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Abstract

Problems involving partial or ordinary differential equations arise in various fields of sci-

ence. Therefore, the task of obtaining exact solutions of differential equations is of primary

importance, and attracts high attention. The main purpose of the current thesis is the devel-

opment of a Maple-based, symbolic software package for symmetry reduction of differential

equations and computation of symmetry-invariant solutions. The package developed in the

current thesis is compatible with and can be viewed as an extension of the package GeM for

symbolic symmetry analysis, developed by Prof. Alexei Cheviakov. The reduction procedure

is based on the Lie’s classical symmetry reduction method involving canonical coordinates.

The developed package is applicable for obtaining solutions arising from extension of Lie’s

method, in particular, nonlocal and approximate symmetries.

The developed software is applied to a number of PDE problems to obtain exact invariant

solutions. The considered equations include the one-dimensional nonlinear heat equation,

the potential Burgers’ equation, as well as equations arising in nonlinear elastostatics and

elastodynamics.
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Chapter 1

Introduction

In this chapter we present some background information about groups of transformations,

invariants, and applications to differential equations, following [4], [8], [30].

1.1 Lie Groups of Point Transformations

Definition 1. A group G is a set of elements with a law of composition ϕ between elements,

satisfying the following axioms:

1. Closure property: For any pair of elements a, b ∈ G,ϕ(a, b) ∈ G.

2. Associative property: For any a, b, c ∈ G,

ϕ(a,ϕ(b, c)) = ϕ((a, b), c).

3. Identity element: There exists an identity element e of G such that for any element

a ∈ G,

ϕ(a, e) = ϕ(e, a) = a.

4. Inverse element: For any element a of G there exists an inverse element a−1 ∈ G such

that

ϕ(a, a−1) = ϕ(a−1, a) = e.

It follows that e and a−1 are unique.

Definition 2. A group G is Abelian if ϕ(a, b) = ϕ(b, a) holds for all elements a, b ∈ G.

Definition 3. A subgroup of G is a group formed by a subset of elements of G with the

same law of composition ϕ.
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Definition 4. Consider the point x = (x1, x2, . . . , xn) which lies in the domain D ⊂ Rn on

n-dimensional space, then

x∗ = f(x) (1.1)

is a set of point transformations.

Definition 5. Let x = (x1, x2, . . . , xn) ∈D ⊂ Rn. The set of transformations

x∗ = f(x, ϵ), (1.2)

defined for each x in D, depending on a parameter ϵ lying in a set S ⊂ R, with ϕ(ϵ, δ) defining

a law of composition of parameters ϵ and δ in S, forms a group of transformations on D if:

1. For each parameter ϵ in S the transformations are one-to-one onto D, in particular x∗

lies in D.

2. S with the law of composition ϕ forms a group G.

3. x∗ = x when ϵ = e, i.e.

X(x; e) = x.

4. If x∗ = f(x; ϵ), x∗∗ = f(x∗; δ), then

x∗∗ = f(x;ϕ(ϵ, δ)).

Definition 6. An orbit of a point x = (x1, x2, . . . , xn) is a set of points x∗ = x∗(ϵ) from (1.2)

∀ϵ ∈ S.

Definition 7. A group of transformations defines a one-parameter Lie group of point trans-

formations if in addition to satisfying axioms 1-4 of Definition (5):

1. ϵ is a continuous parameter, i.e. S is an interval in R. Without loss of generality, ϵ = 0

corresponds to the identity element e.

2. f is infinitely differentiable with respect to x in D and an analytic function of ϵ in S.

3. ϕ(ϵ, δ) is an analytic function of ϵ and δ, ϵ, δ ∈ S.
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Note that without a loss of generality, ϕ(a, b) = a + b for Lie groups (see, e.g., [4]).

For the next definition, expand (1.2) about ϵ = 0. One obtains (for some neighborhood

of ϵ = 0)

x∗(ϵ) = x + ϵ( ∂f
∂ϵ
(x; ϵ)∣

ϵ=0
) + ϵ2

2
( ∂

2f

∂ϵ2
(x; ϵ)∣

ϵ=0
) + . . . (1.3)

Definition 8. The infinitesimal vector field (tangent vector field or TVF ), given by

v = ∂f

∂ϵ
(x; ϵ)∣

ϵ=0
= ξ(x)

is a vector tangent to the orbit x∗ = x∗(x, ϵ) at each point x ∈D.

Definition 9. The transformation

x→ x + ϵξ(x)

is called the infinitesimal transformation for the Lie group of point transformations (1.2);

the components of ξ(x) are called the infinitesimals of (1.2).

There is a correspondence between one-parameter Lie groups and their corresponding

infinitesimals.

Theorem 1. The Lie group of transformations (1.2) is equivalent to the solution of an ODE

initial value problem
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dx∗(ϵ)
dϵ

= ξ(x∗(ϵ)),

x∗(0) = x.
(1.4)

The proof appears in [4].

Definition 10. The infinitesimal generator of a one-parameter Lie group of transformations

(1.2) is a linear differential operator

X = X(x) = ξ(x) ⋅ ∇ ≡
n

∑
i=1

ξi(x)
∂

∂xi
(1.5)

where ∇ is the gradient operator,

∇ = ( ∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xn
) .

3



For any differentiable function F (x) = F (x1, x2, . . . , xn),

XF (x) ≡ ξ(x) ⋅ ∇F (x) =
n

∑
i=1

ξi(x)
∂F (x)
∂xi

Note that Xx = ξ(x). It also can be shown that for infinitely differentiable F (x) and for

a Lie group of transformations (1.2) with infinitesimal generator (1.5),

F (x∗) = F (eϵXx) = eϵXF (x).

The following examples illustrate Theorem 1.

Example 1. Consider an infinitesimal generator

X1 = x
∂

∂x
+ 2 ∂

∂y
. (1.6)

Its infinitesimals are given by

ξ(x, y) = x, η(x, y) = 2. (1.7)

According to Theorem (1), the ODE initial value problem is given by:

dx∗

dϵ
= x∗, dy∗

dϵ
= 2, x∗(0) = x, y∗(0) = y. (1.8)

From the first differential equation (DE) in system (1.8) by integration, one obtains

x∗ = eϵ+C1 .

From the initial condition x∗(0) = x, it follows that

x∗ = xeϵ.

Performing the same steps for the second equation in (1.8), one gets:

y∗ = 2ϵ + y.

Hence the Lie group that corresponds to the infinitesimal generator (1.6) is given by

x∗ = xeϵ, y∗ = 2ϵ + y,

which represents scaling in x and translation in y.
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Example 2. Consider an infinitesimal generator

X2 = −y
∂

∂x
+ x ∂

∂y
. (1.9)

Its infinitesimals are given by

ξ(x, y) = −y, η(x, y) = x. (1.10)

According to Theorem (1), the ODE initial value problem is given by:

dx∗

dϵ
= −y∗, dy∗

dϵ
= x∗, x∗(0) = x, y∗(0) = y. (1.11)

By cross-differentiation, one readily obtains

−(x∗(ϵ))′′ = x∗(ϵ),

and hence

x∗(ϵ) = A cos(ϵ) +B sin(ϵ).

It follows that y∗(ϵ) = A sin(ϵ)−B cos(ϵ). Upon the application of initial conditions x∗(0) =

x, y∗(0) = y, one arrives at the Lie group of rotations, given by

x∗(ϵ) = x cos(ϵ) − y sin(ϵ), y∗(ϵ) = x sin(ϵ) + y cos(ϵ). (1.12)

Example 3. For the infinitesimal generator

X3 = xy
∂

∂x
+ y ∂

∂y
, (1.13)

one gets, in a similar manner, the corresponding Lie group of point transformations given

by

x∗ = xey(eϵ−1), y∗ = yeϵ.

1.2 Invariants of Transformations

Definition 11. An infinitely differentiable function F (x) is invariant under the Lie group

of point transformations (1.2) if

F (x∗) = F (x).

5



The following theorem is readily established.

Theorem 2. F (x) is invariant under the Lie group of point transformations (1.2) if and

only if

XF (x) ≡ 0. (1.14)

Proof.

F (x∗) = eϵXF (x) ≡
∞
∑
k=0

ϵk

k!
XkF (x)

= F (x) + ϵXF (x) + ϵ2

2!
X2F (x) + . . . . (1.15)

Suppose F (x∗) ≡ F (x). Then XF (x) ≡ 0 follows from (1.15) since terms involving different

powers of ϵ are linearly independent.

Conversely, let F (x) be such that XF (x) ≡ 0. Then XnF (x) ≡ 0, n = 1,2, . . .. Hence from

(1.15), F (x∗) = F (x).

Definition 12. A surface F (x) = 0 in Rn is an invariant surface under the Lie group of

point transformations (1.2) if and only if F (x∗) = 0 when F (x) = 0.

Example 4. Find all functions F (x, y) invariant with respect to scalings

X1 = x
∂

∂x
+ 3y ∂

∂y
,

corresponding to the Lie group of scalings, given by

x∗ = xeϵ, y∗ = ye3ϵ.

According to the theorem (2), such functions F (x, y) should satisfy XF (x, y) ≡ 0:

x
∂F

∂x
+ 3y∂F

∂y
= 0.

Solving the characteristic equation
dx

x
= dy

3y
.

one obtains the first integral

C1 =
x3

y
.
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It follows that the invariant functions F (x, y) are given by

F (x, y) = F (C1) = F (
x3

y
) .

Indeed, one can explicitly verify this fact:

F (x
∗3

y∗
) = F (x

3e3ϵ

ye3ϵ
) = F (x

3

y
) .

Example 5. Find all functions F (x, y) invariant with respect to rotations ((1.9), (1.12)):

X2 = −y
∂

∂x
+ x ∂

∂y
.

X2F (x, y) = 0 yields a characteristic equation

−dx
y
= dy

x
,

with the corresponding first integral C1 = x2 + y2. The invariant functions are hence given

by F (x, y) = F (x2 + y2) = F (r) where r is the polar radius.

1.3 Canonical Coordinates

Consider a non-degenerate change of coordinates

y = y(x) = (y1(x), y2(x), . . . , yn(x)). (1.16)

For a one-parameter Lie group of point transformations (1.2), the infinitesimal generator

(1.5) with respect to coordinates x = (x1, x2, . . . , xn) becomes the infinitesimal generator

Y =
n

∑
i=1

ηi(y)
∂

∂yi
(1.17)

with respect to coordinates y = (y1, y2, . . . , yn) defined by (1.16).

Theorem 3. After change of coordinates (1.16) the operator X (1.5) yields the operator Y

(1.17), where

η(y) = Xy.

7



Proof. Using the chain rule, we have

X =
n

∑
i=1

ξi(x)
∂

∂xi
=

n

∑
i,j=1

ξi(x)
∂yj(x)
∂xj

∂

∂yj

=
n

∑
j=1

ηj(y)
∂

∂yj
= Y,

where

ηj(y) =
n

∑
i=1

ξi(x)
∂yj(x)
∂xi

≡ Xyj, j = 1,2, . . . , n.

Definition 13. A change of coordinates (1.16) defines a set of canonical coordinates y =

(y1, y2, . . . , yn) for the one-parameter Lie group of point transformations (1.2) if after this

change infinitesimal generator X = ∑n
i=1 ηi(x) ∂

∂xi yields a pure translation in yn: Y = ∂
∂yn .

Infinitesimals in this case are given by

ηj(y) = Xyj = 0, j = 1, . . . , n − 1;

ηn(y) = Xyn = 1. (1.18)

Example 6. Consider a group of scalings in R3, x = (x1, x2, x3).

x∗1 = eϵx1, x∗2 = e2ϵx2, x∗3 = e7ϵx3. (1.19)

The infinitesimal generator is given by

X = x1
∂

∂x1

+ 2x2
∂

∂x2

+ 7x3
∂

∂x3

.

To find canonical coordinates one should find 3 − 1 = 2 invariants y1, y2 and translation

coordinate y3. The characteristic equation is given by

dx1

x1

= dx2

2x2

= dx3

7x3

,

and the corresponding first integrals (independent invariants) are given by, for example,

y1 =
x2
1

x2

, y2 =
x7
1

x3

.

8



To find the translation coordinate y3, one uses the condition Xy3 = 1:

x1
∂y3
∂x1

+ 2x2
∂y3
∂x2

+ 7x3
∂y3
∂x3

= 1.

A particular solution of the characteristic equation

dx1

x1

= dx2

2x2

= dx3

7x3

= dy3
1

is given by, for example,

y3 = lnx1.

Hence the set of canonical coordinates for the group of scalings (1.19) is given by

y1 =
x2
1

x2

, y2 =
x7
1

x3

, y3 = lnx1.

1.4 Prolonged Infinitesimal Generator

Consider a function F (x,u(x), u′(x), . . . , u(n)(x)) differentiable with respect to all its vari-

ables. The notation
dF

dx
≡ DxF =

∂F

∂x
+ ∂F

∂u

∂u

∂x
+ ∂F

∂u′
∂u′

∂x
+ . . .

denotes the total derivative of F (x,u(x), u′(x), . . . , u(n)(x)) with respect to x. For a func-

tion F (x,u(x), ∂u(x), . . . , ∂ku(x)) with m dependent and n independent variables x =

(x1, . . . , xn), u = (u1(x), . . . , um(x)), the ith total derivative is given by

dF

dxi
≡ DiF = DxiF, i = 1, . . . , n, where

Di =
∂

∂xi
+ uµ

i

∂

∂uµ
+ uµ

ii1

∂

∂uµ
i1

+ . . . + uµ
i1i2...in

∂

∂uµ
i1i2...in

.

Summation in any pair of repeated indices is assumed throughout the thesis.

The notation

∂u ≡ ∂1u = (u1
1(x), . . . , u1

n(x), . . . , um
1 (x), . . . , um

n (x))

denotes the set of all first-order partial derivatives;

∂pu = {uµ
i1...ip

∣ µ = 1, . . . ,m; i1, . . . , ip = 1, . . . , n}

= { ∂puµ(x)
∂xi1 . . . ∂xip

∣ µ = 1, . . . ,m; i1, . . . , ip = 1, . . . , n}

denote higher-order derivatives.

9



Definition 14. Consider a Lie group of point transformations

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x∗ = f(x,u, ϵ),

u∗(x∗) = g(x,u, ϵ)
(1.20)

with the infinitesimal generator

X = ξi(x,u) ∂

∂xi
+ ηµ(x,u) ∂

∂uµ
. (1.21)

Then it is important to know how derivatives of u are transformed. It can be shown that

the kth prolongation (extended transformation) of infinitesimal generator is given by

X(k) = X + η(1)µi (x,u, ∂u) ∂

∂uµ
i

+ . . . + η(k)µi1...ik
(x,u, ∂u, . . . , ∂ku) ∂

∂uµ
i1...ik

, k = 1,2, . . . (1.22)

with extended infinitesimals given by

η
(1)µ
i = Diη

µ − (Diξ
j)uµ

j , (1.23)

and

η
(k)µ
i1...ik

= Dikη
(k−1)µ
i1...ik−1

− (Dikξ
j)uµ

i1...ik−1j
, (1.24)

for µ = 1, . . . ,m, and i, ij = 1, . . . , n for j = 1, . . . , k. Note that X(k)uµ
i1...ij

= η(j)i1...ij
.

Hence for the dependent variables u and independent variables x, the group (1.20) cor-

responds to the transformation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x∗)i = xi + ϵξi +O(ϵ2),

(u∗)µ = uµ + ϵηµ +O(ϵ2),

⋯,

(u∗)µi1...ik = u
µ
i1...ik

+ ϵη(k)µi1...ik
+O(ϵ2),

acting on the space of x, u, and derivatives of u up to the order k.

1.5 Point Symmetries of Partial Differential Equations

Consider a system R{x;u} of N partial differential equations (PDEs) of order k, with n

independent variables x = (x1, . . . , xn) andm dependent variables u(x) = (u1(x), . . . , um(x)),

given by

Rσ(x,u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . ,N. (1.25)
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Consider a one-parameter Lie group of point transformations

(x∗)i = f i(x,u; ϵ), i = 1, . . . , n, (1.26a)

(u∗)µ = gµ(x,u; ϵ), µ = 1, . . . ,m, (1.26b)

with the corresponding infinitesimal generator (1.21). The kth extension (prolongation) of

(1.21) is given by (1.22).

Definition 15. A one-parameter Lie group of point transformations (1.26) leaves the PDE

system R{x;u} (1.25) invariant if and only if its kth extension (1.22) leaves invariant the

solution manifold of (1.25) in (x,u, ∂u, . . . , ∂ku)-space, i.e., it maps any family of solution

surfaces of the PDE system (1.25) into another family of solution surfaces of the PDE system

(1.25) up to order k. In this case, the one-parameter Lie group of point transformations (1.26)

is called a point symmetry of the PDE system (1.25).

Lie’s algorithm to find the point symmetries of a given PDE system (1.25) is given by

the following theorem.

Theorem 4. Let (1.21) be the infinitesimal generator of a one-parameter Lie group of point

transformations (1.26). Let (1.22) be its kth extension. Then the transformation (1.26) is a

point symmetry of the PDE system (1.25) if and only if for each α = 1, . . . ,N ,

X(k)Rα(x,u, ∂u, . . . , ∂ku) = 0, (1.27)

when

Rσ(x,u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . ,N. (1.28)

The proof appears in [30], with the restriction that the given system (1.25) can be written

in a solved form in terms of a set of leading derivatives.

In order to find point symmetries admitted by a given PDE system (1.25), one needs to

determine the unknown symmetry components ξi, ηµ that appear in the symmetry generator

(1.21). The algorithm proceeds in the following steps:

1. Obtain determining equations by substituting DEs from (1.25) and differential conse-

quences of (1.28), if necessary, into the invariance condition (1.27).
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2. Obtain the split system of determining equations, using the fact that ξi, ηµ do not

depend on derivatives of uµ, i.e., setting coefficients at all independent combinations

of derivatives of dependent variables in determining equations to zero.

In order to illustrate the algorithm for finding point symmetries of differential equations,

consider the following examples.

Example 7. Consider a second-order ODE

yxx = y′′ = 0. (1.29)

Infinitesimal generator and its second extension correspondingly are given by

X = ξ(x, y) ∂
∂x
+ η(x, y) ∂

∂y
, (1.30)

X(2) = X + η(1)1 (x, y, yx)
∂

∂yx
+ η(2)11 (x, y, yx, yxx)

∂

∂yxx
.

Then one should express extended infinitesimals η(1), η(2) in terms of the unknowns ξ, η and

its derivatives using (1.23), (1.24) in order to substitute them into the invariance condition

X(2)yxx∣yxx=0 = (ξ
∂

∂x
+ η ∂

∂y
+ η(1) ∂

∂yx
+ η(2) ∂

∂yxx
) yxx∣

yxx=0
= 0.

One can solve it by setting coefficients at all independent combinations of derivatives of

dependent variables to zero. The general solution of the split system of determining equations

ξxx = 0, 2ηxy = ξxx, ηyy = 2ξxy, ξyy = 0,

is given by

ξ(x, y) = (c1x + c3)y +
c2x2

2
+ c5x + c7,

η(x, y) = (c2y
2
+ c4)x + c1y2 + c6y + c8,

where (1.30) is a symmetry for all combinations of the arbitrary constants c1, . . . , c8. The

basis of the eight-dimensional space of infinitesimal generators is given by, for example

X1 = xy
∂

∂x
+ y2 ∂

∂y
, X2 = x2

∂

∂x
+ xy ∂

∂y
,

X3 = y
∂

∂x
, X4 = x

∂

∂y
, X5 = x

∂

∂x
,

X6 = y
∂

∂y
, X7 =

∂

∂x
, X8 =

∂

∂y
.
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These symmetries correspond to an eight-parameter Lie group of projective transformations

in the space of smooth functions y(x), given by

x∗ = (1 + c5)x + c3y + c7
c2x + c1y + 1

,

y∗ = c4x + (1 + c6)y + c8
c2x + c1y + 1

.

(1.31)

The transformation (1.31) maps straight lines of the form y(x) = αx + β to straight lines

y∗(x∗) = α∗x∗ + β∗.

Example 8. Consider a linear dimensionless heat equation

ut = uxx. (1.32)

Equations of the form (1.32) are used to describe diffusion and heat conduction processes;

the dimensionless variable u plays the role of concentration or temperature correspondingly.

In a similar manner, one should satisfy invariance condition

[X(2)(ut − uxx)]∣uxx=ut
= (η(1)t − η

(2)
xx )∣

uxx=ut

= 0,

which can be shown to lead to

X = ξ(x, t) ∂
∂x
+ τ(t) ∂

∂t
+ [f(x, t)u + g(x, t)] ∂

∂u
,

with the components of X satisfying the corresponding set of linear determining equations

τ ′(t) − 2ξx = 0, 2fx − ξxx + ξt = 0, ft − fxx = 0, gt − gxx = 0. (1.33)

After solving (1.33), one finds that the heat equation (1.32) has an infinite number of point

symmetries given by the infinitesimal generators X∞ = g(x, t)∂/∂u with gt = gxx, correspond-

ing to its linearity, and six nontrivial point symmetries given by

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = 2t

∂

∂t
+ x ∂

∂x
,

X4 = tx
∂

∂x
+ t2 ∂

∂t
− (12t +

1
4x

2)u ∂

∂u
,

X5 = t
∂

∂x
− 1

2xu
∂

∂u
, X6 =

∂

∂u
.
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1.6 Equivalence Transformations

For PDE systems containing parameters and/or arbitrary (constitutive) functions, it is use-

ful to consider equivalence transformations of the system, i.e., transformations that preserve

the form of the equations in the PDE system, but may change the form of the constitu-

tive functions and/or parameters. This notion becomes especially useful in problems where

classification with respect to parameters and/or constitutive functions is required.

Consider a family FK of PDE systems R{x;u;K}:

Rσ(x,u, ∂u, . . . , ∂ku,K) = 0, σ = 1, . . . ,N,

which involves L parameters and/or constitutive functionsK = (K1, . . . ,KL). Such functions

may depend on particular dependent and independent variables of the system, as well as

derivatives of dependent variables.

Definition 16. A one-parameter Lie group of equivalence transformations of the family FK

of PDE systems is a one-parameter Lie group of transformations, given by

x̃i = f i(x,u; ε), i = 1, . . . , n,

ũµ(x̃) = gµ(x,u; ε), µ = 1, . . . ,m,

K̃l = Gl(x,u,K; ε), l = 1, . . . , L,

(1.34)

which maps a PDE system R{x;u;K} ∈ FK into another PDE system R{x̃; ũ; K̃} in the

same family FK .

Note that the transformation (1.34) is a point symmetry of each PDE system in the

family FK , if parameters and/or constitutive functions are not modified under (1.34).

Example 9. As an example, consider the incompressible three-dimensional Navier-Stokes

equations in Cartesian coordinates (x1, x2, x3):

∂v1

∂x1
+ ∂v2

∂x2
+ ∂v3

∂x3
= 0,

∂vi

∂t
+ vj ∂v

i

∂xj
+ ∂p

∂xi
= ν ( ∂2vi

∂(x1)2
+ ∂2vi

∂(x2)2
+ ∂2vi

∂(x3)2
) , i = 1,2,3.

(1.35)
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Equations (1.35) describe the motion of an incompressible fluid with constant density ρ = 1,

velocity vector v, pressure p, and constant viscosity coefficient ν. The PDE system (1.35)

admits a group of equivalence transformations

t̃ = t, x̃ = x, ṽi = avi, p̃ = a2p, ν̃ = a2ν,

(a ≡ eε), which maps the PDE system (1.35) into the PDE system

∂ṽ1

∂x̃1
+ ∂ṽ2

∂x̃2
+ ∂ṽ3

∂x̃3
= 0,

∂ṽi

∂t̃
+ ṽj ∂ṽ

i

∂x̃j
+ ∂p̃

∂x̃i
= ν̃ ( ∂2ṽi

∂(x̃1)2
+ ∂2ṽi

∂(x̃2)2
+ ∂2ṽi

∂(x̃3)2
) , i = 1,2,3,

which coincides with (1.35) except for a different viscosity coefficient.

1.7 Nonlocally Related Potential Systems and Subsys-

tems

Additional (nonlocal) symmetries of PDE systems can be found through the consideration

of nonlocally related systems of partial differential equations. For simplicity, only the case

of two independent variables is considered here. For the full description, see, e.g., [8].

Consider a scalar PDE R{x, t;u} of N partial differential equations of order k with one

dependent variable u and two independent variables (x, t), given by

Rσ[u] = Rσ(x, t, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . ,N. (1.36)

Definition 17. A local conservation law of PDE system (1.36) is a divergence expression

DtΨ(x, t, u, ∂u, . . . , ∂k−1u) +DxΦ(x, t, u, ∂u, . . . , ∂k−1u) = 0 (1.37)

holding for all solutions of PDE system (1.36). In (1.37), Ψ(x, t, u, ∂u, . . . , ∂ku) is called the

density of the conservation law, Φ(x, t, u, ∂u, . . . , ∂ku) is called the flux of the conservation

law and the highest-order derivative (r) present in Ψ,Φ is called the (differential) order of a

conservation law ; the total derivative operators are given by

Di =
∂

∂xi
+ ui

∂

∂u
+ uij1

∂

∂uj1

+ . . . + uij1j2...jk−1

∂

∂uj1j2...jk−1

, i, jl = 1,2,

where D1 ≡ Dx, D2 ≡ Dt.
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Suppose that the PDE R{x, t;u} is given in conservation law form (1.37). This yields a

pair of potential equations S{x, t;u, v} given by

P ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

vx = Ψ(x, t, u, ∂u, . . . , ∂k−1u),

vt = −Φ(x, t, u, ∂u, . . . , ∂k−1u)
(1.38)

for some auxiliary potential variable v = v(x, t).

Note that in (1.38), the potential variable v cannot be expressed as a local function of

the given variables (x, t, u) and partial derivatives of u, and thus is a nonlocal variable.

Definition 18. A system of PDEs consisting of a given PDE system R{x, t;u} and the pair

of potential equations (1.38) that follows from a conservation law (1.37) of R{x, t;u}, is a

potential system denoted by S{x, t;u, v} =R{x, t;u} ∪P.

Example 10. Let R{x, t;u} be the nonlinear diffusion equation

ut = (L(u))xx, (1.39)

where L(u) is an arbitrary function. Equation (1.39) is already given in conservation

law form, therefore one can introduce a potential variable v to obtain potential system

S{x, t;u, v} given by

vx = u,

vt = (L(u))x.
(1.40)

As one can see, second equation in (1.40) is also in conservation law form, hence one can

introduce a second potential variable w and obtain another potential system T{x, t;u, v,w}

given by

vx = u,

wx = v,

wt = L(u).

(1.41)

By construction, the three PDE systems R{x, t;u}, S{x, t;u, v} and T{x, t;u, v,w} are non-

locally related to each other.

To obtain PDE systems that are nonlocally related to a given PDE system R{x, t;u} one

can use another way — through the construction of appropriate subsystems. Such subsystem
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could be obtained either from a potential system or after interchange of variables in a given

PDE system. Though one is interested only in nonlocally related subsystems for a given

PDE which could yield new results for a particular method of analysis, the next example

shows that locally related subsystems could also be obtained.

Example 11. Let R{x, t;u, v} be the system

⎧⎪⎪⎪⎨⎪⎪⎪⎩

vx − u = 0,

vt − (L(u))x = 0,
(1.42)

which has two subsystems V{x, t; v} = 0: vt = (L(vx))x and U{x, t;u} = 0: ut − (L(u))xx = 0.

One can see that V{x, t; v} is nonlocally related to R{x, t;u, v}, and U{x, t;u} is locally

related to R{x, t;u, v}.

The following theorem holds.

Theorem 5. A subsystem R{x, t;u1, . . . , um−1}, obtained from a system of PDEs R{x, t;u}

with m dependent variables by excluding a dependent variable, say um, is nonlocally related

to R{x, t;u} if um cannot be directly expressed from the equations of R{x, t;u} in terms

of its independent variables and its remaining dependent variables u1, . . . , um−1, and their

derivatives. Otherwise the subsystem R{x, t;u1, . . . , um−1} is locally related to R{x, t;u}.

The proof appears in [8].

1.8 Nonlocal Symmetries

Applicability of symmetry methods could be further enhanced by obtaining nonlocal sym-

metries for a given symmetry of PDEs. Consider a system of PDEs R{x, t;u} which has

a potential system S{x, t;u, v} that is invariant under the one-parameter (ϵ) Lie group of

point transformation

x∗ = x + ϵξS(x, t, u, v) +O(ϵ2),

t∗ = t + ϵτS(x, t, u, v) +O(ϵ2),

u∗ = u + ϵηS(x, t, u, v) +O(ϵ2),

v∗ = v + ϵζS(x, t, u, v) +O(ϵ2),

(1.43)
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with corresponding infinitesimal generator

X = ξiS(x, t, u, v)
∂

∂xi
+ ηµS(x, t, u, v)

∂

∂uµ
+ ζpS(x, t, u, v)

∂

∂vp
, (1.44)

where ξiS, i = 1,2 are the infinitesimals corresponding to the independent variables (x1, x2) =

(x, t), ηµS are the infinitesimals corresponding to to the dependent variables uµ of R{x, t;u},

µ = 1, . . . ,m, and ζpS are the infinitesimals corresponding to the potential variables vp, p =

1, . . . , k of the potential system S{x, t;u, v}.

Definition 19. The point symmetry (1.44) of the potential system S{x, t;u, v} defines a

potential symmetry of a PDE system R{x, t;u} if and only if the infinitesimals (ξS(x, t, u, v),

τS(x, t, u, v), ηS(x, t, u, v)) depend explicitly on one or more components of v.

Theorem 6. A potential symmetry of R{x, t;u} is a nonlocal symmetry of R{x, t;u}.

For details, see [8].

Nonlocal symmetries can arise as potential symmetries, as well as symmetries of nonlocally

related subsystems of a given system of PDEs, but they do not arise as local symmetries by

a direct application of Lie’s algorithm to a given system.

Example 12. As an example of nonlocal symmetries, which arise as local symmetries of

potential system, let R{x, t;u} again be the nonlinear diffusion equation (1.39)

ut = (L(u))xx,

which has potential system S{x, t;u, v} given by (1.40)

vx = u,

vt = (L(u))x.

For L′(u) =K(u) = (u2 + 1)−1eλ tan−1 u, one can obtain local symmetry of (1.40)

Y9 = v
∂

∂x
+ λt ∂

∂t
− (u2 + 1) ∂

∂u
− x ∂

∂v
,

which could not be obtained as a local symmetry of (1.39). For full classification of nonlocal

symmetries of the nonlinear diffusion equation, see, e.g., [8].
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Example 13. As an example of nonlocal symmetries, which arise as local symmetries of

subsystem, let L{y, s; v, p, q} be the Lagrange system of planar gas dynamics

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

qs − vy = 0,

vs + py = 0,

ps +B(p, q)vy = 0

(1.45)

with the time variable s, the Lagrange mass coordinate y = ∫
x

x0
ρ (ξ, t)dξ, gas velocity v,

q = 1/ρ where ρ is gas density, and gas pressure p. In terms of the entropy density S(p, q),

constitutive function B(p, q) is given by

B(p, q) =
Sq

Sp

.

System (1.45) has a nonlocally related subsystem L{y, s;p, q}, obtained by excluding v, given

by
⎧⎪⎪⎪⎨⎪⎪⎪⎩

qss + pyy = 0,

ps +B(p, q)qs = 0.
(1.46)

Considering the subsystem L{y, s;p, q} (1.46) with a generalized polytropic equation of state

B(p, q) = M(p)
q

, M ′′(p) ≠ 0.

One of the cases when new symmetries for (1.45) arises as local symmetries of nonlocally

related subsystem (1.46) is for function M(p) given by

M(p) = 1 + αep

and symmetries are given by

Z11 =
∂

∂p
+ αep

1 + αep
q
∂

∂q
, Z12 = y

∂

∂p
+ αep

1 + αep
yq

∂

∂q
.

For a full classification of nonlocal symmetries of the planar gas dynamics equation, see,

e.g., [8].

1.9 Approximate Symmetries

Approximate symmetries extend the Lie symmetry framework to include pertrubation tech-

niques for differential equations involving small parameters. Most commonly, in literature,
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two non-equivalent definitions of approximate symmetries are used. These definitions are in-

troduced by different authors, and we call them respectively Fushchich-type [17] and Baikov-

type [1, 2].

1.9.1 Fushchich-Type Approximate Symmetries

Fushchich and Shtelen [17] define approximate symmetries as follows. For a given DE system

(1.25) containing a small parameter ε, one writes the solution as

u = u0 + εu1. (1.47)

[If needed, higher-order expansions terms can be considered.] The procedure of obtaining

approximate symmetries, which in this context are called Fushchich-type approximate sym-

metries of the given system (1.25), is as follows.

1. Substitute (1.47) in the given system (1.25).

2. Expand the given system in Taylor series.

3. Set the corresponding Taylor coefficients at different powers of ε to zero, which leads

to a larger DE system for a larger number of unknowns. In particular, if in the given

system and the expanded solution (1.47), only terms of orders ε0 and ε1 are retained,

one obtains a new system of 2N equations for 2m dependent variables.

Fushchich-type approximate symmetries have been used, for example, to compute approxi-

mate solutions of nonlinear wave equation in [10].

1.9.2 Baikov-Type Approximate Symmetries

The procedure of obtaining Baikov-type approximate symmetries could be given by the

following algorithm:

1. Suppose a given system (1.25) involves a small parameter ε, and write each equation
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of the system as a truncated expansion

Rσ(x,u, ∂u, . . . , ∂ku)

= Rσ
0(x,u, ∂u, . . . , ∂ku) + εRσ

1(x,u, ∂u, . . . , ∂ku) +⋯

+εqRσ
q (x,u, ∂u, . . . , ∂ku) = o(εq), σ = 1, . . . ,N, q ≥ 1;

(1.48)

2. Seek approximate point symmetry generators in the form

Xε ≃ X1 + εX2 +⋯ + εpXp, p ≥ q, (1.49)

where each Xj has the form

Xj = ξij(x,u)
∂

∂xi
+ ηµj (x,u)

∂

∂uµ
, j = 1, . . . , q, (1.50)

and does not involve ε;

3. Find components of Xj from an “approximate version” of determining equations (1.27),

(1.28):

X
(k)
ε Rα(x,u, ∂u, . . . , ∂ku)∣⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Rσ(x,u, ∂u, . . . , ∂ku) = o(εq),

σ = 1, . . . ,N

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

= o(εp) α = 1, . . . ,N,

(1.51)

where X
(k)
ε is a prolonged version of (1.50).

Baikov-type approximate symmetries can be used to construct approximate solutions of

given equations, arising as approximately invariant solutions following from approximate

symmetries. Examples are found, e.g., in [22].

1.10 Summary

In this Chapter, basic definitions and theorems concerned with invariance and symmetry

methods, originally introduced by Sophus Lie, were given. These methods manifested them-

selves to be versatile tool for various fields of science, where they are successfully applied to

various types of problems. Symmetries of many families of DEs have been studied in liter-

ature (see, e.g., [20], [21] or discussion in Chapter 2). Equations, studied in [20], [21] from
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the point of view of symmetry methods include diffusion equation, wave equation, equations

of hydrodynamics, gas dynamics, earth sciences, elasticity and plasticity, plasma theory and

others.

As one will see in Chapter 2, symmetries are widely used for obtaining solutions of

DE problems. Also, symmetry group analysis is of further interest in setting up numerical

schemes that preserve group properties of a given PDE BVP (see, e.g., [38]).

It is worth noting that many DEs admit discrete symmetries (such as reflection, discrete

rotation, etc.). Discrete symmetries sometimes can be obtained from continuous symmetries

by complexification of the continuous group parameter.

As it was mentioned earlier in this Chapter, the problem of classification of symmetries

with respect to constitutive function and/or parameter is also considered in the framework

of symmetry theory.

The current thesis is mainly dealing with the application of symmetries to reduction of

equations and calculation of invariant solutions. This is the reason why results involving

obtaining symmetries themselves are not discussed here in detail, although there are a lot of

significant results in the area. In Chapter 2, application of symmetry methods to reduction

of the order of equations and obtaining invariant solutions is discussed, and several examples

are given, which demonstrate the approach. Works related to the computation of invariant

solutions will be discussed in detail in the end of Chapter 2.
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Chapter 2

Applications of Symmetries to Differential

Equations

In this Chapter, we discuss applications of point symmetries to ODEs and PDEs.

2.1 Second and Higher Order ODEs

Consider an ODE

dny(x)
dxn

= F (x, y, y′, . . . , y(n−1)) (2.1)

of order n ≥ 2.

2.1.1 Reduction of Order by Canonical Coordinates

Theorem 7. Using any of its point symmetries X, the ODE (2.1) can be reduced to an ODE

of order n − 1 given by

d(n−1)z(r)
dr(n−1)

= G(r, z, z′, . . . , z(n−2)) (2.2)

where

z = ds

dr
, (2.3)

and (r, s) are canonical coordinates with respect to X.

The proof of this Theorem appears in [4], but we will summarize it in form of the

algorithm:

1. Find canonical coordinates (r, s) using the condition (1.18).
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2. Express
ds

dr
,
d2s

dr2
, . . . ,

dns

drn
in terms of canonical coordinates (r, s). For

dns

drn
one will

obtain nth order ODE, given by

dns

drn
= F (r, s, . . . , d

(n−1)s

dr(n−1)
) . (2.4)

3. Using the fact that (2.4) admits the group

r∗ = r,

s∗ = s + ϵ,

one finds that F is independent of s.

4. Assuming z = ds

dr
, one gets an ODE (2.2) of (n − 1)st order.

Example 14. Consider a second-order ODE

x2y′′ + 2x(y′)2 = 0 (2.5)

and its symmetry given by infinitesimal generator

X = ∂

∂y
. (2.6)

Canonical coordinates with respect to (2.6) are given by

r = x, s = y. (2.7)

In terms of canonical coordinates (2.7) derivatives will become

y′ = ds

dr
, y′′ = d2s

dr2
.

Expressing y′′ from (2.5) and considering z(x) = dy

dx
one gets a first-order ODE given by

z′ = −1
x
(z)2

which can be easily solved:

z = 1

c + ln(x)
, or y(x) = ∫

1

c + ln(x)
dx.
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2.1.2 Reduction of Order by Differential Invariants

Consider the nth order ODE given by

E(x, y, y′, . . . , y(n)) = y(n) − f(x, y, y′, . . . , y(n−1)) = 0. (2.8)

Suppose (2.8) admits a symmetry

X = ξ(x, y) ∂
∂x
+ η(x, y) ∂

∂y
, (2.9)

hence

X(n)E∣
E=0 = 0, (2.10)

where X(n) is the nth prolongation of X given by

X(n) = ξ(x, y) ∂
∂x
+ η(x, y) ∂

∂y
+ η(1)(x, y, y′) ∂

∂y′
+ . . . + η(n)(x, y, y′, . . . , y(n)) ∂

∂y(n)
. (2.11)

Constructing and solving the characteristic equation

dx

ξ(x, y)
= dy

η(x, y)
= dy′

η(1)(x, y, y′)
= . . . = dy(n)

η(n)(x, y, y′, . . . , y(n))

one can obtain (n + 1) invariants

u(x, y), v1(x, y, y′), . . . , vn(x, y, y′, . . . , y(n)), (2.12)

which satisfy

Xu(x, y) = 0, X(1)v1(x, y, y′) = 0 with
∂v1
∂y′
≠ 0,

X(k)vk(x, y, y′, . . . , y(k)) = 0 with
∂vk
∂y(k)

≠ 0, k = 1, . . . , n.

For any set of invariants (2.12) ODE (2.8) becomes

G(u, v1, . . . , vn) = 0 (2.13)

for some function G(u, v1, . . . , vn). One can choose invariants (2.12) so that (2.13) becomes

an (n − 1)st order ODE, as follows:

1. Take u(x, y) and v(x, y, y′) = v1 from (2.12).
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2. Since u(x, y), v(x, y, y′) are invariants under the action of kth prolongation of (2.9),

it follows that dv
du is invariant under the action of the (k + 1)th prolongation of (2.9),

since

(dv
du
)
∗
= dv∗

du∗
= dv

du
, k ≥ 1.

Continuing inductively, one finds that

dv

du
,
d2v

du2
, . . . ,

dn−1v

dun−1

are invariants under the action on nth prolongation of (2.9). These invariants are

called differential invariants of the nth prolongation of (2.9).

3. Then one can find that

dv

du
=
vx + vyy′ + vy′y′′

ux + uyy′
= v2(x, y, y′, y′′),

and inductively,
dkv

duk
= vk+1(x, y, . . . , y(k+1)), k = 1, . . . , n − 1.

4. Consequently, (2.13) becomes an (n − 1)st order ODE given by

G(u, v, dv
du

, . . . ,
dn−1v

dun−1) = 0.

Example 15. Consider a second-order ODE

y′′ − y′

y2
+ 1

xy
= 0 (2.14)

and its point symmetry given by an infinitesimal generator

X = 2x ∂

∂x
+ y ∂

∂y
. (2.15)

The prolongation of infinitesimal generator (2.15) is given by

η(1)(x, y, y′) = Dxη(x, y) − y′Dxξ(x, y) = −y′, (2.16)

and the characteristic equation in this case is given by

dx

2x
= dy

y
= dy′

y′
. (2.17)
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Solving equations (2.17), one can get differential invariants

u(x, y) = y√
x
, v(x, y, y′) = y′

√
x. (2.18)

Expressions for y, y′ and y′′ in terms of x, u and v are given by

y = u
√
x, y′ = v

x
, y′′ = −v

′u − 2v′v + v
2x(3/2)

. (2.19)

After the substitution of (2.19) into (2.14), one gets a first-order ODE for v(u) given by

v′(u − 2v) + v + 2v

u2
− 2

u
= 0.

2.2 Dimensional Analysis as an Application of Ideas of

Invariance

Dimensional analysis is the technique applied to the modeling problems, in which the reduc-

tion of the number of essential independent quantities is needed. Such a problem can arise,

for example, when the objective is to reduce the number of experimental measurements.

The reason why the approach of dimensional analysis is mentioned within this work is

that its application to solving boundary-value problems with partial differential equations is

a special case of reduction, following from invariance under groups of scaling transformations.

2.2.1 Buckingham-Pi Theorem

Basic assumptions and principles of dimensional analysis are stated in the form of so-called

Buckingham-Pi theorem.

Assumptions.

1. A quantity u is to be determined in terms of n measurable quantities (variables and

constants), (W1,W2, . . . ,Wn):

u = f(W1,W2, . . . ,Wn), (2.20)

where f is an unknown function of (W1,W2, . . . ,Wn).
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2. The quantities (u,W1,W2, . . . ,Wn) involve m fundamental dimensions labelled by

L1, L2, . . . , Lm. In a mechanical problems, for example, fundamental dimensions are

L1=length, L2=mass, and L3=time.

3. The dimension of any quantity Z from the set {u,W1,W2, . . . ,Wn} is given by product

of powers of the fundamental dimensions

[Z] = Lα1
1 . . . Lαm

m ,

where (α1, . . . , αm) are some real numbers, which can be represented as dimension

(column) vector of Z

α =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1

⋮

αm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

A quantity Z is said to be dimensionless if and only if [Z] = 1, i.e. all dimension

exponents are zero. For example, in terms of mechanical fundamental dimensions, the

dimension vector of energy E is

α(E) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2

1

−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let

bi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1i

b2i

⋮

bmi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
be the dimension vector of Wi, i = 1,2, . . . , n, and let

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b11 b12 . . . b1n

b21 b22 . . . b2n

⋮ ⋮ ⋮

bm1 bm2 . . . bmn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

be the m × n dimension matrix of the given problem.
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4. For any set of fundamental dimensions one can choose a system of units for measuring

the value of any quantity Z. A change from one system of units to another involves

a positive scaling of each fundamental dimension (i.e. L̃i = (xi)−1Li, where xi is an

arbitrary positive number for i=1. . .m) which in turn induces a scaling of each quantity

Z.

5. Formula (2.20) is independent of the choice of system of units (is invariant under

arbitrary scaling of any fundamental dimensions).

Assumptions, stated in the theorem above, lead to the following facts.

Results.

1. Formula (2.20) can be expressed in terms of dimensionless quantities.

2. The number of dimensionless quantities is k + 1 = n+ 1− r(B), where r(B) is the rank

of matrix B. Precisely k of these dimensionless quantities depend on the measurable

quantities (W1, . . . ,Wn).

3. Let

xi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1i

x2i

⋮

xni

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, i = 1, . . . , k,

represent the k = n − r(B) linearly independent solutions x of the system

Bx = 0.

Let

a =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2

⋮

am

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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be the dimension vector of u and let

y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

⋮

yn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
represent a solution of the system

By = −a.

Then formula (2.20) simplifies to

π = g(π1, π2, . . . , πk), (2.21)

where π, πi are dimensionless quantities,

π = uW y1

1 W y2

2 . . .W yn

n , (2.22)

πi = uW x1i

1 W x2i

2 . . .W xni

n , i = 1,2, . . . , k,

and g is an unknown function of its arguments. After substituting (2.21) into (2.22),

(2.20) becomes

u =W −y1
1 W −y2

2 . . .W −yn
n g(π1, π2, . . . , πk). (2.23)

The proof of Buckingham-Pi theorem and the following theorem, as well as examples of its

application, appear in [4].

Theorem 8. If the number of independent variables appearing in a BVP for a partial differ-

ential equation can be reduced by ρ through dimensional analysis, then the number of variables

can be reduced by ρ through invariance of the BVP under a ρ-parameter family of scaling

transformations of its variables.

2.3 Invariant Solutions of PDEs

Consider a PDE system R{x;u} of N PDEs of order k with n independent variables x =

(x1, . . . , xn) and m dependent variables u = (u1, . . . , um), given by

Rσ(x,u, ∂u, . . . , ∂ku) = 0 σ = 1, . . . ,N, (2.24)
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that has the point symmetry with the infinitesimal generator

X = ξi(x,u) ∂

∂xi
+ ηµ(x,u) ∂

∂uµ
. (2.25)

Let ξ(x,u) = (ξ1(x,u), . . . , ξn(x,u)) and assume that ξ(x,u) /≡ 0.

Definition 20. u = Θ(x), with components uν = Θν(x), ν = 1, . . . ,m, is an invariant solution

of the PDE system R{x;u} (2.24) resulting from the point symmetry (2.25) if and only if

(i) uν = Θν(x) is an invariant surface of the point symmetry (2.24) for each ν = 1, . . . ,m.

(ii) u = Θ(x) is a solution of R{x;u} (2.24).

It follows that u = Θ(x) is an invariant solution of the PDE system R{x;u} (2.24)

resulting from the point symmetry (2.25) , if and only if u = Θ(x) is a solution satisfying

X(uν −Θν(x))∣u=Θ(x) = 0, ν = 1, . . . ,m. (2.26)

The solutions of equation (2.26) are invariant surfaces of the point symmetry (2.25).

Equation (2.26) defines the classical method to obtain particular solutions of a PDE system

R{x;u} (2.24). The nonclassical method is discussed in the next section.

2.4 The Nonclassical Method for Obtaining Solutions

of PDEs

Motivated by the fact that there exist symmetry reductions for PDEs which can not not

obtained by using the classical symmetries, there have been several generalizations of the

classical Lie group method for symmetry reduction. The notion of nonclassical solutions was

firstly introduced by Bluman and Cole [3] in the study of reductions of the heat equation.

In order to apply the nonclassical symmetries method, one can use the following algorithm:

1. Construct the augmented PDE system A{x;u}, which consists of the given PDE system

R{x;u} (1.25), the invariant surface condition equations

Iν(x,u, ∂u) = ην(x,u) − ξi(x,u)∂u
ν

∂xi
= 0, ν = 1, . . . ,m, (2.27)

and the differential consequences of (2.27).
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2. Substitute the invariant surface condition equations and its differential consequences

into the invariance condition of classical method (1.27), (1.28), and, following algorithm

for obtaining point symmetries from Section 1.5, obtain functions ξi(x,u), ηµ(x,u),

i = 1, . . . , n, µ = 1, . . . ,m, so that (1.21) is a “symmetry” (“nonclassical symmetry”) of

the augmented PDE system A{x;u}.

3. Obtain an over-determined set of nonlinear determining equations for the unknown

functions ξi(x,u), ηµ(x,u), i = 1, . . . , n, µ = 1, . . . ,m.

Thus, as one can observe, the nonclassical method is not a “symmetry” method but an

extension of Lie’s symmetry method (“classical method”) for the purpose of finding specific

solutions of PDEs.

A “nonclassical symmetry” is not a symmetry of a given PDE system R{x;u} (1.25)

unless the infinitesimals yielding an infinitesimal generator (1.21) yield a point symmetry of

R{x;u}.

The main difficulty of this approach is that the determining equations are no longer linear

due to the substitution of the equations (2.27) (each written in solved form with respect to

some derivative term) and their differential consequences into the symmetry determining

equations (1.27), (1.28) that now hold only for solutions of the augmented PDE system

A{x;u}. On the other hand, the nonclassical symmetries may yield more solutions than the

classical symmetries method. Some examples are mentioned in Section 2.6.

2.5 The Algorithm for Finding Invariant Solutions of

PDEs

The classical method can be described in several steps:

1. Solve the characteristic equation corresponding to (2.26), given by

dx1

ξ1(x,u)
= . . . = dxn

ξn(x,u)
= du1

η1(x,u)
= . . . = dum

ηm(x,u)
. (2.28)

2. Find canonical coordinates.
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a) Findm+n−1 invariants z1(x,u), . . . , zn−1(x,u), h1(x,u), . . . , hm(x,u) that arise

from solving (2.28).

b) Find translation coordinate zn ∶ Xzn(x,u) = 1.

3. Select h1, . . . , hm so that Jacobian J = ∣∂(h
1, . . . , hm)

∂(u1, . . . , um)
∣ ≠ 0.

4. Change coordinates in (2.24) (x,u(x)) → (z,h(z)) and obtain an equivalent PDE

system R̃{z,h}.

5. R̃{z,h} has the translation point symmetry (2.25) which in canonical coordinates be-

comes
∂

∂zn
, or

(z∗)i = zi, i = 1, . . . , n − 1,

(z∗)n = zn + ε,

(h∗)ν = hν , ν = 1, . . . ,m,

thus the variable zn does not appear explicitly in the transformed PDE system R̃{z,h},

and the transformed PDE system has particular invariant solutions of the form

hν(x,u) = h̃ν(z1(x,u), . . . , zn−1(x,u)) (2.29)

that in turn implicitly define functions u = Θ(x) which are invariant solutions of the

PDE system R{x;u} (2.24), i.e., the PDE system R{x;u} (2.24) has invariant solutions

implicitly given by the invariant form (2.29).

Remark. Unlike for ODEs, invariant solutions of PDEs are only a small subclass of all

solutions.

Example 16. Many systems admit time and space translation symmetries given by

X1 =
∂

∂t
, X2 =

∂

∂x
, (2.30)

and one of them is the Korteweg-de Vries (KdV) equation given by

ut − 6uux + uxxx = 0, (2.31)

which describes the behavior of waves on shallow water surfaces, and, in particular, soliton

solutions. One can take a linear combination of (2.30), for example, given by

X = c ∂

∂x
+ ∂

∂t
, c ∈ R. (2.32)
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In the case of heat equation problem there is only one dependent variable u(x, t), therefore

prolongation of (2.32) is given by

X(1) = c ∂

∂x
+ ∂

∂t
+ 0 ∂

∂u
. (2.33)

Solutions of the corresponding characteristic equation

dx

c
= dt

1
= du

0
(2.34)

are given by

z1 = x − ct, h1 = u. (2.35)

Consequently, the invariant solution of the system (2.31) is given by

u(x, t) = h1(z1) = h(x − ct) = h(s). (2.36)

After substituting (2.36) into (2.31), one obtains the ODE given by

−ch′(s) − 6hh′(s) + h′′′(s) = 0

with the particular solution

u(x, t) = h(s) = 1

2

c

cosh2 (
√
c
2 (s − a))

= 1

2

c

cosh2 (
√
c
2 (x − ct − a))

,

which describes a soliton moving to the right with the speed c > 0.

Example 17. Consider IBVP for 1D non-linear heat equation for U = U(x, t) in the dimen-

sionless form ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U

∂t
= ∂

∂x
(Un

∂U

∂x
) ,

U(0, t) = U1,

U(x,0) = U0,

U(∞, t) = U0,

(2.37)

where function U(x, t) corresponds to a temperature in a point x at a time t, U0, U1 > 0 are

some constants. In order to find symmetries of this equation, GeM software package [12] was

used, and for obtaining the reduced equation IRT package developed in the current thesis

was used (see Chapter 3). For this problem, we use symmetry X3 given by

X3 = t
∂

∂t
+ x

2

∂

∂x
, (2.38)
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which yields the invariants

z1 = I1 =
x√
t
, H1 = I2 = U

because we used symmetry with zero coefficient for
∂

∂U
. Suggested by IRT package transla-

tion variable is given by

z2 = 2 ln(x) + F1 (
t

x2
) ,

where F1 (
t

x2
) is arbitrary function which can be considered equal to 0, thus we can simply

use ln(x) as translation variable. On the final stage of program we get reduced equation

given by (note that H1 =H1(z1))

−1
2

(z1)2e(−2z2) (z1 ( d
dz1H1)H1 + 2Hn

1 n ( d
dz1H1)

2 + 2Hn+1
1 ( d2

d(z1)2H1))
H1

= 0, (2.39)

which, after the exclusion of z2, yields an ODE

z1 ( d

dz1
H1)H1 + 2Hn

1 n(
d

dz1
H1)

2

+ 2Hn+1
1 ( d2

d(z1)2
H1) = 0 (2.40)

since in general

−1
2

(z1)2e(−2z2)
H1

≠ 0.

Without loss of generality, by re-scaling in (2.37) one can choose U1 = 1, U0 = N > 0. One

hence obtains the following problem for the ODE (2.40):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

z
dH

dz
+ d

dz
Hn

dH

dz
= 0,

H(0) = 1,

H(∞) = N,

(2.41)

where equation (2.39) is in simplified form, N > 0 is some constant, and the problem is stated

in the right half-plane.

Consider now the case n = 1. Numerical solution of the problem (2.41) could be obtained

with the help of Maple dsolve\numeric solver. Although, in order to solve this problem

numerically, one can’t explicitly use the condition H(∞) = N , but it can be replaced by a

condition H ′(0) = C, where C is some constant. For different values of C, one obtains three

different kinds of solutions, which are shown in Fig. 2.1.
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Figure 2.1: Solution to the IBVP (2.41) for different values of C: crosses correspond
to C > 0, circles to C < 0, and solid line to C ≃ 0.626

.
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The case when C ≃ 0.626, which corresponds to N = 0 in problem (2.41), could be further

studied and approximately solved, as follows.

Suppose there exists such constant α that satisfies following conditions

⎧⎪⎪⎪⎨⎪⎪⎪⎩

H(α) = 0,

H ′(α) ≠ 0.
(2.42)

Then one can express H(z) as a Taylor series near point α

H(z) = ∑
k∈Z

rk(z − α)k. (2.43)

To get an expression for rk one can take kth derivative

dkH

dzk
∣
z=α
= k!rk,

rk =
1

k!

dkH

dzk
∣
z=α

.

(2.44)

We will solve (2.41) for n = 1:

z
dH

dz
+ d

dz
H
dH

dz
= 0 or zH ′ +H ′2 +HH ′′ = 0. (2.45)

At the point z = α, using (2.42), one gets

αH ′ +H ′2 = 0, α +H ′ = 0, H ′∣z=α = −α, (2.46)

and using (2.44),

r1 = −α.

To obtain next values of rk one needs to take derivative of (2.45)

zH ′′ +H ′ + 2H ′H ′′ +H ′H ′′ +HH ′′′ = 0,

3H ′H ′′ + zH ′′ +H ′ +HH ′′′ = 0.

At z = α, using (2.42) and (2.46), one obtains

−3αH ′′ + αH ′′ − α + 0 = 0, −2αH ′′ = α, H ′′∣z=α = −1
2 ,

r2 = −1
4 .
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In the same manner, one can obtain further values of rk

r3 = −
1

72α
,

r4 =
1

576α2
,

r5 = −
11

86400α3

and so on. To find more precise value of α one needs to find more terms, but we will limit

ourselves to using the first five terms.

One should use boundary condition H(0) = 1 and Taylor expansion (2.43) in order to

find α:

H(0) = 1 ⇒ ∑∞k=1 rk(−1)kαk = 1,

α2 − 1
4α

2 + 1
72α

2 + 1
576α

2 + 11
86400α

2 = 1,

0.7657α2 = 1,

α ≈ 1.1428.

In order to verify the validity of the obtained solution, one can compare the obtained

approximate analytical solution with the numerical solution shown in Fig. 2.1. Fig. 2.2

shows solution by Taylor expansion (2.43) with α and rk obtained above and the numerical

solution simultaneously, which represent the distribution of heat in right half plane.

Example 18. Again, consider a one-dimensional nonlinear heat equation for U = U(x, t)

given by (2.37). For this problem we use symmetry X3 + αX4 given by

X3 + αX4 = 2t
∂

∂t
+ x(1 + αn

2
) ∂

∂x
+ αU ∂

∂U
, (2.47)

where α is some constant. Computation gives the following invariants:

z = I1 =
x

t
1
4
(2+αn)

, H = I2 =
U

t
α
2

, (2.48)

which means that equation (2.37) has a particular solution in the form

I2 = C1f(I1), or U = tα
2 C1f (

C2x

t
1
4
(2+αn)

) , (2.49)
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Figure 2.2: Solution to the IBVP (2.41) for t = 0.5,2,5. Solid lines correspond to
approximate solutions (2.43) and circles to the numerical solutions.
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where f ( C2x

t
1
4 (2+αn)) is arbitrary function. It turns out that this solution corresponds to an

important symmetric nonlinear problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U

∂t
= ∂

∂x
(Un

∂U

∂x
) , −∞ < x <∞

∂U

∂x
∣
x=0
= 0,

∫
+∞
−∞ Udx = E0,

(2.50)

where E0 corresponds to the conserved thermal energy. (All quantities in (2.50) are in

dimensionless form.) In order to satisfy the condition of conservation of energy given by

third equation in (2.50), one has to find particular value of α:

E0 = C1t
α
2 ∫

+∞

−∞
f(z)C1t1/4(2+αn)

C1t1/4(2+αn)
dx = C1

C2

t
α
2
+ 1

4
(2+αn)∫

+∞

−∞
f(z)dz,

where power of t in the last expression does not depend on t and should be equal to 0 in

order to conservation of energy condition to hold:

α

2
+ 1

4
(2 + αn) = 0, 2 + αn + 2α = 0, α(n + 2) = −2, α = − 2

n + 2
.

For simplicity one can put

∫
+∞

−∞
f(z)dz = 1 ⇒ C1

C2

= E0.

Reduced equation can be immediately obtained through computation using invariants (2.48),

but in order to find value of arbitrary constants C1 and C2 for our problem one needs to

substitute solution (2.49) into first equation in (2.50). This will yield additional assumption

Cn
1C

2
2 = 1 ⇒ C1 = E

2
n+2
0 , C2 = E

n
n+2
0 .

Computation yields a reduced equation, which leads to the following problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dz
(fz) + (n + 2) d

dz
(fn

df

dz
) = 0,

df

dz
∣
z=0
= 0,

∫
+∞
−∞ f(z)dz = 1.

(2.51)
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Integration of first equation in (2.51) yields

fz + (n + 2)fn df

dz
= C3,

where C3 = 0 because of second equation in (2.51). Further computations lead to the solution

z

n + 2
= −fn−1 df

dz
, − zn

n + 2
= dfn

dz
⇒ fn = C4 −

z2n

2(n + 2)
,

and the solution for the reduced problem is

f(z) = (C4 −
nz2

2(n + 2)
)

1
n

= (z20
n

2(n + 2)
)

1
n

(1 − ( z
z0
)
2

)
1
n

⇒

⇒ f(z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(z20
n

2(n + 2)
)

1
n

(1 − ( z
z0
)
2

)
1
n

, z ≤ z0,

0, z > z0,

where z0 should be found from third equation in (2.51):

(z20
n

2(n + 2)
)

1
n

∫
+z0

−z0
(1 − ( z

z0
)
2

)
1
n

dz = 1 ⇒ z0 =
⎛
⎝
π−1/2 [2(n + 2)

n
]
1/n Γ (32 +

1
n
)

Γ ( 1n + 1)
⎞
⎠

n
n+2

,

what coincides with [20]. Thus, solution of the original problem (2.50) is given by

U(x, t) = t− 1
n+2E

2
n+2
0 f(z), z = x

(En
0 t)

1
n+2

and is shown in Figure 2.3. It represents the temperature distribution in an infinite rod,

with the heat propagating from the center over time.

Note that the solution of an ODE obtained by reduction of a given PDE is the general

solution for ODE but only corresponds to a subclass of solutions for the given PDE.

2.6 Discussion

In this Chapter, various tools for reduction of order of ODEs and PDEs were discussed,

as well as an algorithmic approach for obtaining invariant solutions. We now review some

recent literature relevant to the topics discussed in this Chapter.
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Figure 2.3: Solutions u(x, t) of the IVP (2.51) for t = 0.1,1,2,5 (highest to lowest),
with n = 2 and E0 = 1.

As it was shown in Section 2.2, ideas of invariance are closely related to dimensional

analysis. The framework of dimensional analysis is applied, for example, to problems in

physics, chemistry, various engineering disciplines, and even in economics.

In [32] constitutive equations, which describe the deformation behavior of a material as a

function of the strain, strain rate and temperature, were obtained using dimensional analysis

for variables associated with plastic deformation.

Dimensional analysis of a foam drainage problem was performed in [36]. In particular,

the problem of liquid drainage rate from foam was presented with further simplification of

drainage models.

In [28] the author investigates how dimensional analysis can be applied to operations

management topics and which benefits it can bring to researchers in this area. In this

article the Pi-theorem is applied to the design of a Flexible Manufacturing System, and the

complex problem, requiring 13 dimensional quantities to be expressed, is then simplified to

the problem with 9 dimensionless ratios.

Although various modifications of Lie’s symmetry reduction method have been intro-

duced, it is still widely used directly for reduction of order of PDEs and for finding invariant
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solutions.

In [23] the exact solutions of Boussinesq equations were obtained as group invariant solu-

tions corresponding to the translation and scaling generators of the group of transformations

admitted by the equations.

In [27] [29] two setups of a jet problem were studied. In [27] the group invariant solution

for the stream function and the effective viscosity of a two-dimensional turbulent free jet are

derived. In [29] the problem for a free jet on a hemi-spherical shell was considered, including

the third-order partial differential equation for the stream function, and the group invariant

solution was obtained.

Slightly modified classical symmetry method was used in [18] in order to obtain invariant

solutions of two supersymmetric nonlinear wave equations, namely the supersymmetric sinh-

Gordon and polynomial Klein-Gordon equations.

Authors of [15] and [16] studied the nonclassical method of symmetry reduction. In [15]

the method was applied in order to study a shallow water equation derivable using the

Boussinesq approximation. A catalogue of classical and nonclassical symmetry reductions,

as well as families of invariant solutions were obtained. In [16] the same authors present an

algorithm for calculating the determining equations associated with nonclassical method of

symmetry reductions for systems of partial differential equations.

The problem of finding nonlocally related systems and nonlocal symmetries was studied,

e.g., in [6] and [7]. In [6] a tree of nonlocally related systems and subsystems for the nonlinear

wave equation was obtained. The problem of one-dimensional nonlinear elastodynamics was

considered in [7], where both Euler and Lagrange systems, as well as other equivalent PDE

systems nonlocally related to both of these familiar systems are obtained. Point symmetries

of three of these nonlocally related PDE systems of nonlinear elasticity are classified with

respect to constitutive functions.

In [13] an extended procedure for finding exact solutions of partial differential equations

arising from potential symmetries with its applications to gas dynamics was described.

In [10] the author discusses potential and approximate symmetries of the nonlinear wave

equation and obtains exact solutions from potential symmetries, as well as approximate

solutions from approximate symmetries (of both Baikov- and Fushchich-type).
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In [31] both Baikov and Fushchich-type symmetry methods are compared with the new

modified approximate method, introduced by authors. Approximate solutions for poten-

tial Burgers equation and non-Newtonian creeping flow equations are derived using these

methods.

In the following Chapter, we present the developed Maple-based symbolic software and

the program sequence for computation of invariants and reduced PDEs, as well as the run

example, which demonstrates input and output data for procedures needed for computation.

In the subsequent Chapter, this software is used for computation of invariant solutions for

several problems involving nonlinear differential equations.
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Chapter 3

Symbolic Software for Obtaining Invariant

Reductions of Differential Equations

The fact that Lie’s symmetry methods are algorithmic allows one to successfully im-

plement them into software. During the last twenty years such computer algebra systems

(CAS) as Maple and Mathematica, as well as other CAS, were used for developing packages

for symmetry analysis.

One of the most complicated steps in the algorithm of obtaining symmetries is the sym-

bolic solution of large over-determined PDE systems. It is usually achieved through differ-

ential Gröbner bases or the characteristic set method, respectively. For example, packages

DIFFGROB2 [25], standart_form [33], rif [34], CRACK [39] use differential Gröbner bases,

whereas a program developed for Mathematica [37] and a package diffalg for Maple [9] use

characteristic set method. For a detailed review with a comparison between some of these

packages see [19], [8].

Examples of packages for the computation of symmetries and/or conservation laws, some

of which use packages listed above, are LiePDE and ApplySym. ConLaw [40] provide a user

interface for local conservation law and symmetry computation in CAS REDUCE, subsequently

using CRACK for the reduction and solution of linear over-determined systems. The package

GeM [12], [42] for Maple, which will be discussed further, can be used to obtain conservation

laws, symmetries and approximate symmetries.

Authors of SADE package [35] offer the wide set of commands, including computation

of Lie, nonclassical, Lie-Bäcklund and potential symmetries, invariant solutions and other

commands. However, the applicability of the package for solution of real world problems is

yet to be studied.
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One of the goals of the current thesis is to develop the software for computation of

invariants and invariant reduction of DEs, using algorithms discussed in Chapter 2, and to

apply it to classes of nonlinear problems to study their invariant solutions.

3.1 Program sequence

The software package can be considered as an extension of the GeM package [12], [42]; the

program sequence for computation of invariants and reduced PDEs involves all steps of

finding symmetries, in particular:

1. Declaration of variables and the given PDE system.

2. Construction of a set of symmetry determining equations.

3. Restrictions of the dependent variables to solutions of the given PDE system.

4. Simplification (e.g., elimination of redundancies, partial solution) of the over-determined

set of determining equations.

5. Solution of the simplified set of determining equations. Output of point symmetries.

Note that in order to maintain communication between GeM and IRT package, output

procedure was modified (see detailed program sequence). Computation of invariants includes

the following steps:

6. Declaration of the symmetry or the linear combination of symmetries to be used for

computation.

7. If necessary, declaration of variables to be used for solution of characteristic equation

(e.g., for complex infinitesimal generators).

Computation of reduced PDEs includes the following steps:

8. Declaration of invariants and translation coordinate to be used (general form of tranla-

tion coordinate is suggested), and all of arbitrary parameters involved in computation.
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3.2 Detailed Program Sequence for Computation of In-

variants and Reduction of Differential Equations

In this Section, steps of program sequence according to items 6-8 of the list above will be

discussed in detail. Items 1-5 of program sequence are discussed in [12] and will not be

mentioned here. Note that necessary declaration of variables and equations is included in

item 1 and should not be neglected. Further steps of program sequence are as follows:

1. Declare symmetry or the linear combination of symmetries to be used and place them

in some user-defined variable

given_symms:=combine_symms([...]);,

where [...] denotes Maple list of objects which should be in form [Symm[i],A,

Symm[j],B,...]; Symm[k] denotes kth infinitesimal operator generated by GeM; A,

B - some constants or parameters to be multiplied by corresponding symmetry (e.g.,

AXi +BXj).

2. decl_symms(given_symms, solve_xi_for=‘...‘, solve_eta_for=‘...‘);,

where ‘...‘ denotes Maple symbol of variable for which corresponding characteristic

equation should be solved. After all declarations are made following procedure could

be run:

get_invariants();

3. Declare equation, invariants, translation coordinate and parameters, if needed and find

reduced PDE, putting it into user variable:

reduced_eq:=use_invariants(eq,params={...},_z=[...],_transl=[...], _H=[...]);

where {...} denotes Maple set of objects and

� eq — PDE or ODE system to be reduced;

� params — set of parameters involved in equation or symmetry (could be set as

{} if none);
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� _z — invariants for ξ-part;

� _transl — translation variable to be used;

� _H — invariants for η-part.

3.3 Run Examples

In subsequent sections, the application of the software to obtain invariant reductions and

exact solutions of some nonlinear models will be demonstrated.

3.3.1 Symmetry Reduction of Nonlinear Heat Equation

Following steps 1-8 of the description in the beginning of the Section, we will consider

computation details of Example 18.

Firstly one needs to restart the worksheet and include files with Gem and IRT packages

> restart;

> read(".../gem.txt"):

> read(".../irt.txt"):

where ... denotes corresponding directories with files. Declaration of variables and the

PDE, which is given by (2.37):

> ind:=x,t:

> gem_decl_vars(indeps=[ind], deps=[U(ind)], freeconst=[n]);

> gem_decl_eqs([diff(U(ind),t)=diff(U(ind)^(n)*diff(U(ind),x),x)]

,solve_for=[diff(U(ind),t)]);

Computation of determining equations and simplification of the over-determined set of de-

termining equations. Solution of the simplified set of determining equations:

> overdet_sys:=gem_symm_det_eqs([ind, U(ind)]):

> symm_sol:=pdsolve(overdet_sys ):

symm sol ∶= {eta U = C3U,xi t = C1t + C2, xi x = ( C1 + C3n)x
2

+ C4}

Output of the point symmetries:

> Symms:=gem_output_symm(symm_sol, N=100, List_output=true);
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Symms ∶= [[[0,1], [0]], [[1,0], [0]], [[t, x2 ] , [0]] , [[0,
nx
2
] , [U]]]

Combining symmetries for particular problem and choosing the variable for which determin-

ing equation should be solved for:

> given_symm:=combine_symms([Symms[3],2,Symms[4],alpha])[];

given symm ∶= [2t, x + 1
2nxα], [Uα]

> decl_symm(given_symm, solve_xi_for=‘t‘);

Infinitesimal generator:

2
∂

∂t
+ (x + 1

2nxα)
∂

∂x
+Uα

∂

∂U

Obtaining invariants and general form of translation variable:

> get_invariants();

Invariants for XI-part: [ x

t1/2+
nα
4

]

Invariants for ETA-part: [ U
t
α
2

]

Translation variable in general form is
2 lnx

2 + nα
+ F1(tx− 4

2+nα)

Obtaining the reduced equation (here for brevity the equation was simplified manually):

> reduced_eq:=use_invariants(GEM_ALL_EQ,{n,alpha});

−
( d

dz1
H1 (z1 )) z1 +H1 (z1 )

n + 2
=

(H1 (z1 ))n−1 (n( d

dz1
H1 (z1 ))

2

+H1 (z1 ) d2

dz1 2H1 (z1 )) .

This equation has been discussed above in Example 18, where the solution for source-type

nonlinear heat equation problem was presented.
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3.3.2 Symmetry Reduction and Exact Solution of the Potential

Burgers Equation

Consider an IBVP for one-dimensional potential Burgers’ equation for U = U(x, t):
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U

∂t
= (∂U

∂x
)
2

+ ∂2U

∂x2
, 0 ≤ x ≤ +∞,

U(0, t) = 0, 0 < t,

U(x→ +∞, t) = 1,

U(x,0) = 1.

(3.1)

In this example, the process of symmetry computation is omitted; one can always follow the

steps of the previous example and find all symmetries of Burgers’ equation. We will perform

the reduction of PDE in (3.1) with respect to the scaling symmetry, given by

X = 2t ∂
∂t
+ x ∂

∂x
. (3.2)

Again, first step is to restart the worksheet and include files with Gem and IRT packages (as

it was mentioned above, in this example we assume that the symmetry is given, but GeM

package should be included anyway)

> restart;

> read(".../gem.txt"):

> read(".../irt.txt"):

where ... denote corresponding directories with files. Next, one needs to declare variables

and the PDE (3.1).

> ind:=x,t:

> gem_decl_vars(indeps=[ind], deps=[U(ind)], freeconst=[], freefunc=[]);

> PDE:=diff(U(ind),t)-diff(U(ind),x)^2-diff(U(ind),x,x)=0;

Next declare symmetry to solve the equation for. In our case symmetry generator is given

by (3.2)

> decl_symm([2*t,x], [0]);

Note that although independent variable were specified in the order x,t, procedure gem_decl_vars(...)

sorts all variables in alphabetical order, so that now 2*t corresponds to ∂/∂t and x cor-

responds to ∂/∂x. Next, call the procedure get_invariants() to obtain invariants and
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translation variable:

> get_invariants();

Invariants for XI-part: [ x√
t
]

Invariants for ETA-part: [U]

Translation variable in general form is lnx + F1 ( t
x2 )

In order to obtain reduced equation, one needs to call the procedure use_invariants(...)

> use_invariants(PDE,[],_transl=[x]);

New independent variables: z1 = x√
t

Translation variable: z2 = x

New dependent variables: H1(z1) = U

Transformation: t = z2
z12 , x = z2, U =H1(z1)

Reduced equation:

−1
2

z12 (z1H1z1 + 2H12z1 + 2H1z1,z1)
z22

= 0

Note that translation coordinate was chosen to be x instead of lnx for simplicity. Independent

variable z2 can be canceled by multiplying the reduced equation by z22 . Solving the reduced

equation, for example with Maple/dsolve, and returning back to variables x, t,U(x, t) by

direct substitution, one obtains the invariant solution of equation (3.1), given by

U(x, t) = ln(C1

√
π erf ( x

2
√
t
+C2)) , (3.3)

where erf(x) = 1/
√
π ∫

x

0 e(−t
2)dt is the error function for all complex x. The solution (3.3) is

represented on Fig. 3.1.
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Figure 3.1: Solution (3.3) to the IBVP (3.1) for C1 = 1, C2 = 1 and for different values
of time t = 0 (thick solid line), t = 0.1, ,2,5,10,20,50 (thin solid lines), from top to
bottom.
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Chapter 4

Exact Invariant Solutions in Nonlinear Elas-

ticity

In order to demonstrate the computation of invariant solutions in more complicated

applications, we now consider the equations of nonlinear elasticity. In first subsection we

discuss the basic elements, equations and notation of elasticity theory, following [26].

4.1 Introduction to Elasticity Theory and the Equa-

tions of Motion

Let a reference (Lagrange) configuration Y be chosen for an elastic body. The actual (Euler)

configuration of Y is given by a mapping ϕ ∶ Y → R3 that is sufficiently smooth, orientation

preserving, and invertible. Then the actual position x of a material point labeled by y at

time t is given by time-dependent family of configurations, called motion

x = ϕ(y, t).

Definition 21. The deformation gradient characterizes the change of the shape of the body

and is given by a tensor F = ∇ϕ(y, t) with components F i
j =

∂ϕi

∂yj
.

Definition 22. A hyperelastic or Green elastic material is an ideally elastic material for

which the stress-strain relationship follows from a strain energy density function W =W (y,F)

which exists in the reference configuration and related to the stress tensor in flat space

through

T ij(y,F) = ρ0(y)
∂W (y,F)

∂F q
j

. (4.1)
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Definition 23. First Piola-Kirchhoff stress tensor T = T(y,F) describes the response of an

elastic material.

Definition 24. The left Cauchy-Green strain tensor is defined by

B = FFt; Bij = F i
kF

j
k .

Principal invariants I1, I2, I3 for B are given by coefficients of the characteristic equation

∣B − λI∣ = −λ3 + I1λ2 − I2λ + I3,

which evaluate to

I1 = TrB = Bii = F i
kF

i
k, I2 =

1

2
[(TrB2) − Tr (B2)] = 1

2
(I21 −BikBki) , I3 = det B. (4.2)

Definition 25. The equations of compressible motion are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ0xtt = div(y)T + ρ0R,

FTt = TFt,

T = ρ0
∂W

∂F
,

(4.3)

where ρ0 = ρ0(y) is the density in the reference configuration, R =R(y, t) is the total body

force per unit mass, and

(div(y)T)
i = ∂T ij

∂yj
.

In components, the last equation of (4.3) is given by (4.1).

For the case of two dimensions, we let x1,2 = x1,2(y1, y2, t); deformation gradient matrix

becomes

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

F 1
1 F 1

2 0

F 2
1 F 2

2 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Denote

F2 =
⎡⎢⎢⎢⎢⎢⎣

F 1
1 F 1

2

F 2
1 F 2

2

⎤⎥⎥⎥⎥⎥⎦
,
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and let

C2 =
⎡⎢⎢⎢⎢⎢⎣

F 2
2 −F 2

1

−F 1
2 F 1

1

⎤⎥⎥⎥⎥⎥⎦
be the cofactor matrix. One can use strain energy density function to compute components

of tensor T (in 2D denoted as T2)

T2 = ρ0[2(a + b)F2 + 2bJC2],

where

J = det(∇ϕ(y, t)).

With forcing R = 0 and arbitrary initial density ρ0(y) in (4.3), we obtain reduced PDE

system

ρ0(x1)tt −
∂T 11

∂y1
− ∂T 12

∂y2
− ρ0B1 = 0,

ρ0(x2)tt −
∂T 21

∂y1
− ∂T 22

∂y2
− ρ0B2 = 0.

(4.4)

4.2 Constitutive Models

We will consider Hadamard material with the strain energy density function given by

W = c1(I1 − 3) + c2(I2 − 3) + c3H(I3), H ′ ≠ 0,

and, in particular, three constitutive models:

1. Classical neo-Hookean, given by

W = a(I1 − 3), a > 0; (4.5)

2. Classical Mooney-Rivlin, given by

W = a(I1 − 3) + b(I2 − 3), a, b > 0; (4.6)

3. “Generalized compressible” Mooney-Rivlin model (introduced in [14]), given by

W = a(I1 − 3) + b(I2 − 3) +H(I3), (4.7)

where H(x) = cx2 − d logx and a, b, c, d > 0.
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Definition 26. The reference (Lagrangian) configuration Ω̄0 is a natural state, i.e. when

there is no displacement and x = y, the Cauchy stress should vanish: σ = 0. In such cases,

the constitutive relation W =W (F ) to be used should be compatible with the natural state.

For example, from the constitutive models, listed above, only “generalized compressible”

Mooney-Rivlin model is compatible with the natural state with constant parameters a, c, d

satisfying

a = d

2
− c. (4.8)

For classical neo-Hookean and Mooney-Rivlin constitutive models, no natural state exists,

i.e., no-displacement state can be supported by external forces.

4.3 One-dimensional Radial Model

In this section the model of one-dimensional elastic ball undergoing spherically symmetrical

perturbations with dependence on radius and, later, on time is considered. In this case,

equations of motion (4.3) can be written in terms of spherical coordinates:

y1 = r sin θ cosϕ, y2 = r sin θ sinϕ, y3 = r cos θ;

x1 =M sin θ cosϕ, x2 =M sin θ sinϕ, x3 =M cos θ,
(4.9)

where the function M is the Eulerian spherical radius. In case of time-independent model,

M =M(r), and in case of time-dependent model, M =M(r, t).

4.3.1 A Time-independent Model

Within problem of finding solutions of 1D time-independent elasticity model, we consider

different constitutive models of Hadamard material. Equation of motion (4.3) with applied

transformation (4.9) and M =M(r) for Neo-Hookean constitutive model (4.5) is given by

M ′′ = 1

2

4Ma + κr3 − 4arM ′

ar2
, (4.10)

where κ = Gm/A3, m is the mass of a body, G is the gravity constant, A is the radius of the

sphere in material coordinates, and a is the material parameter. Solution in this case can be
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obtained analytically [24]:

M(r) = r3κ

20a
+C1r,

where C1 is some constant. One can study dependence of the solution on the gravity constant

G. The graphs are given in Fig. 4.1.
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Figure 4.1: Analytical solution (Eulerian radius M(r)) of the DE (4.10) for (from
top to bottom) G = 0 (solid straight line), G = GcritNH/3, GcritNH/2, 2GcritNH/3 (solid
lines), and G = GcritNH (circles) with a = 1, m = 1 and A = 1.

Note that for some critical value of gravity constant G > GcritNH , value of M(r) will

become negative. The value of GcritNH could be obtained exactly, and is given by

GcritNH =
20A3a

m
√
3A4 + 9r4 − 12r2A2

,

and with A = 1, m = 1 and r = 0 is GcritNH ≃ 11.5470a. Also, for gravity force G = 0, one

can observe the straight line on the graph 4.1, which corresponds to undisturbed state of the

elastic sphere.
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Next, we will consider the Mooney-Rivlin (4.6) constitutive model. In this case one can

not obtain explicit analytical solution, therefore numerical methods could be used. In this

case IVPs in the following form were solved (using Maple dsolve\numeric)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

M ′′ = −1
2

−4ar2M + 4ar3M ′ + 4br2M ′2M − 4bM3 − κr5
r2 (ar2 + 2M ′2b)

,

M(A) =Msh,

M ′(A) = A/M(A),

(4.11)

where κ = Gm/A3 as above, the condition on M(A) =Msh is obtained by shooting method,

to ensure that M(0) = 0, and the condition on M ′(A) = A/M(A) is obtained from the fact

that the Mooney-Rivlin constitutive model (as well as Neo-Hookean) does not correspond

to natural state. In Fig. 4.2, solutions were obtained for fixed value of G = GcritNH .
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Figure 4.2: The Eulerian radius M(r) as a solution of the IVP (4.11) for the fixed G =
GcritNH and for different values of parameter b (from top to bottom) b = 10,2,1(solid
lines), and b = 0 (circles), which corresponds to the critical case of Neo-Hookean model
mentioned above with a = 1, m = 1 and A = 1.

In Fig. 4.3, solutions were obtained for a fixed value of b = 1 for different values of G. Also
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critical value of G for Mooney-Rivlin constitutive model was estimated for given parameters,

yielding GcritMR ≈ 1.3125GcritNH for a = 1, m = 1, A = 1 and b = 1.
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Figure 4.3: The Eulerian radius M(r) as a solution of the IVP (4.11) for the
fixed b = 1 and for different values of gravity force G (from top to bottom) G =
1/5GcritNH ,2/5GcritNH ,4/5GcritNH(solid lines), and GcritMR = 1.3125GcritNH (circles),
which corresponds to the critical case of Mooney-Rivlin model with a = 1, m = 1 and
A = 1.

The final case within time-independent model which was studied is Ciarlet’s “generalized

compressible” Mooney-Rivlin constitutive model (4.7). As in classical Mooney-Rivlin case,

in order to find the solution one needs to use numerical methods, since the equation is
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nonlinear. The IVP within this formulation is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−r4 (4brM 4M ′2 + 4ar3M2M ′2 + κr6MM ′2 − 4ar4M ′3M − 2ar5M ′′MM ′2 + 2dr4MM ′−

−4br3M3M ′′M ′2 − 2rM5M ′′cM ′2 − dr5M ′′M + 4M5M ′3c − 4rM ′4cM4 − 2dr5M ′2 −

−4br3M2M ′4) /MM ′2 = 0,

M(A) =Msh,

M ′(A) =M ′
nat,

(4.12)

where M(A) =Msh is obtained by shooting method, so that M(0) = 0, and M ′
nat is obtained

to satisfy the natural state condition for “generalized compressible” Mooney-Rivlin model

(4.8) and by finding the corresponding value of the parameter d. First, the following values

were fixed: the gravity constant G = GcritNH and the material parameters a = 1, b = 0. The

dependency of the behavior of the Eulerian spherical radius M(r) on the material parameter

c was studied. The results are presented in Fig. 4.4.

In second example within “generalized compressible” Mooney-Rivlin model, values of

material parameters a = 1, b = 0, c = 1 and radius A = 1 were used, while the value of

the gravity constant was changed. Also, approximate critical value for these particular

parameters was obtained by shooting method: GcritGC = 5007.185GcritNH . The results are

presented in Fig. 4.5.

In the last example within “generalized compressible” Mooney-Rivlin model, values of

material parameters a = 1, b = 0, c = 1, radius A = 1 and gravity constant G = GcritNH were

used, while the value of the material parameter d was changed. The results are presented in

Fig. 4.6.

4.3.2 A Time-dependent Model

Within problem of finding solutions of 1D time-dependent elasticity model, we consider neo-

Hookean constitutive model (4.5) of Hadamard material. Equation of motion (4.3) with

applied transformation (4.9) and M =M(r, t) in this case is linear and given by

Mtt = 2a(Mrr +
2Mr

r
− 2M

r2
) , (4.13)
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Figure 4.4: The Eulerian radius M(r) as a solution of the IVP (4.12) for the fixed
G = GcritNH , a = 1, b = 0, A = 1, and for different values of the material parameter c
(from top to bottom) c = 1,0.8,0.3,0(solid lines), and, for comparison, graph for G = 0,
c = 1 and same a and b (crosses).
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Figure 4.5: The Eulerian radius M(r) as a solution of the (4.12) for the fixed a = 1,
b = 0, c = 1, A = 1, and for different values of the gravity constant G (from top
to bottom) G/GcritNH = 1/5,1,3/2,2,4,10(solid lines), and GcritGC = 5007.185GcritNH

(circles), which corresponds to the critical case of “generalized compressible” Mooney-
Rivlin model with the values of parameters specified above, and, for comparison, graph
for G = 0, c = 1 and same a and b (crosses).
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Figure 4.6: The Eulerian radius M(r) as a solution of the IVP (4.12) for the fixed
a = 1, b = 0, c = 1, A = 1, G = GcritNH , and for different values of the material parameter
d (from top to bottom) d = 4,3,1,0.1(solid lines), and, for comparison, graph for G = 0,
c = 1 and same a and b (crosses).
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where a is the material parameter. Non-trivial symmetries of the linear PDE (4.13) are given

by

X1 =
∂

∂t
, X2 =M

∂

∂M
, X3 = r

∂

∂r
+ t ∂

∂t

X4 = tr
∂

∂r
+ 2t2a + r2

4a

∂

∂t
− tM ∂

∂M
.

Using the symmetry X4, invariants, obtained by the procedure get_invariants() (see Chap-

ter 3), for the ξ and η parts correspondingly, are given by

[2t
2a − r2
2ar

] and [Mr].

Using these invariants, one can obtain the reduced ODE, which is further solved for a = 2 to

yield the solution

M(r, t) = C1r3 +C2r6 − 12C2r4t2 + 48C2r2t4 − 64C2t6

r2(r + 2t)2(r − 2t)2
,

where arbitrary constants C1 and C2 can be set to 1 and 0 correspondingly, to obtain

M(r, t) = r

(r + 2t)2(r − 2t)2
. (4.14)

The solution (4.14) is shown on the Fig. 4.7 for different times; it corresponds to an elastic

compression of a ball by external forces normal to the boundary.

4.4 Summary

In this Chapter, time-dependent and independent models of one-dimensional elastic ball

undergoing spherically symmetrical perturbations were studied for classical Neo-Hookean,

Mooney-Rivlin and “generalized incompressible” Mooney-Rivlin constitutive models. The

radius of the ball in actual (Eulerian) coordinates was obtained for three models and studied

with respect to dependence on various parameters: gravity force, material parameters and

time (for time-dependent model). Using provided figures, one can compare the solution

in different problem settings. For time-independent model the solution was obtained using

Maple solvers dsolve and dsolve/numeric, whereas for time-dependent model IRT package

was used to obtain invariant solution.
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Figure 4.7: The Eulerian radius M(r) as a solution (4.14) for times (from top to
bottom) t = 0.7,0.8,0.9,1.
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Discussion

In this section we will give the brief review of the topics discussed in the current work,

and present possible extensions and modifications of the developed software.

Summary

In the introductory chapter (Chapter 1) we introduced fundamental definitions and theo-

rems of the Lie group theory, demonstrating their application with simple examples. The

notion and the algorithm for obtaining point symmetries of partial differential equation was

introduced, as well as the concepts of nonlocal, potential and approximate symmetries. At

the end of Chapter 1, in the Discussion section, one can find references to classical works in

Lie group theory. Also various fields of science to which Lie’s symmetry methods had been

applied applied were mentioned.

Chapter 2, which is the theoretical core chapter of this work, was concerned with applica-

tion of symmetries to differential equations. Methods for reduction of order and/or number

of independent variables of DEs were discussed (in particular, reduction by canonical coor-

dinates and differential invariants) as well as some aspects of dimensional analysis. Also,

classical and nonclassical algorithms for obtaining invariant solutions of partial differential

equations were presented. Recent papers on symmetry reduction using various methods were

adverted in discussion section of Chapter 2.

Symbolic software for obtaining invariant reduction of DEs, developed within the thesis,

was discussed in detail in Chapter 3. Firstly, review of preceding packages for symmetry anal-

ysis was given, including the most recent ones. Detailed program sequence for computation

of invariants and order reduction was then demonstrated on the examples of one-dimensional

nonlinear heat equation and Burgers’ equation.

Chapter 4 applied the symmetry reduction ideas and developed software to problems in
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nonlinear elasticity. In particular, exact solutions for one-dimensional time-dependent and

time-independent radially symmetric configurations were obtained.

Possible extensions

Although the symmetry reduction software package developed in the current thesis has not

been used with nonlocal and approximate symmetries, it can be applied to problems involving

these symmetries without any alteration of the source code. Thus, one of the aspects which

can be further studied, is obtaining of approximate and nonlocal invariant solutions.

Also, as one might have noticed, the computation of invariant reduction of DEs requires

user input for the translation coordinate, although its general form is presented. Therefore,

one of the possible ways to extend the program is to develop an algorithm that would select

the translation coordinate so that the reduced equation would be of the simplest form.

One more possible extension to be considered is the implementation of nonclassical

method for obtaining exact solutions of PDEs.
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Appendix A

Source Code

This Chapter contains source code written in Maple to compute symmetry reduction of
DEs and invariant solutions.

c l e a r a l l v a r s :=proc ( )
g l oba l ALL ETA ZERO, SOLVE XI FOR, SOLVE XI FOR SMTH, SOLVE ETA FOR,

SOLVE ETA FOR SMTH,
XI , ETA, NON ZERO INDICES XI , ZERO INDICES XI , NON ZERO INDICES ETA,
ZERO INDICES ETA, INVARIANTS XI , INVARIANTS ETA,
NON ZERO ELEMENT XI, NON ZERO INDEX XI, ODES XI , ODES ETA,

TRANSFORMEDEQ, TRANL SOL;

#ALL ETA ZERO : f l a g
#Type : bool
ALL ETA ZERO:= fa l se ;

#va r i a b l e s showing for which va r i ab l e to s o l v e DEs ( to f i nd inva r s ) i f
s p e c i f i e d by user and cor re spond ing f l a g s

#SOLVE XI FOR, SOLVE XI FOR SMTH, SOLVE ETA FOR, SOLVE ETA FOR SMTH
#Types : symbol , bool , symbol , bool
SOLVE XI FOR := ‘ ‘ ;
SOLVE XI FOR SMTH := fa l se ;
SOLVE ETA FOR := ‘ ‘ ;
SOLVE ETA FOR SMTH := fa l se ;

#l i s t s o f i n f i n i t e s i m a l s : XI , ETA
#Types : l i s t , l i s t
XI : = [ ] ;
ETA:= [ ] ;

#l i s t s o f ze ro and non−zero e lements i n d i c e s o f l i s t s XI and ETA
#NON ZERO INDICES XI , ZERO INDICES XI , NON ZERO INDICES ETA,

ZERO INDICES ETA
#Types : l i s t , l i s t , l i s t , l i s t
NON ZERO INDICES XI : = [ ] ;
ZERO INDICES XI : = [ ] ;
NON ZERO INDICES ETA := [ ] ;
ZERO INDICES ETA := [ ] ;

#l i s t s o f i n v a r i a n t s : INVARIANTS XI , INVARIANTS ETA
#Types : l i s t , l i s t
INVARIANTS XI : = [ ] ;
INVARIANTS ETA:= [ ] ;

#non−zero ( base or fundamental ) element and i t s index − independant or
dependant va r i ab l e on which other v a r i a b l e s w i l l depend when s o l v i n g ODE

#NON ZERO ELEMENT XI, NON ZERO INDEX XI
#Type : symbol , i n t e g e r
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NON ZERO ELEMENT XI:= ‘ ‘ ;
NON ZERO INDEX XI:=−1;

#determining ODEs f r o XI and ETA cor r e spond ing ly
#Types : l i s t , l i s t
ODES XI : = [ ] ;
ODES ETA= [ ] ;

#equat ion ( s ) we need to reduce order for
#Type : symbol
# EQUATION:= ‘ ‘ ; we w i l l use GEM ALL EQ ins t ead

#transformed equat ion ( s )
#Type : l i s t
TRANSFORMEDEQ:= [ ] ;

#t r a n s l a t i o n va r i ab l e
#Type : could be ’+’ , ’ * ’ , e t c .
TRANL SOL:=0;

end proc :

app ly gene ra to r := proc ( x i : : l i s t , e ta : : l i s t ,{ func : : f unc t i on := ‘ ‘ , p r i n t g en : :
boolean := fa l se })
l o c a l i , j ,X, f ;
X:=0;

i f ( p r i n t g en=true ) then
for i from 1 to GEM N INDEP V do
X:=X+xi [ i ]* Di f f ( func ,GEM INDEP VARS[ i ] ) ;
od ;
for j from 1 to GEM N DEP V do
X:=X+eta [ j ]* Di f f ( func ,GEMDEP VARS[ j ] ) ;
od ;
p r i n t ( ‘ I n f i n i t e s im a l generator : ‘ ,X) ;

else
for i from 1 to GEM N INDEP V do
X:=X+xi [ i ]* d i f f ( func ,GEM INDEP VARS[ i ] ) ;
od ;
for j from 1 to GEM N DEP V do
X:=X+eta [ j ]* d i f f ( func ,GEMDEP VARS[ j ] ) ;
od ;
return X;

f i ;
end proc :

decl symm := proc ( x i : : l i s t , e ta : : l i s t ,{ s o l v e x i f o r : : symbol := ‘ ‘ ,
s o l v e e t a f o r : : symbol := ‘ ‘} )
l o c a l i , j ,X;
g l oba l SOLVE XI FOR,SOLVE XI FOR SMTH,SOLVE ETA FOR,SOLVE ETA FOR SMTH,XI ,

ETA;

c l e a r a l l v a r s ( ) ;
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i f ( type ( s o l v e x i f o r , symbol ) ) then
SOLVE XI FOR:= s o l v e x i f o r ;
SOLVE XI FOR SMTH:=true ;

else
SOLVE XI FOR SMTH:= fa l se ;

f i ;

i f ( type ( s o l v e e t a f o r , symbol ) ) then
SOLVE ETA FOR:= s o l v e e t a f o r ;
SOLVE ETA FOR SMTH:=true ;

else
SOLVE ETA FOR SMTH:= fa l se ;

f i ;

XI:= x i ; ETA:= eta ;
app ly gene ra to r ( xi , eta , p r i n t g en=true ) ;

end proc :

z e ro e l ement s := proc ( tmpList : : l i s t ,N : : i n t e g e r )
l o c a l i , j , z e r o Ind i c e s , nonZeroInd ices ;
z e r o I nd i c e s := [ ] ; nonZeroInd ices := [ ] ;
for i from 1 to N do
i f ( tmpList [ i ]<> 0)

then nonZeroInd ices := [ op ( nonZeroInd ices ) , i ] ;
else z e r o I nd i c e s := [ op ( z e r o I nd i c e s ) , i ] ;

f i ;
od ;
return [ z e r o Ind i c e s , nonZeroInd ices ] ;
end proc :

ch e ck x i ha s dep va r s := proc ( xi , N, depVars , M)
l o c a l i , j , xiHasDepVars ;
xiHasDepVars := fa l se ;
for i from 1 to N do
for j from 1 to M do
i f ( has ( x i [ i ] , depVars [ j ] ) ) then

xiHasDepVars :=true ;
f i ;

od ;
od ;
return xiHasDepVars ;

end proc :

concate var with dependency := proc ( var , dep )
l o c a l r e s u l t , n , i ;
n:= l i n a l g [ vectdim ] ( dep ) ;
r e s u l t : = [ ] ;
for i from 1 to n do
r e s u l t :=[ op ( r e s u l t ) , dep [ i ] ] ;

od ;
r e s u l t := convert ( ‘ var ‘ , funct ion , r e s u l t ) ;
return r e s u l t ;

end proc :
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r e s e t c o n s t := proc ( f )
l o c a l r e s ;
r e s := eva l ( subs ( seq ({ cat ( ‘ C ‘ , i )=0, cat ( ‘ F ‘ , i )=0} , i =1 . .100) , f ) ) ;
return r e s ;

end proc :

### Function determines in which form inva r i a n t s should be used and app l i e s
t rans fo rmat ion to g iven PDE to reduce i t s order

u s e i n v a r i a n t s := proc ( eq , paramsArg ,{ z : : l i s t :=INVARIANTS XI , t r a n s l : : l i s t :=[
r e s e t c o n s t (TRANSL SOL) ] , H : : l i s t :=INVARIANTS ETA})
l o c a l invs , tr , p r i n t l i s t 1 , p r i n t l i s t 2 , i , j ;
g l oba l GEM N INDEP V, GEM N DEP V, TRANSFORMEDEQ,GEM ALL EQ;

#F i r s t case o f the f o l l ow i n g IF block concerned with the s i t u a t i o n o f
independence o f XI−part o f dep v a r i a b l e s ;

#second case i s concerned with the s i t u a t i o n when XI−part depends on dep
va r i a b l e s

# ( t h e r e f o r e we obta in a l l (N+M−1) i n va r i a n t s when computing XI−part )

i f ( ( l i n a l g [ vectdim ] ( z )+l i n a l g [ vectdim ] ( t r a n s l ) )=GEM N INDEP V and l i n a l g
[ vectdim ] ( H)=GEM N DEP V) then

p r i n t l i s t 1 : = [ ] :
for i from 1 to GEM N INDEP V−1 do
p r i n t l i s t 1 :=[ op ( p r i n t l i s t 1 ) , cat ( ’ z ’ , i )= z [ i ] ] ;

od :
p r i n t l i s t 2 : = [ ] :
for j from 1 to GEM N DEP V do
p r i n t l i s t 2 :=[ op ( p r i n t l i s t 2 ) , cat ( ’H ’ , j ) ( seq ( cat ( ‘ z ‘ , i ) , i =1. .

GEM N INDEP V−1) )= H [ j ] ] ;
od ;

p r i n t ( ‘New independent va r i ab l e s ‘ , p r i n t l i s t 1 [ ] ) ;
p r i n t ( ‘ Trans la t i on var i ab l e ‘ , cat ( ‘ z ‘ ,GEM N INDEP V)= t r a n s l [ ] ) ;
p r i n t ( ‘New dependent va r i ab l e s ‘ , p r i n t l i s t 2 [ ] ) ;

i nvs := s imp l i f y (
‘union ‘ ( { cat ( ‘ z ‘ ,GEM N INDEP V)= t r a n s l [ ] } , { seq ( cat ( ‘ z ‘ , i )= z [ i ] , i =1. .

GEM N INDEP V−1) } , { seq ( cat ( ‘H‘ , j ) ( op ( [ seq ( cat ( ‘ z ‘ , i ) , i =1. .
GEM N INDEP V−1) ] ) )= H [ j ] , j =1. .GEM N DEP V) }) , symbol ic ) ;

e l i f ( l i n a l g [ vectdim ] ( H)=0 and ( l i n a l g [ vectdim ] ( H)+l i n a l g [ vectdim ] ( z )+
l i n a l g [ vectdim ] ( t r a n s l ) )=(GEM N INDEP V+GEM N DEP V) ) then

p r i n t l i s t 1 : = [ ] :
for i from 1 to GEM N INDEP V−1 do
p r i n t l i s t 1 :=[ op ( p r i n t l i s t 1 ) , cat ( ’ z ’ , i )= z [ i ] ] ;

od :
p r i n t l i s t 2 : = [ ] :
for j from GEM N INDEP V to (GEM N DEP V+GEM N INDEP V−1) do
p r i n t l i s t 2 :=[ op ( p r i n t l i s t 2 ) , cat ( ’H ’ , j ) ( seq ( cat ( ‘ z ‘ , i ) , i =1. .

GEM N INDEP V−1) )= z [ j ] ] ;
od ;

p r i n t ( ‘New independent va r i ab l e s ‘ , p r i n t l i s t 1 [ ] ) ;
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pr in t ( ‘ Trans la t i on var i ab l e ‘ , cat ( ‘ z ‘ ,GEM N INDEP V)= t r a n s l [ ] ) ;
p r i n t ( ‘New dependent va r i ab l e s ‘ , p r i n t l i s t 2 [ ] ) ;

i nvs := s imp l i f y (
‘union ‘ ( { cat ( ‘ z ‘ ,GEM N INDEP V)= t r a n s l [ ] } , { seq ( cat ( ‘ z ‘ , i )= z [ i ] , i =1. .

GEM N INDEP V−1) } , { seq ( cat ( ‘H‘ , j ) ( op ( [ seq ( cat ( ‘ z ‘ , i ) , i =1. .
GEM N INDEP V−1) ] ) )= z [ j ] , j=GEM N INDEP V . . (GEM N DEP V+GEM N INDEP V−1)
) }) , symbol ic ) ;

else
e r r o r ( ”Dimension o f ( vec to r z + t r a n s l ) should be N, and dimension o f H −

M! ” ) ;
f i ;
t r := convert ( s o l v e ( invs ,{ op (GEM INDEP VARS) , seq ( concate var with dependency

(GEMDEP VARS[ i ] ,GEMDEPVARSDEPENDENCY[ i ] ) , i =1. .GEM N DEP V) }) , l i s t )
;

i f ( has ( tr , RootOf ) ) then
pr i n t ( ‘While s o l v i n g t rans fo rmat ion with r e sp e c t to o r i g i n a l vars ,

s o l u t i o n s were l o s t ! ‘ ) ;
for i from 1 to l i n a l g [ vectdim ] ( t r ) do

t r [ i ] := a l l v a l u e s ( t r [ i ] ) [ 1 ] ;
od :

else
pr in t ( ‘ Transformation ‘ , t r [ ] ) ;

f i :

#pr in t ( t r ) ;

TRANSFORMEDEQ:=PDEtools [ dchange ] ( { t r [ ] } , convert ( eq , d i f f ) , s imp l i f y , params=
paramsArg ) ;

p r i n t ( ‘ Reduced equat ion : ‘ ) ;
return TRANSFORMEDEQ;

end proc :

f i nd u s ed con s t an t s := proc ( de )
l o c a l i , u s ed cons t s : = [ ] ; g l oba l GEM N DEP V, GEM N INDEP V;
for i from 1 to (GEM N DEP V+GEM N INDEP V) do
i f ( has ( de , cat ( ‘ C ‘ , i ) ) ) then

used cons t s :=[ op ( us ed cons t s ) , cat ( ‘ C ‘ , i ) ] :
f i :

od :
return convert ( used const s , s e t ) ;

end proc :

g e t i n v a r i a n t s := proc ( )
g l oba l XI ,ETA, ZERO INDICES XI , INVARIANTS XI ,NON ZERO ELEMENT XI,

NON ZERO INDEX XI,NON ZERO INDICES XI , NON ZERO INDICES ETA, ODES XI ,
INVARIANTS ETA,ODES ETA;

l o c a l xiHasDepVars , de x i , Consts x i , s o l u t i o n x i , zero elements ETA ,
Consts eta , s o l u t i on e t a , de eta , n o n z e r o i n d i c e s x i a l l , k , l , p , i ,
f lag tmp , var count ;

#### I f any o f i n f i n i t e s i m a l s i s 0 , we can assume that cor re spond ing
va r i ab l e i s i nva r i an t

NON ZERO INDICES XI:= ze ro e l ement s (XI ,GEM N INDEP V) [ 2 ] :
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ZERO INDICES XI:= ze ro e l ement s (XI ,GEM N INDEP V) [ 1 ] :
i f ( l i n a l g [ vectdim ] ( ZERO INDICES XI)>0)
then INVARIANTS XI := [ op (INVARIANTS XI) ,GEM INDEP VARS[ ZERO INDICES XI

] [ ] ] ;
f i ;

### Block to f i nd NON ZERO INDEX XI and NON ZERO ELEMENT XI for s o l v i n g ODE
for XI

i f ( l i n a l g [ vectdim ] (NON ZERO INDICES XI)=0) then
e r r o r ”Al l x i e lements are 0 ! ” ;

e l i f ( l i n a l g [ vectdim ] ( NON ZERO INDICES XI)=1) then
NON ZERO ELEMENT XI:=GEM INDEP VARS[NON ZERO INDICES XI [ 1 ] ] ;
NON ZERO INDEX XI:=NON ZERO INDICES XI [ 1 ] ;

else
i f (SOLVE XI FOR SMTH=true and member(SOLVE XI FOR, GEM INDEP VARS)=true )

then
NON ZERO ELEMENT XI:=SOLVE XI FOR;
member(NON ZERO ELEMENT XI, GEM INDEP VARS, ‘ k ‘ ) ;
member(k , NON ZERO INDICES XI , ‘ l ‘ ) ;
NON ZERO INDEX XI:=k ;
NON ZERO INDICES XI := subsop ( l = NULL, NON ZERO INDICES XI) ;

else
NON ZERO INDEX XI:=NON ZERO INDICES XI [ 1 ] ;
NON ZERO ELEMENT XI:=GEM INDEP VARS[NON ZERO INDEX XI ] ;
member(NON ZERO INDEX XI, NON ZERO INDICES XI , ‘ p ‘ ) ;
NON ZERO INDICES XI := subsop (p = NULL, NON ZERO INDICES XI) ;

f i ;
p r i n t ( ‘ So lv ing XI determining equat ion for : ‘ ,NON ZERO ELEMENT XI) ;

f i :

#### NON ZERO INDICES XI could be changed ! Use n o n z e r o i n d i c e s x i a l l i f
a l l non−zero i n d i c e s needed

#Block for f i nd i n g i nva r i an t s for XI−part
NON ZERO INDICES ETA:= ze ro e l ement s (ETA,GEM N DEP V) [ 2 ] :
n o n z e r o i n d i c e s x i a l l := ze ro e l ement s (XI ,GEM N INDEP V) [ 2 ] :
xiHasDepVars := che ck x i ha s dep va r s (XI ,GEM N INDEP V,GEM DEP VARS,

GEM N DEP V) :
i f ( l i n a l g [ vectdim ] ( n o n z e r o i n d i c e s x i a l l )>1) then
i f ( xiHasDepVars=fa l se or NON ZERO ELEMENT XI=GEM INDEP VARS[

NON ZERO INDICES XI [ 1 ] ] ) then
ODES XI := [ seq ( D i f f (GEM INDEP VARS[ i ] (NON ZERO ELEMENT XI) ,

NON ZERO ELEMENT XI)= subs ( seq (GEM INDEP VARS[ j ]=GEM INDEP VARS[ j ] (
NON ZERO ELEMENT XI) , j in NON ZERO INDICES XI) ,XI [ i ] /XI [
NON ZERO INDEX XI ] ) , i in NON ZERO INDICES XI) ] ;

else
ODES XI := [ seq ( D i f f (GEM INDEP VARS[ i ] (NON ZERO ELEMENT XI) ,

NON ZERO ELEMENT XI)= subs ( seq (GEM INDEP VARS[ j ]=GEM INDEP VARS[ j
] (NON ZERO ELEMENT XI) , j in NON ZERO INDICES XI) , subs ( seq (
GEM DEP VARS[ j ] ( ind )= GEMDEP VARS[ j ] (NON ZERO ELEMENT XI) , j =1. .
GEM N DEP V) ,XI [ i ] /XI [NON ZERO INDEX XI ] ) ) , i in NON ZERO INDICES XI)
] :

ODES XI := [ op (ODES XI) , op ( [ seq ( D i f f (GEMDEP VARS[ i ] (NON ZERO ELEMENT XI
) ,NON ZERO ELEMENT XI)= subs ({ seq (GEM INDEP VARS[ k]=GEM INDEP VARS
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[ k ] (NON ZERO ELEMENT XI) , k in NON ZERO INDICES XI) , seq (
GEM DEP VARS[ j ] ( ind )=GEMDEP VARS[ j ] (NON ZERO ELEMENT XI) , j in
1 . .GEM N DEP V) } ,ETA[ i ] /XI [NON ZERO INDEX XI ] ) , i in
NON ZERO INDICES ETA) ] ) ] ;

ODES XI :=[ op (ODES XI) , op ( [ seq ( D i f f (GEM DEP VARS[ i ] (NON ZERO ELEMENT XI)
, NON ZERO ELEMENT XI)=0, i in z e ro e l ement s (ETA,GEM N DEP V) [ 1 ] ) ] ) ] ;

f i ;
d e x i := dso lve (ODES XI , expl ic it ) ;

p r i n t ( d e x i ) ;

i f ( l i n a l g [ vectdim ] ( [ d e x i ] )>1) then pr in t ( ‘ System o f determining
equat ions has ‘ , l i n a l g [ vectdim ] ( [ d e x i ] ) , ‘ s o l u t i on s ‘ ) ; d e x i := de x i
[ 2 ] ; f i ;

var count :=0:
i f ( xiHasDepVars ) then

var count :=(GEM N INDEP V+GEM N DEP V)−1− l i n a l g [ vectdim ] ( ZERO INDICES XI
) ;

else
var count :=GEM N INDEP V−1− l i n a l g [ vectdim ] ( ZERO INDICES XI) ;

f i :

Cons t s x i :={ seq ( eva l ( cat ( ’ C ’ , i ) ) , i =1. . var count ) } :
s o l u t i o n x i := convert ( subs ( seq (GEM INDEP VARS[ i ] (NON ZERO ELEMENT XI)=

GEM INDEP VARS[ i ] , i in NON ZERO INDICES XI) , s o l v e ( de x i , Const s x i ) ) ,
l i s t ) ;

#p i e c e for l e t t i n g user know i f system o f det . eq i s n ’ t s o l v ab l e
f lag tmp := f a l s e ;
f o r i from 1 to GEM N INDEP V do
i f (member(GEM INDEP VARS[ i ] , s o l u t i o n x i ) ) then f lag tmp := true ; f i ;

od ;
i f ( f lag tmp ) then

pr in t ( ‘Can ’ t e x p l i c i t l y s o l v e system o f determining equat ions for XI−
part ! ‘ ) ;

else
INVARIANTS XI:= subs ( seq (GEM DEP VARS[ i ] (NON ZERO ELEMENT XI)=

concate var with dependency (GEMDEP VARS[ i ] ,GEMDEPVARSDEPENDENCY[
i ] ) , i =1. .GEM N DEP V) , [ op (INVARIANTS XI) , seq ( rhs ( s o l u t i o n x i [ l i n a l g [
vectdim ] ( s o l u t i o n x i )+1− i ] ) , i =1. . var count ) ] ) ;

f i ;

else
de x i : = [ ] ;
Cons t s x i :={ seq ( eva l ( cat ( ’ C ’ , i ) ) , i =1. .GEM N INDEP V−1) } :

f i ;

p r i n t ( ‘ I nva r i an t s for XI−part : ‘ , INVARIANTS XI) ;

########Block for f i nd i n g i nva r i an t s for ETA−part#######
#I f vectdim (INVARIANTS XI)=(N+M−1) , then we obta in a l l (N+M−1) i n va r i a n t s when

computing XI−part and this block i s not needed
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i f ( l i n a l g [ vectdim ] ( INVARIANTS XI)<(GEM N INDEP V+GEM N DEP V) −1) then
zero elements ETA := ze ro e l ement s (ETA,GEM N DEP V) [ 1 ] ;
i f ( l i n a l g [ vectdim ] ( zero elements ETA )>0)

then INVARIANTS ETA := [ op (INVARIANTS ETA) ,GEM DEP VARS[ ze ro e l ement s (ETA
,GEM N DEP V) [ 1 ] ] [ ] ] ;

f i ;
i f ( l i n a l g [ vectdim ] ( zero elements ETA )<GEM N DEP V) then

i f ( l i n a l g [ vectdim ] ( NON ZERO INDICES XI)=1) then
ODES ETA := seq ( D i f f (GEM DEP VARS[ k ] (NON ZERO ELEMENT XI) ,

NON ZERO ELEMENT XI)= subs ( de x i , subs ( seq (GEMDEP VARS[ i ] (
GEMDEPVARSDEPENDENCY[ i ] [ ] )=GEMDEP VARS[ i ] (NON ZERO ELEMENT XI) ,
i in NON ZERO INDICES ETA) ,ETA[ k ] /XI [NON ZERO INDEX XI ] ) ) , k in
NON ZERO INDICES ETA) ;

de e ta := dso lve ( [ODES ETA] ) ;
else
ODES ETA := seq ( D i f f (GEM DEP VARS[ k ] (NON ZERO ELEMENT XI) ,

NON ZERO ELEMENT XI)= subs ( de x i , subs ({ seq (GEM DEP VARS[ i ] (
GEMDEPVARSDEPENDENCY[ i ] [ ] )=GEMDEP VARS[ i ] (NON ZERO ELEMENT XI) ,
i in NON ZERO INDICES ETA) , seq (GEM INDEP VARS[ j ]=GEM INDEP VARS[ j ] (
NON ZERO ELEMENT XI) , j in NON ZERO INDICES XI) } ,ETA[ k ] /XI [
NON ZERO INDEX XI ] ) ) , k in NON ZERO INDICES ETA) ;

de e ta := subs ( s o l u t i o n x i [ ] , d so lve ( [ODES ETA] ) ) ;
f i ;

Const s e ta := f i nd u s ed con s t an t s ( de e ta ) ;
s o l u t i o n e t a := convert ( subs ( seq (GEM DEP VARS[ i ] (NON ZERO ELEMENT XI)=

GEMDEP VARS[ i ] , i in NON ZERO INDICES ETA) , s o l v e ( de eta , Consts eta ) )
, l i s t ) ;

f i ;
INVARIANTS ETA:=subs ( seq (GEM DEP VARS[ i ]= concate var with dependency (

GEM DEP VARS[ i ] ,GEMDEPVARSDEPENDENCY[ i ] ) , i =1. .GEM N DEP V) , [ op (
INVARIANTS ETA) , seq ( rhs ( s o l u t i o n e t a [ j ] ) , j =1. .GEM N DEP V− l i n a l g [
vectdim ] ( INVARIANTS ETA) ) ] ) ;

p r i n t ( ‘ I nva r i an t s for ETA−part : ‘ ,INVARIANTS ETA) ;
else
pr in t ( ‘ I nva r i an t s for ETA−part not needed , (N+M−1) i n va r i a n t s are inc luded

in i nva r i an t s for XI−part ‘ ) ;
f i ;

f i n d t r a n s l c o o r d ( ) ;
end proc :

########Block to f i nd t r a n s l a t i o n coord inate
f i n d t r a n s l c o o r d := proc ( )

g l oba l TRANSL SOL;
l o c a l fun , od e t r an s l ;
fun := cat ( ‘ z ‘ ,GEM N INDEP V) ( ind ) ;
od e t r an s l := app ly gene ra to r (XI ,ETA, func=‘fun ‘ ) =1;

#pr in t (XI ) ; p r i n t (ETA) ; p r i n t ( fun ) ;
#pr in t ( od e t r an s l ) ;

i f (GEM N INDEP V=1) then
TRANSL SOL:= rhs ( dso lve ( ode t ran s l , fun ) ) ;

else
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TRANSL SOL:= rhs ( pdso lve ( ode t ran s l , fun ) ) ;
f i ;
p r i n t ( ‘ Trans la t i on va r i ab l e in gene ra l form i s ‘ ,TRANSL SOL) ;

end proc :

#Procedure combine symms has input argument L i s t [ Symms [ i ] ,A,Symms [ j ] ,B]
combine symms := proc ( symmsAndFactor ) l o c a l ans , n , i , j , k ;
n:= l i n a l g [ vectdim ] ( symmsAndFactor ) ;
i f ( whattype (n/2)=in t e g e r ) then

ans := [ [ seq (0 , i =1. .GEM N INDEP V) ] , [ seq (0 , i =1. .GEM N DEP V) ] ] ;
for i from 1 by 2 to n do #each symmetry

for j from 1 to GEM N INDEP V do #for XI va r i a b l e s
ans [ 1 ] [ j ] := ans [ 1 ] [ j ]+symmsAndFactor [ i ] [ 1 ] [ j ]* symmsAndFactor [ i +1] ;

end do ;
for k from 1 to GEM N DEP V do #for ETA va r i a b l e s

ans [ 2 ] [ k ] := ans [ 2 ] [ k]+symmsAndFactor [ i ] [ 2 ] [ k ]* symmsAndFactor [ i +1] ;
end do ;

end do ;
else e r r o r ( ”Dimension o f symmsAndFactor should be even ! ” ) ;
f i ;
return subs ( seq (GEM DEP VARS[ i ]= concate var with dependency (GEMDEP VARS[ i ] ,

GEMDEPVARSDEPENDENCY[ i ] ) , i =1. .GEM N DEP V) , ans ) ;
end proc :
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