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Highlights 

• We examined functional network centrality in obesity. 

• We acquired resting-state and task-related data from the same subjects. 

• We found obesity-related lower degree centrality in the middle frontal gyrus. 

• Differences in the middle frontal gyrus seemed to be trait-dependent. 

 

Abstract 

Obesity is associated with structural and functional alterations in brain areas that are often 

functionally distinct and anatomically distant. This suggests that obesity is associated with 

differences in functional connectivity of regions distributed across the brain. However, studies 

addressing whole brain functional connectivity in obesity remain scarce. Here, we compared 

voxel-wise degree centrality and eigenvector centrality between participants with obesity (n=20) 

and normal-weight controls (n=21). We analyzed resting state and task-related fMRI data 

acquired from the same individuals. Relative to normal-weight controls, participants with obesity 

exhibited reduced degree centrality in the right middle frontal gyrus in the resting-state 

condition. During the task fMRI condition, obese participants exhibited less degree centrality in 

the left middle frontal gyrus and the lateral occipital cortex along with reduced eigenvector 

centrality in the lateral occipital cortex and occipital pole. Our results highlight the central role of 

the middle frontal gyrus in the pathophysiology of obesity, a structure involved in several brain 

circuits signaling attention, executive functions and motor functions. Additionally, our analysis 

suggests the existence of task-dependent reduced centrality in occipital areas; regions with a role 

in perceptual processes and that are profoundly modulated by attention. 

 

Abbreviations 

AFNI, Analysis of Functional Neuroimages; BMI, body-mass index; FSL, FMRIB Software 

Library; fMRI, functional magnetic resonance imaging; ICA, independent component analysis; 

SCID-I, Structured Clinical Interview for DSM-IV; SPM, statistical parametric mapping 
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1. Introduction 

Obesity is a chronic multifactorial health problem defined by excessive adiposity or body fat. 

Although obesity is not usually strictly considered a brain disorder, multiple lines of 

neurobiological research have revealed the existence of structural and functional brain alterations 

associated with obesity (Dagher, 2012). Relative to normal-weight participants, obese 

populations exhibit lower gray matter volume, cortical thickness and glucose metabolism in the 

prefrontal cortex (Pannacciulli et al., 2006, Willeumier et al., 2011 and Marqués-Iturria et al., 

2014). In striatal structures, individuals with obesity seem to exhibit lower dopamine D2/D3 

receptor availability (Wang et al., 2001 and De Weijer et al., 2011; but see Eisenstein et al., 

2013) and increased gray matter volume (Horstmann et al., 2011). Additionally, functional 

neuroimaging studies have observed differences between participants with obesity and normal-

weight controls during reward processing. In response to food stimuli, participants with obesity 

exhibited higher activation of the parahippocampal gyrus/amygdala, putamen and superior 

frontal gyrus, along with lower activation of the insula and occipital areas (Nummenmaa et al., 

2012, Brooks et al., 2013 and García-García et al., 2014). To summarize, relative to normal-

weight controls, participants with obesity seem to present a widely distributed pattern of 

structural and functional brain differences. This raises the question whether obesity is also 

associated with alterations in the functional connectivity between brain regions. In this article, 

we apply graph-theoretic measures of functional connectivity to both resting-state and task 

functional magnetic resonance imaging (fMRI) data to address this issue. 

 

Functional brain connectivity describes the relations between distinct brain areas based on the 

correlation between fMRI time series (e.g., Lohmann et al., 2013). In obesity research, several 

groups have examined functional connectivity by applying seed-based analysis or independent 

component analysis (ICA). Studies using seed-based analysis have reported obesity-related 

differences in connectivity between the hypothalamus and the medial prefrontal cortex and 

striatum (Lips et al., 2014 and Kullmann et al., 2014a). Studies on ICA have shown that, relative 

to lean counterparts, overweight and obese individuals displayed alterations in the default mode 

network (Tregellas et al., 2011 and Kullmann et al., 2012), increased connectivity within the 

salience network (Garcia-Garcia et al., 2013a and Kullmann et al., 2013) and decreased 

connectivity within networks that include visual brain areas (Kullmann et al., 2013 and Garcia-

Garcia et al., 2013b). 

 

Seed-based functional connectivity and ICA methods have proved extremely useful in examining 

connectivity patterns for individual brain regions or specific components of interest. However, 

studies are beginning to adopt the view of the brain as a complex large-scale network 

characterized by interregional interactions. Along this line, graph theory offers a powerful 
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approach for studying complex whole brain functional connectivity patterns (Bullmore and 

Sporns, 2009). As previously mentioned, studies have provided evidence that obesity is 

associated with functional differences in a widespread number of regions and components (e.g., 

Brooks et al., 2013; Kullmann et al., 2013). Therefore, the use of methodological frameworks 

accounting for the complexity of brain organization might certainly enrich our understanding of 

the brain's role in obesity. 

 

Functional centrality is a graph-theoretic measure that assesses the connectivity of nodes 

(anatomical parcellations ranging from single voxels to extended brain regions) with the entire 

network (Rubinov and Sporns, 2010). As such, centrality measures facilitate the localization of 

functionally important brain regions based on the connection patterns associated with them 

(Buckner et al., 2009 and Zuo et al., 2012). Two commonly used measures of centrality are 

degree centrality and eigenvector centrality. Degree centrality indexes the total number of 

connections for a given node (Buckner et al., 2009). Eigenvector centrality, on the other hand, 

favors nodes that are strongly correlated with other nodes that are themselves central within the 

network (Lohmann et al., 2010). Differences in degree centrality can be considered ‘local’, given 

that this metric captures the amount of direct connections with a given node (Zuo et al., 2012). 

Differences in eigenvector centrality, on the other hand, can be generally regarded as ‘global’ in 

the sense that this metric captures ‘indirect’ functional connectivity (Zuo et al., 2012). In the 

field of obesity, differences in whole-brain functional connectivity have been scarcely addressed, 

with only one study examining obesity-related differences in eigenvector centrality. The authors 

found an age-dependent association between eigenvector centrality in the cerebellum and 

visceral fat distribution. The association was negative in the case of participants younger than 46 

years and positive in participants older than 64 years (Raschpichler et al., 2013). This study was 

insightful in identifying brain regions that exhibit centrality differences in obese participants. 

However, more research is needed to characterize obesity-specific alterations in network 

centrality, especially among young adults. 

 

Functional connectivity can be analyzed using task-free (or resting-state) and task-based fMRI 

protocols. Previous research on functional connectivity has shown that task-related co-activation 

patterns correspond well with brain systems that are measured at rest (Smith et al., 2009 and 

Mennes et al., 2010). However, there is also evidence that task-based acquisitions may capture 

specific dynamic neural responses in regions with a key role in task processing (Buckner et al., 

2009 and Mennes et al., 2013). Here, we compared participants with obesity and normal-weight 

controls in degree centrality and eigenvector centrality. To capture a broader repertoire of 

functional activity, we analyzed resting-state and task fMRI data acquired form the same 

subjects. Previous studies have reported regional structural or functional brain changes 

emphasizing the role of the prefrontal cortex in obesity. As such, we expected to find lower 
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functional centrality in obesity in the prefrontal cortex. Additionally, previous studies in food 

processing suggest regional obesity-related differences extended to other brain areas, such as the 

amygdala, insula or occipital cortex. Therefore, for the task fMRI condition, we expected to 

observe further differences in these areas in participants with obesity. 

 

2. Methods 

2.1. Participants 

Forty-one participants [20 participants with obesity (14 women); 21 normal-weight participants 

(12 women)] aged 20–40 years were included in the study. Participants were included in the 

obesity group if their body mass index (BMI) was ≥30 kg/m2 and in the normal-weight group if 

their BMI was between 18.5 and 25 kg/m2 (exclusion criteria are detailed in the Supplementary 

material). Before the scan, participants rated their subjective degree of hunger on a 10 cm visual 

analog scale. The study was approved by the institutional ethics committee of the University of 

Barcelona and was conducted in accordance with the Helsinki Declaration. Written informed 

consent was obtained from each participant before the study began. 

 

This study forms part of a broader line of research that aims to characterize obesity-related 

differences in brain structure and function. Some of the participants in this report have been 

included in other publications addressing different research questions. Previously, we examined 

dopaminergic polymorphisms and executive functions (Ariza et al., 2012; 90% of the current 

sample and 47 additional participants), cortical thickness (Marques-Iturria et al., 2013: 90% of 

the sample; Marqués-Iturria et al., 2014: 100% of the current sample and 20 additional 

adolescent participants) and functional brain components extracted from ICA analyses (Garcia-

Garcia et al., 2013a and Garcia-Garcia et al., 2013b: 71% and 88% of the current sample, 

respectively). Here, we combine for the first time resting-state data and task-related fMRI data 

from the same subjects to examine the patterns of functional connectivity associated with obesity 

with a voxel-based network centrality approach. 

 

2.2. MRI acquisition 

Two hundred forty resting-state volumes were collected using a multi-slice gradient-echo EPI 

sequence [echo time (TE): 19 ms; repetition time (TR): 2000 ms; 3-mm slice thickness; 40 slices 

per volume; 25% interslice gap; 90° flip angle; 220 mm field of view (FOV); matrix size 

128×128; voxel size: 1.7×1.7×3.0 mm³] covering the whole brain. Resting-state scanning was 

followed by fMRI task data acquisition. Two hundred ten T2-weighted volumes were acquired 

using a multi-slice gradient-echo EPI sequence (TE: 19 ms; TR: 2000 ms; 3-mm slice thickness; 
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40 slices per volume; 25% interslice gap; 90° flip angle; 220 mm FOV; matrix size: 128×128; 

voxel size: 1.7×1.7×3.0 mm³) covering the whole brain. 

 

A T1-weighted structural image was also acquired for each subject with the MPRAGE 3D 

protocol (TE: 2.98 ms; TR: 2300 ms; 1-mm slice thickness; 50% interslice gap; 9° flip angle; 

inversion time: 900 ms; 256 mm FOV; matrix size: 256×256; voxel size: 1.0×1.0×1.0 mm³). 

 

The task protocol was a 7-min block design experiment in which participants were presented 

visual stimuli subdivided into four categories: high-calorie food, low-calorie food, neutral non-

food and rewarding non-food images. Detailed information on the task fMRI protocol is 

presented in Garcia-Garcia et al. (2013b) and in the Supplementary material. Since the duration 

of the task was not long enough to permit the examination of centrality in each of the conditions 

separately, the whole time-series of the fMRI task was used for the centrality analyses. 

 

2.3. Preprocessing 

All functional data were preprocessed using AFNI (Analysis of Functional Neuroimages; 

http://afni.nimh.nih.gov/afni/; Bethesda, MD) and the FMRIB Software Library (FSL) 

(www.fmrib.ox.ac.uk; Oxford, UK). Preprocessing was based on the fcon1000 scripts (available 

at: http://fcon_1000.projects.nitrc.org). Specifically, preprocessing steps included: (i) discarding 

the first six volumes from each subject; (ii) skull-striping of initial anatomical T1 scan; (iii) slice 

time correction; (iv) motion correction; (v) 6-mm full width at half-maximum (FWHM) spatial 

smoothing; (vi) mean-based intensity normalization of all volumes by the same factor; (vii) 

linear and quadratic detrending; (viii) segmentation of skull-stripped T1 images into white matter 

(WM), grey matter (GM) and cerebrospinal fluid (CSF) masks; (ix) linear registration of WM 

and CSF signals to native functional space; (x) linear registration of the WM/CSF masks to 

Montreal Neurological Institute (MNI) space; (xi) masking WM/CSF masks with MNI binarized 

tissue prior maps; (xii) thresholding WM mask at a probability of 0.66 and CSF mask at a 

probability of 0.4; (xiii) band pass temporal filtering (0.005–0.1 Hz); (xiv) regression of the eight 

nuisance signals (WM, CSF and six motion parameters). 

 

The output of these preprocessing steps was a 4D residual functional volume in native functional 

space, for each participant. The 4D native data were registered to the MNI152 template with 3-

mm resolution using affine transformation. 
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2.4. Centrality measures 

After preprocessing, we analyzed degree centrality and eigenvector centrality using the LIPSIA 

software package (Lohmann et al., 2001). Degree centrality attributes a greater value to a voxel if 

it has strong connections with many other voxels in the brain. Let A denote an n×n similarity 

matrix with non-negative values only, where entries aij contain a pairwise similarity measure 

between the time series in voxels i and j. The degree xi of a node i is defined as 

𝑥𝑖 = ∑

𝑗

𝑎𝑖𝑗 

 

Eigenvector centrality, in contrast, identifies nodes that are connected to other nodes that are 

themselves central within the network (Lohmann et al., 2010). Nodes with this property are 

usually referred to as hubs ( Rubinov and Sporns, 2010). As above, let A denote an n×n 

similarity matrix with non-negative values only. The eigenvector centrality xi of node i is 

defined as the i-th entry in the normalized eigenvector x belonging to the largest eigenvalue λ of 

similarity matrix A: 

𝐴x = 𝜆𝑥𝑜𝑟equivalen, 𝑥 =
1

𝜆
𝐴𝑥, and𝑥𝑖 = 𝜇∑𝑎𝑖𝑗

𝑛

𝑗=1

𝑥𝑗  

with proportionality factor μ = 1/λ. 

 

Following the approach by Zuo et al., (2012), we restricted our functional connectivity analysis 

to GM only, using a mask that contained all n voxels with GM tissue probability of 20% or 

higher. This GM template was released as part of tissue priors in SPM8 

(http://www.fil.ion.ucl.ac.uk/spm/sortware/spm8). 

 

Degree centrality requires a thresholded similarity matrix. We used a Pearson's correlation 

coefficient thresholded at r≥0.5. In general, Pearson's correlation might include spurious relations 

in the similarity matrix, an effect that might be enhanced in the current analysis given the 

relatively large number of GM voxels in the brain. To alleviate this problem, we chose this 

relatively high correlation threshold. In the case of eigenvector centrality, we did not threshold 

the n×n similarity matrix as this is not required by the method (Fig. 1). Before the statistical 

analysis, we transformed the individual centrality maps to ensure Gaussianity. 
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Figure. 1. Schematic illustration of the analyses. We examined differences between participants 

with obesity and normal-weight individuals in functional centrality. In those areas showing 

group differences in centrality, we additionally conducted group comparisons using seed-based 

analyses. 

 

2.5. Seed-based connectivity analyses 

To examine in more detail the connectivity patterns of the identified centrality changes, 

centrality analyses were complemented by seed-based analyses, choosing as regions of interest 

areas showing group differences in centrality measures. Seeds were constructed by drawing a 6-

mm radius sphere around the center voxels of these regions, and the time series for each seed 

was extracted from the preprocessed data. Time series were averaged across all voxels in each 

seed's sphere. For each individual dataset, the correlation between the time series of the seed and 

every other voxel in the brain was determined. This analysis was implemented using 3dfim+ 

(AFNI) to produce for each subject individual correlational maps of all voxels that were 

positively or negatively correlated with the seed's time series. Finally, individual correlation 

maps were converted to Z-value maps using Fisher's r-to-z transformation. 
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Since we thresholded the n×n association matrix in degree centrality at r≥0.5, seed-analyses 

derived from results in degree centrality were only reported if the average functional correlation 

between regions was r≥0.5 as well. 

 

2.6. Statistical comparisons 

We conducted all the following analyses using SPM8. 

First, we assessed general differences in functional centrality between resting-state and 

task conditions. To do so, we conducted a voxel-wise paired t-test comparing the two 

fMRI acquisitions across all participants. 

Second, we compared obese and normal-weight subjects with the individual eigenvector 

and degree centrality maps for the fMRI resting-state and task conditions separately. 

Third, for the seed-based analysis, we compared the individual correlational maps 

between groups (Fig. 1). 

In all analyses, we entered as covariates sex and the subjective degree of hunger. Groups differed 

on subjective degree of hunger, so we controlled for the possible effect of this variable. 

Additionally, we decided to covay by sex given that previous studies have shown a sex effect in 

centrality measures (e.g., Zuo et al., 2012). 

We considered as significant results at p<0.001 uncorrected that additionally met a FDR 

correction at a cluster level p<0.05 (thresholds obtained with SPM8). 

 

3. Results 

3.1. Demographic data 

Participants with obesity and normal-weight controls were comparable in age, sex distribution, 

years of education, vocabulary scalar score from the Wechsler Adult Intelligence Scale-III, 

anxiety, depression and toxic habits. They differed significantly in BMI and on the symptom 

scale of the BITE test, a measure of compulsive eating behavior. Despite reporting being in a 

similar fasting condition, participants with obesity reported diminished subjective degree of 

hunger relative to normal-weight individuals (Table 1). Supplementary material presents a 

further characterization of the participants including menstrual cycle phase and time of day at 

which the scan was conducted. 
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Table 1. Demographic data. 

 Participants 

with obesity 

(n=20) 

Normal-weight 

participants 

(n=21) 

t/X² p 

Body Mass 

Index 

35.90±5.83 

(30.10–49.69) 

22.33±1.87 

(19.53–24.97) 

10.143 <0.001* 

Age 33.55±5.61  

(20–39) 

31.33±5.96  

(21–40) 

1.225 0.228 

Sex 

(female/male) 

14f/6m 12f/9m 0.730 0.393 

Education 

(years) 

13.00±2.79  

(10–20) 

14.38±2.42  

(10–18) 

−1.696 0.098 

Vocabulary 

(scalar scores 

from WAIS-III) 

11.45±2.26  

(8–16) 

11.71±1.49  

(9–15) 

−0.444 0.659 

Anxiety (HADS) 3.90±2.53 (1–

10) 

4.52±3.36 (0–

10) 

−0.669 0.507 

Depression 

(HADS) 

1.20±1.40 (0–5) .91±1.38 (0–5) 0.681 0.500 

BITE symptom 

scale 

8.54±4.54 (1–

18) 

2.57±2.29 (0–8) 5.588 <0.001* 

Subjective 

degree of hunger 

2.71±2.21  

(0–7.30) 

4.93±2.46  

(0.10-8.40) 

−3.028 0.004* 

Hours fasting 4.30±2.19 (3–

13) 

4.44±2.63 (3–

12) 

−0.189 0.851 

Use of tobacco 

(smokers/non-

smokers) 

8/12 4/17 2.172 0.141 

Intake of alcohol 

(drink alcohol/do 

not drink 

alcohol) 

7/13 12/9 2.020 0.155 

  

Note: Quantitative data are reported as mean±standard deviation (range). 

*p<0.05 

 

3.2. Differences between the fMRI resting-state and task conditions 

We tested for possible differences in functional centrality between the fMRI resting-state and 

task conditions for all subjects. For degree centrality, the contrast resting-state fMRI>task fMRI 

showed higher degree centrality in the precuneus, posterior cingulate cortex and medial frontal 
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pole. The opposite contrast (task fMRI>resting-state fMRI) revealed an increased degree 

centrality in the occipital pole, lateral occipital cortex and fusiform cortex. 

 

For eigenvector centrality, the contrast resting-state fMRI>task fMRI showed increased 

eigenvector centrality in the precuneus, angular gyrus, precentral and postcentral cortices, 

cuneus, posterior cingulate, middle temporal gyrus and right lateral occipital cortex. The contrast 

task fMRI>resting-state fMRI yielded increased eigenvector centrality in the right lateral 

occipital cortex, right lateral frontal pole and cerebellum (Supplementary Table S3 presents the 

coordinates of these analyses). 

 

Additionally, we examined which brain areas exhibited the highest degree and eigenvector 

centrality for each acquisition. The results are presented in the Supplementary material (Table 

S4). 

 

3.3. Centrality measures during the resting-state acquisition 

Relative to controls, participants with obesity exhibited lower degree centrality in the right 

middle frontal gyrus during the resting-state condition (Fig. 2a; Table 2).  
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Figure 2. Group differences in degree centrality. 

During the resting-state condition, participants 

with obesity exhibited lower degree centrality 

(DC) in the right middle frontal gyrus (MFG). 

During the task condition, participants with obesity 

exhibited lower degree centrality in the lateral 

occipital cortex (LOC) and left middle frontal 

gyrus (MFG). We considered as significant results 

at p<0.001 uncorrected that additionally met a 

FDR correction at a cluster level p<0.05. 
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Table 2. Reduced centrality in participants with obesity compared with normal-weight controls, 

controlling for sex and subjective degree of hunger.             

Brain 

region 

Cluster 

size 

(voxels) 

MINI 

coordinates 

X 

MINI 

coordinates 

Y 

MINI 

coordinates 

Z 

MINI 

coordinates 

Z 

ClusterP 

(FDR-

corr) 

Resting 

state 

acquisition 

      

Degree 

centrality: 

      

Right middle 

frontal gyrus 

23 42 27 33 5.12 0.040 

Eigenvector 

centrality: 

      

No 

significant 

results. 

      

fMRI task 

acquisition 

      

Degree 

centrality: 

      

Left lateral 

occipital 

cortex, 

cuneus 

1649 −48 −81 −6 5.76 <0.001 

Left middle 

frontal gyrus 

25 −24 27 48 4.68 0.027 

Left lateral 

occipital 

cortex, 

cuneus 

1649 −48 −81 −6 5.76 <0.001 

Eigenvector 

centrality: 

      

Lateral 

occipital 

cortex 

15 −27 −87 39 4.38 0.010 

Occipital 

pole 

37 −3 −90 18 4.23 <0.001 

 

Note: we considered as significant results at p<0.001 uncorrected that additionally met a FDR 

correction at a cluster level p<0.05. 

No differences were observed in eigenvector centrality. Thus, subsequent seed-based analyses 

were run on the basis of the results in degree centrality only. 
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3.4. Centrality measures in the fMRI task acquisition 

In the fMRI task acquisition, obese compared with lean participants exhibited lower degree 

centrality in the left lateral occipital gyrus and in the left middle frontal gyrus (Fig. 2b). In 

addition, participants with obesity showed smaller eigenvector centrality values in the lateral 

occipital cortex and in the left occipital pole (Table 2 and Fig. 3a). 

 

 

Fig. 3. Group differences in eigenvector centrality in the task acquisition. During the fMRI task 

condition, participants with obesity exhibited diminished eigenvector centrality in the occipital 

pole and lateral occipital cortex (LOC). We further examined connectivity differences on these 

areas using seed-based analysis. Participants with obesity exhibited lower connectivity between 

the occipital pole and the cerebellum, frontal lobe and thalamus. They also exhibited lower 

connectivity between the LOC and the superior parietal cortex as well as between clusters inside 

the LOC. We considered as significant results at p<0.001 uncorrected that additionally met an 

FDR correction at a cluster level p<0.05. 
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3.5. Seed-based connectivity analyses 

3.5.1. Seeds from degree centrality 

We did not find significant group differences with a mean correlation value r≥0.5. 

 

3.5.2. Seeds from eigenvector centrality 

Participants with obesity exhibited diminished connectivity between the seed located in the 

lateral occipital cortex and the cerebellum, frontal pole and thalamus. They also exhibited lower 

connectivity between the occipital pole and the lateral occipital cortex, and right superior parietal 

lobe (Fig. 3b; Supplementary Table S5). 

 

4. Discussion 

In the present study, we compared obese participants with normal-weight individuals on 

measures of whole-brain degree centrality and eigenvector centrality. We conducted the analyses 

separately on fMRI resting-state data and fMRI task data acquired in the same subjects. Our 

results suggest that, relative to normal-weight subjects, obese participants show a diminished 

functional connectivity of the middle frontal gyrus and the lateral occipital cortex with the entire 

brain network. 

 

In recent years, previous studies have used ICA-based analysis to examine functional 

connectivity in participants with obesity. Specifically, these studies have found differences 

between participants with obesity and normal-weight controls in the functional connectivity of 

several segregated functional networks, including the salience network (Garcia-Garcia et al., 

2013a and Kullmann et al., 2013), default mode network (Kullmann et al., 2012; Tregellas et al., 

2011) and visual networks (Garcia-Garcia et al., 2013b and Kullmann et al., 2013). Findings in 

ICA can be associated with the principle of segregation (or modularity) in functional 

connectivity, a principle that refers to the organization of the brain into a set of components (or 

independent functional networks) whose constituent regions exhibit dense interconnections 

(Sporns, 2013). In contrast, results in functional centrality, as applied in the current study, can be 

related to the principles of functional integration and influence. The principle of integration 

addresses how the network as a whole becomes interconnected and describes the ability to 

rapidly combine specialized information from distributed brain regions (Rubinov and Sporns, 

2010 and Sporns, 2013). The principle of influence refers to the importance of a given network 

node in this process (Sporns, 2013). Therefore, the current study extends the previous work on 

parcellated functional components by suggesting that obese individuals might have a reduced 
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functional integration, i.e., diminished information exchange, of the middle frontal gyrus and the 

lateral occipital cortex with the entire brain network. 

 

The middle frontal gyrus is a key structure in selective attention, working memory, inhibitory 

control and monitoring (Fuster, 2002). It is located in the lateral prefrontal cortex and is heavily 

interconnected with motor, auditory and visual areas (Fuster, 2008 and Barbey and Patterson, 

2011). Studies of intrinsic functional connectivity have shown an involvement of the middle 

frontal gyrus in several circuits encompassing a broad array of functional domains, including the 

fronto-parietal network, the premotor network and the supplementary motor network (Laird et 

al., 2011). Consistent with the involvement of impulse control in eating, studies in eating 

behavior have found an increased activity of the middle frontal gyrus in conditions that require 

an enhancement of attention control processes, such as during increased mental effort in order to 

restrict food intake, as previously shown for healthy and lean participants (Hare et al., 2009 and 

Hollmann et al., 2011). Given the complexity of whole-brain networks, results of functional 

connectivity analyses often remain difficult to interpret. If one assumes behavioral relevance of 

altered functional architecture, the obesity-related decreases in degree centrality in the middle 

frontal gyrus might point at obesity-related deficiencies in inhibitory control. However, this 

hypothesis needs to be further addressed with specific fMR-suitable tasks that directly target 

inhibitory control processes, such as Stop Signal or Go/No-go tasks. We further analyzed the 

functional connectivity of the middle frontal gyrus with the rest of the brain by means of seed-

based analyses. However, we did not observe group differences in this analysis. The lack of 

group differences might indicate that the lower degree centrality of the middle frontal gyrus is 

related to a lower total sum of connections rather than fewer strong connections to very localized 

areas. We observed obesity-related differences in the middle frontal gyrus both during the 

resting-state condition and during the task paradigm. This indicates the robustness of the finding 

and suggests the interesting possibility that alterations of the neural integration of the middle 

frontal gyrus may reflect a trait feature of obesity instead of constituting a state-dependent result. 

 

The occipital cortex is organized hierarchically and is highly connected with many other cortical 

and subcortical areas, such as the middle temporal lobe, the parietal cortex, the thalamus and also 

lateral prefrontal areas, via long-range projections (Haxby et al., 1994). Visual areas respond 

robustly to visual food cues compared with neutral stimuli (e.g., Kroemer et al., 2013a; Huerta et 

al., 2014). Additionally, hunger seems to have a powerful impact in primary sensory areas. 

Studies presenting visual food stimuli have observed an increased activity in the occipital cortex 

associated with a state of food deprivation (LaBar et al., 2001 and Stockburger et al., 2009) and 

with high levels of the orexigenic peptide ghrelin (Malik et al., 2008 and Kroemer et al., 2013b). 

As such, it has been proposed that hunger signals may facilitate perceptual processes and 

selective attention towards food stimuli (LaBar et al., 2001 and Stockburger et al., 2009). In the 
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field of obesity, studies have reported obesity-related blunted activation in these areas in 

response to food stimuli (Nummenmaa et al., 2012). As such, it is possible that the diminished 

functional centrality in occipital areas may also underlie a reduced brain activity in these areas 

during the visualization of food stimuli in obesity. 

 

In our study, group differences in centrality in occipital areas were only statistically significant 

during the fMRI task condition. It is well known that resting-state functional connectivity is 

closely associated with task-related neuronal responses (Cole et al., 2014 and Smith et al., 2009). 

Nevertheless, brain connectivity shows dynamic variations in regions with a key role in task 

processing (Buckner et al., 2009). Accordingly, Buckner et al. (2009) compared high centrality 

brain regions between a task-free condition and a semantic categorization task. While the overall 

topography of such regions was similar between task-free and task-based conditions, regions in 

the prefrontal and temporal cortex showed an increased degree centrality in the semantic 

categorization task. In a similar vein, we observed that, across all subjects, the fMRI task 

condition was associated with higher functional centrality in visual areas relative to the resting-

state condition. This fact might have increased the sensitivity of the fMRI task for detecting 

significant group differences in occipital areas. Conversely, relative to the task condition, the 

resting-state condition was associated with higher functional centrality in areas ascribed to be 

part of the default mode network, including mid-line cortical areas, such as the precuneus, 

posterior cingulate or medial frontal pole (e.g., Greicius et al., 2003). 

 

Functional connectivity differences in prefrontal and occipital areas have been previously 

observed in studies on eating disorders. Patients with a current or past diagnosis of anorexia 

nervosa exhibited lower degree centrality in the inferior frontal gyrus (Kullmann et al., 2014b), 

lower connectivity within visual networks (Favaro et al., 2012), and higher connectivity of the 

inferior frontal gyrus and precuneus within the default mode network (Cowdrey et al., 2012). 

Patients with bulimia nervosa presented lower functional connectivity between the paracentral 

lobule and the occipital cortex (Lavagnino et al., 2014). These alterations in the functional 

connectivity of prefrontal, parietal and occipital areas were interpreted as suggestive of possible 

alterations in inhibitory control behavior (e.g. Cowdrey et al., 2012; Kullmann et al., 2014b), 

ruminative behavior (Cowdrey et al., 2012), visuospatial difficulties (Favaro et al., 2012) and 

dysfunction in body-image processing (Lavagnino et al., 2014). The results in eating disorders 

and the current results in obesity may suggest that alterations in the functional connectivity of 

prefrontal and occipital areas could be associated with abnormal eating behavior. However, 

future studies addressing individual differences in the continuum between normal and abnormal 

eating behavior are needed to confirm this conclusion. 

 



19 
 

Our study presents several limitations that need to be acknowledged. (i) Eigenvector centrality 

and degree centrality are based on an n×n similarity matrix representing pairwise correlations. 

Such a matrix might contain spurious correlations. Specifically, despite a seemingly high 

correlation between them, two regions a and b might not be directly connected if the covariance 

between them can be explained by a third region c ( Varoquaux and Craddock, 2013). (ii) 

Sample sizes were relatively small, albeit comparable to those in other studies on obesity. 

Nonetheless, this fact may have limited the statistical power of the analyses, and it hampered the 

analysis of potentially interesting interactions between gender and obesity. (iii) The fMRI task 

consisted of four different rewarding conditions. Given the short duration of the task, however, it 

was not feasible to examine functional centrality separately for each of the conditions. Future 

studies should address this issue. (iv) Participants with obesity scored lower in subjective degree 

of hunger, which could reflect the behavior of eating in the absence of hunger. To alleviate the 

influence of this group difference, the factor was included as a covariate in the analyses. (v) 

Finally, we ensured that both acquisitions (resting-state and task conditions) were long enough to 

permit functional centrality analyses. Nevertheless, the total duration of the resting-state and the 

task fMRI acquisition were different, which may have introduced subtle changes in the 

functional connectivity dynamical fluctuation. 

 

In sum, here we compared whole-brain functional connectivity between obese and normal-

weight subjects through the use of graph-theoretic network centrality measures. Our results 

suggest that participants with obesity might exhibit state-independent diminished functional 

integration of the middle frontal gyrus with the entire network, as well as task-dependent reduced 

centrality of the lateral occipital cortex. 
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