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ABSTRACT 

 

Global climate change has been linked to the increase in greenhouse gas (GHG) 

emissions.  Mixedgrass Prairie of hummocky terrain in Saskatchewan is an understudied 

landscape contributing an unknown quantity of greenhouse gases (GHGs) to global 

climate change.  The objectives of this study were to determine the effects of topography 

and mowing on carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) flux and 

to correlate them with environmental and plant community characteristics.  The study site 

was located in the Northern Mixedgrass Prairie of the Missouri Coteau near Macrorie, 

SK.  April mowing and an unmowed control were imposed on six different landform 

elements.  Carbon dioxide, CH4 and N2O were measured every 7-10 days from spring 

until fall for two years with closed, vented chambers.  Soil physical characteristics, 

weather and plant community characteristics were measured.  Landform element and 

mowing influenced the flux of all three gases in both sampling seasons.  Soil CO2 flux 

ranged from 3.1 to 23.3 kg CO2-C ha-1 d-1 among the unmowed control plots and 3.6 to 

26.4 kg CO2-C ha-1 d-1 after mowing.  Soils were a net sink for CH4, consuming 1.4 to 4.4 

g CH4-C ha-1 d-1 among the unmowed control plots and 1.8 to 4.1 g CH4-C ha-1 d-1 among 

the mowed plots.  Nitrous oxide flux ranged from -0.25 to 1.17 g N2O-N ha-1 d-1 among 

the unmowed control plots and -0.20 to 1.51 g N2O-N ha-1 d-1 among the mowed plots.  

Greenhouse gas flux changed from year-to-year and within years.  The greatest GHG flux 

rate occurred in the depression landform element.  Mowing increased the positive flux of 

CO2 and N2O while increasing the negative flux of CH4.  Species composition was 

correlated with soil water, topography, percentage litter cover and GHG flux rate.  

Overall, the Mixedgrass Prairie of Saskatchewan likely contributes very little to GHGs.  

Properly managed, the Mixedgrass Prairie has a well-balanced nutrient cycle that 

includes various GHGs.  The grassland ecosystem plays a role in mitigating climate 

change by retaining carbon that would be released to the atmosphere with poor grazing 

management or the conversion to arable agriculture.  Government agencies and the 

ranching industries could best mitigate GHG emissions of Mixedgrass Prairie in 

Saskatchewan by promoting the retention of above-ground plant material, increasing 

below-ground carbon sequestration and the avoidance of conversion to cropland. 
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QUOTATIONS 

 

“Heterogeneity, at a variety of spatial scales, is all-pervasive in natural environments.” 

-Stewart, A.J.A., E.A. John, and M.J. Hutchings.  2000 

 

“The Kyoto conference did not achieve much with regard to limiting the buildup of 

greenhouse gases in the atmosphere. If no further steps are taken during the next 10 

years, CO2 will increase in the atmosphere during the first decade of the next century 

essentially as it has done during the past few decades. Only if the new cooperation among 

countries succeeds will the Kyoto conference represent a step toward the ultimate 

objective of the convention: " . . . to achieve . . . stabilization of greenhouse gas 

concentrations in the atmosphere at a level that would prevent dangerous anthropogenic 

interference with the climate system."” 

-Bolin, B.  1998.   

 

“Landscape to an ecologist is the vegetation and associated faunal populations draped 

over the geomorphology that give it most of its colour and texture.” 

-Miles, J., R.P. Cummins, D.D. French, S. Gardner, J.L. Orr, and M.C. Shewry.  

2001.   

 

“A useful approach for evaluating microbial processes at landscape scales is to establish 

relationships between these processes and ecosystem properties that are easily estimated 

at large scales.” 

-Groffman, P.M. and C.L. Turner.  1995.   
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1. INTRODUCTION 

Greenhouse gases (GHGs) are an important part of the earth’s atmosphere, 

trapping heat by absorbing and then radiating long-wave radiation (Paltridge and Platt, 

1976).  Since the industrial age, atmospheric concentrations of GHGs such as carbon 

dioxide (CO2), methane (CH4) and nitrous oxide (N2O) have increased beyond the 

previous range of variation (Prather et al., 1995) due to the human-induced burning of 

fossil fuels, deforestation and changes in land use (Shallcross et al., 2003).  Increased 

greenhouse gas (GHG) emissions and decreased GHG sinks contribute to global climate 

change (Prather and Ehhalt, 2001).  Over the last 100 years, Northern Hemisphere 

temperatures have increased, often exceeding historic trends in annual temperatures 

(Mann and Bradley, 1999).  In Saskatchewan, the climate has changed in the past 50 

years so that spring now begins earlier and winter arrives later (Cutforth et al., 1999).   

Greenhouse gases can be investigated at various scales.  Greenhouse gases are 

climate regulators studied at the global scale and over long periods (Wuebbles and 

Edmonds, 1991).  At the national and provincial scale, reducing sources and increasing 

sinks of GHGs is the centre of an internationally recognized problem that the Canadian 

and Saskatchewan governments have agreed to confront (Grubb et al., 1999).   At the 

rangeland ecosystem or landscape level, N2O emissions are a loss of nutrients while CO2 

and CH4 sinks store carbon (C) (Paul and Clark, 1996).  Quantifying production and 

consumption of GHGs promotes a better understanding of ecosystem functioning and 

health (Parton et al., 1988; Smith et al., 1995), in turn enabling the mitigation of GHGs 

(Desjardins et al., 2001).  Topography is defined in this study as a collection of landform 

elements.  Landform element and defoliation of rangelands creates landscape scale 

differences in exposure to solar radiation (Buffo et al., 1972), water relations (Ellis, 1938) 

and nutrient cycles (Archer and Smeins, 1991; Thurow, 1991).  Past landscape scale 

studies have indicated that variation in environmental and plant community attributes due 

to landform element and defoliation influence GHG flux.  Plant community structure, 
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function and composition influence GHG emissions by altering nutrient cycling (Hooper 

and Vitousek, 1997), modifying soil hydrology (Naeth et al., 1991) and hosting different 

microbial communities (Bolton et al., 1993; Wrage et al., 2001).  Defoliation by grazing 

alters GHG flux patterns directly through feces and urine input (Vermoesen et al., 1997; 

Yamulki et al., 1998) and indirectly by altering the plant community, which influences 

the microbial environment and GHG flux (Franzluebbers and Stuedemann, 2003), soil 

temperature (Ruz-Jerez et al., 1994), and soil water (Thurow, 1991).  At the individual 

soil pedon level, GHG flux is limited by O2, C and (nitrogen) N availability (Paul and 

Clark, 1996).  Few studies have attempted to correlate environmental and plant 

community attributes with biotic processes to develop landscape scale indicators of GHG 

flux (Bubier and Moore, 1995; Groffman et al., 2000; Mitchell et al., 2003).  

The Missouri Coteau is a topographically complex landform stretching from 

central Saskatchewan to South Dakota.  The defining geological characteristic of the 

Missouri Coteau is the knob and kettle terrain (Gravenor and Kupsch, 1958).  

Heterogeneous landscapes such as the Missouri Coteau provide a variety of 

microenvironments for organisms that influence GHG flux rates such as grazing 

vertebrates (Stuth, 1991), soil microbes (Metting, 1993) and plants (Ayyad and Dix, 

1964).  The flux of GHGs in Saskatchewan rangelands have not been adequately studied, 

leaving a knowledge gap in the national GHG sources and sinks budget.  Study of the 

flux of GHGs in Saskatchewan rangelands is likely hampered by the difficulty of 

designing studies on non-level landscapes and smaller GHG flux rates in rangelands 

compared to croplands (Bowden, 1986).  The objectives of this project were to 

determine; 1) the spatial variability and magnitude of GHG flux in complex terrain of the 

Northern Mixedgrass Prairie, and; 2) the interaction of landform element and mowing on 

GHG flux.  Grazing management can then be used on this complex topography as a tool 

for controlling rangeland GHG flux (Howden et al., 1994), which may help the ranching 

industry meet obligations outlined by the Kyoto Accord.  The null hypotheses were: 1) 

landform element and mowing have no effect on environmental attributes, 2) landform 

element and mowing have no effect on plant community characteristics, 3) landform 

element and mowing have no effect on greenhouse gas flux and 4) environmental 

attributes, plant community characteristics and GHG flux are not correlated.
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2. LITERATURE REVIEW 

2.1 Greenhouse Gases and Climate Change 

Recent ratification of the Kyoto Accord compels many nations, including Canada, 

to detail total GHG flux over their different landscapes and understanding the influence 

of ecosystem processes (Mosier et al., 1998c).  Greenhouse gases of concern for 

Canadian agriculture are CO2, N2O and CH4 (Desjardins and Riznek, 2000; Olsen et al., 

2003).  Carbon dioxide, CH4, N2O and various halocarbons are responsible for 64, 20, 6 

and 10%, respectively, of the increase in the greenhouse effect (Jain and Hayhoe, 2003).  

Greenhouse gas molecules absorb long-wave radiation emitted by the earth’s surface 

(Coe and Webb, 2003), thereby heating the atmosphere (Paltridge and Platt, 1976).  The 

global warming potential (GWP) of a GHG is based on the specific wavelengths a 

molecule absorbs plus the biogeochemical residence time of the GHG.  The greenhouse 

effect maintains the planet at a mean annual temperature of 14°C.  Without the 

greenhouse effect the average temperature would be -18°C (Wuebbles and Edmonds, 

1991).   

Concentrations of GHGs, and therefore the magnitude of the greenhouse effect 

have changed over time.  The estimated concentrations of CO2 and N2 when the earth’s 

atmosphere was first formed were 98% and 2%, respectively (Wayne, 2003).  The 

evolution of photosynthetic organisms and the decline of volcanic activity decreased the 

concentration of CO2 and increased the concentration of O2 (Wayne, 2003).  Presently, 

the earth’s atmosphere is 78% N2, 21% O2 and less than 0.1% CO2 (Ruddiman, 2001).  

Variation in GHG concentrations and global temperatures are closely correlated in 

geological history (Petit et al., 1999).   

The industrial revolution marked the beginning of major anthropogenic changes 

in the concentrations of GHGs and the magnitude of the greenhouse effect.  Burning 

fossil fuels, cutting forests and converting land to arable agriculture increase atmospheric 

GHG concentrations (Trenberth et al., 1996).  Increases in GHGs have moved global 
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temperatures out of their normal range of variation (Jain and Hayhoe, 2003).  Average 

temperatures now exceed maximum temperatures from the past half-million years (Jain 

and Hayhoe, 2003).   

Carbon dioxide has increased from a concentration of 280 ppm in the 1800s to a 

concentration of 367 ppm in 1999 (Prentice, 2001).  The lifespan of CO2 is approximately 

120 years (Shallcross et al., 2003).  Carbon dioxide is assigned a global warming 

potential (GWP) of 1 and is used as a base value for determining the GWP of other 

GHGs.  The major anthropogenic contributors of CO2 to the atmosphere include the 

overuse of fossil fuels, land use changes and cement manufacturing (Jain and Hayhoe, 

2003).  Abiotic sinks for anthropogenically produced CO2 include absorption by ocean 

water and the atmosphere (Shallcross et al., 2003). 

The atmospheric concentration of CH4 increased by 150% to 1,745 ppb since pre-

industrial times (Intergovernmental Panel on Climate Change, 2001).   Methane has a life 

span of 9-15 years (Schimel et al., 1996) with a GWP 23 times greater than CO2 

(Intergovernmental Panel on Climate Change, 2001).  The anthropogenic sources of CH4 

include enteric fermentation, fossil fuel related activities and rice paddies 

(Intergovernmental Panel on Climate Change, 2001).  Methane is abiotically removed 

from the atmosphere by reacting with hydroxyl radicals (OH) to produce methyl radicals 

and water vapour and in the stratosphere with chlorine to produce methyl radicals and 

hydrochloric acid (Tyler, 1991).   

Nitrous oxide has risen from a pre-industrial concentration of 275 ppb to the 

current concentration of 310 ppb (Shallcross et al., 2003).   The average life span of N2O 

is 120 years (Prather et al., 1995) and it has a GWP 296 times that of CO2 

(Intergovernmental Panel on Climate Change, 2001).  An abiotic sink of N2O is its 

reaction with atmospheric constituents like ozone (Wang et al., 1976), the resultant 

destruction of which increases the amount of UV-B and UV-C rays that reach the earth’s 

surface. 

2.2 Greenhouse Gas Flux and Grasslands 

Native rangelands of the Canadian prairies are an important part of the economic, 

social and natural landscape in the region.  Very little is known about GHG flux of 
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uncultivated areas.  Undisturbed landscapes are important because they occupy large 

areas of land and contribute significantly to global GHG emissions (Bowden, 1986; 

Shallcross et al., 2003).  Variability of factors controlling GHGs is one of the obstacles to 

understanding GHG emissions from undisturbed landscapes (Clayton et al., 1994; Smith 

et al., 1994b).   

2.2.1 Ecology of the Northern Mixedgrass Prairie 

The Northern Mixedgrass Prairie region is the northern most portion of the 

Mixedgrass Prairie (Coupland, 1950) and occupies 390,000 km2 (Coupland, 1961).  

Dominant grass species are Hesperostipa comata (Trin. & Rupr.) Barkworth (needle-and-

thread), Hesperostipa curtiseta (A.S. Hitchc.) Barkworth (western porcupine grass), 

Bouteloua gracilis (Willd. ex Kunth) Lag. ex Griffiths (blue grama), Elymus lanceolatus 

(Scribn. & J.G. Sm.) Gould (northern wheatgrass) and Pascopyrum smithii (Rydb.) A. 

Löve (western wheatgrass) (Nomenclature follows the Integrated Taxonomic Information 

System, 2005) (Coupland, 1961).  The Northern Mixedgrass Prairie covers the Brown 

and Dark Brown soil zones in Saskatchewan (Coupland, 1961). The climate is semiarid 

to dry subhumid (Sanderson, 1948).  Annual precipitation is 310 mm in the southwest 

corner of Saskatchewan and increases in the northeast corner of the province, reaching 

435 mm near the Populus tremuloides Michx. (aspen) - Festuca hallii (Vasey) Piper 

(plains rough fescue) ecotone (Coupland, 1961).  Average annual air temperatures range 

from 3.6ºC in Swift Current, SK to 1.1ºC in the northeast portion of the Northern 

Mixedgrass Prairie (Coupland, 1950).  The combination of low precipitation and cold 

temperatures make the climate and hydrology of the Northern Mixedgrass Prairie unique 

(Conly and van der Kamp, 2001).  Within the Northern Mixedgrass Prairie portion of the 

province, precipitation differs little from the southwest to the northeast, but cooler 

temperatures in the northeast reduce potential evapotranspiration, thereby decreasing the 

moisture deficit in a gradient from southwest to northeast.  Soils of the Mixedgrass 

Prairie of Saskatchewan are glacially derived (Christiansen, 1979) with 55% of glacial 

lacustrine or glacial fluvial origin and 40% of unsorted glacial till origin (Coupland, 

1961).  Nitrogen content of soils ranges from 0.10 to 0.24% in the Brown Soil Zone and 

0.15 to 0.35% in the Dark Brown Soil Zone (Mitchell and Moss, 1948; Willms et al., 
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1990; Frank et al., 1995).  Soil organic carbon content ranges from 1.6 to 4.6% (Willms 

et al., 1990; Slobodian et al., 2002; Willms et al., 2002).  Glaciers and disintegration of 

glacial ice formed the topographic features of the Northern Mixedgrass Prairie (Gravenor 

and Kupsch, 1958).   

Within the bounds of the climate, plant species composition and production are 

influenced, among other factors, by topography and grazing (Coupland et al., 1960; 

Biondini et al., 1998; Curtin, 2002).  Graminoid production varies among the five 

faciations, or plant community assemblages, of the Northern Mixedgrass Prairie.  The 

Stipa-Agropyron faciation produces 445 to 1,421 kg graminoid dry matter ha-1 y-1, the 

Stipa-Bouteloua-Agropyron faciation 363 to 1,001 kg graminoid dry matter ha-1 y-1, the 

Stipa-Bouteloua faciation 342 to 794 kg graminoid dry matter ha -1 y-1, the Bouteloua-

Agropyron faciation 272 to 596 kg graminoid dry matter ha-1 y-1, and the Agropyron-

Koeleria faciation 520 to 755 kg graminoid dry matter ha -1 y-1 (Coupland, 1961).  Grass 

production depends on spring growth (Frank and Hofmann, 1989) and is water and N 

limited (Willms et al., 2002).  Removing standing dead plant biomass increases 

evaporation and decreases water infiltration (Coupland et al., 1960), thereby decreasing 

annual net primary production compared to sites with greater standing dead plant 

materials (Willms et al., 2002). 

The Missouri Coteau rises 50 to 150 m above the surrounding Mixedgrass Prairie 

landscape, stretching southeast from North Battleford, SK into South Dakota (Mitchell et 

al., 1944; Tatina, 1994).  The Missouri Coteau is a glacially influenced escarpment of the 

Mixedgrass Prairie that separates the second and third prairie steppes (Mitchell et al., 

1944).  Glaciers have deposited unsorted material, rich in clay on and around the 

Missouri Coteau (Gravenor and Kupsch, 1958), creating a mosaic of soil types and range 

sites (Biondini et al., 1998).  The resultant landscape is part of the prairie pothole region 

characterized by many bodies of water smaller than one hectare that flood in most springs 

and often dry during the course of a year (Conly and van der Kamp, 2001).  Steep slopes 

make up the majority of the uncultivated native grassland in the Missouri Coteau (Acton 

et al., 1998).  In Saskatchewan, 27% of the 23,000 km2 of the Missouri Coteau remain as 

native grassland (Hammermeister et al., 2001; Environment Canada, 2005b).  
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2.2.2 Disturbances in the Northern Mixedgrass Prairie 

The Northern Mixedgrass Prairie evolved under a combination of grazing and 

fire, therefore defoliation is a natural part of the ecosystem (Curtin, 2002).  Rangeland 

plants of the Northern Mixedgrass Prairie generally stop or slow root growth when 

above-ground plant materials are removed (Crider, 1955; Jameson, 1963), decreasing 

carbohydrates in above-ground and below-ground plant tissue (Brown, 1995).  Dominant 

species of the Northern Mixedgrass Prairie generally recover above-ground primary 

production lost due to defoliation after being left undisturbed for a minimum of two 

growing seasons (Kowalenko and Romo, 1998). 

Livestock selectively graze specific plants or parts of plants (Coupland et al., 

1960).  Beebe and Hoffman (1968) noted that heavy grazing removes taller grasses and 

allows weedy species to dominate.  Mowing can also contribute to the increase of less 

palatable species in the Mixedgrass Prairie ecosystems (Tatina, 1994).   

Soil water is generally increased when dead plant materials are retained on the 

surface (Kowalenko and Romo, 1998).  Grazing reduces the amount of dead plant 

materials, thereby decreasing soil water (Whitman, 1974).  Plant growth is water limited 

in the Mixedgrass Prairie, and maintaining litter through grazing management increases 

plant production (Facelli and Picket, 1991; Willms, 1995).  Removal of litter also 

increases forb productivity (Willms et al., 1986).   

Soil water is influenced directly and indirectly by defoliation of vegetation.  The 

wind speed at 15 cm above the surface of grazed and ungrazed Mixedgrass Prairie was 

2.1 and 0.6 km hr-1, respectively (Whitman, 1974).  Surface roughness caused by 

vegetation is negatively correlated with snow transportation (Pomeroy and Gray, 1995).  

Areas with sparse vegetation lose more snow than areas with dense vegetation (van der 

Kamp et al., 2003; Essery and Pomeroy, 2004).   

Defoliation increases soil temperature (Weaver and Rowland, 1952).  Dead and 

living plant materials shield the soil surface, intercepting 95 to 99% of incoming sunlight 

(Weaver and Rowland, 1952; Facelli and Pickett, 1991).  Removing above-ground 

biomass can increase soil temperatures by 2 to 5°C (Hulbert, 1969; Whitman, 1974). 

Above-ground biomass and litter provides temporary storage of nutrients (Facelli 

and Pickett, 1991).  Removing above-ground biomass decreases organic material inputs 
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to the soil (Knapp and Seastedt, 1986), root biomass (Biondini et al., 1998) and litter 

inputs (Coupland and Johnson, 1965).  Defoliation contributes to increased soil bulk 

density by decreasing inputs of organic matter necessary for creating the soil structure 

that decreases soil bulk density (Whitman, 1974).  Carbon inputs to the soil decrease with 

biomass removal while soil temperature and soil respiration increase (Knapp and 

Seastedt, 1986).  Above-ground biomass removal decreased total soil N 64 to 78% 

compared to ungrazed Mixedgrass Prairie (Frank et al., 1995).  Heavy grazing in the 

Mixedgrass Prairie of North Dakota decreased root biomass, but did not decrease soil N 

(Biondini et al., 1998). 

2.2.3 Impact of climate change on the Northern Mixedgrass Prairie 

Increasing concentrations of GHGs are predicted to change the climate of the 

Northern Mixedgrass Prairie.  McGinn and Shepherd (2003) predicted a 4 to 32% 

increase in precipitation in Saskatchewan and a 3.2 to 5.3ºC and 2.9 to 5.0ºC increase in 

minimum and maximum temperatures, respectively.  Weather data for Swift Current, SK 

shows that annual precipitation is negatively correlated with mean minimum and 

maximum temperatures over time (Cutforth, 2000).  Future increases in temperatures on 

the Northern Mixedgrass Prairie may be combined with decreased annual precipitation 

(Cutforth, 2000).  Weather data from the last 100 years suggests no increase in 

precipitation at Indian Head, SK and only a marginal increase in temperature over that 

same period (Clark et al., 2000).  Contrasting studies state that annual temperatures in the 

Northern Mixedgrass Prairie have increased over the past century (Skinner and Gullett, 

1993; Bootsma, 1994).  The moisture deficit can increase with increased annual 

temperature and no change in precipitation because evaporation also increases. 

The distance from the moderating effects of temperature from oceans and positive 

feedback of changes in snow and ice make the Northern Mixedgrass Prairie more 

susceptible to changes in global climate (Skinner and Majorowicz, 1999).  Changes in 

annual precipitation or precipitation effectiveness are a major concern for agriculture in 

the Northern Mixedgrass Prairie because available soil water is one of the main 

constraints of forage production in this area (Willms and Jefferson, 1993).  Forage 

production is influenced by seasonal fluctuations in precipitation.  Standing crop of grass 
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was reduced by 27% when growing season precipitation was limited to 34% of the 

maximum historical high in the Northern Mixedgrass Prairie (Köchy and Wilson, 2004).  

Newbauer et al. (1980) stated that a 13-year period of above average precipitation 

increased forage yields in eastern Montana by 61 to 110%.  Long-term changes in climate 

also influence biomass production at a regional scale (Williams and Wheaton, 1998).  

The potential production of rangelands decreases when climate change causes shifts in 

species composition to those that produce less biomass (Coupland, 1958; Willms and 

Jefferson, 1993).   

2.3 Biogenic Production and Consumption of Greenhouse Gases 

Metabolic processes of animals, plants and soil microbes are biogenic sources and 

sinks of GHGs (Davidson and Schimel, 1995; Paul and Clark, 1996).  Organisms capture 

energy from the flow of electrons during respiration.  Organic C provides the only source 

of electrons and O2 is the only electron acceptor for many organisms.  The production 

and consumption of a variety of GHGs requires diverse microbial communities using a 

variety of electron acceptors and donors (Metting, 1992).   

Changes in the soil environment are important to GHG flux because GHG 

consumption and production are enzymatic processes with optimum temperature and pH, 

availability of electrons, water and O2 (Smith et al., 1993).  The environment dictates the 

rate of GHG consumption and production in plants and microbial communities.  The 

environment also determines the type of GHG produced or consumed by microbes. 

The complexity of the soil biotic community allows for the simultaneous 

production and consumption of several GHGs by different soil organisms (Rogers and 

Whitman, 1991).  A positive flux of a gas indicates net production and an increase in its 

concentration in the atmosphere, while a negative flux indicates net consumption and a 

decrease in its concentration in the atmosphere.  Production and consumption may occur 

at the same time in the same soil column, but only the net result is usually reported. 

2.3.1 Carbon dioxide 

Soil CO2 respiration is greater on most arable lands than on rangelands (Smith et 

al., 1997; Schmidt et al., 2001) (Table 2.1).  Results from the Mixedgrass Prairie show 
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that peak summer respiration ranges from 13 kg C ha-1 d-1 in Saskatchewan to 69 kg C ha-

1 d-1 in North Dakota.  Respiration ranged from 1 to 15 kg C ha-1 d-1 in the Mixedgrass 

Prairie of Wyoming to 2 to 106 kg C ha -1 d-1 in the Tallgrass Prairie of Kansas. 

Table 2.1 Above-canopy CO2 flux rate data in grassland regions.   Rates were recalculated for 
consistency of units.  

Location Land Use/ 
Vegetation Type 

Condition/ 
Treatment 

CO2 Flux  
(kg C ha-1 d-1) Reference 

Colorado Arable 
agriculture 

Summary 50 to 200 Schmidt et al., 2001 

Saskatchewan Mixedgrass Laboratory results 43 Redmann and 
Abouguendia, 1978 

Saskatchewan Mixedgrass Peak summer 
respiration 

13 Redmann, 1978 

Saskatchewan Mixedgrass Summer 45 to 134 de Jong et al., 1974 
Saskatchewan Mixedgrass Average across all 

landform positions 
at peak 

47 de Jong, 1981 

Peak respiration 
control 

57 Frank et al., 2002 North Dakota Mixedgrass  

Peak respiration 
grazed 

69  

Wyoming Mixedgrass Control 3 to 6 Lecain et al., 2000 
  Light grazing 1 to 9  
  Heavy grazing 1 to 15  
Kansas Mixedgrass Seasonal mean 10 to 30 McCulley et al., 2005 
Kansas Tallgrass Ungrazed 2 to 106 Bremer et al., 1998 
 

Terrestrial photosynthesis accounts for 70 to 80% of gross annual global CO2 

uptake (Paul and Clark, 1996).  Photosynthetic organisms capture energy from light, 

splitting water molecules and CO2 molecules to create various sugar compounds.  Plant 

photosynthesis is a CO2 sink when conditions are favourable for plant growth and plant 

respiration is a source of CO2 when plant growth is slowed or stopped (Frank et al., 

2002).  Autotrophic bacteria require CO2 as a carbon source for metabolism, but most soil 

microbes are heterotrophic and produce CO2 rather than consume it (Paul and Clark, 

1996).  The below-ground environment is modified by plant roots and shared with 

microbes (Robinson et al., 2003).  Root growth enriches grassland soils with organic 

carbon and ensures high microbial activity (Conant et al., 2001). 
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Soil CO2 production is derived from the respiration of living organisms and 

includes the decomposition of organic materials under some conditions (Redmann and 

Abouguendia, 1978; Hanson et al., 2000).  Root respiration of dominant grasses in the 

Northern Mixedgrass Prairie account for up to 20% of total above-ground and below-

ground respiration (Warembourg and Paul, 1977).  Decomposition of dead plant 

materials and respiration of living plants makes up the remaining 80% of total above-

ground and below-ground CO2 respiration.   

Soil temperature and soil water influence the rate of CO2 respiration of the 

Northern Mixedgrass Prairie.  Sixty-six to 74% of the variation in soil CO2 respiration 

was explained by soil temperature, soil water and precipitation (Redmann, 1978), among 

which soil temperature was the best indicator.  Soil temperature can account for 44 to 

81% of the variation in soil respiration (Frank et al., 2002).  Water concentrations of 

above-ground dead plant materials modify above-ground and below-ground respiration 

by changing the environment (Redmann, 1978).  The Mixedgrass Prairie was the most 

sensitive to interannual variation in precipitation among grasslands studied (McCulley et 

al., 2005).  Year-to-year variation in precipitation is a determinant of annual CO2 flux on 

the Mixedgrass Prairie of Saskatchewan (de Jong et al., 1974).  Peak daytime soil 

respiration in the Mixedgrass Prairie at Matador, SK was in late June to early July 

(Redmann, 1978).  Soil respiration increased from April to mid-June, declining with the 

onset of water stress in late June (de Jong, 1981).  Topography affects soil water and may 

then influence soil respiration.  In a landscape scale study dealing with CO2 and the 

Northern Mixedgrass Prairie, CO2 production increased from upper to lower slope 

positions (de Jong, 1981). 

Grazing can decrease or increase soil respiration in prairie ecosystems through 

trampling of plants, compaction of soil and increased soil erosion (Carran et al., 1995; 

Oenema et al., 1997).  Heavy grazing contributes to net CO2 production in some 

ecosystems, possibly by increasing C inputs to the soil (Tiessen et al., 1998; Lecain et al., 

2000).  Biomass removal decreases soil respiration in the Tallgrass Prairie (Bremer et al., 

1998) (Table 2.1).  Soil respiration increases with increasing grazing intensity in the 

Mixedgrass Prairie (Frank et al., 2002).   
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Agricultural practices like intensive cultivation and overgrazing decrease the 

amount of plant materials returned to the soil, contributing up to 90% of C loss in 

Canadian agriculture (Smith et al., 1997).  Respiration of arable agriculture soils can be 

as much as an order of magnitude greater than respiration from grassland ecosystems 

(Table 2.1).  Best management practices and increasing the extent of rangelands could 

reduce Canada’s contribution to global climate change by sequestering 50 to 75% of 

Canadian agriculture’s CO2 production over the next 30 years (Dumanski et al., 1998).   

2.3.2 Methane 

Methane production can occur in arable lands and natural ecosystems during 

some parts of the year (Wang and Bettany, 1995; Savage et al., 1997) (Table 2.2).  

Methane consumption by arable soils is typically small (Mosier et al., 1997; Schmidt et 

al., 2001) (Table 2.2).  Boreal forest soils of Manitoba (Savage et al., 1997) are capable 

of CH4 consumption and production, similar to the Mixedgrass Prairie of Iowa (Chan and 

Parkin, 2001).  Pastures in Ontario (Lessard et al., 1997) consume less CH4 than the 

Shortgrass Prairie of Colorado (Mosier et al., 1997) or the Mixedgrass Prairie in Iowa 

(Chan and Parkin, 2001).  Arable agriculture or cultivation of tame grasses decreases CH4 

consumption in the Shortgrass Prairie of Colorado (Mosier et al., 1997).  The Tallgrass 

Prairie of Kansas consumes more CH4 when it is burned than when it is unburned or 

planted to annual crops (Tate and Striegl, 1993).  Methane flux rates range from 

production of 312 g C ha-1 d-1 to consumption of 48 g C ha -1 d-1 in German pastures 

(Koschorreck and Conrad, 1993; Glatzel and Stahr, 2001).   

The interaction between CH4 production and consumption is complex (Dunfield 

et al., 1995; Mosier et al., 1998b).  Methane is produced when soil is water saturated 

(Mancinelli, 1995).  As water drains, mesoaeorophilic methanotrophs begin functioning, 

consuming CH4 produced in saturated areas of the soil profile as well as CH4 entering the 

soil (Mancinelli, 1995).  As the soil dries further, most CH4 production ceases and the 

soil becomes a net CH4 sink (Mancinelli, 1995).  If the soil continues to dry, microbes 

become water stressed and CH4 production and consumption cease (Schnell and King, 

1996).  When soil is moistened, the CH4 sink effect decreases because CH4 production 

increases or because the decreased diffusion rate of O2 or CH4 in water limits CH4 
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Table 2.2 Methane flux rate data in grassland regions.  Rates were recalculated for consistency 
of units.  

Location Land Use/ 
Vegetation Type 

Condition/ 
Treatment 

CH4 Flux 
(g C ha-1 d-1) Reference 

Colorado  Arable 
agriculture 

Survey -5.8 Schmidt et al., 2001 

Colorado Shortgrass Wet soil -7.5 Mosier et al., 1997 
Saskatchewan Arable 

agriculture 
Low landform 
positions 

0.2 to 58 Wang and Bettany, 
1995 

Saskatchewan Mixedgrass Low landform 
positions 

0.5 to 79 Wang and Bettany, 
1995 

Manitoba Boreal Forest Upland -19 to 4.5  Savage et al., 1997 
Ontario Arable 

agriculture 
Manure applied -2.2 to 0.7 Lessard et al., 1997 

Ontario Pasture Fall -3.0 to -2.4  Dunfield et al., 1995 
Colorado Rocky 

Mountains 
Moist meadow 
swale 

-7.5 Torn and Harte, 1996 

  Dry ridges -11  

Colorado Rocky 
Mountains 

Subalpine 
meadow 

-5.1 to -0.8  Mosier et al., 1993 

Colorado Shortgrass Native -4.8 Mosier et al., 1997 
  Ploughed -3.6  
  Planted to tame 

grass 
-3.0  

Colorado Shortgrass Swale -3.6 Mosier et al., 1991 
  Midslope -6.3  
Colorado Shortgrass Sandy soils, 

midslope position 
-8.8 Mosier et al., 1996 

  Swales -5.1  
Kansas Tallgrass Burned -7.6 Tate and Striegl, 1993 
  Unburned -4.7  
  Planted to annual 

grains 
-6.4 to -3.4  

Iowa Mixedgrass  -16 to 5.9 Chan and Parkin, 2001 
Germany Pasture Fertilized  -48 to 240 Glatzel and Stahr, 

2001 
  Unfertilized -48 to 312  
Germany Meadow Extensively 

managed 
-7.1 to -5.9 Koschorreck and 

Conrad, 1993 
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oxidation (Mosier et al., 1998b).   

  The biotic production of CH4 from rangeland soils is an anaerobic process.  

Anaerobic soil conditions occur occasionally in depressions of Northern Mixedgrass 

Prairie (Barnes et al., 1983; Conly and van der Kamp, 2001).  Aggregates in moist, but 

not water-saturated soils, can form anaerobic microsites where methanogens produce 

CH4 (Conrad, 1996).  During snow melt and after large precipitation events, the Northern 

Mixedgrass Prairie in a low landform position near Lanigan, SK produced more CH4 than 

low landform positions on arable lands in the same area (Wang and Bettany, 1995).  

Electron acceptors with electrical potentials greater than that of CH4 must be used up 

before CH4 is produced (Paul and Clark, 1996).  Methanogenic microbes use hydrogen 

gas, produced during the decomposition of organic materials, as an electron source.  

Hydrogen gas is combined with various C sources to produce CH4 (Miller, 1991).   

The oxidation of CH4 by methanotrophic bacteria accounts for approximately 

10% of the global CH4 sink (Topp and Pattey, 1997).  Methanotrophs can consume CH4 

produced in the soil or CH4 entering the soil from the atmosphere (Moiser et al., 1997; 

Schmidt et al., 2001).  Methanotrophs use three methods to consume CH4, each 

beginning with the conversion of CH4 to formaldehyde (Mancinelli, 1995).  The 

dissimilatory method restricts bacteria to capturing energy from the oxidization of 

formaldehyde CO2 and H2O and does not allow the retention of any C (Paul and Clark, 

1996).  The ribulose monophosphate method allows methanotrophs to assimilate the 

formaldehyde, converting it to different C molecules for use as biomass (Mancinelli, 

1995).  Methanotrophs using the serine method assimilate the formaldehyde and convert 

it to carboxylic acids and amino acids used in biomass production (Mancinelli, 1995).   

Ammonium limits CH4 consumption because the enzyme responsible for CH4 

consumption, methane monooxygenases (MMO), oxidizes ammonium (NH4
+) instead of 

CH4, thus decreasing the CH4 sink potential of the soil (Hütsch, 2001).  The oxidation of 

NH4
+ by MMO also produces toxic N compounds that inhibit the methanotrophic 

population (Hütsch, 2001) and therefore repeated NH4
+ fertilisation decreases the 

methanotrophic microbial population and the soil consumption of CH4 long after 

application of NH4
+ ceases (Mancinelli, 1995; Mosier et al., 1996).  Nitrate (NO3

-) 
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fertiliser has no effect on CH4 consumption or can stimulate it (Lessard et al., 1997; 

Hütsch, 2001).   

Soil water status varies with time of year, thereby determining the CH4 flux of a 

landscape.  Consumption of CH4 on pastures in Ottawa, ON was similar to that on the 

Shortgrass Prairie of Colorado during the fall; it increased with decreasing soil water 

content (Table 2.2) (Dunfield et al., 1995).  Methane consumption increased from greater 

to lesser soil water content in the Rocky Mountains of Colorado (Torn and Harte, 1996).  

Soil water was the greatest influence in controlling CH4 consumption in a subalpine 

portion of Colorado (Mosier et al., 1993).  In the same area, peak CH4 consumption 

occurred at 15% water-filled pore space (WFPS) on sandy soils compared to 20% WFPS 

on fine-textured soils (Mosier et al., 1996).  

Soil structure is important to CH4 flux because methanotrophs accumulate on the 

surface of coarse-textured soils and within soil aggregates (Conrad, 1996; Mosier et al., 

1997).   Tillage disturbs these structures and may reduce habitat necessary for 

methanotrophs (Willison et al., 1995).  Undisturbed soils tend to consume CH4 more 

often than they produce it (Wang and Bettany, 1995).  Ploughing the Shortgrass Prairie of 

Colorado immediately reduced CH4 consumption by 60% (Mosier et al., 1996).   

The ideal temperature range of MMO is between 20 and 40ºC, but diurnal 

changes in temperature do not change CH4 consumption (Topp and Pattey, 1997).  

Burning in the Tallgrass Prairie removes litter and modifies the microenvironment, 

influencing soil temperature and water; less than 20% of the variation in CH4 

consumption of burned and unburned Tallgrass Prairie was explained by soil moisture 

and soil temperature (Tate and Striegl, 1993).  Methane flux is correlated with plant 

community and landform position, but the most influential factor seems to be soil water 

(Schmidt et al., 2001).  On the other hand, soil organic matter and mean annual 

temperatures explained 69 to 82 % of the variation in CH4 and CO2 flux of upland boreal 

forest near Thompson, MB (Savage et al., 1997).  In the Shortgrass Prairie of Colorado, 

mesic slope positions consumed less CH4 than xeric landform positions presumably due 

to differences in soil water (Mosier et al., 1991).  
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2.3.3 Nitrous oxide 

Arable soils in central Alberta (Nyborg et al., 1997) produce more N2O than those 

near Swift Current, SK (Izaurralde et al., 2004) and a perennial grassland in South 

Dakota (Mummey et al., 1998), all of which produce several orders of magnitude more 

N2O than pastures in central Saskatchewan (Corre et al., 1999) (Table 2.3).  Mesic 

grasslands under intensive management (i.e. fertilization, high grazing frequency and 

high grazing intensity) produce more N2O than semiarid arable soils (Carran et al., 1995; 

Velthof et al., 1996a; Velthof et al., 1996b).  The Tallgrass Prairie of Kansas (Groffman 

and Turner, 1995) produces similar amounts of N2O as intensively managed pastures in 

Scotland (Clayton et al., 1994; Dobbie et al., 1999), New Zealand (Carran et al., 1995) 

and the Netherlands (Velthof et al., 1996b).  

Nitrous oxide is produced through nitrification, denitrification and nitrifier 

denitrification (Wrage et al., 2001; Bolan et al., 2004).  Denitrification is the only 

biological process in which N2O is consumed (Wrage et al., 2001).  Different microbes 

and their enzymes uniquely regulate each step of the N conversion processes involving 

N2O (Groffman, 1991).  Nitrous oxide flux is sensitive to many soil factors, including 

pH, organic C content, N content, water, temperature and the size and type of microbial 

population (Groffman and Turner, 1995; Beauchamp, 1997; Cavigelli and Robertson, 

2001).  As these factors vary in space and time, the relative contribution of each process 

changes, influencing the magnitude and direction of N2O flux (Müller et al., 2004).    

Autotrophic nitrification is the oxidation of NH4
+ or NH3 to NO2

- then NO3
- by 

two groups of aerobic microbes (Davidson, 1991; Wrage et al., 2001).  Nitrous oxide is 

directly released during the chemical decomposition of intermediates (NH2OH or NO2
-) 

and indirectly when other organisms denitrify the newly formed NO3
- (Wrage et al., 

2001).  Heterotrophic nitrification, more common among fungi (Odu and Adeoye, 1970), 

releases N2O and indirectly contributes to N2O emissions by producing substrates for 

denitrification (Wrage et al., 2001).  Under aerobic conditions, heterotrophic nitrification 

produces more N2O than autotrophic nitrification (Anderson et al., 1993).       
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Table 2.3 Nitrous oxide flux rate data in grassland regions.  Rates were recalculated for 
consistency of units.  

Location Land Use/ 
Vegetation Type 

Condition/ 
Treatment 

N2O Flux  
(g N ha-1 d-1) Reference 

Saskatchewan Arable agriculture Shoulder slope 0.4 Izaurralde et al., 2004 
  Back slope 0.8  
  Foot slope 1.8  
Saskatchewan Pasture Shoulder to foot 

slope 
0.005 to 0.16  Corre et al., 1999 

Alberta Arable agriculture Unfertilized, spring 
thaw 

41 Nyborg et al., 1997 

  Fertilized,  
spring thaw 

106  

Alberta  Undisturbed  
upland 

0.9 Izaurralde et al., 2004 

 

Parklands native 
and forage 
vegetation Undisturbed 

depression 
11  

Quebec Arable agriculture Spring melt 47 van Bochove et al., 1996 
 Forest  < 1  
Ontario Pasture Fertilized 7 Wagner-Riddle and 

Thurtell, 1998 
South Dakota Restored to 

grassland 
Conversion to 
perennial grasses 

5.8 Mummey et al., 1998 

Kansas Tallgrass Unburned 6 to 27 Groffman and Turner, 
1995 

  Burned -2.2 to 19  
  Burned and grazed 0.3 to 8.2  
Belgium Forest Undisturbed -1.8 Goossens et al., 2001 
New Zealand Pasture Low fertility hills  1.4 Carran et al., 1995 
  Poorly drained hills  9.6  
New Zealand Pasture Ungrazed 4.3 to 54 Carran et al., 1995 
  Grazed 22 to 92  
Netherlands June grazing 257 Velthof et al., 1996b 
 September grazing 53  
 

Intensively 
managed pasture 

November grazing 62  
UK Pasture Grazed 1360 Velthof et al., 1996a 
Scotland Pasture Ungrazed 153 Clayton et al., 1994 
  Grazed 557  
Scotland Pasture Intensively 

managed 
5.2 to 50 Dobbie et al., 1999 

 
Denitrification is the step-wise reduction of NO3

- to N2 via NO2
- and NO carried 

out by several groups of predominately heterotrophic, facultative anaerobic microbes 

using different enzymes (Firestone, 1982).  Each step requires a separate enzyme with 
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different rates under different conditions (Cavigelli and Robertson, 2001).  Nitrous oxide 

is released when NO reduction is faster than reduction of N2O and N2O escapes into the 

atmosphere.  Of the four enzymes necessary for complete NO3
- reduction, the enzyme 

controlling N2O reduction (nitrous oxide reductase) is most sensitive to increased O2 

concentration, low C:N ratio and low pH (Tiedje, 1988; Wrage et al., 2001).  Nitrous 

oxide reductase enzymes from different species have unique sensitivities to O2, 

contributing to differences in N2O production between arable and untilled land (Cavigelli 

and Robertson, 2000; Cavigelli and Robertson, 2001).  

Nitrifier denitrification is the oxidation of NH3 to NO2
- followed by the reduction 

of NO2
- to N2 that is carried out by one group of autotrophic NH3 oxidizers using the 

same enzymes used in the nitrification and denitrification processes (Wrage et al., 2001).  

This process is restricted by microbial population size and is most likely to occur at low 

O2 concentrations, and possibly low pH, when NH3 is available.  Nitrifier denitrification 

decreases in wet, fine-textured soils, is limited by NO2
- availability in grassland soils and 

is an important source of N2O in drier soils (Webster and Hopkins, 1996; Wrage et al., 

2004).   

The ratio of nitrification production of N2O to denitrification production of N2O 

changes with environmental conditions like O2 availability and soil temperature.  Water 

saturated, anaerobic soils tend to release N2O produced by denitrification, while 

nitrification is the predominant contributor of N2O in moist, warm soils (Müller et al., 

2004).  The threshold between nitrification and denitrification is approximately 60% 

WFPS (Bouwman, 1998; Müller and Sherlock, 2004).  Nitrification accounts for as little 

as 5% of total N2O production in wet soils (Müller and Sherlock, 2004) and as much as 

60% in dry soils (Mummey et al., 1994).  Nitrifier denitrification accounted for 29% of 

N2O produced on a dry sandy-loam site (Webster and Hopkins, 1996).  Nitrification and 

nitrifier denitrification are important processes in uncultivated soils (Wrage et al., 2001). 

Nitrous oxide reductase is the only enzyme capable of N2O reduction and thus the 

step in denitrification involving this enzyme is the only biological sink for N2O (Conrad, 

1996).  Nitrous oxide uptake by forest soils may be driven by NO3
- limitations (Papen et 

al., 2001).  Small N2O sinks have been reported for several natural ecosystems, but often 



19

with no attempt to explain the process or its controls (Groffman and Turner, 1995; 

Regina et al., 1996; Goossens et al., 2001; Wrage et al., 2004).   

The rate of N2O production varies within year, but a short period in spring often 

accounts for the large majority of the total production (Müller et al., 2002).  Nitrous oxide 

emissions during spring thaw accounted for 47 to 93% of the yearly total N2O emissions 

from arable soils in the Canadian prairies (Nyborg et al., 1997; Corre et al., 1999; Lemke 

et al., 1999).  Ammonium fixed on soil particles and C and N from leakage induced by 

cell death are made available by the freezing and thawing of soils (Groffman and Tiedje, 

1989; Müller et al., 2002).  Reduced microbial immobilization in spring may also 

increase NO3
- availability (Izaurralde et al., 2004).  Emissions in the summer may 

decrease due to lack of anaerobic conditions and water stress (Mummey et al., 1994).   

The microbial environment, including pH (Yamulki et al., 1997), temperature, 

oxygen availability (Wrage et al., 2001), and substrate availability (Lemke et al., 1998), 

affects N2O flux rate.  The optimum soil temperature for N2O production in Germany and 

New Zealand grasslands was between 10 and 15°C (Müller and Sherlock, 2004).  

Fertilised pastures in Scotland with 40 to 80 mg N kg dry soil-1 of NO3
- and NH4

+ emitted 

more N2O than less intensively managed pastures (Dobbie et al., 1999).  Tight N cycling 

and low soil NO3
- concentrations typical of uncultivated soils such as forests and pastures 

limit N2O production (Smith et al., 1994; Corre et al., 1996) and negate any relationship 

between WFPS and N2O flux rate (Dobbie et al., 1999).  A perennial grass field in 

Ontario (Wagner-Riddle and Thurtell, 1998) and Alberta arable lands (Lemke et al., 

1998) with low soil NO3
- concentrations also had low N2O production.  Nutrients from 

microbes killed by water stress can also contribute to an increase in N2O emissions at the 

onset of precipitation events (Mummey et al., 1994).  Soil water and soil NO3
- contents 

accounted for 46 to 77% of variation in N2O production (Velthof et al., 1996b; Izaurralde 

et al., 2004).  These fine scale controls are in turn constrained by coarse scale attributes 

such as topography, climate and land use. 

Topography controls hydrology and pedology of soils, which influences the 

microbial environment important for N2O flux.  Mineral N was randomly distributed, but 

denitrification formed a depression-centred pattern related to topographically induced 

anaerobic conditions on a field in southern Saskatchewan (Pennock et al., 1992), similar 
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to N2O emissions from a perennial grass pasture in the United Kingdom (Velthof et al., 

2000).  The spatial pattern of N2O flux persisted in time, but the magnitude of the flux 

changed.  Low and intermediate landform positions produced the majority of the N2O in 

a study in the Alberta Parklands and near Swift Current, SK  (Izaurralde et al., 2004).  

Cumulative N2O emissions of grazed New Zealand pastures were 7 times greater on 

poorly drained landscapes than on low fertility hills (Carran et al., 1995).   

Land use and plant community influence N2O flux.  Disturbing the function of 

natural ecosystems often increases N2O production (van Bochove et al., 1996; Mummey 

et al., 1998).  Grazing increased N2O flux by 2 to 5 times compared to ungrazed areas on 

intensively managed pastures in Scotland and New Zealand (Clayton et al., 1994; Carran 

et al., 1995).  Biomass removal has the opposite effect in the Tallgrass Prairie of Kansas 

where burning and grazing decrease N2O emissions by up to 3 times (Groffman and 

Turner, 1995).    Grazing influences the spatial variability of N2O flux by distributing 

feces and urine patches that generate localized “hotspots” with very high emissions 

(Yamulki et al., 1998).  Among natural plant communities within an ecosystem N2O 

production can vary up to an order of magnitude (Izaurralde et al., 2004). 

2.4 Landscape Scale Variability Related to GHG Production and Consumption 

Topography creates variation in environmental conditions that control GHG flux, 

including physical environment and plant community characteristics.  Linking 

topography with the physical environment and plant community aids in understanding 

GHG flux processes at the landscape level.   

2.4.1 Variability in the physical environment among landform elements 

Topographical redistribution of above-ground and below-ground water has long 

been recognised as a soil forming factor (Ellis, 1938).  Precipitation applied evenly over 

an uneven landscape accumulates in areas with converging surfaces and drains from areas 

with diverging surfaces (Ellis, 1938).  The accumulation of rainfall on different surfaces 

on a hill depends on the wind direction and the surface aspect, and may vary by 100 to 

150% in high winds (Sharon, 1980; Lentz et al., 1995).  Overland flow from rainfall 

events rarely contributes to topographic redistribution of water on hummocky landscapes 
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in Saskatchewan (Hayashi et al., 1998).  More than 25 mm of rain per day is required to 

generate overland flow on a hummocky field in Saskatchewan (Woo and Rowsell, 1993).  

Surface roughness and topographical depressions decrease wind speed and increase snow 

accumulation (Pomeroy et al., 1993; Hayashi et al., 1998).  In open areas, wind can 

remove 85% of fallen snow (Pomeroy et al., 1993).  Snow accumulation increases to a 

maximum on the lee side of hills and where vegetation density is the greatest (Essery and 

Pomeroy, 2004).  Snowmelt is the most important contributor to depression flooding on 

hummocky fields in Saskatchewan (Hayashi et al., 1998).  Soils of perennial grass fields 

allow infiltration into the frozen soils during snowmelt, decreasing the amount of runoff 

available to flood depressions (van der Kamp et al., 2003).  The influence of water 

movement on soil erosion in native prairies is generally small compared to arable fields.  

Landform element did not influence soil redistribution on a Mixedgrass Prairie in 

Saskatchewan (Pennock et al., 1994).  The topography of a site ensures that concave and 

depression landform elements consistently accumulate more water and eroded materials 

than other landform elements.  The amount of water accumulated influences soil 

chemical processes, plant community composition, total plant production and WFPS.   

The amount of solar radiation absorbed depends on the angle of the sun relative to 

the horizon and the angle of the surface relative to the horizon.  At northern latitudes, 

potential direct incident radiation (PDIR) increases with increasing surface angle on 

southern slopes (Buffo et al., 1972).  Surfaces with 0º angle receive intermittent amounts 

of PDIR, while PDIR on north-facing slopes decreases with increasing surface angles 

(McCune and Keon, 2002).  Sun-facing north slopes in southern latitudes can receive 

80% more radiation than south-facing slopes (Radcliffe and Lefever, 1981).  Sun-

exposed slopes are generally warmer than slopes not directly facing the sun.     

Soil temperature on south-facing slopes was 2 to 4ºC greater than soil temperature 

on north-facing slopes on Mixedgrass Prairie in Saskatchewan (Ayyad and Dix, 1964).  

Soil temperatures were greater and soil dried sooner on north-facing slopes compared to 

south-facing slopes in New Zealand (Radcliffe and Lefever, 1981).  The southern slopes 

of the Nebraska Sand Hills are drier and warmer than north-facing slopes (Pählsson, 

1974).  These two slope aspects also had different vegetation and microclimates.  

Consequently, south-facing slopes had one-half as much ignitable C as north-facing 
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slopes.  Landform position affects soil organic carbon (Oztas et al., 2003).  North and 

lower slopes of a Mixedgrass Prairie had more soil N than south and upper slopes, 

respectively (Lieffers and Larkin-Lieffers, 1987). 

2.4.2 Spatial variation in plant community characteristics 

Plant community composition and productivity are most influenced by soil water 

availability (Coupland, 1961; Redmann, 1975) and to a lesser extent by temperature 

(Barnes et al., 1983).  Therefore, topographic variation is vital in determining species 

composition, mainly through its affects on soil water (Cantlon, 1953; Dix, 1968) and to 

some extent solar radiation (Lieffers and Larkin-Lieffers, 1987).  Each species has a 

specific optimum range of growing conditions (Ayyad and Dix, 1964).  Species like 

Muhlenbergia cuspidata (Torr. ex Hook.) Rydb. (plains muhly) and blue grama are 

usually restricted to south-facing slopes in the Northern Mixedgrass Prairie (Ayyad and 

Dix, 1964; Barnes et al., 1983).  Generally, cool season plants, like plains rough fescue 

and Carex obtusata Lilj. (blunt sedge), dominate north-facing slopes and lower landform 

positions (Ayyad and Dix, 1964).  Northern wheatgrass, Carex filifolia Nutt. (threadleaf 

sedge) and needle-and-thread dominate south-facing slopes and upper positions (Ayyad 

and Dix, 1964).   

Production increases when soil water is increased (Willms et al., 1986, Willms et 

al., 1993).  Irrigation increased above-ground biomass of graminoids in the Mixedgrass 

Prairie of Saskatchewan by 40% compared to the control (Colberg and Romo, 2003).  

Biomass production of hummocky landforms mirrors the topographic pattern of water 

distribution (Pennock et al., 1987).  For example, depressions are generally more 

productive than uplands in the Northern Mixedgrass Prairie (Kantrud et al., 1989).  Plant 

growth in depressions is influenced by greater water availability and the salinity of the 

water (Walker and Coupland, 1968).   

2.4.3 Using the hierarchical approach to study landscape scale greenhouse gas 

variability 

Landscape ecology provides a foundation for the study of complex interactions 

between abiotic and biotic factors that control ecological processes such as GHG flux 
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(Risser, 1987).  One of the goals of landscape-scale ecosystem studies is to predict the 

spatial and temporal patterns of ecosystem processes based on more easily observed 

factors (Groffman and Turner, 1995).  Disturbances, biotic processes and environmental 

constraints functioning at different temporal and spatial scales form patterns across the 

landscape (Urban et al., 1987).  Topography is a coarse scale environmental constraint in 

space and defoliation falls within the coarse scale of topography.  These agents create 

patterns of plant growth and microbial processes by altering resource availability and 

growth conditions (Ayyad and Dix, 1964; Pennock et al., 1992). 

Hierarchical examination of these agents of heterogeneity has led to their use in 

categorizing plant composition and structure (Turner et al., 1994).  A similar arrangement 

of patterns may exist in relation to microbes responsible for GHG flux and their response 

to constraints (Turner et al., 1994).  Therefore, the GHG flux pattern may mirror 

landscape scale plant patterns of structure, function and composition (Groffman and 

Turner, 1995; Corre et al., 1996).    

The hierarchical approach divides GHG flux regulation factors into distal and 

proximal groups to explain variability brought about by a heterogeneous landscape 

(Corre et al., 1996; Bolan et al., 2004).  Distal factors indirectly control GHG flux at a 

coarse scale.  These factors change very slowly and over large areas.  Examples of distal 

factors include climate, topography and land use.  Proximal factors vary within the 

confines of the distal factors and directly control GHG flux at a fine scale.  Proximal 

factors can change quickly with quick reactions from soil microbes.  Examples of these 

include O2 availability, pH, H2O, N and C.  Changes in proximal factors can vary GHG 

flux rates over 100 m or less (Velthof et al., 2000).  Landscape derived differences in 

distal factors vary GHG flux rates from region to region (Bowden, 1986; Smith and 

Dobbie, 2001).   

Topography refers to the combination of slope aspect and slope shape on a 

surface.  Aspect is the compass direction the surface is facing and slope shape describes 

surface curvature.  Divergent surfaces, called convex slope shape, shed water while 

convergent surfaces, called concave slope shape, collect water (Pennock, 2003).  Aspect 

and slope shape describe different landform elements including, but not limited to, north-

facing aspect, and concave shaped slope (NV), north-facing aspect, and convex shaped 
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slope (NX), south-facing aspect, and concave shaped slope (SV), south-facing aspect, and 

convex shaped slope (SX), level upland (UP) and depression (DP).   

Mowing is a distal factor operating at a smaller scale than topography and refers, 

in this study, to the removal of above-ground plant materials.  Mowing is a disturbance 

that alters the structure, function and composition of a stand (Huntly, 1991).  Mowing 

directly and indirectly influences the environment of plants and microbes responsible for 

GHG flux without adding nutrients or increasing bulk density of soil. 

2.5 Management Issues for Greenhouse Gas Mitigation in the Northern Mixedgrass 

Prairie  

Reducing disturbances as a form of land management may be the best 

management practice for GHG mitigation.  Overall, drastic soil disturbance decreases 

CH4 consumption and increases CO2 and N2O production. Conventional tillage systems 

converted to reduced tillage increase CO2 sequestration (Mummey et al., 1998), while 

full season studies show that reduced tillage systems have lower N2O emissions than 

conventional tillage systems in the Mixedgrass Prairie region (Lemke et al., 1999).  

Methane consumption by soil bacteria is increased by reduced tillage (Hütsch, 2001).  

Ammonium application, common to arable agriculture, inhibits CH4 oxidation by bacteria 

(Topp and Pattey, 1997) and decreases the CH4 oxidizing soil bacteria population 

(Hütsch, 2001).  Perennial crops in an arable crop rotation can decrease GHG emissions.  

Greenhouse gas emissions from Medicago sativa L. (alfalfa) and Poa pratensis L. 

(Kentucky bluegrass) were lower than from annual crops (Wagner-Riddle et al., 1997).  

The conversion of 10.5 million hectares of the croplands in the USA to perennial cover 

would decrease N2O emissions by an estimated 31 Gg-N yr-1 (Mummey et al., 1998).  

Converting some Saskatchewan pastures back to forests could increase ecosystem C by 

approximately 3 times because standing trees are a larger pool of C than pasture 

vegetation (Fitzsimmons et al., 2004).   

Producers can change management to address GHG flux.  Oenema et al. (1998) 

recommended that the effects of farm practices be considered in the long-term or 

strategic sense and medium-term or tactical sense instead of the day-to-day operational 

time frame.  Strategic and tactical planning could involve determining yearly farm inputs 
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and outputs of nutrients and grazing regimes that recognize the impact of biomass 

removal on soil processes.  Cataloguing and managing for GHG sinks is a small step to 

addressing climate change.  One of the core climate change problems is large-scale land 

conversion from uncultivated ecosystems to cultivated lands or the conversion of forested 

ecosystems to grazed grassland ecosystems.  The next step for those working to slow or 

reverse anthropogenically induced climate change is to look for ways to reduce or reverse 

those conversions.   

2.6 Summary 

The concentration of GHGs directly determines the amount of heat the earth’s 

atmosphere retains, thereby influencing the climate.  Concentrations of CO2, CH4 and 

N2O have all increased since the beginning of the industrial revolution.  Evidence of 

present and future climate change is mounting.  Determining the controls and magnitude 

of GHG flux helps Canada comply with internationally agreed upon emission reduction 

targets.  Gathering this information is difficult due to the number and type of factors 

affecting GHG flux.  The physical environmental and plant community influence GHG 

flux, which vary in time and space.  Some of the variation can be explained by closely 

examining topography, land management and plant community characteristics.  A 

hierarchical approach aids in classifying and understanding variation in the natural 

ecosystem.  The best management practices for mitigating climate change may be the 

ones that best maintain ecosystem function.   
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3. MATERIALS AND METHODS 

3.1 Site Description 

The study site is approximately 20 km south of Macrorie, SK in the Mixed 

Grassland Ecoregion (Acton et al., 1998) of the Missouri Coteau.  The legal land 

description is SW-20-26-9W3 (51°14'N, 107°15'W; 720 m elevation).  The Calcareous 

Dark Brown and Orthic Regosol soils in this area originate from glacial till and are part 

of the Weyburn Soil Association (Ellis et al., 1970).  The topography is hummocky with 

strongly sloping to moderately rolling surfaces and slopes of 10 to 15% (Ellis et al., 

1970).  Similar to Coupland’s (1950) description of the Mixedgrass Prairie, dominant 

plant species at the study site are northern wheatgrass and western porcupine grass.  

Plains rough fescue is present and most abundant in the more protected, mesic areas 

(Coupland, 1961).  Aspen and Salix spp. (willow) are common around depressions while 

Symphoricarpos occidentalis Hook. (snowberry) patches occur in mesic landform 

positions (Coupland, 1950).  The site has not been grazed for at least 10 years before the 

study, but some depressions have been hayed in the past decade (Ron Dunning, personal 

communication). 

3.2 Experimental Design and Treatment Design 

A landscape-scale comparative mensurative experimental design was used to 

select blocks with the same topographical features (Eberhardt and Thomas, 1991; 

Pennock, 2004).  There were five replicates of six different landform elements with two 

treatments imposed as randomized complete blocks on each landform element for a total 

of 60 experimental units.  The six landform elements were north-facing aspect and 

concave shaped slope (NV), north-facing aspect and convex shaped slope (NX), south-

facing aspect and concave shaped slope (SV), south-facing aspect and convex shaped 

slope (SX), level upland (UP) and depression (DP).  Landform elements were chosen 
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visually and confirmed with digital elevation maps.  Mowing is an established simulation 

of grazing that has been used to test the effects of above-ground biomass removal on the 

structure, function and composition of range ecosystems without increasing bulk density, 

selectively removing species or adding urea and feces (Haferkamp and Karl, 1999; 

Eneboe et al., 2002).  The control and mowing treatments were randomly assigned within 

each replicate. Each treatment plot measured 2 × 20 m with a 2 × 4 m sampling area 

established at the centre for gas, soil and vegetation sampling.  A Jari sickle bar mower 

(Year-A-Round Corporation, Mankato, MN, USA) was used to cut vegetation to a height 

of 7.5 cm within the 2 × 20 m treatment plot.  Mowing was completed on 18 April 2003 

and mowed plant materials were removed from the plots.  This experiment was repeated 

in 2004 on the same landform elements using the same control plots, but with mowing 

imposed on 22 April 2004 on previously unmowed plots.  The 2003-2004 sampling 

season was from 30 April 2003 to 20 April 2004, while the 2004-2005 sampling season 

was from 3 May 2004 to 10 March 2005. 

3.3 Data Collection 

3.3.1 Environmental attributes 

Points within the study area were catalogued with a global positioning system 

(GPS; TSC1 Asset Surveyor, Trimble Navigation Limited, Sunnyvale, CA, USA) and a 

laser-sited theodolite (Electronic Total Station, SET5, Sokkisha Co. LTD., Tokyo, 

Japan).  Two horizontal coordinates were combined with the relative elevation to capture 

changes in topography within and around the blocks.  The three coordinates were used to 

generate a digital Elevation Model (DEM) with Surfer (Surfer 7, Golden Software, Inc., 

Golden, CO, USA).   

Soil temperature probes (Campbell Scientific 107B; Campbell Scientific Canada, 

Edmonton, AB) were buried to a depth of 5 cm within each 2 × 4 m sampling area in the 

spring of 2003.  Hourly temperatures were recorded using two Campbell Scientific 21X 

data loggers.  Only one block was monitored because of a lack of equipment.  

Temperature probes were removed in the fall of 2003 and reinstalled in the spring of 

2004.  A Sierra/ISCO model-2501 tipping bucket (Nova Lynx Corporation, Grass Valley, 
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CA, USA) calibrated to 0.658 mm per tip, recorded precipitation on one of the data 

loggers.  Weather data were also obtained from the Rock Point Environment Canada 

Weather Station located approximately 10 km away (51°9'N107°16'W; 725 m elevation) 

(Environment Canada, 2005a). 

Two samples of soil bulk density were collected from 0 to 15 cm from each block 

of each landform element using a 15 × 8 cm metal cylinder (Blake and Hartge, 1984).  

Surface material was removed before sampling and samples were dried at 80°C for 48 

hours and weighed.  The average bulk density was reported for each landform element. 

Five soil samples from 0 to 15 cm from each 2 × 4 m sampling area were 

collected and bulked for soil texture analysis using the Bouyoucos Hydrometer Procedure 

(Dodd et al., 2000).  Samples were dried at 100°C for 24 hours, sifted and then ground 

through a 2-mm sieve (Bouyoucos, 1962).  Fifty gram samples were saturated with 

distilled water and subjected to particle dispersal by adding a dispersal agent (0.02N 

sodium pyrophosphate Na4P2O7·10H2O), shaking for 6 hours, resting for 24 hours, 

blending for 30 seconds and shaking by hand for approximately 30 seconds.  Solution 

density was determined from hydrometer readings 40 seconds and 2 hours after final 

shaking, respectively.  Density readings, corrected for water temperature at time of 

reading, were used to calculate final percentage of clay, silt and sand.   

A snow survey was conducted on 1 March 2004 and 8 March 2005.  Snow 

samples were taken from each 2 × 4 m sampling area using a snow sampling tube (7 cm 

i.d.).  The tube was inserted into the snow pack and the depth of snow was recorded 

(Goodison et al., 1981).  The intact snow core was placed in a labelled plastic bag and 

weighed.  The mass of each snow sample was converted to water equivalent in 

millimetres of water.   

Slope angle and aspect were measured for each plot to calculate potential direct 

incident radiation (PDIR, MJ m-2 yr-1).  The UP and DP landform elements have no slope 

angle and therefore no directional aspect.  Slope angle and aspect were converted from 

degrees to radians for PDIR calculations (McCune and Keon, 2002).    

Soil samples, from 0 to 15 cm, were collected from all 2 × 4 m sampling areas on 

each gas sampling date.  One-half of each sample was used to determine soil water 

content (oven-dried for 24 h at 100°C) (Gardner, 1982).  Percentage of water-filled pore 
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space (WFPS) from 0 to 15 cm was determined (Peterson and Calvin, 1965) for each 2 × 

4 m sampling area from gravimetric soil water, bulk density and particle density.  The 

remaining one-half of each soil sample was frozen and one sample date from spring, 

summer, and fall of each year were selected for NH4
+ and NO3

- analysis.  Soil samples 

used to determine N were dried, sifted and ground through a 2 mm sieve.  Nitrogen was 

extracted from the soil using 2 M KCL.  This solution was refrigerated at 4°C until it was 

analysed with a colorimetric analyser (Keeney and Nelson, 1982).   

3.3.2 Plant community structure, species composition and biomass production 

Four 0.25 m2 quadrats were randomly placed within each 2 × 4 m sampling area 

in early August of 2003 and 2004.  The percentage canopy covers of litter, bare soil, 

Selaginella densa Rydb. (clubmoss) and each vascular species were visually estimated.   

Species richness was calculated as the number of species in 0.25 m2 and species evenness 

as the relative abundance of all of the species.  The Shannon-Wiener Diversity Index is a 

measure of relative abundance and richness of a given area. 

Four 0.25 m2 quadrats were randomly placed within each plot and all standing 

crop was hand-clipped to ground level in mid-August of 2003 and 2004.  Samples were 

sorted into wheatgrasses (western wheatgrass, northern wheatgrass and E. trachycaulus  

(Link) Gould ex Shinners (slender wheatgrass)), needle grasses (western porcupine grass, 

needle-and-thread and Nassella viridula (Trin.) Barkworth (green needle grass)), plains 

rough fescue, other graminoids and forbs (including shrubs and tree seedlings).  Samples 

were dried for 48 h at 80°C and weighed.   

In 2003, a representative portion of each grass and graminoid sample was sorted 

by colour (green = standing-live and brown = standing-dead) to determine the live and 

dead proportions of the entire sample.  Samples of 10 g or less were sorted entirely.  For 

samples between 10 and 100 g, 10 g were sorted.  Approximately 10% to a maximum of 

20 g was sorted for samples over 100 g.  The double sample method was used to estimate 

standing-live verses standing-dead biomass in 2004 (Pieper, 1978; Anonymous, 1986).  

Each sample was weighed and the percentage standing-live biomass of the total was 

visually estimated based on the colour of leaves.  Representative portions (as in 2003) of 

8 randomly selected samples from each species and mowing treatment were sorted to 
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determine actual percentage of standing-live biomass.  Regression analysis of the actual 

live and estimated live percentage was used to calculate actual standing-live biomass for 

all samples.  Between 73 and 75% of the variation in the estimated proportion of 

standing-live biomass to standing-dead biomass was accounted for by the sampler.  The 

weight of the total sample was multiplied by the estimated proportion of standing-live 

biomass and the slope of the regression equation for that species to arrive at the estimated 

standing-live weight.  Standing-dead weight was calculated as the weight of the total 

sample minus the estimated weight of the standing-live biomass. 

3.3.3 Gas sample collection and analysis 

Immediately following mowing in 2003 and 2004, a chamber base (50 × 50 cm 

angled aluminium) was inserted in the soil to a depth of 5 cm (Clayton et al., 1994) at the 

centre of each 2 × 4 m sampling area.  Closed clear polymethylmethacrylate sheet 

(Plexiglas®; Arkema, Paris) chambers, as described by Hutchinson and Mosier (1981), 

were built following current guidelines (International Atomic Energy Agency, 1992; P. 

Rochette and G.L. Hutchinson, unpublished report).  Chambers were built 55 × 55 × 20 

cm with a closed-cell foam gasket base (Blackmer and Bremner, 1980), an internal, 

horizontally mounted battery operated fan (Norman et al., 1997) and a 10 cm × 3 mm 

(i.d.) pressure vent tube covered with open-celled foam to shield it from the wind and 

prevent mass flow out of the chamber (Conen and Smith, 1998; Hutchinson and 

Livingston, 2001).  Chambers were covered with reflective insulation to prevent 

temperature increase (Black and Bremner, 1980).  A thermocouple wire and a rubber-

stopped septum were installed.   

Gas samples were collected at approximately 10-day intervals for a total of 18 

sample dates from late April to late October in 2003, 17 sample dates from late March to 

early October in 2004 and 1 sample date in March 2005.  A sampling order of plots was 

randomly generated for each date.  Chambers were placed on top of the chamber bases 

and secured with straps.  Gas samples were drawn from chambers using a 20 cm3 syringe 

at 0 (T0), 30 (T30), and 60 (T60) minutes after chamber placement.  The chamber’s 

internal fan was run for 30 seconds before T30 and T60 gas sampling.  Samples were 

stored in labelled, evacuated 12 cm3 vials at 4ºC until analysed.  Chamber temperatures 
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were recorded at the same intervals.  Ambient air samples were taken at chamber height 

throughout the sampling period and across the site.  When a base was obstructed by snow 

during spring sampling, chambers were placed on top of snow.   

Gas samples were analysed for CO2, N2O, and CH4 using gas chromatography 

(GC) (Farrell et al., 2002).  Sample analyses were performed either at the Department of 

Soil Science, University of Saskatchewan, Saskatoon or the Semiarid Prairie Agricultural 

Research Centre, Agriculture and Agri-Food Canada, Swift Current.  Although the two 

labs used slightly different GC systems, previous work has demonstrated that the results 

are consistent (R.E. Farrell, personal communication). 

Carbon dioxide analyses at Saskatoon, SK were conducted using a Varian CP-

2003 micro-GC (Varian Canada Inc., Mississauga, ON) equipped with a micro-thermal 

conductivity detector (TCD) and a Poraplot U column (10.0 m × 0.32 mm i.d. silica 

capillary column), both maintained at 44ºC.  Gas samples were introduced using a 30-

position, vacuum-activated valve system with injection temperature of 110°C, sample 

volume of 50 µL and ultra-high purity helium (UHP He) as the carrier gas.  The system 

was calibrated using standard gases (CO2 in air) obtained from Praxair (Mississauga, 

ON).  Data was processed with Varian Star Chromatography Workstation software (ver. 

5.51).  Internal calibration curves were obtained by applying linear, least squares 

regression to the CO2 concentration (ppmV) versus peak area data.  Carbon dioxide 

concentrations in the headspace samples were then calculated automatically from the 

regression equation. 

Methane and N2O analyses were carried out sequentially using a Varian CP 3800 

GC (Varian Canada Inc., Mississauga, ON) equipped with a flame ionization detector 

(FID) for CH4 analyses and dual electron capture detectors (ECD) for N2O analyses.  For 

CH4 analyses, the injector temperature was 70°C, the column temperature was 35°C and 

detector temperature was 200ºC.  Separations were carried out using a Cpsil 5 CB column 

(15.0 m × 0.25 mm i.d. fused silica capillary column, DF = 0.25 µm) with UHP He (15 

mL min-1) as the carrier gas.  Samples of 300 µl were introduced using a CombiPAL™ 

auto-sampler (CTC Analytics AG, Switzerland) with on-column injection and a split ratio 

of 3:1.  The system was calibrated using standard gases (CH4 in air) obtained from 

Praxair.  
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The N2O system was analysed with injector temperature at 100°C, column 

temperature at 35°C and detector temperature at 370ºC.  Separations were carried out 

using Poraplot Q columns (12.5-m × 0.32-mm i.d. fused silica capillary column, 

including a 2.5-m particle trap, DF = 8 µm) with UHP He (16 mL min-1) as the carrier gas 

and P5 (95:5 Ar:CH4 mix) as the make-up gas (11 mL min-1).  The auto-sampler injects 

300 µl of gas sample on-column using a split injection system with a split ratio of 10:1 

and P5 as the make-up gas and UHP He as the carrier gas.  The system was calibrated 

using standard gases (N2O in N2) obtained from Praxair. 

Data for the CH4 and N2O analyses was processed with Varian Star 

Chromatography Workstation software (ver. 6.2).  Internal calibration curves were 

obtained by applying linear, least squares regression to the gas concentration (ppmV 

CH4; ppbV N2O) versus peak area data.  Methane and N2O concentrations in the 

headspace samples were then calculated automatically from the regression equations.  

At Swift Current, SK the concentrations of all three gases were determined using 

a Varian CP 3800 equipped with a CombiPAL™ auto-sampler.  The auto-sampler injects 

the gas sample into a 10 port sampling valve, which then transfers the sample to two, 0.5 

mL sample loops.  One loop introduces the sample onto an 80/100 mesh Porapak N pre-

column (0.4572 m × 3.18 mm i.d.; injector temperature = 70°C) and the other introduces 

the sample onto an 80/100 mesh Porapak QS column (1.83 m × 3.18 mm i.d.; column 

temperature = 80°C) using UHP He as the carrier gas.  Carbon dioxide is then determined 

using a TCD maintained at 130°C with a filament temperature of 220°C and CH4 is 

determined using a FID maintained at 200°C.  For N2O analyses, the sample was 

introduced onto an 80/100 mesh Hayesep D column (1.83 m × 3.18 mm i.d.) using P10 

(90:10 Ar:CH4 mix, flow rate = 30 mL min-1) and detected using a 63Ni-ECD maintained 

at 380°C. 

Peak areas were quantified by comparing sample peak areas with that of a 

commercial custom mixed standard (Praxair) composed of CO2 385 µL L-1 (balance N2), 

CH4 1.46 µL L-1 and N2O 1.11 µL L-1.  Peak areas for all three gases were quantified 

with Varian Star Chromatography Workstation software (ver. 6.2). 

Minimum detectable concentration difference (MDCD) for a given sample date 

was calculated as two times the standard deviation of ambient samples for that sample 
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date.  Time zero minutes sample concentrations were deemed outliers and replaced by the 

average T0 sample concentration if they were greater than or less than 1.5 times the 

second quartile of all the T0 samples.  Time thirty minutes sample concentrations were 

deemed outliers and replaced by the average of T0, T30 and T60 sample concentrations 

for that experimental unit on that sampling date if the T30 sample concentration was less 

than the T0 sample concentration and less than T60 sample concentration and the 

difference between the average of the T0 and T60 samples concentrations and the T0 

sample concentration was greater than or less than 1.5 times the MCDC.  Time sixty 

minutes sample concentrations were deemed outliers and replaced by the average of all 

T60 sample concentrations for that sampling date if the T60 sample concentration was 

greater than the T0 sample concentration and the T30 sample concentration was greater 

than the T0 sample concentration and if the T60 sample concentration was not equal to 

the T0 sample concentration or the T60 sample concentration was greater than the T0 

sample concentration. Sample concentrations were adjusted for air temperature and 

atmospheric pressure.  Chamber volume, chamber area and MDCD were used to 

determine flux rate.  Differences between the T60 and T30 sample concentrations, the 

T30 and T0 sample concentrations and the T60 and T0 sample concentrations were 

compared to MDCD.  If difference between the T30 and T0 sample concentrations was 

“FALSE” or if the difference between the T30 and T0 sample concentrations and the 

difference between the T60 and T0 sample concentrations were “FALSE” then the flux 

rate was set to zero.  The least squares method was used to compare sample time intervals 

with adjusted sample concentrations from one experimental unit.  The generated slope 

equalled the mass of a GHG released or consumed m-2 s-1.  Cumulative fluxes were 

calculated by interpolated flux rates generated for the 60 minute sampling period to the 

period half-way to the next sampling date and the period half-way to the previous 

sampling date (Pennock et al., 2005).  For instance, CH4 consumption rate was 5 ng CH4 

m-2 s-1 on 15 July 2004.  The previous sampling date was 6 July 2004 and the next 

sampling date was 27 July 2004.  The flux rate from 15 July 2004 was then used to 

calculate the flux for 4 days previous to 15 July 2004, 15 July 2004 and 5 ½ days after 15 

July 2004.  Cumulative flux of CO2 was converted from µg CO2 m-2 season-1 to kg of 

CO2-C ha-1 d-1, CH4 flux rates were converted from ng CH4 m-2 season -1 to g CH4-C ha-1 
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d-1 and N2O flux rates were converted from ng N2O m-2 season -1 to g N2O-N ha-1 d-1 to 

generate weighted daily average by dividing by the number of days that sample season 

covered.  Cumulative flux data were also converted to kg CO2 equivalent season-1 by 

multiplying by the GWP of 23 for CH4 and 296 for N2O.   

3.4 Data Analysis 

A general linear model (PROC GLM) from SAS (ver. 8.0) (SAS Institute Inc., 

Cary, NC, USA) was used to determine the effects of landform element, mowing and 

sample date on GHG flux rates and WFPS.  The effects of landform element and mowing 

on different measured factors including soil physical characteristics, soil temperature, 

snow accumulation, biomass (standing-live graminoid, standing-dead graminoid, forbs 

and shrubs and total above-ground biomass), species richness, species evenness and 

Shannon-Weiner diversity index were determined from an ANOVA generated with 

PROC GLM.  Means separation was done using least significant difference test (LSD) 

(Zar, 1984).  A significant level of P = 0.05 was used.   

The relationship between landform element, mowing and species composition 

was plotted using Detrended Correspondence Analysis (DCA) in CANOCO (ver. 4.5) 

(Microcomputer Power, Ithaca, NY, USA) (ter Braak and Šmilauer, 2002).  Detrended 

Canonical Correspondence Analysis (DCCA) from CANOCO was used to determine the 

standard deviation of the species gradients for each year (6.131, 2.304, 2.370 and 1.661 

for Axes 1 to 4 in 2004 and 5.076, 2.160, 1.946, 1.390 for Axes 1 to 4 in 2003).  Axis 1 

had a standard deviation greater than 3 to 4, indicating a unimodal species response most 

appropriately analysed with Canonical Correspondence Analysis (CCA) from CANOCO 

using Hill’s technique to scale species response (ter Braak, 1987; ter Braak and Šmilauer, 

2002).  This technique plots experimental units and environmental gradients using points 

and arrows, respectively, to generate a joint plot that can only be interpreted relatively 

(ter Braak, 1987; McCune and Grace, 2002).  Canonical Correspondence Analysis uses 

multiple linear least-squares regression to determine weighted average experimental unit 

scores (Palmer, 1993).  The joint plot is plotted using Linear Combination (LC) scores of 

dependent and independent variables.  Canonical Correspondence Analysis shows how 

environmental gradients like soil water control species distribution and how 
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environmental gradients like CO2, CH4 and N2O flux change in relation to species 

composition.  Therefore, species composition can be used to distinguish areas with high 

or low GHG flux (Bubier, 1995; Bubier and Moore, 1995).  The length of an 

environmental variable arrow indicates its relative importance, the direction indicates its 

correlation with the species composition axis and the angle of one arrow relative to 

another indicates the relative correlation between the two variables (Palmer, 1993).  

Negative portions of environmental gradients are not displayed in CANOCO and need to 

be imagined as an arrow equal to the positive environmental gradient extending in the 

opposite direction, indicating, in the case of cumulative CH4 flux, cumulative CH4 

consumption (ter Braak and Šmilauer, 2002).   

Species recorded in less than 5% of experimental units were removed from the 

CCA matrix to limit the influence of rare species (McCune and Grace, 2002).  Correlated 

variables that contained similar information were removed to aid clarity.  Significance of 

remaining variables was determined using forward selection.  This step-wise selection 

process uses a Monte Carlo test with 9,999 unrestricted permutations to determine the P 

value of each environmental variable (ter Braak and Šmilauer, 2002).  Variables with a P 

> 0.01 were removed (Qian et al., 2003). 
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4. RESULTS 

4.1 Variability in Environmental Attributes as Affected by Landform element and 

Mowing  

4.1.1 Precipitation, air and soil temperatures, and solar radiation 

During the 2003 sampling season, temperatures in the Macrorie area were hotter 

and precipitation was less than the 30-year average (Table 4.1).  The average monthly air 

temperature at the Rock Point Environment Canada Weather Station in 2003 was equal to 

or warmer than the 30-year average in every month but February, March and November.  

The mean annual temperature in 2003 was 0.5ºC greater than the 30-year average.  Total 

monthly precipitation during winter and early spring was mostly higher in 2003 than the 

30-year average, but precipitation for the whole year was 71% of the 30-year average.   

Temperature during the 2004 sampling season was lower than the 30-year average 

(Table 4.1).  From April to October, only April and September were warmer than the 30-

year average.  The mean annual temperature was 0.1ºC warmer in 2004 than the 30-year 

average.  Precipitation from April through October in 2004 was 120% of the 30-year 

average for the same period.  Over the entire year, 2004 precipitation was 106% of the 

30-year average. 

Mowing in the previous year did not influence 2004 snow accumulation 

(displayed as mm snow water equivalent), but landform element did influence 2004 snow 

accumulation (P < 0.001) (Figure 4.1).  Snow water equivalent was greatest on the DP 

landform element, the NV landform element had the second greatest and all other 

landform elements had less accumulated snow water equivalent.  There was no snow 

accumulation on the site on the snow sampling date in the spring of 2005, but water had 

accumulated in the DP landform element at that time (personal observation).   
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Table 4.1 Mean monthly air temperatures (ºC) and total monthly precipitation (mm) at Rock 
Point, SK. 

Month ----- 30-Year Average ----- ---------- 2003 ---------- ---------- 2004 ---------- 
 Temperature Precipitation Temperature Precipitation Temperature Precipitation 

January -14.0 17.1 -12.9 21.4 -15.9   10.6 
February -10.4 10.3 -13.6 24.8   -7.5     5.0 

March  -4.0 18.2   -6.2   2.6   -1.0     6.8 
April   4.9 22.6    5.2 52.4    6.0     8.4 
May 11.5 55.1  11.6 24.2    8.3   50.6 
June 15.9 69.7 15.9 37.8  13.4   74.2 
July 18.6 60.1 20.3 33.0  18.2   59.2 

August 17.8 36.5 21.8   7.4  15.1 105.8 
September 12.2 30.2 12.2 32.6  12.3   28.4 

October   5.4 18.5   8.6 21.4    4.0   24.2 
November -4.8 17.9  -8.6   5.6   -0.6     0.6 
December       -11.6 20.9  -6.6   4.8   -9.3   25.6 
Average   3.5    4.0     3.6  

Total  366.9  268.0  399.4 
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Figure 4.1 Snow accumulated (mean ± SE, mm water equivalent) as of 1 March 2004 on NV – 
north-facing aspect and concave shaped slope, NX – north-facing aspect and convex shaped 
slope, SV – south-facing aspect and concave shaped slope, SX – south-facing aspect and convex 
shaped slope, UP – level upland and DP – depression landform elements at Macrorie, SK.  Bars 
with the same letters are not significantly different (P = 0.05). 
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Figure 4.2 Mean water-filled pore space (mean ± SE, % WFPS) for control and April mowing 
averaged across six landform elements on sample dates and mean soil temperature (at 5 cm 
depth, °C) during 2003-2004 and 2004-2005 sampling season.  Bars represent precipitation (mm) 
as recorded at Rock Point, SK. 
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Soil temperatures peaked in July and August (Figure 4.2).  Mowing did not 

significantly change soil temperature.  The difference in soil temperature among 

landform elements over the sampling season was as high as 6.4ºC in 2003 and 4.6ºC in 

2004.   

When years were considered a random variable, soil temperature was different 

among landform elements, but not between mowing treatments (Table 4.2).  South-facing 

landform elements had the highest soil temperature, north-facing and DP landform 

elements had the lowest soil temperatures, and UP landform elements had intermediate 

soil temperatures.  When surface shape and year were considered random variables, 

north-facing landform elements were 4.7ºC cooler than south-facing landform elements, 

but there was no difference between mowing treatments. 

Table 4.2 Mean soil temperature (mean ± SE, ºC) at 5 cm depth on NV – north-facing aspect 
and concave shaped slope, NX – north-facing aspect and convex shaped slope, SV – south-facing 
aspect and concave shaped slope, SX – south-facing aspect and convex shaped slope, UP – level 
upland and DP – depression landform elements with control and April mowing over 2003 and 
2004 at Macrorie, SK.  North and south landform elements represent combined temperatures 
from concave and convex shapes of respective north and south-facing aspects. 

Landform Element Soil Temperature (ºC) 
NV   14.4 ± 0.6 c1 
NX   13.9 ± 0.3 c 

Combined north-facing 
landform elements 

  14.2 ± 0.3 B2 

SV   18.0 ± 0.6 ab 
SX   19.8 ± 1.1 a 

Combined south-facing 
landform elements 

  18.9 ± 0.7 A 

UP   16.0 ± 1.5 bc 
DP   13.8 ± 0.6 c 

1 Means with the same lower case letters are not significantly different (P = 0.05). 
2 Means with the same upper case letters are not significantly different (P = 0.05). 

 

Potential direct incident radiation, derived from aspect and slope (Table 4.3) 

differed significantly among landform elements (Figure 4.3).  The NV and NX landform 

elements receive 91 and 89% less, respectively PDIR than the UP and DP landform 

elements.  South-facing landform elements received similar PDIR as the UP landform 

element. 
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Table 4.3  Aspect (degree, north = 0, east = 90, south = 180, west = 270) and slope (degree) of NV 
– north-facing aspect and concave shaped slope, NX – north-facing aspect and convex shaped 
slope, SV – south-facing aspect and concave shaped slope, SX – south-facing aspect and convex 
shaped slope, UP – level upland and DP – depression landform elements at Macrorie, SK. 

Landform Element Aspect ( º ) Slope ( º ) 
NV         15         8 
NX       270       10 
SV       162       13 
SX       149       14 
UP  na         0 
DP na         0 
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Figure 4.3 Average annual potential direct incident radiation (MJ m-2 yr-1) calculated using the 
longitude, aspect and slope of NV – north-facing aspect and concave shaped slope, NX – north-
facing aspect and convex shaped slope, SV – south-facing aspect and concave shaped slope, SX – 
south-facing aspect and convex shaped slope, UP – level upland and DP – depression landform 
elements at Macrorie, SK. 

4.1.2 Variation in physical characteristics of soil among landform elements  

Soils had a sand content between 49 and 53% except soil from the DP landform 

element with 36% sand (Table 4.4).  Clay content ranges from 9 to 15%.  Sand and silt, 
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but not clay, varied among landform elements.  Soils of the DP landform element have 

less sand and more silt than soils of other landform elements.  Soils of the north-facing 

and UP landform elements have a loam texture while soils of the south-facing landform 

elements are a sandy loam texture.  Soils of the DP landform element have the greatest 

silt and clay content, giving them a silt loam soil texture.  Bulk density varied with 

landform element and was greatest on the SX landform element and least on the DP 

landform element.   

Table 4.4 Physical characteristics of soil1 (mean ± SE) of NV – north-facing aspect and concave 
shaped slope, NX – north-facing aspect and convex shaped slope, SV – south-facing aspect and 
concave shaped slope, SX – south-facing aspect and convex shaped slope, UP – level upland and 
DP – depression landform elements at Macrorie, SK. 

Landform 
Element Sand (%) Silt (%) Clay (%) Soil Texture Bulk Density 

(g cm-3) 
NV 50 ± 0.8 a2 39 ± 0.9 b 11 ± 1.0 Loam 1.10 ± 0.05 b 
NX 51 ± 0.8 a 38 ± 0.3 b 11 ± 1.0 Loam 1.13 ± 0.01 ab 
SV 53 ± 1.0 a 38 ± 1.1 b   9 ± 0.7 Sandy Loam 1.20 ± 0.02 ab 
SX 53 ± 0.9 a 35 ± 0.6 b 12 ± 0.7 Sandy Loam 1.23 ± 0.01 a 
UP 49 ± 1.3 a 37 ± 0.8 b 14 ± 1.3 Loam 1.22 ± 0.03 ab 
DP 36 ± 3.0 b 49 ± 2.6 a 15 ± 2.4 Silty Loam 0.86 ± 0.12 c 

1 From 0 to 15 cm.  Soil texture classes are based on The Canadian System of Soil Classification (Soil 
Classification Working Group, 1998). 

2 Means with the same letters within a column are not significantly different (P = 0.05). 

4.1.3 Water-filled pore space of soils as affected by landform element, mowing and 

time   

Water-filled pore space (WFPS), an indicator of soil water content and aeration, 

was high when precipitation occurred and soil temperature was low (Figure 4.2).  

Average WFPS for all landform elements and mowing treatments at the beginning of the 

sampling season was 56% for 2003-2004 and 39% for 2004-2005.  A 20 to 25% 

fluctuation in WFPS between dry and wet periods was common.  The highest average 

WFPS was in May 2003 (63%) and June 2004 (61%) and the lowest in August 2003 

(17%) and July 2004 (24%).  In the fall, average WFPS was 20% for 2003-2004 and 39% 

for 2004-2005.     

Water-filled pore space was interactively affected by landform element and 

sample date (P < 0.001), mowing and sample date (P = 0.028), and mowing and landform 

element (P < 0.001) in 2003-2004 (Table 4.5).  In 2004-2005, WFPS was interactively 
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affected by landform element and sample date (P < 0.001), and by mowing and landform 

element (P < 0.001).   

Table 4.5 Water-filled pore space (mean ± SE, % WFPS) for NV – north-facing aspect and 
concave shaped slope, NX – north-facing aspect and convex shaped slope, SV – south-facing 
aspect and concave shaped slope, SX – south-facing aspect and convex shaped slope, UP – level 
upland and DP – depression landform elements with control and April mowing in 2003-2004 
and 2004-2005 at Macrorie, SK. 

-------------- 2003-2004 -------------- -------------- 2004-2005 -------------- Landform 
Element Control Mowing Mean Control Mowing Mean 

NV 38.9 ± 1.7 A 36.2 ± 1.6 B 37.6 ± 1.1 49.0 ± 1.6 A 48.0 ± 1.5 A 48.5 ± 1.1 
NX 35.1 ± 1.4 A 35.2 ± 1.4 A 35.2 ± 1.0 43.5 ± 1.2 48.1 ± 1.3 45.8 ± 0.9 
SV 37.3 ± 1.6 A 34.7 ± 1.6 B 36.0 ± 1.1 44.9 ± 1.6 A 44.3 ± 1.7 A 44.6 ± 1.2 
SX 27.9 ± 1.3 B 30.2 ± 1.3 A 29.1 ± 0.9 36.0 ± 1.4 B 41.3 ± 1.7 A 38.6 ± 1.1 
UP 34.7 ± 1.5 34.4 ± 1.5 34.5 ± 1.1 42.5 ± 1.5 B 49.5 ± 1.7 A 46.0 ± 1.2 
DP 38.4 ± 2.1 A 38.1 ± 2.2 A 38.3 ± 1.5 52.3 ± 1.9 B 55.5 ± 1.9 A 53.9 ± 1.3 

Mean 35.2 ± 0.7 34.6 ± 0.6  44.7 ± 0.7 47.8 ± 0.7  
1 Means followed by the same upper case letter within a row and a sampling season are not significantly 
different (P = 0.05).   
2 Treatment means with no letter showed interaction between mowing and sample date. 

 

Within each landform element in 2003-2004, mowing decreased WFPS on the 

NV (P = 0.005) and SV landform elements (P = 0.002) and increased WFPS on the SX 

landform element (P < 0.001; Table 4.5).  Water-filled pore space on the UP landform 

element was influenced by the interaction of mowing and sample date (P = 0.044).  

Mowing decreased WFPS on 8 May 2003 on the UP landform element and had no effect 

on all other sample dates. 

Among landform elements during the 2004-2005 sampling season, mowing 

increased WFPS compared to control on the SX (P  < 0.001), UP (P < 0.001) and DP (P = 

0.021) landform elements (Table 4.5).  Water-filled pore space was interactively 

influenced by mowing and sample date on the NX landform element (P = 0.024).  

Mowing increased WFPS compared to control on 3 May 2004, 27 May 2004 and 1 June 

2004 for the NX landform element.   

Differences in WFPS among landform elements depended on sample date in both 

years.  Except on 10 September 2003 when WFPS was greatest on SV, UP and SX, 

WFPS was greatest on the DP landform element and least on the SX landform element 

(data not shown).  Mowing decreased WFPS from 30 September 2003 to 21 October 

2003 (Figure 4.2).   
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In 2004-2005, mowing increased WFPS compared to control between 14 May 

2004 and 1 June 2004 (Figure 4.2).  Except on 6 July 2004 when WFPS was greatest on 

the SX landform element, WFPS was greatest on the DP, NV, NX and sometimes the UP 

landform elements.   

4.1.4 Nitrogen content of soil as affected by landform element, mowing and time   

Soil NO3
- varied among the three sample dates and landform elements in 2003 

(Figure 4.4), but not among mowing treatments.  Soils sampled on 30 April had the most 

NO3
-, 9 September soil samples had 44% less than 30 April soil samples and soil samples 

from 5 July had 85% less than those from 30 April.  Soils from UP and NV landform 

elements had more NO3
- than soils from all other landform elements.  Soils from DP 

landform element were not sampled in spring of 2003 due to the presence of water. 

In 2004, landform element and sample date, but not mowing, influenced soil NO3
- 

(both at P < 0.001) (Figure 4.4).  Soil samples from 6 July had the most NO3
- while soils 

sampled on 3 May had 34% less than those on 6 July and soils sampled on 19 September 

had 45% less than those on 6 July.  The soils on the DP landform element had the most 

NO3
-, soils on the NV, NX, SV and SX landform elements had the least NO3

-, and soils 

on the UP landform element had intermediate amounts of NO3
-.   

Soil NH4
+ was similar among the three sample dates in 2003 (Figure 4.5).  Soils 

from DP landform element were not sampled in spring of 2003 due to the presence of 

water.  Overall, NH4
+ varied significantly among the soils of landform elements, 

decreasing from the DP, NX, UP, NV, SV to SX (P = 0.045).  Mowing did not change 

NH4
+ of soils; overall soil NH4

+ in 2004 was affected by sample date and landform 

element.  The 3 May soil samples had the most NH4
+ while soil samples from 6 July had 

40% less NH4
+ than those from 3 May and soil samples from 19 September had 57% less 

NH4
+ than those from 3 May (P < 0.001).  Ammonium was greater in NV, DP and NX 

than other landform elements (P = 0.002).   
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Figure 4.4 Soil nitrate content (mean ± SE, mg NO3
- kg soil-1, 0-15 cm) on NV – north-facing 

aspect and concave shaped slope, NX – north-facing aspect and convex shaped slope, SV – 
south-facing aspect and concave shaped slope, SX – south-facing aspect and convex shaped 
slope, UP – level upland and DP – depression (data not available for 30 April 2003) landform 
elements during 2003 and 2004 at Macrorie, SK (Spring = 30 April 2003 and 3 May 2004, 
Summer = 5 July 2003 and 6 July 2004, Fall = 9 September 2003 and 19 September 2004). 
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Figure 4.5 Soil ammonium content (mean ± SE, mg NH4
+ kg soil-1, 0-15 cm) NV – north-facing 

aspect and concave shaped slope, NX – north-facing aspect and convex shaped slope, SV – 
south-facing aspect and concave shaped slope, SX – south-facing aspect and convex shaped 
slope, UP – level upland and DP – depression (data not available for 30 April 2003) landform 
elements during 2003 and 2004 at Macrorie, SK (Spring = 30 April 2003 and 3 May 2004, 
Summer = 5 July 2003 and 6 July 2004, Fall = 9 September 2003 and 19 September 2004).   
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4.2 Variability in Plant Community Characteristics and Biomass Production as 

Affected by Landform Element and Mowing  

4.2.1 Plant community characteristics as affected by landform element and mowing  

Species richness was lower on the UP landform element than other landform 

elements in both years (P = 0.010 for 2003 and P = 0.015 for 2004), but was similar 

between mowing treatments (P > 0.05), averaging 11 and 13 species per m2 for 2003 and 

2004, respectively (Table 4.6).  Species evenness was greatest on the UP and DP 

landform elements, least on NX and NV, and intermediate on SX and SV landform 

elements in 2003 (P < 0.001).  In 2004, species evenness was greatest on SX, SV, DP and 

UP and least on NX and NV landform elements (P < 0.001).  Mowing increased species 

evenness in 2004, but not in 2003.   

The Shannon-Wiener Diversity Index (H’) differed significantly among landform 

elements in 2003 (P < 0.001) (Table 4.6).  Diversity was greatest on the DP and SX 

landform elements and lowest on SV, NX and NV landform elements.  The diversity 

index in 2004 was greatest on the SX and least on NV landform elements (P = 0.003).  

Mowing had no affect on the diversity index in either year (P > 0.05). 

Detrended Correspondence Analysis (DCA) based on species composition 

produced similar separation of experimental units for both years (Figures 4.6 and 4.7).  

The DP landform element was separated from other landform elements along Axis 1.  

North-facing landform elements were spread along the lower portion of Axis 2, south-

facing landform elements were spread along the upper portion of Axis 2 and the UP 

landform element overlapped with south-facing and north-facing landform elements.  

Except for variation in species composition among SX landform elements in 2004, which 

were closely grouped, variation within the north-facing landform elements tended to be 

less than in other landform elements.  One NX and one NV experimental unit in 2003 and 

2004, respectively, appeared to be outliers.
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Table 4.6 Plant community characteristics (mean ± SE) per 0.25 m2 (mean of 4, 0.25 m2 quadrats) in August of 2003 and 2004 on NV – 
north-facing aspect and concave shaped slope, NX – north-facing aspect and convex shaped slope, SV – south-facing aspect and concave 
shaped slope, SX – south-facing aspect and convex shaped slope, UP – level upland and DP – depression landform elements with control 
and April mowing at Macrorie, SK. 

------------ Richness ------------ --------------- Evenness --------------- Shannon-Wiener Diversity Index Landform 
Element Control Mowing Mean Control Mowing Mean Control Mowing Mean 

--------------------------------------------------------------- 2003 --------------------------------------------------------------- 
NV   12 ± 2   11 ± 1   11.5 a1,2 0.40 ± 0.06 0.47 ± 0.05  0.44 c 0.99 ± 0.17 1.13 ± 0.15 1.06 d 
NX   11 ± 1   11 ± 2   11.2 a 0.50 ± 0.05 0.51 ± 0.06  0.50 c 1.21 ± 0.17 1.23 ± 0.22 1.22 cd 
SV   11 ± 1   10 ± 0   10.5 a 0.63 ± 0.08 0.63 ± 0.04  0.63 b 1.49 ± 0.20 1.49 ± 0.11 1.49 b 
SX     9 ± 1   12 ± 1   10.6 a 0.62 ± 0.05 0.76 ± 0.03  0.69 ab 1.36 ± 0.09 1.85 ± 0.07 1.60 ab 
UP     6 ± 1     9 ± 1     7.5 b 0.79 ± 0.06 0.69 ± 0.04  0.74 a 1.32 ± 0.13 1.49 ± 0.17 1.41 bc 
DP   13 ± 2   11 ± 1   11.8 a 0.72 ± 0.05 0.74 ± 0.07  0.73 a 1.83 ± 0.20 1.73 ± 0.17 1.78 a 

Mean   10.4 10.6  0.61 0.64  1.37 1.49  
--------------------------------------------------------------- 2004 --------------------------------------------------------------- 

NV   13 ± 2   13 ± 2   13.1 a2 0.52 ± 0.04 0.59 ± 0.05  0.56 c 1.31 ± 0.17 1.52 ± 0.18 1.42 c 
NX   13 ± 1   15 ± 2   14.4 a 0.60 ± 0.05 0.69 ± 0.05   0.65 b 1.55 ± 0.11 1.87 ± 0.17 1.71 ab 
SV   14 ± 1   12 ± 1   13.1 a 0.72 ± 0.05 0.74 ± 0.04  0.73 a 1.93 ± 0.15 1.82 ± 0.18 1.87 ab 
SX   12 ± 1   13 ± 1   12.7 a 0.73 ± 0.03 0.80 ± 0.03  0.77 a 1.82 ± 0.08 2.07 ± 0.12 1.95 a 
UP   11 ± 1     9 ± 1     9.9 b 0.75 ± 0.03 0.73 ± 0.03  0.74 a 1.79 ± 0.08 1.58 ± 0.16 1.68 b 
DP   14 ± 3   13 ± 1   13.1 a 0.73 ± 0.04 0.76 ± 0.06  0.75 a 1.88 ± 0.19 1.92 ± 0.17 1.90 ab 

Mean  12.9 12.5  0.68 B 3 0.72 A  1.71 1.80  
1 When interaction between landform element and mowing was not significant (P > 0.05), means of main effects were separated using LSD.  When 

interaction between landform element and mowing was significant, data were analysed within each landform element and each mowing treatment.  
Means were then separated within each mowing treatment or landform element using LSD. 

2 Means followed by the same lower case letters within a column and a year are not significantly different (P = 0.05). 
3 Means followed by the same upper case letters within a row and a plant community characteristic are not significantly different (P = 0.05).
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Figure 4.6 Scatterplot based on Axis 1 and Axis 2 of Detrended Correspondence Analysis for 
2003 species composition on NV – north-facing aspect and concave shaped slope, NX – north-
facing aspect and convex shaped slope, SV – south-facing aspect and concave shaped slope, SX – 
south-facing aspect and convex shaped slope, UP – level upland and DP – depression landform 
elements at Macrorie, SK. 

 

Forbs and shrubs with the greatest canopy cover in both years were Pulsatilla 

patens (L.) P. Mill. (prairie crocus), Rosa arkansana Porter (prairie rose), Artemisia 

frigida Willd. (fringed sage), and Anemone canadensis L. (Canada anemone) (Tables 4.7 

and 4.8).  Graminoids with the greatest canopy cover were plains rough fescue, western 

wheatgrass, needle-and-thread, western porcupine grass and Carex pensylvanica Lam. 

(sun-loving sedge).  Canopy cover of plains rough fescue was greatest on the north-facing 

and SV landform elements in both years.  Canopy cover of western wheatgrass was 

greatest on the SV and UP landform elements in both years.  Canopy cover of needle-

and-thread and western porcupine grass was greatest on the SX landform elements.  

Canopy cover of sun-loving sedge was greatest on the SV landform elements in both 

years.    
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Figure 4.7 Scatterplot based on Axis 1 and Axis 2 of Detrended Correspondence Analysis for 
2004 species composition on NV – north-facing aspect and concave shaped slope, NX – north-
facing aspect and convex shaped slope, SV – south-facing aspect and concave shaped slope, SX – 
south-facing aspect and convex shaped slope, UP – level upland and DP – depression landform 
elements at Macrorie, SK.   

 

Litter cover was greater on the UP, SV and DP landform elements than all other 

landform elements in 2003 (Tables 4.7 and 4.8).  Litter cover was greater on the NV, SV, 

NX and UP landform elements than all other landform elements in 2004.  Bare soil cover 

and clubmoss cover were greater on the SX landform elements than all other landform 

elements in 2003 and 2004.  
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Table 4.7 Ground cover  (%) and the cover of the five most common species on NV – north-
facing aspect and concave shaped slope, NX – north-facing aspect and convex shaped slope, SV – 
south-facing aspect and concave shaped slope, SX – south-facing aspect and convex shaped 
slope, UP – level upland and DP – depression landform elements in 2003 at Macrorie, SK. 

-- Ground Cover -- ------------ Forbs/Shrubs ------------ ------------ Graminoids ------------ Landform 
Element Type Cover Species Cover Species Cover 

Litter  24 c 1 Pulsatilla patens 4 Festuca hallii 56 
Bare soil < 1 b Artemisia frigida 2 Carex pensylvanica 1 

Anemone canadensis 2 Hesperostipa curtiseta 1 Selaginella 
densa 

   0 b 
Astragalus flexuosus 1 Elymus trachycaulus 1 

NV 

  Rosa arkansana 1 Pascopyrum smithii 1 
Litter 25 bc Pulsatilla patens 4 Festuca hallii 48 
Bare soil 1 b Artemisia frigida 3 Pascopyrum smithii 5 

Rosa arkansana 2 Hesperostipa curtiseta 2 Selaginella 
densa 

1 b 
Campanula rotudifolia 1 Carex pensylvanica 1 

NX 

  Thermopsis rhombifolia 1 Hesperostipa comata 1 
Litter 32 ab Rosa arkansana 3 Festuca hallii 20 
Bare soil  1 b Artemisia frigida 2 Carex pensylvanica 9 

Artemisia ludoviciana 2 Hesperostipa curtiseta 9 Selaginella 
densa 

 2 b 
Pulsatilla patens 2 Hesperostipa comata 7 

SV 

  Anemone canadensis  < 1 Pascopyrum smithii 6 
Litter 19 c  Rosa arkansana 6 Hesperostipa comata 27 
Bare soil   7 a Artemisia frigida 3 Hesperostipa curtiseta 7 

Pulsatilla patens 3 Carex filifolia 6 Selaginella 
densa 

  8 a 
Phlox hoodii 1 Carex pensylvanica 5 

SX 

  Pediomelum esculentum 1 Festuca hallii 4 
Litter 34 a Astragalus flexuosus 3 Festuca hallii 16 
Bare soil < 1 b Pulsatilla patens 3 Elymus lanceolatus 12 

Artemisia frigida 1 Pascopyrum smithii 10 Selaginella 
densa 

   1 b 
Phlox hoodii  < 1 Hesperostipa comata 9 

UP 

  Tragopogon dubius  < 1 Hesperostipa curtiseta 4 
Litter 27 abc Polygonum amphibium 8 Poa pratensis 11 
Bare soil   0 b Anemone canadensis 6 Festuca hallii 9 

Artemisia ludoviciana 2 Carex rostrata 8 Selaginella 
densa 

< 1 b 
Thalictrum venulosum 2 Poa compressa 4 

DP 

  Galium boreale 1 Carex spp. 4 
1 Means with the same letters within a cover type are not significantly different among landform elements 
(P = 0.05). 
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Table 4.8 Ground cover (%) and the cover of the five most common species on NV – north-
facing aspect and concave shaped slope, NX – north-facing aspect and convex shaped slope, SV – 
south-facing aspect and concave shaped slope, SX – south-facing aspect and convex shaped 
slope, UP – level upland and DP – depression landform elements in 2004 at Macrorie, SK. 

-- Ground Cover -- ------------ Forbs/Shrubs ------------ ------------ Graminoids ------------ Landform 
Element Type Cover Species Cover Species Cover 

Litter 48 a Anemone canadensis 4 Festuca hallii 39 
Bare soil   0 b Pulsatilla patens 3 Pascopyrum smithii 6 

Artemisia frigida 3 Elymus lanceolatus 4 Selaginella 
densa 

< 1 b 
Vicia americana 1 Carex pensylvanica 3 

NV 

  Stellaria spp. 1 Elymus trachycaulus 2 
Litter 46 a Pulsatilla patens 5 Festuca hallii 38 
Bare soil   0 b Rosa arkansana 5 Elymus lanceolatus 4 

Artemisia frigida 4 Carex pensylvanica 4 Selaginella 
densa 

  0 b 
Thermopsis rhombifolia 2 Elymus trachycaulus 2 

NX 

  Campanula rotudifolia 2 Hesperostipa comata  2 
Litter 48 a Rosa arkansana 7 Festuca hallii 16 
Bare soil   1 b Pulsatilla patens 2 Carex pensylvanica 12 

Artemisia frigida 2 Hesperostipa comata  10 Selaginella 
densa 

< 1 b 
Vicia americana 1 Hesperostipa curtiseta 9 

SV 

  Artemisia ludoviciana 1 Pascopyrum smithii 8 
Litter 27 b Rosa arkansana 7 Hesperostipa comata  25 
Bare soil   6 a Pulsatilla patens 3 Carex filifolia 13 

Artemisia frigida 3 Hesperostipa curtiseta 12 Selaginella 
densa 

  9 a 
Pediomelum esculentum 2 Carex pensylvanica 8 

SX 

  Liatris punctata 1 Festuca hallii 2 
Litter 43 a Pulsatilla patens 6 Elymus lanceolatus 15 
Bare soil   1 b Artemisia frigida 2 Festuca hallii 15 

Astragalus flexuosus 1 Hesperostipa comata  13 Selaginella 
densa 

< 1 b 
Vicia americana 1 Carex pensylvanica 9 

UP 

  Erigeron caespitosus 1 Pascopyrum smithii 8 
Litter 33 b Anemone canadensis 13 Poa pratensis 17 
Bare soil   0 b Taraxacum officinale 7 Carex rostrata 10 

Polygonum amphibium 7 Carex pensylvanica 5 Selaginella 
densa 

  0 b 
Unknown1 3 Pascopyrum smithii 4 

DP 

  Mentha arvensis 3 Hordeum jubatum 4 
1 Means with the same letters within a cover type are not significantly different among landform elements 

(P = 0.05). 
 

4.2.2 Biomass production as affected by landform element and mowing 

Forb and shrub biomass was greatest on the DP landform element in both years, 

lowest on the UP landform element in 2003 and the SV and UP landform elements in 

2004, and intermediate on other landform elements (P < 0.001 in both years) (Table 4.9).  
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Table 4.9 Above-ground biomass (mean ± SE, g m-2) recorded in August of 2003 and 2004 on NV – north-facing aspect and concave 
shaped slope, NX – north-facing aspect and convex shaped slope, SV – south-facing aspect and concave shaped slope, SX – south-facing 
aspect and convex shaped slope, UP – level upland and DP – depression landform elements with control and April mowing at Macrorie, 
SK1. 

----------- Forbs and Shrubs ------------ ----------------------------------------- Graminoids ----------------------------------------- Landform 
Element    ---------------- Standing-Live ---------------- --------------- Standing-Dead --------------- 

 Control Mowed Mean Control Mowed Mean Control Mowed Mean 
--------------------------------------------------------------------------------- 2003 Growing Season ----------------------------------------------------------------------------- 

NV 16.7 ±   5.5 17.8 ±   4.4 17.2 b3 119.3 ± 14.2 A a 117.3 ± 16.8 A a 118.3 494.3 ±   96.0 a 58.1 ±   7.4 ab 276.2 ± 85.7  
NX 22.3 ± 14.3 19.0 ±   7.9 20.7 b 110.0 ± 12.1 A a   93.1 ±   5.4 A ab 101.5 462.0 ± 100.4 a 71.5 ± 11.5 a 266.8 ± 80.7  
SV 22.9 ±   6.2 13.0 ±   3.4 18.0 b   96.8 ± 12.3 A a   78.2 ±   8.6 B bc   87.5 232.6 ±   17.1 b 58.0 ±   9.6 ab 145.3 ± 30.5  
SX 20.0 ±   4.6 10.8 ±   2.4 15.4 b   82.4 ± 10.2 A a   75.7 ± 10.8 A bc   79.1 172.5 ±   28.2 b 41.8 ±   5.6 bc 107.2 ± 25.7  
UP   6.7 ±   3.9   6.8 ±   2.4   6.8 c 149.4 ± 34.7 A a 110.2 ± 14.1 A ab 129.8 350.9 ±   85.9 ab 65.5 ± 13.3 ab 208.2 ± 62.8  
DP 87.9 ± 42.0 36.0 ± 24.5 62.0 a 140.7 ± 17.2 A a   44.6 ± 15.3 B c   92.6 167.8 ±   48.9 b 26.6 ±   3.0 c    97.2 ± 33.0  

Mean 29.4 A2 17.2 B  116.4 86.5  313.4 ±   35.9 A 53.6 ±   4.4 B  
--------------------------------------------------------------------------------- 2004 Growing Season ----------------------------------------------------------------------------- 

NV 18.0 ±   4.6 37.0 ± 10.6 27.5 bc 143.5 ± 17.6  100.8 ± 12.2  122.2 b 275.0 ± 63.8 a 41.9 ±   6.6 b 158.5 ± 49.2  
NX 36.6 ± 14.6 50.5 ±   6.6 43.6 b 142.0 ± 25.1    96.7 ± 13.9  119.4 b 219.9 ± 26.7 ab 48.1 ±   5.1 b 134.0 ± 31.4  
SV 26.1 ±   4.2 17.2 ±   2.3 21.7 c 108.7 ±   7.9 103.1 ±   8.7 105.9 bc 197.1 ± 40.8 ab 51.5 ±   4.1 b 124.3 ± 31.0  
SX 28.2 ±   3.7 30.4 ±   1.2 29.3 bc   90.6 ± 10.8    81.0 ±   8.3   85.8 c   75.4 ± 14.0 c 27.3 ±   7.6 b   53.7 ± 10.0  
UP 18.0 ±   5.6 29.4 ± 12.3 23.7 c 129.8 ±   9.6   95.8 ±   7.4 112.8 b 244.6 ± 12.1 ab 78.3 ± 14.1 a 161.5 ± 29.1  
DP 71.4 ± 16.6 78.7 ± 26.4 75.1 a 165.2 ± 18.7  151.0 ± 34.7  158.1 a 163.7 ± 39.9 bc 53.4 ±   9.2 b 108.5 ± 26.6  

Mean 33.1 40.5  130.0 A 104.7 B  195.9 ± 18.3 A 50.9 ±   4.0 B  
1 Some data were from A. Pantel, unpublished data. 
2 Means with the same lower case letters within a column and a year are not significantly different (P = 0.05).   
3
 Means with the same upper case letters within a row and a plant group (i.e. Forb and shrub, Standing-Live, Standing-Dead) are not significantly 

different (P = 0.05).  
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Mowing reduced forb and shrub biomass by 41% in 2003 (P = 0.016), but had no effect 

on forb and shrub biomass in 2004.   

The effect of landform element on standing-live biomass of graminoids was 

inconsistent between the two years (Table 4.9).  The effects of landform element and 

mowing interacted in 2003.  Within the control treatment there was no difference among 

landform elements (P > 0.05), but within the mowing treatment, standing-live biomass of 

graminoids was greatest on the NV landform element and least on the DP landform 

element (P = 0.005).  Mowing decreased standing-live biomass of graminoids in 2003 on 

the SV and DP landform element by 19% and 68%, respectively (P = 0.036 and 0.008, 

respectively), but not on other landform elements.  The standing-live biomass of 

graminoids was greatest on the DP landform element and least on the SX landform 

element in 2004 (P < 0.001).  Mowing reduced standing-live biomass of graminoids on 

all landform elements by 19% compared to control with a range from 5 to 32% 

depending on the landform element (P < 0.001). 

Mowing reduced standing-dead biomass of graminoids by 82 and 74% compared 

to the control for 2003 and 2004, respectively (P < 0.001 for both years, Table 4.9).  The 

effect of landform element on standing-dead biomass of graminoids was different in both 

years.  The effects of landform element and mowing interacted in 2003 and 2004 (P = 

0.032 and 0.014, respectively).  Standing-dead biomass of control plots was greatest on 

north-facing and UP landform elements in 2003 and least on the south-facing and DP 

landform elements.  Of the mowed landform elements, the standing-dead biomass of 

graminoids was greatest on the NX, UP, NV and SV landform elements and least on the 

SX and DP landform elements.  In 2004, standing-dead biomass of graminoids among 

control landform elements was greatest on the NV landform element and least on the SX 

landform element (P < 0.001).  Within the mowed landform elements, standing-dead 

biomass of graminoids was greatest on the UP landform element and lower on all other 

landform elements.  Depending on the landform element, the difference between control 

and mowing treatment was as great as 88% on the NV landform element in 2003 and as 

little as 63% on the SX landform element in 2004. 
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Total above-ground biomass varied among landform elements (P = 0.010) and 

mowing treatments (P < 0.001) in 2003 (Table 4.10).  Total above-ground biomass was 

generally greatest on the NV and NX landform elements, while total above-ground 

biomass was least on the SX landform element.  Mowing decreased total above-ground 

biomass by 67% compared to control.  Landform element and mowing interactively 

influenced total above-ground biomass in 2004 (P = 0.013).  Within the control 

treatment, total above-ground biomass was greatest on the NV landform element, 

intermediate on the DP, NX, UP and SV landform elements and least on the SX landform 

element (P < 0.001).  Within the mowing treatment, total above-ground biomass was 

greatest on the DP landform element.  Except on the SX and DP landform elements, 

mowing reduced total above-ground biomass on all landform elements. 

Table 4.10 Total above-ground biomass (mean ± SE, g m-2) recorded in August on NV – north-
facing aspect and concave shaped slope, NX – north-facing aspect and convex shaped slope, SV – 
south-facing aspect and concave shaped slope, SX – south-facing aspect and convex shaped 
slope, UP – level upland and DP – depression landform elements with control and April mowing 
in 2003 and 2004 at Macrorie, SK. 

------------------ 2003 ------------------ ------------------ 2004 ------------------ Landform 
Element Control Mowed Mean Control Mowed Mean 

NV 630.2 ±   92.2  193.2 ± 18.3   411.7 ± 85.3 a1 436.4 ± 63.4 A a   179.8 ± 10.3 B b 308.1 ± 52.4 
NX 594.3 ±   99.8  183.6 ± 13.6  389.0 ± 83.3 a   398.5 ± 29.6 A ab   195.3 ± 17.5 B b 296.9 ± 37.5  
SV 352.4 ±   23.8  149.1 ± 12.3    250.7 ± 36.2 bc 331.9 ± 45.6 A b   171.8 ±   9.0 B b 251.9 ± 34.5  
SX 275.0 ±   36.3  128.3 ± 15.1  201.7 ± 30.7 c 194.2 ± 26.8 A c   143.4 ± 11.2 A b 168.8 ± 16.1  
UP 507.0 ± 105.2  182.5 ± 12.6    344.8 ± 73.6 ab   392.5 ± 19.7 A ab   203.5 ±   9.3 B b 298.0 ± 33.1  
DP 396.4 ±   35.2  100.1 ± 38.0    248.2 ± 55.1 bc   400.3 ± 27.2 A ab   283.1 ± 48.7 A a 341.7 ± 32.8  

Mean 459.2 ±   36.3 A2     156.1 ±   9.8 B    359.0 ± 20.6    196.1 ± 11.6   
1 Means followed by the same lower case letters within a column are not significantly different (P = 0.05).   
2 Means followed by the same upper case letters within a row and a year are not significantly different (P = 

0.05). 

4.3 Variability in GHG Flux Rates as Affected by Landform Element and Mowing 

4.3.1 Carbon dioxide 

Carbon dioxide emissions from the soil surface were greater in 2004-2005 than in 

2003-2004 (Figure 4.8).  Carbon dioxide emissions were low before mid-May and after 

mid-September.  Carbon dioxide flux rate peaked at 50 µg CO2 m-2 s-1 in mid-May and 

was lowest in late October at 2 µg CO2 m-2 s-1 in 2003-2004.  In 2004-2005, CO2 flux 

rates were highest in mid-July at 231 µg CO2 m-2 s-1.  The lowest CO2 flux at 3 µg CO2 

m-2 s-1 was measured on 10 March 2005.    
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Figure 4.8 Carbon dioxide flux rate (mean ± SE, µg CO2 m

-2 s-1) of control and April mowing 
averaged across six landform elements in 2003-2004 and 2004-2005 at Macrorie, SK. 
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Carbon dioxide emissions were affected by the three-way interaction of landform 

element, mowing and sample date in 2003-2004 (P = 0.033) and by the two-way 

interactions of landform element and sample date, mowing and sample date, and 

landform element and mowing in 2004-2005 (P < 0.001 for all three) (Figure 4.9).  

During spring and early summer of 2003, when the DP landform element was flooded 

and therefore inaccessible, CO2 flux rates were greatest from the SV, UP and NV 

landform elements.  Except on the final sampling day in 2003 when CO2 flux rate was 

greatest on the SV landform element, the CO2 flux rate was always greatest on the DP 

landform element after June.  From September to October, the soils of the NV, NX and 

SX landform element usually emitted less CO2 than the soils of other landform elements.  

In 2004-2005, the CO2 flux rate was greatest from the DP landform element on every 

sample date that landform element was a significant factor in emissions rates.  Carbon 

dioxide flux rates were greater in the mowing treatment than the control on most dates, 

ranging from 27 to 47% greater in 2003-2004 and 21 to 58% greater in 2004-2005.   

4.3.2 Methane 

Except on 7 April 2004 when CH4 flux rates were positive, CH4 flux rates from 

the soil were negative in both sampling seasons (Figure 4.10).  In 2003-2004, mowing 

increased CH4 uptake compared to control on 5 sample dates and 3 sample dates in 2004-

2005.  Differences in CH4 consumption between mowing and control were as high as 

58% on 29 July 2003 and 88% on 6 July 2004.  Methane uptake was greater on control 

plots than on mowed plots only on 30 April 2003 (P = 0.042). 

In 2003-2004, CH4 flux was affected by the interaction between landform element 

and sample date (P < 0.001) (Table 4.11).  In the 2004-2005, landform element and 

mowing (P = 0.008), landform element and sample date (P = 0.023), and mowing and 

sample date (P < 0.001) interactively affected CH4 flux rates.  During the spring and early 

summer in 2003, the CH4 consumption rate was greatest on the south-facing landform 

elements and least on the NV and UP landform elements.  During summer, the CH4 

consumption rate was greatest on the DP landform element, intermediate on the NX, SV 

and SX landform elements and least on the UP and NV landform elements.     
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Figure 4.9 Average carbon dioxide flux rate (mean ± SE, µg CO2 m

-2 s-1) of control and April 
mowing and NV – north-facing aspect and concave shaped slope, NX – north-facing aspect and 
convex shaped slope, SV – south-facing aspect and concave shaped slope, SX – south-facing 
aspect and convex shaped slope, UP – level upland and DP – depression landform elements in 
2003-2004 and 2004-2005 at Macrorie, SK.     
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Figure 4.10 Methane flux rate (mean ± SE, ng CH4 m

-2 s-1) of control and April mowing 
averaged across six landform elements in 2003-2004 and 2004-2005 at Macrorie, SK. 
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Within the control treatment, landform element and sample date interactively 

influenced CH4 flux rate in 2004-2005 (P = 0.011) (Table 4.11).  Within the mowing 

treatment, the CH4 consumption rate was least on the UP landform element (P = 0.001).  

On sample dates when landform element was a significant determinant of CH4 flux, soils 

on the SX landform element consumed the most and soils on the DP landform elements 

consumed the least.   

 
Table 4.11 Average methane flux rate (mean ± SE, ng CH4 m

-2 s-1) for NV – north-facing aspect 
and concave shaped slope, NX – north-facing aspect and convex shaped slope, SV – south-facing 
aspect and concave shaped slope, SX – south-facing aspect and convex shaped slope, UP – level 
upland and DP – depression landform elements with control and April mowing in 2003-2004 
and 2004-2005 

-------- 2003-2004 -------- -------- 2004-2005 -------- Landform 
Element Control Mowed Mean Control Mowed Mean 

NV -1.55 ±  0.70 A1 -2.72 ±  0.70 B -2.13 ±  0.50 -2.58 ±  0.52 -4.94 ±  0.54 b2 -3.76 ±  0.38 
NX -2.88 ±  0.66 A -4.57 ±  0.69 B -3.73 ±  0.48 -4.10 ±  0.67 -6.26 ±  0.65 b -5.18 ±  0.48 
SV -3.61 ±  0.72 A -4.43 ±  0.75 A -4.02 ±  0.52 -4.29 ±  0.62 -5.58 ±  0.57 b -4.93 ±  0.42 
SX -4.86 ±  0.88 A -5.12 ±  0.79 A -4.99 ±  0.59 -7.30 ±  0.91 -6.39 ±  1.01 b -6.85 ±  0.68 
UP -1.86 ±  0.61 3 -4.34 ±  0.83 -3.10 ±  0.52 -2.77 ±  0.60 -3.22 ±  0.60 a -3.00 ±  0.42 
DP -2.08 ±  1.02 A -3.46 ±  1.14 B -2.77 ±  0.76 -3.55 ±  0.57 -5.09 ±  0.67 b -4.32 ±  0.44 

Mean -2.83 ±  0.32 -4.13 ±  0.34  -4.11 ±  0.28 -5.25 ±  0.29  
1 Means followed by the same upper case letter within a row and a sampling season are not significantly 
different (P = 0.05).   
2 Means with the same lower case letter within a column and a sampling season are not significantly 
different (P = 0.05). 
3 Treatment means with no letter showed interaction between mowing and sample date.   

4.3.3 Nitrous oxide  

During 2003-2004, landform element and sample date interactively affected N2O 

flux rate (P < 0.001).  Nitrous oxide flux rate was significantly greater than zero in 2003-

2004 on only 7 sample dates (Figure 4.11).  Nitrous oxide flux differed among landform 

elements on 2 sample dates.  On 22 March 2004, the DP landform element had greater 

flux rates than all other landform elements (P < 0.001).  On 20 April 2004, N2O flux rate 

was greatest on the UP and SX landform elements while N2O flux rate on north-facing 

landform elements was the least (P = 0.004).  Mowing affected N2O flux rates only on 29 

August 2003 when mowing increased N2O emission rates compared to the control (P = 

0.022).     

During 2004-2005, sample date, landform element and mowing all significantly 

influenced N2O flux rate.  On 7 sample dates the average N2O flux rate was greater than  
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Figure 4.11 Nitrous oxide flux rate (mean ± SE, ng N2O m-2 s-1) of control and April mowing 
averaged across six landform elements in 2003-2004 and 2004-2005 at Macrorie, SK. 
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zero (Figure 4.11).  Nitrous oxide flux differed among landform elements on 15 July 

2004, 11 August 2004 and 30 August 2004.  On 15 July 2004, the N2O flux rate from the 

SV, DP and UP landform elements was greater than the N2O flux rate on all other 

landform elements.  On 11 August 2004, the N2O flux rate on the DP and SV landform 

elements was greater than the N2O flux rate from all other landform elements.  On 30 

August 2004, the N2O flux rate from the DP landform element was again the greatest 

while the N2O flux rates from all other landform elements were similar to each other.  

Mowing increased N2O flux rates as a main effect (P = 0.003).   

4.3.4 Weighted average, cumulative emissions and consumption, and carbon budget 

Weighted daily average CO2-C emissions were influenced by the main effects of 

landform element and mowing during 2003-2004 (P = 0.006 and P = 0.022 for landform 

element and mowing, respectively) and 2004-2005 (P < 0.001 for both landform element 

and mowing) (Table 4.12).  Mowing increased weighted average daily CO2-C flux by 

21% in 2003-2004 and 55% in 2004-2005.  In 2003-2004, the weighted average CO2-C 

flux of control and mowing treatment ranged from 3.4 to 6.8 kg CO2-C ha-1 d-1, 

depending on landform element.  Weighted daily average CO2-C emissions were greatest 

on the DP landform element and least on the NX and SX landform elements.  In 2004-

2005, the range of weighted daily average CO2-C emissions was 11.9 to 24.9 kg CO2-C 

ha-1 d-1.  Weighted daily average CO2-C emissions were greatest on the DP landform 

element.   

Landform element was a significant determinant of weighted daily average CH4-C 

uptake in both sampling seasons (P = 0.027 in 2003-2004 and P = 0.039 in 2004-2005) 

(Table 4.12).  In 2003-2004, weighted daily average CH4-C uptake was greatest on the 

SX, SV and NX landform elements, while weighted daily average CH4-C uptake was 

least on the UP, DP and NV landform elements.  In 2004-2005, weighted daily average 

CH4-C uptake was greatest on the SX and NX landform elements and least on the NV 

and UP landform elements.  Mowing tended to increase weighted daily average CH4-C 

uptake by 0.5 g CH4-C ha-1 d-1 in 2003-2004 and 0.7 g CH4-C ha-1 d-1 in 2004-2005.   

Weighted daily average N2O-N flux was influenced by landform element in both 

sampling seasons (P < 0.001 and in 2003-2004 and P = 0.028 in 2004-2005) (Table 4.12).   
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Table 4.12 Weighted daily average carbon dioxide (CO2) flux (mean ± SE, kg C ha-1 d-1), methane (CH4) flux (mean ± SE, g C ha-1 d-1) 
and nitrous oxide (N2O) flux (mean ± SE, g N ha-1 d-1) from NV – north-facing aspect and concave shaped slope, NX – north-facing 
aspect and convex shaped slope, SV – south-facing aspect and concave shaped slope, SX – south-facing aspect and convex shaped slope, 
UP – level upland and DP – depression landform elements with control and April mowing in 2003-2004 and 2004-2005 at Macrorie, SK. 

Landform 
Element ------------------- CO2 ------------------- ------------------- CH4 ------------------- ------------------- N2O ------------------- 

 Control Mowed Mean Control Mowed Mean Control Mowed Mean 
-------------------------------------------------------------------------------------- 2003-2004 -------------------------------------------------------------------------------------- 

NV   4.7 ± 0.5    6.2 ± 0.5  5.4 ± 0.5 ab -1.5 ± 0.4 -2.5 ± 0.7 -2.0 ± 0.4 a   0.01 ± 0.16   0.09 ± 0.27   0.05 ± 0.14 b 
NX   3.1 ± 0.4    5.5 ± 1.3  4.3 ± 0.8 bc -2.9 ± 0.4 -3.1 ± 0.5 -3.0 ± 0.3 abc   0.20 ± 0.20 -0.04 ± 0.06   0.08 ± 0.11 b 
SV   4.8 ± 0.2    6.5 ± 1.5  5.6 ± 0.8 ab -3.1 ± 0.7 -3.6 ± 0.3 -3.3 ± 0.4 bc   0.09 ± 0.04   0.03 ± 0.08   0.06 ± 0.04 b 
SX   3.3 ± 0.5    3.6 ± 0.0  3.4 ± 0.2 c -4.4 ± 0.7 -4.1 ± 0.9 -4.2 ± 0.5 c   -0.06 ± 0.08 -0.12 ± 0.09  -0.09 ± 0.06 b 
UP   4.5 ± 0.6    6.7 ± 0.3   5.6 ± 0.6 ab -1.9 ± 0.6 -3.3 ± 0.8 -2.6 ± 0.5 ab < 0.01 ± 0.07   0.30 ± 0.19   0.15 ± 0.11 b 
DP   7.8 ± 0.5    5.8 ± 1.0   6.8 ± 0.7 a -2.2 ± 0.3 -2.5 ± 0.5 -2.4 ± 0.3 a    1.17 ± 1.09   1.51 ± 1.20   1.34 ± 0.73 a 

Mean   4.7 ± 0.4 B 5.7 ± 0.4 A  -2.7 ± 0.3 -3.2 ± 0.3     0.24 ± 0.19   0.29 ± 0.22  
-------------------------------------------------------------------------------------- 2004-2005 -------------------------------------------------------------------------------------- 

NV   8.6 ± 0.6   16.7 ± 0.8 12.7 ± 1.4 b -1.8 ± 0.6 -2.9 ± 0.5 -2.3 ± 0.4 ab -0.22 ± 0.08 -0.14 ± 0.06 -0.18 ± 0.05 b 
NX   7.8 ± 0.6   16.0 ± 1.9 11.9 ± 1.7 b -2.2 ± 0.6 -3.5 ± 0.6 -2.9 ± 0.5 bc -0.25 ± 0.05 -0.14 ± 0.06 -0.19 ± 0.04 b 
SV 11.1 ± 1.0   18.6 ± 1.8 14.9 ± 1.6 b -2.4 ± 0.6 -3.1 ± 0.3 -2.8 ± 0.3 abc -0.14 ± 0.15  0.30 ± 0.32     0.08 ± 0.18 a 
SX 10.3 ± 1.2   14.0 ± 0.7 12.2 ± 0.9 b -3.9 ± 0.9 -3.4 ± 0.9 -3.7 ± 0.6 c  -0.20 ± 0.05 -0.20 ± 0.07 -0.20 ± 0.04 b 
UP   8.6 ± 0.6   16.1 ± 1.5 12.4 ± 1.5 b -1.4 ± 0.3 -1.8 ± 0.7 -1.6 ± 0.4 a -0.15 ± 0.11 -0.01 ± 0.04   -0.08 ± 0.06 ab 
DP 23.3 ± 4.2   26.4 ± 3.2 24.9 ± 2.5 a -2.3 ± 0.6 -3.1 ± 0.4 -2.7 ± 0.4 abc   0.15 ± 0.23     0.13 ± 0.15   0.14 ± 0.13 a 

Mean 11.6 ± 1.2 B 18.0 ± 1.0 A  -2.3 ± 0.3 -3.0 ± 0.3  -0.13 ± 0.05 -0.01 ± 0.07  
1 Means followed by the same upper case letters within a row and a gas type (i.e. CO2, CH4 or N2O) are not significantly different (P = 0.05).   
2 Means followed by the same lower case letters within a column and a gas type are not significantly different (P = 0.05) 
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Weighted daily average N2O-N flux was greatest on the DP landform element in 

2003-2004.  The only positive daily average N2O-N flux came from the DP and SV landform 

elements while all other landform elements had negative weighted daily average N2O-N 

fluxes.  Mowing tended to increase the weighted daily average N2O-N flux compared to 

control. 

Landform element and mowing affected cumulative CO2-C emissions in 2003-2004 

(P = 0.033 and P = 0.009 for landform element and mowing, respectively) and in 2004-2005 

(P < 0.001 for landform element and mowing) (Table 4.13).  Cumulative CO2-C emissions 

were greatest from the SV, UP, NV and DP landform elements in 2003-2004.  Cumulative 

CO2-C emissions were greatest from the DP and SV landform elements and cumulative CO2-

C emissions were least from the NX landform element in 2004-2005.  Mowing increased 

CO2-C flux by 28 and 58% compared to the control in 2003-2004 and 2004-2005, 

respectively.  Net CO2-C emissions ranged from 1,533 kg CO2-C ha-1 on the UP landform 

element with mowing treatment to 699 kg CO2-C ha-1 on the NX landform element with 

control treatment in 2003-2004 and 4,336 kg CO2-C ha-1 from the DP landform element with 

mowing treatment to 1,616 kg CO2-C ha-1 from the NX landform element with control 

treatment in 2004-2005. 

Landform element had a significant impact on the net consumption of CH4-C02 

equivalent in both sampling seasons (P = 0.013 in 2003-2004 and P = 0.023 in 2004-2005) 

(Table 4.13).  Net consumption of CH4-C02 equivalent was greatest on south-facing landform 

elements and least on the NV and DP landform elements in 2003-2004.  Net consumption of 

CH4-C02 equivalent was greatest on the SX landform element and was least on the UP 

landform element in 2004-2005.  Net consumption of CH4-C02 equivalent on mowed 

landform elements was 2 and 3 kg CH4-C02 equivalent ha-1 more than net consumption of 

CH4-C02 equivalent from landform elements of the control treatment in 2003-2004 and 2004-

2005, respectively.  Net CH4-C02 equivalent consumption ranged from 22 kg CH4-C02 

equivalent ha -1 on the SX landform element to 10 kg CH4-C02 equivalent ha-1 on the DP 

landform element in 2003-2004 and from 18 kg CH4-C02 equivalent ha-1 on the SX landform 

element and 8 kg CH4-C02 equivalent ha -1 on the UP landform element in 2004-2005. 

Landform element influenced cumulative N2O-C02 equivalent flux in 2003-2004 (P < 

0.001) while landform element and mowing influenced cumulative N2O-C02 equivalent flux 
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Table 4.13 Cumulative carbon dioxide (kg CO2-C ha-1 season -1), methane (kg CH4-CO2 equivalent ha-1 season -1) and nitrous oxide (kg 
N2O - CO2 equivalent ha-1 season -1) flux rates from NV – north-facing aspect and concave shaped slope, NX – north-facing aspect and 
convex shaped slope, SV – south-facing aspect and concave shaped slope, SX – south-facing aspect and convex shaped slope, UP – level 
upland and DP – depression landform elements with control and April mowing in 2003-2004 and 2004-2005 at Macrorie, SK.  

Landform 
Element --------- kg CO2-C ha-1 season-1 --------- -- kg CH4-CO2 equivalent ha-1 season-1 -- ----- kg N2O-CO2 equivalent ha-1 season-1 ---

-- 
 Control Mowed Mean Control Mowed Mean Control Mowed Mean 
 ---------------------------------------------------------------------------- 2003-2004 ---------------------------------------------------------------------------- 

NV    1068 ± 101 1404 ± 123 1236 ± 104 a   -8 ± 2.2 -13 ± 3.6 -11 ± 2.2 a   1 ± 11   6 ± 18.1   3 ±    9.5 b 
NX      699 ±   91 1254 ± 302   976 ± 188 ab -15 ± 1.9 -16 ± 2.7 -16 ± 1.5 ab 14 ± 13.6   -3 ±  3.8  5 ±    7.4 b 
SV    1095 ±   55 1471 ± 346 1283 ± 178 a -16 ± 3.9 -19 ± 1.6 -18 ± 2.0 bc   6 ± 2.7   2 ±  5.0  4 ±    2.7 b 
SX      754 ± 119   810 ±     6   782 ±   55 b -23 ± 3.5 -21 ± 4.6 -22 ± 2.6 c   -4 ± 5.6  -8 ±  5.9 -6 ±    3.8 b 
UP    1016 ± 131 1533 ±   72 1275 ± 134 a -10 ± 2.9 -17 ± 4.1 -14 ± 2.8 ab <1 ± 4.7  20 ± 12.7  10 ±   7.7 b 
DP3    1322 ±   84 1147 ± 204 1234 ± 106 a   -9 ± 1.2 -11 ± 2.1 -10 ± 1.2 a 59 ± 54.5  88 ± 69.9  73 ± 40.0 a 

Mean     992 ± 62 B 1270 ±   94 A  -14 ± 1.6 -16 ± 1.4  12 ± 9.5 17 ± 13.0   
 ---------------------------------------------------------------------------- 2004-2005 ---------------------------------------------------------------------------- 

NV   1794 ± 123  3463 ± 170  2628 ± 295 bc   -9 ± 2.9 -14 ± 2.5 -11 ± 2.0 ab -13 ±  5.0   -9 ± 3.6 -11 ±    3.0 b 
NX   1616 ± 123  3313 ± 393  2465 ± 343 c -11 ± 3.1 -17 ± 2.6 -14 ± 2.2 bc -15 ±  3.3   -9 ± 3.6 -12 ±    2.7 b 
SV   2308 ± 215  3869 ± 373  3089 ± 330 b -12 ± 2.9 -15 ± 1.3 -13 ± 1.6 bc   -8 ±  9.5  19 ± 19.8     5 ± 11.2 a 
SX   2138 ± 255  2910 ± 142  2524 ± 188 bc -19 ± 4.4 -16 ± 4.4 -18 ± 3.0 c  -12 ±  3.0 -12 ± 4.1 -12 ±    2.4 b 
UP   1784 ± 130  3345 ± 317  2564 ± 306 bc   -7 ± 1.2   -9 ± 3.4   -8 ± 1.7 a   -9 ±  6.8   -1 ± 2.7   -5 ±    3.8 ab 
DP   3816 ± 683  4336 ± 517  4076 ± 413 a   -9 ± 2.2 -12 ± 1.4 -10 ± 1.3 ab    7 ± 11.2     6 ± 7.4     7 ±   6.2 a 

Mean  2243 ± 183 B  3539 ± 153 A  -11 ± 1.3 -14 ± 1.2    -9 ± 3.0 B   -1 ± 3.8 A  
1 Means followed by the same upper case letters within a row and a gas type (i.e. CO2, CH4 or N2O) are not significantly different (P = 0.05).   
2 Means followed by the same lower case letters within a column and a gas type are not significantly different (P = 0.05). 
3 Cumulative values for the DP landform element were calculated from 122 days in 2003. 
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in 2004-2005 (P = 0.017 and P = 00.48, respectively) (Table 4.13).  The largest 

cumulative N2O-C02 equivalent emission was recorded on the DP landform element in 

2003-2004 while the largest cumulative N2O-C02 equivalent emission was recorded on 

the DP and SV landform elements in 2004-2005.  Mowing increased the N2O-N flux by 8 

kg N2O-C02 equivalent ha -1 season-1 in 2004-2005. 

4.3.5 Relationships between environmental attributes, plant community 

characteristics and greenhouse gas flux  

Significant environmental variables, as determined by the Monte Carlo 

permutation test, included in the CCA for 2003-2004 were mean gravimetric soil water, 

aspect, snow water equivalent, slope shape and cumulative CO2 flux (Table 4.14).  For 

the 2003-2004 sampling season, the first 4 axes of CCA explained a total of 28% of the 

variation in species composition (Table 4.15).  Soil water and aspect were the two most 

important environmental factors controlling species composition.  Soil water and snow 

water equivalent were strongly correlated with Axis 1 (correlation coefficient (r) = 0.904 

and r = 0.742, respectively) (Table 4.16, Figure 4.12).  Aspect and slope shape were both 

negatively correlated with Axis 2 (r = -0.842 and r = -0.359, respectively).  Soil water 

was weakly correlated with aspect (r = -0.317) and with slope shape (r = 0.237) (Table 

4.17, Figure 4.12).  Snow water equivalent and soil water were also correlated (r = 0.563) 

while cumulative CO2 flux was correlated with soil water (r = 0.145). 

Species and environme ntal data from 2003 were spread widely along Axis 1 and 

much less along Axis 2 (Figure 4.12).  The DP landform element was at the extreme high 

end of the soil water, snow, cumulative CO2 and slope shape gradients.  Cumulative CO2 

flux appears as a short gradient, indicating a weak effect on species composition.   
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Table 4.14 Additional variance explained (λA), F Value and P Value of each environmental 
variable derived from manual forward selection using Monte Carlo permutation test with 9,999 
unrestricted permutations in 2003-2004. 

Environmental Variable λA F Value P Value 
Soil H2O  0.71 8.33 < 0.001 
Aspect   0.35 4.38 < 0.001 
Snow water equivalent 0.30 3.95 < 0.001 
Slope shape 0.16 2.16    0.002 
Cumulative CO2 flux 0.17 2.30    0.001 

----------------- P > 0.01 Cut off ----------------- 
Cumulative N2O flux 0.13 1.87 0.075 
% Sand 0.17 2.37 0.001 
% Litter 0.11 1.73 0.026 
% Bare soil 0.11 1.62 0.062 
Bulk density 0.11 1.50 0.075 
% Water-filled pore space 0.14 2.12 0.004 
Mowing treatment 0.09 1.49 0.081 
NH4

+ 0.07 1.10 0.336 
% Clay 0.06 0.82 0.683 
Total biomass 0.04 0.70 0.799 
Cumulative CH4 flux 0.05 0.74 0.780 
Potential direct incident radiation 0.05 0.70 0.786 
NO3

- 0.03 0.51 0.961 

 

Table 4.15 Canonical Correspondence Analysis summary statistics from 2003-2004 species and 
environment data, including importance value of each axis (Eigenvalue: 0 = unimportant, 1 = 
very important), variance in species composition explained by each axis and cumulative 
variance explained. 

 Axis 1 Axis 2 Axis 3 Axis 4 
Eigenvalue 0.778 0.412 0.236 0.167 
Variance in species data:     
% Explained  13.9   7.3   4.2   3.0 
Cumulative % explained  13.9 21.2 25.4 28.4 

 

Table 4.16 Correlation coefficients (r) from the Canonical Correspondence Analysis 
representing intra-set correlations between significant environmental variables and ordination 
axes in 2003-2004. 

Environmental Variable Axis 1 Axis 2 Axis 3 Axis 4 
Soil H2O  0.904 0.393 0.160 -0.055 
Aspect   -0.079 -0.842 0.407 -0.298 
Snow water equivalent 0.742 -0.043 -0.638 -0.195 
Slope shape 0.447 -0.359 0.040 0.326 
Cumulative CO2 flux 0.415 -0.147 0.108 0.677 
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Table 4.17 Correlations (r) from the Canonical Correspondence Analysis of significant 
environmental variables in 2003-2004. 

 Aspect Slope 
shape 

Snow 
water 

Soil 
H2O 

Cumulative 
CO2 

Aspect        1     
Slope shape  0.057      1    
Snow water  -0.215 0.217      1   
Soil H2O -0.317 0.237 0.563      1  
Cumulative CO2  0.034 0.027 0.145 0.308     1 
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Figure 4.12 Joint plot of linear combinations of 2003-2004 environmental variables (average 
gravimetric soil water content, snow water equivalent in the spring, cumulative CO2 flux, slope 
shape and aspect) and species composition from control and April mowing and + NV – north-
facing aspect and concave shape, ? NX – north-facing aspect and convex shape, ? SV – south-
facing aspect and concave shape, SX – south-facing aspect convex shape, X UP – level upland, 
⌧ DP – depression landform elements at Macrorie, SK. 

 

Significant north-facing aspect and concave shaped slope, NX – north-facing 

aspect and convex shaped slope, SV – south-facing aspect and concave shaped slope, SX 

– south-facing aspect and convex shaped slope, UP – level upland and DP – depression 

environmental variables, as determined by the Monte Carlo permutation test, included in 

the CCA for 2004-2005 were mean gravimetric soil water, aspect, soil NO3
- content, % 

litter cover, cumulative CO2 flux, % sand content, cumulative CH4 flux and slope shape 

(Table 4.18).  The first 4 axes explained 31% of the variance in species composition 
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(Table 4.19).  The strongest and most important variables for explaining species 

composition were soil water, aspect, % sand and litter cover.  Soil water was positively 

correlated with Axis 1 (r = 0.903) and % sand was negatively correlated with Axis 1 (r = 

-0.801) (Table 4.20, Figure 4.13).  Aspect was negatively correlated with Axis 2 (r =  -

0.854) and litter cover was positively correlated with Axis 2 (r = 0.557).  Aspect was 

correlated with H2O (r = -0.442), % sand was correlated with slope shape (r = -0.526) and 

soil water (r = -0.711), and cumulative CO2 flux was weakly correlated with % sand (r = -

0.377) (Table 4.21, Figure 4.13).   

Table 4.18 Additional variance explained (λA), F Value and P Value of each environmental 
variable derived from manual forward selection using Monte Carlo permutation test with 9,999 
unrestricted permutations in 2004-2005. 

Environmental Variable λA F Value P Value 
% Soil H2O 0.70 8.80 < 0.001 
Aspect 0.31 4.22 < 0.001 
Soil NO3

- 0.22 2.94 < 0.001 
% Litter 0.18 2.59 < 0.001 
Cumulative CO2 flux 0.16 2.33 0.001 
% Sand 0.15 2.26 0.002 
Cumulative CH4 flux 0.13 1.99 0.005 
Slope shape 0.13 1.91 0.005 

----------------- P > 0.01 Cut off ----------------- 
Mowing treatment 0.09 1.52 0.052 
% Clay 0.09 1.39 0.097 
Total biomass 0.09 1.40 0.106 
Bulk density 0.08 1.26 0.177 
% Water-filled pore space 0.17 1.49 0.075 
% Bare soil 0.07 1.08 0.357 
Soil NH4

+ 0.06 1.09 0.336 
Potential direct incident radiation 0.07 1.16 0.257 
Cumulative N2O flux 0.06 1.05 0.377 

 

Table 4.19 Canonical Correspondence Analysis summary statistics from 2004-2005 species and 
environment data, including importance value of each axis (Eigenvalue: 0 = unimportant, 1 = 
very important), variance in species composition explained by each axis and cumulative 
variance explained. 

 Axis 1 Axis 2 Axis 3 Axis 4 
Eigenvalue 0.777 0.370 0.282 0.199 
Variance in species data:     
% Explained  14.7    7.0   5.3   3.8 
Cumulative % explained  14.7  21.7 27.0 30.8 
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Table 4.20 Correlation coefficients (r) from the Canonical Correspondence Analysis 
representing intra-set correlations between significant environmental variables and ordination 
axes in 2004-2005. 

Environmental variable Axis 1 Axis 2 Axis 3 Axis 4 
% Soil H2O 0.903 0.371 0.183 -0.080 
Aspect -0.145 -0.854 -0.160 -0.115 
Soil NO3

- 0.243 0.294 -0.593 -0.482 
% Litter -0.296 0.557 0.024 0.223 
Cumulative CO2 flux 0.614 -0.168 -0.037 0.361 
% Sand -0.801 -0.114 0.279 -0.170 
Cumulative CH4 flux 0.088 0.322 -0.106 0.524 
Slope shape 0.502 -0.200 -0.042 0.303 

 

Table 4.21 Correlations (r) from the Canonical Correspondence Analysis of significant 
environmental variables in 2004-2005. 

 Aspect Slope 
shape 

% Soil 
H2O 

% 
Litter 

Cumulative 
CH4 flux 

Cumulative 
CO2 flux 

% 
Sand 

Soil 
NO3

- 
Aspect 1        
Slope shape -0.047 1       
% Soil H2O -0.442 0.302 1      
% Litter -0.243 -0.296 -0.027 1     
Cumulative CH4 flux -0.187 0.187 0.121 0.033 1    
Cumulative CO2 flux 0.050 0.212 0.481 0.083 -0.110 1   
% Sand 0.203 -0.526 -0.711 0.088 -0.114 -0.377 1  
Soil NO3

- -0.076 0.225 0.253 0.173 -0.106 -0.012 -0.311 1
 

The CCA joint plot for 2004-2005 showed a similar spread of species 

composition along environmental gradients as observed in 2003-2004 (Figure 4.13).  

Extending the cumulative CH4 flux gradient in the opposite direction, indicating 

cumulative CH4 consumption, places south-facing landform elements on the high end of 

the cumulative CH4 consumption gradient.  The NO3
- content of soil was positively 

correlated with cumulative CH4 flux while cumulative CO2 flux was positively correlated 

with slope shape.  Aspect appeared to be negatively correlated with cumulative CH4 flux 

gradients and uncorrelated with cumulative CO2 flux.  The DP landform element is at the 

high end of CO2 flux. 
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Figure 4.13 Joint plot of linear combinations of 2004-2005 environmental variables (% litter 
cover, cumulative CH4 flux, average soil NO3

-, average gravimetric soil water content, 
cumulative CO2 flux, slope shape, slope aspect and % sand content of soil) and species 
composition from control and April mowing and + NV – north-facing aspect and concave shape, 
? NX – north-facing aspect and convex shape, ? SV – south-facing aspect and concave shape, 
SX – south-facing aspect convex shape, X UP – level upland, ⌧ DP – depression landform 
elements at Macrorie, SK. 
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5. DISCUSSION 

5.1 Plant Community Characteristics as Influenced by Landform Element and 

Mowing 

Landform element and mowing influenced plant community composition.  

Species richness varied with landform element.  There were fewer species on the UP 

landform element than all other landform elements in both years.  Species richness 

decreases from upper to lower landform positions in the Missouri Coteau (Tatina, 1994) 

and increases from south-facing slopes to north-facing slopes in the Mixedgrass Prairie of 

southern Alberta (Lieffers and Larkin-Lieffers, 1987).  Increased habitat diversity is 

thought to increase species richness at the landscape level (Burnett et al., 1998).  Soil 

microbial diversity is therefore expected to be lower on the UP landform element because 

soil microbial diversity is positively correlated with plant species diversity (Metting, 

1993).   

Plant species evenness was influenced by landform elements.  Decreased species 

evenness on the north-facing landform elements compared to south-facing landform 

elements are likely due to the dominance of plains rough fescue in those areas.  Plains 

rough fescue produces large quantities of biomass, out-competing other species when 

temperature and soil water conditions are ideal (Looman, 1969).  Species evenness was 

greatest on the north-facing slopes of coulees in the Mixedgrass Prairie possibly because 

other slopes had recently eroded (Lieffers and Larkin-Lieffers, 1987).  In the current 

study, decreased species evenness on the north-facing landform elements compared to 

south-facing landform elements, was associated with lower soil temperatures and slightly 

greater WFPS (Chapter 4.1).  Mowing increased species evenness in 2004, but not 2003.  

Canopy cover of forbs and shrubs increased relative to canopy cover of grasses with 

mowing (Willms et al., 1986).  Drought conditions of 2003 may have limited the effect of 

mowing on species evenness.  
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The Shannon-Wiener Diversity Index was greatest on the DP and SX landform 

elements, likely due to growing conditions unique to those landform elements.  Dix and 

Smiens (1967) stated that species diversity is greatest on mesic sites, but least on very 

wet parts of the landscape, but that was not true in the current study.  The DP landform 

element can be flooded or remain dry, depending on the year, but increased soil water 

may support a more diverse plant community in that area.  As well, flooding has a 

disturbance effect.  Therefore, vegetation in the DP landform element must be adapted to 

live in water or start growing after the water has disappeared, which may make the 

growing season in the DP landform element shorter than in other landform elements.  

Barnes et al. (1983) stated that species diversity and species richness is greatest on well-

drained upper slopes with low NO3
- content.  Soils on these landform elements warm 

sooner, therefore allowing earlier growth than on other landform elements in the spring 

and a longer growing season (Cantlon, 1953), which allows the growth of warm season 

plants and may favour greater species diversity on the SX landform element.   

Plant species composition among landform elements was similar in 2003 and 

2004 as shown by the DCA.  The DP landform element can be separated from other 

landform elements by Axis 1, which most likely reflects a soil water gradient.  The north-

facing and south-facing landform elements were spread along Axis 2, which reflects 

aspect and/or temperature.  Intuitively, the UP landform elements are intermediate 

between north-facing and south-facing landform elements along Axis 2.  The DCA did 

not separate plots by treatment, indicating that mowing did not cause a significant change 

in species composition.   

Forb and shrub biomass was greater in 2004 than in 2003, possibly due to 

increased precipitation in 2004; precipitation is a major determinant of year-to-year 

changes in forb growth in the Mixedgrass Prairie (Gillen and Sims, 2004).  Landform 

element was an important factor affecting forb and shrub biomass in both years.  Forb 

and shrub biomass was greatest in the DP landform element in both years and least on the 

south-facing landform elements.  Forbs and shrubs made up a larger portion of the 

canopy cover in the DP landform element than in other landform elements (Chapter 4.2).  

Competition for N from grasses with extensive root systems may have reduced forb and 

shrub growth (Raynaud and Leadley, 2004).  On the other hand, water availability and 
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water use may be more important for competition between forbs and grasses than N in 

semiarid areas (Booth et al., 2003).  Mowing decreased forb and shrub biomass in 2003, 

when precipitation was below the long-term average, but not in 2004.   

Standing-live biomass of graminoids was influenced by year-to-year variation in 

precipitation.  Standing-live biomass of graminoids was greater in 2004 when 

precipitation was greater compared to 2003.  Standing-live biomass of graminoids is the 

first plant community characteristic to recover after drought (Coupland, 1958).  

Landform element also influenced standing-live biomass of graminoids.  Sites that 

provide optimum growing conditions for plants have greater growth than areas that 

provide less than optimum growing conditions (Kormondy, 1996).  The north-facing 

landform elements receive less solar radiation, often have greater WFPS and greater soil 

N (Chapter 4.1) and generally had greater standing-live biomass of graminoids than 

south-facing landform elements.  Soil C may be greater on these landform elements 

because of the high plant production and C input to the soil.  

April mowing decreased standing-live biomass of graminoids on the SV and DP 

landform elements in 2003 and on most landform elements in 2004.  Mowing reduced 

standing-live biomass of graminoids even though most growth had not started.  Among 

the months of mowing, April and May mowing had the least negative impact on plant 

growth in the Mixedgrass Prairie in Saskatchewan (Romo and Bai, 2005).  Mowing 

reduces the photosynthetic capacity of plants, decreasing C input to the soil via the roots 

(Biondini et al., 1998).  On the other hand, reduced growth decreases plant competition 

for N, increasing soil N available for microbes (Corre et al., 1996).  Mowing can have 

opposing effects on soil water as well; decreasing transpiration of the leaf canopy 

(Willms and Jefferson, 1993), but increasing evaporation from the soil (Willms, 1995).   

Standing-dead biomass of graminoids varied among landform elements.  

Standing-dead biomass of graminoids and soil N were greater on control plots of north-

facing landform elements than on the control plots of south-facing landform elements 

(Chapter 4.1).  Mowing decreased standing-dead biomass of graminoids, decreasing 

organic matter available for incorporation with the soil.  If above-ground biomass 

removal is repeated for many years, soil N may decrease (Biondini et al., 1998).  Mowing 
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removes plant matter, including soluble C, an important source of C for microbes that is 

easily leached from plant materials (Shelp et al., 2000).   

Total above-ground biomass was influenced by landform element and mowing in 

both years.  Total above-ground biomass was similar to another study in the Mixedgrass 

Prairie (Ripley and Saugier, 1978), but nearly twice that reported from Mixedgrass 

Prairie in Alberta (Whysong and Bailey, 1975).  Species that produce large amounts of 

forage, such as plains rough fescue, are present in most areas of the study site, but north-

facing areas appear ideal for this species and a large quantity of plant materials 

accumulated.  Over time, accumulation of total above-ground biomass builds up soil N 

on the north-facing and DP landform elements (Chapter 4.1).  Above-ground biomass 

influences biotic processes by slowing root and soil microbial desiccation caused by the 

sun and the wind (Facelli and Pickett, 1991), making the soil environment more suitable 

for microbial activity.  Total above-ground biomass retained on plots may have reduced 

the effects of landform element and mowing on evaporation, decreasing evaporation from 

soil and decreasing variation of WFPS across the landscape.   

Mowing reduced total above-ground biomass and the relative reduction was most 

severe on the SX landform element in both years, possibly due to slower plant regrowth 

compared to north-facing landform elements (Romo and Bai, 2005).  Reducing total 

above-ground biomass had no affect on measured soil temperature in the present study.  

Reducing above-ground biomass can decrease soil temperatures during the winter, 

increasing the plants’ susceptibility to cold temperatures (Johnston et al., 1971; 

Kowalenko and Romo, 1998).  Decreasing soil temperature can slow microbial activity 

during the spring and fall (Paul and Clark, 1996).  Precipitation events = 5 mm constitute 

approximately 70% of the precipitation of the Mixedgrass Prairie of Saskatchewan 

(Colberg and Romo, 2003) and can be entirely absorbed by a litter layer (Couturier and 

Ripley, 1973; Facelli and Pickett, 1991).  Litter can capture up to 200% of its oven-dried 

weight in water during precipitation events (Naeth et al., 1991), which is then exposed to 

evaporation and not added to the soil (Weaver and Rowland, 1952).  Above-ground plant 

matter increases the infiltration of precipitation (Larson and Whitman, 1942; Hopkins, 

1954), decreases run off (Willms, 1995) and maintains soil water (Willms et al., 1986).  

Therefore, above-ground plant material can change water dynamics that influence biotic 
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processes (Willms et al., 1993).  When water is severely limiting, increasing litter does 

not increase plant growth (Willms and Jefferson, 1993).  

The differences in plant community characteristics as seen among landform 

elements were likely influenced by differences in growing conditions, like soil water, soil 

temperature and soil N.  Mowing influenced some plant community characteristics by 

removing accumulated dead plant material and decreasing above-ground growth.  The 

plant community influences the environment by extracting nutrients, storing nutrients, 

decreasing the soil temperature and modifying the soil water (Miles, 1987).  Different 

environments associated with different plant communities may influence the microbial 

community important for GHG flux (Cavigelli and Robertson, 2001). 

5.2 Greenhouse Gas Flux Rates as Influenced by Landform element and Mowing 

Carbon dioxide flux rates in this study were positive, presumably because of 

respiration from soil microbes, roots and above-ground plant parts.  Assimilation of CO2 

during the 60 minutes the chambers were in place was not measured and a balanced CO2 

budget could not be established.  It should be noted that given above-ground and below-

ground assimilation of CO2, net CO2 flux from the study site would have been much 

lower than the flux rates reported in the present study.   

Carbon dioxide respiration from the soil may be responding to coarse scale 

increases in N deposition, atmospheric CO2 concentrations and subsequent increases in 

available soil C (Köchy and Wilson, 2001; Flanagan et al., 2002).  Over time, the release 

of CO2 is expected to closely match the uptake of CO2 across the Northern Great Plains 

(Frank and Dugas, 2001).  Reeder and Schuman (2002) suggested that the Mixedgrass 

Prairie resists changes in total C by redistributing C within the soil profile.  

Carbon dioxide flux rates are important for the measurement of soil activity, 

including microbial and root respiration.  Carbon dioxide flux rates from the Mixedgrass 

Prairie of Wyoming were within the range from the current project (Lecain et al., 2000). 

Carbon dioxide flux rates were greater on the Mixedgrass Prairie of North Dakota 

completely denuded of vegetation, likely due to the extra exposure of the soil to solar 

radiation and death of plants (Frank et al., 2002).  The weighted daily average flux rate in 

the current study is lower than that for arable agriculture systems (Schmidt et al., 2001).  
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Tillage increases decomposition of soil organic matter by breaking apart aggregates that 

protect organic matter from decomposition.  Carbon dioxide emissions from a 

Mixedgrass Prairie soil in Saskatchewan indicated much greater soil respiration than the 

current study possibly due to soil disturbance during soil handling  (Redmann and 

Abouguendia, 1978).   

Carbon dioxide flux rates were greater in 2004-2005 than in 2003-2004.  Year-to-

year variation in precipitation and temperature are common in the Mixedgrass Prairie and 

are important for biotic and abiotic processes of the grassland ecosystem (Coupland, 

1958; Bootsma, 1994).  Standing-live biomass of graminoids also increased in 2004 

compared to 2003.  Increased precipitation directly increases CO2 emissions by 

improving the growing conditions for plant roots and soil microbes (McCulley et al., 

2005).  Carbon dioxide flux is also indirectly increased by greater precipitation because 

increased plant growth during a wet year transports more photosynthate to the roots, 

which eventually benefits soil microbes (McCulley et al., 2005).   

Within year fluctuations of CO2 emissions are caused by changes in C 

availability, soil water and soil temperature (Bremer et al., 1998; Epstein et al., 1998; 

Frank and Dugas, 2001).  Low soil temperatures can limit CO2 flux (Bremer et al., 1998; 

Frank et al., 2002), as in the current study during the spring and fall.  The peak of daily 

CO2 flux in 2004 was similar in time to the peak of the soil temperatures.  Periods of low 

CO2 flux were similar in time to cold periods in the spring and fall, and hot and very dry 

periods during the summer for both years.  Landform elements influence CO2 emissions 

by changing soil water and soil temperature. 

The influence of landform element on CO2 flux rates, weighted average daily 

CO2-C and cumulative CO2-C emissions were similar to the influence of landform 

element on plant community characteristics (Chapter 4.2).  Compared to other landform 

elements, soil temperature and soil water were less limiting to plant growth and CO2 

emissions in the DP landform element.  On the other hand, even though CO2 emissions 

were least on the SX landform element where soil temperature was adequate for plant 

growth, water usually limited plant growth and CO2 emissions.  Carbon dioxide 

emissions recorded from the SX landform element were less than CO2 emissions 

recorded from the NX landform element.  Carbon dioxide respiration appears more 
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responsive to changes in soil water than to changes in soil temperature.  Typical of 

northern wetlands, the bulk density and the ratio of standing-dead biomass of graminoids 

to standing-live biomass of graminoids were low on the DP landform element (Kantrud et 

al., 1989).  Plant production increases in moist conditions compared to xeric conditions, 

but decomposition increases too (Kantrud et al., 1989).  Past haying of DP landform 

elements may also have contributed to low standing-dead biomass of graminoids to 

standing-live biomass of graminoids ratio.   

Mowing increased CO2 flux rates, weighted average daily CO2-C and cumulative 

CO2-C emissions in both years.  Grazing can increase CO2 emissions by increasing plant 

photosynthesis and C transported to the roots (Lecain et al., 2000).  Grazing, trampling 

associated with grazing and mowing also increases CO2 emissions by increasing soil 

temperature, damaging roots and adding plant matter to the soil (Redmann, 1978; Bremer 

et al., 1998).  Mowing decreased standing-dead biomass of graminoids while increasing 

CO2 flux in the current study.  Mowing often increases the absorption of solar radiation 

by the soil surface and could increase soil temperature thereby increasing soil respiration.  

In the current study, mowing did not increase soil temperature.  Except on the SX and DP 

landform elements, differences in weighted daily average CO2 flux between control and 

the mowing treatment were large in all landform elements.       

Similar to other non-flooded soils, soils in the present study consumed CH4 

throughout the year (Topp and Pattey, 1997).  The exception was 7 April 2004, when 

CH4 production was likely favoured and emissions were above zero.  The production of 

CH4 is possible during the snowmelt in the Mixedgrass Prairie (Wang and Bettany, 1995) 

or after rain (Chan and Parkin, 2001).  Methane is often simultaneously produced and 

consumed within the same soil column (Topp and Pattey, 1997).  In soil that is not water 

saturated, methane production occurs in the anaerobic areas created by soil structure 

(Conrad, 1996).  Clay content of soils was similar in all landform elements in the current 

study.  As soils are wetted, decreased O2 diffusion into the soil increases CH4 production 

over its consumption (Mosier et al., 1998b).  As soils dry, diffusion of O2 into the soil 

increases, anaerobic conditions decrease and consumption can be greater than production.  

Methane consumption in the current study is similar to that on the Shortgrass Prairie of 
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Colorado (Mosier et al., 1991; Mosier et al., 1997) and pastures in Ontario (Dunfield et 

al., 1995).   

Within-year fluctuation of CH4 consumption in the present study may have been 

caused by the variation of temperature and soil water.  Cold temperatures are thought to 

decrease CH4 oxidation (Potter et al., 1996), but consumption was least during summer 

when the soil temperature was greatest.  Drying the soil reduces anaerobic microsites and 

methanotrophic activity, while wetting the soil has the opposite effect (Schnell and King, 

1996).  Except in the fall of 2003 when soil water was limited, CH4 consumption of soil 

was greatest at the beginning and the end of the sample season when soil water was also 

greatest.   

Landform element influenced CH4 flux rates, weighted daily average CH4-C and 

cumulative CH4 consumption (Mosier et al., 1996; Torn and Harte, 1996), but the 

influence of this factor on CH4 flux rates was inconsistent over time.  Methane uptake on 

the DP landform element was among the least in 2003-2004, but increased compared to 

other landform elements the following year.  The DP landform element was flooded in 

the spring of 2003, and CH4 was likely produced during this period.  Measurements of 

GHG flux from the DP landform element only began in 2003 when water in the DP 

landform element had disappeared, but the CH4 consumption to CH4 production ratio at 

this point may have been lower than elsewhere in the landscape because of previous CH4 

production while water saturated.  Despite accumulating more snow than all other 

landform elements, the DP landform elements did not flood in spring of 2004 and 

therefore the series of conditions that may have influenced CH4 flux in the DP landform 

element in 2003 did not occur.  The changing soil water of this landform element may 

have been responsible for the changing CH4 flux rates during the two years.  Methane 

consumption recorded on the SX landform element remained greater than CH4 

consumption recorded on other landform elements possibly due to the lack of soil NH4
+, 

which can inhibit CH4 oxidation (Hütsch, 2001).  Nitrous oxide production, a soil process 

that is N-limited, can be inversely related to CH4 oxidation (Mosier et al., 1991).  No 

inverse relationship appeared to occur in the present study, though the CCA from 2004-

2005 suggests that CH4 consumption and NO3
- may be negatively correlated.  The 

consumptive flux of CH4 is often determined by the ratio of CH4 production to CH4 



79

consumption within the soil column (Mosier et al., 1998b).  The CH4 consumption on the 

SX landform element conditions may have been high because CH4 production was rarely 

favoured by conditions on that landform element.  The soil of the SX landform element 

was usually dry and wetting very dry soils can increase CH4 consumption (Schnell and 

King, 1996).  Therefore, precipitation may have increased CH4 consumption on the SX 

landform element the most, because soil was driest there.  Methane consumption rate was 

high on the SV landform element probably because soil temperature requirements for 

CH4 consumption were met and soil water, needed to drive the consumption of CH4, was 

often greater than on the SX landform element.  Methane consumption rate was the least 

on the NV landform element because cool, moist condition, relative to south facing 

landform elements, may have decreased the CH4 consumption to production ratio.   

Mowing tended to increase CH4 consumption.  In soils where water impeded CH4 

consumption, mowing may have increased soil temperature and decreased soil water, 

which could also increase CH4 consumption (Mosier et al., 1998b).  Removal of above-

ground biomass also increases CH4 consumption in the Tallgrass Prairie because of 

changes in soil temperature and soil water (Tate and Striegl, 1993).  The relationship 

between mowing and WFPS and mowing and CH4 consumption, however, was not 

consistent in the present study.  Mowing increased, decreased or did not change soil 

water and CH4 depending on the time of year and the landform element.     

Nitrous oxide emissions were near zero on most sample dates.  Soil N was limited 

in the present study.  Total mineral N (NH4
+ and NO3

-) in an area of Black Soil in 

Saskatchewan ranged from 3 to 7 mg N kg soil-1 in pastures to 20 mg N kg soil-1 on a 

fallow arable field (Corre et al., 1996), while total mineral N in the present study was 

below 2 mg N kg soil-1.   The combination of competition for N and dry soils decreases 

N2O flux rates (Mummey et al., 1994).  The rate of N2O production in the current study 

was similar to pastures in Saskatchewan (Corre et al., 1999) and less than arable lands in 

Saskatchewan and Alberta (Izaurralde et al., 2004).  The mean NO3
- content of soil on all 

landform elements in the present study is below the 5 mg NO3
- kg dry soil-1 threshold 

needed for denitrification to be the major source of N2O (Lemke et al., 1998).  There is 

no relationship between WFPS and N2O production when denitrification occurs at low 

rates (Groffman and Tiedje, 1991).  There is also no clear relationship between soil N and 
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N2O when soil N is below the 5 mg threshold (Izaurralde et al., 2004).  Water-filled pore 

space was likely well below the threshold necessary for major N2O production in the 

current study.  Therefore, when WFPS increased above the necessary threshold, the 

production of N2O would still be constrained by low amounts of soil N.  Nitrous oxide 

production was constrained by low amounts of soil N and low WFPS on all landform 

elements in this study.     

Negative N2O flux rates occurred on several sample dates, but consumption of 

N2O was much less than that recorded from Tallgrass Prairie in Kansas or forest in 

Belgium (Groffman and Turner, 1995; Goossens et al., 2001).  Nitrous oxide 

consumption occurs only during the denitrification process when microbial activities 

responsible for N2O reductase are faster than that for NO (Beauchamp, 1997; Cavigelli 

and Robertson, 2001).  Nitrous oxide uptake in a N-limited forest ecosystem was 

attributed to denitrifying bacteria consuming atmospheric N2O as a source of electron 

acceptors instead of NO3
- (Papen et al., 2001).  Denitrification requires a WFPS of 60 to 

90% (Bolan et al., 2004), a condition rarely met in the present study (Figure 4.2).  

Nitrifier denitrification does not have the same WFPS requirement as denitrification and 

occurs in unsaturated soils of natural ecosystems (Wrage et al., 2004).  Nitrifier 

denitrification utilises the denitrification process and may also consume N2O.   

Nitrous oxide flux rates were greater in 2003-2004 than in 2004-2005 because 

spring sampling in the 2003-2004 included days in the spring of 2004 with large 

production while spring sampling in 2004-2005 was low.  Nitrous oxide production is 

often greater following a dry year because NO3
- builds up in the soil during dry years 

(Mummey et al., 1994), but in the current study, the year following drought did not have 

greater N2O production.   

Within year variation of N2O flux rates is due to fluctuations in weather, soil 

water, availability of NO3
- and rate of nitrification (Mummey et al., 1994; Bolan et al., 

2004).  The timing of the large positive flux that occurred 22 March 2004 is consistent of 

large N2O emissions in the spring of other years (Lemke et al., 1999).  Dead microbes 

and NH4
+ fixed on soil particles add to available sources of N2O substrate when soils 

thaw in spring (Müller et al., 2002) because N2O producing microbes benefit from C and 
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N leaked from microbes or roots damaged by the freeze thaw cycle (Wagner-Riddle and 

Thurtell, 1998; Bolan et al., 2004).   

Landform element and mowing induced differences in soil temperature and soil 

water, both contributing to differences in N2O flux (Corre et al., 1996; Izaurralde et al., 

2004) in 2004.  On 22 March 2004, the majority of N2O emissions were recorded on the 

DP and south-facing landform elements.  Plants cannot compete for soil N while dormant 

in March.  Decreased snow cover, earlier warming and earlier microbial activity in spring 

on south-facing landform elements compared to north-facing landform elements may 

increase the production of N2O by south-facing landform elements compared to north-

facing landform elements.  Upper slope positions produce more N2O than lower slope 

positions in spring (Corre et al., 1996).  For the rest of the sampling season, production of 

N2O from the DP landform element constitutes most of the total N2O budget because of 

greater soil water and soil N than in other landform elements.  Nitrous oxide flux rates in 

spring of 2005 were low, probably because the soil was still too cold for microbial 

activity.  In soils with low denitrification rates where nitrification is the main source of 

N2O, WFPS is not a good indicator of N2O (Groffman and Tiedje, 1991), but gravimetric 

soil water may be used to predict N2O emissions (Izaurralde et al., 2004).  Nitrous oxide 

production is positively correlated with biomass production in the Tallgrass Prairie 

(Groffman and Turner, 1995), but not in the current study (Chapter 4.3).  Cooler and 

usually wetter north-facing landform elements were expected to have greater N2O flux, 

but competition for soil N between microbes and plants may have favoured plant growth 

given the large amount of plant biomass in this area.  Plant growth and N2O production 

may have been limited by low amounts of soil N or soil water.   

Mowing increased N2O production the most on the south-facing and UP landform 

elements.  Mowing decreased standing-live biomass of graminoids and may have 

therefore decreased the uptake of soil N, allowing more of it to be transformed into N2O.  

Grazing increases N2O emissions, but usually because of animal deposited N and 

trampling action (Ryden, 1985; De Klein et al., 2001).  In fact, grazing increases 

denitrification more than mowing (Ryden 1986; Oenema et al., 1997).   

The CCA joint plot for 2003-2004 shows that during a dry year the correlations 

between species composition and GHG flux rates was weak.  Greenhouse gas flux from 
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all landform elements was low in 2003-2004, therefore the correlation between GHG flux 

and species composition was weak.  Species composition, even though varying with 

landform element, cannot be used to explain variations in GHG emissions in 2003-2004.   

The 2004-2005 CCA joint plot shows the importance of the DP landform element 

in determining landscape scale variation in GHG flux.  The DP landform element was at 

the high end of both CO2 and CH4 flux gradient arrows.  The joint plot also showed that 

soil water content was correlated to GHG flux.  Soil water content was a significant 

environmental variable in determining species distribution, while WFPS, an indicator of 

anaerobic conditions, was not significant.  Anaerobic conditions are important for high 

N2O emission rates, but these conditions did not occur in the present study.  Therefore, 

most GHG flux occurred in aerobic conditions and soil water content was probably more 

important than WFPS because soil water controls general microbial activity and not just 

the activity of obligate anaerobic microbes.  The chosen environmental variables only 

account for 28 to 31% of the variation in species composition.   The environmental 

conditions measured during the sampling season attempted to explained the rate of plant 

growth and microbial activity associated with GHG flux, but not the survival or death 

rates of plants.  Environmental attributes that influence plant germination and survival, 

like cold stress days, winter soil temperature and germination conditions may have a 

greater influence on the distribution of species.  If the variables measured were not the 

same ones that determine survival and death of plants, then the variance in species 

distribution explained by the environmental variables would be low.   

Topography and vegetation can be related to landscape scale GHG flux 

(Beauchamp, 1997; Reay et al., 2005).  The return of plant materials to the soil can 

influence the rate of soil processes (Miles, 1985; Miles, 1987), possibly changing GHG 

flux.  Differences in N uptake and soil water use among plant communities can also 

change GHG flux rates (Epstein et al., 1998).  Using plant communities as indicators of 

GHG flux assumes that plant distribution and production are distinctive and predictable 

throughout the landscape.  However, plant growth and GHG flux do not appear to be 

equally constrained across the landscape.  Plant growth on the DP and north-facing 

landform elements is less water limited than on the south-facing landform elements.  

Plant growth may mute differences in the characteristics of the physical environment that 
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should create landscape patterns of GHG flux.  Factors controlling plants and GHG flux 

rates are similar, but plant growth may be limited at different rates of these factors than 

GHG flux rates or plant distribution may be controlled by unmeasured factors, making 

the use of plants as indicators of fine scale GHG variations difficult.   

The soil CO2 flux rate may be good indicator of biological activity rather than a 

calculation of net contribution to global climate change.  Consumption of CH4 amounts to 

several hundred g C ha -1 season-1, which nearly balances the N2O produced when 

comparing the GWP of each gas.   Nitrous oxide flux varies between production and 

consumption.   
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6. SUMMARY AND PRACTICAL IMPLICATIONS 

The flux of GHGs by living organisms in soil is controlled by the environment 

(Rogers and Whitman, 1991).  The environment is influenced by abiotic factors such as 

climate (Metting, 1993), soils (Ladd et al., 1993) and topography (Ellis, 1938), and biotic 

factors such as soil organisms (Paul and Clark, 1996), vegetation structure (Epstein et al., 

1998), composition (Robinson et al., 2003) and grazing (Daniel et al., 2002).  These 

factors interact to influence the spatial and temporal variability of GHGs (van Kessel et 

al., 1993; Velthof et al., 1996a).   

Similar patterns in plant community characteristics occurred across the landscape 

in both sampling seasons.  Species richness, species evenness and species diversity were 

all affected by landform element while only species evenness was affected by mowing in 

2004.  Landform element was important in determining the distribution of species at a 

landscape level in both sampling seasons.  Precipitation and mowing appeared to be 

important determinants of forb, shrub and graminoid biomass production.  Forb, shrub 

and standing-live biomass of graminoids were greater in 2004 than in 2003, possibly 

responding to increased precipitation.  Standing-dead biomass of graminoids was less in 

2004 compared to 2003, reflecting decreased standing-live biomass in 2003 needed to 

add to standing-dead biomass in 2004.  Water-filled pore space was generally greatest on 

the DP and NX landform elements and these landform elements had more total biomass 

than drier landform elements.  Mowing removed biomass thereby slowing plant growth 

and changing the soil environment.   

Gas flux was affected by landform element, mowing and sample date.  The flux 

rates of CO2, CH4, and N2O fluctuated in response to changes in soil water and soil 

temperature across time and across the landscape.  Landform element significantly 

affected the flux of CO2, CH4, and N2O.  The largest production of CO2 and N2O were 

recorded on the DP landform element, while the largest consumption of CH4 was 

recorded on the SX landform element.  Mowing increased CO2 emissions, CH4 
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consumption and N2O production.  Interpretation of multivariate analysis of species 

composition and environmental gradients was difficult in a dry year.  In a wet year, like 

2004-2005, aspect was negatively correlated with CH4 flux, while slope shape was 

positively correlated with CO2 flux.  Carbon dioxide emissions appear similar to 

emissions from studies from the Mixedgrass Prairie of Saskatchewan (Redmann, 1978).  

The soils in the present study consume similar amounts of CH4 to soils of pastures in 

Ontario (Dunfield et al., 1995).  Nitrous oxide production appears less than N2O 

production from arable land in Saskatchewan (Izaurralde et al., 2004), but similar to N2O 

production of pastures in Saskatchewan (Corre et al., 1999).   

Characteristics of the physical environment, plant community characteristics and 

GHGs were all influenced by landform element and mowing.  Therefore, the null 

hypotheses that: 1) landform element and mowing have no effect on environmental 

attributes, 2) landform element and mowing have no effect on plant community 

characteristics, 3) landform element and mowing have no effect on greenhouse gas flux 

and 4) environmental attributes, plant community characteristics and GHG flux are not 

correlated are all rejected, but with reservations as to the application of these conclusions.  

Landform element and mowing contributed to differences in the characteristics of the 

physical environment, plant community characteristics and GHG flux.  Differences in 

PDIR among landform elements, accumulated snow water equivalent and soil 

temperature suggests that patterns in plant community characteristics may be similar to 

patterns in GHG flux rates.  The current study shows, however, that differences in the 

characteristics of the physical environment like soil N, WFPS and GHG flux rates were 

not consistent through time.  Mowing modified plant community characteristics, 

especially species evenness.  Mowing also increased CO2 flux and, to a lesser extent, 

increased CH4 consumption and N2O production.  Soil water and soil temperature were 

also correlated with GHG flux, but changes in all of these factors over time make 

interpretation of results difficult.   

It is important to determine when a landform element was sampled for the 

accurate development of a net GHG budget for a landscape scale study.  The DP 

landform element can be flooded in spring and dry later in the season.  This landform 

element has the potential to be a source of anaerobically produced CH4 and N2O, a sink 
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for CH4, and a source for CO2 depending on when water is present.  The SX landform 

element is generally the driest portion of the landscape, but may be the first to produce 

N2O during the spring following a wet fall or heavy snowfall because it is the first 

landform element to warm.  It is therefore imperative that the influence of the 

combination of various landform elements on hydrological processes over time be 

stressed when studying landscape scale GHG flux because studies recommend frequent 

sampling in spring to capture the majority of N2O emissions (Corre et al., 1999).   

Canadian agriculture contributes 8.3% of Canada’s total GHG emissions (Olsen et 

al., 2003).  The Canadian government plans to mitigate agricultural GHGs by identifying 

best management practices that change the production and consumption of GHGs to 

positively influence climate change (Agriculture and Agri-Food Canada, 2003).  The 

starting point for proposed best management practices for the Mixedgrass Prairie of 

Saskatchewan is to recognize the relative source and sink that rangelands represent 

compared to arable lands.  The net emissions of GHGs from Saskatchewan rangeland are 

relatively low (de Jong, 1981; Corre et al., 1999), but the potential for increased 

emissions from rangeland is high if improperly managed (Mosier et al., 1998a; Mosier et 

al., 1998b).  For instance, cultivated soils of Saskatchewan have lost 21% of stored C 

from 1910 to 1990 (Smith et al., 1997).   

Management for GHG flux on the Mixedgrass Prairie of Saskatchewan needs to 

be addressed at several scales.  At the fine scale it should be noted that mowing increased 

CO2 and N2O emissions production.  Therefore, grazing management that retains plant 

material will reduce CO2 and N2O emissions and benefit rangeland production (Willms et 

al., 2002).  Range health assessments suggest changes in grazing management that 

promote ecosystem functions like soil development, water retention, biodiversity 

maintenance and nutrient cycling (Adams et al., 2005).  Because the functions high-

lighted in range health assessments also control GHG flux, range health assessments 

could easily be modified to inform range managers of the impact of grazing on GHG flux 

so that producers can reduce CO2 and N2O production.  Healthy range could also include 

the most beneficial GHG flux.  Other suggestions include preventing increases in the bulk 

density of the soil.  Any increase in the bulk density would increase the WFPS and 

increase N2O production.   
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At a medium scale, such as the Missouri Coteau, the DP landform element stands 

out as an important contributor to the GHG flux of the entire landscape.  The Missouri 

Coteau has a distinctive vegetation type, landform, climate and land use with very little 

flux of GHGs except in the DP landform element, which has distinctive vegetation 

associated with periodic, high water availability.  Therefore, any correlation between the 

characteristics of the physical environment, the plant community and GHG flux may be 

better reflected at this medium scale rather than the fine scale.   

Management that leads to vegetative cover change on the Mixedgrass Prairie is an 

important contributor to climate change at the coarse scale (Skinner and Majorowicz, 

1999).  A policy of preventing the conversion of the Mixedgrass Prairie to arable 

agriculture and encouraging the conversion of croplands to perennial grasses would 

benefit Canadian attempts to mitigate GHGs by retaining, or increasing important CO2 

storage, CH4 sinks as well as not adding to N2O production.  The role of rangelands in 

mitigating climate change may be heightened in light of increased atmospheric CO2 

concentration and N deposition, both of which could increase productivity and increase 

the sink ability of Saskatchewan rangelands.  The retention and restoration of rangelands 

may also provide a stable source of agriculture production in the light of global climate 

change and the potential of increasing periods of drought.  Grazing policy initiatives that 

promote the sustainable use of rangelands could benefit the climate as well as the people.  
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