A total of 17,887 polymorphic SNPs with CF higher 

than 90% and MAF greater than 10% were generated for this population as described in Section 

3.2.2. The chromosomal locations of the SNPs were determined based on the hexaploid wheat 

consensus map (Wang et al., 2014a). SNPs that did not have position (12.89%) and that mapped 

to multiple positions on the consensus map (1.86%) were excluded. Redundant markers that had 

squared pairwise correlations greater than 0.99 (42.94%) and co-segregating SNPs (27.02%) were 

removed. The remaining 2,735 SNPs were used for association analyses.  
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6.2.2 Population structure and LD analyses 

The population structure of the 231 lines was evaluated using distance based hierarchical 

clustering, model-based Bayesian clustering, and principal component analysis (PCA). A 

dissimilarity matrix was calculated from the marker data based on the Euclidean distance using 

the function ‘dist’ in R (R Development Core Team, 2016). Hierarchical clustering was applied to 

the Euclidean distance matrix based on Ward’s criterion (ward.D2) using the function ‘hclust’ in 

R (R Development Core Team, 2016). A model-based Bayesian clustering was conducted using 

the program STRUCTURE v2.3.4 (Pritchard et al., 2000), based on a selected subset of 581 weakly 

correlated markers (markers having squared pairwise correlations smaller than 0.1). Markov chain 

Monte Carlo cycles were repeated 100,000 times after 10,000 cycles of a burn-in period. The 

default setting of admixture model and correlated allele frequencies was tested with the number of 

subpopulations (K) from one to twelve. Each test included twenty independent runs. Optimal K 

was estimated based on the ∆K that is the rate of change in the log likelihood of data between 

consecutive K values. ∆K was estimated using STRUCTURE HARVESTER, v0.6.94 (Earl and 

vonHoldt, 2012). Data from the twenty independent runs were integrated using the FullSearch 

algorithm in CLUMPP, v1.1.2, which deals with label switching between multiple calculations 

using the same K in the analysis (Jakobsson and Rosenberg, 2007). Bar plots were made using 

STRUCTURE PLOT, v1.0 (Ramasamy et al., 2014). Principal component analysis was performed 

on centered genotype data using the function ‘svd’ in R (R Development Core Team, 2016). 

Missing marker genotypes were replaced with the numeric genotype mean for that marker to 

perform PCA. A two-sample t-test was conducted in SAS to test differences in measured 

phenotypes between subpopulations.  

 The software PLINK, v1.07 (Purcell et al., 2007) was used to estimate the LD parameter r2 

among loci. All 2,735 polymorphic SNPs were used for LD analysis. The LD parameter r2 was 

estimated for all linked and unlinked loci on all chromosomes. Loci were considered linked if they 

were on the same chromosome and unlinked if they were on different chromosomes. The r2 values 

of the linked loci on all chromosomes were plotted against genetic distance (cM) and a smooth 

non-linear regression line was drawn in R (Marroni et al., 2011). A critical value of r2, as an 

evidence of linkage, was derived from the 95th percentile distribution of square root transformed 

unlinked r2 estimates (Breseghello and Sorrells, 2006b). The intersection of the regression line 
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with the baseline drawn at the critical value of r2 was considered as an estimate of the average LD 

decay in the population (Breseghello and Sorrells, 2006b). 

6.2.3 Marker-trait association analysis 

Genome-wide association mapping was conducted using MLM that combines both 

population structure information and the level of pairwise relatedness coefficients or kinship-

matrix as covariates using the software TASSEL, v3.0 (Bradbury et al., 2007). The MLM approach 

was followed to test marker-trait associations because it is effective in removing the confounding 

effects of population structure in association analysis (Yu et al., 2006). A kinship-matrix was 

computed from the marker data using TASSEL. For each trait, MLM regression was conducted 

using two different approaches to correct for population structure. The first approach was based 

on the population membership coefficients (Q-matrix) obtained from the Bayesian clustering using 

STRUCTURE software. However, earlier studies showed that relatedness among individuals 

strongly affects STRUCTURE outputs (Camus-Kulandaivelu et al., 2007). STRUCTURE assumes 

that the marker loci are unlinked and at linkage equilibrium with one another and Hardy-Weinberg 

equilibrium within populations (Pritchard et al., 2000). The materials used in this study are elite 

breeding lines with different degrees of relatedness and the STRUCTURE output may be biased. 

Another common approach to account for population structure in association mapping is the use 

of marker derived PCs (Price et al., 2006). In this study, marker-derived PCs that describe 

population stratification as covariates were also included in the regression model. For each trait, 

marker-trait associations were tested using five different models. The first model controlled only 

for kinship (K). The other four models corrected for both kinship and population structure 

information included using the Q-matrix (QK) as well as two (2PC+K), three (3PC+K) and five 

PCs (5PC+K). Mixed linear model analyses were conducted using the default settings of TASSEL 

(optimum compression level and PD3 variance component estimation). Associations were 

declared significant based on a false discovery rate (FDR) of 0.2 in the MLM to control for multiple 

testing (Benjamini and Hochberg, 1995). The FDR was calculated for all SNPs based on the ‘BH’ 

(Benjamini and Hochberg) method using the R function ‘p.adjust’ (R Development Core Team, 

2016). Marker probabilities with −log10 (P-value) ≥ 3.0 were also considered significant if the 

region was reported in previous studies. 
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6.3 Results and Discussion 

6.3.1 Population structure and LD decay 

Based on the Bayesian clustering, the optimal number of subpopulations was estimated as 

K = 2 according to the value of ∆K (Fig. 6-1). Similarly, the dendrogram clustered the 231 lines 

into two major groups (Fig. 6-2A). The bar plot based on the population membership coefficient 

obtained from the Bayesian clustering mostly corresponded with the grouping based on the 

hierarchical clustering, but it also indicated the presence of substantial admixtures (Fig. 6-2B).  

The screeplot showed that the first two PCs explained 20% of the genetic variance, indicating 

that population structure effects are mild in this population (Fig. 6-3). Plots of the first two PCs 

clustered the 231 wheat lines into two weakly differentiated groups which showed some overlaps 

(Fig. 6-4). Both the screeplot and plots of the first two PCs indicated that the lines used in this 

study did not represent a highly-structured population. Absence of clear differentiation between 

the two clusters could be because the population is composed of elite breeding materials that have 

been intercrossed frequently resulting in admixture of germplasm.  

The t-test analysis comparing means of the two groups indicated that there were significant 

differences between the two subpopulations in plant height (t = 3.98, P < 0.001), maturity (t = 

5.45, P < 0.001), test weight (t = 3.44, P < 0.001), thousand-kernel weight (t = 2.73, P = 0.007), 

grain protein (t = 4.78, P < 0.001), falling number (t = 4.80, P < 0.001) and sedimentation volume 

(t = 4.26, P < 0.001). However, no significant difference was observed between the two groups for 

heading date (t = 1.4, P = 0.164) and grain yield (t = 1.39, P = 0.165).   
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Fig. 6-1. The ΔK peak value at K = 2, that indicated the presence of two subpopulations based 

on Bayesian clustering. 

 
 



 

 
 

9
7

 

 
Fig. 6-2. Population structure analysis. (A) Hierarchical clustering using the Ward’s method, (B) bar plots showing subpopulations 

represented by different colors based on the population membership coefficients obtained from Bayesian clustering. 
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Fig. 6-3. Proportion of variance explained by marker based principal components. 

 

 

Fig. 6-4. First two principal components using 2,735 SNP markers run on 231 wheat lines. Each 

solid circle represents one line. The colors correspond to the two subpopulations identified from 

hierarchical clustering. 
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LD decay was estimated across all chromosomes using 2,735 polymorphic SNPs. A critical 

r2 value was estimated at 0.28 based on the 95th percentile of the distribution of unlinked r2 

estimates (Fig. 6-5). On average, LD across all chromosomes decayed at a genetic distance of 1.6 

cM (Fig. 6-5). This is slightly lower compared to the 2-3 cM average extent of LD previously 

reported for Canadian bread wheat and durum accessions (Somers et al., 2007).  

 

 

Fig. 6-5. Genome-wide LD (r2) values plotted against genetic distance (cM) for the 231 wheat 

lines. The green horizontal line indicates the 95th percentile of the distribution of unlinked r2 while 

the fitted curve (red line) indicates the LD decay. 
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6.3.2 Marker-trait associations  

Marker-trait associations were conducted using the MLM approach that combined both 

population structure and the level of pairwise relatedness. To check whether each model 

adequately controlled population structure and pairwise relatedness, quantile-quantile (Q-Q) plots 

were generated for all model-trait combinations based on the observed P-values for all SNPs (Y-

axis) and the expected distribution of P-values under the null hypothesis of no association (X-axis) 

(Fig. 6-6). For all traits, the Q-Q plots indicated that there was no difference between the model 

that did not account for population structure and the other models that corrected for both population 

structure and kinship. This indicates that the effect of population structure was not strong in this 

population. For all traits, the Q-Q plots were close to the diagonal line except for deviations 

towards the upper-right end of the diagonal suggesting that models adequately controlled false 

positives because of population structure or kinship. The results reported in this study were based 

on the MLM 5PC+K model for all traits. Although the effect of population structure was not 

strong, we used five PCs to account for population structure because it explained about 30% of the 

genetic variance.  
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Fig. 6-6. Q-Q plots comparing the distribution of observed versus expected P-values for 

association analyses using five statistical models. (A) heading date, (B) plant height, (C) maturity, 

(D) grain yield, (E) test weight, (F) thousand-kernel weight, (G) grain protein, (H) falling number, 

(I) sedimentation volume.  
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Fig. 6-6. Continued 
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Fig. 6-6. Continued 
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We used elite cultivars and advanced breeding material to identify marker-trait associations 

for important agronomic and end-use quality traits. A total of 34 significant marker-trait 

associations were detected for eight traits at a significance threshold of −log10 (P-value) ≥ 3.0 

(Table 6-1; Appendix D). Twelve markers were significantly associated with plant height, ten 

markers were associated with sedimentation volume, four markers were associated with heading 

date, three markers were associated with thousand-kernel weight, two markers were associated 

with maturity, and one marker was associated with each of grain yield, test weight, and falling 

number.   

Twelve SNPs on three chromosomes were significantly associated with plant height (Table 

6-1; Appendix D). Nine of these SNPs were located on chromosome 4B (39.9 – 72.5 cM), two 

SNPs on chromosome 2A (109.5 – 110.1 cM) and one SNP on chromosome 5B (115.7 cM). Each 

of these SNPs explained 6 to 15% of the phenotypic variance across environments. The genomic 

regions on 4B and 5B corresponded to genes or QTLs that were reported in wheat, but no plant 

height QTL was reported previously on 2A. There are several reduced height (Rht) genes that 

affect plant height in wheat. The two major genes Rht-B1b (Rht1) and Rht-D1b (Rht2) are located 

on the short arm of chromosomes 4B and 4D, respectively (Börner et al., 1997). Moreover, Rht-

B1c (Rht3) was localized in bread wheat near the centromere on the short arm of chromosome 4B 

(Börner et al., 1997). Additional marker analyses could confirm that these genes correspond to the 

region identified on chromosome 4B in this study. A prominent QTL for plant height was reported 

on the long arm of chromosome 5B in wheat based on a DH population derived from a cross 

between ‘RL4452’ and ‘AC Domain’ (McCartney et al., 2005).  

A total of ten significant marker-trait associations were detected for sedimentation volume 

(Table 6-1; Appendix D). Sedimentation volume is a measure of bread making quality. In wheat, 

bread making quality is most dependent on the quality and quantity of wheat protein (Bushuk et 

al., 1969). Glutenin and gliadins are major components of the wheat protein responsible for bread 

making quality. The ten SNPs were localized to three chromosomes 1A (19.3 and 111.6 cM), 1B 

(121.7 – 125.3 cM), and 5D (102.9 – 105.4 cM). Each of these SNPs explained from 5 to 10% of 

the phenotypic variance. In wheat, the genes which are responsible for encoding glutenin and 

gliadins subunits are located on homoeologous regions on chromosomes one and six (Payne, 

1987). Genes controlling the high molecular weight glutenin subunits Glu-A1, Glu-B1, and Glu-

D1 are located on the long arms of chromosomes 1A, 1B and 1D (Payne, 1987). Similarly, genes 
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responsible for coding low molecular weight glutenin subunits are located on the short arms of 

chromosomes 1A, 1B and 1D while genes for α- and β-gliadins occur on the short arms of 

chromosomes 6A, 6B, and 6D (Payne, 1987). Huang et al. (2006) reported a QTL for 

sedimentation volume that explained 8.8% of the phenotypic variance on the short arm of 

chromosome 5D based on 185 DH lines derived from a cross between a Canadian wheat variety 

‘AC Karma’ and a breeding line ‘87E03-S2B1’. Similarly, a QTL that explained 17.3% of the 

variance in sedimentation volume was reported on 5DS (Kunert et al., 2007). The SNPs associated 

with sedimentation volume on chromosomes 1A and 1B could be associated with the previously 

described genes and QTL, while the SNP on 5D could be associated with a different QTL. Further 

research is required to validate the identified SNPs associated with sedimentation volume.  

The four SNPs that were associated with heading date were located on chromosomes 2D 

(19.3 cM), 5B (97.28 and 110.56 cM) and 5D (80.68 cM) (Table 6-1; Appendix D). Each of these 

SNPs explained 6 to 8% of the phenotypic variance and together explained 28% of the variation 

in heading date across environments. Flowering time in wheat is controlled by three groups of 

genes, namely vernalization response (Vrn genes), photoperiod response (Ppd genes), and 

earliness per se genes (Eps genes) (Snape et al., 2001; Worland, 1996). The most important 

vernalization response genes VRN-A1, VRN-B1, and VRN-D1 were mapped previously in collinear 

regions on the long arm of group five chromosomes (Dubcovsky et al., 1998; Law et al., 1976), 

while the photoperiod response genes Ppd-A1, Ppd-B1, and Ppd-D1 were mapped to homologous 

positions on the short arm of group two chromosomes (Scarth and Law, 1984; Worland et al., 

1998). Earliness per se genes were also reported on several chromosomes in wheat (Worland, 

1996). A previous study reported earliness per se QTL on chromosome 5B based on Canadian 

spring wheat cultivars (Kamran et al., 2013). The SNPs identified in this study may correspond to 

these previously described genes. 

Three SNPs in two genomic regions were associated with thousand-kernel weight. Two 

SNPs were located on chromosome 6A (85.1 – 85.7 cM) and one SNP on 7B (78.3 cM). Recently, 

Zou et al. (2017) reported QTL for thousand-kernel weight on chromosomes 6A (79 cM) and 7B 

(158 cM) based on RILs derived from a cross between ‘Attila’ and ‘CDC Go’ spring wheat 

cultivars. Major QTL associated with thousand-kernel weight that explained 16.1 to 22.4% of the 

variance were also reported in spring bread wheat on chromosome 6A (Simons et al., 2012).  
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Table 6-1. Association of markers with eight agronomic and end-use quality traits detected with a 

mixed linear model. Associations that passed the FDR threshold are indicated in bold. 

 

†HT: plant height, SDS: sedimentation volume, HD: heading date, TKW: thousand-kernel weight, MAT: 

maturity, YLD: grain yield, TWT: test weight, FN: falling number.  

Trait† SNP ID Chromosome Position (cM) P -value -log10P- value Marker R
2(%)

HT BS00022896_51 2A 109.52 4.05E-04 3.4 6

HT BS00012320_51 2A 110.13 1.46E-05 4.8 9

HT RAC875_c12959_869 4B 39.93 7.42E-04 3.1 7

HT Tdurum_contig64772_417 4B 50.85 1.02E-04 4.0 7

HT BobWhite_rep_c49034_132 4B 55.55 2.13E-05 4.7 10

HT Tdurum_contig33737_157 4B 55.96 2.70E-07 6.6 12

HT IAAV971 4B 57.49 2.11E-08 7.7 15

HT Excalibur_c56787_95 4B 58.10 3.84E-04 3.4 6

HT Kukri_c11415_1074 4B 68.45 2.87E-04 3.5 6

HT Kukri_c17224_278 4B 71.29 1.03E-04 4.0 8

HT wsnp_Ra_c22026_31453420 4B 72.53 6.25E-05 4.2 7

HT BS00022673_51 5B 115.69 2.62E-04 3.6 6

SDS CAP12_c3074_192 1A 19.34 3.54E-04 3.5 6

SDS BobWhite_c26569_190 1A 111.55 7.04E-04 3.2 5

SDS BS00077498_51 1B 121.71 9.58E-05 4.0 7

SDS RFL_Contig16_132 1B 122.14 5.24E-04 3.3 7

SDS BS00035267_51 1B 122.38 2.32E-05 4.6 8

SDS BS00068077_51 1B 122.52 7.62E-05 4.1 9

SDS wsnp_JD_c14411_14148961 1B 125.07 6.82E-04 3.2 7

SDS BobWhite_c14362_86 1B 125.26 4.82E-04 3.3 6

SDS BS00000020_51 5D 102.91 2.73E-06 5.6 10

SDS Excalibur_c49805_63 5D 105.38 9.31E-04 3.0 6

HD wsnp_CAP12_c812_428290 2D 19.03 3.81E-05 4.4 8

HD wsnp_Ex_c13485_21225504 5B 97.28 3.25E-04 3.5 6

HD BS00065128_51 5B 110.56 3.36E-05 4.5 8

HD Excalibur_c15835_86 5D 80.68 8.60E-04 3.1 6

TKW BS00063096_51 6A 85.07 7.96E-04 3.1 7

TKW Jagger_c8913_220 6A 85.66 8.89E-04 3.1 6

TKW BobWhite_c7082_196 7B 78.31 4.06E-04 3.4 7

MAT wsnp_CAP12_c812_428290 2D 19.03 2.47E-04 3.6 6

MAT Tdurum_contig8072_1192 5B 75.79 5.40E-04 3.3 5

YLD BS00062731_51 5B 104.55 3.20E-04 3.5 6

TWT BS00000592_51 5B 93.44 8.46E-04 3.1 5

FN Excalibur_c15048_488 2D 37.62 3.06E-04 3.5 6
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The SNPs associated with maturity were also in similar regions with previously reported 

genes or QTL. Maturity was associated with two SNPs located on 2D (19.3 cM) and 5B (75.8 cM). 

Each SNP explained 6% of the phenotypic variance across environments. In wheat, chromosomes 

2D and 5B are known to carry the photoperiod response (Ppd-D1) and vernalization response 

(VRN-B1) genes, respectively (Worland, 1996). These genes control important phases of growth 

and development (tillering, stem extension, heading, flowering and ripening) in wheat (Košner and 

Pánková, 1998). Recently, Zhou et al. (2017) reported a maturity QTL on 2D (confidence interval 

of 0-14.5 cM) flanked by Ppd-D1 gene and on 5B (56 cM). The SNP marker 

‘wsnp_CAP12_c812_428290’ was significantly associated with both heading date and maturity on 

chromosome 2D (Table 6-1). This indicates that either the same QTL is controlling heading date 

and maturity (pleiotropy) or QTL controlling these traits are closely linked on chromosome 2D.  

Only one SNP was found associated with each of grain yield, test weight and falling number. 

SNPs on chromosome 5B (104.6 cM and 93.4 cM) were associated with grain yield and test 

weight, respectively. These SNPs explained a small proportion of the phenotypic variance (6 and 

5%, respectively), highlighting the quantitative nature of these traits. Previous studies reported 

QTL for grain yield and test weight in spring bread wheat on the short and long arms of 

chromosome 5B, respectively (Perez-Lara et al., 2016; Simons et al., 2012). Similarly, one SNP 

on 2D (37.6 cM) was associated with falling number that explained 6% of the phenotypic variance. 

Kunert et al. (2007) reported a QTL for falling number on 2D approximately 14 cM away from 

the SNP detected in this study. An unexpected result from this study was that no marker-trait 

association was detected for grain protein content. This could be because of the narrow variation 

in grain protein content among the lines used in this study. Sampling additional wheat lines with 

more variation in protein content would be required to identify significant associations.  

6.4 Conclusion  

In this study, 34 significant marker-trait associations were detected for eight agronomic and 

end-use quality traits. The genetic effects of most of the identified QTL were relatively small, 

explaining less than 10% of the phenotypic variance, highlighting the quantitative nature of the 

evaluated traits. The identified marker-trait associations would need to be validated in different 

genetic backgrounds to be useful for MAS. However, these markers can be fitted as fixed effects 

in GS to enhance genomic prediction accuracy.



 

108 
 

7. Mapping of Quantitative Trait Loci Associated with Agronomically Important Traits in 

Wheat 

7.1 Introduction 

Canada is the sixth largest producer of wheat in the world, much of which is exported for its 

high-quality end-use purposes. Canadian wheat varieties are grouped into different market classes 

based on their end-use quality parameters (Canadian Grain Commission, 2015). Wheat breeding 

programs in Canada target the release of cultivars that meet the necessary standards for agronomic 

performance, resistance to biotic factors, and quality attributes for cultivar registration and growth 

(DePauw et al., 2011). Many of the agronomically important traits that are of interest to wheat 

breeders are quantitatively inherited. Quantitative traits have a wide range of distributions and are 

controlled by multiple small-effect genes that are influenced by the environment, interaction 

among genes, and interactions between genes and the environment. Understanding the genetic 

control of these traits in wheat is an important step for marker assisted breeding. QTL mapping 

involves the identification of genomic regions that control quantitative traits in segregating 

populations developed from homozygous inbred parents (Doerge, 2002). Experimental mapping 

populations such as F2 populations, backcross populations, RILs, and doubled haploids are 

commonly used for QTL mapping in plants (Collard et al., 2005; Flint-Garcia et al., 2003). QTL 

mapping has been used to dissect the genetic basis of variation of complex traits and identify loci 

with large phenotypic effects. Genetic dissection of a quantitative trait will succeed only when 

some of the QTLs segregating in the population have relatively large effects (Lander and Botstein, 

1989). When markers that are linked to QTL with large effects are identified they can be used for 

MAS. However, MAS has limited application for traits controlled by many QTL with small effects.   

Genomic selection has emerged as an alternative to the standard MAS for improving 

complex traits that are controlled by many QTL with small effects (Meuwissen et al., 2001). 

Genomic selection uses genome-wide markers without significance testing to predict the breeding 

value of individuals in a breeding population (Meuwissen et al., 2001). This ensures that all major 

and minor effect QTL underlying traits are utilized for MAS. Genomic prediction models, such as 

ridge regression, treat genome-wide markers as random effects and shrink their effects uniformly 

without distinguishing between known major genes or QTL and unknown QTL with minor effects 

(Bernardo, 2014). This may result in underestimation of the effects of large effect QTL and affect 

the genetic gain from GS (Bernardo, 2014). Recently, a new GS approach was suggested to model 
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known major genes or QTL as fixed effects and unknown small effect QTL as random effects to 

enhance genomic predictions (Bernardo, 2014; Rutkoski et al., 2014; Spindel et al., 2016; Spindel 

et al., 2015; Zhang et al., 2014). Therefore, the objective of this study was to identify QTL 

controlling important agronomic traits in RILs developed from three-way crosses of spring bread 

wheat varieties. Markers significantly associated with QTL identified from this study will be used 

to enhance the accuracy of genomic predictions in this population.   

7.2 Materials and Methods 

7.2.1 Plant material and phenotypic data 

This study used a mapping population of 304 RILs developed from three-way crosses (CDC 

Plentiful//Pasteur/CDC Utmost) made at the CDC, University of Saskatchewan. We also used 

these lines as SC in GS study (Chapter eight). Pasteur is a short-statured, later maturing but high 

yielding general-purpose wheat cultivar from Wiersum Plant Breeding in the Netherlands. CDC 

Utmost and CDC Plentiful are standard height, early to medium maturing and high yielding 

cultivars from the CDC, University of Saskatchewan. The first cross was made in a controlled 

environment facility (Phytotron) between Pasteur and CDC Utmost during early fall of 2011 and 

the second cross was made to CDC Plentiful during the winter of 2011/2012. The F1 generation 

was grown in the Phytotron during summer 2012. Seed from F1 was bulked and the F2 generation 

was grown in a greenhouse at the University of Saskatchewan. The F3 generation was advanced 

through single seed decent. Two seeds from each F2 spike were bulked and random samples were 

planted at a seeding rate of eight seeds per 3.78-liter pot. The F3 spikes were threshed individually 

and each were planted (F4 generation) on single hill plots at the Seed Farm during spring 2013. A 

total of 2,712 F4 entries were grown using unreplicated hills with the three parents and ‘AC Barrie’ 

grown as replicated check cultivars. A single spike was harvested and threshed individually from 

each F4 plant and the F4:F5 generation was grown under field conditions in a winter nursery during 

the winter of 2013/2014. The population was then advanced to the F6, F7, and F8 generations for 

field trials and phenotyping. 

Five independent field trials were conducted across two research sites for the F4:F6, F4:F7 

and F4:F8 generations. In the F4:F6 generation, 506 entries were randomly selected, and each were 

grown at Kernen on a 2.48 m2 plot area with four seeded rows during the spring/summer of 2014. 

The field experiments were arranged in 11 blocks, each containing 50 plots (46 entries and four 
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check cultivars), for a total of 550 plots. In the F4:F7 generation, 322 entries were randomly 

selected and advanced to the F8 generation. The F4:F7 and F4:F8 generations were grown both at 

Kernen and in Rosthern on a 4.25 m2 plot area, with five seeded rows during the spring/summer 

of 2015 and 2016. Seeding rates were 300 seeds per m2. The field experiments were arranged in 

seven blocks, each containing 50 plots (46 entries and four check cultivars), for a total of 350 plots 

at each environment (site-year). The lines were arranged in an augmented randomized complete 

block design (ARCBD), where the four check cultivars were randomly assigned to plots within 

each block and unreplicated entries were randomly arranged in the remaining plots (Federer, 

1961). In summary, five field trials were conducted; the F4:F6 generation at Kernen in 2014, as 

well as the F4:F7 and F4:F8 generations at Kernen and Rosthern in both 2015 and 2016. Traits 

including heading date, plant height, maturity, grain yield, test weight and thousand-kernel weight 

were measured as described in Section 3.2.1.  

7.2.2 Phenotypic data analysis 

The phenotypic data were analyzed using analysis of variance (ANOVA) with SAS Mixed 

models, v9.4 (SAS Institute Inc., 2015). Phenotypic data were analyzed separately in each 

environment (Kernen 2014, Kernen 2015, Kernen 2016, Rosthern 2015, and Rosthern 2016) and 

then combined across environments. For the separate analysis, lines (entries plus check cultivars) 

were considered as fixed effects and block was considered as a random effect. For the combined 

analysis, environment, block nested in environment and line-by-environment interactions were 

considered as random effects. To control for block-to-block heterogeneity, trait values of entries 

were adjusted relative to the four check cultivars repeated in each block using the LSMEANS 

procedure in SAS (Wolfinger et al., 1997). The phenotypic data analyses included the 506 entries 

in the F4:F6 generation, 322 entries in the F4:F7 and F4:F8 generations, and the four check 

cultivars for a better estimate of (co)variances but only 304 lines that were evaluated across all 

generations and have marker data were used for QTL analyses. Broad-sense heritability (H2) and 

Pearson correlation coefficients among the traits were estimated as described in Section 3.2.3.                 

7.2.3 Genotypic data 

Genomic DNA was extracted from fresh leaves of one-week-old seedlings in the F4:F7 

generation and all lines were genotyped using the same methods described in Section 3.2.2. 
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Genotype calling was performed using the GenomeStudio Polyploid Clustering Module v1.0 

(Illumina, San Diego, CA), and erroneous lines and markers were filtered from the analysis 

(Appendix E). A total of 16,115 polymorphic SNPs with call frequency (CF) > 90% and minor 

allele frequency (MAF) > 20% were obtained. For QTL analyses, a thinned subset of 1,219 evenly 

spaced SNPs (mean genetic distance of 2.9 cM between adjacent SNPs) was selected based purely 

on genetic distances, using the software MapThin, v1.11 (Howey and Cordell, 2011). The 

chromosomal positions of the SNP markers were determined based on the hexaploid wheat 

consensus genetic linkage map (Wang et al., 2014a).                            

7.2.4 QTL analyses 

QTL analyses were performed using LS-means of phenotypes in each environment and 

averaged (combined) across all environments. QTL mapping was performed with the inclusive 

composite interval mapping (ICIM) procedure using QTL IciMapping v4.1 (Meng et al., 2015).  

Analyses of the additive effects at individual QTL (ICIM-ADD) were performed with a critical 

logarithm of odds (LOD) threshold estimated for each trait based on 1,000 permutations at a 

significance level of 0.05. Mapping parameters of 1 cM walking distance and deletion of missing 

phenotypes were applied. Significant QTL were displayed on individual chromosome maps using 

MapChart v2.3 (Voorrips, 2002).  

7.3 Results and Discussion 

7.3.1 Wide variations were observed in measured phenotypes 

Analysis of variance indicated that there were highly significant differences among the lines 

for all evaluated traits (P < 0.001). The frequency distributions of phenotypes averaged over the 

five environments also indicated that there were large differences between Pasteur and the two 

locally adapted parents for heading date, maturity, and grain yield while the differences were 

moderate for all the other traits (Fig. 7-1). Transgressive segregations in both directions of the 

distribution were observed for all traits (Fig. 7-1). Heading date among the lines varied from 53 to 

62 days with a mean of 56(±2) days, while time to maturity varied from 89 to 100 days with a 

mean of 94(±2) days across environments. Plant height ranged from 77.7 to 105.6 cm with a mean 

of 93(±5.4) cm. There was also a wide variation among the lines for grain yield, which ranged 

from 2348 to 5465 kg ha-1 with a mean of 4278 (±458) kg ha-1. Test weight ranged from 75.8 to 
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82.5 kg hL-1 with a mean of 79.7(±1.2) kg hL-1 and thousand-kernel weight varied from 28.1 to 

41.7 g with a mean of 35.2(±2.5) g across the environments. Moderate to high estimates of broad 

sense heritability were obtained for grain yield (0.55), plant height (0.55), maturity (0.64), test 

weight (0.71), heading date (0.75), and thousand-kernel weight (0.78) across all environments. 

Correlation coefficients between the evaluated traits indicated a very strong positive correlation 

between heading date and maturity (0.87) (Table 7-1). In contrast, there were weak positive 

correlations between heading date and grain yield (0.12) or test weight (0.22), while the correlation 

was negative between heading date and thousand-kernel weight (-0.19). Plant height was 

moderately correlated with heading date (0.41), maturity (0.35), and thousand-kernel weight 

(0.29). Similarly, test weight was positively correlated with maturity (0.31) and grain yield (0.35) 

(Table 7-1).  



 

113 
 

 

Fig. 7-1. Frequency distributions of six agronomic traits measured in the mapping population 

(selection candidates). Data were averaged across F6 to F8 generations and all environments. The 

values for the check cultivars (AC Barrie, CDC Utmost, CDC Plentiful, and Pasteur) are indicated 

with arrows. 
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Table 7-1. Correlations among adjusted traits of the selection candidates averaged across five 

environments. 

 Pearson's correlations, N = 304 

Trait† Mean SD‡ HD HT MAT YLD TWT 

HD 56.3 1.9 1     
HT 93.0 5.4 0.41*** 1    
MAT 93.8 1.9 0.87*** 0.35*** 1   
YLD 4278.0 457.8 0.12* 0.09NS 0.05NS 1  
TWT 79.7 1.2 0.22*** 0.01NS 0.31*** 0.35*** 1 

TKW 35.2 2.5 -0.19*** 0.29*** -0.11NS 0.06NS -0.04NS 

*, **, ***, Significant at the 0.05, 0.01 and 0.001 probability level, respectively, and NS not significant 

†HD: heading date, HT: plant height, MAT: maturity, YLD: grain yield, TWT: test weight, TKW: 

thousand-kernel weight 

‡SD: Standard deviation of the trait 
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7.3.2 Twenty-three QTL were identified for six agronomic traits  

The number of markers used for QTL mapping varied from 23 on 4D to 96 on 5B, with an 

average of 58 markers per chromosome. The total map length across the 21 chromosomes spanned 

3,526 cM. The range of genetic distance between adjacent SNPs varied from 0.04 to 52.3 cM with 

a mean of 2.9 cM (Appendix F). Using these data, a total of 23 QTL were identified based on the 

average phenotypic data across the five environments (Fig. 7-2). Six QTL were identified for 

heading date and test weight, four QTL for maturity, three QTL for thousand-kernel weight, and 

two QTL for plant height and grain yield (Fig. 7-2).  

The QTL associated with heading date were mapped at 128.6 cM on chromosome 2B 

(QHD.usw-2B), 19.9 cM on 2D (QHd.usw-2D), 106.6 cM on 4A (QHd.usw-4A), 90 cM on 4B 

(QHd.usw-4B), 162 cM on 5B (QHd.usw-5B), and 97 cM on 7D (QHd.usw-7D.1) (Fig. 7-2 and 

Table 7-2). Each of these QTL explained from 1.8 to 19.2% of the phenotypic variance and 

together explained 49.4% of the variance in heading date across environments (Table 7-2). 

QHd.usw-2D was also detected in each of the five environments and explained from 9.5 to 22.8% 

of the phenotypic variance in each environment. Similarly, QHd.usw-4A and QHd.usw-7D.1 were 

detected in all environments except Rosthern 2015 and explained from 2.9 to 4.7% and 8.8 to 

15.5% of the phenotypic variance in each environment, respectively. QHd.usw-2B and QHd.usw-

5B were detected in Kernen 2016, each explaining 6.2 and 5.1% of the phenotypic variance. 

QHd.usw-4B was also detected in Kernen 2016 and Rosthern 2016 and explained 2.4 and 9.4% of 

the phenotypic variance in each environment, respectively. Moreover, four environment specific 

QTL were detected on chromosome 1B (QHd.usw-1B.1 and QHd.usw-1B.2), 7A (QHd.usw-7A), 

and 7D (QHd.usw-7D.2) (Appendix G). Each of these QTL explained from 2.4 to 6.6% of the 

phenotypic variance in each environment.    

The QTL for test weight were mapped at 124 cM on chromosome 2A (QTwt.usw-2A), 120 

cM on 2B (QTwt.usw-2B.2), 59 cM on 4B (QTwt.usw-4B), 71.9 cM on 6A (QTwt.usw-6A), 72 cM 

on 6B (QTwt.usw-6B), and 70 cM on 7B (QTwt.usw-7B) (Fig. 7-2 and Table 7-2). Each of these 

QTL accounted for 3.3 to 7.9% of the phenotypic variance and the six QTL together explained 

34.6% of the variance in test weight across the five environments. For the analyses of individual 

environments, QTwt.usw-2A, QTwt.usw-6A, and QTwt.usw-6B were detected in one environment 

and explained from 3.5 to 9.4% of the phenotypic variance. QTwt.usw-2B.2 was detected in two
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Fig. 7-2. The distribution of QTL identified for six agronomic traits based on the combined data across five environments. QTL are 

displayed on the right side of each chromosome with vertical bars showing the QTL confidence interval defined by 1-LOD drop. The 

QTL identified for each trait are indicated in different colors.   
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Fig. 7-2. Continued 
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Table 7-2. Summary of QTL identified for six agronomic traits based on 304 RILs evaluated across five environments. QTL analyses 

were conducted using LS-means of each environment and averaged (combined) across all environments. 

 

 

QTL Trait† Environment Chromosome Position (cM) Confidence Interval Left Marker Right Marker LOD R
2
 (%) Add‡

QHd.usw-2B HD Kernen-16 2B 128.6 128.1 ‒ 129.1 wsnp_RFL_Contig1892_1042675 BS00100981_51 6.9 6.2 -0.7

QHd.usw-2B HD Combined 2B 128.6 128.1 ‒ 129.1 wsnp_RFL_Contig1892_1042675 BS00100981_51 10.9 8.4 -0.7

QHd.usw-2D HD Kernen-14 2D 20.9 18.4 ‒ 24.4 wsnp_CAP12_c812_428290 Excalibur_c28393_259 15.8 11.5 0.8

QHd.usw-2D HD Kernen-15 2D 20.9 19.4 ‒ 23.4 wsnp_CAP12_c812_428290 Excalibur_c28393_259 29.9 21.1 1.3

QHd.usw-2D HD Kernen-16 2D 20.9 18.4 ‒ 24.4 wsnp_CAP12_c812_428290 Excalibur_c28393_259 19.5 11.5 1.0

QHd.usw-2D HD Rosthern-15 2D 22.9 20.4 ‒ 24.4 wsnp_CAP12_c812_428290 Excalibur_c28393_259 32.3 22.8 1.5

QHd.usw-2D HD Rosthern-16 2D 19.9 18.4 ‒ 22.4 wsnp_CAP12_c812_428290 Excalibur_c28393_259 19.5 9.5 1.0

QHd.usw-2D HD Combined 2D 19.9 19.4 ‒ 22.4 wsnp_CAP12_c812_428290 Excalibur_c28393_259 32.9 19.2 1.1

QHd.usw-4A HD Kernen-14 4A 105.6 104.1 ‒ 106.1 RAC875_c59673_500 Excalibur_c57078_255 7.6 4.7 -0.6

QHd.usw-4A HD Kernen-15 4A 105.6 104.1 ‒ 106.1 RAC875_c59673_500 Excalibur_c57078_255 5.7 2.9 -0.6

QHd.usw-4A HD Kernen-16 4A 106.6 105.1 ‒ 107.1 Excalibur_c57078_255 BobWhite_c19497_606 9.1 4.1 -0.7

QHd.usw-4A HD Rosthern-16 4A 104.6 103.1 ‒ 106.1 RAC875_c59673_500 Excalibur_c57078_255 9.6 4.4 -0.8

QHd.usw-4A HD Combined 4A 106.6 105.1 ‒ 107.1 Excalibur_c57078_255 BobWhite_c19497_606 9.2 4.0 -0.6

QHd.usw-4B HD Kernen-16 4B 104 100.5 ‒ 107.5 wsnp_Ex_c15490_23776560 wsnp_BE403378B_Ta_2_1 4.9 2.4 -0.5

QHd.usw-4B HD Rosthern-16 4B 98 97.5 ‒ 98.5 Kukri_c93922_206 wsnp_Ex_c15490_23776560 6.8 9.4 1.0

QHd.usw-4B HD Combined 4B 90 88.5 ‒ 90.5 Excalibur_c22429_573 Excalibur_c29568_163 4.2 1.8 -0.3

QHd.usw-5B HD Kernen-16 5B 162 161.5 ‒ 162.5 RAC875_c2260_232 RAC875_c278_1801 10.2 5.1 -0.7

QHd.usw-5B HD Combined 5B 162 161.5 ‒ 162.5 RAC875_c2260_232 RAC875_c278_1801 8.2 4.2 -0.6

QHd.usw-7D.1 HD Kernen-14 7D 94 92.5 ‒ 94.5 wsnp_Ex_c2054_3852564 GENE-5000_1221 11.3 12.0 -0.9

QHd.usw-7D.1 HD Kernen-15 7D 98 96.5 ‒ 100.5 D_contig63719_554 D_GA8KES401EZBT8_411 16.6 8.8 1.0

QHd.usw-7D.1 HD Kernen-16 7D 97 96.5 ‒ 98.5 GENE-5000_1221 D_contig63719_554 26.9 14.5 1.3

QHd.usw-7D.1 HD Rosthern-16 7D 94 92.5 ‒ 94.5 wsnp_Ex_c2054_3852564 GENE-5000_1221 20.8 15.5 -1.3

QHd.usw-7D.1 HD Combined 7D 97 96.5 ‒ 97.5 GENE-5000_1221 D_contig63719_554 23.1 11.8 1.0
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Table 7-2. Continued 

 

 

QTL Trait† Environment Chromosome Position (cM) Confidence Interval Left Marker Right Marker LOD R
2 

(%) Add‡

QTwt.usw-2A TWT Kernen-16 2A 106 105.5 ‒ 107.5 Kukri_c10860_1283 RFL_Contig852_4295 6.0 3.5 -0.3

QTwt.usw-2A TWT Combined 2A 124 123.5 ‒ 124.5 RAC875_c8286_574 BS00094574_51 6.2 5.8 -0.4

QTwt.usw-2B.2 TWT Kernen-14 2B 114.6 114.1 ‒ 115.1 wsnp_Ex_c22271_31463467 Ex_c13213_2517 5.1 4.2 0.2

QTwt.usw-2B.2 TWT Rosthern-16 2B 114.6 114.1 ‒ 115.1 wsnp_Ex_c22271_31463467 Ex_c13213_2517 7.3 5.7 0.4

QTwt.usw-2B.2 TWT Combined 2B 120.6 119.1 ‒ 122.1 Excalibur_c57713_81 RAC875_c19225_523 4.8 3.3 0.3

QTwt.usw-4B TWT Kernen-15 4B 65 64.5 ‒ 66.5 BobWhite_c4810_190 BobWhite_c20051_53 5.2 5.5 0.3

QTwt.usw-4B TWT Kernen-16 4B 49 47.5 ‒ 50.5 wsnp_Ex_c7362_12622736 BS00022431_51 16.0 10.4 -0.5

QTwt.usw-4B TWT Rosthern-15 4B 62 61.5 ‒ 62.5 Excalibur_c52517_464 BobWhite_c4810_190 5.3 4.2 -0.4

QTwt.usw-4B TWT Rosthern-16 4B 59 55.5 ‒ 59.5 Tdurum_contig33737_157 wsnp_Ex_c14026_21924297 13.4 10.4 0.5

QTwt.usw-4B TWT Combined 4B 59 55.5 ‒ 59.5 Tdurum_contig33737_157 wsnp_Ex_c14026_21924297 13.3 7.9 0.4

QTwt.usw-6A TWT Rosthern-16 6A 82.9 82.4 ‒ 83.4 wsnp_Ex_c1556_2972715 Kukri_c44260_577 8.7 9.4 -0.5

QTwt.usw-6A TWT Combined 6A 71.9 71.4 ‒ 73.4 RFL_Contig1038_723 BobWhite_c30930_192 9.3 7.2 0.4

QTwt.usw-6B TWT Kernen-16 6B 73 71.5 ‒ 75.5 Tdurum_contig46925_285 RAC875_c22539_484 8.9 5.3 0.3

QTwt.usw-6B TWT Combined 6B 72 71.5 ‒ 73.5 Tdurum_contig46925_285 RAC875_c22539_484 9.2 5.3 0.3

QTwt.usw-7B TWT Kernen-16 7B 74 73.5 ‒ 74.5 Tdurum_contig8296_389 Tdurum_contig52239_120 7.1 6.5 0.4

QTwt.usw-7B TWT Rosthern-15 7B 71 69.5 ‒ 71.5 tplb0037m09_1556 Kukri_c9353_642 7.7 4.5 -0.5

QTwt.usw-7B TWT Kernen-16 7B 52 50.5 ‒ 52.5 BS00111363_51 RAC875_c30123_913 6.9 4.0 -0.4

QTwt.usw-7B TWT Combined 7B 70 69.5 ‒ 71.5 tplb0037m09_1556 Kukri_c9353_642 8.5 5.1 -0.4

QMat.usw-1B MAT Rosthern-15 1B 53.9 53.4 ‒ 55.4 wsnp_Ex_c2117_3976893 Kukri_c83200_268 11.4 5.2 0.8

QMat.usw-1B MAT Combined 1B 53.9 52.4 ‒ 55.4 wsnp_Ex_c2117_3976893 Kukri_c83200_268 4.4 3.0 0.5

QMat.usw-2D MAT Kernen-14 2D 21.9 20.4 ‒ 26.4 wsnp_CAP12_c812_428290 Excalibur_c28393_259 10.0 8.1 1.1

QMat.usw-2D MAT Kernen-15 2D 19.9 18.4 ‒ 23.4 wsnp_CAP12_c812_428290 Excalibur_c28393_259 14.3 13.6 1.1

QMat.usw-2D MAT Kernen-16 2D 18.9 18.4 ‒ 21.4 BS00022276_51 wsnp_CAP12_c812_428290 10.9 4.5 0.6
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Table 7-2. Continued 

 

 

 

QTL Trait† Environment Chromosome Position (cM) Confidence Interval Left Marker Right Marker LOD R
2 

(%) Add‡

QMat.usw-2D MAT Rosthern-15 2D 18.9 18.4 ‒ 22.4 BS00022276_51 wsnp_CAP12_c812_428290 13.5 7.6 0.8

QMat.usw-2D MAT Rosthern-16 2D 18.9 18.4 ‒ 23.4 BS00022276_51 wsnp_CAP12_c812_428290 7.3 11.8 0.6

QMat.usw-2D MAT Combined 2D 18.9 18.4 ‒ 21.4 BS00022276_51 wsnp_CAP12_c812_428290 17.6 14.7 0.9

QMat.usw-7D.1 MAT Kernen-14 7D 94 93.5 ‒ 94.5 wsnp_Ex_c2054_3852564 GENE-5000_1221 11.2 11.7 -1.3

QMat.usw-7D.1 MAT Kernen-15 7D 97 96.5 ‒ 100.5 GENE-5000_1221 D_contig63719_554 10.3 9.1 1.0

QMat.usw-7D.1 MAT Rosthern-15 7D 104 103.5 ‒ 104.5 RAC875_c1834_694 Ex_c19087_352 13.0 6.2 0.8

QMat.usw-7D.1 MAT Combined 7D 98 96.5 ‒ 100.5 D_contig63719_554 D_GA8KES401EZBT8_411 14.7 10.7 0.9

QMat.usw-7D.2 MAT Kernen-16 7D 132 131.5 ‒ 132.5 Excalibur_c55782_55 wsnp_CAP11_c2839_1425826 6.2 6.8 -0.8

QMat.usw-7D.2 MAT Rosthern-15 7D 134 133.5 ‒ 135.5 wsnp_CAP11_c2839_1425826 wsnp_Ex_rep_c68671_67525179 6.0 2.9 -0.5

QMat.usw-7D.2 MAT Combined 7D 134 133.5 ‒ 134.5 wsnp_CAP11_c2839_1425826 wsnp_Ex_rep_c68671_67525179 4.6 3.4 -0.4

QTkw.usw-2A TKW Kernen-14 2A 1 0 ‒ 2.5 Excalibur_c1787_1199 wsnp_Ex_c19516_28483751 7.2 6.4 -0.9

QTkw.usw-2A TKW Kernen-16 2A 1 0 ‒ 2.5 Excalibur_c1787_1199 wsnp_Ex_c19516_28483751 9.5 9.1 -0.9

QTkw.usw-2A TKW Combined 2A 1 0 ‒ 2.5 Excalibur_c1787_1199 wsnp_Ex_c19516_28483751 6.8 7.3 -0.7

QTkw.usw-4A TKW Kernen-15 4A 100.6 99.1 ‒ 102.1 Ku_c1125_814 RAC875_c95150_286 6.9 9.3 -0.9

QTkw.usw-4A TKW Kernen-16 4A 100.6 99.1 ‒ 102.1 Ku_c1125_814 RAC875_c95150_286 6.2 4.3 -0.7

QTkw.usw-4A TKW Rosthern-15 4A 103.6 103.1 ‒ 105.1 RAC875_c95150_286 RAC875_c59673_500 9.1 6.8 1.2

QTkw.usw-4A TKW Combined 4A 100.6 99.1 ‒ 102.1 Ku_c1125_814 RAC875_c95150_286 7.8 5.9 -0.8

QTkw.usw-6A TKW Kernen-14 6A 81.9 81.4 ‒ 83.4 IAAV7384 wsnp_Ex_c1556_2972715 5.2 8.5 1.0

QTkw.usw-6A TKW Kernen-16 6A 82.9 81.4 ‒ 83.4 wsnp_Ex_c1556_2972715 Kukri_c44260_577 8.5 8.6 0.9

QTkw.usw-6A TKW Rosthern-15 6A 81.9 81.4 ‒ 82.4 IAAV7384 wsnp_Ex_c1556_2972715 6.4 8.7 1.3

QTkw.usw-6A TKW Rosthern-16 6A 81.9 81.4 ‒ 83.4 IAAV7384 wsnp_Ex_c1556_2972715 6.9 11.4 1.3

QTkw.usw-6A TKW Combined 6A 81.9 81.4 ‒ 83.4 IAAV7384 wsnp_Ex_c1556_2972715 3.8 7.8 0.8
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Table 7-2. Continued 

 

†HD: heading date, HT: plant height, MAT: maturity, YLD: grain yield, TWT: test weight, TKW: thousand-kernel weight 

‡Add: Additive effect. 

QTL Trait† Environment Chromosome Position (cM) Confidence Interval Left Marker Right Marker LOD R
2 

(%) Add‡

QHt.usw-2D HT Kernen-14 2D 19.9 18.4 ‒ 24.4 wsnp_CAP12_c812_428290 Excalibur_c28393_259 8.7 11.2 2.5

QHt.usw-2D HT Kernen-15 2D 18.9 18.4 ‒ 22.4 BS00022276_51 wsnp_CAP12_c812_428290 6.9 7.8 2.4

QHt.usw-2D HT Kernen-16 2D 18.9 18.4 ‒ 26.4 BS00022276_51 wsnp_CAP12_c812_428290 5.0 4.9 1.7

QHt.usw-2D HT Rosthern-15 2D 20.9 18.4 ‒ 26.4 wsnp_CAP12_c812_428290 Excalibur_c28393_259 8.0 10.4 2.4

QHt.usw-2D HT Combined 2D 19.9 18.4 ‒ 23.4 wsnp_CAP12_c812_428290 Excalibur_c28393_259 11.5 11.2 2.0

QHt.usw-6D HT Kernen-14 6D 83 80.5 ‒ 83.5 wsnp_BE445201D_Ta_1_1 Kukri_c34967_226 6.1 6.9 2.3

QHt.usw-6D HT Rosthern-15 6D 83 81.5 ‒ 83.5 wsnp_BE445201D_Ta_1_1 Kukri_c34967_226 4.9 5.1 2.0

QHt.usw-6D HT Combined 6D 82 80.5 ‒ 83.5 Excalibur_c26899_1860 wsnp_BE445201D_Ta_1_1 6.6 6.1 1.7

QYld.usw-2A YLD Kernen-16 2A 0 0 ‒ 1.5 Excalibur_c1787_1199 wsnp_Ex_c19516_28483751 13.7 18.0 284.0

QYld.usw-2A YLD Rosthern-16 2A 0 0 ‒ 1.5 Excalibur_c1787_1199 wsnp_Ex_c19516_28483751 5.3 5.3 169.6

QYld.usw-2A YLD Combined 2A 0 0 ‒ 0.5 Excalibur_c1787_1199 wsnp_Ex_c19516_28483751 9.5 10.4 168.7

QYld.usw-7A YLD Rosthern-16 7A 155.7 155.2 ‒ 157.2 wsnp_Ku_rep_c104159_90704469 Kukri_c57086_133 6.8 11.5 -248.9

QYld.usw-7A YLD Combined 7A 156.7 155.2 ‒ 157.2 Kukri_c57086_133 RAC875_c24411_889 5.4 10.6 -170.0



 

122 
 

environments and accounted for 4.2 and 5.7% of the phenotypic variance in each environment. 

QTwt.usw-4B was detected in four out of the five environments and explained from 4.2 to 10.4% 

of the phenotypic variance, while QTwt.usw-7B was detected in three environments and accounted 

for 4 to 6.5% of the phenotypic variance in each environment (Table 7-2). Moreover, several 

environment specific QTL were identified for test weight on chromosomes 1D (QTwt.usw-1D), 

2B (QTwt.usw-2B.1), 2D (QTwt.usw-2D), 3A (QTwt.usw-3A), 3D (QTwt.usw-3D.1 and 

QTwt.usw-3D.2), and 7D (QTwt.usw-7D), which explained from 3.4 to 9.2 of the phenotypic 

variance in each environment (Appendix G).  

The QTL associated with maturity were mapped at 53.9 cM on chromosome 1B (QMat.usw-

1B), 18.9 cM on 2D (QMat.usw-2D), 98 cM (QMat.usw-7D.1) and 134 cM (QMat.usw-7D.2) on 

7D (Fig. 7-2 and Table 7-2). Each of these QTL explained 3 to 14.7% of the phenotypic variance 

across all environments and together explained 31.7% of the variation in maturity across 

environments (Table 7-2). QMat.usw-2D and QMat.usw-7D.1 were the most stable and together 

explained 25.4% of the variance in maturity across environments. QMat.usw-2D was detected in 

all five environments and accounted for 4.5 to 13.6% of the phenotypic variance in each 

environment (Table 7-2). Two QTL were detected on chromosome 7D separated by 36 cM 

between the QTL peaks. QMat.usw-7D.1 was detected in three environments (Kernen 2014, 

Kernen 2015 and Rosthern 2015) and explained from 6.2 to 11.7% of the phenotypic variance in 

each environment, while QMat.usw-7D.2 was detected in two environments (Kernen 2016 and 

Rosthern 2015) and explained 6.8 and 2.9% of the phenotypic variance, respectively. QMat.usw-

1B was detected in only one environment and explained 5.2% of the phenotypic variance. 

Moreover, several environment specific QTL were identified on 3A (QMat.usw-3A), 5A 

(QMat.usw-5A), 5B (QMat.usw-5B), 7A (QMat.usw-7A), and 7B (QMat.usw-7B), each explaining 

from 3.7 to 9.3% of the phenotypic variance in each environment (Appendix G).   

For thousand-kernel weight, the three QTL were mapped at 1 cM on chromosome 2A 

(QTkw.usw-2A), 100.6 cM on 4A (QTkw.usw-4A), and 81.9 cM on 6A (QTkw.usw-6A) (Fig. 7-2 

and Table 7-2). Each QTL explained from 5.9 to 7.8% of the phenotypic variance and the three 

QTL together explained 21% of the variation in thousand-kernel weight across the five 

environments. Within individual environments, QTkw.usw-2A was detected in two environments 

at the same confidence interval and explained 6.4 and 9.1% of the phenotypic variance in each 

environment. QTkw.usw-4A was detected in three environments and accounted for 4.3 to 9.3% of 
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the phenotypic variance. QTkw.usw-6A was detected in all environments except Kernen 2015 and 

explained from 8.5 to 11.4% of the phenotypic variance in each environment. Moreover, several 

environment specific QTL were detected on 1A (QTkw.usw-1A), 1B (QTkw.usw-1B), 2D 

(QTkw.usw-2D), 5A (QTkw.usw-5A), 5B (QTkw.usw-5B.1 and QTkw.usw-5B.2), 5D (QTkw.usw-

5D), and 7A (QTkw.usw-7A), which explained from 3.3 to 7.9% of the phenotypic variance in each 

environment (Appendix G). 

Two independent QTL for plant height were mapped at 19.9 cM on 2D (QHt.usw-2D), and 

82 cM on 6D (QHt.usw-6D), which explained 11.2 and 6.1% of the phenotypic variance across 

the five environments, respectively (Fig. 7-2 and Table 7-2). QHt.usw-2D was also detected in all 

environments, except Rosthern 2016, and accounted for 4.9 to 11.2% of the phenotypic variance 

in each environment. QHt.usw-6D was detected in two environments (Kernen 2014 and Rosthern 

2016) and accounted for 6.9 and 5.1% of the phenotypic variance, respectively (Table 7-2). 

Moreover, two environment specific QTL were detected for plant height on 1D (QHt.usw-1D) and 

3B (QHt.usw-3B), each explaining 4.5 and 4.7% of the phenotypic variance, respectively 

(Appendix G). 

When average grain yield across the five environments was considered, QTL were identified 

on the distal end of 2AS (QYld.usw-2A) and at 156.7 cM on 7A (QYld.usw-7A), which explained 

10.4 and 10.6% of the phenotypic variance across the five environments, respectively (Fig. 7-2 

and Table 7-2). Together, the two QTL explained 21% of the variation in yield across 

environments. QYld.usw-2A was detected in two out of the five environments (Kernen 2016 and 

Rosthern 2016) and accounted for 18 and 5.3% of the phenotypic variance, respectively, while 

QYld.usw-7A was detected only in one environment (Rosthern 2016) and explained 11.5% of the 

phenotypic variance. Moreover, four environment specific QTL were identified for grain yield on 

1A (QYld.usw-1A), 1D (QYld.usw-1D), 2B (Qyld.usw-2B), and 5A (Qyld.usw-5A), each explaining 

from 2.1 to 9.8% of the phenotypic variance in each environment (Appendix G). 

7.3.3 Coincident QTL and trait relationships 

Three chromosomal regions on chromosome 2A (0 ‒ 2.5 cM), 2D (18.4 ‒ 23.4 cM) and 7D 

(96.5 ‒ 100.5 cM) co-localized QTL for two to three traits. The region on 2A harboured QTL for 

grain yield (QYld.usw-2A) and thousand-kernel weight (QTkw.usw-2A). These QTL were flanked 

by the same set of markers in the combined data as well as in two individual environments (Table 
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7-2). The region on chromosome 2D (18.4 ‒ 23.6 cM) harboured the strongest QTL for heading 

date (QHd.usw-2D), maturity (QMat.usw-2D) and plant height (QHt.usw-2D), which explained 

19.2, 14.7 and 11.2% of the variation in these traits, respectively. QHd.usw-2D and QMat.usw-2D 

were detected in all five environments, while QHt.usw-2D was detected in four out of the five 

environments. The region on 7D (96.5 ‒ 100.5 cM) also harboured QTL for heading date 

(QHd.usw-7D.1) and maturity (QMat.usw-7D.1) that explained 11.8 and 10.7% of the variation in 

these traits, respectively. QHd.usw-7D.1 and QMat.usw-7D.1 were detected in the combined data 

as well as four and three individual environments, respectively.  

Some traits with co-localized QTL were correlated with each other across environments, 

which suggests that the genetic mechanisms underlying these traits are the same or are tightly 

linked (Table 7-1). For example, heading date, maturity, and plant height were correlated with 

each other (r = 0.87 for heading date and maturity, r = 0.41 for heading date and plant height, and 

r = 0.35 for maturity and plant height) and shared a major QTL on chromosome 2D. Heading date 

and maturity shared a second stable QTL on chromosome 7D. For these correlated traits with a 

common QTL, either the same causal polymorphism underlies the identified QTL (pleiotropy) or 

the QTL underlying the traits are linked. In contrast, grain yield and thousand-kernel weight shared 

a QTL on chromosome 2A but there was no correlation between these traits (r = 0.06), which may 

indicate that the QTL controlling these traits are different.  

7.3.4 Relationship between QTL from this study and known QTL 

In this study, QTL were mapped on chromosomes 2B, 2D, 4A, 4B, 5B, and 7D for heading 

date and on 1B, 2D, and 7D for maturity. Previously, QTL for flowering time were reported in 

wheat on 1B, 1D, 2B, 2D, 3B, 4A, 5A, 6B, 7A, 7B, and 7D (Lin et al., 2008; Perez-Lara et al., 

2016; Sourdille et al., 2000; Sourdille et al., 2003). Similarly, various QTL for maturity were 

mapped on 1B, 3B, 4A, 4D, 5A, 5B, 6B, 7A, 7B, and 7D based on Canadian spring wheat mapping 

populations (Cuthbert et al., 2008; McCartney et al., 2005). The QTL identified in this study may 

be related to flowering time and maturity genes or QTL identified from previous studies. The 

genetic control of flowering time in wheat is complex and is known to be controlled by 

vernalization response (Vrn genes), photoperiod response (Ppd genes), and earliness per se genes 

(Eps genes), which act together to determine the exact time of flowering and adaptation of the 

genotype for flowering under particular environmental conditions (Snape et al., 2001; Worland, 
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1996). These genes also have pleiotropic effects on other aspects of growth and developmental 

phases, such as tillering, stem elongation, heading, and ripening (Košner and Pánková, 1998; 

Snape et al., 2001). The most important vernalization response genes VRN-A1, VRN-B1, and VRN-

D1 were mapped to homologous positions on the long arms of group five chromosomes 

(Dubcovsky et al., 1998; Law et al., 1976), while the photoperiod response genes Ppd-A1, Ppd-

B1, and Ppd-D1 were mapped to homologous positions on the short arms of group two 

chromosomes (Scarth and Law, 1984; Worland et al., 1998). The earliness per se genes are located 

on several chromosomes in wheat and are known to determine flowering time independent of 

environmental stimuli (Worland, 1996). In this study, stable QTL were detected for heading date 

and maturity on the short arm of 2D which is known to carry the Ppd-D1 gene. Moreover, a second 

stable QTL that explained 2.9 to 4.7% of the variance was also identified for heading date on 

chromosome 4A (QHd.usw-4A). Recently, a study based on a mapping population derived from a 

cross between ‘CDC Teal’ and ‘CDC Go’ reported a stable QTL for heading date on 4A, 11 cM 

away from the QTL reported in this study, suggesting that these QTL may be the same (Chen et 

al., 2015). QTL for heading date and maturity were also reported on 7D, less than 5 cM distance 

from the heading date (QHd.usw-7D.1) and maturity (QMat.usw-7D.1) QTL reported in this study, 

suggesting that these QTL may be the same (Cuthbert et al., 2008). Similarly, a QTL that explained 

25.7% of the phenotypic variance was reported for maturity on the short arm of chromosome 7D 

based on a Canadian spring wheat mapping population (McCartney et al., 2005). Further study is 

required to determine the relationship between the QTL from this study and the genes and QTL 

reported in previous studies. 

The plant height QTL identified in this study may also be related to known genes or QTL. 

There are several reduced height (Rht) genes that affect plant height in wheat. The three major Rht 

genes that are important in commercial wheat cultivars are Rht-B1b (Rht1), Rht-D1b (Rht2) and 

Rht8 (Börner et al., 1997; Ellis et al., 2002; Worland et al., 1998; Worland, 1996). The Rht-B1b 

and Rht-D1b are insensitive to exogenous gibberellic acid (GA) and mapped near the centromere 

on the short arm of chromosomes 4B and 4D, respectively (Börner et al., 1997; Ellis et al., 2002), 

while Rht8 is GA-responsive and is located on the short arm of chromosome 2D (Worland et al., 

1998; Worland, 1996). The Rht8 and Ppd-D1 genes are closely linked in wheat (Worland et al., 

1998). The Ppd-D1 gene is also known to have pleiotropic height reducing effects (Worland et al., 

1998; Worland et al., 2001). The co-localized QTL for heading date, maturity and plant height on 
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chromosome 2D might be due to the pleiotropic effect of the Ppd-D1 gene. In this study, no QTL 

affecting plant height was detected on chromosomes 4B and 4D, but the two QTL detected on 

chromosomes 2D and 6D together explained 17.3% of the variation in height. Several QTL were 

reported for plant height on chromosomes 2D, 4B, 4D, 5B, 7A, 7B (Cuthbert et al., 2008). 

Additional research will be required to confirm the association between the QTL in this study with 

known height reducing genes and QTL. 

Grain yield is a highly quantitative trait that is influenced by genetic factors, environmental 

factors and their interactions. Quantitative trait loci were reported for grain yield on almost every 

chromosome in wheat (Asif et al., 2015; Chen et al., 2015; Cuthbert et al., 2008; Kamran et al., 

2013; McCartney et al., 2005; Perez-Lara et al., 2016; Zou et al., 2017). In this study, two QTL 

were detected for grain yield on chromosomes 2A and 7A based on the combined data. McCartney 

et al. (2005) reported a QTL for grain yield at 43 cM on chromosome 2A, while in this study QTL 

for grain yield was located on the distal end of 2AS. Zou et al. (2017) also reported a QTL for 

grain yield on 7AS, while the QTL identified in this study is on 7AL. This suggests that both QTL 

identified for grain yield may be different from the ones reported previously.  

Some of the QTL detected for test weight were mapped to genomic regions that were not 

reported previously. In this study, QTL were detected for test weight on chromosomes 2A, 2B, 

4B, 6A, 6B, and 7B based on the combined data. Numerous QTL were reported for test weight in 

wheat on 1A, 1B, 1D, 2B, 2D, 3B, 3D, 4D, 5A, 5B, 5D, 6B, 7B, and 7D based on Canadian spring 

wheat mapping populations (Asif et al., 2015; Chen et al., 2015; McCartney et al., 2005; Zou et 

al., 2017). Recently, Zou et al. (2017) reported a QTL for test weight on 2B, 11.6 cM away from 

the QTL reported in this study. McCartney et al. (2005) also reported QTL for test weight on 2B 

and 6B (7 - 24 cM). Most of the QTL detected for test weight were not in genomic regions reported 

previously, which indicates that these QTL may be new. Each of these QTL explained a small 

proportion of the phenotypic variance (3.3 to 7.9%), which suggests the need for further validation. 

QTL for thousand-kernel weight were detected on 2A, 4A, and 6A, some of which may be related 

to previously reported QTL. Previous studies in wheat have reported a QTL for thousand-kernel 

weight on 4A within 20 cM distance from the QTL detected in this study (Asif et al., 2015; Zou et 

al., 2017). Similarly, Zou et al. (2017) reported a QTL for thousand-kernel weight on 6A, less than 

3 cM from the QTL detected in this study. McCartney et al. (2005) also reported a QTL for 
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thousand-kernel weight on 2A (45 - 71 cM), while the QTL detected in this study was located on 

the distal end of 2AS.  

7.4 Conclusion 

In this study, we used RILs to identify several QTL controlling important agronomic traits. 

A region on chromosomes 2D harboured stable QTL associated with heading date, maturity and 

plant height. Similarly, a region on chromosome 7D was consistently associated with heading date 

and maturity. Moreover, stable QTL, which were detected in more than two environments, were 

identified for heading date on chromosome 4A, test weight on chromosomes 4B and 7B, and 

thousand-kernel weight on chromosomes 4A and 6A. Markers linked to the QTL identified from 

this study can be used for MAS to transfer desirable alleles into elite germplasm. Markers 

significantly associated with these QTL will also be used to enhance genomic predictions in the 

SC. 
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8. Accuracy of Genomic and Phenotypic Predictions in Wheat Based on Different Cross-

Validation Techniques 

8.1 Introduction 

In previous chapters, numerous GS models and model parameters were assessed for their 

ability to make accurate predictions for different traits in different environments. Genomic 

selection normally involves two steps (Meuwissen, 2009). The first step involves estimating the 

effects of genome-wide markers based on the genotypic and phenotypic information of a TP. The 

second step involves predicting GEBVs of the SC from genotypic data by multiplying the marker 

scores of each line by the marker effects estimated from the TP. Selection decisions will then be 

based on GEBVs predicted using genome-wide markers (Jannink et al., 2010). Prediction accuracy 

is usually assessed using a different set of individuals, commonly called a validation population 

that has phenotypic and genotypic data. This can be achieved by calculating GEBVs for individuals 

in the validation population and model prediction accuracy is reported as the correlation between 

GEBVs and actual phenotypes of the individuals in the validation population.  

Several statistical models have been developed to estimate the genetic values of individuals 

that have been genotyped but not phenotyped (de los Campos et al., 2009a; de los Campos et al., 

2009b; Gianola et al., 2006; Gianola and van Kaam, 2008; Meuwissen et al., 2001; Park and 

Casella, 2008; Whittaker et al., 2000). Many of the studies on GS to date focused on evaluating 

the prediction accuracy of these models either by systematically partitioning the same population 

into training and validation sets or using a k-fold cross-validation technique. The later technique 

involves randomly dividing the same population into ‘k’ mutually exclusive groups of 

approximately equal sizes. Then marker effects are estimated using the k-1 groups and the 

remaining group is used for validation. This process is repeated ‘k’ times so that each group is 

subsequently used as a validation set. These methods are useful to compare different statistical 

models and model parameters, but genomic predictions based on independent populations need to 

be evaluated for practical application of GS. In previous chapters, we used cross-validation 

methods that partitioned individuals of the same population into training and validation data sets, 

but this approach may have limited application in a breeding program because inferences are made 

on known populations that have already been phenotyped.  

Ideally, data that is routinely generated in a breeding program can be used to train a GS 

model that can be used to estimate GEBVs of individuals within breeding populations. However, 
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such an application is often constrained by low levels of genetic relatedness between the TP and 

the SC. Bassi et al. (2016) indicated that using a distantly related TP reduces the accuracy of 

prediction because allelic combinations within the SC will not be represented adequately. The 

degree of genetic relationship between the training and validation populations is an important 

factor that affects the accuracy of GS prediction (Clark et al., 2012; Habier et al., 2010; Habier et 

al., 2007; Hayes et al., 2009; Riedelsheimer et al., 2013). Genetic relationships are influenced by 

generations of descent or population stratification (Asoro et al., 2011). Several studies showed that 

when unrelated training populations are used to make predictions, accuracies are often close to 

zero (Charmet et al., 2014; Clark et al., 2012; Crossa et al., 2014; Riedelsheimer et al., 2013; 

Windhausen et al., 2012). However, successful implementation of GS in crop breeding programs 

largely depends on its potential to accurately estimate GEBVs of individuals that are distantly 

related to the TP, which GS models often fail to achieve with sufficient accuracy.   

Cross-validation techniques that do not resemble the actual application of GS in a breeding 

program may lead to inaccurate results. If the validation set is more closely related to the TP than 

to the SC, then the prediction accuracy will be overestimated (Wray et al., 2013). Cryptic 

relatedness is another factor that can inflate prediction accuracies even when known close relatives 

are excluded (Wray et al., 2013). Therefore, the design of the TP and cross-validation must 

resemble the ways genomic predictions will be used in practice (Daetwyler et al., 2013). Habier et 

al. (2007) showed that GS models utilize genetic relationships among individuals as well as 

information from LD between markers and QTL. However, there are still unanswered questions 

related to what measure of genetic relationship is appropriate and the extent of genetic relationship 

that is sufficient to design an optimal TP to get an acceptable level of accuracy for practical 

application of GS. Moreover, it is not known whether including parents in a TP composed of 

diverse cultivars is sufficient to create a level of relatedness that can lead to accurate genomic 

prediction in progenies. Therefore, the objectives of this study were to i) evaluate the effects of TP 

composition, cross-validation technique, and genetic relationship between the TP and SC on GS 

accuracy, and ii) compare genomic and phenotypic prediction accuracy.  
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8.2 Materials and Methods 

8.2.1 Plant material and phenotypic data 

The TP was composed of 231 hexaploid wheat varieties and advanced breeding lines. The 

plant materials, field experiments and phenotypes measured for this population are described in 

detail in Section 3.2.1. The SC were composed of 304 RILs, which were developed from three-

way crosses (CDC Plentiful//Pasteur/CDC Utmost). The plant materials, field experiments and 

phenotypes measured for this population are described in detail in Section 7.2.1. For both 

populations, traits including heading date, plant height, maturity, grain yield, test weight, and 

thousand-kernel weight were measured. The phenotypic data were analyzed using ANOVA, as 

described in Chapters three and seven. 

8.2.2 Genotypic data 

A total of 17,887 and 16,115 polymorphic SNPs were obtained for the TP and SC, 

respectively. About 9K SNP markers were common to the two populations. The common set of 

markers was used to make across-population genomic predictions. Missing marker genotypes were 

imputed using the function ‘A.mat’ in the rrBLUP package as described previously (Endelman, 

2011).   

8.2.3 Statistical modelling and genomic prediction  

Four different prediction scenarios were evaluated in this study: across-population genomic 

prediction, within-population genomic prediction, across-year genomic prediction for combined 

locations, and across-year genomic predictions within locations. The first prediction scenario 

involved across-population genomic predictions where GEBVs for the SC were predicted based 

on marker effects estimated from the TP. The effect of genetic relationship between the TP and 

the SC on model prediction accuracy was evaluated by excluding parents from the TP, including 

two parents in the TP, and including the two parents with 50 and 100 random lines from the SC in 

the TP. Moreover, the effect of genetic relatedness on genomic prediction accuracy was 

investigated by separating the SC into two groups based on their genomic relationship (kinship) to 

the parents included in the TP. Genomic relationship among lines was estimated based on marker 

genotypes using the EMMA algorithm within GAPIT (Lipka et al., 2012). The two groups were 
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classified as closely and distantly related to the two parents (CDC Utmost and CDC Plentiful) that 

were included in the TP and prediction was made separately in each group. For each training-

validation combination, two statistical models, G-BLUP and BayesB, were used to estimate 

GEBVs of the SC. A total of 9,187 polymorphic SNPs that were common between the TP and SC 

were used to make across-population genomic predictions. 

The second prediction scenario involved within-population genomic predictions using a 

fivefold cross-validation. The overall means of the SC across generations (F6 to F8) and 

environments were used for this analysis. In this case, the 304 lines were randomly divided into 

five groups. The four groups were combined to estimate marker effects and GEBV were predicted 

for the remaining group. This was repeated until each group was used as a validation set. 

Predictions were made using RR-BLUP, GS + de novo GWAS, G-BLUP, BayesB, BL and RKHS-

KA models. These models were chosen because they have different assumptions that are 

appropriate for a range of genetic architectures. In the SC, 16,115 polymorphic SNPs were used 

to test within-population genomic prediction accuracies. To test significant differences in 

prediction accuracy among the evaluated models, the cross-validation results were analyzed using 

a one-way ANOVA with PROC MIXED procedure in SAS (SAS Institute, 2015), using fold as 

blocking factor. The LSMEANS procedure was used in SAS to determine differences between 

statistical models.  

The third scenario consisted of making a single genomic prediction across years for 

combined locations. For this analysis, we performed different across-year tests: the SC evaluated 

in 2014 (F4:F6 generation) were used to predict phenotypes of the SC evaluated in 2015 (F4:F7 

generation) and 2016 (F4:F8 generation), the SC evaluated in 2015 were used to predict 

phenotypes of SC evaluated in 2016, and SC from 2014 and 2015 were used simultaneously to 

predict phenotypes of SC evaluated in 2016. The Co-op population and SC were evaluated in 

similar environments in 2014 and 2015 and were combined and used as TP to make similar 

predictions as before. Genomic predictions were made across years by merging the Co-op and SC 

data in 2014 to predict SC in 2015 and 2016, the 2015 Co-op and SC were used to predict SC in 

2016, and finally the Co-op and SC in 2014 and 2015 were used simultaneously to predict SC in 

2016. The 2014 Co-op data are means of two replications from one location, 2014 SC data are 

adjusted means from one location, while the 2015 Co-op and SC, and 2016 SC data are LS-Means 

from two locations (Kernen and Rosthern). 
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The fourth prediction scenario consisted of a single genomic prediction across years 

separately for each location. The SC evaluated at Kernen in 2014 were used to predict the 

phenotypes of the SC evaluated at Kernen in 2015 and 2016, the SC evaluated at Kernen in 2015 

were used to predict phenotypes of SC evaluated at Kernen in 2016, and the SC from Kernen 2014 

and 2015 were used simultaneously to predict phenotypes of SC evaluated at Kernen in 2016. 

Similarly, the SC evaluated at Rosthern in 2015 were used to predict phenotypes of SC evaluated 

at Rosthern in 2016. The Co-op and SC data sets were combined as described in the third prediction 

scenario and used to make genomic prediction across years separately in each location. In 

prediction scenarios three and four, 16,115 SNP markers were used for predictions involving SC 

only, while 9,187 SNP markers common to both the SC and Co-op populations were used to make 

predictions involving combined SC and Co-op populations. Predictions in scenarios three and four 

were made using a reaction norm model (Equation 5.4) that incorporates the main effects of 

molecular markers and environments using covariance functions as implemented in Jarquín et al. 

(2014a).  

The G-BLUP, BayesB, BL, RKHS-KA, and reaction norm models were fitted using the R 

package BGLR (Pérez and de los Campos, 2014). The default settings of BGLR and number of 

iterations were used as described in Chapter three. In prediction scenarios three and four, 

phenotypic prediction accuracy (rP) was calculated as a correlation between observed phenotypes 

of the SC in the environments used for training and validating the model. The RR-BLUP and GS 

+ de novo GWAS models were fitted using the R package rrBLUP (Endelman, 2011). For the GS 

+ de novo GWAS model, single marker regression was conducted in each fold using the LS-means 

of each trait across environments using Windows QTL Cartographer, v2.5.011 (Wang et al. 2012). 

Single marker regression was performed based on a subset of 1,219 evenly spaced SNPs that were 

used for QTL analyses in Chapter seven. The P-values from the single marker regression were 

sorted from low to high and multiple testing correction was performed for all SNPs using FDR 

methods described in Chapter six. Up to three significant markers were fitted as fixed effects as 

described in Chapter three (Appendix H), while all the remaining markers were fitted as random 

effects.    
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8.3 Results and Discussion 

8.3.1 Across-population genomic prediction 

Genomic predictions were made across populations by estimating marker effects using the 

TP and predicting GEBVs for the SC. When none of the parents were included in the TP, prediction 

accuracy was very low for all traits; accuracies of 0.15 and 0.22 for heading date, 0.05 and -0.09 

for plant height, 0.15 and 0.27 for maturity, 0.05 and 0.08 for grain yield, 0.19 and 0.18 for test 

weight, and 0.24 and 0.27 for thousand-kernel weight in G-BLUP and BayesB, respectively (Table 

8-1). Including two of the parents in the TP did not consistently improve prediction accuracies 

across all traits in either G-BLUP or BayesB (Table 8-1). BayesB showed slightly higher accuracy 

than G-BLUP for all traits except plant height and test weight. Including 50 random lines from the 

SC in the TP resulted in 1.2 to 4.4-fold increase in accuracy for all traits compared to when only 

the parents were included (Table 8-1). The largest increase was observed for plant height where 

accuracy increased approximately from 0 to 0.3 in both methods. A further increase of the number 

of SC in the TP to 100 resulted in 1.8 to 4.6-fold increase in accuracy for all traits compared to 

when only the parents were included (Table 8-1). The low prediction accuracy when the SC were 

not added to the TP could be because of the distant relationship between these populations. When 

the populations are distantly related, they might have different QTL or different markers in LD 

with shared QTL. When the data from the populations are combined, markers and QTL that are 

shared between populations can be used to make more accurate predictions. BayesB was the best 

performing model for all traits when the number of SC in the TP increased from 50 to 100. For 

heading date, prediction accuracy in BayesB was more than twice that obtained with G-BLUP, 

while for maturity there was nearly 50% increase in accuracy in BayesB compared to G-BLUP 

(Table 8-1). One reason BayesB outperformed G-BLUP was because some traits, such as heading 

date and maturity, have large effect QTL in this population (Table 7-2). Lorenz et al. (2011) 

reported that variable selection methods, such as BayesB should be preferred over methods that 

induce homogenous shrinkage, such as RR-BLUP or G-BLUP for traits that are controlled by few 

QTL with large effects. Another explanation for the improved performance of BayesB is that it 

uses information from marker-QTL LD better than G-BLUP and is expected to yield higher 

accuracies when the TP and SC are distantly related (Habier et al., 2007). Habier et al. (2007) 

indicated that the accuracy of GEBVs depends on both genetic relationships among individuals 

and LD between markers and QTL. In the absence of close relationships, prediction accuracy is 
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driven by distant relationships that will be useful when there is strong LD in the population (Clark 

et al., 2012). The assumption of GS is that all QTL are in LD with one or more nearby markers 

(Meuwissen et al., 2001). However, when the populations are distantly related, markers that are in 

LD with QTL in one population may not be in LD in another population (de Roos et al., 2008; 

Goddard and Hayes, 2007). Estimation of marker effects across populations requires not only high 

LD in each population, but the same linkage phases between markers and QTLs in each population 

(Goddard and Hayes, 2007). This shows that the marker-QTL LD phase between the TP and SC 

is an important factor that affects the accuracy of prediction.  

Table 8-1. Prediction accuracy based on Pearson’s correlations between GEBVs estimated using 

two statistical models and trait phenotypes. Predictions were made for the selection candidates 

using a training population with varying degrees of genetic relationships.  

Training population† Model HD‡ HT MAT YLD TWT TKW 

Without parents G-BLUP 0.153 0.052 0.146 0.052 0.194 0.243 

 BayesB 0.216 -0.090 0.266 0.079 0.182 0.276 

With two parents G-BLUP 0.156 0.072 0.162 0.069 0.208 0.209 

 BayesB 0.194 -0.070 0.208 0.078 0.192 0.228 

With two parents and 50 SC G-BLUP 0.199 0.311 0.296 0.162 0.355 0.478 

 BayesB 0.242 0.308 0.340 0.181 0.359 0.501 

With two parents and 100 SC G-BLUP 0.287 0.309 0.351 0.324 0.467 0.590 

  BayesB 0.594 0.323 0.519 0.332 0.480 0.602 

†SC: selection candidates 

‡HD: heading date, HT: plant height, MAT: maturity, YLD: grain yield, TWT: test weight, TKW: thousand-

kernel weight. 
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Previous studies reported higher prediction accuracy when each selection candidate had at 

least one highly related line in the TP (Daetwyler et al., 2014). In this study, two of the three 

parents of the SC (CDC Utmost and CDC Plentiful) were included in the TP. The third parent 

(Pasteur), which has European origin and is more distantly related than the Canadian wheat lines, 

was not included in the TP. To investigate the effect of genetic relatedness on genomic prediction 

accuracy, the SC were divided into two groups based on their genomic relationship to the parents 

(Fig. 8-1). The first group (Group A) was composed of 121 lines that were closely related to 

Pasteur but distantly related to the two parents that were included in the TP. The second group 

(Group B) was composed of 183 lines that were closely related to the two parents in the TP. 

Predictions were made for the two groups separately using the marker effects estimated from the 

TP that included the parents. Accuracy was slightly higher when predictions were made for lines 

closely related to the parents in TP for all traits, except grain yield (Table 8-2). Overall, the 

prediction accuracy was very low for both groups even though two of the parents were included 

in the TP to enhance genomic relationships. This indicates that including parents in the TP may 

not ensure accurate prediction of GEBVs for progenies. Similar results have been reported by 

Windhausen et al. (2012), where prediction accuracies were close to zero even for crosses of lines 

included in the TP.  
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Fig. 8-1. Heat map and dendrogram of a genomic relationship matrix estimated using the EMMA 

algorithm based on 16K SNPs among the 304 wheat lines and three parents. Color codes show 

groups of lines based on their genomic relationships. Both rows and columns represent the lines. 

(A) Lines that clustered with Pasteur or none of the parents, (B) lines that clustered with CDC 

Utmost and CDC Plentiful. 
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Table 8-2. Prediction accuracy based on Pearson’s correlations between GEBVs estimated using 

two statistical models and trait phenotypes. Predictions were made for six traits in two groups of 

selection candidates.   

 Group A†  Group B‡ 

Trait§          G-BLUP    BayesB                   G-BLUP       BayesB 

HD 0.142 0.197  0.164 0.223 

HT -0.071 -0.124  0.143 -0.026 

MAT 0.083 0.136  0.198 0.289 

YLD 0.127 0.141  -0.002 -0.003 

TWT 0.079 0.056  0.302 0.260 

TKW 0.164 0.188  0.293 0.327 

†Selection candidates distantly related to parents included in the training population. 

‡Selection candidates closely related to parents included in the training population. 

§ HD: heading date, HT: plant height, MAT: maturity, YLD: grain yield, TWT: test weight, TKW: 

thousand-kernel weight. 

 

The across-population genomic prediction accuracies obtained in this study were close to 

zero even when parents were included in the TP. This indicates that marker effects estimated in 

one population do not predict GEBVs accurately in a different population unless the two 

populations are highly related. Several studies reported accuracies close to zero when unrelated 

populations were used to make genomic predictions (Charmet et al., 2014; Crossa et al., 2014; 

Riedelsheimer et al., 2013; Windhausen et al., 2012). Negligible prediction accuracies have been 

reported even when unrelated subpopulations were used to make predictions (Crossa et al., 2014). 

Studies that included parents, siblings, or other related data sets in the TP indicated that the best 

accuracies are achieved when TP and SC are closely related (Daetwyler et al., 2014; Riedelsheimer 

et al., 2013; Riedelsheimer et al., 2013; Zhao et al., 2013; Zhao et al., 2013). Based on five 

biparental DH maize populations developed from crosses involving four parents, Riedelsheimer et 

al. (2013) reported mean accuracies of zero or negative values when prediction was made for 

individuals in biparental families using a model trained based on data from unrelated biparental 

families. However, using half-sib and full-sib families in the training set improved prediction 

accuracy to 0.25 and 0.59, respectively. Daetwyler et al. (2014) indicated that the TP should 

contain at least one line that is highly related to a SC to achieve accurate genomic prediction. Zhao 

et al. (2013) also reported that on average the accuracy of grain yield prediction in hybrid wheat 

decreased by 44% when the training and validation sets were not related versus when there was at 
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least one common parent. On the other hand, based on two bi-parental hybrid rye populations that 

share one common parent, Wang et al. (2014b) showed that accuracy was substantially lower when 

one population was used as TP to estimate GEBVs of another population, but accuracy increased 

when both populations contributed to the training and validation sets. In this study, including two 

of the parents in the TP did not improve the accuracy of prediction in the SC, indicating that the 

genetic relationship created between the TP and SC was not sufficient. Meuwissen (2009) 

indicated that sufficient accuracies can be achieved for unrelated individuals if the size of the TP 

or marker density is substantially high. Bassi et al., (2016) also suggested that a TP of at least 50 

individuals that are full-sibs of the SC, 100 individuals for half-sibs, and at least 1000 individuals 

for a less related TP are required to achieve accuracies above 0.5. However, we were unable to 

achieve higher prediction accuracies when using the TP with or without the parents of the SC, 

indicating that across-population predictions using the data from this study may be impractical or 

might require more population or marker data.  

8.3.2 Within-population genomic prediction 

In contrast to the low accuracies observed when making across-population genomic 

predictions, we observed reasonably high accuracies for within-population genomic predictions 

(Tables 8-1 and 8-3). Prediction accuracies based on fivefold cross-validation within the SC ranged 

from 0.44 (in RKHS-KA for heading date) to 0.75 (in BayesB for heading date) for all model-trait 

combinations (Table 8-3). The higher accuracy when predictions were made within the same 

population is likely because the allele frequency and marker-QTL LD phase is similar between the 

training and validation sets. Using two hexaploid wheat DH populations Thavamanikumar et al. 

(2015) also reported higher prediction accuracies based on tenfold cross-validation in each 

population compared to those obtained based on independent cross-validation.  

In addition to observing improved accuracies for within-population genomic predictions, we 

also observed differences in accuracies among the models when predictions were made for traits 

with major effect QTL. There were significant differences among the evaluated models for heading 

date (P < 0.0001) and maturity (P = 0.0002). Prediction accuracy obtained in BayesB was 

significantly higher than accuracies of all the other models while the GS + de novo GWAS model 

was the second best performing model for heading date (Table 8-3). Similarly, prediction 

accuracies of BayesB and GS + de novo GWAS models were significantly higher than the 
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accuracies of all the other models for maturity, with BayesB showing a 14% higher accuracy than 

GS + de novo GWAS. Accuracy obtained in BayesB was 16 to 71% and 14 to 47% higher than 

the other models for heading date and maturity, respectively. The high accuracies obtained in 

BayesB were also observed when assessing across-population genomic predictions and may be 

due to the presence of few large effect QTLs underlying these traits (Table 7-2). Spindel et al. 

(2016) reported that the GS + de novo GWAS model was the most accurate and outperformed RR-

BLUP, BL, RKHS, Random forest, and multiple linear regression models, but the authors did not 

include BayesB, which is a variable selection method recommended for the prediction of traits that 

are controlled by few QTL with large effects. In this study, no significant difference was observed 

among the evaluated models for all the other traits. The similar performance of GS models across 

most traits is likely because these traits are controlled by many minor effect QTL and most models 

are reported to achieve similar prediction accuracies in these conditions (Clark et al., 2011).    

 

Table 8-3. Average and standard deviation of prediction accuracy (from fivefold cross-validation) 

based on Pearson’s correlation between GEBVs estimated using six statistical models and trait 

phenotypes of the selection candidates.   

Trait† RR-BLUP 

GS + de 

novo GWAS G-BLUP BayesB BL RKHS-KA 

HD 0.507(0.06)C 0.644(0.08)B 0.498(0.06)C 0.750(0.06)A 0.496(0.07)C 0.438(0.07)C 

HT 0.467(0.07)A 0.469(0.11)A 0.474(0.07)A 0.508(0.08)A 0.452(0.09)A 0.487(0.07)A 

MAT 0.545(0.07)B 0.652(0.09)A 0.540(0.07)B 0.741(0.05)A 0.539(0.08)B 0.503(0.07)B 

YLD 0.489(0.06)A 0.503(0.07)A 0.489(0.06)A 0.501(0.06)A 0.483(0.07)A 0.514(0.06)A 

TWT 0.538(0.15)A 0.557(0.12)A 0.539(0.15)A 0.585(0.14)A 0.540(0.15)A 0.536(0.14)A 

TKW 0.627(0.08)A 0.640(0.07)A 0.630(0.07)A 0.643(0.07)A 0.631(0.07)A 0.655(0.07)A 

ABC Within each row values followed by the same letter were not significantly different at the 0.05 

probability level.  

†HD: heading date, HT: plant height, MAT: maturity, YLD: grain yield, TWT: test weight, TKW: 

thousand-kernel weight.
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8.3.3 Genomic prediction across years for combined locations 

In plant breeding, GS can be applied to make predictions across generations of the same 

cross. Accuracies obtained in this study were very high for all traits when genomic predictions 

were made across years (Table 8-4). When the SC in 2014 (F4:F6 generation) was used to predict 

SC in 2015 (F4:F7 generation) and SC in 2016 (F4:F8 generation), accuracies for all traits ranged 

from 0.56 to 0.76 and 0.65 to 0.84, respectively (Table 8-4). When the SC in 2015 was used to 

predict SC in 2016, accuracies ranged from 0.62 to 0.85. Combining data from 2014 and 2015 

resulted in higher accuracy (ranged from 0.68 to 0.90) for all traits except for plant height. Our 

results agree with Wang et al. (2014b), who also reported that limiting the number of locations or 

years in field testing for the TP reduced the accuracy of GS predictions. Overall, GS can make 

accurate predictions across generations, and including more sample years improves accuracies. 

In contrast, we observed similar or slightly lower accuracies when combining population 

data to make across-year genomic predictions. Accuracies declined by 0.003 to 0.07 for all traits 

when the Co-op and SC data sets were combined to make across-year genomic predictions for the 

SC. This shows that combining different populations to increase the size of the TP may not be 

advantageous to make prediction for lines in subsequent generations. These results agree with 

Charmet et al. (2014) who reported that prediction accuracies did not improve when unrelated 

populations from different breeding programs were merged to increase TP size. Mixing different 

populations may reduce LD because the phase of LD varies across populations (Goddard, 2012). 

The reduced accuracy when combining different populations in the TP could be because only LD 

that is persistent across those populations is utilized in the prediction equations (Calus, 2010). 

Moreover, combining multiple related or unrelated populations into one TP may reduce prediction 

accuracy because of intense population structure in the TP (Riedelsheimer et al., 2013).  

Phenotypic prediction accuracies were computed as a correlation between the phenotypes of 

the SC from the respective environments used to train and validate the GS models. Phenotypic 

prediction accuracies ranged from 0.76 to 0.88 (heading date), 0.66 to 0.72 (plant height), 0.70 to 

0.82 (maturity), 0.62 to 0.77 (grain yield), 0.73 to 0.81 (test weight), and 0.81 to 0.91 (thousand-

kernel weight) (Table 8-4). The deviation of these values from one suggests the presence of G × 

E. The ratio of genomic prediction accuracy to phenotypic prediction accuracy (rGS/rP) ranged from 

0.86 (test weight) to 1.03 (maturity) with a mean ratio of 0.96, indicating that accuracies obtained 

from genomic and phenotypic predictions across years are highly comparable. Heffner et al. 



 

141 
 

(2011a) also reported similar ratios ranging from 0.84 (heading date) to 1.09 (grain yield) with a 

mean ratio of 0.95 when predictions were made across years. Similarly, Zhong et al. (2009) 

reported comparable accuracies between genomic and phenotypic selection methods. Altogether, 

we observed that genomic and phenotypic prediction accuracies were similar, and that accurate 

predictions can be made within the same population across generations. 

 

Table 8-4. Across-year genomic and phenotypic prediction accuracies based on combined data 

from two sites. Predictions were made for six traits evaluated across two sites (Kernen and 

Rosthern) and three years for a total of five environments. 

 Training population† Validation set HD‡ HT MAT YLD TWT TKW 

 Genomic prediction accuracy (rGS)§ 

SC 2014 SC 2015 0.751 0.700 0.699 0.562 0.689 0.761 

SC 2014 SC 2016 0.772 0.647 0.713 0.665 0.705 0.843 

SC 2015 SC 2016 0.853 0.618 0.795 0.644 0.756 0.835 

SC 2014 and 2015 SC 2016 0.870 0.683 0.800 0.715 0.807 0.899 

Co-op + SC 2014  SC 2015 0.687 0.684 0.661 0.553 ‒ 0.758 

Co-op + SC 2014 SC 2016 0.699 0.638 0.669 0.651 ‒ 0.839 

Co-op + SC 2015 SC 2016 0.807 0.583 0.759 0.632 0.735 0.819 

Co-op + SC 2014 and 2015 SC 2016 0.836 0.662 0.781 0.690 ‒ 0.893 

  Phenotypic prediction accuracy (rP)¶ 

SC 2014 SC 2015 0.764 0.723 0.709 0.620 0.804 0.813 

SC 2014 SC 2016 0.775 0.673 0.695 0.698 0.738 0.888 

SC 2015 SC 2016 0.859 0.661 0.799 0.685 0.786 0.860 

SC 2014 and 2015 SC 2016 0.881 0.717 0.818 0.767 0.807 0.912 

    rGS/rP#     

SC 2014 SC 2015 0.983 0.968 0.986 0.906 0.857 0.936 

SC 2014 SC 2016 0.996 0.961 1.026 0.953 0.955 0.949 

SC 2015 SC 2016 0.993 0.935 0.995 0.940 0.962 0.971 

SC 2014 and 2015 SC 2016 0.988 0.953 0.978 0.932 1.000 0.986 

†SC: selection candidates 

‡HD: heading date, HT: plant height, MAT: maturity, YLD: grain yield, TWT: test weight, TKW: 

thousand-kernel weight. 

§Pearson’s correlations between predicted values and trait phenotypes. 

¶Pearson’s correlations between phenotypes of the SC across years. 

#rGS/rP is the ratio of genomic prediction accuracy to phenotypic prediction accuracy.    

Missing cells indicate that there was no data for the Co-op population in that year.  
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8.3.4 Genomic prediction across years within locations 

One of the desired uses of GS is to make genomic predictions across years for a single 

location. When predictions were made across years separately in each location, both genomic and 

phenotypic prediction accuracies were lower compared to the prediction accuracy of combined 

analyses of locations (Table 8-5). At Kernen, when the SC in 2014 was used as TP to predict SC 

in 2015 and 2016, accuracies for all traits ranged from 0.50 to 0.74 and 0.57 to 0.76, respectively. 

When the SC in 2015 was used as TP to predict SC in 2016, accuracies for all traits ranged from 

0.49 to 0.81 and 0.43 to 0.74 at Kernen and Rosthern, respectively (Table 8-5). Combining data 

from 2014 and 2015 resulted in higher accuracy (ranging from 0.59 to 0.82) at Kernen, suggesting 

that genomic predictions across years were better when data from multiple locations or years were 

combined as opposed to using data from a single location or year. However, increasing the TP size 

by including the Co-op data set did not improve prediction accuracy in the SC.  

Phenotypic prediction accuracies ranged from 0.73 to 0.84 (heading date), 0.49 to 0.68 (plant 

height), 0.63 to 0.74 (maturity), 0.44 to 0.57 (grain yield), 0.66 to 0.76 (test weight), and 0.75 to 

0.83 (thousand-kernel weight) at Kernen, while at Rosthern phenotypic correlations between the 

SC in 2015 and 2016 were 0.72 (heading date), 0.47 (plant height), 0.64 (maturity), 0.61 (grain 

yield), 0.63 (test weight), and 0.77 (thousand-kernel weight) (Table 8-5). These accuracies varied 

depending on the trait and whether data were combined between years. The ratio of genomic 

prediction accuracy to phenotypic prediction accuracy (rGS/rP) at Kernen ranged from 0.86 (test 

weight) to 1.10 (grain yield) with a mean ratio of 0.99, while the ratio ranged from 0.90 (grain 

yield) to 1.03 (heading date) with a mean ratio of 0.96 at Rosthern; this suggests that genomic and 

phenotypic prediction accuracies were similar within test sites. These results indicate that accurate 

genomic predictions can be made using data from subsequent breeding stages and GS can be 

applied successfully to advance generations of a cross. However, it is important to note that in this 

study across-year predictions were made for inbred lines (F6 generation and later) and results 

might differ in segregating early generations. Moreover, no selection was made when advancing 

generations of the SC and selection that would typically take place in a practical breeding situation 

might affect marker-QTL LD and the accuracy of predictions.  
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Table 8-5. Across-year genomic and phenotypic prediction accuracies in each site. Predictions 

were made for six traits evaluated across two sites (Kernen and Rosthern) and three years for a 

total of five environments.  

Training population† Validation set HD‡ HT MAT YLD TWT TKW 

     Kernen    

 Genomic prediction accuracy (rGS)§ 

SC 2014 SC 2015 0.736 0.569 0.633 0.500 0.655 0.707 

SC 2014 SC 2016 0.750 0.623 0.652 0.574 0.641 0.757 

SC 2015 SC 2016 0.807 0.492 0.714 0.486 0.688 0.736 

SC 2014 and 2015 SC 2016 0.819 0.610 0.743 0.586 0.729 0.808 

Co-op + SC 2014 SC 2015 0.679 0.560 0.593 0.496 ‒ 0.698 

Co-op + SC 2014 SC 2016 0.681 0.610 0.616 0.566 ‒ 0.759 

Co-op + SC 2015 SC 2016 0.768 0.477 0.679 0.484 0.671 0.727 

Co-op + SC 2014 and 2015 SC 2016 0.769 0.605 0.729 0.576 ‒ 0.805 
 Phenotypic prediction accuracy (rP)¶ 

SC 2014 SC 2015 0.729 0.566 0.64 0.528 0.764 0.761 

SC 2014 SC 2016 0.748 0.67 0.628 0.540 0.663 0.800 

SC 2015 SC 2016 0.802 0.493 0.715 0.443 0.690 0.752 

SC 2014 and 2015 SC 2016 0.840 0.681 0.743 0.569 0.721 0.829 
 rGS/rP# 

SC 2014 SC 2015 1.009 1.005 0.988 0.947 0.858 0.930 

SC 2014 SC 2016 1.003 0.930 1.038 1.063 0.967 0.946 

SC 2015 SC 2016 1.006 0.997 0.999 1.096 0.998 0.979 

SC 2014 and 2015 SC 2016 0.975 0.896 1.000 1.028 1.011 0.976 

  Rosthern 

 Genomic prediction accuracy (rGS)§ 

SC 2015 SC 2016 0.734 0.432 0.636 0.552 0.614 0.742 

Co-op + SC 2015 SC 2016 0.680 0.367 0.613 0.529 0.595 0.722 

 Phenotypic prediction accuracy (rP)¶ 

SC 2015 SC 2016 0.716 0.472 0.638 0.614 0.632 0.766 

 rGS/rP# 

SC 2015 SC 2016 1.025 0.915 0.997 0.899 0.972 0.969 

†SC: selection candidates 

‡HD: heading date, HT: plant height, MAT: maturity, YLD: grain yield, TWT: test weight, TKW: 

thousand-kernel weight. 

§Pearson’s correlations between predicted values and trait phenotypes. 

¶Pearson’s correlations between phenotypes of the SC across years. 

#rGS/rP is the ratio of genomic prediction accuracy to phenotypic prediction accuracy.  

Missing cells indicate that there was no data for the Co-op population in that year.  
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8.4 Conclusion 

This study assessed the ability for GS to make predictions that address specific breeder 

needs. We compared different prediction scenarios using various cross-validation techniques and 

different statistical methods. Highly variable estimates of prediction accuracies were obtained 

across these methods and were strongly influenced by the cross-validation technique. The results 

showed that the genetic relationship between the TP and SC is an important factor affecting 

prediction accuracies, and it is important to develop a TP with strong genetic relationship to the 

SC. Genomic predictions across populations were close to zero even when few closely related lines 

were included in the TP, indicating that the LD phase between the two populations is more 

important than the genetic relationship from few highly-related lines. On the other hand, the 

commonly used fivefold cross-validation technique resulted in moderate to high genomic 

prediction accuracies. This indicates that it is important to use a cross-validation technique that 

resembles the actual application of GS in a breeding program. Comparison of different statistical 

methods based on within and across-population genomic predictions indicated that BayesB is 

superior to RR-BLUP, GS + de novo GWAS, G-BLUP, BL or RKHS-KA models when there were 

large effect QTL underlying traits, but in the absence of detectable large effect QTL there was no 

difference among the evaluated methods.   

Genomic predictions based on data collected in one year to predict the performance of lines 

evaluated in a different year resulted in comparable accuracies to that based on the phenotypes. 

This indicates that GS can be successfully implemented to make across-year genomic predictions 

for subsequent generations of a cross in a breeding program. However, the potential of GS to make 

predictions in segregating populations from early generations needs further investigation. 

Combining data across locations or years in the TP resulted in higher prediction accuracy, 

suggesting that it is important to evaluate the training set in more than one environment to achieve 

higher prediction accuracy. However, combining data from two unrelated populations to increase 

the TP size did not improve prediction accuracy. Finally, the ratios of genomic to phenotypic 

prediction accuracies were close to one; this is an important finding because it suggests that GS 

can be just as effective as phenotypic selection. Therefore, GS can be used as an alternative to 

phenotypic selection and has the potential to transform wheat breeding.   



 

145 
 

9. General Discussion and Conclusions 

9.1 Quantitative Trait Loci and Genome-Wide Association Mapping 

One of the objectives of this study was to identify markers significantly associated with QTL 

that control important agronomic and end-use quality traits in wheat. QTL and genome-wide 

association mapping studies were conducted using two different populations. The QTL mapping 

population was composed of 304 heterogeneous RILs developed from three-way crosses (CDC 

Plentiful//Pasteur/CDC Utmost) and GWAS was performed using 231 elite breeding lines. The 

elite breeding lines were used as TP and the RIL population was developed to be used as SC for 

GS study (Chapter eight). These populations were used to identify QTL underlying important 

agronomic traits and to better understand the genetic architecture of traits for GS (Chapters six and 

seven). A total of 23 QTL that underlie six important agronomic traits were detected in the SC 

based on the average LS-means across five environments (Fig. 7-2). Six QTL were identified for 

heading date and test weight, four QTL for maturity, three QTL for thousand-kernel weight, and 

two QTL each for plant height and grain yield. Most of these QTL had only minor effects, with 

heading date and maturity having the only large effect QTL. Similarly, 34 significant marker-trait 

associations were identified for eight agronomic and end-use quality traits from GWAS in the TP 

(Table 6-1). Twelve markers were significantly associated with plant height, ten markers were 

associated with sedimentation volume, four markers were associated with heading date, three 

markers were associated with thousand-kernel weight, two markers were associated with maturity, 

and one marker was associated with each of grain yield, test weight and falling number (Table 6-

1). Most of the significant markers identified in this population also had minor effects.  

Further characterization of the QTL and GWAS results indicated that some loci may be the 

same in both populations and may correspond to known genes or QTL. One of the SNP marker 

(wsnp_CAP12_c812_428290) flanking the region on chromosome 2D (18.4 ‒ 23.4 cM) that 

harboured a stable QTL for heading date, maturity and plant height in the RILs population was 

also significantly associated with heading date and maturity in the TP. In the TP, this marker 

explained 8 and 6% of the variation in heading date and maturity, respectively. In wheat, a major 

photoperiod insensitive gene (Ppd-D1) is located on the short arm of chromosome 2D (Worland, 

1996). The Ppd-D1 gene is involved in pleiotropic height reducing effects by accelerating ear 

emergence time and reducing plant life cycle (Worland et al., 1998; Worland et al., 2001). In this 
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study, the heading date, plant height and maturity QTL identified on chromosome 2D could be 

linked to the Ppd-D1 gene. Marker-trait associations were also detected for heading date on 

chromosomes 5B and 5D, and maturity on chromosome 5B in the TP. These markers explained 5 

to 8% of the phenotypic variance in this population. In wheat, the most important vernalization 

response genes VRN-A1, VRN-B1, and VRN-D1 were mapped previously in collinear regions on 

the long arm of chromosomes 5A, 5B and 5D, respectively (Dubcovsky et al., 1998; Law et al., 

1976). The genomic regions of significant markers associated with plant height also corresponded 

to genes or QTLs that were reported previously in wheat. For example, chromosome 4B is known 

to carry several reduced height genes including the major Rht-B1b gene that is known to affect 

plant height (Börner et al., 1996). Overall, several QTL underlying various important agronomic 

and end-use quality traits were detected in this study. Large effect QTL were identified for heading 

date and maturity in the SC but the genetic effects of most of the individual QTL identified for the 

other traits were relatively small, explaining < 10% of the phenotypic variance, which indicates 

the quantitative nature of the evaluated traits. Moreover, several environment-specific QTL were 

detected, indicating the presence of QTL-by-environment interactions. The identified QTL can be 

utilized for MAS following further validation in different genetic backgrounds. 

9.2 Comparison of GS Approaches and Models 

The main objective of this study was to identify the most appropriate statistical model and 

approach to implement GS in wheat breeding programs; to this end, we compared different GS 

approaches and models. In Chapter three, we used a TP of 231 varieties and advanced breeding 

lines to evaluate nine single-trait prediction models (RR-BLUP, G-BLUP, BRR, BL, BayesA, 

BayesB, BayesCπ, RKHS, and RKHS-KA), three multiple-trait prediction models (multiple-trait 

BayesA, multiple-trait BayesA Matrix and Scalar) and a model that combines GWAS and GS (GS 

+ de novo GWAS) using similar cross-validation folds. The average prediction accuracies based 

on Pearson’s correlation between estimated GEBVs and trait phenotypes ranged from 0.55 to 0.77 

across different model-trait combinations using fivefold cross-validation (Fig. 3-2). Generally, 

accuracies based on Spearman’s rank correlation were smaller than accuracies based on Pearson’s 

correlation, but all methods exhibited the same trend for both correlations. The results also 

suggested that the average accuracies of the evaluated single-trait prediction models were not 

significantly different for each trait (Fig. 3-2). Similarly, in Chapter eight, several statistical models 
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such as RR-BLUP, GS + de novo GWAS, G-BLUP, BayesB, BL, and RKHS-KA were compared 

using the 304 SC (RILs) based on fivefold cross-validation. Prediction accuracies within the SC 

ranged from 0.44 (in RKHS-KA for heading date) to 0.75 (in BayesB for heading date) for all 

model-trait combinations (Table 8-3). The results also indicated that prediction accuracy in 

BayesB was significantly higher than accuracies obtained in RR-BLUP, G-BLUP, BL and RKHS-

KA models for heading date and maturity but there was no significant difference among these 

models for all the other traits (Table 8-3). QTL analyses in this population revealed that there were 

stable QTL with relatively large effects underlying heading date and maturity, but effects of the 

QTL identified for the other traits were not large enough to be captured by the model (Table 7-2).  

The GS + de novo GWAS model is equivalent to RR-BLUP with up to three of the most 

significant SNPs identified from fold specific GWAS in the TP fitted as fixed effects (Spindel et 

al., 2016). This model was initially tested in rice and gains in prediction accuracy were reported 

for traits with large GWAS peaks (Spindel et al., 2016). In this study, no significant difference was 

observed between GS + de novo GWAS and the standard RR-BLUP in the TP (Fig. 3-6). This was 

because strong marker trait associations were not detected in the TP (Table 6-1). In the SC, GS + 

de novo GWAS outperformed RR-BLUP, G-BLUP, BL and RKHS-KS but it was inferior to 

BayesB for heading date and maturity (Table 8-3). However, for the other traits the accuracy of 

the GS + de novo GWAS model was not significantly different from the other models (Table 8-3). 

This suggests that fitting significant markers as fixed effects in GS is not advantageous if the 

effects of QTL underlying traits are small. This study also showed that BayesB is superior to GS 

+ de novo GWAS when there are large-effect QTL underlying traits. The results from Chapters 

three and eight agree with previous studies that reported similar levels of accuracy among different 

GS models based on empirical data (Charmet et al., 2014; Daetwyler et al., 2013; Heslot et al., 

2012). Simulation studies showed that when genetic variation is controlled by a few QTL with 

relatively large effects, variable selection methods such as BayesB have significantly higher 

accuracy than methods that shrink marker effects by assuming equal variance (Clark et al., 2011). 

Overall, the results from both Chapters three and eight suggest that variable selection methods, 

such as BayesB, should be considered when there are large effect QTL underlying traits, but when 

there are several QTL with minor effects, most GS models have similar performances.  

This study also evaluated multiple-trait genomic prediction models in wheat. The results 

from Chapter three showed that there was no advantage of the evaluated multiple-trait models over 
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the single-trait models for all trait combinations (Table 3-4). Previous studies based on simulation 

and real data from animal breeding programs reported that multiple-trait models have advantages 

over single-trait models for the prediction of low-heritability traits genetically correlated with 

high-heritability traits (Guo et al., 2014a; Hayashi and Iwata, 2013; Jia and Jannink, 2012; Jiang 

et al., 2015). Jia and Jannink (2012) also indicated that multiple-trait models capture the genetic 

correlation between traits more efficiently under major QTL genetic architectures. Moreover, 

multiple-trait models resulted in higher prediction accuracy than single-trait models when 

phenotypic records are missing for some of the individuals and traits (Calus and Veerkamp, 2011; 

Guo et al., 2014a; Jia and Jannink, 2012). However, multiple-trait models were inferior to single-

trait models in the absence of genetic correlation between traits, when trait heritability is high (h2 

> 0.5), and for traits with complete phenotypic data (Guo et al., 2014a; Hayashi and Iwata, 2013; 

Jia and Jannink, 2012). In this study, there was no benefit to the multiple-trait models over single-

trait models, likely because the estimates of heritability were high for all traits compared to the 

heritability estimates used in most simulation studies (Table 3-2). Moreover, no major QTL were 

detected for all traits in the TP and this might also have affected the ability of the multiple-trait 

models to capture the genetic correlation among traits. Antedependence-based GS models, which 

consider SNP effects as being spatially correlated based on the relative physical location of SNP 

markers along the chromosome, were reported previously to have higher accuracy than their 

standard counterparts (Jiang et al., 2015; Yang and Tempelman, 2012). In this study, we did not 

find any benefit of the antedependence-based Bayesian multiple-trait prediction models.  

9.3 Effects of Training Population Size, Marker Density, Heritability and Population 

Structure on GS accuracy 

The effect of TP size was an important factor that affected prediction accuracy. Increasing 

the TP size from 50 to 200 increased the prediction accuracy for all traits on average by 28% 

(ranging from 20 to 35%) (Fig. 4-1). This suggests that accurate predictions can be obtained by 

using a large TP size to estimate marker effects. In GS, several studies showed that increasing the 

TP size increases the accuracy of GS by providing more data to estimate marker effects (Asoro et 

al., 2011; Meuwissen et al., 2001; Muir, 2007; Saatchi et al., 2010; VanRaden et al., 2009). Combs 

and Bernardo (2013) suggested that the product of TP size and heritability is an important factor 

that determines accuracy rather than heritability or TP size individually. All things considered, it 
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is especially important to increase the accuracy of prediction for traits with low heritability by 

increasing the TP size.  

The effect of marker density on GS prediction accuracy was evaluated using five marker 

densities (770, 3K, 13K, 15K, and 18K SNPs). The results indicated that there was no difference 

in prediction accuracy among the evaluated marker densities for each trait (Fig. 4-2). This suggests 

that a reduced subset of evenly spaced markers can be sufficient for GS. Moser et al. (2010) also 

reported that a low-density assay of evenly spaced SNPs can provide sufficient prediction 

accuracies if the information content of the subset of SNPs is sufficient to estimate effects of 

distinct haplotypes. Similarly, Bassi et al. (2016) suggested that even marker distribution across 

the genome is crucial to capture important QTL. In this study, the similar prediction accuracies 

when marker number was increased could be because 770 evenly spaced SNPs were sufficient to 

accurately estimate the genomic relationships among the lines. The benefit of increasing marker 

density is to maximize the number of QTL in LD with at least one marker, which also maximizes 

the number of QTL whose effects will be captured by markers (Heffner et al., 2009). Marker 

density can also be a function of marker-QTL LD and the genetic architecture of the trait. It is 

therefore imperative to evaluate the optimum number of markers needed for accurate prediction 

of genetic values in different populations. Another explanation for the similar prediction accuracies 

when marker density was increased could be that there are insufficient degrees of freedom to 

benefit from the increase in marker density. Sample size is one of the most important factors 

limiting GS prediction accuracy (de los Campos et al., 2015). Increasing the number of markers 

without increasing the TP size may reduce accuracy because it increases collinearity among 

markers (Muir, 2007). In this study, increasing the TP size had a more important effect on accuracy 

than marker number.   

In Chapters three and four, we evaluated the effects of trait heritability, marker number and 

density, TP size, and population structure on GS prediction accuracy. The results indicated that 

there was no direct relationship between trait heritability and prediction accuracy (Table 3-2; Fig. 

3-2). Previous studies reported a strong relationship between the accuracy of genomic prediction 

and trait heritability, with the prediction being more accurate for traits with higher heritability 

(Combs and Bernardo, 2013; Heffner et al., 2011a; Moser et al., 2010; Saatchi et al., 2010). 

However, there are reported cases where prediction accuracy was higher for low heritability traits 

compared to traits with high heritability (Combs and Bernardo, 2013). In this study, heritability 
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had no affect on accuracy; this could be because heritability estimates were high for all traits in 

the population used for this study. 

The effect of population structure on GS prediction accuracy has been reported previously. 

In Chapter four, plots of the first two PCs indicated that the three subpopulations were weakly 

differentiated (Fig. 4-4). This suggests that the effect of population structure is not strong in this 

population. This is because the population used in this study was composed of elite breeding 

materials that have been intercrossed frequently, resulting in various degrees of admixtures. The 

effect of population structure on genomic prediction accuracy was assessed by using an interaction 

model that decomposes marker effects into components that are constant across groups and 

components that are group specific (de los Campos et al., 2015). This approach was compared 

with an across-group model that assumes constant marker effects across subpopulations, thereby 

ignoring population stratification, and a stratified or within-group model that estimates marker 

effects separately in each subpopulation (de los Campos et al., 2015). The results showed that the 

prediction accuracy of an interaction model that accounted for population structure was similar to 

an across-group model that ignored population structure (Fig. 4-5). This indicates that population 

structure had no effect on prediction accuracy in this population.  

9.4 Modelling Genotype-by-Environment Interaction in GS 

Environment has a major impact on cultivar performance and breeding strategies; therefore, 

environmental effects should be considered when performing GS predictions. In Chapter five, two 

methods of modelling G × E in GS were examined based on 81 lines that were evaluated in seven 

environments. The first method was based on M × E model that was implemented in Lopez-Cruz 

et al. (2015). The performance of the M × E model was compared with a single-environment model 

that estimates marker effects in each environment separately and across-environment model that 

ignores G × E (Lopez-Cruz et al., 2015). The second method used a class of reaction norm models 

that incorporate the main and interaction effects of molecular markers, environments, and ECs 

using covariance functions as implemented in Jarquín et al. (2014a). Predictions were made for 

grain yield and protein content based on two cross-validation designs (CV1 and CV2) that mimic 

real situations faced by plant breeders (Burgueño et al., 2012). CV1 involved prediction of 

phenotypes for lines that have never been tested in any of the environments mimicking newly 

developed lines, while CV2 involved prediction of phenotypes for lines that were evaluated in 
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some but not in other environments, thereby mimicking incomplete field trials. Environmental 

variables related to temperature, humidity and precipitation were included in the reaction norm 

models.  

When comparing the M × E to the single-environment and across-environment models, 

prediction accuracies varied depending on the cross-validation design used. The results indicated 

that for both traits the accuracy of the single-environment model was better than the accuracy of 

the M × E and across-environment models in CV1 (Tables 5-3 and 5-4). Previous studies also 

reported that the single-environment model performed either similar or better than the M × E model 

in CV1 (Crossa et al., 2015; Lopez-Cruz et al., 2015). This suggests that estimating marker effects 

separately in each environment is practical for predicting GEBVs of lines that were not tested in 

any of the environments. In CV2, the accuracy of the M × E model was 24.8 to 62.8% and 12.7 to 

29.4% higher compared to the single-environment model for grain yield and protein content, 

respectively. This is because multi-environment analysis uses information for each line across-

environments. However, prediction accuracies of the M × E model were comparable to the across-

environment model in CV2, indicating that there was no benefit of modelling G × E for both traits. 

Previous studies reported that the M × E model was the best performing model in CV2 (Crossa et 

al., 2015; Lopez-Cruz et al., 2015). Some of the differences between the results obtained in this 

study and the results from previous studies could be due to differences in environments, TP size, 

or other population characteristics. Generally, prediction accuracy in CV1 was lower compared to 

the accuracy obtained in CV2. This is because CV2 uses information for lines across-

environments, while this is not possible in CV1 because the lines have not been evaluated in any 

environment (Burgueño et al., 2012). 

Six reaction norm models were also evaluated in this study for modelling G × E in GS. The 

first model (EG) included only the main effects of environments and markers without interaction 

terms. Similarly, the second model (EGW) included only the main effects of environments, 

markers and ECs without interactions. The other four models included interaction terms of G × E, 

G × W or both G × W and G × E in addition to the main effects. The results suggested that adding 

the main effects of the ECs to the main effects of markers and environments did not improve 

prediction accuracy for both grain yield and protein content. Similar results were reported by 

Pérez-Rodríguez et al. (2015) because ECs did not vary within the environment. Moreover, adding 

the interaction terms did not improve prediction accuracy in both cross-validation designs except 
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for grain protein, where in CV1 the most comprehensive model EGW-G×WG×E gave 2 to 11% 

higher prediction accuracy compared to models that included only the main effects (Tables 5-5 

and 5-6). Previous studies reported improved prediction accuracy of models that included main 

and interaction terms compared to models based only on the main effects (Jarquín et al., 2014a; 

Jarquín et al., 2017; Pérez-Rodríguez et al., 2015; Sukumaran et al., 2017). In this study, lack of 

improvement in accuracy when modelling G × E in GS could be because the main effects of 

markers and environments explained a large proportion of the variance in the evaluated traits. 

However, the overall prediction accuracies obtained in this study were higher compared to the 

previously reported values (Crossa et al., 2015; Jarquín et al., 2014a; Jarquín et al., 2017; Lopez-

Cruz et al., 2015; Sukumaran et al., 2017). Comparison of the two methods of modelling G × E in 

GS was inconclusive because the results were variable depending on the cross-validation design 

and the trait.   

9.5 Effects of Genetic Relatedness, Training Population Composition and Cross-Validation 

Technique on GS accuracy 

The purpose of GS is to improve the speed and efficiency of crop breeding. We therefore 

assessed the performance of GS in different scenarios that address specific breeder needs. Genomic 

predictions were made across populations, within population, and across years. Genomic 

prediction across populations were made by calculating GEBVs for SC using marker effects 

estimated from the TP. The genetic relationship between the TP and SC was evaluated by including 

parents of the SC in the TP, excluding parents from the TP, and by adding parents along with 50 

and 100 randomly selected lines from SC in the TP. The results indicated that across-population 

genomic prediction accuracies were close to zero with or without the parents in the TP. Previous 

studies also reported accuracy close to zero when unrelated populations were used to make 

genomic predictions (Charmet et al., 2014; Crossa et al., 2014; Riedelsheimer et al., 2013; 

Windhausen et al., 2012). The low accuracy could be because of differences in allele frequencies 

and LD patterns between the TP and SC (Bassi et al., 2016; Charmet et al., 2014; de Roos et al., 

2008; de Roos et al., 2009; Goddard, 2012; Meuwissen, 2009). A marker and QTL that are in LD 

in one population may not be in LD in another population, resulting in poor prediction accuracies 

(de Roos et al., 2008). This suggests that marker effects estimated in one population do not predict 

GEBVs accurately in a different, unrelated population. For example, significant marker-trait 
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associations were detected for plant height on chromosomes 2A, 4B, and 5B in the TP, while QTL 

for plant height were detected on chromosomes 2D and 6D in the SC (Tables 6-1 and 7-2). When 

predictions were made for plant height across these populations, markers that are in LD with the 

QTL on chromosomes 2A, 4B, and 5B are given more weight to estimate marker effects in the TP 

but these markers have no association to the QTL controlling plant height in the SC, resulting in 

negative prediction accuracies in BayesB (Table 8-1).  

Including 50 lines from the SC in the TP resulted in 1.2 to 4.4-fold increase in accuracy 

compared to when only the parents were included (Table 8-1). A further increase of the number of 

SC in the TP to 100 resulted in 1.8 to 4.6-fold increase in accuracy for all traits compared to when 

only the parents were included (Table 8-1). This suggests that the genetic relationship between the 

TP and SC is important to improve prediction accuracy. Therefore, GS should not be used to make 

predictions across different populations unless these populations are closely related. In contrast, 

within-population genomic predictions based on fivefold cross-validation in the SC resulted in 

accuracies ranging from 0.44 (in RKHS-KA for heading date) to 0.75 (in BayesB for heading date) 

for all model-trait combinations (Table 8-3). This suggests that the k-fold cross-validation 

technique commonly used to assess prediction performance of GS models can be misleading if the 

actual application of GS in a breeding program is to make prediction across independent 

populations. The most attractive application of GS in plant breeding is to estimate GEBVs in one 

population based on marker effect estimates from an independent population. However, results 

from this study as well as previous studies showed that current GS models are not suitable to make 

across-population genomic predictions. 

Another potential application of GS in crop breeding programs is to make prediction of 

GEBVs across years to advance generations of the same cross. In this case, the parental generation 

is used to estimate marker effects and GEBVs will be estimated for progenies. Both genomic and 

phenotypic prediction accuracies were variable across traits but were reasonable for making 

informed breeding decisions (Tables 8-4 and 8-5). In this study, genomic prediction accuracies 

ranged from 0.75 to 0.87 for heading date, 0.62 to 0.70 for plant height, 0.70 to 0.80 for maturity, 

0.56 to 0.72 for grain yield, 0.69 to 0.81 for test weight, and 0.76 to 0.90 for thousand-kernel 

weight when predictions were made across years for the combined locations data set (Table 8-4). 

Phenotypic prediction accuracy was calculated as the correlation between observed phenotypes in 

the environments used for model training and cross-validation. Phenotypic prediction accuracies 
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ranged from 0.76 to 0.88 for heading date, 0.66 to 0.72 for plant height, 0.70 to 0.82 for maturity, 

0.62 to 0.77 for grain yield, 0.74 to 0.81 for test weight, and 0.81 to 0.91 for thousand-kernel 

weight. Combining data across locations or years resulted in higher prediction accuracy, indicating 

the importance of evaluating the TP in more than one environment to achieve higher prediction 

accuracy. On the other hand, combining data from the Co-op and SC to make across-year 

predictions in the SC reduced prediction accuracies by 0.003 to 0.07 for all traits. This suggests 

that there is no advantage of combining different populations to increase the size of the TP. When 

comparing the phenotypic and genomic prediction accuracies to each other, their ratio ranged from 

0.86 to 1.03 for all traits with a mean ratio of 0.96. This is a very important finding because it 

indicates that accuracies obtained from genomic and phenotypic predictions across years are 

highly comparable; therefore, GS can be applied to make across-year genomic predictions for 

subsequent generations of a cross in a wheat breeding program.    

9.6 Future Research 

The results of this study indicate that there is a strong potential for GS in wheat breeding; 

however, many of our results and analyses could be improved using larger population sizes. Based 

on a TP of 231 elite breeding lines and SC of 304 RILs, this study showed that marker effects 

estimated in one population do not predict GEBVs accurately in a different population. However, 

successful application of GS in crop breeding programs requires that accurate across-population 

genomic predictions need to be made. Based on simulated data, Meuwissen (2009) showed that 

breeding values of unrelated individuals can be predicted with accuracies of 0.88 – 0.93 if the 

population sizes are large enough. Similarly, due to the unbalanced nature of the data, the effect 

of modelling G × E in GS was evaluated based on a subset of 81 lines evaluated in seven 

environments. The effect of modelling G × E needs to be evaluated further using a larger TP size. 

Moreover, ECs related to temperature, humidity and precipitation were used to model G × E in 

this study. It is important that these and other environmental variables related to soil characteristics 

need to be investigated using a larger TP. It may be possible to better incorporate G × E and make 

more accurate across-population genomic predictions using GS in wheat if larger populations are 

used. 

Important questions that need to be answered are when and how to implement GS in wheat 

breeding programs. These were beyond the objectives of this study and further research is required 
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to determine when and how to incorporate knowledge about GEBVs derived from GS models into 

breeding programs. Moreover, a detailed cost-benefit analysis is required to determine the benefit 

of GS over standard breeding approaches in wheat. Towards answering these questions, the results 

of this study showed that across-year genomic prediction accuracies are comparable to prediction 

accuracies obtained based on the phenotypes. Therefore, GS has a potential to accelerate wheat 

breeding using data from subsequent breeding stages; this may be the best way to implement GS 

in wheat breeding. However; in this study, genomic predictions were made for inbred lines (F6 

generation and later) advanced without selection and it is important to evaluate across-year 

genomic predictions for early generation segregating populations in actual breeding programs. 
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Appendices 

Appendix A. Origin and pedigree information of the lines used as training population and for genome-wide association study. 

Name Trial Origin Pedigree 

5500HR Varcomp Canada N91-2381/AC Minto 

5600HR Varcomp Canada N91-2071/AC Minto 

5601HR Varcomp Canada N893-2410/AC Majestic 

5602HR Varcomp Canada AC Barrie/Norpro 

5603HR Varcomp Canada McKenzie// 97NPI15-55/Lars 

5604HR CL Both Canada AC Barrie//Butte86*4/FS4/3/CDC Teal/4/AC Domain*2/AC Cora 

5700PR Varcomp Canada N91-3051/AC Foremost 

5701PR Varcomp Canada N89-3003/N87-446//Oslo 

5702PR Varcomp Canada HY 437///Russ//Sumai #3/Dalen 

8021-V2 Co-op Canada Kenya 321/Peck 

AC Abbey Varcomp Canada BW 608/ 93464//BW 591 

AC Barrie Both Canada Neepawa/Columbus//Pacific 

AC Cadillac Both Canada Pacific*3/BW 553 

AC Cora Co-op Canada Katepwa/RL 4509 

AC Crystal Both Canada HY 377/L8474-D1 

AC Domain Both Canada BW 83/ND585 

AC Eatonia Varcomp Canada Leader/Lancer 

AC Elsa Varcomp Canada Pacific/Laura 

AC Foremost Varcomp Canada HY320*5/BW553//HY320*6/7424-BW5B4 

AC Intrepid Both Canada Laura/RL 4596//CDC Teal 

AC Karma Co-op Canada HY320*5/BW553//HY 358///HY 358/ 7915-QX76B2 

AC Majestic Co-op Canada Columbus*2//Saric-70/Neepawa///Columbus*5//Saric-70/Neepawa 

AC Michael Co-op Canada Park/Neepawa 

AC Minto Co-op Canada CLMS/BW63//Katepwa/BW552 

AC Splendor Both Canada Laura/RL 4596//Roblin/BW 107 
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Appendix A. Continued 

Name Trial Origin Pedigree 

AC Taber Varcomp Canada Tobari F 66/Romany//HY 320*2/BW 553 

AC Vista Varcomp Canada HY344/7915-QX76B2//HY358*3/BT10 

Alikat Co-op Canada Katepwa*3/Maringa 

Alsen Co-op USA ND-674/ND-2710//ND 688 

Alvena Both Canada BW 711/AC Intrepid 

Benito Co-op Canada CT 257/RL 4008///RL 4255*4//MIT/CI7090 

Bluesky Co-op Canada Potam S 70/Glenlea 

Burnside Varcomp Canada Glenlea*2// 90B07-W3B/2*RL4452 

BW270 Co-op Canada BW 165/RL 4660 

BW275 Co-op Canada BW 83/ND585///BW 34*6//Thatcher/Poso 48 

BW314A Co-op Canada RL 4763*2/Howell 

BW317 Co-op Canada AC Cadillac/ 8405-JC3C//AC Elsa 

BW334 Co-op Canada 9007-FB1C/AC Elsa//AC Barrie 

BW337 Co-op Canada CDC Teal*2/ND-2710 

BW338 Co-op Canada BW 83/ND585 

BW343 Co-op Canada 94B42-V2A/Superb 

BW360 Co-op Canada McKenzie*3//BW174*2/Clark 

BW369 Co-op Canada BW 193/Grandin//BW 236/AC Domain 

BW370 Co-op Canada N96-2449/AC Splendor 

BW371 Co-op Canada BW 240/McKenzie 

BW377 Co-op Canada AC Barrie*2//CDC Teal*2/Seneca-90 

BW385 Co-op Canada 00H01*X3/ 98B21-S4A04 

BW387 Co-op Canada BW 193/Grandin//BW 236/AC Domain 

BW389 Co-op Canada N98-2670/McKenzie 

BW391 Co-op Canada N95-2249/AC Domain//BW 763 

BW395 Co-op Canada 99B61-AM15A3/BW392 
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Appendix A. Continued 

Name Trial Origin Pedigree 

BW396 Co-op Canada 99B61-AY30B5/BW392 

BW397 Co-op Canada Alsen/P00.06-77 

BW403 Co-op Canada unkown 

BW410 Co-op Canada McKenzie//BW257/94B92-Y3B 

BW416 Co-op Canada 97S2029-66/ 97S2177-41 

BW417 Co-op Canada 98S2014-10/ 97S2177-41 

BW421 Co-op Canada CDC Bounty/FHB9 

BW423 Both Canada CDC Bounty/FHB9 

BW425 Co-op Canada AC Domain/BW 257 

BW427 Co-op Canada Superb/ 98B19*J191 

BW429 Co-op Canada McKenzie/Alsen 

BW430 Co-op Canada Alsen/BW 313 

BW431 Co-op Canada 00H01*F57/BW 344 

BW433 Co-op Canada BW275W/N99-2587 

BW449 Co-op Canada 00H01*F57/BW 344 

BW450 Co-op Canada 00H01*D26/ 00H04*J3 

BW454 Co-op Canada HC736/98B69-R28//2*Prodigy///HC374*3/ 98B69-L47 

BW455 Co-op Canada 98B34-T4B/ 98B26-N1C01B 

BW464 Co-op Canada Kane/ 98B25-AS3C02 

BW469 Co-op Canada BW 361/ 5602HR 

BW479 Co-op Canada 02S2004-2-12/Glenn 

BW755 Co-op Canada Grandin*3/Fidel 

BW768 Co-op Canada P8913-V2A5/2* 8405-JC3C 

BW774 Co-op Canada P8913-V2A5/2* 8405-JC3C 

BW796 Co-op Canada AC Cadillac/ 8405-JC3C//AC Elsa 

BW809 Co-op Canada AC Barrie/AC Elsa 
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Appendix A. Continued 

Name Trial Origin Pedigree 

BW811 Co-op Canada AC Elsa//W88499/BW148 

BW813 Co-op Canada AC Elsa*2/BW 755 

BW814 Co-op Canada AC Elsa*2/BW 755 

BW826 Co-op Canada AC Barrie//Butte86*4/FS4///McKenzie 

BW830 Co-op Canada BW 674/AC Cadillac//AC Barrie 

BW833 Co-op Canada SD-3055/AC Barrie 

BW834 Co-op Canada BW 725/AC Intrepid//AC Barrie 

BW839 Co-op Canada 94B35-X3A/AC Barrie//Superb 

BW843 Co-op Canada AC Majestic/X95.4 

BW847 Co-op Canada AC Barrie/W93079 

BW849 Co-op Canada McKenzie//BW661/BW755 

BW852 Co-op Canada W98085/AC Barrie 

BW854 Co-op Canada AC Barrie/BW 725 

BW859 Both Canada N94-2189/N92-2308///AC Barrie//Butte86*4/FS4 

BW870 Co-op Canada Alsen/AC Elsa//AC Barrie 

BW871 Co-op Canada Alsen/AC Elsa//AC Barrie 

BW879 Co-op Canada N92-2308/AC Majestic/5/AC Barrie//Butte86*4/FS4///BW-604/BW38/4/Columbus/Amidon 

BW901 Co-op Canada BW 807/Journey//Lillian 

BW902 Co-op Canada BW 317/2*Alsen 

BW908 Co-op Canada CDC Go/ND694 

BW911 Co-op Canada BW 322/PT 607 

BW912 Co-op Canada 99S2087-7L//ID580/Briggs 

BW919 Co-op Canada 01II01-20-5G/ 5602HR 

BW922 Co-op Canada BW 282/CDC Go 

BW927 Co-op Canada Infinity/BW 349//Alsen 

BW928 Co-op Canada Infinity/BW 349//Alsen 
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Appendix A. Continued 

Name Trial Origin Pedigree 

BW929 Co-op Canada Infinity/BW 349//Alsen 

BW930 Co-op Canada Prodigy/Lovitt//Alsen 

BW935 Co-op Canada Infinity/ 5602HR//Alsen 

BW942 Co-op Canada BW755/11A//2*ND694 

BW948 Co-op Canada FHB148/BW 278//Snowbird 

BW949 Co-op Canada Helios/Somerset 

BW956 Co-op Canada Lillian/BW 349//BW 828 

BW959 Co-op Canada Helios/ 5602HR 

BW961 Co-op Canada Alsen/Waskada 

Carberry Both Canada Alsen/Superb 

CDC Abound Both Canada Superb*2/BW 755 

CDC Alsask Varcomp Canada AC Elsa/AC Cora 

CDC Bounty Varcomp Canada Katepwa/W82624 

CDC Go Varcomp Canada Grandin/SD-3055 

CDC Imagine Both Canada CDC Teal*4/FS2 

CDC Kernen Varcomp Canada CDC Bounty/FHB4 

CDC Makwa Co-op Canada S7432/MIT//Benito 

CDC Merlin Varcomp Canada RL4386//BW525/BW37 

CDC Osler Varcomp Canada AC Cora/PT 534 

CDC Plentiful Both Canada BW 282/CDC Go 

CDC Rama Varcomp Canada McNeal/Glenlea 

CDC Stanley Varcomp Canada W95132/AC Barrie 

CDC Teal Varcomp Canada BW-604/BW38 

CDC Thrive Varcomp Canada CDC Bounty/W98501 

CDC Utmost Both Canada AC Elsa//CDC Teal/Seneca 

CDC Walrus Varcomp Canada Glenlea*2/McNeal 
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Appendix A. Continued 

Name Trial Origin Pedigree 

CDN Bison Varcomp Canada ES 012/ES 009 

Columbus Varcomp Canada CT 257/RL 4008//Neepawa*5/BW 34 

Conway Co-op Canada CHR/7C//NEP/OPAL 

Cutler Co-op Canada CNO/CC//INIA F 66 

Glencross Varcomp Canada 96E06*A8/ 94E13-D1B 

Glenlea Varcomp Canada Pembina*2/BAGE///SN64/TZPP//Nainari 60 

Glenn Varcomp USA ND 2831/Steele, PI516196 

Goodeve VB Varcomp Canada Goodeve/AC Intrepid 

GP069 Co-op Canada HY 459/ALSEN//Snowhite475 

Grandin Co-op Canada 

LEN//Butte*2/ND507/8/North Dakota 

499///Justin/RL4205//WIS261/7/Butte/6/Butte/5/Waldron/4/PBA//TH/TF/3/PBA//TH/AUS-6774 

Harvest Varcomp Canada AC Domain*2/BN-142 

Helios Varcomp Canada BW 674/AC Cadillac//AC Barrie 

HW021 Co-op Canada ‒ 

HW024 Co-op Canada Snowbird///BW315//Snowbird*2/BW314 

HY682 Varcomp Canada HY 639/ 99 EPWAMDG 61 

Infinity Varcomp Canada ND-671/ 8405-JC3C//AC Elsa 

Invader Co-op Canada Sinton/STOA 

Journey Varcomp Canada CDC Teal//Grandin/PT819 

Kanata Co-op Canada BW 83/ND585///BW 34*6//Thatcher/POSO 48 

Kane Varcomp Canada AC Domain/McKenzie 

Katepwa Varcomp Canada Neepawa*6/RL2938///Neepawa*6//PI 59284/2*FCR 

Kenyon Co-op Canada Neepawa*5/Buck Manantial 

Lancer Co-op Canada Fortuna/4/K58/N//TH///FN/TH 

Laser Co-op Canada NBB134/ 70M009 

Laura Varcomp Canada BW15/BW 517 
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Appendix A. Continued 

Name Trial Origin Pedigree 

Leader Co-op Canada Fortuna/4/K58/N//TH///FN/TH 

Lillian Varcomp Canada BW 621*3/ 90B07-AU2B 

Lovitt Varcomp Canada 8405-JC3C*2/AC Cora 

McKenzie Both Canada Columbus/Amidon 

Minnedosa Varcomp Canada AC Vista*3/LR18 

Muchmore Both Canada Alsen/Superb 

Neepawa Varcomp Canada CT 257/RL 4008 

NRG010 Varcomp Canada ND-2710/HY 459//AC Vista 

Pacific Co-op Canada RL4302/RL4356//RL4359/RL4353 

Park Varcomp Canada CT609/Thatcher 

Pasqua Co-op Canada BW63//BW63/CLMS 

Peace Co-op Canada BW 165/RL 4660 

Prodigy Varcomp Canada SWP2242/STOA 

PT206 Co-op Canada AC Cadillac/ 8405-JC3C//AC Elsa 

PT212 Co-op Canada BW 711/AC Intrepid 

PT224 Co-op Canada AC Cadillac/Superb//AC Barrie 

PT225 Co-op Canada AC Cadillac/Superb//AC Barrie 

PT228 Co-op Canada 9229G-003B/AC Barrie//AC Elsa 

PT242 Co-op Canada Goodeve/ 96B23-AD2D//CDC Osler 

PT246 Co-op Canada Stettler/Glenn 

PT421 Co-op Canada AC Domain/CDC Teal 

PT425 Co-op Canada AC Splendor/AC Elsa 

PT430 Co-op Canada AC Intrepid*3//BW174*2/Clark 

PT434 Co-op Canada AC Domain*6/LR22A 

PT435 Co-op Canada AC Domain*6/LR22A 

PT441 Co-op Canada McKenzie*3//BW174*2/Clark 
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Appendix A. Continued 

Name Trial Origin Pedigree 

PT443 Co-op Canada BW 226/Harvest 

PT446 Co-op Canada BW 226/Harvest 

PT447 Co-op Canada McKenzie//BW257/94B92-Y3B 

PT450 Co-op Canada AC Splendor/Harvest 

PT451 Co-op Canada BW 226/BW 314 

PT452 Co-op Canada AC Splendor/BW 314 

PT456 Co-op Canada BW 226/BW 314 

PT458 Co-op Canada Harvest/McKenzie//AC Intrepid 

PT459 Co-op Canada Harvest/McKenzie//AC Intrepid 

PT460 Co-op Canada Harvest/McKenzie//AC Intrepid 

PT464 Co-op Canada PT 425/Helios 

PT465 Co-op Canada AC Intrepid/Somerset 

PT468 Co-op Canada Helios/Somerset 

PT551 Co-op Canada CDC Teal//EE8/KYN18 

PT553 Co-op Canada PT532//Columbus*2/CDC Makwa 

PT554 Co-op Canada PT532///Columbus//Roblin/5297 

PT558 Co-op Canada AC Domain//ND640/PT532 

PT559 Both Canada SD-3055/AC Domain 

PT560 Co-op Canada AC Domain//ND655/PT532 

PT565 Co-op Canada AC Barrie/CDC Teal 

PT570 Co-op Canada McKenzie//BW661/BW755 

PT574 Co-op Canada AC Intrepid//CDC Teal/97IMIEG2-18 

PT577 Co-op Canada AC Intrepid/CDC Bounty 

PT579 Co-op Canada CDC Alsask/BW 280 

PT583 Co-op Canada BW 282/P00.02-56 

PT610 Co-op Canada BW 193/Grandin//BW 236/AC Domain 
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Appendix A. Continued 

Name Trial Origin Pedigree 

PT612 Co-op Canada BW 270//N93-2210/BW193 

PT613 Co-op Canada Bergen/JAG SIB//BW193///AC Intrepid 

PT616 Co-op Canada N99-2234/ 97S2177-41 

PT619 Co-op Canada McKenzie/BC97ROM-52//BRIGGS 

PT624 Co-op Canada Alsen/BW 350 

PT637 Co-op Canada BW 337/AC Elsa 

PT756 Co-op Canada AC Domain/Saunders 

Red Fife Varcomp Canada LV-POL 

Rescue Co-op USA APEX/S615 

RL4137 Co-op Canada CID 796 SID 1/Mentana//RL-2265/2*Redman///Thatcher*5/III-52-7 

RL4452 Co-op Canada Glenlea*6/Kitt 

Roblin Both Canada BW15/BW38//BW40/RL4353 

Selkirk Co-op Canada RL-2265/2*Redman//Regent/Canus 

Snowbird Both Canada BW 83/ND585///BW 34*6//Thatcher/Poso 48 

Snowstar Both Canada RL 4869/McKenzie 

Somerset Varcomp Canada 90B01-AD4D/Pasqua 

Stettler Varcomp Canada Prodigy/Superb 

Sunmist Co-op Australia ‒ 

Superb Both Canada Grandin*2/AC Domain 

SY985 Varcomp Canada N99-3098WL/N98-3080W 

Thatcher Varcomp USA Marquis/Iumillo//Marquis/Kanred 

Unity Both Canada McKenzie*3//BW174*2/Clark 

Vesper Varcomp Canada 

Augusta/Hard White Alpha//3*AC Barrie/6/BW 

150*2//TP/TM/3/2*Superb/4/Grandin*2/Caldwell/5/Superb 

Waskada Both Canada BW 278/2*Superb 

Wildcat Co-op Canada NB113/Glenlea 
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Appendix B. Steps used for SNP genotype calling of the training population (varieties and 

advanced breeding lines) using the polyploid version of Genome Studio. 

Step 1 

1. Set DBSCAN and OPTICS clustering algorithm parameters Cluster Distance to 0.1 and 

Minimum Number of Points in Cluster to 10.  

2. Select all SNPs in SNP Table, right click over the selected SNPs and choose Cluster Selected 

SNPs in the menu that appears, then select OPTICS in the sub-menu. 

3. Sort SNP Table by C1 Freq in ascending order.  

4. Select SNPs with C1 Freq < 1 and set Aux to 5. 

Step 2 

1. Filter SNPs with Aux = 0   

2. Set OPTICS clustering algorithm parameter Cluster Distance to 0.09 

3. Select all SNPs in SNP Table, right click over the selected SNPs and choose Cluster Selected 

SNPs 

4. Sort SNP Table by C1 Freq in ascending order.  

5. Select SNPs with C1 Freq < 1 and set Aux to 10.  

Step 3 

1. Filter SNPs with Aux = 0 

2. Set OPTICS clustering algorithm parameter Cluster Distance to 0.08  

3. Select all SNPs in SNP Table, right click over the selected SNPs and choose Cluster Selected 

SNPs 

4. Sort SNP Table by C1 Freq in ascending order.  

5. Select SNPs with C1 Freq < 1 and set Aux to 15. 

Step 4 

1. Filter SNPs with Aux = 0 

2. Set OPTICS clustering algorithm parameter Cluster Distance to 0.07 

3. Select all SNPs in SNP Table, right click over the selected SNPs and choose Cluster Selected 

SNPs 

4. Sort SNP Table by C1 Freq in ascending order.  

5. Select SNPs with C1 Freq < 1 and set Aux to 20.  
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Step 5 

1. Filter SNPs with Aux = 0 

2. Set OPTICS clustering algorithm parameter Cluster Distance to 0.06 

3. Select all SNPs in SNP Table, right click over the selected SNPs and choose Cluster Selected 

SNPs 

4. Sort SNP Table by C1 Freq in ascending order.   

5. Select SNPs with C1 Freq < 1 and set Aux to 25.  

Step 6 

1. Filter SNPs with Aux = 0 

2. Set OPTICS clustering algorithm parameter Cluster Distance to 0.05 

3. Select all SNPs in SNP Table, right click over the selected SNPs and choose Cluster Selected 

SNPs 

4. Sort SNP Table by C1 Freq in ascending order.  

5. Select SNPs with C1 Freq < 1 and set Aux to 30.  

Step 7 

1. Filter SNPs with Aux = 0 

2. Set OPTICS clustering algorithm parameter Cluster Distance to 0.04 

3. Select all SNPs in SNP Table, right click over the selected SNPs and choose Cluster Selected 

SNPs 

4. Sort SNP Table by C1 Freq in ascending order.   

5. Select SNPs with C1 Freq < 1 and set Aux to 35.  

Step 8 

1. Select SNPs with Aux = 0 

2. Set OPTICS clustering algorithm parameter Cluster Distance to 0.03 

3. Select all SNPs in SNP Table, right click over the selected SNPs and choose Cluster Selected 

SNPs 

4. Sort SNP Table by C1 Freq in ascending order.   

5. Select SNPs with C1 Freq < 1 and set Aux to 40. 

Step 9 

1. Select SNPs with Aux = 0 

2. Set OPTICS clustering algorithm parameter Cluster Distance to 0.02 
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3. Select all SNPs in SNP Table, right click over the selected SNPs and choose Cluster Selected 

SNPs 

4. Sort SNP Table by C1 Freq in ascending order.   

5. Select SNPs with C1 Freq < 1 and set Aux to 45.  

Step 10 

1. Select SNPs with Aux = 0 

2. Set OPTICS clustering algorithm parameter Cluster Distance to 0.01 

3. Select all SNPs in SNP Table, right click over the selected SNPs and choose Cluster Selected 

SNPs 

4. Sort SNP Table by C1 Freq in ascending order.   

5. Select SNPs with C1 Freq < 1 and set Aux to 50.  

6. Select SNPs with Aux = 0 and set comment as Monomorphic. 

Finally, filter SNP Table by Aux > 0 and visually check clustering. Manually curate incorrectly 

clustered SNPs.  
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Appendix C. List of significant markers detected from fold specific GWAS in the training 

population and their R2 values. These markers were fitted as fixed effects in the GS + de novo 

GWAS model for genomic predictions in the training population based on fivefold cross-validation 

Trait† CV Fold‡ SNP ID Chromosome Position (cM) Marker R2 

HD 1 wsnp_CAP12_c812_428290 2D 19.03 0.11 

HD 2 wsnp_CAP12_c812_428290 2D 19.03 0.10 

HD 3 wsnp_CAP12_c812_428290 2D 19.03 0.08 

HD 3 BS00065128_51 5B 110.56 0.07 

HD 4 wsnp_Ex_c13485_21225504 5B 97.28 0.08 

HD 4 wsnp_CAP12_c812_428290 2D 19.03 0.08 

HD 5 wsnp_CAP12_c812_428290 2D 19.03 0.09 

HT 1 IAAV971 4B 57.49 0.15 

HT 1 wsnp_Ra_c22026_31453420 4B 72.53 0.09 

HT 1 Tdurum_contig33737_157 4B 55.96 0.13 

HT 2 IAAV971 4B 57.49 0.15 

HT 2 Excalibur_c56787_95 4B 58.10 0.09 

HT 2 Tdurum_contig33737_157 4B 55.96 0.13 

HT 3 IAAV971 4B 57.49 0.14 

HT 3 wsnp_Ra_c22026_31453420 4B 72.53 0.08 

HT 3 Tdurum_contig33737_157 4B 55.96 0.11 

HT 4 IAAV971 4B 57.49 0.11 

HT 4 wsnp_Ex_c47370_52604482 2A 106.86 0.07 

HT 4 RAC875_c38018_278 2A 110.13 0.09 

HT 5 IAAV971 4B 57.49 0.15 

HT 5 Tdurum_contig64772_417 4B 50.85 0.10 

HT 5 Tdurum_contig33737_157 4B 55.96 0.14 
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Appendix C. Continued 

Trait† CV Fold‡ SNP ID Chromosome Position (cM) Marker R2 

MAT 1 wsnp_CAP12_c812_428290 2D 19.03 0.08 

MAT 2 wsnp_CAP12_c812_428290 2D 19.03 0.06 

MAT 3 wsnp_CAP12_c812_428290 2D 19.03 0.06 

MAT 4 RAC875_c62325_320 6A 40.52 0.08 

MAT 5 wsnp_CAP12_c812_428290 2D 19.03 0.08 

YLD 1 wsnp_Ku_c6065_10682531 7A 125.26 0.06 

YLD 2 BS00067907_51 2A 132.74 0.07 

YLD 2 Kukri_c6944_1636 2A 140.94 0.06 

YLD 2 wsnp_JD_c640_960796 2B 20.86 0.06 

YLD 3 IACX2250 6A 81.17 0.07 

YLD 4 Tdurum_contig43552_666 5D 193.91 0.08 

YLD 5 wsnp_Ku_c6065_10682531 7A 125.26 0.06 

TWT 1 IACX8453 7A 118.40 0.06 

TWT 2 Tdurum_contig8348_831 5A 141.75 0.06 

TWT 3 IACX8453 7A 118.40 0.08 

TWT 4 Ex_c25733_348 1B 115.19 0.06 

TWT 5 BS00065296_51 5A 15.86 0.06 

TKW 1 BobWhite_rep_c50057_164 1B 145.80 0.07 

TKW 2 wsnp_Ex_c3372_6195001 1D 75.04 0.05 

TKW 3 BS00068520_51 3A 88.02 0.05 

TKW 4 RFL_Contig3869_808 7D 148.62 0.06 

TKW 5 Excalibur_c77321_69 3A 175.26 0.06 
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Appendix C. Continued 

Trait† CV Fold‡ SNP ID Chromosome Position (cM) Marker R2 

PRO 1 Excalibur_rep_c107573_54 7B 66.62 0.07 

PRO 2 Kukri_c19178_2327 5B 139.40 0.09 

PRO 3 Excalibur_c3165_730 5B 114.95 0.07 

PRO 4 Kukri_c19178_2327 5B 139.40 0.08 

PRO 5 BS00033782_51 7A 36.05 0.12 

PRO 5 tplb0024a13_1332 7A 34.90 0.10 

PRO 5 Tdurum_contig77759_52 7A 60.47 0.11 

FN 1 BS00009458_51 2D 95.95 0.06 

FN 2 IACX2250 6A 81.17 0.09 

FN 3 Tdurum_contig44206_1503 7B 159.67 0.08 

FN 4 BS00078844_51 3B 85.03 0.08 

FN 5 BS00098432_51 5D 200.54 0.12 

SDS 1 D_contig12192_450 1B 122.76 0.08 

SDS 1 BS00035267_51 1B 122.38 0.08 

SDS 2 D_contig12192_450 1B 122.76 0.08 

SDS 2 BS00035267_51 1B 122.38 0.07 

SDS 2 BobWhite_c26569_190 1A 111.55 0.07 

SDS 3 D_contig12192_450 1B 122.76 0.12 

SDS 3 BS00035267_51 1B 122.38 0.10 

SDS 3 BobWhite_c14362_86 1B 125.26 0.11 

SDS 4 D_contig12192_450 1B 122.76 0.09 

SDS 4 Tdurum_contig42405_197 1A 13.73 0.08 

SDS 4 BS00010849_51 3B 27.75 0.09 

SDS 5 Tdurum_contig67350_771 3B 86.97 0.10 

†HD: heading date, HT: plant height, MAT: maturity, YLD: grain yield, TWT: test weight, TKW: 

thousand-kernel weight, PRO: grain protein, FN: falling number, SDS: sedimentation volume. 

‡CV: cross-validation. 
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Appendix D. Manhattan plots of the genome-wide association study results. (A) heading date, (B) 

plant height, (C) maturity, (D) grain yield, (E) test weight, (F) thousand-kernel weight, (G) grain 

protein, (H) falling number, (I) sedimentation volume. The horizontal line indicates the threshold 

at −log10 (P-value) of 3. 
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Appendix D. Continued 
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Appendix D. Continued 
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Appendix E. Steps used for SNP genotype calling of the selection candidates (RILs) using the 

polyploid version of Genome Studio (Modified from Wang et al. 2014a) 

Step 1 

1. Set DBSCAN and OPTICS clustering algorithm parameters Cluster Distance to 0.07 and 

Minimum Number of Points in Cluster to 10.  

2. Select all SNPs in SNP Table, right click over the selected SNPs and choose Cluster Selected 

SNPs in the menu that appears, then select DBSCAN in the sub-menu. 

3. Sort SNP Table by # Clusters and Call Freq in ascending order. 

4. Select SNPs with # Clusters equal to 2 and Call Freq > 0.9, and set Aux to 1. 

5. Sort SNP Table by Aux in descending order then by C1 Freq and C2 Freq in ascending order. 

6. Select SNPs with C1 Freq > 0.2 and C1 Freq < 0.8, and set Comment as “Polymorphic_Step1”. 

7. Select all SNPs and set Aux value to 0. 

8. Select SNPs with # Clusters greater than 2, and set Comment as “Multiple Clusters”. 

Step 2 

1. Select SNPs with # Clusters equal to 1 in SNP Table, right click over the selected SNPs, and 

choose Cluster Selected SNPs in the menu that appears, then select 2 Clusters in the sub-menu. 

2. Sort SNP Table by Comment in descending order, # Clusters and Call Freq in ascending order. 

3. Select SNPs with # Clusters equal to 2 and Call Freq > 0.9, and set Aux value to 1. 

4. Sort SNP Table by Aux in descending order, then by C1 Freq and C2 Freq in ascending order. 

5. Select SNPs with C1 Freq > 0.2 and C1 Freq < 0.8, and set Comment as “Polymorphic_Step2”. 

6. Select all SNPs and set Aux value to 0. 

7. Sort SNP Table by Comment in descending order, then by # Clusters and Call Freq in ascending 

order. 

8. Select SNPs with # Clusters equal to 1, and set Comment as “Monomorphic”. 

9. Select SNPs with # Clusters equal to 2 and Call Freq < 0.2, and set Comment as 

“Monomorphic”. 

Step 3 

1. Set DBSCAN clustering algorithm parameter Cluster Distance to 0.09. Increase the cluster 

distance allows the identification of clusters that were too broad to be detected in the first step. 

2. Select SNPs in SNP Table that do not have an annotation in Comment, right click over the 

selected SNPs and choose Cluster Selected SNPs in the menu that appears, then select DBScan 
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in the sub-menu. 

3. Sort SNP Table by Comment in descending order, then by Cluster # and Call Freq in ascending 

order. 

4. Select SNPs with # Clusters equal to 2 and Call Freq > 0.9, and set Aux value to 1. 

5. Sort SNP Table by Aux in descending order, then by C1 Freq and C2 Freq in ascending order. 

6. Select SNPs with C1 Freq > 0.2 and C1 Freq < 0.8, and set Comment as “Polymorphic_Step3”. 

7. Select all SNPs and set Aux value to 0. 

8. Select SNPs with # Clusters > 2, and set Comment as “Multiple Clusters”. 

9. Select SNPs with # Clusters equal to 1 and Call Freq > 0.99, and set Comment as 

“Monomorphic”. 

Finally, sort SNP Table by Comment and visually check clustering for SNPs marked as “Multiple 

Clusters”. Manually curate incorrectly clustered SNPs. 
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Appendix F. Summary of the genetic map used for QTL analyses using 304 RILs (selection candidates). 

Chromosome Length (cM) Number of SNPs SNP Density† Minimum distance (cM)‡ Maximum distance (cM)§ 

1A 142.1 65 0.46 0.54 9.12 

1B 165.5 75 0.45 0.11 8.41 

1D 179.5 44 0.25 0.10 18.03 

2A 177.7 68 0.38 0.22 17.21 

2B 181.3 69 0.38 0.40 11.86 

2D 129.9 42 0.32 0.18 21.01 

3A 174.9 66 0.38 0.23 11.43 

3B 143.7 62 0.43 0.12 6.73 

3D 156.1 38 0.24 0.59 17.00 

4A 155.5 59 0.38 0.30 16.59 

4B 117.9 54 0.46 0.38 7.01 

4D 170.4 23 0.13 0.23 52.30 

5A 146.0 52 0.36 0.24 23.16 

5B 217.6 96 0.44 0.11 15.77 

5D 184.8 34 0.18 0.09 26.88 

6A 160.6 63 0.39 0.34 18.55 

6B 122.9 49 0.40 0.12 12.68 

6D 156.5 34 0.22 0.39 18.19 

7A 231.7 89 0.38 0.28 17.00 

7B 178.1 73 0.41 0.04 22.18 

7D 233.3 64 0.27 0.04 30.09 

Whole genome 3526 1219 0.35 0.04 52.30 

†Average number of SNPs per cM 

‡Minimum genetic distance between adjacent SNPs 

§Maximum genetic distance between adjacent SNPs 
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Appendix G. Summary of environment specific QTL identified for six agronomic traits based on 304 RILs evaluated across five 

environments. QTL analyses were conducted using LS-means of each environment. 

 

 

 

 

QTL Trait† Environment Chromosome Position (cM) Confidence Interval Left Marker Right Marker LOD R2 (%) Add‡

QHd.usw-1B.1 HD Kernen-16 1B 39.9 39.4 ‒ 41.4 Kukri_c14149_462 BS00022304_51 5.2 2.4 0.5

QHd.usw-1B.2 HD Kernen-16 1B 87.9 87.4 ‒ 88.4 Kukri_c14239_1995 TA004264-0825 6.0 3.4 -0.6

QHd.usw-7A HD Rosthern-15 7A 113.7 112.2 ‒ 114.2 BS00066015_51 RAC875_c101928_381 13.3 6.6 -0.9

QHd.usw-7D.2 HD Kernen-16 7D 140 139.5 ‒ 140.5 Kukri_c34287_166 IAAV3265 7.4 3.9 -0.6

QTwt.usw-1D TWT Kernen-16 1D 100 97.5 ‒ 103.5 BS00110144_51 wsnp_Ex_c35886_43950574 5.9 3.6 0.3

QTwt.usw-2B.1 TWT Rosthern-16 2B 84.6 83.1 ‒ 86.1 Tdurum_contig53156_111 Tdurum_contig28227_304 5.7 4.1 -0.3

QTwt.usw-2D TWT Kernen-14 2D 94.9 93.4 ‒ 95.4 RAC875_c319_1776 RAC875_c15518_236 5.8 4.9 -0.3

QTwt.usw-3A TWT Kernen-16 3A 16.1 15.1 ‒ 17.6 RAC875_c51781_238 wsnp_Ra_c9185_15386027 8.0 6.1 -0.4

QTwt.usw-3D.1 TWT Kernen-16 3D 73 72.5 ‒ 75.5 wsnp_Ex_c7260_12463738 Kukri_c42075_156 5.3 4.0 -0.3

QTwt.usw-3D.2 TWT Kernen-14 3D 106 105.5 ‒ 107.5 wsnp_Ex_c8802_14726148 Tdurum_contig67613_465 6.1 6.5 -0.3

QTwt.usw-3D.2 TWT Kernen-15 3D 107 106.5 ‒ 107.5 Tdurum_contig67613_465 wsnp_Ra_rep_c71290_69343893 6.9 9.2 -0.4

QTwt.usw-7D TWT Kernen-14 7D 104 103.5 ‒ 104.5 RAC875_c1834_694 Ex_c19087_352 9.1 7.8 0.4

QTwt.usw-7D TWT Kernen-15 7D 96 95.5 ‒ 97.5 GENE-5000_1221 D_contig63719_554 5.1 5.6 0.4

QTwt.usw-7D TWT Kernen-16 7D 96 95.5 ‒ 97.5 GENE-5000_1221 D_contig63719_554 5.6 3.4 0.3

QMat.usw-3A MAT Rosthern-15 3A 86.1 83.6 ‒ 86.6 BS00073009_51 BobWhite_c11225_941 5.2 3.7 -0.5

QMat.usw-5A MAT Kernen-16 5A 66.3 65.8 ‒ 66.8 wsnp_BE495277A_Ta_2_5 wsnp_Ku_c51039_56457361 6.2 6.3 0.7

QMat.usw-5B MAT Rosthern-15 5B 89 88.5 ‒ 89.5 wsnp_Ku_c3102_5810751 RAC875_c36779_148 7.3 4.5 0.6

QMat.usw-7A MAT Kernen-16 7A 112.7 112.2 ‒ 114.2 wsnp_Ex_c2017_3787478 BS00066015_51 17.4 8.7 -1.0

QMat.usw-7A MAT Rosthern-16 7A 96.7 96.2 ‒ 97.2 Tdurum_contig11827_738 BS00102773_51 5.9 9.3 -0.6

QMat.usw-7B MAT Kernen-14 7B 33 27.5 ‒ 35.5 wsnp_Ex_c11658_18773086 IACX198 7.1 5.8 1.0
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Appendix G. Continued 

 

†HD: heading date, HT: plant height, MAT: maturity, YLD: grain yield, TWT: test weight, TKW: thousand-kernel weight 

‡Add: Additive effect.

QTL Trait† Environment Chromosome Position (cM) Confidence Interval Left Marker Right Marker LOD R2 (%) Add‡

QTkw.usw-1A TKW Kernen-14 1A 71.7 71.2 ‒ 72.2 Ex_c80400_458 Kukri_c23350_433 5.6 3.9 0.7

QTkw.usw-1B TKW Kernen-16 1B 120.9 120.4 ‒ 121.4 CAP11_c599_115 RFL_Contig16_132 7.7 7.7 0.8

QTkw.usw-2D TKW Kernen-16 2D 12.9 12.4 ‒ 14.4 D_contig39560_387 BS00022276_51 5.0 3.5 0.5

QTkw.usw-5A TKW Kernen-15 5A 54.3 52.8 ‒ 55.8 IACX2581 Ex_c19057_965 5.6 7.9 -0.8

QTkw.usw-5B.1 TKW Kernen-14 5B 175 174.5 ‒ 175.5 wsnp_Ex_c3874_7036132 Excalibur_c23452_310 5.3 7.3 1.0

QTkw.usw-5B.2 TKW Rosthern-15 5B 48 47.5 ‒ 48.5 BS00065390_51 BobWhite_c45340_368 7.4 3.5 -0.8

QTkw.usw-5D TKW Kernen-16 5D 190.9 189.4 ‒ 192.4 Excalibur_c91745_337 BS00011794_51 5.0 3.6 -0.6

QTkw.usw-5D TKW Rosthern-16 5D 190.9 189.4 ‒ 192.4 Excalibur_c91745_337 BS00011794_51 5.2 3.3 -0.8

QTkw.usw-7A TKW Kernen-14 7A 159.7 158.2 ‒ 161.2 RAC875_c24411_889 RAC875_c47457_496 6.9 5.7 -0.9

QTkw.usw-7A TKW Rosthern-16 7A 159.7 158.2 ‒ 161.2 RAC875_c24411_889 RAC875_c47457_496 7.0 5.3 -0.9

QHt.usw-1D HT Kernen-16 1D 28 26.5 ‒ 28.5 wsnp_Ex_c1358_2602235 Tdurum_contig50555_632 4.9 4.5 -1.9

QHt.usw-3B HT Kernen-15 3B 14 13.5 ‒ 16.5 RFL_Contig4531_1195 Ra_c8459_632 4.9 4.7 2.1

QYld.usw-1A YLD Rosthern-15 1A 73.7 73.2 ‒ 74.2 Kukri_c23350_433 Ex_c28144_1843 5.7 2.1 172.2

QYld.usw-1D YLD Rosthern-15 1D 84 83.5 ‒ 84.5 D_contig14507_369 BS00066446_51 10.5 4.7 -254.8

QYld.usw-2B YLD Kernen-14 2B 26.6 26.1 ‒ 27.1 wsnp_Ex_c25445_34710489 GENE-1018_99 5.7 9.8 -216.3

QYld.usw-5A YLD Rosthern-16 5A 74.3 72.8 ‒ 75.8 Excalibur_c76628_182 BS00021669_51 5.0 7.6 -213.1
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Appendix H. List of significant markers detected from fold specific single marker regression in 

the selection candidates. These markers were fitted as fixed effects in the GS + de novo GWAS 

model for genomic predictions in the selection candidates based on fivefold cross-validation. 

Trait† CV Fold‡ SNP ID Chromosome Position (cM) 

HD 1 wsnp_CAP12_c812_428290 2D 19.03 

HD 1 RAC875_c1834_694 7D 103.64 

HD 1 D_contig63719_554 7D 97.40 

HD 2 wsnp_CAP12_c812_428290 2D 19.03 

HD 2 D_contig63719_554 7D 97.40 

HD 2 RAC875_c1834_694 7D 103.64 

HD 3 wsnp_CAP12_c812_428290 2D 19.03 

HD 3 wsnp_Ex_c2054_3852564 7D 93.65 

HD 3 D_contig63719_554 7D 97.40 

HD 4 Kukri_c20975_765 7D 114.05 

HD 4 D_GDRF1KQ02JPR1A_106 7D 115.29 

HD 4 RAC875_c1834_694 7D 103.64 

HD 5 D_contig63719_554 7D 97.40 

HD 5 wsnp_CAP12_c812_428290 2D 19.03 

HD 5 RAC875_c1834_694 7D 103.64 

HT 1 RAC875_c28667_516 5B 100.31 

HT 1 wsnp_CAP12_c812_428290 2D 19.03 

HT 1 Kukri_rep_c68330_380 5B 95.52 

HT 2 wsnp_CAP12_c812_428290 2D 19.03 

HT 2 BS00047901_51 2D 9.23 

HT 2 Kukri_c34967_226 6D 83.44 

HT 3 wsnp_CAP12_c812_428290 2D 19.03 

HT 3 Kukri_c34967_226 6D 83.44 

HT 3 RAC875_c28667_516 5B 100.31 

HT 4 Ra_c8459_632 3B 14.10 

HT 4 Kukri_c34967_226 6D 83.44 

HT 4 RAC875_c28667_516 5B 100.31 

HT 5 wsnp_CAP12_c812_428290 2D 19.03 

HT 5 BS00047901_51 2D 9.23 

HT 5 RAC875_c28667_516 5B 100.31 
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Appendix H. Continued 

Trait† CV Fold‡ SNP ID Chromosome Position (cM) 

MAT 1 wsnp_CAP12_c812_428290 2D 19.03 

MAT 1 D_contig63719_554 7D 97.40 

MAT 1 BS00066015_51 7A 113.30 

MAT 2 wsnp_CAP12_c812_428290 2D 19.03 

MAT 2 wsnp_BE497845D_Ta_1_1 7D 147.40 

MAT 2 D_contig63719_554 7D 97.40 

MAT 3 wsnp_CAP12_c812_428290 2D 19.03 

MAT 3 D_contig63719_554 7D 97.40 

MAT 3 BS00066015_51 7A 113.30 

MAT 4 Ex_c19087_352 7D 105.30 

MAT 4 BS00066015_51 7A 113.30 

MAT 4 wsnp_CAP12_c812_428290 2D 19.03 

MAT 5 D_contig63719_554 7D 97.40 

MAT 5 BS00066015_51 7A 113.30 

MAT 5 RAC875_c1834_694 7D 103.64 

YLD 1 wsnp_Ex_c25445_34710489 2B 26.48 

YLD 1 Excalibur_c1787_1199 2A 0.00 

YLD 1 Excalibur_rep_c101263_892 2B 32.16 

YLD 2 Excalibur_c1787_1199 2A 0.00 

YLD 2 wsnp_Ex_c25445_34710489 2B 26.48 

YLD 2 Excalibur_rep_c101263_892 2B 32.16 

YLD 3 wsnp_Ex_c25445_34710489 2B 26.48 

YLD 3 Excalibur_c1787_1199 2A 0.00 

YLD 3 Excalibur_rep_c101263_892 2B 32.16 

YLD 4 Excalibur_c1787_1199 2A 0.00 

YLD 4 wsnp_Ex_c25445_34710489 2B 26.48 

YLD 4 Excalibur_rep_c101263_892 2B 32.16 

YLD 5 wsnp_Ex_c25445_34710489 2B 26.48 

YLD 5 Excalibur_c1787_1199 2A 0.00 

YLD 5 Excalibur_rep_c101263_892 2B 32.16 
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Appendix H. Continued 

Trait† CV Fold‡ SNP ID Chromosome  Position (cM) 

TWT 1 wsnp_Ex_c14026_21924297 4B 59.51 

TWT 1 Tdurum_contig33737_157 4B 55.96 

TWT 1 RAC875_c27536_611 4B 54.64 

TWT 2 wsnp_Ex_c14026_21924297 4B 59.51 

TWT 2 RAC875_c27536_611 4B 54.64 

TWT 2 Tdurum_contig33737_157 4B 55.96 

TWT 3 wsnp_Ex_c14026_21924297 4B 59.51 

TWT 3 Tdurum_contig33737_157 4B 55.96 

TWT 3 Excalibur_c52517_464 4B 61.84 

TWT 4 tplb0037m09_1556 7B 69.57 

TWT 4 wsnp_Ex_c14026_21924297 4B 59.51 

TWT 4 RAC875_c22539_484 6B 73.42 

TWT 5 wsnp_Ex_c14026_21924297 4B 59.51 

TWT 5 Tdurum_contig33737_157 4B 55.96 

TWT 5 CAP8_rep_c4633_93 4D 80.68 

TKW 1 Ku_c1125_814 4A 100.38 

TKW 1 RAC875_c95150_286 4A 102.43 

TKW 1 wsnp_Ex_c1556_2972715 6A 82.38 

TKW 2 wsnp_Ex_c1556_2972715 6A 82.38 

TKW 2 Ku_c1125_814 4A 100.38 

TKW 2 RAC875_c95150_286 4A 102.43 

TKW 3 Ku_c1125_814 4A 100.38 

TKW 3 RAC875_c95150_286 4A 102.43 

TKW 3 RAC875_c59673_500 4A 103.76 

TKW 4 Ku_c1125_814 4A 100.38 

TKW 4 RAC875_c59673_500 4A 103.76 

TKW 4 RAC875_c95150_286 4A 102.43 

TKW 5 Ku_c1125_814 4A 100.38 

TKW 5 RAC875_c95150_286 4A 102.43 

TKW 5 RAC875_c59673_500 4A 103.76 

†HD: heading date, HT: plant height, MAT: maturity, YLD: grain yield, TWT: test weight, TKW: 

thousand-kernel weight. 

‡CV: cross-validation 


