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Chapter 1

Introduction

Description Logics (DLs) [BCM+03] are a family of logic-based knowledge representation
formalisms, which can be used to represent the conceptual knowledge of an application
domain in a structured and formally well-understood way. They allow their users to de-
fine the important notions of the domain as concepts by stating necessary and sufficient
conditions for an individual to belong to the concept. These conditions can be atomic
properties required for the individual (expressed by concept names) or properties that
refer to relationships with other individuals and their properties (expressed as role re-
strictions). The expressivity of a particular DL is determined by what sort of properties
can be required and how they can be combined.
The DL EL, in which concepts can be built using concept names as well as the concept

constructors conjunction (u), existential restriction (∃r.C), and the top concept (>),
has drawn considerable attention in the last decade since, on the one hand, important
inference problems such as the subsumption problem are polynomial in EL, even with
respect to expressive terminological axioms [Bra04]. On the other hand, though quite
inexpressive, EL can be used to define biomedical ontologies, such as the large medical
ontology SNOMEDCT.1 In EL we can, for example, define the concept of a happy man
as a male human that is healthy and handsome, has a rich and intelligent wife, a son
and a daughter, and a friend:

Human uMale u Healthy u Handsome u

∃spouse.(Rich u Intelligent u Female) u (1.1)

∃child.Male u ∃child.Female u ∃friend.>

For an individual to belong to this concept, all the stated properties need to be satisfied.
However, maybe we would still want to call a man happy if most, though not all, of the
properties hold. It might be sufficient to have just a daughter without a son, or a wife
that is only intelligent but not rich, or maybe an intelligent and rich spouse of a different
gender. But still, not too many of the properties should be violated.
In this thesis, we introduce a DL extending EL that allows us to define concepts in

such an approximate way. The main idea is to use a graded membership function m,
which instead of a Boolean membership value 0 or 1 yields a membership degree from
the interval [0, 1]. We can then require a happy man to belong to the EL concept (1.1)
with degree at least .8. More generally, if C is an EL concept, then the threshold concept
C≥t for t ∈ [0, 1] collects all the individuals that belong to C with degree at least t. In

1see http://www.ihtsdo.org/snomed-ct/
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2 Chapter 1. Introduction

addition to such upper threshold concepts, we will also consider lower threshold concepts
C≤t and allow the use of strict inequalities in both. For example, an unhappy man could
be required to belong to the EL concept (1.1) with a degree less than .2. Using these
constructors and defining their underlying semantics based on a graded membership
function, we define the family of DLs τEL(m) where m is a parameter of the logic
representing the chosen function.
We then go further and define a particular membership degree function deg . Its

definition is a natural extension of the homomorphism characterization of crisp mem-
bership in EL. Basically, an individual is punished (in the sense that its membership
degree is lowered) for each missing property in a uniform way. For instance, suppose
that some individual d belongs to the sets corresponding to Human and Healthy under
some interpretation, but does not belong to the ones corresponding to Handsome and
Male. Then, regarding the concept description Human u Male u Healthy u Handsome,
the computation of deg will punish d for the two missing properties, and give the value
deg(d,Human uMale u Healthy u Handsome) = 1/2 as the degree of membership of d in
that concept (see Chapter 4 for the precise details).
From a technical point of view, this function is akin to the similarity measures for EL

concepts introduced in [LT12, Sun13], though only [Sun13] directly draws its inspirations
from the homomorphism characterization of subsumption in EL. The threshold logic
τEL(deg) induced by deg constitutes the main subject of study in Chapters 5 and 6,
where we investigate the complexity of reasoning in τEL(deg) with respect to the empty
terminology and to a particular form of acyclic TBoxes.
The last part of the thesis is devoted to better understand the relationship between

concept similarity measures and our threshold logic formalism. We will describe a partic-
ular form of constructing membership degree functions from concept similarity measures,
which then originates a wide family of threshold Description Logics. In this way, we ob-
tain a variety of logics that could be useful in diverse scenarios according to the specific
properties of their underlying similarity measures.
The remainder of this introduction is concerned with an overview on related work,

and a more detailed summary of the subsequent chapters in this document.

1.1 Related work

We now provide an overview of some of the existing approaches to represent imprecise
knowledge in Description Logics. We consider the ones that we believe look closest to
our work. Nevertheless, there exists a vast number of other proposals. See for example
[PZ13] for an extension of EL with the notion of rough sets, [LS10] for a family of
probabilistic DLs, and [LS08] for a survey on managing uncertainty and vagueness in
Description Logics.

1.1.1 Fuzzy DLs

The use of membership degree functions with values in the interval [0, 1] may remind the
reader of fuzzy logics. However, there is no strong relationship between this work and
the work on fuzzy DLs [BDP15] for two reasons. First, in fuzzy DLs the semantics is
extended to fuzzy interpretations where concept and role names are interpreted as fuzzy
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sets and relations, respectively. Basically, given an interpretation I = (∆I , .I) and a set
of truth values B:

• concept names A are interpreted as fuzzy sets AI : ∆I → B, and

• role names r as binary fuzzy relations rI : ∆I ×∆I → B.

The membership degree of an individual to belong to a complex concept is then computed
using fuzzy interpretations of the concept constructors (e.g., conjunction is interpreted
using an appropriate triangular norm ⊗).
In our setting, we consider crisp interpretations of concept and role names, and di-

rectly define membership degrees for complex concepts based on them. Second, we use
membership degrees to obtain new concept constructors, but the threshold concepts ob-
tained by applying these constructors are again crisp rather than fuzzy. Additionally,
for our threshold logics the membership degree value in a complex concept need not be
systematically determined by the membership degree values of its parts. Let us illus-
trate this situation with a simple example. Consider the following two fragments of the
concept (1.1):

Human uMale and Human u Handsome

For an individual x in an interpretation I that only belongs to the concept Human, the
intuition explained above for deg yields the membership degrees:

deg(x,Human uMale)=1/2 and deg(x,Human u Handsome)=1/2

Now, the relevant aspect is that, when computing deg(x,Human u Male u Human u
Handsome), we do not want to count the fact that x is a Human twice, but rather give 1/3
as the membership degree of x in the composed concept. This intuition will be captured
in one of two conditions that membership functions are required to satisfy. Hence, if a
specific t-norm ⊗ were to be used to interpret conjunction in this particular scenario, it
would satisfy 1/2⊗ 1/2 = 1/3. However, let us further consider two more concepts:

Human uMale and Handsome u Healthy

If in addition, x also belongs to Healthy we obtain similar values as before:

deg(x,Human uMale)=1/2 and deg(x,Handsome u Healthy)=1/2

The difference is that the membership degree of x in the concept representing the com-
position of these two concepts, as already explained above, is deg(x,Human u Male u
Handsome u Healthy) = 1/2. Obviously, this is not consistent with the initial definition
of ⊗ for the pair (1/2, 1/2), as required before.

1.1.2 The logic sim-ALCQO

In [LWZ03], the authors introduced the Description Logic sim-ALCQO for expressing
“vague” concepts and reasoning about them. This logic is obtained as the result of
combining the DL ALCQO [HS01], and the logicMS introduced in [WZ03] for reasoning
about metric spaces. In particular, the integration of MS with ALCQO allows to
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express concepts of the form E≤aC (among others). The interpretation of such a concept
description collects the set of all individuals x that are similar to at least one instance y
of C with degree at most a. Here, x and y are elements of a domainW and the similarity
is measured by a distance function d, where <W, d> is a metric space.
In principle we could try to express a threshold concept C≥t as the sim-ALCQO

concept E≤(1−t)C. This is based on the idea that by using a distance function, the
closer two individuals are the more similar they are. Therefore, if y is an instance of C
and d(x, y) ≤ 1−t, we could interpret this as that x is an element of C≥t. However, the
most important difference to our approach is that [LWZ03] do not fix an specific distance
function d, but reason with respect to all possible such functions. This, for example,
includes distance functions which do not take into account the conceptual structure of
the domain elements in an interpretation to measure the distance between them.

1.1.3 Concept similarity measures

In the last few years, the idea of measuring similarity between concepts described
in DLs has received considerable attention. Many concept similarity measures have
been proposed to approach problems from a different/new perspective in very dis-
similar domains. See for example [BWH05] for an early survey on the topic, and
[dSF08, dFE06, EPT15, Sun13] for recently proposed measures and their applications.
One particular application of concept similarity measures to DLs is suggested in

[EPT14, EPT15]. Instead of requiring that an individual is an instance of a query con-
cept, the authors only require that it is an instance of a concept that is “similar enough”
to the query concept. A somehow related approach has been presented in [TS14], but
following the ideas exposed in [Sun13]. As we will show in Chapter 7, such kind of
relaxed instance queries can be expressed as instance queries with respect to threshold
concepts of the form C>t. However, the new family of DLs introduced in this thesis
is considerably more expressive than just such threshold concepts since we also allow
the use of comparison operators other than > in threshold concepts, and the threshold
concepts can be embedded in complex EL concepts.

1.2 Structure of the Thesis

In the following, we briefly describe the contents of each chapter of the thesis.

• Chapter 2 formally introduces the lightweight Description Logic EL. We start
by presenting the syntax and semantics of EL, as well as defining some technical
notions that will be important for the rest of the thesis. To conclude, we then
recall the well-known characterization of element-hood in EL concepts via existence
of homomorphisms between EL description graphs (which can express both EL
concepts and interpretations in a graphical way).

• In Chapter 3, we introduce our new family of DLs τEL(m). We extend EL by
new threshold concept constructors which are based on an arbitrary, but fixed
graded membership function m (hence the name τEL(m)). We will impose some
minimal requirements on such membership functions, and show the consequences



1.2 Structure of the Thesis 5

that these conditions have for our threshold logic. Afterwards, we define descrip-
tion graphs and the notion of τ -homomorphisms for τEL(m). Based on them we
show that membership in τEL(m) concept descriptions can be characterized by
the existence of τ -homomorphisms. Such a characterization is independent of the
used graded membership function, and will be crucial for the study of the com-
putational complexity of inference problems carried out in subsequent chapters.
Finally, we provide algorithms that for finite interpretations, can be used to decide
membership in τEL(m) concepts according to the given characterization.

• Chapter 4 introduces the graded membership function deg . We show that deg
is well-defined and satisfies the properties required for membership functions in
Chapter 3. In the last part of the chapter, we look at the relationship between its
induced threshold logic τEL(deg) and the DL ALC [SS91]. On the one hand, we
show that full negation is not expressible in τEL(deg), and thus there are ALC
concept descriptions that cannot be expressed in τEL(deg). On the other hand,
we prove that τEL(deg) is a fragment of ALC.

• Chapter 5 investigates the computational properties of τEL(deg). We start by con-
sidering satisfiability and subsumption as the standard reasoning tasks concerning
terminological reasoning. In contrast to EL, the satisfiability problem is not triv-
ial and it turns out to be NP-hard. A matching upper bound is obtained due
to the existence of polynomial size models for all satisfiable concepts. Then, we
demonstrate, that the ideas used to construct such small models can be extended
to concepts of the form Ĉ u ¬D̂ where Ĉ and D̂ are τEL(deg) concepts. Since
τEL(deg) cannot express negation of τEL(deg) concepts, this comes in handy to
prove that subsumption is a complete problem for the class coNP. Finally, we are
able to extend these ideas further to deal with assertional knowledge, and show that
ABox consistency is NP-complete whereas the instance problem is coNP-complete
(w.r.t. data complexity).

• Chapter 6 is concerned with extending our logic τEL(deg) to consider concept
descriptions defined in a background TBox. We first extend well-defined graded
membership functions to compute membership degrees with respect to acyclic EL
TBoxes. Subsequently, τEL(m) and τEL(deg) TBoxes are defined taking into
account some necessary restrictions. We will see that the presence of TBoxes
apparently increases the computational complexity of the satisfiability and sub-
sumption problems, namely, they become ΠP

2 - and ΣP
2 -hard, respectively. These

hardness results hold already with respect to acyclic τEL(deg) TBoxes. Regard-
ing upper bounds, we design a non-deterministic polynomial space algorithm that
solves both problems, thus providing membership in PSPACE for both of them.
Moreover, these PSPACE upper bounds carry over to reasoning with respect to
acyclic τEL(deg) knowledge bases.

• In Chapter 7, we study the relationship between our threshold DLs τEL(m) and
concept similarity measures. The chapter is organized into three main parts. To
start, we show that a variant of the relaxed instance query approach of [EPT14]
can be used to turn a similarity measure ./ into a well-defined graded membership
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function m./, and consequently ./ induces a threshold logic τEL(m./). In addi-
tion, we show that the relaxed instance queries of [EPT14] can be expressed as
instance queries w.r.t. threshold concepts of the form C>t. The second part of the
chapter explores the computational complexity landscape of reasoning in such a
big family of threshold logics. We obtain undecidability and decidability results,
as well as more precise complexity results for logics induced by a particular class of
measures satisfying certain properties. Last, we present the framework simi intro-
duced in [LT12] for defining similarity measures, and identify a concrete subclass
of its instances exhibiting those properties. Moreover, it turns out that, applied
to a simple instance ./1 of simi , our construction actually yields our membership
function deg .

• In Chapter 8, we summarize our results and point out several directions for future
work.

• Appendix A contains missing proofs of some results needed along this document.

The results of this thesis consisting of the definition of the family of DLs τEL(m), the
graded membership function deg and the computational properties of τEL(deg) studied
in Chapter 5, have previously been published in [BBG15a] and [BBG15b].



Chapter 2

The Description Logic EL

We start by introducing the Description Logic EL. Starting with finite sets of concept
names NC and role names NR, the set CEL of EL concept descriptions is obtained by
using the concept constructors conjunction (C u D), existential restriction (∃r.C) and
top (>), in the following way:

C ::= > | A | C u C | ∃r.C

where A ∈ NC, r ∈ NR and C ∈ CEL.
An interpretation I = (∆I , .I) consists of a non-empty domain ∆I and an interpre-

tation function .I that assigns subsets of ∆I to each concept name and binary relations
over ∆I to each role name. The interpretation function .I is inductively extended to
concept descriptions in the usual way:

>I := ∆I

(C uD)I := CI ∩DI

(∃r.C)I := {x ∈ ∆I | ∃y.
[
(x, y) ∈ rI ∧ y ∈ CI

]
}

Given C,D ∈ CEL, we say that C is subsumed by D (denoted as C v D) iff CI ⊆ DI
for every interpretation I. These two concept descriptions are equivalent (denoted as
C ≡ D) iff C v D and D v C. Finally, C is satisfiable iff CI 6= ∅ for some interpretation
I.
Information about specific individuals can be expressed in an ABox. An ABox A

is a finite set of assertions of the form C(a) or r(a, b), where C is an EL concept
description, r ∈ NR, and a, b are individual names. For example, if HUGUITO, JULIA
and SANTIAGO are individual names, one can state that HUGUITO is a human male,
JULIA is his daughter and SANTIAGO his son, through the following ABox A:

A :={Human(HUGUITO),Male(HUGUITO),Male(SANTIAGO),Female(JULIA),

child(HUGUITO, JULIA), child(HUGUITO,SANTIAGO)} (2.1)

Concerning the semantics, in addition to concept and role names, an interpretation I
now assigns domain elements aI to individual names a. An assertion C(a) is satisfied
by I iff aI ∈ CI , and r(a, b) is satisfied by I iff (aI , bI) ∈ rI . The interpretation I is a
model of A iff I satisfies all assertion in A. The ABox A is consistent iff it has a model,
and the individual a is an instance of the concept C in A iff aI ∈ CI holds in all models
of A. We denote the set of individual names occurring in A as Ind(A).

7



8 Chapter 2. The Description Logic EL

We now define some notions related to EL concept descriptions that will be useful for
subsequent chapters.

Definition 2.1 (sub-description). Let C be an EL concept description. The set
sub(C) of sub-descriptions of C is defined in the following way:

sub(C) :=


{C} if C = > or C ∈ NC,

{C} ∪ sub(C1) ∪ sub(C2) if C is of the form C1 u C2,

{C} ∪ sub(D) if C is of the form ∃r.D.

Note that the number of sub-descriptions |sub(C)| of a concept C is linear in the size
of C. Next, we define the role depth of a concept description C.

Definition 2.2 (role depth). The role depth rd(C) of an EL concept description C is
inductively defined as follows:

rd(>) = rd(A) := 0,

rd(C1 u C2) := max(rd(C1), rd(C2)),

rd(∃r.C) := rd(C) + 1. ♦

A concept description is called an atom iff it is a concept name or an existential
restriction. The set of all EL atoms is denoted by NA. Additionally, every EL concept
description is a conjunction C1 u . . . u Cn of atoms. These conjuncts are called the
top-level atoms of C and the set {C1, . . . , Cn} is denoted as tl(C).
Finally, given two interpretations I and J , we say that I is contained in J (denoted
I ⊆ J ) iff ∆I ⊆ ∆J and XI ⊆ XJ for all X ∈ (NC ∪ NR).

2.1 Characterization of membership in EL
Our definition of graded membership will be based on graphical representations of con-
cepts and interpretations, and on homomorphisms between such representations. For
this reason, we recall these notions together with the pertinent results. They are all
taken from [BKM99, Küs01, Baa03].

Definition 2.3 (EL description graph). An EL description graph is a graph of the
form G = (VG, EG, `G) where:

• VG is a set of nodes.

• EG ⊆ VG × NR × VG is a set of edges labeled by role names,

• `G : VG → 2NC is a function that labels nodes with sets of concept names. ♦

The empty label corresponds to the top concept >. In particular, an EL description
tree T is a description graph that is a tree with a distinguished element v0 representing
its root. In [BKM99], it was shown the correspondence that exists between EL concept
descriptions and EL description trees, i.e., every EL concept description C can be trans-
lated into a corresponding description tree TC and vice versa. Furthermore, every inter-
pretation I = (∆I , .I) can be translated into an EL description graph GI = (VI , EI , `I)
in the following way [Baa03]:
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TC : v0 : {A}

v1 : {A,B}

v2 : {}

r

r

v3 : {A}

r

GI : a1 : {A}

a2 : {A,B}

a3 : {B}

r

r

r

Figure 2.1: EL description graphs.

• VI = ∆I ,

• EI = {(vrw) | (v, w) ∈ rI},

• `I(v) = {A | v ∈ AI} for all v ∈ VI .

The following example illustrates the relation between concept descriptions and de-
scription trees, and interpretations and description graphs.

Example 2.4. The EL concept description

C := A u ∃r.(A uB u ∃r.>) u ∃r.A

yields the EL description tree TC depicted on the left-hand side of Figure 2.1. The
description graph on the right-hand side corresponds to the following interpretation:

• ∆I := {a1, a2, a3},

• AI := {a1, a2} and BI := {a2, a3},

• rI := {(a1, a2), (a2, a3), (a3, a1)}. ♦

Now, we generalize homomorphisms between EL description trees [BKM99] to arbi-
trary graphs.

Definition 2.5 (Homomorphisms on EL description graphs). LetG = (VG, EG, `G)
and H = (VH , EH , `H) be two EL description graphs. A mapping ϕ : VG → VH is a
homomorphism from G to H iff the following conditions are satisfied:

1. `G(v) ⊆ `H(ϕ(v)) for all v ∈ VG, and

2. vrw ∈ EG implies ϕ(v)rϕ(w) ∈ EH .

This homomorphism is an isomorphism iff it is bijective, equality instead of just inclusion
holds in 1), and biimplication instead of just implication holds in 2). ♦

In Example 2.4, the mapping ϕ with ϕ(vi) = ai+1 for i = 0, 1, 2 and ϕ(v3) = a2 is a ho-
momorphism. Homomorphisms between EL description trees can be used to characterize
subsumption in EL.
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Theorem 2.6 ([BKM99]). Let C,D be EL concept descriptions and TC , TD the cor-
responding EL description trees. Then C v D iff there exists a homomorphism from TD
to TC that maps the root of TD to the root of TC .

The proof of this result can be easily adapted to obtain a similar characterization of
element-hood in EL, i.e., whether d ∈ CI for some d ∈ ∆I .

Theorem 2.7. Let I be an interpretation, d ∈ ∆I , and C an EL concept description.
Then, d ∈ CI iff there exists a homomorphism ϕ from TC to GI such that ϕ(v0) = d.

In Example 2.4, the existence of the homomorphism ϕ defined above thus shows that
a1 ∈ CI . Equivalence of EL concept descriptions can be characterized via the existence
of isomorphisms, but for this the concept descriptions first need to be normalized by
removing redundant existential restrictions. To be more precise, the reduced form of an
EL concept description is obtained by applying the rewrite rule ∃r.C u∃r.D −→ ∃r.C if
C v D as long as possible. This rule is applied modulo associativity and commutativity
of u, and not only on the top-level conjunction of the description, but also under the
scope of existential restrictions. Since every application of the rule decreases the size of
the description, it is easy to see that the reduced form can be computed in polynomial
time. We say that an EL concept description is reduced iff this rule does not apply to it.
In our Example 2.4, the reduced form of C is the reduced description Au∃r.(AuBu∃r.>).

Theorem 2.8 ([Küs01]). Let C,D be EL concept descriptions, Cr, Dr their reduced
forms, and TCr , TDr the corresponding EL description trees. Then C ≡ D iff there exists
an isomorphism between TCr and TDr .



Chapter 3

The Logic τEL(m)

Our new logic will allow us to take an arbitrary EL concept C and turn it into a
threshold concept. To this end we introduce a family of constructors that are based
on the membership degree of individuals in C. For instance, the threshold concept
C>.8 represents the individuals that belong to C with degree > .8. The semantics of
the new threshold concepts depends on a (graded) membership function m. Given an
interpretation I, this function takes a domain element d ∈ ∆I and an EL concept C as
input, and returns a value between 0 and 1, representing the extent to which d belongs
to C in I.
The choice of the membership function obviously has a great influence on the semantics

of the threshold concepts. In Chapter 4 we will propose one specific such function deg ,
but we do not claim this is the only reasonable way to define such a function. Rather, the
membership function is a parameter in defining the logic. To highlight this dependency,
we call the logic τEL(m).
Nevertheless, membership functions are not arbitrary. There are two properties we

require such functions to satisfy:

Definition 3.1. A graded membership function m is a family of functions that contains
for every interpretation I a function mI : ∆I × CEL → [0, 1] satisfying the following
conditions (for C,D ∈ CEL):

M1 : d ∈ CI ⇔ mI(d,C) = 1 for all d ∈ ∆I ,

M2 : C ≡ D ⇔ ∀I ∀d ∈ ∆I : mI(d,C) = mI(d,D). ♦

Property M1 requires that the value 1 is a distinguished value reserved for proper
containment in a concept. Property M2 requires equivalence invariance. It expresses
the intuition that the membership value should not depend on the syntactic form of
a concept, but only on its semantics. Note that the right to left implication in M2 is
already a consequence of M1 : suppose for a contradiction that C 6≡ D. This would
imply that for some interpretation I and d ∈ ∆I , d ∈ CI and d 6∈ DI (or the opposite).
Then, by M1 and the right-hand side of M2 we would obtain mI(d,C) = 1 = mI(d,D),
which clearly yields a contradiction against d 6∈ DI and property M1.
We now turn to the syntax of τEL(m). Given finite sets of concept names NC and

role names NR, τEL(m) concept descriptions are defined as follows:

Ĉ ::= > | A | Ĉ u Ĉ | ∃r.Ĉ | E∼t

where A ∈ NC, r ∈ NR, ∼ ∈ {<,≤, >,≥}, t ∈ [0, 1] ∩Q, E is an EL concept description

11
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and Ĉ is a τEL(m) concept description. Concepts of the form E∼t are called threshold
concepts. We denote by N̂E the set of all threshold concepts.
Using this newly introduced constructors, we can define ABoxes in τEL(m) as a nat-

ural extension of EL ABoxes. A τEL(m) ABox is an EL ABox that, in addition, is
allowed to contain assertions of the form Ĉ(a), where Ĉ is a τEL(deg) concept descrip-
tion. Hence, if we know that another individual JACINTA is healthy and handsome with
degree at least .8, we can now enrich the information provided in the ABox (2.1) by
adding the assertion

(
(Healthy u Handsome)≥.8

)
(JACINTA).

The semantics of the new threshold concepts is defined in the following way:

(E∼t)
I := {d ∈ ∆I | mI(d,E) ∼ t}

The extension of .I to more complex concepts is defined as in EL by additionally con-
sidering the underlying semantics of the newly introduced threshold concepts.
Requiring property M1 has the following consequences for the semantics of threshold

concepts.

Proposition 3.2. For every EL concept description E we have

E≥1 ≡ E and E<1 ≡ ¬E,

where the semantics of negation is defined as usual, i.e., [¬E]I := ∆I \ EI .

The second equivalence basically says that τEL(m) can express negation of EL con-
cept descriptions. This does not imply that τEL(m) is closed under negation since the
threshold constructors can only be applied to EL concept descriptions. Thus, negation
cannot be nested using these constructors. A formal proof that τEL(deg) for the mem-
bership function deg introduced in the next section cannot express full negation can
be found in Section 4.3.1. However, atomic negation (i.e., negation applied to concept
names) can obviously be expressed. Consequently, unlike EL concept descriptions, not
all τEL(m) concept descriptions are satisfiable (i.e., can be interpreted by a non-empty
set). A simple example is the concept description A≥1 u A<1, which is equivalent to
A u ¬A.
Last, some other notions defined for EL in Chapter 2 extend naturally to τEL(m):

• role depth: extends to τEL(m) concept descriptions by defining rd(E∼t) := 0 for
all threshold concept E∼t ∈ N̂E,

• sub-description: for all E∼t ∈ N̂E, sub(E∼t) := {E∼t}.

3.1 Description graphs and homomorphisms in τEL(m)

Our next goal is to extend the characterization of membership in EL (see Theorem 3.8)
to τEL(m). In addition, we will show that given a τEL(m) ABox A and an interpre-
tation I, the satisfaction relation I |= A can also be characterized by the existence
of homomorphisms. Such characterizations will be useful later on to provide decision
procedures for specific instances of τEL(m).
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T
Ĉ
: v0 : {A,E>0.8}

v1 : {A,B,E≤0.5}

v2 : {E<1}

r

r

v3 : {A}

r

TC : v0 : {A}

v1 : {A,B}

v2 : {}

r

r

v3 : {A}

r

Figure 3.1: τEL(m) description trees.

We start by extending the notion of description graphs from EL to τEL(m). This is
done by allowing the use of threshold concepts as labels.

Definition 3.3 (τEL(m) description graph). A τEL(m) description graph is a graph
of the form Ĝ = (VG, EG, ̂̀G) where:

• VG is a set of nodes,

• EG ⊆ VG × NR × VG is a set of edges labeled by role names, and

• ̂̀G : VG → 2NC∪N̂E is a function that labels nodes with subsets of NC ∪ N̂E. ♦

Likewise for EL (see Definition 2.3), a τEL(m) description tree T̂ is a τEL(m) description
graph that is a tree with a distinguished element v0 representing its root. Therefore, we
can establish a similar relationship between concept descriptions and description trees
in τEL(m), i.e., every τEL(m) concept description Ĉ can be translated into a τEL(m)
description tree T

Ĉ
and vice versa. The following example illustrates such a relationship.

Example 3.4. Let E be an EL concept description. The τEL(m) concept description

Ĉ := A u E>0.8 u ∃r.(A uB u E≤0.5 u ∃r.E<1) u ∃r.A

yields the τEL(m) description tree T
Ĉ

depicted on the left-hand side of Figure 3.1.
Note that the translation of Ĉ into T

Ĉ
is an extension of the one used for EL concept

descriptions, where threshold concepts E∼t are treated like concept names. The EL
description tree TC depicted in the right-hand side of Figure 3.1 corresponds to the EL
description tree that results by ignoring the threshold concepts in the labels of T

Ĉ
. ♦

Now, for ABoxes, the use of individual names and role assertions excludes the possi-
bility of representing them as a description trees. Individuals in the ABox may have no
relation at all or it could also happen that role assertions enforce the existence of a cycle
involving some of them. In fact, the translation of concept descriptions into description
trees in EL is adapted in [KM02] for an ABox A into a description graph G(A).
We lift the very same translation (see Section 3 in [KM02]) to ABoxes and description

graphs in τEL(m). Some of the notation used in [KM02] is slightly changed for the sake
of readability within this document.

Definition 3.5 (ABoxes and τEL(m) description graphs). LetA be a τEL(m) ABox.
A is translated into a τEL(m) description graph Ĝ(A) in the following way:
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Ĉa1 := A uB

Ĉa2 := E<1

Ĉa3 := >

Ĉa4 := ∃r.A

Ĝ(A): a1 : {A,B}

a2 : {E<1} a3 : {}

a4 : {}

v : {A}

r r

r

s

Figure 3.2: τEL(m) description graph associated to an ABox.

• For all a ∈ Ind(A), the τEL(m) concept description Ĉa is defined as:

Ĉa :=
l

D̂(a) ∈A

D̂

If there exists no assertion of the form D̂(a) in A, then Ĉa := >.

• For all a ∈ Ind(A), let T̂ (a) = (Va, Ea, a, ̂̀a) be the τEL(m) description tree
corresponding to the concept Ĉa where a itself represents its root. Without loss
of generality let the sets Va with a ∈ Ind(A) be pairwise disjoint. Then, Ĝ(A) =
(VA, EA, ̂̀A) is defined as:

– VA :=
⋃

a∈Ind(A)

Va,

– EA :=
⋃

a∈Ind(A)

Ea ∪ {arb | r(a, b) ∈ A}, and

– ̂̀A(v) := ̂̀
a(v) for v ∈ Va. ♦

The following example shows the idea of the previous construction.

Example 3.6. Let E be an EL concept description and A the following ABox:

A := {A(a1), B(a1), E<1(a2), (∃r.A)(a4), r(a1, a2), r(a2, a3), s(a3, a1)}

The corresponding τEL(m) description graph Ĝ(A) is depicted in Figure 3.2. ♦

Based on the notion of τEL(m) description graphs, we define homomorphisms from
τEL(m) description graphs to the associated EL description graph of an interpretation
I. To differentiate these kinds of homomorphisms from the classical ones, we name them
τ -homomorphisms and use the Greek letter φ (possibly with subscripts) to denote them.

Definition 3.7. Let Ĥ = (VH , EH , ̂̀H) be a τEL(m) description graph and I an inter-
pretation. The mapping φ : VH → VI is a τ -homomorphism from Ĥ to GI iff:

1. φ is a homomorphism from Ĥ to GI in the sense of Definition 2.5 (ignoring thresh-
old concepts in the labeling of VH), and

2. for all v ∈ VH : if E∼t ∈ ̂̀H(v), then φ(v) ∈ (E∼t)
I . ♦
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We denote by dom(φ) and img(φ) the domain and image of φ, respectively. This is,
dom(φ) := VH and img(φ) := {φ(v) | v ∈ VH}.
We now use τ -homomorphisms to characterize membership in τEL(m). Such a char-

acterization is based on the existence of a τ -homomorphism and generalizes Lemma 2.7
from EL to τEL(m).

Theorem 3.8. Let Ĉ be a τEL(m) concept description and I = (∆I , .I) an interpreta-
tion. The following statements are equivalent for all d ∈ ∆I :

1. d ∈ ĈI .

2. there exists a τ -homomorphism φ from T
Ĉ
to GI with φ(v0) = d.

Proof. The 1) → 2) direction is shown by induction on the role depth of Ĉ, while the
other direction is proved by induction on the number of nodes in T

Ĉ
. The details of the

proof are deferred to the Appendix A.

Using the previous lemma we give a similar characterization for the satisfaction relation
between interpretations and ABoxes in τEL(m).

Theorem 3.9. Let A be a τEL(m) ABox and I = (∆I , .I) be an interpretation. The
following statements are equivalent:

1. I is a model of A.

2. there exists a τ -homomorphism φ from Ĝ(A) to GI such that φ(a) = aI for all
a ∈ Ind(A).

Proof. 1) → 2). Assume that I is a model of A. Then, aI ∈ D̂I and (aI , bI) ∈ rI hold
for all assertions D̂(a) ∈ A and r(a, b) ∈ A, respectively. Consequently, by definition of
Ĉa we have that aI ∈ (Ĉa)

I for all a ∈ Ind(A). Hence, we can apply Theorem 3.8 to
obtain a τ -homomorphism φa from T̂ (a) to GI with φa(a) = aI (recall that a is the root
of T̂ (a)).

Finally, since aIrbI ∈ EI for all r(a, b) ∈ A, and the sets Va used in the construc-
tion of Ĝ(A) are pairwise disjoint, it is easy to verify that φ :=

⋃
a∈Ind(A) φa is a τ -

homomorphism from Ĝ(A) to GI such that φ(a) = aI for all a ∈ Ind(A).
2) → 1). Assume that the statement 2) holds. We show that I satisfies all assertions

in A:

• r(a, b) ∈ A. By construction of Ĝ(A) we know that arb ∈ EA. Since φ is a
homomorphism from Ĝ(A) to GI , this means that φ(a)rφ(b) ∈ EI as well. Con-
sequently, it follows from φ(a) = aI and φ(b) = bI that aIrbI ∈ EI . Thus,
(aI , bI) ∈ rI .

• D̂(a) ∈ A. By construction of Ĝ(A) one can see that the description tree T̂ (a) is a
sub-graph of Ĝ(A). Therefore, φ is also a τ -homomorphism from T̂ (a) to GI with
φ(a) = aI . An application of Theorem 3.8 then yields: aI ∈ (Ĉa)

I . Thus, since D̂
is one of the conjuncts in the definition of Ĉa, it follows that aI ∈ D̂I .
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3.2 Deciding the existence of a τ-homomorphism

If the interpretation I is finite andm is computable, then the existence of a τ -homomorphism
can be decided. We present two algorithms that (under the previous conditions) can be
used to decide the relations characterized by Theorems 3.8 and 3.9. Our starting point
is the polynomial time algorithm (Algorithm 1 below) introduced in [BKM99] to decide
the existence of a homomorphism between two EL description trees.

Algorithm 1 Homomorphisms between EL description trees.
Input: Two EL description trees T1 and T2.
Output: “yes”, if there exists a homomorphism from T1 to T2; “no”, otherwise.

1: Let T1 = (V1, E1, v0, `1) and T2 = (V2, E2, w0, `2). Further, let {v1, . . . , vn} be a
post-order sequence of V1, i.e., v1 is a leaf and vn = v0.

2: Define a labeling δ : V2 → 2V1 as follows.
3: Initialize δ by δ(w) := ∅ for all w ∈ V2.
4: for all 1 ≤ i ≤ n do
5: for all w ∈ V2 do
6: if (`1(vi) ⊆ `2(w) and for all virv ∈ E1 there is w′ ∈ V2 such that
7: v ∈ δ(w′) and wrw′ ∈ E2) then
8: δ(w) := δ(w) ∪ {vi}
9: end if

10: end for
11: end for
12: If v0 ∈ δ(w0) then return “yes”, else return “no”.

Theorem 3.8 characterizes elementhood in τEL(m) concept descriptions via the exis-
tence of a τ -homomorphism from a τEL(m) description tree T

Ĉ
to an EL description

graph GI associated to an interpretation I. If I is finite, then Algorithm 1 can be used
to decide whether there exists a mapping satisfying Condition 1 in Definition 3.7. One
needs only to replace the last line by v0 ∈ δ(d) for some d ∈ ∆I , since now T2 becomes
GI . In order to verify the second condition in Definition 3.7, we modify the test in line 6
to also consider whether mI(d,E) ∼ t for all E∼t ∈ ̂̀T

Ĉ
(vi). Algorithm 2 implements

this modification.
Then, if one wants to know whether a precise element e ∈ ∆I belongs to (Ĉ)I ,

Algorithm 2 shall be invoked on T
Ĉ

and I. Note that a simple modification in line 12,
namely testing whether v0 ∈ δ(e), adapts the algorithm to answer the question for e.
Now, the main difference between Algorithms 1 and 2 is that the latter might need to

compute mI to verify whether mI(d,E) ∼ q. Therefore, its computational complexity
may depend on how difficult is to compute mI for a chosen m. In particular, if mI can
be computed in polynomial time as for the graded membership function deg introduced
in the next section, Algorithm 2 will run in polynomial time.
Regarding the characterization given in Theorem 3.9 for the satisfaction relation be-

tween interpretations and ABoxes, note that the description graph Ĝ(A) associated to
an ABox A is not necessarily a tree. Therefore, finding a τ -homomorphism φ from
Ĝ(A) to GI includes finding a homomorphism between two graphs, which in general
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Algorithm 2 τ -homomorphism from a τEL(m) description tree to GI .

Input: A τEL(m) description tree T̂ and a finite interpretation I.
Output: “yes”, if there exists a τ -homomorphism from T̂ to GI ; “no”, otherwise.

1: Let T̂ = (VT , ET , v0, ̂̀T ) and GI = (VI , EI , `I). Further, let {v1, . . . , vn} be a post-
order sequence of VT , i.e., v1 is a leaf and vn = v0.

2: Define a labeling δ : VI → 2VT as follows.
3: Initialize δ by δ(w) := ∅ for all w ∈ VI .
4: for all 1 ≤ i ≤ n do
5: for all d ∈ ∆I do
6: if (`T (vi) ⊆ `I(d) and [E∼t ∈ ̂̀T (vi)⇒ mI(d,E) ∼ t] and
7: [virv ∈ ET ⇒ ∃d′ ∈ ∆I : v ∈ δ(d′)] and drd′ ∈ EI) then
8: δ(d) := δ(d) ∪ {vi}
9: end if

10: end for
11: end for
12: If there exists d ∈ ∆I such that v0 ∈ δ(d) then return “yes”, else return “no”.

is an NP-complete problem [GJ79]. However, by Definition 3.5 it can be seen that
Ĝ(A) has a particular form where cycles only involve nodes and edges corresponding
to the individual elements and role assertions, respectively, occurring in A. Moreover,
since Theorem 3.9 requires φ(a) = aI for all a ∈ Ind(A), this means that the wanted
τ -homomorphism is partially fixed with respect to those elements. Hence, it suffices to
check whether the interpretation of the individual names satisfies the role assertions in
A and aI ∈ (Ĉa)

I (see Definition 3.5), for all a ∈ Ind(A). The following algorithm uses
Algorithm 2 to decide whether a finite interpretation I satisfies an ABox A.

Algorithm 3 τ -homomorphisms for ABoxes and interpretations.
Input: An ABox A and a finite interpretation I.
Output: “yes”, if there exists a τ -homomorphism φ from Ĝ(A) to GI with φ(a) = aI

for all a ∈ Ind(A); “no”, otherwise.

1: Let Ĝ(A) be as in Definition 3.5.
2: for all r(a, b) ∈ A do
3: if (aI , bI) /∈ rI then
4: return “no”
5: end if
6: end for
7: for all a ∈ Ind(A) do
8: if aI /∈ (Ĉa)

I then // this can be checked using Algorithm 2
9: return “no”

10: end if
11: end for
12: return “yes”
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Chapter 4

The membership function deg

To make things more concrete, we now introduce a specific membership function, denoted
deg . Given an interpretation I, an element d ∈ ∆I , and an EL concept description C,
this function is supposed to measure to which degree d satisfies the conditions for mem-
bership expressed by C. To come up with such a measure, we use the homomorphism
characterization of membership in EL concepts as starting point (see Theorem 2.7). Ba-
sically, we consider all partial mappings from TC to GI that map the root of TC to d
and respect the edge structure of TC . For each of these mappings we then calculate to
which degree it satisfies the homomorphism conditions, and take the degree of the best
such mapping as the membership degree degI(d,C).

Example 4.1. Figure 4.1 shows the EL description tree corresponding to the EL con-
cept description C := AuBu∃s.(B1u∃r.B3u∃r.B2) and a fragment of an interpretation
graph GI . In addition, it depicts two mappings from VTC to VI . The one represented
by the dashed lines and a variation represented with the dotted lines. One can see that
none of them is a homomorphism from TC to GI in the sense of Definition 2.5. In fact,
since obviously d 6∈ CI , by Theorem 2.7 there exists no such homomorphism.

To compute the membership value induced by an specific mapping, we count the
number of properties of v0 (say m), see how many of those does d in I actually have (say
n) and give n

m as the membership degree value. In our example v0 has three properties,
e.g., A, B and the existence of an s-successor (represented by v1) with certain properties.
Interesting to see is that for both mappings, the selected s-successor of d does not satisfy
all the properties of v1. Should we just assume that d does not have this last property
and give 1

3 as the membership degree value? Instead of that, we would like to compute
a value that expresses to which degree the s-successor of d (to which v1 is mapped to),
satisfies the conditions for membership expressed by the subtree of TC rooted at v1. This
will be done using the very same idea recursively. ♦

As mentioned before, we consider partial mappings rather than total ones since one
of the violations of properties demanded by C could be that a required role successor
does not exist at all.

Example 4.2. Consider the description tree TC and the interpretation I depicted in
Figure 4.2. Obviously, there exists no total mapping from TC to GI since neither d1 nor
d2 have a successor. Thus, restricting to consider only total mappings would give zero as
the membership degree value of d in C. This is not desired, since just like concept names
may be missing and the membership value does not become zero, also role successors
(required by C) may be missing and the membership degree need not be zero. ♦

19
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TC :
v0 : {A,B}

v1 : {B1}

v3 : {B3}

r

v2 : {B2}

r

s

GI :
d : {A}

d2 : {B1}

d4 : {B3}

r

d5 : {}

r

s

d1 : {B1}

d3 : {}

r

s

Figure 4.1: Mappings from TC to GI .

TC : v0 : {A}

v1 : {B1}

v3 : {B3}

r3

r1

v2 : {B2}

r2

GI : d : {A}

d1 : {B1}

r1

d2 : {B2}

r2

Figure 4.2: An example where no total mapping exists from TC to GI .

4.1 The membership function deg

To formalize the previously exposed ideas, we first define the notion of partial tree-to-
graph homomorphisms from description trees to description graphs. In this definition,
the node labels are ignored (they will be considered in the next step).

Definition 4.3 (Partial tree-to-graph homomorphisms). Let T = (Vt, Et, `t, v0)
and G = (Vg, Eg, `g) be a description tree (with root v0) and a description graph, re-
spectively. A partial mapping h : Vt → Vg is a partial tree-to-graph homomorphism
(ptgh) from T to G iff the following conditions are satisfied:

1. dom(h) is a subtree of T with root v0, i.e., v0 ∈ dom(h) and if (v, r, w) ∈ Et and
w ∈ dom(h), then v ∈ dom(h);

2. for all edges (v, r, w) ∈ Et, w ∈ dom(h) implies (h(v), r, h(w)) ∈ Eg.

To abbreviate, from now on we will write ptgh(ptghs for the plural) instead of partial
tree-to-graph homomorphism. ♦

In order to measure how far away from a homomorphism (in the sense of Definition 2.5)
such a ptgh is, we define the notion of a weighted homomorphism between a finite EL
description tree and an EL description graph.
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Definition 4.4. Let T be a finite EL description tree, G an EL description graph and
h : VT → VG a ptgh from T to G. We define the weighted homomorphism induced by h
from T to G as a recursive function hw : dom(h)→ [0..1] in the following way:

hw(v) :=


1 if |`T (v)|+ k∗(v) = 0

|`T (v) ∩ `G(h(v))|+
∑

1≤i≤k
hw(vi)

|`T (v)|+ k∗(v) otherwise.

The elements used to define hw have the following meaning. For a given v ∈ dom(h),
k∗(v) denotes the number of successors of v in T , and v1, . . . , vk with 0 ≤ k ≤ k∗(v) are
the children of v in T such that vi ∈ dom(h). ♦

It is easy to see that hw is well-defined. In fact, T is a finite tree, which ensures
that the recursive definition of hw is well-founded. In addition, the base case of the
definition guarantees that division by zero is avoided. Using value 1 in this case is
justified since then no property is required. In the second case, missing concept names
and missing successors decrease the weight of a node since then the required name or
successor contributes to the denominator, but not to the numerator. Required successors
that are there are only counted if they are successors for the correct role, and then they
do not contribute with value 1 to the numerator, but only with their weight (i.e., the
degree to which they match the requirements for this successor).
When defining the value of the membership function degI(d,C), we do not use the

concept C directly, but rather its reduced from Cr. This will ensure that deg satisfies
property M2.

Definition 4.5. Let I = (∆I , .I) be an interpretation, d an element of ∆I and C an
EL concept description with reduced form Cr. In addition, let H(TCr , GI , d) be the set
of all ptghs from TCr to GI with h(v0) = d. The set VI(d,Cr) of all relevant values is
defined as:

VI(d,Cr) := {q | hw(v0) = q and h ∈ H(TCr , GI , d}

Then we define degI(d,C) := maxVI(d,Cr). ♦

In case the interpretation I is infinite, there may exist infinitely many ptghs from TCr

to GI with h(v0) = d. Therefore, it is not immediately clear whether the maximum
in the above definition actually exists, and thus whether degI(d,C) is well-defined. To
prove that the maximum exists also for infinite interpretations, we show that the set
VI(d,Cr) is actually a finite set. To this end, we introduce canonical interpretations
induced by ptghs.

Definition 4.6 (Canonical interpretation). Let I = (∆I , .I) be an interpretation,
C an EL concept description and h be a ptgh from TCr to GI . The canonical interpre-
tation Ih induced by h is the one having the description tree TIh = (VIh , EIh , v0, `Ih)
with

VIh := dom(h),

EIh := {vrw ∈ ETCr | v, w ∈ dom(h)}
`Ih(v) := `TCr (v) ∩ `I(h(v)) for all v ∈ dom(h).
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Remark 4.7. One can see that TIh satisfies VIh ⊆ VTCr , EIh ⊆ ETCr , `Ih(v) ⊆ `TCr (v)
and `Ih(v) ⊆ `I(h(v)) for all v ∈ dom(h). Moreover, the construction of Ih verifies that
the mapping h is a homomorphism from TIh to GI . ♦

Lemma 4.8. Let I = (∆I , .I) be an interpretation, d ∈ ∆I and C an EL concept
description. The set VI(d,Cr) contains finitely many elements.

Proof. Let IH be the set of all canonical interpretations induced by all h ∈ H(TCr , GI , d),
i.e.,

IH := {Ih | h ∈ H(TCr , GI , d)}

From Remark 4.7, we have that VIh ⊆ VTCr , EIh ⊆ ETCr and `Ih(v) ⊆ `TCr (v) for
all v ∈ dom(h). This implies that the description graph TIh induced by Ih is a subtree
of TCr . Hence, the set IH must be finite, i.e., there are only finitely many different
canonical interpretations induced by ptghs h ∈ H(TCr , GI , d).

Now, consider any h ∈ H(TCr , GI , d) and let iIh : dom(h) → VIh be a mapping such
that iIh(v) = v for all v ∈ dom(h). Note that iIh is well-defined by definition of Ih, and
it is easy to see that it is a ptgh from TCr to TIh . Furthermore, let VIH be the set:

VIH := {q | iIhw (v0) = q for all h ∈ H(TCr , GI , d)}

Since dom(h) ⊆ VTCr , there are finitely many sets that could act as the source for a
mapping iIh . Moreover, IH is a finite set of finite interpretations. Hence, there can only
be finitely many different mappings iIh . Consequently, the set VIH must be finite. In
addition, one can see that the following three properties hold:

• dom(iIh) = dom(h),

• `Ih(iIh(v)) = `TCr (v) ∩ `I(h(v)) for all v ∈ dom(h), and

• for all v, w ∈ dom(h): if vrw ∈ ETCr , then h(v)rh(w) ∈ EI and iIh(v)riIh(w) ∈
EIh .

Therefore, from Definition 4.4 it follows that hw(v0) = iIhw (v0). This means that for
all h ∈ H(TCr , GI , d) it is the case that hw(v0) ∈ VIH . Hence, VI(d,Cr) ⊆ VIH and
VI(d,Cr) is a finite set.

Thus, maxVI(d,Cr) exists and degI(d,C) is well-defined.

If the interpretation I is finite, degI(d,C) can be computed in polynomial time for all
d ∈ ∆I and all EL concept descriptions C. The polynomial time algorithm described
below (Algorithm 4) is inspired by the polynomial time algorithm for checking the exis-
tence of a homomorphism between EL description trees [BKM98, BKM99], and similar
to the algorithm for computing the similarity degree between EL concept descriptions
introduced in [Sun13].
Algorithm 4 considers each pair (v, e) with v ∈ VTCr and e ∈ ∆I only once. Therefore,

it is easy to see that it runs in polynomial time in the size of C and I. The following
lemma shows that Algorithm 4 computes the value of degI , i.e., S(v0, d) = degI(d,Cr)
(see Appendix A).
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Algorithm 4 Computation of degI .

Input: An EL concept description C, a finite interpretation I and d ∈ ∆I .
Output: degI(d,C).

1: Let Cr be the reduced form of C, GI = (VI , EI , `I) and {v1, . . . , vn} be a post-order
sequence of VTCr where vn = v0.

2: The assignment S : VTCr × VI → [0..1] is computed as follows:
3: for all 1 ≤ i ≤ n do
4: if |`TCr (vi)|+ k∗(vi) = 0 then
5: S(vi, e) := 1 for all e ∈ ∆I

6: else
7: for all e ∈ ∆I do
8: c := |`TCr (vi) ∩ `I(e)|
9: for all virv ∈ ETCr do

10: c := c+ max{S(v, e′) | (e, e′) ∈ rI}
11: end for
12: S(vi, e) := c

|`TCr (vi)|+k∗(vi)
13: end for
14: end if
15: end for
16: return S(v0, d)

Lemma 4.9. Let C be an EL concept description, I a finite interpretation and d ∈ ∆I .
Then, Algorithm 4 terminates on input (C, I, d) and outputs degI(d,C), i.e., S(v0, d) =
degI(d,Cr).

Finally, it remains to show that deg satisfies the properties required for graded member-
ship functions.

Proposition 4.10. The function deg satisfies the properties M1 and M2.

Proof. We first show that M1 is satisfied by deg . Assume that d ∈ CI . Since C is
equivalent to its reduced form, we also have d ∈ (Cr)I . The application of Theorem 2.7
yields that there exists a homomorphism ϕ from TCr to GI with ϕ(v0) = d. Then it is
easy to verify from Definition 4.4 that ϕw(v0) = 1 and consequently, maxVI(d,Cr) = 1.
Thus, degI(d,C) = 1. Conversely, assume that degI(C, d) = 1. This means that there
exists a ptgh h from TCr to GI with h(v0) = d and hw(v0) = 1. Similar as before, it is
easy to see that h is a homomorphism according to Definition 2.5. The application of
Theorem 2.7 yields d ∈ (Cr)I and consequently, d ∈ CI .

Concerning M2, as mentioned in Chapter 3 the right to left implication is already a
consequence of M1, which we just proved to be satisfied by deg . Assume that C ≡ D,
then by Theorem 2.8 there exists an isomorphism ψ between TCr and TDr . Consider
an arbitrary interpretation I and any element d ∈ ∆I . We show that degI(d,Cr) =
degI(d,Dr), which obviously implies degI(d,C) = degI(d,D) (see Definition 4.5).

Let h be a ptgh from TCr to GI with h(v0) = d and hw(v0) = maxVI(d,Cr). Since ψ
is an isomorphism, the composition h ◦ψ is a ptgh from TDr to GI , with (h ◦ψ)(v0) = d
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and (h ◦ ψ)w(v0) = hw(v0). This means that degI(d,Cr) ≤ degI(d,Dr). The same
reasoning can be applied starting with TDr to obtain degI(d,Dr) ≤ degI(d,Cr). Thus,
we have shown that degI(d,Cr) = degI(d,Dr).

Note that M2 follows from the fact that we use the reduced form of a concept descrip-
tion rather than the description itself. Otherwise, M2 would not hold. For example,
consider the concept description C := ∃r.A u ∃r.(A u B), which is equivalent to its
reduced form Cr = ∃r.(A u B). Let d be an individual that has a single r-successor
belonging to A, but not to B. Then using C instead of Cr would yield membership
degree 3

4 , whereas the use of Cr yields the degree 1
2 .

4.2 Two useful properties of deg

The following lemma shows that deg satisfies a monotonicity property with respect to
two interpretations I and J which are related by a homomorphism.

Lemma 4.11. Let I and J be two interpretations such that there exists a homomor-
phism ϕ from GI to GJ . Then, for any individual d ∈ ∆I and any EL concept descrip-
tion C it holds: degI(d,C) ≤ degJ (ϕ(d), C).

Proof. Let Cr be the reduced form of C and h be any ptgh from TCr toGI with h(v0) = d.
Since ϕ is a homomorphism from GI to GJ , the mapping ϕ ◦ h is a ptgh from TCr to
GJ with (ϕ ◦ h)(v0) = ϕ(d).

Then, we have that for each v ∈ dom(h) the homomorphism ϕ makes `I(h(v)) ⊆
`J ((ϕ ◦ h)(v)). In addition, for each r-successor w ∈ dom(h) of v in TCr , we have that
h(w) is an r-successor of h(v) in GI . Therefore, (ϕ ◦ h)(w) is also an r-successor of
(ϕ ◦ h)(v) in GJ . Hence, it follows from Definition 4.4 that hw(v0) ≤ (ϕ ◦ h)w(v0) for
all ptghs h from TCr to GI with h(v0) = d.

Thus, we can conclude that degI(d,C) ≤ degJ (ϕ(d), C).

Now, using this monotonicity property and elements from the proof of Lemma 4.8, we
can show that the value degI(d,C) is preserved by the canonical interpretation corre-
sponding to a ptgh h such that hw(v0) = degI(d,C).

Lemma 4.12. Let I = (∆I , .I) be an interpretation, d be an individual of ∆I and C
an EL concept description. Let h be a ptgh from TCr to GI such that h(v0) = d and
hw(v0) = degI(d,C). In addition, let Ih be the canonical interpretation induced by h.
Then, degIh(v0, C) = degI(d,C).

Proof. Assume that degI(d,C) = q. From Definition 4.5 we have:

degI(d,C) = maxVI(d,Cr) = hw(v0) = q

In the proof of Lemma 4.8 we saw that iIh is a ptgh from TCr to TIh with iIh(v0) =
v0 and hw(v0) = iIhw (v0). Hence, degIh(v0, C) ≥ q. Remark 4.7 tells us that h is a
homomorphism from TIh to GI with h(v0) = d. Then, the application of Lemma 4.11
yields:

degIh(v0, C) ≤ degI(d,C)

Thus, degIh(v0, C) = q = degI(d,C).
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4.3 Relation to the Description Logic ALC

We now investigate the relation between our threshold logic τEL(deg) and the DL ALC
[SS91]. On the one side, we show that full negation of EL concept descriptions cannot
be expressed in τEL(deg), and consequently there are ALC concept descriptions that
cannot be expressed in τEL(deg). On the other side, we will see that every τEL(deg)
concept description has its corresponding equivalent concept in ALC, but the provided
translation involves an exponential blow up.
Let us start by briefly introducing the DL ALC. The set of ALC concept descriptions

is the smallest set such that:

• > is an ALC concept description,

• if A ∈ NC, then A is an ALC concept description,

• if C,D are ALC concept descriptions and r ∈ NR, then ¬C, C uD and ∃r.C are
ALC concept descriptions.

The semantics of the negation constructor under an interpretation I is given as:

(¬C)I := {d ∈ ∆I | d 6∈ CI}

As usual, ∀r.C is an abbreviation for ¬∃r.¬C and C tD for ¬(¬C u ¬D).
Before going on to the main details of this section, we need to define the notion of a

concept part of an EL concept description.

Definition 4.13 (concept part). Let C be an EL concept description. The set of
concept parts Part(C) of C is the smallest set such that:

• {>, C} ⊆ Part(C).

• if ∃r.D ∈ Part(C), then ∃r.D′ ∈ Part(C) where D′ ∈ Part(D).

• if C1 u C2 ∈ Part(C), then C ′1 u C ′2 ∈ Part(C) where C ′1 ∈ Part(C1) and C ′2 ∈
Part(C2). ♦

4.3.1 Full negation is not expressible in τEL(deg)

In Chapter 3 we mentioned that although τEL(m) can express negation of EL concept
descriptions, negation cannot be nested using the constructors of τEL(m). We prove
that full negation cannot be expressed in τEL(deg), by showing that τEL(deg) cannot
express the simple ALC concept description ∀r.A.
The semantics of ∀r.C can be expressed as follows:

(∀r.C)I := {d ∈ ∆I | ∀e ∈ ∆I .
[
(d, e) ∈ rI ⇒ e ∈ CI

]
}

Lemma 4.14. In τEL(deg), there is no concept description Ĉ such that ∀r.A ≡ Ĉ,
where A ∈ NC.
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Proof. Suppose that there exists a τEL(deg) concept description Ĉ such that ∀r.A ≡ Ĉ.
Then, for all interpretations I we have (∀r.A)I = ĈI . Consider the interpretation
I0 = ({d}, .I0) such that XI0 = ∅ for all X ∈ NC ∪ NR. Obviously, d ∈ (∀r.A)I0 and by
our initial assumption it also holds d ∈ ĈI0 .

By Theorem 3.8 there exists a τ -homomorphism φ from T
Ĉ

to GI0 with φ(v0) = d.
Since d has no r-successors in ∆I0 nor it is an instance of any concept name, this means
that Ĉ must be of the following form:

(E1)∼t1 u . . . u (Eq)∼tq

where each Ei is an EL concept description. Let us now consider the interpretations I1

and I2 which have the description graphs shown below.

I0 : d : {} I1 : d1 : {}

d3 : {}

I2 : d2 : {}

d4 : {A}

r r

In addition to d ∈ (∀r.A)I0 , it is also the case that d2 ∈ (∀r.A)I2 . Hence, since
Ĉ ≡ ∀r.A, we also have d2 ∈ ĈI2 . This means that d ∈ [(Ei)∼ti ]

I0 and d2 ∈ [(Ei)∼ti ]
I2

for all 1 ≤ i ≤ q. Further, it is easy to see that Lemma 4.11 can be applied to obtain for
all 1 ≤ i ≤ q:

degI0(d,Ei) ≤ degI1(d1, E
i) ≤ degI2(d2, E

i)

Therefore, it is immediate to see that d1 ∈ [(Ei)∼ti ]
I1 for all conjuncts (Ei)∼ti of Ĉ,

and consequently d1 ∈ ĈI1 . Our initial assumption ∀r.A ≡ Ĉ implies that d1 ∈ (∀r.A)I1 ,
but this is a contradiction since d1 has an r-successor d3 and d3 6∈ AI1 . Thus, there is
no τEL(deg) concept description Ĉ such that Ĉ ≡ ∀r.A.

Lemma 4.14 implies that full negation of EL concept descriptions cannot be ex-
pressed in τEL(deg). Otherwise, since ∀r.A ≡ ¬∃r.¬A, there would be a τEL(deg)
concept description D̂ such that D̂ ≡ ¬∃r.¬A contradicting the lemma. Moreover, since
∃r.¬A ≡ ∃r.A<1, this implies that neither negation of τEL(deg) concept descriptions
can be expressed.

4.3.2 Expressing τEL(deg) concept descriptions in ALC

Since EL is a fragment of ALC, the concept constructors we need to look at are the
ones corresponding to threshold concepts E∼t. In particular, a direct consequence of the
semantics corresponding to such constructors are the equivalences:

E<t ≡ ¬E≥t and E≤t ≡ ¬E>t

The four possibilities are gathered in the following proposition.
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Proposition 4.15. Let E∼t be a threshold concept. The negated concept ¬E∼t is equiv-
alent to the threshold concept Eχ(∼)t, where χ is the following mapping:

χ(<) :=≥ χ(≤) :=> χ(>) :=≤ χ(≥) :=<

Thus, since ALC allows full negation of concept descriptions, we can restrict our
attention to threshold concepts of the form E∼t with ∼ ∈ {>,≥}. For all τEL(deg)
concept descriptions Ĉ, its corresponding ALC concept description [Ĉ]∗ is recursively
defined as follows:

[>]∗ := >
[A]∗ := A, if A ∈ NC

[E∼t]
∗ := ¬[Eχ(∼)t]

∗, if ∼ ∈ {<,≤}

[Ĉ u D̂]∗ := [Ĉ]∗ u [D̂]∗

[∃r.Ĉ]∗ := ∃r.[Ĉ]∗

It remains to define the transformation [E∼t]
∗ for E∼t, when ∼ ∈ {>,≥}. We show

that such threshold concepts E∼t can be equivalently expressed in ALC as a disjunction
of EL concept descriptions E1 t . . . t Eq, such that Ei (1 ≤ i ≤ q) is a concept part of
Er.
Let I be an interpretation and d ∈ ∆I such that d ∈ (E∼t)

I . We make two observa-
tions about ptghs h and their induced interpretations Ih.

1. Let h be ptgh in H(TEr , GI , d) and Ih its induced canonical interpretation. Since
TIh is a tree, we can speak of its associated EL concept description CIh . Further-
more, from Remark 4.7 we know that h is a homomorphism from TIh to GI . Thus,
since h(v0) = d, we can apply Theorem 2.7 to obtain d ∈ (CIh)I .

2. It is clear from the construction of Ih in Definition 4.6 that CIh is a concept part
of Er.

In view of Lemma 4.12 and the fact that ∼ ∈ {>,≥}, the first observation tells us
that: d ∈ (E∼t)

I iff d ∈ CI for some EL concept description C, whose associated EL
description tree TC corresponds to an interpretation IC such that degIC (v0, E) ∼ t. In
addition, the second observation implies that it is sufficient to consider concept parts of
Er. We now formally define the set of such relevant concepts.

Definition 4.16. Let E∼t be a threshold concept with ∼ ∈ {>,≥}. For all X ∈
Part(Er), we assign to X the value v(X) ∈ [0..1] computed as:

v(X) := degIX (v0, E)

Then, the subset R(E∼t) of relevant concepts in Part(Er) is defined as follows:

R(E∼t) := {X | X ∈ Part(Er) and v(X) ∼ t} ♦

The following lemma shows that membership in E∼t is equivalent to membership in
at least one concept description from R(E∼t).
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Lemma 4.17. Let I be an interpretation, d ∈ ∆I and E∼t a threshold concept with
∼ ∈ {>,≥}. The following statements are equivalent.

1. d ∈ (E∼t)
I .

2. There exists X ∈ R(E∼t) such that d ∈ XI .

Proof. 1) → 2). Assume that d ∈ (E∼t)
I . Then, there exists a ptgh h in H(TEr , GI , d)

such that:
h(v0) = d and hw(v0) = degI(d,E) ∼ t

By Lemma 4.12, the canonical interpretation Ih satisfies

degIh(v0, E) = degI(d,E) ∼ t

As observed above, we have that d ∈ (CIh)I and CIh is a concept part of Er. Hence,
since v(CIh) = degIh(v0, E) ∼ t, this means that CIh ∈ R(E∼t).

2) → 1). Assume that there exists X ∈ R(E∼t) such that d ∈ XI . By definition
of R(E∼t) we know that degIX (v0, E) ∼ t. Moreover, since d ∈ XI , there exists a
homomorphism ϕ from TIX to GI with ϕ(v0) = d (Theorem 2.7). Hence, the application
of Lemma 4.11 to IX and I yields degIX (v0, E) ≤ degI(d,E).

Thus, degI(d,E) ∼ t and d ∈ (E∼t)
I .

The previous lemma tells us how to build an equivalent ALC concept description
[E∼t]

∗ for E∼t. The existential quantification in the second statement is expressed using
disjunction, and since R(E∼t) is a finite set, we translate E∼t into the following ALC
concept description:

[E∼t]
∗ :=

⊔
X∈R(E∼t)

X

One can still reduce the size of [E∼t]
∗. Let (R(E∼t),v) be the partially ordered set

defined by v on R(E∼t). Using Lemma 4.11 and the characterization of subsumption
in EL (Theorem 2.6), it is easy to prove that for all pairs of concepts X,Y ∈ R(E∼t)

X v Y ⇒ v(X) ≥ v(Y )

This means that it is enough to consider the concept descriptions in R(E∼t) that are
maximal (or the most general ones) with respect to v. Let Rmax(E∼t) be the set of
maximal concepts in R(E∼t) with respect to v. We redefine [E∼t]

∗ as:

[E∼t]
∗ :=

⊔
X∈Rmax(E∼t)

X

Lemma 4.18. Let E∼t be a τEL(deg) threshold concept with ∼ ∈ {>,≥}. Then,

E∼t ≡ [E∼t]
∗
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Proof. Let I be an interpretation and d ∈ ∆I . Assume that d ∈ (E∼t)
I . The application

of Lemma 4.17 yields that there exists X ∈ R(E∼t) such that d ∈ XI . Obviously, there
exists Y ∈ Rmax(E∼t) such that X v Y . Consequently, d ∈ Y I and d ∈ ([E∼t]

∗)I .
Therefore, (E∼t)

I ⊆ ([E∼t]
∗)I .

Conversely, suppose that d ∈ ([E∼t]
∗)I . This means that there is X ∈ Rmax(E∼t)

such that d ∈ XI . Hence, since Rmax(E∼t) ⊆ R(E∼t), the application of Lemma 4.17
yields d ∈ (E∼t)

I .
Thus, we have shown that E∼t ≡ [E∼t]

∗.

Lemma 4.18 completes the translation [.]∗ presented above. Then, one can easily show
by induction on the structure of Ĉ that Ĉ ≡ [Ĉ]∗ for all τEL(deg) concept descriptions
Ĉ. Thus, we have shown that τEL(deg) is a fragment of the DL ALC. However, as we
will see in the following, this translation may produce a concept [Ĉ]∗ of size exponential
in the size of Ĉ.
Let Cn (n ≥ 1) be the EL concept description Crn u Csn, where Cxn (x ∈ {r, s}) is

inductively defined as follows:

Cxn :=

{
∃x.A if n = 1

∃x.(A u Cxn−1) if n > 1

The size of Cn is linear in n, i.e., s(Cn) = O(n). Our translation into ALC of the
threshold concept (Cn)≥ 1

2
yields an ALC concept description [(Cn)≥ 1

2
]∗ of size exponen-

tial in n. Let us explain this in the following example for n = 3.

Example 4.19. The EL description tree depicted on the right-hand side of Figure 4.3
corresponds to the concept description C3. Now, the left-hand side of the same figure
contains the representation of four EL description trees. In particular, we can say the
following about T 4

4
:

• its associated concept description D 4
4
is a concept part of C3, and

• deg
I 4

4 (v0, C3) = 1
2 , where I 4

4
denotes the interpretation with description graph T 4

4

and v0 its root. Consequently, there exists h ∈ H(TC3 , T 4
4
, v0) such that hw(w0) =

1/2.

Therefore, D 4
4
∈ R((C3)≥ 1

2
). Furthermore, the r-branch in TC3 is fully present for v0

in T 4
4
, whereas the s-branch is completely missing. This means that they contribute to

the top-level of the computation of hw(w0) with the values vr=1 and vs=0, respectively.
Hence, D 4

4
must be maximal in R((C3)≥ 1

2
) with respect to v, for otherwise any concept

X ∈ R((C3)≥ 1
2
) satisfying D 4

4
v X and X 6v D 4

4
is such that vr < 1 and vs = 0. This

would imply that degIX (v0, (C3)≥ 1
2
) < 1

2 which contradicts X ∈ R((C3)≥ 1
2
). Thus,

D 4
4
∈ Rmax((C3)≥ 1

2
) and it is one of the disjuncts in [(C3)≥ 1

2
]∗.

The same conclusion can be drawn for the other three description trees. Basically, the
values of the pair (vr, vs) for T 3

4
, T 2

4
and T 1

4
will be (3/4, 1/4), (2/4, 2/4) and (1/4, 3/4),

respectively. Then, finding a more general concept X for D i
4
(1 ≤ i ≤ 3) would mean
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TC3 : w0 : {}
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Figure 4.3: Exponentially many concepts in Rmax((C3)≥ 1
2
).

that one of vr, vs decreases while the other one remains the same. Overall, this means
that D 1

4
tD 2

4
tD 3

4
tD 4

4
is a fragment of [(C3)≥ 1

2
]∗.

Thus, generalizing this idea for all n we obtain that s([(Cn)≥ 1
2
]∗) ≥ 2n−1. ♦

In conclusion, the DL τEL(deg) is a fragment of ALC, but so far we do not know
whether it is more succinct than ALC.
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Reasoning in τEL(deg)

We now study the complexity of reasoning in the DL τEL(deg). We start with investi-
gating the complexity of terminological reasoning (satisfiability, subsumption), and then
turn to assertional reasoning (consistency, instance checking).
Using a very simple reduction from a variant of the propositional satisfiability problem,

we show that satisfiability and non-subsumption in τEL(deg) are NP-hard. To provide an
NP upper bound for satisfiability, we establish a polynomial bounded model property for
satisfiable τEL(deg) concept descriptions. A key ingredient to obtain this property is the
characterization of membership in τEL(deg) concept descriptions settled in Theorem 3.8.
Afterwards, starting with a polynomial size model of a concept Ĉ, we show how to extend
it into a model of a concept Ĉ u¬D̂ that is still polynomial in the size of Ĉ and D̂. This
will gives us membership in NP for the non-subsumption problem, and thus a matching
coNP upper bound for subsumption in τEL(deg).
Regarding assertional reasoning, the consistency problem can be tackled in a similar

way as the satisfiability problem, by using Theorem 3.9 as a characterization of the sat-
isfaction relation for τEL(deg) ABoxes. Then, similar to our treatment of subsumption,
the bounded model of an ABox can be used to obtain a bounded model property for the
non-instance problem. Therefore, we obtain that ABox consistency is NP-complete and
the instance problem is coNP-complete (w.r.t. data complexity).

5.1 Terminological reasoning

We start by recalling the first two decision problems we will look at:

• concept satisfiability : Let Ĉ be a τEL(deg) concept description Ĉ. The concept Ĉ
is satisfiable iff there exists an interpretation I such that ĈI 6= ∅.

• subsumption: Let Ĉ and D̂ be two τEL(deg) concept descriptions. Ĉ is subsumed
by D̂ iff ĈI ⊆ D̂I for every interpretation I.

The size s(Ĉ) of a τEL(deg) concept description Ĉ is the number of occurrences of
symbols needed to write Ĉ.
In contrast to EL, where every concept description is satisfiable, we have seen in Chap-

ter 3 that there are unsatisfiable τEL(deg) concept descriptions such as A≥1uA<1. Thus,
the satisfiability problem is non-trivial in τEL(deg). In fact, by a simple reduction from
the well-known NP-complete problem ALL-POS ONE-IN-THREE 3SAT (see [GJ79],
page 259) we can show that testing τEL(deg) concept descriptions for satisfiability is
actually NP-hard.

31
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Definition 5.1 (ALL-POS ONE-IN-THREE 3SAT). Let U be a set of proposi-
tional variables and C be a finite set of propositional clauses over U such that:

• each clause in C is a set of three literals over U , and

• no c ∈ C contains a negated literal.

ALL-POS ONE-IN-THREE 3SAT is the problem of deciding whether there exists a
truth assignment to the variables in U , such that each clause in C has exactly one true
literal. ♦

Let C = {c1, . . . , cn} be a set of clauses over U . We now show how to build a τEL(deg)
concept description ĈC such that U has a truth assignment where exactly one literal per
clause in C is true iff ĈC is satisfiable. Each propositional variable u ∈ U is identified with
the concept name Au. In addition, to each clause ci = {ui1, ui2, ui3} in C we associate
an EL concept description Di of the form Aui1 u Aui2 u Aui3 . Then the concept ĈC is
defined as follows:

ĈC :=

nl

i=1

[(Di)≤ 1
3
u (Di)≥ 1

3
]

The main idea underlying this reduction is that for any three distinct concept names
Ai, Aj , Ak, an individual belongs to (Ai u Aj u Ak)≤ 1

3
u (Ai u Aj u Ak)≥ 1

3
iff it belongs

to exactly one of these three concepts.

Lemma 5.2. ĈC is satisfiable iff there exists a truth assignment to the variables in U
such that each clause in C has exactly one true literal.

Proof. (⇒) Assume that ĈC is satisfiable. Then, there exists an interpretation I such
that (ĈC)

I 6= ∅, i.e., d ∈ (ĈC)
I for some d ∈ ∆I . We construct an assignment t for U in

the following way:
t(u) = true iff d ∈ (Au)I , for all u ∈ U (5.1)

Now, let ci = {ui1, ui2, ui3} be any clause in C. Since d ∈ (ĈC)
I , this means that

d ∈ [(Di)≤ 1
3
]I and d ∈ [(Di)≥ 1

3
]I . Therefore, degI(d,Di) = 1

3 and by definition of

degI , d is an instance of exactly one of the concept names Aui1 , Aui2 , Aui3 . Thus, by
construction of t in (5.1), exactly one literal in ci is assigned to true.

(⇐) We assume that there exists a truth assignment t to the variables in U such
that exactly one literal is true for each clause in C. Then, we build a single-pointed
interpretation I = ({d}, .I) in the following way:

d ∈ (Au)I iff t(u) = true, for all u ∈ U

The properties satisfied by t (with respect to C) imply that d is an instance of exactly one
concept name in the definition of Di. Hence, for all 1 ≤ i ≤ n we have degI(d,Di) = 1

3 .
Thus, d ∈ (ĈC)

I and I satisfies ĈC .

This also yields coNP-hardness for subsumption in τEL(deg) since unsatisfiability can
be reduced to subsumption: Ĉ is unsatisfiable iff Ĉ v A≥1 uA<1.

Lemma 5.3. In τEL(deg), satisfiability is NP-hard and subsumption is coNP-hard.
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To show an NP upper bound for satisfiability, we use the τ -homomorphism character-
ization of membership for τEL(m) concept descriptions introduced in Chapter 3. Using
Theorem 3.8 we prove a bounded model property for τEL(deg) concept descriptions.

Lemma 5.4. Let Ĉ be a τEL(deg) concept description of size s(Ĉ). If Ĉ is satisfiable,
then there exists an interpretation J such that ĈJ 6= ∅ and |∆J | ≤ s(Ĉ).

Proof. Since Ĉ is satisfiable, there exists an interpretation I such that d ∈ ĈI for some
d ∈ ∆I . Therefore, there exists a τ -homomorphism φ from T

Ĉ
to GI with φ(v0) = d

(Theorem 3.8). The idea is to use φ and small fragments of I to build J and a τ -
homomorphism from T

Ĉ
to GJ , and then apply Theorem 3.8 to Ĉ and J .

The interpretation J is built in two steps. We first use as base interpretation I0 the
one associated to the description tree T

Ĉ
, where we ignore the labels of the form E∼t (i.e.

the description tree TC , see Figure 3.1). It is easy to see that the identity mapping φid
is a homomorphism from T

Ĉ
to GI0 . However, this interpretation and homomorphism

need not satisfy Condition 2 of Definition 3.7. There may exist v ∈ ∆I0 such that
E∼t ∈ ̂̀T

Ĉ
(v), but v 6∈ (E∼t)

I0 . To repair this we extend I0 to J by adding appropriate
fragments of I.

More precisely, for such a node v in I0 we know that φ(v) ∈ (E∼t)
I , and consequently

degI(φ(v), E) ∼ t. By Lemma 4.12 we do not need all of I to obtain degI(φ(v), E) for
v in J . It is sufficient to use the canonical interpretation Ih induced by a ptgh h from
TEr to GI such that:

• h(w0) = φ(v), and

• degI(φ(v), E) = hw(w0).

Here, w0 is the root of TEr . We rename it as v (the corresponding problematic node in
I0) for the rest of the proof. We denote Ih as IEv and the ptgh h which induces Ih as hEv .
Now, let I be the family of all interpretations IEv needed to repair the inconsistencies in
I0, i.e.,

I := {IEv | v ∈ ∆I0 , E∼t ∈ ̂̀T
Ĉ

(v) and v 6∈ (E∼t)
I0}

For all pairs IE1
v , IE2

w ∈ I we assume ∆I
E1
v and ∆I

E2
w to be pairwise disjoint in the

following sense: if v 6= w they have no element in common, otherwise only v is shared.
In addition, for all IEv ∈ I the sets ∆I

E
v share only the distinguished element v with

∆I0 . Once these disjointness assumptions have been established, J is constructed as
follows:

• ∆J := ∆I0 ∪
⋃
K∈I

∆K,

• XJ := XI0 ∪
⋃
K∈I

XK for all X ∈ (NC ∪ NR).

We now prove that Condition 2 of Definition 3.7 is satisfied by φid and J . For all
v ∈ VT

Ĉ
and E∼t ∈ ̂̀T

Ĉ
(v), we distinguish two cases:

• ∼ ∈ {>,≥}. Suppose that v ∈ (E∼t)
I0 . Since I0 ⊆ J , this makes Lemma 4.11

to be applicable to I0,J and v1. Hence, we have degI0(v,E) ≤ degJ (v,E) and
1The identity mapping from ∆I0 to ∆J is a homomorphism from GI0 to GJ (recall the definition of
I ⊆ J in Chapter 2).
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obviously v ∈ (E∼t)
J . Conversely, assume that v 6∈ (E∼t)

I0 . The selection of IEv
to build J and the application of Lemma 4.12 yields:

degI
E
v (v,E) = degI(φ(v), E)

This means that v ∈ (E∼t)
IEv , since φ(v) ∈ (E∼t)

I . Moreover, from the construc-
tion of J it follows that IEv ⊆ J . Then, a second application of Lemma 4.11 to
IEv , J and v yields v ∈ (E∼t)

J .

• ∼∈ {<,≤}. Since φ(v) ∈ (E∼t)
I , we intend to use again Lemma 4.11 with respect

to J and I. For this, we build a mapping ϕ from VJ to VI such that ϕ(w) = φ(w)
for all w ∈ ∆I0 , and show that it is a homomorphism from GJ to GI .

ϕ := φ ∪
⋃
IEw∈I

hEw

Recall from Remark 4.7 that hEw is a homomorphism from TIEw to GI . Conse-
quently, ϕ is defined for all d ∈ ∆J and since φ and each hEw have VI as their
images, ϕ is certainly a mapping from VJ to VI . In addition, by the disjoint-
ness assumptions made to build ∆J and the fact that hEw is chosen such that
hEv (w) = φ(w), we further have that ϕ is unambiguous and ϕ(w) = φ(w) for all
w ∈ ∆I0 .

Let us now see why ϕ is really a homomorphism in the sense of Definition 2.5:

– For all d ∈ ∆J , we either have d ∈ ∆I0 and

`J (d) = `I0(d) ∪
⋃
IEw∈I

`IEw (d) (w = d)

or d ∈ ∆I
E
w for some IEw ∈ I and `J (d) = `IEw (d), where w 6= d. Since

φ is a homomorphism from T
Ĉ

to GI , this means that `I0(d) ⊆ `I(φ(d)).
Since each hEw is also a homomorphism from TIEw to GI , this means that
`IEw (d) ⊆ `I(h

E
w(d)). Hence, by the way ϕ has been defined we can conclude

that `J (d) ⊆ `I(ϕ(d)) for all d ∈ ∆J .

– d1rd2 ∈ EJ . If d1, d2 ∈ ∆I0 , then φ implies that ϕ(d1)rϕ(d2) ∈ EI . Other-
wise, d1, d2 ∈ ∆I

E
w for some IEw ∈ I. Then, the corresponding homomorphism

hEw guarantees that ϕ(d1)rϕ(d2) ∈ EI .
Consequently, ϕ is a homomorphism from GJ to GI . Since ϕ(w) = φ(w) for all
w ∈ ∆I0 and v ∈ ∆I0 , the rest relies in applying Lemma 4.11 with respect to J ,
I and v to obtain v ∈ (E∼t)

J .

Thus, we have shown that φid is τ -homomorphism from T
Ĉ
to GJ . Since φid (v0) = v0,

the application of Theorem 3.8 yields v0 ∈ ĈJ .
To conclude, we look at the size of J . By construction of J we have:

|∆J | = |∆I0 |+
∑
K∈I
|∆K|
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It is not hard to see that the size of I0 is bounded by the size of Ĉ (without counting
the threshold concepts). In addition, any occurrence of a threshold concept E∼t in Ĉ is
considered at most once to build J . Moreover, each canonical interpretation IEv ∈ I is
selected with respect to Er and its size is bounded by the size of Er (see Definition 4.6).
Since Er is obviously not bigger than E, this implies |∆IEv | ≤ s(E∼t). Thus, it is clear
that |∆J | ≤ s(Ĉ).

This lemma yields a standard guess-and-check NP-algorithm to decide satisfiability
of a concept Ĉ. The algorithm first guesses an interpretation J of size at most s(Ĉ),
and then checks whether there exists a τ -homomorphism from T

Ĉ
to GJ . To verify the

existence of a τ -homomorphism it uses Algorithm 2 in Section 3.2. Since deg can be
computed in polynomial time (Chapter 4), Algorithm 2 runs in polynomial time with
respect to deg .

Remark 5.5. We would like to point out that the construction presented in the previous
lemma yields a tree-shaped interpretation J , i.e., GJ is a tree. The base interpretation
I0 is tree-shaped since its description graph has the structure of T

Ĉ
, and so are the

canonical interpretations used to extend I0 into J . This combined with the applied
disjointness assumptions guarantee that the resulting graph GJ is a tree. Additionally,
the element v0 ∈ ∆J corresponding to the root of GJ satisfies v0 ∈ ĈJ . ♦

A coNP upper bound for subsumption cannot directly be obtained from the fact that
satisfiability is in NP. In fact, though we have Ĉ v D̂ iff Ĉ u ¬D̂ is unsatisfiable, this
equivalence cannot be used directly since ¬D̂ need not be a τEL(deg) concept description
as shown in Section 4.3.1. Nevertheless, we can extend the ideas used in the proof of
Lemma 5.4 to obtain a bounded model property for satisfiability of concepts of the form
Ĉ u ¬D̂.

Lemma 5.6. Let Ĉ and D̂ be τEL(deg) concept descriptions of respective sizes s(Ĉ)
and s(D̂). If Ĉ u ¬D̂ is satisfiable, then there exists an interpretation J such that
ĈJ \ D̂J 6= ∅ and |∆J | ≤ s(Ĉ)× s(D̂).

Proof. Assume that Ĉ u ¬D̂ is satisfiable. Then, there exists an interpretation I such
that d ∈ ĈI and d 6∈ D̂I for some d ∈ ∆I . We first apply the construction used in
Lemma 5.4 to build (with respect to I) an interpretation J0 such that ĈJ0 6= ∅ and
|∆J0 | ≤ s(Ĉ). From Lemma 5.4 we know:

• GJ0 is a tree and v0 ∈ ĈJ0 .

• φ is a τ -homomorphism from T
Ĉ
to GI with φ(v0) = d.

• φid is a τ -homomorphism from T
Ĉ
to GJ0 .

• ϕ is a homomorphism from GJ0 to GI with ϕ(w) = φ(w) for all w ∈ ∆I0 .

Since ϕ(v0) 6∈ D̂I , the idea is to use ϕ to extract from I the necessary information
to extend J0 into an interpretation J that falsifies D̂ in v0, while keeping v0 ∈ ĈJ . In
order to do this, we consider all the nodes in ∆J0 in a top-down manner starting with
the root v0.
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We construct a series of pairs (J0, S0)(J1, S1) . . ., where each Ji is an interpretation
and Si is a set of pairs of the form (v, F̂ ) being v ∈ ∆J0 and F̂ a τEL(deg) concept
description. The initial pair (J0, S0) is set as (J0, {(v0, D̂)}). The sequence is built such
that ϕ(v) 6∈ F̂ I represents an invariant for all pairs (v, F̂ ) ∈ Si. This will then be used
to show that v 6∈ F̂J , and hence v0 6∈ D̂J .

Each pair (Ji, Si) (i > 0) is computed from the pair (Ji−1, Si−1) as follows:

• First, an auxiliary set S∗i is computed with the purpose to decompose concepts F̂
of the form F̂1u . . .u F̂n. More precisely, for all (v, F̂ ) ∈ Si−1 exactly one conjunct
F̂ ′ = F̂j (1 ≤ j ≤ n) is selected such that ϕ(v) 6∈ (F̂j)

I . The set S∗i is defined as
follows:

S∗i := Si−1 ∪
⋃

(v,F̂ )∈Si−1

{(v, F̂ ′)}

• Then, Si is obtained from S∗i as:

Si := {(u, F̂ ) | (v,∃r.F̂ ) ∈ S∗i , (v, u) ∈ rJ0 and u ∈ F̂J0}

• Regarding Ji, for all (v,E∼t) ∈ S∗i such that v ∈ (E∼t)
J0 we select a canonical

interpretation IEv (as for the proof of Lemma 5.4) with hEv (w0) = ϕ(v). Now, let
Ii be the following set:

Ii := {IEv | (v,E∼t) ∈ S∗i and v ∈ (E∼t)
J0}

Using the same disjointness assumptions as in Lemma 5.4, Ji is built as follows:
– ∆Ji := ∆Ji−1 ∪

⋃
K∈Ii

∆K,

– XJi := XJi−1 ∪
⋃
K∈Ii

XK for all X ∈ (NC ∪ NR).

As we will see later, whenever (v, F̂1 u . . . u F̂n) ∈ Si−1 for some i > 0, there always
exists 1 ≤ j ≤ n such that ϕ(v) 6∈ (F̂j)

I . Moreover, the tree shape of J0 makes this
construction to consider every node in ∆J0 at most once in the following sense. On
the one hand, a node v does not occur in more than one set Si (i ≥ 0). Therefore, at
some point the iteration terminates for some p where Sp = ∅. On the other hand, if
(v, F̂ ) ∈ Si, there is no other pair (v,_) occurring in Si. This further implies that at
most one canonical interpretation is added for each v ∈ ∆J0 . Moreover, observe that
for all (v, F̂ ) ∈ S∗i the concept description F̂ is a sub-description of D̂. In particular, for
(v,E∼t) ∈ S∗i it follows that |∆IEv | ≤ s(D̂). Then, since |∆J0 | ≤ s(Ĉ), once the iteration
finishes we will have |∆Jp | ≤ s(Ĉ)× s(D̂).

The next step is to show that v0 ∈ ĈJp and v0 6∈ D̂Jp . Consider the mapping ϕ∗ from
VJp to VI :

ϕ∗ := ϕ ∪
p⋃
i=1

⋃
IEv ∈Ii

hEv

One can show that ϕ∗ is a homomorphism from GJp to GI with ϕ∗(w) = φ(w) for
all w ∈ ∆I0 . The proof uses the same arguments showing that ϕ is a homomorphism



5.1 Terminological reasoning 37

from GJ to GI in Lemma 5.4. Then, φid remains a τ -homomorphism from T
Ĉ
to GJp .

Similar as in Lemma 5.4, one can use Lemma 4.11 to prove that v ∈ (E∼t)
Jp for all

E∼t ∈ ̂̀T
Ĉ

(v). If ∼ ∈ {>,≥}, it follows from the fact that J0 ⊆ Jp and v ∈ (E∼t)
J0 .

Otherwise, the argument relies on the homomorphism ϕ∗ from GJp to I, ϕ∗(v) = φ(v)

and φ(v) ∈ (E∼t)
I . We thus have v0 ∈ ĈJp .

Before going into the main details of why v0 6∈ D̂Jp , we clarify why the invariant
mentioned before is satisfied along the construction of Jp:

(v, F̂ ) ∈ Si ⇒ ϕ(v) 6∈ F̂ I (5.2)

The initial pair (v0, D̂) satisfies it, since ϕ(v0) = d and d 6∈ D̂I . By definition, all
the pairs in S∗1 clearly satisfy the property. Now, let (v,∃r.F̂ ) ∈ S∗1 . Starting with
ϕ(v) 6∈ (∃r.F̂ )I , for any r-successor u of v the homomorphism makes (ϕ(v), ϕ(u)) ∈ rI .
Therefore, ϕ(u) 6∈ F̂ I and (u, F̂ ) satisfies the property as well. Consequently, S1 satisfies
(5.2). Applying the same reasoning inductively shows that (5.2) remains invariant for all
Si. Note that this additionally implies that F̂ ′ can always be selected when constructing
S∗i .

To finally prove that v0 6∈ D̂Jp , we show the following more general claim.

Claim: for all 0 < i ≤ p, if (v, F̂ ) ∈ S∗i then v 6∈ F̂Jp

The proof goes by induction on the structure of F̂ . Let (v, F̂ ) ∈ S∗i for some 0 < i ≤ p:

• F̂ is of the form > or A ∈ NC. The case F̂ = > never occurs, since ϕ(v) 6∈ F̂ I .
Otherwise, if F̂ = A this means that ϕ(v) 6∈ AI . Since ϕ∗ is a homomorphism
from GJp to GI with ϕ∗(v) = ϕ(v) for all v ∈ ∆J0 , it must be that v 6∈ AJp .

• F̂ is of the form E∼t. By (5.2) we have ϕ(v) 6∈ (E∼t)
I . Moreover, we know

that J0 ⊆ Jp and ϕ∗ is a homomorphism from GJp to GI with ϕ∗(v) = ϕ(v) for
all v ∈ ∆J0 . Hence, when v 6∈ (E∼t)

J0 , Lemma 4.11 ensures that v 6∈ (E∼t)
Jp .

Otherwise, v ∈ (E∼t)
J0 and the construction of Jp adds an interpretation IEv such

that degI
E
v (v,E) = degI(ϕ(v), E). Since IEv ⊆ Jp, again we obtain v 6∈ (E∼t)

Jp .

• F̂ = F̂1u . . .u F̂n. By construction of S∗i there is F̂j (1 ≤ j ≤ n), such that ϕ(v) 6∈
(F̂j)

I and (v, F̂j) ∈ S∗i . The application of induction to F̂j yields v 6∈ (F̂j)
Jp .

Hence, v 6∈ F̂Jp .

• F̂ is of the form ∃r.F̂ ′. Since each node is considered only once while building Jp,
one can see that each direct r-successor of v in GJp is a node in ∆J0 . Let u ∈ ∆J0

such that (v, u) ∈ rJ0 . We distinguish two cases:

– u ∈ (F̂ ′)J0 . This means that (u, F̂ ′) ∈ Si and consequently (u, F̂ ′) ∈ S∗i+1.
Then, the application of induction hypothesis yields u 6∈ (F̂ ′)Jp .

– u 6∈ (F̂ ′)J0 . This means that u is not relevant to obtain Si from S∗i , and
since GJ0 is a tree neither of its successors is considered in the construction
of Jp. Therefore, the elements reachable from u in Jp are exactly the same
as in J0. Suppose now that u ∈ (F̂ ′)Jp , then by Theorem 3.8 there exists a
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τ -homomorphism φ′ from T
F̂
to GJp with φ′(w0) = u (w0 is the root of T

F̂
).

But then, it would also be a τ -homomorphism from T
F̂
to GJ0 contradicting

u 6∈ (F̂ ′)J0 . Consequently u 6∈ (F̂ ′)Jp .

In conclusion, we have that for any u ∈ ∆Jp such that (v, u) ∈ rJp it is the case
that u 6∈ (F̂ ′)Jp . Hence, v 6∈ (∃r.F̂ ′)Jp .

Then, (v0, D̂) ∈ S∗1 implies v0 6∈ D̂Jp . All in all, we have (Ĉ u ¬D̂)Jp 6= ∅ and |∆|Jp ≤
s(Ĉ)× s(D̂). Thus, Jp is the interpretation J satisfying our main claim.

The lemma yields an obvious guess-and-check NP-algorithm for non-subsumption,
which shows that subsumption is in coNP. Like for the satisfiability problem, the algo-
rithm guesses an interpretation J of size s(Ĉ) × s(D̂), and then checks if d ∈ ĈJ and
d 6∈ D̂J for some element d ∈ ∆J . This can obviously be done, in polynomial time, by
using Algorithm 2.
Overall, we thus have shown:

Theorem 5.7. In τEL(deg), satisfiability is NP-complete and subsumption is coNP-
complete.

5.2 Assertional reasoning

Let us now look at reasoning in the presence of τEL(deg) ABoxes. We study the following
two decision problems.

• ABox consistency: Let A be a τEL(deg) ABox. The ABox A is consistent iff there
exists an interpretation I which is a model of A (denoted I |= A).

• instance checking: Let A be τEL(deg) ABox, Ĉ a τEL(deg) concept description
and a an individual. The individual a is an instance of Ĉ in A (denoted A |= Ĉ(a))
iff aI ∈ ĈI holds in all models of A.

We define the size s(A) of an ABox A as:

s(A) :=
∑

Ĉ(a)∈A
a∈Ind(A)

s(Ĉ) +
∑

r(a,b)∈A
a,b∈Ind(A)

1

Since satisfiability can obviously be reduced to consistency (Ĉ is satisfiable iff {Ĉ(a)}
is consistent), and subsumption to the instance problem (Ĉ v D̂ iff {Ĉ(a)} |= D̂(a)),
the lower bounds from Lemma 5.3 also hold for assertional reasoning.

Lemma 5.8. In τEL(deg), ABox consistency is NP-hard and instance checking is coNP-
hard.

Regarding upper bounds, we proceed in the same way as for concept satisfiability and
subsumption. We first show a bounded model property for consistent ABoxes, which
yields an NP upper bound for ABox consistency. Then, similar to our treatment of
subsumption, this bounded model can be used to obtain a bounded model property for
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the complement of the instance problem (a is not an instance of Ĉ in A). However,
as we will show, the bound of the model has the size of Ĉ in the exponent. For this
reason, we obtain a coNP upper bound for the instance problem only if we consider data
complexity [DLNS94], where the size of the query concept Ĉ is assumed to be constant.
The consistency problem can be tackled in a similar way as the satisfiability problem.

As we have shown in Section 3.1, based on the translation given in [KM02], τEL(m)
ABoxes can be translated into τEL(m) description graphs and consistency can be char-
acterized using τ -homomorphisms (see Theorem 3.9). We use this characterization to
prove the following bounded model property.

Lemma 5.9. Let A be an ABox in τEL(deg) of size s(A). If A is consistent, then there
exists an interpretation J such that J |= A and |∆J | ≤ s(A).

Proof. Assume that A is consistent, then there exists an interpretation I such that
I |= A. Therefore, there exists a τ -homomorphism φ from Ĝ(A) to GI such that
φ(a) = aI for all a ∈ Ind(A) (Theorem 3.9).

We proceed in the same way as in Lemma 5.4. The base interpretation I0 is the one
having the description graph Ĝ(A), where we ignore the labels of the form E∼t. Again,
the identity mapping φid is a homomorphism from Ĝ(A) to GI0 , but need not satisfy
Condition 2 of Definition 3.7. The interpretation I0 has the following shape:

A

GI0 : a1

a2

an

. . .T (a2)

T (a1)

T (an)

Here, {a1, a2, . . . , an} = Ind(A) and T (a1), T (a2), . . . , T (an) are the τEL(m) descrip-
tion trees corresponding to Ĉa1 , Ĉa2 , . . . , Ĉan , respectively (see Definition 3.5). The inner
area of the diagram consists of the role assertions in A, i.e.,

(a, b) ∈ EA iff r(a, b) ∈ A

We extend I0 into J using the same construction of Lemma 5.4, i.e., a canonical
interpretation IEv is attached to I0 for all v ∈ VA such that E∼t ∈ ̂̀A+(v) and v 6∈
(E∼t)

I0 . Note that besides the structure required by the role assertions in A, the rest
of GI0 consists of disjoint description trees whose roots are individual elements of A.
Therefore, for two different individuals a, b ∈ Ind(A), reparations needed in T (a) and
T (b) can be done independently of each other. Then, one can show that there is also
a homomorphism ϕ from GJ to GI with ϕ(w) = φ(w) for all w ∈ ∆I0 . Once we have
this homomorphism, the same arguments used in Lemma 5.4 will show that φid is a
τ -homomorphism from Ĝ(A) to GJ . Finally, by setting aJ = a we obtain φid (a) = aJ

for all a ∈ Ind(A). Thus, the application of Theorem 3.9 yields J |= A.
Now, similarly as for Ĉ in Lemma 5.4, the size of I0 is bounded by the size of A

without counting the threshold concepts. Moreover, threshold concepts occurring in
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concept assertions of A are also used at most once to build J . Thus, it easily follows
that |∆J | ≤ s(A).

Using this lemma we can design an NP-algorithm to decide the consistency problem.
The algorithm guesses an interpretation J of size at most s(A). Afterwards, it checks
using Algorithm 3 in polynomial time, whether there exists a τ -homomorphism φ from
Ĝ(A) to GJ with φ(a) = aJ for all a ∈ Ind(A).
We now turn into the instance checking problem. The model J of A obtained in the

previous lemma can be used as starting point to obtain a bounded model property for
non-instance, i.e., a is not an instance of Ĉ with respect toA iffA∪{¬Ĉ(a)} is consistent.
However, different from the interpretation J0 used in the construction of Lemma 5.6,
the bounded model for an ABox obtained in Lemma 5.9 does not necessarily have a tree
shape. As a consequence, using the procedure described in Lemma 5.6 to construct a
model J of Ĉ u ¬D̂ would require to consider nodes from ∆J0 more than one time.

Example 5.10. Let E be the EL concept description ∃r.Au∃r.B. Consider the follow-
ing ABox A and τEL(deg) concept description Ĉ:

A := {r(a, a)} and Ĉ := ∃r . . .∃r︸ ︷︷ ︸
p

.E<1

It is easy to see that a is not an instance of Ĉ with respect to A. The following
single-pointed interpretation K (with aK = d) is a model of A not satisfying Ĉ(a).

GK :

d

r

{A,B}

This means that A∪{¬Ĉ(a)} is consistent. Let us now try to adapt the construction
in Lemma 5.6 to A and ¬Ĉ(a). It starts by choosing J0 as the bounded model of A
given by Lemma 5.9. Such a model has a similar shape as K, but with AJ0 = BJ0 = ∅.
The iteration is then guided by an interpretation I such that I |= A and aI 6∈ Ĉ, and
generates the following sequence of sets:

S0 = {(a, Ĉ)}
. . .

Si = {(a,∃r . . .∃r︸ ︷︷ ︸
p−i

.E<1)} (1 ≤ i < p)

. . .

Sp = {(a,E<1)}
Sp+1 = ∅

One can see that the iteration still terminates. The difference now is that not being
GJ0 a tree, the element a is considered several times. In particular, since Sp = {(a,E<1)}
and a ∈ (E<1)J0 , this means that J0 will be extended by adding a canonical interpreta-
tion which has the same description tree as E:
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GJp :

a

r

{A} {B}
r r

Since ϕ(a) 6∈ (E<1)I , this will ensure that a 6∈ (E<1)Jp . Unfortunately this is not suf-
ficient to achieve a 6∈ ĈJp . The set Sp−1 contains the pair (a,∃r.E<1), which intuitively
asks for a to satisfy a 6∈ (∃r.E<1)Jp . Clearly, the addition of the two r-successors of a
implies that this is not the case. To repair this new problem, the natural extension of
the procedure is to reconsider Sp−1 with respect to the newly added elements. Such a
repetition would then yield the following interpretation:

GJp :

a

r

{A} {B}
r r

{A}

{B}

{A}

{B}

r

r

r

r

Note that after fixing the problem for Sp−1, the same issue will arise with respect to
(a,∃r∃r.E<1) ∈ Sp−2 and so on. Therefore, whenever a node v requires the addition of a
canonical interpretation and has additional constraints (as just explained), the same idea
needs to be recursively applied with respect to its new successors and those constraints.

Finally, one can see that this recursive application of the procedure leads to a model
of size exponential in the size of Ĉ. This, however, does not necessarily imply that this
is the best bound we can hope for. In fact, as illustrated above, K is a very small model
satisfying A ∪ {¬Ĉ(a)}. It is just that the procedure does not realize that a can be an
instance of A and B in J0 without contradicting J0 |= A. We do not yet know whether
there is a better bound which applies to all possible combinations of A and Ĉ. ♦

Based on the intuition given in Example 5.10, we extend the construction from Lemma 5.6
to ABoxes of the form A∪{¬Ĉ(a)}. We introduce a set of rules to transform A∪{¬Ĉ(a)}
into an ABox A′, which contains additional assertions that (when consistent with A)
are sufficient to falsify Ĉ(a) in a model of A. These rules are similar to some of the
pre-processing rules defined in [BH91, Hol96], with the addition of specific rules to deal
with the negation of threshold concepts. For the rest of this section we will use ABoxes
that may also contain assertions of the form ¬Ĉ(a). In case we want to refer to an ABox
strictly in τEL(deg) we will mention it explicitly.

Definition 5.11 (pre-processing rules). Let A be an ABox. We define the following
pre-processing rules:

• A →¬u A ∪ {¬D̂(a)}
if ¬Ĉ(a) ∈ A where Ĉ is of the form Ĉ1 u . . .u Ĉn, ¬Ĉi(a) 6∈ A for all i ∈ {1 . . . n}
and D̂ = Ĉi for some i ∈ {1 . . . n}.

• A →¬∃ A ∪ {¬D̂(b)}
if (¬∃r.D̂)(a) ∈ A, r(a, b) ∈ A and ¬D̂(b) 6∈ A.

• A →¬∼ A ∪ {Eχ(∼)t(a)}
if ¬E∼t(a) ∈ A and Eχ(∼)t(a) 6∈ A.
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• A →¬A A ∪ {A<1(a)}
if A ∈ NC, ¬A(a) ∈ A and A<1(a) 6∈ A. ♦

A pre-processing of A is an ABox A′ obtained by a sequence of rule applications such
that no further rule application is possible over A′. Note that if A is a τEL(deg) ABox,
the unique pre-processing of A is A itself. The rules →¬∼ and →¬A are supported by
the equivalences ¬E∼t ≡ Eχ(∼)t and ¬A ≡ A<1 (see Proposition 4.15 and Chapter 3).
The rule →¬u has a non-deterministic flavor. It can be seen as the counterpart of the
guided choice made in Lemma 5.6 to obtain a set S∗i . Regarding →¬∃, it has a similar
aim as the construction of Si from S∗i in Lemma 5.6.
One can see that a rule application introduces neither a new individual nor a new

role assertion. Therefore, A and A′ have the same set of individuals and role assertions.
Furthermore, only new assertions of the form ¬Ĉ(a), Eχ(∼)t(a) or A<1(a) results from
a rule application. In the first case Ĉ is a sub-description of some concept D̂ such that
¬D̂(b) is an assertion initially in A, whereas no rule is applicable to the other two cases.
Hence, since A is finite, there can never be an infinite sequence of rule applications.
Now, we can prove the following proposition (see Appendix A).

Proposition 5.12. Let A be an ABox. Then, A is consistent iff there exists a consistent
pre-processing A′ of A.

The following remark is a direct consequence from the proof of the previous proposi-
tion.

Remark 5.13. Let A be an ABox and I an interpretation. If I |= A, then there exists
a pre-processing A′ of A such that I |= A′. ♦

Before moving on to the last results of the section, it would be useful to introduce
some notation. An ABox containing only one individual name and no role assertions is
called a single-element ABox. Additionally, given an ABox A, the ABox A(a) consists
of all the concept assertions D̂(a) or ¬D̂(a) occurring in A. Furthermore, A+ is defined
as:

A+ :=
⋃

D̂(a)∈A
a∈Ind(A)

{D̂(a)} ∪
⋃

r(a,b)∈A
a,b∈Ind(A)

{r(a, b)}

and A− is defined as:
A− :=

⋃
¬D̂(a)∈A
a∈Ind(A)

{¬D̂(a)}

We are now ready to show a bounded model property for consistency of ABoxes of the
form A∪{¬Ĉ(a)}. The proof consists of three lemmas. Given a consistent ABox A and
an arbitrary model I of it, one can select a pre-processing A′ of A such that I |= A′. In
particular, we focus on the ABoxes A′(a) for all a ∈ Ind(A). Even when such ABoxes
may contain assertions over negated concepts, they are nevertheless simpler than A, in
the sense that only contain one individual name and no role assertions. Our first step is
to show how to provide a model of bounded size for this particular type of ABox. The
following lemma offers such a construction (its proof is deferred to the Appendix A).
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Lemma 5.14. Let A be a consistent single-element ABox and I an interpretation such
that I |= A. In addition, let J be the bounded model of A+ obtained in Lemma 5.9 with
respect to I. Then, there exists a tree-shaped interpretation K such that:

1. K |= A,

2. there exists a homomorphism ϕ from GK to GI with ϕ(aK) = aI , and

3. |∆K| ≤ |∆J | × p, where:

p :=

1, if A− = ∅∏
¬D̂(a)∈A−

s(D̂), otherwise.

Once the previous lemma is applied to all the ABoxes A′(a), the second step is to
combine all those models into a model of A of bounded size. More precisely, we show
that the disjoint union of all those models together with the role assertions in A yield
the wanted model. This is formalized in the following lemma (see Appendix A for its
proof).

Lemma 5.15. Let A be an ABox, I an interpretation satisfying A and A′ a pre-
processing of A such that I |= A′. Moreover, for all a ∈ Ind(A), let Ia be a tree-shaped
interpretation satisfying the following:

• Ia |= A′(a),

• there exists a homomorphism ϕa from GIa to GI with ϕa(aIa) = aI .

Last, let J be the following interpretation:

• ∆J :=
⋃

a∈Ind(A)

∆Ia,

• AJ :=
⋃

a∈Ind(A)

AIa for all A ∈ NC,

• rJ := {(aIa , bIb) | r(a, b) ∈ A} ∪
⋃

a∈Ind(A)

rIa for all r ∈ NR, and

• aJ := aIa, for all a ∈ Ind(A).

where the sets ∆Ia are pairwise disjoint. Then, J |= A.

Using these two lemmas we can now established the final result. Recall that sub(Ĉ)
denotes the set of sub-descriptions of a concept description Ĉ.

Lemma 5.16. Let A be an ABox in τEL(deg) of size s(A), Ĉ a τEL(deg) concept
description of size s(Ĉ) and a ∈ NI. If A ∪ {¬Ĉ(a)} is consistent, then there exists an
interpretation J such that:

1. J |= A ∪ {¬Ĉ(a)},
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2. J is the result of the construction in Lemma 5.15,

3. for all a ∈ Ind(A):

|∆Ia | ≤ s(A(a))× [s(Ĉ)]u, where u = |sub(Ĉ)|

Proof. Let I be an interpretation satisfying A∪ {¬Ĉ(a)}. By Remark 5.13 there exists
a pre-processing A′ of A ∪ {¬Ĉ(a)} such that I |= A′. We apply Lemma 5.14 to A′(a)
for all a ∈ Ind(A), and obtain a tree-shaped interpretation Ia such that:

• Ia |= A′(a),

• there exists a homomorphism ϕa from GIa to GI with ϕa(aIa) = aI .

Then, we can apply Lemma 5.15 to obtain an interpretation J such that:

J |= A and ∆J =
⋃

a∈Ind(A)

∆Ia

We now look at the size of Ia. For all a ∈ Ind(A), let Ja denote the bounded model of
A′+(a) obtained in Lemma 5.9 with respect to I. The construction of Ia in Lemma 5.14
yields:

|∆Ia | ≤ |∆Ja | ×
∏

¬D̂(a)∈A′−(a)

s(D̂) (5.3)

One can see that each assertion in A′+(a) is either of the form D̂(a) ∈ A(a) or Eχ(∼)t.
The latter case results from applications of the rules →¬∼ and →¬A. For the rule →¬A,
A<1 corresponds to Aχ(≥)1. In Lemma 5.9, the interpretation Ja is built starting with
the interpretation I0 which have the description graph Ĝ(A′+(a)) = (VA′+(a), . . .) (with-
out threshold concepts), and it is then extended by considering the threshold concepts
occurring in Ĝ(A′+(a)). We know the following about them:

• for all threshold concepts E∼t occurring inA
′+(a), either E∼t occurs in an assertion

of A(a) or it has been introduced by an application of →¬∼ or →¬A (i.e., it is of
the form Eχ(∼)t(a)),

• except for assertions of the form Eχ(∼)t(a),

D̂(a) ∈ A′+(a) iff D̂(a) ∈ A(a)

Thus, |VA(a)| = |VA′+(a)| and by construction of Ja we obtain:

|∆Ja | ≤ |VA(a)|+
∑

E∼t ∈ Ĝ(A(a))

s(E∼t) +
∑

Eχ(∼)t(a) 6∈ Ĝ(A(a))

s(Eχ(∼)t)

Note that the partial sum of the first two elements in the right-hand side of the inequality
is actually bounded by the size of A(a). In addition, since s(Eχ(∼)t) > 1 we further have:
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|∆Ja | ≤ s(A(a))×
∏

Eχ(∼)t(a) 6∈ Ĝ(A(a))

s(Eχ(∼)t) (5.4)

It is not hard to see that for all ¬D̂(a) ∈ A′−(a) and Eχ(∼)t(a) 6∈ Ĝ(A(a)), the concepts
D̂ and E∼t (or A for →¬A) are sub-descriptions of Ĉ. Hence, the combinations of
inequalities (5.3) and (5.4) yields:

|∆Ia | ≤ s(A(a))× [s(Ĉ)]u

Based on the previous results, we devise the following non-deterministic procedure to
decide consistency of an ABox of the form A ∪ {¬Ĉ(a)}.

1. For all a ∈ Ind(A), guess an interpretation Ia of size at most:

s(A(a))× [s(Ĉ)]u

2. Construct J using all the interpretations Ia and A, as described in Lemma 5.15.

3. Check whether J |= A. This can be done in polynomial time (in the size of J and
A) by using Algorithm 3. If it is not the case, then the algorithm answers “no”.
Otherwise, it remains to verify whether aJ 6∈ ĈJ .

4. To verify aJ 6∈ ĈJ , by Theorem 3.8 it is enough to check that there is no τ -
homomorphism φ from T

Ĉ
to GJ with φ(v0) = aJ . This can also be checked

in polynomial time by Algorithm 2. If there is no such τ -homomorphism the
algorithm answers “yes”, and “no”otherwise.

If the size of Ĉ is considered as a constant, this algorithm becomes an NP-procedure
for consistency of A ∪ {¬Ĉ(a)}, and consequently a coNP-procedure to decide instance
checking with respect to data complexity. Altogether, we thus have shown:

Theorem 5.17. In τEL(deg), consistency is NP-complete, and instance checking is
coNP-complete w.r.t. data complexity.

The instance problem becomes simpler if we consider only EL ABoxes and positive
τEL(deg) concept descriptions, i.e., concept descriptions Ĉ that only contain threshold
concepts of the form E≥t or E>t. Basically, given an EL ABox A, a positive τEL(deg)

concept description Ĉ, and an individual a, one considers the interpretation I cor-
responding to the description graph G(A) of A, and then checks whether there is a
τ -homomorphism φ from T

Ĉ
to GI with φ(v0) = a. The following lemma supports the

previous idea.

Lemma 5.18. Let A be an EL ABox, a ∈ Ind(A) and Ĉ a positive τEL(deg) concept
description. Additionally, let IA be the interpretation corresponding to the description
graph G(A) with aIA = a for all a ∈ Ind(A). Then, the following statements are equiv-
alent:
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1. A |= Ĉ(a), and

2. a ∈ ĈIA .

Proof. 1)→ 2). Assume that A |= Ĉ(a). Then, for every model I of A we have aI ∈ ĈI .
Since IA is obviously a model of A and aIA = a, this means that a ∈ ĈIA .

2) → 1). Assume that a ∈ ĈIA . The characterization for membership in τEL(deg)
given in Theorem 3.8, yields a τ -homomorphism φ from T

Ĉ
to G(A) with φ(v0) = a.

Now, consider any model I of A. The application of Theorem 3.9 yields the existence
of a τ -homomorphism ϕ from G(A) to GI such that ϕ(a) = aI for all a ∈ Ind(A). We
then show that the mapping ϕ ◦ φ is a τ -homomorphism from T

Ĉ
to GI :

• From φ we know that `T
Ĉ

(v) ⊆ `A(φ(v)) for all v ∈ VT
Ĉ
. Similarly, ϕ implies that

`A(a) ⊆ `I(ϕ(a)) for all a ∈ VA. Hence, `T
Ĉ

(v) ⊆ `I((ϕ ◦ φ)(v)) for all v ∈ VT
Ĉ
.

The edge preserving relation can be verified in a similar way.

• Let v ∈ VT
Ĉ

and E∼t ∈ ̂̀T
Ĉ

(v). Since φ is a τ -homomorphism, this means that
φ(v) ∈ (E∼t)

IA . Furthermore, the application of Lemma 4.11 to IA, J and ϕ
yields:

degIA(φ(v), E) ≤ degI(ϕ(φ(v)), E)

Since Ĉ is positive, this means that ∼ is either > or ≥. Consequently, (ϕ◦φ)(v) ∈
(E∼t)

I .

Hence, ϕ ◦ φ is a τ -homomorphism from T
Ĉ

to GI with (ϕ ◦ φ)(v0) = aI . Altogether,
this means that aI ∈ ĈI for all models I of A. Thus, A |= Ĉ(a).

Finally, since IA is linear on the size of A, checking whether a ∈ ĈIA can be done in
polynomial time in the size of A and Ĉ by using Algorithm 2. Therefore, we obtain the
following proposition.

Proposition 5.19. For positive τEL(deg) concept descriptions and EL ABoxes, the
instance checking problem can be decided in polynomial time.



Chapter 6

Adding Terminologies to τEL(m)

Until now, we have only considered the basic concept language and background knowl-
edge represented in the form of assertions about specific individuals. Nevertheless, most
DLs also allows to store terminological knowledge about the application domain in a
TBox. The aim of this chapter is to take initial steps in extending our logic τEL(deg)
towards background knowledge represented in the form of axioms in a TBox.
We start by introducing EL TBoxes, and some related properties and technical notions

concerning them. We will then turn to the definition of τEL(m) and τEL(deg) TBoxes.
To accomplish this, there are two important aspects that we take into account. On the
one hand, graded membership functions will now compute membership degrees to EL
concepts defined with respect to an EL TBox. To handle this, we propose a general way
to extend all functions m through unfolding, and hence restrict threshold concepts E∼t
to have E defined with respect to an acyclic EL TBox. On the other hand, since we
also intend to use TBoxes to define τEL(m) concept descriptions, further constraints are
needed to exclude definitions of not well-formed τEL(m) concepts.
Once τEL(deg) TBoxes are defined, we direct our attention to study the computational

complexity of reasoning in the presence of acyclic τEL(deg) TBoxes. It turns out that the
possibility of succinctly representing exponentially large concept descriptions in a TBox,
combined with the semantics of threshold concepts in τEL(deg), makes satisfiability and
subsumption to be ΠP

2 - and ΣP
2 -hard, respectively. Additionally, we provide a sound

and complete non-deterministic PSPACE procedure to solve both problems, and later
extend it to also consider assertional knowledge in an ABox. Such an extension keeps
the use of space polynomial, an thus yields a PSPACE upper bound for all the standard
reasoning tasks (including instance checking w.r.t. combined complexity).

6.1 EL TBoxes

A concept definition is of the form A
.
= CA, where A is a concept name and CA an

EL concept description. An EL TBox T is a finite set of concept definitions such that
no concept name occurs more than once on the left-hand side of a definition in T .
Concept names occurring on the left hand side of a definition are called defined concepts
while all other concept names are called primitive concepts. The sets of defined and
primitive concepts are denoted as Ndef and Nprim, respectively. A knowledge base (KB)
K = (T ,A) consists of a TBox and an ABox.
We denote by T the set of all EL TBoxes. Given T ∈ T, def(T ) stands for the set

of defined concepts in T . Moreover, the size s(T ) of T corresponds to the following

47
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expression:
s(T ) := |def(T )| +

∑
A
.
=CA∈T

s(CA)

Finally, the size s(K) of a KB K = (T ,A) is simply s(T ) + s(A).
Concerning the semantics, an interpretation I is a model of a TBox T (in symbols
I |= T ) iff

AI = (CA)I for all A .
= CA ∈ T

We denote as T(I) ⊆ T the set of all EL TBoxes T such that I |= T . The satisfaction
relation for KBs is defined in the usual way: I is a model of a KB K = (T ,A) iff
I satisfies both T and A. Now, given two EL concept descriptions C and D, C is
satisfiable with respect to K iff CI 6= ∅ for some model I of K. In addition, we say that
C is subsumed by D with respect to K (denoted C vK D) iff CI ⊆ DI for all models
I of K. They are equivalent with respect to K (denoted C ≡K D) iff C vK D and
D vK C.
TBoxes can be classified regarding the dependencies between its concept definitions.

More precisely,

Definition 6.1 (EL cyclic/acyclic TBoxes). Let T be an EL TBox. We define →
as a binary relation over the set def(T ) to represent direct dependency between defined
concepts in the following way.

A defined concept A directly depends on a defined concept B (denoted as A→ B) iff
A

.
= CA ∈ T and B occurs in CA. Let →+ be the transitive closure of →. The TBox

T contains a terminological cycle iff there exists a defined concept A in T that depends
on itself, i.e., A →+ A. Then, T is called cyclic if it contains a terminological cycle.
Otherwise, it is called acyclic. ♦

For acyclic TBoxes, the relation→+ induces a well-founded partial order � on the set
def(T ), i.e., A � B iff B →+ A. Furthermore, the unfolding uT (C) of an EL concept
description C with respect to T can be defined as follows:

uT (C uD) := uT (C) u uT (D)

uT (∃r.C) := ∃r.uT (C)

uT (A) :=

{
A if A ∈ Nprim,

uT (CA) if A .
= CA ∈ T .

It is well known that, regarding acyclic TBoxes, the meaning of concept descriptions
follows directly from the meaning of their corresponding unfolded descriptions. The
following is the equivalent, for EL, of Proposition 1 in [Neb90].

Proposition 6.2. For every acyclic EL TBox T , every EL concept description C and
every model I of T :

CI = [uT (C)]I

As an immediate consequence of this equality, we obtain C ≡T uT (C). This also has
its counterpart from the model-theoretical point of view. Similar to Proposition 2 in
[Neb91], we have the following for EL.
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Proposition 6.3. Let T be an acyclic EL TBox. Any interpretation J of Nprim and
NR can be uniquely extended to a model of T .

These type of partial interpretations are called primitive. They do not assign any
meaning to the defined concepts in T . We say that an interpretation I is based on a
primitive interpretation J iff it has the same domain as J and coincides with J on NR

and Nprim.

6.2 TBoxes for τEL(m) and τEL(deg)

We would now like to use sets of concept definitions to define τEL(m) concept de-
scriptions. These concept definitions come in two forms. For example, the EL concept
definition E

.
= ∃r.A u ∃r.B, can be used to build the threshold concept E≤.8. Fur-

thermore, on top of that, one could also have τEL(m) concept definitions of the form:

α
.
= Ĉα (6.1)

where α ∈ Ndef and Ĉα is a τEL(m) concept description. For instance, the definition of
E together with α .

= A u E≤.8, can be used to define the τEL(m) concept description
∃s.A u ∃r.α.
In what follows, we first revisit the notion of membership degree functions from Defi-

nition 3.1 and define τEL(m) TBoxes. Afterwards, we provide a general way to extend
such functions to consider concept descriptions defined in acyclic EL TBoxes. In par-
ticular, these two aspects are combined to extend our logic τEL(deg) towards τEL(deg)
TBoxes. Last, preliminary aspects related to reasoning in τEL(deg) with respect to
acyclic TBoxes are discussed as a starting point for subsequent sections.
The use of defined EL concepts to build threshold concepts compels us to revisit the

definition of membership degree functions. In this new setting, the equivalence relation
between concept descriptions is defined modulo the TBox definitions, i.e., ≡T . Therefore,
to maintain the equivalence invariance property, the condition M2 from Definition 3.1
should be redefined with respect to ≡T . This means that the definition of mI with
respect to the set of definitions in a TBox T only makes sense for models I of T .

Definition 6.4. A graded membership function m is a family of functions that contains
for every interpretation I a functionmI : ∆I×CEL×T(I)→ [0, 1] satisfying the following
conditions (for C,D ∈ CEL and T ∈ T(I)):

M1 T : d ∈ CI ⇔ mI(d,C, T ) = 1 for all d ∈ ∆I ,

M2 T : C ≡T D ⇔ ∀I |= T ∀d ∈ ∆I : mI(d,C, T ) = mI(d,D, T ).

Note that this is a generalization of Definition 3.1, where T is the empty TBox. ♦

Now, our idea of a τEL(m) TBox is to combine definitions from EL TBoxes with
concept definitions having the form of (6.1). The following example shows that such a
combination should not be arbitrary, for otherwise not every defined concept will be a
well-formed τEL(m) concept description.
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Example 6.5. Let TEL be the following EL TBox:

TEL := {E .
= ∃r.A u ∃r.B}

and Tτ the following set of concept definitions:

Tτ :=

{
α
.
= ∃s.A u ∃r.β

β
.
= A u E≤.8

}
Here, the definition of E corresponds to the EL concept description ∃r.A u ∃r.B.

Moreover, α and β define well-formed τEL(m) concept descriptions. For example, the
unfolding of α with respect to Tτ ∪ TEL yields the τEL(m) concept description ∃s.A u
∃r.(A u (∃r.A u ∃r.B)≤.8). Suppose now, that α has the following definition in Tτ :

α
.
= ∃s.A u ∃r.(β<1)

Even though Ĉα looks like a syntactically well-formed τEL(m) concept description, the
unfolding of α yields ∃s.Au∃r.[Au(∃r.Au∃r.B)≤.8]<1 and the problem arise immediately:
[Au(∃r.Au∃r.B)≤.8]<1 is not a valid threshold concept. Consequently, α does not define
a well-formed τEL(m) concept description. Thus, we should require for all E∼t occurring
in definitions of Tτ that E is not defined in terms of any other threshold concept. ♦

Definition 6.6. Let {Nτdef ,N0
def} be a partition of Ndef . A τEL(m) TBox T̂ is a pair

(Tτ , TEL) satisfying the following conditions:

• Tτ is a set of concept definitions of the form α
.
= Ĉα such that:

– α ∈ Nτdef and Ĉα is a τEL(m) concept description.

– for all threshold concepts E∼t occurring in a definition of Tτ , E is defined
over N0

def ∪ Nprim.

• TEL is an EL TBox such that:

– E ∈ N0
def , for all defined concepts in TEL.

– for all α ∈ Nτdef , α does not occur in any definition of TEL. ♦

Restricting threshold concepts to be defined over N0
def ∪ Nprim and TEL not to contain

occurrences of defined concepts in Tτ guarantees the α always defines a well-formed
τEL(m) concept description for all α .

= Ĉα ∈ Tτ .

Remark 6.7. We have not been very precise about well-formed τEL(m) concept de-
scriptions externally defined over the signature of a τEL(m) TBox T̂ . Hereafter, we
understand by that any string of symbols Ĉ generated by the grammar in Chapter 3,
such that Ĉ complies with the same restrictions imposed on the defined concepts in T̂ .
More precisely, the set of definitions T̂ ∪ {α .

= Ĉ} is still a τEL(m) TBox, where α is a
fresh concept name from Nτdef . ♦

Consequently, we define a τEL(m) knowledge base K as a pair K = (T̂ ,A) where
T̂ is a τEL(m) TBox, and for all Ĉ(a) ∈ A the concept description Ĉ is defined over
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T̂ . As we will introduce next, the satisfaction relation between interpretations and KBs
allows to replace the assertions Ĉ(a) in A with α

Ĉ
(a) , by adding the concept definition

α
Ĉ

.
= Ĉ to Tτ where α

Ĉ
is a fresh concept name from Nτdef . Therefore, from now on we

assume that all the concept assertions in A are of the form α(a) where α ∈ def(T̂ ).
The satisfaction relation for τEL(m) TBoxes depends on the chosen function m. An

interpretation I satisfies a τEL(m) TBox T̂ = (Tτ , TEL) iff I |= TEL and αI = (Ĉα)I in
τEL(m) for all α .

= Ĉα ∈ Tτ . Finally, I satisfies a knowledge base K = (T̂ ,A) iff I |= T̂
and I |= A.
We now turn to extending graded membership functions to deal with concept descrip-

tions defined with respect to a background EL TBox TEL. Since m is a parameter for
the logic, besides the properties required in Definition 6.4, there is not much information
about how defined concepts should be taken into account to compute membership de-
grees. Initially, one idea could be to treat defined concepts simply as concept names in the
computation of m. This, however, would mean that the definition of a concept E in TEL
is not really used to compute mI(d,E, TEL) whenever d 6∈ EI , i.e., mI(d,E, TEL) = 0,
rather than giving a more approximate value based on the definition of E. The following
example explains this situation for the membership function deg .

Example 6.8. Consider the following EL TBox TEL and interpretation I:

TEL :=


E1

.
= ∃r.A u ∃r.B

E2
.
= A u ∃s.E3

E3
.
= B u ∃r.E2


GI : d1 : {A,E2}

d2 : {A}

r

d3 : {B,E3}

s r

Here, I |= TEL and d1 6∈ (E1)I . Treating E1 as a concept name in the computation
of deg yields degI(d1, E1, TEL) = 0. In other words, deg would ignore the fact that d1

has an r-successor which is an instance of A. In contrast, using directly the definition
of E1, we have degI(d1,∃r.A u ∃r.B, TEL) = 1/2. This shows the limitations of treating
defined concepts as concept names when computing deg , but more importantly it tells
us that deg would then violate property M2 T since E1 ≡TEL ∃r.A u ∃r.B.

One way to repair this is to consider the unfolding uTEL(E1) of E1 to compute
degI(d1, E1, TEL), i.e., degI(d1, E1, TEL) := degI(d1, uTEL(E1)). Obviously, this will not
work for E2 and E3 since they are defined in a cyclic way, and this means that they
cannot be unfolded. ♦

Based on the previous arguments, we extend the computation of graded membership
functions towards EL concept descriptions defined over acyclic EL TBoxes.

Definition 6.9. Let T be an acyclic EL TBox, C an EL concept description and m a
graded membership function. m is extended to compute membership degree values with
respect to T as follows:

mI(d,C, T ) := mI(d, uT (C)) ♦

Being m a graded membership function in the sense of Definition 3.1, it satisfies M1
and M2. Hence, since C ≡T uT (C), the definition of m with respect to T satisfies M1 T .
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Moreover, C ≡T D implies that uT (C) ≡ uT (D). From this it is easy to verify that m
also satisfies M2 T . Additionally, since the unfolding of an EL concept description with
respect to an acyclic TBox yields another EL concept description, well-definedness of m
implies its well-definedness with respect to T .
So far, we have first restricted sets of definitions in order to avoid nesting of threshold

concepts. Afterwards, we have extended the computation of membership degree func-
tions to concept descriptions defined with respect to acyclic EL TBoxes. Now, since deg
is a well-defined graded membership function in the sense of Definition 3.1, its extension
according to Definition 6.9 is also well-defined. Thus, we can now consider threshold
concepts defined with respect to a background TBox in τEL(deg). To emphasize that
deg is defined for acyclic EL TBoxes, we define a τEL(deg) TBox as a τEL(m) TBox
T̂ = (Tτ , TEL) where TEL is an acyclic EL TBox.
Despite the acyclicity restriction on TEL, Tτ is allowed to have terminological cycles in

the sense of Definition 6.1. This is considering the relation → and its transitive closure
→+ over defined concepts in Tτ . Consequently, we can talk about cyclic and acyclic
τEL(deg) TBoxes. In particular, the notion of unfolding transfers naturally to acyclic
ones. The constructors u and ∃r.C are treated in the same way and two new rules are
added:

uT̂ (α) := uT̂ (Ĉα), for all α .
= Ĉα ∈ Tτ

uT̂ (E∼t) := [uTEL(E)]∼t

Since TEL is an acyclic TBox, this means that uTEL(E) is an EL concept description.
Consequently, (uTEL(E))∼t is a well-formed threshold concept, and thus the unfolding
uT̂ (E∼t) is well-defined. Then, the counterparts of Propositions 6.2 and 6.3 also hold
for acyclic τEL(deg) TBoxes.

Proposition 6.10. For every acyclic τEL(deg) TBox T̂ , every τEL(deg) concept de-
scription Ĉ and every model I of T̂ :

ĈI = [uT̂ (Ĉ)]I

Proof. The proof is the same as for EL, except that in addition, one has to consider
the unfolding of threshold concepts E∼t where E is defined with respect to TEL. This
is not a problem, since E ≡TEL uTEL(E) and therefore, property M2 T implies that
E∼t ≡T̂ [uTEL(E)]∼t.

Proposition 6.11. Let T̂ be an acyclic τEL(deg) TBox. Any primitive interpretation
I can be uniquely extended to a model of T̂ .

Proposition 6.10 tells us that the unfolding of concepts preserves equivalence, i.e.,
Ĉ ≡T̂ uT̂ (Ĉ). This together with Proposition 6.11 allow us to reduce reasoning with
respect to acyclic τEL(deg) TBoxes to reasoning in the empty terminology, by using
unfolding. However, there are two reasons why this could not yield worst-case optimal
decision procedures for the different reasoning tasks. On the one hand, as shown in
[Neb90], the unfolding of a concept description may result in a concept description of
exponential size. This was actually shown for the description logic FL0. The following
example shows the corresponding version for EL.
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Example 6.12. For all n ≥ 0, the EL TBox Tn is inductively defined as follows:

T0 := {α0
.
= >}

T1 := T0 ∪ {α1
.
= ∃r.α0 u ∃s.α0}

...

Tn := Tn−1 ∪ {αn
.
= ∃r.αn−1 u ∃s.αn−1}

Regarding the size of Tn and uTn(αn), we have s(Tn) = Θ(n) and s(uTn(αn)) ≥ 2n. ♦

On the other hand, concept satisfiability is NP-complete in τEL(deg) with respect to
the empty TBox. Therefore, given a τEL(deg) acyclic TBox T̂ and a τEL(deg) concept
description Ĉ, unfolding Ĉ with respect to T̂ and then using the NP decision procedure
from Chapter 5, yields in general a non-deterministic exponential time algorithm for
concept satisfiability with respect to acyclic τEL(deg) TBoxes.
Two natural questions arise from the previous discussion: Can we do it better than

in NEXP?, and more hopefully, could it still be decided in non-deterministic polynomial
time? We give a positive and a negative answer, respectively, to these questions. In fact,
we will see that the possibility of using acyclic TBoxes to express exponentially large
concept descriptions in a succinct way combined with the use of threshold concepts,
makes the concept satisfiability problem harder than all the problems in NP (unless
NP=ΠP

2 ).

6.3 Models of non-polynomial size

We start by showing that, different from the empty TBox case, τEL(deg) concept de-
scriptions do not enjoy the polynomial model property when defined with respect to
acyclic τEL(deg) TBoxes. More precisely, for all n ≥ 0 there is a TBox T̂n and a defined
concept αn such that αn is satisfiable with respect to T̂n, but not in models of size poly-
nomial in s(T̂n). There are two purposes in doing this. It automatically rules out the
possibility of designing an algorithm that searches for a model of polynomial size, as for
the case where T̂ = ∅. Further, the structure that an interpretation I needs to have in
order to satisfy αn in T̂n will be suitable to show that concept satisfiability is at least as
hard as the problems contained in the class ΠP

2 .
Consider the EL TBox Tn from Example 6.12 and let Tαn be the description tree

corresponding to uTn(αn). Additionally, let Iαn be the primitive interpretation with
description graph Tαn , and d0 ∈ ∆Iαn the element representing its root. Iαn can be
uniquely extended to a model of Tn (Proposition 6.3), and this extension is such that
d0 ∈ (αn)Iαn . Moreover, the following is an easy consequence from the definition of Tn.

Proposition 6.13. Let I be a model of Tn and d ∈ ∆I . For all 0 ≤ j ≤ n: if d ∈
(αj)

I , then for each word x ∈ {r, s}j there exists a path dx1d1 . . . xjdj in GI such that
di ∈ (αj−i)

I for all 1 ≤ i ≤ j.

The reason why |∆Iαn | ≥ 2n is that all pair of paths (π1, π2) in Tαn corresponding to
two different words xπ1 , xπ2 ∈ {r, s}n, are disjoint in their last nodes. This can obviously
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be avoided, the interpretation I0 (in the picture below) is a model of Tn satisfying αn
and has size O(1) with respect to the size of Tn:

GI0 :

d0

r, s

α0, . . . , αn

In fact, in EL regardless which type of TBox is considered, every satisfiable concept
description is satisfiable in an interpretation of polynomial size.
Our aim is to transform Tn into a τEL(deg) TBox T̂n such that each model I of T̂n

satisfying αn is of size at least 2n. To this end, we use 2n auxiliary primitive concept
names A1, . . . , An, Ā1, . . . , Ān. The intention is to enforce for each word x ∈ {r, s}n the
existence of at least one path d0x1d1 . . . xndn in GI such that:

dn ∈ (Ai)
I iff xi = r (1 ≤ i ≤ n) (6.2)

Note that for two different words x, y ∈ {r, s}n and the corresponding paths πx =
d0x1 . . . xndnx, πy = d0y1 . . . yndny in GI satisfying the equivalence in (6.2), there must
exist i such that xi 6= yi, and this would imply:

dnx ∈ (Ai)
I iff dny 6∈ (Ai)

I

Hence, dnx and dny must be two different domain elements in ∆I . This argument extends
to all pair of words in {r, s}n. Thus, since there are 2n words in {r, s}n, in this way ∆I

would need to have at least 2n elements.
So far, the structure of Tn already guarantees the existence of a path from d0 for all

x ∈ {r, s}n, but not the satisfaction of (6.2). One needs to be able to express within the
logic the correct propagation of the concept names along each path. For example, for
n = 3 and x1, one possible way to do it is redefining α3 as:

α3
.
= ∃r.

(
α2 u

l

x2,x3∈{r,s}

∀x2x3.A1

)
u ∃s.

(
α2 u

l

x2,x3∈{r,s}

∀x2x3.¬A1

)
(6.3)

Unfortunately, as shown in Section 4.3.1, the simple concept ∀r.A cannot be expressed
in τEL(deg). Moreover, in general this idea would require the use of exponentially many
∀-restrictions. Nevertheless, ∀r.¬A can actually be expressed, and this is where the
concept names Āi come into play. Their role is to be complementary with Ai at dn.
Our first step is to assert a weaker version of the equivalence in (6.2) using Ai and Āi.

For each 1 ≤ j ≤ n, we define two TBoxes T j and T j̄ as follows. We select T j and T j̄ as
two copies of Tj−1 (from Example 6.12), where each defined concept αi (0 ≤ i ≤ j − 1)
is renamed as Eji and E j̄i , in T j and T j̄ , respectively. Then, E

j
0 and E j̄0 are redefined as

Ej0
.
= Ān−j+1 and E j̄0

.
= An−j+1. The union of all these TBoxes is denoted as Tn,paths:

Tn,paths :=

n⋃
j=1

(T j ∪ T j̄)
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Let us illustrate this construction and explain why it will be useful.

Example 6.14. Let n = 3. Starting from T2, T1 and T0, the EL TBoxes T 3, T 2 and T 1

consist of the following set of definitions, respectively:

E3
2
.
= ∃r.E3

1 u ∃s.E3
1 E2

1
.
= ∃r.E2

0 u ∃s.E2
0 E1

0
.
= Ā3

E3
1
.
= ∃r.E3

0 u ∃s.E3
0 E2

0
.
= Ā2

E3
0
.
= Ā1

The TBox T 3 corresponds to the case where j = 3. Note that n− j+ 1 = 1 matches the
index of Āi in the definition of E3

0 . The same applies for E2
0 and E1

0 , since as j decreases
the index i increases accordingly. TBoxes T 3̄, T 2̄ and T 1̄ have the same structure except
that A1, A2 and A3 are used instead.

Let now TE3
2
and TE3̄

2
be the EL description trees corresponding to the unfolding of

E3
2 and E3̄

2 in T 3 and T 3̄, respectively:

TE3
2
: v

Ā1

r

Ā1

s

r

Ā1

r

Ā1

s

s

TE3̄
2
: v

A1

r

A1

s

r

A1

r

A1

s

s

We exploit the structure of these trees in two directions. First, both of them provide
a succinct representation of all the possible paths corresponding to words in {r, s}2.
Second, for an interpretation I the threshold concept (E3

2)≤0 tells the following about
any d ∈ ∆I :

• if dx2d2x3d3 is a path in GI where {x2, x3} ⊆ {r, s} and d3 ∈ (Ā1)I , then there is
an equal path vx2v2x3v3 in TE3

2
. Now, the partial mapping h from TE3

2
to GI with

h(v) = d and h(vi) = di (i = 2, 3) satisfies hw(v) > 0. Therefore, d 6∈ [(E3
2)≤0]I .

• Conversely, if no such path exists for d, then for all paths vx2v2x3v3 in TE3
2
and

all partial mappings h from TE3
2
to GI such that v3 ∈ dom(h), it is the case that

h(v3) 6∈ (Ā1)I . Therefore, by definition of hw, it must be the case that hw(v) = 0.
Consequently, degI(d,E3

2 , T 3) = 0 and d ∈ [(E3
2)≤0]I .

The same reasoning applies for E3̄
2 and A1. The good that comes from this is that we

obtain the following equivalences:

(E3
2)≤0 ≡T 3

l

x2,x3∈{r,s}

∀x2x3.¬Ā1 and (E3̄
2)≤0 ≡T 3̄

l

x2,x3∈{r,s}

∀x2x3.¬A1

Since ¬Ā1 is meant to represent A1, as in (6.3) it would be possible to propagate correctly
A1 according to the value of x1 in all paths. ♦
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Based on this, one can in general use the threshold concepts (Ejj−1)≤0 and (E j̄j−1)≤0

to represent the generalization of the value restrictions used in (6.3) to arbitrary lengths.

Proposition 6.15. For all models I of Tn,paths, d ∈ ∆I and 1 ≤ j ≤ n:

1. d ∈ [(Ejj−1)≤0]I iff d ∈
( d

x∈{r,s}j−1

∀x.¬Ān−j+1

)I
.

2. d ∈ [(E j̄j−1)≤0]I iff d ∈
( d

x∈{r,s}j−1

∀x.¬An−j+1

)I
.

Proof. We only give the proof for the first statement (the second one can be shown
using the same argument). We denote as T

Ejj−1
the description tree corresponding to

the unfolding uT j (E
j
j−1) of Ejj−1 in T j . For simplicity, we use just ` (without subscript)

to refer to the labeling of T
Ejj−1

.

(⇒) Assume that d ∈ [(Ejj−1)≤0]I . Since Ejj−1 is a defined concept in T j , this implies:

degI(d,Ejj−1, T
j) = degI(d, uT j (E

j
j−1)) = 0

For a contradiction, suppose that:

d 6∈
( l

x∈{r,s}j−1

∀x.¬Ān−j+1

)I
Then, there is a word x1 . . . xj−1 ∈ {r, s}j−1 such that d 6∈ (∀x1 . . . xj−1.¬Ān−j+1)I . The
semantics of the value restriction constructor yields the existence of a path of the form
dx1d1 . . . xj−1dj−1 in GI such that dj−1 ∈ (Ān−j+1)I .

By definition of Ejj−1 in T j , there is a path v0x1v1 . . . xj−1vj−1 in T
Ejj−1

with `(vj−1) =

{Ān−j+1}, where v0 is the root of T
Ejj−1

. Therefore, the ptgh h from T
Ejj−1

to GI with
h(v0) = d and h(vi) = di (1 ≤ i ≤ j − 1) induces a weighted homomorphism hw such
that: hw(v0) > 0. This contradicts our initial assumption since it implies:

degI(d, uT j (E
j
j−1)) > 0

Thus, the left to right implication holds.
(⇐) Assume that

d ∈
( l

x∈{r,s}j−1

∀x.¬Ān−j+1

)I
This implies that d ∈ (∀x1 . . . xj−1.¬Ān−j+1)I for all words x1, . . . , xj−1 ∈ {r, s}j−1.
Hence, any path of the form dx1d1 . . . xj−1dj−1 in GI is restricted to have:

dj−1 6∈ (Ān−j+1)I

Let now v0x1v1 . . . xj−1vj−1 be any path in T
Ejj−1

. By definition of Ejj−1 in T j we know

that x1 . . . xj−1 ∈ {r, s}j−1 and `(vj−1) = {Ān−j+1}. Therefore, for all ptgh h from T
Ejj−1
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to GI having h(v0) = d and vj−1 ∈ dom(h), it is the case that Ān−j+1 6∈ `I(h(vj−1)).
Hence, since vj−1 is a leaf in T

Ejj−1
, this means that hw(vj−1) = 0.

Overall, we have shown that for all leaves v in T
Ejj−1

and all ptgh h with v ∈ dom(h),
it holds that hw(v) = 0. Then, since `(v) = ∅ iff v is a non-leaf node, there is no possible
way in which hw(v0) > 0. Consequently, it follows:

degI(d, uT j (E
j
j−1)) = 0

Thus, d ∈ [(Ejj−1)≤0]I .

Having these equivalences, the next step is to generalize the intuition expressed by
the combination of (6.3) and Example 6.14. More precisely, we integrate the threshold
concepts of the form (Ejj−1)≤0 and (E j̄j−1)≤0 into Tn as follows. For all 1 ≤ j ≤ n:

αj
.
= ∃r.(αj−1 u (Ejj−1)≤0) u ∃s.(αj−1 u (E j̄j−1)≤0)

We name the resulting TBox as Tn,τ . Note that Tn,paths is acyclic and (Tn,τ , Tn,paths)
satisfies the conditions required in Definition 6.6. Therefore, (Tn,τ , Tn,paths) is a τEL(deg)
TBox. We can now state for (Tn,τ , Tn,paths) the equivalent of Proposition 6.13 .

Proposition 6.16. Let I be a model of (Tn,τ , Tn,paths) and d ∈ ∆I . For all 0 ≤ j ≤ n:
if d ∈ (αj)

I , then for each word x ∈ {r, s}j there exists a path dx1d1 . . . xjdj in GI such
that for all 1 ≤ i ≤ j,

• di ∈ (αj−i)
I ,

• di ∈ [(Ej−i+1
j−i )≤0]I if xi = r, otherwise di ∈ [(Ej−i+1

j−i )≤0]I .

We continue with the previous example to see how T3,τ looks like, and explain what
is still missing to achieve our goal.

Continuation of Example 6.14. After integrating the new threshold concepts into
T3, the τEL(deg) TBox T3,τ consists of the following set of definitions:

α3
.
= ∃r.(α2 u (E3

2)≤0) u ∃s.(α2 u (E3̄
2)≤0)

α2
.
= ∃r.(α1 u (E2

1)≤0) u ∃s.(α1 u (E2̄
1)≤0)

α1
.
= ∃r.(α0 u (E1

0)≤0) u ∃s.(α0 u (E1̄
0)≤0)

α0
.
= >

Let I be an interpretation such that I |= (T3,τ , T3,paths), d0 ∈ ∆I and d0 ∈ (α3)I . The
addition of the threshold concepts gives us the following. For all words x ∈ {r, s}3 there
is at least one path d0x1d1x2d2x3d3 such that:

(xi = r)⇒ d3 6∈ (Āi)
I

(xi = s)⇒ d3 6∈ (Ai)
I (6.4)
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For instance, the words rrr and srr yield two paths d0rd1rd2rd3 and d0se1re2re3 in
GI , where d3 ∈ (¬Ā1)I and e3 ∈ (¬A1)I . However, since no relationship has yet been
established between Ā1 and A1, there is no inconsistency between ¬Ā1 and ¬A1. Hence,
d3 and e3 can be merged into one while keeping d0 ∈ (α3)I . Overall only non-membership
is required at the end of each path. Consequently, I0 is still good enough to be a model
of (T3,τ , T3,paths) satisfying α3. ♦

In general, if d0 ∈ (αn)I , this construction tells us that for each word x ∈ {r, s}n there
exists at least one path d0x1d1 . . . xndn in GI such that:

dn ∈ (Ai)
I ⇒ xi = r (the contraposition of 6.4)

To have this implication also valid in the opposite direction, we use again threshold
concepts to make Ai and Āi complementary at dn, i.e., dn ∈ (Ai)

I iff dn 6∈ (Āi)
I . To

each pair (Ai, Āi) we associate the concept definition Fi
.
= Ai u Āi. The TBox Tn,comp

is defined as:

Tn,comp :=

n⋃
i=1

{Fi
.
= Ai u Āi}

Using this, α0 is redefined in Tn,τ as:

α0
.
=

nl

i=1

[(Fi)≤ 1
2
u (Fi)≥ 1

2
]

Remark 6.17. Defining Āi
.
= (Ai)<1 (1 ≤ i ≤ n) in Tn,τ , makes d ∈ (Ai)

I iff d 6∈ (Āi)
I

not only for d = dn, but for the whole interpretation domain. This is simpler than the
definition of α0. However, it would make (Ejj−1)≤0 (with j = n− i+1) not a well-formed
threshold concept since Āi is used to define Ejj−1. ♦

Finally, putting all these parts together, we end up with the τEL(deg) TBox T̂n :=
(Tn,τ , Tn,EL) where:

Tn,EL := Tn,comp ∪ Tn,paths

We now proceed to show that satisfying αn in T̂n requires interpretations of size expo-
nential in n.

Lemma 6.18. For all n ≥ 0 and all interpretations I such that I |= T̂n and (αn)I 6= ∅,
we have ∆I ≥ 2n.

Proof. Let I be an interpretation such that I |= T̂n and (αn)I 6= ∅.
The case n = 0 is trivial since ∆I is a non-empty domain. To see that the statement

of the lemma is also true for an arbitrary n > 0, we show that for all subsets X of
{A1, . . . , An} there exists an element dX ∈ ∆I such that:

dX ∈ (Ai)
I iff Ai ∈ X (1 ≤ i ≤ n) (6.5)

Let d ∈ ∆I be such that d ∈ (αn)I . In addition, let us fix a set Y ⊆ {A1, . . . , An} and
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define its corresponding word y ∈ {r, s}n as:

yi = r iff Ai ∈ Y (1 ≤ i ≤ n) (6.6)

By applying Proposition 6.16 to d, we know that there is a path dy1d1 . . . yndn in GI
such that for all 1 ≤ i ≤ n:

• di ∈ (αn−i)
I ,

• di ∈ [(En−i+1
n−i )≤0]I if yi = r, otherwise di ∈ [(En−i+1

n−i )≤0]I

In particular, the suffix diyi+1 . . . yndn is of length n− i. Therefore, we further have:

yi = r ⇒ di ∈ [(En−i+1
n−i )≤0]I

⇒ di ∈ (∀yi+1 . . . yn.¬Āi)I (Proposition 6.15 applied to di and En−i+1
n−i )

⇒ dn 6∈ (Āi)
I

Symmetrically, yi = s implies dn 6∈ (Ai)
I . Now, we know that Fi

.
= Ai u Āi ∈ Tn,comp

and α0 is of the form:

α0
.
=

nl

i=1

[(Fi)≤ 1
2
u (Fi)≥ 1

2
]

Since dn ∈ (α0)I it follows:

dn ∈ (Ai)
I iff yi = r (1 ≤ i ≤ n)

From the way the word y is defined in (6.6), we can conclude that dn is an element of
∆I satisfying (6.5) with respect to Y .

Thus, one can easily see why ∆I ≥ 2n.

To finally fulfill the initial aim of this section, it remains to show that αn is indeed
satisfiable with respect to T̂n.

Lemma 6.19. αn is satisfiable with respect to T̂n.

Proof. We take the interpretation Iαn and extend it into a model Îαn of T̂n satisfying αn.
By construction, Iαn is tree-shaped and has 2n leaves. Moreover, there is a one-to-one
correspondence between words in {r, s}n and the leaves in Tαn . The leaf dx corresponding
to the word x is the one reached from d0 through the path d0x1d1 . . . xndx.

Let Lαn denote the set of leaves of Tαn . The interpretation of Ai, Āi under Îαn is
defined as follows. For all 1 ≤ i ≤ n:

(Ai)
Îαn := {dx | dx ∈ Lαn and xi = r}

(Āi)
Îαn := {dx | dx ∈ Lαn and xi = s} (6.7)

Hence, for all leaves d of Tαn and all i ∈ {1 . . . n} we have:

d ∈ (Ai)
Îαn iff d 6∈ (Āi)

Îαn (6.8)
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Since Tn,τ and Tn,EL are both acyclic, there is a unique way to extend Îαn into a model
of T̂n. Having done so, let η(d) denote the height of a domain element d in Tαn . We
show by induction on η(d) the following claim:

for all d ∈ ∆Îαn : d ∈ (αη(d))
Îαn

Induction Base. d ∈ ∆Îαn and η(d) = 0. Then, d is a leaf in Tαn . Recall that α0 is
defined in Tn,τ as:

α0
.
=

nl

i=1

[(Fi)≤ 1
2
u (Fi)≥ 1

2
]

Consequently, since Fi is defined in Tn,comp as Fi
.
= Ai u Āi, using (6.8) we obtain

d ∈ [(Fi)≤ 1
2
u (Fi)≥ 1

2
]Îαn . Thus, d ∈ (α0)Îαn holds.

Induction Step. Let d ∈ ∆Îαn with 0 < η(d) ≤ n. We assume our claim holds for all
e ∈ ∆Îαn with η(e) < η(d).

To start, αη(d) is defined in Tn,τ as:

αη(d)
.
= ∃r.(αη(d)−1 u (E

η(d)
η(d)−1)≤0) u ∃s.(αη(d)−1 u (E

η(d)
η(d)−1)≤0)

By construction of Tαn , there exists e ∈ ∆Îαn such that (d, e) ∈ rÎαn and η(e) = η(d)−1.
The application of induction hypothesis to e yields e ∈ (αη(d)−1)Îαn .

Consider now any word y ∈ {r, s}η(d)−1. Since η(e) = η(d) − 1, by definition of Tαn
there is a unique path of the form ey1e1 . . . yη(d)−1eη(d)−1 in Tαn , where eη(d)−1 is a leaf.
Moreover, such a path is suffix of a path d0x1d1 . . . djxjexj+1 . . . xndn, where dj = d,
xj = r and eη(d)−1 = dn. Then, we obtain the following equalities:

n− (j + 1) = (η(d)− 1)− 1

n− η(d) + 1 = j

Since xj = r, by (6.7) we obtain that dn ∈ (An−η(d)+1)Îαn , and by (6.8) dn 6∈
(Ān−η(d)+1)Îαn . Hence, as y was chosen arbitrarily from {r, s}η(d)−1, we have just shown
that:

e ∈

 l

y∈{r,s}η(d)−1

∀y.¬Ān−η(d)+1

Iαn

The application of Proposition 6.15 then yields e ∈ [(E
η(d)
η(d)−1)≤0]Îαn . For the ∃s restric-

tion in the definition of αη(d), the corresponding result can be shown in the same way.
Therefore, d ∈ (αη(d))

Îαn .
Using this result and the fact that d0 is of height n in Tαn , we can conclude that

d0 ∈ (αn)Îαn . Thus, αn is satisfiable with respect to T̂n.

Finally, let us look at the size of T̂n. Tn,τ and Tn,comp are both of size O(n). Let us
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recall the definition of Tn,paths:

Tn,paths =
n⋃
j=1

(T j ∪ T j̄)

Then, it can be equivalently expressed as follows:

Tn,paths = Tn−1,paths ∪ T n ∪ T n̄

Since T n and T n̄ have the same size as the EL TBox Tn−1, and s(Tn) = O(n) for all
n ≥ 1, we obtain:

s(Tn,paths) = s(Tn−1,paths) + 2 ∗ O(n− 1)

where s(T1,paths) = c ≥ 1 and c ∈ N is a constant.
Hence, s(T̂n) = O(n2) for all n ≥ 1. Now let I be a model of T̂n satisfying αn. By

Lemma 6.18 we know that |∆I | ≥ 2n, and consequently |∆I | ≥ 2O(
√

s(T̂n)). Therefore,
the size of I is not polynomial in the size of T̂n.

Theorem 6.20. For all n ≥ 0 there exists a τEL(deg) acyclic TBox T̂n with a defined
concept αn, such that s(T̂ ) is polynomial in n, but all models satisfying αn are of size at
least exponential in n.

6.4 Reasoning with respect to acyclic τEL(deg) TBoxes

The result obtained in Theorem 6.20 does not imply that there is no NP decision pro-
cedure for concept satisfiability. Even when, in general, models of polynomial size sat-
isfying a concept description do not exist, it may well be the case that such very large
models have abstract representations of polynomial size which can be used to design an
NP procedure, or simply there is a different way to do it. Unfortunately, this seems
to be very unlikely. We show that concept satisfiability and subsumption are ΠP

2 -hard
and ΣP

2 -hard, respectively, with respect to acyclic τEL(deg) TBoxes. Additionally, we
provide a PSPACE algorithm that is sound and complete for both problems. Finally, the
algorithm will be extended to reasoning with respect to acyclic τEL(deg) KBs without
giving up its polynomial space property.

6.4.1 Lower bounds

We reduce the problem ∀∃3SAT to concept satisfiability with respect to acyclic τEL(deg)
TBoxes. This problem is well-known to be complete for the class ΠP

2 (see [Sto76], Section
4).

Definition 6.21 (∀∃3SAT). Let u = {u1, . . . , un} and v = {v1, . . . , vm} be two disjoint
sets of propositional variables. Additionally, let ϕ(u, v) be a formula in 3CNF defined
over u ∪ v, i.e., ϕ(u, v) is a finite set of propositional clauses C = {c1, . . . , ck} such that:

• Each clause ci is a set of three literals {`i1, `i2, `i3} over u ∪ v.
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A formula (∀u)(∃v)ϕ(u, v) is satisfiable iff for all truth assignments t for the variables in
u there is an extension of t for the variables in v such that it satisfies ϕ(u, v). ∀∃3SAT
is then the problem of deciding whether given a 3CNF formula ϕ(u, v), the formula
(∀u)(∃v)ϕ(u, v) is satisfiable or not. ♦

The idea for the reduction goes as follows. Each 3CNF formula ϕ(u, v) is translated
into a τEL(deg) TBox T̂ ϕn containing a defined concept αn such that: (∀u)(∃v)ϕ(u, v)
is satisfiable iff αn is satisfiable with respect to T̂ ϕn (here, the value n corresponds to the
number of universally quantified variables). We have seen in the proof of Lemma 6.18
that satisfiability of αn with respect to T̂n requires interpretations I containing for all
subsets X of {A1, . . . , An} an element dX ∈ ∆I such that: dX ∈ (Ai)

I iff Ai ∈ X.
We take advantage of this to encode the universal quantification (∀u). The existential
quantification can be simulated by the very nature of the concept satisfiability problem.
We will obtain T̂ ϕn from T̂n, by modifying the definition of α0 in Tn,τ , and adding new
definitions to Tn,comp. In the following we provide the details of the translation and
prove its correctness.
For each variable ui ∈ u, the literals ui and ¬ui are identified with the concept names

Ai and Āi, respectively. Similarly, for literals over v we introduce new primitive concept
names B1, B̄1, . . . , Bm, B̄m. More formally, to each literal ` over u ∪ v, the mapping γ
assigns a primitive concept name as follows:

γ(`) =


Ai if ` = ui,

Āi if ` = ¬ui,
Bj if ` = vj ,

B̄j if ` = ¬vj .

To encode ϕ(u, v), each clause ci = {`i1, `i2, `i3} in C is represented by the EL con-
cept description Di := γ(`i1) u γ(`i2) u γ(`i3). Then, we define the τEL(deg) concept
description Ĉϕ corresponding to ϕ(u, v) as:

Ĉϕ :=

kl

i=1

(Di)≥ 1
3

The idea is that an individual dX belongs to (Di)≥ 1
3
iff it belongs to at least one

concept name γ(`il) (1 ≤ l ≤ 3). To constrain Bj and B̄j to be complementary at dX ,
for all 1 ≤ j ≤ m we add to Tn,comp the concept definition Gj

.
= Bj u B̄j . The last step

is to adjust the definition of α0 in Tn,τ to take into account the formula ϕ(u, v) and the
newly introduced concept names corresponding to the variables in v:

α0
.
= Ĉϕ u

nl

i=1

[(Fi)≤ 1
2
u (Fi)≥ 1

2
] u

ml

j=1

[(Gj)≤ 1
2
u (Gj)≥ 1

2
] (6.9)

To avoid confusions we denote by T ϕn,τ and T ϕn,comp the modified TBoxes, and by αϕ0
the altered α0. Then, T̂ ϕn := (T ϕn,τ , T ϕn,comp ∪ Tn,paths).
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Lemma 6.22. Let u = {u1, . . . , un}, v = {v1, . . . , vm} be sets of propositional variables,
and ϕ(u, v) a formula in 3CNF defined over u ∪ v. Then, (∀u)(∃v)ϕ(u, v) is satisfiable
iff αn is satisfiable with respect to T̂ ϕn .

Proof. (⇒) Assume that (∀u)(∃v)ϕ(u, v) is satisfiable. In the previous section (see
Lemma 6.19) we have constructed an interpretation Îαn such that d0 ∈ (αn)Îαn , and
d ∈ (α0)Îαn for all leaves d in Tαn . We extend Îαn into a model Îϕαn of T̂ ϕn satisfying αn.

The new interpretation Îϕαn extends Îαn with the interpretation of the concept names
B1, . . . , Bm, B̄1, . . . , B̄m. The positive side of using Îαn as a starting point is that since
Tn,paths does not change and Tn,τ only changes in the definition of α0, it is enough to
extend Îαn in such a way that d ∈ (αϕ0 )Î

ϕ
αn holds for all leaves d in Tαn .

Let d be a leaf of Tαn . We define the assignment td for u ∪ v as follows. First,

td(ui) = true iff d ∈ (Ai)
Îαn (1 ≤ i ≤ n)

Second, td assigns truth values to the variables in v such that it satisfies ϕ(u, v). This is
always possible because (∀u)(∃v)ϕ(u, v) is satisfiable. If there is more than one possible
way any of them can be used. Then, Îϕαn extends Îαn as follows. For all 1 ≤ j ≤ m:

(Bj)
Îϕαn := {d | d ∈ Lαn and td(vj) = true}

(B̄j)
Îϕαn := {d | d ∈ Lαn and td(vj) = false} (6.10)

Now, let us see why d ∈ (αϕ0 )Î
ϕ
αn . From (6.10) it follows directly that for all 1 ≤ j ≤ m:

d ∈ (Bj)
Îϕαn iff d 6∈ (B̄j)

Îϕαn

A similar relationship exists between d and Ai, Āi (1 ≤ i ≤ n), since d ∈ (α0)Îαn . Thus,
we have:

d ∈
( nl

i=1

[(Fi)≤ 1
2
u (Fi)≥ 1

2
] u

ml

j=1

[(Gj)≤ 1
2
u (Gj)≥ 1

2
]

)Îϕαn
Regarding Ĉϕ, let (Di)≥ 1

3
be any of its conjuncts and ci = {`i1, `i2, `i3} its associated

clause in ϕ(u, v). Since td satisfies ϕ(u, v), this means that there is `il (1 ≤ l ≤ 3) such
that td(`il) = true. Once we know that, the constructions of γ and td in combination
with the properties of d mentioned above imply that d ∈ [γ(`il)]

Îϕαn . Consequently,
d ∈ [(Di)≥ 1

3
]Î
ϕ
αn for all 1 ≤ i ≤ k, and thus d ∈ (Ĉϕ)Î

ϕ
αn . Hence, d ∈ (αϕ0 )Î

ϕ
αn .

Since d is an arbitrary leaf, the same result is valid for all the leaves in Tαn . As already
mentioned, this guarantees that αn is satisfiable with respect to T̂ ϕn .

(⇐) Conversely, assume that αn is satisfiable with respect to T̂ ϕn . This means that
there exists a model I of T̂ ϕn and d ∈ ∆I such that d ∈ (αn)I .

Let us fix a partial truth assignment t covering all the variables in u. We show that t
can be extended to v in such a way that it satisfies ϕ(u, v). The subsetXt of {A1, . . . , An}
is induced by t as follows:

Xt := {Ai | t(ui) = true} (1 ≤ i ≤ n)
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Now, since T̂ ϕn only differs from T̂n in the definition of α0 and the inclusion of the
Gj ’s in Tn,comp, Propositions 6.15 and 6.16 still apply to I as a model of T̂ ϕn . Following
the proof of Lemma 6.18 with respect to I and T̂ ϕn , we obtain that there exists dt ∈ ∆I

such that:

• dt ∈ (Ai)
I iff Ai ∈ Xt (iff t(ui) = >),

• dt ∈ (αϕ0 )I .

We use dt to extend t to v as follows. For all 1 ≤ j ≤ m:

t(vj) = > iff dt ∈ (Bj)
I

Therefore, since dt satisfies the complementary restrictions required in the definition
of αϕ0 for A1, . . . , An, Ā1, . . . , Ān and B1, . . . , Bm, B̄1, . . . , B̄m, we further obtain for all
literals ` over u ∪ v:

t(`) = true iff dt ∈ (γ(`))I (6.11)

Moreover, since dt ∈ (Ĉϕ)I we have that dt ∈ [(Di)≥ 1
3
]I for all 1 ≤ i ≤ k. By definition

of deg and Di there must exist `il in ci such that dt ∈ (γ(`il))
I . It then follows from

(6.11) that t satisfies every clause ci ∈ C, and consequently it satisfies ϕ(u, v).
Since the partial truth assignment t for u was chosen arbitrarily, we thus have shown

that (∀u)(∃v)ϕ(u, v) is satisfiable.

The construction of T̂ ϕn modifies T̂n in two ways. First, Tn,comp is extended by adding
the definitions of the concepts Gj for all 1 ≤ j ≤ m. This yields a TBox T ϕn,comp such
that:

s(T ϕn,comp) = s(Tn,comp) +O(m)

Second, T ϕn,τ results from Tn,τ by redefining α0 (renamed as αϕ0 ) as described in (6.9).
It is not hard to see that the definition of αϕ0 is of size polynomial in ϕ(u, v). Recall
that s(T̂n) is a polynomial in n. Hence, since n and m are the number of variables in u
and v, respectively, this means that s(T̂ ϕn ) is a polynomial in the size of (∀u)(∃v)ϕ(u, v).
Thus, ∀∃3SAT is polynomial-time reducible to satisfiability in τEL(deg) with respect
to acyclic τEL(deg) TBoxes. The reduction of satisfiability to subsumption still holds,
and therefore we obtain the following lower bounds.

Lemma 6.23. In τEL(deg), satisfiability is ΠP
2 -hard and subsumption is ΣP

2 -hard, with
respect to acyclic τEL(deg) TBoxes.

6.4.2 Normalization

To simplify the technical development of the decision procedures presented in the next
section, it is convenient to use TBoxes in a special form. We now introduce normalized
τEL(deg) TBoxes in reduced form, and show that one can (without loss of generality)
restrict the attention to this kind of TBoxes.
Let us start by recalling the normal form for EL TBoxes introduced in [Baa02]. An
EL TBox T is said to be normalized iff α .

= Cα ∈ T implies that Cα is of the form:

P1 u . . . u Pm u ∃r1.β1 u . . . u ∃rn.βn
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where m,n ≥ 0, P1, . . . , Pm ∈ Nprim, and β1, . . . , βn ∈ Ndef . We extend this form
to τEL(deg), and say that a τEL(deg) TBox T̂ = (Tτ , TEL) is normalized iff TEL is
normalized and α .

= Ĉα ∈ Tτ implies that Ĉα is of the form:

P̂1 u . . . u P̂m u ∃r1.β1 u . . . u ∃rn.βn

where m,n ≥ 0, for all 1 ≤ i ≤ m either P̂i ∈ Nprim or it is of the form E∼t with
E ∈ N0

def , and β1, . . . , βn ∈ Nτdef ∪ N0
def .

To illustrate this normalization process we start with a simpler version of Example 12
in [Baa02].

Example 6.24. Let T be the EL TBox consisting of the following definitions:

α1
.
= P1 u α2 u ∃r1.∃r2.α3

α2
.
= P2 u α3 u ∃s.(α3 u P3)

α3
.
= P4

Using auxiliary definitions we obtain a new TBox T ′:

α1
.
= P1 u α2 u ∃r1.β1

β1
.
= ∃r2.α3

α2
.
= P2 u α3 u ∃s.β2

β2
.
= α3 u P3

α3
.
= P4

This step is formalized as the exhaustive application of the rule R∃.

Condition: applies to concept definitions of the form α
.
= C1 u . . . u Cn if there is

an index i ∈ {1, . . . , n} with Ci = ∃r.D and D 6∈ Ndef .

Action: its application replaces the conjunct Ci by ∃r.β, and introduces a new
definition β .

= D, where β ∈ Ndef is a fresh concept name.

Since α1, α2 and β2 contain top-level atoms which are defined concepts, T ′ is not yet
normalized. The original normalization process is devised to handle cyclic EL TBoxes
that can be interpreted by different types of semantics. Consequently, the approach used
to overcome this problem varies according to each semantics. In our case, however, this
becomes simpler since the EL TBox TEL we are dealing with is acyclic. The solution for
this follows from the discussion presented in [Baa02] for the general case, and consists
of substituting these occurrences of defined concepts by their definitions. Following the
example we obtain the following TBox:

α1
.
= P1 u P2 u P4 u ∃s.β2 u ∃r1.β1

β1
.
= ∃r2.α3

α2
.
= P2 u P4 u ∃s.β2

β2
.
= P4 u P3
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α3
.
= P4

We name the corresponding rule Rα and formally define it as follows.

Condition: applies to concept definitions of the form α
.
= C1 u . . . u Cn if there is

an index i ∈ {1, . . . , n} with Ci = β and β .
= Cβ ∈ T .

Action: its application replaces Ci by Cβ .

Then, once R∃ can no longer be applied, an exhaustive application of the rule Rα will
produce a normalized acyclic EL TBox. However, to have a polynomial time procedure
generating a new TBox of polynomial size, the sequence of applications of Rα should
not be arbitrary. This is achieved by following the order � induced by →+, i.e., Rα
can be applied to a concept definition α .

= Cα only if it has already been applied to all
β ∈ def(T ) such that β � α. ♦

Each application of R∃ replaces a top-level atom of the form ∃r.D with a new atom
∃r.β, and introduces a simpler definition β

.
= D. Concerning Rα, such an ordered

sequence of rule applications will always terminate since we are dealing with acyclic
TBoxes. Moreover, the idempotency of u can be exploited to avoid duplications. Hence,
Rα is only applied one time for each top-level atom of the form β ∈ Ndef occurring in
the TBox that results from the application of R∃, and it does not cause an exponential
blow-up of the size of the TBox. Thus, the described normalization procedure runs in
polynomial time and produces a TBox T ′ of size polynomial in the size of T .
This procedure can be easily adapted to normalize acyclic τEL(deg) TBoxes. The

rules R∃ and Rα can be applied to Tτ in the same way. The only difference is that to
apply Rα in Tτ , the definition β

.
= Cβ may also occur in TEL. Additionally, it is required

that all occurrences of threshold concepts E∼t in T̂ are such that E is a defined concept
in TEL. For example, α1 could have been defined as:

α1
.
= P1 u ∃r1.[(P2 u ∃r2.P3)≤.8] u ∃r1.∃r2.α3

To handle this we use a new rule R∼.

Condition: applies to concept definitions of the form α
.
= Ĉ1 u . . .u Ĉn ∈ Tτ if there

is an index i ∈ {1, . . . , n} with Ĉi = D∼t and D 6∈ N0
def .

Action: its application replaces the conjunct Ĉi by (ED)∼t, and adds a new definition
ED

.
= D to TEL, being ED a fresh concept name in N0

def .

Thus, the normalization will yield the τEL(deg) TBox T̂ = (Tτ , TEL) consisting of the
following two sets of definitions:

α1
.
= P1 u ∃r1.β4 u ∃r1.β1

β4
.
= E≤.8

β1
.
= ∃r2.α3

α2
.
= P2 u P4 u ∃s.β2

β2
.
= P4 u P3

α3
.
= P4
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and TEL the following set:

E
.
= P2 u ∃r2.P3

Notice that in order to trigger the application of R∼, the concerned existential re-
striction in the definition of α1 had to be first decomposed by applying R∃. With this
in mind, we define the normalization procedure for acyclic τEL(deg) TBoxes as the
execution of the following steps.

1. Apply the rule R∃ exhaustively to Tτ .

2. Apply the rule R∼ to Tτ as long as possible.

3. Normalize the augmented EL TBox TEL.

4. Apply the rule Rα exhaustively to Tτ .

The applications of R∃ and Rα to Tτ modify only Tτ , while no new threshold expres-
sions are introduced. Regarding the second step, as D∼t is such that D is defined over
N0
def ∪ Nprim, the threshold concept (ED)∼t introduced by the application of the rule

R∼t is still defined over N0
def ∪ Nprim. Furthermore, adding ED

.
= D to TEL does not

introduce any concept name α ∈ Nτdef in definitions of TEL. Finally, the normalization of
TEL only transforms the structure of TEL. Therefore, T̂ ′ satisfies the restrictions required
for τEL(m) TBoxes in Definition 6.6, and it is easy to see that no cycles are introduced
in it.
Now, after the first step has been executed, all occurrences of threshold concepts in
Tτ appear as top-level atoms on its concept definitions. Consequently, the application of
R∼ in the second step will cover all of them. Moreover, the normalization of TEL before
the final step guarantees that R∃ need not be applied in case Rα applies to a defined
concept in TEL. Overall, this implies that the resulting TBox T̂ ′ is normalized.
Last, one can see that the rule R∼ is applied at most one time for each threshold

concept D∼t occurring in a definition of the initial TBox Tτ . Consequently, at most
polynomially many new definitions of the form ED

.
= D are added to TEL. Thus,

using the same arguments given for the application of R∃ and Rα in the EL setting,
the devised normalization procedure runs in polynomial time and yields a normalized
acyclic τEL(deg) TBox T̂ ′ of size polynomial in the size of T̂ .
We now show that normalization preserves the unfolding of defined concepts.

Lemma 6.25. Let T̂ be an acyclic τEL(deg) TBox and T̂ ′ the τEL(deg) TBox that
results from a single application of a normalization rule. Then, for all defined concepts
α in T̂ , uT̂ (α) = uT̂ ′(α)

Proof. Let R be a normalization rule and β .
= Ĉβ ∈ T̂ the concept definition that R has

been applied to. We use well-founded induction on the partial order induced by →+ on
def(T̂ ). For all defined concepts α in T̂ we distinguish two cases:

• α 6= β. This means that R was not applied to α .
= Ĉα, and consequently α .

= Ĉα ∈
T̂ ′. The top-down recursive application of unfolding through the structure of Ĉα
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with respect to T̂ and T̂ ′ may only result in different concept descriptions if:

uT̂ (α′) 6= uT̂ ′(α
′)

for some symbol α′ occurring in Ĉα that corresponds to a defined concept name in
T̂ . However, α→+ α′ and the application of the induction hypothesis to α′ imply
that this is never the case. Hence, uT̂ (α) = uT̂ ′(α).

• α = β. Let Ĉβ be of the form Ĉ1 u . . . u Ĉn. We analyze the outcome of applying
each of the three possible rules to β .

= Ĉβ :

– R∼: the rule was applied to a conjunct Ĉi such that Ĉi = D∼t and D 6∈ N0
def .

Its application replaces Ĉi by (ED)∼t in Ĉβ , and adds ED
.
= D to T ′EL where

ED is a fresh concept name. By definition of unfolding we have:

uT̂ (β) =
i−1l

j=1

uT̂ (Ĉj) u [uT̂ (D)]∼t u
nl

j=i+1

uT̂ (Ĉj)

and,

uT̂ ′(β) =
i−1l

j=1

uT̂ ′(Ĉj) u [uT̂ ′(ED)]∼t u
nl

j=i+1

uT̂ ′(Ĉj)

Applying the same inductive argument used above we obtain uT̂ (Ĉj) =

uT̂ ′(Ĉj) for all j 6= i (likewise for D). Thus, since uT̂ ′(ED) = uT̂ ′(D) it
follows that uT̂ (β) = uT̂ ′(β).

– R∃: the rule has been applied to an atom Ĉi of the form ∃r.D̂ such that
D̂ 6∈ Ndef . Hence, Ĉi is substituted in Ĉβ by ∃r.β1 with β1 being a fresh
concept name and β1

.
= D̂ ∈ T̂ ′. By definition of unfolding we have:

uT̂ (β) =

i−1l

j=1

uT̂ (Ĉj) u ∃r.uT̂ (D̂) u
nl

j=i+1

uT̂ (Ĉj)

and,

uT̂ ′(β) =
i−1l

j=1

uT̂ ′(Ĉj) u ∃r.uT̂ ′(β1) u
nl

j=i+1

uT̂ ′(Ĉj)

We know that uT̂ ′(β1) = uT̂ ′(D̂). Hence, the same reasoning used for R∼
yields uT̂ (α) = uT̂ ′(α).

– Rα: there is an index 1 ≤ i ≤ n such that Ĉi is of the form β1, and β1
.
= Ĉβ1 ∈

T̂ . The application of Rα to β1 replaces it in Ĉβ with Ĉβ1 . Since β →+ β1,
the application of induction hypothesis yields uT̂ (β1) = uT̂ ′(β1) = uT̂ ′(Ĉβ1).
Again, uT̂ (Ĉj) = uT̂ ′(Ĉj) for all j 6= i, and the rest follows from the definition
of unfolding on β.
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This property is then invariant under any number of rule applications. Therefore, the
following proposition is a direct consequence of Lemma 6.25.

Proposition 6.26. Let T̂ be an acyclic τEL(deg) TBox and T̂ ′ the normal form of T̂ .
For all defined concepts α in T̂ , uT̂ (α) = uT̂ ′(α).

Proposition 6.26 implies that reasoning with respect to an acyclic τEL(deg) TBox T̂
can be reduced to reasoning with respect to its normal form T̂ ′. Therefore, from now
on we only consider normalized TBoxes.
We still require one more transformation. Recall that for acyclic EL TBoxes, the value

of degI(d,C, T ) is defined in terms of applying the basic definition of deg (Chapter 4)
to the unfolding of C in T . Moreover, deg needs to further translate uT (C) into its
reduced form [uT (C)]r. Since uT (C) may result in a concept of exponential size, it is
certainly not a good idea to unfold and then compute the reduced form. To have this
issue handled in a more transparent way by the decision procedures presented in the next
section, we introduce the reduced form for acyclic EL TBoxes. The ideas that follow are
based on the results shown by Küsters in [Küs01].

Definition 6.27. Let T be an acyclic EL TBox and C an EL concept description. Then,
C is reduced with respect to T iff:

• C is reduced according to Küsters’ definition modulovT (i.e., vT is used to identify
redundancies instead of v).

We say that T is in reduced form iff for all α .
= Cα ∈ T the concept Cα is reduced

with respect to T . ♦

The benefit of using these type of TBoxes is that the unfolding of a defined concept
will always result in a reduced concept description.

Lemma 6.28. Let T be a normalized acyclic EL TBox in reduced form. Then, for all
α
.
= Cα the EL concept description uT (α) is reduced.

Proof. We use well-founded induction on →+ over def(T ). Since T is normalized, Cα
has the following structure:

P1 u . . . u Pm u ∃r1.α1 u . . . u ∃rn.αn

Clearly, α →+ αi for all 1 ≤ i ≤ n. Therefore, the application of induction hypothesis
yields that uT (αi) is reduced. Now, since Cα is reduced with respect to T , for all pairs
(∃ri.αi, ∃rj .αj) we have:

• ri 6= rj , or

• αi 6vT αj and αj 6vT αi.
In addition, we know that αi ≡T uT (αi) and αj ≡T uT (αj). This means that having
ri = rj , it will be the case that uT (αi) 6v uT (αj) and uT (αj) 6v uT (αi). Finally, since
uT (α) is the following concept description

P1 u . . . Pm u ∃r1.uT (α1) u . . . u ∃rn.uT (αn)

we can conclude that uT (α) is reduced.
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To translate acyclic EL TBoxes into its reduced form, the algorithm sketched in
[Küs01] (derived from Proposition 6.3.1.) to compute the reduced form of EL con-
cept descriptions comes in handy. By using vT instead of v, it will be able to compute
the reduced form Cr(T ) of a concept C with respect to T . Since vT is decidable in
polynomial time in EL [Baa03], the modified procedure also runs in polynomial time.
Moreover, the concept Cr(T ) satisfies C ≡T Cr(T ).
Based on this we can devise a very simple polynomial time transformation that given

an acyclic EL TBox T outputs and equivalent TBox T ′ in reduced form. The translation
and its correctness are given in the following lemma.

Lemma 6.29. Let T be a normalized acyclic EL TBox. The TBox T ′ obtained from
T by the substitution of α .

= Cα for α .
= (Cα)r(T ) (for all α .

= Cα ∈ T ) satisfies the
following:

1. T and T ′ are equivalent.

2. T ′ is in reduced form.

Proof. 1) We show that every model of T is a model of T ′ and vice versa. Let I be a
model of T , then αI = (Cα)I for all α .

= Cα ∈ T . Since Cα ≡T (Cα)r(T ), this means

that αI =
[
(Cα)r(T )

]I
for all α .

= (Cα)r(T ) ∈ T ′. Hence, I |= T ′.
Conversely, let I ′ be a model of T ′. We take a model I of T such that ∆I = ∆I

′ and
XI = XI

′ , for all X ∈ Nprim ∪NR. Such a model exists because of Proposition 6.3. We
prove that αI = αI

′ for all α .
= Cα ∈ T . The proof goes by induction on the partial

order induced by →+. Since T is normalized, each top-level atom of Cα is of the form
A ∈ Nprim or ∃r.β, where β .

= Cβ ∈ T . Moreover, the set of atoms occurring in (Cα)r(T )

is a subset of the corresponding set for Cα. Therefore, we distinguish two cases for all
top-level atoms At of Cα:

• At occurs in (Cα)r(T ). If At = A, by selection of I we have AI = AI
′ . Otherwise,

At = ∃r.β and α →+ β. The application of induction yields βI = βI
′ and thus

(∃r.β)I = (∃r.β)I
′ . Hence, it is not hard to see that for all d ∈ ∆I , d ∈ αI implies

d ∈ αI′ .

• At only occurs in Cα. There must be a top-level atom At′ in Cα such that At′ vT At
and At′ does occur in (Cα)r(T ). From the previous point we know that (At′)I =
(At′)I

′ . Therefore, if d ∈ (At′)I
′ we also have d ∈ (At′)I and d ∈ AtI . Hence,

d ∈ αI′ implies d ∈ αI .

Thus, we have shown that αI = αI
′ . This implies the following equalities:

αI
′

= αI = (Cα)I = (uT (Cα))I

Then, since I and I ′ have the same interpretation for Nprim ∪ NR, this means that
[uT (Cα)]I = [uT (Cα)]I

′ . Hence, for all α .
= Cα ∈ T we have:

αI
′

= [uT (Cα)]I
′

Consequently, αI′ = (Cα)I
′ and I ′ is a model of T .
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2) Assume that T ′ is not in reduced form. Then, there exists α .
= (Cα)r(T ) ∈ T ′ such

that (Cα)r(T ) is reducible with respect to T ′. This means that there are two top-level
atoms At1 and At2 in (Cα)r(T ) such that At1 vT ′ At2. Since we just have shown that T
and T ′ are equivalent from a model-theoretic point of view, we also have At1 vT At2.
Hence, we obtain a contradiction against the fact that (Cα)r(T ) is reduced with respect
to T . Thus, T ′ is in reduced form.

To sum up, given an acyclic τEL(deg) TBox T̂ = (Tτ , TEL), we have demonstrated
the following along this section:

• T̂ can be normalized in polynomial time into an acyclic TBox T̂ ′ = (T ′τ , T ′EL), such
that reasoning w.r.t. T̂ can be reduced to reasoning w.r.t. T̂ ′.

• The new TBox T ′EL can be translated in polynomial time into an equivalent EL
TBox T ′′EL in reduced form.

• The computation of the reduced form only removes atoms from concept definitions.
Therefore, T ′′EL remains normalized.

Hence, reasoning in τEL(deg) with respect to acyclic TBoxes can be restricted to
normalized acyclic TBoxes in reduced form.

Proposition 6.30. Satisfiability and subsumption on concepts defined in an acyclic
τEL(deg) TBox can be reduced in polynomial time to satisfiability and subsumption on
concepts defined in a normalized acyclic τEL(deg) TBox in reduced form.

6.4.3 Upper bounds

We now provide a PSPACE algorithm to decide satisfiability and subsumption with
respect to an acyclic τEL(deg) TBox T̂ . Note that one can focus on satisfiability of
concepts α and subsumption questions of the form β1 vT̂ β2, where α, β1, β2 ∈ def(T̂ ).
Any concept description Ĉ can be equivalently replaced with a fresh defined concept α

Ĉ
,

by adding the definition α
Ĉ

.
= Ĉ to Tτ .

As explained in Section 6.2, by using unfolding, satisfiability and subsumption with
respect to acyclic τEL(deg) TBoxes can be reduced to reasoning with the empty TBox.
In addition, in Chapter 5 we showed that a concept description of the form Ĉ u ¬D̂ is
satisfiable in τEL(deg) iff there exists an interpretation I such that ĈI \ D̂I 6= ∅ and
|∆I | ≤ s(Ĉ) × s(D̂) (see Lemma 5.6). Hence, given an acyclic τEL(deg) TBox T̂ and
two of its defined concepts α1 and α2: α1 u¬α2 is satisfiable with respect to T̂ iff there
exists an interpretation I over Nprim ∪ NR such that:

• [uT̂ (α1)]I \ [uT̂ (α2)]I 6= ∅, and

• |∆I | ≤ s(uT̂ (α1))× s(uT̂ (α2)).

Now, there is unique way to extend I into a model of T̂ (Proposition 6.11). Therefore,
we obtain the following bounded model property for satisfiability of concepts of the form
α1 u ¬α2 in the presence of acyclic τEL(deg) TBoxes.
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Proposition 6.31. Let T̂ be an acyclic τEL(deg) TBox and α1, α2 two defined concepts
in T̂ . If α1u¬α2 is satisfiable in T̂ , then there exists an interpretation I |= T̂ such that
(α1)I \ (α2)I 6= ∅ and |∆I | ≤ s(uT̂ (α1))× s(uT̂ (α2)).

For the empty terminology |∆I | is polynomial in the size of Ĉ and D̂. This was used
to provide an NP-algorithm for satisfiability of concepts of the form Ĉ u ¬D̂, which
uses non-determinism to guess the whole interpretation I. Therefore, since uT̂ (α1) may
result in a concept description of size exponential in s(T̂ ), the same procedure applied
to uT̂ (α1) or uT̂ (α1) u ¬uT̂ (α2) would give a NEXP-algorithm for concept satisfiability
and non-subsumption with respect to acyclic τEL(deg) TBoxes.
Our aim is to design a PSPACE algorithm that solves these problems. Obviously, such

a procedure cannot store the whole interpretation I. However, the proof of Lemma 5.6
tells us the following:

• I is tree-shaped,

• the depth of the associated description tree TI is bounded by:

rd(uT̂ (α1)) + rd(uT̂ (α2))

• the domain element d0 of I corresponding to the root of TI satisfies:

d0 ∈ [uT̂ (α1) u ¬uT̂ (α2)]I

Fortunately, the depth rd(uT̂ (α1)) + rd(uT̂ (α2)) is always polynomial in s(T̂ ). Thus,
despite its size, it is possible to non-deterministically generate I in a top-down fashion,
while keeping the used space polynomial in s(T̂ ). Let d and b > 0 be natural numbers.
The following procedure is meant to generate all the tree-shaped interpretations I over
Nprim ∪ NR, such that |∆I | ≤ b and the depth of TI is not greater than d:

1: procedure A(d : N, b : binary)
2: b := b− 1 // counts the individual represented by the current call
3: non-deterministically choose a subset P of Nprim
4: if (d 6= 0) and (b 6= 0) then
5: for all r ∈ NR do
6: non-deterministically choose 0 ≤ br ≤ b // br : binary
7: b := b− br
8: for all 1 ≤ i ≤ br do
9: non-deterministically choose 0 ≤ bir ≤ b // bir : binary

10: b := b− bir
11: A(d− 1, bir + 1)
12: end for
13: end for
14: end if
15: end procedure
Note that each recursive call decreases the value of d, which implies that this is a ter-

minating procedure executing at most d nested recursive calls. Moreover, the parameter
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P = {A,B}
br = 2, bs = 1
b1
r = 1, b2

r = 3, b1
s = 0

P = {A}
br = 1
b1
r = 0

P = {B}

P = {}
br = 0, bs = 0

P = {A}
br = 0, bs = 0

ρ : Tρ: v0 : {A,B}

v1 : {A}

v4 : {B}

r

r

v2 : {}

r

v3 : {A}

s

Figure 6.1: A run ρ of A and its induced EL description tree Tρ.

declaration b : binary states that A works with the binary representation of the value b.
As mentioned above, we are dealing with interpretations that may have size exponential
in s(T̂ ), and that is why the use of a binary counter to represent the value of b. Finally,
the set of variables br and bir can be reduced to two variables since they are only used
within the scope of the for loops. Therefore, each run of A uses space polynomial on d
and the number of bits needed to represent b.
The general idea of the procedure is as follows: each recursive call represents an

individual of the domain and the recursion tree lays out the tree-shaped form of an
interpretation. The set P contains the primitive concept names that a domain element
is an instance of, the number br stands for the number of r-successors, and bir means
that the interpretation rooted at the i-th r-successor has at most bir + 1 elements. To
formalize this intuition we define the notion of a run of A.

Definition 6.32. A run ρ of A on (d, b) is a tree of recursive calls T(d,b) such that:

• its root v0 is labeled by the non-deterministic choices P, br for all r ∈ NR, and bir
for all 1 ≤ i ≤ br.

• for all r ∈ NR, there are exactly br successors vr1, . . . , vrbr of v0 such that, the tree
rooted at vri is a run of A on (d− 1, bir + 1). ♦

Figure 6.1 depicts a run ρ of A (left-hand side). Such a run induces the EL description
tree Tρ (right-hand side) with the same structure, where its nodes are labeled with
the corresponding sets P chosen by ρ and the edges with the role names generating
the corresponding recursive call (line 5 in A). Therefore, we say that ρ induces the
interpretation Iρ that has the description tree Tρ.
Conversely, for all tree-shaped interpretations I of size at most b and depth not greater

than d, there is always a run of A describing I.
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Lemma 6.33. Let d ≥ 0 and b > 0 be two natural numbers. For all tree-shaped inter-
pretations I over Nprim∪NR with at most b elements and depth not greater than d, there
exists a run ρ of A on (d, b) such that I = Iρ.

Proof. Let I be a tree-shaped interpretation of depth d(I) such that |∆I | ≤ b and
d(I) ≤ d. We show how to guide a run ρ of A such that Iρ = I. The proof goes by
induction on the number d(I).

Let d0 ∈ ∆I be the root of TI . For all r ∈ NR we denote as r(d0) = {e1, . . . , en}
(n ≥ 0) the set of r-successors of d0 in I. In addition, for an r-successor ei of d0, TI [ei]
denotes the subtree of TI rooted at ei, and Iei the associated interpretation. Then, when
A is invoked on (d, b) it makes the following non-deterministic choices:

• P = `I(d0),

• for all r ∈ NR: br = |r(d0)|,

• for all r ∈ NR and ei ∈ r(d0): bir = |∆Iei | − 1,

• for all r ∈ NR and 1 ≤ i ≤ br, the recursive call A(d − 1, bir + 1) follows a run ρir
such that Iρir = Iei .

Since |∆I | ≤ b and d(I) ≤ d, the first three choices are consistent with the execution of
A. Regarding the last choice, since TI is a tree we know that d(Iei) < d(I). Consequently,
d(Iei) ≤ d− 1 and the induction hypothesis can be applied to obtain the proper run ρir.
Therefore, ρ induces an EL description tree Tρ such that:

• its root v0 is labelled with `I(d0),

• for all r ∈ NR: v0 has exactly |r(d0)| children v1, . . . , v|r(d0)|, each edge (v0, vi)
(1 ≤ i ≤ |r(d0)|) is labelled with r, and the subtree Tρ[vi] rooted at vi in Tρ is
equal to TI [ei].

Thus, we can conclude that Iρ = I.

The previous lemma ensures that, by choosing d as rd(uT̂ (α1)) + rd(uT̂ (α2)) and b as
s(uT̂ (α1))×s(uT̂ (α2)), the set of runs of A on (d, b) covers all the relevant interpretations
to find out if uT̂ (α1)u¬uT̂ (α2) is satisfiable. Therefore, it remains to see how to verify for
each run ρ of A, whether its induced interpretation Iρ fulfills d0 ∈ [uT̂ (α1)u¬uT̂ (α2)]Iρ .
We have already provided an algorithm to do that (Algorithm 2 in Chapter 3), which
is based on Theorem 3.8. Nevertheless, on the one hand it is not immediate to link
Algorithm 2 to the way A generates Iρ; and on the other hand due to the possible
exponential size of uT̂ (α1) and uT̂ (α2), special care would be required in doing so.
To address these concerns, we go back to the initial formulation of our problem: search

for a model J of T̂ such that (α1u¬α2)J 6= ∅. Contrary to models of T̂ , interpretations
induced by runs of A do not interpret defined concepts in T̂ . However, there is a unique
way to extend each of them into a model of T̂ (see Proposition 6.11). Hence, since Iρ is
tree-shaped, it is possible to compute such an extension in a bottom-up manner. From
now on we will use indistinctively Iρ to identify both, a primitive interpretation and its
unique extension into a model of T̂ .
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The idea is then to compute for all α .
= Ĉα ∈ T̂ , whether d0 ∈ αIρ . To this end, we

modify procedure A such that each run ρ additionally computes a set Ex ⊆ Ndef with
the following meaning:

Ex := {α | α .
= Ĉα ∈ T̂ and d0 ∈ αIρ}

The special forms introduced in Section 6.4.2 for acyclic TBoxes are of great help in
computing Ex. In particular, the normal form of T̂ provides the following shape for Ĉα:

P̂1 u . . . u P̂n u ∃r1.α1 u . . . u ∃rm.αm

Consequently for all d ∈ ∆Iρ , d ∈ αIρ iff:

1. d ∈ (P̂i)
Iρ for all 1 ≤ i ≤ n, and

2. for all 1 ≤ i ≤ m, there exists di ∈ ∆Iρ such that (d, di) ∈ (ri)
Iρ and di ∈ (αi)

Iρ .

The computation of Ex will be based on checking these two conditions for d0. If P̂i is of
the form A ∈ Nprim, verifying whether d0 ∈ AIρ is simple since Iρ already contains that
information (the non-deterministic choice in line 3). To check whether d0 ∈ (E∼t)

Iρ , we
further extend A to compute for all runs ρ an assignment D : def(TEL) → [0, 1] such
that:

D(E) := degIρ(d0, uTEL(E))

Once D is computed for d0, it is immediate to verify whether d0 ∈ (E∼t)
Iρ . Regarding

Condition 2, as explained before the successors e of d0 in Iρ are the roots of the interpre-
tations induced by runs corresponding to the recursive calls triggered by ρ. Hence, the
sets Exe computed by such calls provide the necessary information to determine whether
d0 ∈ (∃ri.αi)Iρ for all 1 ≤ i ≤ m. However, since d0 may have exponentially many direct
successors in Iρ, a PSPACE procedure cannot store all the corresponding sets Exe. To
deal with this, A will compute a relation of the form z ⊆ (NR × def(T̂ )) ∪ (ε × Nprim)
such that: (r, α) ∈ z iff there is e ∈ ∆Iρ satisfying (d0, e) ∈ rIρ and α ∈ Exe. In this way
we can keep the relevant information needed to verify whether d0 ∈ (∃ri.αi)Iρ , while
using polynomial space.
Putting all these ideas together, we transform A into the following function:

1: function A(d : integer, b : binary)
2: b := b− 1
3: non-deterministically choose a subset P of Nprim
4: initialize v and z
5: if (d 6= 0) and(b 6= 0) then
6: for all r ∈ NR do
7: non-deterministically choose 0 ≤ br :≤ b
8: b := b− br
9: for all 1 ≤ i ≤ br do

10: non-deterministically choose 0 ≤ bir ≤ b
11: b := b− bir
12: (Exir, D

i
r) :=A(d− 1, bir + 1)

13: update v
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14: update z
15: end for
16: end for
17: end if
18: D := SUBdeg(v)
19: Ex := SUBex(D, z)
20: return (Ex, D)
21: end function
The subroutines SUBdeg and SUBex invoked in lines 18 and 19 correspond to the

computation of the assignment D and the set Ex, respectively. The execution of line 14
updates the relation z using the content of Exir after each recursive call has been executed.
Regarding the symbol v in line 13, as we explain below it represents a table used to help
the computation of D.
Let us now move on to the details of the computation of Ex and D. We start with the

computation of D, and afterwards explain how to compute Ex.
Due to the normal form of T̂ , the EL concept E in E∼t is a defined concept in TEL.

Therefore, by Definition 6.9 for all d ∈ ∆Iρ :

d ∈ (E∼t)
Iρ iff degIρ(d, uTEL(E)) ∼ t

Coming back to Chapter 4 we know that degIρ(d, uTEL(E)) is the maximal value of
hw(v0) among all ptghs h ∈ H(TuTEL (E), GIρ , d), where v0 is the root of the description
tree TuTEL (E). Note that we use directly TuTEL (E), since being TEL in reduced form
implies that uTEL(E) is reduced (see Lemma 6.28). Now, E is defined in TEL as follows:

E
.
= P1 u . . . u Pm u ∃r1.E1 u . . . u ∃rn.En

This gives us the following information regarding TuTEL (E):

• the label of v0 in TuTEL (E) is the set {P1, . . . , Pm},

• v0 has exactly n (n ≥ 0) successors v1, . . . , vn in TuTEL (E),

• for all 1 ≤ i ≤ n, the subtree TuTEL (E)[vi] of TuTEL (E) rooted at vi is exactly the
description tree associated to uTEL(Ei).

Additionally, the computation of hw(v0) is based on the following expression:

hw(v0) =


1 if m+ n = 0

|{P1,...,Pm} ∩ `Iρ (d)|+
∑

1≤i≤k
hw(wi)

m+n otherwise.

where w1, . . . , wk are the children of v0 in TuTEL (E) mapped by h. Now, regarding a ptgh
h yielding a maximal value for hw(v0) we observe the following:

• if (d, e) ∈ (ri)
Iρ for some e ∈ ∆Iρ , then we can assume that vi ∈ dom(h).
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• Let h(vi) = ei where ei ∈ ∆Iρ . Then, hw(vi) = degIρ(ei, uTEL(Ei)). This is a
consequence of vi being the root of the description tree corresponding to uTEL(Ei),
and the fact that hw(v0) is maximal.

Therefore, degIρ(d, uTEL(E)) can be expressed as:

|{P1, . . . , Pm} ∩ `Iρ(d)|+
n∑
i=1

max{degIρ(e, uTEL(Ei)) | (d, e) ∈ (ri)
Iρ}

m+ n
(6.12)

Thus, knowing the values degIρ(e, uTEL(F )) for all successors e of d in Iρ and all
F ∈ {E1, . . . , En}, it is straightforward to compute degIρ(d, uTEL(E)). Therefore, sim-
ilar to the computation of Ex the assignment D for d0 can be computed by using all
the assignments D recursively computed for all successors of d0 in Iρ. Once more,
the problem related to the possible exponentially many successors of d0 needs to be
addressed. Here is where the aforementioned table v comes into play. It is defined
as v : (NR × def(TEL)) ∪ (ε × Nprim) → [0, 1] and each entry v[r, E] stores the value
max{De(E) | (d0, e) ∈ rIρ}, where De is the assignment D for e, and v[ε, P ] = 1 iff
P ∈ P (0 otherwise). The following fragment of pseudo-code updates v within a run of
A:

1: v[r, E] = 0 for all (r, E) ∈ (NR × def(TEL)) ∪ (ε× Nprim) // Initialization
2: v[ε, P ] = 1 iff P ∈ P

3:
...

4: Di
r := A(d− 1, bir + 1)

5: for all (E .
= CE ∈ TEL) do

6: if Di
r(E) > v[r, E] then

7: v[r, E] := Di
r(E)

8: end if
9: end for

Here, Di
r stands for the assignment D corresponding to the root element of the inter-

pretation induced by the recursive call. In other words, the i-th r-successor of d0 in Iρ.
After all the recursive calls have been executed, v is used to compute D as described in
the following subroutine:

procedure SUBdeg(v : (NR × def(TEL)) ∪ (ε× Nprim)→ [0, 1])
for all (E .

= CE ∈ TEL) do
c := |{P | P ∈ tl(CE) and v[ε, P ] = 1}|
for all ∃r.E′ ∈ tl(CE) do

c := c+ v[r, E′]
end for
D(E) := c

|tl(CE)|
end for
return D

end procedure
It remains to see the details of the computation of Ex. The updating of the relation z

in A is carried out as follows:
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1: z := {(ε, P ) | P ∈ P} // Initialization

2:
...

3: Exir := A(d− 1, bir + 1)
4: for all (α .

= Ĉα ∈ T̂ ) do
5: if α ∈ Exir then
6: z := z ∪ {(r, α)}
7: end if
8: end for
Then, using D and z Conditions 1 and 2 can be verified, and Ex can be computed in

the following way:

procedure SUBex(D : def(TEL)→ [0, 1], z ⊆ (NR × def(T̂ )) ∪ (ε× Nprim))
s := ∅
for all (α .

= Ĉα ∈ T̂ ) do
if ([P ∈ tl(Ĉα)]⇒ (ε, P ) ∈ z) and ([E∼t ∈ tl(Ĉα)]⇒ D(E) ∼ t) and

([∃r.β ∈ tl(Ĉα)]⇒ (r, β) ∈ z) then
s := s ∪ {α}

end if
end for
return s

end procedure
Thus, using the function A we define our non-deterministic algorithm to decide satis-

fiability of concepts of the form α1 u ¬α2 with respect to acyclic τEL(deg) TBoxes.

Algorithm 5 Satisfiability of α1 u ¬α2 w.r.t. acyclic τEL(deg) TBoxes.

Input: An acyclic τEL(deg) TBox T̂ and two defined concepts α1, α2 in T̂ .
Output: “yes”, if α1 u ¬α2 is satisfiable in T̂ , “no” otherwise.

1: b := s(uT̂ (α1))× s(uT̂ (α2)) // b is stored in binary
2: d := rd(uT̂ (α1)) + rd(uT̂ (α2))
3: (Ex, D) := A(d, b)
4: if α1 ∈ Ex and α2 6∈ Ex then
5: return “yes”
6: end if
7: return “no”

Since A terminates, this implies that Algorithm 5 terminates as well. In the following,
we show that Algorithm 5 is sound and complete. Let us start by showing that A
computes the right values for D and Ex.

Lemma 6.34. Let d ≥ 0 and b > 0 be two natural numbers, and ρ be a run of A on
(d, b). Then,

1. D(E) = degIρ(d0, uTEL(E)), for all E .
= CE ∈ TEL.

2. Ex = {α | α .
= Ĉα ∈ T̂ and d0 ∈ αIρ}
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Proof. Let d(Iρ) denote the depth of TIρ . We prove our claims by induction on d(Iρ).
To start, we fix a role name r ∈ NR and define r(d0) = {e1, . . . , en} to be the set of
r-successors of d0 in Iρ (with n ≥ 0). By construction of TIρ , ρ does exactly n recursive
calls A(d − 1, bir) (1 ≤ i ≤ n). Let ρir denote the run corresponding to the i-th call.
Then, the interpretation Iρir induced by ρir is the one having the description tree TIρ [ei],
i.e., the subtree of TIρ rooted at ei.

The tree shape of Iρ implies that d(Iρir) < d(Iρ). Therefore, induction hypothesis can
be applied to obtain:

Di
r(E) = deg

I
ρir (ei, uTEL(E))

Exir = {α | α .
= Ĉα ∈ T̂ and ei ∈ α

I
ρir }

The same reasoning applies for all the other role names s ∈ NR. Note that since Iρir is
a subtree of Iρ, those two equalities are also valid for Iρ, i.e.:

Di
r(E) = degIρ(ei, uTEL(E))

Exir = {α | α .
= Ĉα ∈ T̂ and ei ∈ αIρ}

Therefore, after all the recursive calls have been executed and the values in table v and
relation z have been fully updated, we have for all (r, E) ∈ NR × def(TEL):

v[r, E] = max{degIρ(e, uTEL(E)) | (d0, e) ∈ rIρ} (6.13)

and,
z = {(r, α) | e ∈ ∆Iρ , (d0, e) ∈ rIρ and e ∈ αIρ} (6.14)

Looking at the subroutine SUBdeg, for all E .
= CE ∈ TEL the value D(E) is computed

by the following expression:

D(E) =

|tl(CE) ∩ P|+
∑

∃r.E′∈tl(CE)

v[r, E′]

tl(CE)

Now, by construction of Iρ we have that `Iρ(d0) = P. Hence, replacing v[r, E′] by the
right-hand side of the equality in (6.13) we obtain the expression in (6.12). Consequently,
we have shown that:

D(E) = degIρ(d0, uTEL(E))

Last, let α .
= Ĉα ∈ T̂ with Ĉα of the form:

P̂1 u . . . u P̂n u ∃r1.α1 u . . . u ∃rm.αm

According to SUBex, α ∈ Ex iff:

• for all 1 ≤ i ≤ n: if P̂i is of the form E∼t then D(E) ∼ t, otherwise P̂i ∈ P, and

• (rj , αj) ∈ z, for all 1 ≤ j ≤ m.

Since `Iρ(d0) = P and D(E) = degIρ(d0, uTEL(E)), the first statement is equivalent
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to have d0 ∈ (P̂i)
Iρ (1 ≤ i ≤ n). Furthermore, (6.14) makes the second statement

equivalent to having d0 ∈ (∃rj .αj)Iρ (1 ≤ j ≤ m). Thus, α ∈ Ex iff d0 ∈ αIρ .
Note that the base case for the induction is already contained in the proof.

Using Lemma 6.34 we now prove that Algorithm 5 is sound and complete.

Lemma 6.35. Let T̂ be an acyclic τEL(deg) TBox and α1, α2 two defined concepts in
T̂ . Then,

Algorithm 5 answers “yes” iff α1 u ¬α2 is satisfiable in T̂ .

Proof. (⇒) Suppose that the algorithm gives a positive answer and let ρ be the run of
function A that leads to it. Then, we can talk about the interpretation Iρ induced by
ρ. The “yes” answer means that for ρ, α1 ∈ Ex and α2 6∈ Ex. Then, the application of
Lemma 6.34 yields:

d0 ∈ (α1 u ¬α2)Iρ

with d0 ∈ ∆Iρ . Hence, α1 u ¬α2 is satisfiable with respect to T̂ .
(⇐) Assume that α1 u ¬α2 is satisfiable with respect to T̂ . This means that there

exists an interpretation I such that I |= T̂ and (α1u¬α2)I 6= ∅. By Proposition 6.31 and
its subsequent remarks one can assume that I is tree-shaped and satisfies the following
properties:

1. ∆I has at most s(uT̂ (α1))× s(uT̂ (α2)) elements,

2. the depth of TI is not greater than rd(uT̂ (α1)) + rd(uT̂ (α2)), and

3. its root element d0 satisfies: d0 ∈ (α1 u ¬α2)I .

The selection of d and b in Algorithm 5 and the application of Lemma 6.33 guarantee the
existence of a run ρ of A on (d, b) generating the restriction of I to Nprim ∪NR. Hence,
the application of Lemma 6.34 implies that the conditional in line 4 must evaluate to
true for such a run ρ. Thus, Algorithm 5 answers “yes”.

Algorithm 5 uses space polynomial in the size of T̂ to store the binary representation of
b. Furthermore, z and v are also stored within polynomial space, and the two subroutines
run in polynomial time. Therefore, since each run ρ of A on (d, b) does at most d many
nested recursive calls, ρ uses space polynomial in s(T̂ ). In addition, it is easy to see that
both b and d can be computed in time polynomial in s(T̂ ). Thus, Algorithm 5 is a non-
deterministic polynomial space decision procedure for satisfiability of concepts of the
form α1 u ¬α2 with respect to acyclic τEL(deg) TBoxes. This means that satisfiability
and non-subsumption are in NPSPACE. Then, by Savitch’s theorem [Sav70] and since
PSPACE is closed under complement, we obtain the following results.

Lemma 6.36. In τEL(deg), satisfiability and subsumption are in PSPACE, with respect
to acyclic τEL(deg) TBoxes.



6.4 Reasoning with respect to acyclic τEL(deg) TBoxes 81

6.4.4 Reasoning with acyclic knowledge bases

We show in this section that satisfiability and subsumption are still decidable in PSPACE
with respect to acyclic knowledge bases. Furthermore, we also consider the consistency
and the instance problem. Let K = (T̂ ,A) be an acyclic τEL(deg) knowledge base:

• K is consistent iff there is an interpretation I such that I |= K.

Additionally, let a ∈ NI be an individual name and α a defined concept in T̂ :

• a is an instance of α with respect to K iff for all models I of K it holds that
aI ∈ αI .

Without loss of generality, we can restrict our attention to the consistency problem
for KBs of the form (T̂ ,A∪{¬α(a)}), since all the other problems can be reduced to it.

Proposition 6.37. Let K = (T̂ ,A) be an acyclic τEL(deg) KB, α, α1 and α2 defined
concepts in T̂ and a ∈ NI. Then,

1. α is satisfiable with respect to K iff (T̂ ,A ∪ {α(b)}) is consistent, where b is an
individual name not occurring in A.

2. α1 is subsumed by α2 with respect to K (in symbols α1 vK α2) iff the knowledge
base (T̂ ,A ∪ {α1(b),¬α2(b)}) is inconsistent, where b is an individual name not
occurring in A.

3. a is an instance of α in K (in symbols K |= α(a)) iff (T̂ ,A ∪ {¬α(a)}) is not
consistent.

Further, since T̂ is acyclic, by using unfolding we can again get rid of the TBox and
reduce reasoning to consistency with respect to the empty terminology. The unfolding
of a τEL(deg) ABox A with respect to T̂ is defined as follows:

uT̂ (A) :=
⋃

α(a)∈A
a∈Ind(A)

{[uT̂ (α)](a)} ∪
⋃

r(a,b)∈A
a,b∈Ind(A)

{r(a, b)}

Proposition 6.38. Let K = (T̂ ,A) be an acyclic τEL(deg) KB, α a defined concept in
T̂ and a ∈ NI. (T̂ ,A ∪ {¬α(a)}) is consistent iff uT̂ (A) ∪ {[¬uT̂ (α)](a)} is consistent.

In what follows, we show how to reuse the idea of Algorithm 5 to decide consistency of
uT̂ (A)∪{[¬uT̂ (α)](a)}. Lemma 5.16 tells us that if uT̂ (A)∪{[¬uT̂ (α)](a)} is consistent,
then it has a model J of the following form,

A
. . .

(a1)J

(a2)
J

(ap)J

Ia2

Ia1

Iap
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where Ind(A) = {a1, a2, . . . , ap} and Ia1 , Ia2 , . . . , Iap are tree-shaped interpretations.
The inner area of the diagram consists of the satisfaction of the role assertions in A,
i.e., (aJ , bJ ) ∈ rJ iff r(a, b) ∈ A. Additionally, Lemma 5.14 provides an upper bound
for the size of these tree-shaped interpretations. We will later talk about how big this
bound could be, but for the moment let us focus in how to reuse Algorithm 5.
To start, it is clear that by choosing the appropriate values for d and b, the interpre-

tations Ia can be independently generated using the function A. It is important to keep
in mind that aIa is the root of Ia. Consequently, a run ρa of A inducing Ia will compute
two sets Exa and Da with the following meaning:

Da(E) = degIa(aIa , uTEL(E)), for all E .
= CE ∈ TEL

Exa = {β | β .
= Ĉβ ∈ T̂ and aIa ∈ βIa}

Recall that technically Ia (as generated by A) only interprets symbols from Nprim∪NR,
but when writing βIa we meant its unique extension to a model of T̂ . The veracity of
the previous two equalities has been shown in Lemma 6.34. Now, the construction of
the model J depicted above combines all those interpretations in the following way (see
Lemma 5.15):

• ∆J =
⋃

a∈Ind(A)

∆Ia ,

• AJ =
⋃

a∈Ind(A)

AIa for all A ∈ Nprim,

• rJ =
⋃

a∈Ind(A)

rIa ∪ {(aIa , bIb) | r(a, b) ∈ A} for all r ∈ NR, and

• aJ = aIa , for all a ∈ Ind(A).

This means that given an individual a ∈ Ind(A), a defined concept β and an element
d ∈ ∆Ia , it is not necessarily the case that dJ ∈ βJ iff β ∈ Exd (similarly for the
membership degrees and the assignment Dd). The reason is that the role assertions
between individual names are used to build J , but they are not taken into account by
ρa to compute Exd and Dd. Fortunately, this could only be the case for the domain
elements aJ = aIa corresponding to the individual names of A. This is a consequence of
something that we have already observed in Chapter 5: for all a ∈ Ind(A) and d ∈ ∆Ia

such that d 6= aIa , no path in GJ starting at d reaches a domain element bJ (b ∈ Ind(A)).
As a result we obtain the following:

degJ (d, uT̂ (E)) = degIa(d, uT̂ (E)), for all E .
= CE ∈ TEL

d ∈ βJ iff d ∈ βIa , for all β .
= Ĉβ ∈ T̂

Therefore, if we can compute the correct content/values of Exa and Da for the unique
extension of J satisfying T̂ , it will be possible to verify whether J satisfies uT̂ (A) ∪
{[¬uT̂ (α)](a)} (as it is done for subsumption in the previous section). There are two
obstacles that we need to overcome. The first one is that Exa and Da, as computed by
ρa, do not contain enough information to obtain the ones corresponding to J .
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Example 6.39. Let a1, a2 ∈ Ind(A) and r(a1, a2) ∈ A. Suppose that a run ρa1 of A
representing Ia1 yields Da1(E) = t1 for some E .

= CE ∈ TEL. Likewise, Da2(E′) = t2
for some run ρa2 representing Ia2 and E′ .= CE′ ∈ TEL. In addition, there is a top-level
atom in CE of the form ∃r.E′.

As explained above, the value of Da2(E′) has not been considered in the computation
of Da1(E), and it may well be the case that it actually affects Da1(E) in the big model
J , i.e., degJ ((a1)J , uT̂ (E)) > t1. This could happen if for all r-successors d of a1 in Ia1 ,
we have that degIa1 (d, uT̂ (E′)) < t2. Clearly, this is not something that can be inferred
from Da1 , but from the table v computed for a1 by ρa1 .

Similarly, assume that β 6∈ Exa1 for some β .
= Ĉβ ∈ Tτ . This means that aIa 6∈ βIa .

It could happen that a2 satisfies properties in J that would make (a1)J ∈ βJ . Then,
we would need to look into the relation z computed for a1 by ρa1 , to discern such a
change. ♦

To deal with that, we rearrange the structure of function A such that it returns the pair
(z, v) instead of (Ex, D). The following sketches how to modify A accordingly.

1: function A(d : integer, b : binary)

2:
...

3: initialize v and z

4:
...

5: (zir, v
i
r) :=A(d− 1, bir + 1)

6: Di
r := SUBdeg(vir)

7: Exir := SUBex(Di
r, z

i
r)

8: update v
9: update z

10:
...

11: return (z, v)
12: end function
Note that in the previous version of A, the computation of Di

r and Exir are the last
operations executed inside the recursive call A(d− 1, bir + 1), and v, z are updated right
away after that. This order of actions is kept in the new definition given above. Since
the computation of Di

r and Exir only requires of vir and zir, and these are returned by A,
the new modifications preserve the properties of A.
The next step is to recompute za and va for all a ∈ Ind(A) using the information

provided by the role assertions in A. Following Example 6.39, since bJ is related to aJ

by the role name r, this means that va and za must be updated with respect to r, Exb
and Db. Obviously, changes in va and za should be propagated to the individuals that a
is related to, and so on. The function A can cope with such propagation in a bottom-up
form, because it is computing a tree-shaped structure. However, this is no longer the
case for the individuals in A, since role assertions can define cycles involving them.
To solve this we appeal to the acyclic nature of T̂τ and TEL. It allows to traverse the

structure of any defined concept (bottom-up) based on the partial order � induced by
→+ on def(T̂ ). Note that now we limit our attention to the fragment of J corresponding
to the role assertions in A, which is part of the input. Therefore, provided that (za, va)
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has been computed for all a ∈ Ind(A), the following subroutine updates all those pairs
with respect to the combined interpretation J .
1: procedure Update( )
2: compute Da := SUBdeg(va) // for all a ∈ Ind(A)
3: let {E1, . . . , En} be a post-order of � (induced by →+ on def(TEL))
4: for all 1 ≤ i ≤ n do
5: for all r(a, b) ∈ A do
6: if Db(Ei) > va[r, Ei] then
7: va[r, Ei] := Db(Ei)
8: end if
9: end for

10: re-compute Da // for all a ∈ Ind(A)
11: end for
12: compute Exa := SUBex(Da, za) // for all a ∈ Ind(A)
13: let {β1, . . . , βn} be a post-order of � on def(T̂ )
14: for all 1 ≤ i ≤ n do
15: for all r(a, b) ∈ A do
16: if βi ∈ Exb then
17: za := za ∪ {(r, βi)}
18: end if
19: end for
20: re-compute Exa // for all a ∈ Ind(A)
21: end for
22: end procedure
Let us prove that Update does what we have claimed.

Lemma 6.40. For all a ∈ Ind(A), let ρa be a run of A and Ia its induced interpretation.
Moreover, based on these interpretations let J be the interpretation that results from the
combination presented in Lemma 5.15. Then,

1. Da(E) = degJ (aJ , uTEL(E)), for all E .
= CE ∈ TEL.

2. Exa = {β | β .
= Ĉβ ∈ T̂ and aJ ∈ βJ }

Proof. We give the proof for the assignments Da. The case for Exa can be done using
the same idea and Lemma 6.34. To differentiate the final assignment Da from the initial
one computed by ρa, we denote the latter as D0

a (likewise for va and v0
a). We show the

claim by well-founded induction on the partial order �.
Let a ∈ Ind(A) and E .

= CE ∈ TEL. Since TEL is normalized, the concept description
CE has the following structure:

P1 u . . . u Pn u ∃r1.E1 u . . . u ∃rm.Em

Clearly, when m = 0 the value degJ (aJ , uTEL(E)) does not depend on any successor of
aJ . Moreover, by construction of J we know that aJ ∈ (Pi)

J iff aIa ∈ (Pi)
Ia for all

1 ≤ i ≤ n. This implies that:

degJ (aJ , uTEL(E)) = degIa(aIa , uTEL(E))
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Then, by Lemma 6.34 we obtain that:

D0
a(E) = degJ (aJ , uTEL(E))

Looking at SUBdeg one can see that the computation of D0
a(E) depends only on the

values v0
a[ε, P ]. Furthermore, it is easy to see that those values are never changed by a

run of Update. Hence, va[ε, P ] = v0
a[ε, P ] and Da(E) = D0

a(E). Thus, Da(E) is the
right number.

Now, to show the claim for m > 0 we start by making some observations for all
b ∈ Ind(A). Let F be a defined concept in TEL:

• By Lemma 6.34, the initial table v0
b satisfies the following:

v0
b [r, F ] = max{degIb(d, uTEL(F )) | d ∈ ∆Ib and (bIb , d) ∈ rIb}

As explained above, since d 6= bIb it further satisfies:

v0
b [r, F ] = max{degJ (d, uTEL(F )) | d ∈ ∆Ib and (bIb , d) ∈ rIb} (6.15)

Additionally, let j be the index of F in the post-order created in line 3. Then,

• the value of vb[r, F ] only changes at the jth iteration of the outer-loop in line 4.

• let k be the largest index of F ′ among all the top-level atoms of the form ∃r.F ′ in
the definition of F . Then, taking into account the previous statement, the value
of Db(F ) never changes after the kth iteration of the outer-loop.

• since F ′ � F , this means that j > k. Consequently, the final value of Db(F ) is
computed before the iteration corresponding to F .

Coming back to the defined concept E, we know that E � Ej for all 1 ≤ j ≤ m.
Then, the application of induction hypothesis yields:

Da(Ej) = degJ (aJ , uTEL(Ej)) (6.16)

Moreover, since at the moment of updating va[r, Ej ] the value of Db(Ej) is the one in
(6.16) for all b ∈ Ind(A), using (6.15) we obtain:

va[r, Ej ] = max{degJ (d, uTEL(Ej)) | d ∈ ∆J and (aJ , d) ∈ rJ }

Thus, by the same arguments given in Lemma 6.34 it follows:

Da(E) = degJ (aJ , uTEL(E))

By the previous lemma, once (Exa, Da) has been computed by Update for all a ∈
Ind(A), it is easy to verify whether J satisfies A ∪ {¬α(a)}. Therefore, it remains to
make sure that enough candidates J are considered to decide the satisfiability status of
uT̂ (A) ∪ {[¬uT̂ (α)](a)}. This relies on estimating the appropriate values for d and b.
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• Let mrd(A) be the maximal role depth of a concept D̂ occurring in an ABox A,
i.e.,

mrd(A) := max{rd(D̂) | D̂(a) ∈ A}

Coming back to Chapter 5, the construction described in Lemma 5.16 to obtain a
bounded model J of A∪{¬Ĉ(a)}, uses Lemma 5.14 to obtain the interpretations
Ia for all a ∈ Ind(A). Basically, Ia is built by extending the description tree of
A(a) with canonical interpretations representing threshold concepts that either
occur in A or are sub-descriptions of Ĉ. Hence, it is not hard to see that the depth
d(Ia) of Ia can be bounded by:

d(Ia) ≤ mrd(A(a)) + rd(Ĉ)

In the present context this means that da can be chosen as:

mrd(uT̂ (A(a))) + rd(uT̂ (α))

• By Lemma 5.16 we have an upper-bound for |∆Ia |, namely,

|∆Ia | ≤ s(A(a))× [s(Ĉ)]u

where u = |sub(Ĉ)|. Translating this bound to our current setting, we obtain:

|∆Ia | ≤ s(uT̂ (A(a)))× [s(uT̂ (α))]u
∗

with u∗ now being |sub(uT̂ (α))|.

Putting all the given arguments together, we devise Algorithm 6 as a non-deterministic
procedure to decide consistency of (T̂ ,A ∪ {¬α(a)}). The following lemma shows that
it is correct.

Lemma 6.41. Let K = (T̂ ,A) be an acyclic τEL(deg) KB, α a defined concept in T̂
and a ∈ Ind(A). Then,

Algorithm 6 answers “yes” iff (T̂ ,A ∪ {¬α(a)}) is consistent.

Proof. (⇒) Suppose that the algorithm gives a positive answer, and for all a ∈ Ind(A)
let ρa be the run of A that leads to it. Then, we can talk about the interpretation Ia
induced by ρa. Now, let J be the interpretation that results from the combination of all
the fragments Ia and the role assertions occurring in A (as done in Lemma 5.15). A “yes”
answer implies that the for loop described between lines 7 and 13 never falsifies β ∈ Exb
for all concept assertions β(b) ∈ A. By Lemma 6.40, this means that the extension of J
satisfying T̂ is also a model of A.

In addition, the conditional in line 14 must evaluate to true. Consequently, for the
same reasons explained above, we obtain that aJ 6∈ αJ . Thus, (T̂ ,A ∪ {¬α(a)}) is
consistent.

(⇐) Conversely, assume that (T̂ ,A∪{¬α(a)}) is consistent. This means that there is
an interpretation J |= K such that aJ 6∈ αJ . By Proposition 6.38 and Lemma 5.16, one
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can assume that J is of the form described in Lemma 5.15. Therefore, for all a ∈ Ind(A)
the corresponding interpretation Ia is tree-shaped and satisfies:

• d(Ia) ≤ mrd(uT̂ (A)) + rd(uT̂ (α)), and

• |∆Ia | ≤ s(uT̂ (A))× [s(uT̂ (α))]u
∗ (note that s(uT̂ (A(a))) ≤ s(uT̂ (A))).

By the selection of d and b in Algorithm 6 and an application of Lemma 6.33, there
is always a run ρa of A generating Ia for all a ∈ Ind(A). Then, by Lemma 6.40, after
executing Update none of the subsequent conditionals could evaluate to false. Thus,
the algorithm answers “yes”.

Algorithm 6 Consistency of (T̂ ,A ∪ {¬α(a)}).

Input: An acyclic KB (T̂ ,A), a defined concept α in T̂ and a ∈ NI.
Output: “yes”, if (T̂ ,A ∪ {¬α(a)}) is consistent, “no” otherwise.

1: b := s(uT̂ (A))× [s(uT̂ (α))]u
∗

// b is represented in binary
2: d := mrd(uT̂ (A)) + rd(uT̂ (α))
3: for all b ∈ Ind(A) do
4: (zb, vb) := A(d, b)
5: end for
6: Update( )
7: for all b ∈ Ind(A) do
8: for all β(b) ∈ A do
9: if β 6∈ Exb then

10: return “no”
11: end if
12: end for
13: end for
14: if α 6∈ Exa then
15: return “yes”
16: end if
17: return “no”

Regarding the computational complexity of Algorithm 6, one can see that the value of
d is a polynomial in the size of K. Furthermore, since there are polynomially many indi-
vidual names, this means that any run of the algorithm uses polynomial space (including
the execution of Update), except maybe for the number of bits needed to represent b.
Indeed, the expression that calculates b is exponential in u∗. To give a preliminary
approximation of how big b could be, we observe that due to unfolding we may end up
with the following worst-case lower bounds:

2s(T̂ ) ≤ s(uT̂ (A)) and 2s(T̂ ) ≤ s(uT̂ (α))

In particular, u∗ corresponds to the number of sub-descriptions of uT̂ (α). Hence, in view
of the lower bound for the size of uT̂ (α) one might think that the following lower bound
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also holds:
22s(T̂ ) ≤ [s(uT̂ (α))]u

∗
(6.17)

Therefore, in the worst-case we would end up with an EXPSPACE non-deterministic
procedure. However, on the one side, a closer look at the reductions in Proposition 6.37
reveals that there are better choices for b depending on the reasoning problem. On the
other side, the statement in (6.17) is actually false.

• Knowledge base consistency and satisfiability : in these cases the problem reduces to
consistency of a τEL(deg) ABox. Consequently, such double exponential explosion
does not exist. Thus, b simply becomes s(uT̂ (A)) or s(uT̂ (A ∪ {α(b)})).

• Subsumption: the reduction produces an ABox of the form:

A ∪ {α1(b),¬α2(b)}

The key aspect is that b does not occur in A. This means that the pre-processing
propagation of the negative assertions does not go through the cycles that may
occur in A. This obviously avoids the exponential explosion and b can be selected
as:

s(uT̂ (A)) + [s(uT̂ (α1))× s(uT̂ (α2))]

• Instance checking : According to (6.17), in this case the algorithm would need to
store a value b ≥ 22s(T̂ ) . However, one can show that the number of sub-descriptions
in uT̂ (α) is actually bounded by s(T̂ ) (see Corollary A.3 in Appendix A). Hence,
the statement made in (6.17) is false and b can be chosen as:

s(uT̂ (A)) × [s(uT̂ (α))]s(T̂ )

Consequently, the binary representation of b needs only polynomially many bits
in the size of T̂ .

Thus, reasoning in τEL(deg) with respect to acyclic KBs is in PSPACE.

Theorem 6.42. In τEL(deg), satisfiability, subsumption, consistency and instance check-
ing are in PSPACE with respect to acyclic τEL(deg) knowledge bases.



Chapter 7

Concept similarity measures, relaxed
instance queries and τEL(m)

This chapter consists of three sections. First, we show how to use the relaxed instance
query approach from [EPT14] to turn a concept similarity measure (CSM) ./ into a
membership degree function m./. Such a membership degree function, however, need
not be well-defined. We present two properties that when satisfied by ./, are sufficient
to obtain well-definedness for m./. Consequently, such CSMs induce a family of DLs
τEL(m./). Additionally, we show that the relaxed instance queries from [EPT14] can be
expressed as instance queries with respect to threshold concepts of the form C>t.
Afterwards, in Section 7.2 we investigate the computational properties of such induced

family of threshold DLs. We will see that there are undecidable threshold logics, but
also show that computability of a CSM ./ is sufficient to have a decidable DL τEL(m./).
Moreover, we will present more specific results for logics belonging to a particular sub-
class of the considered family.
Last, we present the framework simi introduced in [LT12], which can be used to define

a variety of CSMs. It turns out that all instances of simi satisfy the properties required
to obtain well-defined graded membership functions. Then, we consider their induced
threshold DLs and see how the previously investigated computational properties apply
to them. We further show that a particular instance ./1 of this framework turns out to
be equivalent to our membership degree function deg .

7.1 Defining membership degree functions

In its most general form, a concept similarity measure ./ is a function that maps each
pair of concepts C,D (of a given DL) to a value C ./ D ∈ [0, 1] such that C ./ C = 1.
Intuitively, the higher the value of C ./ D is, the more similar the two concepts are
supposed to be. Such measures can in principle be defined for arbitrary DLs, but here
we restrict the attention to CSMs between EL concepts, i.e., a CSM is a mapping
./ : CEL × CEL → [0, 1].
Ecke et al. [EPT14, EPT15] use CSMs to relax instance queries, i.e., instead of re-

quiring that an individual is an instance of the query concept, they only require that it
is an instance of a concept that is “similar enough” to the query concept.

Definition 7.1 ([EPT14, EPT15]). Let ./ be a CSM, A an EL ABox, and t ∈ [0, 1).
The individual a ∈ NI is a relaxed instance of the EL query concept Q w.r.t. A, ./, and
the threshold t iff there exists an EL concept description X such that Q ./ X > t and

89
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A |= X(a). The set of all individuals occurring in A that are relaxed instances of Q
w.r.t. A, ./, and t is denoted by Relax./t (Q,A). ♦

We apply the same idea on the semantic level of an interpretation rather than the
ABox level to obtain graded membership functions from similarity measures.

Definition 7.2. Let ./ be a CSM. Then, for each interpretation I, we define the function
mI./ : ∆I × CEL → [0, 1] as

mI./(d,C) := max{C ./ D | D ∈ CEL and d ∈ DI}. ♦

For an arbitrary CSM ./, the maximum in this definition need not exist since D ranges
over infinitely many concept descriptions. However, two properties that are satisfied
by many similarity measures considered in the literature are sufficient to obtain well-
definedness for m./. The first is equivalence invariance:

• The CSM ./ is equivalence invariant iff C ≡ C ′ and D ≡ D′ implies
C ./ D = C ′ ./ D′ for all C,C ′, D,D′ ∈ CEL.

To formulate the second property, we need to recall that the role depth of an EL concept
description C is the maximum nesting of existential restrictions in C (see Chapter 2
for the formal definition); equivalently, it is the height of the description tree TC . The
restriction Ck of C to role depth k is the concept description whose description tree is
obtained from TC by removing all the nodes (and edges leading to them) whose distance
from the root is larger than k. More formally,

Ck := C if C ∈ NC or C = >,
Ck := [C1]k u . . . u [Cn]k if C = C1 u . . . u Cn,

[∃r.C]k :=

{
> if k = 0,

∃r.[C]k−1 otherwise.

• The CSM ./ is role-depth bounded iff C ./ D = Ck ./ Dk for all C,D ∈ CEL and
any k that is larger than the minimal role depth of C,D.

Role-depth boundedness implies that, in Definition 7.2, we can restrict the maximum
computation to concepts D whose role depth is at most rd(C)+1. Since it is well-known
that, up to equivalence, CEL contains only finitely many concept descriptions of any fixed
role depth (see Proposition 13 in [BST07]), these two properties yield well-definedness for
m./. For m./ to be a graded membership function, it also needs to satisfy the properties
M1 and M2. To obtain these two properties for m./, we must require that ./ satisfies
the following additional property:

• The CSM ./ is equivalence closed iff the following equivalence holds:
C ≡ D iff C ./ D = 1.

Proposition 7.3. Let ./ be an equivalence invariant, role-depth bounded, and equiva-
lence closed CSM. Then m./ is a well-defined graded membership function.
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Proof. Let I be an interpretation, d ∈ ∆I and C an EL concept description of role-
depth k. Since ./ is role-depth bounded, this means that mI./(d,C) can be equivalently
expressed as:

max{C ./ D | D ∈ CEL, d ∈ DI and rd(D) ≤ k + 1}

Now, let D1 be an EL concept description such that d ∈ [D1]I . Since ./ is equivalence
invariant, this means that for any other EL concept D2 such that D1 ≡ D2, the values
C ./ D1 and C ./ D2 are the same. Therefore, since there are finitely many concepts
in CEL of depth at most k + 1 (up to equivalence), it follows that the maximum always
exists.

Since ./ is equivalence closed, it easily follows that m./ satisfies property M1. As
mentioned in Chapter 3, the right to left implication in M2 already follows from M1.
The left to right direction is a consequence of the definition of m./ and the fact that ./
is equivalence invariant. Hence, m./ satisfies property M2.

Thus, m./ is a well-defined graded membership function.

Consequently, an equivalence invariant, role-depth bounded, and equivalence closed CSM
./ induces a DL τEL(m./). Moreover, as we show in the following, computing instances
of threshold concepts of the form Q>t in this logic corresponds to answering relaxed
instance queries with respect to ./.

Proposition 7.4. Let ./ be an equivalence invariant, role-depth bounded, and equiva-
lence closed CSM, A an EL ABox, and t ∈ [0, 1). Then

Relax./t (Q,A) = {a | A |= Q>t(a) and a occurs in A},

where the semantics of the threshold concept Q>t is defined as in τEL(m./).

Proof. (⇒) Let a ∈ Ind(A) such that a ∈ Relax./t (Q,A). Then, there exists an EL
concept descriptionX such that A |= X(a) and Q ./ X > t. Since A |= X(a), this means
that for each interpretation J such that J |= A, it happens that aJ ∈ XJ . Hence, by
definition of m./ we have mJ./(d,Q) > t for all models of A. Thus, A |= Q>t(a).

(⇐) Conversely, assume that A |= Q>t(a). By definition of m./, we know that for
each model J of A there exists XJ such that aJ ∈ (XJ )J and Q ./ XJ > t. However,
to guarantee that a ∈ Relax./t (Q,A), we need to show that there exists one such concept
which is common for all models of A.

To this end, consider the description graph G(A) induced by A. Additionally, let IA
denote the interpretation corresponding to G(A) such that aIA = a for all a ∈ Ind(A).
The following facts are easy consequences of Theorem 3.9:

• IA |= A, and

• for each J such that J |= A, there exists a homomorphism ϕJ from G(A) to GJ
with ϕ(a) = aJ for all a ∈ Ind(A).

Since IA |= A, this means that there exists an EL concept description X such that
Q ./ X > t and aIA ∈ XIA . The membership characterization via homomorphism
in Theorem 2.7, yields the existence of a homomorphism ϕ1 from TX to G(A) with
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ϕ1(v0) = a. Then, the composition ϕJ ◦ϕ1 yields a similar homomorphism to each model
J of A, which implies aJ ∈ XJ . Therefore, A |= X(a) and thus, a ∈ Relax./t (Q,A).

7.2 Reasoning in τEL(m./)

Definition 7.2 allows to create a wide range of well-defined graded membership functions
m./ and their corresponding DLs τEL(m./). In this section, we carry out a preliminary
study of the computational properties of such a big family of threshold DLs. We will
present undecidability and decidability results, as well as more fine-grained complexity
results for specific classes within this family.

7.2.1 Undecidability

We present some uncomputability results concerning the type of CSMs being considered
and their induced threshold DLs. To start, based on a specific kind of binary relations
between EL concept descriptions, we introduce a very simple form of CSMs satisfying
the three properties required in the previous section. We will see that it is not difficult
to put a subset of such measures into a one-to-one correspondence with the power set of
the natural numbers.

Definition 7.5. Let R be a binary relation over CEL and 0 < a < 1 a fixed rational
number. Then, R induces the following CSM ./R:

C ./R D :=

{
1 if C ≡ D
µ(C,D) otherwise.

where µ is defined as follows:

µ(C,D) :=

{
a if rd(C) = rd(D) and (C,D) ∈ R
0 otherwise.

In addition, we say that R is equivalence invariant (w.r.t. ≡) iff C ≡ C ′ and D ≡ D′

implies:
(C,D) ∈ R⇔ (C ′, D′) ∈ R ♦

For equivalence invariant relations R, the induced CSM ./R satisfies the three prop-
erties required in Proposition 7.3.

Lemma 7.6. Let R ⊆ CEL × CEL be equivalence invariant. Then, ./R is an equivalence
invariant, role-depth bounded and equivalence closed CSM.

Proof. That ./R is equivalence closed follows directly from its definition. Let us look at
the other two properties.

1. equivalence invariance: let C,C ′, D,D′ ∈ CEL such that C ≡ C ′ and D ≡ D′.
According to the definition of ./R there are three possible cases for the value
C ./R D:
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• C ./R D = 1. This means that C ≡ C ′ ≡ D ≡ D′, and by definition
C ./R D = C ′ ./R D

′ = 1.

• C ./R D = 0. There are two possibilities:

– rd(C) 6= rd(D). Since C ≡ C ′ and D ≡ D′, this means that rd(C ′) 6=
rd(D′). Hence, C ′ ./R D′ = 0.

– (C,D) 6∈ R. Since R is equivalence invariant, C ≡ C ′ and D ≡ D′ imply
that (C ′, D′) 6∈ R. Therefore, C ′ ./R D′ = 0.

• C ./R D = a. Then, C 6≡ D, rd(C) = rd(D) and (C,D) ∈ R. Similarly as
in the previous case, we obtain C ′ 6≡ D′, rd(C ′) = rd(D′) and (C ′, D′) ∈ R.
Thus, C ′ ./R D′ = a.

2. role-depth boundedness: let C,D ∈ CEL. Whenever rd(C) = rd(D) the role-depth
boundedness condition trivially holds for C and D, since for any k > rd(C) it is the
case that C = Ck andD = Dk. It remains to look at the case where rd(C) 6= rd(D).
It follows from the definition of ./R that C ./R D = 0. Now, without loss of
generality, let rd(C) < rd(D). For any value k > rd(C) we have rd(Ck) < rd(Dk).
Then, rd(Ck) 6= rd(Dk), and consequently Ck ./R Dk = 0 = C ./R D.

Now, let us fix the sets NC = {A} and NR = {r}. For all N ⊆ N, its corresponding
binary relation RN on EL concept descriptions defined over NC ∪NR, is built as follows:

(C,D) ∈ RN ⇔ rd(C) ∈ N (7.1)

Obviously, since C ≡ C ′ implies that rd(C) = rd(C ′) and membership in RN only
depends on the role depth of C, it follows that RN is equivalence invariant. Hence, each
subset N of the natural numbers induces an equivalence closed, equivalence invariant
and role-depth bounded CSM ./RN . More importantly, for all pairs of distinct subsets
N1, N2 ∈ N, the induced CSMs ./RN1

and ./RN2
are different. Just take a number n

such that n ∈ N1 and n 6∈ N2 (or vice versa). Then, take two concepts C and D such
that rd(C) = rd(D) = n and C 6≡ D (the fixed signature NC ∪ NR ensures that this is
always possible). By definition we will obtain C ./RN1

D = a and C ./RN2
D = 0.

Hence, there are as many CSMs of this type as subsets of the natural numbers, namely,
uncountably many. Since there are only countable many Turing Machines, there must be
non-computable CSMs which are equivalence invariant, role-depth bounded and equiv-
alence closed.

Proposition 7.7. The set of equivalence invariant, role-depth bounded and equivalence
closed CSMs on EL concept descriptions, contains non-computable functions.

On the side of the induced threshold DLs, Proposition 7.3 implies thatm./RN
is a well-

defined graded membership function for all N ⊆ N, and it induces the DL τEL(m./RN
).

Moreover, the very simple definition of ./RN makes possible to use satisfiability in
τEL(m./RN

) as a component of an algorithm computing ./RN . More precisely, given
two EL concept descriptions C and D:

1. C ≡ D ⇒ C ./RN D = 1, and rd(C) 6= rd(D) ⇒ C ./RN D = 0.
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2. Otherwise, the computation of C ./RN D solely depends on whether rd(C) ∈ N .
This can be alternatively solved by asking for satisfiability of the concept C≤auC≥a
in τEL(m./RN

) whenever C 6≡ >. A positive answer corresponds to C ./RN D = a,
while the opposite one yields C ./RN D = 0. Why is this true?

• Satisfiability of C≤auC≥a implies that for some interpretation I and d ∈ ∆I :

mI./RN
(d,C) = a

This means that for some concept F , C ./RN F = a which by definition of
./RN implies rd(C) ∈ N .

• Conversely, let C≤a u C≥a be unsatisfiable. Except for C ≡ >, for all EL
concept descriptions C there is always an interpretation I and d ∈ ∆I such
that d 6∈ CI . This means that mI./RN (d,C) < 1 for such a particular case.
Since we are in the unsatisfiability case, it must be that mI./RN (d,C) = 0.
Moreover, since d ∈ >I , the computation of C ./RN > must have value 0.
Thus, again by definition of ./RN it follows that rd(C) 6∈ N .

3. If C ≡ >, the dichotomy used in the previous step cannot be directly applied
since >≤au>≥a is actually unsatisfiable. However, once the algorithm reaches the
second step, the goal is to decide whether rd(C) ∈ N . Hence, since rd(>) = rd(A),
A can be used instead of > to solve the issue.

The first step of the previously describe procedure consists of solving “fairly” easy
tasks. Consequently, it becomes clear that decidability of the satisfiability problem
in a DL τEL(m./RN

) implies computability of the CSM ./RN . Hence, the following
undecidability result follows.

Proposition 7.8. Let N ⊆ N and RN its corresponding relation defined as in (7.1). If
./RN is a non-computable CSM, then it induces an undecidable threshold DL τEL(m./RN

).

Summing up, on the one hand, we have seen that there are non-computable CSMs that
are equivalence invariant, role-depth bounded and equivalence closed. This has been
established by setting a one-to-one correspondence with the power set of the natural
numbers. On the other hand, a subset of all non-computable CSMs induces a set of
undecidable DLs that are constructed as described in Definition 7.2. Nevertheless, it is
not yet clear to us whether non-computability of a CSM ./ always implies undecidability
of the induced DL τEL(m./).

7.2.2 Decidability

We will now show that whenever ./ is computable, the standard reasoning problems in
the corresponding logic τEL(m./) are decidable. To this end, we establish the following
three properties for m./ and τEL(m./). First, we prove that computability of ./ implies
that m./ is computable with respect to finite interpretations. Second, τEL(m./) enjoys
the finite model property. Last, we show that there is a computable function that given
a concept Ĉ finds a number representing a sufficiently large upper bound for the size of
models satisfying Ĉ.
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Lemma 7.9. Let ./ be an equivalence invariant, role-depth bounded and equivalence
closed CSM. Further, let I be a finite interpretation, C an EL concept description and
d ∈ ∆I . If ./ is computable, then mI./(d,C) is computable.

Proof. By definition of m./ we know that:

mI./(d,C) = max{C ./ D | D ∈ CEL and d ∈ DI}

Since ./ is equivalence invariant and role-depth bounded, we can restrict our attention
to concepts D in reduced form whose role depth is at most rd(C) + 1. As explained
before, up to equivalence, CEL contains finitely many concept descriptions of role depth
at most rd(C) + 1. Therefore, it is enough to consider the concepts D in reduced form
identifying the corresponding equivalence classes.

Now, the set of such concept descriptions can be enumerated in finite time. Let [CkEL]
denote the set of all the representatives of role depth at most k ≥ 0. For role depth
0, there are exactly 2|NC| equivalence classes. These are represented by all the concept
descriptions of the form A1u . . .uAn, where n ≥ 0, {A1, . . . , An} ⊆ NC and Ai 6= Aj (for
all i 6= j). The particular case of n = 0 corresponds to the > concept. Consequently,
[C0
EL] is the following set:

[C0
EL] := {>} ∪

⋃
S⊆NC
S 6=∅

{
l

A∈S
A

}

To continue the enumeration for larger values of k, we inductively describe how to
generate [CkEL] from [Ck−1

EL ]. First, every concept description C of role depth k > 0 is of
the following form:

A1 u . . . uAn u ∃s1.C1 u . . . u ∃sqCq
where n ≥ 0, q ≥ 1 and for all i ∈ {1, . . . , q}, rd(Ci) < k. In addition, at least one Ci
must have role depth equal to k− 1. Moreover, since we are interested only on concepts
in reduced form, C satisfies the following conditions:

• for all 1 ≤ i ≤ q, Ci is a concept in reduced form.

• for all s ∈ NR, let s(C) denote the following set:

s(C) := {D | ∃s.D ∈ tl(C)}

Then, s(C) must be an antichain with respect to the subsumption relation, i.e., if
C1, C2 ∈ s(C) neither C1 v C2 nor C2 v C1 holds. The same must be true for the
set {A1, . . . , An}.

Then, once [Ck−1
EL ] has been generated, it can be extended to [CkEL] as follows:

1: Aux := ∅
2: Let {r1, . . . , r|NR|} be the enumeration of the role names in NR.

3: for all (Sε, S1, . . . , S|NR|) ∈ 2NC × 2[Ck−1
EL ] × . . .× 2[Ck−1

EL ]︸ ︷︷ ︸
|NR|

do
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4: if (Si is an antichain for all 1 ≤ i ≤ |NR|) and
5: (∃i ∃D s.t. D ∈ Si and rd(D) = k − 1) then
6: construct the EL concept description X as follows:

X :=
l

A∈Sε

A u
|NR|l

i=1

l

Y ∈Si

∃ri.Y

7: Aux := Aux ∪ {X}
8: end if
9: end for

10: [CkEL] := [Ck−1
EL ] ∪Aux

Starting from [C0
EL], the iteration of this procedure can be used to enumerate all

the concepts D identifying the equivalence classes in CkEL. Hence, computing mI./(d,C)
reduces to use this enumeration up to rd(C) + 1, and keep the maximum value C ./ D
among those satisfying d ∈ DI . Checking for d ∈ DI in EL can be done in polynomial
time in the size of D and I, whenever I is finite. Thus, since ./ is computable, mI./(d,C)
can always be computed.

Let us now turn into the finite model property. We will see that the method used to
provide a small model property for τEL(deg) can be used to establish the finite model
property for τEL(m./). The base argument for this comes again from the definition of
m./ and the basic properties required of ./. There is always an EL concept description
D of role depth at most rd(C) + 1 such that:

d ∈ DI and mI./(d,C) = C ./ D

Membership of d into DI implies that the structure of TD can be extracted from GI .
The idea is that TD can play the same role as the canonical interpretations Ih do for deg ,
in the construction introduced in Lemma 5.4. In what follows, after formally defining
the analogous of canonical interpretations for the current scenario, we show that such
interpretations and m./ exhibit the necessary properties to achieve the correctness of the
construction in Lemma 5.4.

Definition 7.10. Let I = (∆I , .I) be an interpretation, d ∈ ∆I and D an EL concept
description such that d ∈ DI . The canonical interpretation ID induced by D is the one
having the description tree TD. ♦

Like Lemma 4.11 for deg , the monotonicity property generalizes easily to all graded
membership functions m./.

Lemma 7.11. Let ./ be an equivalence invariant, role-depth bounded, and equivalence
closed CSM. Additionally, let I and J be two interpretations such that there exists a
homomorphism ϕ from GI to GJ . Then, for all d ∈ ∆I and all EL concept descriptions
C it holds:

mI./(d,C) ≤ mJ./(ϕ(d), C)
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Proof. By definition of m./ we know that:

mI./(d,C) = max{C ./ D | D ∈ CEL and d ∈ DI}

Let D be one such maximal concept description. Then, d ∈ DI implies the existence of a
homomorphism ϕD from TD to GI such that ϕD(v0) = d, where v0 is the root of TD. The
composition ϕ ◦ ϕD yields a homomorphism from TD to GJ with (ϕ ◦ ϕD)(v0) = ϕ(d).
Hence, ϕ(d) ∈ DJ and we have:

C ./ D ≤ mJ./(ϕ(d), C)

Thus, mI./(d,C) ≤ mJ./(ϕ(d), C) follows.

The next step is to show that the value of mI./(d,C) is preserved by canonical interpre-
tations ID corresponding to a concept D, such that the value C ./ D is the maximum
with respect to the definition of m./.

Lemma 7.12. Let I = (∆I , .I) be an interpretation, d ∈ ∆I and C an EL concept
description. For all equivalence invariant, role-depth bounded and equivalence closed
CSM ./:

mID./ (v0, C) = mI./(d,C)

for all D ∈ CEL such that d ∈ DI and mI./(d,C) = C ./ D.

Proof. Since ID corresponds to TD and d ∈ DI , this means that there is a homomor-
phism ϕ from GID to GI having ϕ(v0) = d. Then, applying Lemma 7.11 we obtain:

mID./ (v0, C) ≤ mI./(d,C)

On the other side, we know that mI./(d,C) = C ./ D. Since v0 ∈ DID , the maximum
in the definition of m./ implies:

mI./(d,C) ≤ mID./ (v0, C)

At this point we observe the following commonalities between deg and m./.

• The characterization of membership for τEL(m) given in Theorem 3.8 applies to
all graded membership functions m. Therefore, it holds for τEL(m./) as well.

• Lemmas 7.11 and 7.12 are for m./, the same as Lemmas 4.11 and 4.12 are for deg
in Section 4.2.

• If d ∈ DI , there is always a homomorphism ϕ from ID to I with ϕD(v0) = d.

• Canonical interpretations ID are tree-shaped as Ih in Definition 4.6.

Hence, the same construction used in Lemma 5.4 for τEL(deg) applies to τEL(m./)
by using interpretations ID instead of the canonical interpretations Ih. More precisely,
suppose that E∼t ∈ ̂̀T

Ĉ
(v) and v 6∈ (E∼t)

I0 for some v ∈ ∆I0 . Then, the interpretation
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ID used to repair this problem would be such that φ(v) ∈ DI andmI./(φ(v), E) = E ./ D.
Since all those interpretations ID are finite and tree-shaped, we obtain a finite tree model
property for τEL(m./).

Proposition 7.13. Let ./ be an equivalence invariant, role-depth bounded, and equiva-
lence closed CSM. For all τEL(m./) concept descriptions Ĉ, if Ĉ is satisfiable then there
is a finite tree-shaped interpretation J such that ĈJ 6= ∅.

This form of finite model property is not sufficient to obtain decidability of the satisfi-
ability problem in τEL(m./). To achieve that, we show that a bound for the size of such
models can always be computed. Let I be a model of Ĉ. Following the construction in
Lemma 5.4, the size of the finite model J resulting from Proposition 7.13 corresponds
to the following expression:

|∆J | = |∆I0 |+
∑
ID∈I

|∆ID |

Recall that I0 corresponds to the description tree TC (this is T
Ĉ

without labels of the
form E∼t) and I the set of canonical interpretations used to extend I0 into J . The
unclear part is to know how big ∆ID can be. Those interpretations ID are introduced
for threshold concepts of the form E>t or E≥t occurring in Ĉ. Moreover, they correspond
to the description tree of a concept D satisfying d ∈ DI and mI./(d,E) = E ./ D, for
some d ∈ ∆I . Hence, a trivial choice to provide such a bound is the size of the largest
concept D in reduced form, whose role depth is at most rd(E) + 1.
We have already seen in Lemma 7.9 that the set of all those concepts can be enu-

merated in finite time. Then, the algorithm computing the bound b(Ĉ) for the size of
models satisfying Ĉ does the following:

1. list the occurrences in Ĉ of threshold concepts F̂1, . . . , F̂q of the form E>t or E≥t.

2. let ki = rd(F̂i) for all 1 ≤ i ≤ q, and k the largest value among them.

3. enumerate the set of EL concept descriptions in [Ck+1
EL ]. For all 1 ≤ i ≤ q, let Di

be one of largest size among those with role depth at most ki + 1.

4. the bound b(Ĉ) for the size of J is given as:

|∆I0 |+
q∑
i=1

s(Di)

Thus, satisfiability of a concept Ĉ in τEL(m./) can be decided by first computing b(Ĉ),
and then looking for an interpretation J of size at most b(Ĉ) satisfying Ĉ. Checking
whether J satisfies Ĉ can be done using Algorithm 2, since m./ has been proven to be
computable in Lemma 7.9.
With respect to the other reasoning problems, observe that the interpretation J ob-

tained in Proposition 7.13 is tree-shaped. Therefore, it can be used as a base to extend
decidability to the other reasoning problems by following the same constructions pro-
vided for τEL(deg) in Chapter 5.
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• non-subsumption: Lemma 5.6 describes how to build a bounded model for satisfi-
able concepts of the form Ĉ u ¬D̂. The construction starts with a model J of Ĉ
that is extended into a model Jp of Ĉu¬D̂, by attaching canonical interpretations
Ih. The arguments used to show (Ĉ u ¬D̂)Jp 6= ∅ that depends on the nature of
deg can be separated into two groups.

1. The results from Lemmas 4.11, 4.12 and 5.4. They all have a corresponding
version for τEL(m./).

2. The value degI(d,C) only depends on the fragment of GI that is reachable
from d. This property is exploited at the end of Lemma 5.6. Now, the
computation ofmI./(d,C) depends on the EL concept descriptionsD satisfying
d ∈ DI . Hence, we can also say that mI./(d,C) only depends on the fragment
of GI that is reachable from d.

Thus, the construction of Lemma 5.6 can be applied to τEL(m./) to obtain finite
models for satisfiable concepts of the form Ĉ u ¬D̂.

• consistency: uses Theorem 3.9 as a characterization of ABox satisfaction for all DLs
τEL(m). The construction of the corresponding bounded model in Lemma 5.9 uses
basically the same arguments as the ones provided in Lemma 5.4 for satisfiability.

• non-instance: the bounded model obtained for τEL(deg) is a combination of Lem-
mas 5.14 and 5.15 (see Lemma 5.16). The properties of deg needed in the proofs
are the same as the ones used for non-subsumption. Hence, the same construction
is also valid for τEL(m./).

A common aspect of all these constructions is that they extend J by plugging canon-
ical interpretations Ih. Moreover, the proofs in Chapter 5 are constructive and describe
how those canonical interpretations are obtained from the threshold concepts occurring
in an instance of a problem. Hence, the procedure computing b(Ĉ) can be adapted to
estimate a sufficient upper bound for the size of models satisfying concepts of the form
Ĉ u ¬D̂ and/or ABoxes of the form A ∪ {¬Ĉ(a)} in τEL(m./).

Theorem 7.14. Let ./ be an equivalence invariant, role-depth bounded and equivalence
closed CSM. If ./ is a computable function, then in τEL(m./) satisfiability, subsumption,
consistency and instance checking are decidable problems.

Overall, we have provided decidability for τEL(m./) based on a strong form of the
finite model property. It comes as a result of adapting the methods used to obtain “small”
models for τEL(deg). However, other than decidability, the previous construction does
not give us much insight on how difficult is to reason in a particular logic τEL(m./). In
fact, the computation of the upper bound b(Ĉ) is merely based on the structure of Ĉ
and the described enumeration, not to mention how big it could be in its general form.
In conclusion, CSMs are treated just as “black boxes” satisfying the properties required
in Proposition 7.3 to induce the corresponding threshold DL, and none of its internal
technicalities are taken into account.
For a particular CSM ./ there are two main aspects to be considered in this regard:

• the complexity of computing ./,
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• the machinery that results from the interaction between the internal characteristics
of ./ and the maximization mechanism defining τEL(m./).

Obviously, the set of CSMs of this kind is very wide, and as shown in the previous
section it even contains functions that are uncomputable. From now on we focus our
attention to CSMs that can be computed in polynomial time. In the next two sections
we intend to take some initial steps towards understanding the computational properties
of a logic τEL(m./) where ./ is polynomial time computable. First, we will show that
this low-complexity family of CSMs has members whose induced threshold DL is at
least PSPACE-hard. Notice that this will be the case, despite our initial requirement
of CSMs to be defined over finite alphabets of concept and role names. Afterwards, we
will provide a sufficient condition on CSMs that determines a better behaved (in terms
of worst case complexity) family of threshold DLs.

7.2.3 A polynomial time CSM and its PSPACE-hard threshold DL

In the following, we define a polynomial time computable CSM satisfying the properties
required in Proposition 7.3, such that the satisfiability problem in the induced threshold
logic is at least PSPACE-hard. To define such a CSM we start by defining a particular
relation Rs, and then follow the construction provided in Definition 7.5 to obtain ./Rs .
Note that the abstract definition of ./R sets up a special connection between the value

a and membership in R. This permits to fix any subset of EL concepts (provided that the
resulting relation R is equivalence invariant) as the relevant ones to obtain the similarity
value a when compared to a concept description C. In particular, there are concepts in
reduced form that grow exponentially (with respect to the size of C) in its width, having
in this way description trees that represent exponentially large structures. Then, asking
for satisfiability of the τEL(m) concept C≤a u C≥a in τEL(m./R) could be used to test
whether C satisfies a specific property on such type of structures. We will exploit this
to obtain our PSPACE-hard threshold logic. The hardness result will be established by
a reduction from the problem of deciding the validity of quantified Boolean formulas
(QBF), which is introduced in the next definition.

Definition 7.15. A quantified Boolean formula consists of a pair P.ϕ where:

• ϕ is a propositional formula, and

• the prefix P is a sequence of the form Q1x1, . . . , Qnxn, where x1, . . . , xn are the
propositional variables occurring in ϕ and Qi ∈ {∃,∀} (1 ≤ i ≤ n). We say that
P is of length n.

A quantified Boolean formula P.ϕ can be seen as a first-order logic closed formula,
where its variables x1, . . . , xn are interpreted over a two-element domain {true, false}.
For simplicity, we use the semantics defined in [DLNS94] (Section 5.2.2), where QBF is
used to establish a PSPACE-hardness result for the DL ALE .

A P -assignment is a mapping t : {x1, . . . , xn} → {true, false}. An assignment t
satisfies a literal xi if t(xi) = true, and its negation ¬xi if t(xi) = false. An assignment
t satisfies a clause c if t(`) = true for at least one literal ` of c. A set S of P -assignments
is canonical for P if it satisfies the following conditions:
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1. S is non-empty,

2. P = ∃x1.P
′:

• for all t1, t2 ∈ S, it holds t1(x1) = t2(x1).

• if P ′ is non-empty, then the set {t|{x2,...,xn} | t ∈ S} is canonical for P ′.

3. P = ∀x1.P
′:

• S contains an assignment t such that t(x1) = true, and if P ′ is not empty the
set {t|{x2,...,xn} | t ∈ S and t(x1) = true} is canonical for P ′.

• S contains an assignment t such that t(x1) = false, and if P ′ is not empty
the set {t|{x2,...,xn} | t ∈ S and t(x1) = false} is canonical for P ′.

Then, P.ϕ is valid if there exists a set S of P -assignments that is canonical for P such
that every assignment in S satisfies every clause in ϕ. ♦

QBF is a PSPACE-complete problem [GJ79], and this is still the case even if ϕ is in
conjunctive normal form (CNF) and the quantifiers in P alternate. Moreover, by using
dummy variables when needed, we can assume without loss of generality that P begins
with ∃. Consequently, we denote as Pn “the” prefix of length n.
We now move into the details of the PSPACE-hardness result. First, we need to fix

our particular threshold logic. To this end, a relation Rs is defined to obtain the CSM
./Rs (according to Definition 7.5), and the logic τEL(m./Rs ). Afterwards, we provide
the translation reducing QBF to concept satisfiability in τEL(m./Rs ). The reduction is
based on the following ideas.

• Each set of P -assignments S that is canonical for P can be represented as a concept
description DS . As one may expect, such a concept DS is of size exponential on
the size of P.ϕ. Nevertheless, we want to stress that they are not involved in the
translation, but are used to define the relation Rs and subsequently the target DL
τEL(m./Rs ).

• Likewise, a propositional formula ϕ in CNF can be translated into an EL concept
description Cϕ, but this time Cϕ is polynomial on the size of ϕ.

• Rs can be defined such that (Cϕ, DS) ∈ Rs iff every assignment in S satisfies ϕ.
Then, the singularity of the value a in the definition of ./Rs can be used to link
validity of P.ϕ to satisfiability of (Cϕ)≤a u (Cϕ)≥a in τEL(m./Rs ).

Let us start with the encoding of a set S of P -assignments. Let A be a distinguished
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concept name, for all n > 0 we inductively define the string Dn := ∃r.D0
1 as follows:

D0
1 := X0

1 u ∃r.(A uD0
2) u ∃s.D1

2

D0
2 := ∃r.D0

3

D1
2 := ∃r.D1

3

...

Dj
2i+1 := Xj

2i+1 u ∃r.(A uD
2j
2(i+1)) u ∃s.D

2j+1
2(i+1) (0 ≤ j < 2i)

Dj
2i := ∃r.Dj

2i+1 (0 ≤ j < 2i)

...

Dj
n :=

{
> if n is even
Xj
n otherwise.

(7.2)

The symbolsXj
2i+1 represent variables that are to be instantiated to obtain EL concept

descriptions. Let Xn be the set of all variables occurring in Dn, i.e.:

Xn = {Xj
2i+1 | 1 ≤ 2i+ 1 ≤ n and 0 ≤ j < 2i}

We denote by Xn the set of all total mappings θ : Xn → {>, A}. The application of
one such θ to Dn is denoted as θ[Dn] and consists of substituting each variable Xj

2i+1 in
Dn by θ(Xj

2i+1). Then, Xn generates the following family of EL concept descriptions:

Dn := {θ[Dn] | θ ∈ Xn}

To be consistent later on, we define D0 as the empty set. Additionally, since the
“branching” in the definition of the string Dn is defined using two different role names r
and s, one can see that all concept descriptions in Dn are in reduced form. The purpose
of these sets is that each concept in Dn identifies a set of P -assignments that is canonical
for the prefix P of length n. The following example gives the intuition underlying such
a correspondence.

Example 7.16. Let P4 be the prefix of length 4, i.e., P4 = ∃x1∀x2∃x3∀x4. Let t1, t2, t3
and t4 be the following P4-assignments:

t1(x1) = true t1(x2) = true t1(x3) = false t1(x4) = true

t2(x1) = true t2(x2) = true t2(x3) = false t2(x4) = false

t3(x1) = true t3(x2) = false t3(x3) = true t3(x4) = true

t4(x1) = true t4(x2) = false t4(x3) = true t4(x4) = false

One can easily see that the set S = {t1, t2, t3, t4} is canonical for P4. Now, the string
D4 contains the set of variables X4 = {X0

1 , X
0
3 , X

1
3}. Let θ ∈ X4 be the mapping such

that θ(X0
1 ) = A, θ(X0

3 ) = > and θ(X1
3 ) = A. This yields the EL concept description

DS := θ[D4] having the description tree depicted on the left-hand side of Figure 7.1.
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TDS : v0

{A}

{A}

{}

{A}

r

{}

s

r

r

{}

{A}

{A}

r

{}

s

r

s

r

TDS∗ : v0

{}

{A}

{A}

{A}

r

{}

s

r

r

{}

{}

{A}

r

{}

s

r

s

r

Figure 7.1: EL description trees corresponding to canonical sets of P -assignments.

Consider the left-most path in TDS :

πlm : {} {A} {A} {} {A}rrrr

Denoting the nodes in πlm from left to right as v0, . . . , v4, the assignment t1 can be
obtained as follows. For all 1 ≤ i ≤ 4:

t1(xi) :=

{
true if `πlm(vi) = {A}
false if `πlm(vi) = {}

Conversely, the path πlm can be constructed from t1 using the inverse correspondence
between {true, false} and {A,>}. The same relationship can also be established between
the other three paths in TDS and the assignments t2, t3, t4, respectively. Hence, the idea
is that for all sets S that are canonical for P4, there is an instance θ[D4] such that each
assignment t ∈ S corresponds to a path πt in Tθ[D4] and vice versa. For example, the
variation of S where t1(x1) = t2(x1) = t3(x1) = t4(x1) = false, t1(x3) = t2(x3) = true
and t3(x3) = t4(x3) = false, would correspond to the concept θ∗[D4] where θ∗(X0

1 ) = >,
θ∗(X0

3 ) = A and θ∗(X1
3 ) = >. The description tree in the right-hand side of the same

figure is the one associated to θ∗[D4]. ♦

Let us formally define the correspondence illustrated in the previous example, and then
show that it actually exists.

Definition 7.17. Let n > 0 be a natural number, π = v0r1v1 . . . rnvn a path of length
n in some EL description tree T and t a truth assignment of the variables x1, . . . , xn.
We say that π and t are corresponding iff for all 1 ≤ i ≤ n:

t(xi) = true ⇔ `T (vi) ∩ {A} = {A}
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Additionally, let S be a set of Pn-assignments that is canonical for Pn and D ∈ Dn.
We further say that S and D are corresponding iff:

• for all t ∈ S exists a path πt in TD of length n, such that t and πt are corresponding,
and

• for all paths π of length n in TD there is tπ ∈ S, such that tπ and π are corre-
sponding. ♦

The proof of the following lemma is deferred to the Appendix A.

Lemma 7.18. Let n > 0 be a natural number. Then,

1. for all sets S of Pn-assignments that are canonical for Pn, there exists DS ∈ Dn

such that S and DS are corresponding, and

2. for all D ∈ Dn, exists a set SD of Pn-assignments that is canonical for Pn such
that SD and D are corresponding.

Next, we describe how to encode the structure of a propositional formula ϕ in CNF into
an EL concept description Cϕ. We need to use an additional concept name I. Let ϕ be
the conjunction of clauses c1∧. . .∧cq, and x1, . . . , xn the propositional variables occurring
in ϕ. For each cj (1 ≤ j ≤ q) we define its corresponding EL concept description Cj as
∃rj1.E

j
1, where E

j
1 is of the following form:

Ej1 := γj1 u ∃r
j
2.E

j
2

. . .

Eji := γji u ∃r
j
i+1.E

j
i+1 (1 ≤ i < n)

. . .

Ejn := γjn

Here γji = I if xi does not occur in cj . Otherwise γji = A whenever xi is a literal in
cj and γji = > for ¬xi. One can assume that xi and ¬xi do not occur at the same
time in any set cj , since otherwise cj is always satisfied and it can be removed from ϕ.
Regarding rj1, . . . , r

j
n, they correspond to any of two fixed role names r and s as follows:

if γji = A or γji = I then rji = r. Otherwise, rji = s. Then, the EL concept description
Cϕ encoding the structure of ϕ is defined as:

Cϕ := I u
ql

j=1

Cj

Example 7.19. Let ϕ be the following propositional formula in CNF:

{x1,¬x2, x3} ∧ {¬x1, x4, x3} ∧ {¬x4, x2,¬x3}

A total of four propositional variables occur in ϕ. Then, the concept description Cϕ is
the one having the following EL description tree:
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TCϕ : {I}

{A} {} {A} {I}rrs

r

{} {I} {A} {A}rrrs

{I} {A} {} {}ssr

r

Each branch of the tree corresponds to a clause in ϕ. In particular, the nodes at the
ith level (except for the root) tell us in which form the variable xi occurs in each clause
of ϕ. For x2, the empty set (or >) is used in the upper branch to represent a negative
occurrence in c1, I in the middle branch expresses that x2 is irrelevant for c2, and A is
used in the last branch to state that x2 occurs in c3. The same idea applies for the rest
of the variables occurring in ϕ. ♦

So far, we have a way to encode propositional formulas and sets of P -assignments into
concept descriptions. Then, the role of Rs is to verify whether a formula ϕ is satisfied
by all the assignments of a set S. The definition of Rs is based on the representation
of concepts as description trees. Let T1 and T2 be two EL description trees, and π1 =
v0r1v1 . . . rnvn, π2 = w0s1w1 . . . snwn two paths of length n in T1 and T2, respectively.
We say that π1 has a coincidence in π2 (denoted π1 B π2) iff there is 0 ≤ i ≤ n such
that:

`T1(vi) ∩ {A} = `T2(wi) ∩ {A} and I 6∈ `T1(vi) (7.3)

For all EL description trees T we denote by Π(T ) the set of all paths in T starting at
its root, and by Πp(T ) ⊆ Π(T ) the subset of those having length p ≥ 0. Then, using the
relation B we define a family of binary relations Bp (for all p ∈ N) over the set of EL
description trees as follows:

(T1, T2) ∈ Bp

iff
∀π2 ∈ Πp(T2) ∀π1 ∈ Πp(T1), it holds π1 B π2

Using this family of relations together with the family of sets Dn, the relation Rs is
defined as follows:

Rs := {(C,D) | ∃D∗ ∈ Drd(C) s.t. D ≡ D∗ and (TCr , TD∗) ∈ Brd(C)}

The following lemma shows that Rs is equivalence invariant (see Definition 7.5).

Lemma 7.20. The relation Rs is equivalence invariant.

Proof. Let C,C ′, D and D′ be EL concepts such that C ≡ C ′ and D ≡ D′. We need to
show that (C,D) ∈ Rs iff (C ′, D′) ∈ Rs. Some simple facts follow:

• Since C ≡ C ′, we have that rd(C) = rd(C ′) = k for some k ≥ 0. Moreover, by
Theorem 2.8 there is an isomorphism between TCr and T(C′)r .

• Let D∗ ∈ Dk, k > 0. Then, D ≡ D′ implies that D ≡ D∗ iff D′ ≡ D∗.
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For k = 0, the claim trivially holds since D0 is empty and there is no D∗. Otherwise,
suppose that (TCr , TD∗) ∈ Bk. To see that also (T(C′)r , TD∗) ∈ Bk, let πC′ and πD∗

be arbitrary paths of length k in T(C′)r and TD∗ , respectively. Using the isomorphism
mentioned above, one can find a path πC in TCr such that πC = πC′ . Since (TCr , TD∗) ∈
Bk, this means that πC B πD∗ . Consequently πC′ B πD∗ , and we have thus shown that
(TCr , TD∗) ∈ Bk ⇒ (T(C′)r , TD∗) ∈ Bk. The implication in the opposite direction can be
obtained in a similar way.

All these elements combined imply that Rs is equivalence invariant.

Hence, Rs induces a CSM ./Rs that is equivalence invariant, role-depth bounded and
equivalence closed (see Lemma 7.6). To see how difficult it is to compute ./Rs , let us
look at the abstract formulation of ./R in Definition 7.5. The computation of C ./R D
first discriminates between whether C ≡ D or not. Checking equivalence of concept
descriptions in EL is a polynomial time problem. In case of a negative answer, C ./R D
corresponds to the value µ(C,D). Since verifying whether rd(C) = rd(D) is also a
polynomial time issue, the difficulty of computing ./R will then depend on how hard it
is to check for membership in R.
Let rd(C) = k. In particular, checking for membership in Rs consists of two steps.

1. Test whether there is D∗ ∈ Dk such that D ≡ D∗. If such D∗ exists, then there
is an isomorphism between (D∗)r and Dr (by Theorem 2.8). The computation of
reduced forms is in polynomial time, and we know that D∗ is already in reduced
form. Moreover, concepts in Dk result from different instantiations of the variables
occurring in Dk. Fortunately, the definition of Dk follows a very simple pattern
that simplifies the quest of whether such concept description D∗ exists.

From a graphical point of view, this means that in TD∗ every node at an even level
(the root node is at level 0) has exactly one r-successor, whereas the ones at odd
levels have exactly one r-successor and one s-successor labeled with {A} and {},
respectively. Testing whether Dr has such a shape (up to isomorphism) can be
done by traversing its structure. Since s(Dr) ≤ s(D), this is a polynomial time
procedure in the size of D.

2. Check if (TCr , TD∗) ∈ Bk. Note that Dr and D∗ need not be syntactically equal,
but they have nevertheless exactly the same paths. Hence, this step is equivalent
to verifying whether (TCr , TDr) ∈ Bk.

• deciding B for paths of length k is obviously linear in k.

• the number of paths of length k in TCr and TDr can be bounded by s(Cr)
and s(Dr), respectively.

Therefore, checking whether (TCr , TDr) ∈ Bk can be done in time O(s(Cr) ×
s(Dr)× k).

Finally, counting that concepts in reduced form are the smallest elements in their
equivalence classes, we have that ./Rs is computable in polynomial time.
Next, we continue Example 7.19 to see how all these pieces fit together.

Continuation of Example 7.19. Consider the set S = {t1, t2, t3, t4} from Example 7.16
and the corresponding concept description DS . One can easily see that t1 satisfies the
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clause c3 in ϕ whereas t3 does not. From a graphical perspective, c3 corresponds to the
third path (from top to bottom) of the description tree TCϕ and t1 (t3) to the first (third)
one (from left to right) in TCS , i.e.:

πc3 : {I} {I} {A} {} {}ssrr

πt1 : {} {A} {A} {} {A}rrrr

πt3 : {} {A} {} {A} {A}rrsr

Note that πc3 and πt1 agree on the third position according to (7.3), but this is not
the case for any position regarding πc3 and πt3 . This means that πc3 6 Bπt3 and πc3 Bπt1 .
The intuition here is that B can be used to verify whether a clause c is satisfied by an
assignment t. Hence, membership/non-membership of (TCϕ , TDS ) in B4 would determine
whether every assignment in S satisfies ϕ or not. Contrary to TDS , for the description
tree TDS∗ corresponding to θ∗[D4] (see Figure 7.1) it is the case that (TCϕ , TDS∗ ) ∈ B4.
This would mean that the canonical set corresponding to θ∗[D4] certifies the validity of
the formula ∃x1∀x2∃x3∀x4.ϕ.

Overall, membership in B4 leads to membership in Rs, and subsequently to the sim-
ilarity value a when computing ./Rs . Since Rs emphasizes that only those concepts in
D4 are relevant, this will make satisfiability of (Cϕ)≤a u (Cϕ)≥a in τEL(m./Rs ) to be
equivalent to validity of ∃x1∀x2∃x3∀x4.ϕ. ♦

Obviously, the correctness of the previous idea relies on comparing all the paths in TCϕ
to all the paths in TDS , when assessing the value of Cϕ ./Rs DS . Since the definition of
Rs uses Bp with respect to concept descriptions in reduced form, it would be a problem
to have a reducible concept Cϕ. The following lemma shows that the particular use of r
and s when building Cϕ guarantees that this is never the case.

Lemma 7.21. Let ϕ be a propositional formula in CNF. The concept description Cϕ is
in reduced form.

Proof. Recall that we restrict our attention to clauses where x and ¬x do not occur at
the same time. Additionally, one can also assume that no two clauses of ϕ are equal.
We denote by V (c) the set of variables occurring in a clause c.

Now, let ci and cj be two clauses of ϕ. Following the construction of Cϕ, they corre-
spond to the top-level atoms ∃ri1.Ei1 and ∃rj1.E

j
1 in Cϕ. We want to prove that ri1 = rj1

implies Ei1 6v Ej1 and Ej1 6v Ei1. To this end, we distinguish two cases regarding V (ci)
and V (cj):

• V (ci) 6= V (cj). This means that there is at least one variable x such that x occurs
in ci and not in cj (or vice versa). By construction of Cϕ, ci and cj contribute to
TCϕ with two paths of the form:
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πi : {I} ♣
rixri1

x

πj : {I} {I}rrj1

where ♣ stands for {A} or {} and rix for r or s, depending on how x occurs in
ci. By construction of Cϕ, the possible combinations for (♣, rix) are ({}, s) and
({A}, r). Then, it is not hard to verify that no subsumption relation exists between
Ei1 and Ej1.

• V (ci) = V (cj). Since ci 6= cj , this means that there is x ∈ V (ci) such that x
occurs in ci and ¬x in cj (or vice versa). Thus, the corresponding paths have the
following structure:

ci : {I} {A}r

x

cj : {I} {}s

Again, it is immediate to see why Ei1 6v E
j
1 and Ej1 6v Ei1.

Hence, these arguments prove that Cϕ is already in reduced form.

Altogether we have a polynomial time computable CSM ./Rs that is equivalence in-
variant, role-depth bounded and equivalence closed. Moreover, ./Rs has been defined
over the finite sets {A, I} and {r, s} of concept and role names, respectively. Conse-
quently, it induces the DL τEL(m./Rs ) as described in Section 7.1. Then, we reduce
QBF to satisfiability in τEL(m./Rs ) as follows. Given a quantified Boolean formula P.ϕ,
it is translated into the τEL(m) concept description Ĉϕ defined as follows:

Ĉϕ := (Cϕ)≤a u (Cϕ)≥a

The following lemma shows the correctness of the reduction.

Lemma 7.22. Let P.ϕ be a quantified Boolean formula. Then, P.ϕ is valid iff Ĉϕ is
satisfiable in τEL(m./Rs ).

Proof. Let n > 0 be the length of P , c1, . . . , cq the clauses of ϕ, and x1, . . . , xn the
propositional variables occurring in ϕ.

(⇒) Assume that P.ϕ is valid. To prove that Ĉϕ is satisfiable in τEL(m./Rs ) we select
the interpretation I having the following EL description graph:

{} {A} {A} {A}

d0 d1 d2 dnr

s

r

s

r

s
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Our goal is to show that d0 ∈ (Ĉϕ)I . By Definition 7.2,

mI./Rs (d0, Cϕ) = max{Cϕ ./Rs D | D ∈ CEL and d0 ∈ DI}

Since d0 6∈ II , this means that for all the candidate concepts D we have Cϕ 6≡ D.
Therefore, mI./Rs (d0, Cϕ) < 1. In particular, if D ∈ Dn it is easy to see that there
is a homomorphism ϕ from TD to GI mapping the root v0 of TD to d0. Hence, by
Theorem 2.7 we obtain d0 ∈ DI .

Now, since P.ϕ is valid, there is a set S of P -assignments that is canonical for P such
that every truth assignment t ∈ S satisfies ϕ. Let DS ∈ Dn be an EL concept description
such that S and DS are corresponding (see Lemma 7.18). Then, we know the following
about Cϕ and DS :

• rd(Cϕ) = rd(DS) = n,

• d0 ∈ (DS)I , and

• Cϕ ./Rs DS < 1.

Let us now establish that (TCϕ , TDS ) ∈ Bn. Consider two arbitrary paths π and πj
of length n in TDS and TCϕ , respectively. By construction of Cϕ and Definition 7.17 we
have:

• πj corresponds to the clause cj in ϕ.

• since S and DS are corresponding, there exists tπ ∈ S such that tπ and π are
corresponding.

As tπ satisfies cj , it must exist at least one literal ` in cj such that tπ(`) = true. Let
xi be the variable corresponding to `. Then, for the ith node vi of πj :

`TCϕ (vi) = {A} if ` = xi, and `TCϕ (vi) = {} if ` = ¬xi (7.4)

and (since tπ and π are corresponding) for the node wi of π:

tπ(xi) = true ⇔ `TDS (wi) ∩ {A} = {A} (7.5)

Hence, one can see that tπ satisfies ` iff `TCϕ (vi)∩{A} = `TDS (wi)∩{A}. Consequently,
πj B π. Since these two paths have been chosen arbitrarily, we just have shown that
(TCϕ , TDS ) ∈ Bn. Having DS ∈ Dn further implies that (Cϕ, DS) ∈ Rs, and this
means that Cϕ ./Rs DS = a (see the expression µ(C,D) in Definition 7.5). Thus,
mI./Rs (d0, Cϕ) = a and d0 ∈ (Ĉϕ)I .

(⇐) Assume that Ĉϕ is satisfiable in τEL(m./Rs ). Then, there exists an interpretation
I and d ∈ ∆I such that d ∈ (Ĉϕ)I . This means that mI./Rs (d,Cϕ) = a. Thus, there
exists a concept D such that d ∈ DI and Cϕ ./Rs D = a. By definition of ./Rs this is
the case if (Cϕ, D) ∈ Rs, and membership in Rs for (Cϕ, D) implies the existence of a
concept D∗ ∈ Dn such that:

D ≡ D∗ and (TCϕ , TD∗) ∈ Bn
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Now, by Lemma 7.18 there is a set of P -assignments SD∗ such that:

• SD∗ is canonical for P , and

• SD∗ and D∗ are corresponding.

The rest consists of proving that each assignment in SD∗ satisfies ϕ. Let t ∈ SD∗ and
cj (1 ≤ j ≤ q) be a clause of ϕ. Again, by construction of Cϕ and Definition 7.17 we
obtain:

• cj corresponds to a path πj in TCϕ .

• since SD∗ and D∗ are corresponding, there exists a path πt in TD∗ of length n such
that t and πt are also corresponding.

From (TCϕ , TD∗) ∈ Bn, it follows that there is 0 ≤ i ≤ n such that (7.3) holds with
respect to πj and πt, i.e.:

`TCϕ (vi) ∩ {A} = `TD∗ (wi) ∩ {A} and I 6∈ `TCϕ (vi)

Note that I ∈ `TCϕ (v0), and consequently i > 0. Let ` be the literal corresponding
to the occurrence of the variable xi in cj . The relationships from (7.4) and (7.5) are
also valid in this case. Then, combining them with the previous equality ensures that t
satisfies cj . This will always be the case for all t ∈ SD∗ and cj in ϕ. Thus, P.ϕ is valid.

Thus, we have shown PSPACE-hardness for satisfiability in τEL(m./Rs ).

Corollary 7.23. In τEL(m./Rs ), concept satisfiability is PSPACE-hard.

The standard reductions from satisfiability to the other reasoning problems (subsump-
tion, consistency and instance) yield PSPACE-hardness for them as well.
Now, some additional information emerges from the previous result and its proof. The

specific set of all satisfiable τEL(m./Rs ) concept descriptions of the form Ĉϕ constitutes
a PSPACE-hard language. Moreover, the proof of Lemma 7.22 shows that all these con-
cepts are satisfiable in a model of polynomial size. Intuitively, the source of complexity
resides on the fact that model checking (Cϕ)≤au (Cϕ)≥a requires to consider concepts of
size exponential in Ĉϕ. These are the ones fixed by the definition of Rs, and its structure
is succinctly encoded within the shape of the interpretation I selected in Lemma 7.22.
Based on these observations, we now move into defining a bounding condition that is

sufficient to safely disregard such a big concept descriptions.

7.2.4 Bounded CSMs

This section is organized as follows. We start right away by defining the bounded
condition on CSMs. Afterwards, we shall restrict our attention to polynomially bounded
CSMs, and study the computational aspects of the DLs induced by such a family of
measures.

Definition 7.24. A filter F is a subset of CEL such that for all C,D ∈ F :
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• C uD ∈ F , and

• C v C ′ implies C ′ ∈ F .

The set of all filters is denoted as F. Now, let g : N → N be a function. We say that a
CSM ./ is g-bounded iff for all EL concept descriptions C and all filters f ∈ F, there is
D ∈ f such that:

• C ./ D = max {C ./ X | X ∈ f}, and

• s(D) ≤ g(s(C)). ♦

Establishing g-boundedness for a CSM ./ provides a form to estimate a more ac-
curate bound for the size of models resulting from the general construction offered in
Section 7.2.2. In particular, when g is a polynomial p(n) = nk, it yields a polynomial
model property for the induced logic τEL(m./).

Proposition 7.25. Let p(n) = nk be a polynomial and Ĉ a τEL(m) concept descrip-
tion. Moreover, let ./ be an equivalence invariant, role-depth bounded, equivalence closed
and p(n)-bounded CSM. If Ĉ is satisfiable in τEL(m./), then there exists a tree-shaped
interpretation J such that ĈJ 6= ∅ and |∆J | ≤ p(s(Ĉ)).

Proof. Let (E1)∼t1 , . . . , (En)∼tn be the threshold concepts occurring in Ĉ with ∼ ∈ {>
,≥}. Conversely, let (F1)∼s1 , . . . , (Fq)∼sq be the ones where ∼∈ {<,≤}. Then, the size
of Ĉ can be expressed as:

|∆I0 | +

n∑
i=1

s((Ei)∼ti) +

q∑
j=1

s((Fj)∼sj )

Proposition 7.13 in the previous section shows that the construction used in Lemma 5.4
can be applied to τEL(m./) to obtain a finite interpretation J satisfying Ĉ such that:

|∆J | = |∆I0 | +
n∑
i=1

|∆IDi |

Here, IDi is a canonical interpretation in the sense of Definition 7.10, that by construction
of J has been “extracted” from I. This means that there is an element d ∈ ∆I such
that d ∈ (Di)

I . Moreover, Di satisfies mI./(d,Ei) = Ei ./ Di, and by definition of m./

we then have:
Ei ./ Di = max {Ei ./ D | D ∈ CEL and d ∈ DI} (7.6)

Now, Di generates the filter fi containing all the concepts X such that Di v X. There-
fore, there are two things one can say about fi:

• d ∈ XI for all X ∈ fi, and

• p(n)-boundedness of ./ yields a concept D∗i ∈ fi such that:

– Ei ./ D
∗
i = max {Ei ./ X | X ∈ fi},

– s(D∗i ) ≤ p(s(Ei)).



112 Chapter 7. Concept similarity measures, relaxed instance queries and τEL(m)

Since Di ∈ fi and fi is a subset of the set considered in (7.6), this means that Ei ./
Di = Ei ./ D

∗
i . Hence, Lemma 7.12 makes possible to choose D∗i in the place of Di to

build J . Therefore, without loss of generality, we can assume that |∆IDi | ≤ p(s(Ei)) for
all 1 ≤ i ≤ n. Taking this into account, the size of J can be bounded by the following
expression:

|∆J | ≤ |∆I0 | +

n∑
i=1

p(s(Ei)) (7.7)

Thus, since p(n) = nk, this means that |∆J | ≤ p(s(Ĉ)).

Hence, p(n)-boundedness defines a family of CSMs for which the logic τEL(m./) en-
joys the polynomial model property. The proof of Proposition 7.25 describes how to
compute such a bound, provided that p(n) is known. Furthermore, contrary to ./Rs
and τEL(m./Rs ), model checking a concept Ĉ on an interpretation I will not need to
consider exponentially large concepts in the size of Ĉ. We denote by F./[poly] the fam-
ily of equivalence invariant, role-depth bounded and equivalence closed CSMs, that are
polynomially bounded. Later in Section 7.3 we will identify a concrete set of CSMs that
are part of this family.
Now, since we have focused our interest in CSMs that are computable in polynomial

time, one might think of the algorithm presented in Chapter 5 (for deg) as a general
purpose NP-algorithm to decide satisfiability in τEL(m./). However, differently from
τEL(deg) a polynomial bound does not ensure that such algorithm will always run in
non-deterministic polynomial time. Intuitively, there are two reasons for this:

• m./ is defined as maximization on top of ./, and

• the NP-decision procedure from Chapter 5 uses Algorithm 2 to check the existence
of a τ -homomorphism. In particular, in line 6 it is required to check whether
mI./(d,E) ∼ t for some d ∈ ∆I and a threshold concept E∼t.

Where could the interaction of these two aspects be harmful? Being the threshold
concept of the form E>t or E≥t, the maximization in the definition of m./ allows to
handle this by simply guessing an EL concept description D such that d ∈ DI and
E ./ D > t (or ≥). Here, the second benefit of having p(n)-boundedness comes into
play: the size of such D is polynomial in the size of E. The problem arises, however,
in the presence of threshold concepts of the form E<t or E≤t. In this case the same
strategy will not suffice, since for instance having E ./ D < t for a particular D does
not ensure mI./(d,E) < t.
A natural way to repair this problem is to use an NP-algorithm as an oracle, which

verifies whether there exists D such that d ∈ DI and E ./ D ≥ t. Then, a “no” answer
from the oracle will definitely certify that mI./(d,E) < t. The following lemma provides
an NPNP-algorithm that decides concept satisfiability in τEL(m./), provided that ./ is
polynomially bounded and polynomial time computable.

Lemma 7.26. Let p(n) = nk be a polynomial and ./ an equivalence invariant, role-depth
bounded, equivalence closed and p(n)-bounded CSM. Additionally, ./ can be computed
in polynomial time. Then, in τEL(m./) it is in NPNP to decide whether a concept is
satisfiable.
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Proof. Assume that we want to decide satisfiability of the concept Ĉ in τEL(m./). The
NP-algorithm we are going to use as an oracle solves the following problem:

• Instance: A tuple (I, d, C, t,∼) where I is a finite interpretation, d ∈ ∆I , C a
concept description, t ∈ Q ∩ [0, 1] and ∼ ∈ {>,≥}.

• Question: Is there an EL concept descriptionD such that d ∈ DI and C ./ D ∼ t?

Based on the definition of m./ and the special properties satisfied by ./, we observe the
following:

• mI./(d,C) ∼ t iff there exists such a concept D. This is a consequence of the
maximization used to define m./ and ∼ ∈ {>,≥}.

• p(n)-boundedness of ./ means that mI./(d,C) = C ./ D′, where d ∈ (D′)I and
s(D′) ≤ p(s(C)).

These observations permit to reduce the search space to concepts of size at most
p(s(C)). Moreover, testing for d ∈ DI and computing C ./ D are both polynomial time
tasks in the size of I, C and D. Hence, the algorithm first guesses a concept description
D of size at most p(s(C)), and then verifies whether d ∈ DI and C ./ D ∼ t. It answers
“yes” if both checks succeed, and “no” otherwise.

Now, the NPNP-procedure behaves as follows:

1. Guess an interpretation J of size at most p(s(Ĉ)) (or use expression (7.7) for a
tighter bound).

2. Use Algorithm 2 to check whether there exists a τ -homomorphism from T
Ĉ
to GJ

with the following modifications. Whenever the test mJ (w,E) ∼ t in line 6 needs
to be executed, it is handled by calling the oracle on (J , w,E, t, �) where � is se-
lected as≥ if∼∈ {<,≥}, or as> otherwise. The resulting pair (∼, oracle′sanswer)
determines the truth of the aforementioned test as follows:

• the pairs (<,“no”), (≤,“no”), (≥,“yes”) and (>,“yes”) result in a positive answer
to the question of whether mJ (w,E) ∼ t. In any other case the statement is
false.

3. Answer Ĉ is satisfiable iff there exists a τ -homomorphism from T
Ĉ
to GJ .

By Proposition 7.25 it is sufficient to look only at interpretations of size at most
p(s(Ĉ)). The characterization of membership for τEL(m) given in Theorem 3.8 does
not depend on which graded membership function m is considered. Hence, it is correct
to use Algorithm 2 for τEL(m./). Furthermore, it is not hard to see that the intro-
duced modification is consistent with whether mJ./(w,E) ∼ t. For instance, to check
mJ./(w,E) < t the oracle is invoked with � = ≥. A “no” answer means that there is no
D such that w ∈ DJ and E ./ D ≥ t, which clearly implies mJ./(w,E) < t. Finally,
the number of calls to the oracle is at most s(Ĉ) × |∆J |. These arguments prove that
concept satisfiability in τEL(m./) is in NPNP.
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The use of an oracle by this procedure is somehow forced by the fact that we stick to
a specific approach, and in particular such method uses Algorithm 2 to decide a model
checking problem. Moreover, as we will see in Section 7.3.2, deg is a function that can
be obtained from a CSM ./1 of the kind being considered, but its satisfiability problem
is in NP. Therefore, an obvious question is whether this is a really “naive” way to decide
satisfiability for the family of logics induced by such a class of CSMs.
We will now define a CSM that, at least in terms of worst-case complexity, suggests

that the previous algorithm may not be so bad. More precisely, we slightly modifyRs into
R∗s such that the CSM ./R∗s obtained as in Definition 7.5, is polynomially bounded and
induces a logic τEL(m./R∗s

) where concept satisfiability is both NP-hard and coNP-hard.
The problems we are going to use for the reductions are satisfiability and unsatisfiabil-
ity of propositional formulas in conjunctive normal form, which are well-known to be
complete for the classes NP and coNP, respectively [GJ79].
Since propositional satisfiability corresponds to validity of quantified Boolean formulas

of the form P.ϕ where P only contains existential quantifiers, the elements defining Rs
can be modified to obtain R∗s. Basically, starting with the relation B a family of binary
relations B∗p (for all p ∈ N) is built as follows:

(T1, T2) ∈ B∗p
iff

∃π2 ∈ Πp(T2) s.t. ∀π1 ∈ Πp(T1), it holds π1 B π2

Then, the relation R∗s is defined in the following form:

R∗s := {(C,D) | (TCr , TDr) ∈ B∗rd(C)}

There are two main differences between Rs and R∗s. First, the definition of B∗p poses an
existential quantification over Πp(T2). This has to do with the fact that for propositional
satisfiability only one “good” assignment (path in a description tree) needs to be found.
Second, the special concepts used to represent the structure of certificates for QBF are no
longer needed. Therefore, the final definition of R∗s is limited to checking for membership
into B∗rd(C).
Concerning its computational properties, checking for membership into B∗p requires

at most the same number of comparisons as for Bp, and as explained in the previous
section for Bp, it can be done in polynomial time. Therefore, ./R∗s is a polynomial time
computable CSM. In addition, the following lemma shows that ./R∗s is polynomially
bounded.

Lemma 7.27. The CSM ./R∗s is linear bounded.

Proof. Let us fix a filter f ∈ F and a concept description C with rd(C) = k. Now, let
D ∈ f such that C ./R∗s D = max{C ./R∗s X | X ∈ f}. We make a case distinction on
the possible values of C ./R∗s D (see Definition 7.5):

• C ./R∗s D = 1. Then, C ≡ D and obviously C ∈ f .

• C ./R∗s D = a. This means that C 6≡ D, rd(C) = rd(D) and (C,D) ∈ R∗s. By
definition of R∗s we know that (TCr , TDr) ∈ B∗k. Then, there exists a path πD of
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length k in TDr such that for all paths πC ∈ Πk(TCr), it is true that πC B πD.
Let πD′ be the path that results by replacing the labels in πD by their intersection
with {A} (as required in the definition of B). We denote as D′ the EL concept
description corresponding to πD′ (when seen as a description tree).

– Clearly, πC B πD′ still holds for all paths πC ∈ Πk(TCr). This means that
(TCr , TD′) ∈ B∗k, and consequently (C,D′) ∈ R∗s (notice that D′ is already in
reduced form).

– It is not hard to see that D v D′. This implies that D′ ∈ f , and since D has
been assumed to be maximal within f for C ./R∗s D, it must be the case that
C 6≡ D′. For otherwise, it would contradict C ./R∗s D = a.

Overall, this means that C ./R∗s D
′ = a.

• C ./R∗s D = 0. Clearly, > ∈ f since D v >. Moreover, the maximality of D
implies that C ./R∗s > = 0.

In any case, there is always a concept D′ such that D′ ∈ f , C ./R∗s D
′ is maximal in f

and s(D′) ≤ g(s(C)) where g(n) = n. Thus, ./R∗s is linear bounded.

Finally, likewise Rs the relation R∗s is equivalence invariant.

Lemma 7.28. The relation R∗s is equivalence invariant.

Proof. Let C,C ′, D and D′ be EL concepts such that C ≡ C ′ and D ≡ D′. We show
that (C,D) ∈ R∗s iff (C ′, D′) ∈ R∗s. As pointed out for Rs:

• Since C ≡ C ′ and D ≡ D′, we have that rd(C) = rd(C ′) = k for some k ≥ 0.
Moreover, by Theorem 2.8 there are isomorphisms between TCr and T(C′)r , and
between TDr and T(D′)r .

Suppose that (TCr , TDr) ∈ B∗k. This means that there is a path πD in TDr of length
k, such that for all paths πC ∈ Πk(TCr) it holds πC B πD. Using the isomorphism
mentioned above, one can find a path πD′ in T(D′)r such that πD = πD′ . To see that
also (T(C′)r , T(D′)r) ∈ B∗k, let πC′ be an arbitrary path of length k in T(C′)r . It will be
enough to show that πC′ B πD′ . Again, the isomorphism yields a path πC ∈ Πk(TCr)
such that πC = πC′ . Hence, since πC B πD and πD = πD′ , this implies that πC′ B πD′ .

We have thus shown that (TCr , TDr) ∈ B∗k ⇒ (T(C′)r , T(D′)r) ∈ B∗k. The implication
in the opposite direction can be obtained in a similar way. Therefore, (C,D) ∈ R∗s ⇔
(C ′, D′) ∈ R∗s, and R∗s is equivalence invariant.

Thus, m./R∗s
is a well-defined graded membership function and it induces the DL

τEL(m./R∗s
). To show NP-hardness of satisfiability in τEL(m./R∗s

), we use exactly the
same translation as in the previous section: given a propositional formula ϕ in con-
junctive normal form its corresponding τEL(m) concept description Ĉϕ is of the form
(Cϕ)≤a u (Cϕ)≥a.

Lemma 7.29. Let ϕ be a propositional formula in CNF of the form c1 ∧ . . . ∧ cq, and
x1, . . . , xn the variables occurring in ϕ. Then, ϕ is satisfiable iff Ĉϕ is satisfiable in
τEL(m./R∗s

).
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Proof. (⇒) Assume that ϕ is satisfiable. To show that Ĉϕ is satisfiable in τEL(m./R∗s
)

we choose the interpretation I that has the following EL description graph:

d0 : {} d1 : {A} d2 : {A} dn : {A}rrr

We want to show that d0 ∈ (Ĉϕ)I . By Definition 7.2 we have:

mI./R∗s
(d0, Cϕ) = max{Cϕ ./R∗s D | D ∈ CEL and d0 ∈ DI}

Now, since ϕ is satisfiable, there is a truth assignment t satisfying each clause in ϕ.
Such an assignment induces the EL concept description Dt = ∃r.F t

1:

F t
1 := λ1 u ∃r.F t

2

. . .

F t
i := λi u ∃r.F t

i+1 (1 ≤ i < n)

. . .

F t
n := λn

where t(xi) = true implies λi = A, and λi = > otherwise. It is straightforward to see
that there is a homomorphism from TDt to GI mapping the root of TDt to d0. Therefore,
d0 ∈ (Dt)

I . Let us now look at the value Cϕ ./R∗s Dt.

• The description tree TDt has a single path πt = w0rw1 . . . rwn, and its labeling is
determined by the values λ1, . . . , λn.

• There are q paths π1, . . . , πq in TCϕ such that πj is induced by the top-level atom
Cj in Cϕ. At the same time, Cj corresponds to the clause cj of ϕ.

• Let ` be a literal in cj such that t(`) = true and xi the corresponding variable (it
exists because t satisfies ϕ). By construction of Cj , we have two possibilities:

– ` = xi and `TCϕ (vi) = {A}. Since t(`) = true, this means that λi = A and
`TCϕ (vi) = `TDt

(wi) = {A}. Thus, according to (7.3) it follows πj B πt.

– ` = ¬xi and `TCϕ (vi) = {}. The same argument as before yields λi = > and
`TCϕ (vi) = `TDt

(wi) = {}. Consequently, πj B πt.

Overall, this means that πj B πt for all 1 ≤ j ≤ q. Hence, (TCϕ , TDt) ∈ B∗n and
Cϕ ./R∗s Dt = a. Moreover, d0 6∈ II implies Cϕ 6≡ D for all D such that d0 ∈ DI . Thus,
we can conclude that mI./R∗s (d0, Cϕ) = a and d0 ∈ (Ĉϕ)I .

(⇐) Assume that Ĉϕ is satisfiable in τEL(m./R∗s
). Then, there exists an interpretation

I and d ∈ ∆I such that d ∈ (Ĉϕ)I . This means that mI./R∗s (d,Cϕ) = a. By definition
of m./R∗s

there must exist a concept D such that d ∈ DI and C ./R∗s D = a. Moreover,
since ./R∗s is based on the relation R∗s as constructed in Definition 7.5, we further have
that rd(Cϕ) = rd(D) = n and (TCϕ , TDr) ∈ B∗n. Hence, there exists a path π in TDr

such that for all 1 ≤ j ≤ q it holds πj B π, where πj is the path in TCϕ corresponding
the clause cj of ϕ.
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Let π be of the form w0r1w1 . . . rnwn, the assignment tπ is built as follows. For all
1 ≤ i ≤ n:

tπ(xi) :=

{
true if A ∈ `TDr (wi)

false otherwise.

Then, we show that tπ satisfies ϕ. For any clause cj of ϕ, its corresponding top-level
atom Cj in Cϕ induces a path πj = v0r1v1 . . . rnvn in TCϕ . We have already seen that
πj B π, and this means that there is 0 ≤ i ≤ n such that:

`TCϕ (vi) ∩ {A} = `TDr (wi) ∩ {A} and I 6∈ `TCϕ (vi)

Since I ∈ `TCϕ (v0), we know that i > 0. This means that the variable xi occurs in cj .
If xi occurs in a positive form, by construction of Cϕ we have that `TCϕ (vi) = {A} and
A ∈ `TDr (wi). Hence, it must be the case that tπ(xi) = true and tπ satisfies cj . The
case where ¬xi occurs in cj can be treated in a similar way.

Thus, we have shown that tπ satisfies ϕ.

Next, we establish the coNP lower bound by a reduction from the non-satisfiability
problem. Based on the previous reduction, notice that (Cϕ)<a represents that an as-
signment t does not satisfy ϕ. However, since unsatisfiability means that all possible
assignments fail to satisfy ϕ, we additionally need to ensure that all of them are taken
into account. To this end, we introduce the concept Cnall := ∃r.An1 where An1 is of the
following form:

An1 := A u ∃r.An2
. . .

Ani := A u ∃r.Ani+1 (1 ≤ i < n)

. . .

Ann := A

Then, given a propositional formula ϕ in CNF its corresponding τEL(m) concept
description Ĉϕ∗ has the following definition:

Ĉϕ∗ := (Cϕ)<a u Cnall

Lemma 7.30. ϕ is unsatisfiable iff Ĉϕ∗ is satisfiable in τEL(m./R∗s
).

Proof. (⇒) Assume that ϕ is unsatisfiable and let I be the interpretation having the
following description graph:

d0 : {} d1 : {A} d2 : {A} dn : {A}rrr

We want to show that d0 ∈ (Ĉϕ∗)
I . Notice that this is exactly the description tree

associated to the concept Cnall, and consequently d0 ∈ (Cnall)
I . Hence, it remains to show

that d0 ∈ [(Cϕ)<a]
I . By Lemma 7.29 we obtain that Ĉϕ is unsatisfiable in τEL(m./R∗s

).
Looking at the definition of Ĉϕ, this means that for all interpretations J and d ∈ ∆J it
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holds:
d 6∈ [(Cϕ)≤a u (Cϕ)≥a]

J

Therefore, there are two possible scenarios for d:

mJ./R∗s
(d,Cϕ) < a or mJ./R∗s

(d,Cϕ) > a

Since the similarity values computed by ./R∗s range over the set {0, a, 1}, the second
case is only valid when d ∈ (Cϕ)J (./R∗s is equivalence closed). Now, the concept
name I is a top-level atom of Cϕ. This means, that whenever d 6∈ IJ it must be that
mJ./R∗s

(d,Cϕ) < a. This is actually the case for d0 in I. Thus, mI./R∗s (d0, Cϕ) < a and
d0 ∈ [(Cϕ)<a]

I .
(⇐) Conversely, suppose that ϕ is satisfiable. Based on a truth assignment t satisfying

ϕ, in the proof of Lemma 7.29 a concept Dt is built such that:

Cϕ ./R∗s Dt = a

Moreover, it can also be seen that Dt is such that Cnall v Dt. Hence, for all interpre-
tations I and d ∈ ∆I , having d ∈ Cnall implies:

mI./R∗s
(d,Cϕ) ≥ a

Thus, Ĉϕ∗ is unsatisfiable in τEL(m./R∗s
).

As a consequence of the previous two lemmas, we obtain the following computational
lower bounds for satisfiability in τEL(m./R∗s

).

Lemma 7.31. In τEL(m./R∗s
), satisfiability is NP-hard and coNP-hard.

Overall, p(n)-boundedness of a CSM ./ yields the following results for τEL(m./).

Theorem 7.32.

1. For all ./∈ F./[poly], if ./ is polynomial time computable and the polynomial p(n)
corresponding to its boundedness is known, then in τEL(m./) satisfiability is in
Σp

2.

2. There is at least one CSM ./∈ F./[poly] (for instance ./R∗s ), such that in τEL(m./)
satisfiability is NP-hard and coNP-hard.

Similar to the decidability results from Section 7.2.2, the base model built in Proposi-
tion 7.25 and the p(n)-boundedness property can be used to obtain a polynomial model
property for satisfiability of concepts of the form Ĉ u ¬D̂. Hence, the procedure de-
scribed in Lemma 7.26 can easily be extended to obtain an NPNP-decision procedure
for the complement of the subsumption problem. Likewise, such a small model prop-
erty exists also for consistency of ABoxes of the form A ∪ {¬Ĉ(a)} with respect to the
size of A. Therefore, by using Algorithm 3 we obtain an NPNP-algorithm to solve the
consistency and the non-instance problem (data complexity). Thus, the first result in
Theorem 7.32 can be extended to include the rest of the reasoning tasks.
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Theorem 7.33. For all ./ ∈ F./[poly], if ./ is polynomial time computable and the
polynomial p(n) corresponding to its boundedness is known, then in τEL(m./) consistency
is in Σp

2, and subsumption and instance checking (data complexity) are in Πp
2.

Summing up, based on the polynomial boundedness property we have obtained a
family of DLs τEL(m./) with a satisfiability problem in Σp

2. This upper bound has been
established by applying the methods introduced in Chapter 5 for τEL(deg) to the class of
polynomially bounded and polynomial time computable CSMs. Nevertheless, this only
represents a sufficient condition to obtain our results, and it does not prevent CSMs
outside F./[poly] to induce equally behaved threshold logics.

7.3 The simi framework

Lehmann and Turhan [LT12] introduced a framework (called simi framework) that can
be used to define a variety of similarity measures between EL concepts satisfying the
properties required by our Propositions 7.3 and 7.4. They first define a directional
measure simid, and then use a fuzzy connector ⊗ to combine the values obtained by
comparing the concepts in both directions with simid. Given two EL concepts C and
D, one could say that simi uses simid to measure how many properties of C are present
in D and vice versa. Then, the bidirectional similarity measure simi is defined as:

simi(C,D) := simid(C
r, Dr)⊗ simid(Dr, Cr)

The fuzzy connector is an operator ⊗ : [0, 1] × [0, 1] → [0, 1] satisfying (among others)
the following two properties (see [LT12]). For all x, y ∈ [0, 1]:

• x⊗ y = y ⊗ x (commutativity),

• x ≤ y ⇒ 1⊗ x ≤ 1⊗ y (weak monotonicity).

In addition, ⊗ is monotonic if for all x, y, z ∈ [0, 1]:

• x ≤ y ⇒ x⊗ z ≤ y ⊗ z.

Examples of monotonic fuzzy connectors are the average and minimum operators, and
all bounded t-norms (see [LT12] for more information). In the following we recall the
general definition of simid.

Definition 7.34 ([LT12]). Let C,D be two EL concept descriptions. If one of these
two concepts is equivalent to >, then:

simid(C,D) :=

{
1 if C ≡ >
0 if C 6≡ > and D ≡ >

Otherwise, let tl(C) and tl(D) be the set of top-level atoms of C and D, respectively.
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Then, simid is defined as follows:

simid(C,D) :=



∑
C′∈tl(C)

[
g(C′)×

⊕
D′∈tl(D)

simid(C′,D′)

]
∑

C′∈tl(C)

g(C′) if |tl(C)| > 1 or |tl(D)| > 1

pm(C,D) if C,D ∈ NC

pm(r, s)[w + (1− w)simid(E,F )] if C = ∃r.E and D = ∃s.F
0 otherwise.

Let us now explain the meaning of the parameters used in the definition of simid.

• The symbol g stands for a function mapping the set of EL atoms NA to a value in
R>0. The idea is that g : NA → R>0 assigns a weight to each atom in NA. This
could be helpful, for instance, if one wants to express that some atom contributes
more (is more important) to the similarity than others.

• The purpose of the value w ∈ (0, 1) is the following. Given two concept descriptions
∃r.C and ∃s.D, if simid(C,D) = 0, having w > 0 allows to distinguish between
the cases r = s and r 6= s.

• pm : (NC × NC) ∪ (NR × NR) → [0, 1] is a primitive measure for concept and role
names satisfying the following basic properties (different from [LT12] we do not
deal with role inclusion axioms):

– pm(A,B) = 1 iff A = B for all A,B ∈ NC,

– pm(r, s) = 1 iff r = s for all r, s ∈ NR.

In particular the default primitive measure pmd is defined as:

pmd(A,B) :=

{
1 if A = B

0 otherwise.

and

pmd(r, s) :=

{
1 if r = s

0 otherwise.

• Finally, the operator ⊕ represents a bounded triangular-conorm. One can find in
[LT12] arguments in favor of using this type of operator. The max operator is a
particular case of a bounded t-conorm. ♦

The following two properties of simid are presented in [LT12] (see Lemma 1). They
will be useful later on to obtain our results. Let C,D and E be EL concept descriptions,
then:

simid(C,D) = 1 iff D v C (7.8)

D v E ⇒ simid(C,E) ≤ simid(C,D) (7.9)
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The proofs can be found in the extended version [Leh12] of [LT12] (Lemma 14 and
Lemma 15). They indicate that these properties hold regardless of whether the concepts
C,D and E are in reduced form or not.
Finally, one can easily see that simi only defines CSMs that are equivalence invariant,

role-depth bounded and equivalence closed. The equivalence invariance property follows
from the fact that simid is computed using the reduced forms of C and D, and the
fact that C ≡ C ′ implies that the structures of Cr and (C ′)r are isomorphic (see Theo-
rem 2.8). In addition, its structural definition implies that simi is role-depth bounded.
Regarding the third property, it has been shown already in [LT12] that this is the case
for any instance of simi . Hence, for all instances ./ of simi the induced m./ is a well-
defined graded membership function (Proposition 7.3). From now on, for any instance
./ of simi we denote as ./d the corresponding instance of simid, and will use ./d in infix
notation.

7.3.1 A polynomially bounded family of instances of simi

We now identify a family of instances of simi that are polynomially bounded. Let F1

be the family of CSMs that are instances of simi , where ⊕ is selected as max, ⊗ is a
monotonic fuzzy connector and pm is the default primitive measure pmd. The following
example gives an intuition of why CSMs in F1 are polynomially-bounded.

Example 7.35. Let ./x∈ F1 such that g assigns value 1 to every atom and w = 0.5. In
addition, let C and D be the following concept descriptions:

C := A uB1 u ∃r.(A u ∃r.B u ∃s.A)

D := A uB2 u ∃r.(A u ∃r.A u ∃s.B) u ∃rs.A

Let us look at the atoms in D chosen by ⊕ = max along the computation of C ./xd D.
To illustrate this, we use the following picture:

A1 B1
0 ∃r.( )2

A1 ∃r.( )2 ∃s.( )3

B0 A0

A1 B2 ∃r.( )2 ∃r.( )

A1 ∃r.( )2 ∃s.( )3 ∃s.( )

A B A

The left-hand side of the picture depicts the structure of C and the right-hand side does
the same for D. The superscripts are used to denote the pairings done by ⊕ = max in
the computation of C ./xd D. For instance, at the top level of C, A1 means that A is
paired with the top-level atom of D exhibiting the 1 superscript (which is also A). The
superscript 0 is used to denote that no such match exists, i.e., every possible match gives
value 0. This is the case for B1 at the top-level of C, since B1 ./

x
d A = B1 ./

x
d B2 =

B1 ./
x
d ∃r.(. . .) = 0.
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Our interest is to see what is the effect of removing the unmatched atoms from D. In
our example, doing that yields the following concept description:

Y := A u ∃r.(A u ∃r.> u ∃s.>)

From the definition of simid and the particular characteristics of ./x, it is easy to see that
C ./xd D = C ./xd Y = 8

9 . This means that the unmatched atoms are actually irrelevant
to obtain the value C ./xd D. However, this need not be the case for the computation
of C ./x D. In fact, one must not forget that ./xd is used in both directions to compute
C ./x D. But still, there is something special in the structure of Y : it is a concept part
of both C and D (see Definition 4.13). Some consequences follow from it:

• s(Y ) ≤ s(C),

• D v Y . This means that for all filters f , D ∈ f implies Y ∈ f ,

• C v Y . By property (7.8), it is the case that Y ./xd C = 1.

Therefore, although the relationship between C ./x D and C ./x Y (if ⊗ were not
monotonic) is not clear in general, for a monotonic fuzzy connector it holds C ./x D ≤
C ./x Y . Consequently, even though C ./x Y may not preserve the value C ./x D, the
concept Y represents a better choice towards bounding ./ for C and a filter f containing
D (as required in Definition 7.24). ♦

Let us now generalize the intuition presented in the previous example. First, we show
that such a concept Y always exists. Afterwards, we use its properties to establish that
all CSMs in F1 are linear bounded.

Lemma 7.36. Let ./ be a CSM in F1. For all EL concept descriptions C and D, there
exists a concept description Y such that:

• C v Y and D v Y ,

• C ./d D = C ./d Y , and

• s(Y ) ≤ s(C).

Proof. We use induction on the structure of C to prove the claim.

• C is of the form A ∈ NC or >. For C = A, the value C ./d D is the result of the
following expression:

g(A)×max{A ./d D
′ | D′ ∈ tl(D)}

g(A)

The use of the primitive default measure in ./ implies that A ./d D = 1 if A ∈
tl(D), otherwise A ./d D = 0. Choosing Y := A or Y := >, accordingly, ensures
that the claim is true. If C = >, then the definition of simid implies C ./d X = 1
for all concept descriptions X. Thus, setting Y := > satisfies the claim.
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• C = C1 u . . . u Cn with n > 1. In this case we have:

C ./d D =

n∑
i=1

[
g(Ci)×max{Ci ./d D′ | D′ ∈ tl(D)}

]
n∑
i=1

g(Ci)

Let Di (1 ≤ i ≤ n) be the top-level atom of D that maximizes the value Ci ./d D′

among all D′ ∈ tl(D). The application of the induction hypothesis to Ci and Di

yields a concept description Yi such that:

– Ci v Yi and Di v Yi,

– Ci ./d Di = Ci ./d Yi,

– s(Yi) ≤ s(Ci).

Obviously, C1u . . .uCn v Y1u . . .uYn and D1u . . .uDn v Y1u . . .uYn. Therefore,
the concept description Y := Y1u. . .uYn satisfies C v Y , D v Y and s(Y ) ≤ s(C).
Now, the value of C ./d Y is computed by the following expression:

C ./d Y =

n∑
i=1

[
g(Ci)×max{Ci ./d Y ′ | Y ′ ∈ tl(Y )}

]
n∑
i=1

g(Ci)

Suppose that for some Ci (1 ≤ i ≤ n), Ci ./d Yi is not the maximum among all
the values Ci ./d Y ′. Then, there is Yj ∈ tl(Y ) such that i 6= j and Ci ./d Yi <
Ci ./d Yj . From this we obtain:

Ci ./d Di = Ci ./d Yi

< Ci ./d Yj

≤ Ci ./d Dj (Dj v Yj and (7.9))

Hence, it follows that Ci ./d Di < Ci ./d Dj which contradicts the maximality of
Di with respect to Ci. Hence, Ci ./d Yi is actually the maximum and once this is
true, it is easy to see that C ./d D = C ./d Y .

• C is of the form ∃r.C ′. Let D∗ be the top-level atom of D maximizing the value
C ./ D∗. If D∗ is not of the form ∃r.D′, then C ./d D = 0. This is a consequence
of the general definition of simid and the use of pmd. Then, choosing Y := > is
enough. Otherwise, C ./d D can be expressed as:

C ./d D = [w + (1− w)× (C ′ ./d D
′)]

The application of induction hypothesis to C ′ and D′ yields a concept description
Y ′ such that:

– C ′ v Y ′ and D′ v Y ′

– C ′ ./d D
′ = C ′ ./d Y

′, and
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– s(Y ′) ≤ s(C ′).
Then, for the concept Y := ∃r.Y ′ we have that C v Y , D v ∃r.D′ v Y and
s(Y ) ≤ s(C). Additionally,

C ./d Y = [w + (1− w)× (C ′ ./d Y
′)]

Thus, C ./d D = C ./d Y .

Next, using Lemma 7.36 we show linear boundedness for the family F1.

Corollary 7.37. Let ./ be a CSM in F1. Then, ./ is linear bounded.

Proof. Let f be a filter and C a concept description. Moreover, let D ∈ f be a concept
description such that C ./ D = max{C ./ X | X ∈ f}. From the abstract definition of
simi we have:

C ./ D = (Cr ./d D
r)⊗ (Dr ./d C

r) (7.10)

The application of Lemma 7.36 to Cr and Dr yields a concept description Y such that:

Cr v Y , Dr v Y , Cr ./d Dr = Cr ./d Y and s(Y ) ≤ s(Cr)

From Cr v Y ≡ Y r, it follows that Y r ./d C
r = 1 (see property (7.8)). In addition,

property (7.9) and Y ≡ Y r imply that Cr ./d Y = Cr ./d Y
r. Hence, C ./ Y can be

expressed as follows:
C ./ Y = (Cr ./d D

r)⊗ 1 (7.11)

Since fuzzy connectors are commutative, the monotonicity of ⊗ implies that it is mono-
tone in both arguments. Then, due to (7.10) and (7.11) we obtain (C ./ D) ≤ (C ./ Y ).
Hence, (C ./ D) = (C ./ Y ), for otherwise it would contradict the maximality of C ./ D
(Dr v Y implies that Y ∈ f). Finally, since reduced forms are the smallest concepts in
their equivalence classes, we have s(Y ) ≤ s(Cr) ≤ s(C). Thus, the concept Y witnesses
that ./ is linear bounded.

Corollary 7.37 implies that F1 ⊆ F./[poly]. Then, since all its elements are linear
bounded CSMs, the upper bounds shown in Section 7.2.4 with respect to F./[poly] also
apply for any DL τEL(m./) induced by a CSM ./ ∈ F1.
Let us now continue Example 7.35, to illustrate that the same arguments failed for

arbitrary primitive measures.

Continuation of Example 7.35. Let us slightly modify ./x such that pm(B1, B2) =
pm(B2, B1) = 0.8. Now, B2 becomes a relevant atom for the computation of C ./xd D,
since B1 ./

x
d B2 6= 0. Like in the first part of the example, the picture below shows the

matches performed by ⊕ = max.

A1 B1
3 ∃r.( )2

A1 ∃r.( )2 ∃s.( )3

B0 A0

A1 B2
3 ∃r.( )2 ∃r.( )

A1 ∃r.( )2 ∃s.( )3 ∃s.( )

A B A
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Following the same idea as before, Y becomes the following concept description:

A uB2 u ∃r.(A u ∃r.> u ∃s.>)

Obviously, we still have C ./xd D = C ./xd Y , but now C 6v Y . Hence, Y r ./xd C
r < 1

and in principle one can no longer assume that (C ./x D) ≤ (C ./x Y ) as before. In fact,
a closer inspection of the computation of ./xd shows that Y r ./xd C

r < Dr ./xd C
r, and by

monotonicity of ⊗ it follows (C ./x Y ) ≤ (C ./x D). We will not enter into the details of
the computation (they are very tedious), but let us briefly explain the idea behind this.
The construction of Y excludes the right-most top-level atom of D. However, one can
see that the structure of ∃r.∃s.A can be entirely “mapped” into the structure of C. This
means that as a top-level atom of D, it contributes with value 1 to the computation of
Dr ./xd C

r. Therefore, we end up with the following expressions:

Y r ./xd C
r =

a

3
and Dr ./xd C

r =
a+ 1

4

where a is a real value smaller than 3, which proves that Y r ./xd C
r < Dr ./xd C

r.
Hence, throwing away the atom ∃r.∃s.A decreases the value of the right to left compar-
ison when computing ./x. This means that the arguments used to prove linear bound-
edness in Corollary 7.37 are not valid in this case.

One could still wonder whether it is possible to remove less information from D, while
keeping the value Cr ./xd D

r and the size of the resulting concept small enough. Notice
that the concept description Y u∃r.∃s.A represents such a possibility. Nevertheless, this
is a very particular case where the size of D is actually not much bigger than C. Suppose
for instance, that pm(r, s) = pm(s, r) = 0.9 and D is extended into D′ as follows:

D′ := D u ∃r.∃r.B u ∃s.∃r.A u ∃s.∃s.A

A consequence of having such a high similarity between r and s is that now ∃r.B ./xd
∃s.B > ∃r.B ./xd ∃r.A. The picture below shows the change of scenario in the mapping
corresponding to the top-level atoms of the second level.

A1 B1
3 ∃r.( )2

A1 ∃r.( )3 ∃s.( )2

B1 A1

A1 B2
3 ∃r.( )2 ∃r.( ) . . .

A1 ∃r.( )2 ∃s.( )3 ∃s.( )

A1 B1 A

Consequently, the same way of selecting Y would result in the following concept
description:

A uB2 u ∃r.(A u ∃r.A u ∃s.B)

Notice that all the newly added existential restrictions are irrelevant for the selection
of Y . In addition, there are at least exponentially many top-level atoms in D′ (with re-
spect to rd(C)), namely the ones corresponding to the atoms ∃r.∃s.A,∃r.∃r.B, ∃s.∃s.A
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and ∃s.∃r.A. Furthermore, due to the primitive similarity between r and s, such atoms
contribute with value 1 (or very close to 1) to the computation of (D′)r ./xd C

r. There-
fore, likewise for ∃r.∃s.A and D, throwing away any of them will decrease the value
(D′)r ./xd C

r. ♦

To conclude, the previous example tells us that if D′ is the selected maximal concept
with respect to C and a filter f , one cannot use the idea from Corollary 7.37 to extract
a “small” fragment Y of D′ such that Cr ./xd (D′)r = Cr ./xd Y

r, and then exploit the
monotonicity of ⊗ to obtain C ./x D′ ≤ C ./x Y .
At this moment, it is not clear to us whether for non-default primitive measures the

resulting instances of simi are polynomially bounded or not. An alternative could be to
drop the requirement of having Cr ./d (D′)r = Cr ./d Y

r, but find a different method
to build Y such that at the end C ./ D′ ≤ C ./ Y while keeping Y small enough. We
do not know if it is possible to do that by only knowing that the fuzzy connector ⊗ is
monotonic.

7.3.2 Relation to the membership degree function deg

To conclude the section, we show that our graded membership function deg can be
obtained from a CSM ./1, using the construction in Definition 7.2. The function ./1 is
defined as the following instance of simi :

• the fuzzy connector is defined as ⊗ = min and the bounded t-conorm ⊕ as max,

• the function g maps every atom to 1, pm is the default primitive measure pmd and
the value w is selected as 0.

There is a minor detail in the definition of ./1 regarding the simi framework, namely,
w = 0. The simi framework defines w ∈ (0, 1) for two reasons. First, using w = 1 would
nullify the recursive computation of simi on existential restrictions. Secondly, w > 0
is desired in order to be able to distinguish between different role names, as explained
above. However, any instance of simi with w = 0 still complies with the basic properties
shown in [Leh12] that have been used so far. Therefore, ./1 is equivalence invariant,
role-depth bounded, equivalence closed, and induces a well-defined graded membership
function m./1 . Moreover, since min is a monotonic fuzzy connector, this means that ./1

satisfies all the same properties as those CSMs in the family F1. Notice that the value
of w is irrelevant for the results shown for CSMs in F1, and one could say that ./1∈ F1.
Our main goal now is to show that deg = m./1 . We start by proving that selecting
⊗ = min makes the value Dr ./1

d C
r irrelevant for the computation of C ./1 D. The

proof is supported by the application of Lemma 7.36 in the context of ./1.

Lemma 7.38. For all interpretations I, d ∈ ∆I , and EL concept descriptions C we
have:

mI./1(d,C) = max{Cr ./1
d D

r | D ∈ CEL and d ∈ DI}

Proof. By Definition 7.2

mI./1(d,C) = max{C ./1 D | D ∈ CEL and d ∈ DI}
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For all concept descriptions D, by definition of ./1 we know that

C ./1 D = min{Cr ./1
d D

r, Dr ./1
d C

r}

Hence, it follows that C ./1 D ≤ Cr ./1
d D

r and we obtain:

mI./1(d,C) ≤ max{Cr ./1
d D

r | D ∈ CEL and d ∈ DI} (7.12)

Now, letX be a concept description such that d ∈ XI and Cr ./1
d X

r gives the maximum
in (7.12). The application of Lemma 7.36 to Cr and Xr, yields a concept Y such that:

• Cr v Y and Xr v Y ,

• Cr ./1
d X

r = Cr ./1
d Y .

Since Y ≡ Y r, having Cr v Y implies that Y r ./1
d C

r = 1 (see (7.8)). Additionally,
(7.9) further implies Cr ./1

d Y = Cr ./1
d Y

r. Hence, we obtain the following sequence of
equalities:

C ./1 Y = min{Cr ./1
d Y

r, Y r ./1
d C

r}
= Cr ./1

d Y
r

= Cr ./1
d Y

= Cr ./1
d X

r

Moreover, d ∈ X and Xr v Y imply that d ∈ Y I . This means that Y is one of the
candidate concepts in the computation of mI./1(d,C). Therefore,

Cr ./1
d X

r ≤ mI./1(d,C) (7.13)

Thus, by the way X was chosen and the combination of (7.12) and (7.13), our claim
follows.

Once we know that Dr ./1
d C

r can be forgotten when computing C ./1 D, a basic
relationship between ./1

d and deg is established in the following lemma.

Lemma 7.39. Let X be an EL concept description and IX be the interpretation cor-
responding to the EL description tree TX . Then, for each EL concept description C, it
holds:

Cr ./1
d X = degIX (d0, C)

where d0 is the domain element corresponding to the root of TX .

Proof. We prove the claim by induction on the structure of C.
Induction Base. C ∈ NC or C = >. Then, C = Cr. If Cr is of the form A, then A ./1

d

X = 1 when A ∈ tl(X) and 0 otherwise. A similar relationship holds for degIX (d0, A),
but with respect to whether d0 ∈ AIX . Since A ∈ tl(X) iff d0 ∈ AIX , this means that
A ./1

d X = degIX (d0, A). The case for > is trivial, since > ./1
d X = degIX (d0,>) = 1.

Induction Step. We distinguish two cases:
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• C is of the form ∃r.D. Then, Cr is of the form ∃r.Dr. By definition of ./1
d and

deg , it is easy to see that whenever X does not have a top-level atom of the form
∃r.X ′, it is the case that:

∃r.Dr ./1
d X = degIX (d0, ∃r.D) = 0

Hence, without loss of generality, we focus on the cases where there exists at least
one top-level atom in X of the form ∃r.X ′. Consequently, since |tl(∃r.Dr)| = 1,
we have:

∃r.Dr ./1
d X = max{Dr ./1

d X
′ | ∃r.X ′ ∈ tl(X)} (7.14)

Since IX is induced by TX , then for each atom ∃r.X ′ ∈ tl(X) there exists a corre-
sponding domain element e ∈ ∆IX such that (d0, e) ∈ rIX . This correspondence
also holds in the opposite direction. Moreover, it is easy to see that the tree rooted
at e in TX corresponds to the EL description tree TX′ . Hence, the application of
induction hypothesis to D yields:

Dr ./1
d X

′ = degIX (e,D), for all ∃r.X ′ ∈ tl(X)

Therefore, it follows from the equality in (7.14):

∃r.Dr ./1
d X = max{degIX (e,D) | (d0, e) ∈ rIX} (7.15)

Now, let T∃r.Dr be the corresponding EL description tree of ∃r.Dr and v0 its root.
Obviously, there exists exactly one r-successor v1 of v0 in T∃r.Dr and moreover, the
subtree of T∃r.Dr rooted at v1 is exactly the EL description tree TDr associated to
Dr. Consider, then, the set H(T∃r.Dr , GIX , d0). By Definition 4.5 we have:

degIX (d0,∃r.D) = max{hw(v0) | h ∈ H(T∃r.Dr , GIX , d0)} (7.16)

Now, let h be any ptgh in H(T∃r.Dr , GIX , d0) with h(v1) = e, for some e ∈ ∆IX

such that (d0, e) ∈ rIX . We know that there exists at least one and any ptgh
h′ of a different form will not be interesting, since h′w(v0) = 0. By definition of
hw (Definition 4.4), it follows that hw(v0) = hw(v1). Additionally, for any ptgh
h ∈ H(T∃r.Dr , GIX , d0) with h(v1) = e, its restriction to (VT∃r.Dr \ {v0}) is a ptgh
in H(TDr , GIX , e). Conversely, any ptgh g in H(TDr , GIX , e) can be extended
to a ptgh in H(T∃r.Dr , GIX , d0), by defining g(v0) = d0. Hence, (7.16) can be
transformed into:

degIX (d0, ∃r.D) = max
(d0,e)∈rIX

{gw(v1) | g ∈ H(TDr , GIX , e)}

Finally, since for each e ∈ ∆IX there exists a ptgh g ∈ H(TDr , GIX , e) such that
degIX (e,D) = gw(v1) and gw(v1) gives the maximum value, we further obtain the
following equation:

degIX (d0, ∃r.D) = max{degIX (e,D) | (d0, e) ∈ rIX} (7.17)
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Thus, the combination of (7.15) and (7.17) yields

∃r.Dr ./1
d X = degIX (d0, ∃r.D)

• C is of the form C1u. . .uCk. Then, its reduced form Cr is of the formD1u. . .uDn,
where 1 ≤ n ≤ k and each Dj is the reduced form [Ci]

r of some conjunct Ci. Now,
it is easy to see from the definition of ./1

d, that Cr ./1
d X can be equivalently

expressed as:

Cr ./1
d X =

n∑
j=1

(Dj ./
1
d X)

n
(7.18)

Furthermore, though more involved, it is not hard to see from the definitions of
deg and hw, that a similar situation occurs with respect to deg :

degIX (d0, C
r) =

n∑
j=1

degIX (d0, Dj)

n
(7.19)

Then, for each Dj one can apply the induction hypothesis to the atom Ci that has
[Ci]

r = Dj to obtain Dj ./
1
d X = degIX (d0, Ci). Since deg is equivalence invariant

(in the sense of property M2 ), we have Dj ./
1
d X = degIX (d0, Ci) = degIX (d0, Dj).

Hence, the combination of (7.18) and (7.19) yields Cr ./1
d X = degIX (d0, C).

Finally, using the previous two results, one can show the equivalence between m./1

and deg .

Theorem 7.40. For all interpretations I, d ∈ ∆I , and EL concept descriptions C we
have mI./1(d,C) = degI(d,C).

Proof. (⇒) From Lemma 7.38, we know that there exists an EL concept description X
such that mI./1(d,C) = Cr ./1

d X
r and d ∈ XI . The application of Lemma 7.39 to C

and X yields:
Cr ./1

d X = degIX (d0, C)

Recall that due to property (7.9), Cr ./1
d X = Cr ./1

d X
r. Since d ∈ XI , the charac-

terization of crisp membership in EL yields the existence of a homomorphism ϕ from
GIX (or TX) to GI with ϕ(d0) = d. Hence, the application of Lemma 4.11 to IX and I
implies degIX (d0, C) ≤ degI(d,C). Therefore, we obtain:

mI./1(d,C) ≤ degI(d,C) (7.20)

(⇐) Consider a ptgh h ∈ H(TCr , GI , d) such that hw(v0) = degI(d,C). Let Ih be
the canonical interpretation induced by h. Since TIh is a tree, we can speak of its
corresponding EL concept description CIh . Then, we obtain the following equalities:

degI(d,C) = degIh(v0, C) (Lemma 4.12)

= Cr ./1
d CIh (Lemma 7.39)

= Cr ./1
d (CIh)r (property 7.9)
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Furthermore, it is easy to see that by definition of Ih, it holds that d ∈ [CIh ]I . Hence,
Lemma 7.38 implies that Cr ./1

d (CIh)r ≤ mI./1(d,C) and consequently:

degI(d,C) ≤ mI./1(d,C) (7.21)

Thus, our claim follows from the combination of inequalities (7.20) and (7.21).

Once we have established this equivalence, Proposition 7.4 thus implies that answering
of relaxed instance queries w.r.t. ./1 is the same as computing instances for threshold
concepts of the form Q>t in τEL(deg). Since such concepts are positive, Proposition 5.19
yields the following corollary.

Corollary 7.41. Let A be an EL ABox, Q an EL query concept, a an individual name,
and t ∈ [0, 1). Then it can be decided in polynomial time whether a ∈ Relax./

1

t (Q,A) or
not.

Note that Ecke et al. [EPT14, EPT15] show only an NP upper bound w.r.t. data
complexity for this problem, albeit for a larger class of instances of the simi framework.



Chapter 8

Conclusions and Future Work

We have introduced a family of DLs τEL(m) parameterized with a graded membership
function m, which extends the popular lightweight DL EL by threshold concepts that
can be used to approximate classical concepts. Inspired by the homomorphism char-
acterization of membership in EL concepts, we have defined a particular membership
function deg and have investigated the complexity of reasoning in τEL(deg). It turns
out that the higher expressiveness takes its toll: whereas reasoning in EL can be done in
polynomial time, it is NP- or coNP-complete in τEL(deg), depending on which inference
problem is considered.
The membership function deg has been further extended to consider EL concepts

defined with respect to acyclic TBoxes. Based on this, we have defined τEL(deg) TBoxes
as pairs (Tτ , TEL), where Tτ contains concept definitions that use threshold concepts
defined over TEL. Obviously, reasoning with respect to acyclic τEL(deg) TBoxes can
already be handled by the basic approach through unfolding. We hoped that the possible
exponential blow-up due to unfolding could be avoided, but unfortunately this is not the
case. In fact, we have seen that the satisfiability and subsumption problems with respect
to acyclic τEL(deg) TBoxes are ΠP

2 -hard and ΣP
2 -hard, respectively. In Section 6.4.3 a

PSPACE decision procedure is provided to solve these problems, and it is later extended
to tackle all the standard reasoning problems with respect to acyclic knowledge bases,
while keeping the use of space polynomial in the size of the input.
We have also shown that concept similarity measures satisfying certain properties can

be used to define graded membership functions. This extensive family of CSMs contains
non-computable functions, and some of them induce undecidable threshold logics. On
the positive side, however, a computable CSM ./ always induces a decidable threshold
DL τEL(m./). Decidability is achieved by adapting the decision procedures provided
for τEL(deg) to this more general class of DLs. To gain a preliminary insight into
the computational complexity landscape exhibited by this family of decidable logics,
we restricted our attention to polynomial time computable CSMs. It turns out that
the maximization mechanism used to define a membership function m./ may yield a
PSPACE-hard logic τEL(m./). A sufficient bounding condition on CSMs is then defined
to obtain a subfamily of logics whose satisfiability problem is in ΣP

2 .
Concrete examples of polynomially bounded CSMs have been presented in Section 7.3.1

as a particular subset of instances of the simi framework of Lehmann and Turhan [LT12].
Their induced threshold logics inherit the computational complexity results derived for
the whole class of polynomially bounded CSMs. In particular, our function deg can be
constructed from a polynomially bounded CSM ./1. Nevertheless, our direct definition
of deg based on homomorphisms is important since the partial tree-to-graph homomor-
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phisms used there are the main technical tool for showing our decidability and complexity
results. For instance, satisfiability in τEL(deg) is shown to be NP-complete, in contrast
to the general NPNP upper bound obtained from the polynomial boundedness property.
While introduced as a formalism for defining concepts by approximation, a possible

use-case for τEL(deg) is relaxation of instance queries, as motivated and investigated in
[EPT14, EPT15]. Compared to the setting considered in [EPT14, EPT15], τEL(deg)
yields a considerably more expressive query language since we can combine threshold
concepts using the constructors of EL and can also forbid that thresholds are reached.
Restricted to the setting of relaxed instance queries, our approach actually allows relaxed
instance checking in polynomial time. On the other hand, [EPT14, EPT15] can also deal
with other instances of the simi framework.

8.1 Future Work

Last, we sketch some ideas and point out several directions for future work.

Membership functions for cyclic and general TBoxes. We would like to extend our
function deg to be able to compute membership degrees for concepts defined with respect
to cyclic and general TBoxes. To do this, homomorphisms probably need to be replaced
by simulations [Baa03]. On the side of concept similarity measures for DLs, a specific
measure has been proposed in [EPT15] to deal with general TBoxes. In particular, such
a CSM is akin to the simi framework in the sense that it also combines directional
values to compute the similarity between two concepts. We believe that it is possible
to exploit the ideas from [EPT15], and use the directional computation to extend deg
towards concepts defined with respect to general TBoxes. This is joint work in progress
with Andreas Ecke.

Nesting of threshold concepts. Extending our introduced family of DLs with nesting
of threshold concepts is an interesting topic for future work. To go further in this
direction, the initial step is to understand how to come up with a well-defined and
meaningful semantics to interpret the resulting concept descriptions. Since a graded
membership function m provides the interpretation for simple threshold concepts in a
logic τEL(m), one idea that seems natural is to interpret nested threshold concepts by
recursively applying the definition of m bottom-up. More precisely, suppose we have a
nested threshold concept X>.5 where X is of the following form:

Healthy u (∃spouse.(Rich u Intelligent u Female))≥.7

To compute mI(d,X) the function would first calculate mI(d,∃spouse.(. . .)) using the
base definition of m to obtain the corresponding value t. Afterwards, m is applied one
more time to compute the value mI(d,X). Here, the inner threshold concept in X>.5

would be treated as an atom, where the previously computed value t determines whether
d has the property (∃spouse.(. . .)))≥.7 or not. For example, let d be the following element
in some interpretation I:
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d : {Healthy} {Intelligent,Female}
spouse

In our logic τEL(deg) we have degI(d,∃spouse.(. . .)) = 2/3. This means that d 6∈
[(∃spouse.(. . .))≥.7]I . Therefore, applying the idea presented above we would obtain
degI(d,X) = 1/2, since d ∈ (Healthy)I and d 6∈ [(∃spouse.(. . .))≥.7]I . Thus, d 6∈
(X>.5)I . Obviously, one can object that d is quite close to the crisp set defined by
(∃spouse.(. . .))≥.7, and consequently it should not be considered in such a way. In-
stead, maybe a more suitable idea could be to give a membership degree value for d in
(∃spouse.(. . .))≥.7 and use it to compute degI(d,X). At this moment it is still unclear
to us which one would be a better choice or if both are useful in different scenarios.
Finally, from a computational point of view, one would expect the reasoning problems

to become harder. In fact, looking at the equivalences in Proposition 3.2, it is not
hard to see that one can express ALC concept descriptions by just using the threshold
values {0, 1}. For instance, ¬∃r.¬A would correspond to the nested threshold concept
(∃r.A<1)<1.

Cyclic τEL(deg) TBoxes. Since deg is well-defined with respect to acyclic EL TBoxes
TEL, there is nothing to prevent us to have cyclic definitions in a TBox Tτ . We would
like to consider this in the future. Note, that since ∀r1, . . . , rn.¬A can be expressed
in τEL(deg), it seems to be possible to encode cyclic TBoxes in the DL FL0 into
cyclic τEL(deg) TBoxes. In particular, subsumption in FL0 for cyclic terminologies
is PSPACE-complete w.r.t. descriptive semantics [KdN03, Baa96]. This would give a
preliminary PSPACE-hardness result for the subsumption problem in the presence of
cyclic τEL(deg) TBoxes.

Bounded CSMs. The polynomially bounded condition is still too strong to be satisfied
by many useful CSMs. It would be important to find out how to relax it, without losing
the good properties that it gives for a logic τEL(m./). This could, for example, provide
more information about the logics τEL(m./) induced by instances of the simi framework
that use non-primitive measures pm.
Additionally, polynomial boundedness only gives a general NPNP upper bound for the

satisfiability problem. It would be interesting to characterize which conditions a CSM
in F./[poly] must satisfy in order to have a satisfiability problem in NP, like it happens
for ./1 and τEL(deg).

Open theoretical problems. The exact computational complexity of reasoning with
respect to acyclic τEL(deg) TBoxes (between ΣP

2 /Π
P
2 and PSPACE) remains open. Re-

garding the relationship between τEL(deg) and ALC, we do not know whether τEL(deg)
is exponentially more succinct than ALC.
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Appendix A

Missing proofs

Missing proofs of Chapter 3

Theorem 3.8. Let Ĉ be a τEL(m) concept description and I = (∆I , .I) an interpre-
tation. The following statements are equivalent for all d ∈ ∆I :

1. d ∈ ĈI .

2. there exists a τ -homomorphism φ from T
Ĉ
to GI with φ(v0) = d.

Proof. Let T
Ĉ

= (VT , ET , v0, ̂̀T ) be the description tree associated to Ĉ and Ĉ be of
the form Ĉ1 u . . . u Ĉq u ∃r1.D̂1 u . . . u ∃rn.D̂n, where each Ĉi is either a concept name
A ∈ NC or a threshold concept E∼t ∈ N̂E.

(⇒) Assume that d ∈ ĈI . Then, d ∈ (Ĉi)
I and d ∈ (∃rj .D̂j)

I for all 1 ≤ i ≤ q

and 1 ≤ j ≤ n. We show by induction on the role depth of Ĉ that there exists a
τ -homomorphism φ from T

Ĉ
to GI with φ(v0) = d.

Induction Base. rd(Ĉ) = 0. Then, n = 0 and T
Ĉ

consists only of one node v0

(the root), it has no edges and ̂̀T (v0) = {Ĉ1, . . . , Ĉq}. The mapping φ(v0) = d is a τ -
homomorphism from T

Ĉ
to GI . For each Ĉi of the form A ∈ NC we know that A ∈ `I(d),

and consequently φ satisfies Condition 1 in Definition 3.7. In case Ĉi is of the form E∼t,
the fact that d ∈ (Ĉi)

I implies that φ satisfies Condition 2 in Definition 3.7.
Induction Step. Assume that the claim holds for all the concepts with role depth

smaller than k. We show that it also holds for rd(Ĉ) = k. First, consider the concept
D̂0 = Ĉ1 u . . . u Ĉq. One can see that T

D̂0
= (V0, E0, v0, ̂̀0) is exactly the description

tree with V0 = {v0}, E0 = ∅ and ̂̀0(v0) = ̂̀
T (v0). Since d ∈ (D̂0)I and rd(D̂0) = 0, by

induction hypothesis there exists a τ -homomorphism φ0 from T
D̂0

to GI with φ0(v0) = d.

Now, consider any edge v0rjvj in ET . By the relationship between T
Ĉ

and Ĉ, there
exists a top-level concept ∃rj .D̂j of Ĉ such that T

D̂j
= (Vj , Ej , vj , ̂̀j) is precisely the

subtree of T
Ĉ

with root vj . In addition, since d ∈ (∃rj .D̂j)
I there exists dj ∈ ∆I such

that drjdj ∈ EI and dj ∈ (D̂j)
I . Since rd(D̂j) < k, the application of the induction

hypothesis on dj and D̂j yields a τ -homomorphism φj from T
D̂j

to GI with φj(vj) = dj .
It is not hard to see that for all nodes v ∈ VT , there exists exactly one of such τ -

homomorphism φj (0 ≤ j ≤ n) such that v ∈ dom(φj). Based on this, we build a
mapping φ from VT to VI as φ =

⋃n
j=0 φj . Note that φ(v0) = d by definition of φ0.

Hence, it remains to show that φ is τ -homomorphism.
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1. φ is a homomorphism from TC to GI : Let v be any node in VT . We know that
v is a node of one description tree T

D̂j
and φ(v) = φj(v) for the corresponding

mapping φj . Since φj is a homomorphism, this means that `j(v) ⊆ `I(φj(v)).
Therefore, `(v) = `j(v) implies `(v) ⊆ `I(φ(v)). Now, let vrw be any edge from
ET . There are two possibilities:

• vrw is of the form v0rjvj . As explained before we have φ(v0) = d, φj(vj) = dj
and drjdj ∈ EI . Hence, φ(v0)rjφ(vj) ∈ EI .
• v, w ∈ dom(φj) for some j ∈ {1 . . . n}. By construction of φ and the fact that
φj is a homomorphism, it follows that φ(v)rφ(w) ∈ EI .

2. Condition 2 in Definition 3.7 follows from the fact that φ is constructed using
τ -homomorphisms.

Thus, φ is τ -homomorphism from T
Ĉ
to GI with φ(v0) = d.

(⇐) Assume that there exists a τ -homomorphism φ from T
Ĉ

to GI with φ(v0) = d.
We show by induction on the size of VT that d ∈ ĈI .

Induction Base. |VT | = 1. Then, Ĉ is of the form Ĉ1 u . . . u Ĉq and ̂̀T (v0) =

{Ĉ1, . . . , Ĉq}. We distinguish two cases for all Ĉi ∈ ̂̀T (v0):

• Ĉi is of the form A ∈ NC. Since φ is τ -homomorphism, it is also a classical
homomorphism in the sense of Definition 2.5 and hence, ignoring the labels of the
form E∼t we have `T (v0) ⊆ `I(d). Thus, d ∈ AI .

• Ĉi is of the form E∼t. By Definition 3.7 we also have d ∈ (E∼t)
I .

Thus, d ∈ (Ĉi)
I for all conjuncts Ĉi of Ĉ. Consequently, d ∈ ĈI .

Induction Step. Assume that the claim holds for |VT | < k. We show that it also holds
for |VT | = k. Since k > 0, there exist nodes v1, . . . , vn in VT such that v0rjvj ∈ ET . This
also means that Ĉ is of the form Ĉ1 u . . . u Ĉq u ∃r1.D̂1 u . . . u ∃rn.D̂n with n > 0, and
the description tree T

D̂j
= (Vj , Ej , vj , ̂̀j) associated to D̂j is the subtree of TĈ rooted at

vj . We consider the following two cases:

• q > 0. Then, d ∈ (Ĉi)
I can be shown in the same way as for the base case.

• Consider any ∃rj .D̂j , with j ∈ {1 . . . n}. Since φ is also a homomorphism from
T
Ĉ

to GI and v0rjvj ∈ ET , then there exists ej ∈ ∆I such that drjej ∈ EI and
φ(vj) = ej . Moreover, it is clear that |Vj | < |VT | and it is not difficult to see that
the restriction of the domain of φ to Vj is also a τ -homomorphism from T

D̂j
to GI

with φ(vj) = ej . Hence, the induction hypothesis can be applied to obtain that
ej ∈ (D̂j)

I . Hence, d ∈ (∃rj .D̂j)
I .

Thus, we have shown that d ∈ ĈI .

Missing proofs of Chapter 4

Definition A.1. Let C be an EL concept description and TC its corresponding EL
description tree. For all nodes v ∈ VTC we denote by TC [v] the subtree of TC rooted at
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v. Furthermore, the EL concept description C[v] is the one having the description tree
TC [v]. Finally, the height η(v) of a node v in TC is the length of the longest path from
v to a leaf of TC . ♦

In the proof of Lemma 4.9, we will use concepts and description trees of the form
TC [v] and C[v]. We would like to point out that for all concept descriptions Cr in re-
duced form, the concepts Cr[v] are also in reduced form (for all v ∈ VTCr ). This is a
consequence of the fact that to obtain the reduced form of a concept C the rules are not
only applied in the top-level conjunction of C, but also under the scope of existential
restrictions (see Chapter 2).

Lemma 4.9. Let C be an EL concept description, I a finite interpretation and d ∈ ∆I .
Then, Algorithm 4 terminates on input (C, I, d) and outputs degI(d,C), i.e., S(v0, d) =
degI(d,Cr).

Proof. To see that the algorithm terminates, it is enough to observe that TCr and GI
are finite and the algorithm consists of nested iterations over the nodes and edges in TCr
and GI . To show that S(v0, d) = degI(d,Cr), we prove a more general claim:

Claim: S(v, e) = degI(e, Cr[v]) for all v ∈ VTCr and e ∈ ∆I .

Note first, that for each pair (v, e) the value of S(v, e) is assigned only once during a
run of the algorithm. We prove the claim by induction on the height η(v) of each node
v in TCr .
Induction Base. η(v) = 0. Then v is a leaf in TCr . This means that v has no successors

and for all e ∈ ∆I there exists a unique ptgh h from TCr [v] to GI with h(v) = e. One
can see in Algorithm 4, that the special case where |`TCr (v)| + k∗(v) = 0 is properly
treated. Otherwise, we have c = |`TCr (v) ∩ `I(e)| and S(v, e) = c

|`TCr (v)| . Note that
this is exactly the value of hw(v) in Definition 4.4. Since h is unique, this means that
degI(e, Cr[v]) = S(v, e).
Induction Step. η(v) > 0. Let v1, . . . , vk be the children of v in TCr such that if v1 is

an r-successor of v in TCr , then e has at least one r-successor in GI . The application
of the max operator in line 10, selects for each r-successor vi of v an r-successor ei of
e in ∆I that has the maximum value for S(vi, ei). Such a value is then used in the
computation of c. Let (vi, ei) be the pairs representing such a selection for all vi. Two
observations are in order:

• Since vi is a child of v, it occurs first in the post-oder selected in line 1. Therefore,
the value of S(vi, ei) is computed before the computation of c for (v, e).

• The value of S(v, e) as computed by Algorithm 4 corresponds to the following
expression:

S(v, e) =

|`TCr (v) ∩ `I(e)| +
k∑
i=1

S(vi, ei)

|`TCr (v) + k∗(v)|
(A.1)

• Since η(vi) < η(v), the application of the induction hypothesis yields

S(vi, ei) = degI(ei, C
r[vi]) (A.2)
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Now, let hi be a ptgh from TCr [vi] to GI such that hi(vi) = ei and hiw(vi) =
degI(ei, C

r[vi]) for all 1 ≤ i ≤ k. It is easy to see that the mapping h = h1 ∪
. . . ∪ hk ∪ {(v, e)} is a ptgh from TCr [v] to GI with h(v) = e. Moreover, combining
(A.1) and (A.2) it is also true that hw(v) = S(v, e). Hence, by Definition 4.5 we have
S(v, e) ∈ VI(e, Cr[v]). Suppose, however, that S(v, e) < maxVI(e, Cr[v]). We show
that this is not the case by reaching a contradiction.

Having S(v, e) < maxVI(e, Cr[v]) implies the existence of ptgh h′ from TCr [v] to GI
with h′(v) = e such that h′w(v) > hw(v). Looking at hw in Definition 4.4, the fact that
h(v) = h′(v) implies that the difference must be on the values of hw(vi) and h′w(vi).
More precisely, there must exist at least one successor vi of v such that h′w(vi) > hiw(vi).
Based on this, we distinguish two cases:

• h′(vi) 6= hi(vi), i.e., the ptgh h′ maps vi to a different element in ∆I . But, if
that were the case, then the application of the max operator in line 10 would have
chosen h′(vi) as the pairing for vi, instead of ei.

• h′(vi) = h(vi) = ei. This case would contradict the induction hypothesis, since
h′w(vi) > hiw(vi) would imply S(vi, ei) < degI(ei, C

r[vi]).

Hence, we obtain by contradiction that S(v, e) = maxVI(e, Cr[v]) and consequently,
S(v, e) = degI(e, Cr[v]). Since S(v0, d) is a particular case, we thus have shown that
S(v0, d) = degI(d,Cr).

Missing proofs of Chapter 5

Proposition 5.12. Let A be an ABox. Then, A is consistent iff there exists a consistent
pre-processing A′ of A.

Proof. (⇒) Let I be an interpretation such that I |= A. One can see that for any
assertion ¬Ĉ(a) that a rule is applicable to, if I |= ¬Ĉ(a) there is a way to apply
the rule such that I also satisfies the newly introduced assertion. The case for →¬∃
is clear. For the rule →¬u, if I |= ¬Ĉ(a) then there exists a conjunct Ĉi such that
I |= ¬Ĉi(a). This can be the non-deterministic choice made by the application of →¬u.
Last, for assertions of the form ¬E∼t and ¬A the applicable rules are →¬∼ and →¬A,
respectively. Since ¬E∼t ≡ Eχ(∼)t and ¬A ≡ A<1, we have that I satisfies Eχ(∼)t and
A<1.

Thus, since I satisfies every assertion in A we can conclude that there exists a pre-
processing A′ of A such that I |= A′.

(⇐) This direction is trivial since A ⊆ A′.

Lemma 5.15. Let A be an ABox, I an interpretation satisfying A and A′ a pre-
processing of A such that I |= A′. Moreover, for all a ∈ Ind(A), let Ia be a tree-shaped
interpretation satisfying the following:

• Ia |= A′(a),

• there exists a homomorphism ϕa from GIa to GI with ϕa(aIa) = aI .
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Last, let J be the following interpretation:

• ∆J :=
⋃

a∈Ind(A)

∆Ia,

• AJ :=
⋃

a∈Ind(A)

AIa for all A ∈ NC,

• rJ := {(aIa , bIb) | r(a, b) ∈ A} ∪
⋃

a∈Ind(A)

rIa for all r ∈ NR, and

• aJ := aIa, for all a ∈ Ind(A).

where the sets ∆Ia are pairwise disjoint. Then, J |= A.

Proof. We start by considering the following mapping from VJ to VI :

ϕ∗ :=
⋃

a∈Ind(A)

ϕa

Since the sets ∆Ia are pairwise disjoint, the mapping ϕ∗ is unambiguous. Moreover, we
know that (aI , bI) ∈ rI for all r(a, b) ∈ A, ϕa(aIa) = aI and ϕb(bIb) = bI . Therefore,
(ϕ∗(aIa), ϕ∗(bIb)) ∈ rI for all (aIa , bIb) ∈ rJ . Consequently, it is clear that ϕ∗ is a
homomorphism from GJ to GI with ϕ∗(aJ ) = aI for all a ∈ Ind(A).

We now show that J |= A′. Since A ⊆ A′, this will imply J |= A. Recall that
r(a, b) ∈ A′ iff r(a, b) ∈ A. By construction of J we have (aIa , bIb) ∈ rJ for all
r(a, b) ∈ A, and aJ = aIa for all a ∈ Ind(A). Hence, r(a, b) ∈ A′ implies (aJ , bJ ) ∈ rJ .
Thus, it remains to show that each concept assertion in A′ is satisfied by J .

We first prove that J |= A′+. Let a ∈ Ind(A) and Ĉ(a) ∈ A′+. From Ia |= A′(a)
we know that Ia |= Ĉ(a) and aIa ∈ ĈIa . Then, the application of Theorem 3.8 yields a
τ -homomorphism φ from T

Ĉ
to GIa with φ(v0) = aIa . We want to show that φ is also a

τ -homomorphism from T
Ĉ

to GJ . The construction of J indicates that Ia ⊆ J . This
means that φ is a classical homomorphism from T

Ĉ
to GJ , which means that Condition 1

in Definition 3.7 is satisfied. Hence, it remains to show that the second condition is also
satisfied.

Since Ia is required to be tree-shaped, it is clear that φ(v) = aIa only if v = v0. Let
v ∈ VT

Ĉ
and E∼t ∈ ̂̀T

Ĉ
(v), we distinguish two cases:

• v = v0. By the relationship that exists between τEL(m) concept descriptions
and τEL(m) description trees (see Section 3.1), we have that E∼t is a top-level
atom of Ĉ. Therefore, aIa ∈ (E∼t)

Ia and aI ∈ (E∼t)
I . Additionally, we have

that Ia ⊆ J and ϕ∗ is homomorphism from GJ to GI with ϕ∗(aJ ) = aI . Thus,
Lemma 4.11 can be applied with respect to Ia and J (if ∼∈ {>,≥}) or to J and
I (if ∼ ∈ {<,≤}), to obtain aJ ∈ (E∼t)

J .

• v 6= v0. As said before, we have φ(v) = e with e 6= aIa and e ∈ ∆Ia . Since GIa
is a tree, the reachable elements from e in ∆J through role relations are exactly
the same as in ∆Ia . Then, it is easy to see that degIa(e, E) = degJ (e, E), and
e ∈ (E∼t)

Ia implies e ∈ (E∼t)
J .
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Thus, φ is τ -homomorphism from T
Ĉ

to GJ with φ(v0) = aJ . The application of
Theorem 3.8 yields aJ ∈ ĈJ . Since we have chosen a and Ĉ(a) arbitrarily, we can
conclude that J |= A′+.

We now turn into A′−, i.e., we prove J |= ¬Ĉ(a) for all assertions ¬Ĉ(a) ∈ A′.
The proof is very similar to the analogous case in Lemma 5.6 for the non-subsumption
problem. We use induction on the structure of Ĉ.

• Ĉ is of the form E∼t or A. Then, rules →¬∼ and →¬A are applicable, and its
application yields Eχ(∼)t(a) ∈ A′+ and A<1(a) ∈ A′+. Since ¬E∼t ≡ Eχ(∼)t and
¬A ≡ A<1 (see Propositions 4.15 and 3.2, respectively) and J |= A′+, this means
that aJ 6∈ ĈJ .

• Ĉ is of the form Ĉ1 u . . . u Ĉn. By the definition of pre-processing, the rule →¬u
must have been applied adding an assertion of the form ¬Ĉi(a) to A′ for some
i ∈ {1, . . . , n}. The application of the induction hypothesis to Ĉi yields that
J |= ¬Ĉi(a) and aJ 6∈ (Ĉi)

J . Thus, aJ 6∈ ĈJ and J |= ¬Ĉ(a).

• Ĉ is of the form ∃r.D̂ and (¬∃r.D̂)(a) ∈ A′. Assume that (aJ , d) ∈ rJ for some
d ∈ ∆J . We have two cases:

– d = bJ for some b ∈ Ind(A). By construction of J we have r(a, b) ∈ A.
Hence, the rule →¬∃ is applicable and its application adds ¬D̂(b) to A′. The
application of induction to D̂ yields J |= ¬D̂(b), and therefore bJ 6∈ D̂J .

– d 6= bJ for all b ∈ Ind(A). Then, by construction of J we have d ∈ ∆Ia .
Since, (¬∃r.D̂)(a) ∈ A′(a) and Ia |= A′(a), it holds that d 6∈ D̂Ia . Now,
suppose that d ∈ D̂J . By Theorem 3.8 there exists a τ -homomorphism φ
from T

D̂
to GJ with φ(v0) = d. But, if that is the case, by the disjointness

assumptions made to build J and the fact that GIa is a tree, we would have
that φ is also a τ -homomorphism from T

D̂
to GIa , contradicting the fact that

d 6∈ D̂Ia . Thus, d 6∈ D̂J .
Overall, we just have shown that for each r-successor d of aJ it is the case that
d 6∈ D̂J . Hence, aJ 6∈ (∃r.D̂)J and J |= ¬∃r.D̂(a).

Thus, J |= A′− and consequently J |= A′.

Lemma 5.14. Let A be a consistent single-element ABox and I an interpretation such
that I |= A. In addition, let J be the bounded model of A+ obtained in Lemma 5.9 with
respect to I. Then, there exists a tree-shaped interpretation K such that:

1. K |= A,

2. there exists a homomorphism ϕ from GK to GI with ϕ(aK) = aI , and

3. |∆K| ≤ |∆J | × p, where:

p :=

1, if A− = ∅∏
¬D̂(a) ∈ A−

s(D̂), otherwise.
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Proof. We start by recalling some elements from the proof of Lemma 5.9 that are useful
to prove our claims.

• φ is a τ -homomorphism from Ĝ(A+) to GI with φ(a) = aI .

• φid is a τ -homomorphism from Ĝ(A+) to GJ with φid (a) = aJ .

• ϕ is a homomorphism from GJ to GI with ϕ(v) = φ(v) for all v ∈ VA+ .

• Since A contains only one individual name and no role assertions, this means that
Ĝ(A+) is a tree and by construction of J in Lemma 5.9 GJ is also a tree.

Let #(A) denote the number of concept assertions occurring in A. We prove our claim
by induction on the number #(A−).

Induction Base. #(A−) = 0. Then, we have that A− = ∅. Therefore, A = A+ is
a τEL(deg) ABox. We choose K to be the interpretation J . Hence, we have J |= A,
|∆J | ≤ |∆J |, and as explained above GJ is a tree. Finally, J interprets the individual
name a as aJ = a, which means that ϕ(aJ ) = aI (see the mappings φ and ϕ above).

Thus, we have shown our claims for the chosen interpretation K.
Induction Step. Assume that the claim holds for all consistent single-element ABoxes

B with 0 ≤ #(B−) < k. Then, we show that it also holds for consistent single-element
ABoxes A with #(A−) = k.

As in the base case, we know that J |= A+. However, J need not satisfy A− since
the assertions from A− were not taken into account to obtain it. The idea for the rest
of the proof is to start with an ABox AJ reflecting the structure of J . Then, we will
consider a pre-processing A′ of AJ ∪A− guided by I, and show how to use it to extend
J into an interpretation K satisfying our claims.

Let GJ be the description graph associated to J (recall that it is a tree). The ABox
AJ is built as follows:

AJ :=
⋃
b∈VJ

A∈`J (b)

{A(b)} ∪
⋃

brc∈EJ

{r(b, c)}

where Ind(AJ ) = ∆J = VJ .
We name the element aJ in J as a in the new ABox AJ . In addition, for all b ∈

Ind(AJ ) such that b 6= a, we make bJ = b. Then, since all the concept assertions in
AJ are of the form A(a) with A ∈ NC, it is easy to see that J |= AJ . We now extend
the interpretation I to the individual names in AJ to make I a model of AJ , namely,
bI = ϕ(bJ ) for all b ∈ Ind(AJ ). Since ϕ(aJ ) = aI , this means that the element aI

does not change. Hence, ϕ is a homomorphism from GJ to GI with ϕ(bJ ) = bI for all
b ∈ Ind(AJ ). Using ϕ, from bJ ∈ AJ we get bI ∈ AI for all A(b) ∈ AJ . Similarly, we
obtain (aI , bI) ∈ rI for all r(a, b) ∈ AJ . Thus, I |= AJ and consequently I |= AJ ∪A−.

By Remark 5.13 there exists a pre-processing A′ of AJ ∪ A− such that I |= A′.
Additionally, we have that Ind(AJ ) = Ind(A′) (recall that Ind(A) = {a}). Based on A′,
our first goal is to find interpretations Ib for all b ∈ Ind(AJ ), such that Ib |= A′(b) and
they can be combined using Lemma 5.15 into a model of AJ ∪ A−.
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For all individuals b ∈ Ind(AJ ), let A′b be the following ABox:

A′b :=
⋃

Eχ(∼)t(b)∈A′
{Eχ(∼)t(b)} ∪

⋃
¬∃r.D̂(b)∈A′

{¬∃r.D̂(b)}

Here, Eχ(∼)t(b) is an assertion that results from the application of rule →¬∼ or rule
→¬A. For the rule →¬A, we also represent A<1 as Eχ(∼)t, since it is obtained from ¬A
and A ≡ A≥1. Then, the ABox Ab is defined as:

Ab := A′b ∪
⋃

A(b)∈A′
{A(b)}

The difference between Ab and A′(b) is that Ab does not contain assertions of the
form ¬Ĉ(b) where Ĉ is a conjunction or a threshold concept E∼t. Let us now show that
#(A′b) ≤ #(A−).

• J is tree-shaped and ∆J = Ind(AJ ).

• Let a be the individual in AJ corresponding to the root of TJ . If Eχ(∼)t(a) ∈ A′,
it must have been obtained by an application of →¬∼ (→¬A) to an assertion
of the form ¬E∼t(a) (¬A(a)). Since a is the root element in the tree structure
of AJ ∪ A−, such a negative assertion is either initially in A− or results from
the application of →¬u to ¬Ĉ(a) ∈ A−. This last argument also applies to the
assertions ¬∃r.D̂(a) ∈ A′a. Since →¬u can be applied only once to Ĉ(a), this
implies that #(A′a) ≤ #(A−).

• Taking a as the base case, the same can be shown for the rest of the individuals
using induction on the depth1 of each node in VJ .

Once it is known that #(A′b) ≤ #(A−), we can then find the interpretations Ib. Let
B ⊆ Ind(AJ ) be a set such that b ∈ B if, and only if, A′b contains at least one assertion
of the form Eχ(∼)t(b). We distinguish two cases:

1. b ∈ B. This means that #(A−b ) < #(A−). Hence, we can apply induction to Ab
to obtain a tree-shaped interpretation Ib and a homomorphism ϕb from GIb to GI
such that: Ib |= Ab and ϕb(bIb) = bI .

2. b 6∈ B. Consider the single-pointed interpretation Ib = ({b}, .Ib) that is the re-
striction of J to {b}. The ABox Ab contains only assertions of the form ¬∃r.D̂(b)
or assertions from AJ . Since J |= AJ , it is clear that Ib |= Ab and ϕb with
ϕb(b

Ib) = bI is a homomorphism from GIb to GI .

To fulfill our intermediate goal it remains to show Ib also satisfies the rest of the
assertions in A′(b). For assertions of the form ¬E∼t(b) and ¬A(b), the application of
the rules →¬∼ and →¬A ensures that Eχ(∼)t(b) and A<1(b) are in Ab. Since Ib |= Ab,
¬E∼t ≡ Eχ(∼)t and ¬A ≡ A<1, it follows that Ib |= ¬E∼t(b) and Ib |= ¬A(b). The other

1The depth of a node in a tree is the length of the path from the root of the tree to the node. The
root of the tree has depth 0.
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case corresponds to ¬Ĉ(b) ∈ A′ where Ĉ is of the form Ĉ1u . . .u Ĉn. By the application
of the rule →¬u we know that there is some Ĉi such that ¬Ĉi(b) ∈ A′. Since ¬Ĉi is of
one of the previously considered forms, it then holds that Ib |= ¬Ĉ(b).

Altogether, we have shown that Ib |= A′(b) for all b ∈ Ind(AJ ). Therefore, considering
the sets ∆Ib pairwise disjoint, we can apply Lemma 5.15 to AJ ∪ A− to obtain an
interpretation K such that K |= AJ ∪ A−. Thus, it remains to show that K is a
model of A+ as well. Note that K is the result of extending the base interpretation J
satisfying A+, by attaching to it the interpretations Ib. This means that φid is also a
classical homomorphism from Ĝ(A+) to GK with φid (a) = aJ . To see that it is also a
τ -homomorphism we observe the following.

• J ⊆ K.

• The homomorphism ϕ∗ from GK to GI constructed in Lemma 5.15 is such that,
ϕ∗(b) = ϕb(b) = bI for all b ∈ ∆J . Moreover, bI was defined as ϕ(bJ ) and bJ = b.
Hence, ϕ∗(b) = ϕ(b) for all b ∈ ∆J .

• By construction of J in Lemma 5.9, we know that G(A+) is a subgraph of GJ
and ϕ(v) = φ(v) for all v ∈ VA+ . Hence, ϕ∗ is a homomorphism from GK to GI
such that ϕ∗(v) = φ(v) for all v ∈ VA+ .

Hence, similar to the way it is done for I0 and its extension J in Lemma 5.9, we can
use the monotonicity property of deg introduced in Lemma 4.11 to show that φid is a
τ -homomorphism from Ĝ(A+) to GK with φid (a) = aJ . Thus, since aJ = aK we can
apply Theorem 3.9 to obtain K |= A+.

Next, to see that K is tree-shaped, note that J and all the interpretations Ib are tree-
shaped. Consequently, since GJ corresponds to the structure of AJ , the construction
in Lemma 5.15 yields a tree-shaped interpretation K.

Last, let us look at the size of K. If b 6∈ B we have |∆Ib | = 1, otherwise Ib is obtained
by the application of the induction hypothesis to Ab. Let Jb be the bounded model for
A+
b constructed in Lemma 5.9. Then,

|∆Ib | ≤ |∆Jb | ×
∏

¬D̂(b) ∈ A−b

s(D̂) (A.1)

A closer look at A+
b shows that it only contains assertions of the form Eχ(∼)t(b), or A(b)

with A(b) ∈ AJ and A ∈ NC. Furthermore, it contains exactly one individual name and
no role assertions. Hence, the construction of Jb in Lemma 5.9 yields:

|∆Jb | ≤
∑

Eχ(∼)t(b) ∈ A+
b

s(Eχ(∼)t)

Now, s(Eχ(∼)t) > 1 allows to transform this inequality into the following one:

|∆Jb | ≤
∏

Eχ(∼)t(b)∈A+
b

s(Eχ(∼)t) (A.2)
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The ABox Ab is included in the pre-processing A′ of AJ ∪ A−. Consequently, for all
assertions ¬∃r.D̂(b) ∈ A−b , the concept D̂ is a sub-description of a concept Ĉ such that
¬Ĉ(a) ∈ A−. In addition, each threshold concept Eχ(∼)t ∈ A+

b is the result of applying
the rule →¬∼ to a concept ¬E∼t. Again, E∼t has to be a sub-description of a concept
Ĉ such that ¬Ĉ(a) ∈ A−. Since GJ is a tree, each concept assertion ¬Ĉ(a) ∈ A−
contributes with at most one of these concepts to A′b. We have shown above that
#(A′b) ≤ #(A−). Therefore, the combination of (A.1) and (A.2) yields:

|∆Ib | ≤
∏

¬Ĉ(a) ∈ A−
s(Ĉ)

Finally, since |∆J | = |Ind(AJ )|, the construction of ∆K yields:

|∆K| ≤
∑

b ∈ Ind(AJ )

|∆Ib | ≤ |∆J | × p

Missing proofs of Chapter 6

Lemma A.2. Let T be an acyclic EL TBox in normal form. Then, for all α ∈ def(T )
the number of sub-descriptions of uT (α) is at most s(T ).

Proof. Recall the definition of sub(C) in Definition 2.1. Let sub∗(C) ⊆ sub(C) be the
following set:

sub∗(C) :=


{C} if C = > or C ∈ NC,

{C} ∪ sub∗(C1) ∪ sub∗(C2) if C is of the form C1 u C2,

{∃r.D} if C is of the form ∃r.D.

Furthermore, for all α .
= Cα ∈ T , let →+(α) denotes the set of defined concepts in T

that α depends on, i.e.:

→+(α) := {β | β ∈ def(T ) and α→+ β}

We prove the following claim about the set sub(uT (α)):

sub(uT (α)) = sub∗(uT (Cα)) ∪
⋃

β
.
= Cβ∈T

β ∈→+(α)

sub∗(uT (Cβ)) (A.3)

The proof is by well-founded induction on the partial order � induced by →+ on
def(T ). Let α .

= Cα ∈ T , due to the normal form of T the concept Cα has the following
structure:

P1 u . . . Pq u ∃r1.β1 u . . . u ∃rn.βn
The unfolding of α with respect to T is the following concept description:

uT (α) = P1 u . . . Pq u ∃r1.uT (β1) u . . . u ∃rn.uT (βn)
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By the definitions of sub and sub∗, we can express the set sub(uT (α)) as follows:

sub(uT (α)) = sub∗(uT (Cα)) ∪
n⋃
i=1

sub(uT (βi)) (A.4)

Now, the application of the induction hypothesis to each βi (1 ≤ i ≤ n) yields:

sub(uT (βi)) = sub∗(uT (Cβi)) ∪
⋃

β
.
= Cβ∈T

β ∈→+(βi)

sub∗(uT (Cβ))

Hence, substituting the previous equality in (A.4) we obtain the following one:

sub(uT (α)) = sub∗(uT (Cα)) ∪
n⋃
i=1

[
sub∗(uT (Cβi)) ∪

⋃
β
.
= Cβ∈T

β ∈→+(βi)

sub∗(uT (Cβ))

]

Finally, since →+(α) =
n⋃
i=1

(
{βi} ∪ →+(βi)

)
, it is clear that the set defined by the

big union in the previous equality is equal to the one represented by the big union in
(A.3). Thus, our claim in (A.3) is true.

According to the definition of sub∗, for a top-level atom ∃ri.βi of Cα the set of concepts
sub∗(∃ri.uT (βi)) corresponds to {∃ri.uT (βi)}. Hence, it is not hard to see that for all
α
.
= Cα ∈ T it holds:

|sub∗(uT (Cα))| ≤ s(Cα)

Thus, using (A.3) we can conclude that |sub(uT (α))| ≤ s(T ) for all α ∈ def(T ).

Now, since sub(E∼t) is equal to {E∼t}, the previous result also applies to acyclic
τEL(deg) TBoxes.

Corollary A.3. Let T̂ be an acyclic τEL(deg) TBox in normal form. Then, for all
α ∈ def(T̂ ) it holds:

|sub(uT̂ (α))| ≤ s(T̂ )

Missing proofs of Chapter 7

Lemma 7.18. Let n > 0 be a natural number. Then,

1. for all sets S of Pn-assignments that are canonical for Pn, there exists DS ∈ Dn

such that S and DS are corresponding, and

2. for all D ∈ Dn, exists a set SD of Pn-assignments that is canonical for Pn such
that SD and D are corresponding.

Proof. We prove the claim by induction on the number n. We start by considering two
base cases:
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• n = 1. The prefix P1 corresponds to ∃x1. Therefore, there are only two sets
of P1-assignments that are canonical for P1. Namely, Strue = {{t(x1) = true}}
and Sfalse = {{t(x1) = false}}. Now, the string D1 is of the form ∃r.X0

1 (recall its
definition in (7.2)). Hence, the instances θtrue [D1] and θfalse [D1] where θtrue(X0

1 ) =
A and θfalse(X0

1 ) = >, are corresponding concepts in D1 for Strue and Sfalse ,
respectively.

• n = 2. The prefix P2 is of the form ∃x1.∀x2. In this case there are also two sets of
P2-assignments that are canonical for P2, but they are of the following form:

Strue = {{t1(x1) = true, t1(x2) = false}, {t2(x1) = true, t2(x2) = true}}

Sfalse = {{t1(x1) = false, t1(x2) = false}, {t2(x1) = false, t2(x2) = true}}

The string D2 is of the form ∃r.(X0
1 u ∃r.Au ∃s.>). Thus, θtrue [D2] and θfalse [D2]

are also corresponding concepts in D2 for Strue and Sfalse , respectively.

Notice, that in both cases the selected concepts from D1 and D2 are actually the only
concepts contained in those sets. Therefore, the statement 2.) also holds for both base
cases.
Induction Step. Let us assume that the claim holds for all natural numbers smaller

than n. We show that it also holds for all n > 2.
1.) Let S be a set of Pn-assignments that is canonical for Pn. Since Pn is of the

form ∃x1.P
′, by definition of canonical we have that the set S′ = {t|{x2,...,xn} | t ∈ S}

is canonical for P ′. Moreover, P ′ is of the form ∀x2.P
′′, and P ′′ is not empty because

n > 2. Hence, there exist two sets Strue and Sfalse that are canonicals for P ′′ of the
following form:

Strue := {t|{x3,...,xn} | t ∈ S
′ and t(x2) = true}

Sfalse := {t|{x3,...,xn} | t ∈ S
′ and t(x2) = false}

Note that P ′′ is actually the prefix Pn−2 when shifting the indexes of the variables
{x3, . . . , xn} to {x1, . . . , xn−2}. Therefore, we can apply the induction hypothesis to
obtain two concept descriptions DS1 and DS2 in Dn−2 such that they are corresponding
concepts for Strue and Sfalse , respectively. We now use these two concepts to construct
a corresponding concept for S. Let us start by observing the following facts about DS1

and DS2 .

• There are mappings θ1, θ2 ∈ Xn−2 such that θ1[Dn−2] = DS1 and θ2[Dn−2] = DS2 .

• For all i such that 1 ≤ 2i+1 ≤ n−2, Dn−2 contains 2i variables X0
2i+1, . . . , X

2i−1
2i+1 .

• Dn−2 can be transformed into the strings ∃r.D0
3 and ∃r.D1

3 that are used to con-
struct the string Dn, by renaming its variables. We define two renamings r1 and
r2 as follows. For all i ≥ 0 and all j such that 1 ≤ 2i+ 1 ≤ n− 2 and 0 ≤ j < 2i:

r1(Xj
2i+1) := Xj

2i+3 and r2(Xj
2i+1) := X2i+j

2i+3

It is not hard to see that applying r1 (r2) to Dn−2 yields the string ∃r.D0
3 (∃r.D1

3).
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Based on r1 and r2, we define the mapping θ : Xn → {>, A} as:

θ := r1(θ1) ∪ r2(θ2) ∪ {(X0
1 , λ)}

where r1(θ1) and r2(θ2) stands for the renaming of the variables in the domain sets of
θ1 and θ2, and λ = A if x1 is mapped to true or > otherwise (recall that x1 is mapped
to the same truth value by all the assignments in S). Hence, θ ∈ Xn and θ[Dn] has the
following description tree:

Tθ[Dn]: v0 {λ}

{A}
TDS1

r

{}
TDS2

s

r

We now show that θ[Dn] and S are corresponding.

• Let t by an assignment in S. If t(x2) = true, then the restriction ttrue := t|{x3,...,xn}
of t is obviously an assignment in Strue . By induction hypothesis, there is a cor-
responding path of the form {}rπ in TDS1

for ttrue . Since DS1 = θ1[Dn−2], by
construction of θ the following is a path in Tθ[Dn]:

v0 : {} {λ} {A} π
rrr

Hence, taking into account the way λ has been selected and the fact that t(x2) =
true, this is clearly a corresponding path for t. The case where t(x2) = false can
be handled symmetrically.

• Conversely, let π be a path in Tθ[Dn]. Again, we can consider one of two symmetric
cases. For example,

v0 : {} {λ} {} π′
rsr

By construction of θ[Dn], {}rπ′ is a path in TDS2
. Again, by induction hypothesis

there is an assignment t′ ∈ Sfalse such that {}rπ′ and t′ are corresponding. Let t be
the truth value of x1 in S, we build a Pn-assignment t as t′ ∪ {(x2, false), (x1, t)}.
Obviously, t ∈ S, and moreover t and π are corresponding.

Thus, we have shown that S and θ[Dn] are corresponding, and consequently our first
claim is true. Regarding our second claim, a similar line of reasoning as the one just used
can be applied. Basically, we start with a concept θ[Dn] ∈ Dn, the mapping θ yields two
mappings θ1, θ2 ∈ Xn−2, and then the induction hypothesis can be applied to obtain two
Pn−2-assignments Strue and Sfalse with similar properties as the ones discussed above.
From them, one can obtain a Pn-assignment S such that it is canonical for Pn, and S
and θ[Dn] are corresponding.
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