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1. Introduction

Polymers are ubiquitous in our world. From synthetic compounds such as plastics
to the very building block of life: fibers, proteins, and DNA — these long, chain-like
macromolecules feature in a variety of roles. And yet it was relatively recently in
our history that we became aware of their existence. In 1920 Hermann Staudinger
proposed the structure of small repeating units (monomers) linked by covalent bonds
to explain the high molecular weight measured for certain materials, and, after some
initial skepticism, these ideas became generally accepted.

Today, our understanding of polymers is still very limited. They are usually much
too complex, with too many degrees of freedom and different kinds of interactions. In
fact, there is little chance that we will ever develop a general theory able to properly
predict, say, the native structure of a protein or by which pathways it will fold. Study-
ing the effects of specific configurations of chemically active groups may be of some help
in that regard, but such an approach is not very satisfying from a theoretical-physics
point of view as it does not yield a deeper understanding. A more physical way of ap-
proaching polymers is to identify what aspects can be generalized and investigate these
by means of simplified models. In other words, we concentrate on those properties that
arise solely from the characteristic geometrical structure and are independent of chem-
ical details. This field of theoretical polymer physics has been pioneered by Paul Flory
in the 1930s, who realized that some universal properties of flexible polymers in good
solvent condition can be explained by applying Kuhn’s concept of excluded volume
to the random walk process. This self-avoiding walk (SAW) is today one of the most
successful models in statistical physics. When fitted with additional nearest-neighbor
attractions, it even captures the behavior of so-called Θ-polymers, which collapse to a
globular state at low temperatures. Our understanding of the SAW has deepened sub-
stantially since de Gennes’ discovery of its fundamental relationship to spin systems
and the theory of critical phenomena in 1972. Not only did this intriguing insight con-
solidate the importance of the SAW model in physics, it also opened it up to the newly
emerged machinery of field-theoretical renormalization group theory. This lead to a
revolution in the field, driven most prominently by the works of Edwards, Zinn-Justin,
and Des Cloizeaux. Besides theoretical advances, drastic improvements of computa-
tional capabilities have also greatly furthered our knowledge of the SAW and similar
models. These improvements consisted in massive increases in computation power on
the one hand and evermore sophisticated algorithms on the other. On the whole, the
SAW model is today reasonably well understood — though mathematically rigorous
results remain elusive.

In reality, polymers are not always immersed in a perfectly homogeneous solvent;
their environment is often highly irregular across many length scales. The interior
of a biological cell, for instance, is teeming with a variety of macromolecules and or-
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1. Introduction

ganelles of very different shapes and sizes. The paradigm for studying the influence
of such structural disorder on polymer conformations in a controlled manner is the
model of a self-avoiding walk on a lattice with randomly placed defects. Most in-
triguing is the situation where the concentration of sites is equal to the percolation
threshold of the lattice, i.e., when a macroscopically large cluster of non-defect sites
can just barely exist. Such a critical percolation cluster is a fractal object, thus rep-
resenting the limiting case of disorder on any length scale. The model of SAWs on
critical percolation clusters may seem somewhat artificial, but it continues the spirit
of approaching reality from a simplistic and well-defined limiting case. As a combi-
nation of two of the most fundamental models in statistical physics, this interplay
of fractals is also of considerable academic appeal. It has therefore been studied ex-
tensively in the past. A variety of tools, both analytical and numerical, have been
employed: analytical approaches included mean-field (“Flory”) approximations, real-
space renormalization-group methods, and perturbative field theory, while numerical
studies used exact enumeration as well as various Monte Carlo methods. However, the
model proved much more challenging than the pure SAW, and many of its aspects are
still today far from clear. Analytical investigations have remained largely qualitative,
often relying on uncontrolled or heuristic approximations, and have yielded conflicting
results. Numerical approaches, on the other hand, could only handle relatively small
systems, where the asymptotic behavior is obscured by finite-size effects. This was
because Monte Carlo simulations of SAWs tend to struggle with the strong confine-
ment presented by the medium, while the computational cost for exact enumeration
generally increases exponentially with the length of the walks.

Fortunately, however, the fractal structure of a critical percolation cluster lends
itself to a hierarchical factorization of the problem, and it is thus possible to exactly
enumerate SAWs very efficiently. As part of my diploma thesis, I had presented a proof
of concept for this idea, which has by now matured into a working method. It allows
complete enumeration of SAWs of well over 104 steps on critical percolation clusters
of different dimensionality, beating even the most efficient Monte Carlo methods.

Equipped with this new tool, I could look at the problem of self-avoiding walks
on critical percolation clusters in unprecedented detail. Besides the presentation and
discussion of the methods itself, the results of these investigations constitute the main
part of this work. More specifically, the remainder of the thesis is organized as follows:

• Chapter 2 aims to provide an overview of the relevant theoretical concepts. It
also acquaints the reader with the model that is the main subject of this thesis
and lays out the current state of research. After a quick dive into polymer
physics with special focus on the self-avoiding walk model, I turn to the theory
of percolation and discuss the fractal geometry of critical percolation clusters.
Finally the model of SAWs on critical percolation clusters is introduced and
defined, and the existing knowledge relevant for my work is briefly reviewed.

• Chapter 3 begins with a short review of existing numerical methods for studying
SAWs on critical percolation clusters, as far as they are relevant for this thesis.
Its main part consists of a detailed elaboration of the newly developed “scale-free
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enumeration” (SFE) method and its variants: first the key ideas are outlined,
then the actual enumeration algorithm is explained, and finally a description
is given of a how the clusters are partitioned into a hierarchy of nested “cells”
as is required to factorize the enumeration procedure. This is followed by a
discussion of the method’s performance, scope, and limitations, substantiated
through benchmark results. In addition, a quantitative comparison with the
most capable Monte Carlo method, the pruned-enriched Rosenbluth method
(PERM), under different conditions is presented. This analysis also served to
test the capacity and reliability of PERM, which was used to produce some of
the results for Chapter 5.

• The main results, concerning the asymptotic scaling behavior of SAWs on critical
percolation clusters, are presented in Chapter 4. Most notably, they comprise
accurate estimates of the scaling exponent of the end-to-end distance on critical
percolation clusters and their backbones in dimensions two to seven, as well
as empirical evidence for unexpected scaling behavior of the average entropy
and number of SAW conformations. This second aspect involves an analysis
of the distribution of the numbers of conformations, which exhibits extreme-
value statistics. Finally, a close-up look at the spatial distribution of walks on a
few individual clusters is presented, supplying qualitative clues to help explain
the observed scaling behavior. The chapter also encompasses comparison with
numerical results and analytical predictions taken from previous studies.

• In Chapter 5, the model is expanded in different directions.

Using both PERM and the SFE method, I investigated SAWs on percolation
clusters at concentrations above the critical threshold. This was done in order
to test the predictions of the Meir-Harris model, which is the widely accepted
theory for SAWs in disorder. The rest of the chapter is dedicated to variations
of the SAW, namely, importantly SAWs with nearest-neighbor interactions and
kinetic growth walks.

• In Chapter 6, I summarize the main findings and conclusions of the thesis and
discuss prospectives and challenges for future investigations.

• The Appendix 6 outlines the creation and analysis of the critical clusters. It
furthermore contains technical details which needed to be included for the sake
of reproducibility but would have impaired the readability.
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2. Background and theory

This chapter gives a more detailed introduction to the topic, outlines the relevant the-
oretical concepts, and describes the history and state of research of the main subject.
In addition, it serves to introduce most of the definitions and nomenclature that I use.
Apart from some comment and the argumentation in Section 2.3, the chapter does not
represent original research of mine but is simply a compilation of theories and results
that are relevant for this thesis.

2.1. Polymers and self-avoiding walks

Polymers are macromolecules consisting of repeating units called monomers. These are
typically made up of a small number of atoms and are connected by covalent bonds.
The number of monomers in a polymer, also known as the degree of polymerization,
is typically denoted by N . For many common polymers, it can be impressively large,
e.g., up to N « 106 for linear polyethylene (HDPE) and N « 108 for human DNA.
One commonly distinguishes between homopolymers, for which the elemental units are
identical, and heteropolymers, for which they vary. Many synthetic polymers, such
as polyethylene, are in the first category, while most biopolymers, notably DNA and
proteins, are in the second. However, this distinction is not important here as the mi-
crostructure shall be neglected anyway. Another classifier is a polymer’s architecture:
in general, polymers come in a number of different shapes such as branches, combs,
rings or stars. Here I shall only be concerned with the simplest case of a linear chain.
More comprehensive discussions of polymer statistics can be found, e.g., in Refs. [1–3].

2.1.1. Polymers in solution: universality and modeling

Monomers from different parts of a polymer molecule (and from different molecules)
attract one another by electro-static or van-der-Waals forces, depending on the specific
microstructures. In a good solvent, however, these interactions are screened, simpli-
fying the problem and allowing for a more generic description. Another simplification
and generalization is achieved through coarse-graining : Polymers differ in their stiff-
ness as the bonds between monomers have different capacities to allow for rotation or
bending. This is quantified by the persistence length lp, the length scale of the decay
of bond-angle correlations along the chain. By considering segments of length 2lp,
called the Kuhn length, instead of the elementary chemical units, we obtain a chain of
monomers that is effectively freely-jointed. The only remaining free parameter in this
description is the chain length in units of Kuhn lengths (also typically denoted by N).
Finally, by considering the thermodynamic limit, N Ñ 8, even this last parameter
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2. Background and theory

is eliminated. Properties that characterize a polymer in such a generic description
then apply to a range of different systems, a phenomenon called universality. The
most important example of such a universal quantity for polymers is the exponent
ν, which describes how the average size (end-to-end distance or radius of gyration)
asymptotically grows with N .

To study universal quantities of polymers, we can thus use a simplistic model system
that represents the respective universality class. The simplest model is the (discrete)
ideal chain, where the polymer is represented as a random walk on a regular lattice.
The root-mean-square (RMS) end-to-end distance of a random walk increases with the
square root of the number of steps:

b

xR2
N y „ Nν “ N1{2, (2.1)

and the probability distribution of the distances is Gaussian:

PN

´

~R
¯

„

ˆ

3

2πN

˙3{2

exp

˜

´
3~R2

2N

¸

. (2.2)

The number of possible conformations Z, by contrast, increases exponentially:

ZN “ µN . (2.3)

The connectivity constant µ is not universal but equal to the coordination number of
the lattice. Its meaning cannot be directly translated to continuous systems.

The ideal chain is a useful test-tube model, and it even correctly describes the be-
havior of flexible polymers in very dense solutions. In dilute solutions, where polymers
are largely on their own and each monomer will be almost exclusively surrounded
by solvent molecules, another model applies: the self-avoiding walk (SAW). One can
think of a SAW as a random walk that can visit each position only once. However, the
picture of walker taking successive steps in random directions is slightly misleading in
the context of polymers as this would lead to different statistical weights for different
conformations. As explained later on (Section 5.3), this would give the so-called ki-
netic growth walk (KGW). For the standard SAW, by contrast, all conformations are
equally likely.

2.1.2. Scaling properties of the self-avoiding walk

Despite its simplicity, relatively little is rigorously known about the SAW. (The math-
ematical theory of SAWs is discussed in Ref. [4]) We know that a scaling law of the
form of Eq. (2.1) applies for its end-to-end distance, but not even the “obvious” bounds
1{2 ď νSAW ă 1 are rigorously proven in D “ 2-4. We furthermore know that the
number ZN of SAW conformations asymptotically also increases exponentially, i.e.,
that the limit

lim
NÑ8

Z
1{N
N :“ µ (2.4)
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2.1. Polymers and self-avoiding walks

exists. Its exact value is only known for the honeycomb lattice, but relatively tight
bounds have been derived for hypercubic lattices. The asymptote µN is approached
from above by ZN , with

µN ď ZN ď

#

µNeKN
1{2

, D “ 2

µNeKN
2{pD`2q

, D “ 3, 4.
(2.5)

Much knowledge about SAWs stems from non-rigorous sources such as conformal
field theory, renormalization-group analysis, and numerical simulations. In the physics
community, there is in fact very little doubt that the scaling of the number of confor-
mations is described by

ZN „ µNNγ´1, (2.6)

with a universal parameter γ called the enhancement exponent . The value of γ is
strongly suspected to be 43

32 in 2D, while the best estimate in 3D is currently γ “
1.15698p34q [5]. The exponent describing the scaling of the root-mean-square end-to-
end distance,

b

xR2
N y „ Nν , (2.7)

is in 2D exactly given by the Flory value of ν “ 3{4 (see next section), and the most
accurate numerical 3D estimate is ν “ 0.587597p7q [6].

In D ě 4, self-avoidance is negligible and the SAW asymptotically behaves like the
ideal chain, i.e., ν “ 1{2 and γ “ 1. However, in D “ 4, the upper critical dimension
of the system, there are still strong logarithmic corrections which can obscure this
behavior to some extent.

2.1.3. Analytical approaches

A simple way to approximate the exponent ν is given by the Flory theory [7], which
is based on minimizing a mean-field estimate of the free energy FN pRq. Ignoring
correlations, we assume that the self-avoidance results in an effective repulsion energy
that increases with the squared density times the volume:

EN pRq „ V ρ2 „
N2

RD
. (2.8)

To estimate the entropy, we use the radial distribution of the (non-self-avoiding) ran-
dom walk given by Eq. (2.2) integrated over the surface:

SN pRq “ lnZN pRq « ln pZNPN pRqq „
R2

N
´ pD ´ 1q lnR` CN , (2.9)

where the term CN is independent of R. In leading order of R, we hence get

FN pRq “ E ´ S „
N2

RD
`
R2

N
. (2.10)
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2. Background and theory

Plugging in R „ Nν and minimizing with respect to ν then yields the famous Flory
formula:

ν “
3

D ` 2
. (2.11)

This prediction is surprisingly accurate: the 2D value of ν “ 4{3 is in fact exactly right
(though this has not yet been proven rigorously), and numerical estimates proved the
3D value to be less than 1% off the mark. The Flory formula even gives the correct
result for D “ 4, even though the above derivation is actually only valid for D ă 4,
where the terms on the right-hand side of Eq. (2.10) are dominant.

As was first realized by de Gennes [8], there is an interesting connection between
the SAW and the Opnq-model for spin systems [9] (for details see for instance Refs. [1,
2, 10, 11]). The Opnq-model, which includes the Ising model (n “ 1), the xy-model
(n “ 2), and the Heisenberg model (n “ 3), is defined by the partition function

ZOpnq “ Tr
ź

xi,jy

eK~si¨~sj , (2.12)

where K “ ´J{pkBT q is a reduced coupling constant and ~si, ~sj are vectors on an
n-dimensional unit sphere that are nearest neighbors in a lattice. Using a high-
temperature expansion and taking the limit n Ñ 0 (which does not seem to have
a geometrical interpretation), one obtains for the spin-spin correlation function:

GOpnÑ0qpk, lq “
ÿ

kùl

zN , (2.13)

where z “ tanhK and the sum goes over all SAWs connecting sites k and l (N is
the respective number of steps). Summing over all end points l then reveals that the
magnetic susceptibility of the Opn Ñ 0q-model, χOpnÑ0q, corresponds to the grand
canonical partition function of the self-avoiding walk:

χOpnÑ0q “
ÿ

l

GOpnÑ0qpk, lq “
ÿ

kù

zN “
ÿ

N

ZNz
N “ ZSAW . (2.14)

ZSAW pzq is the generating function for the series of the numbers of conformations ZN .
According to Eq. (2.6), it diverges at zc “ µ´1 as

lim
zÑzc

ZSAW pzq „ pz ´ µ´1q´γ . (2.15)

The critical fugacity zc corresponds to a critical (temperature) point in the OpnÑ 0q-
model, where γ characterizes the divergence of the magnetic susceptibility. Correspon-
dences between other exponents can also be established: the critical exponent α of the
specific-heat divergence is connected to the number of self-avoiding polygons (SAPs)
(which are SAWs in the limit R Ñ 0), and the exponent ν in Eq. (2.7) is indeed the
critical exponent for the correlation length in the OpnÑ 0q-model:

ξOpnÑ0q „ |T ´ Tc|´ν . (2.16)
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This relationship between two seemingly very different models has been extremely
useful and allowed much of the extensive knowledge and methodology developed for
spin systems to be carried over to SAWs. In particular, it allowed analyzing the SAW
by means of perturbative renormalization-group methods [11].

Various heuristic approaches to the SAW have also been undertaken, which shall not
be discussed here. They involve real-space renormalization [12] and transfer-matrix [13]
techniques as well as studies of related models that are easier to calculate such as
directed self-avoiding walks (DSAWs) [14] or SAWs on finitely-ramified deterministic
fractals; see Section 2.3.3.

2.2. Critical percolation clusters

Percolation is probably the simplest model in statistical physics to exhibit interesting
critical behavior. I shall discuss the topic only superficially, focusing on aspects that
are relevant here. For a proper treatment, see, for instance, Refs. [15–17].

2.2.1. The percolation transition

If sites (or bonds) of a lattice are activated at random, there will be a point where a
cluster of active sites spans across the whole system. If the lattice is infinitely large,
this will occur at a sharply defined concentration pc, the percolation threshold . The
value of pc depends on the lattice type and is only for a few cases exactly known.
They include the bond-diluted square lattice and the site-diluted triangular lattice
but none of the site-diluted square or (hyper-) cubic lattices, which are used in this
work. However, accurate numerical estimates for pc are available for these cases. The
values I used are listed in Table 2.1.

Table 2.1.: Values for the percolation thresholds on hypercubic lattices used in this
work.

D pc
2 0.59274621p13q [18]
3 0.31160768p15q [19]
4 0.1968861p14q [20]
5 0.1407966p15q [20]
6 0.109017p2q [20]
7 0.0889511p9q [20]

When the threshold pc is crossed, the system undergoes a second-order phase tran-
sition, characterized by the continuous emergence of an order parameter, the fraction
of sites in the largest cluster, P ppq „ |p´ pc|´β , and a diverging correlation length:
ξ „ |pc ´ p|´ν . The critical exponents β and ν are universal, i.e., their values do not
depend on details such as the lattice type. To visualize this transition, clusters of
active sites are shown in Fig. 2.1 for three different concentrations: below, at (or very
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2. Background and theory

close to), and above pc. Directly at the threshold, the system is scale invariant and
clusters exist of all sizes. More precisely, the probability distribution of cluster sizes s
per site (cluster numbers) is described by a power-law:

ns „ s´τ , (2.17)

where τ is the so-called Fisher exponent. These critical percolation clusters (CPCs), if
sufficiently large compared to the lattice constant, are themselves scale-invariant (self-
similar) objects, whose geometry is not properly described by Euclidean dimensions.
Conceptually, one usually considers critical clusters of infinite size even though strictly
speaking every individual cluster is still finite at pc (a truly infinite cluster only emerges
for p ą pc). This is justified because of the scale-free distribution of cluster sizes, which
implies that the clusters can be arbitrarily large.

In numerical studies lattices are necessarily finite, so one often takes the largest
cluster to represent an “infinite” cluster. To get a bit “closer to infinity”, one can
furthermore only consider clusters that percolate the lattice, e.g., by connecting to
opposite edges of the lattice or by wrapping around it (assuming periodic boundary
conditions). Depending on the context, I shall use the term incipient cluster , per-
colating cluster or critical cluster for these. In this work the most generous version
of the wrapping criterion is used to define percolation: a cluster must close back on
itself in at least one dimension. The wrapping criterion produces less finite-size effects
than the spanning criterion [18], and it also has the benefit of producing statistically
homogeneous clusters without boundary distortions.

2.2.2. Fractal dimensions

The mass (or volume) M of any regular object scales with its linear extension (or
radius) L as M „ LD, where D is an integer number: the Euclidean dimension. For
critical percolation clusters, the exponent is non-integer, in general not even rational.

"./clusters_10a-1p0.55s4.dat" matrix "./clusters_10a-1p-1s4.dat" matrix "./clusters_10a-1p0.62s4.dat" matrix

Figure 2.1.: Clusters of connected active sites (randomly colored) at three different
concentrations: p “ 0.55, p “ 0.592746 « pc, and p “ 0.65 (from left to
right).
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2.2. Critical percolation clusters

However, it is a well-defined number, commonly denoted by df. It is the most important
example of a fractal dimension and is usually (and here) simply called the fractal
dimension. As a definition I use the size-mass relation,

M „ Ldf . (2.18)

The fractal dimension can be defined more rigorously as the Hausdorff-Besicovitch
dimension [21], but Eq. (2.18) is sufficient here. Note that SAWs are themselves also
fractals, and that Eq. (2.7) corresponds to Eq. (2.18) with df “ 1{ν.

Like the critical exponents, the fractal dimension of the critical clusters is univer-
sal, i.e., independent of the lattice type. In fact, df can be regarded as a geometrical
(“static”) critical exponent, and it is linked to the “thermal” exponents via the hyper-
scaling relation

df “ D ´ β{ν, (2.19)

where D is the Euclidean dimension of the lattice and β and γ characterize the diver-
gence of the order parameter and the correlation length, respectively. For the 2D case,
the thermal exponents have been determined exactly [22–24] yielding df “ 91{48 «
1.896. These methods do not work for D ą 2, where one has to resort to numerical
estimation instead. The best current estimates for df in dimensions D “ 2-6 are listed
in Table 2.2, alongside estimates of other fractal dimensions introduced below. Some
of the values for higher dimensions are my own results. They were obtained as a
byproduct of this work since I had to generate a large number of critical clusters any-
way. These measurements are briefly described in the Appendix A. D “ 6 is the upper
critical dimension for percolation, where all critical exponents and fractal dimensions
assume their mean-field values. Besides df, several other fractal dimensions can be
defined. The chemical dimension dl, also known as graph dimension, topological di-
mension, or spreading dimension, describes the scaling of the mass within a chemical
distance of l steps:

Mplq „ ldl . (2.20)

For non-fractals, dl also coincides with the Euclidean dimension D. Unlike df, dl
cannot (yet?) be related to the thermal exponents, and even its 2D value is only
approximately known. Closely related to dl is the shortest-path dimension dmin, which
describes how the (average) Euclidean distance scales with the (average) chemical
distance:

l „ Rdmin “ Rdf{dl . (2.21)

Numerical estimates for dmin and dl are also given in Table 2.2.

2.2.3. Cluster structure: backbone and dangling-ends

The most important substructure of a percolation cluster is its so-called backbone,
the part without singly-connected dangling ends. The backbone carries the cluster’s
connectivity and is widely considered to be the only relevant part for the asymptotic
statistics of SAWs on CPCs. (That issue is investigated in Chapter. 4.)

A common definition of the backbone is as the area through which current would flow
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Table 2.2.: Estimates for various fractal dimensions of critical percolation cluster. My
own estimates (see Appendix A.2) are marked with an asterisk. The values
for dl were obtained via df{dmin.

D df dmin dl (df{dmin)
2 91{48 [23] 1.13077p2q [25] 1.6766p3q
3 2.5230p2q [26] 1.3756p3q [26] 1.834p6q
4 3.044p2q ˚ 1.604p3q ˚ 1.90p4q
5 3.517p7q ˚ 1.813p3q ˚ 2.04p2q
ě 6 4 2 2

if voltage were attached to two distant sites [27] or, almost equivalently, as the union
of sites/bonds transversed by all self-avoiding walks connecting two distant cluster
sites [28]. The choice of these two “seed sites”, however, is somewhat arbitrary. For
clusters that percolate by wrapping around the lattice the backbone is therefore more
elegantly defined as the largest bi-connected component that wraps around the system.
The term “bi-connected component” refers to subsets of cluster sites that cannot be
disconnected by removing a single site. As can be seen the example of a 3D percolating
component shown in Fig. 2.2, the backbone is very thinly connected, so that removing
a single (“red”) site would be enough to stop it from percolating. Figure 2.3 shows
all bi-connected components of a percolating (wrapping) cluster and of a finite (non-
wrapping) cluster in 2D. For finite clusters, the distribution of sizes of bi-connected
components is also scale free [29], while for a percolating cluster, the backbone tends
to be much larger than the other bi-connected components. The distribution of the
singly-connected dangling ends (areas that remain if the backbone is removed) is also
described by a power law [30].

Figure 2.2.: Backbone of a 3D cluster of 3003 sites. Note that the two red ends are
connected across periodic boundary conditions.
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2.2. Critical percolation clusters

"./components.dat" matrix "./components.dat" matrix

Figure 2.3.: Bi-connected components (randomly colored) of two 2D percolation clus-
ters. The one on the left side percolates by wrapping around the lattice,
while the and one to the right does not. For the percolating cluster, the
backbone (red) is the largest component.

Table 2.3.: Numerical estimates for the backbone dimension for different Euclidean di-
mensions. My own results (see Appendix A.3) are marked with an asterisk.

D 2 3 4 5 ě 6
dBB 1.6434p1q [19] 1.8736p5q ˚ 1.932p8q ˚ 1.93p16q [28] 2

The backbone’s fractal dimension is called the backbone dimension of the cluster
and denoted here by dBB. For critical clusters its value is always between one and
two (dBB “ 2 for D ě 6). For supercritical clusters (p ą pc), it coincides with the
Euclidean dimension of the lattice, just as the fractal dimension of the full cluster.
Efforts to find an exact analytical expression for dBB below 6D have so far proved
unsuccessful even in the simplest case (2D). Numerical estimates for dBB are listed in
Table 2.3.

The scale-free distribution of bi-connected components implies an important prop-
erty of CPCs: they are finitely ramified . This means that parts of the cluster of any
size can be disconnected by removing a finite number of sites (or bonds) [31]. This
property is shared by some famous deterministic fractals such as the Sierpinski gasket
or the Mandelbrot-Given fractal; see, e.g., Refs. [32, 33]. For these, finite ramification
implies that one can perform exact RSRG transformations to solve many problems
analytically. They are therefore often taken as qualitative models for CPCs.
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2. Background and theory

2.2.4. Diffusion and conductance — dynamical exponents

Transport processes on critical clusters (and other fractals) are characterized by so-
called dynamical exponents. Most relevant here is the walk dimension dw describing
the spread of random walks (diffusion) in the medium:

a

xR2y „ N1{dw
´

“ NνRW
pc

¯

. (2.22)

Closely related is the spectral dimension (aka fracton dimension), ds “ 2df{dw. It
describes how much area is covered by a RW, its probability of returning to the ori-
gin, as well as the density of excitation frequencies (hence the name). Interestingly,
the value of ds is very close to 4{3 in all dimensions. However, exact equality (the
famous Alexander-Orbach conjecture [34]), which would have related the static and
the dynamical exponents, has been disproved numerically [35].

The walk dimension is also related to the (total) conductance exponent µ̃ and the
(total) resistance exponent ζ̃, defined via

σ „ L´µ̃ and ρ „ Lζ̃ , (2.23)

where σ and ρ denote the total conductivity and resistance, respectively. This connec-
tion is expressed by the “Einstein relation”:

dw “ df ´D ` 2` µ̃ “ df ` ζ̃. (2.24)

Since conductivity and resistance are determined by the backbone alone, this implies

dw,BB ´ dBB “ dw ´ df. (2.25)

The walk dimension plays a role in this work as it is thought to be related to the
scaling behavior of SAWs; see Section 2.3.3. As can be seen in Table 2.4, numerical esti-
mates for dw and dw are unfortunately not very precise, except for the two-dimensional
case.

Table 2.4.: Estimates for the walk dimensions of critical clusters and backbones. The
results in the last row were calculated from dw (first row) and the values
from Tables 2.3 and 2.2 via Eq. (2.25).

D 2 3 4 5 ě 6
dw 2.8784p8q [36] 3.88p3q [17] 4.68p8q [37] 5.50p6q [37] 6
dw,BB 2.62p3q [38] 3.09p3q [38] - - 4
dw,BB (2.25) 2.6260p9q 3.23p3q 3.57p8q 3.9p2q 4
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2.3. Self-avoiding walks on percolation clusters

2.3. Self-avoiding walks on percolation clusters

In this section, the model constituting the principal topic of this thesis is introduced
more closely. I shall state the main questions, briefly review the most important
previous findings, and discuss the various analytical theories and numerical approaches
that have been employed.

2.3.1. The model

At the core this work are SAWs on diluted hypercubic lattices with random site dilu-
tion. Special focus is on the situation where the level of dilution corresponds to the
percolation threshold of the lattice. On each disorder configuration Ci (i.e., realization
of a dilute lattice), all SAWs start at a designated site s0, called origin. I always con-
sider ensemble averages over all possible conformations of the same number of steps
N , i.e., all trajectories of length N that start at s0, only pass through sites that are
present in Ci, and visit no site more than once. An example of a conformation of
N “ 200 steps on a critically dilute 2D lattice is shown in Fig. 2.4. All such conforma-
tions are considered as equally likely, meaning that they contribute uniformly to the
ensemble average.

I was not the first to investigate this model; the number of articles dedicated to it (or
very close variants, e.g., with a different kind of lattice) is indeed quite daunting [39–86]
(I may well have missed some). The following discussion is not meant as a complete
review of the topic but shall focus on the (from my perspective) most essential points.

Figure 2.4.: Typical conformation of a 200-step SAW (black) on a critical two-
dimensional percolation cluster. Coloring of cluster sites encodes their
chemical (shortest-path) distance to the origin (center).
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2.3.2. Quenched vs. annealed average and other ambiguities

For disordered systems, one has to deal with two averages: one over (all) different
disorder configurations (replicas) and one for each individual realization. There are
two different ways how this can be done: separately (quenched) or simultaneously
(annealed). The theory of disordered systems (mainly in the context of spin glasses)
is discussed in detail in Ref. [87]. For the problem at hand, quenched averaging means
that we first take the conformational average of an observable by averaging over all
ZC possible walk conformations ω on one disorder configuration C, e.g.,

@

R2
D

C
“

ř

C,ω R
2
C,ω

ZC
. (2.26)

Secondly, we uniformly take the quenched disorder average over all these conforma-
tional averages:

“@

R2
D‰

:“

ř

C

@

R2 yC
ř

C 1
(2.27)

The term disorder configuration here refers a percolation cluster with a fixed origin
on the percolating cluster for the SAWs (I will later sometimes simply write “cluster”
instead). Every disorder configuration contributes equally to the quenched average,
irrespective of ZC , the number of walks conformations it supports. In turn, single walk
conformations on denser configurations that support many SAWs will contribute more
with respect to those on sparser ones. The annealed average, by contrast, weights all
SAW conformations equally, so that the contribution from each disorder conformation
is proportional to ZC :
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ř
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. (2.28)

The quenched and the annealed average behave differently in general, and some con-
fusion has been caused by the fact that the distinction was not made very clear in
some earlier studies. It is important to stress that the starting point (origin) must
be fixed on each cluster for the quenched average. Performing the ensemble average
over all SAW conformations from different starting points on the same cluster gives an
ill-defined mixture of the two averages, which will converge to the annealed average
with increasing cluster size.

Although fixing the starting point may seem less physical as it corresponds to poly-
mers that are pinned at one end, the quenched average has attracted much more
interest than the annealed one. The reason is that it is more intriguing from a theo-
retical point of view: while the annealed average is in some ways trivial (as explained
below), quenched systems are rich in challenging problems with relations to spin sys-
tems and a unique critical behaviors. For this work, I focused on the quenched system,
not least because the annealed average is, incidentally, much harder to access numeri-
cally. This is because ZC is distributed very broadly, so that a very small number of
configurations will determine the average.
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2.3. Self-avoiding walks on percolation clusters

For the average number of conformations Z, the distinction between quenched and
annealed does not apply as it is not defined for a single walk1, but one still has to
be mindful of the exact definition of the average: Some studies use xZy to denote the
average over all disorder configurations, including those with no SAW conformations
(e.g., when the start is on an empty site). I shall instead mainly consider clusters
where the starting location is on the incipient cluster and use the notation rZsIC for
this average:

rZsIC :“

ř

C ZC
ř

C 1
. (2.29)

For both the end-to-end distance and the number of conformations, one can also
consider averages over all configurations that support at least one SAW conformation
for a given length N . This is usually called the all cluster (AC) average in contrast to
the incipient or infinite cluster (IC) average, and shall here be denoted by r. . .sAC. IC
and AC averages of the end-to-end distance and other observables are widely believed
to share the same asymptotic behavior, and most researchers have so far focused on
the IC case. For better comparability with the literature, I therefore also primarily
investigated the IC average. In hindsight, however, the AC average might have been
a better choice as it can be defined completely independent of boundary conditions,
percolation criteria or lattice sizes.

2.3.3. End-to-end distances and the exponent ν

The most prominent question concerning SAWs on diluted lattices is whether (and
how) the exponent ν it is affected by the concentration p. It was first raised by
Chakrabarti and Kertesz [39], who claimed that dilution is always relevant (in the
renormalization-group sense) for both the quenched and the annealed system. Their
argumentation was based on the Harris criterion [88], which, in its simplest form, states
that disorder is relevant if

2´Dνc ą 0 pα ą 0q, (2.30)

where νc is the critical exponent for the correlation length of the undiluted system.
However, as was pointed out by Aharony (see note added in proof of Ref [39]) and later
by Kim [43] and Harris himself [44], this simple version of the criterion does not apply
in the n Ñ 0 limes. Indeed, Harris showed that ν is completely independent of the
p for the annealed average (taken over all disorder configurations). This is basically
because in a randomly diluted system, every SAW conformation from the undiluted
system will exist with uniform probability pN . Since this factor is independent of the
extension

?
R2, the average cannot be affected:

b

txR2yup “

b

xR2y1 „ Nν1 (2.31)

However, the question about the behavior of quenched average the still remained
unanswered. One simple argument for a change of ν at critical dilution but not above is

1Though one could define the annealed averages as tZu “
ř

C Z
2
C

ř

C ZC
.
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2. Background and theory

based on the fact that the critical behavior usually depends on the system’s dimension-
ality. Since the fractal dimensions of critical clusters are smaller than the Euclidean
dimension of the lattice, one should expect νpc ą ν1, which is also supported by Flory
arguments. Indeed, simply replacing D with the fractal dimension df in Eq. (2.11),

ν “
3

df ` 2
(2.32)

gives plausible results, as noted in Refs [40, 49]. However, this is a bit too naive as
the derivation from Section 2.1.3 does not work on critical clusters. Also, as pointed
out in Ref. [48], df is probably not the relevant fractal dimension for the SAWs, and
using the backbone dimension dBB instead yields less plausible values. Several Flory
approximations have subsequently been proposed [40, 48, 55, 62, 89], which I shall not
all discuss. In Ref. [69] they are reviewed and compared to numerical results existing
at the time. This analysis already practically excluded all suggestions except

ν “
2` αBB

dBB ` αBBdw,BB
, (2.33)

with

αBB “
dmin

dw,BB ´ dmin
[55]. (2.34)

Eq. (2.33) is derived by minimization of the free energy assuming a radial distribution
for random walks of the quite general form

PN pRq „ exp´
`

Rdw,BB{N
˘αpBBq

, (2.35)

and has in fact been proposed in several works though with different estimates for α.

There have also been several studies based on real-space renormalization-group
(RSRG) methods [49, 53, 59, 65, 76, 90]. Drawing on the fractal geometry of the
system, such approaches are intuitive and can yield qualitative understanding, but
they have to rely on uncontrolled approximations. Unfortunately, the various studies
lead to quite different conclusions, suggesting that the problem is too subtle for such
heuristic approaches. Another strategy is looking at closely related models where the
renormalization-group transformations can be formulated exactly, as was done, for in-
stance, in Refs. [48, 91–95]. However, such approaches can also only yield qualitative
insights.

A more systematic yet less intuitive way to investigate the problem is by Fourier-
space RG analysis of the OpnÑ 0q model (see Section 2.1.3) as was done in Refs. [43,
59, 65, 80, 81, 96, 97]. However, this also produced some disagreement as the com-
bination of replica formalism and n Ñ 0-limit proved difficult. Most impact had the
work by Meir and Harris [59], where the authors used ε-expansion (with ε “ 6 ´ D)
supported by RSRG-arguments and numerical (exact-enumeration) data on the bond-
diluted square lattice. According to what has become known as the Meir-Harris model,
the RG flow in the p-z plane (z being the fugacity) has an unstable fixed point at
p “ pc “ 1{2 (and z “ zc « 0.788) and a stable one at p “ 1 (z « 0.366). They
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2.3. Self-avoiding walks on percolation clusters

concluded νp “ ν1 for p ą 1 and νpc ‰ ν1, and a first-order ε-expansion gave

νpc “ 1{2` ε{42. (2.36)

The Meir-Harris model was initially criticized [65], but eventually its predictions gained
general acceptance. A following, more detailed investigation by Ferber et al. [80]
confirmed Eq. (2.36) and added a second order term:

νpc “ 1{2` ε{42`
110

9261
ε2. (2.37)

However, this study was later put into question by Janssen and Stenull [81, 97], who
claimed that the renormalization could not be performed when using the static confor-
mational average and argued that the kinetic average (corresponding to KGWs) should
be considered instead. They even claimed that the conformational average does not
have any asymptotic scaling, though without specifying what such a “nonscaling be-
havior” would look like. (Note that the conformational average of the end-to-end
distance is well-defined and its asymptote bounded above and below by power-laws).
Their results (for KGSAWs) also confirmed Eq. (2.36), but disagreed with Ref. [80]
about the second-order term:

νpc “ 1{2` ε{42`
677

42

´ ε

42

¯2

. (2.38)

While the scaling exponent for SAWs and KGSAWs is was shown to be the same on
regular lattices [98–100], this is not clear in the presence of disorder.

Numerical studies, which used exact enumeration or Monte Carlo methods, have
also generated controversy. Earlier works [40, 54, 58] were rather inconclusive about
the question whether νpc “ ν1, but later analyses consistently found νpc ą ν1 [67, 72,
73, 78, 82], in agreement with the Meir-Harris prediction. However, there was still
some disagreement as to the exact value of ν. The question whether νp “ ν1 holds for
pc ă p ă 1 has received much less attention. Presumably this was because following
the publication of the Meir-Harris model, most researchers expected the equality to
hold and that no interesting value could be determined. One study where the question
was investigated [72] actually found evidence that νp ą ν1, but this finding seems to
have largely been ignored. As part of my diploma thesis [101], I had investigated the
issue for the 2D case, also finding evidence that νp ą ν1.

2.3.4. The number of conformations Z

The behavior of the average number of conformations has also been controversially dis-
cussed in a large number of publications. By the same argument that let to Eq. (2.31),
it follows that the average of Z over all disorder configurations (including those where
the origin is a defect site) only trivially depends on the concentration p [41, 44–46, 50]:

xZN yp „ pN`1Z
p1q
N , (2.39)
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and hence µppq “ pµp1q, according to Eq. (2.6).
However, the above argument does not directly apply for the average rZN sAC over

all clusters that support at least one SAW (of length N) and not at all the incipient
cluster average rZN sIC. There are essentially three main questions concerning the
behavior of these averages at the critical concentration pc:

1. Does a scaling law of the form of Eq. (2.6) hold?

2. Does µppcq “ pcµp1q hold as suggested in Ref. [67]? (And if not, what is µppcq?)

3. Assuming 1., is γppcq “ γp1q? (Or how does γ change?)

Of course, one can also ask these questions for p ‰ pc, but the focus is usually (and
also here) on the critical case2. While 1. has always be assumed, 2. and 3. have been
investigated in several studies for both averages. The results have been quite divergent,
but the latest numerical studies to address the question [78, 84] found µppcq “ pcµp1q
for rZsIC.

In fact, for rZN sAC, 1. and 2. should actually hold for the same reason as Eq. (2.39),
as mentioned in Ref [74]. A shall elaborate the essential argument here somewhat
more and furthermore show that γppcq ą γp1q: Let tCuN denote the set of all disorder
configurations of size L " N and tCu1N the subset that allow for at least one N -step
SAW. rZN sAC can now be written as

rZN sAC “

ř

tCu1N
ZCN

ř

tCu1N
1
“

ř

tCuN
ZCN

ř

tCu1N
1
. (2.40)

With Eq. (2.39) we then get

rZN sAC “

ř

tCuN
ZCN

ř

tCuN
1

ř

tCuN
1

ř

tCu1N
1
„ pNZ

p1q
N Q´1

N , (2.41)

where the factor QN :“

ř

tCu1
N

1
ř

tCuN
1 is the probability a randomly chosen conformations

allows for an N -step SAW. Due to the scale-free distribution of cluster sizes at pc, this
fraction can be expected to scale with a power law. Since a cluster must comprise at
least s “ N sites to accommodate an N -step walk, an upper bound is asymptotically
given by

QN ď

ż 8

N

s nsds „

ż 8

N

s1´τds „ N2´τ , (2.42)

where ns is the cluster number and the τ the Fisher exponent, which is always larger
than two. Thus we can conclude

rZN sAC „ µNpcN
γ´1`δ (2.43)

2Note that rZN sAC and rZN spICq have the same behavior for p ą pc, while the incipient cluster is
not defined for p ă pc.
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2.3. Self-avoiding walks on percolation clusters

with
µpc “ pcµ1 and δ ě `τ ´ 2. (2.44)

With τ2D “ 187{91 and τ3D “ 2.18 and the values for γ from Section 2.1.2 we thus
get

γ2Dpc ě γ2D
1 `

5

98
“

2187

1568
and γ3D

pc Á γ3D
1 ` 0.18 « 1.337. (2.45)

A very similar argument was made by Grassberger [72] for the average entropy. Note
that QN can be measured much more easily than rZN sAC itself.

The above argumentation does not work for the incipient-cluster average. However,
we can expect

rZN sIC ě rZN sAC for p “ pc, (2.46)

rZN sIC „ rZN sAC for p ą pc, (2.47)

where the second statement is due the fact that large clusters but finite clusters are
exponentially suppressed above the percolation threshold. It follows that the leading

factor for the scaling behavior of rZN sIC should also be
`

pµ1
˘N

: if it were larger —it
cannot be smaller according to Eq. (2.46)— there would have to be a p ą pc so that

rZN sICppcq ą rZN sACppq „
`

pµ1
˘N

Nγ1´1 for some N , and hence, with Eq. (2.47),
rZN sICppcq ą rZN sICppq asymptotically, which is obviously false.

A quantity related to the average number of chains is the (quenched) average of the
entropy lnZN . Here even the average over all disorder conformations xlnZN y (with
ln 0 :“ 0)3 is non-trivial. As first remarked by Derrida [46] it should behave differently
from ln xZN y due to the multifractal distribution of Z. The issue was subsequently
investigated more closely, but the results were highly controversial: It was first argued
that

xlnZN y „ N ln pµ´
1´ p

2pα
Nα, (2.48)

with α “ 2 ´ Dν being the specific-heat exponent (of the undiluted system) [56,
64]. Later work based on analytical, Lifshitz-type arguments and exact enumeration
results [68, 71], concluded

xlnZN y » Nplnµ´ 1.2| ln p|1{Dνq ` pγ ´ 1q lnN ` corrections (2.49)

(with some evidence for a stretched-exponential correction term), while a MC investi-
gation [72] yielded

xlnZN y „ N1´δ, (2.50)

with δ “ 0.075p5q. In that last study, a linear increase with N was found for the
average rlnZN sAC, which was related to xlnZN y by essentially the same argument
used above [see Eq. (2.41)]. The Incipient cluster average of the entropy, rlnZN sIC,
has, to my best knowledge, not yet been directly investigated, but there have been
investigations of the average over incipient-cluster backbones, rlnZN sBB, assuming

3Some authors use xln pZN ` 1qy instead, but the distinction does not matter in the limit N Ñ8.
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that the two should behave alike asymptotically [77, 78]. These studies suggested a
scaling law as for lnZN :

rlnZN sBB „ lnµ0 ` pγ0 ´ 1q lnN, (2.51)

with modified parameters:

µ2D
0 “ 1.456p5q, γ2D

0 “ 1.26p5q, µ3D
0 “ 1.317p5q, γ3D

0 “ 1.19p5q. (2.52)

2.3.5. Open questions

To end this chapter, I have compiled a list of issues regarding SAWs on percolation
clusters that are, in my view, not fully settled, some of which will be addressed in this
thesis.

• Is νp “ ν1 for 1 ą p ą pc? This is generally assumed to be the case based on an-
alytical arguments [59], but the (few) numerical studies [72, 101] that addressed
the issue found evidence against it.

• What is the value of νpc? While it has by now been convincingly shown that
νpc ą ν1, numerical and analytical estimate vary substantially (see Table 2 in
Ref. [96]).

• Is the scaling behavior on the backbones the same as on full clusters, i.e., νIC “

νBB? This assumption was often made [48, 60, 70, 74, 78, 83], but the argument
on which it is based is flawed, in my view at least [101], and numerical evidence
on the matter is so far inconclusive.

• Does averaging over all clusters that support SAWs lead to the same exponent
as averaging over the largest (incipient) clusters, i.e., νIC “ νAC? This is also
usually assumed, but numerical results on the matter are sparse.

• Is ν for KGWs on critical clusters the same as for the standard SAWs?

• How does rZsIC scale with N? Does it, as is generally expected, follow a law like
Eq. (2.6), and if so, are µ and γ the same as for the all cluster average rZsAC?

• How does the average entropy rlnZN s scale with N? As mentioned, at least four
very different conjectures regarding this issue have been put forward.

• Can ν (and γ) be linked, qualitatively at least, to the various fractal dimensions
of the medium?

• How accurate are the existing analytical results for ν?
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The SAW is difficult to treat numerically (or analytically) due to the “non-Markovian”
long memory of the process. One either has to generate each single conformation or
resort to chain-growth Monte Carlo methods such as the pruned-enriched Rosenbluth
method (PERM) [102]. These work reasonably well for low or medium concentrations
of defects, but they falter and become unreliable around the percolation threshold. At
this particular point, however, it is actually possible to do exact enumeration quite
efficiently via a new approach that makes use of the fractal nature of the medium [103–
106]. The bulk of this chapter will be dedicated to presenting and discussing this novel
method, through which most of this work’s results were obtained. First though, some
commonly used methods shall briefly be discussed, as far as they are relevant here.

3.1. Existing numerical methods for SAWs on CPCs

For regular lattices, highly sophisticated algorithms have been developed to investigate
SAWs: The most efficient enumeration methods have allowed for 71 steps in 2D [107]
and 36 steps in 3D [5, 108]. Due to the exactness of the data, these results can be
extrapolated substantially. The best current MC method uses Markov chain (“pivot”)
updates that exploit the low density and fractal nature of the SAW and can thus handle
several hundred million steps [109]. Unfortunately, neither approach seems to work for
disordered systems. There, conformations must be enumerated directly, which allows
for much fewer steps. Meanwhile, Markov-chain Monte Carlo methods become very
inefficient as global moves are almost always rejected, so that one is better served with
chain-growth Monte Carlo methods.

3.1.1. Chain-growth Monte Carlo

Simple sampling: The most straightforward Monte Carlo approach samples confor-
mations with uniform probability. For athermal systems, this is theoretically the
optimal way to sample, but it can be difficult to realize in practice. For the SAW, one
has to grow a conformation by taking steps in random directions and discard it if a
blocked site is picked (i.e., one that is defect or already visited). Thus, the probability
to succeed will shrink exponentially with the number of steps taken, inhibiting the
generation of long chains. Despite this exponential attrition, simple sampling has been
used now and then to study SAWs on CPCs [40, 58, 67]. It allows for longer chains
than (simple) exact enumeration (discussed in Section 3.1.2), and one does not have
to worry about biases that can afflict more sophisticated MC methods.

33



3. The taming of the SAW

Rosenbluth-Rosenbluth method (RR): The attrition rate of the simple-sampling
algorithm can be reduced by choosing only from neighbor sites that are available.
However, conformations are then no longer generated with uniform probability but
with

Pn9
n
ź

i“1

1

mi
, (3.1)

where mi denotes the number of free neighbors for the ith step and n is the number of
steps. The RR method does hence not sample the equilibrium SAW ensemble, where
all conformations contribute equally, but the so-called Kinetic-growth walk (KGW)
discussed in Section 5.3. To get back to the standard ensemble, however, we simply
need to weight conformations with

wn “
1

Pn
“

n
ź

i“1

mi. (3.2)

This algorithm was first proposed in the very early days of computing [110]. Although
it suffers much less attrition than the simple-sampling method, it is not actually more
useful as it wastes most effort on low-weight conformations that do not contribute much
to the average. This “go-with-the-losers” strategy is not only inefficient, it also causes
a bias if samples are too small. This is because the weighting only works correctly if
the total weight is properly assessed, i.e., if a sufficient number of (rare) conformations
with large weights have been sampled. The RR method was therefore never applied
to the problem at hand, but it is nonetheless important as it underlies the widely used
pruned-enriched Rosenbluth method.

Pruned-enriched Rosenbluth method (PERM): The problems of the RR method
can elegantly be overcome by a population-control strategy. The idea is to support
conformations that have relatively large weights and suppress those with small weights:
Whenever a weight wn surpasses an upper threshold Wą

n , the conformation is dupli-
cated (“enriched”) and the weight is halved. Conversely, if wn falls short of a lower
threshold Wă

n , it is doubled and the chain is terminated (“pruned”) with probabil-
ity 1{2. These modifications keep all expectation values unchanged but constrain the
weights between the thresholds. The tricky part is to adjust these thresholds such
that the population of chains does neither explode nor collapse but remains roughly
constant with increasing length. This is best done self-consistently by pegging the
weights to the average total weight per started chain (“tour”):

Wą
n “ Cą

řT
t“1 w̃n,t
T

“ Cą
řT
t“1

řBt
bt“1 wn,bt

řT
t“1Bt

, Wă
n “

Că

Cą
Wą
n , (3.3)

where w̃n,t is the accumulated weight of all branches Bt created (by enriching) during
tour t, T denotes the number of tours, and Cą is large than Că. The constants Cą

and Că control the size of the population (« 1{
?
CąCă) and are best chosen smaller

than one to give the population an initial boost. The exact values of the constants
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are not overly important; they can be tuned easily during a few test runs. For most
simulations, I used C :“

?
CąCă “ 0.001, Cą{Că “ 10. The algorithm is realized

efficiently by a simple depth-first recursion, which takes as arguments a position pos

(“ ~R) on the lattice and the length n and weight w of the branch:

perm_step(n, w, pos){

Rsq_acc[n] += w*Rsq[pos];

if(n < N){

options = number of available neighbors;

if(options > 0){

w *= options;

w_acc[n] += w;

if(w < C_bottom*w_acc[n]/tours){ //prune

if(random_nr < 0.5){

return;

}

w *= 2;

}

pos = blocked; //block visited site

neighbor_pos1 = random available neighbor; //choose next position

if(options > 1 && w > C_top*w_acc[n]/tours){ //enrich

do{

neighbor_pos2 = random available neighbor;

}while(neighbor_pos2 == neighbor_pos1}

w /= 2;

prem_step(n+1, w, neighbor_pos2);

}

prem_step(n+1, w, neighbor_pos1);

pos = available; //free visited site

}

}

}

The variables Rsq acc[n] (
řT
t“1

řBt
bt“1 wn,btR

2
n,bt

) and w acc[n] (
řT
t“1

řBt
bt“1 wn,bt)

accumulate the total end-to-end distances and weights of all branches of length n

from all tours, respectively. The function perm step(0,1,origin) is called repeat-
edly, incrementing tours until enough have been performed. In this implementation,
branches are only enriched if there are more than one available neighbors, which is
actually closer to the improved version of PERM (“nPERMss”) from Ref [111].

PERM was originally designed to simulate Θ-polymers, which it does extremely
well [102], but it also works for normal SAWs in disorder [82, 84] and a range of
other models; see Ref. [112]. Unlike the simple RR method, it follows a “go-with-the-
winners” strategy where conformations with large weights receive more attention. It
also overcomes the exponential attrition, which still afflicts the RR method to some
extent: running into “dead-ends” will typically only result in the loss of short branches,
and the algorithm can compensate this by increasing the rate of enrichment.

Still, PERM often struggles to explore the rugged landscape of a critical percolation
cluster. Some cluster regions can be very difficult to enter even though they may
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be important for the average. This can lead to a bias similar to that of the RR
method (though much less severe), which can easily go unnoticed [101], an issue that
is investigated more closely in Section 3.5. In this work PERM was used in situations
where the SFE method described in the next section does not (always) work, namely
on supercritical clusters and for KGWs. For these systems, the aforementioned bias
happens to be much less of a problem. The PERM version for KGWs is particularly
simple as the weights are only determined by the attrition rate due to trapping and
no pruning is required at all.

If one is only interested in the results for the maximum length, one can increase
the efficiency of the program by closing off dangling ends that are too small to ac-
commodate the remaining N-n number of steps. As an upper limit for the maximal
number of possible SAW steps within a dangling end, I took its mass minus the mass
of all smaller dangling ends it contained plus the largest such upper limit among these
smaller dangling ends. On critical clusters, this “trap avoiding” optimization increases
the performance significantly, but it has little effect above pc.

3.1.2. Exact enumeration

Besides Monte Carlo methods, exact enumeration (EE) can be used to study SAWs
on percolation clusters (or any other graphs). In this approach, one calculates the
conformational averages up to a fixed length on individual clusters by computationally
generating all possible SAW conformations. This simple EE method was not used to
produce results for this work, but it underlies the SFE method introduced in the next
section. It also played an important role in verifying the correct implementation the
other methods (SFE and PERM).

Essentially, the method consists of a single recursive routine that generates the
chain conformations by a depth-first traversal of the cluster: At each call the routine

receives as arguments the length n of the current chain and the position x (“ ~R) of
its end. A chain counter Z[n] is incremented, the squared Euclidean distance to the

origin, Rsq [=p~R ´ ~R0q
2], is measured and added to a variable Rsq acc[n], and x is

blocked to future visits (self-avoidance). If the final length N is not yet reached, all
nearest-neighbor sites are addressed in turn. For each neighbor that is available (i.e.,
neither visited nor defect) the routine calls itself with the incremented length and the
neighbor’s position as arguments. At the end of each frame of the routine, the original
position pos is unblocked. The pseudo code for this function is sketched below:

step(n, pos){

Rsq_acc[n] += Rsq[pos];

Z[n] += 1;

if(n < N){

x = blocked;

for(all available neighbor_pos){

step(n+1, neighbor_pos);

}

pos = available;

}

}
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The function is initially called with the origin and a length of zero as arguments. It
terminates automatically once all possible conformations have been generated, and the
average end-to-end distance

@

R2
n

D

is obtained as Rsq acc[n]/Z[n]. Apart from purely
statistical errors on the disorder averages, one thus obtains exact results, avoiding
the risk of any bias. Therefore, and because of the method’s simplicity, EE is often
preferred over MC methods and has widely been applied to study the problem at
hand [61, 71, 73, 78, 113]. EE has, however, one huge drawback: The number of
conformations increases exponentially with the number of steps, and so does the time
needed to generate them. Thus, the affordable number of steps is quite limited: the
latest study enumerated walks of up to 45 steps on three dimensional clusters [113],
and even on a modern super computer this number could probably not be increased
by a substantial factor.

3.2. Scale-free enumeration (SFE)

None of the methods discussed so far is particularly suited for the problem at hand.
Exact enumeration is limited to very short chains due to the exponential complexity,
seemingly inherent to the approach. Chain-growth MC methods (PERM), on the other
hand, can handle somewhat longer chains but are much less efficient and reliable than
they are on full lattices as the thin, fractal landscape of the critical clusters is difficult
to explore. Fortunately, however, this fragile, self-similar nature of the medium can
also be exploited to factorize the problem. More specifically, we can make use of the
fact that critical percolation clusters are finitely ramified fractals; see Section 2.2.3. For
regular, geometrical fractals with this property such as the Sierpinski gasket, Fig.3.1
(left), many problems can be solved by exact real-space renormalization. This is
achieved through repeated application of a decimation procedure, making use of the
scale symmetry. For instance, we can calculate the number of SAW conformations
connecting two tips of a Sierpinski gasket after i iterations (one iteration combining
three smaller triangle into a larger one) from the number of conformations connecting
the tips after i´1 iterations. This decimation (“coarse graining”) is depicted in Fig. 3.1
(right) from Ref. [92], where P 11 denotes the number of SAWs connecting tips A and
B without visiting C, P 12 the number of SAWs connecting A and B via C, and the
unprimed P s correspond to the respective numbers in the previous iteration.

Such an exact transformation scheme cannot be applied directly for disordered sys-
tems which lack the exact symmetry. However, there is still a statistical scale symme-
try, which means that we can divide the cluster into nested cells on different length
scales that have the same properties on average. Crucially, thanks to the finite rami-
fication, the average number of interconnections between cells need not increase with
their size. Hence, for any problem that involves only local (nearest-neighbor) interac-
tions and can be solved numerically on a small scale, it should be possible to find a
numerical decimation procedure such that a more general version of the method can
handle cells of any size (consisting of smaller, decimated cells) with roughly the same
effort.

Let us now turn to our specific problem of SAWs on CPCs. Within a small sepa-
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Figure 3.1.: Left: Sierpinski gasket fractal after six iterations. Right: Coarse grain-
ing procedure for SAWs on a Sierpinski gasket (with permission from
Ref. [92]), where the numbers P 11 (P 12) of SAWs from A to B (via C)
are constructed from the result P1 and P2 of the previous iteration.

rate region of space (“cell”)1 one can easily determine the number of SAW segments
connecting any pair of sites using the simple exact enumeration method from above.
Imagine now that this small cell (“child”) is part of a larger one (“parent”), and that
the number of site pairs which connect the child to the rest of the parent (“links”) is
small (of the order of one). We can thus easily enumerate all segments that connect
different links within the child. The crucial observation now is that when we enumer-
ate the segments through the parent, the child can effectively be treated as a single,
“decimated” site. Any walk that visits it is weighted with the number of segments
that connect the respective link sites through the small cell, and the enumeration can
thus be factorized. The finite ramification now implies that we should be able to par-
tition the cluster into a hierarchy cells where each has relatively few links and is small
enough (once all its children have been decimated) that we can exactly enumerate all
SAW segment conformations connecting them.

The “scale-free enumeration” method will thus consist of two parts: the cluster
is first partitioned into a suitable hierarchy of nested cells; then the enumeration
procedure is performed cell-by-cell. Since understanding what kind of cell hierarchy
is “suitable” requires detailed knowledge of the enumeration procedure, the two parts
will be presented in reverse order.

3.2.1. Factorizing the enumeration

The basic ideas outlined above are relatively simple, but a thorough description of the
method is challenging: due to its recursive nature, some aspects need to be understood
before they can be properly explained. I therefore do not start with a general formula-

1I had previously [101, 103, 104] used “blob” instead of cell, which was an unfortunate name as it
could be confused other usages of that term.
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3.2. Scale-free enumeration (SFE)

tion of the algorithm but demonstrate how it works using a simple example. General
concepts are introduced along the way and condensed into the paragraph “Generic
procedure”, to which the impatient reader may skip directly.

Let us now consider the following problem: We want to count the number of con-
formations of SAWs with up to N “ 15 steps starting from a fixed point (origin) of
a percolating cluster using the ideas from above. It is convenient to use such a short
length (which could easily be handled by the standard method) to explain the basic
principles. These remain unchanged for longer walks. I leave the end-to-end distance
aside for the moment; its measurement is discussed later on. The first thing we can do
is to crop off everything that cannot be reached within N steps, reducing the cluster
to N chemical shells around the origin. Next, we partition this cropped cluster into a
hierarchy of nested cells as shown in Fig. 3.2 for a specific example which shall be used
throughout in the following. How the partitioning is done is explained in the next sec-
tion. Note that each cell in the hierarchy may contain several other cells (“children”)
as well as a number of “bare sites” that are not encapsulated in the children. Also
note that the starting location is among the bare sites of the largest cell (“root”). The
cells will be dealt with in post-order : E, D, C, B, A.

origin

A

B

C

D

E

A

B

D

E

C

l2

x2

x1

l1

x1

l1

x2

l2

x2

l3

x1l1

x1

l1

1

Figure 3.2.: Partitioning of an exemplary cluster into a tree hierarchy of nested cells.
The cluster has been cropped to N “ 15 chemical cells around the origin
(black site in cell A), the maximal SAW length considered in this example.
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3. The taming of the SAW

Cell E (one link, no children): We start by determining the number of SAW seg-
ments, ZErns, of length up to nmax “ N ´ dl1 “ 7, where dl1 is the chemical distance
of link site l1 in E. For this we essentially use the simple enumeration method from
Section 3.1.2: we block the external site x1 in D to confine the walks to cell E and
initialize the routine with link site l1 as the starting position and a length of n “ 0.
This yields the results listed in Table 3.1.

The term “segment” will in the following be used to denote a unique conformation
of parts of SAWs within a cell. One segment can consist of several snippets which
need not be connected within the cell. However, each must be connected to at least
one link (external site) or to the origin (for the root cell).

Table 3.1.: Number of SAW segments within cell E of the example in Fig. 3.2

n 0 1 2 3 4 5 6 7
ZErns 1 3 5 11 12 18 21 32

Cell D (one link, one child): Next we decimate, “renormalizing” cell E effectively to
a single site “e”, and move on to enumerate the walk segments within its parent, cell
D. Here we do essentially the same thing (with nmax “ N ´ dl1 “ 10), but we use two
separate counters: ZD

e0rns for walks that have not visited “child site” e and ZD
e1rns for

those that have. Apart from this, e behaves as any regular site. Once the counting
process has terminated we can calculate the total number of segments within D via

ZDrns “ ZD
e0rns `

n
ÿ

i“0

ZD
e1 risZ

E rn´ is. (3.4)

The sum term represents combinations of segments with a combined length of n. In
the following, this “convolution product” shall be written as:

`

ZX ˚ ZY
˘

rns :“
n
ÿ

i“0

ZX risZY rn´ is. (3.5)

In practice, this operation is implemented as a double loop:

for(n_X=0; n_X <= N; n_X++){

for(n_Y=0; n_Y <= N; n_Y++){

Z_XY[n_X+n_Y]+= Z_X[n_X]*Z_Y[n_Y];

}

},

where n X+n Y corresponds to n from above.
When the summations are done, all information concerning cell E, in particular

ZE rls, can be deleted to release precious memory space. The results for the counters
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3.2. Scale-free enumeration (SFE)

ZD
e0rns and ZD

e1rns are listed in the first two rows of Table 3.2; the last row gives the
results of the summation, Eq. (3.4).

Table 3.2.: Number of SAW segments within cell D for the example from Fig. 3.2. The
first two rows have resulted from direct counting of segments that either
connect (first row) or do not connect (second) to child site e. The last row
gives the total numbers of segments, obtained via Eq. (3.4) with ZE from
Table 3.1.

n 0 1 2 3 4 5 6 7 8 9 10
ZD
e0rns 1 3 5 6 5 5 4 5 5 12 14

ZD
e1rns 0 0 0 1 0 1 0 1 0 0 0

ZDrns 1 3 5 7 8 11 18 23 37 50 75

Cell C (three links, no children): Next in line is cell C, which has three links. Things
now become more complicated as we need to distinguish between a number (namely
ten) of different classes of segments: three that start from one link but do not visit any
other, three connecting a pair of links, and three that connect two links and reenter
at the third. We shall in addition include the “empty” case without any segments.
These classes of segments shall be associated with different “states” of the cell, which
are represented diagrammatically as shown in Fig. 3.3. Note that states fall into two
categories: Those that have a loose end, i.e., where the walk ends within the cell, are
denoted as “terminal” (t-states), the others as “conductive” (“c-states”). Also note
that the segments connecting two links are considered undirected.

c0 c1 c2 c3

t1 t2 t3 t4 t5 t6

l3

l2
l1

Figure 3.3.: All possible states for a cell with three links (l1, l2, l3), representing, e.g.,
cell C from Fig. 3.2. (Figure reproduced from Ref. [104])

Maximum number of states: In order to understand the limitations of the approach
and the requirements on the cell hierarchy, it helpful to know how the number of
possible states of a cell Ω increases with the number of links L. To calculate ΩpLq,
we first consider all possible c-states for a cell with 2i connected and L ´ 2i open
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3. The taming of the SAW

links. Their number is equal to the number of states with no open links (as if L “ 2i),
denoted as Cr2is, times the

`

L
2i

˘

possibilities to intersperse the unconnected links. For
D ě 3, Cr2is equals the number of possibilities to partition the 2i links into i pairs.
The number of possible permutations of all links is p2iq!, but the order of the pairs
(i! possibilities) is irrelevant as are the 2i possible permutations of links within the

pairs, hence: Cr2isDě3 “
p2iq!
i!2i . In 2D the number is smaller as the lines in the state

diagrams may not cross. In that case states without unconnected links can be mapped
one-to-one to binary trees with i nodes [114], for which the number of configurations
is given by the Catalan numbers: Cr2is2D “

`

2i
i

˘

{pi ` 1q. For each c-state, there are
L ´ 2i t-states, one for each unconnected link. Summing over all 2i ď L we hence
obtain for the total number of states as

ΩpLq “ ΩcpLq ` ΩtpLq “

tL{2u
ÿ

i“0

C r2is

ˆ

L

2i

˙

p1` L´ 2iq, (3.6)

with

Cr2is “

$

&

%

`

2i
i

˘

{pi` 1q, D “ 2

p2iq!
i!2i , D ě 3.

(3.7)

These series increase rather quickly as can be seen in Fig. 3.4, where ΩpLq is plotted
for D “ 2 and D ě 3. Although typically many of the states cannot be realized in
practice due to constraints within a cell or limited length of the walks, cells with much
more than ten links tend to be unmanageable.

Our goal now is to determine the number of segments for each c-state and t-state,
 

ZC,ci rns
(

and
 

ZC,ti rns
(

. This need not be done for each state separately; instead,
segments belonging to one state can be extended to become segments from another.

1

100

10000

1e+06

1e+08

1e+10

1e+12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ω
(L

)

L

2D
≥ 3D

Figure 3.4.: Maximum number of states of a cell as function of the number of links
[Eq. (3.6)] in D “ 2 and D ě 3.
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3.2. Scale-free enumeration (SFE)

For instance, a segment from t1 can grow into a c1 segment by connecting to l2 (see
Fig. 3.3) and then become a t4 segment by reentering at l3. This behavior can be
integrated smoothly into the enumeration procedure: We treat the three external link
sites (x1, x2, x3 in Fig. 3.2) as one single “parent site” representing everything outside
of our cell C. Whenever this parent site is visited by the walker, we switch from a t-
state to a c-state and to another t-state when it is left; i.e., when the cell is reentered.
Separate counters need to be kept for each individual state.

The transitions between c-states and t-states for a three-link cell are depicted in
Fig. 3.5. The transition rules, telling us which next state will result from stepping
over a link, are stored in matrices as shown in Table 3.3. How these matrices are
determined, which is done once at the start of the program. Transitions where the
entries are empty or in brackets are not allowed, either because they are impossible or
because they would lead to double counting: since the loose end of a t-state is directed
but segments (snippets) connecting a pair of links are not, different t-states could lead
to the same c-state, which is prevented by blocking all but one of these transitions. In
principle, it does not matter which of the tÑ c transitions is allowed.

c0

c1

c3

c2t2

t3

t1 t4

t6

t5

l2

l3

l1 l1

l3

l2

l1

l3

l2 l3

l1

l2

Figure 3.5.: Diagram of allowed transitions for a cell with three links. The labels
on the arrows denote to which link a SAW segment must connect for
the transition to occur. Dashed arrows represent transitions that are not
allowed. (Figure reproduced from Ref. [101])

Table 3.3.: Matrices determining the transitions between states for a cell with three
links, e.g., cell C from Fig. 3.2. The table on the left describes transitions
from a c-state to a t-state, the one on the right those from a t-state to a
c-state. Transitions are not allowed for empty entries or those in brackets.

c0 c1 c2 c4
l1 t1 - - t4
l2 t2 - t6 -
l3 t3 t5 - -

t1 t2 t3 t4 t5 t6
l1 - pc1q pc3q - - -
l2 c1 - pc2q - - -
l3 c2 c3 - - - -
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3. The taming of the SAW

Table 3.4.: Number of SAW segments for all states of cell C of the example from
Fig. 3.2.

n 0 1 2 3 4 5 6 7 8 9 10 11
ZC,t1rns 1 2 3 6 11 14 13 12 9 8 4 4
ZC,t2rns 1 3 5 9 9 11 8 8 6 3 3 0
ZC,t3rns 1 3 4 9 10 13 10 7 3 0 0 0
ZC,t4rns 0 1 2 4 9 8 8 5 0 0 0 0
ZC,t5rns 0 0 0 0 0 2 1 0 0 0 0 0
ZC,t6rns 0 0 1 1 4 4 3 1 0 0 0 0
ZC,c0rns 1 0 0 0 0 0 0 0 0 0 0 0
ZC,c1rns 0 1 0 1 0 1 0 1 0 0 0 0
ZC,c2rns 0 0 0 1 0 6 0 1 0 0 0 0
ZC,c3rns 0 0 1 0 3 0 2 0 0 0 0 0

The counting starts at the parent site with the cell in state c0 and a length of n “ 0.
By convention n is not incremented for steps on and off the parent site. “Normal”
sites are blocked when they are visited as before, but the parent site is not. Once the
routine has terminated, we are left with the set of arrays listed in Table 3.4. Note that
this table also includes the “empty” c0 state, which had been omitted thus far.

Generic procedure (L links and k children with Lk links): The next target, cell B,
has two links and two children, one with one link and the other with three. With this
example in mind, let us now switch to a generic formulation: We want to determine
the number of segments ZX,sXrns for each state sX of a cell X that has L links and
k children, x1, . . . , xk, with L1, . . . , Lk links, respectively. Each state represents an
ensemble of SAW segments, i.e., all distinct parts of viable SAW conformations crossing
the cell. The c-states are uniquely defined by a specific set of pairs of connected links,
t-states in addition have a loose end attached to one of the links (see Fig. 3.3). For each
child and for the cell itself, we have matrices describing transitions between the states;
see Table 3.3. These contain the information which t-state will result from attaching a
loose end to a free link of a c-state, and which c-state will result from connecting the
loose end of a t-state to a free link. For the children, all transitions to states that have
occurred (when the segments through the child were enumerated) are allowed, whereas
for the cell each c-state can only be accessed from one t-state (solid lines if Fig. 3.5
and non bracketed entries in Table 3.3). We now do a depth-first recursion on a graph
consisting of the children (“child sites”), the sites that are directly in the cell (“bare
sites”), and the external part of the cluster (“parent site”). Children and parent site
behave point-like, but whenever they are visited or left by the walker the state of the
respective child or the cell itself (for the parent site) changes according to the transition
rules. Figure 3.6 represents a snapshot of the enumeration procedure for an exemplary
cell with one link and two children. For each distinct combination of states (of cell
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3.2. Scale-free enumeration (SFE)

bare sites

parent

child in state t2

child in state c1
cell
in state t1

Figure 3.6.: Snapshot of the enumeration procedure for a cell with one link and children
with three and two links, respectively. In this example, the walker has
taken n “ 10 steps (the one from the parent does not count). Cell and
children are in states t1, c1, and t2, respectively, so the counter Zt1c1,c2rns

is incremented. (Figure reproduced from Ref. [104])

X and all children) that occurs, we now need a separate counter: ZX,si
si1 ,...,sik

rns, where

sij denotes a specific state of child xj and si a specific state of the cell. The counting
is realized by three recursive functions, cell step, parent step, and child step,
which manage the enumeration steps on the different site types. Pseudo code for these
functions is given in Fig. 3.7, Fig. 3.8, and Fig. 3.9, respectively. Note that lattice
defects are implicitly realized by not listing the respective site as a neighbor. I have
focused on readability rather than ultimate efficiency here, and the given pseudo code
segments therefore differ somewhat from my actual implementation.

The enumeration process is initialized by calling the parent step function with ar-
guments parent link = none, n = 0, and state = [t0;c0,...,c0], where “none”
means that all entries to the cell are open and the dummy cell state t0 will transition
to c0. The empty state c 0 will thus always comprise exactly one segment of length
zero. After the routine has terminated, the resultant arrays, ZX,si

si1 ,...sik
rns, need to be

combined with those for the respective states of the children, Zxi,sij rns, which have
been determined previously. We obtain the numbers of segments for each distinct state
si of the cell:

ZX,sirns “
ÿ

tsu1

. . .
ÿ

tsuk

´

ZX,si
si1 ,...,sik

˚ Zx1,si1 ˚ . . . ˚ Zxk,sik
¯

rns , (3.8)

where tsuj means that the sum goes over all states sij of the child xj that have
occurred, and “˚” denotes the convolution product defined in Eq. (3.5). Since that
operation is associative and commutative, the products can be evaluated successively
in arbitrary order.
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cell_step(states, n, pos){

// count segment

Z[states][n] += 1;

// measure end-to-end distance

Rsq_acc[states][n] += Rsq[pos];

// maximum length not yet reached?

if(n < n_max){

// block current position (self-avoidance!)

pos = blocked;

// go through neighboring sites

for(all available neighbors){

// neighbor is normal site?

if(neighbor_pos within cell){

cell_step(states, n+1, neighbor_pos)

}

// neighbor is link of child

else if(neighbor_pos in child x){

// identify link

child_link = links[pos][neighbor_pos];

// access allowed (child may transition to t-state)?

if(allowed(cs_ts[x][child_link][states[c]]) == true){

child_step(x, child_link, states, n+1);

}

}

// neighbor outside of the cell (parent site)?

else if(neighbor_pos external){

// identify link

parent_link = links[pos][neighbor_pos];

// access allowed (cell may transition to c-state)?

if(allowed(ts_cs[cell][parent_link][states[cell]]) == true){

parent_step(parent_link, states, n);

}

}

}

// unblock current position

pos = available;

}

}

Figure 3.7.: Pseudo code of the function that is called whenever a normal site of the
cell is accessed. The matrices ts cs and cs ts control the transitions from
t-states to c-states and vice versa of the cell or a child. child step and
parent step are given in Fig. 3.8 and Fig. 3.9, respectively.
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child_step(x, child_link, states, n){

// backup current state of child x

old_cstate=states[x];

// transition to t-state

states[x] = cs_ts[x][child_link][states[x]];

// count segment

Z[states][n] += 1;

// go through (other) exits from child

for(all other links of x){

// exit allowed (child x may transition to respective c-state)?

if(allowed(ts_cs[x][other_link][states[x]]) == true){

// maximum length not yet reached?

if(n < n_max){

// get exit position

neighbor_pos = positions[other_link];

// child x transitions to next c-state

next_states=states;

next_states[x] = ts_cs[x][other_link][states[x]];

// exit to normal site?

if(neighbor_pos within cell){

// site not yet visited?

if(neighbor_pos == available){

cell_step(next_states, n+1, neighbor_pos)

}

}

// exit to another child?

else if(neighbor_pos in child x2){

// access allowed (other child may transition respective to t-state)?

if(allowed(cs_ts[x2][other_link][states[x2]]) == true){

child_step(x2, other_link, next_states, n+1);

}

}

// exit to external (parent) site

else if(external neighbor_pos){

// access allowed (cell may transition to respective c-state)?

if(allowed(ts_cs[cell][other_link][states[cell]]) == true){

parent_step(other_link, states, n);

}

}

}

}

}

// child c reverts back to previous c-state

states[c]=old_cstate;

}

Figure 3.8.: Pseudo code of the function that is called whenever a child is accessed.
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parent_step(parent_link,states, n){

// backup current state of the cell

old_tstate=states[cell];

// transition to a c-state

states[cell] = ts_cs[cell][parent_link][states[cell]];

// count segment

Z[states][n] += 1;

// go through (other) entries to the cell

for(all other links of cell){

// entry allowed (cell may transition to respective t-state)?

if(allowed(cs_ts[cell][other_link][states[cell]]) == true){

// maximum length not yet reached?

if(n < n_max){

// get reentry position

neighbor_pos = positions[other_link];

// cell transitions to next c-state

next_states=states;

next_states[cell] = cs_ts[cell][other_link][states[cell]];

// reentry to normal site?

if(neighbor_pos within cell){

// reentry site not yet visited?

if(neighbor_pos == available){

cell_step(next_states, n, neighbor_pos)

}

}

// reentry to a child?

else if(neighbor_pos in child x){

// access allowed (child may transition respective to t-state)?

if(allowed(cs_ts[x][other_link][states[x]]) == true){

child_step(c, other_link, next_states, n);

}

}

}

}

// cell reverts back to previous t-state

states[cell]=old_tstate;

}

Figure 3.9.: Pseudo code of the function that is called whenever the parent is accessed,
i.e., when the walker leaves the cell.

Each summand in Eq. (3.8) represents the contribution from one specific state combi-
nation. Note that any c0-state has Zrns “ δn,0, the identity element of the convolution
product, so that children that were not accessed have simply no effect. Also note that
for any c-state of the cell, all children also have to be in c-states, while for a t-state
of the cell, at most one child may be in a t-state. For instance, for the number of c1
segments through cell B (connecting both links) from Fig. 3.2 with children x1 “ D
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Table 3.5.: Number of SAW segments within cell B from Fig. 3.2.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
ZB,t1c0, c0 1 2 4 4 6 4 6 2 2 0 0 0 0 0
ZB,t1c0, t3 1 2 4 4 6 4 6 2 2 0 0 0 0 0
ZB,t1c0, c2 0 0 0 1 1 4 5 8 4 5 0 0 0 0
ZB,t1c0, t5 0 0 0 0 0 0 0 0 2 0 2 0 0 0
ZB,t1t1, c2 0 0 0 0 0 0 0 0 0 1 0 1 0 0
ZB,t1c0, c3 0 0 0 0 2 2 7 6 6 2 1 0 0 0
¨ ¨

¨ ¨

¨ ¨

ZB,t1 1 2 5 9 20 31 56 67 112 123 191 208 275 289
ZB,t2 1 2 3 8 6 15 24 57 78 145 170 283 280 0
ZB,c1 0 0 1 0 2 0 2 0 8 0 28 0 24 0

and x2 “ C, Eq. (3.8) is simply (I drop “rns” now):

ZB,c1 “ ZB,c1
c0,c0 `

3
ÿ

i“1

`

ZB,c1
c0,ci ˚ Z

C,ci
˘

, (3.9)

while the number of t1 segments (entry at l1 of B) is given by

ZB,t1 “

3
ÿ

i“0

ZB,t1
c0,ci ˚ Z

C,ci `

6
ÿ

i“1

ZC,ti ˚ ZB,t1
c0,ti `

3
ÿ

i“0

ZD,t1 ˚ ZB,t1
t1,ci ˚ Z

C,ci . (3.10)

The first factor of every summand in Eq. (3.10) represents the “terminal”, the loca-
tion (the cell itself or a child) where the segments end for the respective combination
of states.

After the children’s degrees of freedom have thus effectively been “integrated out”,
all information concerning them can be deleted. Later on, the cell itself will assume
the role of a child as we move on to enumerate the segments through the “grand
parents”. For the example (cell B) a total of 33 different state combinations occur,
some of which are represented in Table 3.5. Combining them with the arrays of the
two children (Table 3.2 and Table 3.4) via Eq. (3.8) yields the numbers of segments
for the three different states (now omitting c0 again) of cell B shown at the bottom of
Table 3.5.

Root cell (A): The root cell at the top of the hierarchy (A in the example) is a slightly
special case: it has no parent, and the process is started by calling the cell step

function with the origin site (marked black in Fig. 3.2), length n “ 0, and state t1
as arguments. Otherwise, the routine proceeds as usual. For the example it produces
four different arrays, one for each possible state of child B (c0, t1, t2, c1). These are
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then combined with the results from Table 3.5 via Eq. (3.8) to obtain the final results
given in Table 3.6.

Table 3.6.: Number of SAW segments within the root cell A from Fig. 3.2, i.e., total
number of conformations

n 0 1 2 3 4 . . . 12 13 14 15
ZA,t1rns 1 4 4 6 10 . . . 468 535 813 895

3.2.2. Difficulties and optimizations

So far, the focus has been on the theoretical concepts of the algorithm. Now the
more practical issues of the implementation shall be discussed, namely, how to keep
computation time and memory requirements at bay. Regarding the computation time,
there are two main bottlenecks. The enumeration process itself can be time consuming
for cells that contain a large amount of bare sites, which will lead to a large number of
segment conformations to be counted. As with the normal enumeration routine, the
increase goes exponentially and can quickly get out of hand. The second bottleneck is
calculating the convolution products in Eq. (3.8). This aspect is particularly important
for longer SAWs, as the time increases with the square of the lengths of the arrays
involved. The memory consumption will mainly be caused by the need to store the
arrays for all the different state combinations that occur. These performance aspects
are discussed further in Section 3.3.1.

The first paragraphs of this section discuss optimizations that proved critical for
reaching the SAW lengths used in this work. Later paragraphs discuss optimizations
that proved to be less important, or were not implemented at all.

Hashing state combinations: The large number of states that a cell might assume
(see Fig. 3.4) is a central problem. Even (much) larger is the number of combina-
tions of states that can occur during the enumeration process: for a cell with L links
and k children with L1, . . . , Lk links, respectively, the number of conceivable state
combinations is

Θ “ pΩcpLq ´ 1q
k
ź

i“1

ΩcpLiq ` ΩtpLq

˜

k
ÿ

i“1

ΩtpLiq

ΩcpLiq

k
ź

j“1

ΩcpLjq `
k
ź

i“1

ΩcpLiq

¸

, (3.11)

with ΩcpLq and ΩtpLq from Eq. (3.6). This results from the observation that for any
c-state of the cell, all children must also be in c-states, while for each t-state of the cell
up to one child can be in a t-state. The “´1” is because the c0 state of the cell is not
counted. Θ can quickly become dauntingly large: for instance, if a cell in D ą 2 has 8
links and contains 3 children with 5, 6 and 7 links, respectively, (a realistic situation)
there could be over 6.5 ˆ 109 different state combinations. Hence, keeping one array
(with „ N entries) for each possibility is clearly unfeasible. Fortunately though, it
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3.2. Scale-free enumeration (SFE)

is also not necessary since only a small fraction can typically be realized in practice.
For the given example, the number will more likely be around 105. The best way to
keep track of these arrays is by using hash tables: each combination that occurs is
identified via a unique key index such as a vector whose entries are the states of cell
and children, which is then hashed to a memory address. This hashing does produce
some overhead, but the time for this operation is asymptotically constant with the
number of entries.

Length caps: The fact that the length of SAWs considered is always restricted can
be exploited at various points in the program. As mentioned, the maximum length
n max of the segments should take into account the (minimal) number of steps needed
to reach the cell from the origin. More generally, it can incorporate the minimal
number of (external) steps that would allow for the respective state, as well as the
steps required for traversing the children. For instance, during enumeration of the
segments within cell B from Fig. 3.2, any viable SAW realizing a state combination
with sB “ t2 and sC “ c2 must take at least 3 steps outside of the cell (to get to l2 in
B) plus 3 steps for traversing child C (from l3 to l1), so that its length can be capped at
n max=N-6=9. We can easily include this capping by associating each state of the cell
and each child with the minimum number of steps necessary to realize it and subtract
these from n max. The required steps within children are known exactly, but obtaining
the minimal number of external steps is, in general, difficult and costly. Instead, I
therefore only use lower limits, which are determined for all cells before the main
program starts. The basic idea is to measure the shortest number of steps needed
to externally connect each pair of links and then (for each state) to determine the
combination of these pieces with the minimal total length that could be connected to
a segment of the respective state. If this minimal external distance is larger than N (or
if there is no connecting path at all), the transition to the state will simply be blocked.
The limited length also plays a role when we connect the segments in Eq. (3.8): the
longest segments for each state can usually only be combined with states with other
segments that are relatively short without the maximum length being exceeded. Hence,
we can often cap the maximum lengths when doing multiple convolutions.

Exploiting the bipartiteness: It is a specialty of the square lattice that the number of
steps for paths connecting two specific sites must either all be odd or all be even. As a
consequence, every second entry in the array for any c-state or any state combination
where the segments terminate within a child are zero; see, for instance Table 3.5.
By cutting out the empty slots and increasing the length by steps of two we can
significantly reduce memory and time (mainly for the summations). One can even go
one step further and only count ends on odd (or even) sites. In the end, one will thus
only obtain the results for even (odd) lengths, which is not a big loss as we are mostly
interested in the results for the maximum length. The gain for this last optimization
did not turn out to be too significant for the enumeration of simple SAWs, and I
ultimately only used it for SAWs with nearest-neighbor attraction (Section 3.2.5).
In that case, it reduced the computation time and, more importantly, the required
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memory by almost a factor of two. One might exploit the bipartiteness even more by
using the two-step method from Ref. [115]. This could speed up the counting process
substantially but also make the code significantly more complicated than it already is.

Intermittent summations: On occasions, the memory required to store the arrays for
all state combination can still become exceedingly large. It can therefore be useful to
advance parts of the summation in order to free some of the memory. A good moment
is whenever the enumeration program returns to the first instance of the parent step

function (Fig. 3.9), i.e., when all segments originating from one link are completed.
At that point, none of the state combinations found so far is going to reoccur, and
the partial summation can be done without hesitation. In desperate cases, it may
be necessary to sum up somewhere during the enumeration process. This, however, is
costly and the gain is uncertain. All previous combinations might reoccur shortly after
and the memory can quickly fill up again. Still, this can make the difference and allow
one to exactly enumerate all conformations on particularly difficult (e.g., supercritical
or correlated) clusters.

Improved convolutions: The time needed for connecting the states [Eq. (3.8)] be-
comes more and more relevant with increasing chain length as each convolution in-
volves „ n2 operations. This part should therefore be the main target of further
optimizations. One possibility that I did not explore is the use of fast convolution
algorithms. These rely on the circular convolution theorem and use the fast Fourier
transform (FFT) algorithm; see, for instance, Ref. [116]. In principle, they should
allow to reduce the complexity of the convolutions to Opn log nq.

3.2.3. Mean end-to-end and chemical distances

So far, I have discussed how the SFE method can be used to determine the number of
SAW conformations. Measuring other observables is straightforward as long as they
depend on local properties of the conformation, i.e., if they can be evaluated separately
in different spatial regions. Hence, one can easily measure the end-to-end distance but
not the radius of gyration, which requires knowledge about the whole conformation at
once.

Obtaining the mean squared end-to-end distance
@

R2
D

rns is relatively simple and
does not require much additional computational effort: We take the squared distances
of the loose end for any segment conformation that terminates on a bare site of the

cell and accumulate them into arrays:R2
acc

X,ti
si1 ,...,sik

rns, where ti is an arbitrary t-state

of the cell and the meaning of the other indices is the same as in Eq. (3.8). This is
done at each call of the cell step function (see Fig. 3.7). As with the numbers of
conformations, we need separate variables for each length and combination of states,
but now only those combinations where the cell is in a t-state and all children are
in c-states are relevant. After the segments through a cell are enumerated, the (not
normalized) averages for the squared distances of the segments for each t-state of a
cell are obtained by replacing the terminal factors in each summand in Eq. (3.8) with
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the respective accumulated end-to-end distances. Where the segments terminate on

a bare site directly in the cell (all children are in c-states), R2
acc

X,ti
ci1 ,...,cik

rns replaces

ZX,ti
ci1 ,...,cik

rns; where they terminate in child xj , Z
xj ,tij is replaced by R2xj ,tij

acc . For

instance, the accumulated end-to-end distances for segments of the t1 state of cell B
from Fig. 3.2 [Eq. (3.10)] are obtained as

R2
acc

B,t1
“

3
ÿ

i“0

R2
acc

B,t1
c0,ci˚Z

C,ci`

6
ÿ

i“1

R2
acc

C,ti
˚ZB,t1

c0,ti`

3
ÿ

i“0

R2D,t1
acc ˚Z

B,t1
t1,ci˚Z

C,ci . (3.12)

In the very end, we divide the results for the (only) state t1 of the root cell A by
their numbers to obtain normalized averages:

@

R2
D

rns “
A

R2A,t1
E

rns “
R2A,t1

acc rns

Zt1rns
. (3.13)

The average chemical distances are obtained in the same manner.

3.2.4. Spatial distributions

For more detailed information than simple averages, such as the end-point distribution
P p~Rq, one has to invest substantially more resources. In principle, we already count the
segments ending at each single site, but keeping track of this information is onerous:
for each state (combination) where the segments end within a cell, we will need two-

dimensional arrays, ZX,ti
si1 ,...,sik

rn, ~Rs, storing the number of ends on each site. This

massively raises the required amount of memory, and one has to be thrifty in order
to keep it manageable. The runtime also increases as the summation for a t-state [see
Eq. (3.10)] needs to be performed for each site of the terminal. Of course, the other

convolutions in Eq. (3.8), those non involving the terminal, do not depend on ~R and
should always be evaluated first. In the end, we normalize the distribution by dividing
by the total number of conformations.

The sizes of the arrays storing the distributions depend linearly on the number of
bare sites (typically ă 50) for the state-combination arrays or (after decimation) by
the total number of sites within the child (up to OpMq „ Ndl). If one does not need

the probabilities as a function of ~R but only of R2 or of one coordinate, things will
be a bit cheaper as sites with the same distance can be grouped together. One may
also not need ultimate resolution, especially for very long walks, in which case one can
make use of binning to further reduce the effort.

Another way to cut costs is by neglecting sites where relatively few walks end. This
may sound somewhat sloppy, but if one wants to graphically investigate the distribution
of SAW endpoints, neglecting sites whose values are below the resolution of the scale is
not a real loss. To preserve the exactness for all other sites I proceeded in the following
way: After the arrays for all states of a cell have been determined, I determine the
maximal value of ZX,tirn, ~Rs (among all sites in the cell) for each state and length. I
then go through all sites and “remove” them unless at least one of the values for the
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different states and lengths surpasses the respective maximal value times a threshold
tă ă 1 which decides how much is neglected. Since the end-point distributions tend to
be very strongly peaked (see Section 4.3.1) this trick can bring very significant gains.

One can also measure the fraction of SAW conformations passing through each sin-
gle site, which I shall call the conformation density PCp~Rq. This is slightly more
complicated than measuring the end-point distribution and also requires a bit more
computation resources (though the asymptotic complexity is the same). PCp~Rq is ob-

tained in a similar fashion as P p~Rq: We use two-dimensional arrays, CX,si
si1 ,...,sik

rn, ~Rs,

for each state combination (now including c-states of the cell) storing how many seg-

ments have passed through each (bare) site ~R. For this we introduce a variable n’ that
track of how many steps on bare sites have been performed by the current segment
(n’ is smaller than n from the code in Fig. 3.7 as it does not count steps on child sites)
and an array r[n’] that stores these sites temporarily. Wherever Z[states][n] is
incremented in the standard SFE routine, we now increment C[states][n][r[i’]]

for all i<= n’. I shall not describe how the to adapt the summation procedure for the
conformation densities, which is fiddly but straightforward.

3.2.5. Thermal averages

So far it was assumed that each conformation ω contributes equally to the conforma-
tional average x. . .y. This is the case as long as all have the same energy or if the
temperature of the system is infinite. Otherwise, we have to weight conformations
with their respective Boltzmann factors, e´Eω{pkBT q, where Eω denotes a conforma-
tion’s energy. For theoretical works, it is convenient to set kB :“ 1, so that the thermal
average of an observable, e.g. R2, is given by

xR2yT “

ř

ω R
2
ωe
´Eω{T

ř

ω e
´Eω{T

. (3.14)

There are two different ways to obtain the thermal averages using exact enumera-
tion: One is consider a fixed temperature T and weight each generated conformation
according to its energy “on the fly”. The other approach is to count the number of
conformations ZrEis for each distinct (discrete) energy and their respective end-to-end
distances, R2rEis, and later calculate the average via

xR2yT “

ř

iR
2rEisZrEise

´Ei{T

ř

i ZrEise
´Ei{T

. (3.15)

This has the advantage that the results for any temperature can be obtained with-
out redoing the enumeration and is therefore the obvious choice (see, for instance,
Ref. [117]) when using the simple enumeration method from Section 3.1.2. However,
for the SFE method, this comes at a high price: Each array storing the numbers or
distances for a specific state or state combination (for each length) needs to be split
into a set of arrays to keep track of different energy levels. This is in fact analogous
to the handling of the spatial distributions discussed above. The summation process
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will also become significantly more demanding as any convolution [see Eq. (3.5)] will
now involve a fourfold loop (over lengths and energies):

for(n_X=0; n_X <= N; n_X++){

for(e_X=0; e_X <= E_max; e_X++){

for(n_Y=0; n_Y <= N; n_Y++){

for(e_Y=0; e_Y <= E_max; e_Y++){

Z_XY[n_X+n_Y][e_X+e_Y] += Z_X[n_X][e_X]*Z_Y[n_Y][e_Y];

}

}

}

}.

Depending on the question, it may therefore be preferable to calculate the average
on the fly for a fixed temperature. To do so, one simply weights at each incrementation
(“+=”) in Figs. 3.7-3.9 with the Boltzmann factor for the respective segment.

Conformation energies: The SFE method can handle only energies that are defined
locally. Long-ranged “Coulombic” interactions, for instance, do not permit the spatial
factorization on which the method relies. However, there are a number of relevant
cases that can be treated. In simplest one, each position is associated with an energy
εp~Rq, which is straightforward to implement. This energy could, for instance, stem
from interaction with defect sites.

One can also easily integrate stiffness by associating a bending energy with any
change of direction, by passing the current direction as an argument to the step

functions. This works for steps on and of child or parent sites just as for regular site,
so that the program does not change otherwise.

More complicated (but also more interesting) is the case of SAWs with nearest-
neighbor interactions, so-called self-attracting SAWs (SASAWs). Here each pair of
adjacent monomers that are not consecutive in the chain contribute an energy ´ε.
To enumerate SASAWs, we need to count the neighboring visited sites in each step,
and increase a counter for the number (and average distance) of segments of the given
length, state combination, and number of such contacts. The problem now is that
walks segments may also interact across cell boundaries as depicted in Fig. 3.10 for a
conformation of the familiar example from Fig. 3.2.

To accommodate for this, we have to split the states si up into different “substates”
si,j , depending on which of the unused links is visited without exiting or entering
the cell. In general, each c-state may thus split up into 2x substates, where x is the
number of pairs of neighboring, unused link sites, while for each t-state the number
is (at most) 2x times the number of remaining unused link sites. The substates are
partially ordered by defining si,j ě si,k if all link sites visited in si,k are also visited
in si,j . The enumeration procedure is now modified in the following way: As before,
a cell switches its state whenever the parent is accessed. In addition, it switches its
substate whenever a link site within the cell is visited. Likewise, a child switches its
state whenever it is visited and its substate whenever one of its link sites are passed
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−ε

1

Figure 3.10.: Conformation of a SASAW (black) on the cluster from Fig. 3.2. The red
coils symbolize attractions between adjacent monomers. Note that two
of them cross the boundary between cell B (green) and cell C (yellow).

by from outside. We now have to keep track of different arrays for each combination
of substates of cell and children, for which we count the numbers of segments (of
different length and contacts numbers) and their average end-to-end distances. After
the counting, the segments are connected in a similar manner as before [Eq. (3.8)].
Now, however, we combine (convolute) an array for a (sub)state combination where a
child in substate si,k with the sum of all substates si,j of that child for which si,j ě si,k,
and we shift the energy by ε times the number of visited links of (the child’s) substate
si,k to account for the cross-boundary interactions. In the same way, segments through
one child need to be combined with those through another if they are bordering each
other.

3.3. Partitioning the clusters

The factorization of the enumeration procedure described in the previous section re-
quires the cluster to be partitioned into a tree hierarchy of nested cells as the one
shown in Fig. 3.2. For a cluster consisting of a set S “ tsiu of connected sites with
SAW origin s0, I define a “cell hierarchy” H as any set of subsets of connected sites
with the following three properties:

1. S P H

2. H1 Ć H2 ^H2 Ć H1 ùñ H1 XH2 “ H @H1, H2 P H
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3. s0 P H ðñ H “ S @H P H.

In other words, each cell must consist of connected (i.e., neighboring) sites that are
not part of any other cell except the cell’s “ancestors”, i.e., cells that fully contain it,
and its “offspring”, i.e., cells fully contained by it. This property establishes a partial
order which defines the tree. At the top of this tree must be the full cluster (root cell),
which is the only cell that contains the origin.

In theory, the SFE method works for any cell hierarchy, but there can be huge
differences in the amount of time and memory it will require. If the hierarchy consists
solely of the full cluster (which is valid), we essentially recover the basic enumeration
method from Section 3.1.2. On the other hand, if it consist of cells with many children
and many links, we have to deal with a large number of possible state combinations Θ
[see Eq. (3.11)] demanding time [to evaluate Eq. (3.8)] and memory.

We hence need a method that can partition critical clusters into hierarchies for
which the enumeration will need a limited amount of memory (depending on how
much is available) and as little time as possible. Of course, the resources required by
this “partitioning method” itself must also be taken into consideration. Before we can
develop this method though, we first need to establish parameters by which we can
estimate how good a particular hierarchy is, so that we know in which direction we
want to go.

3.3.1. Evaluating cell hierarchies

The enumeration program deals with each cell separately. Hence, to estimate the total
runtime, we should try to predict the time needed for the treatment of an individual
cell, xtXy. This comprises the time for the actual enumeration, i.e., the runtime of the
program outlined in Figs. 3.7, 3.8, and 3.9, and the time for connecting the segments
[Eq. (3.8)]. The enumeration time will be roughly proportional to the total number
of segment conformations generated, while the summation will roughly be determined
by the total number of state combinations that have occurred. This second aspect
will also govern the memory usage, so that minimizing the expected time should also
reduce the required memory. The number of segment conformations correlates with
the effective area of a cell, the number of bare sites plus the number of children.
However, a better predictor turned out to be the number “faces” f , i.e., polygons
formed by the edges of the graph on which the enumeration takes place. The graph in
Fig. 3.6, for instance, has 5 faces. The heuristic motivation is that the faces correspond
to possibilities for a path to split into two viable new paths. This would suggest an
exponential dependence with a base of b « 2. The number of faces of a planar graph
can be obtained immediately via

f “ e´ v ` 1, (3.16)

where v is the number of vertices (nodes), i.e., the number of bare sites plus the number
of children and parent, and e denotes the number of edges between the nodes (e “ 23
and v “ 19 in Fig. 3.6). Eq. (3.16) can also be used for non-planar graphs (in D ą 2),
where the notion of faces is not clear otherwise. To test the dependence of xtXy on
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Figure 3.11.: Average time for the enumeration of SAW segments through a cell as
a function of its number of faces in 2D (left) and 3D (right) plotted
on a linear-log scale. The value of Θ from Eq. (3.11) characterizes the
configuration of links and children.

f , I measured the average time needed enumerate the SAW segments (with unlimited
numbers of steps) for different cells with the same configurations of links and children
(represented by the value of Θ) as a function of f . The results, which are plotted in
Fig. 3.112, show that there is indeed an exponential dependence, albeit with b « 1.75
rather than b “ 2 in both 2D and 3D (curiously so):

xtXy „ 1.75x, (3.17)

Note that the error bars in the figure display the standard deviation from the mean
and not the statistical error, so that they reflect the predictive power of the parameter
f . They are relatively large for small f , where the times were to short to be properly
clocked (hence also the flat start). Other parameters that I considered, namely the
number of edges or vertices in a cell, lead to substantially larger deviations.

To estimate the effect of the number of links and children, let us assume that the
time will, on average, increase monotonously with the number of state combinations
that occur. This number is not known before hand, but it correlates with the maximal
number, Θ, which is given via Eq. (3.11). To investigate the significance of Θ, I mea-
sured the times (for enumeration and summation) for a sample of cells and calculated
the averages for a fixed numbers of faces. The results can be seen in Fig. 3.12. Here
the dependence seems roughly to be a power law, with an exponent that is also rather
similar (« 0.6) in 2D and 3D:

xtXy „ Θx, x «

$

&

%

0.62, D “ 2

0.56, D “ 3.
(3.18)

2For this analysis I had to start with a preliminary, “best guess” version of the program, which
was then refined iteratively. The data for the figures were produced with the final version of the
program.
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Figure 3.12.: Log-log plots of the average time for enumeration and summation of SAW
segments through a cell with a fixed number of faces f as a function of
the maximal number of state combinations Θ in 2D (left) and 3D (right).

My first guess for the total time was the sum of Eq. (3.17) and Eq. (3.18), which
does work reasonably well. However, the fact that the data curves for different f in
Fig. 3.18 (on a log-log scale) are roughly straight, equidistant parallels (in 2D at least)
suggests that the product of Eq. (3.17) and Eq. (3.18) may actually be more relevant.
The reason for this is not entirely clear, although one can see that the two terms cannot
contribute independently: For a larger number of faces, more state combinations will
be realized since the walks have more freedom to access the links. At the same time,
the number of total segments being enumerated will approximately be multiplied by
the number of such combinations. In practice, such a multiplicative approach lead
indeed to better estimates. In the end, I used the following estimator to predict the
time a cell X will require:

xtXy „ bfXΘx
X (3.19)

with b “ 1.6 and x “ 0.6. These parameters proved to work well for both D “ 2
and D “ 3. The fact that b “ 1.75 is not the optimal choice in practice is not too
surprising, after all the above motivations are very heuristic and could not be expected
to yield perfect predictions. In practice, I also use a lower cut-off for the factor bfX to
reflect the constant overhead reflected in the leveling or the curves in Fig. 3.11 for low
f .

The cases D ą 3 did not warrant special treatment, as the enumeration is effort
almost negligible for them; see Section 3.4.2. The parameters are adapted slightly for
different versions of the program, e.g., when energy histograms are computed (Sec-
tion 3.2.5), usually by increasing x and reducing b to promote larger cells with fewer
links.

The total expected time for a particular cell hierarchy H can now be estimated as

xTHy “ a
ÿ

tXiuH

xtXiy , (3.20)

giving us a measure by which to compare the quality of different hierarchies (the factor
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a does not matter for this). The next question is how to create a hierarchy for which
xTHy is as small as possible.

3.3.2. Finding the right hierarchy

It is clear that any good hierarchy must reflect the self-similarity of the system. Cells on
different levels should statistically look the same once the children are decimated. It is
therefore natural to look for a partitioning method that also operates in a self-similar
fashion. Broadly, one might think of two different strategies: a top-down approach
where one starts by dividing the full cluster into weakly connected pieces, which are
then subdivided in the same manner, or a bottom-up approach where one starts out
with small pieces that are repeatedly merged into larger ones. I opted for the latter
route, for no particular reason. The basic ideas for the algorithm outlined below.

Amalgamation strategy:

• We begin with a cluster fragmented into many small “primary pieces”3, which
are not much larger than individual sites.

• We then consider all options to merge (a group of) neighboring pieces into a
larger one. Each option is rated according to a set of criteria that reflect how
tightly the pieces involved are bound together.

• The merging option with the best rating is carried out and all resulting new
options are assessed. This step is repeated until only one piece is left. A tree is
constructed during the process, where the children of each node (piece) are the
smaller pieces from which it was formed.

• When only one piece is left, the tree is “uprooted”, so that the primary piece
that contains (or is) the origin becomes the new root.

• In the end, some (actually most) of the pieces are dismantled: they are removed
from the tree, and the children are adopted by their grand parent. In particular,
all primary pieces are scrapped to become bare sites. The Pieces that remain
then become the cells of the hierarchy.

Initialization: In principle, we could start with the individual sites as primary pieces.
To speed things up a bit, however, sites with only one neighbor are directly joined
to it. Sites with only two neighbors are joined to either one of them unless if this
would close a loop, i.e., create a face. The process goes on until no more sites can
be joined. For the familiar example from Fig. 3.2, this results in an initial setting
as shown in Fig. 3.13. The shapes of the primary pieces depend on where one adds
the “irrelevant” sites, but the corresponding connectivity graph is unequivocal. Note
that a primary piece may contain a face if it is connected to one neighbor only, as

3These pieces are similar to our cells; some will indeed become cells eventually. However, the two
concepts are not exactly identical, so I use a different term here.

60



3.3. Partitioning the clusters

0

1 2

3 4 5

6

7 8

10

9

11

12

13 14

15

16

18

17

19

20

21

22

23

24

1

Figure 3.13.: Primary pieces (randomly colored) and corresponding connectivity graph
for the exemplary cluster from Fig. 3.2.

is the case for pieces 17 (light blue) and 24 (turquoise) in the figure. For each piece,
we now consider all options to merge it with any subset of neighboring pieces that
are connected among themselves. All options are rated (see below) and sorted into a
priority queue accordingly.

Rating the options: The parameters by which we rate the different merging options
should favor the creation of pieces (and hence cells) with few links, i.e., few edges
linking to the respective node in the connectivity graph. The most relevant parameter
thus turned out to be the “link creation number” ∆, defined as the number of links
of the resultant pieces minus the number of links of the piece from which the options
are considered. ∆ ă 0 means that the merger is good as it reduces the connectivity
of the graph. For instance, merging piece 15 (dark blue, 4 links) with piece 7 (dark
yellow, 4 links) in Fig. 3.13 would create a new piece with 6 links, so the choice is
rather poor (∆ “ 2), while merging 0 and 1 would be good (∆ “ ´1). A second
important parameter, which in my implementation is consulted whenever there is no
option with ∆ ď 0 is the height h of the pieces in the emerging tree, i.e., how many
generations of offspring the resultant piece would contain. Preferring mergers with a
low h supports an evenly growth of the pieces, thus preventing that some small areas
will remain very fragmented and obstruct the whole process. Other aspects can also
be taken into account, but these two turned out to be most important by far. Each
potential merger also receives a random number that decides the case when mergers
are rated equally otherwise.
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3. The taming of the SAW

Amalgamation process: The main part of the partitioning program consists of the
following routine: We take the best-rated merger option from the beginning of our
queue (see above) and check if all involved pieces are still active, i.e, if they have not
already been merged. In that case the option is discarded and we pick the next best
until we find one that is up to date. We then define the pieces involved as children
of a larger piece consisting of their combined sites, and we determine the number of
faces f0 created within the new piece as the number of links between its children plus
one minus the number of children [cf. Eq. (3.16)]. After the merger has been effected,
we consider all options to merge the new piece with its neighbors, rate them, and sort
them into our queue. Figure 3.14 shows the active pieces and the connectivity graph
for the example after 2, 5, and 10 mergers have been performed. The procedure is
repeated over and over, and similar pieces of ever larger sizes appear until only one
is left. The self-similar nature is evident in Fig. 3.15, where the active pieces of the
backbone of a larger cluster cutout (500 chemical shells) are shown during different
stages of the process.
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Figure 3.14.: Active pieces after 2, 5, and 10 amalgamation steps (mergers).
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Figure 3.15.: Stages during the amalgamation process for the backbone of a CPC
cutout of 500 chemical shells around the origin. Shown are the active
pieces after 5000, 7500, and 7900 mergers have been performed (from left
to right). The figure is taken from Ref. [103]
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3.3. Partitioning the clusters

Uprooting the tree: One condition for the cell hierarchy is that (only) the root must
contain the origin site, and so we have to rearrange our tree accordingly. The primary
piece that contains the origin is put on top, and its former parent (the piece into
which it was merged) and siblings (the pieces that were merged with it) are defined
as its children. This means that the former parent piece is inverted: sites that used to
belong to it now become the outside. Similarly, its former parent and siblings become
its children. This inversion is carried out for the whole ancestry.

Finalizing: The tree is now almost ready to become our cell hierarchy and should
already reflect the connectivity of the cluster on all length scales. However, only
the primary pieces contain any bare sites. This area where the basic walk segments
will actually be enumerated should be distributed more or less evenly throughout the
hierarchy. To achieve this, some of the pieces will be dismantled, including all the
primary ones. These simply become bare sites contained by their parents. For any
other piece that is dismantled, we define that all its children and bare sites are passed on
to its parent and remove it from the hierarchy. The number of faces in the dismantled
piece are also added to the parent’s. We choose the pieces to be dismantled such that
the total estimated time [Eq. (3.20)] becomes minimal. This can be done efficiently
[presumably Opn log nq in number of pieces] by making use of the tree structure: First,
we dismantle all primary pieces. Then we estimate the time for all4 pieces that contain
no other pieces (leaves of the tree) according to their number of faces and links via
Eq. (3.19). For the pieces on the next level, we consider dismantling any combination
of their children including all and none. For each combination the time is estimated
from the number of faces and the Θ-value of the potential cell plus the times estimated
for the remaining (“spared”) children. The combination with the lowest estimate is
recorded; it represents the best choice as long as the piece itself is not dismantled.
However, to find the global optimum for whole the hierarchy, we must also think
of the scenario where the piece is dismantled and keep an “combination list” of all
combinations that could somehow turn out to be optimal. The case where the piece is
kept is stored as the “zeroth entry” of the combination list. Each entry of such a list
encompasses the following items:

a. The combination of children to be dismantled and references to entries in their
respective combination lists. For instance, if a piece has three children, the com-
bination t2, 1, 0u would refer to the second entry from the list of the first child
combined with the first entry of the second child’s list. The value zero signifies that
the third child is not to be dismantled. Such a combination fully specifies which
pieces are dismantled within the entire branch below the piece. The combination
of the zeroth entry represents the optimal choice if the respective piece is kept.

b. The sum of the (best) time estimates for all spared offspring oi,
řk
i“1 Toi (which

includes the times for their respective offspring). For the zeroth entry, the time
estimate for the piece itself [Eq. (3.19)] is also added.

4In practice, the pieces are actually dealt with in pre-order, too.
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3. The taming of the SAW

c. The number φ of faces that are passed on when the piece is dismantled, i.e., that
are outside of the spared offspring. This value is set to zero for the zeroth entry.

d. A number reflecting the possible c-state combinations of the spared offspring:

θc :“
k
ź

i“1

ΩcpLoiq, (3.21)

where Loi denotes the number of links for the ith spared offspring, or θc :“ 1 if the
piece does not have children. For the zeroth entry, this is replaced by ΩcpLq, the
number of c-states of the potential cell [Eq. (3.6)].

e. A number reflecting the possible t-state combinations of the spared offspring:

θt :“
k
ÿ

i“1

˜

ΩtpLoiq

ΩcpLoiq

k
ź

j“1

ΩcpLoj q

¸

, (3.22)

or θt :“ 0 if there are no children. Together with θc, this number will be used to
calculate the maximal number of state combinations Θ [Eq. (3.11)]. For the zeroth
entry, it is replaced by ΩtpLq.

For any combination where the piece is dismantled (not the zeroth entry), the values
b. and c. are obtained by simply summing the respective values from the lists of the
children, while θc and θt are calculated via the following recursions:

θc “
k
ź

i“1

θcxi (3.23)

and

θt “
k
ÿ

i“1

˜

θtxi
θcxi

k
ź

j“1

θcxj

¸

, (3.24)

where θcxi , θ
t
xi denote the values from the selected list entry of the ith child.

The time for the branch if the piece is spared (item b. of the zeroth entry) is obtained
by summing the respective b.-values from the children plus the estimated time for the
envisioned itself from Eq. (3.19). The number of faces required for this estimate is
obtained as

f “
k
ÿ

i“1

φxi ` f0 ` L´ 1, (3.25)

where φxi are taken from the children’s lists (c.), L is the number of links to the parent,
and f0 was determined during the amalgamation process. The Θ-value is calculated
via

Θ “ pΩcpLq ´ 1q
k
ź

i“1

θcxi ` ΩtpLq

˜

k
ÿ

i“1

θtxi
θcxi

k
ź

j“1

θcxj `
k
ź

i“1

θcxi

¸

, (3.26)
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which is equivalent to Eq. (3.11) when the θs are substituted by the number of state
combinations for the spared offspring. The zeroth entry of the root will in the end refer
to the optimal combination of pieces to be dismantled/kept in the whole hierarchy.

The computational effort for this routine remains manageable since we do not need
to store every combination; only those that could potentially be optimal. Hence, if all
parameters b.-e. are equal or worse (i.e., larger) for one combination than for another
one in the list, it can be discarded. In addition, we can introduce upper thresholds
for the values, so that the length of the lists will remain bounded. This is permissible
as there are practical limits anyway to size and complexity of cells. For instance, the
number of faces in a cell should in practice not be much larger than thirty as the time
to enumerate the segments will become much too long otherwise. If chosen generously,
these bounds could hence only make us overlook an optimum that would still not be
good enough anyway.

Factorizing the partitioning: Due to the randomness involved, one can repeat the
amalgamation process a couple of times to improve the outcome. This works reason-
ably well so that clusters large enough for over a thousand SAW steps can be handled
even in 2D, where the decomposition is most difficult. There is, however, one flaw
that becomes relevant if we wants to push the length to the limit or make meaningful
measurements of the asymptotic time complexity of the enumeration method: As the
clusters get larger, the chances for finding an exceptionally good hierarchy by repeat-
ing the amalgamation with different seeds dwindle. In some areas of the cluster, the
partitioning will be better in others worse, but on average it will probably be average.
Hence, we would need to increase the number of trials exponentially with the cluster
mass to retain the quality of the hierarchies when we increase the system size, which
is not practical. On the other hand, fixing the number of trials will spoil the time
scaling of the enumeration method.

The solution is to self-consistently factorize the amalgamation process itself. This
can once again conveniently be achieved by a recursive approach: As before, we start
amalgamating the smallest pieces. But whenever we create an “ideal” piece that we
certainly want to keep (for example, with only one external link), we try to optimize
the partitioning within that piece before we move on. For this we recursively apply
the same routine several times within the restricted area of the ideal piece. (We can
think of the whole cluster as the largest ideal piece.) When we retry the amalgamation
within an ideal piece with a different seed (for the random number generator), we start
with the largest ideal pieces contained by it instead of the primary pieces, significantly
accelerating the process. Each ideal piece is thus optimized independently from the
rest of the cluster, and with each repetition, the amalgamation will become faster as
more ideal pieces are identified. I defined a piece as ideal if

1. more than half of the links of each of its constituents (pieces that are merged to
form it) connects to other constituents,

2. it has fewer than Lid links, where Lid is initially 2 and slowly increased as the
amalgamation routine is called repeatedly.
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3. The taming of the SAW

Developing these criteria involved some heuristics and empirical trials, which I shall
not elaborate here.

3.4. Checking and benchmarking the SFE method

In this section I discuss issues to do with the practical application of the SFE method:
verifiability of the results, scope and limitations, problems, and performance.

3.4.1. Preliminary considerations

Error detection: Since the SFE method is relatively complex, there is a serious risk
of bugs. Most would have obvious consequences, but others may corrupt the results
more subtly. This raises the question of how far the results produced by the SFE
method can be trusted, or how we can verify them given that no other method can
handle similar chain lengths.

First, one can always check the results for the first thirty or so steps using the
standard enumeration method from Section 3.1.2. This requires very little extra time
and was therefore done at any execution of the program. Not a single mismatch
occurred in over 108 runs with the final implementation, by which the results of this
work were produced. This strongly indicates that it works correctly and that the
results for more steps can also be trusted. (Note that there is in principle no difference
between the handling of initial and later steps.) I also used PERM to directly verify
the results for SAWs of a couple of hundred steps and found excellent agreement as
long as sufficiently many PERM tours were started; see Section 3.5. However, for even
longer chains PERM itself becomes unreliable. A better approach takes advantage of
the fact that the results must be independent of the cell hierarchy into which a cluster
is partitioned: The amalgamation method described above produces slightly different
hierarchies when run with different seeds, and one can lend a hand by tweaking some
parameters. The resulting differences will be strongest in highly connected cluster
regions where cells have many links, i.e., where the enumeration is most complex and
prone to errors. In case of an error, it is highly unlikely that the results for different
hierarchies are affected in the same way. Hence, if the results are identical, they
are probably correct. This check was carried out for several thousand of the largest
systems and did not find any mismatches beyond numerical inaccuracies, which do not
affect the fist 14 digits for my choice of data types. (I use exact integers during the
counting and 128-bit floats for the combined state arrays. It is possible to use exact
data types throughout, but the cost in performance and memory is high and the gain
irrelevant.) I am hence highly confident that my latest implementation and all the
results generated by it are correct.

Uneven usage of resources: One peculiarity of the SFE method is that its time and
memory requirements depend on the individual cluster configurations and can fluctuate
quite strongly. This is because the resources needed to deal with one cell depend very
sensitively on its properties. In theory, there will in fact always be some clusters
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that cannot be partitioned such that the enumeration (of SAWs of decent length) can
realistically be performed. Fortunately, these cases practically never seem to occur
if we are at the percolation threshold. Still, some clusters are always significantly
more demanding than others, making resource allocation for the program somewhat
awkward. To estimate the quenched averages for the largest systems (N “ 12800) I
had to restart the program with extra resources for some of the clusters. In very few
cases, I had to try the partitioning with different parameters until the enumeration
would not surpass the limitations of the system. Simply discarding such more difficult
cases would introduce a bias, as will be seen in Section 3.4.2. However, in many
situations this bias would be negligible in practice.

Theoretical complexity: Theoretical assessment of the asymptotic complexity of the
SFE method is difficult, but one can at least estimate some upper and lower bounds.
Obviously, the expected time has to increase with the area A covered by the SAWs,
implying (see Section 2.2.2)

T Á A „ Ndl . (3.27)

We can expect the number of cells in a hierarchy to increase OpNdlq as well since the
total number of cells is always less then twice the number of cells on the lowest level
of the tree. However, the time needed to deal with a cell should on average increase
with its total area, i.e., the total number of its offspring. This is mainly because the
convolution of SAW segments through a cell with the segments through its children,
Eq. (3.8), increases roughly with the square of the total number steps a SAW can take
within cell and children. Assuming that this number is given by the total area of the
cell (including children), which is obviously an upper bound, and given that the total
cell areas increase exponentially with the level (height) h in the hierarchy while their
number decreases, we obtain

T À

ż lnA

0

e´hApehq2dh „ A2. (3.28)

Together with Eq. (3.27) we thus have

Ndl À T À N2dl . (3.29)

It was assumed here that the cluster can be partitioned such that the quality of the
cell hierarchies does not deteriorate when the system size is increased, i.e., that cells
in larger system do not tend to have more links, children and faces. The partitioning
method introduced above seems to achieve that (as long as p “ pc) although I have
no theoretical proof for this. Of course, the time for the partitioning must also be
factored in, but it does not seem to matter asymptotically as shown below.

3.4.2. Performance of the SFE method

The performance was analyzed empirically for the simplest and fastest version of the
SFE, which measures the number of chain conformations and their mean end-to-end (or
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3. The taming of the SAW

chemical) distance. The method relies explicitly on the properties of critical clusters
(self-similarity and finite ramification), but up to some finite length it can also be
used somewhat above pc. The following discussion is limited to the cases D ď 5; for
D “ 6, 7 the time for enumeration and partitioning is negligible compared to the time
needed to create the clusters.

At criticality: I used the SFE method to enumerate SAWs of different length, N “

50, 71, 100, . . . (increasing by factors of
?
t) on critical clusters in D “ 2-5 on identical

machines5 to benchmark the performance. The maximum length was N “ 12800 in
2D and 3D and N “ 4525 / N “ 3200 in 4D/5D, respectively. For each length
and dimension, I used a sample of 103 randomly generated clusters. The average
times required for partitioning a cluster and enumerating the SAWs are plotted in
Fig. 3.16 as a function of the number of steps on a log-log scale. For comparison
I also plotted the time needed to generate the clusters (see Appendix A.1.1). The
straight slopes for the enumeration time clearly indicate power-law behavior rather
than the exponential increase which is typical for exact enumeration methods. I used
a simple least-squares fit to estimate the exponents; the results are given in Table 3.7.
Curiously, the exponent for the enumeration time is very similar in all dimensions
(« 2.4). I have currently no explanation for this finding; it may well be a coincidence.
All values are within the theoretical boundaries from Eq. (3.29). The amplitudes,
meanwhile, strongly diminish with increasing dimensionality as the clusters become
more and more loopless. For D ą 3, the time needed to generate the clusters clearly
dominates in the range investigated. The same goes for the memory usage, which I
therefore only investigated in D ď 3. As can be seen in Fig. 3.17, the peak memory
usage in D ď 3 appears to increase polynomially as well. The estimated exponents are
also listed in Table 3.7. The peak is usually reached during the enumeration part in
D “ 2 and during the partitioning in D “ 3. There are some unfortunate cases where
the required memory (and time) is considerably larger than the average. However, the
deviations are not so extreme that a single configuration has significant impact on the
average.

5Intel Xeon E5-2640 (2.5GHz)
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Figure 3.16.: Average computation time for the different parts of the SFE program vs.
number of steps (for dimensions D “2-5). The dashed lines are power-
law fits; the exponents are given in Table 3.7. (For D ą 2, the lattice
sizes are increased sublinearly with N , hence the apparent saturation of
the cluster generation times.)
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Figure 3.17.: Average and maximum peak memory usage of the SFE method measured
for a sample of 103 clusters in 2D (left) and 3D (right).
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Table 3.7.: Measured exponents of the time and memory increase for the SFE method
on critical clusters in different dimensions.

D enumeration time partitioning time peak memory
2 2.44p2q 1.66p2q 1.58p2q
3 2.43p2q 1.89p2q 1.26p2q
4 2.36p4q 1.98p2q -
5 2.37p4q 2.01p4q -

Above criticality: Above pc, the clusters lose their critical properties. This can be
seen in Fig. 3.18, which shows the bi-connected components (see Section 2.2.3) of
the relevant cutout regions for SAWs of N “ 400 steps on 2D clusters at various
concentrations p. While the sizes of these vary on all length scales at criticality,
there is one dominant component above pc, and with increasing system size more and
more cuts will be required to disconnect the cluster into separate pieces of similar
size. The SFE method can therefore no longer achieve polynomial complexity on these
supercritical clusters. However, up to some point (line, actually) Nppq it can still
compete with other methods. As it turns out, we can even reach significantly into
regimes where the fractal nature of the clusters is no longer apparent.

I analyzed the performance of the method on supercritical (p ą pc) clusters in D “ 2
and D “ 3, for concentrations of up to p “ 0.70 (« 1.18 ˆ pc) in 2D and p “ 0.35
(« 1.12ˆpc) in 3D. The results (mean times for the enumeration) of this benchmarking
are plotted in Fig. 3.18. For some cases, the method did not succeed to partition the
clusters such that SFE could be carried out within the memory restrictions (64GB
RAM) or within realistic time. The rate of these “failures” increases with concentration
and length. This can be seen in Table 3.8, where the fail rates and median times are
listed for the “border-line” cases where the rate is larger than zero but smaller than
50%. These failures are not regarded in the average times, which is why I listed
the medians in the table instead. Discarding configurations where the method fails
will not necessarily spoil the quenched averages as long as they are relatively few.
However, if the fail rate is significant, one has to be very careful, in particular for
small systems (with high p): the chances of success tend to be lower for clusters that
are very compact, which correlates positively with Z and negatively with

@

R2
D

. For
instance, on the 67% of clusters where SFE succeeded for D “ 2, p “ 0.7, N “ 71,
the average squared end-to-end distance was determined as

“@

R2
D‰

“ 599p2q, whereas

for the remaining 33% I obtained (with PERM)
“@

R2
D‰

“ 572p3q. This discrepancy is
not due to inaccuracy of PERM, which yielded results perfectly consistent with those
from SFE for the other 67%.
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Figure 3.18.: Bi-connected components of the cluster region which is accessible within
N “ 400 steps for concentrations p “ 0.59274621 « pc, p “ 0.60, and
p “ 0.62 (from left to right) for a typical incipient cluster on a 2D-lattice.
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Figure 3.19.: Average time for the enumeration on supercritical clusters in 2D and 3D.

Table 3.8.: Lengths at which the SFE method starts to falter for different concentra-
tions in 2D and 3D besides the respective fail rates and median times t̂.
At criticality, the method succeeded for all clusters investigated.

2D

p N fail rate t̂rss
pc 12000 ă 0.002% 2236
0.60 3200 5% 646
0.61 800 0.01% 29.1
0.61 1131 12% 185
0.62 400 0.01% 10.6
0.62 566 18.4% 161
0.64 200 3% 13.3
0.68 71 12.2% 3.4
0.70 50 1.6% 2.3
0.70 71 33% 89

3D

p N fail rate t̂rss
pc 12000 ă 0.002% 934
0.315 800 0.01% 7.1
0.315 1131 2.6% 22
0.32 400 7.7% 3.0
0.33 50 1.0% 0.42
0.35 71 15% 0.53
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3.5. Analyzing PERM

Having exact results to compare with allowed me to closely investigate the accuracy
of PERM in dilute systems. Since PERM has become a standard MC method, such
an analysis is justified in its own right, but I also had more concrete motivations:
First, I wanted to be in a better position to compare the SFE method with PERM;
see Section 3.6. Second, I wanted to have a clearer idea of how many tour starts are
necessary to obtain reliable results with PERM, which was used to generate part of
the results in Chapter 5.

There are two parameters by which the accuracy (and runtime) of PERM can be
modified: the number of tours t and the population-control parameter C “

?
CąCă

[see Eq. (3.3)]. The program self-consistently adjusts the weights such that if it runs
long enough, 1{C branches will on average be completed per tour. The runtime will
therefore roughly increase with the effective number of tours t̃ :“ t{C

To analyze the algorithm, I fixed the population control to C “ 0.001 and varied
the number of starts. It should be noted that with the improved nPERMss version on
which my implementation is based, lowering C is often more rewarding than increasing
t: a small C means the initial part of the chains are exactly enumerated rather than
sampled repeatedly, which enhances both performance and accuracy; see Ref. [111].
However, varying t is more convenient for the analysis here as it can be done in one
run of the program.

The statistical errors on the conformational average estimated with PERM asymp-
totically vanishes like ε „ t̃´1{2. However, this quantity is usually not very relevant
as it will be flattened out by the disorder average. This is not the case for systematic
errors, which can arise if too few tours are started. Their main cause is that PERM
sometimes fails to discover areas that are difficult to enter even though their entropic
contributions are relevant. This is exemplified for the cluster in Fig. 3.20 (left), on
which I used PERM to estimate the average end-to-end distance. The right-hand side
of the figure shows the results after varying numbers of tours. They can be seen to
converge nicely towards exact values determined by SFE (black curve) for N ď 300
but not for N “ 400. The errors are estimators of statistical error (see Ref. [102]):

ε “

g

f

f

f

e

B

xR2
2
F

´

A

xR2
E2

t

x pw2y

x pwy
2 , (3.30)

where the hats denote averages over branches from individual tours. They clearly fail
to cover the deviations as the fluctuations are not correctly assessed.

More detailed information is provided in the distribution of end-point locations and
the conformation densities (see Section 3.2.4) shown in Fig. 3.21 and Fig. 3.22. The
pictures on the right side were obtained by exact enumeration. They reveal that the
majority of chains end in a region relatively close to the center. After the first 105

effective tours, PERM did in fact not produce any conformation ending in that region,
and even for t̃ “ 108 other regions are emphasized more strongly as can be seen in the
figures. Interestingly, the problem here is not that the chains fail to enter the region
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(those of length N=200-300 mostly end there) but rather that they go there too early
and are then forced out as they grow longer.
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Figure 3.20.: Left: Chemical distance on a critical percolation cluster. The origin is
in the light region near the middle. The cluster is trimmed to the area
accessible by walks of N “ 400 steps. Right: end-to-end distances vs.
N measured on the cluster shown left. The black curve give the exact
results obtained by enumeration, the other data were produced by PERM
with varying numbers of started tours.

Figure 3.21.: End-point densities for N “ 400-step SAWs on the cluster from above
(Fig. 3.20) produced by PERM within t̃ “ 108 effective tours (left) and
exact densities obtained by SFE (right).
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Figure 3.22.: SAW conformation density for N “ 400-step SAWs on the cluster from
above (Fig. 3.20) produced by PERM within t̃ “ 108 effective tours (left)
and exact densities obtained by SFE (right).

This problem is not as severe on every cluster, though. In Fig. 3.23, the magnitude
of the estimator for the relative statistical error |ε{

@

R2
D

| is plotted vs. the number of
tours for a couple of arbitrarily chosen clusters in 2D and 3D besides the magnitude
of the relative deviation from the exact value (bias):

|bR2 | “ |
@

R2
D

´R2|
xR2y

, (3.31)

where R2 is the PERM estimator and the angular brackets denote the exact average.

Fig. 3.24 shows the quenched average of the magnitude of the relative bias, r|bR2 |s,
as function of the number of tours. This quantity is a measure of the trustworthiness
of PERM results for individual clusters. The average was taken over 104 cluster and
for N “ 400. At criticality, it vanishes roughly with t̃´0.36 in both 2D and 3D. For the
improved version that avoids small dangling ends, the bias vanishes slightly faster, and
the runtime is also improved. The decay is significantly faster for large p, but almost
unchanged close to pc. Indeed, for some reason, the decay in 3D is actually slowest
a bit above pc, at p “ 0.32. Also shown the figure is the relative bias for the KGW,
which vanishes almost instantly. This was to be expected since KGW conformations
are naturally sampled according to their weights.

The bias is not always in the same direction, so that the actual effect on the quenched
average is smaller. However, there is a tendency to underestimate both

@

R2
D

and Z,
which results in a net bias of the estimators for the quenched averages. As I had al-
ready observed previously [101], this bias vanishes relatively quickly for concentrations
significantly above pc but seems very persistent („ t̃´0.5) at criticality. Thanks to the
new method, I could now test this more thoroughly. For the (relative) bias on the
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3.5. Analyzing PERM
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Figure 3.23.: Convergence behavior of PERM estimates for the end-to-end distance of
400-step SAWs on a couple of critical 2D clusters. The left plot shows
the magnitude of the estimated relative statistical error and the right-
hand plot the actual deviation from the exact values [Eq. (3.31)]. The
red curve belongs to the cluster from Fig. 3.20
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Figure 3.24.: Average relative bias of PERM estimates of the squared end-to-end dis-
tance as a function of the number of effective tours on clusters at different
levels of concentration in 2D and 3D. At and close to the critical con-
centration (p ď 0.62 in 2D and p ď 0.32 in 3D), the deviations were
measured with respect to the exact values, elsewhere with respect to the
final PERM estimates. The different versions, v1 and v2, denote the use
of the trap avoiding optimization (v2); see end of Section 3.1.1. The
black circles show the bias for the KGWs, which is practically zero after
a few tours.

quenched average,

BrR2s “

“@

R2
D‰

´

”

R2
ı

rxR2ys
(3.32)
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3. The taming of the SAW

shown in Fig. 3.25, the decay is indeed t̃´0.5 or slower over a long range. Note that
the irregular behavior for large t̃ is likely due to statistical fluctuations as the number
of clusters where the results have not properly converged becomes quite small. Again,
the performance slightly above criticality, p “ 0.32, in 3D is even slightly worse than
at pc.
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Figure 3.25.: Bias of the PERM estimator for quenched average of the end-to-end
distance [Eq. (3.32)], obtained by sampling up to 220 tours of 400-step
SAWs on 103 clusters in 2D (left) and 3D (right).

To quantify the performance of PERM, I investigated the quenched average of the
end-to-end distance for 400-step SAWs on 103 clusters at and closely above pc on which
I had determined the exact conformational averages using the SFE. I then measured
the number of tours and the time it took until the results converged (and remained)
within 1% of the exact value. The results for the critical cases are plotted as histograms
Fig. 3.23. Interestingly, these histograms look very similar for 2D and 3D. As can
be seen, there is a significant fraction of clusters where the results did not converge
within the maximum of t̃ “ 103 ˆ 220 tours I afforded. The rate of these “failures” is
listed in Table 3.9 together with the median times and the average magnitude of the
relative bias.

Table 3.9.: Fail (non-convergence) rates for PERM simulations of 400-step SAWs on
2D (left) and 3D (right) clusters at and closely above criticality. Also shown
are the mean and median times till convergence as well as the average of
the relative bias; see Eq. (3.31).

2D

p fail rate t̂rss trss r|bR2 |s
pc 13.8% 206 902 0.006
0.61 8.5% 189 1036 0.003
0.62 8.6% 249 1155 0.003

3D

p fail rate t̂rss trss r|bR2 |s
pc 10.8% 141 958 0.0035
0.315 13.9% 321 1646 0.0051
0.32 15.7% 534 1622 0.0075
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3.6. Discussion: Scope and performance of SFE compared to other methods
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Figure 3.26.: Distribution of numbers of PERM tours above which error estimator and
actual deviation of the end-to-end distance remain below 1% of the exact
value. The left histogram was obtained for critical clusters in D “ 2,
the right one for D “ 3. Both represent a sample of 103 clusters with
SAWs of N “ 400 steps. The rightmost column corresponds to clusters
where the results did not converge within the limit of 220 tours (103ˆ220

effective tours).

3.6. Discussion: Scope and performance of SFE
compared to other methods

The scope of the SFE method is clearly somewhat limited. Where it can be used,
however, it is vastly more efficient than the standard enumeration method. The benefit
is most striking at criticality, where the complexity of the SFE seems to be polynomial
rather than exponential. Hence, it can handle SAWs several orders of magnitude
longer than the standard method. In terms of computation time, this gain sounds
more impressive: Exactly enumerating 109 conformations (a typical number for SAWs
of N “ 50 steps on 2D CPCs) with standard EE takes about one minute, and there
are typically 101550 conformations of for SAWs of length N “ 104. Hence, exact
enumeration of all conformations of SAWs of 104 steps on a CPC would typically take
more than 101500 lifetimes of the universe.

Even with PERM it would take extremely long to get reliable results for SAWs
of such length. I do not know how long exactly, but from my experience it is not
feasible to simulate SAWs of much more than N “ 500 steps on a critical cluster,
and previous studies have not gone beyond N “ 200. It is harder to say which of
the two methods, SFE or PERM, is better when the concentration is somewhat above
criticality. Indeed, quantitative comparison of the performances of SFE and PERM
is not really possible: PERM being a Monte Carlo method, the estimators for the
conformational averages become more accurate with the amount of statistics invested,
i.e., the number of started tours, and obtaining exact results would take infinitely
long. On the other hand, having exact conformational averages is not that important
if we also need to take the quenched disorder average. In fact, the effects of any
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3. The taming of the SAW

purely statistical errors on the conformational averages will eventually average out if
the disorder sample is large enough, so that a small number of tours might actually
suffice. However, on critical clusters there also tends to be a systematic error (bias)
depending on the number of started tours, as was shown above. Hence, one would
need to increase the number of tours with the disorder sample size to keep the bias
negligible compared to the statistical error on the disorder average.

Still, based on the findings from the last two sections, Table 3.8 and Table 3.9 in
particular6, it is fair to say that the SFE method is clearly more efficient while p ď 0.62
and p ď 0.32 in 2D and 3D, respectively, while PERM is more useful for p ě 0.64 and
p ě 0.33. In the intermediate regime, both methods have pros and cons: SFE gives
exact results for most clusters but fails completely for others. By contrast PERM will
always give (approximate) results, but one has be careful to avoid bias effects. Apart
from the slight worsening of the performance of PERM for concentrations closely above
pc, an effect that is odd but rather insignificant, the two methods show strikingly
opposite trends: SFE gets worse where PERM gets better. On average this probably
also holds true for different clusters at the same concentration. SFE works well when
a cluster is weakly connected and can be decomposed by removing a small number of
sites. These “bottlenecks” are exactly what makes exploring the cluster difficult for
PERM, which therefore works much better on strongly connected clusters.

On balance, I thus come to the following, conciliatory conclusion: The two methods
are not really in competition, they are complementary. For concentrations where both
methods work to some extent, they should best be used in conjunction: One can start
by doing SFE where possible, use these results to estimate the number of PERM tours
needed for convergence, and then use PERM to estimate the results on those clusters
where SFE had failed. These are typically more compact and will thus be easier
cases for PERM, so that the determined tour limits will be generous. Conceivably,
one might even mix the two algorithms, using PERM to estimate the results for cells
where enumeration takes too long. However, I did not try this idea in practice.

6The fail rates can only be compared in so far that roughly similar maximum times were granted to
the two methods. A more systematic comparison was done in Ref. [105] but with a less efficient
version of the SFE program.
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4. Scaling behavior of self-avoiding
walks on critical percolation clusters

The scale-free enumeration method allows for much more detailed investigations of
SAWs on CPCs than previous numerical tools. This justified revisiting questions that
have already been thoroughly investigated in the past but were never fully settled.
These questions mainly regard the scaling behavior of the (quenched) average end-to-
end distance and the number of conformations on critical clusters as well as cluster
backbones.

4.1. End-to-end distances

I measured the conformational averages of the squared end-to-end distances
“

xR2
D

for
random samples of disorder configurations (incipient clusters) in order to assess the
asymptotic scaling behavior of the quenched disorder average:

“@

R2
D‰

„ N2ν (4.1)

The measurements were carried out independently for walks of varying length N ,
started with N “ 50 and increasing by factors of

?
2. The maximum was set to N “

12000 in 2D and 3D, while the chains in higher dimensions had to be shorter as creating
the clusters became too demanding. An overview of the results for

“@

R2
D‰

as a function
ofN is shown in Fig. 4.1 for systems of varying dimension on a double logarithmic scale.
The power-law behavior predicted by Eq. (4.1) is reflected by constant slopes. With
increasing dimension, these can be seen to approach the mean-field value of νMF “ 1{2,
represented by the dashed line. The solid line corresponds to the exact prediction for
the free SAW in 2D (ν1 “ 3{2). As noted in previous works, the exponent on 2D
CPCs is slightly larger.
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Figure 4.1.: Results for the mean squared end-to-end distance as a function of the
number of SAW steps on critical clusters inD “ 2´7. The lines correspond
to the regular-lattice value, ν1 “ 3{4, and the mean-field value, νMF “ 1{2.

4.1.1. Results in two dimensions:

The two-dimensional case is particularly important since this is where the two com-
ponents of the system (SAWs and CPCs) are best understood individually. It has
attracted most interest in the past, perhaps also because it is good to visualize and
usually the easiest case to study. (As discussed in the previous chapter, the SFE
method is an exception: It is least efficient in 2D, where the critical clusters are more
strongly connected than in higher dimensions.) After the 3D case, it has therefore also
received most of my attention.

Directly plotting
“@

R2
D‰

vs N as in Fig. 4.1 broadly shows the power-law behavior,
but the range is too large to reveal details. In Fig. 4.2 I have therefore scaled the
results for

“@

R2
D‰

by a factor N1.56 « N2ν . Thus, the slope becomes close to zero and
minor deviations can be discerned. The figure shows the results for the full incipient
clusters and for backbones of incipient clusters. I chose very large sample sizes (« 106

clusters) and smaller intervals (Ni`1{Ni « 21{4) for the initial range of N ď 100. This
required little effort and allows for a better direct comparison with previous studies.
The sample size in the range of larger N was at least 5 ˆ 104 for each individual
length. There are several things to note about Fig. 4.2: For both backbones and full
clusters, the slope starts relatively low, and there appears to be a crossover to a larger
value at about N “ 30. In the region around N “ 150, it decreases again before
stabilizing eventually. This kind of finite-size behavior was quite unexpected, so I
carefully checked that it is not due to varying lattice sizes. However, the choice of L
had no noticeable influence as long as the lattice was large compared to the typical
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Figure 4.2.: Scaled mean squared end-to-end distance as a function of the number of
SAW steps on incipient critical 2D clusters and cluster backbones. The
values have been divided by N1.56 « N2ν to enhance visibility. Straight
lines show least-squares power-law fits to the data range N “ 800-12000.

extension of the SAWs. This can be guaranteed by choosing L ą 2N , which is in 2D
easily affordable.

To estimate the exponent ν, I used a simple least-squares fit of Eq. (4.1), adjusting
the lower cutoff to optimize the quality of the fit. The dependence of the estimates on
the fit range can be seen in Fig. 4.3. The values are also listed in Table 4.1 together
with the parameters of the fits. Note that the data points in Fig. 4.3 are correlated as
the fit ranges overlap. Based on the χ2 values and the fit errors as well as my optical
judgment of the data curves, I consider the results obtained with Nmin “ 800 as my
best estimates1

νIC “ 0.7749p4q, νBB “ 0.7766p5q (4.2)

The exponent for the backbone appears to be slightly larger, but the difference is not
very significant and seems rather to diminish with the system size. This gives some
support to the hypothesis that ν is the same on the backbones as on the full clusters,
but it is not a clear confirmation.

1The slightly different value I gave in Ref. [104] (νIC “ 0.7745p15q) had been obtained from smaller
systems (N “ 1000).
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Figure 4.3.: Effect of the lower cutoff of the fit range on the estimate for ν on critical
2D clusters and backbones. The upper cutoff was N “ 12000 for all
points.

Table 4.1.: Estimates of the exponent ν on critical 2D clusters and backbones for dif-
ferent fit ranges. Also listed are the effective number of degrees of freedom
(NDF) and the reduced χ2 values.

Nmin Nmax NDF νIC χ2
IC νBB χ2

BB

30 100 4 0.7780p5q 2.04 0.7856p5q 2.00
13 12000 23 0.7767p4q 8.38 0.7773p9q 8.69
50 12000 15 0.7777p4q 3.98 0.7828p7q 6.61
100 12000 13 0.7770p4q 3.19 0.7811p7q 4.59
200 12000 11 0.7761p3q 2.02 0.7796p5q 2.68
400 12000 9 0.7752p3q 1.03 0.7777p5q 1.54
566 12000 8 0.7750p3q 1.02 0.7773p5q 1.40
800 12000 7 0.7749p4q 1.07 0.7766p5q 1.01
1600 12000 5 0.7749p6q 1.04 0.7763p5q 0.62
3200 12000 3 0.776p1q 0.963 0.7751p5q 0.39

As methods used in previous studies were limited to system sizes smaller than
N “ 150, they could not have revealed the asymptotic behavior. Moreover, the fairly
constant slopes in the initial regimes (N « 0-30 and N « 50-200), might not have
given much reason for suspicion. It is therefore not surprising that my estimates for ν
differ somewhat from earlier ones, e.g., νBB “ 0.778p15q [78] and νBB “ 0.782p3q [82].
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4.1. End-to-end distances

However, the difference to these results is very small as the initial slope for the back-
bone (which was considered in both these studies) happens to be very close to the final
slope. When I use a similar range as in Ref. [82], see first row in Table 4.1, the results
are fully consistent with both these previous estimates.

Unfortunately, the data is not sufficiently precise to allow fitting higher-order terms
to Eq. (4.1). Capturing the initial inflection-point would in fact require at least two
additional terms, introducing too many free parameters.

I also tried a successive-slopes analysis similar to the one used Ref. [78]. For each
sample, I looked at the logarithmic slope of the last ten percent of steps:

νN “
ln
“@

RN
2
D‰

´ ln
“@

RN 1
2
D‰

lnN ´ lnN 1
(4.3)

with N 1 “ 0.9N . Since the values for N and N 1 are strongly correlated, the error was
estimated by bootstrap resampling; see Ref. [118]. To estimate the asymptotic value
of ν, I took the intersection with the y-axis of a linear fit to νN vs. 1{N ; see Fig. 4.4.
This gave

νIC “ 0.781p2q, νBB “ 0.778p2q. (4.4)

Since this approach did not seem to give better results than direct fitting, I did not
pursue it further.
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Figure 4.4.: “Running” estimates for ν from successive slopes [Eq. (4.3)] for incipient
2D clusters (left) and cluster backbones (right). The solid lines correspond
to linear least-squares fits; the dashed lines show the result from direct
fitting [Eq. (4.2)] for comparison.

4.1.2. Results in three dimensions

The three-dimensional case is physically most relevant. It has therefore also been
widely studied in the past and represents the main focus of my work. As in 2D, I
considered walks of up to N “ 12000 steps and used independent samples for different
maximum lengths. Here however, I could not afford setting L ą 2N , which would
have been much too costly, but the clusters were still large compared to the typical
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4. Scaling behavior of self-avoiding walks on critical percolation clusters

extensions. The exact sizes I used are listed in the Appendix A.1 (for all dimensions).

The results for the mean squared end-to-end distances are shown in Fig. 4.5. The
values were again scaled by a factor of roughly N2ν for the sake of visibility. Just
as in 2D, the asymptotic behavior only seems to set in after about N “ 800 steps.
However, there appears to be no inflection point this time. The slope is fairly constant
up to N “ 100, from where it begins to crossover to a smaller value. Accordingly, the
estimate for ν may depend on the range of lengths one investigates as can be seen in
Fig. 4.7 and Table 4.2. Judging by the quality of the fits, my best estimates from this
approach are obtained with Nmin “ 800 on the full clusters and Nmin “ 1131 on the
backbones2:

νIC “ 0.6462p4q, νBB “ 0.6467p7q. (4.5)

These two values are consistent within the error bars, again supporting the “backbone
hypothesis”. However, the data curves in Fig. 4.5 initially show a small but clear
difference, the backbone slope being somewhat larger than the one for full clusters,
which starts out much closer to the asymptotic value. This is reflected in the find-
ings from previous studies of SAWs on cluster backbones: νBB “ 0.662p6q [78] and
νBB “ 0.667p3q [82]. Similar values can again be recovered by restricting the fit range
accordingly (for the backbone data) as seen in Fig. 4.6 and the first rows in Table 4.2.
Here, too, one could easily be mislead to believe that the initial behavior already re-
flects the thermodynamic limit as power-law fits in the range N ă 100 appear very
convincing.

Unlike in 2D, fitting the first confluent correction term to Eq. (4.1), N2ν´∆, works
reasonably well for D “ 3. Using the ansatz [115, 119]

“@

R2
D‰

“ apN ` δq2ν
“

1` b{pN ` δq∆
‰

, (4.6)

with a shift of δ “ 1{2 over the range 25´ 12000, I obtained the estimates:

νIC “ 0.644p2q, ∆IC “ 0.51p5q; (4.7)

νBB “ 0.640p3q, ∆BB “ 0.34p4q (4.8)

The results for ν are compatible to those from simple power-law fits. They hardly
depend on the shift parameter δ (as long as it is reasonably small), which provides for
better convergence by smoothing out higher-order corrections. The fits are plotted as
solid lines in Fig. 4.5. The reduced χ2-values are 1.22 and 1.59 for full clusters and
backbones, respectively.

2These values were given slightly wrong in Ref. [106] due to an accidental slip. An erratum currently
in print.
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Figure 4.5.: Scaled mean squared end-to-end distance as a function of the number of
SAW steps on critical 3D clusters and cluster backbones. The values have
been divided by N1.32 « N2ν to enhance visibility. Straight lines show
least square power-law fits to the data range N “ 800-12000. For the
solid curves, the first confluent correction term to Eq. (4.1) was included
[Eq. (4.6)]. Here, the full range N ě 25 was fitted.
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3D clusters and backbones. The upper cutoff was Nmax “ 12000 for all
points.

Table 4.2.: Estimates of the exponent ν on critical 3D clusters and backbones from
simple power-law fits over different ranges. Also listed are the effective
number of degrees of freedom (NDF) and the reduced χ2 values.

Nmin Nmax NDF νIC χ2
IC νBB χ2

BB

13 42 6 0.6553p6q 1.31 0.6645p6q 1.16
13 84 10 0.6547p5q 1.61 0.6646p4q 1.43
13 12000 25 0.6515p8q 7.84 0.659p2q 15.8
50 12000 15 0.6494p4q 4.05 0.6546p9q 9.74
100 12000 13 0.6484p4q 3.13 0.6519p8q 6.19
200 12000 11 0.6473p3q 1.45 0.6501p7q 3.91
400 12000 9 0.6470p4q 1.41 0.6485p5q 2.17
566 12000 8 0.6467p4q 1.31 0.6479p5q 1.77
800 12000 7 0.6462p4q 1.03 0.6475p5q 1.70
1131 12000 6 0.6457p4q 0.941 0.6467p7q 1.53
1600 12000 5 0.6459p7q 0.909 0.6473p9q 1.51
3200 12000 3 0.646p1q 0.974 0.647p2q 1.32

4.1.3. Results in four and five dimensions

While the practical significance of self-avoiding walks on hyper-cubic clusters is perhaps
not obvious, they fill a key position in connecting with theory: The critical behavior in
4D and 5D is still non-trivial, but the proximity to the upper-critical dimension (Duc “
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4.1. End-to-end distances

6) means that predictions from perturbative field-theory should be most accurate.
Also, since the differences between backbones and full clusters are more pronounced in
higher dimensions, these cases should be helpful in clarifying the question of whether
or not the SAWs’ behavior is determined solely by the backbone.

I enumerated walks of up to N “ 4525 steps in 4D and up to N “ 3200 in 5D.
As discussed in Section 3.4.2, the bottleneck in high dimensions is the creation and
storage of the clusters rather than the actual enumeration procedure. It therefore
made sense to take multiple starting positions from each cluster (or backbone). I used
10 randomly chosen starting points in D “ 4 and 100 in all higher dimensions. Since
results from different starting sites on the same cluster are correlated, I binned the
results from each cluster and measured the variances of the bin averages to obtain
estimates for the statistical error.

The measured mean squared end-to-end distances, shown in Fig. 4.8, initially in-
crease with a larger slope, similarly as in D “ 3. However, finite-size effects seem to
wear off more quickly and the curves straighten after about N “ 400 steps. This is
reflected in the estimates of the exponent ν for different fit ranges, which are given
in Table 4.3 and plotted in Fig. 4.9. Again, the backbone slopes are initially larger
(and thus further off) though the differences are quite small. The best results were
obtained using a lower cutoff of Nmin “ 283 in both D “ 4 and D “ 5:

ν4D
IC “ 0.5769p5q, ν4D

BB “ 0.5784p9q (4.9)

ν5D
IC “ 0.5371p6q, ν5D

BB “ 0.5411p9q (4.10)

In 4D, the result for the backbones and the whole incipient clusters are consistent,
further corroborating the “backbone hypothesis”, but they do deviate in 5D. However,
my estimates for D ě 5 should not be too strongly relied upon because the clusters
might simply not have been sufficiently large.

0.8

0.9

1

1.1

100 1000

[〈
R

2
〉]

×
N

−
1
.2

N

4D

incipient
backbone

0.7

0.8

0.9

1

100 1000

[〈
R

2
〉]

×
N

−
1
.1
5

N

5D

incipient
backbone

Figure 4.8.: Scaled mean squared end-to-end distance as a function of the number of
SAW steps on critical clusters and cluster backbones in 4D (left) and
5D (right). The values have been divided by « N2ν for better visibility.
Straight lines show least square power-law fits to the data ranges N “ 283-
4525 and N “ 283-3200, respectively.
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4. Scaling behavior of self-avoiding walks on critical percolation clusters

Statistical fluctuations are also larger on the backbones, which is due to the fact that
they are considerably less massive. Thus, the results from different starting points are
more strongly correlated and the individual “bins” less representative of the quenched
disorder average.
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Figure 4.9.: Effect of the lower cutoff of fit range on the estimate for ν on critical
clusters and their backbones in D “ 4 (left) and D “ 5 (right).

Table 4.3.: Estimates of the exponent ν on critical clusters and backbones in 4D (top)
and 5D (bottom) for different fit ranges. Also listed are the effective num-
ber of degrees of freedom (NDF) and the reduced χ2 values.

4D

Nmin Nmax NDF νIC χ2
IC νBB χ2

BB

50 4525 12 0.5797p6q 2.64 0.5822p9q 2.91
100 4525 10 0.5785p5q 2.18 0.5801p8q 1.64
200 4525 8 0.5774p5q 1.14 0.5790p8q 1.35
283 4525 7 0.5769p5q 0.992 0.5784p9q 1.30
400 4525 6 0.5765p5q 0.905 0.578p1q 1.25
566 4525 5 0.5762p6q 0.907 0.577p2q 1.34
800 4525 4 0.5758p8q 0.911 0.576p2q 1.07

5D

Nmin Nmax NDF νIC χ2
IC νBB χ2

BB

50 3200 11 0.5395p5q 2.96 0.5444p9q 1.41
100 3200 9 0.5389p5q 2.04 0.5424p7q 1.04
200 3200 7 0.5378p6q 1.91 0.5411p7q 0.611
283 3200 6 0.5371p6q 1.60 0.5411p9q 0.658
400 3200 5 0.5373p8q 1.72 0.541p2q 0.728
566 3200 4 0.538p2q 1.86 0.541p2q 0.777
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4.1. End-to-end distances

4.1.4. Results in six and seven dimensions

I included the cases at and above the presumed upper critical dimension (Duc “ 6)
to check whether the predicted random walk behavior can be observed. As finite-size
effects for the clusters appear to be very strong in D “ 6 (see Appendix A.2) and only
relatively small clusters are affordable in D “ 7, it is not at all clear that this should
be the case. My upper limit for the lengths of SAWs was N “ 1600 in both D “ 6 and
D “ 7. I started walks from 100 randomly chosen sites per cluster and investigated
5ˆ 103 clusters for each length. The results for the end-to-end distances are shown in
Fig. 4.10. Here the values were simply divided by N , so that they should become flat
to recover the expected diffusive behavior. As in lower dimensions, the slope is initially
larger. However, due to limited system sizes and stronger finite size effects, it is hard
to tell whether the asymptotic behavior is reached. Indeed, it seems that the slopes
would still decrease further for larger systems judging by Fig. 4.11 and the results
Table 4.4, which describe the dependence on the chosen fit range. In 6D the distance
to the theoretical mean-field value, νMF “ 1{2, is still quite large. In 7D, by contrast,
the slope does become very close to one though not quite consistent within the error
bars. The asymptotic scaling behavior on the backbones appears again to be the same
or very similar though the initial slopes are larger. The statistical fluctuations are also
significantly stronger for the backbones for the reason described in the last subsection.
The best numerical estimates for the exponent ν in 6D and 7D were obtained using a
lower cutoff of Nmin “ 200:

ν6D
IC “ 0.5153p5q, ν6D

BB “ 0.5211p8q (4.11)

ν7D
IC “ 0.5068p6q, ν7D

BB “ 0.509p2q. (4.12)
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Figure 4.10.: Scaled mean squared end-to-end distance as a function of the number of
SAW steps on critical clusters in 6D (left) and 7D (right) and cluster
backbones. The values have been divided by N for better visibility.
Straight lines show least square power-law fits to the data in the range
N ě 200.
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4. Scaling behavior of self-avoiding walks on critical percolation clusters

Table 4.4.: Estimates of the exponent ν on critical clusters and backbones in 6D (top)
and 7D (bottom) for different fit ranges. Also listed are the effective num-
ber of degrees of freedom (NDF) and the reduced χ2 values.

6D

Nmin Nmax NDF νIC χ2
IC νBB χ2

BB

50 1600 9 0.5187p8q 3.93 0.524p2q 1.35
100 1600 7 0.5170p7q 2.56 0.5211p6q 0.486
200 1600 5 0.5153p5q 1.04 0.5211p8q 0.495
283 1600 4 0.5152p6q 1.14 0.521p2q 0.524
400 1600 3 0.5148p9q 1.24 0.520p2q 0.539

7D

Nmin Nmax NDF νIC χ2
IC νBB χ2

BB

50 1600 9 0.5085p5q 2.94 0.513p1q 1.21
100 1600 7 0.5075p5q 1.93 0.511p1q 0.921
200 1600 5 0.5068p6q 1.72 0.509p2q 0.658
283 1600 4 0.5062p7q 1.59 0.509p2q 0.735
400 1600 3 0.5056p9q 1.56 0.509p3q 0.848
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Figure 4.11.: Effect of the lower cutoff of fit range on the estimate for ν on critical
clusters and their backbones in D “ 6 (left) and D “ 7 (right).

As already mentioned, the high dimensional cases are particularly difficult due to the
unfortunate combination of strong finite-size effects and small affordable system sizes.
The fact that the estimates differ from the theoretical value of νuc “ 1{2 can therefore
neither be taken as evidence that mean-field behavior does not set in at D “ 6, nor
should it raise suspicion about the reliability of the estimates in lower dimensions.
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4.1. End-to-end distances

4.1.5. Chemical distances

Like the Euclidean end-to-end distance, the quenched average of the chemical (end-
to-end) distance is supposed to asymptotically follow a power-law:

rxlys „ Nνl (4.13)

However, researchers (including myself) have paid much less attention to it, which
may be somewhat unjust as the chemical distance is actually a more natural metric in
fractal systems. It has been suggested that, as a consequence of Eq. (2.21), ν and νl
should be related via

νl “ ν ¨ dmin, (4.14)

which seemed to be supported by numerical data [78]. Since dmin is known relatively
precisely (in 2D and 3D at least), and since xly fluctuates less than

@

R2
D

(cf. Ref [77]),
this relation might actually allow for more precise determination of ν.

Measuring xly in addition to
@

R2
D

is straightforward using the SFE (see Section 3.2.3)
and requires very little extra effort. Unfortunately, however, I missed doing so while
producing the bulk of my data, so that I can only present results for the D “ 2 and
D “ 3 cases here. These were obtained from samples of at least 2 ˆ 104 clusters and
backbones for each considered length (again up to N “ 12000) in 2D and at least
3ˆ 104 in 3D.

As can be seen in Fig. 4.12, the behavior of rxlys is analogous to that of rxRys:
the slope is slightly larger initially and stabilizes around N “ 1000 to a value which
is very similar for the backbones and the full clusters. Estimates from least-squares
fits are given in Table 4.5. They were obtained from the range N “ 800, . . . , 12000.
The values indeed turned out very close to those obtained via Eq. (4.14), but the
differences for the full cluster values are a bit too large. This discrepancy is slightly
disconcerting, since Eq. (4.14) seems to follow rather directly from the definitions.
(Note, however, that Eq. (2.21) refers to uniform averages over all cluster sites, while
Eq. (4.1) and Eq. (4.13) take uniform averages over all walk conformations.) It may
be due to the fact that the logarithmic slopes for the chemical distances on the full
clusters still have, for some reason, not fully converged in the fitted range as can be
seen in Fig. 4.13, where the dependence on the fit range is shown. Curiously, this
is contrary to the situation with the Euclidean distances, where the backbone slopes
appeared to converge more slowly.
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4. Scaling behavior of self-avoiding walks on critical percolation clusters

Table 4.5.: Measured values for the exponent νl of the chemical distances [Eq. (4.13)]
compared to estimates obtained from Eq. (4.14) on incipient clusters (IC)
and backbones (BB) in 2D and 3D.

D type ν dmin ν ¨ dmin νl

2 IC 0.7749p4q 1.1318p2q 0.8770p6q 0.880p1q
2 BB 0.7767p5q 1.318p2q 0.8783p6q 0.878p1q
3 IC 0.6462p4q 1.3756p3q 0.8889p8q 0.8948p3q
3 BB 0.6467p7q 1.3756p3q 0.890p2q 0.8915p3q
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Figure 4.12.: Mean chemical distances of SAWs on CPCs (red) and backbones (green)
in 2D (left) and 3D (right). The values are divided by N0.9 « Nνl for the
sake of visibility. Dashed lines show least-squares power-law fits obtained
from the range 800 ď N ď 12000.
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Figure 4.13.: Effect of the lower cutoff of the fit range on the estimate for ν on critical
clusters and backbones in 2D and 3D. The upper cutoff is N “ 12000
for all points.
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4.1. End-to-end distances

4.1.6. All cluster (AC) averages

Instead of the incipient cluster (IC) average, where only percolating clusters are con-
sidered, one can also average over all clusters that support at least one SAW con-
formation of a given length N (see Section 2.3.2). This all cluster (AC) average is
rarely discussed in the literature and has been assumed to yield the same results as
the IC average in the thermodynamic limit [60]. This has been supported somewhat
by numerical results [67] but is still far from certain.

While I predominantly investigated the IC average, in order to be consistent with
the literature and because it should be less affected by finite-size effects, I decided
to compare the two averages at least for the 2D case. I took samples of at least
3ˆ 104 clusters (of sufficient size) for each length in the range N “ 50, 71, . . . , 12000.
The results for the end-to-end distances are shown in Fig. 4.14 together with those
obtained on incipient percolation clusters. Quite clearly, the slopes do not seem to
converge to the same value but indicate

νAC ă νIC. (4.15)

My estimate from a least-squares fit over the range N ě 800,

νAC “ 0.7681p5q, (4.16)

is indeed significantly below the incipient-cluster estimate [Eq. (4.2)], νIC “ 0.7749p4q,
clearly disproving the presumed equality.
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Figure 4.14.: All cluster (AC) average of the mean squared end-to-end distances of
SAWs on 2D CPCs (blue) compared to the results on incipient clusters
(red). The values were scaled by a factor of N1.56 (« N2ν) for the sake
of visibility. The lines correspond to least-squares fits over the range
N ě 800.
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4. Scaling behavior of self-avoiding walks on critical percolation clusters

4.1.7. Discussion

My best estimates of the exponent ν for the quenched RMS end-to-end distance are
collected in the second and third column of Table 4.6. The other columns of the table
contain previous estimates obtained from Flory arguments [Eq. (2.33) plus Eq. (2.34)]
and perturbative field theory [Eq. (2.37) and Eq. (2.38)]. I did not include the numer-
ous analytical and numerical results from earlier studies as they are less precise and
reliable, but an overview can be found, e.g., in Refs. [96, 120]. In Fig. 4.15 my results
are plotted together with the other estimates from Table 4.6. The best agreement is
found with the results from the Flory approximation. As to the field-theory estimates,
the agreement with the results from Eq. (2.38) is clearly better than with those from
Eq. (2.37) apart from the 2D case. There, however, one would expect the strongest
discrepancy as the distance to the upper critical dimension is largest. Judging by
these results, Eq. (2.38) therefore seems more credible. Note that using r1{2s Padé
approximants for Eq. (2.37) and Eq. (2.38) as done in Ref. [85], the agreement with
the numerical estimates is slightly worse as the values are larger. The discrepancy to
the mean-field value at D “ 6 is probably due to finite-size effects and logarithmic
corrections.

As to the backbone hypothesis: In all dimensions investigated, the estimates for
νIC and νBB are very close, though not always entirely consistent within the error
bars. Still, at least for D “ 2, 3, where the data are most reliable, the agreement
is convincing. On balance, the findings hence support the “backbone hypothesis”,
νIC “ νBB. However, the results on the backbones are consistently “worse” in the sense

that the slopes
d ln rxR2ys
d lnN start further away from the asymptotic limit and converge

more slowly towards it. This contradicts the picture that in the asymptotic limit SAWs
only exist on the backbone [48, 60, 70, 74, 78, 83]. As I have previously argued [101],
the idea that dangling-ends are irrelevant because they cannot support “infinite” SAW
conformations is a flawed. As long as the clusters are large compared to the length

Table 4.6.: My numerical estimates for ν on incipient clusters and backbones in differ-
ent dimensions (second and third column). Also listed are results from the
Flory approximation Eq. (2.33) with α either from Eq. (2.34) (νFlory [55]),
using the highlighted values from Table 2.2 and Table 2.4, as well as
from perturbative RG, namely from Eq. (2.37) (νRG1 [80]) and Eq. (2.38)
(νRG2 [81]).

D νIC νBB νFlory1 νRG1 νRG2

2 0.7749p4q 0.7767p5q 0.7592p7q 0.7853 . . . 0.7414 . . .
3 0.6462p4q 0.6467p7q 0.644p5q 0.6783 . . . 0.6537 . . .
4 0.5769p5q 0.5784p9q 0.584p4q 0.5951 . . . 0.5842 . . .
5 0.5371p6q 0.5411p9q 0.535p3q 0.5357 . . . 0.5329 . . .
6 0.5153p5q 0.5211p8q 0.5 0.5 0.5
7 0.5068p6q 0.509p2q 0.5 0.5 0.5
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Figure 4.15.: Results for ν on CPCs (red) and backbones (green) for different dimen-
sions juxtaposed with previous analytical estimates. The blue asterisks
correspond to Flory estimates via Eq. (2.33) with α from Eq. (2.34). The
lines represent the field-theory estimates, Eq. (2.37) (solid) and Eq. (2.38)
(dashed).

of walks, the backbone, rather than the dangling ends, becomes negligible in the
thermodynamic limit: its smaller fractal dimension implies that, within a fixed number
of steps, almost none of the walks will visit it. In fact, the notion of an “infinite” SAW
is misconceived to begin with. One should rather think finite SAWs whose length
can be increased indefinitely, just as critical clusters can be indefinitely large but not,
strictly speaking, infinite (see Section 2.2.1). Based on the data, I still conclude that
νIC “ νBB is likely true even though the underlying argument is not. In any case,
studying the backbone in place of the full clusters does not seem to pay off, as the
asymptotic behavior is reached more slowly.

One important question that I did not investigate is whether there is multifractal
behavior, i.e., whether the relations

rN ls „ |R|l{νl pl ě 1q, (4.17)

and
r|R|ls „ N lνl pl ě 1q (4.18)

give rise to spectra of different exponents νl. The “standard” scaling law corresponds
to ν2 in Eq. (4.18), but the Meir-Harris model actually uses ν1 of Eq. (4.17). In
both Ref. [80] and Ref. [81], it was found that Eq. (4.17) leads to distinct exponents
νl. However, it was claimed that Eq. (4.18) should not lead to different values [80].
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4. Scaling behavior of self-avoiding walks on critical percolation clusters

A numerical study [82] seemed to confirm multifractality for Eq. (4.17) though the
evidence is not very strong. This issue still needs to be clarified in the future.

4.2. Number of conformations

On a regular lattice, the number of SAW conformations increases with the number of
steps asymptotically as

Z „ µNNγ´1 (4.19)

where γ is a universal critical exponent and µ a system-dependent connectivity con-
stant, see Section 2.1.2. It has long be assumed that the quenched average over all
incipient critical clusters, rZN sIC, follows a similar scaling law with modified values
for γ and µ, but there is yet little evidence to support this.

The challenge in the last section was to extract the asymptotic behavior of the
end-to-end distance by extrapolating averages from a finite numbers of steps. These
averages could be estimated reliably and accurately with manageable effort. Although
the standard deviations increased roughly as fast as the averages themselves, the num-
ber of replicas needed to maintain the same level of (relative) precision remained more
or less constant with increasing N . This, unfortunately, is no longer the case for the
average number of conformations. As shall be discussed in the following, estimating
rZN s for large N becomes a major challenge in itself due to fat tails in the distribu-
tion. As a consequence, assessing the quenched disorder average turned out to be much
more difficult since little can be gained by sampling rZN s directly even with the SFE
method. However, information can be gleaned from the variance of the distribution
ZN in combination with the “average entropy” rlnZN s, which is also an important
quantity in its own right. In this section, I shall focus the discussions on the 2D and
3D cases. Unless stated otherwise, the behavior in higher dimensions was found to be
qualitatively the same.

4.2.1. Median, mean, deviations and bias

In leading order the number of SAW conformations on a given cluster increases expo-
nentially with the number of steps since for each conformation in step N there will be
as many conformations in step N ` 1 as there are options for the loose ends. For the
quenched average rZN s one can hence roughly expect

rZN s „ mN , (4.20)

with m being the effective coordination number minus one. Actually, this is a lower
bound since more spacious cluster regions contribute disproportionately to the increase
of ZN , just as more spacious clusters contribute disproportionately to the quenched
average. In any case, the number of conformations quickly becomes quite large. For
example, on a critical 3D cluster the number of 800-step conformations, Z800, will
typically be around 1099. More precisely, this is the estimated median obtained from
a sample of 106 clusters. The actual average, rZ800s, is harder to assess. One can
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easily calculate the arithmetic mean value3, Z800 « 10116, but just as this value is
much larger than the median, the actual expectation value will be much larger still.
The reason is that typical deviations from the median also increase exponentially
with N and the arithmetic mean therefore tends to be dominated by very few very
large outliers (rare events). Hence, ZN can only be relied upon as an estimator for
rZN s if those outliers are properly represented, which would require extremely large
sample sizes. This problem is exemplified in Fig. 4.16, where the mean, median, and
maximum value are plotted as function of the sample size. Even where the sample
is already fairly large, the mean still increases quite suddenly as single large outliers
completely alter the value. For insufficient sample sizes, the estimator for the average
will almost certainly be biased, i.e., too small.

The longer the walks, the more severe does this bias problem become. In fact, unless
sample sizes are increased drastically (probably exponentially) with N , the arithmetic
sample mean will always be similar to the median rather than the true average. This
can be seen in Fig. 4.17, where mean and median and maximum value are plotted
as a function of N for a fixed sample size of 5 ˆ 104 2D clusters. Around N “ 100,
there is a visible change in the behavior of ZN , which is accompanied by larger error
bars. These errors can only reflect the deviations from the arithmetic mean itself and
thus fail to capture the bias. In the picture, one can make out three different regimes:
For N ă 100, the outliers are properly represented, and the estimator is more or less

3Throughout most of the work, I use the same notation for the theoretical expectation value and
the measured average, but here I need to distinguish.
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Figure 4.16.: Log-log plot of the maximal, mean, and median values of the number of
conformations as function of the size of a random sample of 3D CPCs
for SAWs of N “ 800 steps.
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Figure 4.17.: Maximum, mean, median, and minimal numbers of conformations ZN
from samples of S « 5ˆ 104 2D CPCs.

unbiased; for 100 ă N ă 400, the outliers are not fully represented which is manifested
in strong fluctuations and large errorbars; and for N ą 400, the relevant part of the
distribution is missed completely, which is not reflected in the errors at all.

Could the bias be overcome? From a computational physics perspective, the prob-
lem with rZN s is that we sample the clusters uniformly although the distribution of
weights with which they contribute (i.e., Z) is very strongly peaked. The general
strategy in such cases is importance sampling, which can be realized by Markov-chain
Monte Carlo methods (e.g., Metropolis-Hastings [121]) or population-control growth
algorithms (e.g., PERM). The first approach could be applied by evolving instead of
growing the clusters. We would determine the number ZN of SAW conformations on
a cluster (using SFE) then suggest randomly removing or adding sites and accept the
suggestion with a probability reflecting the resulting difference in ZN . Crucially, one
would have to modify the SFE method so that it does not need to start all-over each
time a site is modified but could assess the change on the fly. It is credible but not
certain that this might work. For the second approach, we would grow a population of
clusters (using the Leath method described in Section A.1.1). Every so often, we would
enumerate the numbers of (shortened) SAW conformations on each growing cluster.
Thus we would determine the cluster “weights” and could prune and enrich them ac-
cordingly. Both approaches could potentially solve the problem but both would also
be highly complicated.
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4.2.2. Probability-density distributions

The probability of (randomly) generating a cluster allowing for ZN to ZN `∆ confor-
mations can be written as

P pZN ,∆q “

ż ZN`∆

ZN

ρN pZN qdZN , (4.21)

where it is convenient to consider ρN pZN q as a continuous probability density function
and ZN as a continuous random variable. ρN pZN q could in principle be approximated
by random sampling to a histogram of bins whose size should increase exponentially
to accommodate the large deviations described above. It is, however, more practica-
ble to bin the distribution of the logarithms, ρ1N plnZN q, to equally sized bins. The
distribution ρN pZN q can then be obtained via

ρN pZN q “ ρ1N plnZN q
d lnZN
dZN

“ ρ1N plnZN q{ZN . (4.22)

The histograms pertaining to ρ1N plnZN q closely resemble Gaussian distributions as can
be seen in Fig. 4.18 for the case of 3D critical clusters and their backbones. This would
imply a lognormal distribution of ZN , whose fat tails would indeed account for the
large deviations. As was pointed out in Ref. [72], such a distribution can be motivated
by regarding ZN as a product of N (uncorrelated) random variables, namely the
(weighted) average number of free neighbors per step. While this captures the essence
of what is going on, it is only a qualitative explanation as these numbers would in fact
be correlated. A closer look at the distributions for the full clusters (Fig. 4.18, top)
does indeed reveal slight but systematic deviations from normal distributions with
the same mean (also shown in the plots): the peaks are a bit too high and, more
importantly, the tails (at large values) a bit too small. Indeed, the distributions on the
full clusters have a slightly negative skewness, γ1 ă 0, and all have a slightly positive
excess kurtosis γ2 ą 0 as shown in Fig. 4.19. Skewness and excess kurtosis are defined
as usual:

γ1 :“ µ3{σ
3 (4.23)

and
γ2 :“ µ4{σ

4 ´ 3 (4.24)

with µi denoting the i’th central moment of the distribution. They are zero for a
normal distribution, and their values are a good measure of the “normality” of a
distribution. Here they are relatively small in all four cases but especially so on the
backbones, where the resemblance to a Gaussian is, for some reason, particularly
strong.
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4. Scaling behavior of self-avoiding walks on critical percolation clusters
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Figure 4.18.: Measured probability densities of the entropy lnZN on incipient CPCs
(top) and backbones (bottom) for various lengths. The lines are normal
distributions with the same mean values and variances (no fit involved).
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4.2. Number of conformations

Interestingly, the increase of the variances of ρ1N plnZN q with N , appears to be very
close to linear, both on backbones and full clusters in all dimensions studied:

σ2
lnZ „ Nφ, φ « 1 (4.25)

This can be seen in Fig. 4.20, where the variances divided by N are plotted against
N . The slopes of all curves become roughly constant, suggesting φ « 1. Indeed, the
exponents obtained from least-squares fits listed in Table 4.7 are almost all consistent
with φ “ 1, with the odd exception D “ 2 (Note that the fit errors are perhaps too
optimistic and that the estimates for φ seem to increase slightly but systematically
when the range is shifted to larger N .). The 2D case also stands out in that the
variances are actually smaller than in 3D in the range of N that I studied even though
the values of lnZ are typically much larger. The estimates of the statistical errors
on the variances were obtained by bootstrap resampling. Unfortunately they are not
correct for D ą 3, especially on the backbones, which is due to the fact that multiple
starting points were used from each cluster (see Section 4.1.3). These correlations
caused an underestimation of the errors because the variances of different bootstrap
resamples were less diverse. The effect is more drastic on the backbones, where the
correlations are much stronger since they offer less room for different starting points.
However, the impact on the actual estimates for A and φ (and their errorbars) is
probably still negligible.

For D “ 2, 3, φ « 1 was already noted in previous studies [72, 73, 77] (another
study found φ « 1.3 [71]). It is very tempting to assume φ “ 1 exactly for D ą 2, but
so far there is no argument to explain this remarkable value, nor the 2D exception.
Note that without self-avoidance, i.e., for the ideal chain, φ is significantly larger than
one [122].
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4. Scaling behavior of self-avoiding walks on critical percolation clusters

Table 4.7.: Measured exponents φ and amplitudes A for the variance of the entropy
distribution as function the number of steps on CPCs (IC) and their back-
bones (BB) in different dimensions.

D fit range χ2
IC AIC φIC χ2

BB ABB φBB

2 800-12800 1.03 0.167p3q 0.980p2q 1.39 0.135p4q 0.977p3q
3 800-12800 1.01 0.170p3q 0.997p3q 0.853 0.140p2q 0.998p2q
4 800-4525 0.965 0.135p5q 0.995p6q 1.08 0.119p5q 0.997p5q
5 566-3200 0.590 0.102p2q 0.993p3q 4.10 0.11p2q 0.97p2q
6 400-1600 0.508 0.085p2q 0.982p3q 4.42 0.08p1q 0.98p2q
7 400-1600 0.773 0.068p2q 0.980p3q 4.48 0.06p2q 0.97p3q

4.2.3. Scaling behavior of the average entropy rlnZN s

The distribution of the entropies lnZN does not have fat tails, so that rlnZN s is much
easier to study than ln rZN s. The exponential version,

Zp0q :“ erlnZs, (4.26)

has also been investigated to understand the multifractal nature of the system, see
Ref. [78]. There, the authors assumed a scaling form similar to (4.19) as well and
estimated the “zeroth moment” exponent γp0q and connectivity constant µp0q by fitting
to their data (obtained through exact enumeration):

rlnZs{N “ ln ap0q{N ` lnµp0q ` pγp0q ´ 1q lnN{N. (4.27)

In contrast to the situation with ln rZs, the SFE method now allows for a much
larger range to be investigated. However, my results from fitting Eq. (4.27) turned out
to strongly depend on the range, with fits over larger ranges being rather unconvincing.
Empirically, a much better fitting ansatz was instead found to be4

rlnZs{N “ ln ap0q{N ` lnµp0qp1` bN´ζq (4.28)

Fits of both approaches, Eq. (4.27) and Eq. (4.28), are shown in Fig. 4.21 for the 2D
and 3D cases. The results from the second approach are listed in Table 4.8 (those
from the first are meaningless as the quality of the fits was dismal). Despite the extra
parameter in Eq. (4.28), the quality of the fit is much more significant; the fairly
small errorbars in Fig. 4.21 are almost perfectly hit for all data points. For D ě 4,
the smaller data sets only allowed fitting Eq. (4.28) when the amplitude was fixed to
ap0q “ 1. This fix may seem dubious, but ap0q « 1 is a reasonable guess (given also
the estimates for ap0q for 2D and 3D), and the influence of the term ln ap0q{N is quite
modest anyway. The results from these fits are also given in Table 4.8. Here, the error
intervals were chosen to represent the changes of the parameters when ap0q is varied

4A different parametrization, rlnZs{N “ ln ap0q{N ` lnµp0q ` ln cN´ζ , would give Eq. (4.30) a
cleaner form. However, I kept the above expression to remain consistent with Ref. [106].
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4.2. Number of conformations

between 0.75 and 1.5. The errors from the fits are slightly smaller.

Although there is no theoretical justification for (4.28) (there actually is none for (4.27)
either other than analogy), it must therefore be assumed to be correct. There might
still be a power-law term with an exponent γp0q, but if so it could not be extracted
from the data as the other terms are too dominant.
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4. Scaling behavior of self-avoiding walks on critical percolation clusters

Table 4.8.: Results obtained by fitting Eq. (4.28) to the average entropy per step rlnZs
for SAWs on critical percolation clusters (top) and backbones (bottom) in
different dimensions. For D ě 4, the amplitude was fixed to ap0q “ 1.

IC

D fit range χ2 ap0q µp0q b ζ
2 566-12800 1.44 1.7p1.0q 1.4462p6q 0.5p1q 0.44p6q
3 566-12800 0.650 1.5p5q 1.3115p3q 0.9p2q 0.43p3q
4 400-4525 0.852 1 (fixed) 1.2143p3q 2.1p4q 0.49p3q
5 283-3200 4.21 1 1.1551p4q 3.4p7q 0.51p3q
6 200-1600 0.845 1 1.1189p6q 5p1q 0.55p4q
7 200-1600 0.626 1 1.0960p5q 8p2q 0.59p3q

BB

D fit range χ2 ap0q µp0q b ζ
2 566-12800 0.485 1.0p6q 1.4467p3q 1.0p3q 0.50p3q
3 800-12800 1.18 0.8p7q 1.3121p4q 1.8p6q 0.51p4q
4 400-4525 0.453 1 (fixed) 1.2143p3q 2.3p4q 0.52p3q
5 283-3200 0.670 1 1.1561p2q 4.3p8q 0.62p4q
6 200-1600 2.84 1 1.1198p2q 7p3q 0.71p4q
7 200-1600 0.0941 1 1.0957p2q 5p2q 0.67p6q

4.2.4. Log-normal approximation

The mean entropy also gives some evidence regarding the scaling behavior of the
average number of chains. If we assume the distribution of lnZ to be Gaussian, which
is not exactly true but fairly accurate as an approximation, rZs can be obtained as the
expected value of the corresponding (log-normal) distribution:

rZs « Zlogn :“ erlnZs`σ
2
lnZ{2. (4.29)

That this approximation is reasonable can be seen in Fig. 4.22, where lnZ, rlnZ, and
lnZlogn are plotted as functions of N . rlnZs is practically identical to the logarithm
of the median in Fig. 4.17 and is significantly smaller than lnZ, at least initially.
As already discussed, the mean value becomes biased for larger N , underestimating
the true average. The log-normal approximation Zlogn agrees very well with lnZ
in the initial (unbiased) regime, in particular in 3D and on the backbones, where the
distributions are closest to normal (see Fig. 4.19). However, in contrast to lnZ, it does
not slump for larger N and seems a plausible continuation of the curve for lnZ. This
suggests that rZs might well be governed by a scaling law analogous to an exponential
version of Eq. (4.28). If we assume φ “ 1 in Eq. (4.25), combining Eq. (4.29) and
Eq. (4.28) gives:

rZs « Zlogn „ ap0qµN µ̃N
1´ζ

, µ “ µp0qeA{2, µ̃ “ µp0q
b

(4.30)
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4.2. Number of conformations

where A is the amplitude in Eq. (4.25). The estimates for µ are given in Table 4.9.

If correct, this finding for the scaling behavior of rZsIC would be quite surprising and
currently not explained by any theory, especially in view of the arguments concerning
rZsAC from Section 2.3.4. A note of caution, though: The stretched-exponential cor-
rection for exp rlnZsIC is in itself not surprising. As was already remarked in Ref. [41],
exp rlnZs should behave differently from rZs due to the width of the distribution of
Z (though this particular behavior was not predicted anywhere yet). The numerical
evidence for Eq. (4.28) is strong, but the argumentation for Eq. (4.30) hinges on the
(asymptotic) accuracy of approximation Eq. (4.29), which is much less certain.

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

100 1000 10000
N

2D, IC

[lnZ] /N

lnZlogn/N
lnZ/N

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

100 1000 10000
N

3D, IC

[lnZ] /N

lnZlogn/N
lnZ/N

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

100 1000 10000
N

2D, BB

[lnZ] /N

lnZlogn/N
lnZ/N

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

100 1000 10000
N

3D, BB

[lnZ] /N

lnZlogn/N
lnZ/N

Figure 4.22.: Logarithm of the mean number of conformations lnZ (blue), mean en-
tropy rlnZs (red), and log-normal approximation lnZlogn (green) divided
by N for SAWs on CPCs (top) and backbones (bottom) in 2D (left) and
3D (right).

Table 4.9.: Estimates for the connectivity constant obtained via µ “ µp0qeA{2, where
the amplitude A stems from a fit of Eq. (4.25) with φ “ 1.

D 2 3 4 5 6 7
µIC 1.553p1q 1.4250p5q 1.2961p5q 1.2126p7q 1.162p1q 1.1292p8q
µBB 1.5306p5q 1.4061p7q 1.2871p5q 1.2080p4q 1.1578p4q 1.1255p3q
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4. Scaling behavior of self-avoiding walks on critical percolation clusters

4.2.5. All cluster (AC) averages

As explained in Section 2.3.4, when the quenched average is taken over all disorder
configurations that support at least one N -step SAW conformation it should scale as

rZN sAC „ ppµq
NNγ`δ´1, (4.31)

where γ and µ are the same as for the free SAW [Eq. (2.6)]. The modification δ to
the enhancement exponent relates to the probability QN that a random disorder can
accommodate an SAW of N steps; see Eq. (2.41). Figure 4.23 shows the fraction
QN of contributing disorder configurations as a function of N for 2D systems. (As
mentioned, I only investigated the AC average for the 2D case). Each data point
represents an independent sample of over 6 ˆ 104 configurations (at least 3 ˆ 104

contributing clusters). A simple power-law fit yielded the estimate

δ “ 0.0640p6q (4.32)

with an amplitude Aδ “ 0.628p3q, in accordance with the lower bound of 5{98 « 0.051
[Eq. (2.44)].

Since γ and µ are known accurately for the free 2D SAW (see Section 2.1.2),
Eq. (4.31) can now be checked against the data. Of course, measurement of rZsAC is
also hampered by large deviations, so that agreement is only expected in the initial
regime. Figure 4.24 shows the results for the average lnZAC per monomer in the range
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Figure 4.23.: Fraction of 2D disorder configurations that support at least one N -
step SAW conformation. The dotted line corresponds to a least-squares
power-law fit over the whole data range.
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[Eq. (4.33)] (dotted line).

N ď 400. Also shown in the figure are the expected asymptote,

ln rZsAC „ plnA`N ln ppµq ` pγ ` δ ´ 1q lnNq{N (4.33)

with an amplitude of A “ pAfree{Aδ « 0.438 as well as the estimates from the exact
values ZN for the free SAW taken from Refs. [107, 123]:

lnZN ` pN ` 1q ln p` δ lnN ´ lnAδ (4.34)

As expected, the directly measured values initially agree well with the estimates based
on the free SAW. There is in fact no significant difference to Eq. (4.33) for N ď 40,
strongly suggesting that the AC average is indeed given by Eq. (4.31). The deviance
for larger N is due to the aforementioned bias, which seems to appear around N “ 50.
It is reasonable to assume that, for similar sample sizes, the rZsIC is also unbiased for
N ď 40.

The AC average of the entropy behaves similarly to the IC average: As shown in
Fig. 4.25, an ansatz of the form of Eq. (4.27) fits the data poorly, and it is much better
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4. Scaling behavior of self-avoiding walks on critical percolation clusters

described by Eq. (4.28). However, the samples are a bit smaller as for the IC case and
fluctuations are larger, so that a larger range had to be taken and the results are less
accurate. My best estimate was obtained by fitting over the range N ě 50:

rlnZsAC “ ln ap0q `N lnµp0q ` bN1´ζ (4.35)

with ap0q “ 1.8p2q, µp0q “ 1.4390p5q, b “ 0.5p1q, and ζ “ 0.46p4q.

This result implies that the log-normal approximation, Eq. (4.29), does not work
for the AC average as its prediction would contradict Eq. (4.31). However, the AC
distributions of lnZ are also much less Gaussian, with a skewness of γ1 ă ´6 and
an excess kurtosis of γ2 ą 50. The failing of the approximation for the AC case
does therefore not mean that it is also incorrect for the IC case. Another interesting
difference to the IC average is that the variance of the distribution of lnZ increases
more strongly. As can be seen in Fig. 4.26, the initial increase is roughly linear (this
was also found in Ref. [72]), but then there appears to be a crossover to an exponent
of almost two. Fitting over the range N ě 2263, I obtained the estimate

σ2
lnZAC

„ NφAC , φAC “ 1.92p2q. (4.36)

The variance could be expected to be larger over all clusters, but this finding suggests
that there is indeed a qualitative difference between the two averages.
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4.3. A closer look at individual clusters

When investigating SAWs on CPCs, one is usually interested in the quenched disorder
averages, and so far that has been the focus of the discussion. Zooming in on a
few individual cluster configurations may seem arbitrary, but it can in fact reveal
interesting details and thereby help understanding the general behavior. For a small
number of configurations, I could afford pushing the chain length to N “ 2 ˆ 104 on
CPCs in 2D and 3D. Plots of the measured mean squared end-to-end distances on
linear and logarithmic scales are shown in Fig. 4.27 for 2D and Fig. 4.28 for 3D. Also
shown are the “excess entropies”,

Se “ lnZ ´N lnµp0q, (4.37)

describing how much the increase of the number of conformations exceeds the (typical)
connectivity constant to the power of N , thus characterizing the cluster’s individual
structures. Note that the fluctuations in these plots are only visible when the precise
value of µp0q (not µ) is used.

For both the end-to-end distance and the excess entropy, the curves are strikingly
irregular. The magnitude of the fluctuations of

@

R2
D

is in fact roughly on the order of
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4. Scaling behavior of self-avoiding walks on critical percolation clusters

the values themselves, and they are not only present from cluster to cluster but also
when the length is increased on the same cluster. In the log-log plots of the end-to-end
distances, one can nonetheless clearly discern a typical slope, whose value is close to
the quenched average value of 2ν.

The shapes of the
@

R2
D

-curves are also remarkable: They show wide plateaus, where
the value is fairly constant over a long range of N , separated by abrupt jumps and
drops. There are also intervals where the changes are relatively smooth, but they seem
to become less important with increasing length. Correlations between the end-to-end
distances and the excess entropies are not immediately obvious, but careful observation
reveals that Se tends to rise when

@

R2
D

changes. The increase then typically continues

through the initial parts of the
@

R2
D

-plateaus but falters or even reverses during the
later parts.
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Figure 4.27.: Mean squared end-to-end distances (top) and excess entropy for SAWs
of 2 ˆ 104 steps on some randomly chosen 2D CPCs. The plots on the
right are on a log-log scale where the average trend for the end-to-end
distances is more clearly visible.
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Figure 4.28.: Mean squared end-to-end distances (top) and excess entropy for SAWs
of 2 ˆ 104 steps on some randomly chosen 3D CPCs. The plots on the
right are on a log-log scale where the average trend for the end-to-end
distances is more clearly visible.

4.3.1. Density distributions

To understand the behavior, it is helpful to look at the spatial distributions of end
points and the fraction of conformations that pass through each site, the SAW confor-
mation density. As explained in Section 3.2.4, generating these distributions requires
significantly more resources, so that the systems could not be made as large.

Fig. 4.29 shows the end-to-end distances for up to N “ 1600 steps for four exemplary,
randomly chosen 2D clusters. For these reduced lengths, the jumps and plateaus are
much less distinct, but it is reasonable to assume that the steeper and flatter regions in
these small systems are due to the same mechanisms as the clearer jumps and plateaus
in large systems.

I systematically looked at the distributions of end-points as a function of N on
about ten different clusters. As a fairly representative example, I shall discuss “cluster
3” from Fig. 4.29. Snapshots of the distributions at different lengths are shown in
Fig. 4.30. Note that only the relevant region of the cluster is shown; the total area
in reach (N chemical shells from the origin) is significantly larger. As can be seen,
there tend to be a few “hot spots” where the vast majority of SAW conformations end,
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4. Scaling behavior of self-avoiding walks on critical percolation clusters

while the rest of the cluster is fairly deserted. These hot spots correspond to plateaus
of the end-to-end distances, whereas a jump means that one is suddenly supplanted by
another. For instance, after 400 steps (not shown) the blue curve in Fig. 4.29 has a clear
plateau and almost all walks end within a very small region. After 540 steps (Fig. 4.30,
top row), this region has lost its appeal, and several other regions are competing for
dominance. At about N “ 580 (second row), there is again one dominating region
corresponding to the next plateau, which is eventually succeeded by another one,
corresponding to the plateau around N “ 800 (third row). However, the conformation
density plot (right) reveals that the walks still pass through the previously dominant
region, i.e., its entropic contribution still matters. Interestingly, after N “ 1180 steps
(fourth row), most conformation again terminate there. This fact accounts for the
trough in end-to-end distance (note that the value there is roughly the same as around
N “ 600). From there on, a more distant region steadily gains in relevance, becoming
the strongly preferred ending spot after N “ 1600 steps (bottom row). Note that the
regions where most walks end after 580 and 800 steps are still entropically relevant,
being traversed by almost all conformations. While such a lasting influence seems to
be common, there are also regions that dominate the average end-to-end distance for
a certain length, but become completely irrelevant for larger N .

The picture for N “ 1600 appears to be very typical for longer walks, as can be
seen in Fig. 4.31, where the final distributions for the other clusters from Fig. 4.29 are
plotted. There is a very concentrated “flow” of conformations towards one specific area.
The relevant cluster regions through which almost all conformations pass, have almost
linear “pearl-necklace” structures. The density is close to one on some “bottleneck
sites”, which appear in a dark red in the pictures. Between those, we can see blobs of
yellow and blue colors in which the density is spread out. These are typically regions
with strong entropic contributions, and they often correspond to the places where most
walks ended for some smaller number of steps.

It is remarkable that, after a large number of steps, such a thin perl-necklace does
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Figure 4.29.: Mean squared end-to-end distance (left) and excess entropy (right) as
functions of N for some exemplary 2D CPCs. The blue curve corresponds
to the distributions shown in Fig. 4.30.
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almost exclusively determine the statistics for the whole cluster. The distributions
of conformation densities do not seem to disperse at all, nor do those of the end-
points. This is in stark contrast to the behavior of diffusive random walks or SAWs in
undiluted (regular) systems.

Figure 4.30.: Distributions of the end-points (left) and conformation densities (right)
after 540, 580, 800, 1180 and 1600 steps (from top to bottom) on “cluster
3” from Fig. 4.29.
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4. Scaling behavior of self-avoiding walks on critical percolation clusters

Figure 4.31.: End-point distributions (left) and conformation densities (right) for
SAWs of N “ 1600 steps on the (2D) clusters 1, 2 and 4 from Fig. 4.29.

4.3.2. Summary and Ideas

The key observations from above description can be summarized as follows:

•
@

R2
D

and Se fluctuate strongly with changing N and from cluster to cluster.

• Curves of
@

R2
D

vs. N feature wide plateaus and sudden jumps.
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4.3. A closer look at individual clusters

• The excess entropy SepNq correlates with
@

R2
D

pNq, typically rising after a jump

in
@

R2
D

and falling towards the end of a plateau.

• The majority of SAW conformations (for fixed N) live on one thin perl-necklace
region and end in one small area.

• Dominating end regions correspond to plateaus in the
@

R2
D

curves; jumps occur
when one such region is replaced by another.

• When N is increased, regions that were previously preferred end locations often,
but not always, are still traversed by most conformations.

• Distributions of the end-point densities and the conformation density do not
seem to disperse with increasing N . For the end-points, the maximum remains
roughly 0.01, while the conformation density remains « 1 for all bottle-neck sites
along the relevant perl-necklace region.

I interpret these observations within the following qualitative picture: The cluster is
a network of largely separate “blobs”, which vary in size and density (i.e., connectivity).
Let us assume, however, that they are of a typical size, like the “pearls” in Fig. 4.31.
The fluctuations around this typical size (and connectivity) are probably Gaussian, but
due to the exponential increase of SAW conformations, they cause large deviations
in the number of SAWs that can pass through the blobs. If we consider different
strings of blobs, the corresponding distribution of realizable SAW conformations will
probably have a diverging variance, giving rise to non-self-averaging behavior: there
is usually only one entropically favorable string of blobs through which almost all
conformations will go. The blob where they terminate contributes most to the entropy
as the “free end” of the SAW can assume much more conformations. The plateaus of
the end-to-end distances correspond to favorable blobs where almost all chains within
a certain range of lengths end. If the length is increased, the blobs through which the
conformations pass eventually become too small and the end will be pushed to a blob
further away. This first results in a decreasing excess entropy, then in a sudden change
in the average end-to-end distance. It may also happen that with increasing length a
different string of blobs becomes preferable and will dominate the statistics, which is
typically accompanied by a rise of Se.

This behavior is possibly connected to the observed scaling law for the average en-
tropy, Eq. (4.28): the term corresponding to a simple exponential, N lnµp0q, character-
izes the increase of conformations with length due to the typical number of options for

each step, as if the cluster were homogeneous. The stretched exponential term, µ̃N
1´ζ

,
may correspond to the increasing chance of finding entropically favorable (strings of)
blobs.
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5. Variations of the model

This chapter treats various of the basic model of SAWs on CPCs. The results were
produced either with variants of the SFE method and/or PERM. The aim here is to
get a step closer to realistic polymer models, by including short-range interactions, as
well as getting a more general perspective by varying the substrate. Besides, the scope
of applications of SFE shall be discussed a bit more. As these are mainly qualitative
objectives, I limited the investigations to D “ 2 and D “ 3 systems. As far as I can
tell from preliminary checks, the principle behavior in higher dimensions seems to be
the same.

5.1. Away from criticality

The most obvious thing we can modify is the concentration of accessible sites, p.
According to theory [59, 96], any concentration p ą pc should be irrelevant for the
asymptotic scaling limit of the end-to-end distance, i.e., νp “ ν1. However, numerical
evidence for this assertion is lacking so far. Indeed, the results of the few studies where
SAWs on supercritical clusters have been investigated have at best been inconclusive, or
— in the case of my own diploma thesis [101] — even contrarian. The subcritical case,
p ă pc, has received even less attention. Here the clusters, known as lattice animals
are also fractals but with a different (smaller) fractal dimension, and the behavior of
SAWs on them could be quite interesting. The only problem is that lattice animals
have a typical size. Larger ones are suppressed exponentially, see for instance [16],
so that obtaining them by simple sampling can take quite long. Moreover, requiring
them to percolate (by wrapping or spanning the system) leads to results that depend
on the lattice size as lattice clusters “percolating” larger lattices tend to be very
stretched. My investigations of SAWs on percolating clusters below pc did therefore
not yield conclusive results. An interesting project future would be investigating the
AC average (see Section 4.1.6) of SAWs on lattice animals. The supercritical case,
on the other hand, has the problem that the clusters will no longer be fractals on
larger length-scales, so the SFE method must fail eventually. Fortunately, however,
this happens at concentrations where PERM is quite efficient (see Sect 3.5), so that
the whole region pc ď p ď 1 can be covered with relative ease.

5.1.1. Above pc: SAWs on supercritical clusters

To investigate walks on supercritical clusters, I used a combination of SFE and PERM,
depending on which proved better suited for the specific settings; see Section 3.5.
Where possible, I cross-checked the PERM results against the exact results for some
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5. Variations of the model

clusters to ascertain how many effective tours were needed in order to avoid bias
effects. In regimes where only PERM could be used, I took care to start enough tours
so that the results seemed no longer to decrease with increasing statistics. As already
discussed, the bias problem is most severe in regimes where SFE works well, i.e., in
the vicinity of pc, so that the results obtained with PERM far above pc can be trusted.

Figures 5.1 and 5.2 show the results for the mean squared end-to-end distances as
function of N for various levels of concentration in the range pc ď p ď 1 on 2D and
3D clusters, respectively. For pc ă p ă 1, each data point was obtained from 104

cluster configurations. The values in the plots were scaled by the asymptote of the
undiluted system, N2νfull , which is exactly known in 2D and very precisely in 3D; see
Section 2.1.2. For the sake of completeness, the results of my own simulations on the
full lattice were also included. It should be noted that I did not go to the limit of
what is possible on weakly dilute lattices. Besides, PERM is probably not the best
choice of algorithm for p close to one. Significantly larger systems should in principle
be accessible.
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Figure 5.1.: Mean squared end-to-end distance for SAWs on percolation clusters at
concentrations p ě pc in 2D. The values are divided by Nν1 “ N3{2 to
enhance visibility.
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Figure 5.2.: Mean squared end-to-end distance for SAWs on percolation clusters at
concentrations p ě pc in 3D. The values are divided by N1.175 « N2ν1 for
better visibility.

As can be seen, the results are clearly at odds with the theoretical prediction of the
Meir-Harris model [59], according to which any concentration p ą pc should give the
asymptotic behavior of the undiluted case (Section 2.3.3): When the concentration
is raised above pc the slope increases significantly rather than decreasing towards
ν1. Likewise, the slope clearly increases with respect to ν1 when the concentration
is lowered from p “ 1. These increases even seem to become more pronounced with
increasing N . Astoundingly, even the very weak dilution of p “ 0.9 appears to raise
the value of ν substantially in 2D, and the same trend is evident in 3D. For the 2D
case, I had already noted this in my diploma thesis [101] though based on much less
precise data. These new results appear to confirm my suspicion that the Meir-Harris
theory does not correctly describe the model and suggest that this is no 2D anomaly.
While the possibility that the ranges investigated still do not capture the asymptotic
behavior can never be totally ruled out — a lesson learned from the results at criticality
— this seems quite unlikely here. There is no indication whatsoever that the slope
will diminish eventually, and it would be difficult to explain how it can even initially
grow so much larger than at criticality. Based on these results, I therefore conclude

νp ą νpc ą ν1 for pc ă p ă 1. (5.1)
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5. Variations of the model

Table 5.1.: Estimates for the exponent ν on supercritical 2D clusters. Also listed are
the result for the critical case from Section 4.1.1 and the exact value for
the free SAW.

p fit range method χ2 ν
0.59274621 800 - 12800 SFE 1.07 0.7749p4q
0.60 400 - 2263 SFE 1.03 0.796p2q
0.61 283 -1131 SFE 0.874 0.799p2q
0.62 100-566 SFE 1.36 0.800p3q
0.64 71-566 SFE/PERM 0.673 0.807p1q
0.70 141-800 PERM 2.11 0.814p3q
0.80 283-800 PERM 1.45 0.811p3q
0.90 283-800 PERM 1.40 0.787p2q
0.95 283-800 PERM 1.50 0.768p2q
1.00 - exact - 0.75

Table 5.2.: Estimates for the exponent ν on supercritical 3D clusters. Also listed are
the result for the critical case from Section 4.1.2 and the most accurate
literature result for the free SAW.

p fit range method χ2 ν
0.31160768 12800 SFE 1.03 0.6462p4q
0.315 400-1131 SFE 1.02 0.668p4q
0.32 100-400 SFE/PERM 0.923 0.667p3q
0.33 100-400 SFE/PERM 1.16 0.684p3q
0.35 141-566 PERM 1.19 0.702p3q
0.40 141-566 PERM 0.792 0.705p2q
0.50 141-566 PERM 2.01 0.679p3q
0.70 141-400 PERM 1.87 0.623p2q
0.90 141-400 PERM 1.05 0.5969p4q
1.00 - MCMC [6] - 0.587597p7q

Table 5.1 and Table 5.2 show estimates for ν at different values of concentration
obtained by least-squares fits. Note that the values do not yet seem to have stabilized
but might still rise substantially, in particular those close to pc and 1. It is therefore
quite plausible that universal fixed-point values of ν˚2D « 0.81 and ν˚3D « 0.71 are valid
for any p in the regime pc ă p ă 1. Both estimates are substantially above the critical
values, which are already larger than those for the regular systems.

I have no explanation as to why the exponent on diluted lattices (above pc) is larger
than on regular ones [Eq. (5.1)], but at least it is clear that

“@

R2
D‰

p
ą
@

R2
D

1
(5.2)
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5.1. Away from criticality

must hold for any p ă 1. This is because the annealed average is exactly equal to
the full lattice average [Eq. (2.31)], and in order to get from the annealed to the
quenched average, one has to weight every SAW conformation ω with the inverse of
the number of conformations on the respective disorder configuration, ZCpωq

´1 (see
Section 2.3.2). Hence, configurations with few SAWs contribute more strongly to the
quenched average than to the annealed average. On average, these also have more
defects around the origin since this is where the density of possible conformations is
highest. The SAWs are hence more stretched out as central defects select against
compact conformations. However, it is not clear whether this effect is relevant in the
asymptotic limit N ÝÑ 8 or whether it is averaged out. Numerical investigation of
the correlations between Z and

@

R2
D

might therefore be an interesting project for the
future.

End-point distributions and conformation density: For SAWs on critical clusters,
the statistics are determined by a few entropically favorable channels, and the con-
formation density does hardly disperse with increasing length; see Section 4.3. To
see whether this behavior is a particularity of the critical system or whether it might
also responsible for the unexpected behavior on supercritical clusters, I studied SAW
end-point distributions and conformation densities for a couple of clusters at different
concentrations: p “ 0.7, 0.8, 0.9, 1.0. The results for one example with N “ 400 steps
are shown in Fig. 5.3 and Fig. 5.4 alongside the critical case. To visualize the densities,
I used a logarithmic as well as a normal color scale. For p ą pc, the results where pro-
duced with PERM using fairly high statistics (1010 effective tours). The linear plots
could probably not be distinguished from exact results. (Note that I did not plot the
clusters here.) From these pictures, it seems that the conformation density does clearly
disperse above pc, which is a qualitative distinction to the critical case. However, the
differences to the full-lattice case are also remarkable, even at p “ 0.9: Although the
clusters themselves are fairly symmetrical and homogeneous, the behavior of the SAWs
is quite anisotropic.
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Figure 5.3.: Density distribution of end-point locations for a SAW of N “ 400 steps on
a 2D cluster at concentrations p “ pc, 0.7, 0.8, 0.9, 1.0, from top to bottom.
A logarithmic color scale was used for the left plots, a linear one for those
on the right. (Note that the scaling of the color axis varies.)
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Figure 5.4.: Density of possible conformations through each site for a SAW of N “ 400
steps on a 2D cluster at concentrations p “ pc, 0.7, 0.8, 0.9, 1.0, from top
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5.2. Self-attracting self-avoiding walks

The SAW represents the limiting case for a long polymer in good-solvent condition and
at high temperatures. In that regime, short-range monomer-monomer interactions are
asymptotically irrelevant, and the polymer is in a stretched, coiled state. At lower
temperatures (or in poorer solvents), however, these attractions will cause the polymer
to assume a collapsed, globular conformation. The transition from the coiled to the
globular phase happens at a specific temperature, called the Θ-point of the system. It
is of second order and characterized by a set of universal critical exponents, describing
the divergence of thermodynamic variables such as the specific heat. Directly at the
Θ-point, the scaling of the end-to-end distance is random walk-like, while the space is
filled (statistically) homogeneously below Θ [124, 125]:

νT “

$

’

&

’

%

νSAW, if T ą Θ

4{7 p2Dq or 1{2 if T “ Θ

1{D, if T ă Θ.

(5.3)

At very low temperatures, there will also be crystalline phases, which depend on the
specifics of the system. This behavior is captured by the simple model of a SAW with
nearest-neighbor attraction, the so-called self-attracting self-avoiding walk (SASAW),
which was already introduced in Section 3.2.5. Its Hamiltonian is given as a constant ε
times the number mω of pairs of neighboring, non-consecutive monomers (“contacts”)
of the conformation ω, and the thermal conformational average of an observable O of
the system is hence defined as

xOyT “

ř

ω Oωe
´mωε{pkBT q

ř

ω e
´mωε{pkBT q

. (5.4)

For convenience, I use the convention ε{kB :“ 1 here. The natural continuation to
disordered media such as CPCs is to look at the quenched average:

rxOys “

ř

C xOyT
ř

C 1
, (5.5)

where the sum is over all disorder conformations (incipient clusters). Naively, one
would expect that SASAWs on CPCs should also exhibit a transition from entropy-
dominated coils to energy-dominated globules. However, a couple of questions come
up immediately:

• Will there be a fixed transition temperature that is the same for every cluster?

• How can the behavior at Θ be random walkish, i.e., νΘ “ νRW ă 1{2 if that is
already below the space-filling limit (1{2 ă 1{df in 2D and 1{2 ă 1{dBB in all
dimensions)?

• Will νTăΘ be 1{df or 1{dBB? Can a SAW actually be space-filling on a critical
cluster?
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5.2. Self-attracting self-avoiding walks

Table 5.3.: Estimates for the Θ-temperatures and critical scaling exponents νΘ of the
end-to-end distance for SASAWs on incipient critical percolation clusters
in 2D and 3D. They were obtained by Flory-like arguments (FL), exact
enumeration (EE) and chain-growth Monte Carlo (MC).

study Θ2D Θ3D νΘ
2D,pc

νΘ
3D,pc

FL [126] - - 0.578 0.564
FL [127] - - 0.678 0.611
FL [128] - - 0.72 0.62
EE [129] 0.67 - - -
EE [130] 0.71p8q - 0.74p2q -
EE [131] (0.71) 0.5p2q 0.73p1q 0.60
EE [74] 0.62p6q 0.43p6q 0.80 0.60
MC [120, 132] 0.92p2q 0.71p2q - -

The issue of a Θ transition for SASAWs on CPCs has first been approached via Flory
approximations [126–128], and several numerical investigations have subsequently been
carried out [74, 120, 129–132]. However, the resulting estimates are rather far-flung,
as can be seen in Table 5.3. This is perhaps not surprising given the controversies
generated already by the “simple” case of normal SAWs on CPCs.

All these previous results were obtained presupposing the existence of a Θ-transition.
The question of the existence itself has not been properly investigated, nor those ques-
tions raised above. A substantially more profound analysis would in fact have been
difficult with the methods (and hardware) previously available, given that they already
struggle with normal SAW on CPCs (see Section 3). As described in Section 3.2.5, the
SFE method can, albeit with some effort, accommodate for nearest-neighbor interac-
tions, allowing for a more refined look at the system.

5.2.1. Full temperature range

The more general but less efficient implementation of the SFE method for SASAWs (see
Section 3.2.5) keeps track of the complete contact histograms, so that average values
of observables at arbitrary temperatures can be calculated exactly via Eq. (3.15).
This approach is particularly useful to gain an overview of the temperature-dependent
behavior and single out interesting temperature locations for closer investigation.

I enumerated all conformations of SASAWs of length N “ 50, 100, . . . , 800 in 2D
and up to N “ 1600 in 3D, with each sample consisting of 104 clusters. For the largest
systems, N “ 800 in 2D and N “ 1600 in 3D, the method did not succeed for a small
number of clusters, which had to be discarded (3 in both cases). This is unlikely to
have biased the findings in a significant way.

Figure 5.5 shows the results for the (quenched) average internal energy per monomer,

rusT “ ´rxmysT {N, (5.6)
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m being the number of nearest-neighbor contacts. Its magnitude turned out to be
surprisingly small: even at T “ 0 the average number of contacts is only around 0.38
in 2D and 0.29 in 3D. This is less than the average effective coordination numbers
of the clusters minus two (which I determined as « 0.52 in 2D and « 0.31 in 3D)
showing how little of the area can actually be filled. Another striking aspect is the
similarity of the curves; one can hardly discern any significant trend. In particular,
they do not seem to become steeper with increasing N . This means there should be
no divergence or discontinuity in the average specific heat per monomer, defined as

CV “

“

σ2
E

‰

NT 2
“

”

@

m2
D

´ xmy
2
ı

NT 2
. (5.7)

As can be seen in Fig. 5.6, CV pT q has a clearly pronounced peak at roughly T « 0.6
in 2D and T « 0.55 in 3D. These locations are broadly consistent with the Θ-
temperatures reported in previous studies (see Table 5.3). However, with increasing
N the height of the curves diminishes slightly instead of diverging. Interestingly, in
both 3D and 2D, a shoulder seems to develop at around T “ 0.1, which might suggest
some kind of freezing to the ground state. The lack of divergence of CV (which was
observed but not discussed in Ref. [120]) does not necessarily imply that there is no
phase transition, but in any case, the behavior is clearly different from that of free
SASAWs, where CΘ

V diverges with some power of lnN [102].
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Figure 5.5.: Average internal energy per monomer vs. temperature for SASAWs of
varying length on CPCs in D “ 2 and D “ 3.
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Figure 5.6.: Average specific heat as a function of temperature for SASAWs of varying
length on CPCs in D “ 2 (left) and D “ 3 (right). The height of the peak
diminishes with N .

For the end-to-end distances, the situation is qualitatively similar: Figure 5.7 shows
the ratios of

“@

R2
D‰

T
and the normal SAW averages (“

“@

R2
D‰

8
”). This plot already

indicates that the exponent ν cannot be very sensitive to changes in temperature: If
there is a value Θ such that νT ă ν8 holds for T ă Θ, the ratio would have to vanish
with „ NνT´ν8 . Instead, even for T close to zero, the value does not fall below 0.6,
it even slightly increases with N . Moreover, there does not seem to be a distinctive
temperature at which a drastic change takes place, but the end-to-end distance seems
to change smoothly with T . This can be seen more clearly looking at the (scaled)
thermal derivative of

“@

R2
D‰

T
shown in Fig. 5.8: As for the specific heat, there is a

peak around T « 0.6 / T « 0.5 but no indication of a divergence with N .
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Figure 5.8.: Relative thermal derivatives of the mean squared end-to-end distances for
SASAWs on CPCs in 2D (left) and 3D (right).

To understand what is going on, it is again helpful to look at individual clusters.
As can be seen in Fig. 5.9, the specific heat displays very sharp spikes. These often
correspond to sharp rises in the end-to-end distances but sometimes also to drops; see
Fig. 5.10. However, the temperature locations of these “transitions” vary strongly,
and on some clusters they are absent altogether. Fig. 5.11 shows the distributons
of the temperature locations of where CV has a global maximum for different chain
lengths. Their sharpness does not significantly increase with N , and it is hence clear
that the “smeared out” maxima of the quenched averages (Figs. 5.6) cannot diverge.
Interestingly, the distributions seem to converge towards a universal shape.
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selected CPCs in 2D (left) and 3D (right).
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Figure 5.11.: Distribution of temperatures where the specific heat CV has a global
maximum for critical clusters in D “ 2 (left) and D “ 3 (right). Colors
indicate different maximum lengths of the SASAWs.

5.2.2. Fixed temperatures

At a fixed temperature, the SFE method works much more efficiently as the averaging
can be done on the fly; see Section 3.2.5. This approach does not yield as much
information about the system, but it suffices as long as we only want to find out
whether there is a change in the asymptotic scaling behavior due to temperature. To
this end, the quenched averages of the end-to-end distances as a function of the number
of steps (up to N “ 6400) are compared at three different temperatures in D “ 2 and
D “ 3, respectively:

• “T “ 8”, i.e., without interactions (normal SAWs);

• T “ 0.55, i.e., near (slightly below) the peak of rCV s;
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5. Variations of the model

• T “ 0, i.e, only lowest-energy states contribute.

The results are plotted in Fig. 5.12 on double logarithmic scale. The curves differ
by a constant factor, but the slopes are clearly very similar. Indeed, if one rescales
the x-axis by a temperature dependent factor apT q, the curves fall almost on top of
each other; see Fig. 5.13. Note that the y-axis is rescaled by « N2ν to magnify the
differences, which are actually quite small.
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Figure 5.12.: Mean squared end-to-end distances of SASAWs at different temperatures
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number of contacts (T “ 0); averages slightly the alleged transition tem-
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5.2. Self-attracting self-avoiding walks

Table 5.4.: Estimates for the exponent ν for SASAWs at different temperatures on
CPCs in 2D and 3D.

2D
T χ2 A ν a
8 1.4 0.84p1q 0.0.776p9q 1
0.55 0.35 0.488p5q 0.776p6q 1.42
0 1.0 0.351p8q 0.782p2q 1.75

3D
T χ2 A ν a
8 0.94 1.082p7q 0.6466p4q 1
0.55 0.54 0.77p2q 0.648p1q 1.30
0 0.62 0.632p6q 0.651p3q 1.52

Estimates for the scaling exponents were again obtained by least-squares fits, and
they turned out to agree within the statistical errors; see Table 5.4. This strongly
indicates that the temperature has no effect whatsoever on the asymptotic scaling
behavior, i.e., that there is no temperature-driven collapse transition. The exponent
even resulted slightly larger at lower temperatures, which fits to the observed finite-
size behavior with a slightly larger initial slope (Section 4.1) if we assume that the
effective number at lower temperatures is smaller (N ÝÑ N{aptq). The scaling factors
apT q are also listed in Table 5.4. They were obtained from the ratios of amplitudes:

apT q “

ˆ

ApT q

Ap8q

˙
1
2ν

. (5.8)

To make the results for different temperatures collapse onto a single curve, one
might also have rescaled the y-axis, but rescaling the x-axis captures the situation
more accurately. This can be seen by looking at the end-to-end distances for SASAWs
at different temperatures on single clusters as shown in Fig. 5.14. On top, where the
values are not rescaled, the curves appear to have roughly the same average slope, but
they look rather different otherwise, especially in 2D. The rescaled curves shown on the
bottom, however, do not only look similar on average, those from the same clusters
even display almost the same fluctuation patterns. Hence, the thermal averages as
functions of the number of steps N behave very similarly at different temperatures,
the only significant difference being that the walks at lower temperatures are “slower”
to realize the same ups and downs. The collapsing is less significant in 3D, where the
original curves are very similar already. This is intuitively clear as much fewer contacts
can typically be realized in that case, so that their influence is smaller. It would be
very interesting to look at the end-point and conformation densities (Section 4.3)
for SASAWS in order to visualize how they tend to visit the same cluster areas as
athermal SAWs. This is in principle feasible with the SFE method, at least for a
couple of hundred steps.
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Figure 5.14.: Mean squared end-to-end distances as function of the number of steps
for SAWSAWs at different temperatures on individual critical clusters in
2D (left) and 3D (right). The colors represent the clusters while the line
types denote the temperature: solid for T “ 0 (ground states), dashed
for T “ 0.55 and dotted for T “ 8 (normal SAWs). The abscissas in the
bottom plots where rescaled by a temperature-dependent factor apT q; see
Table 5.4.

How can there be no transition?: The apparent complete absence of not only the
Θ-point but of any kind of temperature-driven phase transition for SASAWs on CPCs
is baffling but not inexplicable. Given the thin, fractal geometry of the critical clusters,
it is intuitively clear that a SAW cannot efficiently fill the volume, not even that of the
backbone. Even less can we expect the SAW to crystallize into some kind of ordered
state in such a disordered medium. Still, with lowering temperature the energy must
at some point become relevant and eventually dominant. But unlike for free SASAWs,
an energetically favorable conformation is not collapsed around the origin: in order to
realize as many contacts as possible, it has to seek out cluster regions that are most
densely connected. As it happens, these are also entropically favorable. Hence, unlike
for free SASAWs, there is simply no competition between energy and entropy on a
global scale. Lowering temperature will therefore cause the chains to fill out the blobs
(see Section 4.3) more densely, but since they are of a typical size, this only slows the
scaling behavior by a constant factor. This is comparable to the behavior of a SASAWs
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5.3. Kinetic-growth walks

in a slab, where lowering the temperature would also not affect scaling exponent ν as
it cannot fall below one even if the volume is filled out completely.

One might still ask whether there is some kind of collapse transition corresponding
to a change from coil-like to globular conformations within the blobs, without effect on
the scaling behavior of the end-to-end distance. However, this does not seem to occur
at a sharply defined temperature as could be seen from the temperature dependence
of the specific heat and the end-to-end distances in the previous subsection.

5.3. Kinetic-growth walks

The kinetic-growth (self-avoiding) walk (KGW) is a dynamic version of the SAW. The
relation between these two models is similar to that between the diffusive random
walk and the ideal chain [133]: While the standard SAW is conveniently described in
terms of equilibrium statistical physics, i.e., using a partition function and averages
over all conformations, defining it as a dynamic random process seems rather artificial
and requires the use of Rosenbluth weights. The KGW, by contrast, is defined most
conveniently as a diffusive random walk where the walker is not allowed to revisit a site.
It was originally proposed as a model for polymerization [134], hence the “kinetic”.
On CPCs, it can also be imagined as a more evolved version of de Gennes’ “ant in a
labyrinth” [135] that uses a pheromone trail to avoid treading the same path twice,
or more generally as a random search strategy. The only slight oddity of the KGW it
can get trapped if it runs into a dead end, in which case the chain is canceled.

Based on MC results and Flory arguments, the KGW on the full lattice had ini-
tially been claimed to be in a different universality class than the standard SAW [134],
but this has later been clearly refuted [98–100, 136]. On the honeycomb lattice, the
KGW can furthermore be shown to be equivalent to a SASAW at a specific temper-
ature [137]. This is because one can change from the SAW ensemble to the KGW
ensemble by weighting conformations with the product of the number of blocked sites
in each steps (cf. Section 3.1.1), which can also be written as a product of Boltzmann
factors from a nearest-neighbor attraction. This equivalence does not hold for other
lattice types [138], where one would need a more complicated multi-body interaction.
Still, on regular lattices, the KGW can be regarded as an SAW with nearest neighbor
interactions and hence as closely related to the SASAW.

KGWs on CPCs have also been investigated in the past, and various estimates for
the scaling exponent ν have been reported: ν2D « 0.68 (from RSRG [90]), ν2D “

0.760p5q, ν3D “ 0.645p5q (from MC [73]), ν2D “ 0.725p7q / 0.768 (from MC/ Flory
arguments [139]), and Eq. (2.38) [81]. So far, it has not been clearly established
whether νKGW compared to νSAW is smaller (as found in Ref. [73]), or larger (as
claimed in Ref. [139]); or whether they are equal as for the free case.

Enumerating KGWs with the SFE approach would be difficult, though not impos-
sible. It can be formulated as a SASAW with a multi-body nearest-neighbor interac-
tion, but the problem is that in order to determine the weight for a KGW segment
(see Section 3.2.5) one needs to know its direction, which is not accounted for in my
implementation of the SFE method. At the same time, the KGW can be simulated
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5. Variations of the model

with chain-growth (PERM) more easily and more efficiently than the equilibrium SAW
(see Section 3.1.1 and Fig. 3.24), so the effort to adapt the SFE method did not seem
worthwhile.

Using the KGW version of PERM with the “trap avoidance” improvement, I simu-
lated walks of up to 1600 steps on 2D clusters and up to 800 steps on 3D clusters. As
before, the length was increased by factors of

?
2. I used samples of at least 104 ran-

domly generated clusters for each individual length. The effective number of tours on
each cluster was chosen between t̃ “ 213 (for N ď 400) and t̃ “ 216 (for N ě 1131). I
carefully verified that this is sufficient to avoid any significant bias effects. Figure 5.15
shows the measured mean squared end-to-end distances together with the results for
normal SAWs. As can be seen, there is no significant difference in the slopes. Indeed,
my best estimates for the exponents νKGW from least-squares fits, obtained using the
ranges N ě 200 for 2D and N ě 141 for 3D, are fully compatible with those for the
standard SAW:

νKGW
2D “ 0.778p2q νKGW

3D “ 0.644p2q. (5.9)

The equality of the exponents for the SAW and the KGW may not be too surprising
considering that the KGW can be regarded as a SAW with a multi-body nearest-
neighbor attraction and given that the same asymptotic behavior was also found for
the SASAW regardless of temperature. Note, however, that the effective attraction for
the KGW applies also to defect sites, which is a qualitative difference to the SASAW.
While the finding νKGW “ νSAW is in line with the behavior observed for SASAWs, it
is therefore not a trivial consequence.
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5.4. Further ideas

Finally, I want to mention a couple of related systems which could also be investigated
by way of SFE, in the hope to inspire future research.

5.4.1. Modifying the walks

Adhesive SAWs: In the previous section, the defects did not affect the walks other
then by acting as a steric constraint. However, the method can just as well also include
a short-range attraction between walks and defects. The strength of this interaction
could in principle be chosen different than between two monomers, and exploring
that phase space might be interesting. My interest in these cases is several-fold: For
one, it is reasonable that if a polymer interacts with itself via some kind of short-
range, van-der-Waals force it should also adhere to surrounding structures. A second
motivation comes from the main conclusion of the previous section, namely that there
is no thermal phase transition for SASAWs on CPCs because energy and entropy are
not competing. This realization gives rise to the question if and how this union can
be divided. Can the Θ-transition from free SASAWs be recovered through additional
attraction to defects? After all, the interpretation had been that dense cluster regions
dominate both entropy and energy by allowing for most conformations and for most
contacts at the same time. This latter aspect might now change as contacts with
defects can easily be established over the whole length of the chain. On the other
hand, the KGW is effectively also attracted to defects and did not show a different
behavior either. Maybe their are more profound reasons for such universal behavior
still to be discovered.

SAWs under stretching force: A stretching force can very easily realized from the
spatial distribution of the end points by assigning energies to conformations as a
function of the distance to the origin. This was done in Ref [113] using EE and in
Refs. [120, 132] using PERM. These studies also included nearest neighbor attractions
to model force induced unfolding. Keeping track of energy and position histograms will
be demanding using the SFE, but one could probably still go beyond the lengths pre-
viously accessible with PERM, and the exactness of the results would give unrestricted
access to the whole phase space.

SAWs with bending energy: As mentioned in Section 3.2.5, bending energy (stiff-
ness) could be implemented very easily without causing much overhead. “Stiff SAWs”
on CPCs would therefore surely be worth a look, even though it is not quite clear (to
me) what questions to put to this model. Perhaps one could tie up to studies of SAWs
with bending energy on regular fractals [140, 141], or perhaps the model will come
up with something interesting of its own. Of course, stiffness might also be combined
with attractions and/or stretching forces.
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5.4.2. Changing the medium

Close relatives: As already mentioned, subcritical clusters (lattice animals) in the
AC ensemble still deserve some more attention. This would be a very easy task for
the standard SFE method. Without much new effort, one could also use other lattice
types or bond percolation. Such quasi-equivalent systems do not promise exciting
new findings, but studying them could be valuable to verify and consolidate existing
results. In particular, it would help separating universal aspects from unwanted finite-
size effects.

Other finitely-ramified stochastic fractals: Studying SAWs in media similar to “stan-
dard” CPCs but from different universality classes could bring substantial qualitative
understanding, e.g., concerning the roles of randomness and fractal structure of the
medium. Easy targets would be invasion percolation clusters or clusters from diffusion-
limited aggregation (DLA). More challenging would be systems with correlated defects
such as critical Ising or Potts clusters or, more generally, instances the random cluster
model. The bulky nature correlated clusters might be a problem for the SFE method,
but it could presumably cope to some extent. Besides, there is also the option to use
some PERM-like incomplete enumeration for very massive cells.

Complex fractal networks: As described in Refs. [142, 143], complex networks such
as the WWW often have self-similar, fractal structures, allowing investigations by
renormalization techniques. It is quite likely that the SFE method could hence also
be adapted to some of these systems. However, I do not yet know how SAWs on
complex fractal networks can be motivated. Perhaps, though, one could focus on the
key principles of the method (see beginning of Section 3.2) which could be carried over
to other discrete, decomposable problems such as particle transport or condensation.
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This thesis presented a numerical treatment of self-avoiding walks on dilute lattices. I
had carried out large-scale computer simulations to assess the asymptotic scaling be-
havior of SAWs on percolation clusters and their backbones with special focus was on
the case of critical site concentration. This setting is particularly interesting because
of the fractal and highly inhomogeneous nature of the system at that point. I devel-
oped a “scale-free” exact enumeration method (SFE) that makes use of this fractal
structure and is much better-suited to investigate this setting than other numerical
tools. Alongside this novel method, I employed a chain-growth Monte Carlo algorithm
(PERM) to simulate SAWs on lattices with higher levels of site concentration. Both
methods were tested and analyzed in detail. I also studied kinetic growth walks and
self-attracting self-avoiding walks. For these latter, I closely looked at the influence of
temperature on the conformational statistics.

Scale-free enumeration: The thinly connected, self-similar structure of critical per-
colation clusters poses a challenge for numerical methods: Markov-chain Monte Carlo
is inefficient as global moves are almost always rejected, chain-growth methods often
fail to find the way into relevant cluster regions, and all the exact enumeration tricks
for regular systems cannot be played in presence of disorder. Fortunately, however,
the structural properties of critical clusters can be exploited to factorize the problem,
and a major part of this work (Chapter 3) was concerned with the development and
testing of a novel exact enumeration method that does this. It operates on critical
clusters that are partitioned into a tree hierarchy of nested cells on all length scales.
SAW segments are independently enumerated within (small) cells, which are then dec-
imated: they are treated essentially as point-like when conformations through larger
cells are enumerated. By dint of this numerical renormalization scheme with irregular
cells, it is possible to circumvent the problem of exponential complexity that is usually
inherent to exact enumeration methods. I numerically demonstrated that the depen-
dence of the runtime on the number of SAW steps is described by a power-law with an
exponent around 2.4 for all dimensions considered instead of the exponential complex-
ity of standard enumeration methods. The reduction translates to a massive increase
of the accessible system sizes, from about 50 to over 104 steps. Since the runtime
for the standard enumeration method increases with the number of conformations, it
would need over 101500 ages of the universe for this. I furthermore showed that even
PERM, which is probably the best Monte Carlo method to treat the problem at hand,
cannot compete in the vicinity of the percolation threshold. It is efficient for SAWs
of a few hundred steps, but the results for longer chains turned out to be unreliable.
Fortunately, PERM performs much better at higher concentrations, which is where
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the SFE method fails. The two approaches hence complement each other perfectly.

To be efficient, however, the SFE method requires a hierarchical decomposition of
the cluster that reflects its self-similar structure, and the algorithm used to setup this
cell hierarchy constitutes a significant part of the program. Indeed, developing this
part was less straightforward than the actual enumeration since it was not a priori
clear how a hierarchy should ideally be organized. However, using heuristic guidelines
and some amount of empirical tinkering, I succeeded in devising an “amalgamation
algorithm” that does the job near perfectly.

Scaling behavior of SAWs on critical percolation clusters: By exactly enumerating
SAWs of several thousand steps (up to 12800 in 2D and 3D) on large samples of critical
percolation clusters, I could assess their asymptotic scaling behavior in unprecedented
detail. The exponent ν describing the increase of the end-to-end distance with chain
length resulted slightly but significantly smaller than previously reported in the liter-
ature for both 2D and 3D. Accurate values for higher dimensions were also obtained,
though these measurements were impaired by the fact that generating the large clus-
ters became very costly. The scaling exponents on cluster backbones turned out to be
very similar to those on full clusters, though the values are not perfectly consistent
in all dimensions. A clear relationship to the fractal exponents of the clusters could
unfortunately not be established, and though some predictions from field theory and
Flory approximations are not far from the numerical estimates, the agreement is not
overly impressive.

The number of SAW conformations fluctuates very strongly for different clusters, and
these large deviation impeded direct investigation of the quenched averages. However,
since the distribution is very close to log-normal in all dimensions on full incipient
clusters and backbones, the value can be approximately calculated from the average
entropy. Instead of the expected power-law factor, the scaling law for the number
of conformations on incipient CPCs (and backbones) seems to feature a stretched
exponential. This finding is very surprising as power-law “enhancement” is correct for
the “all cluster average” (AC), i.e., when all clusters that can support at least one SAW
conformation of the respective length are included in the statistics. The growth of the
exponential of the average entropy was also found to involve a stretched-exponential
correction factor. This is not as surprising but nonetheless unexpected: previous
studies had hinted that the scaling behavior of this quantity might be unusual, but
the particular form observed was not among the many suggestions.

Future attempts to explain the behavior of SAWs on CPCs might be aided by
the qualitative observations presented for distributions of end-points an conformation
densities. These are strongly concentrated in entropically favorable cluster regions
and seem and not to disperse with increasing chain length. The regions where the
majority of conformations end and the channels by which they get there tend to
remain unchanged over wide ranges of lengths before switching very abruptly. It may
well be that the scaling behavior of the average end-to-end distances and numbers of
conformations reflect the distribution of entropically favorable cluster regions and how
these are explored by the SAWs.

138



SAWs on supercritical clusters: To investigate SAWs on clusters above the perco-
lation threshold I employed either SFE or PERM, depending on concentration and
chain length. For this case, the well-established Meir-Harris model predicts the same
asymptotic scaling behavior of the end-to-end distance as on regular lattices. The
results of my diploma thesis for the 2D system had already put this into question to
some extent, and the more profound analysis presented here confirmed those findings:
In both 2D and 3D, the scaling exponent ν appears to be significantly larger above
the percolation threshold than directly at criticality. Indeed, the measured slopes in
the log-log plots increase with growing chain length rather than crossing over to the
(smaller) regular-lattice value. Intriguingly, the values of the slopes for different con-
centrations show a tendency of convergence, hinting at the existence of a stable fixed
point for supercritical systems. This issue clearly deserves to be looked at more closely
in the future.

Self-attracting SAWs and KGWs on CPCs: Nearest-neighbor attractions turned
out to have no influence on the asymptotic behavior of SAWs on CPCs. The average
specific heat was found to have at cusp a certain temperature, but it does not diverge.
Moreover, the swelling of the end-to-end distance is always described by the same
exponent as for SAWs without attraction — even at zero temperature. This behav-
ior is different from that of SASAWs on the full lattice, which collapse and eventually
freeze when the temperature is lowered. The complete absence of a transition is highly
surprising and goes against all expectations and claims in the literature. However, in
light of the observations concerning the distributions of end-points and conformation
densities described at the end of Chapter 4, it can be understood qualitatively: The
entropy on a cluster is typically dominated by one or two channels, while the remain-
ing area does not contribute significantly. These entropically favorable channels are
concatenations of cluster regions with above-average connectivity, where the growth of
conformational possibilities is strongest. Incidentally, this means that they allow for
most nearest-neighbor contacts, so that they are also energetically favorable at lower
temperatures. Hence, unlike on full clusters, there is no competition between energy
and entropy that would warrant a phase transition.

The average end-to-end distance of kinetic growth walks on CPCs appears to be
characterized by the exponent for normal SAWs as well. This is possibly due to the
same effect I proposed for SASAWs since KGWs can be interpreted as equilibrium
SAWs with a multi-body nearest-neighbor attraction. This would mean that field-
theoretical analyses of KGWs [81, 97] might be used to understand the behavior of
equilibrium SAWs.

Outlook: While my work answered some questions, others have remained open and
more have emerged. Most important, in my opinion, are the following two: whether
(and if so, why) the quenched average of the number of conformations on incipient
critical clusters is truly governed by such an unusual scaling law, and whether there
is a universal fixed-point for the swelling exponent for SAWs on supercritical clus-
ters. To further look into the first issue numerically, one would need to overcome the
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problem of large deviations. This might be realized via importance sampling of the
clusters as sketched in Section 4.2. The second one is easier since one should be able
to simulate significantly longer SAWs on weakly diluted lattices with PERM, possibly
in conjunction with multicanonical Markov-chain MC methods. Perhaps more urgent
than further numerical work, however, is the need for a new theory able to explain my
findings. For instance, it would be desirable to properly understand why there is no
phase transition for SASAWs (including KGWs), and how the scaling of the average
entropy relates to the large deviations in the distribution of the number of conforma-
tions. A possible starting point here might to investigate the spatial fluctuations of
density and connectivity on critical clusters, which is responsible for the non-dispersion
of the conformation density.

As for the SFE method, there is still much scope for further application, as described
at the end of Chapter 5. There is also possibility to use the underlying strategy of
numerical “adaptive-cell” renormalization to problems that are also embedded in a
disordered fractal medium but completely different from SAWs.
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Appendix A.

Generating and analyzing critical
percolation clusters

A.1. Setup

I exclusively used site percolation clusters on hypercubic lattices with periodic bound-
ary conditions. As criterion for percolation, I required that a cluster must wrap around
the lattice in at least one dimension. More precisely, a cluster percolates if a self-
avoiding polygon fits on it that crosses at least one boundary an odd number of times.
I adjusted the sizes lattice L to avoid that SAWs could “feel” the boundaries, while
trying not to waste too much time and memory (in higher dimensions). The precise
values that I used are listed in Table A.1 below.

Table A.1.: Lattice extensions L used for different dimensions and numbers of steps.

N 2D 3D 4D 5D 6D 7D
50 100 52 33 25 20 14
71 142 67 41 31 24 17
100 200 86 51 37 28 20
141 282 111 64 45 34 24
200 400 143 80 54 41 29
283 566 184 100 66 48 35
400 800 237 125 79 58 41
566 1132 305 156 96 69 49
800 1600 392 195 117 83 59
1131 2262 504 243 141 99 70
1600 3200 649 303 170 119 84
2263 4526 836 379 206 142 100
3200 6400 1076 473 252 170
4525 9050 1384 590 301
6400 12800 1782 736
9051 18102 2293 920
12800 25600 2951
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Appendix A. Generating and analyzing critical percolation clusters

A.1.1. Creating the clusters

I generated the critical clusters using a depth-first implementation of a burning al-
gorithm known as the Leath method [144]: Each lattice site can either be occupied
(1), empty (´1), or unchecked (0). At the beginning, all sites are 0 except for the
starting site (“seed”), which is always 1. A random number is then drawn for each
unchecked neighbor in turn. If the number is larger than the occupation probability
p, the neighbor is set to ´1; else it set to 1 and the routine recursively calls itself from
there. The program finishes once there are no unchecked neighbors left, i.e., when all
neighbors of the cluster are ´1. To check for percolation, I assign a number to each
occupied site storing which boundaries have been crossed to reach it. Each dimension
is represented by one bit which is flipped at each boundary crossing. Whenever a
neighbor is found occupied, I compare its number to that of the current site (with
one bit flipped if a boundary is between the two site). If the two numbers differ, per-
colation has occurred. This approach is faster than randomly occupying the sites on
the whole lattice and then identifying the clusters using the Hoshen-Kopelman (HK)
algorithm [145]. I should note that the two methods are not exactly identical: the
burning method samples more massive clusters with increased probability (which is
sensible in my view). However, this does not result in any measurable difference in
practice.

The easiest and fastest implementation of the burning algorithm uses aD-dimensional
array to store the status of the sites, which I did for D “ 2, 3. However, the required
memory for a lattice of extension L increases with LD, which a problem in higher
dimensions. Instead, one can use a hash table where only the visited sites (“1”) are
stored, and the memory needed to store a (percolating) cluster hence goes OpLdfq.

A.2. Estimating the fractal dimensions df and dmin

I measured the average masses rM s for percolating clusters on lattices of varying size
L, see Fig. A.1, and estimated the fractal dimension df by fitting

M “ aLdf . (A.1)

The results are given in Table A.2. In D “ 2, 3, they are fully consistent with the
literature. I higher dimensions, finite-corrections were found to be more significant,
which can be seen when the y-axis is rescaled so that the curves become flat. To
adjusted the lower cutoff for the fits to get a χ2 close to one, but I also used optical
judgment to decide when the slopes had stabilized. The results for 4D and 5D are
more precise than previous numerical estimates although the fit errors may be slightly
optimistic as the approach seems to overestimate df for small systems. For D ą 6,
periodic boundary conditions are known to raise the fractal dimension of the incipient
cluster to df “ 2D{3 [146–148], which is consistent with my findings.
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Figure A.1.: Masses vs extensions L and xR0y for CPCs in different dimensions. Slopes
are a measure of df; solid lines represent exactly known values.

Table A.2.: Estimates for the fractal dimension df for CPCs in different Euclidean
dimensions.

D fit range (L) χ2 df (previous studies)
2 200 - 25800 0.67 1.89584p2q 91{48 “ 1.89583 [23]
3 111 - 2951 0.41 2.52294p10q 2.52295p12q [26]
4 100 - 747 1.49 3.044p2q 3.05p5q [149]
5 130 - 280 1.49 3.517p7q 3.69p2q [150]
6 100 - 130 0.45 4.02p3q 4
7 30 - 84 1.08 4.65p1q 4 (14{3 “ 4.6 [146–148])

To estimate the shortest-path dimension dmin, I measured the average chemical
distance xly between cluster sites as a function of L as can be seen in Fig. A.2. The
results of fitting

rxlys “ aLdmin (A.2)

are given in Table A.3 1 Here the 2D estimate is slightly but significantly different
than the one reported previously [25]. That value is probably more reliable, since the
analysis carried out in that study was more thorough than mine and since I found the

slope (d ln rxlys
d lnL ) to converge relatively slowly in 2D (systematically decreasing with L).

By contrast, estimates for D “ 3-5 are perfectly consistent with those from previous
studies. The 6D estimate for dmin is slightly above the theoretical value, while the
7D estimate is again in line with the prediction for systems with periodic boundary
conditions (D{3).

1I also measured the average cluster mass within a chemical distance of N steps to estimate dl
(=df{dmin), which yielded similar but less accurate results for dmin.
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Figure A.2.: Average chemical distance on CPCs vs. lattice extension. The dashed
and dotted lines correspond to the theoretical predictions for D “ 6 and
D “ 7, respectively

Table A.3.: Estimates for the shortest-path dimension df for CPCs in different Eu-
clidean dimensions.

D fit range (L) χ2 dmin (previous studies)
2 1131-25800 0.82 1.1312p2q 1.13077p2q [25]
3 200-2951 1.72 1.3760p3q 1.3756p3q [26]
4 195-590 1.08 1.604p3q 1.607p5q [151]
5 79-252 0.901 1.818p3q 1.812p6q [151]
6 48-119 1.15 2.057p4q 2
7 29-84 1.31 2.331p9q 2 (7{3 “ 2.3)

A.3. Extracting the backbone and measuring dBB

I defined the backbone a the largest bi-connected component wrapping around the
lattice. To identify the bi-connected components, I used an adaptation of Tarjan’s
bridge-finding algorithm [152], which identifies all cutting edges of a graph in linear
time. The average backbone masses, rMBBs, are shown in Fig. A.3. The backbone
dimension was then obtained by fitting

rMBBs “ aLdBB ; (A.3)

the results are listed in Table A.4. For D “ 2-4, the estimates are very accurate and
in agreement with previous findings. For D ě 5, however, the results are clearly too
large given that the upper critical value is expected to be dBB “ 2. This discrepancy is
probably not due finite-size effect, which appeared to be rather insignificant. I therefore
suspect that my definition of the backbone leads to a larger fractal dimension for D ě 5
then the original one as the set of sites connecting to distant seeds [27]. However, since
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the difference must be due to the boundary conditions it should not substantially affect
the scaling behavior of SAWs.
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Figure A.3.: Backbone mass vs. lattice size for percolating clusters in dimensions 2-4
(left) and 5-7 (right). The dashed and dotted lines correspond to the
theoretical predictions for D “ 6 and D “ 7, respectively.

Table A.4.: Estimates for the backbone dimension dBB in different Euclidean
dimensions.

D fit range (L) χ2 dBB (previous studies)
2 200-25600 1.00 1.6433p2q 1.64336p10q [19]
3 111-2951 0.481 1.8736(5) 1.87p3q [38]
4 200-590 0.711 1.932(8) 1.9p2q [28]
5 37-252 0.969 2.03p2q 1.93p16q [28]
6 20-119 0.668 2.13p1q 2
7 14-84 2.41 2.32(2) 2 (7{3 “ 2.3)
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[53] D. Marković, S. Milošević, and H. Stanley, Physica A 144, 1 (1987).

[54] S. B. Lee and H. Nakanishi, Phys. Rev. Lett. 61, 2022 (1988).

[55] A. Aharony and A. B. Harris, J. Stat. Phys. 54, 1091 (1989).

[56] J. Machta, Phys. Rev. A 40, 1720 (1989).

[57] J. Machta and R. A. Guyer, J. Phys. A: Math. Gen. 22, 2539 (1989).

[58] S. B. Lee, H. Nakanishi, and Y. Kim, Phys. Rev. B 39, 9561 (1989).

[59] Y. Meir and B. Harris, Phys. Rev. Lett. 63, 2819 (1989).

[60] Y. Kim, Phys. Rev. A 41, 4554 (1990).

[61] P. M. Lam, J. Phys. A: Math. Gen. 23, L831 (1990).

[62] A. Roy and A. Blumen, J. Stat. Phys. 59, 1581 (1990).

[63] S. P. Obukhov, Phys. Rev. A 42, 2015 (1990).

[64] J. Machta and T. R. Kirkpatrick, Phys. Rev. A 41, 5345 (1990).

[65] P. Le Doussal and J. Machta, J. Stat. Phys. 64, 541 (1991).

[66] H. Nakanishi and S. B. Lee, J. Phys. A: Math. Gen. 24, 1355 (1991).

[67] K. Y. Woo and S. B. Lee, Phys. Rev. A 44, 999 (1991).

149

http://dx.doi.org/http://stacks.iop.org/0305-4470/15/i=3/a=008
http://dx.doi.org/ http://dx.doi.org/10.1016/0375-9601(82)90493-5
http://dx.doi.org/http://stacks.iop.org/0022-3719/16/i=8/a=005
http://dx.doi.org/10.1103/PhysRevB.28.5323
http://dx.doi.org/http://dx.doi.org/10.1016/0370-1573(84)90063-2
http://dx.doi.org/http://dx.doi.org/10.1007/BF01469696
http://dx.doi.org/10.1051/jphys:01984004503038900
http://dx.doi.org/http://stacks.iop.org/0305-4470/17/i=7/a=002
http://dx.doi.org/10.1051/jphys:0198500460101700
http://dx.doi.org/10.1007/BF01307777
http://dx.doi.org/http://dx.doi.org/10.1016/0378-4371(87)90142-7
http://dx.doi.org/10.1103/PhysRevLett.61.2022
http://dx.doi.org/10.1007/BF01019789
http://dx.doi.org/10.1103/PhysRevA.40.1720
http://dx.doi.org/http://stacks.iop.org/0305-4470/22/i=13/a=045
http://dx.doi.org/10.1103/PhysRevB.39.9561
http://dx.doi.org/10.1103/PhysRevLett.63.2819
http://dx.doi.org/10.1103/PhysRevA.41.4554
http://dx.doi.org/http://stacks.iop.org/0305-4470/23/i=16/a=010
http://dx.doi.org/10.1007/BF01334765
http://dx.doi.org/10.1103/PhysRevA.42.2015
http://dx.doi.org/10.1103/PhysRevA.41.5345
http://dx.doi.org/http://dx.doi.org/10.1007/BF01048306
http://dx.doi.org/10.1088/0305-4470/24/6/026
http://dx.doi.org/10.1103/PhysRevA.44.999


Bibliography

[68] C. Vanderzande and A. Komoda, Europhys. Lett. 14, 677 (1991).

[69] Y. Kim, Phys. Rev. A 45, 6103 (1992).

[70] H. Nakanishi and M. J, Physica A 191, 309 (1992).

[71] C. Vanderzande and A. Komoda, Phys. Rev. A 45, R5335 (1992).

[72] P. Grassberger, J. Phys. A: Math. Gen. 26, 1023 (1993).

[73] M. Rintoul, J. Moon, and H. Nakanishi, Phys. Rev. E 49, 2790 (1994).

[74] K. Barat and B. K. Chakrabarti, Phys. Rep. 258, 377 (1995).

[75] S. B. Lee, J. Korean Phys. Soc. 29, 1 (1996).

[76] J. Hovi and A. Aharony, J. Stat. Phys. 86, 1163 (1997).

[77] H. E. Roman, M. Porto, A. Ordemann, A. Bunde, and S. Havlin, Philos. Mag.
B 77, 1357 (1998).

[78] A. Ordemann, M. Porto, H. E. Roman, S. Havlin, and A. Bunde, Phys. Rev. E
61, 6858 (2000).

[79] A. Ordemann, M. Porto, H. Eduardo Roman, and S. Havlin, Phys. Rev. E 63,
020104 (2001).

[80] C. v. Ferber, V. Blavatska, R. Folk, and Y. Holovatch, Phys. Rev. E 70, 035104
(2004).

[81] H. K. Janssen and O. Stenull, Phys. Rev. E 75, 020801 (2007).

[82] V. Blavatska and W. Janke, Europhys. Lett. 82, 66006 (2008).

[83] V. Blavatska and W. Janke, Phys. Rev. Lett. 101, 125701 (2008).

[84] V. Blavatska and W. Janke, J. Phys. A: Math. Theor. 42, 015001 (2009).

[85] V. Blavatska and W. Janke, Physics Procedia 3, 1431 (2010).

[86] H. K. Janssen and O. Stenull, Phys. Rev. E 85, 011123 (2012).

[87] V. Dotsenko, Replica Theory of Disordered Statistical Systems (Cambridge Uni-
versity Press, Cambridge, 2001).

[88] A. B. Harris, J. Phys. C: Solid State Phys. 7, 1671 (1974).

[89] J.-P. Bouchaud and A. Georges, Phys. Rev. B 39, 2846 (1989).

[90] P. M. Lam and Z. Q. Zhang, Z. Phys. B 57, 65 (1984).

[91] D. Dhar, J. Math. Phys. 19, 5 (1978).

150

http://dx.doi.org/http://stacks.iop.org/0295-5075/14/i=7/a=012
http://dx.doi.org/10.1103/PhysRevA.45.6103
http://dx.doi.org/10.1016/0378-4371(92)90543-Y
http://dx.doi.org/10.1103/PhysRevA.45.R5335
http://dx.doi.org/10.1088/0305-4470/26/5/022
http://dx.doi.org/10.1103/PhysRevE.49.2790
http://dx.doi.org/10.1016/0370-1573(95)00009-6
http://dx.doi.org/10.3938/jkps.29.1
http://dx.doi.org/http://dx.doi.org/10.1007/BF02183619
http://dx.doi.org/ 10.1080/13642819808205029
http://dx.doi.org/ 10.1080/13642819808205029
http://dx.doi.org/ 10.1103/PhysRevE.61.6858
http://dx.doi.org/ 10.1103/PhysRevE.61.6858
http://dx.doi.org/10.1103/PhysRevE.63.020104
http://dx.doi.org/10.1103/PhysRevE.63.020104
http://dx.doi.org/10.1103/PhysRevE.70.035104
http://dx.doi.org/10.1103/PhysRevE.70.035104
http://dx.doi.org/10.1103/PhysRevE.75.020801
http://dx.doi.org/10.1209/0295-5075/82/66006
http://dx.doi.org/10.1103/PhysRevLett.101.125701
http://dx.doi.org/10.1016/j.phpro.2010.01.202
http://dx.doi.org/10.1103/PhysRevE.85.011123
http://dx.doi.org/http://stacks.iop.org/0022-3719/7/i=9/a=009
http://dx.doi.org/10.1103/PhysRevB.39.2846
http://dx.doi.org/http://dx.doi.org/10.1007/BF01679927
http://dx.doi.org/http://dx.doi.org/10.1063/1.523515


Bibliography

[92] D. Ben-Avraham and S. Havlin, Phys. Rev. A 29, 2309 (1984).

[93] Y. Liu and Z. Q. Zhang, J. Phys. A: Math. Gen. 18, 1027 (1985).

[94] F. D. A. A. Reis and R. Riera, J. Stat. Phys. 71, 453 (1993).

[95] Y. Hotta, Phys. Rev. E 90, 052821 (2014).

[96] V. Blavatska, C. von Ferber, and Y. Holovatch, in Statistics of Linear Polymers
in Disordered Media, edited by B. Chakrabarti (Elsevier, Amsterdam, 2005).

[97] H.-K. Janssen and O. Stenull, Phys. Rev. E 85, 051126 (2012).

[98] L. Peliti, J. Physique Lett. 45, 925 (1984).

[99] L. Pietronero, Phys. Rev. Lett. 55, 2025 (1985).

[100] A. L. Stella, Phys. Rev. Lett. 56, 2430 (1986).

[101] N. Fricke, Self-avoiding walks on disordered lattices, Diploma thesis, Universität
Leipzig (2010).

[102] P. Grassberger, Phys. Rev. E 56, 3682 (1997).

[103] N. Fricke and W. Janke, Physics Procedia 34, 39 (2012).

[104] N. Fricke and W. Janke, Europhys. Lett. 99, 56005 (2012).

[105] N. Fricke and W. Janke, Eur. Phys. J. Special Topics 216, 175 (2013).

[106] N. Fricke and W. Janke, Phys. Rev. Lett. 113, 255701 (2014).

[107] I. Jensen, J. Phys. A: Math. Gen. 37, 5503 (2004).

[108] R. D. Schram, G. T. Barkema, and R. H. Bisseling, Comput. Phys. Commun.
184, 891 (2013).

[109] N. Clisby, J. Stat. Phys. 140, 349 (2010).

[110] M. N. Rosenbluth and A. W. Rosenbluth, J. Chem. Phys. 23, 356 (1955).

[111] H.-P. Hsu, V. Mehra, W. Nadler, and P. Grassberger, J. Chem. Phys. 118, 444
(2003).

[112] H.-P. Hsu and P. Grassberger, J. Stat. Phys. 144, 597 (2011).

[113] A. R. Singh, D. Giri, and S. Kumar, Phys. Rev. E 79, 051801 (2009).

[114] D. E. Knuth, The Art of Computer Programming, Vol. 4, Fascicle 4 (Addison-
Wesley, Upper Saddle River, NJ, 2006).

[115] N. Clisby, R. Liang, and G. Slade, J. Phys. A: Math. Theor. 40, 10973 (2007).

151

http://dx.doi.org/10.1103/PhysRevA.29.2309
http://dx.doi.org/http://stacks.iop.org/0305-4470/18/i=6/a=024
http://dx.doi.org/http://dx.doi.org/10.1007/BF01058432
http://dx.doi.org/10.1103/PhysRevE.90.052821
http://dx.doi.org/10.1103/PhysRevE.85.051126
http://dx.doi.org/10.1051/jphyslet:019840045019092500
http://dx.doi.org/10.1103/PhysRevLett.55.2025
http://dx.doi.org/10.1103/PhysRevLett.56.2430
http://dx.doi.org/10.1103/PhysRevE.56.3682
http://dx.doi.org/10.1016/j.phpro.2012.05.006
http://dx.doi.org/10.1209/0295-5075/99/56005
http://dx.doi.org/10.1140/epjst/e2013-01740-4
http://dx.doi.org/10.1103/PhysRevLett.113.255701
http://dx.doi.org/http://stacks.iop.org/0305-4470/37/i=21/a=002
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2012.10.026
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2012.10.026
http://dx.doi.org/10.1007/s10955-010-9994-8
http://dx.doi.org/ http://jcp.aip.org/resource/1/jcpsa6/v23/i2/p356_s1
http://dx.doi.org/ http://dx.doi.org/10.1063/1.1522710
http://dx.doi.org/ http://dx.doi.org/10.1063/1.1522710
http://dx.doi.org/ http://dx.doi.org/10.1007/s10955-011-0268-x
http://dx.doi.org/10.1103/PhysRevE.79.051801
http://dx.doi.org/stacks.iop.org/1751-8121/40/i=36/a=003


Bibliography

[116] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing
(Prentice-Hall, Inc., Englewood Cliffs, NJ, 1975).

[117] S. Kumar, I. Jensen, J. L. Jacobsen, and A. J. Guttmann, Phys. Rev. Lett. 98,
128101 (2007).

[118] B. Efron, Ann. Stat. 7, 1 (1979).

[119] A. J. Guttmann, in Phase Transitions and Critical Phenomena, Vol. 13, edited
by C. Domb and J. L. Lebowitz (Academic Press, New York, 1989) p. 1.

[120] V. Blavatska and W. Janke, Phys. Rev. E 80, 051805 (2009).

[121] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,
J. Chem. Phys. 21, 1087 (1953).

[122] A. Giacometti and A. Maritan, Phys. Rev. E 49, 227 (1994).

[123] A. J. Guttmann and A. R. Conway, Ann. Comb. 5, 319345 (2001).

[124] P. De Gennes, J. Physique Lett. 36, 55 (1975).

[125] B. Duplantier and H. Saleur, Phys. Rev. Lett. 59, 539 (1987).

[126] B. K. Chakrabarti and S. M. Bhattacharjee, J. Stat. Phys. 58, 383 (1990).

[127] A. K. Roy, B. K. Chakrabarti, and A. Blumen, J. Stat. Phys. 61, 903 (1990).

[128] I. Chang and A. Aharony, J. Phys. I France 1, 313 (1991).

[129] K. Barat, S. N. Karmakar, and B. K. Chakrabarti, J. Phys. A: Math. Gen. 24,
851 (1991).

[130] K. Barat, S. N. Karmakar, and B. K. Chakrabarti, J. Phys. A: Math. Gen. 25,
2745 (1992).

[131] K. Barat, S. N. Karmakar, and B. K. Chakrabarti, J. Phys. I France 3, 2007
(1993).

[132] V. Blavatska and W. Janke, Comput. Phys. Comm. 182, 1966 (2011).

[133] N. Fricke, J. Bock, and W. Janke, diffusion-fundamentals.org 20, 111 (2013).

[134] I. Majid, N. Jan, A. Coniglio, and H. E. Stanley, Phys. Rev. Lett. 52, 1257
(1984).

[135] P. G. De Gennes, La Recherche 7, 919 (1976).

[136] K. Kremer and J. W. Lyklema, Phys. Rev. Lett. 55, 2091 (1985).

[137] P. H. Poole, A. Coniglio, N. Jan, and H. E. Stanley, Phys. Rev. B 39, 495
(1989).

152

http://dx.doi.org/10.1103/PhysRevLett.98.128101
http://dx.doi.org/10.1103/PhysRevLett.98.128101
http://dx.doi.org/10.1103/PhysRevE.80.051805
http://dx.doi.org/http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1103/PhysRevE.49.227
http://dx.doi.org/10.1051/jphyslet:0197500360305500
http://dx.doi.org/10.1103/PhysRevLett.59.539
http://dx.doi.org/10.1007/BF01020300
http://dx.doi.org/http://dx.doi.org/10.1007/BF01027309
http://dx.doi.org/10.1051/jp1:1991133
http://dx.doi.org/10.1088/0305-4470/24/4/017
http://dx.doi.org/10.1088/0305-4470/24/4/017
http://dx.doi.org/10.1051/jp1:1993228
http://dx.doi.org/10.1051/jp1:1993228
http://dx.doi.org/10.1016/j.cpc.2010.12.022
http://dx.doi.org/ 10.1103/PhysRevLett.52.1257
http://dx.doi.org/ 10.1103/PhysRevLett.52.1257
http://dx.doi.org/10.1103/PhysRevLett.55.2091
http://dx.doi.org/ 10.1103/PhysRevB.39.495
http://dx.doi.org/ 10.1103/PhysRevB.39.495


Bibliography

[138] M. Ponmurugan, S. Narasimhan, and K. Murthy, Physica A 371, 171 (2006).

[139] S. L. Narasimhan, Phys. Rev. E 53, 1986 (1996).

[140] A. Giacometti and A. Maritan, J. Phys. A: Math. Gen. 25, 2753 (1992).
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Referat:

Die vorliegenden Arbeit präsentiert eine numerische Studie von selbstvermeidenden
Zufallswegen (SAWs) auf Perkolationsclustern, ein kanonisches Modell für Polymere in
stark ungeordneten Medien. Hierfür wurde ein neuer Algorithmus entwickelt, welcher
es ermöglicht SAWs von mehr als zehntausend Schritten exakt auszuzählen. Dies be-
deutet eine Steigerung von mehreren Größenordnungen gegenüber der zuvor existieren-
den Methode, welche kaum mehr als vierzig Schritte zulässt. Solch eine Steigerung
wird erreicht, indem die fraktale Struktur der Percolationscluster geziehlt ausgenutzt
wird: Die Cluster werden hierarchisch in lose verbundene Gebiete unterteilt, innerhalb
welcher Wegstücke separat ausgezählt werden können. Nach dem Auszählen wird ein
Gebiet “dezimiert” und verhält sich während der Behandlung größere Gebiete effek-
tiv wie ein Gitterpunkt. Da diese neue Methode nur nahe der Perkolationsschwelle
funktioniert, wurde zum Erzielen der Ergebnisse zudem ein Kettenwachstums-Monte-
Carlo-Algorithmus (PERM) eingesetzt.
Untersucht wurde zunächst das asymptotische Skalenverhalten des Abstands der bei-
den Kettenenden als Funktion der Schrittzahl auf kritischen Clustern in verschiede-
nen Dimensionen. Dank der neuen hochperformanten Methode konnten die bisherigen
Schätzer für den dies beschreibenden Exponenten signifikant verbessert werden. Neben
dem Abstand wurde zudem die Anzahl der möglichen Konformationen und die mittlere
Entropie angeschaut, für welche ein ungewöhnliches Skalenverhalten gefunden wurde.
Für Konzentrationen oberhalb der Perkolationsschwelle wurde festgestellt, dass der Ex-
ponent, welcher das Wachstum des Endabstands beschreibt, nicht dem für freie SAWs
entspricht, was nach gängiger Lehrmeinung der Fall sein sollte. Schlussendlich wurden
SAWs mit Anziehung zwischen benachbarten Monomeren untersucht. Hier zeigte sich,
dass es auf kritischen Perkolationsclustern keinen Phasenübergang zu geben scheint,
an welchem die Ketten kollabieren, sondern dass das Skalenverhalten des Endabstands
selbst am absoluten Nullpunkt der Temperatur unverändert ist.
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