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ABSTRACT 

Because of the highly complex structure of the load-sensing pump, its compensators 

and controlling elements, simulation of load-sensing pump system pose many challenges 

to researchers. One way to overcome some of the difficulties with creating complex 

computer model is the use of “black box” approach to create an approximation of the 

system behaviour by analyzing input/output relationships. That means the details of the 

physical phenomena are not so much of concern in the “black box” approach. Neural 

network can be used to implement the black box concept for system identification and it 

is proven that the neural network have the ability to model very complex behaviour and 

there is a well defined set of neural and neural network structures. Previous studies have 

shown the problems and limitations in dynamic system modeling using static neuron 

based neural networks. Some new neuron structures, Dynamic Neural Units (DNUs), 

have been developed which open a new area to the research associated with the system 

modelling.  

The overall objective of this research was to investigate the feasibility of using a 

dynamic neural unit (DNU) based dynamic neural network (DNN) in modeling a 

hydraulic component (specifically a load-sensing pump), and the model could be used in 

a simulation with any other required component model to aid in hydraulic system 

design. To be truly representative of the component, the neural network model must be 

valid for both the steady state and the transient response. 

Due to three components (compensator, pump and control valve) in a load sensing 

pump system, there were three different pump model structures (the pump, compensator 

and valve model, the compensator and pump model, and the “pump only” model) from 
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the practical point of view, and they were analysed thoroughly in this study.  In this 

study, the DNU based DNN was used to model a “pump only” model which was a 

portion of a complete load sensing pump. After the trained DNN was tested with a wide 

variety of system inputs and due to the steady state error illustrated by the trained DNN, 

compensation equation approach and DNN and SNN combination approach were then 

adopted to overcome the steady state deviation.  

It was verified, through this work, that the DNU based DNN can capture the 

dynamics of a nonlinear system, and the DNN and SNN combination can eliminate the 

steady state error which was generated by the trained DNN. 

The first major contribution of this research was in investigating the feasibility of 

using the DNN to model a nonlinear system and eliminating the “error accumulation” 

problem encountered in the previous work. The second major contribution is exploring 

the combination of DNN and SNN to make the neural network model valid for both 

steady state and the transient response.   
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CHAPTER 1   INTRODUCTION AND OBJECTIVES 

 

1.1 Introduction  

Flow control in hydraulic systems is a very common method of varying the speed of 

an actuator (load). Essentially, there are three ways in which flow control can be 

accomplished: using a fixed displacement pump with varying shaft speed, a variable 

displacement pump or a pressure compensated orifice opening. In the first case, a 

variable displacement pump can be used to change the flow rate by varying the swash-

plate angle of the pump or by changing the input shaft speed from the driving motor. 

This type of flow control is very efficient because energy losses across a controlling 

orifice are avoided. However, controlling the swash-plate angle or the shaft speed can be 

quite complex and in some instances, can introduce additional source of inefficiencies 

[Kim, et al., 1987 (1); Kavanagh, et al., 1990].  

The second configuration is one of a pump and controlling orifice (via a valve 

downstream from the pump). If the pump pressure is restricted by a pressure regulator, 

then the pressure drop across the valve is a function of the load pressure and hence the 

pressure drop can vary significantly during operation. To obtain flow control, some 

measure of flow (or actuator velocity) is required. If the pressure drop across the orifice 

is controlled by forcing the pump pressure to follow the load pressure at a predefined 

and reasonable pressure difference (typically1.38 MPa), then flow control can be 

achieved and the energy losses minimized. This configuration still results in a pressure 

drop across the controlling orifice which translates to an inherent energy loss, albeit 

small. This pressure drop can also be used as a controlling signal within the valve or it 
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can be fed back to a control valve at the pump to improve transient responses and reduce 

the energy losses. “Load-sensing systems” are developed from this configuration. 

One of the many advantages associated with these systems is the high energy- saving 

potential; that is, the pump attempts to match the power requirements to the changing 

load power requirements with minimal control losses (details are presented in Chapter 

2). Because of the potential energy savings, load-sensing systems have found increasing 

usage in fluid power applications, especially in automobiles and off-road equipment 

[Book, et al., 1997]. Since the load-sensing system is a feedback nonlinear system, 

stability problems have been reported [Krus, 1988; Wu, et al., 2002; Lantto, et al., 1990; 

Kim, et al., 1988]. In addition, interactions between loads supplied by a common load 

sensing pump are sometimes encountered. To reduce instability and interaction 

problems, a common approach is to model the system, to investigate theoretically such 

problems and to provide means of reducing or eliminating these effects. This requires 

accurate models of the components. 

 The most important component in a load-sensing system is the pump. This 

component has received much attention from the research community as well as industry 

and has been the subject of many publications over the decades.  This research has 

shown that because of the nonlinear behavior of pumps and the sensitivity of parameters 

to operating conditions [Kavanagh, et al, 1990; Zeiger, et al., 1986], derivation of a 

reliable and comprehensive pump model which is valid over a wide range of operation 

conditions is a challenge. It was this challenge that motivated the research presented in 

this thesis. 
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1.2 Models of Load-sensing Pumps 

There are several methodologies which have been used for modeling hydraulic 

systems: modelling using mathematical physical relationships, modelling using system 

identification techniques or modelling using neural network approaches. Traditional 

mathematical modeling methods model the nonlinear behaviour of hydraulic dynamic 

systems and often involve mathematical modeling procedures based on the observation 

of physical relationships among the associated components [Ivantysyn, et al., 2000; 

Manring, N.D., 2005; Richards, et al., 1989]. System identification assumes a 

mathematical relationship between the input and output and uses identification 

techniques to establish the order and coefficients for the model [Soderstrom, and Stoica, 

1989; Bellman, and Astrom, 1970]. Artificial Neural network (ANN) approaches assume 

a “black box” relationship between the input and output and simply capture/learn the 

input/output behavior for a wide range of operating conditions [Chen, et al, 1997; 

Narendra, et al, 1990;]. Normally, no attempt is made to associate the model with 

physical parameters or relationships.  

In mathematical modeling approaches, the derivation of a suitable model for a 

practical component requires engineering knowledge of the system behaviour combined 

with mathematical properties of the model. In addition, all parameters, such as those 

describing physical properties of components and of the fluid medium must be supplied 

or obtained experimentally. For nonlinear systems, linearization techniques can be 

employed to simplify nonlinear modeling procedures; however, this places a constraint 

on the applicability of the model since the model obtained is only valid over a very 

limited region of operation. When this approach has been applied to load-sensing 
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systems, the model tend to be either overly simplified or extremely complex 

[Ivantysynova, 2003; Krus, 1988; Erkkila, 1999; Book, et al., 1997; Wu, et al., 2002].  

System identification is an alternative to mathematical modeling. System 

identification is an experimental approach to the determination of the model of a real 

system based on the observed input-output relationships. Linear dynamic system 

identification has been reasonably well understood, and parameter estimation 

methodology has been systematically established [Astrom, et al., 1971], because simple 

linear forms of model structures have been assumed. In the field of nonlinear dynamic 

system identification, the choice of a suitable model structure, at present, still remains as 

a challenging topic in this area. In general, it is not practical to talk about the 

identification unless a specific model structure is imposed.  

 Although system identification approaches have not been a tool in the modeling of a 

load sensing pump to date, identification approaches have been applied to the modeling 

of other hydraulic systems. As an example, Habibi [2004] and Chinniah [2001] applied 

this approach to the modeling of an electrohydraulic actuation system. Their model 

represented relationship between the pump angular speed to the actuator displacement. 

The third category of modeling is based on neural network technology. In recent 

years, many researchers have focused on applying neural network models for system 

identification/control and on improving performance of these neural network models. 

There are many published works in this area [McNamara, et al., 1997; Watton, et al., 

1997; Bailey, et al., 2002; Oysal, 2005]. There have been several studies done on the use 

of ANN’s or Multi-layer neural networks to model load-sensing pump [Hindman, 2002; 

Xu, et al., 1996; Xu, et al., 1997; Lamontagne, 2003]. The philosophy of these studies 
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has been that the neural network model is a “black-box” which has captured the actual 

input/output relationships for all operating conditions. Simulation studies by Xu 

examined the usefulness of various neural network structures for modeling non-linear 

dynamic systems and developed model structure error analysis. The feedback path in the 

recurrent model structures introduced dynamics into the model, but at the same time 

produced an “error accumulation problem” [Xu, et al., 1997]. Because the neural 

network model uses previous output as inputs, and error in the outputs affected all of the 

neurons at future time steps. 

 One way to overcome this problem was investigated by Lamontagne [2003]. His 

approach was to model the system using only delayed inputs. With input delays, the 

output of the network is never fed back to the input so errors in network output are not 

propagated to the next time step, and there is no accumulation of error. The 

disadvantages of this method are that the dynamic response is a less accurate 

reproduction of the actual output signal and that the modeling of dynamics is limited to 

behaviors that take place in time span shorter than that covered by the input delays. 

A problem that was encountered by Xu and Lamontagne was the appropriate choice 

for the inputs and outputs to the networks. Xu examined two models, a single-input and 

single-output model (SISO) and a two inputs and one output model. For the SISO 

model, the load sensing valve was assumed to have a fixed opening which severely 

limited the flowrate range (and hence validity) of the SISO model. For Xu’s second 

configuration, the model was valid only for that particular controlling valve chosen.  In 

the study by Lamontagne, two model structures were investigated: a combined 

pump/valve model and a stand-alone pump model (comprised of a compensator and 
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pump). As with Xu, the first model was valid only for that particular controlling valve 

chosen. For the stand-alone pump model, the ANN pump model performance was poor 

at low frequencies especially under steady-state conditions. 

In summary, the literature indicates that the model of a load-sensing system remains 

an area which requires much further study. The ANN approach is appealing because it 

does not require extensive testing to determine parameter values or model order (which 

can change with varying operating conditions). The experience by Xu and Lamontagne 

clearly indicated the potential for using ANN’s in this capacity but also established 

limitations and difficulties. For the modeling of a load-sensing pump, it is highly 

desirable to pursue a new methodology to develop a pump model using a neural network 

approach with a reasonable structure. 

 

1.3 Objectives 

As stated above, there are many challenges that exist in trying to use neural networks 

to model dynamic systems. It is necessary to examine newer structures of ANN’s which 

integrate some dynamic properties within the basic neuron structure. Such a neuron is 

called a Dynamic Neural Unit (DNU) and has been extensively studied by Gupta 

[Gupta, et al., 1992 and 1993; Song, et al., 1999] for control purposes. Therefore, the 

objectives of this thesis are: 

• To find a more applicable model structure (that is, what are suitable inputs 

and outputs) for a load-sensing pump which will allow the model to be 

independent of the operation of the load sensing orifice and controlling 

positions. 
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• To apply DNU methodology to the neural network based pump model and to 

determine the new structure’s ability to eliminate the error accumulation 

problems experienced in previous research. 

•  To develop, train and test an ANN based load-sensing pump model which 

can represent both the steady state and transient response of the pump over an 

expected operating range. 

 

1.4 Organization of This Thesis 

In Chapter 2, a hydraulic load-sensing pump is introduced and the causal 

relationships between the components are discussed. The pump model structure 

investigated in this study is determined. 

Chapter 3 reviews the previous work in system modeling using a static neural 

network approach. The dynamic neural units (DNUs) which were adopted in this study 

are also presented. The configuration of the dynamic neural network used for the load 

sensing pump is determined.  

Chapter 4 presents the simulation results of the neural network model and identifies 

some problems in the results.  

Chapter 5 explores two modification methods to compensate for the problems 

encountered with the DNN model. A series of validity tests for the modified model are 

examined. 

Chapter 6 summarizes and concludes the study and forwards suggestions for the 

future work.  
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CHAPTER 2    LOAD-SENSING HYDRAULIC SYSTEM 

 

2.1 Introduction 

In this chapter, the operation of the load-sensing pump is described and the 

relationships between the components in a typical load-sensing system are discussed. In 

using a “black-box” modeling technique employing neural networks, it is very important 

to divide the system into reasonable and relevant component models. This determines 

how the models can be integrated into a complete system model. 

 

2.2 Load-Sensing Pump System 

A load-sensing pump is designed to maintain a fixed pressure drop across a 

controlling orifice and single load in order to control flow in an energy efficient manner 

[Moller, 1990]. Such a pumping system is often referred to as a pressure compensated 

load sensing flow control system. These types of pumps are commonly found in forestry 

and off - highway equipment. A schematic circuit of a load sensing pump and single 

load is illustrated in Figure 2.1.  

The goal of the load-sensing system is to keep flow to the load constant for a given 

control valve setting independent of disturbances in LP or sP for acceptable pressure 

differences across the controlling orifice. This is accomplished by the load-sensing 

compensator (A in Figure 2.1), which adjusts pump displacement (pump flow) until the 

pump outlet pressure, SP , is greater than the load pressure by a fixed amount.  If the 

pressure drop ( LS PP − ) across the valve (B in Figure 2.1) is always held constant by 
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controlling the pump flow and hence SP , then the flow rate through the valve, B, 

dependents solely on the load valve position determined by the valve input XV 

[Lamontagne, D., 2001; Lantto, et al., 1993; Lantto, et al., 1990]. 

VX

QSP

LP

θ&

A
B

Figure 2.1 Schematic diagrams of a load sensing pump and single load. 

Assume the system is at steady state conditions and the compensator is at the closed 

position.  A force balance between hydraulic pressure ( SP and LP ) force and spring force 

exists. Consider Figure 2.2. Let LP  increase from the steady state condition. First, the 

pressure drop ( Ls PP − ) across the load orifice decreases which results in a decrease 

in LQ . This is evident by examining the orifice flow equation where )( VXA and dC are 

assumed constant: 

ρ
)(2

)( LS
VdL

PP
XACQ

−
= .                                                         (2.1) 

The increase in LP  is sensed at the compensator and creates a force imbalance across 

the compensator spool (See Figure 2.2). This causes the spool to be pushed to the right. 

The compensator spool orifice opens and ports pressurized fluid to tank. 
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Consequently, cP , the control piston pressure, decreases, which results in a force 

imbalance (the difference between the spring force and the control piston “pressure 

force”) on the swash plate. The swash plate angle,θ , increases producing an increase in 

pump flow to the load orifice. This, in turn, increases sP  which is also sensed by the 

compensator orifice. The force imbalance on the compensator spool is now reduced and 

a new equilibrium state is reached. The pressure drop across the load orifice is re-

established and flow control is reestablished. 

LP

LP

SP

SP
PQ

SQ

LQ

CP

θ
ω

TQ

X

VX

 

Figure 2.2 Schematic diagram of a load sensing pump. 

Because of the complexity of operation, combined with many inherent nonlinear 

behavioral characteristics, accurate modeling and simulation of load sensing pumps have 

been a major challenge for researchers and designers. Krus has approximated the 

performance of load sensing systems in a dynamic sense using a very simple linearized 

model which, although very useful for preliminary studies, is not very accurate for 

precise or interaction type studies [Lantto, et al., 1993 and 1990]. In the study of Wu 
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[2005], the performance and stability of a load-sensing system was investigated over 

three different operating regions. To accomplish this, the nonlinear characteristics were 

linearized about various operating points. He established that the performance and 

stability were very dependant on these operating conditions. His model was very 

complicated but its validity was established experimentally over certain frequency 

ranges. 

 In contrast to the traditional mathematical modeling approaches of hydraulic 

systems, several researchers from the University of Saskatchewan have investigated the 

feasibility of using a neural network approach for modeling load sensing system 

components. Xu [1997 (1)] and Lamontagne [2003] used various neural network (NN) 

morphologies to capture the static and dynamic performance of a load sensing pump. 

They showed that the applicability of their NN based load-sensing pump models was 

limited by the morphologies of the ANN adopted in their simulation as well as the model 

structure that was assumed for physical system. It was clear from Xu and Lamontagne’s 

studies that modeling of the load-sensing pump using NN structures needed to be further 

investigated. 

This model structure problem is now considered with the NN morphology issue being 

addressed in the next chapter.  

 

2.3 Model Structure and Justification 

The load-sensing pump system is comprised of four main components: the load-

sensing pump, the pump compensator, the control valve and the load. In a given system, 

there are additional minor components such as lines, valves, and filters etc. that affect 

the performance of the system. It is desirable to separate components as much as 
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possible when modeling to allow the user to construct system models simulations from 

the various components. This avoids having to model a large number of possible 

combinations for a single component; each component is therefore modeled with a 

unique set of inputs and outputs. These models are then linked together in much the 

same fashion as a physical hydraulic system would be in construction. Separating the 

component models into their basic form also allows for much more flexibility in overall 

system modeling changes. For example, consider a standard model of a load-sensing 

system (Figure 2.2). If the pump and valve were modeled together as a SISO structure, 

then any change in line length which connects them would require an entirely new NN 

model to be trained. 

Consider the four main components (pump, compensator, control valve and load) 

shown in block diagram form in Figure 2.3. If the model is based on NN approaches in 

which only inputs and outputs of the component model are considered, there are several 

combinations in which the system could be modeled. These are now considered. 

SP

Pc

LP

SQ
LP

SQ θ&

SP

SP

VX

LP

 

Figure 2.3 Causal block diagram of a load sensing pump. 
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2.3.1 Pump & Compensator & Valve Model 

The most straightforward way to model the system would be to consider vX  and LP  

as inputs and θ&   as the output in a single neural network model. The pump, compensator 

and valve would all be grouped together into a single “black-box” model and only the 

inputs and outputs external to these components would be modeled (as shown in Figure 

2.4 (a)). The interactions between the compensator, pump, and valve would all be 

internal to the model and the causal diagram can be reduced to a single block as shown 

in Figure 2.4(b). The model thus represents a single component with multiple “hidden” 

subcomponents having two inputs and a single output.  

Compensator

Load-
sensing 
pump

Control Valve

Load

Model Limits

SP

Pc

LP

SQ

LP

SQ θ&

SP

SP

VX

LP

 

Figure 2.4 (a) Causal block diagram of grouped system components. 

LP

VX SQ LP

θ&
 

Figure 2.4 (b) Block diagram of pump/compensator/valve sub-system. 
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Ddifferent loading conditions would have to be created to train the NN based pump 

and control valve combination. Theoretically, loads could be represented by a set of data 

points allowing a spectrum of loading conditions to be simulated. From a practical point 

of view, the problem with this grouping is that the data is only valid for the particular 

control valve chosen. Any change in the valve requires creating an entirely new trained 

model, and as such, this model would have little application for design, for example. In 

addition, an experimental system must be set up for each loading condition (inertial, 

viscous, gravity etc) that the load sensing system would be expected to encounter. 

Simulating experimentally these conditions could be a challenge in itself. 

 In the studies by Lamontagne [2001] and Xu [1997], this model structure was indeed 

investigated experimentally and was only valid for the particular control valve chosen. 

In the study by Xu [1997], the valve setting was fixed in the experimental investigation, 

reducing the model to a single-input and single-output (SISO) form. As a consequence, 

the fixed opening setting of the control valve limited the range of flow rate operation the 

SISO model. 

2.3.2 Pump & Compensator Model 

Another model structure which separates the load and the control valve from the 

pump model is shown in Figure 2.5 (a) and in block diagram form in Figure 2.5 (b). 
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SP
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SP

SP
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Figure 2.5(a) Causal block diagram of grouped system components. 

θ&LP

SP
LP

SP
SQ

 

Figure2.5 (b) Block diagram of pump/compensator sub-System. 

  In this model, LP and sP  are considered as input, and the flowrate, sQ  is the output. 

The control valve and load are isolated form the model. The causal diagram of the 

compensator and the pump can be reduced to a single block as shown in Figure 2.5(b). 

This would allow different combinations of pump, valve and load models to be 

combined into different systems for simulation.  

A problem arises from this model structure.  The compensator in the load-sensing 

pump adjusts pump displacement until LS PP −  balances the compensator spring force. 

That means if LS PP −  across the pressure compensator meets the required value set by 

the spring, then the compensator spool is at the closed position. If the desired flow rate is 
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changed via the control valve, and if equilibrium conditions for LS PP −  are 

reestablished, the compensator spool is once again at the closed position. Hence there is 

no unique relationship between inputs LP  and sP  and the output SQ . That is, the 

relationship between the inputs and output are not unique. The neural network approach 

can not be used to model this situation. 

An additional consideration is posed by an experimental limitation. If the pump and 

compensator model is to be trained using experimental data with the control valve 

present, there are many practical problems generating the training data. Since LP  is an 

input, some laboratory technique must be established to simulate various loading 

conditions. This can be done by using a variable orifice or a pressure control device 

downstream of the control valve. In reality, this means the inputs SP  and LP  cannot be 

made independent; a requirement for NN input training. Thus the training of the model 

must be done such that SP  and LP  are varied independently. This can be done 

hydraulically using various flow or pressure servo-valves but as Xu and Lamontagne 

observed, the frequency response of these valves have to have cutoff frequencies 

significantly higher than the actual load sensing components they are sensing. This did 

pose a challenge given the limitation of the valves available in the laboratory.  

An interesting problem arises when SP  and LP are, in fact, made independent. If the 

difference between SP  and LP  is larger than the set point on the compensator, the 

compensator valve is fully opened at one of its extremities. Thus the swash plate of the 

pump is either fully stroked (maximum flow rate) or is at zero stroke (zero flow rate). 

Thus, having too large of a difference between SP  and LP  beyond the compensator 
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spring setting will result in saturation conditions for the physical pump which do not 

reflect realistic behavior during normal load sensing control conditions. This was a point 

that both Xu and Lamontagne had to consider in their experimental testing. 

In the study by Lamontagne [2001], the test results of the compensator pump model 

indicated that the model did performed well at high frequencies of 3Hz, but the pump 

model performance rapidly deteriorated at low frequencies, especially under steady-state 

conditions. 

2.3.3 “Pump Only” Model 

Based on the observation and conclusions drawn by Xu and Lamontagne, it was 

decided that the third structure, defined as a pump only model, would be investigated in 

this study. This structure is as shown in Figure 2.6. In this model, the pump is isolated 

form the load-sensing compensator, the valve and the load. This would allow the model 

to be combined with different control valve, load and compensator models (obtained in 

any form, including NN approaches). 

Compensator

Load-
sensing 
pump

Control Valve

Load

Model Limits

SP

Pc

LP

SQ

LP

SQ θ&

SP

SP

VX

LP

 

Figure 2.6 Causal block diagram of “pump only” sub-system. 
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As the pump model is separated from the compensator, the model inputs would be 

SP and CP , and the output SQ . As before there are two inputs and one input. What is 

important in this configuration is the fact that the relationship between the inputs and 

output is unique, since the pressure CP  controls the swash plate directly and SP  dictates 

the back torque on the swash plate and the pump leakage; further, the relationship 

between SP and CP is also independent. This input parameter selection eliminates the 

“unique relationship” problem in the pump and compensator model experienced by Xu 

and Lamontagne. 

From an experimental implementation point of view, the generation of SP and CP  

would be subjected to the same frequency response constraints defined by Xu and 

Lamontagne. However, since SP and CP  require very little flow in their lines (see Figure 

2.4), pressure servo-valves could be used which tend to have excellent frequency 

response characteristics.  

As a final note, it should be mentioned that the approach using SP and CP  as inputs is 

similar to that taken by others in dynamic pump modeling [McNamara, et al., 1997]. 

 

2.4 Summary 

In this chapter, the causal relationships between the components in a typical load-

sensing system were discussed. For the various pump, compensator and valve structures, 

the models were shown to be only valid for the particular controlling valve chosen. For 

the pump and compensator model problems associated with “unique relationship”, 

“dependent inputs” and “experimental data collecting” were experienced by Xu and 
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Lamontagne. Compared to these two structures, the “pump only” model avoided many 

of the issues discussed and hence, in this study, was the only structure considered. 
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CHAPTER 3    DYNAMIC NEURAL NETWORK APPROACH 

 

3.1 Introduction 

Artificial neural networks (ANNs) have been the subject of significant research from various 

investigators in the nonlinear system identification and control area. An artificial neural network 

is a massive “net” that consists of a number of identical computing units referred to as neurons or 

nodes that are connected together. Many variations on neural network morphology or structure 

have been used for system identification and control applications [Chen, S. et al, 1990; Xue, et 

al., 1995; Azam, et al., 1997]. These morphologies depend on the way the neurons are 

interconnected and the operations in each neuron. 

A classic “static” neuron can be considered as a processing element that sums the weighted 

inputs and produces an output which corresponds to a predefined value for that particular input. 

The transformation from weighted inputs to output is accomplished by a particular function 

called an “activation function” or “activation operator”, which can either be linear or nonlinear in 

form. This static neural model has no feedback connections and as such, this model has no 

memory of dynamics. The neural output is solely determined by the current inputs and values of 

the synaptic weights (the “gains” that connect the outputs of a neuron to the inputs of the next). 

Neural network structures based on this model describe the synaptic connection by a single 

weight parameter vector [Rao, 1994]. However, biological neural systems are considered to be 

composed of structures with dynamic connections which are manifested in the temporal 

properties of the synapse along with such processes as impulse transmission and membrane 

excitation [Fukushima, et al., 1983; Anderson, 1983; Hopfield,1984]. In order to emulate some 

of these dynamic functions, such as learning, adaptation, memory and recall, and to reflect the 
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dynamics of the biological neuron in a better way, a new neuron architecture, defined as a 

dynamic neural unit (DNU) was proposed by Gupta and Rao [1992 and 1993]. The DNU 

consists of internal feedforward and feedback weights and a nonlinear activation function. The 

built-in internal feedforward and feedback weights are what distinguish from the conventional 

structure of an artificial neuron from the DNU.  

A significant property of an ANN is that it has the capability to “learn”, or to be trained, to 

recognize predefined relationships between inputs and outputs. During the learning (training) 

process, the ANN is subjected to a series of input output data pairs; the weights in the ANN are 

adjusted via a “training” algorithm until the difference between the ANN output and the target 

(predefined) output reaches an acceptable value. After the training stops, the weights are fixed at 

the values which “minimized” the training error during the training process. The ANN is then 

evaluated by subjectecen it to new inputs which were not used in the training process. The 

trained ANN output and the real system output for these new inputs are compared to see if the 

trained ANN accurately represents the systems. This is defined as the “test” process. This test 

process is very important in establishing the ability of the trained ANN model to physically 

represent the plant. 

It should be pointed out that for a given neural model set, the weights do not reflect any 

physical considerations in the unknown system, and hence are viewed simply as a means for 

adjusting the model to fit the input/output data observations.  

There are two different styles of training: instantaneous training and batch training [Haykin, 

s., 1994]. In instantaneous training, the weights of the ANN are updated each time an input is 

presented to the network. In the batch training, the weights are only updated after all of the 

inputs over a defined number of time steps, have been presented to the network. The most 
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common way to train the networks is using backpropagation techniques (based on gradient 

descent approaches) [Widrow, et al., 1990]. One such approach will be examined in this section.  

 In this chapter, the structure of the classic static neuron and the use of static neural networks 

in modeling hydraulic components are reviewed. The new neuron architecture, the dynamic 

neuron unit (DNU), is introduced. Several dynamic neural unit morphologies are proposed, and 

the neural structure which is suitable for the modeling of the “pump only” model is selected.  

 

3.2 Static Neuron 

A simple model of a static neuron is illustrated in Figure 3.1 [Rosenblatt, 1959; Widrow, 

1960]. This structure of an artificial (computational) neuron receives inputs either from other 

neurons or from sensors. A weighted sum of these inputs constitutes the argument of a “fixed” 

activation function, ][•ψ  (either linear function or nonlinear function) as shown in Figure 3.1. 

The resulting output value of the activation function is the neural output.  

[ ]•φ
1W

0W
2W

∑

)(1 kr

)(2 kr

)(ku

 

Figure 3.1 Structure of an artificial neuron. 

The static neural model shown in Figure 3.1 can be integrated into a network configuration to 

form a number of neural networks structures. A static neural network, in general, consists of a 

number of neural layers (stages) where the output of one neuron forms an input to other neurons 

in the next layer. A static neural network is shown in Figure 3.2. In this figure, each shaded circle 
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represents the static neuron shown in Figure 3.1. Usually, these kind of structures are referred to 

as feedforward neural networks or multi layered neural networks (MNN)[Simpson, et., 1990; 

Hunt, et al., 1992; Hush, et al., 1993; Anderson, et., 1983; Wasserman, et., 1989; Hecht-Nielsen, 

et., 1988]. These feedforward neural networks respond instantaneously to inputs because they 

posses no dynamic elements in their structure. Therefore, feedforward neural network structures 

are often called static neural networks. 
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2r
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Figure 3.2 Structure of feedforward static neural network. 

As an extension of static neural networks, dynamic neural networks using static neurons with 

external feedback and time delay inputs have been proposed [Hopfield, 1984; Narendra, et al., 

1990]. A general topology of a dynamic neural structure is shown in Figure 3.3. This feedback 

based neural network consists of static neurons as the basic functional unit. The network output 

at any time step is dependent on previous outputs of the network; hence the recurrent structure 

allows the neural network model to represent system dynamic behaviour including higher-order 

characteristics. However, the neural network model uses previous outputs as inputs, and in 

system modeling approaches, any error in the outputs will affect the results at future time steps. 

This process has been defined as “error accumulation” by Xu [1997]. Because of the discrete 
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nature of the time delayed feedback, the smaller the implementation time step and the more time 

delay paths used, the larger the rate of error accumulation. This is evidenced by the studies of 

both Xu [1997] and Lamontagne [2001]. 

1−Z 1−Z 1−Z

1−Z 1−Z 1−Z

 

Figure 3.3 Dynamic neural network using static neurons. 

To overcome the “error accumulation” situation, Lamontagne modeled the system using only 

delayed inputs (a feedforward-delayed input network) structure. With input delays, the output of 

the network is never fed back to the input, so errors in network output are not propagated to the 

next time step, and there is no accumulation of error. The results demonstrated that the input 

delay model had similar accuracy to the recurrent network under steady state conditions, but the 

dynamic response was less accurate. This result was expected as an input delay model is not able 

to model as wide a range of dynamic conditions as an output delay model [Lamontagne, 2001]. 

 

3.3 Dynamic Neuron Morphology 

3.3.1Dynamic Neural Units 

The studies by Xu and Lamontagne indicate that there are some morphology limitations in 

modeling a load sensing pump system using static neural networks. There have been many 

studies published in the literature on alternate dynamic neuron configurations. Some very 
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substantive research using a dynamic neural unit was conducted by Gupta, Deshpande, and Song 

for example [Gupta, et al., 1992, 1993 and 1995; Deshpande, et al 1998; Song, et al., 1999; etc]. 

The model in their studies was defined as the dynamic neural unit (DNU) which consisted of 

internal feedforward and feedback weights and a nonlinear activation function. The introduction 

of feedback introduces dynamic memory characteristics in the network and this results in faster 

convergence of the solution and better system characteristics.  

One of the advantages of the dynamic neuron is that it reduces the dimension of the network 

and the amount of computational time required when it is used to model or control a dynamic 

system. In previous studies [Gupta, et al., 1993 and 1992; Deshpande, et al., 1998; Song, et al., 

1999; Song, 2001; Srivastava, et al., 1998], the effectiveness of one DNU as an inverse dynamic 

controller was investigated. The results showed that a single DNU can be used to control linear 

and simple nonlinear systems whereas this was almost impossible for one static neuron.  

Another advantage of the dynamic neuron is that it has the potential to overcome the error 

accumulation problem associated with system modeling using a feedback and feedforward static 

neural network (FFSNN). The number of FFSNN inputs is determined not only by the number of 

physical system inputs, but also by the number of feedback and feedforward delay paths (shown 

in Figure 3.4).The output with error is fed back to the FFSNN as a “derivative” input and results 

in an increase of error in the output which is the new “derivative” input in the next time step. 

This would eventually drive the FFSNN far away from the target output as the simulation time 

increases. The “error accumulation” problem, therefore, can not be eliminated by the static 

neural network alone.   

With the DNU/DNN, the output feedback, the time delay inputs, and the system inputs are all 

summed and fed to the input of the nonlinear activation function. The DNU/DNN in this 
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configuration makes the DNU/DNN, in this particular case; behave similar to second order 

dynamic system. Like all other second order systems, the DNU/DNN keeps the output error 

within a certain range which is determined by the DNU/DNN structure and the parameters 

(weights) rather than the inputs and outputs. As a result, the output feedback will not affect the 

DNU performance as long as the training is stopped.  The built-in internal feedforward and 

feedback time delays in the DNU make a single DNU a dynamic unit. This enables the 

DNU/DNN to capture the dynamics of the system without having to add the external feedback 

connection, as needed in the FFSNN, and also, makes the DNU/DNN superior to the static neural 

network in system modeling.  

Hidden 
Layers

1−Z1−Z1−Z

1−Z1−Z1−Z
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Figure 3.4 Structure of dynamic neural network using static neurons 

Some of the earliest research on the development of the models of dynamic neurons was done 

by [Gupta, et al., 1993 and 1992; Deshpande, et al., 1998; Song, et al., 1999; Song, et., 2001; 

Srivastava, et al., 1998]. In all these studies, the dynamic neural units (DNUs) and the dynamic 

neural networks based on dynamic neural units (DNNs) were shown to be able to represent 

dynamic nonlinear systems. In most cases, DNUs/DNNs were used for adaptive control purposes 
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where the plant and the DNUs/DNNs were not separated during the control process; further, both 

the controlling of the plant and the training of the DNUs/DNNs were performed simultaneously. 

In some other cases, the use of DNUs/DNNs for “function approximation” was investigated, but 

after the “training” stopped, the trained DNUs/DNNs were not isolated from the desired function 

and were not tested. What this meant was that the networks were continuously responding 

(essentially changing weights) to the error signals from the last time step and were not really 

being trained to capture the dynamics of the system since the error signal was always present. 

This is an important difference to what is being attempted in this study in which the error signal 

is not present when the model is being used. The studies reported in the literature were “on-line” 

control and “on-line” identification where the error was available for continuous training. It is 

not clear from these studies how well the neural networks represented a physical system once the 

training stopped. The capability of DNUs/DNNs to model a nonlinear dynamic system needs to 

be further investigated and this is one of the objectives of the present study.  

Some of the DNU model structures presented and studies in the literature are shown in 

Figures 3.5, 3.6, 3.7, 3.8 and 3.9. Following each figure, the input-state, output-state 

representations are also provided for completeness. 
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Figure 3.5 Structure of DNU-1 [Deshpande 1997]. 
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The input-state-output representation of DNU-1 is expressed mathematically as: 

)()1( 21 kxkx =+ ,          (3.1) 

)]([)]([)()( 2211 kxbkxbkrkv ψψ −−= ,       (3.2) 

)()1(2 kvkx =+ ,          (3.3) 

)]([)]([)]([)( 32211 kvakxakxaku ψψψ ++= .      (3.4) 

In structure of DNU-1, the feedback and feedforward functional relationships are nonlinear. 
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Figure 3.6 Structure of DNU-2 [Deshpande 1997]. 

The input-state-output representation of DNU-2 is expressed mathematically as: 

)()1( 21 kxkx =+ ,          (3.5) 

)()()()( 1221 kxbkxbkrkv −−= ,        (3.6) 

)]([)1(2 kvkx ψ=+  ,         (3.7) 

)1()()()( 222110 +++= kxakxakxakd ,       (3.8) 

)]([)( kdku ψ= .          (3.9) 

In the structure of DNU-2, the feedback and feedforward contain constant coefficients 

compared to DNU-1.  
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Figure 3.7 Structure of DNU-3 [Srivastava 1998]. 

The mathematical expressions are illustrated as follows: 

)2()1()2()1()()( 01210 −−−−−+−+= kubkubkrakrakrakv ,    (3.10) 

[ ])()( kvku ψ= .          (3.11) 

In structure of DNU-3, the feedback and feedforward structure is different than DNU-1 and 

DNU-2. In addition, the feedback and feedforward coefficients are constants. 
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Figure 3.8 Structure of DNU-4 [Song 1999]. 

The input-output state representation of the DNU-4 is expressed as: 

)()1( 21 kxkx =+ ,                                                                                     (3.12) 

))](()([)]([)()1( 122112 kxfkxbkxbkrkx ψψ −−=+ ,                                (3.13) 

)]([)( 1 kxku ψ= ,                                                                                  (3.14) 
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where, ))(( 1 kxf  is a nonlinear function and is chosen as ( ) 2
11 1)( xkxf −= . The basic structure of 

DNU-4 is significantly differently than DNU-1, DNU-2 and DNU-3. Some coefficients are 

constant and the feedback functional relationships are nonlinear.  
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Figure 3.9 Structure of DNU-5 [Song 1999]. 

The input-output state representation of the DNU-5 is expressed as: 

)()1( 21 kxkx =+ ,          (3.15) 

[ ]))(()()()()1( 122112 kxfkxbkxbkrkx −−=+ ψ ,      (3.16) 

)]([)( 1 kxku ψ= .          (3.17) 

where, ))(( 1 kxf  is a nonlinear function and is chosen as ( ) 2
11 1)( xkxf −= . The structure of 

DNU-5 is similar to DNU-4 with the exceptions that the feedback contains constant coefficients. 

Compared with DNU-1, DNU-2, and DNU-4, and DNU-5, DNU-3 has the following 

advantages: 

(1) Due to the decrease of the total sigmoidal-type nonlinearities (only one), the 

computational requirements of DNU-3 are reduced considerably compared to those of other 

structures. If dynamic neurons are combined to form different kinds of dynamic neural networks 

to identify or control complex dynamic nonlinear systems, the computational requirement is very 

important.  
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(2) The feedback connections of the DNU-3 are taken after the nonlinear operation. Since the 

output of the nonlinear operation is bounded, this will increase the stability of the DNU-3.  

(3) The two time delays (in both input and feedback path) in DNU-3 indicates that the DNU-3 

is a second order dynamic unit, which, in this particular study, matches the order of the “pump 

only” model (in which the order of the “pump only” model was dominated by second order 

terms. Details are presented in Chapter 4).  

Therefore, DNU-3 was adopted in this project. 

Since the activation function plays a vital role in the application of the DNN, consideration 

should be given to the choice of the activation operator selection. Firstly, because the 

DNUs/DNN is used to approximate a nonlinear function, a nonlinear activation function should 

be adopted in which a nonlinear mapping from input to output is accomplished.  Secondly, in the 

real pump situation, flow saturation arises when the swash plate of the pump is either fully 

“stroked” or is at zero- stroke; thus the nonlinear function needs an upper and lower threshold to 

meet the pump flowrate limitation requirement. Thus, a hyperbolic tangent function (shown in 

Figure 3.10) was deemed to be one of the most appropriate for this study.  
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Figure 3.10 Hyperbolic tangent function 

Mathematically, the activation function equation is given as  
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where Sλ  is the gain and controls the slope of the activation function. If Sλ  is too large, it may 

lead to instability. Inaddition, the error can increase. If Sλ  is too small, the learning occurs very 

slowly. In the following section Sλ  is fixed at 2. )(kv  is the function input. 

3.3.2 Dynamic Learning Algorithm 

Through computer simulations, the ability of a dynamic neural structure with the DNU as the 

basic computing node to represent nonlinear dynamic systems can be investigated. In this study, 

the dynamic system was the “pump only” model. However, before this ability can be established, 

it is necessary to discuss how the neural network is “trained”. The training process is made more 

complex by the presence of time delayed feedback paths within the DNU. 

The basic training process employed for this task is shown in Figure 3.11. 
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Figure 3.11 Scheme of learning for system simulation using dynamic neural network.  

As shown in this Figure, the input signals are given to both the “pump only” model and the 

DNN, and the difference between their outputs is used to update the parameters (weights) in the 

DNN via the learning algorithm until the error is minimized or reaches a tolerance value. The 

least mean-square algorithm, based on the least mean-square error between the desired and actual 



 

  33

output, and the dynamic gradient descent algorithm described in this chapter, are adopted as the 

learning algorithm. These are now considered.  

As the DNU-3 (shown in Figure 3.7) was selected to be the computing node in the DNN, the 

learning algorithm based on the DNU-3 is as follows. 

Consider Figure 3.11. The error signal )(ke  is the difference between the desired output 

)(kyd  and the actual output )(ku at kth  instants. It is defined as 

)()()( kukyke d −= .             (3.19) 

The error signal drives the learning algorithm to update the feedforward weights ia , i =0, 1, 2, 

and the feedback weights jb , j =1, 2, in DNU-3 (Figure 3.7), such that the performance 

measurement function )(⋅E error is minimized. )(⋅E  is given by:  

∑
+−=

=
k

Nkm
me

N
kE

)1(

2 )]([1
2
1)(  ,        (3.20) 

where m  is the current time step, N  is the number that indicates the amount of past information 

used in the calculation of )(kE . If 1=N , then only the information at that step is used to 

calculate the error for the minimization process. This is called instantaneous training. If 10=N ,  

then 10 steps are made, and the error summed for those ten steps, before minimization occurs. 

This is called batch training. Depending on the dynamic system being simulated, N could be set 

to one or a larger number following some initial learning with more frequent weight updates. In 

this study, since instantaneous training was used, N  was equal to 1.  

The learning algorithm is based on the dynamic backpropagation method [Narendra, et al., 

1990; Deshpande, et al., 1996].  The adaptation equations for the adjustable parameters are 

described as follows: 
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)()()1( kiakiakia Δ+=+ ,    i =0, 1, 2,           (3.21) 

)()()1( kjbkjbkjb Δ+=+ , j =1, 2.        (3.22) 

Using the gradient descent approach [Werbos, P.J., 1974; Gupta, et al., 1992], the adjustments 

in the feedforward parameters, )(kaiΔ and in the feedback parameters, )(kb jΔ , are based on the 

following equations:  

)(
)()(

ka
kEka

i
aii ∂
∂

−=Δ η ,  i =0, 1, 2,      (3.23) 

)(
)()(

kb
kEkb

j
bjj ∂
∂

−=Δ η ,  j =1, 2,      (3.24) 

where 
iaη , i =0, 1, 2, and jbη , =j 1, 2, are the individual gains (learning rate) of the adaptable 

parameters of the neuron models, which determines the stability and speed of the convergence to 

the optimum values. In this study, all the values of learning rate were set to equal to 0.005. 

Substituting Equation (3.20) (with 1=N ) into Equation (3.23), the adjustments in feedforward 

weights can be written as 
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i
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)()[(

ka
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i
ai ∂

∂η .     (3.25) 

In the structure of DNU-3 (shown in Figure 3.7), )(kv , the input of the nonlinear function and 

)(ku , the DNU-3 output are described by the following equations 

)2()()1()2()()1()()()()( 21210 −−−−−+−+= kukbkubkrkakrkakrkakv ,   (3.26) 

)]([)( kvku s ⋅= λψ .          (3.27) 

Substituting Equation (3.27) into Equation (3.25) yields  
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Using the same as approach as was used in the feedforward weights derivation, )(kaiΔ , the 

adjustments in the feedback weights, )(kb jΔ , are: 

)(
)()(

kb
kEkb

j
bjj ∂
∂

−=Δ η = )])(())(1()[()( 2 kibkukek sbi ξλη − .  j =1, 2 ,  (3.29)   

The term,
)(
)()(

kia
kvk

ia ∂
∂

=ξ , in Equation (3.28) and the term, 
)(

)()(
kjb

kvk
jb ∂

∂
=ξ , in Equation 

(3.29) are the “sensitivity” signals. The sensitivity signals represent the direct impact of the 

parameter vector through the system equation on the neural unit response. These sensitivity 

signals are required in the derivation of the learning and adaptation algorithm.  

Substituting Equation (3.26) into the feedforward weight sensitivity signals,
)(
)()(

kia
kvk

ia ∂
∂

=ξ , 

the feedforward weight sensitivity signals are found to be:  

)()(0 krka =ξ ,                      for 0=i ,            (3.30) 

)1()(1 −= krkaξ ,                  for 1=i ,            (3.31) 

)2()(2 −= krkaξ ,                 for 2=i  .          (3.32) 
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The sensitivity signals for the feedback weights are now considered. Substituting Equation 

(3.26) into the feedback weight sensitivity signals term,
)(

)()(
kjb

kvk
jb ∂

∂
=ξ , the feedback 

sensitivity term is obtained as follows: 
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For j =1, Equation (3.33) can be written as 
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As 
11
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b
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=−ξ , Equation (3.34) becomes:  
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For 2=j , Equation (3.33) can be written as:  
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Since
22

)1()1(
b
kvkb ∂
−∂

=−ξ , and
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Substituting Equations (3.30), (3.31), and (3.32) in to Equation (3.28), and Equations (3.35) 

and (3.37) into Equation (3.29), the weights update equations (3.21) and (3.22) are completed. 
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3.3.3 Dynamic Neural Networks (DNNs) using Dynamic Neural Units (DNUs) 

 A single dynamic neuron can be used to simulate or control single-input, single-output 

nonlinear systems. However, it is believed that the real power of neural computation comes from 

neurons connected in a network structure. Larger networks generally offer greater computational 

capabilities [Hunt, et al., 1992; Hush, et al., 1993; Poggio, et al., 1990]. The multilayer networks 

in which the neurons are arranged in layers have been proven to have capabilities much more 

than those of a single layer. The DNUs can be arranged in parallel and in series. There are five 

DNN structures in the literature [Gupta, et al., 1993 and 1992; Deshpande, et al., 1998; Song, et 

al., 1999; Song, 2001; Srivastava, et al., 1998], and they are shown in Figures 3.12, 3.13, 3.14, 

3.15 and 3.16.  
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Figure 3.12 Structure of a three stage DNN-1 using six DNUs 
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Figure 3.13 Structure of a three stage DNU-2 using six DNUs 
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Figure 3.14 Structure of a three stage DNU-3. 
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Figure 3.15 Structure of a three stage DNN-4 using six DNUs. 
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Figure 3.16 Structure of a three stage DNN-5 using three DNUs. 
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Considering the error accumulation problem in the previous research, which was caused by 

the external feedback connections in the NN based model, a feedforward structure, DNN-1 was 

adopted in this present study. Because the order of the “pump only” model adopted in this study 

was a second order system (details are presented in the next Chapter), and because the DNU-3 

was a second order dynamic unit itself, it was not necessary to link the DNUs serially. From a 

computational requirement point of view, the simpler the structure, the better. As such, a DNN 

structure which consisted of two DNUs in parallel was employed in this study and is shown in 

Figure 3.17. In this structure, 1W   and 2W  were defined as “proportional weights” and they were 

trained by the same algorithm as in internal weights training.  
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Figure 3.17 Structure of DNN adopted in this study. 

 

3.4 Summary 

Several morphologies of the Dynamic Neuron Units were presented in this chapter. The 

introduction of dynamics into the network makes the training and implementation more complex 

and the computing more efficient. The gradient descent algorithm was present for the DNU 

adopted in this study. Several multi-layer structures based on the DNUs presented in this section 

were also introduced. Based on the order of the pump only model, the DNUs structure which was 

deemed most suitable for this study was introduced.  
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CHAPTER 4    FEASIBILITY TEST USING A MATHEMATICAL MODEL 
OF THE PUMP 

 

4.1 Introduction 

In the previous three chapters, studies on hydraulic load sensing systems, modeling of such 

systems and the neural network approach to modeling were reviewed. It was proposed that the 

most suitable dynamic neural network morphology for the “pump only” model structure having 

two inputs and one output was one using two dynamic neural units (DNUs) in parallel. The 

learning algorithm (based on least mean squares) for the DNN weights updating was also 

introduced. In this chapter, the “pump only” model (experimentally verified in previous studies) 

is presented in a “power bond graph” form [Dransfield, P., 1981]. The DNN is trained to 

“mimic” the dynamic performance of this model by subjecting both the model and the DNN to 

identical inputs. The DNN is then validated by inputting to both the model and DNN a series of 

signals which are not used in the training process. 

 

4.2 Mathematical Pump Model  

For initial feasibility investigations, it is common practice to use an established model of a 

pump rather than a “real” pump to train the DNN. This was the approach used in this study. The 

pump model reflected many of the dynamic nonlinear characteristics of the real pump, and had 

been verified in other studies [Wright, 1988, Kavanagh, 1987]. If the DNN can be trained to 

represent a validated simulated model, then it would be capable of representing a real pump from 

which the mathematical model was established. A second consideration was that if the dynamic 
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network could not be used to model a “noiseless” analytical model then there would be little 

chance of this approach being successfully applied to more a complex “real” pump. Therefore, 

the pump model developed by Wight [1988] and Kavanagh [1987] was adopted in this study. 

In the development of the model, several assumptions were made and are: 

 The load pressure effect is significant. 

 The control piston displacement and its derivatives are linearly related to the swash 

plate angular displacement and appropriate derivatives. 

 Laminar conditions govern the flow in all leakage paths. 

 Stiction and viscous friction effects are significant but Coulomb friction is not. 

 The mass of the spring, spring cap, yoke, pintle, swash plate, and control piston are 

lumped into one inertial term as are their damping and friction forces. 

 The spring is linear. 

 Turbulent conditions govern the flow across all orifices. 

 The tank pressure is zero. 

 The casing pressure is zero. 

 Resistive and capacitive effects are lumped where appropriate. 

In order to understand the development of the pump simulation model, it is necessary to 

understand some of the interactions which exist in the pump. 

For normal pump operation, the swash plate is often at full stroke, held against a mechanical 

stop by the return spring (see Figure 4.1). This creates a condition of maximum flowrate from the 

pump. However, the output flow is reduced somewhat due to leakage. Oil continually leaks 

between the pistons and bores, across the valve plate, and through a small hole in the pistons 

which is used to provide lubrication for the slippers. This oil leaks from the high pressure casing 
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of the pump to the low pressure case drain and then to tank. For simplicity, the leakage is lumped 

into one term and is represented by the resistance term lR . 
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Figure 4.1 Schematic diagram of a load sensing pump 

The load in the pump output line provides resistance to the flow of oil. Consequently, pressure 

is developed as the pump forces oil into the line. This pressure causes a resistance force on the 

pistons and hence an unbalanced torque on the swash plate. This torque is the effect of load 

pressure, and it tends to “stroke” the pump (increase the swash plate angle and hence the output 

flow rate) [Kavanagh, 1987]. 

To destroke the pump, pressure must be ported from the pump output line to the control piston 

(see SP  and CP line in Figure 4.1). The resulting force on the control piston opposes the return 

spring force, tending to destroke (decrease the swash plate angle) the pump. To stroke the pump, 

pressure in the control piston chamber fluid is ported to tank via the control compensating piston 

(compensator spool in Figure 4.1). 

 The entire swash plate and piston assembly resides in the pump casing which is always full of 

oil. This oil provides lubrication for sliding parts, but also provides viscous damping which 
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resists any motion of the swash plate. Acceleration of the swash plate is dictated by the inertia of 

the swash plate and piston assembly, and the magnitude of the forces applied. 

The dynamic equations for the pump simulation model were formulated using the power 

Bond Graph technique [Dransfield, 1981]. The Bond Graph is a representation of power flow 

within a system, and as such is a useful tool in arranging the describing equations for hydraulic 

components and systems. The interdependency of variables can be determined following well 

established rules for assigning causality between variables. The power Bond Graph of the “pump 

only” model is shown in Figure 4.2. A brief summary of the Power Bond Graph is presented in 

Appendix A. 

yk
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Figure 4.2 Power bond graph of “pump only” model 

The describing equations generated from the Bond Graph of Figure 4.2 are: 

 θωω ⋅= ))(( kSQp      (4.1) 

sll PRQ ⋅=       (4.2) 

lps QQQ −=      (4.3) 
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bAPT cpcyk ⋅⋅= ,     (4.4) 
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.    (4.9) 

The values of all parameters and coefficients to be used in the equations above are listed in 

Appendix B. These equations listed in this causal form readily lend themselves to computer 

simulation. They were implemented in a Matlab/Simulink environment. 

A very important factor in defining the morphology of a DNN is to have an idea of what is the 

order of the plant. This is not a requirement but it certainly is a useful tool in trying to find a 

suitable DNN morphology. Thus the choice of the DNU/DNN morphology should demonstrate 

the same order of the dynamics as the pump model. By using linearization techniques, the 

transfer function of the “pump only” model was derived from the above Bond Graph equations 

and it is shown to be: 

HGsFs
sPDCsBssAP

sQ SC
S ++

++−
= 2

2 )()()(
)(  .  (4.10) 

The details of the derivation and the coefficients values are shown in Appendix C. It is 

apparent that the “pump only” model contains two poles for CP  and two poles and two zeros for 

SP  in this linearized transfer function.  
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4.3 Training Signals Preparation 

 To create an accurate network model of a component, data used to train the DNN must be 

generated for all possible behaviour of the components. Thus, an important requirement for 

defining a set of training signals is that they must excite all operating dominant cut-off 

frequencies and time constants of the plant in order to obtain full information about input-output 

properties of that plant. Such an input signal is referred as “persistently exciting” or “general 

enough” or “rich enough” in the literature [Narendra, et al., 1989]. For dynamic system 

identification, the requirement of persistent excitation means that the input (training signal) must 

be sufficiently rich in frequency content and in amplitude variations. In this study, a special input 

signal was developed based on the pump model cut-off frequency. 

Because the DNN must be trained for steady state and transient responses, the training signal 

(input and output data pairs) should include both steady state and transient information. When 

the training signal (input and output pairs) frequency is substantially smaller than the “cut-off” 

frequency or dominant pole/zero of the pump model, the DNN is only trained for the steady 

state. If the training signal frequency equals to and greater than the dominant “cut-off” frequency 

of the pump model, the DNN is trained for the transient response of the pump model. Therefore, 

in order to train the DNN to represent the dynamic characteristics of the pump model over a 

practical operating range, the training signal should be not only rich in amplitude, but also rich in 

frequency consisting of several practical operating frequencies.  

The uniformly distributed random signal in Matlab/Simulink was adopted to achieve the 

richness in amplitude. The cut-off frequency is a critical point from the training signal frequency 

selection standpoint and it can be obtained from the system frequency response. However, the 

frequency response of a two input system such as the “pump only” model cannot be obtained if 

both the two inputs vary simultaneously. However, the two input system frequency can be 
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obtained from the frequency response where one input is fixed as constant. Figure 4.3 shows the 

pump magnitude frequency response at SP  equals to MPa2.17  and Figure 4.4 shows the pump 

magnitude frequency response at CP  equals to MPa1.3 . 
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Figure 4.3 Magnitude frequency response of “pump only” model ( MPaPS 2.17= ). 
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Figure 4.4 Magnitude frequency response of “pump only” model ( MPaPC 1.3= ). 
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 From Figure 4.3, it is evident that the “pump only” model is a second order system when SP  

is held constant and this is consistent with Equation 4.10. Equation 4.10 also indicates that the 

“pump only” model is a second order system with two poles and two zeroes of  SP  when CP  is 

set constant. Since the frequency response in Figure 4.4 is very similar to than shown in Figure 

4.3 (other than a slight magnitude shift), it is apparent that the numerical values of the two zeroes 

of SP  in the linearized system transfer function ( CP  held constant), are much larger than the 

dominant poles. The zeroes do not affect the system properties in a frequency range less than 

100Hz, a range which was defined as the upper frequency of the “pump only” model. 

 In Figures 4.3 and 4.4, the cut-off frequency of the pump only model is around 25Hz. From a 

practical point of view, four times the cut-off frequency, 100Hz, was believed to be a reasonable 

operating frequency band. Therefore, the training signal consisted of several frequencies over 

this range. In this present study, five frequencies were chosen to make up the training signal. 

They were 5Hz, 20Hz, 25Hz, 33Hz, and 100Hz. Training signals of 5Hz and 20Hz were used to 

train the DNN for steady state information, and training signals of 25Hz, 33Hz, and 100Hz used 

to train the DNN for dynamic information. To ensure the condition of richness in amplitude, the 

input SP  was randomly chosen from MPa0 to MPa2.17 , and CP  randomly chosen from 

MPa8.2 to MPa4 . It should be noted that the range of CP  was chosen to ensure that the 

swashplate angle of the pump did not saturate at its limits very often. In addition, the chosen 

amplitude ranges of inputs SP  and CP  limited the output flowrate, SQ  , to be in the range of 

sec/0 3m  to sec/102.3 34 m−× .  

Because the outputs of the nonlinear functions of DNN were bounded within -1 to 1, the 

DNN could not be trained using the real input/output data pairs. Hence, it was necessary to 
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normalize all the signals of the “pump only” model according to requirements of the DNN. This 

was accomplished by pre-processing and post processing the data pairs from actual values 

(MPa, sec/3m ) to normalized values (-1, +1). This normalizing had another advantages. Signals 

generated by the computer software were also in the -1 to +1 range, and hence were in a very 

convenient form for training and testing.  

Typical “normalized” training input signals for one cycle of SP , and CP , and the output 

normalized flowrate SQ  are shown in Figures 4.5, 4.6, and 4.7. The input signals consisted of 

steps at different frequencies (rather than sinusoids) because step inputs are inherently very rich 

in higher frequency content.  
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Figure 4.5 One cycle of the normalized training signal, SP . 
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Figure 4.6 One cycle of the normalized training signal, CP . 
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Figure 4.7 One cycle of the normalized training signal, SQ .  

In Figures 4.5, 4.6, and 4.7, the x-axis is given in “Simulation Steps” where one step 

represents 0.005 seconds. One cycle (0.93 second) of training signal was comprised of four 5Hz 
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signals, one 20Hz signal, one 25Hz signal, one 33Hz signal and one 100Hz signal; In addition 

the amplitudes were change randomly (generated form the uniformly distributed random signal 

and some logical controller in the Matlab/Simulink environment). Figure 4.8 shows some 

sections of the normalized training signal taken from the whole training process. 
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Figure 4.8 Normalized training signal CP  varied in a random fashion. 

For the pump model of Wright [1988], it should be noted that the swash plate angle can never 

operate below an angle of zero radians and above the maximum angle of 0.3125 radians. 

Therefore, the resulting flowrate limitation was considered in developing the pump model. The 

model treated any swash plate angle of lower than zero as zero, and swash plate angles greater 

than 0.3125 radians as 0.3125 radians. These limits were implemented by applying various logic 

operators to the pump model in the Matlab/Simulink environment. One of these limitations can 

be observed in Figure 4.7 in the signal around 60s-90s. At this point, the value of CP  and the 
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value of SP would result in a the pump model output flow of less then zero, but with the limits 

set by the logic operator, the flowrate is set to zero. 

   In summary, the training signals SP , CP , and SQ using random amplitudes and several 

different operating frequencies of step inputs, were used to train the DNN. 

 

4.4 Model Validity Testing 

The DNU based DNN was trained using the gradient descent algorithm for normalized 

random amplitude signals which contained five different frequencies. All training was 

considered to be “instantaneous” (see Section 3.1); the sampling time was set to 0.005 seconds. 

After 20000 seconds, the training error did not decrease further and the training was stopped. At 

this point, the average value of each weight in the DNN over their last 5000 points was adopted 

as the final weight value.   

In Chapter Three, it was stated that the “trained” DNN must be validated by testing after the 

training stops. During the testing process, the trained DNN was subjected to some new inputs 

which were not necessarily used in the training process. The trained DNN output and the model 

output for these new inputs were compared to see if the trained DNN represented the physical 

system. 

In the next section, the results of the test procedure for various inputs are considered. Note 

that discussion of the results is deferred to Section 4.5 where all of the trends are correlated and 

some basic conclusions drawn. These conclusions are required in order to justify the 

compensation scheme introduced in Chapter 5. 
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4.4.1 Sine Wave Test 

Because of the presence of the two inputs, testing of the trained DNN became more complex. 

The first series of tests was to subject the DNN to an extreme situation where CP  was a 

sinusoidal signal and SP  a constant; SP  was then made a sinusoidal signal and CP  held constant. 

Although from a practical point of view, this situation would never happen in a load sensing 

system (where SP   and CP  are both frequency and amplitude related due to the interaction of the 

system). This sort of extreme condition can only occasionally happen in a variable displacement 

pump where SP   and CP  are truly independent. Subjecting the trained DNN to this extreme 

operating condition was essential to investigate the performance of the DNN in an extended 

application range of a variable displacement pump with single input. 

 Figures 4.9, 4.10 and 4.11 show the DNN output and pump model output comparison results 

for SP  constant ( MPa4.16 ) and CP  a sinusoidal signal (amplitude from MPa8.2  to MPa4 ). 

Figures 4.12, 4.13 and 4.14 show the DNN output and pump model output comparison results for 

CP  constant ( MPa1.3 ) and SP  a sinusoidal input (amplitude from MPa3.4  to MPa9.12 ). Note 

that the output of the DNN has been post-processed to determine the flow in sec/3m  in these 

figures. 
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Figure 4.9 Test results for SP constant ( MPa4.16 ) and CP  a sinusoidal input at 10Hz. 
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Figure 4.10 Test results for SP constant ( MPa4.16 ) and CP  a sinusoidal input at 33Hz. 
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Figure 4.11 Test results for SP constant ( MPa4.16 ) and CP  a sinusoidal input at 67Hz. 
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Figure 4.12 Results for CP  constant ( MPa1.3 ) and SP  a sinusoidal input at 10Hz. 
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Figure 4.13 Results for CP  constant ( MPa1.3 ) and SP  a sinusoidal input at 33Hz. 
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Figure 4.14 Results for CP  constant ( MPa1.3 ) and SP  a sinusoidal input at 67Hz. 
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To demonstrate these results in another form, a frequency response of the trained DNN model 

was conducted using a “chirp signal function” in Matlab (a swept sinusoidal signal). In these 

tests, SP was held constant at MPa2.17 and CP  varied in frequency with its upper and lower 

amplitude values at MPa4 and MPa8.2  respectively. The frequency response for both the DNN 

and pump model are shown in Figure 4.15. Also, the frequency responses of the trained DNN 

and pump model where CP was fixed at MPa1.3 and SP , a sine wave signal (amplitude varying 

from MPa3.4 to MPa9.12 ) are shown in Figure 4.16.  
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Figure 4.15 Magnitude frequency responses for trained DNN and pump model ( SP = MPa2.17 ). 
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Figure 4.16 Magnitude frequency responses for trained DNN and pump model ( CP = MPa1.3 ). 

As stated above, in a real application, SP  and CP  are not completely independent.  They are 

related in both amplitude and frequency and vary in a similar fashion. Therefore, in the second 

series of tests, both SP  and CP  are sinusoidal signals which have the same frequency but 

unrelated random amplitude. As such, the normalized SP  was to be ( ))2sin( ftA π⋅  and the 

normalized CP  to ( )ftB π2sin(⋅  where A  and B were random numbers within -1 and 1. These 

inputs signals are shown in Figures 4.17 (a), 4.18 (a), 4.19 (a), and 4.20 (a). In order to 

investigate DNN performance in the whole training range, tests at four frequencies (10Hz, 25HZ, 

50 Hz and 100Hz) were examined. The test output results are shown in Figures 4.17 (b), 4.18 (b), 

4.19 (b), and 4.20 (b). 
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Figure 4.17(a)   Both SP  and CP  random sinusoidal inputs at 10Hz . 
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Figure 4.17(b)   Test results for input signals shown in Figure 4.17 (a).  
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Figure 4.18(a)   Both SP  and CP  random sinusoidal inputs at 25Hz.  
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Figure 4.18(b) Test results for input signals shown in Figure 4.18 (a). 
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Figure 4.19(a)   Both SP  and CP  random sinusoidal inputs at 50Hz. 
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Figure 4.19 (b) Test results for input signals shown in Figure 4.19 (b). 
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Figure 4.20(a)   Both SP  and CP  random sinusoidal inputs at 100Hz.  
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Figure 4.20(b) Test results for input signals shown in Figure 4.20 (a). 
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4.4.2 Step Input Tests 

To demonstrate the validity of the DNN model for step inputs (considered a more appropriate 

input showing both transient and steady state information in the time domain rather than the 

frequency domain), both the DNN and the pump model were subjected to a series of controlled 

step inputs. In the first case, CP  was held constant at MPa4.3 and SP  set as a random step input 

with a frequency of 10Hz. Test results are shown in Figure 4.21. In the second case, SP  was set 

as MPa2.17 and CP  as a random step input with frequency of 10Hz. Test results are shown in 

Figure 4.22. Another test for the second type of inputs was also performed where both SP and CP  

were random step inputs with the same frequencies of 10Hz. The test results are shown in Figure 

4.23.   
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Figure 4.21 Test results for CP  constant ( MPa4.3 ) SP in random step fashion. 



 

  64

740 760 780 800 820 840

0.5

1

1.5

2

2.5
x 10

-4

Simulation Steps (0.05second/step)

F
lo

w
ra

te
 (

m
3 /s

ec
)

DNN Output

Pump Model Output

 

Figure 4.22 Test results for SP constant ( MPa2.17 ) CP  in random step fashion. 
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Figure 4.23 Test results for when both SP and CP  are random step inputs.  
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4.5 Discussion and Conclusion on Initial Tests: 

An observation that can be made was the fact that the error accumulation problem 

discussed in Section 3.1.2 did not occur. Thus the morphology of the DNN appears to have 

solved the problem encountered by Xu [1997(1)].  

Both the sine wave test results (Figures 4.9-4.20) and the step input test results  (Figures 

4.21-4.23) indicate that the trained DNN is able to approximate the dynamics of the pump flow 

output over a frequency range up to approximately 40 Hz, but it is also apparent that the steady 

state values (using step inputs) and the amplitudes (using sine wave) are substantially different. 

This is also evident in the “bias” or shift in the frequency response amplitude ratio. In Figures 

4.15 and 4.16, the trained DNN frequency response breaks down around 40Hz which is 

consistent with Figures 4.9 - 4.14; indeed, the order of the pump model and DNN deviate 

substantially at that point. However, the agreement is acceptable over the dominant break 

frequencies. A further discussion on the model quality is now necessary to analyze what has 

affected or has limited the modeling accuracy. 

4.5.1 Low Accuracy at Steady State 

As mentioned above, the DNN does capture the dynamics of the pump model over the 

training frequency range (less than 40 Hz). But the steady state error is quite large. A possible 

reason for this is now forwarded. It was believed that the source of the error could be traced to 

some of the inherent properties of the DNN structure adopted in this study. A visual inspection 

of the structure of the DNN (shown in Figure 3.17) shows that the weights, kW  ( )2,1,0=k , 

determine the proportion of SP and CP  which are input into the nonlinear function input )(kr . 

Since they are internal to the dynamic unit DNU, weights, nia and njb  determine the dynamics of 

the DNN. (In this notation, n  represents the number of the neuron, n =1.2, i  represents the 
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number of the feedforward weights, i =0, 1, 2 and j represents the number of the feedback 

weights, j =1, 2).  In comparison, the “proportional weights”, kW ( )2,1,0=k , affect the system 

steady state. 

 In order to investigate the steady state error, the last 5000 values of each weight in the 

training process were examined and some of them are shown in Figures 4.24 (a) to Figure 4.24 

(h). For a trained DNN, all the weights should converge to a constant number or vary in a very 

small range after the training stops. The DNU internal feedforward and feedback weights shown 

in Figures 4.24(d) to 4.24(h) vary over a small range (less than 10% of the average value), but 

the DNU “proportional” weights kW  shown in Figure 4.24(a), 4.24(b) and 4.24(c) change 

significantly (50% of the average value). That means the pump model steady state behaviour has 

not been “emulated” or “learned” by the DNN as these weights did not converge. On the other 

hand, since the variations in nia and njb  are fairly small over the last steps, the internal 

feedforward and feedback weights can be treated as converged and hence, the dynamic 

characteristics of the pump model are captured by the DNN.  

It was concluded that for the input signals that were used to train the DNN, the DNN could 

only be trained to capture the pump model dynamics but could only “follow” the steady state 

data as oppose to “training” to it. This conclusion CANNOT be generalized to all conditions 

since an extensive experimental and theoretical study could not be conducted in the time frame 

of this research. 

It should be noted that in previous studies by [Gupta, et al., 1993 and 1992; Deshpande, 

et al., 1998; Song, et al., 1999; Song, 2001; Srivastava, et al., 1998], the DNUs/DNN were used 

for control purposes where the physical plant was not separated from the DNN. The error signal 

which was used for weight updating was always available for the continuous training process. 
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For such control purpose, it is not essential for the DNN to “follow” the steady state or to “learn” 

the steady state as long as the DNN can produce a right control signal to the plant. However, in 

the system modeling approach, the ability of “learning” rather than “following” is significant 

because the trained model (DNN) must display characteristics to the plant and be able to 

reproduce the performance of the plant under all operating conditions and for any time duration. 

Further investigation on the DNU structure and the DNN configuration is needed to overcome 

the non-convergence “proportion weights” problem. Alternatively, compensating for the 

changing in “proportion weights” externally might be an effective method to eliminate the steady 

state error. Such an approach is presented in the next chapter. 
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Figure 4.24 (a) The last 5000 weight value of 0W in training process. 



 

  68

0 1000 2000 3000 4000 5000
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Number of data points

W
ei

gh
t 

va
lu

e W1

 

Figure 4.24(b) The last 5000 weight value of 1W in training process. 
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Figure 4.24(c) The last 5000 weight value of 2W  in training process. 
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Figure 4.24 (d) The last 5000 weight value of 10a in training process. 
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Figure 4.24 (e) The last weight value of 11a  in training process. 
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Figure 4.24 (f) The last weight value of 12a  in training process. 
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Figure 4.24 (g) The last 5000 weight value of 11b in training process. 
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Figure 4.24(h) The last 5000 weight value of 12b  in training process. 

4.5.2 Low Accuracy at High Frequency 

Consider Figure 4.15 and Figure 4.16, the DNN frequency response and the pump model 

frequency response deviate at around 40Hz. The decrease in accuracy is believed to be caused by 

the lower “richness” in signals greater than 40Hz. The training signal frequencies in one period 

were four 5Hz, one 20Hz, one 25Hz, one 33Hz and one 100Hz. There were more signals in low 

(four 5Hz), and middle frequencies (20Hz, 25Hz, and 33Hz), but only one at high frequencies (at 

100Hz). There was no input in the range of 40Hz to 100Hz which was used to train the DNN. 

This explains the higher accuracy around the cut-off frequency (25Hz to 35Hz). This problem 

can be overcome by adding more different components into the training signal increasing the 

frequency richness of the training signal. 
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4.6 Summary 

In this Chapter, a mathematical pump model was developed using the Power Bond Graph 

technique (verified experimentally in other studies). To achieve the richness in both frequency 

and amplitude of the training signal and considering the cut-off frequency of the pump model, a 

special training signal comprised of several different frequencies was created in a Matlab 

environment. Tests to validate the trained DNN model were performed. The results indicated that 

the trained DNN did capture the nonlinear dynamics of the pump model, but the steady state 

error was quite large. The last 5000 values of the weights were examined, and it was found the 

“proportion weights” which play an important role in the steady state did not converge even 

though the training error did not change significantly in the training process. For system 

modeling, if the trained DNN is to replace the pump model, the DNN weights are set and hence 

no opportunity to change them exists during the testing (or in fact application) process. 

In the next Chapter, some methods to overcome the low steady state accuracy problem are 

investigated. 
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CHAPTER 5    COMPENSATION FOR TRAINED DNN STEADY STATE 

 

5.1 Introduction 

The test results presented in Chapter Four indicated that the DNU based DNN was able to 

capture the dynamics of the “pump only” model in a certain frequency range (approximately less 

than 40Hz) but the steady state error was quite large. An examination on the last 5000 weight 

values showed that the “proportion weights” did not converge. In this Chapter, two 

compensation methods are presented which overcame the non-convergent “proportion weights” 

problem and eliminate the steady state error. 

The compensation methods were formed by developing empirical functions to compensate for 

the changes in weights according to the relationships among four elements; that is, two system 

inputs, the trained DNN output and the error between the pump model output and the trained 

DNN output. In the first method, defined in this research as the “compensation equation 

method”, the compensation function was developed by manually examining the relationships 

between these four elements point by point in the time response traces and then developing a set 

of empirical based equations. In the second method, as the static neural network is very effective 

in approximating either linear or nonlinear function, a static neural network was trained to learn a 

compensation input-output relationship in order to reduce the steady state error. 
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5.2 Compensation Equations Approach 

5.2.1 Equations Development 

The test results for the trained DNN showed that the steady state error between the “pump 

only” model and DNN model was quite large but the trained DNN appeared to capture 

satisfactorily the dynamics. One direct way to compensate for the steady state error was to 

quantify the error as a function of the magnitude of the inputs (essentially a three dimensional 

array of error vs the two inputs) and then to determine a compensating empirical equation 

forcing the output of the DNN to follow the “pump only” model output).  

This approach was applied to the results shown in Chapter 4. Based on the observed 

relationship between the inputs and output error, compensation equations applied to the output of 

the DNN ( DNNoutput ) for this particular “pump only” model were obtained as: 

 1=SP   { 0      1.0
0Pc          0S )()9.0(0.3Output fPcDNNoutputP ≤+∗+=     (5.1) 

5.0=SP   { 0     075.0
0              0)0.9)s(0.3Output ≥+∗+= Pc

Pc(DNNoutputP p    (5.2) 

0=SP   { 0        05.0
0              0)()9.03.0( ≥+∗+= Pc

PcDNNoutputPsOutput p   (5.3) 

25.0−=SP   { 0         0
0    035.0)()9.03.0( ≥+∗+= Pc

PcDNNoutputPsOutput p   (5.4) 

5.0−=SP   { 0        0
0    02.0)()9.03.0( ≥

<+∗+= Pc
PcDNNoutputPsOutput   (5.5) 

In the above equations, the term “Output ” represents the output of the compensated DNN.  

The above equations were simplified to: 

If Sign ( SP )*Sign ( CP ) =1: 

)05.005.0()()9.03.0( ++∗+≈ PsDNNoutputPsOutput     (5.6) 

If Sign ( SP )*Sign ( CP ) =-1: 

)()9.03.0( DNNoutputPsOutput ∗+≈       (5.7) 
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Note  that although the compensation equations were based on steady state data, the dynamic 

portions of the response were also amplified but, as will be shown, this did not have a significant 

effect overall. 

5.2.2 Validity Testing 

After applying these compensation equations to the trained DNN model, the compensated 

DNN model was subjected to series of tests which were similar to those in Chapter Four. As 

mentioned earlier, situations involving constant SP with CP  varying or constant CP  with SP  

varying would rarely occur in a load sensing pump; however, these extreme conditions illustrate 

how a pump model would respond to a single input. In the first series of tests, a sine wave was 

input into the model. Figure 5.1 shows the test results for SP  a constant, and CP  a sinusoidal 

signal. Figure 5.2 shows the test results for CP  a constant and SP  a sinusoidal signal. A test 

showing the case when both SP  and CP   were random sinusoidal signals is shown in Figure 

5.3. SP  was then held constant and CP  varied as a random step input and the results shown in 

Figure 5.4. Results for CP  fixed as a constant and SP  a random step input are shown in Figure 

5.5. In the last of this series of tests, both SP  and CP  were set to be random step inputs. The 

comparison of results are shown in Figure 5.6. 
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Figure 5.1 Comparison of the output flow of the trained DNN, the compensated DNN and the 
pump model (PS  constant and PC varied in a sinusoidal fashion at 10Hz). 
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Figure 5.2 Comparison of the output flow of the trained DNN, the compensated DNN and the 
pump model (PC constant and PS varied in a sinusoidal fashion at 10Hz). 
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Figure 5.3 Comparison of the output flow of the trained DNN, the compensated DNN and the 
pump model (both PS and PC varied in a random sinusoidal fashion at 10Hz). 
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Figure 5.4 Comparison of the output flow of the trained DNN, the compensated DNN and the 
pump model (PS  constant and PC varied in a random step fashion at 10Hz). 
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Figure 5.5 Comparison of the output flow of the trained DNN, the compensated DNN and the 
pump model (PC constant and PS varied in a random step fashion at 10Hz ). 
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Figure 5.6 Comparison of the output flow of the trained DNN, the compensated DNN and the 
pump model (both PS and PC varied in a random step fashion at 10Hz). 

The test results shown in Figures 5.1-5.6 indicate that both the steady state and the transient 

portions (step inputs) and amplitude (sinusoidal inputs) of the “pump only” and DNN models 

correlate quite well and hence the DNN can be adequately compensated with the proposed 
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scheme. However, as those compensation equations were developed manually, their validity 

cannot be guaranteed for all operating points and they were only effective for this particular 

pump model. The compensation equation approach was time consuming in its development, and 

demonstrated some accuracy limitation in practical application. Further, this “human interaction” 

seemed to reduce the effectiveness of the “black box” concept substantially. An alternate steady 

state compensation method which would provide higher accuracy and remove the human 

intervention aspect was needed.  

 

5.3 Static Neural Network Compensation Approach 

5.3.1 SNN Training Structure  

The success in using compensation equations to eliminate the steady state error of the trained 

DNN demonstrated that the non-convergence “proportion weights” problem could be overcome 

by compensating the output of the DNN externally. It was well known that a static neural 

network (SNN) approach could approximate functions to any degree of accuracy as long as there 

were enough neurons in hidden layers(s) [Hornik, et al., 1989]. It was decided to train a SNN to 

replace the compensation equations in order to get higher accuracy over an extended application 

range. 

A block diagram illustrating the steady sate SNN training process is shown in Figure 5.7. In 

this configuration, the two original system inputs, SP  and CP , (which also were the inputs to the 

trained DNN and the “pump only” model), and the output of the trained DNN were fed into the 

SNN. The difference between the SNN output and the “pump only” model was used to train the 

SNN using an appropriate learning algorithm.  
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Figure 5.7 Block diagram for SNN training. 

As mentioned above, a static neural network (SNN) is capable of reaching any degree of 

accuracy in function approximation as long as there are enough neurons in hidden layers(s); the 

more complex the SNN becomes, the more computation is required. After a suitable preliminary 

study, a neural model which included 10 neurons in the input layer, 4 neurons in the hidden layer 

and one neuron in the output layer was used for this study. The neural network is shown in 

Figure 5.8.  Increasing the number of neurons above this produced negligible improvement in 

training accuracy but increased the required training time. 

1r

2r

3r

4r
u

10r
 

Figure 5.8 Schematic of SNN adopted for steady state compensation. 
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 Since there was a readily available Static Neural Network Toolbox in Matlab, the steady state 

SNN training process was implemented using Matlab. There are several training algorithms 

available in the toolbox and a technique based on the Levenberg-Marquardt backpropagation 

technique was used in this study. The use of the Levenberg-Marquardt technique for neural 

networks was first described by [Hagan, et al., 1994]. This algorithm offers superior speed of 

convergence over simple backpropagation techniques and testing showed it performed better 

than the gradient descent techniques for the neural network model structure used.  

As the SNN was used for the steady state compensation, the training signals, both SP  and CP ,  

were random step inputs with frequency of 10Hz. 2000 input pairs were collected to train the 

SNN using batch training (see Section 3.1). Both steady state and transient information were 

present in the epoch of training data. 

 5.3.2 Validity Testing for DNN &SNN 

As the SNN training process approached completion, it was observed that the weights of the 

SNN converged to constant values (a required condition if the SNN was to be considered 

trained). The trained SNN (along with the previously trained DNN) was then tested using the 

structure shown in Figure 5.9.   

SP

CP

SQ

 

Figure 5.9 Structure of the trained DNN and SNN combination model. 

A series of tests similar to those presented Section 5.2.2 were input into the combined neural 

network model. The test results for SP ( MPa9.12 ) constant with sinusoidal CP  (10Hz) and then 

CP  ( MPa4.3 ) constant with sinusoidal SP  are shown in Figures 5.10 and 5.11. Figure 5.12 



 

  82

shows the test results when both SP  and CP  were varied in sinusoidal fashion with unrelated 

random amplitudes. 
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Figure 5.10 Comparison of the trained DNN, the DNN & SNN combination model and the pump 
model (PS  constant and PC varied in a sinusoidal fashion at 10Hz). 
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Figure 5.11 Comparison of the trained DNN, the DNN & SNN combination model and the pump 
model (PC constant and PS varied in a sinusoidal fashion at 10Hz). 
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Figure 5.12 Comparison of the trained DNN, the DNN & SNN combination model and the pump 
model (both PS and PC varied in a random sinusoidal fashion at 10Hz). 

A series of step input tests were also investigated. Figures 5.13, 5.14, and 5.15 show the test 

results where SP  was held constant with CP  varied in a random step fashion, CP   held constant 

with SP varied in a random step fashion, and both SP and CP  varied in a random step fashion 

respectively. 
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Figure 5.13 Step test results for DNN and SNN combination ( SP  constant, CP  varied in a 
random fashion). 
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Figure 5.14 Step test results for DNN and SNN combination ( CP  constant, SP varied in a random 

fashion). 
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Figure 5.15 Step test results for DNN and SNN combination model (both SP  and CP  varied in a 
random fashion). 

For completeness and comparison, the test results of a swept sinusoidal signal were also 

examined. The frequency response of the DNN and SNN combination and pump models where 

SP was fixed at MPa93.12 and CP  amplitude varying from MPa8.2 to MPa4.3  is shown in Figure 
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5.16 and where CP  was held constant at MPa1.3 and SP  varied from MPa3.4 to MPa8.8 is shown 

in Figure 5.17. 
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Figure 5.16 Magnitude frequency responses for DNN and SNN combination model 
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Figure 5.17 Magnitude frequency responses for DNN and SNN combination model 
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The results shown in Figures 5.10 – 5.15 do imply that the DNN and SNN combination model 

was able to represent both the steady state and the transient response of the “pump only” model. 

The application of SNN in eliminating the trained DNN steady state error was successful.  The 

step and single sinusoid results are consistent with those illustrated in Figures 5.16 and 5.17 at 

lower frequencies (less than 35 Hz).  

 

5.4 Discussion and Conclusion on Trained DNN Compensation Tests: 

The test results presented in this Chapter shows that both the compensation equations and the 

SNN approach were effective in externally compensating the problem associated with the non-

convergence of the “proportion weights” in the DNN. The steady state error of the trained DNN 

(which only captured the dynamics of the “pump only” model) was eliminated using two 

approaches. Compared to the compensation equation approach, the SNN approach was more 

straightforward and flexible and this approach was thought to have a wide range of application. 

However, Figures 5.16 and 5.17 show that the magnitude frequency responses resolution of 

the DNN and SNN combination model becomes to be quite “blurry” at around 30Hz. This result 

was consistent with the observations and discussions in the Section 4.5.2 where it was observed 

that the accuracy of the trained DNN decreased above 40Hz due to the lower “richness” in higher 

frequency components (larger than 40 Hz). As a result, it was not possible for the output of the 

DNN and SNN combination be better than the trained DNN output since the trained DNN rather 

than the SNN determined the performance of the neural network model at higher frequencies. 

Furthermore, in order to modify the steady state, the SNN training signal frequency was fixed at 

10Hz, and the SNN trained only at that frequency. Increasing the “richness” in frequency 

components for both DNN training and SNN training would be required to overcome this 

problem. 
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Occasionally, some spikes occurred in the DNN and SNN combination model output (Figure 

5.18 (a) and (b)) but they are not universal. No adequate explanation for these spikes was found, 
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(a)                                                                 (b)                                                      

Figure 5.18 “Spike” in the output of the DNN and SNN combination model. 

In addition to the structure shown in Figure 5.7, two other “unsuccessful” training strategies 

were examined in this work. These are now briefly discussed. 

5.4.1 SNN and DNN were trained simultaneously 

A block diagram which illustrates how the SNN and DNN were trained simultaneously is 

shown in Figure 5.21. 
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Figure 5.19 Structure for SNN and DNN trained simultaneously. 
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In the structure shown in Figure 5.19, both the steady state and the dynamic information were 

input to the SNN and DNN models and these were trained simultaneously using instantaneous 

training. During the training process, the SNN was exposed to both the steady state, and dynamic 

information, so it struggled to adjust the output to follow both which it could not do. Meanwhile, 

the DNN tried to learn both the steady state and dynamics which theoretically it should be able to 

do. As such, the SNN and DNN were in conflict in trying to learn the dynamics; that is the SNN 

interfered with the DNN in capturing the system dynamics. As a result, neither worked well and 

convergence of the error was not possible. 

5.4.2 Only the steady state of the trained DNN was used to train the SNN 

In this configuration, only the steady state information from the trained DNN output was used 

as an input to the SNN (shown in Figure 5.20). However, the test results showed this approach 

was unsuccessful in overcoming the non-convergence “proportion weights” problem. 
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Figure 5.20 Structure for SNN trained by the steady state of trained DNN. 

Considering the “pump model output” and “DNN output” shown in Figures 5.13, 5.14 and 

5.15, the transient response and steady state of the trained DNN output had almost the same 

amount of shift from the “pump only” model which meant that not only the steady state, but also 

the transient response needed to be compensated. In the SNN training structure shown in Figure 

5.20, the transient portion of the step response of the trained DNN was not used in the training 
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data for the SNN. Thus, the trained SNN would view the dynamic portion of the step response as 

steady state information and adjust it accordingly. This did distort the magnitude during the 

transient portion significantly and hence this approach was abandoned. 

 The final approach illustrated in Figure 5.7 overcame all the problems experienced in the 

structures shown in Figures 5.19 and 5.20; indeed, this final structure was powerful in 

eliminating the steady state error caused by the non-convergence “proportion weights” problem. 

It should be pointed out that both the compensation equations and the SNN approach were 

used to eliminate the steady state error. The lower accuracy at higher frequency which caused by 

the lack of frequency components in the training epoch (see Section 4.5.2) can be overcome 

neither by compensation equation nor the DNN and SNN combination approach.  

 

5.5 Summary 

In this Chapter, two techniques using compensation equations and a static neural network 

were proposed to eliminate the steady state error caused by the non-convergence “proportion 

weights” problem in the trained DNN. In the compensation equations technique, the 

compensation equations were developed manually based on the observed relationships 

between SP , LP , the trained DNN output and the pump model output. This method was time 

consuming and had some limitations in the terms of the physical application (that is one group of 

equations were only effective over a certain operating range of a particular model). Because it 

was a straightforward approach and had a wide application range, the static neural network 

approach was adopted to compensate for the changes in the “proportion weights” of the trained 

DNN. 
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The test results for the compensation equations and the SNN approach indicated that these 

two techniques did increase the steady state accuracy; in addition, both had the capability to 

overcome the non-convergence “proportion weights” problem in the trained DNN. 
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CHAPTER 6    SUMMARY, CONCLUSIONS AND FUTURE WORK 

 

6.1 Summary 

The overall objective of this reach was to investigate the feasibility of using a dynamic neural 

unit (DNU) based dynamic neural network (DNN) in modeling a hydraulic component 

(specifically a load-sensing pump), which could be used in a simulation with any other required 

component models to aid in hydraulic systems design. To be representative of the component, 

the model must be valid for both the steady state and the transient response.  

In Chapter two, three different pump model configurations (“pump, compensator, and valve” 

model, “pump and compensator” model and “pump only” model) were investigated. It was 

demonstrated that the “pump, compensator and valve” model was valid only for the particular 

control valve chosen; further, the applicability of the “pump and compensator” model was 

limited by “unique relationships”, “dependent inputs” and “experimental data collection” 

problems. The “pump only” model avoided many of the issues related to other two models and 

was adopted in this study. 

In Chapter Three, the Dynamic Neural Unit (DNU) which contained internal dynamic 

components (both feedforward and feedback time delays) was introduced as a means of 

capturing the dynamics of the pump. Several morphologies of the DNU were presented. A 

particular form of the DNU called DNU-3 was adopted and the gradient descent algorithm used 

to train the network was presented. Several multi-layer structures based on the DNN were also 

introduced. Based on previous knowledge of the order of the pump only model, a DNN structure 

comprising of two parallel DNUs was adopted for modeling purposes. 



 

  92

In Chapter Four, a mathematical model of a variable displacement pump (commonly found in 

a load sensing system) was developed using the Power Bond Graph technique. In order to 

achieve “richness” in both frequency and amplitude of the pump training signal (and 

subsequently, to the DNN), a special training signal (epoch) comprising of several different 

frequencies, was created in a Matlab environment. Special “testing” epochs were collected to 

validate that the trained neural network model could accurately reproduce the output response of 

the pump using input signals for which the DNN model was not trained. The results indicated 

that the trained DNN did capture the nonlinear dynamics of the pump model, but the steady state 

response was quite different. It was shown that a non-convergence of “proportion weights” was 

responsible for a large error in the steady state results. 

In order to overcome some of the problems identified in Chapter Four, two techniques to 

eliminate the steady state error were proposed and implemented in Chapter Five. It was shown 

that both the compensation equations and the SNN approach were effective in improving the 

steady state performance of the trained DNN. Compared to the compensation equations, 

however, the SNN approach was superior due to its straightforward properties and because the 

concept has the potential to be used in other applications. 

In summary, the research presented in this thesis examined the feasibility of using a DNU 

based DNN for simulating a dynamic model of a variable displacement pump (a “pump only” 

model). It was established that a DNU based DNN did capture the dynamics of the pump model. 

However, the accuracy of the steady state was poor but the compensation equations and the SNN 

approach did improve significantly the steady state performance. 
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6.2 Conclusions 

Before listing conclusions, it is worthwhile to revisit the research objectives as defined in 

Chapter 1. These were: 

 To find a more applicable model structure (that is, what are suitable inputs and 

outputs) for a load-sensing pump which will allow the model to be independent of the 

operation of the load sensing orifice and controlling positions. 

 To apply DNU methodology to the neural network based pump model and to 

determine the new structure’s ability to eliminate the error accumulation problems 

experienced in previous research.  

 To develop, train and test an ANN based load-sensing pump model which can 

represent both the steady state and transient response of the pump over an expected 

operating range. 

The first objective has been met in that a two input “pump only” model has been defined 

which overcame some of the problems associated with non-unique relationships between inputs 

and outputs. It was concluded that the two input “pump only” model (inputs compensator 

pressure CP  and pump pressure SP  and output flow SQ ) was the most appropriate form for 

simulation a load sensing pump using a black box approach. The “pump only” model 

morphology facilitated combining this model with other hydraulic components (control valve, 

load and compensator) in forming a system model of a load sensing unit. 

 The second objective (applying DNU methodology to the neural network based pump model 

to determine the new structure’s ability to eliminate the error accumulation problems 

experienced in previous research) has also been accomplished by using two DNUs in parallel to 

form a DNN. Because this network had no external feedback connections, no error accumulation 
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was observed, an important benefit of the methodology. In the previous studies, the error 

accumulation problem limited the application of using neural networks in modeling the dynamic 

characteristics of a pump. It was concluded therefore that the DNN using two parallel DNU’s 

could eliminate the error accumulation problem experienced in earlier studies. 

The third objective stated above has also been met in that the DNN (compensated) was 

successfully trained to capture the dynamic and steady state characteristics of a load sensing 

pump. The network was trained using a dynamic backpropagation method based least mean-

square algorithm and the network tested using a series of different input signal epochs that were 

not used in the training process. The DNN when used on its own did capture the dynamic 

characteristics of the pump but displayed a very large steady state error. The reason for the 

steady state error was also investigated and it was concluded that the non-convergent “proportion 

weights” of the DNN resulted in the steady state error.  

To overcome this problem, two techniques, one consisting of manually derived compensation 

equations and one using a trained SNN placed after the DNN were studied. The test results 

demonstrated that both the “trained DNN with compensation equations” and the “trained DNN 

with the trained SNN” methodologies were able to represent the steady state over a specified 

operating range. The combined DNN and SNN was considered to be more appropriate over the 

trained DNN and compensating equation approach due to non-human intervention aspect of the 

approach. Therefore, it was concluded that it was feasible to use a DNN and SNN combination to 

represent (simulate) the static and dynamic characteristics of a “pump only” model over an 

acceptable operating range. 
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6.3 Future Work 

It is believed that this study has generated a lot of challenges that need to be examined in 

future studies. These are: 

a) Further investigation on the DNU structure and the DNN configuration is needed to 

address the non-convergence “proportion weights” problem in the DNN. In this study, the last 

5000 values of the proportion weights were examined and they did not converge. This indicated 

that the DNN output was being driven by the error between the “pump only” model and the 

output of the DNN much in the same manner a DNN would be in a control application (rather 

than actually being trained). The reason for the non-convergence of the proportion weights needs 

to be investigated in depth as it has many implications for future applications of DNNs. 

b) In the DNN morphology adopted in this study, all the weighted inputs were summed 

resulting in the same input going to the two DNUs (see Figure 3.17). As a consequence, the two 

DNUs were unable to differentiate between the two system inputs. Some modification to the 

DNN structure is needed such that the two DNUs can differentiate between the system inputs in 

an independent fashion. This would enable the DNN to see more information about the 

characteristics of the reference system and subsequently, improve the training accuracy. One 

possible DNN configuration that is forwarded is shown in Figure 8.1. 
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Figure 6.1 Recommended DNN structure for the future work 

c) As a third recommendation, batch training as opposed to instantaneous training should 

be investigated in the DNN training process. In instantaneous training, the weights of the 

network are updated each time an input is presented to the network. Consequently, the DNN can 

“forget” part of the previous information. In batch training, the weights are only updated after all 

of the inputs in the epoch have been presented; the error function used for weights updating is 

the summation of the squared error of every step in epoch. However, due to the feedforward and 

feedback time delays in the DNU, employing batch training of DNU could be a challenge. 

d) It is also recommended that further investigation of the combination of the SNN and 

DNN be conducted. It has been shown that the DNUs based DNN was able to represent the 

dynamics of a nonlinear system such as a pump, and that the SNN was very powerful in 

reproducing the steady state. In this thesis, only a very preliminary fundamental exploration on 

the SNN and DNN combination was conducted. Because of its success, it is believed that further 

development of this approach is warranted.  

  e) Since comparison of the system response of the reference model and the trained 

neural network model over certain frequency range played an important role in evaluating the 

performance of the neural network model, it is suggested that a frequency response method valid 
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for a two input nonlinear system be pursued. Unlike a single input system, testing the system 

response of a nonlinear system over a large frequency range is very hard for the two- input 

system. A verified method for the frequency response of multi-input nonlinear systems would be 

very valuable in future studies.  

f) It was demonstrated that the neural network model performance deteriorated at 

frequencies higher than 40Hz. It is recommended that the epoch training signal include more 

high frequency components in both the DNN training and SNN training signals to improve the 

richness of the training epoch.  

g) As a final recommendation, all the models presented in this thesis should be applied to 

a “real” system, in order to establish the feasibility of using the DNU based DNN in modeling a 

physical component such as pump found in a load-sensing hydraulic system. 
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APPENDIX A    The Concept of Power Bond Graph 

A.1 Introduction 

Bond graph is a dual-signal flow diagram comprising of numbers of terms and is a   powerful 

graphical/analytical tool for capturing the energy structure of systems. From the Bond Graph, a 

series of dynamic equations which reflect proper causality and hence are “computer ready” can 

be developed. Power Bond Graph increases the insight into systems behaviour. In this thesis the 

Power Bond Graph technique is applied to a hydraulic control system which consists of a 

compensator, variable swashplate pump, load sensing valve and load. An excellent description 

the Power Bond Graph as applied to a hydraulic system can be found in [Dransfield] and indeed, 

this introduction is a summary of sections of this text. 

  

A.2 Bond Graph Terms and Symbols 

Terms and symbols are major components in Power Bond Graph. Based on these terms and 

symbols and their appropriate arrangement, a series of expression equations can be developed 

which reflect proper causality and which define the dynamic behaviour of the system.  

Effort and Flow Variables 

The term effort and flow are used to represent the potential and the flowrate respectively. For 

example, pressure and force are efforts, and volumetric flowrate and velocity are flow variable. 

Generally, E and Q are used as the symbols for effort and flow respectively. However, other 

symbols can be and are used. 

 Sources 

The constant power variable is called a source. The effort source is represented by SE and the 

flow source is denoted by SQ. 
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Power Bonds 

A power bond is a line standing for the route of the power flow and is equipped with the 

related effort and flow variables.  The typical power bond is: 

E
Q  

Power Transformers 

The symbol TF is adopted to represent the power transformation generated by some hydraulic 

devices, such as electric motor, hydraulic pump and others. For example, the symbol 

1E
1Q

2E
2Q  

means the power 11 QE ⋅ converts to the power 22 QE ⋅  and 2211 QEQE ⋅=⋅ . 

Dynamic Effects 

Three elements contribute to the dynamics of a control system, and they are referred to as 

resistive power dissipation, R , capacitive power storage,C , and inertive (or inductive) power 

storage, I . In a hydraulic control system, a resistive effect includes all forms of the friction and 

pressure drops in the pipe line. Capacitive power storage is generated from devices which can 

store and release potential energy to affect the dynamics of the system, such as mechanical 

springs, and hydraulic accumulators. Inertive power storage is associated with the acceleration 

and deceleration of the inertias(fluid and mechanical). 

Summing Junctions 

There are two different summing junctions which are referred as a0-junction and 1-junction. 

They are denoted by: 
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E

E E
1Q

2Q

3Q
                        

2E

1E 3E

Q

Q Q1
 

The 0-juction means 

0321 =++ QQQ  

=E same in all three bonds. 

The 1-junctin means 

0321 =++ EEE  

=Q same in all three bonds. 

Power Flow Directions Causality 

Direction of power flow 

In the power bond graph, arrowheads are adopted to indicate the power flow direction which 

actually is from the source to the load. Specially, a half arrowhead is adopted to represent the R , 

C  and I element as follows: 

R IC

 

Causality 

A short transverse bar, called as causal bar, is adopted to indicate the cause variable and the 

effect variable in a power bond. The arrangement of the causal bar is very important, because it 

determines the cause-effect relationship between the two variables in one power state, and 

therefore determines the form of the equations. For example,  
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E Q

R

 

indicates that an R expression equation should be  

)(ERQ =  

In this situation, E is the cause variable and Q is the effect variable. Usually, an I element 

receives effort (cause) and generates flow (effect), and a C element receives flow and generates 

effort. Since the resistive or dissipative elements do not have time integral form, an R element 

can have any type of causal structure.  

At a 1-junction, only one bond should bring the information of flow; i.e., only one bond 

should be open end and all others should be stroked. Similarly, at a 0- junction, only one bond 

should be stroked nearer to the junction.  

As a final step, a series of equations which are readily for computer simulation are developed 

based on the power bond graph technique. 

 

A.3 Example 

In order to demonstrate the procedure of the bond graph development, a simple example is 

presented. Figure A.1.1 illustrates the schematic of a simple hydraulic system. Figure A.1.2 

shows the power bond graph structure for the system, and the equations which describe the 

dynamic characteristics of the hydraulic system are also forward.  

Each power bond in the horizontal line of Figure A.1.2 represents a physical component 

through which power flows to the next component. The product of the two variables associated 

with the power bond describes the power flowing. Thus, SS QP ⋅  (supply pressure times supply 
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flowrate) describe the power flowing into the control valve, and ma XF &⋅ (force applied to the 

mass times velocity of the mass) describes the power flowing into the load. The R , C and I terms 

illustrate that the resistive (R), capacitive (C), and inertive ( I ) terms that affect the system’s 

dynamic response. The causality which is indicated by a short transverse bar at one end of each 

line shows a cause-effect determination. 

 

mX
VX

aP

SP

SQ

aF

mX&

 

Figure A.1.1 Schematic of a hydraulic system. 
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Figure A.1.2 Power bond graph structure of the hydraulic system. 

Equations 

For this Bond Graph, the dynamic equations are: 

=SP   constant (assumption),      (A.1.1) 

VVS PXKQ Δ⋅⋅=  (for VX  positive),     (A.1.2) 

dtQCPP C
a

aa ∫⋅+= 1)0( (linear capacitance equation),   (A.1.3) 
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== )( af XRF  friction force for cylinder ,    (A.1.4) 

fam FFF −= ,        (A.1.5) 

∫⋅+= dtFIXX m
m

m
1)0(&&   (Newton’s law),    (A.1.6) 

APF aa ⋅= ,        (A.1.7) 

A
XQ m

a

&
= ,        (A.1.8) 

aVV PPP −=Δ ,        (A.1.9) 

aSC QQQ −= .        (A.1.10) 

Observation of these equations reveals that the unknown states appear only once on the left 

hand side and hence causality problems in computer implementation are avoid. 
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APPENDIX B    Pump Simulation Model Parameters 

 
Table B.1 is a listing of the values of all parameters and coefficients of the pump model 

adopted as a reference model in this study. These values were obtained from [Wright, 

Kavanagh]. 

Table B.1: The values of the pump model parameters 
Parameters Description Value units 

ωS  Pump rotation speed 183.3 rads/sec 

lR  Leakage resistance coefficient of pump 15108.361 −×
 

sec)/(3 ⋅apm  

cpA  Area of control piston face 6104.239 −× 2m  

sprk  Angular spring constant of return spring 56  radsmN /⋅  

ydR  Lumped damping resistance of swash 
plate assembly 

0.422 sec⋅N  

ykI  Effective mass moment of inertia of yoke 31032.1 −×  2mkg ⋅  
)0(sprT  Pretension of return spring 18.5 mN ⋅  

1prk  Coefficient of load torque #1 0.128 mN ⋅  

2prk  Coefficient of load torque #2 610725.0 −× aPmN /⋅  

3prk  Coefficient of load torque #3 610625.0 −× )/( radsPmN a ⋅⋅  

4prk  Coefficient of load torque #4 0962.0−  sec⋅⋅mN  
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APPENDIX C    Derivation of the “Pump Only” Model Transfer Function 

 

Initial feasibility studies on the selection of the DNN’s structure, it was deemed important to 

understand what the order of the pump was. This Appendix then linearizes the nonlinear 

equations of the pump and develops a dual input transfer function. 

In Chapter Four, the describing equations that were generated from the Power Bond Graph of 

the “Pump Only” model are repeated as: 

θωω ).)(( kSQp = ,         (B.1) 

sll PRQ ⋅=  ,         (B.2) 

lps QQQ −= ,         (B.3) 

Ccpyk PbAT ⋅⋅= ,         (B.4) 

)0(
0 spr

t

sprspr TdtkT += ∫ θ& ,        (B.5) 

θθ &
4321 prsprsprprlp kPkPkkT +++= ,      (B.6) 

θ&ydyd RT =  ,         (B.7) 

lpydspryknet TTTTT −−−= ,        (B.8) 

)0(1
0

θθ && += ∫ dtT
I

t

net
yk

.        (B.9) 

In order to simplify the derivation, some of the coefficients have been simplified as: 

θ1KQp = ,          (B.10) 

sl PKQ ⋅= 2 ,         (B.11) 
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43 KKTspr += θ ,         (B.12) 

θθ &
8765 kPkPkkT sslp +++= ,       (B.13) 

θ&9KTyd = ,          (B.14) 

bKTyk ⋅= 10 ,         (B.15) 

)0(1
0

11

θθ && += ∫ dtT
K

t

net .        (B.16) 

where ωω KSK ⋅=1 , lRK =2 , sprKK =3 , )0(4 sprTK = , 15 prKK = , 26 prKK = , 37 prKK = , 

48 prKK = , ydRK =9 , bAK cp ⋅=10 , ykIK =11 . 

There is a nonlinear component, θ⋅⋅ SPK 7 , in Equation (B.13) and it need to be linearized. 

This is done using a Taylor’s series expansion about a particular operating point as:  

⋅⋅⋅+Δ
∂
∂

+Δ
∂
∂

+=⋅⋅= θ
θ

θ
11

17
FP

P
FFPKF S

S
S        (B.17) 

With small excursion about the operating point, the higher derivatives in all parameters can be 

neglected as hence Equation (B.17) becomes: 

θ
θ

Δ
∂
∂

+Δ
∂
∂

=Δ≡−
11

1
FP

P
FFFF S

S

.      (B.18) 

Defining 

S
P P

FK
S ∂

∂
= ,          (B.19) 

θθ ∂
∂

=
FK .           (B.20) 

Substituting them to Equation (B.13) yields 

θθθθ θθ
&&

865865 KKPKKkKPKPkkT SPSPslp SS
+++=++++= .  (B.21) 



 

  114

where 
SS PP KKK += 66 . 

Substituting Equations B.12, B.21, B.14 and B.15 to Equation B.8, the netT  term is obtained 

as follows: 

θθθθ θ
&&

86594310 KKPKKKKKPKTTTTT SPclpydspryknet S
−−−−−−−=−−−=  

 = 45983610 KKKPKPK SPC S
−−−− θθθ & .     (B.22) 

where θθ KKK += 33 ,  8998 KKK += , and 5445 KKK += . 

Substituting Equation (B.22) to Equation (B.16): 

4598361011 KKKPKPKK SPC S
−−−−= θθθ θ
&&& .      (B.23) 

 After the Laplace transformation, θ can be described as: 

θ

θ
398

2
11

610 )()(
)(

KsKsK
sPKsPK

s SPC S

++

−
= .       (B.24) 

Substituting Equations (B.10) and (B.11) into Equation (B.3), the output flow )(sQS is 

obtained as: 

)()()( 21 sPksKsQS −= θ .        (B.25) 

Substituting Equation (B.24) to Equation (B.25), the system transfer function is found to be: 

θ

θ

398
2

11

6132982
2

112101 )()()(
)(

ksKsK
sPKKKKsKKsKKsPKK

sQ SPC S

++

+++−
=  

=
HGsFs

sPDCsBssAP SC

++
++−

2

2 )()()(
.       (B.26) 

where ωω KSKKA == 101 ,  

ykl IRKKB == 112 ,  

)()( 4892982 prydl KRRKKKKKC +=+== , 
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,))(()(    

))(()(

2

636132

S

SS

Pprsprl

PlP

KKKSKKR

KKKSKKRKKKKD

+⋅++=

+⋅++=+=

ωω

ωωθθ

θ
 

ykIKF == 11 , 

48998 pryd KRKKKG +=+== , 

θθθ KKKKKH spr +=+== 33 . 

 

 

 

 

 

 

  

 

 

 

 
 

 
 


