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Abstract 

Modern communications systems are evolving rapidly to address the demand for data 

exchange, a fact which imposes stringent requirements on the design process of their RF and 

antenna front-ends. The most crucial pressure on the antenna front-end is the need for 

miniaturized design solutions while maintaining the desired radiation performance. To satisfy 

this need, this thesis presents innovative types of periodic antennas, including electromagnetic 

bandgap (EBG) antennas, which are distinguished in two respects. First, the periodic cells 

contain thick metal traces, contrary to the conventional thin-trace cells. Second, such thick traces 

contain very narrow gaps with very tall sidewalls, referred to as high aspect ratio (HAR) gaps.  

When such cells are used in the structure of the proposed periodic antennas, the high 

capacitance of HAR gaps decreases the resonance frequency, mitigates conduction loss, and 

thus, yields considerably small high efficiency antennas. For instance, one of the sample antenna 

designs with only two EBG cells offers a very small XYZ volume of 0.25λ×0.28λ×0.037λ with 

efficiency of 83%. Also, a circularly polarized HAR EBG antenna is presented which has a 

footprint as small as 0.26λ×0.29λ and efficiency as high as 94%.  

The main analysis method developed in this thesis is a combination of numerical and 

mathematical analyses and is referred to as HFSS/Bloch method. The numerical part of this 

method is conducted using a High Frequency Structure Simulator (HFSS), and the mathematical 

part is based on the classic Bloch theory. The HFSS/Bloch method acts as the mainstay of the 

thesis and all designs are built upon the insight provided by this method. A circuit model using 

transmission line (TL) theory is also developed for some of the unit cells and antennas. 

The HFSS/Bloch perspective results in a HAR EBG TL with radiation properties, a fragment 

of which (2 to 6 cells) is introduced as a novel antenna, the self-excited EBG resonator antenna 

(SE-EBG-RA). Open (OC) and short circuited (SC) versions of this antenna are studied and the 

inherently smaller size of the SC version is demonstrated. 

Moreover, the possibility of employing the SE-EBG-RA as the element of a series-fed array 

structure is investigated and some sample high-efficiency, flat array antennas are rendered. A 

microstrip antenna is also developed, the structure of which is composed of 3×3 unit cells and 

shows fast-wave behaviors. Most antenna designs are resonant in nature; however, in one case, a 

low-profile efficient leaky-wave antenna with scanning radiation pattern is proposed. 
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Several antenna prototypes are fabricated and tested to validate the analyses and designs. As 

the structures are based on tall metal traces, two relevant fabrication methods are considered, 

including CNC machining and deep X-ray lithography (DXRL). Hands-on experiments provide 

an outlook of possible future DXRL fabricated SE-EBG-RAs. 
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Chapter 1 
 

Introduction and Thesis Organization 
 
  

1.1 Introduction 

In every decade or so, wireless technology undergoes significant reviews and sometimes 

evolutionary changes. The main reason is the need to keep up with the ever-growing and 

insatiable demand in data communications. Another reason is to bring forth the opportunity to 

apply the most recent state-of-the-art generated by researchers. In order to be able to keep up 

with this trend, a wide variety of communications standards [1], [2], [3] are developed and 

released by the agencies like ITU1, IMT2, and 3GPP3 to standardize the process of coordinating 

different wireless products designed and manufactured by different entities. For example, the 

well-known standard, IEEE 802.11, which includes a variety of versions and releases (most 

recently 802.11n, 802.11ac and 802.11ad [3]) is an example which is involving everyone's life 

when using internet over Wi-Fi (i.e. WLAN4) anywhere around the globe. 

People are constantly moving towards ever-increasing dependency on wireless and mobile 

communication services for everyday activities. In the near future, all-IP networks implemented 
                                                 
1 International Telecommunication Union 
2 International Mobile Telecommunications 
3 3rd Generation Partnership Project 
4 Wireless Local Area Network 



2 
 

through ultra-high speed 4th generation (4G) mobile technology will provide IP telephony, 

interactive gaming services, HDTV5, and other multimedia streamings [4] to users who could be 

mobile or stationary. The concept of Internet-of-Things (IoT), as another emerging area [5-6], 

will also bring about interest in intelligent automation through an internet connection (provided 

by apps on a Smartphone) that will cause an avalanche of demand for data, and hence, demand 

for more efficient communications systems. The need to apply heavier online data encryptions 

for security and the emerging idea of cloud-computing, which requires users to have remote 

access to high capacity processors, also provides incentives to seek faster wireless connectivity. 

On the other hand, the current growth in battery capacity is far below the needs of today's mobile 

communications systems [7], and some of the solutions to this issue require using free off-device 

(nearby) computing resources (i.e. cyber foraging [8]) which again requires using more data. 

Statistics spanning from 1980 to 2013 show that the annual increase in the average speed of a 

high-end personal internet connection is more than 50% [9], a fact known as Nielson's law, 

similar to the well-established Moore's law in microelectronics. Speaking of the Smartphone as a 

symbol of data usage, in 2011 more Smartphones were sold than desktop PCs, notebooks, 

netbooks, and tablets together. The total worldwide Smartphone sales reached 472 million units 

in 2011 [10].  

In an effort to satisfy this demand, new releases of WiFi standards, like IEEE 802.11ac (not 

yet in the market), target multi-station WLAN throughput of at least 1Gbit/s and a single link 

throughput of at least 500Mbit/s. Such advanced standards allow the use of wider RF 

bandwidths, more MIMO6 spatial streaming (up to 8 streams), multi-user MIMO, and high-

density modulation schemes (up to 256-QAM7) [11]. To obtain just a glimpse of the future bit 

rates, it is worth noting that in Jan 2014, IEEE 802.11ac was amended to allow up to 7Gbit/s at 

5GHz WiFi band [12]8. Another similar standard, which will imminently affect mobile 

communications, is IEEE 802.16ac for Wimax9, which is incorporating new technological advances 

that could exceed the expectation of 4G systems. Proliferation of such standards and frequency 

bands has become an indispensible part of the rapidly growing technology. 
                                                 
5 High Definition TV 
6 Multiple Input Multiple Output 
7 Quadrature Amplitude Modulation 
8 These standards obviously fit within the definition of 4G communication systems because IMT-advanced 

specifications released by ITU-R in March 2008 define a 4G system as a system with 100Mbit/s for high mobility 
communication and 1Gbit/s for low mobility or stationary cases [13]. 

9 Worldwide Interoperability for Microwave Access 
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A question arising here is, "What would be the implications of such evolutions to the antenna 

technology?"; An answerer to this question is that upcoming portable communications systems 

like Smartphones and tablets are expected to be compatible with more of these standards, and 

therefore, accommodate more antennas than before. However, the main issue is that the natural 

expectation of end users is always multiple functionality and better data rates, but with the same 

size or even smaller devices, a fact which makes the design requirements of such systems 

increasingly more difficult. To provide a tangible example, Fig. 1.1 shows an interesting layout 

[14] describing the number of antennas and the dimensions and location of each in a Samsung 

Galaxy S Smartphone (phone released in June 2010). 

 
Fig. 1.1 Dimensions and positions of the battery and multiple antennas on a Samsung Galaxy S Smartphone [14]; 

used with permission; some annotations are added.  

 

Battery 
(~50mm×45mm×5mm) 
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As seen, there are six different antennas fitting within the limited form factor of the smart 

phone, each of which structurally is very slim. Among the antennas are two Wimax antennas, 

which are well separated and are most probably part of the MIMO scenario and bring about 

signal diversity. A WiFi and a GPS10 antenna are also embedded which are indispensable parts of 

any contemporary Smartphone in the market.  

In a similar manner, future devices are expected to have co-existing front-ends for11 Wimax 

(more than one to offer MIMO), WiFi (2.4/5GHz, multiple MIMO antennas might appear here as 

well), Bluetooth (2.4GHz), Digital TV, UWB [15] (3.1GHz to 10.6GHz [16]), GPS (mostly 

1.57GHz), and a range of front-ends for WWAN12 [17], including different types of GSM 

(850/900/1800/1900 MHz), or any similar legacy (1G, 2G, and 3G) or new wide area coverage 

(4G, 5G [18]) that will be offered by carriers in the future. In addition, according to projections 

to the future by standards like IEEE 802.11ad [3], the new generation of devices might have at 

least one antenna at 60GHz to provide higher data rate for short-range WLAN/WiFi 

communications which will supplement the current 2.4GHz/5GHz WiFi. Moreover, the 60GHz 

radio employed in a WPAN13 scenario [19] will soon become a essential part of any personal 

digital system like cameras, laptops, tablets, wireless HDTV screens, game controllers, wireless 

security cameras, wireless home safety systems, etc. Not only could 60GHz radio make a local 

wireless network of such systems, but also, it could connect them to the internet through 60GHz 

access points (planned by IEEE 802.11ad).  

Consequently, future laptop or even Smartphone manufacturers will have to deal with 

mmWave technology at the RF level and specifically at the most bulky and lossy section, the 

antenna front-end. Even more surprisingly, researchers at the Polytechnic Institute of New York 

University are currently working on 28GHz and 38GHz for future (micro) cellular mobile 

networks applicable to densely populated areas like New York city [18]. This technology is 

presented as a new attempt in moving beyond the borders of 4G communications, into the 5G 

realm.  

On the processing and microelectronics side of this evolution, major companies specialized in 

engineering personal mobile communications products (e.g. Qualcomm [20]) are striving to 
                                                 
10 Global Positioning System 
11 The wireless landscape, electromagnetic spectrum, and typical wireless applications in this spectrum are provided 

in Appendix D and Appendix E. 
12 Wireless Wide Area Network  
13 Wireless Personal Area Network 



5 
 

develop tiny low power high-capacity chipsets which are multi-standard, multi-mode, and 

universal. These companies have relatively few problems with processing, considering the 

tremendous rate of development in microelectronics and its anticipated future. The roadmap 

issued by ITRS14 [21] describes the current and upcoming VLSI15 technology nodes and 

envisages where the future of semiconductor industry would most probably move to. According 

to this roadmap, by the end of 2013, 32nm half-pitch nodes should be readily available to the 

industry (this expectation might not have been met yet), and then, by about 2016 and 2022, 

respectively, 22nm and 11nm nodes will also be introduced. The following two examples could 

help understand how realistic this envisaged map might be. In 2006, researchers presented a sub-

5nm transistor in a VLSI conference [22], and later on in 2010, Australian researchers announced 

the smallest transistor built with only seven atoms [23]. In addition, Table 1.1 compares three 

Intel processors used in common mobile personal devices and provides a visual sense of the size 

occupied by the processing units incorporating such small transistors.  

 
Table 1.1 Total size of some Intel processors for different personal internet-based devices; the table is created based 

on the data on a figure in [24]. 

Processor 
Intel®AtomTM 

Z500-Z540 
Intel®AtomTM 

N270 
Intel®Celeron® 

Lateral Dimensions 13mm×14mm 22mm×22mm 35mm×35mm 

Example of Devices Using 
the Processor MID16/UMPC17 Netbook Traditional Notebook

 

The ITRS roadmap and examples like Fig. 1.1 and Table 1.1 imply that the development rate 

in the semiconductor sector outpaces the current advancements in efficient and low-profile RF 

front-ends of communications systems. This is not only because of fundamental electrical size 

limitation of RF components, but also because of the rise in the number of coexisting RF 

sections at different frequencies. 

One significant side effect of enhanced processing power is that faster processors could justify 

the use of advanced technologies like MIMO [25]. MIMO systems rely on antenna diversity 

                                                 
14 International Technology Roadmap for Semiconductors  
15 Very Large Scale Integration 
16 Mobile Internet Devices 
17 Ultra-Mobile Personal Computer 
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(multiple antennas) to enhance the performance of communication links through reducing the 

multipath fading and co-channel interference [26]. Realization of a MIMO system requires signal 

processing, which is now readily provided by semiconductors. This fact will increase the number 

of MIMO antennas in future mobile devices. However, in MIMO-based small wireless mobile 

terminals, high electromagnetic coupling between multiple antenna elements disturbs the 

radiation pattern and the input impedance of elements [27], increases the signal correlation and 

undermines the effectiveness of the MIMO scenario. Although in theory coupling could be 

minimized by placing elements more than a half-wavelength apart [27], this condition is difficult 

to meet for the space-limited form factors of future devices. Hence, the large size of the antennas 

section will be a critical issue to the future wireless technology.  

To address aforementioned trends and requirements on the RF/antenna front-end, the present 

research is focused on the design of high-performance slim antennas with the potential to be 

easily integrated into future communications devices. It is demonstrated that the proposed 

antennas have the potential to be miniaturized and at the same time maintain or even slightly 

improve the radiated power efficiency. Two main schemes simultaneously help achieve these 

desired features. The first scheme is to employ periodic cells, and the second one is to thicken 

the top metal layer of these cells, and hence, the planar antenna composed of them. These 

periodic cell arrangements exhibit electromagnetic bandgap (EBG) behaviors, which enhances 

the performance of the antennas. The periodic nature of the cells and thickening causes the top 

layer to contain periodically applied narrow gaps with very tall sidewalls. Although the top 

traces of the antenna structures are thickened, this thickening does not significantly increase the 

electrical thickness of the whole antenna structure and it remains as thin as λ/25 or potentially 

less. The research tries to show that the trace thickness reduces the ohmic loss (increased ohmic 

efficiency), and the thick metal traces incorporating narrow gaps provide enhanced capacitive 

coupling between adjacent cells, thus reducing the antenna resonance frequency. On the other 

hand, EBG cells per se act as artificial boundary conditions and contribute to the overall 

performance.  

Such schemes could reduce the pressure enforced by the fundamental limitations of antennas. 

In fact, in terms of size, most conventional RF components such as filters, power dividers, 

impedance transformers, and especially antennas contain structures with feature dimensions of at 

least λ/4, or often several times λ/4. For instance, the well-known branch-line coupler has four 
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λ/4 sections [28-29]. The classic patch antenna is λ/2 long, while its required ground size is 

typically at least 1.2λ (free-space wavelength) for a satisfactory radiation [30]. This means that 

the antenna size for a given application does not depend much on the technology utilized, but is 

determined by physics laws [31], a fact which imposes fundamental limitations [32-33]. Such 

laws state that any attempt to reduce the antenna size yields the degradation of its bandwidth 

(BW), or gain, or efficiency.  

To obtain a better view of sizing challenges, the size of the processor unit of a MID/UMPC 

device in Table 1.1 can be compared to the GPS antenna in Fig. 1.1. The former occupies 

13mm×14mm, as compared to the latter with ~20mm×40mm, and this space is only taken by one 

out of six antennas in Fig. 1.1. This relatively huge size is obviously a fraction of the whole size 

of the RF section, which not only comprises antennas but also filters, power splitters, phase 

shifters, diplexers/duplexers, up/down convertors, LNAs18, switches, multiplexers,  SSPAs19, and 

the harness. In addition to space occupied, the RF module also consumes most of the stored 

energy, and generates most of interfering power as well. Considering that such components 

tackle the highest frequencies in the device and conduct the highest power levels as well, in case 

they are not miniaturized deliberately, they can show much reduced efficiencies and dissipate a 

large portion of the power. Biocompatibility, if in proximity to human tissue, is also another 

strict requirement on the antenna section of most devices, especially mobile phones. Although 

the SAR20 [34] limit is 1.6W/kg21, most devices have to stay well away from this limit to be able 

to compete with rivals. 

It should be emphasized that potential applications of the proposed antennas are not limited to 

antenna miniaturization for mobile communications. Wireless capsule endoscopy is an example 

in biomedical engineering, which similarly requires small antennas in tight form factors. Besides 

miniature antennas, high-gain low-loss slim planar antennas are also in demand for radar 

systems, DSB22 reception [35-36], earth-to-satellite links, fixed point-to-point microwave links 

(e.g. backhaul), etc. Hence, some of the thesis sections employ the single high-performance 

antenna element and show how it could be arrayed to achieve high-gain array antennas. There 
                                                 
18 Low Noise Amplifier 
19 Solid State Power Amplifier 
20 Specific Absorption Rate 
21 The SAR limit set by Federal Communication Commission is 1.6W/kg averaged over 1 gram of tissue, and the 

limit recommended by the Council of the European Union is 2W/kg averaged over 10g (e.g. for Samsung Galaxy 
S, SAR reportedly is 0.33W/kg) 

22 Direct Satellite Broadcasting 
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are also special applications requiring high-gain antennas (preferably planar) able to radiate 

circularly polarized (CP) waves. Reference [37] is an example of a radar system for concealed 

weapon detection demanding such waves. To address such applications, a very efficient CP 

antenna is proposed that could be used as a CP element in an array topology for the high gain 

demanded.     

Automotive radar systems operating at 24GHz and 77GHz are also another attractive area that 

could benefit from the research. The RF front-ends of such radar systems require frequency 

scanning antennas. Hence, a novel leaky-wave antenna is presented which addresses such a 

requirement. It is demonstrated that this antenna fundamentally functions differently as the 

resonance frequency is within the leaky-wave region of the dispersion diagram of the antenna 

unit cells.  

 

1.2 Research Objectives 

The specific research objectives are outlined as follows: 

1. To achieve antennas with the potential to be electrically small while maintaining the 

desirable radiation properties. Antennas based on periodic unit cells are proposed. The unit 

cells are unconventionally thickened on the top layer (with thick metal traces) to provide 

high capacitive coupling between adjacent cells (reduced resonance and cell 

miniaturization), reduced conduction loss in the thick metal traces, and reduced interaction 

of the fields with high dielectric substrates (one source of loss in high frequencies). The 

research attempts to demonstrate that such features result in small antennas with relatively 

high radiation efficiencies.     

2. To provide a fast and computationally efficient way of analysis and design for such 

structures. A new analysis approach is proposed, specific to unit cell based periodic 

structures. Closed-form equations are developed that could expedite the design process of 

such structures with reduced numerical computation loads.  

3. To demonstrate the applicability of such high-performance miniaturized antennas to 

applications demanding larger high-efficiency apertures. 

4. To demonstrate that the high-performance radiating elements have the potential to be 

employed in an array to yield very high gain flat antennas.  
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5. To demonstrate that the fundamental knowledge of unit cells helps develop antenna 

structures that could operate in different modes, resulting in both resonant and leaky-wave 

(with frequency-scanning radiation pattern) antennas.  

6. To develop the designs so that they are compatible with microfabrication methods, for 

instance deep X-ray lithography (DXRL), for realizing fine high aspect ratio (HAR) features 

that could be applied to very high microwave frequencies.  

7. To develop linearly and circularly polarized antennas based on HAR unit cells with high 

efficiencies and small volume. 

 

1.3 Thesis Organization 

After clarification of trends and the requirements of current and future antenna technology in this 

section, Chap. 2 describes the motivation behind the study and explains why the proposed 

structures are formed of periodic cells, contain HAR features, and can exhibit EBG behaviors 

which can enhance performance. The motivations are supported by dedicated analyses and 

comparisons, especially to justify the rewards of using thick metal traces. A comprehensive 

state-of-the-art review is also included in Chap. 2. Next, Chap. 3 reviews the analysis methods 

presented in literature for periodic structures, especially EBG structures. A new analysis 

approach called HFSS/Bloch is also presented which extends from the classic Bloch theory and 

is mainly used later in the thesis. Some other methods will accompany the HFSS/Bloch for 

verification.  

As the main body of the thesis, Chaps. 4 and 5 expand on the nine sub-themes shown 

conceptually in Fig. 1.2. This figure introduces all ideas and the designs based on them, and 

shows how the HFSS/Bloch method contributes to the development of each design. Almost all 

ideas in Chaps. 4 and 5 are established upon a centerpiece which is a radiating periodic TL (Sec. 

4.1). The HFSS/Bloch method is used to extract a dispersion diagram for understanding this 

structure. Next the idea of the open circuit SE-EBG-RA which is a fragment of this periodic TL 

is introduced (Sec. 4.1).  

The next step is to introduce a short circuit version of SE-EBG-RA with a miniaturized nature 

(Sec. 4.2). Sec. 4.3 investigates the effect of enlarging the ground plane for this version and how 

to maintain the radiation by extra periodic parasitic elements. Then Sec. 4.4 presents a circuit 

model, entirely closed form, to describe the proposed HAR cells and the SE-EBG-RAs made of 
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those cells. Afterwards, Sec. 4.5 is dedicated to unit cell miniaturization and replaces the regular 

cells of the SE-EBG-RA with some miniaturized cells to reach smaller antennas. Chap. 5 

presents some ideas related to Chap. 4, which are based on the same HAR cells and their 

dispersion diagram. As a naturally different class of antennas, Sec. 5.1 shows how cells could be 

used in leaky-wave mode to yield leaky-wave antennas with a scanning pattern. An innovative 

series-fed array of SE-EBG-RA is also presented in Sec 5.2. The next section, Sec. 5.3, presents 

a periodic patch antenna, with much improved performance due to EBG effects, the body of 

which is composed of six HAR cells. The final antenna in Chap. 5 is a CP version of the SE-

EBG-EA with a very compact electrical footprint and high-efficiency (Sec. 5.4). Finally, Chap. 6 

summarizes the study, concludes on the research outcomes, and discusses the contributions that 

the research has offered. It is noted that following the HAR antenna designs appearing 

throughout the thesis, Appendix C reviews a special microfabrication method called deep X-ray 

lithography (DXRL) with the potential to realize the proposed structures with small HAR gaps 

and high structure quality. Some of the relevant processing steps using this method together with 

some experimental demonstrations are discussed in this section. 
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Fig. 1.2 An overview of ideas and designs to be presented throughout the thesis. 
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Chapter 2 
  

Motivation and State-of-the-Art 
 
 

2 Motivation and State-of-the-Art 

The terms "HAR23 Vertical Features" and “EBG24 Antennas" frequently used in this thesis 

convey the simultaneous application of HAR structures with periodic structures, and specifically 

EBG structures. Popular usage of the term “EBG” is to apply this term quite generally to a wide 

range of periodic structures, and that is also the approach taken in this thesis, even though these 

might not be “true” EBG structures by the strictest definitions. There also appears to be some 

differences in the literature over what constitutes an EBG structure. Consequently, this section 

clarifies the motivations behind the study in two distinct parts. The first part points out the 

motivation for employing the EBG concept, and qualifies how the proposed structures might 

exhibit EBG and/or “EBG-like” behaviors, and the second part indicates the motivation behind 

using HAR structures.  

                                                 
23 High Aspect Ratio 
24 Electromagnetic Bandgap 



15 
 

2.1 Motivation behind Utilizing EBG structures 

In order to understand the importance of EBG structures, a literature review is conducted to 

provide a background on the terms like, “EBG concept”, “EBG structures”, and “EBG unit 

cells”. Although the EBG concept has made a widespread contribution to many areas of 

Electromagnetics, in the following, the literature review is mostly oriented towards “Antenna 

Theory & Design”. 

2.1.1 Background and Literature Review 
EBG structures have been found to be one of the most attractive concepts introduced in 

Electromagnetics. Such structures have drawn so much attention and have been so promising that 

some outstanding researchers have found enough reasons for speaking about “Marvels of EBG 

Structures” [1]. EBG structures, which are composed of electrically small EBG unit cells, have 

involved and influenced electromagnetic (EM) problems as a new boundary condition that could 

be conceived theoretically, but was not available in nature (as opposed to regular boundaries 

which are readily realized, e.g. by metal surfaces). This boundary is generally a high impedance 

(HI) boundary, or more specifically, an artificial magnetic conductor (AMC) (artificial version of 

the hypothetical Perfect Magnetic Conductor, PMC). Such surfaces have the ability to block the 

propagation of surface waves/currents, and consequently, they can show very deep and close-to-

ideal stopbands in some frequency ranges (i.e. bandgaps) while being almost transparent to 

signals in other frequencies. With the introduction of the EBG concept, these artificial boundary 

conditions (most of them possessing a planar surface) started being studied more seriously. 

Although previously introduced in Photonics and Physics (referred to as Photonic Bandgap, PBG 

[2]), as of 1999 in which EBG surfaces were formally brought into Electromagnetics by 

Sievenpiper [3], many researchers have showed interest in applying them to EM-related 

applications and theories. Afterwards, most conventional and canonical EM problems started 

being reviewed, now noting the possibility of realizing a PMC in practice. In general, such 

efforts can be categorized into two main streams: 

- EBG concept and “Antenna Theory and Design” 

- EBG concept and “Microwave Theory and Techniques”  
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Reviewing the literature reveals that considerable research has been separately focused on 

each stream, and many outcomes are now available after a decade or so. As for the first stream, 

some successful researchers in the field have collected the published articles in the form of a 

book [4]. In the following, first the origin and the definition of such periodic structures are 

clarified. Then, the recent contributions to the antenna stream are reviewed and the most relevant 

technical areas are categorized. 

2.1.1.1 The Origin of Bandgap Structures 
The idea of periodic EBG surfaces originates from the early efforts to realize a practical high 

impedance (HI) surface to be used as PMC (boundary condition) for electromagnetic problems. 

Fig. 2.1 shows a corrugated metal slab with corrugations of quarter-wavelength depth. Each 

groove can be considered a λ/4 parallel plate TL which is shorted at the end (bottom), and hence, 

has an ideally infinite input impedance at the top surface over a narrow frequency band. This 

surface is considered a 1D high impedance surface, as it provides HI effects only to E-fields in 

the Z-direction. This surface is both physically and electrically thick due to the λ/4 structure. 

 
 

 

 

 

 

  

Fig. 2.1 A corrugated metal slab with HI effects at its surface, if the corrugations are quarter-wavelength deep. This 

is a polarization dependent surface. Only E-fields in the Z-direction observe the HI effect [3] © 1999 IEEE.  

In time, 2D versions of this surface were introduced as shown in Fig. 2.2 (a). These surfaces 

are formed by arrays of electrically small square (or other shaped) patches on a narrow dielectric 

slab, connected to the ground by vias. It can be shown [3] that each cell forms a parallel LC tank 

circuit and can result in the desired resonance behavior, however with an electrical thickness 

much smaller than shown in Fig. 2.1. The tank circuit is later illustrated further.       
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Fig. 2.2 A conventional 2D planar EBG surface (a), comparison between the radiation of a dipole antenna adjacent 

to an EBG ground plane (b), and a PEC metal ground plane (c); parts of the figure are from [3] © 1999 IEEE; some 

modifications and annotations are applied. 

 

Fig. 2.2 demonstrates the difference in the reflection phase operation of a dipole antenna on 

PEC versus EBG ground planes. As seen in Fig. 2.2 (b) and (c), the waves reflected from the 

PEC are out of phase while those reflected from the EBG are in phase. Therefore, in Fig. 2.2 (c), 

the dipole image in the PEC cancels its current and opposes constructive radiation while in case 

of Fig. 2.2 (b), radiation is constructive. This advantage is obtained for the EBG dipole while the 

overall substrate thickness is very small. If the dipole operating frequency is exactly at the cells 

resonance, the cells ideally behave like a PMC. However, if the dipole resonance has a frequency 

offset from the resonance of individual cells, this condition is provided partially, yet results in a 

similar behavior (as demonstrated [e.g. 20-21]). In this case, the term HI surface is a general 

name that can describe the HI nature of the surface over a narrow band close to the PMC 

resonance frequency. Some thorough studies [e.g. 20-21] on dipole and patch antennas show that 

after the antenna is fined-tuned on the EBG surface and well matched, the final resonance 

frequency of the entire structure is slightly below the resonance of individual cells. Accepting a 

frequency offset from resonance supports the notion of cell truncation in EBG antennas while 

still benefitting from HI behavior. In fact, right at resonance, the cells are typically highly 

coupled with their neighbor cells and are electromagnetically sensitive to truncation. In Sec. 4.1, 

efforts are made (through reflection phase analysis) to show that for the proposed EBG antennas, 

this resonance unconventionally happens slightly above the cell resonance (Fig. 4.1.15), yet close 

(a) (b) (c) 

Reflection 
phase, 0˚ 

Reflection 
phase, 180˚ 
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enough to benefit from the HI nature of the cells. Similarly, it will be shown that mutual 

coupling between cells is negligible (Fig. 4.1.10), most probably due to this upward frequency 

offset.        

A key advantage of EBG structures is that the surface waves interact with an artificial HI 

surface that suppresses their tendency to travel as guided waves, as they might on typical ground 

planes. As shown in Fig. 2.3 (a), if there are no EBG cells, the PEC supports such waves and 

they reach the ground plane edges (in practice, the plane is usually finite and small) and diffract, 

resulting in backward radiation and disturbed forward radiation. As in Fig. 2.3 (b), this effect is 

controlled, even on a truncated ground plane with a finite number of cells.    

 
Fig. 2.3 The role of a PEC ground plane in support of surface waves (a), the role of an EBG ground plane in 

suppression of surface waves [3] © 1999 IEEE; some modifications are applied.  

 

2.1.1.2 The Definition of EBG Structures 
There are differing opinions on what constitutes EBG structures, surfaces, and cells, which 

should be clarified here. Early reported surfaces and much research since has been based on 2D 

surfaces, although this is not a fundamental requirement, because 1D and 3D versions can also 

show similar results (for instance the 1D structure of Fig. 2.1, only supports one polarization). 

When it comes to 3D EBG structures, it is not difficult to conceive them as a simple multilayer 

EBG surface (stacked), as indicated by Sievenpiper [3]. However, for 1D cells, the case remains 

somewhat controversial because the cells are typically not symmetrically periodic, as with the 

conventional 2D EBG HI surfaces. Nonetheless, there have been a number of such structures 

presented and adopted in both microwave and antenna engineering, which exhibit similar 

behaviors to the 2D counterparts, and support the notion that 1D EBG structures under certain 

conditions can belong to the larger family of EBG structures.   

For instance, in [116] a band-notched ultra wideband monopole antenna is proposed that uses 

small EBG cells. The whole EBG structure operates as a bandstop filter. Only one EBG cell is 

(a) (b) 



19 
 

enough to obtain a notch-band, while only two EBG cells in one direction (with different size) 

can generate dual notch-bands. In [117], a novel planar power divider is proposed for which 

some of the sections are composed of only a few EBG cells deployed in one dimension. In 

addition, the authors use dispersion diagrams very similar to the Bloch/HFSS diagram used in 

this work. Reference [118] is another example in the antenna realm that, as seen in Fig. 2.4, uses 

a limited number of cells around the dipole to improve its performance. The truncation of the 

cells (3 cells across) and their 1D nature at various positions is apparent. The performance of this 

truncated structure is similar to other works, which use larger EBG grounds covered by a larger 

number of cells [e.g. 21].  

 

Fig. 2.4 A dipole antenna in close proximity to an EBG ground plane with very limited number of cells [118] © 

2008 IEEE; some modifications are applied.  

 
In [119], the EBG cells are utilized on the vertical walls of a rectangular waveguide, as in Fig. 

2.5, providing a PMC boundary condition that supports TEM propagation in the waveguide near 

the EBG resonance frequency. As seen, only two cells in the Y-direction are sufficient to provide 

this condition.  

 
 

 

 

 

 

Fig. 2.5 The concept of a TEM UC-PBG waveguide; a rectangular waveguide using artificial magnetic boundaries 

on vertical walls, realized by PBG/EBG cells at around resonance [119] © 1999 IEEE.  
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Another example is in filter design, where 2-port EBG surfaces provide very deep bandgaps 

(see Fig. 2.6) where the propagating waves are severely suppressed, in this case with -40dB 

insertion loss. Again, all three filters are using only 2 cells in widths and 5 cells in length and 

successfully perform as a HI EBG surface. These designs further support the notion that similar 

surfaces, like the 1D EBG structure in Fig. 4.1.1, with only one cell in width could also have the 

potential to display EBG behaviors.  
  

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.6  Top side of three EBG structures connected with microstrip lines and their measured S21 parameters [120] 

© 2008 IEEE; some modifications are applied.  

 

As in Fig. 2.7, in the leaky-wave antenna (LWA) domain, the authors of [121] render novel 

1D LWA using tiny EBG cells, which are acting as high impedance surfaces. Reference [122], 

also renders another example of such 1D EBG LWAs.   
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Fig. 2.7 A full-space scanning 1D Fabry–Pérot LWA using EBG cells on the ground plane (called HIS, i.e. HI 

surface) © 2012 IEEE.  

 

Finally, the authors of [123] particularly focus on 1D EBG structures and, using the Floquet-

Bloch theory, discuss bandgap behaviors and the effect of truncation of cells on bandgaps. From 

the material presented there, it is deduced that if truncation happens, the behavior of a 1D EBG 

structure could be slightly disturbed; however, bandgaps are still available and could be utilized.    

Such publications along with many more demonstrate that the microwave and antenna 

communities tend to adopt the term EBG for a wide range of periodic cells demonstrating EBG-

like behaviors, regardless of being 1D, 2D, or 3D. In addition, it is useful to apply periodic 

theories and cell modeling methods to gain a practical understanding of the behavior of truncated 

periodic structures.  

According to such publications, as long as a structure is composed of electrically small unit 

cells (small lateral size), and is based on grounded dielectric slabs, which are also electrically 

very small (λ/15 or less), the structure could be considered an EBG structure. It is noted that 

many of the 1D structures exhibit behaviors very similar to 2D structures, if the polarization of 

the fields excited by the adjacent radiator are oriented with their one-dimensional structure.  

The proposed EBG antennas of this thesis are mainly 1D EBG structures (except for Sec. 5.3 

and Sec. 5.5) that exhibit similar behaviors to more conventional 2D EBG surfaces, and are, 

therefore, generally considered to be of the same family. As opposed to the conventional EBG 

structures of Fig. 2.2 (b), the Self-Excited EBG Resonator Antenna, presented in this work does 

not have any separate radiator like the dipole in Fig. 2.2 (b); instead the EBG surface and the 

radiator are the same (integrated). Two to six EBG cells (as presented in Chap. 4) are cascaded in 
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one direction on the ground plane to form the body of the radiating structures and are directly fed 

by a microstripline from one side. The term EBG is adopted in this thesis and specifically used to 

describe such antennas, as they exhibit a range of properties and behaviors that are consistent 

with most conventional EBG antennas.  

Some of the most important of these traits are briefly listed here and will be systematically 

demonstrated throughout the thesis: 

• Employing unit cells with typically small electrical footprint of ~ λ/12×λ/12 and potentially 

smaller 

• Having small overall thicknesses of λ/25 and potentially thinner     

• Showing very high radiation effects      

• Having reduced conduction and dielectric losses (hence, high efficiencies) 

• Typically using highly truncated ground planes of e.g. 0.25λ×0.25λ 

• Maintaining a high front-to-back radiation ratio and broadside radiation pattern on such 

truncated planes 

• Showing enhanced group delays and radiation losses at some narrow bands (Fig. 4.1.1)  

• Exhibiting similar unconventional effects on two alternative dispersion diagrams (Fig. 4.1.14) 

The clarification rendered here is supplemented by the review on the analysis methods for EBG 

and periodic structures, which will appear in Chap. 3.  
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2.1.1.3 Surface Wave Suppression 
One of the most beneficial features of EBG cells is the ability to suppress surface waves [3, 5]. It 

has been this feature that allows EBG cells to be a substitute for PEC ground planes traditionally 

used for antennas [5]. Due to the high impedance behavior, EBG cells can act as an Artificial 

Magnetic Conductor (AMC) [6-8], imitating the role of a Perfect Magnetic Conductor (PMC) at 

some frequency bands. As defined theoretically, a PMC has a high impedance nature, 

suppressing surface waves and surface currents. Such waves can be induced by tangential 

magnetic fields [3] on sheets of metal (PEC). In practice, such sheets are the ground planes of 

planar antennas covered on top by a thin dielectric slab. Surface waves can travel inside or even 

above the substrate, or also, in the form of induced current on the ground surface, reach the edges 

of the plane, and diffract unfavorably. While being impinged by plane waves, the AMC 

condition of an EBG surface occurs at frequencies where the magnitude/phase of the reflection 

coefficient is 1/0° [7-8]. It has been repeatedly shown that such structures can considerably 

improve antenna performance. Also, as demonstrated in [9-10], reducing surface waves enhances 

the antenna radiation pattern and causes less coupling between elements of an array [11].   

However, what really are the surface waves and how are they excited?   

Such waves could travel along the dielectric interfaces in canonical (with classical boundary) 

and practical (with complicated boundary conditions) electromagnetic problems with various 

geometries. When the problem specifically involves a thin grounded dielectric slab, the 

magnitude of such waves is stronger at the interface and exponentially decays as the distance 

increases from the interface (towards the outside of the dielectric). Even though no real power is 

theoretically allowed to propagate in the direction, which is perpendicular to the dielectric 

surface, the power can still be guided along the surface, and therefore, the fields are confined but 

traveling inside the system. For most practical planar antennas, such as patch antennas, inverted-

L antenna, etc. the geometry is similar to the grounded dielectric slab, and hence, the structure 

can accommodate a considerable amount of surface waves traveling to the edge of the size-

limited ground plane. These waves then diffract from the edges, most of the time uncontrollably 

and destructively, depending on the exact geometry. For example, as for the patch antenna, when 

truncating the ground plane, the effect of such waves is to distort the broadside radiation pattern, 

cause a slight backward radiation, and introduce surface wave loss which drops the antenna 

efficiency. 
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Fig. 2.8 Geometry of a grounded dielectric slab. 

 

For the grounded slab in Fig. 2.8, the cut-off frequencies (fc) for TM and TE modes are as 

given by the following equations, respectively, where the first and second dominant modes are 

TM0 and TE1 [13]: 
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As seen, if d and/or εr increase, fc will drop, and the possibility of accommodating more of 

such modes at the operating frequency increases. For example, for a 1mm alumina slab (εr=9.9), 

the first two dominant modes start to be excited at 0 GHz and 25.14GHz. Thus, in case working 

below 25.14GHz, the only unwanted surface mode that could be possibly excited is TM0. This 

mode has two E-field components (Ez and Ex) and one H-field component (Hy) and travels along 

the Z axis (Fig. 2.8). As many of the proposed designs are using high-dielectric alumina 

substrates in this work, it is important to apply new boundaries in form of discontinuities or 

parasitic or resonating elements to suppress the TM0 and possible higher order modes, and this is 

the role that the proposed EBG cells will play. It is worth noting that for patch antennas, it is 

well-known that increasing the dielectric thickness and/or relative permittivity can considerably 

decrease the efficiency [14], a behavior which, as explained above, is partly related to the surface 

wave excitation.  

 
2.1.1.4 BW Enhancement 
There are a number of studies specifically focused on the antenna BW enhancement, and how the 

special abilities of EBG cells can help achieve such an objective. For example, [15] proposes a 

wideband dipole on an EBG ground. Also, [12] demonstrates how applying non-uniformity to 

the EBG structures can roughly double the BW. As shown in Fig. 2.9, this work compares the 
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performance of a dipole antenna on a PEC and two different EBG high impedance ground 

planes. Ultra-wideband characteristics are also demonstrated [16], offering the BW of 70% 

covering 9-19GHz. Such examples clearly prove that EBG cells are very helpful in developing a 

new generation of wideband antennas.  

 
Fig. 2.9 A low impedance PEC ground plane (a) compared to uniform (b) and non-uniform (c) EBG high impedance 

surfaces. EBG surfaces are adjacent to a dipole antenna yielding BW enhancement [12], © 2006 IEEE; some details 

on original figures are removed, and some texts are manipulated for quality enhancement. 

 
2.1.1.5 Gain Enhancement 

Gain as another very important antenna parameter has also benefited from EBG structures. 

Similar to BW enhancement, there are many studies specifically focusing on gain enhancement. 

To exemplify, [17] has achieved a new design for planar patch antenna on an EBG substrate 

having ~3dB more gain than the conventional patch-on-PEC antenna. Noting such an effect, the 

same author has studied another type of antenna (a DRA25) with the same EBG cells [18], and 

the same ~3dB improvement is observed again. Moreover, in [19], it is shown how a previously 

proposed EBG ground can be used with DRA at around 60GHz. The work demonstrates 15dB 

enhancement in F/B together with a better gain. Such efforts confirm that regardless of the type 

of the main radiator, replacing a PEC with an EBG ground will improve performance.  

2.1.1.6 Miniaturization 

There are a number of studies, which have used EBG structures to reduce the antenna physical 

size while maintaining the electrical size. In fact, such a feature can provide a longer electrical 

length with the same physical length (footprint) or equivalently, the same electrical length with a 

smaller footprint. It has been repeatedly demonstrated [e.g. 3, 20-24] that as opposed to 

traditional antennas, when using a truncated (less cell numbers than usual) EBG ground plane for 
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an EBG antenna, input matching quality remains robust or at least remains probable to maintain 

(slight frequency shift). At the same time with a good matching, high efficiency and radiation are 

also possible to obtain. Efficiencies close to ideal [20] have been observed for patch antennas 

supported by EBG planes, while it is well-known that it is impossible for a patch to render such a 

high efficiency simultaneous with matching and reasonable directivity.  

 

Fig. 2.10 A miniaturized patch antenna on an EBG high impedance surface with 95% efficiency [20], ©2004 IEEE. 

The works presented in [3, 20-24] provide some examples of antenna miniaturization based 

on the EBG concept. For instance, Fig. 2.10 shows a miniature patch antenna on an EBG high 

impedance surface with 95% efficiency [20]. In the following chapters, some designs will be 

presented which feature a smaller electrical footprint and a comparable efficiency thanks to the 

properties of the proposed HAR EBG cells. 

2.1.1.7 Combination of Gain, Efficiency, and BW Improvement  
There are also efforts [25-26] demonstrating that not only the improvement is separately 

achievable on gain, size, or BW, but also a combination of all these factors is attainable. In [25], 

it is clearly demonstrated that using an EBG substrate (ground plane) rather than a PEC one for a 

patch antenna can provide ~3dB gain enhancement and at the same time increase the BW from 

5% to 25%. Also, in [26] the same ~3dB gain improvement is observed with a significant 

improved ohmic efficiency, again for EBG microstrip patch antenna. 

2.1.1.8 Reduction of Biological Harms 
Reviewing literature shows a growing interest in wearable, body-worn, or close-to-body 

communication systems. The most important issue with such systems is the intrusion of lossy 

human tissue (body) to the performance of devices and vice versa. Because most of these 

systems operate from ~1 to 5GHz, the wavelength is large relative to the typical sizes of these 
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systems (e.g. compare λ=12.5cm at 2.4GHz used for Bluetooth to the size of a mobile phone). 

Because traditional antennas need at least 1.2λ ground plane size to work properly, a large 

wavelength results in a large footprint. Usually in practice, the size available is even much less 

than 1.2λ [27], and hence, the ground plane has to be truncated. However, this can cause mutual 

interaction between the body and antenna near fields and yield degradation. The frequency shift 

or totally losing input matching, drop in efficiency, deformation of radiation pattern, shorter 

battery lifetime, and most impotently the biological harm to the body are possible aftermaths. 

Again, thanks to EBG cells ability to combat surface waves, EBG grounded antennas can be 

matched and work efficiently with ~0.5λ [20, 29]. Noting this fact, some researchers interested in 

wearable mobile antenna technologies have utilized EBG structures [29-35].  

In fact, EBG antennas are small while still presenting a relatively high F/B [29] ratio, and 

hence, the fields infiltrating the body located at the antenna backside could be negligible. This 

feature causes the parameter called Specific Absorption Rate (SAR) to be less than standard 

limits and allows these antennas to be compatible with the body [29-33]. In such investigations, 

it is clearly shown that parameters like efficiency and gain are still stable and well maintained. 

Fig. 2.11 describes an example of how EBG structures could be applied to develop low SAR 

body-compatible antennas. 

 

Fig. 2.11 Demonstration of how EBG surfaces are typically used on the ground plane to isolate the antenna from the 

human head in personal mobile communications [30] © IEEE 2010. 
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2.1.1.9 Unit Cell Design  
Reviewing the literature shows that some research activities focus on the design of improved 

EBG unit cells per se without indicating a direct application [8, 36-48]. Typically, the desirable 

properties are enhanced BW [23, 43-44], smaller size [8, 44], and stability of the resonance 

frequency against the angle of incident plane wave [8, 38, 42], the properties that can be 

potentially applied to a myriad of applications. The philosophy behind this approach is that in 

case these improved unit cells are employed in the structure of traditional antennas, similar 

improvements could be observed for the new EBG antenna. Some of the presented unit cells 

possess dual or even multi-band [38, 46] bandgap characteristics making them suitable for 

satisfying the multi-band requirement of many commercial communications systems [38]. 

Interestingly, some efforts are dedicated to the design of angularly stable AMC/EBG cells [8, 

42]. In fact, authors argue that the smaller the size is and the more improved angular stability is 

achieved, the more ideally the cells imitate a hypothetical Perfect Magnetic Conductor. Finally, 

some researchers show interest in the derivation of closed form formula and circuit models for 

prediction of EBG cells characteristics [36, 45]. The motivation behind such efforts is that even a 

roughly accurate prediction of the cell resonance can help designers swiftly choose the unit cell 

geometry with properties as close as possible to the desired ones. Fig. 2.12 shows different EBG 

unit cell designs tailored to achieve different properties. The cells are mostly composed of a 

metallic Frequency Selective Surface (FSS) of various shapes placed on a thin PEC-backed 

dielectric slab [8, 36-39, 42-43, 47]. Fig. 2.13 also shows prevalent LC circuit model 

representations.  

One of the rewards of using tall/HAR EBG cells instead of the common thin-trace cells is to 

enhance the side coupling capacitance, C, of such models. The tiny HAR gaps with vertical side 

walls behave as enhanced parallel plate capacitors. Because the cell resonance is inversely 

proportional to LC , such an increase in C results in unit cell miniaturization.        
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Fig. 2.12 Different EBG unit cells designed to achieve different features such as angular stability [8], multiband 

functionality [38] © 2005 IEEE, compact size [8], ease of tunability [49] © 2005 IEEE, etc. 

   

  

 

 

 

 

Fig. 2.13 Two different circuit model representations of EBG cells, a) the via-less version of mushroom-like 

structure [20] © 2004 IEEE, b) Jerusalem cross EBG [36] © 2008 IEEE; some of the information on original figures 

is removed and texts are manipulated for quality enhancement. 

2.1.1.10 Circularly Polarized EBG Antennas  
Circularly Polarized (CP) radiation can be desirable to circumvent many problems caused by 

poor wave propagation in communications channels. Although CP antennas are usually easier to 

make with traditional methods, some EBG based radiators are also able to generate this type of 

polarization [23, 37, 50-54], while incorporating the aforementioned benefits of EBG structures, 

including reduced size and design flexibility. Some previous works have first presented 

polarization dependent EBG surfaces [37], and have developed new CP EBG antennas [53-54]. 

Others have even applied the EBG concept to the very low frequencies and developed easy to 

fabricate CP wire antennas [52] based on non-uniform EBG surfaces [23]. Such a design renders 

a noticeable gain, relatively small size, with a pure CP waves while the structure is only fed from 

one single feed point.  

(a) (b) 
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2.1.1.11 Planar EBG Structures 
A planar structure could be defined as a flat unified set of different thin substrates stacked 

together with patterned metallic layers in between and/or on each side. Literature review shows 

that most EBG structures presented possess a planar configuration [11, 20-21, etc.]. Noting the 

potential advantages, some researchers do not bound themselves to simple cases and turn to 

structures, which are planar but composed of more layers, sometimes with more complexities 

[20]. However, cases with only one substrate with metal traces on one side and PEC ground on 

the other side [38] are the most demanded due to the simplicity of design, fabrication, and 

integration. Accordingly, in this study, the designs are based on single layer configurations. Fig. 

2.10 and Fig. 2.12 showed a few examples of different EBG unit cells.   

2.1.1.12 Tall/Thick EBG Cells 
To the best of our knowledge and investigation, there is no publication, which seriously pays 

attention to tall/HAR EBG structures. In one case [55], authors have tried to utilize a somewhat 

projected (called elongated) metallic parts in design of EBG unit cells. The lack of published 

work in the area is an opportunity for further research, and it is one of the motivations for 

following the proposed research track. In Sec. 2.2, and later on when the proposed structures are 

rendered, it will be shown how thickening the cells on the top layer reduces the loss in the 

antenna structure made of the cells and brings about some tangible justification to adopt the 

proposed EBG structures in practice.  

2.1.1.13 EBG Concept in Array Antenna Design 
One of the most successful contributions of the EBG concept is applied to array antennas design. 

As mentioned earlier, one of the rewards of EBG high impedance surface (HIS) is surface waves 

suppression. Simply speaking, having a HIS provides an open circuit to block the current which 

may be excited (by tangential fields) on the surface. As a result, such currents will either not be 

excited, or even though excited, will be damped quickly. This is in contrast to the case where the 

ground is a low impedance PEC surface (short circuit). In fact, this damping is a particularly 

desirable effect in array antenna design. A major issue when deploying antenna elements to form 

an array with a wider aperture and more radiation is mutual coupling [56,114]. The issue stems 

from the fact that in practice the behavior of an array element placed adjacent to other elements 

is not exactly the same as what is experienced when the element is alone. Hence, input matching, 
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radiation efficiency, and even sometimes radiation pattern of the elements are deviated in the 

array, making it difficult to implement the pure array theory in practice. Inspecting the reason for 

such a deviation reveals that the uncontrolled surface waves excited by one element can travel 

and interact with those of the next elements. These interactions can change the fields around the 

source and is observed as some kinds of far/near-field disturbance. The traditional remedy is to 

increase the element spacing to more than at least λ/2 [56]. However, on the one hand, based on 

array theory, spacing more than λ causes undesirable grating lobes in the radiation pattern. On 

the other hand, according to the super-directive array theory, the closer the elements are, the 

more the overall directivity can be [56, 114], and hence, increasing the element spacing is not an 

optimum use of the available surface area. This fact opens up an opportunity to apply EBG 

surfaces. It has been shown [56-60] that proper placement of rows of EBG cells between 

adjacent elements can dampen the surface waves, reduce mutual interaction, and increase the 

array performance. For example, [59] shows an obvious enhancement in side lobe level (SLL) 

and gain as a result of surface wave suppression. Fig. 2.14 shows two different EBG cells 

applied to two array antennas to reduce the adverse effects of mutual coupling.   

    

 

 

 

 

 
 

Fig. 2.14 Suppression of surface waves and mutual coupling in array antennas, a) 2-element array of patch antenna 

isolated by fork-like EBG cells [49] © 2005 IEEE, b) 4-element array of patch isolated by mushroom-like EBG cells 

[60] © 2006 IEEE; some of the information on original figures is removed for simplicity.   

Some researchers have demonstrated how using EBG based elements can yield a combination 

of size, BW, and gain improvement [56] in arrays. Although, one reason can still be the same 

surface wave and coupling reduction, EBG-based elements are improved elements in terms of 

performance and obviously when they act in a system such as an array configuration, they can 

improve the whole system performance. Another challenge in array antennas is how to design 

(a) (b) 
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optimum phase shifters. Phase shifters are an integral part of phase array antennas and any 

improvement in their performance directly ameliorates the whole array system. For example, 

compact phase shifters can help make better use of the physical space available, have better 

phase and magnitude distribution all over the aperture, and reduce the intrusion with the 

radiation of the whole array system. Miniaturization, BW enhancement, and flexibility in design 

are advantages that EBG structures add to conventional phase shifters to help them more 

efficiently realize complicated phase array antennas, as shown in [62-63]. These works present 

tunable phase shifters for beam-scanning array antennas, taking the advantage of the tunability of 

the circuit model of each EBG cell. 

2.1.1.14 EBG Cells for Very High and Very Low Frequencies 
This part reviews the role of EBG cells in very high and very low frequency. The interest in 

applying EBG cells (as tiny resonators) in severely high frequencies is growing. Although most 

researchers first started using the concept for relatively low frequency applications [39], after 

enough progress and success, they have recently turned to the cells even at much higher 

frequencies. In [21] for example (published in 2003), the mushroom-like EBG unit cell is 

investigated and analyzed numerically over the wide range of 5-30GHz for the possibility of 

being an efficient high impedance ground plane for dipole antennas. Following this, the use of 

EBG structures in very high frequency applications has grown, ranging from around 15GHz to 

the upper limit of the usual microwave/mmWave regime of about 100GHz, or even higher (up to 

300GHz). The drive for such a changeover is the rapid progress in the micro- and even nano-

fabrication techniques and the availability of theoretical and practical knowledge in realizing 

micro scale feature sizes. As the frequency increases, the realization of feature sizes, which are 

now somewhere from a few 100nm to a few 100µm, is a real challenge but still feasible with 

some fine technologies. To exemplify, in [64] an EBG cell on LTCC substrates is proposed to be 

used at V-band ranging from 50GHz to 75GHz. It is noted that in the United States, the FCC26 

has allocated a part of the V-band from 57 to 64 GHz to unlicensed wireless systems. These 

systems are primarily used for high capacity, short distance communications at Gbit/second rates 

[65].  

                                                 
26 Federal Communications Commission  
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As a matter of interest, EBG cells in [66] utilize MEMS technology at 30GHz and the work is 

presented in a conference on nano/micro engineered and molecular systems. Such works are 

evidences for potentials of nano/micro fabrication in increasing the operational frequency of 

EBG cells. Also, [67] is an example of efforts on EBG antennas in passive silicon (on-chip 

antenna). Not settling for such high frequencies, the authors of [68] step further even beyond the 

mmWave regime and investigate a 500GHz EBG TL and power divider again using MEMS and 

micromachining technologies, although technically the study fits under the general umbrella of 

Photonics. 

Due to the fundamental contribution of the EBG concept which stems from being a versatile 

boundary condition, they have also infiltrated very low frequency applications [12, 23, 69-70] in 

which antennas are mostly wire-made [12, 23]. The results published prove that in low 

frequencies [12, 23], the EBG concept yields the same advantages as it does in other frequencies.  

2.1.1.15 Some Other Applications 
There are many more interesting applications for the EBG concept. For example, [71] 

demonstrates how EBG structures can improve high-gain array antennas to be used in radar 

systems. EBG cells potentials have also infiltrated the domain of reflect-array antennas. The 

reflector part of these antennas is composed of the EBG unit cells rendering a flat reflector 

behaving like the legacy parabolic reflectors. The reflection characteristics of the cells are 

deliberately tapered all over the reflector. The engineered reflector is able to provide the same 

reflection phase that the parabolic geometry of a reflector can cause. Applying a similar scheme, 

[115] integrates a number of controllable varactor capacitors into the EBG surface to actively 

control the resonance of each individual unit cell. This way any reflection phase distribution is 

achievable thanks to a central processing unit controlling the capacitors. This method makes it 

possible to achieve shaped or deflected radiation patterns demanded in satellite communications 

and by many radar systems. Fig. 2.15 shows the two examples of the reconfigurable reflect-array 

antennas described above.  

Although EBG cells have been mostly applied to conventional antennas like dipole, patch, 

and inverted-L antennas, in some cases, researchers have shown the possibility of using them 

along with rather non-planar antennas like dielectric resonator antenna (DRA) [18-19]. 
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Fig. 2.15 Realizing reflectarray concept using EBG unit cells with tunable reflection properties, left) a waveguide 

feed illuminating a flat rectangular EBG surface, right) a waveguide feed illuminating a circular EBG surface with 

23dBi directivity [115] © 2007 IEEE. 

 

In [72], it has explained how a previously proposed EBG ground plane can be used along with 

DRA at around 60GHz. The work demonstrates 15dB improved F/B together with a slightly 

improved gain. In addition, [73] demonstrates that the well-known mushroom-like EBG ground 

plane can provide ~3dB gain improvement as compared to a PEC ground plane. Fig. 2.16 depicts 

the two EBG DRA designs indicated above.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.16 A DRA as an example of a non-planar (vertical) radiator on EBG ground planes, a) a circular DRA on UC-

EBG unit cells [72] © 2011 IEEE, b) a circular DRA on a circular mushroom-like EBG surface [73] © 2009 IEEE; 

some parts of the original figure are removed or manipulated for printing better quality.  

(a) (b) 
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In another work [74], absorbing EBG surfaces have been exploited to realize radar absorbing 

materials (RAM) for antenna systems. These materials are aimed to mostly absorb signals 

impinging the antenna body and therefore reduce the radar cross section of the system using the 

antenna. The last case to indicate is a broadband proximity coupled EBG microstrip antenna 

designed for direct broadcast satellite reception [75].  

 
2.2 Motivation behind Utilizing the Third Dimension          

This part clarifies how the increased thickness of metal traces of the antennas proposed can serve 

as a rewarding parameter. A literature review is also carried out to provide a background on the 

terms like, “high aspect ratio structure (especially antennas)”, “tall/vertical structures”, and 

“thick metal structures”. Dedicated analyses are also rendered to highlight the fundamental 

connection between antennas and TLs27. Then according to such analyses, the capability of 

thickness especially in overcoming dielectric and conduction loss in the antenna structures is 

demonstrated. This demonstration will be confirmed throughout the thesis, where the high-

performance nature of each proposed antenna is specifically demonstrated.  

2.2.1 Background and Literature Review 
A rapid interest in communication systems at microwave and millimeter-wave frequency bands 

has been observed in recent years [76-101]. This is mainly because much larger percentage of 

BW is available at such high frequencies compared to the conventional spectrums. The other 

advantage is the shorter wavelength, which results in smaller RF devices and complies with the 

desire to achieve more integrated and compact design solutions.  

Reviewing literature and many commercial products shows that researchers usually tend to 

base their structures on the well-established approach of using thin metal layers. This is a trend 

mainly formed based on the assumption of using low or medium frequency bands in which the 

tolerances in fabrication and also the surface roughness are not a significant issue. As mentioned, 

this trend is destined to change soon, and hence, this study will be aimed at investigating antenna 

structures with relatively thick metal films positioned on a thin grounded dielectric slab as the 

substrate. Apart from future trends, there are some profound reasons for turning to such 

                                                 
27 Transmission Line 
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structures with thick metal traces. To clarify this, it is first essential to look back at the basics of 

antenna and TL theories.  

As described in [102], in order to represent radiation and losses in a relatively small wire 

antenna (for instance, the dipole), the radiated and lost power can be represented by two real 

resistances, Rr and RL respectively. The ratio of the radiated power to the total power entering the 

antenna (radiated plus lost) can be defined as antenna ohmic efficiency. This term can be 

described in terms of Rr and RL [102]:  

  )/( rLr RRR +=η

 

(2.3)

For a wire with length l and radius b, if the skin depth (see (2.9)) is much smaller than b, the 

current mainly travels on the surface, and hence, a high frequency ohmic surface resistance can 

be defined [102]: 
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where σ is metal conductivity, µ is metal permeability, and ω is the angular frequency. As stated 

by (2.4), RL is inversely proportional to b. This implies that thickening the wire reduces its loss, 

and therefore, as deduced from (2.3), increases η. A similar dependency on the thickness also 

holds for a circular wire (loop) [103]. Accordingly, in case the cross section of wire elements of 

an antenna (either straight or bent) increases, the loss drops and η of the antenna is enhanced. 

This behavior generally holds for various 3D metal shapes. Although some antennas are made of 

2D thin strips rather than wires, it is demonstrated by many analyses and experiments that wires 

in an EM structure can generally be replaced by their equivalent thin-film strips [23, 42], while 

the EM behavior will remain roughly identical. This simple reasoning indicates the effect of 

thickening, based on antenna theory.  

Taking a different viewpoint from microwave theory, it can be stated that any antenna is in 

fact a piece of transmission line (TL) for which the boundary conditions are intentionally 

changed so that the TL starts radiating/leaking EM power (switch from entirely bound to 

partially bound or unbound conditions). In [102], Balanis considers a segment of two-line TL 

and then illustrates how gradually increasing the spacing between lines (a “flared TL”) near the 

open end can cause transition from a non-radiating TL to a radiating TL, i.e. create an antenna. 

This idea is described in Fig. 2.17 (right). It is also shown that when the two parallel lines are 
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highly flared and spaced from each other and make a right angle with respect to the feedline, the 

open end is no longer a TL, but is the well-known dipole antenna. The same transition is also 

conceivable for a rectangular waveguide gradually being widened and turning into to a horn 

antenna which can ultimately radiate very well from its large open aperture, as in Fig. 2.17 (left).  

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 2.17 Antenna as a transition device, bridging the TL to the free-space, left) source-to-rectangular waveguid-to-

horn antenna transition [102], right) current distribution on a lossless two-wire TL, flared TL, and a linear dipole 

antenna [102] Copyright © 2005 by John Wiley & Sons Inc; used with permission.  
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The third case which could also demonstrate TL-to-antenna transition is illustrated in Fig. 

2.18. As shown, two thick parallel coupled strips can first act as a TL, and when being flared (the 

spacing, being tapered), turn into a Vivaldi antenna which radiates from its open aperture.  

 
Fig. 2.18 A Vivaldi antenna with thick top metal layer on GaAs substrate. The first part is a TL with bound fields 

and then due to being flared, fields start to radiate at the end [79] © 1998 IEEE; some annotations are added to the 

original figure. 

Another vivid example is the patch antenna, which in its dominant mode is in fact a λ/2 piece 

of microstripline (MSL) with a very wide trace [104] to make it more radiating. Fig. 2.19 shows 

how a MSL can be transformed into a microstrip antenna. As in Fig. 2.19, a 50Ω MSL is 

widened gradually (W↑) at around its open end to approach the characteristics of a typical patch 

antenna. L in Fig. 2.19 is set so that the piece of MSL is ~λg/2 (L is kept fixed physically). As 

depicted in Fig. 2.20, by increasing W, the two radiating apertures of the patch antenna are 

increased gradually which allow the structure to leak real power, depending on the size of the 

aperture (size: W×h). 
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Fig. 2.19 Gradual transition from a MSL to a microstrip antenna through gradually increasing the strip width, a) 

W=0.91mm, b) W=5mm, c) W=15mm, d) W=18mm; for all cases: h=1mm, εr=9.9, tanδ= 0.003, 30mm×30mm, 

Ls=7.28mm, Ws=0.91mm (50Ω line), L=14.6mm. 

 
Fig. 2.20 Description of radiating and non-radiating apertures of a typical microstrip antenna; the feed line is a 

narrow strip, and hence, does not radiate (TL) while the patch part is a very wide version of the same TL and 

performs well as an antenna. 

 

Table 2.1 Comparison of the simulated gain and η for the antennas in Fig. 2.19; the analysis frequency is 4GHz. 

 Gain (dBi) η (%) W (mm) L (mm) 
Fig. 2.19 (a) -9.0 23 0.91 
Fig. 2.19 (b) -2.5 32 5 
Fig. 2.19 (c) -1.36 39 15 
Fig. 2.19 (d) -1.48 45 18 

14.6mm 

 

Table 2.1 renders the simulated gain and η of the antennas in Fig. 2.19 and shows that both η 

and gain increase as W grows. Another way to have the fields radiate more is to gradually flare 

the spacing between the strip of Fig. 2.19 (a) and the ground plane. This is equivalent to 

gradually increasing the distance between the strip and its image in the ground which is similar 

to the flaring described in Fig. 2.17. Fig. 2.21 compares the non-flared strip and the version 

flared by the angle ψ. 

(a) (b) (c) (d) 
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Fig. 2.21 3D and side view of a 50Ω MSL on PEC a grounded dielectric slab, a) non-flared case with ψ=0˚, b) flared 

case with ψ≠0˚; Ls=7.28mm, Ws=0.91mm (50Ω line); L=14.6mm. 

 

For this case, Table 2.2 shows η versus ψ and demonstrates the radiation enhancement 

introduced by flaring. Furthermore, Fig. 2.22 compares the radiation pattern of Fig. 2.21 (b) for 

ψ=0˚ and ψ=5˚. In fact, in case the strip is not flared, its image in the PEC ground plane 

underneath the substrate will be out of phase, and considering that h <<λ, the current is cancelled 

out by its image, thus the system is non-radiating. As soon as flaring occurs, there will be non-

zero field components perpendicular to the substrate that their image will be in phase, and hence, 

the structure can radiate. The larger ψ is, the larger such components will be, and higher η will be 

observed. 

 
Table 2.2 Comparison of the simulated efficiency for the antenna in Fig. 2.21 (b) with different flaring angle. 

Dimensions are as in Fig. 2.21 (b);  
the frequency is 4GHz 

η (%) ψ (deg) 

23 0 

68 5 

86 15 

94 45 

 

 

 

(a) (b) 
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Fig. 2.22 Radiation gain of the antennas in Fig. 2.21, a) Fig. 2.21 (a), b) Fig. 2.21 (b) with ψ=5˚; the gain includes 

directivity and η, but not the input matching; the dashed line corresponds to φ=0˚ and the solid line to φ=90˚ (E-

plane).  

 

According to the analyses and discussions presented above, any antenna is in fact a radiating 

TL. Therefore, any method capable to reduce the loss in TLs can cause the same effect to 

antennas and improve their efficiency, especially in case of planar antennas. The next step after 

clarifying the relation between antennas and TLs is to identify the relation between loss and trace 

thickness using TL theory. The objective is to show that thickness can alleviate loss in TLs, and 

therefore, in antennas, which are essentially a type of TL.  

It is well-known [105-106] that increasing the trace thickness of planar TLs, such as coplanar 

waveguide (CPW) and MSL, results in decreasing the conductor loss. A thick MSL trace with 

width W and finite thickness t can be regarded as an effectively wider thin trace with width 

W+∆W [107] where 
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For a low loss MSL in the TEM mode, the attenuation constant is [13]: 
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(2.6)

where k0 is free space wavenumber ( 00εµω ), Z0 is the line impedance, W is trace width, εreff is 

effective relative permittivity28, εr is substrate relative permittivity, and tanδ is the loss tangent 

                                                 
28 εreff  can be found using [13]: Wh rrreff /121/)1( 0.51)( 0.5 +−++= εεε  

(a) (b) 
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(tan δ=ε′′/ε′, where ε=ε′+jε′′ is the permittivity). The first term of (2.6) is related to the 

conduction loss in the metal and the second one is related to the dielectric loss. As seen, 

increasing W (W  W+∆W) reduces the first term. On the other hand, this increase can also 

decrease Z0 in the denominator, but because of thickening the trace, the ensuing εreff will also be 

slightly less as a larger portion of fields infiltrates the air making Z0 relatively larger. Inspecting 

αc in (2.6) for finding the overall effect of W shows that increasing W introduces a decrease in αc, 

where the amount of this decrease depends on εr, W, and h. As stated by (2.6), W has no 

direct/apparent effect on the second term. However, the second term is proportional to frequency, 

f, (through k0) while the first term is proportional to f 1/2 (through RS). Consequently, in very high 

frequency applications, the second term tends to dominate. This fact indicates the importance of 

predicting such effects and investigating the contribution of HAR traces to controlling this 

dielectric loss. On the bright side, as the trace thickness increases, the fields start infiltrating the 

air and the interaction with the substrate reduces [e.g. 108], which in turn can be experienced as a 

reduction in εreff. Because (2.6) shows that for high dielectric materials (like alumina mainly used 

in this thesis), αd is roughly proportional to εreff
1/2 (i.e. εr↑ → αd↑), in very high frequencies, the 

application of HAR traces can compensate for the dielectric loss enhancement by reducing εreff. It 

should be emphasized that although the discussion above was focused on MSL, similar 

arguments can be made for other TLs such as CPW.  

 
Table 2.3 Comparison between the dielectric and conduction losses of two 50Ω MSL with different substrate 

permittivities, at low and high frequencies; results assume remaining in TEM mode, otherwise some extra loss will 

also appear.   

Low dielectric loss:  εr=9.9, tanδ=0.003 (alumina), h=1mm, t=30um, Z0=50Ω (W=0.915mm) 

 αd (np/m) αc (np/m) αd/αc 

4GHz 0.321 0.36 0.89 
Frequency 

40GHz 3.765 1.71 2.2 

High dielectric loss:  εr=2.85, tanδ=0.04 (SU8 resist [109]), h=1mm, t=30um, Z0=50Ω (W=2.32mm) 

4GHz 2.55 0.13 19.6 
Frequency 

40GHz 27.62 0.43 64.23 
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Table 2.3 provides two quantitative examples to demonstrate the fact that frequency plays an 

integral role in changing the loss mechanism, especially for dielectric substrates with medium to 

high losses. The table compares the dielectric and conduction losses of two 50Ω MSL with 

different substrate permittivities, at low and high frequencies.  

As seen, particularly for the lossy substrate, αd is significantly higher than αc. It is also shown 

that as the frequency increases, αd dominance becomes more obvious, and at 40GHz, αd is ~ 64 

times αc. It is important to note that Table 2.3 does not include the effect of roughness, which 

could increase αc slightly more. In practice, the roughness contributes extra losses at higher 

frequencies, which are observed as increased αc. To estimate how much roughness could 

contribute, (2.10) suggests that Rs could be at most doubled. As seen, this situation occurs if the 

roughness is much larger than δs. In practice, the roughness of copper traces is less than 10µm, 

typically somewhere from 0.3µm to 5µm [110]. For example, based on (2.9), at 4GHz, 

δs=1.05µm, and at 40GHz, δs=0.33µm. Assuming 10µm roughness, 10µm >> δs, and hence, Rs 

grows to the maximum ~2Rs. Under this condition, αc is doubled, but this increase can hardly 

follow the rapid increase rate of αd versus frequency, as explained before. This yields the 

conclusion that when dealing with the typical conductor roughness of <10µm in high 

frequencies, the conductor loss is not the number one issue and can be easily dominated by the 

dielectric loss.  

It is very important to know that roughness could set a kind of limit on the maximum 

frequency of RF components, while also noting that this limit is still high enough for many of the 

RF applications. When it comes to high efficiency antennas of the present work, roughness is 

somewhat less problematic as the η is not directly affected by loss, but indirectly through the 

equation, η=Rr/(Rr+RL). For the proposed high-performance HAR antennas, even under the effect 

of a typical roughness, Rr>>RL, even up to very high frequencies. To quantify this, it is noted that 

a typical small matched SE-EBG-RA (see Sec. 4.2) has Rr ~50Ω, and RL~4Ω, which gives 

η=92%. According to (2.10), roughness could adversely increase RS by a factor on the order of 2, 

which means loss and the RL will double. In that case, RL~8Ω, and the η is 87%, which is still 

very high.  
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Fig. 2.23 a) A sample microstrip antenna on a microwave substrate with two different tanδ, numerically simulated in 

HFSS, b) simulated gain of a compact slot antenna on an infinite substrate with εr =4.0 (1-jtanδ) [111] © IEEE 2003; 

the slot is printed on the only copper side and is excited by a microstripline printed on the other side of the substrate.  

To highlight the importance of dielectric loss specifically in antenna applications, as in Fig. 

2.23 (a), a microstrip antenna is designed on a substrate with εr=9.9 and with two different loss 

tangents (tanδ) of 0.003 and 0.03 (10 times increased). At the matching (resonance) frequency of 

3.73GHz, the ground plane is 0.62λ×0.62λ and the thickness is λ/80. The antenna is matched to a 

50Ω port using two quarter-wave transformers. The corresponding simulated efficiencies are 

66% (gain=4.58dBi) and 0.19% (gain=-0.82dBi) respectively, which imply that the antenna gain 

drops by 5.4dB due to the increased dielectric loss. As shown in Fig. 2.23 (b), [112] also presents 

similar results by simulating the gain of a compact slot antenna on substrates with different tan δ 

and shows that increasing the loss from 0.001 to 0.01 decreases the gain by about 5dB. In fact, 

observing the same behavior for two planar antennas like patch and slot antennas, which are dual 

of each other in terms of operation, clearly demonstrates the importance of the dielectric loss in 

antenna design, especially at very high frequencies. 

With recent advances in modern packaging and MMIC29 technologies, the notion of 

integration of the whole system on a single chip, or at least, on a few separate chips but offering 

them in a single package, has drawn a lot of attention. However, the conventional Si wafers are 

inherently low resistivity (ρ) and can dissipate much of the EM power inside. Under this 

condition, the loss tangent has to be modified as [113]  

                                                 
29 Monolithic Microwave Integrated Circuits 

(a) (b) 
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where ρ is the resistivity of the substrate, ε=ε'-jε" is the complex permittivity of the substrate 

(εr=11.68 and ε"/ ε'=0.0018 for Si [113]). Inserting these values into (2.7) yields 
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where ρ is in Ω-cm and f is in GHz. For low resistivity Si (LRS), with ρ=1-10 Ω-cm, the second 

term dominates and huge losses will appear. For high resistivity Si (HRS), with ρ=2.4-10kΩ-cm, 

the second term is small enough so that the design of microwave antennas on the Si with 

moderate efficiencies becomes possible at moderately high frequencies. One advantage of 

thickening the conductor line on top of such substrates is the reduction of the effective 

interaction of the fields with the substrate. This is because by thickening, a larger portion of the 

fields are trapped in the HAR air-filled gaps and this will reduce the loss in Si. This means that 

the HAR EBG antennas proposed are competent candidates for antenna-on-Si type technologies.   

Besides the relation to the dielectric and conduction losses, thickness can also have an important 

role in circumventing the roughness issue. When the frequency increases, the impacts of surface 

roughness increase. As stated by (2.6), the attenuation constant is proportional to RS, and based 

on the following relation, it is also inversely proportional to the skin depth [13]: 
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(2.9)

The equation (2.6) is valid for an ideally smooth surface and the associated Rs is the minimum 

theoretical value. However, as the frequency increases, the wavelength (λ) becomes comparable 

to δS and the surface current experiences a longer path (in terms of λ) due to the deformation of 

the surface. To include this effect, [106] and [13] show that instead of the usual Rs in (2.6), the 

following equation can be used:  
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where a is the RMS30 surface roughness. 

                                                 
30 Root Mean Square 
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It is noted that according to (2.4), RL is proportional to RS, and this means, increased 

roughness will result in increased RL and reduced radiation efficiency. Thus, a HAR EBG 

antenna with high efficiency (Sec. 4.1 and Sec. 4.2) is intended to dominate the total loss 

introduced by roughness and dielectric material. The improvement in Rr that the proposed 

antenna provides could dominate RL and increase η in (2.3). The accuracy of (2.10) has been 

verified through experimentation in works like [110], and it is reportedly acceptable up to 10 

GHz for practical microwave substrates with typical thicknesses.  

The last step is to review the literature to answer the following question: Has any similar 

antenna with thick metal HAR feature sizes been introduced before?  

Searching the literature for antennas with such characteristics reveals the lack of previous 

efforts. Willke proposed thick metal micromachined antennas in 1998 [79-80], but comparatively 

little has been published since then, while there have been several thin metal surface 

micromachined approaches [81-82]. Similarly, [83] published in 2009, presents a very HAR 

monopole antenna based on a new fabrication approach. Reference [84] is also one of the few 

works bringing EBG antennas into HAR realm by thickening the metal traces of the EBG surface 

embedded into the body of a patch antenna. Very recently, in the ECE department of the 

University of Saskatchewan, a series of investigations have been performed on HAR polymer-

based DRAs31 fabricated with the DXRL32 process [85-86]. In such works, the antenna is made 

of HAR polymers structures, but the metal feed lines are out of thin films. The same research 

group has then proposed a new class of HAR antennas based on tall metal strips on a substrate 

[87]. Such strips are introduced as a TL and are manipulated to be integrated along with a dipole 

antenna made of the same HAR TL. This way the feedline and antenna are both HAR. Tall metal 

EBG cells have also been realized using DXRL [108], but applied to filters not to antennas.   

Following such efforts, this work presents some novel HAR antennas which are new from two 

distinct aspects. Firstly, it is the first time that such HAR EBG cells (Chap. 4) and whole 

radiating structures based on them (Chap. 4 to Chap. 5) are proposed. Secondly, for the first time 

such HAR EBG antennas are investigated for the possibility of realization by a DXRL process 

(Appendix C).       

                                                 
31 Dielectric Resonator Antenna 
32 Deep X-Ray Lithography 
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Chapter 3 
 

Analysis and Verification Methods 
 
 

3 Analysis Methods and Verification 

The method mainly employed in this work to analyze the structures is a combination of 

numerical and mathematical analyses (referred to as HFSS/Bloch). The numerical analyses are 

conducted using Ansoft’s HFSS, which offers a standard full-wave analysis based on finite 

element method. On the other hand, the theoretical analyses are based on the Bloch theory, 

which is proposed for periodic structures [1-2]. Fig. 3.1 shows the Bloch unit cell of a 

periodically loaded microstripline (MSL) and the related dispersion diagram.  

In chapter 8 of [1], Pozar presents an example of such slow-wave TL for which the Bloch 

dispersion curve is provided. In that specific case, equations are simplified and interpreted so that 

the related curve mathematically indicates a zero value for β (γ=α+jβ) in the gray area shown in 

Fig. 3.1 (c) which is named (in [1]) as the stopband. In comparison, the curve in Fig. 3.1 (c) is 

found here by the HFSS/Bloch method when both the real and imaginary parts of the complex 

propagation constant are accurately plotted (α is not plotted in [1]). In areas other than the 

stopband, the behavior shown in [1] is very similar to Fig. 3.1 (c). A close look shows that β/k0 

curve has two maxima on both side of the gray zone. As seen, inside the stopband, β/k0 is 

reduced severely and reaches a minimum in the middle. For comparison, β/k0 (the propagation 
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constant normalized by the free space wavenumber) of a normal MSL, with no stubs, is also 

included in Fig. 3.1 (c). This second curve demonstrates that the open stubs (over the frequency 

range where stubs are capacitive: jb>0) cause the loaded TL to have a considerably higher β/k0 

and behave like a new TL with slow-wave characteristics. It is noted that according to the theory 

behind HFSS/Bloch method, β/k0 equals the square root of the effective relative permittivity 

(εreff
1/2) that waves experience along the structure.  

 

 

 

     

 

 

 

 

 

 

 

 

Fig. 3.1 HFSS/Bloch method is applied to a sample periodic structure and absolute values of β/k0 and α/k0 are 

plotted, a) MSL periodically loaded with open stubs, b) the related cascade network, c) the dispersion diagram for 

Fig. 3.1 (a). For comparison, β/k0 of a normal MSL, with no stubs, is also included; traces are 0.91mm (Z0~50Ω). 

 
For the unloaded case in Fig. 3.1, β/k0 ~2.6 (a normal MSL with 50Ω). Applying the classic 

closed-form equations [1] of a MSL to the given dimensions results in εreff
1/2=β/k0~2.56. This 

value is in a very good agreement with ~2.6 from Fig. 3.1. The εreff
1/2 for the loaded case is 

severely frequency dependent as shown in Fig. 3.1. It is important to note that the plotted β/k0 

(b) (a) 

(c) 

 
Stopband defined by [1], which 
ignores the effect of α (see the text) 
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curve is not accurate very close to the transitions (see the arrows in Fig. 3.1). Around those 

frequencies, the slopes sharply change, and at one specific point, the sign of slopes changes as 

well. In fact, one reason that the stopband zone is so called is that vg is very low in this frequency 

zone. It is important to emphasize that the curves are normalized by k0 (free space wavenumber), 

which is a frequency dependent factor. Increasing the frequency resolution of analysis at and 

around the transitions could improve the curve. However, the current curve is plotted with lower 

resolution over a large frequency range to only show the general dispersive behavior of a MSL 

loaded with open stubs and demonstrate the ability of HFSS/Bloch method to calculate these 

curves. The open-stub loading case of Fig. 3.1 is a simple case and generalized cases are also 

considered in literature, for which the loading is more complicated [3-4]. For example, [4] 

presents equations for the general loading shown in Fig. 3.2 in which Z and Y could be any type 

of load.  

 
Fig. 3.2 General Bloch unit cell for a 1D periodically-loaded transmission-line made of an infinite number of such 

symmetrical cells [4]. © 2006 IEEE. 

The dispersion relation for the cell in Fig. 3.2 is [4] (since AD–BC = 1 and A=D due to 

symmetry) 
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where A, B, C, and D are the cascade parameters of the unit cell. For example, if applying the 

particular case of Fig. 3.1 to (3.1), Z=0 and Y=jb which simplifies (3.1) to [1]: 

 θθγ sin
2

coscosh 0bZAd −==  (3.2)

As shown later in this work, instead of a shunt admittance like in (3.2), the unit cells proposed 

have a series impedance in the middle. Therefore, in (3.1), Y=0, which results in  

 θθγ sin
2

coscosh
0Z

ZjAd +==  (3.3)
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Later on in Sec. 4.4, (3.3) will be used to develop a circuit model for the proposed cells. In a 

similar manner, B as the second cascade parameters can also be expressed analytically as 

presented later. It is noted that most unit cells considered in literature, and also in this thesis, are 

symmetrical, and hence, only A and B are sufficient to provide a full description of the dispersive 

behavior. The other cascade parameter C is not necessary for Bloch analysis of symmetrical cells 

(also, D=A for a symmetrical unit cell).  

Fig. 3.3 describes the different steps of the HFSS/Bloch analysis method. As seen, the process 

starts with modeling the cell in HFSS (Sec. 4.1). Then the scattering parameters, and from them, 

the cascade parameters of the cell are extracted. Because Bloch equations are based on cascade 

parameters (Fig. 3.3), using them, a dispersion diagram (γ versus frequency) can be generated 

which is able to exhibit how the whole periodic structure functions. The method also provides 

the equivalent Bloch line impedance (ZB) of the periodic TL, which along with the dispersion 

diagram allows to treat the structure as a periodically loaded TL with known impedance and 

propagation constant. This TL can be used to create microwave components like antennas.  

 
 

 

 

 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

Fig. 3.3 The proposed HFSS/Bloch analysis method: step-by-step progression to generate the Bloch dispersion 

diagram for a structure composed of EBG cells. 
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It should be emphasized that in the antenna realm, curves such as Fig. 3.3 are conventionally 

used to understand leaky-wave (LW) antennas (see Sec. 5.1), in terms of their dispersive 

behavior and navigating the design process. However, it is observed in related works that little 

attention is usually paid to the capabilities that ZB could also add to the design process and to the 

depth of the knowledge gained on the operation of such structures. One point of strength and 

novelty in this work is in the way the cells are modeled (using two waveports33 rather than 

periodic boundary conditions (PBC), as described in Sec. 4.1). This provides the opportunity to 

extract ZB along with γ and gain a more profound insight of the antenna structures as a lossy TL. 

The body of all proposed antennas is in fact a fragment of the cell-texture TL in Fig. 3.3, which 

could be described and controlled when having the associated ZB and γ. This opportunity has 

resulted in the circuit model of Sec. 4.4 in which the antenna input impedance is derived 

relatively accurately (up to 4% difference for a range of different cells). In addition to this 

method, in Sec. 4.1.7, the unit cells are modeled using PBC, very similar to the way conventional 

EBG cells are analyzed, and the related reflection phase diagram is compared with the 

HFSS/Bloch diagram in Fig. 3.3.       

Fig. 3.4 shows the two main classes of antennas that will be proposed in this work based on 

the HFSS/Bloch dispersion diagram. These antennas are classified according to the principle of 

their operation. Antennas, which are being matched and operating in the leaky zone (i.e. 

radiation zone in Fig. 3.3), are classified as leaky-wave antennas with frequency-scanning 

patterns (Sec. 5.1). On the other hand, antennas matched above the leaky zone (in slow-wave 

zone) are classified as resonant antennas with fixed broadside patterns mostly radiating like 

regular patch antennas (e.g. Sec. 4.1). More details will be presented in the related sections.  

                                                 
33 It will be demonstrated that (see Fig. 4.1.10) for the proposed unit cells, mutual coupling is not an issue and the 

use of waveports rather than periodic boundary conditions is justified, and results in accurate estimations.   
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Fig. 3.4 Two fundamentally different antennas in this thesis developed using the HFSS/Bloch dispersion diagram. 

 

Apart from the Bloch analysis, there are some analysis approaches in literature, which are 

usually applied to evaluate properties of periodic structures, including EBG surfaces. One of the 

most popular methods, usually preferred when tackling the EBG concept for antenna structures, 

is the reflection phase characterization method [5-8]. This method is based on illuminating the 

unit cell by plane waves and evaluating the phase of the reflection coefficient [8]. The curve 

created by this method is called reflection phase diagram (RPD) [9]. The frequency at which the 

phase is zero is the cell resonance frequency. At this resonance, the cell exactly behaves like a 
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perfect magnetic conductor (PMC). Usually, where the reflection phase is within ±90˚ 34 [e.g. see 

18] is considered the artificial magnetic conductor (AMC) zone. Fig. 3.5 shows an example of a 

RPD for the mushroom-like RBG cell [8]. This method will be used at the end of Sec. 4.1. 

 

Fig. 3.5 An example of using RPD to analyze EBG grounded antennas [8] © 2003 IEEE; where the phase is zero (at 

cell resonance), the surface is imitating a PMC boundary; notice the resonance drops when W increases.  

Another method which is naturally similar to the Bloch approach is using the dispersion 

curves known as Brillouin diagram [10-11]. Fig. 3.6 shows an example of such a diagram, which 

provides information about the propagation constant (β, the imaginary part of the complex 

propagation constant) as an indicator of the way waves propagate along the surface. 

 

     

Fig. 3.6 An example of using Brillouin’s dispersion diagram to evaluate surface wave suppression properties and 

bandgaps of EBG surfaces [10] © 2006 IEEE. 

                                                 
34 Some other works consider the range ±45˚ instead.  
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Using this diagram, β can be examined not only in lateral directions (βX and βY) but also in the 

diagonal direction (βXY). The left section of the X-axis in Fig. 3.6 shows β when waves travel 

from the point Γ to the point X (see the small square cell inside the figure). At the center of the 

X-axis, the curve shows β when waves travel from the point X to the point M. Finally, on the 

right section of the X-axis, β is given when waves travel diagonally, from M to Γ. Therefore, the 

diagram can give a more profound view of propagation or suppression of surface waves in 

different frequencies and directions. For example, in Fig. 3.6, there is a frequency band 

somewhere between 2GHz and 3GHz for which β does not exist, thus this band is called a 

bandgap where no wave propagation is allowed. Because the power traveling along a planar 

structure is mainly guided in the form of surface currents and waves, this bandgap is ideal to 

suppress such surface waves where they are not desirable, e.g. in case of a planar antenna on a 

ground plane. Although this diagram is more popular in microwave community (originally used 

for photonic bandgap structures [12]), sometimes in antenna engineering it appears along with 

RPD to provide more profound views of the way the artificial surfaces operate [e.g. 5]. 

The next popular approach to find bandgaps of EBG surfaces is based on using the EBG 

surface as the ground plane of a 2-port MSL [13-16], as in Fig. 3.7. This stems from the fact that 

in very low or high frequencies, an EBG surface behaves like a PEC, and hence, the metal trace 

located on this PEC surface will be a normal MSL and is partially matched. Hence, in this case, 

the insertion loss, IL=-20log|S21|, is not too high. In contrast, over the bandgaps, the surface 

switches from PEC to PMC (better to say AMC), and the MSL impedance changes. In fact, a 

MSL on a PMC cannot guide power and tends to suppress surface current because tangential 

magnetic fields are not welcome on a PMC surface. This change deteriorates the matching 

condition severely (IL grows), and therefore, bandgap/stopband frequencies could be 

discriminated from others. It is noted that a similar approach will be used in the beginning of 

Sec. 4.1. Reviewing the literature shows that in some rare cases [2, 5], all three methods, 

including RPD, Brillouin’s diagram, and IL are utilized and compared for further clarification. 
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Fig. 3.7 An example of applying the insertion loss (dB|S21|) evaluation method [13] for deriving bandgaps of EBG 

surfaces. © 2006 IEEE. 

 

The last method proposed to find the resonance of an EBG cell through simulation suggests 

modeling the cell similar to the RPD method, but it uses a different way to excite waves [17]. As 

seen in Fig. 3.8, instead of impinging the cell in the model by plane waves (see Fig. 3.5), the cell 

is excited by a waveport placed far from the surface of the cell. To model the periodicity, similar 

to the RPD method, walls parallel to waveport E-fields are assigned to be PMC and those 

perpendicular, will be considered PEC. This periodicity brings about a condition under which the 

cell is illuminated by normally incident35 plane waves [17]. In this method, the effect of the 

distance between the waveport and the cell surface is also taken into account (is de-embedded) as 

it introduces a phase shift in addition to what the cell creates itself. In Sec. 4.1, this method will 

be applied to proposed HAR EBG cells and is compared to the HFSS/Bloch diagram to generate 

a deep insight about the exceptional performances of the antennas based on such cells. 

                                                 
35 Oblique incidence case could also be studied, using other types of boundary conditions like Master/Slave. 
However, the modeling is more complicated and time consuming and requires a meticulous adjustment of analysis 
parameters. 
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Fig. 3.8 a) Unit cell modeling in HFSS using waveport as proposed in [17] © 2009 IEEE, b) PEC symmetry planes, 

c) PMC symmetry planes. 

 

3.1 Comparing Alternative Methods 
In order to lend credibility to the analyses carried out and validate the designs based on those 

analyses, the results of at least two alternative methods are compared. In brief, three independent 

analysis methods are used throughout the thesis, which agree favorably. These methods include:  

• HFSS/Bloch method proposed for the first time for such structures (described in Sec. 4.1 

and used in later chapters) 

• HFSS simulation as a full-wave analysis method (throughout the thesis)  

• Prototyping and experimentation (used for some of the designs; Sec. 4.2, 4.4, 5.3, and 

Appendix C) 

A circuit model is also proposed in Sec. 4.4, which is in fact a developed version of 

HFSS/Bloch method, thus not considered a fundamentally independent method. This model is 

the HFSS/Bloch method when its dependency on HFSS is deliberately removed (100% closed-

form equations) using TL circuit theory.  
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3.2 Fabrication and Experimental Verification 
As a traditional way of verification, a few prototypes are also fabricated and tested 

experimentally. For instance, one of the prototypes presented in Sec. 4.2 is first fabricated using 

CNC milling and then undergoes four different kinds of measurement to provide a complete 

verification on the performance. Fig. 3.9 describes such measurements in a whole view, which 

include input reflection measurement, efficiency measurement using the Wheeler cap method, 

radiation pattern measurement, and radiation gain measurement using the three-antenna-method.  

To measure the antenna radiation gain and pattern, it has been necessary to develop a test setup 

including a semi-anechoic condition (absorbers) and two extra antennas required for the process. 

Fig. 3.9 depicts a view of the antenna under test along with the two extra fabricated antennas. 

Details of the measurement processes are reflected in Sec. 4.2.    

 
Fig. 3.9 a) The prototype to appear in Sec. 4.2, which undergoes a complete set of antenna measurements, as 

depicted. 
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Other prototypes fabricated during the research are briefly summarized here:  

• A planar antenna with thin traces (4µm) made with UV-lithography using a Cr mask 

(Sec. 4.4).  

• Some planar antennas with thin traces (30µm) made with UV-lithography, using a regular 

laser-printed mask (Sec. 4.4, Sec. 5.3, and two supplementary antennas in Fig. 3.9).   

• Development of several process steps required for the fabrication of HAR antennas using 

X-ray lithography (Appendix C), including: 

 The design and fabrication of an in-house X-ray mask for such structures at SyLMAND laboratory 

of the Canadian Light Source. 

 Experimenting with X-ray exposure steps for future structures of such antennas. 
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Chapter 4 
 

Analysis and Design of  
Self-Excited EBG Resonator Antennas 

 
 

4 Analysis and Design of Self-Excited EBG Resonator Antennas 
In line with motivations and objectives sketched in previous sections, this chapter proposes a 

novel antenna structure called the Self-Excited EBG Resonator Antenna (SE-EBG-RA) together 

with a new method for its analysis and design. This fundamental method (referred to as 

HFSS/Bloch) is applicable to periodic structures such as the proposed periodic antennas, and will 

serve as the cornerstone of the thesis. Sec. 4.1 describes the development of the SE-EBG-RA and 

the HFSS/Bloch method. Then, Sec. 4.2 compares two different versions of the antenna, referred 

to as open- and short-circuited SE-EBG-RAs. After that, in Sec. 4.3, a scheme is presented to 

enhance the aperture gain of a SE-EBG-RA. Sec. 4.4 is dedicated to a mathematical approach to 

remove the dependency of HFSS/Bloch method on numerical analysis and to find a set of closed 

form equations for fast characterization of SE-EBG-RAs. Finally, Sec. 4.5 focuses on the 

periodicity of SE-EBG-RAs and the fact that by miniaturizing the antenna unit cell, electrically 

smaller SE-EBG-RAs are achievable.     



69 
 

4.1 A Novel High-Performance Antenna: SE-EBG-RA 

In this section, radiation characteristics of an open-circuit electromagnetic band-gap (EBG) 

transmission line are employed to demonstrate a new low-profile antenna with high radiation 

efficiency. The self-excited EBG resonator antenna (SE-EBG-RA) presented is excited using a 

microstrip line, without requiring a separate probe. Tall metal traces enhance radiation while 

providing less loss, which results in better efficiency. Some desirable properties including 

radiation pattern, gain/efficiency, overall footprint, and resonance frequency are discussed. 

 
4.1.1 Introduction 
As discussed earlier, antennas with reduced size and higher radiation efficiency have long been 

targeted by researchers in the field of communications [1]-[5] and [7]-[8]. If the antenna 

footprint can be reduced while not sacrificing other parameters like bandwidth and radiated 

power efficiency (η), lifetime, weight, cost, size, stability and biological harms of many 

communications systems can be ameliorated. To this end, many attempts have been made 

including: getting inspiration from fractal shaped objects [7], applying dielectric or magnetic 

materials around the original element [5], using optimization algorithms [5], utilizing lumped [5] 

or parasitic [4] elements, etc. Recently there is increased attention on incorporating electrically 

small periodic elements into the body of traditional structures [1]-[3], [8]-[9]. These elements, 

which can be metal, dielectrics, or a blend of both, are generally referred to as metamaterial [8]-

[9], and some of them specifically as EBG structures [1]-[3]. The aptitudes of these structures in 

promoting size reduction, surface wave suppression, and loss mitigation are demonstrated [1-3], 

and were discussed in the previous chapters. This Chapter first incorporates EBG cells with some 

radiation properties into a transmission line (TL) structure, and then the TL is utilized to develop 

an antenna. The role of high aspect ratio (HAR) metal traces in enhancing η is also demonstrated. 

 

4.1.2 Periodically Deployed Patches as a Radiating EBG TL  

A well-known EBG surface is first considered. As seen in Fig. 4.1.1 (a), this EBG surface is the 

via-less version [2] of the mushroom-like structure [1]. To realize a TL composed of these EBG 

cells, a number of patches are deployed over a PEC-backed dielectric slab just in one direction. 

In Fig. 4.1.1 (a), the structure shown is made of 5 cells resembling a normal microstrip line 

(MSL), but with tiny sections periodically removed to discriminate between the adjacent patches 

(cell details are as in Fig. 4.1.3). 
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Fig. 4.1.1. 2-port analysis of the 5-cell EBG TL and its gap-less version [17] © 2012 IEEE, a) geometry and HFSS 

modeling, b) S11 and S21, c) group delay and normalized loss in (4.1.2), d) realized gain, gain, directivity, and η; 

detailed dimensions of the EBG cell are as in Fig. 4.1.3. 

(a) 

(d) 

(b) 

(c) 
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As seen, metallic traces project from the substrate surface to form a tall EBG woven TL. The 

importance of tallness will be explained in Sec. 4.1.5. Considering two wave ports on each side, 

the 2-port network behavior can be analyzed numerically. Fig. 4.1.1 renders the geometry and 

properties of this EBG TL over a wide frequency range. For comparison, properties of the gap-

less version are also included in Fig. 4.1.1.  

As shown in Fig. 4.1.1 (b), there are some bandgaps (around 3.7 GHz and 4.43GHz) at which 

the S11 is quite small meaning that nearly all the power coming to port 1 is delivered into the 

network. S21 is also reduced (< 0dB) which shows not all the entering power can reach port 2 and 

indicates some form of loss. If the port impedance is the same as the reference impedance on 

which S-parameters are based, the power loss in the network can be written as: 

 
2

211
2

1112  )1(  SPSPPPP inLoss −−=−=

 

(4.1.1)

or the normalized loss can be expressed as [10] and [15]: 

  1  2
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(4.1.2)

where Pin is the power entering the network, P1 is power incident on port 1 (|V1
+|2/2Z0), P2 is 

power output from port 2, and Z0 is the reference impedance. It is well-known [10] that for a 

lossless 2-port network, (4.1.2) has to be zero. Therefore, (4.1.2) can be a proper criterion to 

evaluate radiation loss or other losses. Fig. 4.1.1 (c) shows (4.1.2) versus frequency. As 

observed, the loss is considerable meaning that if other loss mechanisms (i.e. conductor and 

dielectric loss) are negligible, the power must be radiating. For comparison, the group delay, 

which is the indicator of the electrical length, is also included in Fig. 4.1.1 (c). To have a correct 

analysis setup, the 2-port structure is placed in a radiation box, and all conditions required for 

analysis of a radiating structure are considered. For the structure of Fig. 4.1.1 (a), the gain and η 

are shown in Fig. 4.1.1 (d). In fact, this structure can be considered an antenna feeding from port 

1, but terminated at port 2 by the port impedance (not open circuit, i.e. OC), which is also the 

idea utilized in [e.g. 14]. As in Fig. 4.1.1 (d), η of the EBG TL is generally high and tending to 

peak around a specific bandgap. It is obvious that around these bandgaps, group delay increases 

(longer electrical length), input matching and gain improve, and PLoss/P1 is at its peak (peak 

radiation loss). Altogether, this simple analysis shows that this piece of TL is radiating a portion 
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of EM power and is capable of receiving the guided power from one port as a TL and radiating it 

from all over its structure as an antenna. 

To provide an alternative analysis, the Bloch theory is employed which is an appropriate tool 

for analysis of periodic structures. Noting the general TEM solution of the differential equation 

ruling a TL [10] (in this case, Quasi-TEM for MSL), a complex propagation constant as γ=α+jβ 

can be assigned. α adds a non-traveling, attenuation nature which might be attributed to the 

Ohmic loss, radiation loss, or the total reflection on the input port, similar to waveguide behavior 

below the first cut-off. On the other hand, β adds a traveling wave essence. γ is linked to network 

parameters using the equation given by the Bloch Theory [10]: 

 ADAd
DAsymetricif )(  

2)(cosh
=

=+=γ

 

(4.1.3)

in which A and D are the unit cell cascade parameters and d is the cell size. The cascade 

parameters can be derived from the S-parameters given by HFSS, and by using conversion tables 

in [10]. Moreover, an equivalent impedance can be assigned to the loaded TL, known as the 

Bloch impedance. For symmetric cells, this impedance is expressed by: 

 12
0 −= ABZZB

 

(4.1.4)

in which Z0 is the impedance of the unloaded TL, B is the second cascade parameter. Thus, using 

(4.1.3) to (4.1.4), γ and ZB of the loaded line can be found from scattering evaluation of the 2-

port unit cell in HFSS.  

4.1.3 Open-Circuited TL and Its Radiation Characteristics 
If a lossy fragment of TL is Open-Circuited, the input impedance can be written as [10]:  
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(4.1.5)

It is reminded that ZB is a general complex value and dependent on the TL circuit components. 

Because Zin is complex, in case the imaginary part vanishes, the real part can be matched to the 

generator. If at a specific electrical length, matching is provided and the radiation is 

simultaneously high enough, the OC TL can be regarded as a matched antenna with a high 

radiation resistance. This behavior is demonstrated later through numerical analysis and 

measurement. Fig. 4.1.2 shows the circuit model for the EBG cells.  
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Fig. 4.1.2. Circuit model for the proposed EBG cells. The real power radiation is modeled as a conductance [17] © 

2012 IEEE 36. 

This model is generally compatible with those used by the Bloch theory [9]-[10] and [13]. 

Specifically, the model is very similar to that in [13], except here the conductance G is added to 

model the radiation. As shown by [13], Zd in Fig. 4.1.2, is related to the inductance provided by 

the PEC-backed dielectric slab given in [1]-[2] and [13]. If G is considerable, on the one hand, it 

causes more radiation and better η for the antenna made of this TL. On the other hand, by 

affecting the overall circuit model, G can affect α and β. Because Zin in (4.1.5) is a complex 

value dependent on α and β, G is able to affect the matching quality. It can be concluded that the 

size and η of the antenna made of this TL are dependent on G. To demonstrate the effect of G, 

two unit cells composed of small pieces of MSL are considered, one without any gap (Fig. 4.1.3 

(a)), and the other with 0.1mm air gap at the center, i.e. EBG cell (Fig. 4.1.3 (b)). All other 

parameters are kept the same. The normalized γ in (4.1.3) is depicted versus frequency in Fig. 

4.1.3 (c). Also, Table 4.1.1 compares β, α, and ZB found by (4.1.3) to (4.1.4). Putting these 

parameters into (4.1.5), and considering a 3-cell OC section, Zin and RL are found as in Table 

4.1.1. As opposed to the gap-less unit cell, the EBG one is well matched to the 50Ω source, and 

its η is ~3.3 times larger. 

 

 

 

                                                 
36 Fig. 4.1.1 to 4.1.6, parts of Fig. 4.1.7, Fig. 4.1.8, Table 4.1.1 to 4.1.2 are published in [17] © 2012 IEEE.    
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Fig. 4.1.3. Unit cell and the 3D model details for, a) the tall MSL, b) the gap loaded (EBG) tall MSL, c) normalized 

γ in (4.1.3); w=9, εr=9.9, tanδ=0.003, σ=5.8e7s/m. 

Table 4.1.1 Performance comparison of 2 unit cells: low loss MSL, and EBG (Zin and RL are given for a 3-cell OC 

piece of each case) 

Freq (GHz) β/k0 α/k0 Zc (Ω) η  Zin (Ω) 
(3-cell OC piece) Group Delay (ns) RL (dB) 

Gap-less version: w=7.1mm, L=7.2mm 

4.15 2.88 0.009 12.3 22% 0.32+j10.1 0.072 -0.1 

Gap-loaded (EBG) version: all the same except 0.1mm gap at center   

4.15 1.67 0.07 5.64-j0.25 73% 41.85-j1.2 0.09 -21.4 
 

It is noted that before using (4.1.3) to (4.1.5), it is necessary to obtain Z0, which can be found 

by numerically analyzing the gap-less unit cell, yielding Z0=12.3Ω. In fact, in HFSS, the port 

impedance is calculated from field components around the port. Taking a circuit approach, which 

means using (4.1.4), it is possible to evaluate Z0 by S-parameters instead of the fields. In this 

case, ZB will be 12.28Ω which closely agrees with 12.3Ω. This clearly implies the soundness of 

modeling and the accuracy and convergence of the numerical analysis in HFSS. For comparison, 

closed form equations [e.g. 10] can also be employed to find Z0. These formula give Z0=11.9 

(b)(a) 

(c) α/k0 

β/k0
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which is still close to 12.3Ω (error<2.5%). Now the question is how to ensure that the structure is 

radiating sufficiently. To answer, it is noted that at some frequencies, α grows while β is 

providing a large Re{Zin} and a small Im{Zin} in (4.1.5). In this case, the real power enters the 1-

port OC fragment of TL with a good RL, and hence, it has to be consumed somewhere. If the 

consumption is mainly due to the radiation and not Ohmic loss, the structure is an antenna. Then, 

this radiation can be shown by a large radiation resistance (Rr) while the Ohmic loss (RLoss) is 

relatively small, and this yields a large η= Rr/(Rr+RLoss). This explanation is later confirmed by 

simulation and experiment. As known in antenna theory, Rr of a line with sinusoidal current is 

dependent on the electrical length [11]. For small antennas, the greater the electrical length, the 

higher Rr & η. Looking at Table 4.1.1 and comparing the group delay of unit cells, it is observed 

that the delay (electrical length) is larger for the EBG cell, and hence, with identical physical 

lengths, this cell has larger Rr. 

 

4.1.4 Concept of Self-Excited EBG Resonator Antenna  
In Table 4.1.1, radiation by EBG cells was demonstrated. Now if considering a 3-cell OC EBG 

TL (1-port network), and analyzing it using (4.1.3) to (4.1.5), it is observed that at 4.15GHz, the 

RL is high meaning that this OC EBG network is a radiating structure around this frequency. 

Because this novel structure is woven by EBG cells, and it resonates only at around a specific 

frequency band (bandgap), it can be called an EBG Resonator Antenna (EBG-RA). The term 

“Self-Excited” is added to indicate that as opposed to other EBG cells usually used as the ground 

plane in antenna design [1]-[3], the SE-EBG-RA does not need an external EM probe like a 

dipole or patch antenna. Instead, it is simply excited from one side, in the same plane, by a MSL 

port. In section 4.1.5, it is shown that numerical analysis of this 3-cell OC EBG antenna totally 

done by HFSS (no Bloch) roughly results in the same 4.15GHz resonance predicted by (4.1.3) to 

(4.1.5). As in Table 4.1.1, the RL predicted by the Bloch method is -21.4dB while that of Fig. 

4.1.6 (right) is -18.5dB (see Fig. 4.1.7), both resonances occurring at 4.15GHz, and 

demonstrating good agreement.  

To show how the SE-EBG-RA radiates, the fields right above the EBG cell of Fig. 4.1.3 (b) 

are considered and the relevant real Poynting vectors are illustrated in Fig. 4.1.4. It is observed 

that vector components are pointing to the broadside direction implying that a portion of real 

power is radiating at the gaps. The important point is that E-fields are excited inside the gaps and 
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radiated out parallel to the ground, as opposed to the normal MSL in which E-fields are 

perpendicular. According to the Huygens’ equivalence principle [11], the aperture E-fields can 

be replaced by their equivalent magnetic surface currents:  

 
aS EnM ×−=

∧

  2

 

(4.1.6)

where n is the unit vector normal to the surface, on the side of  radiated fields. Based on (4.1.6), 

such E-fields can be represented by a magnetic current parallel to the ground. Because the image 

of MS in a PEC is in phase, it constructively radiates. Fig. 4.1.5 illustrates the application of 

Huygen's principle to cells. To clarify, in [11], E-fields uniformly distributed on the open end of 

a parallel plate waveguide are considered, and an equivalent impedance is driven using the 

aperture theory with the assumption that the gap is surrounded by infinite PEC planes on each 

side. In fact, the field condition on the top surface of tall traces roughly satisfies this requirement. 

In Sec. 4.4, this is used to estimate the impedance at gap and develop the circuit model.  

 

Fig. 4.1.4. Different views of the EBG unit cell of Fig. 4.1.3 (b) together with the distribution of real Poynting 

vectors adjacent to the cell aperture at 4.15GHz. 

 
 

Fig. 4.1.5. General field distribution around the EBG cell gap: a) E-fields are parallel to the PEC ground, b) 

illustration of the equivalent magnetic current based on Huygen's principle, c) in phase image of MS above a PEC 

(no field cancellation). 

 

(a) (b) (c) 
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Fig. 4.1.5 could give the impression that the structure is a type of slot antenna or slotted 

antenna array, for which slots have been applied to a thick MSL. However, the fact that the slots 

are electrically small (typically < λ/10) and that their periodicity is also small (< λ/10) 

differentiates the antenna from those arrays which usually use large slots. The overall length of a 

typical 3-cell SE-EBG-RA is ~0.4λ while in later chapters, much smaller versions with 2 cells 

are also presented (down to ~0.22λ in length). Readers are urged to review the work in [16] 

because it has some similar aspects with the idea of this section. 

 
4.1.5 Advantages of Thick Unit Cells: Miniaturization and Efficiency  
To show the effect of tallness, a 3mm portion of a non-tall (thin conductor) 50Ω MSL is 

considered and its radiation is compared to that of a tall (thick conductor) 50Ω version. The 

HFSS models for unit cells are like Fig. 4.1.3 (a), except for w and h′ which are shown in Table 

4.1.2, and H=20mm and L=3mm. 
 

Table 4.1.2 Comparison of radiation properties of a tall and a non-tall 50Ω MSL; Zc is the characteristic impedance; 

η is for one cell, roughly calculated from the unit cell model in HFSS, to help as a baseline. 

εr=9.9, h=1mm, tanδ=0.003, σ=5.8e7s/m, L=3mm 
h is the dielectric thickness, h′ is the trace thickness, and w is the trace width 

Freq (GHz) β/k0 α/k0 η (%) Zc (Ω) Group Delay (ns) 

Tall Version (w=0.3mm, h′=2mm) 

4.15 2.067 0.007 39.35 49.85 0.022 

Non-Tall Version (w=0.92mm, h′=0.03mm) 

4.15 2.584 0.007 8.32 49.45 0.026 

As in Table 4.1.2, with identical Zc, η of the tall cell is 4.7 times higher. Although η is found 

for current distribution and loss on 2-port unit cells (not for the multi-cell structure), it is still a 

good figure to predict η of OC pieces of these TLs. It is noted that this is only a rough estimation, 

because for an accurate η commutation using HFSS, the boundary walls (radiation box) should 

be at least λ/4 far from any point of the cell to allow them work properly. In light of observing 

mostly upward radiation from the cells (see Fig. 4.1.4), the radiation box is considered large 

enough on the top (Fig. 4.1.3), but not on the side. This causes some errors while at the same 
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time provides a quick insight on the η of the cells (comparatively) without the need to analyze 

the larger antenna structures. 

The high η of the tall version can be attributed to less ohmic loss, yielding less RLoss and more 

η. Another reason is that the amount and the distribution of fringing E-fields for the tall one are 

different which could yield more constructive radiation and less far-field cancelation. As in 

Table 4.1.2, β/k0 and delay are smaller for the tall one showing that fields infiltrating the air are 

larger. According to the Huygen's Principle, some parts of fringing E-fields which are parallel to 

the PEC ground, have in phase images (similar to Fig. 4.1.5), thus can radiate more effectively 

than those of a non-tall MSL. Non-tall MSL may also have such fringing fields, but they are 

comparatively smaller because the effective dielectric constant is higher in this case and fields 

are more bound inside the substrate, and less infiltrating the air (compare β/k0 in Table 4.1.2). 

This fact increases the Rr attributed to an OC piece of this TL, and hence, η enhances. Another 

advantage of tallness is that it can help realize a higher capacitance (Fig. 4.1.2) with the same 

lateral size as before. This helps the designer realize electrically smaller antennas. To 

demonstrate this feature, two SE-EBG-RAs are considered, which are identical with the 

exception of the height; one is 2mm tall (i.e. thick) and the other is 0.03mm (i.e. thin). These 

three EBG cells, depicted in Fig. 4.1.6, are fed by a 2.3mm long 50Ω MSL on one side, and are 

open on the other side. To provide a logical comparison, while decreasing the height, w of the 

MSL feed line becomes laterally much larger, increasing from 0.3 to 0.92mm to keep the 

impedance fixed at 50Ω. The analyses are entirely numerical and performed in HFSS to conduct 

an alternative to the results in Table 4.1.2.  

 
Fig. 4.1.6. 3D geometry of two SE-EBG-RAs which are identical with the exception of the trace height; right) 2mm 

tall (i.e. thick), left) 0.03mm tall (i.e. thin); λ is wavelength at 4.15GHz; unit cell details are rendered in Fig. 4.1.3. 
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As shown in Fig. 4.1.7, the tall version resonates at a lower frequency of 4.17GHz (~20%), and 

its matching quality is much higher (thickness serves as an extra parameter to achieve that). This 

frequency is close to 4.15GHz found by HFSS/Bloch, reported in Table 4.1.2. Also, as shown in 

Fig. 4.1.8, the gain and η of the tall version are much better. It is worth noting that SE-EBG-RA 

resonance of 4.17GHz is in the slow-wave region in Fig. 4.1.3 (c), and hence, the antenna does 

not belong to the leaky-wave family [9, 14], but to the resonating wave antennas [16]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
                   

 
 
 

 
Fig. 4.1.7. a) radiation pattern of the tall SE-EBG-RA at 4.15GHz, b) antenna 3D view and the definition of major 

radiation planes, c) comparison of dB|S11| of the tall (-18.5dB) and thin (-2.8dB) SE-EBG-RAs of Fig. 4.1.6.  

 

The pattern in Fig. 4.1.7 (a) shows that, as usual for EBG antennas [2], Front-to-Back ratio is 

high while the ground plane is comparatively small (0.51λ×0.41λ). Another common point is that 

the overall structure thickness is very small at ~λ/24. Later, using the reflection phase analysis, it 

is shown that the antenna acts similar to EBG antennas. In fact, such an ideal pattern, ~3dBi gain 

(a) (b) 

(c) 
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with this small size, and the simple feeding method discriminates this antenna from rivals. It is 

noted that this work intuitively shows that with different types of EBG cell, the radiation 

properties could be the same. Specifically, as demonstrated in coming chapters, by employing 

naturally smaller cells [e.g. 12], smaller versions of the proposed antenna could be achieved. 

 

Fig. 4.1.8. Comparison between realized gain and η of the tall and non-tall SE-EBG-RAs; the gain is for the ground 

plane size (XY size in Fig. 4.1.6) of 0.51λ×0.41λ. 

4.1.6 Soundness of the HFSS/Bloch Cell Modeling 

To make sure that the effect of mutual coupling is sufficiently considered in the HFSS/Bloch 

method described before (see Fig. 4.1.3), a comparative study is arranged as follows. As in Fig. 

4.1.9, three different Bloch-based models are considered in HFSS, the first of which with the 

regular 1-cell configuration (see Fig. 4.1.3 (b)), and the others comprising one and two more of 

the same unit cell. The idea is that if the mutual coupling for the first case is taken into account 

accurately (or is negligible), increasing the number of cells, as in Fig. 4.1.9, while accurately 

applying the Bloch theory, should not cause a noticeable difference in the Bloch dispersion 

diagrams. In that case, it can be concluded that the proposed Bloch cell modeling is reliable. 

To provide a logical comparison, after extracting the S-parameters from the case with 2 cells, 

instead of considering d1cell=7.2mm for the cell size, d must be doubled (d2cell=2×7.2mm) in all 

equations presented in Sec. 4.1. In a similar fashion, for the 3-cell case in Fig. 4.1.9 (c), 

d3cell=3×7.2mm. This modification allows the Bloch theory to be applied exactly the same to all 

three cases in Fig. 4.1.9. Fig. 4.1.10 shows the Bloch dispersion diagrams associated with these 

cells. As observed, the curves correspond so closely that it is difficult to differentiate between 



81 
 

them. The error at cut-off is less than 0.3% and significantly less in other areas. It is reminded 

that the SE-EBG-RA described earlier is matched somewhere above the cut-off frequency as 

shown in Fig. 4.1.10. The cut-off is the frequency after which waves switch from an evanescent 

nature to a traveling nature and propagate (real power) along the TL. The definition of different 

zones of Fig. 4.1.10 is a convention used in literature [e.g. 22]. Such analysis demonstrates the 

soundness of HFSS/Bloch modeling, and that modeling only one cell provides accurate results.  

 
 

Fig. 4.1.9 HFSS/Bloch unit cell model for one (a), two (b), and three (c) identical unit cells; HFSS/Bloch method is 

applied to all cases to verify how close the dispersion diagrams are.      

 
Fig. 4.1.10 Dispersion diagram by the HFSS/Bloch method for the three cells in Fig. 4.1.9. The curves agree closely 

and the difference in estimating the cut-off frequency is less than 0.3%. 

 
Negligible mutual coupling allows truncation in the number of cells, while not significantly 

affecting the accuracy of HFSS/Bloch in estimating the behaviors of antennas made of the cells. 

In Sec. 4.2, SC and OC versions of the SE-EBG-RA antenna with different number of cells are 

studied, and it is shown that the difference between the resonance found by HFSS numerical 

analysis and HFSS/Bloch method is 0.8% for the 5-cell OC version and 0.5% for the 2-cell SC 

(a) (b) (c) 
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version. Also, for the 3-cell structure of Fig. 4.1.6, this difference is as low as ~0.48%. Such 

results are in agreement with the results reflected in Fig. 4.1.9. One explanation for negligible 

coupling is that according to the results in Sec. 4.4, fields are mainly trapped in the air-gaps and 

could only weakly couple in the substrate. In Sec. 4.4, it will be demonstrated that Cpp
37

 

(introduced by air-gaps) typically dominates Ccp
38

 (dependent on dielectric material) and the 

effective dielectric constant along the structures of the designs is very low, at 2 to 4 (air is 

dominating the dielectric material).    

 

4.1.7 Reflection Phase Analysis of HAR EBG Cells 
In this part, a new analysis method is presented which can supplement the HFSS/Bloch analysis 

of the HAR unit cells and provides more profound insight on how these cells operate. The 

method excites plane waves so that they normally impinge the surface of unit cells. This is as 

opposed to the HFSS/Bloch method in which waves travel along the surface inside the substrate. 

By observing the reflection coefficient of the surface in different frequencies and comparing the 

results with the dispersion diagram given by HFSS/Bloch, a new understanding of the EBG cells 

is obtainable. The UC-EBG39 cell shown in Fig. 4.1.11 (a) was first introduced in [21]. It was 

also considered in [18] using the special cell modeling method shown in Fig. 4.1.11. 

 
Fig. 4.1.11. HFSS model for a) the UC-EBG cell, b) the same cell with PEC on top layer, together with c) the 

geometry of the top metal layer and the definition of its physical parameters; D=0.9, δ=t=0.07, d=0.4, h=0.3 (in 

mm), and εr=5.99; geometry, waveport (fields are along X-axis), and PEC/PMC symmetry planes are highlighted.  
                                                 
37 Parallel plate capacitance at gaps 
38 Coplanar capacitance at gaps 
39 Uniplanar-compact electromagnetic bandgap 

(c) (a) (b) 
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The modeling method considers parallel pairs of PEC and PMC as symmetry planes similar to 

other methods for modeling EBG cells [1-2, 19]. However, instead of using plane wave 

excitation, it utilizes a waveport as depicted in Fig. 4.1.11 (see the top face of the circumscribing 

box). The two faces parallel to XZ plane are PMC and those parallel to YZ plane are PEC. The 

bottom face is also set as a PEC. This way, the unit cell represents an infinite number of such 

cells deployed in X and Y directions.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.1.12 Reflection phase diagram for the cells shown in Fig. 4.1.11.  

 

This method of plane wave excitation is simpler to implement in HFSS than others [1-2, 19] 

and has proven accurate [18]. To assure that the HFSS modeling is seamless, the same cell in 

[18] is modeled here in HFSS, and the related reflection phase diagram (RPD) is rendered in Fig. 

4.1.12. As seen in Fig. 4.1.11 (b), other than the main cell, another case is also considered which 

has a metal sheet totally covering the surface of EBG cell, playing the role of a PEC surface for 

which RPD is expected to be 180˚. Fig. 4.1.12 shows that this expectation is fulfilled. For Fig. 

4.1.11 (a) cell, the frequency at which phase is 0˚ is the resonance when the surface is acting like 

a PMC, and hence, the surface could be called an artificial magnetic conductor (AMC). In Fig. 

4.1.12, the resonance happens at 64GHz and the one reported in [18] is 67GHz (∆<4.5%) which 

provides some confidence in accuracy. This difference can be attributed to the fact that [18] does 

not indicate where the reference reflection plane is, whether on the top surface of EBG or on its 

PEC ground plane (thus, ∆ could be less). In this work, the reference is considered to be on the 

top surface. The vertical arrow inside the cell in Fig. 4.1.11 (a) or (b) touches the surface of the 

PEC, Fig. 4.1.11 (b) 
UC-EBG, Fig. 4.1.11 
( ) 

AMC 
Resonance 
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substrate and shows that the phase shift caused by the distance between the waveport and this 

surface is de-embedded. Therefore, the RPD represents the phase difference only introduced by 

the substrate surface. 

The next step is to use this method for the proposed HAR cells. Fig. 4.1.13 shows the 

associated unit cell. Because the proposed cell is 1D, i.e. in practice, it is not repeated in Y-

direction, the radiation box in Fig. 4.1.13 is considered very wide to make images of the structure 

along the Y-axis very far from each other. Due to the effect of PMC symmetry planes, there are 

an infinite number of such images but the distance between them in Y-direction tends to 

sufficiently isolate them and cause the mutual coupling to be negligible. This isolation has been 

verified by increasing the cell width along Y-axis even more (twice what seen in Fig. 4.1.13) and 

observing that the shift in resonance is trivial. This strategy allows to apply the method described 

in Fig. 4.1.11 and analyze the resonant nature of the proposed cell with respect to normal plane 

waves. Fig. 4.1.14 shows the diagram and highlights the resonance frequency at 3.57GHz. 

 

Fig. 4.1.13 The HFSS model for a the proposed EBG cell; the geometry and the wave-port excitation as well as the 

PEC and PMC symmetry planes are highlighted and are arranged the same as Fig. 4.1.11; the radiation box width is 

enlarged enough to make the images in Y-direction sufficiently far and suppress the mutual coupling.  
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Fig. 4.1.14 Reflection phase diagram for the EBG cell shown in Fig. 4.1.13. The ±90˚ phase range area is 

highlighted by a color box. 

The dispersion diagram in Fig. 4.1.14 can be compared with the Bloch dispersion found by 

the Bloch cell modeling proposed earlier in Sec 4.1, as shown in Fig. 4.1.15 (over the same 

frequency range as Fig. 4.1.14). The comparison interestingly shows that the AMC condition in 

Fig. 4.1.14 occurs at a frequency, which lies somewhere inside the leaky-wave zone of Fig. 

4.1.15. Because the SE-EBG-RA composed of such cells is typically operating above this zone, 

where β/k0>1 (e.g. β/k0~1.65 for Fig. 4.1.3 (c)) this antenna functions above the AMC resonance 

of the cell, but still close enough to the resonance to benefit from the high impedance (HI) 

behaviors of such cells. This is in contrast to the EBG antennas in [2] or [1] for which a dipole 

antenna on EBG ground is matched somewhere below the AMC resonance, and still benefits 

from the HI nature. It is worth mentioning that [2] calls its EBG surface a reactive impedance 

surface (RIS), but the surface is in fact an inductive impedance surface (IIS). In comparison, the 

body of the proposed SE-EBG-RA (which is based on the HAR EBG cells) can be regarded as a 

capacitive impedance surface (CIS) because the antenna is matched above the AMC resonance. 

To expand on this, it is noted that the typical circuit model for an EBG cell facing a normally 

incident plane-wave is a parallel LC tank [2, 20]. Accordingly, in frequencies above the AMC 

resonance (LC resonance), impinging waves view the surface impedance as a capacitor and 

below the resonance as an inductor [2, 20].  

 

 ±90˚ 
AMC Zone 

Leaky-Wave Zone 
in Fig. 4.1.15 

AMC 
Resonance 
3.57GHz 
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Fig. 4.1.15 Dispersion diagram calculated by the HFSS/Bloch method. The curves show the real and imaginary part 

of the normalized propagation constant (γ/k0=α/k0+jβ/k0). AMC zone is highlighted and overlaps the leaky zone. 

 

4.1.8 Conclusion 

In this section, radiation characteristics and a tangible application of an EBG TL were 

investigated. The idea started by introducing the radiation properties of the TL. Then it was 

shown that although the radiation from this TL might not be desirable in TL realm, from a 

different standpoint, it could be useful to develop a novel antenna. The main feature of this 

antenna was the use of tall metal traces employed to mitigate loss and better excite EBG cells 

with a simple tall MSL. To form the antenna, a via-less version of mushroom-like EBG cells was 

first utilized to weave the EBG TL. Afterwards, by choosing a proper electrical length, an 

efficient antenna was achieved. The properties of the proposed antenna including radiation 

pattern, gain, overall footprint, and the input matching were rendered and discussed. The analysis 

of the EBG TL was based on the Bloch theory combined by numerical analysis (HFSS/Bloch). A 

dedicated study was arranged to demonstrate the soundness of the proposed  HFSS/Bloch cell 

modeling. Finally, EBG unit cells were also characterized using the well-known reflection phase 

analysis method and the results were compared to results from HFSS/Bloch method. The 

comparison showed that the SE-EBG-RA is a type of EBG antenna, which is matched above, yet 

close to the high impedance resonance of its EBG cells.   

 
 

 ±90˚ 
AMC Zone 

Leaky-Wave 
Zone 

AMC 
Resonance 

in Fig. 4.1.14 

 

SE-EBG-RA Typical 
Matching Zone 

α/k0 

β/k0 
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4.2 SC versus OC SE-EBG-RA: Miniaturization by a Shorting Plate  

In this part, a method is proposed to decrease the resonance frequency of the self-excited EBG 

resonator antenna (SE-EBG-RA) introduced in Sec. 4.1. The method is based on the application 

of a plate, which can short the open end of the antenna and make a short-circuited (SC) version 

with a reduced resonance. The antenna EBG cells are electrically much smaller than wavelength 

and are the same high aspect ratio (HAR) EBG cells described in Sec. 4.1. The set of EBG unit 

cells, which are arrayed only in one dimension (1D), are regarded as a fragment of EBG 

transmission line (TL), highly radiating from their apertures (as in Sec. 4.1). From a TL model 

perspective, this section shows how a few of these cells can be either open-circuited (OC) or SC 

on one end and behave like novel efficient antennas, while the SC version can be electrically 

smaller. As an extra step towards miniaturization, the effect of loading of HAR gaps of SE-EBG-

RAs with dielectric slabs is also examined. Three different parametric studies are conducted on 

the antennas to demonstrate their particular features. Two proof-of-concept prototypes are 

fabricated and experimented to validate the idea and designs. 

4.2.1 Introduction 

By definition, an antenna is regarded as electrically small, if it meets ka<1 where a is the radius 

of the sphere circumscribing the antenna [27]. Moreover, in case the antenna is mounted on a 

PEC ground plane, the condition is much stricter and ka<0.5 is normally considered [26-28].  

As described in Chap. 2, one way to achieve small antennas is to employ the EBG concept. Some 

published works focus on enforcing new boundary conditions by adding shorting pins [29], 

plates, or posts [30] along the structure of planar antennas. Similar efforts are also observed 

when an inverted-L antenna is turned into inverted-F antenna (IFA) or its planar version, Planar 

IFA with the aid of a shorting pin, a technique that brings about miniaturization [29] and 

flexibility in impedance matching [31].  

Considering the potentials of shorting pins, and also noting exceptional rewards of the EBG 

concept, this section aims to exploit both ideas simultaneously. This feature results in novel 

planar EBG antennas with reduced ground plane size, which maintain a very high radiation 

efficiency and performance.  
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4.2.2 Expansion on the Theory of OC SE-EBG-RA 

In Sec. 4.1 (also published in [17]), the concept of the OC EBG microstripline (MSL) with 

radiation properties was initiated, and a planar antenna with a small electrical footprint and high 

efficiency, called SE-EBG-RA, was introduced based on the concept. To elaborate on such an 

idea, this and the following sections scrutinize this antenna by expanding on its theory of 

operation, particularly finding its electrical length, setting parametric study on other versions of 

the antenna with different number of cells (as opposed to the version with only 3 cells in Sec. 

4.1), and inspecting the effects of the ground plane size. Most significantly, the analytical view 

started here is used in the following section to develop the concept of SC SE-EBG-RA, which is 

the salient contribution of the current section. For a generally lossy fragment of TL, the input 

impedance was given by (4.1.5). This equation relates Zin to ZB, the line impedance, γ=α+jβ, the 

complex propagation constant associated with the waves traveling along the TL, and l is the 

fragment length. If this fragment is OC on one side, the input impedance can be written as [10]:  

 
ljl
lljZlZZ BBin βα

βαγ
tantanh
tantanh1tanh

OC +
+

==

 

(4.2.1)

If the TL is the EBG TL described in Sec. 4.1, which basically looks like a MSL periodically 

loaded by HAR gaps at electrically short distances, then ZB is called the equivalent line 

impedance assigned to the loaded TL (known as the Bloch impedance). Fig. 4.2.1 shows the 

overall configuration of the EBG TL made by an array of patches on a PEC-backed substrate 

with tiny spacing. As in Sec. 4.1, γ and ZB were analytically related to the cascade parameter of 

the Bloch unit cell, which were found by HFSS simulations of the cell and the Bloch theory 

(HFSS/Bloch method). At one specific electrical length, nβl=nπ (l=nλg/2), (4.2.1) can be 

simplified to: 

 lZjXRZ Bininin αtanh/
OC

=+=

 

(4.2.2)

Because Zin is complex, in case Xin vanishes around a specific frequency, Rin can be matched 

to a 50Ω line. At this electrical length, the shortest possible l=λg/2, matching can be provided (an 

impedance transformer might be required) and the radiation is also high enough (α is relatively 

high due to radiating gaps), and therefore, the OC EBG TL is regarded as a high efficiency 

antenna. The fact that SE-EBG-RA is a half-wavelength antenna like a microstrip patch antenna 
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is an important insight on top of the preliminary radiation effects introduced in Sec. 4.1 for a 3-

cell OC antenna sample. Also, to ensure that regardless of the number of cells, the antenna still 

operates as expected with λg/2 length, in Sec. 4.2.5, different versions with 2 to 6 cells will be 

presented and studied.  

 

4.2.3 Concept of SC SE-EBG-RA 

In a similar manner to Sec. 4.2.2, if a generally lossy fragment of TL is SC, the input impedance 

can be written as [10]  
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ljlZlZ
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==

 

(4.2.3)

where at one specific electrical length, which is nβl=nπ/2 (l=nλg/4), (4.2.3) is simplified to 

 lZ
SC

Z Bin αtanh/=

 

(4.2.4)

It is interesting that (4.2.4) is exactly the same as (4.2.2), but each one is valid for different 

electrical lengths, which means the resonance frequency (fr) at which each one can be matched to 

a 50Ω line are different. If a SC piece of the same EBG TL in Fig. 4.2.1 is specifically 

considered, then (4.2.4) shows that this piece can be matched (on the side opposite to the SC 

end), and at the same time due to the radiation from the gaps, the TL turns into a radiating SC 

planar antenna. However, the difference is that the electrical length of this new SC antenna is 

λg/4 rather than λg/2 for the OC case. To ensure that regardless of the number of cells, the SC 

version still operates with λg/4 length, in Sec. 4.2.5, two SC antenna composed of 2 and 3 cells 

will be presented and studied. It is worth mentioning that if the gaps are removed (a thick MSL 

with no EBG cells), α approaches zero as the line turns to a TL mostly guiding the power inside 

with very negligible radiation. Also, ZB increases to Z0 (line impedance of a regular MSL with no 

gaps) because the series capacitances of the gaps, which naturally tend to drop the impedance 

(ZB<Z0), are now removed. 
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Fig. 4.2.1. 3D view of the EBG TL together with its Bloch line impedance, ZB plotted versus frequency; for 

comparison, the line impedance of the same TL when gaps are removed is also included.    

To show the effect of gaps on the line impedance, Fig. 4.2.1 compares the ZB and Z0 for the 

unit cell dimensions depicted and shows the decrease in ZB. Therefore, if there is no gap (no 

EBG cell), the increase in ZB and the decrease in α make (4.2.4) and (4.2.2) approach infinity 

which in turn makes matching the antenna to a 50Ω line impossible. This means that gaps are 

crucial to the expected operation of the SE-EBG-RA as they cause both radiation and allow 

matching. The related dispersion diagram is also given in Fig. 4.2.2. 

To expand on the operation of SC and OC antennas from another perspective, it is noted that 

in general, a λg/2 piece of TL images any load impedance exactly the same at its input. This 

means that if the piece is left open on one side, the input impedance should be infinity, while in 

case of the EBG TL, this infinite impedance is moderated by the effect of the radiation from 

gaps, as stated by (4.2.2). Similarly, a λg/4 piece of TL will image any load impedance based on 

Z0
2/ZL (quarter-wave transformer). This means that a SC piece of TL should image the load ZL=0 

again to infinity. Nonetheless, in case of the EBG TL, the effect of gaps modifies this high 

impedance and provides a finite impedance given by (4.2.4).  
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The fact that the SC version is λg/4, as opposed to the OC one with λg/2, demonstrates that the 

SC SE-EBG-RA brings about an antenna with considerably smaller size. Later on, in Table 

4.2.1, where the SC/OC SE-EBG-RA performance is studied against the number of EBG cells, it 

will be shown that fr of the SC version (with identical number of cells) is much lower compared 

to the OC counterpart. In Sec. 4.2.7, a 2-cell SC SE-EBG-RA is rendered which offers a matched 

antenna with a footprint as small as 0.25λ×0.28λ, and at the same time, present a very high 

efficiency and maintained radiation.  

 
Fig. 4.2.2. The dispersion diagram by HFSS/Bloch method for the unit cell in Fig. 4.2.1, i.e. the normalized 

propagation constant (α/k0+jβ/k0) versus frequency (k0 is he free-space wavenumber); for comparison, β/k0 of the 

same cell with no gap is also included.  

 
4.2.4 Circuit Model for OC and SC SE-EBG-RAs 

In chapter 6 of [10], it is shown that both SC λg/4 long and OC λg/2 long pieces of a generally 

lossy TL show a parallel RLC circuit behavior provided that BW is relatively low. In this case, 

the circuit elements and Q can be related to the line impedance, Z0, resonance frequency, f0 

(ω0=2πf0), the physical length, l, and α along the TL: 

     )(0 lZR α=

 

(4.2.5)

 )2( 00ZmC ωπ=

 

(4.2.6)
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(4.2.8)

where m is 2 for the SC λg/4 line and 1 for the OC λg/2 one. Because the SC antenna is λg/4 and 

the OC one is λg/2, (4.2.5) to (4.2.8) can be used to describe their resonance properties. In this 
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case, Z0 should be replaced by ZB, the Bloch impedance associated with the EBG-TL line. In 

addition, l is the electrical length, which is λg/4 for the SC case and λg/2 for the OC case. It is 

deduced from (4.2.5) that α, which represents the loss along the line, determines R, which will 

ultimately play the role of the antenna radiation resistance (Rr). It should be noted that 

considering the ohmic efficiency, a small portion of R will be representing the ohmic loss (RL) 

before the input power is radiated totally, hence R=Rr+RL. Moreover, (4.2.5) implies that to 

adjust R as close to as 50Ω, ZB and αl should be adjusted deliberately. As for Q, (4.2.8) shows 

that αl plays the main role, and the higher α (the more radiation from gaps), the lower Q, which 

is equivalent to a higher BW. For example, for the 2-cell SC antenna in Table 4.2.1 and Fig. 

4.2.4, (4.2.8) gives R=39.2Ω, C=7.17pF, L=0.24nH, and Q=6.78. It is noted here that to find 

these values, first α and ZB have been found by the HFSS/Bloch. 

 

4.2.5 Number of Cells versus the Antenna Performance 

Although the OC SE-EBG-RA introduced in Sec. 4.1 was based on three EBG cells, the antenna 

has the potential to be woven with different numbers of cells. Thus, this section is dedicated to 

gain knowledge on the performance of SC and OC SE-EBG-RAs with different numbers of cells. 

To perform this parametric study, two SE-EBG-RAs (OC and SC) with identical cells of Fig. 

4.2.1 are considered, the number of cells is changed, and then antenna parameters are extracted 

by HFSS (η and fr) and HFSS/Bloch analysis (other parameters). Results are as in Table 4.2.1. 

 
Table 4.2.1 Parametric study on characteristics of OC and SC SE-EBG-RA versus the number of unit cells in their 

structure (cells size as in Fig. 4.2.1); antennas are first matched to a 50Ω line by a λg/4 transformer as Rin is not 

necessarily 50Ω. 

# of Cells, n β/k0 α/k0 η (%) Rin (Ω) Q in (4.2.8) fr (GHz) Antenna Type 

OC SE-EBG-RA 

2 2.13 0.04 82 105.5 26.63 4.88 Resonant 

3 1.67 0.07 89 41.7 11.93 4.16 Resonant 

4 1.35 0.1 89 19.75 6.75 3.84 Resonant 

5 1.12 0.13 91 10.9 4.31 3.73 Resonant 

6 0.98 <1 0.15 91 7.02 3.27 3.63 Leaky-Wave 

SC SE-EBG-RA 

2 1.35 0.1 82 38.6 6.75 3.84 Resonant 

3 0.96 <1 0.16 87 13.2 3 3.62 Leaky-Wave 
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As seen, for both SC and OC antennas, as n increases, fr decreases, η slightly increases, Rin 

drops, and αl increases. The last one is equivalent to an increased η with higher α, and more 

radiation. In addition, it is observed that Q, which is calculated from (4.2.8), will decrease 

against increasing n. This behavior implies that the antenna, which is in fact a type of resonator, 

is capable to show a higher BW, if made out of more unit cells. Comparing Q in the OC and SC 

sections of Table 4.2.1, it is deduced that the SC versions have generally smaller Q (larger BW) 

although they have less cells. Specifically comparing the 3-cell SC antenna with the 6-cell OC 

one shows that they have roughly the same BW while fr is about the same as well. This means 

that the one with fewer cells will become a smaller antenna with the same BW as the other. It is 

noted that, as in Table 4.2.1, this is a significant reward at the expense of only 4.4% less η. 

Another important point reflected in Table 4.2.1 is that as n grows, β/k0 drops and approaches the 

boundary value of 1. As described in [32-33] and shown in Fig. 4.2.2, this is the point at which 

the cells are operating in leaky-wave mode, and therefore, the antenna belongs to the leaky-wave 

antennas family, as opposed to the resonant antennas family. An interesting observation with this 

condition is that the waves travel along the antenna axis faster than in the free-space above the 

antenna, which causes the fields to leak and the direction of the ensuing radiation to be 

dependent on the frequency. This fact makes the E-plane pattern (ZY plane in Fig. 4.2.3) squint 

towards the OC/SC end and scan with frequency as well. Obviously, in case the broadside 

radiation is desired, this condition should be avoided. Such “scanning” antennas based on the 

proposed HAR EBG cells are introduced and discussed in Sec. 5.1. As for other values of n, in 

case miniaturization is the main demand, the smallest n (defined in Table 4.2.1) should be used. 

On the contrary, if η and gain are the most important factors, and also, if there is no restriction on 

the ground plane, the size can be enlarged to obtain the most radiation, and then the largest 

possible n should be chosen. As an example, the 5-cell OC antenna in Table 4.2.1 is chosen and 

analyzed numerically. The corresponding radiation pattern, gain at broadside direction, and 3D 

view with detailed dimensions are rendered in Fig. 4.2.3. As observed, similar to the 3-cell 

antenna in Sec. 4.1, the radiation pattern is still broadside and the antenna is highly efficient. As 

seen in Table 4.2.1, the 5-cell version is even more efficient and more wideband than the 3-cell 

version (the one presented in Sec. 4.1) however at the expense of slightly longer physical length 

to accommodate two extra cells. The fr found by HFSS is 3.73GHz which is only 0.8% different 

from 3.70GHz, found by (4.2.2), and reported in Table 4.2.1. 
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It is noted that comparing the 2-cell version for both OC and SC cases in Table 4.2.1 along 

with a look back at (4.2.8) reveals an interesting point. As seen, fr of the SC one is by far lower 

while its αl is ~2 times bigger at resonance. As a rough estimate, (4.2.8) states that an increase in 

αl can increase BW. This means that the 2-cell SC SE-EBG-RA (as compared to the 2-cell OC 

one) is a miniaturized antenna with a compensated and maintained BW due to having a bigger αl. 

 
Fig. 4.2.3. 3D view of a 5-cell OC SE-EBG-RA and its radiation pattern; the input transformer is 3.3mm wide, 

7.34mm long, and 30µm thick; cell dimensions are provided in Fig. 4.2.1; BW=2.6% and Gr=3.12dBi. 

Another point deduced from Table 4.2.1 is that for all the antennas, regardless of the number 

of cells, the total electrical length is λg/2 for OC versions and λg/4 for SC ones, where the group 

wavelength, λg, is λ0/(β/k0) and λ0 is calculated at fr. These results are in agreement with what 

was analytically predicted in Sec. 4.2.2 and Sec. 4.2.3. To verify, Fig. 4.2.4 plots the surface 

current distribution on the ground plane of 6-cell and 2-cell OC antennas and also a 3-cell SC 

antenna (candidates from Table 4.2.1). In Fig. 4.2.4 (a) and (b), the peak at center and minimum 

on both sides (symmetrical current) confirms that the antennas are λg/2 long. Also, in Fig. 4.2.4 

(c), the peak at SC point and minimum at the feed point confirms that the antenna is λg/4 long. 
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Fig. 4.2.4. Magnitude of the current on the ground plane, demonstrating the actual electrical length of the antenna, a) 

6-cell OC SE-EBG-RA, b) 2-cell OC-SE-EBG-RA, c) 3-cell SC SE-EBG-RA; antennas are as in Table 4.2.1. 

 
4.2.6 Parametric Study on the Effect of Thickness  

To highlight the advantages offered by thickening the metal top layer, a 3-cell OC SE-EBG-RA 

is considered and its properties are compared for a range of different thicknesses, as shown in 

Table 4.2.2. From one standpoint, shifting the resonance of an antenna to lower frequencies is 

(a) 

(b) 

(c) 
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considered antenna size reduction [34]. According to Table 4.2.2, this reduction is exactly what 

is obtained by thickening the metal layer. Apart from this reward, η is maintained and even 

slightly enhanced while the antenna is shrinking. It is interesting to remind that in general, 

realization of electrically small antennas leads to degradation of both BW and η [27], while in 

case of SE-EBG-RA, this downside is compensated by the effect of thickness. As in Table 4.2.2, 

switching from aspect ratio (AR) of 1 to 40, the antenna electrical footprint (the physical 

footprint is fixed) decreases by half and η increases by ~10%. A similar effect is expected to be 

observed for a SC SE-EBG-RA as well. The result implies that there is the possibility to 

exchange the vertical dimension (the thickness) for a smaller footprint and improved efficiency, 

while maintaining a relatively thin vertical profile. It is noted that even for the thickest metal 

layer in Table 4.2.2 (4mm), the overall antenna thickness does not exceed 5mm (λ/16.5). 
 

Table 4.2.2 Parametric study on properties of a 3-cell OC SE-EBG-RA versus the thickness of its top metal layer. 

Antennas are matched to a 50Ω line by a proper λg/4 transformer. Parameters are found by HFSS; the ground plane 

size is 30mm×40mm; Gr stands for the realized gain; unit cell is as in Fig. 4.2.1.  

t (mm)/AR η (%) Gr (dBi) Electrical Footprint 
Footprint Shrinkage 

(%) 
Matching Freq 

(GHz) 

4/40 88.5 2.37 0.49λ×0.37λ 51.1 3.65 

3.5/35 88.5 2.65 0.5λ×0.38λ 48.8 3.75 

3/30 87.7 2.69 0.52λ×0.39λ 45.3 3.89 

2.5/25 87.2 3.09 0.53λ×0.40λ 42.9 4.00 

2/20 87.0 3.45 0.55λ×0.42λ 37.7 4.16 

1.5/15 85.1 3.87 0.58λ×0.44λ 31.2 4.33 

1/10 82.7 4.29 0.61λ×0.46λ 24.4 4.55 

0.5/5 82.7 4.97 0.66λ×0.49λ 12.8 4.89 

0.1/1 80.8 5.18 0.70λ×0.53λ 0.0 5.22 
  

Another important point indicated in Table 4.2.2 is that the increase in η occurs simultaneous 

with the decrease in Gr. This decrease shows that as the thickness is growing, the radiation from 

antenna aperture (Rr) is reducing, a behavior which can be related to the fact that the electrical 

size of the whole antenna aperture is dropping. However, to explain why η does not deteriorate 

with less radiation, it is reminded that η is not only dependent on the Rr, but also on the loss (RL) 

so that for small antennas η=Rr/(Rr+RL) holds. From this relation, it can be concluded that to 

simultaneously have an increasing η and decreasing Rr, RL must be decreasing when the 

thickness is growing.   
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The last two studies demonstrate the high efficiency nature of the OC and SC versions, which 

can be attributed to the concurrent performance of the EBG cells (able to enhance radiation) and 

the thick metal traces (able to mitigate loss). In addition, it is observed that the thickness has an 

extra contribution, that is to provide very narrow gaps with very tall sidewalls, i.e. HAR gaps, 

introducing a lot of parallel plate capacitance and therefore reducing fr considerably. It is 

demonstrated that thick traces and HAR gaps bring about two simultaneous advantages of 

reducing the loss and reducing the resonance frequency. Moreover, the thickness can serve as an 

extra adjustable parameter, which can provide additional degrees of freedom during the antenna 

design process. It is emphasized that the term "gain" used throughout the thesis refers to the 

realized gain (Gr), which includes the effect of efficiency, directivity, and input matching quality.  

4.2.7 Ground Plane Size versus Performance  

In this section, the performance of the SC SE-EBG-RA is studied against the size of the ground 

plane. To form such a study, a 2-cell SC SE-EBG-RA with the cells used in Fig. 4.2.1 is 

considered and the size of its ground plane is changed over a range, in two different dimensions. 

Afterwards, each ensuing antenna is numerically analyzed by HFSS to find its η and Gr. The 

results are listed in Table 4.2.3. 

Table 4.2.3 Parametric study on Gr and η of a 2-cell SC SE-EBG-RA versus its ground plane size in XY dimensions. 

All antennas are matched to a 50Ω line by λg/4 transformers; cell dimensions are as in Fig. 4.2.1.  

L (mm) W (mm) η (%) Gr (dBi) Matching Freq (GHz) 

W is fixed at 30mm 
22.17 88.4 1.5 

27.17 88.4 2.14 

32.17 87.5 2.48 

42.17 87.2 3.78 

55.17 79.1 4.32 

70.17 

30 

77 4.33 

L is fixed at 22.17mm 
20 83 0.68 

30 82 1.5 

50 79 2.23 
22.17 

70 79 2.95 

L & W are fixed at ~0.88λ×0.88λ 
70.17 70 76 4.89 

~ 3.80 
with negligible change 

(∆ < 1%) 
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As observed, as the ground plane enlarges, the resonance frequency remains almost fixed and 

η drops. It is also seen that Gr increases (to some extent), but the rate of this increase gradually 

drops and is ultimately limited at a certain level. For example, the antenna shown in Fig. 4.2.5 (a) 

is the same antenna in Fig. 4.2.5 (b) with a relatively large ground plane of 0.58λ×0.58λ, which 

shows a Gr=4.47dBi as compared to Gr=0.68dBi for 0.25λ×0.28λ ground size. However, 

simulations show that beyond this size, the increase in Gr will be negligible. This is connected to 

the fact that metal edges of the plane are not illuminated enough by the fields excited on gap 

apertures. To demonstrate this situation further, in the section 3 of the Table 4.2.3, the same 

antenna in Fig. 4.2.5 (a), with even much larger ground plane of 0.88λ×0.88λ is considered, for 

which the associated Gr is 4.89dBi. As seen, although a considerable size change is applied to 

ground plane, (from 0.58λ to 0.88λ), the enhancement in Gr is only 0.42dB.  

 
Fig. 4.2.5 A 2-cell SC SE-EBG-RA a) with a relatively large ground plane of 0.58λ×0.58λ, b) with highly truncated 

ground plane of 0.25λ×0.28λ, c) radiation pattern for Fig. 4.2.5 (a), d) radiation pattern for Fig. 4.2.5 (b); the 

transformer dimensions for both antennas are 0.35mm and 8mm; the 50Ω feedline is 0.92mm wide and 8mm long; 

all thin traces are 30um thick MSL; cell dimensions are as in Fig. 4.2.1.  
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It is noted that the proposed 2-cell SC SE-EBG-RA in Fig. 4.2.5 (b) has a very truncated 

ground plane of 0.25λ×0.28λ, and simultaneously, its resonance frequency, efficiency, and 

radiation properties are maintained. Such features are typically offered by planar antennas like 

patch, when placed on an EBG ground plane [e.g. 30]. However, the situation is slightly different 

for the proposed EBG structures because, as in Fig. 4.2.5 or Fig. 4.2.6 (b), the top metal layer is 

woven by EBG cells so that it seems that the planar antenna (as the main radiator) and the EBG 

ground plane are both integrated into a single-layer easy-to-excite structure. Another similarity 

with most EBG antennas is that the thickness, including the substrate and metal layer, is 

electrically thin (at ~λ/27). As seen in Fig. 4.2.5 (b), for a small volume of 0.25λ×0.28λ×λ/27, 

the front-to-back ratio (F/B) is satisfactory and the radiation pattern remains broadside (Fig. 4.2.5 

(d)). This small size, BW of 1.34%, realized gain of 0.68dBi, and the simple feeding method are 

of distinguishing features of the antenna in Fig. 4.2.5 (b). The HFSS-simulated fr of 3.84GHz for 

Fig. 4.2.5 (b) is only 0.5% different from 3.82GHz, which is found by (4.2.4) (see Table 4.2.1). 

This is estimate an accurate, considering the severe truncation of the cells to only two, while ZB 

and α in (4.2.4) are found by HFSS/Bloch methods, requiring an infinite number of cells. 

 

4.2.8 SE-EBG-RA versus Rectangular Microstrip Antenna 

In an effort to highlight benefits of proposed antennas, in this section, performances of a SE-

EBG-RA and a microstrip patch antenna are compared. Fig. 4.2.6 shows a 5-cell OC SE-EBG-

RA and a microstrip antenna, both matched to a 50Ω line using quarter-wave transformers. To 

provide a logical comparison, the substrate material (alumina) and thickness (1mm or λ/80) and 

the ground plane footprint (50×50mm or 0.62λ×0.62λ) are set to be the same, as in Fig. 4.2.6.  

 
Fig. 4.2.6 Comparison between the performance of a microstrip patch antenna and an OC SE-EBG-RA with 5 cells, 

both matched at 3.73GHz; ground planes are both 50mm×50mm; substrate material and thickness for both antennas 

and the unit cell of Fig. 4.2.6 (b) are given in Fig. 4.2.1; thin traces are 30µm thick MSL. 
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The unit cell is the one considered in Table 4.2.1 and depicted in Fig. 4.2.1. Considering that 

fr for Fig. 4.2.6 (b) is 3.73GHz, the patch in Fig. 4.2.6 (a) is given the typical width-to-length 

ratio of 1.5 [35] so that it shows a reasonable Q and then is adjusted in length so that it resonates 

at 3.73GHz. The related dimensions are given in Fig. 4.2.6 (a). The associated patch edge 

resistance is ~315Ω, which is relatively high due to the low bandwidth nature of patch antennas. 

In order to have this impedance matched to a 50Ω line, at least two λg/4 transformers with the 

dimension in Fig. 4.2.6 (a) are required. The BW, η, and gain calculated by numerical analysis 

are 0.8%, 66%, and 4.58dBi, respectively. On the contrary, the 5-cell OC SE-EBG-RA requires 

only one transformer (as the edge impedance is 10.9Ω), and the associated parameters are 

BW=1.9%, Gr=5.3dBi, η=91%. Therefore, by comparison, for the SE-EBG-RA, BW is ~240% 

larger, the realized gain is 0.72dB more, and the ohmic efficiency is 38% better. It is worth 

noting that these rewards are offered while the electrical footprint and substrate thickness, and 

also the dielectric material are identical. Another advantage of the SE-EBG-RA is that the width 

of its top metal layer is by far smaller than the width of the patch in Fig. 4.2.6 (a). As observed, 

the unit cell used in Fig. 4.2. (b) and Fig. 4.2.1 is 7.1mm wide, which is significantly smaller 

than 18.25mm in Fig. 4.2.6 (a).  

4.2.9 Prototyping and Experimental Verification  

In order to validate the theory and designs presented in previous sections, in this section two 

antenna samples are designed and fabricated to serve as proof-of-concept prototypes. The unit 

cells of these prototypes are deliberately thickened to 10mm so that with 0.6mm gaps, the aspect 

ratio remains high (AR=10/0.6=16.67), but not unnecessarily restricting. This strategy simplifies 

the fabrication process for the HAR gaps of the antenna prototypes. Fig. 4.2.7 (b) shows the first 

antenna, which is a 3-cell OC SE-EBG-RA. Also, as in Fig. 4.2.7 (d) and (e), the second antenna 

is a 2-cell SC SE-EBG-RA.  
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Fig. 4.2.7. Fabrication process of SC and OC SE-EBG-RAs serving as proof-of-principle prototypes; dimensions of 

λg/4 transformers are 6.68mm & 3.9mm for the OC antenna and 7.4mm & 3.7mm for the SC one. 

As observed, both antennas have a λg/4 impedance transformer at the input, with the same 

thickness as the cells, but with adjusted width to provide the desired transformation ratio. The 

dimensions of transformers and the unit cell are given in Fig. 4.2.7 (b) and (d). As depicted in 

Fig. 4.2.7 (a), in order to realize the antennas, thick metal pieces of the top layer are first CNC-

(a)

(c)

(d) (e)

(b) (c)
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machined to size, and then are glued on the top of a RO3010 Rogers substrate (the copper layer 

on one side of the substrate is already etched). As in Fig. 4.2.7 (c), plastic shims of 0.5mm 

thickness provide the spacing needed between pieces and are removed when the glue is 

hardened. In practice, after removing the shims, the measured gap sizes achieved are 0.55mm for 

the SC antenna and 0.6mm for the OC one. It is noted that as shown in Fig. 4.2.7 (d) and (e), the 

SC condition for the first prototype is realized by a piece of metal foil, shorting the end of the 

last cell to the ground. 

After preparing the prototypes, the realized gain, Gr, at broadside for the 3-cell OC SE-EBG-

RA has been measured by the three-antenna-measurement (TAM) method [36]. The TAM is 

explained in more detail in Appendix A. The method is used to measure the gain of the antenna 

under test (AUT) when there is no standard calibrated antenna available. However, to carry out 

such a method, two extra antennas with unknown gains are required that must be able to operate 

at the same frequency of the AUT. For this purpose, two different planar antennas with broadside 

radiation pattern have been designed by HFSS and fabricated. Fig. 4.2.8 shows the AUT and the 

extra antennas. In addition, Fig. 4.2.9 shows a photo of the test setup used for the TAM process.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4.2.8. AUT (Fig. 4.2.7 (b)) and the two extra fabricated antennas, mounted on thin plywood sheets, and 

prepared for the radiation pattern and three-antenna measurement implementation. 

Antenna #1 

Antenna #2 

AUT #3 
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Fig. 4.2.9. Absorbers and stands in use during the measurment.  

Another condition for the TAM method is that the measurement must occur in an anechoic 

condition. In the absence of a standard anechoic chamber, attempts have been made to control 

the echoes by a number of microwave absorbers surrounding the test setup. Fig. 4.2.10 shows the 

absorbers used during the measurement. Also, the wooden stand used to hold and position the 

absorbers and the typical reflectivity of the EM waves from the absorbers is reflected in Fig. 

4.2.11.  
 

            

Fig. 4.2.10. ECCOSORB® HR should be bonded to a metal surface for optimal performance; aluminum foil is 

applied on the backside.  
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Fig. 4.2.11. a) Typical reflectivity of ECCOSORB®HR-25 absorbers supplied by Emerson & Cuming Microwave 

Products Inc (http://www.eccosorb.com); results may vary depending on application, b) absorbers mounted on 

custom made wooden stands with adjustable heights.  

The outcome of the measurement is listed in Table 4.2.4, where measured gains (by TAM) 

and simulated gains (by HFSS) are compared. As seen, the gain difference (∆) for all antennas is 

satisfactorily less than 0.88dB. In addition to Gr at broadside, the radiation pattern for the 3-cell 

OC prototype is also measured, as shown in Fig. 4.2.12. The simulated E- and H-plane patterns 

are also included in Fig. 4.2.12 for better comparison. The dB|S11| for both fabricated samples of 

Fig. 4.2.7 (SC and OC) will also be included in Fig. 4.2.15 later.  

It has been observed that at broadside direction, both antennas behave as expected due to the 

effective application of absorbers in suppressing echoes. As a result, as seen in Table 4.2.4, gain 

results, which are measured when none of the antennas are rotated, are satisfactory. However, 

during the test, it is observed that as the AUT is rotated, uncalibrated reflections gradually 

become significant. As seen in Fig. 4.2.12, especially beyond ±25˚ from the main lobe, echoes 

start causing cancellations/nulls. 

 

 

(a) (b) 
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Table 4.2.4 Comparison between the gain obtained by the Three-Antenna-Measurement method and HFSS at 

3.99GHz for the AUT and the two other antennas fabricated as reference antennas.   

Gr (dBi) 
Antennas 

HFSS TAM ∆ (dB) 

Planar Antenna #1 5.35 4.47 -0.88 

Planar Antenna #2 4.06 3.77 -0.29 

SE-EBG-RA, AUT #3 3.9 3.17 -0.73 

 

 

 
Fig. 4.2.12. Measured and simulated radiation patterns for the fabricated 3-cell OC SE-EBG-RA; a) E-plane, i.e. 

φ=0˚, b) H-plane, i.e. φ=90˚ (XYZ axes are as in Fig. 4.2.7 (b)); fr=3.99GHz. 

 

The fact that the gains measured for all three antennas involved in TAM agree with the full-

wave simulations, the fact that the measured E-plane pattern is 28˚ squinted like the simulated 

pattern (see Fig. 4.2.12 (a)), and also that the measured E-plane pattern has a null (at 105˚) quite 

close to what HFSS reports (at 120˚) are evidences that demonstrate the success of 

(a) 

(b) 
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measurements, and therefore, the credibility of the HFSS modeling/simulations. Another 

measurement performed on one of the prototypes is to estimate η using the Wheeler cap method 

[37], which is described in more detail in Appendix B. As in Fig. 4.2.13, a rectangular Wheeler 

cap is made and mounted on the 3-cell SE-EBG-RA.  

 

 

 

 

Fig. 4.2.13. Antenna efficiency measurement using Wheeler cap method, a) the parts cut out of a copper sheet, b) 

assembled cap and the SE-EBG-RA prototype, c) the cap mounted on the antenna and sealed using metal foil. 

 

The efficiency calculated by HFSS at resonance (4.07GHz) is 94% and the one measured by 

the Wheeler cap method is ~87%. It is noted that when repeating the measurement 10 times, the 

uncertainty observed has been within ±5%. It should be noted that although the Wheeler method 

is generally accurate for most antennas, its accuracy could be dependent on the AUT circuit 

model. As described in Appendix B, this method is applicable to small antennas with a series 

model in which radiation resistance is in series with the loss resistance. As described before, the 

SE-EBG-RA has a parallel RLC model; however as the measured antenna has a λ/4 impedance 

transformer, the circuit model at the antenna feed point (after transformation) become series.  

As seen, the measured efficiency is 8% lower than the simulated one. This can be first 

attributed to the ~6µm roughness on the surface of machined metal pieces, and second to the fact 

that HFSS simulation usually results in higher efficiency than expected.   

 
4.2.10 Effects of Dielectric Slab Loading of HAR Gaps  

To demonstrate further miniaturization, here HAR gaps of the SC and OC prototypes in Fig. 

4.2.7 are loaded by thin dielectric slabs. The slabs material is the same RO3010 used as substrate 

with 0.25mm thickness and are inserted in the gaps as demonstrated in Fig. 4.2.14. Fig. 4.2.15 

compares the matching quality of the two antennas with and without the slabs and shows a 

(a) (b) (c) 
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significant drop in resonance frequencies due to dielectric loading. This electrical size reduction 

occurs while efficiencies are well maintained, as shown by the results in Table 4.2.5. As seen, for 

SC and OC cases, respectively, loading introduces ~13% and ~15% reduction in fr without 

deteriorating the radiation pattern and η, while the matching quality is also retained well. There 

is relatively more difference (~8%) between the measured and simulated results in the unloaded 

SC case, which could be due to the tolerance in gap sizes when fabrication the antenna.   

 
Fig. 4.2.14 Demonstration of dielectric slab loading of the SC SE-EBG-RA. 

 
 

 

 

 

 

 

 

 
 
 
 
 
 
 

Fig. 4.2.15 Comparison of dB|S11| for the fabricated 3-cell OC and 2-cell SC SE-EBG-RAs with and without 

RO3010 slabs (εr=10.2).  

Fig. 4.2.16 compares the simulated radiation patterns of prototypes in the E-plane. As seen, 

not only do the radiation patterns roughly remain similar to unloaded versions (broadside 
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radiation), but also the F/B slightly increases for the OC antenna. Moreover, the slight squinting 

angle, i.e. the 28˚ orientation of E-plane pattern to the right in Fig. 4.2.8 (a) and Fig. 4.2.16, is 

reduced to 9.5˚, as addressed in Table 4.2.5. 

 

 

 

 

 
 
 
 

 
 
 

 

Fig. 4.2.16 Comparison between E-plane radiation patterns of the fabricated antennas in Fig. 4.2.7, with and without 

slabs in the gaps; H-plane radiation patterns are all symmetrical and similar to the HFSS result in Fig. 4.2.8 (b). 

 

Table 4.2.5 Properties of antenna prototypes in Fig. 4.2.7, with and without slabs in the gaps, as demonstrated in Fig. 

4.2.14. Results are based on HFSS simulation.  

OC antenna XY size is 37.5mm×30mm & SC antenna XY size is 23.6mm×30mm 

Gr (dBi) 
F/B (dB) Broadside 

(θ=0˚) 
Squinted From Broadside 

(θ≠0˚) 

η (%) BW (%) fr 
(GHz) 

Antenna Electrical Size 
XYZ 

Unloaded 3-Cell OC Prototype 

9.8 4.03 4.83 (θ=28˚) 94 12.8 4.07 0.50λ×0.39λ×0.15λ 

Loaded 3-Cell OC Prototype 

11 4.33 4.37 (θ=9.5˚) 93 7.5 3.45 0.43λ×0.35λ×0.13λ 

Unloaded 2-Cell SC Prototype 

8.1 1.80 2.15 (θ=-20˚) 96 4.9 3.25 0.26λ×0.33λ×0.12λ 

Loaded 2-Cell SC Prototype 

7.5 0.70 1.09 (θ=-20˚) 96 3.5 2.84 0.22λ×0.28λ×0.10λ 
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4.2.11 Conclusion 

This section puts forward a method to miniaturize the open-circuited (OC) 3-cell EBG antenna 

introduced in Sec. 4.1. The cells are electrically small thick metal patches on top of a PEC-

backed substrate separated with tiny high aspect ratio gaps. The idea is to connect the last cell to 

the ground plane with a shorting plate and reduce the size of the radiating structure as compared 

to the OC case described in Sec. 4.1. An analytical TL model is presented for the EBG antenna 

as a tool to compare electrical length and radiation for both OC and short-circuited (SC) antenna 

versions. Three different parametric studies are also conducted on the antennas to demonstrate 

how the number of unit cells in the structure, the thickness of the top metal layer, and the ground 

plane size can affect antennas properties. It is shown that one of the SC designs with two EBG 

cells possesses a very small size of 0.25λ×0.28λ×λ/27 with a high efficiency of 83%. In addition 

to the shorting method, the miniaturization effect obtained by dielectric loading of gaps is also 

demonstrated. It is shown that simple loading introduces an extra ~15% reduction of resonance 

without deteriorating the radiation pattern and efficiency. Two prototypes are fabricated and 

experimented. The simulated efficiency and footprint of the smallest gap-loaded prototype, the 2-

cell SC SE-EBG-RA, are 96% and 0.22λ×0.28λ×0.10λ, respectively. For one of the prototypes, 

efficiency, input matching, radiation patterns, and gain are measured and compared with 

simulations to validate the soundness of the idea and numerical analyses. 
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4.3 Aperture Efficiency Enhancement for Electrically Large SE-EBG-RAs 

In sections 4.1 and 4.2, the high-performance nature of the SE-EBG-RA, whether the SC or OC 

version, was demonstrated. The results showed that simultaneous rewards of EBG cells on the 

one hand and the benefits of cells thickened on the top layer on the other hand result in high 

efficiency (low loss) antennas. These antennas had the potential to be very compact and low-

profile radiating elements, ideal for applications with stringent requirements especially on size 

(device form factor). However, in practice these are not the only applications, which can benefit 

from high-performance nature of such elements. There are some important applications which 

require medium to high radiation gains, i.e. electrically larger apertures (in terms of wavelength), 

and at the same time, demand efficient and high-performance antennas. This section is focused 

on a technique to achieve SE-EBG-RAs with larger apertures. 

 

4.3.1 Introduction 

In radar systems, satellite communications, in space exploration programs [43], and the like, in 

which the transmitter and receivers are located very far apart, the SNR is severely degraded in 

the link budget, requiring high gain antennas with large apertures. Apart from this feature, in 

some cases, it is ideally desired to have an antenna with high power handling capacity, as it is 

necessary to increase the effective isotropic radiated power (EIRP: gain times the input power) 

by increasing the antenna input power. With a large array antenna, poor element efficiencies 

result in high power dissipation that not only wastes power resources, but also generates heat 

which can be a secondary problem to practical, compact, and highly reliable system/RF 

solutions. Although planar high gain antennas can be based on elements like microstrip patch 

antennas, the inherent inefficiency of these elements could result in a huge ohmic loss dissipated 

as heat in the thin structure. Another problem is the loss in the feed network that begins to cancel 

out and dominate the added gain the elements introduce, when the number of elements increases 

beyond a threshold. These points emphasize the importance of high efficiency array antenna 

elements. By employing such high efficiency elements, the idea of flat high gain antennas 

replacing parabolic antennas which are sometimes hard to integrate, deploy, and handle in 

practice would be realizable. Although many methods have been put forward to achieve these 

goals, like the idea of reflectarray antennas [38] (flat reflector antennas), Fresnel zone plate 

antennas [41] or using superstrate EBG resonator antennas [39-40], each of these ideas has its 
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own limitations and complexities in the design process and fabrication stage. Therefore, for some 

applications, using the conventional planar arraying approaches, while employing high efficiency 

elements is an attractive solution. To exemplify, in [42], a relatively efficient 16×8 array of 

microstrip patches at 18GHz demonstrates 28dBi gain with only 57% overall efficiency, which 

was even improved thanks to a special feeding topology utilized.  

In this part, an example design from the previous section is chosen and the ground plane is 

enlarged to achieve a higher gain. In addition, parasitic elements on the antenna aperture are 

introduced, with the objective of increasing the single element gain while simultaneously 

suppressing the surface currents between array elements. It is noted that when enlarging the 

ground plane of planar antennas, the rate of increase in the radiation gradually drops. This 

behavior originates from the fact that with an enlarged ground, radiating fields excited by the 

antenna at the center begin tapering/sinking over the aperture with distance away from the 

source. The outcome of this tapering would be a non-uniform illumination of the aperture in 

terms of both phase and magnitude, each of which deteriorates the radiation based on the 

aperture theory [11]. This effect was demonstrated in Sec. 4.2 for one of the designs. To 

compensate this inherent deficiency, a technique is examined to help maintain or improve the 

efficiency (η) and gain.  

 
4.3.2 HI Parasitic Elements Applied to the SE-EBG-RA Structure 

Fig. 4.3.1 shows a SC 2-cell SE-EBG-RA designed in Sec. 4.2 (dimensions and substrate 

material are the same). The magnitude of the surface current on the ground plane is visualized 

using standard Colorkey graph in HFSS. In order to stop the surface current, a number of λ/2 

parasitic elements are deployed around the antenna, as in Fig. 4.3.2. A wire version of such high 

impedance (HI) elements was successfully applied to a dipole antenna to reach a low-profile 

efficient periodic antenna [45] (see Fig. 2.9). HI elements are suggested to be a little smaller than 

λ/2 (λ is group wavelength). Such HI elements also have shown successful effects in the design 

of a new CP version [44] of the same structure in [45]. Although these elements resemble the 

director elements of a Yagi antenna, it is important to note that they are repeated at electrically 

smaller intervals (<λ0/10) and are only ~λ0/80 spaced from the ground plane (λ0 is wavelength at 

the resonance frequency). This implies that HI elements cannot radiate themselves (image in the 
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PEC ground cancels the radiation), but can change the boundary condition, thus suppress the 

surface waves, and improve the radiation from the SC SE-EBG-RA.   

The design process begins with the design of the center element according to Sec. 4.2 

(HFSS/Bloch method or alternatively using the circuit model in Sec. 4.4). Then a 2mm thick 

trace of 3mm width and 12.5mm length is repeated roughly at the same electrical length as in 

[45]. The situation is slightly different here as this case deals with thick traces on high dielectric 

material and to know the electrical length, it is necessary to know the group wavelength along 

each thick trace. This could be done by modeling a small section of this trace in a unit cell, 

similar to the HFSS/Bloch cell already discussed, and applying the equations to extract effective 

dielectric constant that defines the electrical length. Following this procedure and using the 

approximations described, the first dimensions obtained (as λ/2 HI elements) have been directly 

used in the proposed structures (see Fig. 4.3.1) and have yielded satisfactory results. It is 

important that no optimization process has been employed to achieve such designs.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.3.1 A 2-cell SC EBGRA on a relatively large ground plane; η=76%, D=6.3dBi, f=3.75GHz; the XY size is 

70.17mm×70mm; this design has already presented in Fig. 4.2.5, but with smaller ground plane; the thick HI 

elements are 12.5mm long and 3mm wide, and the first one has 9mm offset form the center. 

 
 

2-Cell SC 
SE-EBG-RA 

Shorting Plate 
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Because the top layer of the main antenna in Fig. 4.3.2 is formed of a thick metal layer, HI 

elements are made of the same thickness (2mm). This condition provides a design with uniform 

thickness, which could be fabricated by (e.g.) a single-stage DXRL process. As shown in Fig. 

4.3.2 and 4.3.3, two versions supported with 4 and 8 HI elements are considered. It is noted that 

the maximum current in all figures is the same so that the current distribution could be visually 

compared. Because of adding λ/2 parasitic elements in Fig. 4.3.2, without mismatch or 

mistuning, η increases from 76% to 82% and 0.55dB improvement happens to the realized gain 

as well. As for the 8-element case, the antenna improves even more. This means η increases from 

76% to 84% and the design renders ~1.4dB more realized gain than the one without HI elements. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.3.2 The antenna in Fig. 4.3.1 supported with 4 HI resonating elements around the main radiator; η=82%, 

D=6.85dBi, f=3.72GHz; Ground plane size is the same as Fig. 4.3.1.  

 
 
 
 
 
 
 
 
 
 

Shorting Plate 

HI Element 
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Fig. 4.3.3 The antenna in Fig. 4.3.1 supported with 8 HI resonating elements around the main radiator; η=84%, 

D=7.31dBi, f=3.71GHz; Ground plane size is the same as Fig. 4.3.1. 

 

It is noted that if the ground planar of Fig. 4.3.1 is considered as a rectangular aperture, under 

the best scenario for which the distribution of fields are uniform (phase and amplitude), the 

maximum directivity will be found from D=4πab/λ2. Here a and b are physical sizes of the 

aperture and λ should be the matching frequency, thus D=9.82dBi. This means that the antenna 

has the potential to achieve this directivity, while is rendering only 6.3dBi. We demonstrated that 

deploying 8 HI element could bring the directivity to 7.31dBi. On the other hand, efficiency has 

also improved that causes some extra improvement to the overall realized gain.  

In the same manner, the surface could be filled with more HI elements and this could help 

make better use of the space available towards constructive radiation and turning the surface 

waves into real radiated power. It is observed that the deviation in resonance occurring due to 

adding HI elements even for the 8-HI version is tolerable (difference<1.6%). Fig. 4.3.4 compares 

dB|S11| of antennas in Fig.4.3.1 to 4.3.3. 

 

 

 

 

X 

Y  Z 

Shorting Plate 

HI Element 



115 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.3.4 Comparison of the input matching quality if antennas in Fig. 4.3.1 to 4.3.3. 

 

As seen, the minimum dB|S11| for the 4-HI version is still low enough, but that of the 8-HI 

version is a slightly deteriorated (-8.5dB at the matching frequency), yet close to -10dB. In 

addition, it is observed that the frequency shift is downward for the two cases. This deviation is 

small, and hence, a slight fine-tuning could compensate it with reduced computational load. The 

observation that the mistuning and mismatch are tolerable allows the designer to design the main 

2-cell SE-EBG-RA separately, based on the HFSS/Bloch method, and then deploy the HI 

elements, and expect that the resulting structure does not severally lose its matched condition. 

Radiation patterns of all three antennas are also very similar, thus only the directivity of the 

version with 8 HI elements is rendered in Fig. 4.3.5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.3.5 3D plot of the directivity of the antenna in Fig. 4.3.3. 
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4.3.3 Conclusion 

This study in this section presents a technique to trap the surface waves excited around the 

proposed planar antennas and turn them into radiation. The result is increasing the overall 

radiation of the antenna even beyond what can be obtained by thickening the top layer. The 

technique involves adding resonating HI elements around the main radiator which, as 

demonstrated, do not significantly disturb the radiation mechanism of the main radiator. As a 

result, the input impedance and the corresponding matching condition remain reasonably stable. 

This desirable stability is obtained without any retuning, and hence, using a fine-tuning process 

(or an optimization process) the directivity and efficiency could improve even more. In brief, the 

study shows that modified versions of SE-EBG-RAs shown in Fig. 4.3.3 offer a high-

performance antenna design with the following special characteristics: 

• The antenna is a single-layer planar antenna with a very simple feeding method, and hence, 

it is very suitable for deployment and realization of an array topology.  

• It features a projected top metal layer, which as demonstrated in Sec. 4.2, could significantly 

reduce the loss in the antenna body and in the array feedlines.  

• The antenna is based on EBG cells, which as demonstrated before introduces enhanced 

radiation and alleviated loss.  

• As the design employs thick top metal traces, if utilized in an array fed by thick MSL with 

the same thickness (with relatively low loss), it could result in new planar array antennas 

with enhanced efficiencies.  

• Due to using an alumina substrate and having no vias in the ground plane, it is considered 

quite compatible with single metal layer micro-fabrication processes, like DXRL (See 

Appendix C).   
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4.4 TL Circuit Model for HAR EBG Cells and SE-EBG-RAs  

In this section, a circuit model based on Bloch theory is introduced to simplify analysis and 

design of antennas composed of thick metal electromagnetic bandgap (EBG) cells with large 

intercell coupling capacitance (thick EBG cells described before). Two versions of cells are 

presented which provide large intercell capacitance, one with narrow high aspect ratio (HAR) 

gaps between cells, as described in Sec. 4.1, and the other with interdigitated gaps between cells. 

This large capacitance reduces the antenna resonance and dramatically miniaturizes the EBG 

cells. Three cascaded unit cells are used to demonstrate the applicability of the circuit model to 

characterize the self-excited EBG resonator antenna introduced in Sec. 4.1. Full-wave numerical 

analysis and experimentation validate the robustness and accuracy of the model over large 

variations in electrical/physical cell dimensions.  

4.4.1 Introduction 

Accurate circuit models can be powerful tools for characterizing challenging electromagnetic 

(EM) structures such as microwave antennas. Circuit-based analysis can offer a good set of 

initial values for time-consuming computer-aided parametric design optimization, while also 

offering a quick insight into the relationships between performance and structural parameters. A 

good circuit model should be able to predict both input impedance and radiation properties of 

antennas [46]. Although prevalent for passive microwave components like transmission lines 

(TL) [47] and filters [48], such models are less common for radiating structures which are not 

completely bound EM problems and have extra complexities. Most published circuit models are 

applicable to antennas with a planar configuration [e.g. 49-50], which can be represented using 

TL theory. The best examples of model-based antennas are planar leaky-wave antennas [49], 

which belong to the traveling wave family and exhibit both TL and radiating behaviors. Another 

similar example is a TL model for a broadband spiral antenna and the circuit miniaturization 

achieved [50]. Furthermore, the very recent study in [51] proposes a broadband circuit approach 

to model the impedance and fields of antennas using characteristic eigenmodes. Among these, 

perhaps one of the most successful contributions of circuit models to antenna technology has 

been made to antennas with periodic structures [49-50, 17], most popular and promising of 

which are metamaterial-based antennas [49], and specifically EBG-based antennas [20]. 

Periodicity allows the designer to focus on the antenna building block, the so-called unit cell, 
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characterize it separately [34], and then use the result along with theories like Floquet-Bloch [52] 

to describe the performance of the structure. As indicated in [53], models are sometimes solely 

based on lumped elements [47, 34] or based on TLs and embedded lumped elements [50, 52-53]. 

Most models for periodic structures only focus on reactive behaviors [47, 53] and ignore real 

powers while some also include the effects of radiation and loss [50], which is also the goal of 

the current section.  

Specifically, this section presents a (lumped/TL-based) model suitable for describing unit 

cells with high capacitance gaps, which can be realized using narrow, high-aspect-ratio and/or 

interdigitated metal structures. Such unit cells can be applied to the self-excited EBG resonator 

antenna (SE-EBG-RA) structure presented in Sec. 4.1. More importantly, in addition to the basic 

cell proposed in Sec. 4.1, the model is generalized to include cells with high capacitance 

interdigitated gaps.  
 

 
 
 
 
 
 
 
 
 

Fig. 4.4.1. a) Bloch unit cell and circuit model representation for a cascade of small thick metal patches on a PEC-

backed substrate; b) circuit model for the SE-EBG-RA composed of three EBG cells. 

4.4.2 Equivalent Circuit Model for Basic Unit Cells 

In Sec. 4.1, HFSS/Bloch model was proposed to analyze cascaded thick metal unit cells of the 

general form shown in Fig. 4.4.1. This method, though promising, was practically limiting since 

it was dependent on computer full-wave numerical analysis to extract the cascade network 

parameters of the unit cell, which were then fed to the Bloch equations. The model presented 

here retains the overall simplicity of the approach, however removes the requirement for any 

numerical analysis because the cascade parameters are determined directly from the physical 

parameters. The equivalent circuit model in Fig. 4.4.1 is composed of a gap impedance, Zg, with 

two θ/2-long MSLs on each side. Zg is comprised of the parallel combination of gap 

(a) (b) 
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conductance, Ga, and gap capacitance, Cg. The Bloch dispersion relation of this symmetrical cell 

(in ABCD matrix, A=D) can be expressed as [52]: 

 θθγ sin
2

coscosh
0Z

Z
jAd g+==  (4.4.1)

where A is the first cascade parameter of the cell in Fig. 4.4.1, γ=α+jβ is the complex 

propagation constant along the cell, Z0 is the line impedance of the unloaded line (without 

periodic gap loading), d is the cell length, θ=kd, and k is the wavenumber of the unloaded MSL 

expressed as: 

 reffk εεµω 00=  (4.4.2)

In (4.4.2), εreff is the effective relative permittivity given by (4.4.7), and ε0 and µ0 are free-

space permittivity and permeability, respectively. If d<<λ, where λ is the free-space wavelength, 

then γd<<1 and θ<<1, and cos θ and cosh γd can be replaced by the first two terms of their 

Taylor series expansions [52], and sin θ ≈ θ. Thus, (4.4.1) is simplified to  
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Neglecting the radiation represented by Ga in Fig. 4.4.1, Zg ≈1/jωCg. In this case, γ=0+jß 

(α=0) and (4.4.3) becomes  
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The cut-off frequency (fc) can be found by setting β=0: 
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where c is (ε0µ0)-1/2. Z0 can also be found using the following equation [34], with an accuracy of 

±0.25% for 1<W/h<10:
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where η0 is the free-space impedance. It is noted that in (4.4.6), the thickness of metal traces is 

neglected. As for εreff in (4.4.6), [54] provides an equation which includes the effect of t/h for a 

MSL with a finite thickness: 
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where 0.1<w/h<20 and t/h<0.2. An interesting observation from (4.4.5) is that εreff
1/2 is cancelled 

by the same term introduced by Z0 in (4.4.6). Therefore, under certain conditions, the model does 

not require a particularly accurate estimation of εreff, which can be difficult to determine for thick 

metal structures. In fact, (4.4.7) which is most accurate for comparatively small t/h, when applied 

to the model, is found to produce good results, even for t/h up to 2-3. The Cg in Fig. 4.4.1 is 

attributed to the coplanar coupling on the top of the adjacent cells (Ccp) plus the parallel plate 

coupling between the high aspect ratio (HAR) gap in the middle (Cpp), i.e. Cg=Cpp+Ccp. The 

static approach in [20] gives Ccp as (d>>g)  

 ( )gdεε
π
WC reff0cp /cosh 2 1−=  (4.4.8)

Also, Cpp is found by the following well-known relation: 

 gWtεCpp  0=  (4.4.9)

Under this circumstance, the only dependency of ωc on εreff occurs because Cg is still partially 

dependent on εreff as seen in (4.4.8). However, if Cpp>>Ccp,, then Cg ≈Cpp, which according to 

(4.4.9), eliminates the dependency of Cg on εreff. Parallel plate coupling will typically dominate 

coplanar coupling for most relevant thick metal structures, meaning that fields will be mostly 

constrained inside the narrow air-filled gaps and have negligible dependency on the substrate 

material. To include the gap effect in the model, the gap surface is regarded as a radiating 

aperture with a radiation conductance, Ga. In [11], E-fields uniformly distributed on the open end 

of a parallel plate waveguide are considered, and an equivalent impedance is driven using the 

aperture theory with the assumption that the open gap is surrounded by infinite PEC planes on 

each side. In fact, the field condition on the top surface of tall traces (adjacent patches in Fig. 

4.4.1) roughly satisfies this requirement. Thus, Ga is expressed as  
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where k0 is the free-space wavenumber. Although Ga can model the antenna radiation, it is still a 

rough estimate since thick MSLs can radiate themselves as shown in Sec. 4.1. Also, thick traces 
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can cause the gap apertures to be slightly further spaced from the PEC ground and affect Ga. 

However, this inaccuracy does not weaken the model in predicting the zero-crossing in the 

reactive part of the input impedance (as in Sec. 4.4.4).  

 

4.4.3 Capacitance for the Interdigitated Unit Cell 

The circuit model in Sec. 4.4.2 can be directly applied to characterize the basic unit cell with a 

high capacitance narrow HAR gap shown in Fig. 4.4.2 (a). Next, the model is extended to 

describe a modified version of the unit cell, which employs interdigitated gaps to increase the 

gap capacitance, either in thick metal configuration of Fig. 4.4.2 (b) or a more conventional thin 

metal configuration.  

 
Fig. 4.4.2. Side and top views of EBG unit cells with a thick metal layer and high gap capacitance; (a) cell with 

narrow HAR gap; (b) cell with interdigitated gap; c) detailed dimensions of the interdigits in Fig. 4.4.2 (b). 

 

Considering the geometry and parameters depicted, the cumulative coplanar capacitance can 

be expressed by the summation of capacitances in Y-axis-oriented gaps (Ccp_iy) and also X-axis-

oriented gaps (Ccp_ix):     

 cp_iycp_ixcp_i CmCmC  )12( 2 −+=  (4.4.11)

where m is the number of the periods in Fig. 4.4.2 (b) (for the case shown, m=6). Here Ccp_iy is 

calculated from (4.4.8) when W is replaced by Wiy and d by diy, respectively. Similarly, Ccp_ix is 

calculated from (4.4.8) when W is replaced by Wix and d is replaced by dix (dix, diy,Wix, and Wiy 

are denoted in Fig. 4.4.2 (c)). 
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Table 4.4.1 Dimensions and characteristics of the four SE-EBG-RA samples based on four different unit cells; λr is 

wavelength at fr, and ∆ is the difference between fr given by the model and HFSS, divided by the HFSS value; 

dimensions are in millimeters. 

Sample 1 
εr=9.9, tanδ=0.003 (alumina), 

w=7.1, d=7.2, t=2, g=0.1 
(AR=20), h=1 

Sample 2 
 εr=6, tanδ=0.0023 (Rogers 

TMM 6), w=10, d=7.2, 
t=0.4, g=0.02 (AR=20), h=1

Sample 3 
 εr=6, tanδ=0.0023 (Rogers 
TMM 6), w=8, d=8, t=3, 
g=0.1 (AR=30), h=1.27 

Sample 4 
 εr=3.78, tanδ=0.0003 

(glass), w=4, d=4, t=0.8, 
g=0.04 (AR=20), h=0.5

 

Model HFSS ∆ (%) Model HFSS ∆ (%) Model HFSS ∆ (%) Model HFSS ∆ (%) 

Thickness 
(h+t) 3 (λr/24) 1.4 (λr/48) 4.27 (λr/17.5) 1.3 (λr/23.6) 

Cell Size 
(d) 7.2 (λr/10) 7.2 (λr/9.4) 8 (λr/9.4) 4 (λr/7.66) 

fr (GHz) 4.01 4.17 3.8 4.25 4.43 4.1 4.04 4 1.0 9.87 9.79 0.8 
 

Similar to (4.4.8) for which d>>g, here dix>>g and diy>>g are two necessary conditions for the 

coplanar capacitance equation by [20]. Also, the parallel plate capacitance, Cpp_i, can be 

calculated from (4.4.9) when W is replaced by 

 )(  )12( gdmWmW iyiyeff ++−=  (4.4.12)

It is noted that similarly, W in (4.4.10) can be replaced by Weff to find the effective Ga at the 

interdigited gap. In the next section, the accuracy of (4.4.11) and (4.4.12) is demonstrated. 

 
4.4.4 Verification of the Circuit Model 

This section presents several examples to compare the circuit model predictions to results 

obtained through full-wave simulations. To this end, cells are used to structure several example 

SE-EBG-RAs. All antenna examples comprise three EBG cells (d<<λ) forming a piece of EBG-

woven TL, left open on one side and fed by a MSL from the other side. The configuration is 

shown in Fig. 4.4.1 (b). As seen, in addition to Ga at each gap, there are two more radiating 

apertures at the feed (Gra1) and open (Gra2) sides of the antenna, very similar to radiating 

apertures of a regular patch antenna [11, 55]. Using the lossy TL theory [10], and considering 

Fig. 4.4.1 (b), the input impedance can be derived as 
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When βl=nπ/2 (n=0,1,2,… and for n=1, a half-wavelength antenna like a patch antenna is 

achieved) Xin vanishes and Zin becomes resistive, and hence, in a similar fashion to patch 

antennas [11, 55] Gra1=Gra2. In [55], Gra1 is found by Harington's Equation and applied to patch 

antennas. The equation is identical to (4.4.10), except that g is replaced by h. Also, the Bloch line 

impedance, 12
0 −= ABZZB , is already given in Sec. 4.1, i.e. (4.1.4). In (4.1.4), A is given by 

(4.4.1) and B, the second cascade parameter, is extracted as (based on the Bloch theory in [55]) 

 θZjθZB g sin2/)1(cos 0++=

 

(4.4.14)

In (4.4.13), l is the total length of the EBG TL. Because the antenna has 3 cells, l=3d where d 

is depicted in Fig. 4.4.1 (a). For this antenna, the zero-crossing (Xin=0) can be found either from 

(4.4.1) to (4.4.13), i.e. entirely based on the circuit model, or from the HFSS full-wave analysis. 

By putting βl=π/2 (n=1) into (4.4.4), this resonance can be expressed by ωr
2=ωc

2+ωp
2 where ωc 

is given by (4.4.5) and ωp is 

 lc reffp /  5.0 2/1−= επω  (4.4.15)

The radiation from each resonator gap is embedded in the total radiation losses of the 

propagating waves along the antenna. The radiation from each gap is included in α and ZB, and 

the radiation from both sides of the antenna is modeled by Gra1 and Gra2, as expressed by 

(4.4.13). In Sec. 4.1, the behavior of the antenna body as a radiating EBG TL was described in 

more details, using the HFSS/Bloch dispersion diagram.  

In Table 4.4.1, four sample SE-EBG-RAs with considerably different EBG cells are 

considered to demonstrate the applicability and generality of the circuit model. The properties 

obtained from the model (using the dispersion relation (4.4.1), rather than the simplified relation 

(4.4.4)), are compared to those obtained from HFSS full-wave analysis. This approach provides 

two different evaluations of the antenna resonance frequency (fr at which Xin=0). In Table 4.4.1, 

the difference between the predicted fr (∆) for all samples ranges from 0.8% to 4.1%, implying a 

satisfactory agreement for design purposes which is consistent with or better than other 

analytical circuit models presented for EBG cells with uncertainties as high as 6.5% [34]. It is 

important to note that such an agreement occurs while all different antennas in this table are 

truncated to only 3 cells. This fact is a supplementary demonstration (in addition to Fig. 4.1.10) 
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that mutual coupling is typically negligible, the truncation is not problematic, and the Bloch 

theory can be accurately applied to the proposed antennas.  

In Table 4.4.1, samples are chosen to have high aspect ratio (AR) capacitance gaps, ranging 

from 20 to 30, where AR=t/g as shown in Fig. 4.4.1 (a). One more verification is to examine the 

accuracy of (4.4.11) and (4.4.12). Table 4.4.2 uses the interdigitated cell in Fig. 4.4.2 (b) in a 3-

cell SE-EBG-RA and compares its fr found by the circuit model and HFSS. As seen, ∆<1.8%, 

which is quite low considering the complexity of features added to the cell. For comparison, fr of 

the non-interdigitated cell in Fig. 4.4.2 (a) is included as well. As seen, fr of the interdigitated cell 

has significantly dropped while both cells have identical physical sizes. It is also observed that 

interdigitation enhances Cpp/Ccp, causing Cpp to dominate Ccp. Obviously, this trend continues as 

the order and depth of interdigitation increases. 

Table 4.4.2 fr of SE-EBG-RAs composed of cells in Fig. 4.4.2 (a) and (b), given by the model and HFSS. Cpp and 

Cpp are also calculated by the model; ∆ is the difference between fr by the model and HFSS, divided by the HFSS 

value. 

fr (GHz) 
Cell Type 

Ccp 

(pF) 
Cpp 

(pF) 
Cpp/Ccp

∆ 
(%) Model HFSS 

Interdigitated 2.54 4.96 1.95 1.8 3.26 3.32 

Basic 1.33 1.26 0.95 3.4 4.01 4.15 

 

It can be concluded that the model proves relatively accurate in estimation of resonance 

(where Xin=0), provided that g<<λ, g<<d, d<<λ, g<<dix, g<<diy. Also, although (4.4.6) does not 

include the effect of thickness and (4.4.7) only roughly includes that effect, the accuracy as 

demonstrated (∆<4.1%), is not drastically affected, especially in the case of these structures 

where Cpp dominates Ccp. The model also (to some extent) includes the effect of radiation, and 

thereby, (4.4.13) can estimate Rin, but not as accurately as Xin.  

4.4.5 Verification through Prototyping 

In this section, the effectiveness of the circuit model in design is demonstrated through 

experimental measurement of two fabricated antenna prototypes. The first prototype is shown in 

Fig. 4.4.3. The antenna features 27µm gaps and is made by electroplating 4µm Ni on an alumina 

substrate. The unit cells are as shown in Fig. 4.4.1, with dimensions given in Fig. 4.4.3.  
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Fig. 4.4.3. The fabricated thin 3-cell antenna with micron-scale gaps; metal traces are 4µm thick plated Ni; cells are 

as in Fig. 4.4.1 with d=1.81mm; W=7.8mm, h=1mm, g=27um; εr=9.9, tanδ=0.003. 

 

The input reflection (dB|S11|) of the antenna is shown in Fig. 4.4.4 (a). The measured 

resonance frequency (fr) from Fig 4.4.4 is 12.43GHz, compared to an fr predicted by HFSS 

simulation of 11.54GHz. The circuit model predicted fr of 12.25GHz is comparable to the HFSS 

simulation (∆=6.1%), and quite respectable considering the high operating frequency (>12GHz) 

of the partially lumped model. Also with micron scale features, even small discontinuities, for 

instance in the launch, can introduce uncertainty at higher frequencies. As seen, the difference 

between the model and experimental results is less than 1.5%. 

   

 

 

 

 

 

 
 

Fig. 4.4.4. Measured, HFSS-simulated, and modeled input reflections for a) the antenna in Fig. 4.4.3, b) the antenna 

in Fig. 4.4.5; both Y-axes show dB|S11|. 

 
The second prototype and its input reflection are shown in Fig. 4.4.5 and Fig. 4.4.4 (b), 

respectively. The simulated radiation pattern of this antenna at its resonance (4.06GHz) is shown 

in Fig. 4.4.6 as well. As seen, the realized gain at broadside is 2.85dB. In Fig. 4.4.5, the cell 

(a) (b) 
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differs from Fig. 4.4.1 in that some metal sections have been removed (indented), forming a dog-

bone-like cell. The circuit model in Sec. 4.4.2 was developed for rectangular unit cells as shown 

in Fig. 4.4.1. However, with some considerations, it can also be effectively applied to the cell in 

Fig. 4.4.5 (a). 

 
 

 

 

 

 

 

Fig. 4.4.5. The fabricated 3-cell antenna; the metal traces are made of 30µm thick copper; the λ/4 transformer is 

1.94mm wide and 6.96mm long.  

 
Fig. 4.4.6. HFSS-simulated radiation pattern of the 2nd prototype at 4.06GHz for 30mm×38mm ground plane size. 

As shown in Fig. 4.4.5 (a), Ccp associated with the cell is composed of different capacitances, 

Ccp=2Ccp1+Ccp2 where Ccp1 and Ccp2 can be calculated using (4.4.8), considering the depicted d 

and W in Fig. 4.4.5 (a) for each coplanar capacitance. Also, Z0 of the TL in Fig. 4.4.1 varies 

along the length due to the width discontinuities. Therefore two widths of 3.5mm and 9mm can 

be considered, each introducing a different Z0 to the model. In Table 4.4.3, these two cases are 

separately considered and the associated fr is calculated. As d<<λ, for the third case, the average 

of the trace widths in Case 1 and Case 2 is considered as an estimate. As seen, for Case 3, Z0 falls 

(a) (b) 
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somewhere between Z0 of the Case 1 and 2, and its estimate for fr is the best (∆ is the least at 

2%). Even at the worst case (Case 2), ∆<8.3% which is still tolerable. 

Table 4.4.3 Properties of the antenna in Fig. 4.4.5 calculated by the model; ∆ is the difference between fr given by 

the model and experiment, divided by the experimental value. 

fr found by experiment (for Fig. 4.4.5) is 3.98GHz 
 Trace width (mm) Z0 (Ω) εreff ∆ (%) fr (GHz) by Model 

Case 1 3.5 26.97 7.56 6.0 3.74 
Case 2 9 13.22 8.38 8.3 4.31 
Case 3 (9+3.5)/2 17.7 8.07 2.0 4.06 

 

4.4.6 Conclusion 

A TL circuit model is proposed for describing thick radiating EBG unit cells. To demonstrate its 

effectiveness, this model is applied to the design of SE-EBG-RA presented in Sec. 4.1. Two 

kinds of EBG cells are considered for the antenna, including basic rectangular-shaped cells with 

narrow high-capacitance gaps, and an alternative version with high-capacitance interdigitated 

gaps. To ensure that the model is reliable, it is also applied to the design of four SE-EBG-RAs 

composed of cells with various physical and electrical properties. The antenna resonance found 

by the model compares favorably with that predicted by HFSS numerical analysis (typically 

<4.1% difference). Two different SE-EBG-RA prototypes are fabricated and measured, one of 

which features narrow gaps of 27µm. Again, it is observed that the model and experimental 

results are very similar, differing by only 1.5% and 2%. This demonstrates the ability of the 

simple equation-based circuit model for accurately predicting the resonance frequency of 

radiating EBG unit cells. 
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4.5 Unit Cell Miniaturization and Applications to SE-EBG-RAs Design 

This section focuses on thick EBG cells presented in Sec. 4.1 and discusses cell miniaturization 

and its applications to antenna size reduction. Miniaturization techniques to reduce the resonance 

frequency of the basic unit cell using the HFSS/Bloch approach are presented. Improved, 

compact EBG cells are applied to the structure of SE-EBG-RA, presented in Sec. 4.1. The 

original SE-EBG-RA with the basic EBG cell is compared to the new version developed here 

with improved cells.  

 

4.5.1 EBG Cell Development and Miniaturization 

The progression towards a miniaturized thick-metal EBG unit cell is shown in Fig. 4.5.1. The 

basic cell in Fig. 4.5.1 (a) can be considered a type of via-less version [2] of the mushroom-like 

cell [11], composed of electrically small thin metal patches on top of a PEC-backed dielectric 

substrate.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5.1. Step-by-step development and miniaturization of the thick metal EBG unit cell (side/top views depicted); 

the substrate in this example is alumina with εr=9.9 and tanδ=0.003; the aspect ratio, AR, is t/g. 
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The idea to attain new cells is to thicken the top metal layer considerably, while manipulating 

the lateral metal pattern to reduce the cell resonance frequency. The ensuing EBG structures 

proposed in this study (the antennas in Sec. 4.5.2) comprise a number of these thick patches 

deployed periodically in one dimension (1D EBG structure), and with very tiny gaps between 

cells. The gaps typically have very high aspect ratios (HAR) (Fig. 4.5.1 (b) example has 

AR=2mm/0.1mm=20), and therefore introduce a high capacitive coupling effect that 

significantly reduces the cell electrical size. 
 

A. Thickening, Interdigitation, and Trimming 

There are a number of methods proposed to tailor the properties of EBG cells such as 

interdigitation [56-57, 9], trimming [58], and much less commonly, thickening [17, 32, 59]. In 

this section, these methods are applied to the thin via-less mushroom-like EBG cell in Fig. 4.5.1 

(a), both separately and in combination, with the objective to develop a new type of EBG cell 

with dramatically reduced electrical size. 

First, the thickness of the metal layer of the thin EBG cell in Fig. 4.5.1 (a) is increased 

considerably, in this example to 2mm while the gap remains constant at 0.1mm. This turns the 

cell into a very thick EBG cell with a HAR gap (AR=20), as shown in Fig. 4.5.1 (b). Fig. 4.5.2 

and Table 4.5.1 compare the cell properties in the progression from cell 4.5.1(a) to 4.5.1(b), 

showing that the cut-off frequency (fc) decreases from 4.83GHz to 3.43GHz (29% drop). 

Fig. 4.5.2 (down) shows the cell dispersion diagram generated by the HFSS/Bloch method 

described before. The method renders two curves for each cell, which are the real (α) and 

imaginary part (β) of the complex propagation constant (γ) along a 1D array (in the Y direction 

shown in Fig. 4.5.2 (a)) made of an infinite number of cells. In this method, the array in Fig. 

4.5.2 (a) is considered a transmission line (TL), composed of EBG cells (EBG TL). The fc 

reported in Table 4.5.1 is where these two curves intersect as highlighted in Fig. 4.5.2 (b).  

The next method applied is to trim some rectangular pieces of the thick metal layer shown in 

Fig. 4.5.1 (b), to obtain the cell in Fig. 4.5.1 (c). This modification turns the cell into a 1D 

dogbone-like cell, the 2D version of which is known as Jerusalem cross cell [34]. As in Table 

4.5.1 and Fig. 4.5.2, this change decreases fc again, from 3.43GHz to 2.58GHz (25% drop). The 

next attempt is to apply interdigitation rather than trimming. To do this, the cell in Fig. 4.5.1 (b) 

is considered and its HAR gap is interdigitated towards increasing the gap capacitance, as shown 
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in Fig. 4.5.1 (d). The details of the example interdigitation are given in Fig. 4.5.1 (f).  As seen in 

Fig. 4.5.2 and Table 4.5.1, this reduces fc from 3.43GHz to 2.34GHz (32% drop).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5.2. a) 1D array structure of the EBG cell in Fig. 4.5.1 (b), b) the complex propagation constant (γ=α+jβ) 

along Y-axis normalized by free-space wavenumber (k0) for EBG cells described in Fig. 4.5.1/Table 4.5.1; the twin 

curves (a) to (e) are related to Fig. 4.5.1 (a) to (e) and Result 1 to 5 in Table 4.5.1.   

 
Table 4.5.1 Electrical and physical properties of the EBG cells in Fig. 4.5.1; λc is the wavelength at fc 

Thin EBG Thick/Tall EBG 
 
 Result 1 

Fig. 4.5.1 (a) 
Result 2 

Fig. 4.5.1 (b) 
Result 3 

Fig. 4.5.1 (c) 
Result 4 

Fig. 4.5.1 (d) 
Result 5 

Fig. 4.5.1 (e) 

Cut-off Freq (GHz) 4.83 3.43 2.58 2.34 1.78 

Cell Size (mm) 
7.2 

(λc/8.6) 
7.2 

λc/12.15 
7.2 

λc/16.15 
7.2 

λc/17.8 
7.2 

λc/23.5 

Overall Thickness (mm)  
1 

λc/62  
3 

λc/29.2 
3 

λc/38.8 
3 

λc/42.7 
3 

λc/56 

Cell Size Shrinkage (times) 1 1.41 1.87 2.06 2.7 

Footprint Shrinkage (times) 1 2 3.5 4.25 7.3 

 

(a) 

(b) 
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B. HAR Interdigitated Dogbone EBG Cell 

The next step after separately demonstrating the miniaturization effects rendered by trimming 

and interdigitation is to combine and simultaneously apply them to the cell in Fig. 4.5.1 (b). 

Figure 4.5.1 (e) shows what the ensuing cell resembles and that this combination reduces fc from 

3.43GHz for Fig. 4.5.1 (b), to 1.78GHz for Fig. 4.5.1 (e) (48% drop). Table 4.5.1 compares the 

electrical and physical properties of all five EBG cells depicted in Fig. 4.5.1. The results clearly 

demonstrate a gradual and remarkable reduction in fc of the cells. It is worth noting that by 

switching from Result 1 (fc=4.83GHz) to Result 5 (fc=1.78GHz), fc dramatically drops by 63%, 

i.e. 2.7 times lower. Since the cell is spread two dimensionally, this is approximately equal to the 

shrinkage achieved in both the X and Y directions of the 1D array, resulting in an array footprint 

which is 7.3 (2.72) times smaller, in terms of the new λc (at the new fc). It is worthwhile to note 

that starting from the cell in Fig. 4.5.1 (a) and ending with the cell in Fig. 4.5.1 (e), the lateral 

physical dimensions and the substrate material are unchanged, and the only modification is to 

increase the metal layer thickness and manipulate the lateral pattern.  

C. Physical Comparison of Presented Cells  

To show the actual size reduction potential, the cells in Fig. 4.5.1 (b) and (e) are scaled down in 

size, and designed to operate at the same fc as the basic cell (Fig. 4.5.1 (a)), all with the same 

substrate permittivity. Therefore, all cells shown in Fig. 4.5.3 resonate at 4.83GHz (identical λc), 

however their physical dimensions are considerably different, and easy to compare visually.  

 
Fig. 4.5.3. Visual comparison between size, thickness, and footprint of the EBG cells in Table 4.5.1. Dimensions of 

cells (b) and (e) in Fig. 4.5.1 are scaled to operate at the same resonance (fc=4.83GHz) of the basic thin EBG cell (a). 
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As shown in Fig. 4.5.3, the overall thickness of the last cell, i.e. from the PEC ground to the 

top of the metal layer, is only 1.1 times larger (h increases to 1.1h in Fig. 4.5.3) than the first 

(roughly the same) while its cell size is 2.7 times smaller than the first cell. It is worth noting that 

the footprint is noticeably smaller as it is reduced two dimensionally (by 2.72 or 7.3 times). This 

means that the application of interdigitation and trimming causes the ensuing cell to only occupy 

13.7% of the surface area taken by the basic thin EBG cell (with identical fc).  

It is noted that as expressed by (4.4.10), Ga is proportional to W/λ. This means that when 

trying to miniaturize the cell by thickening (compare Fig. 4.5.1 (a) and (b)), W is fixed while the 

new resonance is lower (new λ↑). This fact reduces W/λ and Ga, which is the typical cost paid to 

achieve miniaturization. However, as demonstrated in Table 4.2.2, at the same time with the drop 

in Ga, loss in the structure drops (due to thickening), which for the proposed antenna under study 

in Table 4.2.2, favorably yields an increase in efficiency. Therefore, both miniaturization and 

efficiency enhancement are simultaneously achieved.  

D. The Advantage of Thick Interdigitated Gaps 

When creating an interdigitated capacitor with gaps in thin metal layer (Fig. 4.5.1 (a)), the 

couplings between interdigits are largely coplanar, occurring outside the gap. This practically 

limits the number of possible interdigitated arms because using more interdigits reduces the 

width of each, and lowers the coplanar coupling. In contrast, with HAR gaps (Fig. 4.5.1 (d) and 

(e)), the dominant coupling mechanism is parallel plate capacitance. In this case, gap capacitance 

is relatively high, electric fields are contained mainly within the HAR gaps, and the number of 

interdigits can be increased considerably, up to minimum feature size and maximum AR 

limitations of the fabrication process. Deep X-ray lithography (DXRL) with metal 

electroforming, for instance, has been used to realize ARs of > 50 for metal microwave devices 

[60], and with very smooth sidewalls. Such HAR microfabrication methods allow the designer to 

reach considerable degrees of freedom to trade-off the number and length of interdigits with 

metal thickness to drastically reduce the cell size and the size of antennas incorporating these 

cells, while at the same time improving other antenna characteristics such as radiation efficiency. 

In addition, the via-less nature of the proposed thick metal cells can considerably simplify the 

fabrication process. Appendix C describes some of the efforts on prototyping of the proposed 

antennas using DXRL. 
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4.5.2 Application of Miniaturized EBG Cells to Antenna Design 

This section demonstrates the potential for miniaturizing antennas using the proposed cells, by 

applying them to the novel antenna presented in Sec. 4.1, the self-excited EBG resonator antenna 

(SE-EBG-RA). The SE-EBG-RA in this case is made of three cascaded thick metal EBG unit 

cells (cell size << λr, at the matching/resonance frequency, fr) forming an open circuit microstrip-

fed EBG TL. The antenna configurations for two types of cells are shown in Fig. 4.5.5 (a) and 

(b). The SE-EBG-RA input impedance can be found from (4.1.5), γlZZ Bin tanh= , where ZB, the 

Bloch line impedance, and γ of the EBG TL (both along Y-axis in Fig. 4.5.2 (a)) can be found 

using the HFSS/Bloch method in Sec. 4.1. 

In (4.1.5), l is the total antenna length, which in case of the 3-cell antenna structures 

considered here is 3 times the cell size (l = 3×7.2mm for all cells). Using (4.1.5), dB|S11| of 

different versions of SE-EBG-RA with cells shown in Figs. 4.5.1 (c), 4.5.1 (d), and 4.5.1 (e) are 

calculated and compared in Fig. 4.5.4. The results show a gradual reduction in fr. As expected, 

this behavior corresponds to the gradual decrease in fc (fc ≠ fr) already observed in Fig. 4.5.2 (b) 

and Table 4.5.1. 

 
Fig. 4.5.4. Comparison of the input matching of SE-EBG-RAs composed of different EBG cells in Fig. 4.5.1; results 

are based on HFSS/Bloch method. 

For comparison, two of four cases in Fig. 4.5.4 are modeled in HFSS and analyzed completely 

numerically. This provides independent results that can be compared with the result in Fig. 4.5.4 
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obtained by HFSS/Bloch method. The antennas in Figs. 4.5.5 (a), and 4.5.5 (b) with identical 

substrate and physical size are compared, and the radiation patterns are depicted in Figs. 4.5.5 (c) 

and 4.5.5 (d), respectively (realized gains). The related dB|S11| and efficiency are also compared 

in Fig. 4.5.6. As observed, fr in both cases agrees very well with the results shown in Fig. 4.5.4.  

            

     

 

Fig. 4.5.5. 3D view of SE-EBG-RAs composed of EBG cells in Fig. 4.5.1 (b) and (c); Radiation pattern (c)/(d) 

corresponds to the antennas in (a)/(b); Dashed/solid line is the E/H-plane pattern; ground plane size is 30×37mm; 

input 50Ω MSLs are 0.3mm wide, 5.25mm long, and 2mm tall (same as cells); the cell size is given in Fig. 4.5.1. 

(d)(c) 

(a) (b)
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 Fig. 4.5.6. Comparison of the resonance frequency and efficiency for the SE-EBG-RAs in Fig. 4.5.5; based on full-

wave analysis.   

 

Although the antennas in Fig. 4.5.4 do not target any specific frequency band and are only 

rendered for demonstration, as observed, they are operating close to some popular bands like 

unlicensed ISM 2.4GHz [61] or WLAN (2.4/5GHz). Therefore, in case a designer is interested in 

such miniaturized designs, it is possible to use either scaling or a computationally affordable 

fine-tuning approach to adjust fr to the desired frequency. Specifically indicating the left cell in 

Fig. 4.5.4, it is observed that the 3-cell SE-EBG-RA based on the cell is matched at 2.7GHz 

which is very close to 2.4GHz ISM band. It should also be noted that when using different cells 

in Fig. 4.5.4, to keep comparisons easy and reasonable, the antenna feedline has not changed (at 

the same size used for the cell on the right, to have 50Ω). This condition causes the other three 

antennas to resonate (the reactive part of Zin crosses zero), but not exactly be matched to 50Ω. A 

λ/4 transformer can then be designed and added to each antenna to match them to 50Ω. Due to 

the high permittivity of the substrate (εr=9.9), the physical length added by the transformer will 

be very small. 

 

 

 



136 
 

4.5.3 Conclusion 

A methodology is presented to miniaturize an EBG antenna using unit cells with thick 

metallization and narrow gaps. The effects of several modifications to the metal layer such as 

trimming, and interdigiting, both separately and simultaneously are demonstrated. The result is a 

remarkable decline in the resonance frequency while the physical size remains constant. A 

miniaturized unit cell occupying only 13.7% of the surface area of the basic unit cell 

demonstrates the potential of the approach for size reduction. Such cells were applied in the 

structure of a self-excited EBG resonator antenna, demonstrating a drastic reduction in the 

resonance frequency while maintaining the same physical size.  
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Chapter 5 
 

Extended Ideas and Designs 
 
 

5 Extended Ideas and Designs 
This chapter extends the ideas developed in Chap. 4, while orienting the extension towards 

different applications or demands. Sec. 5.1 introduces a HAR leaky-wave antenna, in contrast to 

the resonant antennas presented in Chap. 4, however based on the same HAR EBG cells and 

dispersion diagram (HFSS/Bloch). Sec. 5.2 presents a series-fed array antenna based on the 

proposed cells. In Sec. 5.3, a novel EBG microstrip antenna is studied which shows fast-wave 

behaviors and better performance, as compared to the conventional patch antenna. Finally, in 

Sec. 5.4, a very small and efficient version of the SE-EBG-RA (introduced in Chap. 4) is 

presented which is able to radiate circular polarization.    
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5.1 Low-Profile Efficient Leaky-Wave Antennas with Proposed EBG Cells 

This section proposes a very efficient low profile leaky-wave antenna (LWA) made of high 

aspect ratio (HAR) electromagnetic bandgap (EBG) unit cells. As described in Chap. 3 (see Fig. 

3.4), the proposed HAR unit cells can be used within either the leaky-zone of the cell dispersion 

diagram or the slow-wave zone, resulting in either a LWA or a resonant antenna, respectively. 

On the contrary to the previous sections, this section focuses on LWAs and proposes a high 

performance HAR LWA. The idea is the first attempt to incorporate HAR EBG cells into the 

structure of LWAs. To develop the idea, a LW transmission line (LW TL) is introduced, which is 

textured of HAR EBG cells, and then, an open circuit piece of such a LW TL is utilized as a 

LWA. The results show that the simultaneous contribution of EBG cells and HAR metal traces 

yields maintained efficiency while reducing the structure resonance. 

 

5.1.1 Introduction 

LWAs are found to be inexpensive low profile but effective candidates satisfying the demands 

for easy to integrate, flat, high gain antennas for many communication systems such as those 

mounted on vehicles (most well-known automotive radars, as described in Fig. 5.1.1) or other 

platforms [1-2]. Generally speaking, a planar LWA is like a planar TL which is leaking a portion 

of the power while guiding the other portion along its structure so that the parts located farther 

can be simply fed sequentially, with no separate feed lines or components. Such LWAs are 

typically characterized by a phase and leakage constant along their radiating structure [1]. The 

analysis approach in this section is based on the HFSS/Bloch method described in Sec. 4.1, 

however the closed-form equations developed in Sec. 4.4 could also be applied to the design of 

such LWAs. In addition to the analysis, a synthesis and design process is also suggested for the 

proposed LWA.   
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Fig. 5.1.1. General description of an automotive radar system with a frequency scanning LWA antenna on the car 

front. The transmit frequency is swept continuously over the leaky range, making the pattern scan. The receive 

signal is then inspected for possible frequency components retuned from the object (every component represents a 

unique angle).  

 
5.1.2 Proposed LWA Structure 

An EBG unit cell with dimensions given in Fig. 5.1.2 (a) is considered, which is the same cell 

proposed in Sec. 4.1. However in this section, the cell is utilized in the leaky-wave frequency 

zone rather than the slow-wave zone (see Fig. 5.1.2 (b)), which is the key to achieve a scanning 

radiation pattern [1], [3].  

The analysis is initiated by regarding the unit cell as a HAR microstripline (MSL), 

periodically loaded at the center by a narrow gap (see Fig. 5.1.2 (a)). For such a cell, the 

HFSS/Bloch method (see Sec. 4.1 or [4-5]) provides an equivalent line impedance and 

propagation constant (α+jβ). Fig. 5.1.2 (b) shows α and β versus frequency, which describe the 

dispersive behaviors of the loaded TL textured by repeating such a unit cell. To characterize the 

leaky and bound modes of the EBG textured TL, LW, fast, and slow-wave regions are indicated 

in Fig. 5.1.2 (b). These regions are differentiated in the same manner in [e.g. 3].  



143 
 

 

 
 
 
 
 
 
 

 
 

Fig. 5.1.2. a) The unit cell and HFSS model for the HAR EBG cell (size ~λ/11×λ/11×λ/28), b) dispersion behavior 

expressed by the normalized propagation constant versus frequency; the substrate is Alumina with εr=9.9, 

tanδ=0.003, and metal is copper, σ=5.8e7s/m.  

For a LWA made out of a large number of EBG cells (here 12), the antenna demonstrates a 

traveling wave behavior [1] and the signal reflected towards the input port can be assumed 

negligible (the proposed LWA is open one side, with no matched load). This feature causes the 

LWA (see Fig. 5.1.3) to show an input impedance roughly equal to the line impedance. The 

Bloch line impedance, ZB, can be calculated as described in Sec. 4.1 (also in [4-5]), the value of 

which at the center of the LW zone of Fig. 5.1.2 (b) (i.e. 3.54GHz) is 2.64Ω-j0.81Ω ≈ 2.64Ω. 

Although this impedance is very low, it will be shown later that the EBG LWA possesses a high 

efficiency (η) of ~90%. It is reminded that as opposed to small antennas, for electrically large 

antennas like this LWA, radiation resistance (Rr) is not necessarily close to the input resistance 

and could be its transformed version. This is one reason for Rr and hence η to remain high. Fig. 

5.1.13 plots this impedance versus frequency. Then, as illustrated in Fig. 5.1.3, a λ/4 HAR MSL 

matching section (Zmatch
2 ~ 50×2.64) roughly transforms this low impedance to the standard 50Ω 

value. The ensuing structure is the HAR LWA shown in Fig. 5.1.3 made of 12 HAR EBG cells 

and the matching circuit. Because the antenna operates within the LW zone of Fig. 5.1.2 (b), it is 

expected to have a scanning pattern (i.e. the main lobe radiation direction changes with 

frequency). This behavior is expressed by [3, 6] 

 )arcsin( 0km βθ =  (5.1.1)

(a) (b) 
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(5.1.1) gives the angle of the main lobe from the broadside direction (Z-axis). The scanning 

occurs in the XZ plane in Fig. 5.1.3. As seen, for the case in Fig. 5.1.2 (b), β/k0 ranges from 

~0.44 to 1 over LW zone which, according to (5.1.1), means the antenna should be ideally able 

to scan over 26˚<θm<90˚.  

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 
 

 

 

 

 

Fig. 5.1.3. HFSS model of the proposed LWA with 12 EBG cells. A λ/4 transformer with the same thickness as the 

antenna matches the antenna to a 50Ω line; ground plane size is 30mm×103mm (1.24λ×0.36λ); cell Size is 

~ λ/11×λ/11×λ/28; λ is the wavelength at matching frequency.  
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In practice however, due primarily to the limited size of the antenna and deviation from the 

theoretical condition for validity of (5.1.1), θm has an upper limit much lower than 90˚. Table 

5.1.2 presented later shows that the upper limit is 65˚ and 67˚ for two different LWAs.  

 

5.1.3 Simulation Results 
The HFSS simulation results including gain/radiation pattern, input matching, and efficiency are 

shown in Fig. 5.1.4 and Fig. 5.1.5. As seen, the input is matched over the LW zone (see Fig. 

5.1.2 (b)) which justifies the assumption of the traveling wave nature. The natural beam scanning 

behavior of a LWA is also obvious in Fig. 5.1.4.  

 
 

 
 

Fig. 5.1.4. The realized gain of the HAR EBG LWA at three different frequencies, showing the typical beam 

scanning of LWAs, a) rectangular radiation pattern (phi=0), b) polar radiation pattern at ZX plane (phi=0). 

(a) 

(b) 
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Fig. 5.1.5. Radiation efficiency and return loss of the HAR EBG LWA around the LW zone in Fig. 5.1.2 (b). 

 

Having the total electrical length of 1.24λ (XYZ: 1.24λ×0.36λ×λ/28) which is much smaller than 

~4λ for traditional MSL LWA [3] and still maintaining a high efficiency of ~90% with ~5dBi 

gain are distinguishing properties of the proposed LWA. 

5.1.4 Comparison with Similar LWAs 
To highlight the advantages of the proposed HAR EBG LWA, two published LWAs are 

reviewed and their physical and electrical properties are discussed. The first antenna is shown in 

Fig. 5.1.6 [6].  

 

 

 

 

 
 

Fig. 5.1.6. Top layer view of the periodic planar LWA presented in [6], which is designed employing coplanar 

waveguides; © IEEE 2002. 

This planar antenna resonates at 30GHz, and is comprised of 32 cells, each λ/5 (λ at 30GHz) 

long. The effective reported gain is ~9dBi and the efficiency is 95%. As seen, this antenna is 

highly efficient at the expense of being very long at ~8λ. Typically, LWAs have to be at least 4λ 

[3] to be able to have the cumulative radiation large enough to dominate the loss and result a 
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high efficiency. To resolve this problem, [3] presents an electrically small LWA with a periodic 

feature on both ground plane and top metal layer, as in Fig. 5.1.7. The design can reach a length 

as small as 1.15λ but at the expense of poor radiation efficiency (~30%) and hence deteriorated 

radiation gain. Although such a design can reduce the size unconventionally (<< 4λ), due to 

missing the cumulative radiating aperture, the radiation cannot effectively dominate the loss. 

Another issue with such a design is the complexity of the design process because the 

performance is dependent on the size of so many features on both sides of the ground plane. For 

instance, Fig. 5.1.7 shows the tapered nature and complexity of the traces on the top layer. 

 

 

 

 

 

 
 

Fig. 5.1.7. The top and bottom views of the periodic planar LWA presented in [3]; © IEEE 2010. 

 

Comparing the proposed HAR EBG LWA to these two examples, not only is it electrically 

small (1.24λ×0.36λ×λ/28) due the special characteristics that its periodic unit cell provides, but 

also it successfully maintains the radiation efficiency at a very high level of at least 88% over the 

operating range. This outstanding performance is obtained thanks to the simultaneous application 

of the EBG concept and trace thickening strategy, while purposefully keeping the aspect ratio of 

the gaps as high as ~20 (the gap size is kept much smaller than the thickness).  

 

5.1.5 Array of the Proposed LWAs 
In this part, two of the proposed HAR EBG LWAs are arrayed to investigate the possibility of 

providing a higher aperture gain, while maintaining the scanning nature. Fig. 5.1.8 shows the 

array configuration for which the element spacing is set to be relatively small at ~0.35λ. The 
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dimensions of each element are given in Fig. 5.1.3, while details of the feed lines are provided in 

Fig. 5.1.8. As seen, similar to the antennas, all feedlines are also composed of HAR MSLs to 

cause a uniform integrated top metal layer that could be possibly fabricated by a single exposure, 

for instance, using fabrication methods like UV-LIGA or Deep X-ray LIGA (Appendix C). 

    

 

 

 

 

 

 

 

 

Fig. 5.1.8. 3D view of a 2-element array of the HAR LWA shown in Fig. 5.1.3; ground plane is 118mm×60mm 

(0.72λ×1.38λ); λ is the wavelength at matching frequency; the transformer provides 50Ω input impedance.  

Fig. 5.1.9 shows the rectangular plot of the realized gain at the scanning plane and 

demonstrates that the antenna has retained its scanning nature satisfactorily. This robustness is 

very noticeable when reminded that the array spacing is relatively small at 0.35λ.  

 

 

 

 

 
 

 

 

 

Fig. 5.1.9. Rectangular plot of the realized gain at scanning plane (phi=0) for the 2-element HAR LWA array. 
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Reduced electrical spacing could bring about mutual coupling in regular arrays and not only 

could cause mismatch, but also could deteriorate the LW behavior of cells. The fact that such a 

tight arraying does not change the LW behavior of the antenna highlights the role that EBG cells 

play in suppressing the surface waves and that the proposed EBG LWA elements have the 

potential to form high-efficiency high-gain LWA arrays. 

Table 5.1.1 compares the physical, electrical, and radiation properties of both 1- and 2-

element antennas. As seen, the 2-element outweighs the 1-element in almost any feature except 

for the maximum F/B radiation ratio over the specified frequency range. Specifically, it is 

observed that the realized gain is 1.51dBi more for the 2-element case. It is noted that if the 

decrease in Gr could be tolerated down to 4dBi (with F/B>5dB), then 1-element antenna can 

offer even a wider scanning range of 25°< θ < 65° (see Table 5.1.2 for details). The same 

situation is expected to occur for the 2-element array. 

Table 5.1.1. Comparison between physical, electrical, and radiation properties of both 1- and 2-element LW 

antennas; λ is the wavelength at matching frequency; Gr is the realized gain. 

All Over 
Frequency Range 

 
Max F/B 

 (dB) Min Gr 
(dBi) 

Max Gr 
(dBi) 

Frequency 
Range 
(GHz) 

Frequency 
Mistuning 

(%) 

η  
at Center Freq

 (%) 

Scanning 
Range 
(deg) 

Array 
Electrical 

Size 

1-Element 6.9 5.0 5.1 3.46 to 3.62 0 92 30 to 58 0.35λ×1.22λ

2-Element 4.1 6.51 8.3 3.36 to 3.64 < 1.1 92 30 to 60 0.72λ×1.38λ

 

5.1.6 Applying the Scaling Principle 

In order to show that the LWA design of Fig. 5.1.3 could be useful in other frequencies as well, 

the unit cell is downsized and then the antenna LW performance is scrutinized. The idea is to 

divide all physical features by 3 (as an example) and expect to have the antenna resonate at 

approximately 3 times higher frequency. However, scaling could result in dimensions, which are 

not round or might not be feasible in practice, and hence, after scaling, the dimensions are 

modified. For example, scaling turns the 100um gap to 100/3, which is rounded to 38µm, and 

turns the 2mm thickness to 2mm/3, which is again rounded to 0.7mm. Most importantly, due to 

the availability of 0.5mm alumina substrates, the 1mm thickness is rounded to 0.5mm rather than 

1mm/3. Table 5.1.2 compares the original design (#1) and the scaled one (#2) along with 
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dimensions and electrical properties of the antennas simulated in HFSS. As seen, the scanning 

properties of the antenna #2 are all retained and its frequency of operation is increased from 

3.6GHz to 8.8GHz. The increase is 2.45 times (less than the expected 3) which is attributed 

mainly to the rounding applied, especially on the thickness of the dielectric substrate.  

Table 5.1.2. Comparison between the physical, electrical, and radiation properties of the LWA in Fig. 5.1.3 and its 

scaled version; λ is the wavelength at matching frequency; Gr is the realized gain. 

 Design #1 Design #2 (Scaled) 

Aspect Ratio 2mm/0.1mm or 20 700µm/38µm or 18 

Substrate Alumina (ε
r
=9.9), 1mm Alumina (ε

r
=9.9), 0.5mm 

Metal Thickness 2mm 700µm 

Metal Material Copper Nickel 

Realized Gain, Gr 
> 4dBi  

with F/B>5dB 
3.5dBi<Gr<6.3dBi 
with F/B>4.5dB 

Scanning Range 25°< θ < 65° 31°< θ < 67° 

Minimum Efficiency, η  88% 85% (with Nickel) 

Center Frequency ~ 3.6 GHz ~ 8.8 GHz 

Bandwidth, BW ~ 6.2% ~ 7% 

Electrical dimensions: XYZ 1.25λ×0.36λ×λ/28 1.45λ×0.38λ×λ/25 

Number of Unit Cells 12 12 

Unit Cell Size XY 7.2mm×7.1mm 2.738mm×2.7mm 

Gap Size 100µm 38µm 

Dimensions of Transformer Section Fig. 5.1.3, XY: 7.44mm×6.8mm Fig. 5.1.11, XY: 3mm×3.44mm 

Ground Plane Size: XY 103mm×30mm 40.7mm×12.8mm 
 

For the design #2 in Table 5.1.2, a numerical comparison is set to assure the soundness of port 

modeling. To do this, rather than a rectangular waveport in HFSS, as in Fig. 5.1.10 (a), this port 

is replaced with a SMA connector excited by a circular waveport. The dimensions and the 

insulator material of the coaxial core of the SMA connector are chosen to be very close to a 

practical SMA connector with 50Ω impedance.  
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Fig. 5.1.10. The scaled LWA, a) modeled by rectangular a waveport, as assumed for design #1 in Table 5.1.2, b) 

modeled when replacing the rectangular waveport with a 50Ω SMA connector excited by a circular waveport.  

Fig. 5.1.11 compares the input matching of the design #2 in Table 5.1.2 with and without this 

connector. As observed, the BW is maintained at ~7% for both cases, and the SMA connector 

modeling only introduces a negligible upward shift. 

 
Fig. 5.1.11. Comparison between the simulated input matching of the design #2 in Table 5.1.2 with and without the 

SMA connector. 

Fig. 5.1.12 (a) shows the related HFSS 3D model. Two large views of the connector and the 

antenna transformer section are also included in Fig. 5.1.12 (b) and (c) with an emphasis on the 

connector 3D configuration and the insulator, respectively. The port impedance calculated by 

HFSS at the circular waveport is 53Ω, which is very close to the expected 50Ω.  

 

(a) (b) 
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Fig. 5.1.12. a) 3D view of the scaled LWA modeled when replacing the rectangular waveport with a 50Ω SMA 

connector excited by a circular waveport (design #2 in Table 5.1.2); for clarification, two different enlarged views of 

the connector and feed point section are rendered as well.       

 

 

 

 

(a) 

(b) (c) 

50Ω line 
0.2mm wide 
0.7mm thick 

53Ω 
SMA 

Connector 
3.44mm

14mm 

4.8mm3mm

1.6mm

εr=3.1 

Real Example
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5.1.7 Design Process  
Up to this step, the analysis of an EBG cell with known dimensions and substrate material, using 

the HFSS/Bloch method, was described. Two sample HAR EBG LWAs were rendered based on 

such cells, and simulation results were presented. To supplement those studies, this part is 

dedicated to the design/synthesis (as opposed to the analysis) of the HAR EBG LWA. The goal 

is to practically apply the knowledge gained on such an antenna to the design of real-life 

antennas requiring specific frequency bands. To meet this goal, the design process can be broken 

down into the following steps: 

1- Choose the substrate material/thickness and a feasible range of the aspect ratio for gaps (i.e. 

gap size).     

2- Use the circuit model (Sec 4.4, equ. (4.4.5)) to find a set of initial dimensions for the cell so 

that its cut-off frequency is roughly close the design frequency40.   

3- For these initial dimensions, sketch the dispersion diagram by HFSS/Bloch method over an 

adequately wide frequency range. 

4- Sketch the related Bloch equivalent impedance, ZB (Fig. 5.1.13) over the same range. 

5- Assume a large number of cells to have a traveling wave, and therefore, Zin ≈ ZB. 

6- Find the leaky-wave zone in the dispersion diagram and pick an average ZB (ZBav ) in the 

middle of this zone from the ZB curve (e.g. 2.7Ω in Fig. 5.1.13). Assume  Zin ≈ ZBav. 

7- Design a quarter-wave transformer to match this typically low Zin to 50Ω line. 

8- Model the whole LWA including the transformer and a large number of cells (typically 10 to 

15) in HFSS and numerically find the matching range. 

9- Inspect the scanning feature of the simulated pattern, ideally over the matching range. 

10- Inspect the common frequency range where matching and scanning are both desirable. 

11- If the common range is small and the scanning range, gain, or F/B are not maintained well in 

this range, return to the initial values in Step 2, slightly adjust them, and repeat the process.  

12- Repeat the whole process until the desired scanning range, gain, F/B, and efficiency are 

achieved. 

                                                 
40 It is noted that (4.4.5) estimates the cut-off frequency, which is the lower limit of the LW zone (see Fig. 4.6.2 (b)), 

and hence, the center of the zone is slightly above this estimated frequency. In fact, the design frequency should be 

placed roughly at the center of the LW zone not at the cut-off.   
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Fig. 5.1.13. Bloch line impedance versus frequency generated by HFSS/Bloch method, associated with the 

dispersion diagram of Fig. 5.1.2, and the description of how the curve is used to design a matching network for the 

proposed LWA. 

 

5.1.8 Conclusion 
A very efficient low profile leaky-wave antenna made of high aspect ratio EBG unit cells is 

proposed. The antenna is based on an open circuit piece of a tall MSL, composed of twelve HAR 

EBG cells presented in Sec. 4.1. The simulation results, including gain/radiation pattern, input 

matching, and efficiency are presented and discussed. Such results show that the simultaneous 

contribution of EBG cells and HAR metal traces brings about a relatively high efficiency of 

approximately 90% while the overall electrical length is very short for LWA antennas at 1.24λ. 

The compact footprint (1.24λ×0.36λ) and the small overall thickness (λ/28) are of other 

distinguishing features offered by the proposed LWA. Furthermore, the applicability of scaling 

technique and the possibility of easily arraying the proposed antenna without disturbing the LW 

behavior are demonstrated. 
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5.2 Series-Fed Array Antennas with Proposed EBG Cells 

This section presents an efficient planar array antenna composed of “separate groups” of thick 

electromagnetic bandgap (EBG) cells. The basic element, the SE-EBG-RA, is the same antenna 

introduced in Sec. 4.1 containing several EBG cells. The array comprises equally-spaced series-

fed elements (i.e. groups of several EBG cells) designed to have broadside radiation. A 

computationally efficient approach is presented to form the array in series with negligible mutual 

coupling between elements. To this end, first the terminated version of SE-EBG-RA element is 

introduced. Then, it is shown how such elements can structure the series array effectively. 

Results show that the application of EBG cells and thick traces yields high efficiency, alleviated 

mutual coupling, and a symmetrical broadside pattern with reduced numerical computation load.  

 
5.2.1 Introduction 

Array antennas have long been under study as a way to achieve high-gain apertures demanded by 

many communications and radar systems. The notion of attaining cost-effective low-profile 

monolithic arrays has drawn much attention to array structure based on planar elements, most 

popular of which is the microstrip antenna. Therefore, many efforts have been made to develop 

topologies and techniques to effectively array these elements. The classical way to do this is to 

use corporate feeding networks [e.g. 7]. This method provides a large bandwidth (BW) and 

desirable phase difference at the expense of long feed-lines, yielding relatively high dissipation 

loss [8] and low efficiency (η) [9]. A remedy to mitigate this loss is to employ a series feeding 

method [e.g. 10-11], which has reduced feed-line lengths and reduced line radiation [9]. As an 

array element, microstrip antennas suffer from inherent weaknesses like low BW and low power 

handling capability [12]. In some applications like automotive radar at 77GHz [13], even a small 

BW percentage can accommodate a sufficiently high data rate. However, especially at high 

frequencies, the increased loss in microstrip structures [13] can deteriorate η. This fact 

emphasizes the importance of series-fed arrays under such conditions. To combat the loss issue, 

this section applies two parallel schemes. The first is to replace the microstrip antenna with the 

high-efficiency planar element described in Sec. 4.1, the self-excited EBG resonator antenna 

(SE-EBG-RA). The second scheme is to utilize the series-feeding method to efficiently excite 

elements. Another feature of the idea is an approach to deploy successive elements so that the 

design process is not dependent on full-wave analysis of the whole array, but rather on the design 
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of each element separately. The idea is that employing the SE-EBG-RA yields reduced mutual 

coupling between elements, a condition that is the core of the computationally efficient array 

design process to be described. In fact, this notion stems from advantages of periodic EBG 

structures [5, 14-17, et al.], such as bandwidth and gain enhancement, size reduction, surface 

wave suppression, and loss mitigation. Among these, as investigated in [16], suppressing surface 

waves is the key to isolating the adjacent elements, and is utilized in this section. The analysis 

method employed is the HFSS/Bloch method described in Sec. 4.1.  

5.2.2 Main Idea 

In Sec. 4.1, the concept of open-circuited (OC) SE-EBG-RA textured by three EBG cells was 

introduced. The concept can be generalized by considering a finite real load impedance replacing 

the OC end (infinite impedance) of the antenna. As described in Sec. 4.1, to develop the OC 

version, a 1D EBG-woven TL was introduced, and then, using the HFSS/Bloch method, the 

dispersive behavior of the TL was fully extracted. The results were an equivalent line impedance 

called Bloch impedance, and a complex propagation constant (γ=α+jβ), both available versus 

frequency. Having access to these two parameters, a new version with a finite load (here 50Ω) 

can be designed in a similar manner (referred to as the terminated SE-EBG-RA). The idea is that 

a matched OC SE-EBG-RA (like the design in Sec. 4.1) can play the role of a 50Ω load for the 

second antenna element, which is the terminated SE-EBG-RA. Because the terminated antenna is 

designed to operate with a 50Ω load, introducing the OC antenna element as its load will not 

disturb its operation, provided that the mutual coupling is negligible. The idea can be extended 

by noting that now these two arrayed elements can be regarded as a new matched planar antenna 

with 50Ω input impedance, a module which can be a 50Ω load for a third terminated SE-EBG-

RA. This approach allows us to cascade additional elements to the series arrays while there is no 

need for corporate feed-line systems. Fig. 5.2.1 renders an overview of the described idea. From 

this point on, the rest of the design process will be to adjust the distance between the antenna 

elements so that they have the appropriate phase at the input port, providing the desired radiation 

pattern. The deviation caused by the mutual coupling is also a factor to consider, but it is 

expected (demonstrated later) to be negligible due to the role of EBG cells in suppressing surface 

waves [16]. 
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Fig. 5.2.1. Generalization of a n-element series array of SE-EBG-RA antennas; the first element is OC-SE-EBG-RA 

and the rest are identical and classified as terminated SE-EBG-RA due to being loaded at the end. 

 
5.2.3 Concept of Terminated SE-EBG-RAs 

To expand on how a terminated SE-EBG-RA functions, it is noted that the theory presented in 

Sec. 4.2 for the open- or short-circuited SE-EBG-RAs can be generalized by terminating the 

antenna by an arbitrary load. This is as opposed to using short (ZL=0) or open (ZL=∞) loads 

described in Sec 4.2. A simple case of termination, which is used in this section (Fig. 5.2.1 and 

5.2.2), is to consider an ohmic load like ZL=50Ω. Accordingly, the problem is simplified to 

analyzing a piece of TL composed of a cascade of EBG cells (3 cells in this case) which is 

terminated on one side by a 50Ω load and is fed from the other side. Using the HFSS/Bloch 

method presented in Sec. 4.1, the propagation constant, γ=α+jβ, and the equivalent line 

impedance, ZB, can be extracted for this EBG TL. Using these parameters and referring to the 

lossy TL theory, the input impedance of such terminated piece of TL can be obtained. It can be 

shown that at l=nλg/2 (the electrical length of the piece of EBG TL), the terms containing β 

vanish in the equations, and the input impedance is simplified to 
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Because in this case ZL is real (50Ω) and ZB is also approximately real, (this is shown in the 

last figure of Sec. 5.1 where ZB is plotted for the EBG cells), Zin will be a real impedance capable 

of being matched to a 50Ω line.  

 

5.2.4 Simulation Results 
To demonstrate the idea through an example, the 3-cell OC SE-EBG-RA of Sec. 4.1 is 

considered as the OC element on the right side of Fig. 5.2.2. The same 3-cell structure is also 

considered for the terminated element on the left. The input impedance of each element is found 

separately, i.e. in single element mode, by HFSS/Bloch method (see Sec. 4.1 and [5]). The 

comparison shows that a 50Ω load is imaged by the piece of 3-cell EBG TL to 23.2Ω while an 

infinite load is imaged to 42.1Ω. Both antennas resonate (imaginary part of input impedance is 

zero) at identical resonance (fr) of 4.15GHz. One way to bring these impedances back to 50Ω is 

to add quarter-wave transformers, as shown in Fig. 5.2.2.  
 

 

Fig. 5.2.2. A 2-element series array of SE-EBG-RA; the substrate is alumina with εr=9.9 and tanδ=0.003; the ground 

plane size is 72×30; W1=1.1, W2&W4=0.912, W3=1.05 (30µm thick), g=0.1, L1=6.92, L2=7.04, L3=6.9, L4=1.86; the 

array spacing is 35.56; all dimensions are in mm. 
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As a result, the impedances seen at points A and B in Fig. 5.2.2 become 50Ω. It is noted that 

all these design steps are carried out without analyzing the two elements at the same time while it 

is expected that the whole 2-element array will resonate roughly at the same fr of 4.15GHz. To 

corroborate this expectation, in the next step, the whole array in Fig. 5.2.2 is numerically 

analyzed in HFSS. As seen, a piece of 50Ω line in the middle connects the two antennas and is 

adjusted in length (∆φ2 in Fig. 5.2.2) to provide the total 360˚ phase difference needed for a 

broadside array (∆φ1+∆φ2+∆φ3=360˚). It is noted that ∆φ1=90˚ as it is created by a quarter-wave 

transformer. ∆φ3 is also fixed for the given geometry of the cells and is found from β of the EBG 

TL, obtained by HFSS/Bloch method. For the array in Fig. 5.2.2, the radiation pattern in E- and 

H-planes are shown in Fig. 5.2.3, and the related parameters are BW=1.25%, fr=4.13GHz, 

η=84%, and Gr=7.24dBi (realized gain). As seen, the array is still matched to a 50Ω line at 

4.13GHz. This frequency is only 0.5% deviated from 4.15GHz at which each element has been 

designed to operate separately. The array parameters are comparable to η=89%, and Gr=3.0dBi 

for the single element 3-cell OC SE-EBG RA. The frequency stability observed after deploying 

the two antennas on such a high dielectric substrate, at a relatively close distance (array spacing 

is 0.48λ), demonstrates that the mutual coupling between elements is negligible.  

 

 

 

 

 

 

 
 

Fig. 5.2.3. Radiation pattern of the 2-element series array in Fig. 5.2.2. 

 

Fig. 5.2.4 also shows a 3-element array comparable to Fig. 5.2.2. The associated parameters 

are η=83%, Gr=8.5dBi, f=4.09GHz, which means the matching (resonance) frequency only has 

1.4% shift from 4.15GHz for the single-element. Rectangular and 3D radiation patterns are 

shown in Figs. 5.2.5 and 5.2.6. Moreover, Fig. 5.2.7 compares the return loss of one-, two-, and 

three-element arrays shown in Fig. 5.2.1. 
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Fig. 5.2.4 A 3-element series-fed array of SE-EBG-RA; the substrate material and dimensions are like Fig. 5.2.2; the 

ground plane size is 109mm×30mm; elements #2 and #3 are the same as the second element in Fig. 5.2.2. 

 
Fig. 5.2.5. Rectangular radiation pattern of the 3-element array of Fig. 5.2.4 (realized gain plotted). 

 

 

Fig. 5.2.6. Two different views of the 3D radiation pattern of the 3-element array of Fig. 5.2.4 (realized gain 

plotted). 

φ=0˚ 

φ=90˚ 
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Fig. 5.2.7. Comparing the return loss of one-, two-, and three-element arrays shown in Fig. 5.2.1. 

 

It is noted that an array of (for instance) three SE-EBG-RAs, as in Fig. 5.2.4, has 3×3 unit 

cells. One conceivable way for increasing the aperture size and its gain is to use one SE-EBG-

RA element with more cells than 3 (e.g. 9 cells). However, the effect of the number of cells was 

discussed in Sec. 4.2 and the conclusion was that after increasing this number beyond a certain 

limit (six cells in case of the example in Sec.4.2), the antenna changes its nature from being 

resonant to being leaky-wave and the radiation pattern begins to scan. Therefore, in the case of 

requiring a high gain antenna with broadside radiation, the solution is to turn to the array 

structures like the efficient series-fed topology described here.       

It is worth noting here that in addition to their undesired radiation, the feedlines of an array 

antenna generate thermal noise due to the ohmic loss. This noise is uncorrelated with other noise 

sources in the system. The available noise power of a low loss transmission (TL) can be 

expressed as [18] 
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(5.2.2)

where Γg is the source reflection coefficient, k is the Boltzmann constant, T is the ambient 

temperature, and ∆f is the bandwidth, respectively. Also, α is the attenuation constant, and l is 

the length of the TL. Accordingly, it can be easily shown that, for a given mismatch factor, this 

power increases with increasing l. Hence, the total length of the feed network plays an important 

role in controlling the noise [19] when the array antenna is used as a receive antenna. This is a 

1-element 2-element

3-element
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fact that further highlights the advantages of the proposed series-fed HAR EBG array antenna, as 

its series-fed topology minimizes the length of the feed networks.   

 

5.2.5 Conclusion 

An equally-spaced series-fed array antenna with efficient EBG antenna elements is presented. A 

computationally efficient approach is presented to form the array in series with negligible mutual 

coupling between elements. The idea of the terminated SE-EBG-RA as opposed to short or open 

circuit SE-EBG-RAs is described and is applied to the efficient design of the proposed array. 

Full-wave simulation results show that compared to the resonance frequency of 4.15GHz for the 

1-element antenna, the matching mistuning is only 0.5% and 1.4% (downward shift) for the 2- 

and 3-element arrays, respectively. Also as compared to efficiency of 89% and gain of 3.0dBi for 

the single element antenna, the parameters are 84%/7.24dBi and 83%/8.5dBi for the 2- and 3-

element arrays, respectively. Such results demonstrates that an array antenna with large aperture, 

and hence, higher gain is achieved, for which, the efficiency is maintained satisfactorily.  
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5.3 A Novel EBG Microstrip Antenna with Fast-Wave Behavior  

This part of the study presents a compact patch antenna, which is periodically loaded by air gaps. 

The gaps are arranged to create EBG cells, which affect the dispersive behaviors of the patch (as 

a transmission line). This causes waves to travel faster along the patch, and increases the 

cumulative radiation from the structure. The proposed antenna is compared with its conventional 

counterpart, considering efficiency, electrical/physical size, and the potential to achieve an 

electrically small footprint. Experimental results validate the analyses.  

5.3.1 Introduction 

As described earlier, microstrip antennas suffer from inherent weaknesses like low bandwidth 

(BW) [20] and vulnerability to surface wave excitation and the associated loss, especially on 

high permittivity dielectric substrates [21]. Also, relatively large ground planes are typically 

required to counter surface wave diffraction at the ground plane edges and reduce front-to-back 

radiation ratio. An effective remedy to many of these issues is to place the patch on an EBG 

ground plane rather than a PEC one [e.g. 22]. Some designs offer a single-layer structure, 

deploying EBG cells around the patch on the same layer [23], while others require at least two 

layers, sometimes with different permittivities. Another interesting trend has been to weave the 

patch itself using EBG cells and achieve a reduced resonance [24]. The radiation properties of 

such structures can be improved by thickening the metal layer of its small EBG cells as in Sec. 

4.1 and [5]. Following such efforts, this section considers a single layer conventional patch 

antenna, then divides the patch into small unit cells created by periodic air gaps to demonstrate 

the advantages achieved. 

 

5.3.2 Concept 

Fig. 5.3.1 shows the proposed small unit cell made of a metal strip on a PEC-backed substrate. 

As seen, there is a narrow (0.25mm) interdigitated gap dividing the cell at the center. This cell 

can be cascaded to realize the gap-loaded patch antenna shown in Fig. 5.3.2 (a). Using the 

HFSS/Bloch analysis described in Sec. 4.1, the equivalent line impedance, Zc, the complex 

propagation constant along Y-axis in Fig. 5.3.1, γ=α+jβ, and the effective relative permittivity, 

εreff, are calculated as in the left section of the Table 5.3.1. For comparison, in Table 5.3.1, the 

same cell with gaps removed is also analyzed using HFSS/Bloch analysis (Sec. 4.1) to provide 
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the dispersive TL behaviors of the conventional patch antenna in Fig. 5.3.2 (b). Because this gap-

less cell is in fact a wide microstripline (MSL), its TL parameters can also be calculated using 

well-known closed-form equations [e.g. 4]. The results are εreff=9.28, Zc=10.76, and β/k0=3.05 

and agree very well with the HFSS/Bloch results in Table 5.3.1. Apart from the unit cell analysis, 

both antennas in Fig. 5.3.2 are modeled in HFSS and are analyzed entirely numerically. The 

related properties are listed in the right section of Table 5.3.1. As the antenna in Fig. 5.3.2 (a) 

operates at 4GHz, Lr in Fig. 5.3.2 (b) is adjusted so as to have the antenna resonate at the same 

frequency, while Wr and Wg remain the same to keep both antennas identical in width.   

 

 

 

 

Fig. 5.3.1 Side (a) and top (b) views of the Bloch unit cell of the antenna in Fig. 5.3.2 (a); all gaps are 0.25mm; the 

Bloch cell size is λ/7×λ/12.3×λ/59, and the cell is composed of two smaller identical portions (EBG cells) of size 

λ/14×λ/12.3×λ/59 (λ at 4GHz). 

 

 

 

 

 

 

 

Fig. 5.3.2 Microstrip antenna versus its gap-loaded version both resonating at 4GHz; both ground planes are 

16mm×24.3mm; both substrates are 1.27mm thick RO3010 (εr=10.2, tanδ=0.0023); the unit cell of Fig. 5.3.2 (a) is 

given in Fig. 5.3.1; metal traces are 30µm thick copper. 

 

 
 

(a) (b) 

(a) (b) 
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Table 5.3.1 HFSS/Bloch analysis of the unit cell in Fig. 5.3.1 with and without gaps and simulated parameters of 

patch antennas based on them in Fig. 5.3.2; Gr is the realized gain including the dB|S11| effect; η is found by HFSS 

simulation. 

Properties at 4GHz; k0 is the free-space wavenumber 

Unit Cell (HFSS/Bloch) Antenna (HFSS) 

εreff  Zc (Ω) β/k0 α/k0 Redge (Ω) Gain (dBi) Gr (dBi) η (%) dB|S11| 

Regular patch; patch size as in Fig. 5.3.2 (b) (Wr and Lr) 

9.18 10.98 3.03 0.01 312 1.48 -1.97 75 -2.5 

The gap-loaded patch; patch size as in Fig. 5.3.2 (a) (Wg and Lg) 

4.16 6.26 2.04 0.04 37.4 1.95 1.9 84 -19 

 

Table 5.3.1 compares properties of the antennas in Fig. 5.3.2 and their unit cells. As seen, εreff of 

the proposed gap-loaded patch is much lower as a result of field interaction with air at the gaps. 

Similarly, Zc is also much lower for Fig. 5.3.2 (a) than Fig. 5.3.2 (b). More importantly, applying 

gaps has reduced β/k0 by ~1.5 times, which is a clear indication of fast-wave behavior of the 

structure compared to the regular patch. As seen, such effects introduced by loading, result in a 

low patch edge impedance, Redge, of 37.4Ω, much less than 312Ω for the conventional patch and 

desirably close to 50Ω. This means the gap-loaded patch can be effectively fed directly by a 50Ω 

line (19 dB return loss compared to 2.5 dB for the conventional patch) without requiring a (large) 

multi-section matching transformer. For the conventional patch, Wr, can be increased to reduce 

Redge; however, a typical Wr/Lr of 1.5 [21] is required, which is much wider than the gap-loaded 

structure in Fig. 5.3.2 (a). With interdigitated gaps, there is the opportunity to exploit the 

number, length, and the width of interdigits as extra parameters to achieve the desired Redge, 

without the need to increase the patch width, i.e. Wg in Fig. 5.3.2 (a). Furthermore, as in Table 

5.3.1, the efficiency (η) of the gap-loaded patch is 12% higher, leading to a higher antenna gain. 

One more informative parameter in Table 5.3.1 is α/k0, which is 4 times higher for the gap-

loaded patch. α/k0 represents the enhanced radiation leakage of the structure, caused by applying 

gaps, and explains the enhancement in η. The radiation patterns of antennas in Fig. 5.3.2 are 

shown in Fig. 5.3.3.     
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Fig. 5.3.3 Simulated realized gains of antennas in Fig 5.3.2 (a) and Fig. 5.3.2 (b); the dashed/solid line is related to 

E-/H-plane.  

 

5.3.3 Discussion 

Reference [24] compares a similar EBG-textured patch antenna with a slow-wave nature to a 

conventional patch. The antenna requires two separate low permittivity substrates (εr of 2.2 and 

2.55), is excited through a MSL-fed slot, and has an overall volume of ~0.43λ×0.43λ×λ/28. By 

comparison, the proposed gap-loaded patch of Fig. 5.3.2 (a) is similarly EBG-woven, however 

can be simply fed by a MSL on a single-layer high permittivity substrate (εr=10.2), and has a 

significantly smaller electrical volume of 0.21λ×0.32λ×λ/59. Also, as shown in Table 5.3.1, 

waves travel faster along this loaded patch compared to the conventional patch. 

5.3.4 Experimental Verification 

The antenna in Fig. 5.3.2 (a) is fabricated with a large ground plane of 63mm×60mm. The 

prototype is shown in Fig. 5.3.4. Fig. 5.3.5 compares simulated and measured dB|S11|, showing 

satisfactory agreement. In addition, the gain in the broadside direction measured by the three-

antenna-method [25] is 4.47dBi which is only 0.88dB lower than the HFSS result. However, as 

the SMA connector has not been simulated, ~0.2-0.4dB out of 0.88dB can be attributed to the 

SMA loss, and the actual gain uncertainty ranges from 0.48dB to 0.68dB.  

(a) (b)
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Fig. 5.3.4 Fabricated gap-loaded patch antenna of Fig. 5.3.2 (a) with a large ground plane. 

 

 
Fig. 5.3.5 dB|S11| of the antennas in Fig. 5.3.2 and Fig. 5.3.4. 

 

5.3.5 Conclusion 

This section presents an improved microstrip patch antenna, which is textured by 2×3 small EBG 

cells of size λ/14×λ/12.3×λ/59. A comparative study shows that the patch body acts as a piece of 

periodically-loaded MSL with radiation properties which guides the waves at a faster speed as 

compared to a normal MSL. An antenna design example is rendered which has a high efficiency 

of 84%, BW of 1.75%, realized gain of 1.9dBi, and a small volume of 0.21λ×0.32λ×λ/59. It is 

demonstrated that a conventional patch counterpart cannot compete to reach this degree of 

compactness. 
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5.4 Compact Circularly Polarized SE-EBG-RAs  

This section presents a highly efficient and miniature planar electromagnetic bandgap (EBG) 

antenna with circularly polarized (CP) radiation. The antenna building blocks are the high aspect 

ratio (HAR) EBG cells introduced in Sec. 4.1, nine of which are deployed in both lateral 

dimensions (3×3). Because the top metal layer of this EBG surface is symmetrical, it can 

simultaneously accommodate two orthogonal E-field components. These fields are excited by 

two microstriplines attached to the corners. A compact simplified shifter/power divider provides 

quadrature phase difference and equal magnitudes at feed points, enabling the structure to 

generate a broadside CP radiation pattern. Thanks to the natural capability of EBG cells, the low 

loss nature of HAR metal traces, and high capacitive coupling of gaps, this section features a 

planar CP antenna with a footprint as small as 0.26λ×0.29λ and efficiency as high as 94%.  

5.4.1 Introduction 
In mobile communications systems, mobile devices happen to be in a variety of positions, 

movements, and directions so that a linearly polarized (LP) antenna may not always be an 

optimum solution. Under such circumstances, it is very difficult to effectively match the 

polarization of the antenna with the polarization of the incoming signal. One remedy is to use 

circularly polarized (CP) waves [26-27] to improve the polarization diversity and reduce impacts 

of multi-path environments on performance. As a result, many modern communications systems 

adopt or desire CP waves [28]. For example, in body area networks applications [26], global 

positioning systems [29], mobile RFID readers [30], and in some satellite-to-earth 

communications links, small CP antennas for mobile terminals involved are desirable, not only 

to improve the signal quality, but also to meet the requirements on the overall weight and size 

[31]. Although there are some miniaturization techniques special to CP antennas [32-33], most 

techniques are only applied to LP antennas. A reason is that very small antennas are so 

challenging to design that enforcing extra requirements for CP radiation complicates the design 

and optimization process. For instance, it is difficult to realize an electrically small antenna with 

maintained bandwidth (BW) and efficiency (η) [34]. Therefore, achieving a planar CP antenna, 

which is highly efficient, small in footprint, and simple in terms of feeding method remains a 

demanding, yet challenging area. In light of this, this section puts forward an idea to fill the gap 

sketched. The antenna proposed has a structure similar to a square patch antenna, the metal patch 
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of which is divided by periodically applied tiny gaps at electrically short intervals. This way the 

patch body is textured of small EBG unit cells (small square patches on a PEC-backed substrate), 

which are thickened until the gaps become very high aspect ratio (HAR) (thickness/gap=20). The 

motivation for thickening is to reduce the conduction loss while increasing the capacitive 

coupling between the EBG cells (inside the gaps). There are also other scarce works like [35-36] 

utilizing structures with projected metal layers. To the best of our investigation, this idea is the 

first attempt to utilize EBG antennas with thick metal layers radiating CP waves. 

5.4.2 Approach to Providing CP Radiation 

The idea is initiated with considering a regular square patch antenna fed by two microstriplines 

(MSL) from two adjacent corners. Two modifications are applied to the structure which include 

thickening the top metal layer (t=2mm) and adding narrow gaps of 0.1 mm at short intervals. 

This way, as in Fig. 5.4.1, a thick sectioned EBG patch antenna is obtained. The gaps are very 

HAR as their thickness over gap size is 20. This high value is purposefully chosen to increase the 

side coupling between adjacent gaps and drop the resonance. It is noted that in Sec. 4.1, a one 

dimensional (1D) version of this 2D EBG antenna with only three cells was presented, which 

operated as a high-efficiency LP antenna.  

The next step is to excite two orthogonal E-field components with 90˚ phase difference, inside 

the structure in Fig. 5.4.1. A conventional way to achieve this condition is to apply cross-feeding 

topology shown in Fig. 5.4.2. As depicted, this topology requires a power divider with different 

arm lengths (l1 & l2) to equally divide the power and provide 90˚ phase shift simultaneously. The 

downside of this feeding method however is that it occupies much space because it needs two 

extra quarter-wave transformers to compensate the impedance mismatch after power division. In 

addition, the total feeding section will be relatively long (and hence lossy) in order to 

accommodate such impedance transformers. 

To circumvent this issue, the 3×3-cell patch antenna is designed to have 80Ω input impedance 

at each corner at the desired frequency, as shown in Fig. 5.4.1 (a). For a given dielectric material 

and thickness, adjusting parameters like gap and patch size can provide this condition. After this 

impedance is obtained, two 80Ω MSLs can feed the corners with no mismatch.  
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Fig. 5.4.1. Top (a) and 3D (b) views of the CP HAR EBG antenna along with detailed dimensions of the feed section 

(c); the cell size is ~λ/16×λ/16×λ/23; the substrate is alumina with εr=9.9 and tanδ=0.003; the metal is copper with 

σ=5.8e7s/m; the ground plane size is 33mm×30mm; the trace width for the 50Ω line is 1.2mm and for 80Ω line is 

0.7mm. 

 

 

 

 

 

Fig. 5.4.2. A regular square patch antenna, traditionally fed by two cross MSLs at the center of two adjacent sides; to 

provide the condition for CP radiation, feedlines must be in the right size, as described.   
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As in Fig. 5.4.1 (a), these MSLs have different lengths to provide the required phase shift and 

they meet where a 50Ω line feeds them. As both MSLs have 80Ω impedance, they provide a 40Ω 

(80Ω/2) input impedance at the fork, which is matched well enough to the 50Ω line. Although, 

the ideal impedance for MSLs is 100Ω rather than 80Ω, realization of such a high impedance, 

especially with thick traces, puts some pressure on the design, and hence, is avoided. This 

strategy enables the antenna to generate two orthogonal E-field components (i.e. degenerate 

modes) with roughly the same magnitude and quadrature phase shift, turning the antenna into a 

CP radiator. As seen in Fig. 5.4.1, the power divider/shifter is very compact and appears a part of 

the antenna structure.  

 

 

 

 

 

 

Fig. 5.4.3. dB|S11| for the antenna in Fig. 5.4.1. 

 

5.4.3 Simulation Results 

HFSS simulation results for the antenna in Fig. 5.4.1, including the input matching and 

gain/radiation pattern, are shown in Fig. 5.4.3 and Fig. 5.4.4, respectively. The antenna offers 

very small electrical dimensions of 0.26λ×0.29λ×λ/23, remarkable η of 94.3% (from 2.4 GHz to 

2.75GHz), realized gain of 0.13dBi, and matching BW of 11.5%. The axial ratio (AR) bandwidth 

(where AR<3dB) is also 1.5% as shown in Fig. 5.4.3. Moreover, Fig. 5.4.5 shows the antenna 3D 

radiation pattern. As seen, Fig. 5.4.4 indicates that the AR is maintained over about ±70˚ angular 

range. To provide more details on how CP is generated, Fig. 5.4.6 renders the rectangular plots 

of the AR as well as the magnitude and phase of Eθ in two orthogonal planes. 
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Fig. 5.4.4. Realized gain of the CP EBG antenna; the dashed/solid line is for phi=90˚/phi=0˚ plane.  

 

Fig. 5.4.5. 3D plot of the realized gain for the CP antenna in Fig. 5.4.1, at the matching frequency of 2.62GHz. 
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Fig. 5.4.6. AR (a) together with the magnitude (b) and phase (c) of Eθ for the CP antenna in Fig. 5.4.1; curves are 

plotted at the matching frequency of 2.62GHz; the dashed/solid line is for phi=90˚/phi=0˚ plane. 
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While noting the small antenna size of 0.26λ×0.29λ×λ/23, it is worth reminding that in 

general, realization of electrically small antennas leads to severe degradation of both BW and η 

[34].  However, for the proposed CP HAR EBG antenna, such degradations are overcome due to 

the simultaneous application of the EBG concept and trace thickening. 

5.4.4 Conclusion 

A design methodology is presented for the design of an efficient miniature EBG antenna with CP 

radiation. The antenna is composed of 3×3 EBG cells with projected top metal layer and HAR 

gaps in the layer. The symmetry of the patch structure is utilized and two degenerate modes with 

orthogonal E-field components are excited in the structure using a compact simplified 

shifter/power divider. The proposed antenna renders a symmetrical broadside CP radiation 

pattern, a footprint as small as 0.26λ×0.29λ, and efficiency as high as 94%. 
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Chapter 6 
 

Conclusions and Recommendations 
for Future Work 

 
 

6 Conclusions and Recommendations for Future Work 

To conclude the thesis, in this section, a synopsis of the research carried out is presented and the 

contributions of the study and its outcomes are outlined. The dissertation is then closed by a list 

of potential future works, which are in line with the current outcomes and could yield improved 

or new ideas and contributions. 

 
6.1 Research Summary 
In brief, the research carried out in this thesis can be outlined as follows:   

• A new periodic TL41 composed of HAR42 EBG43 cells with radiation properties is proposed, 

its dispersive nature is studied, and its radiation properties are demonstrated. 

• Two types of novel antennas are proposed based on such a TL: short- and open-circuited SE-

EBG-RA. 

                                                 
41 Transmission Line 
42 High Aspect Ratio 
43 Electromagnetic Bandgap 
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• A novel analysis method based on the Bloch theory is proposed to efficiently analyze such 

periodic structures (called HFSS/Bloch).  

• The HFSS/Bloch method is further developed to become independent of numerical analysis 

and be 100% closed-form.  

• The basic HAR EBG cell is modified to develop miniaturized cells, which are then applied to 

the design of miniaturized versions of the proposed antenna. 

• Some highly miniaturized antenna designs are presented, applicable to real-life space-limited 

communication systems.   

• A new LWA44 is presented based on the proposed HAR EBG cells. 

• The proposed EBG antenna element is arrayed based on series-feeding topology, which yields 

a novel large aperture. A design process is rendered for this array, which improves the 

computational efficiency. 

• A gap-loaded microstrip antenna with improved performance and fast-wave characteristics is 

introduced.  

• A compact CP version of the proposed EBG antenna is presented.  

• A technique based on parasitic HI45 elements is investigated to better utilize the available 

physical aperture of the proposed antenna and enhance the overall aperture efficiency. 

• The possibility of antenna measurement (efficiency, gain, and pattern) in semi-anechoic 

condition is demonstrated. 

• DXRL fabrication steps are reviewed and partially developed to demonstrate the possibility of 

realizing HAR features for antennas like the proposed SE-EBG-RA. UV-lithography is used 

to fabricate various thin-metal antenna samples, and CNC milling was used to fabricate 

representative HAR samples for validating the various antennas through experimentation. 
   

6.2 Conclusions and Contributions 
In conclusion, the research offers the following scientific contributions:  

• An analysis method based on Bloch theory for characterizing periodic antennas similar to the 

proposed ones, which uses a new way to model the unit cells, yielding new advantages.   

                                                 
44 Leaky-Wave Antenna 
45 High Impedance 
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• Novel miniaturized EBG antennas with maintained performance applicable to modern mobile 

communications system with restricted power and form factor.  

• A new circuit model yielding computational efficiency in the design process of the proposed 

antennas. This feature makes the method fast and easy to use without intensive numerical 

analyses and could be included in commercial CADs46. 

• High-performance planar array antennas based on proposed EBG antennas, which is 

applicable to communication systems demanding high-gain low-loss flat antennas.  

• Compact high-performance LWAs with scanning radiation pattern applicable to automotive 

radar systems. 

• New theoretical insights on the relationship between antennas and TLs, generated by 

dedicated analyses and discussions.  

• Antenna structures which are compatible (see Fig. 6.1) with emerging HAR microfabrication 

techniques like DXRL (see Appendix C), and hence, are able to be designed at higher 

frequencies with alleviated dielectric and conduction loss.   

 
Fig. 6.1 Description of one of the novel antenna designs in the thesis (e.g. Sec. 5.4); to provide a DXRL-friendly 

design, the structure is simply fed by MSL, no via is considered, the substrate is alumina (friendly to X-ray scanner), 

and the top metal layer is thickened to accommodate HAR gaps.  

Fig. 6.2 provides a concise overview of different classes of antennas proposed throughout the 

thesis and lists some of the potential applications of each one.  
                                                 
46 Computer Aided Designs 
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Fig. 6.2 Overview of different sorts of antennas introduced in this thesis and some of their potential applications. 
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6.3 Future Works 
A list of possible future works in line with or supplementary to the research outcomes is as 

follows: 

• A CPW47 version of the proposed HAR EBG cells (currently based on MSL48) could be 

developed. 

• A CPW version of the proposed EBG antennas (SE-EBG-RA) could be sought, which are 

anticipated to exhibit higher BW. 

• The circuit model for unit cells could be improved to work more accurately, especially for 

gaps with extremely high aspect ratios (30<AR<100 within the feasible range for fabrication).  

• The proposed antennas with thick EBG cells could be investigated for new designs on High 

Resistivity Silicon wafers (as opposed to alumina substrate or the like) to achieve 

compatibilities with Si microelectronics processes.  

• Different kinds of feeding methods, like probe-feeding or proximity coupling, could be 

investigated for the SE-EBG-RA (currently MSL-fed).  

• A cost-effective fabrication process based on UV lithography or simplified X-ray lithography 

could be developed to affordably and rapidly fabricate the proposed HAR EBG antennas. 

• The efforts on DXRL processes initiated in Appendix C could be followed up to fabricate 

some of HAR EBG antennas proposed. 

• A high gain flat array antenna (comparable to reflector-array antennas) based on the SE-EBG-

RA elements could be designed for a particular application, such as direct satellite TV on 

vehicles, to further demonstrate the effectiveness of the designs. 

 
 

 

 

 

 

 

 

 

 
                                                 
47 Coplanar Waveguide 
48 Microstipline 
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Appendix A 
 

Three-Antenna Measurement Method 
 
 
 
A1 Friis Transmission Equation 

The well-known Friis transmission equation [1] governing wireless communication links is as 

follows 

 ttrFSttrr PGGLPGG
d

P    
4

  
2

=





=
π
λ

 (A1)

where Pr is the power received by the receiving antenna and Pt is the transmitted power. Fig. A.1 

depicts how (A1) is applied to a typical communication links. (A1) describes the relation 

between the link performance and the parameters such as antenna performance (gain, etc.), 

wavelength (λ), and the physical distance from transmitter to the receiver (d). The term LFS is 

known as free space loss. In practice, another term Lother has to be added considering the channel 

losses: 

 ttrotherFSr PGGLLP    =  (A2)

where Lother includes any kinds of loss in the channel between transmitter and receivers such as 

those caused by diffraction, multiple reflection/refraction, effects of the earth surface, scattering 

by fog/rain, etc. Also, in (A1), the terms Gr or Gt are the realized gains of transmitter and 

receiver antennas as defined below:  

 ( ) DSG ohmicRealized   ||1  2
11 η−=  (A3)

where D is the antenna directivity. 

 

A2 Three-Antenna Method 

The three-antenna measurement technique described in [2-3] is a method to measure the gain of 

an antenna under test (AUT) when there is a second standard calibrated antenna is not available. 

However, to carry out such a method, two extra antennas with unknown gains are required while 

they have to be able to operate at the same frequency of the ATU. The distinguished feature of 
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the method, which makes it quite appealing, is that it does not require any prior knowledge on 

the gain of any of the three antennas involved [4].  

 

 

Fig. A.1. A typical communications link and the Friis transmission equation [1] governing the system.  

 

This method starts with performing three measurements based on (A1). This leads to the 

following system of equations describing all three experiments: 
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If the distance, d, the wavelength, λ, and the ratios of the received to transmitted power (Pr/Pt) 

are known, the right-hand sides of the equations will all be known. The ratio Pr/Pt is in fact S21 in 

dB (i.e. 20log|S21|) measured by the network analyzer during the test. (A5) to (A7) is a system of 

three equations with three unknowns, and the solution to this system is simply as 
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Appendix B 
 

Wheeler Cap Method 
 
 

For a small antenna with a series circuit model around resonance, the efficiency can be 

calculated using [1-2]:   

 
1

21

Lossrad
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rad 
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RR
PP
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P
P −

=
+

==η
 

(B1)

To be able to calculate η, first, the input resistance of the antenna under test (AUT) is 

measured without the cap and the value is called R1. Second, the same resistance, with the cap 

mounted on the antenna is measured and is called R2. This is described in Fig. B.1. 

 
Fig. B.1 Description of the Wheeler Cap method and the related equivalent circuit model [3] 

 

Even for antennas with parallel RLC model, sometimes experiments show that the series 

model assumption is sufficiently accurate. For example, although the patch antenna has a parallel 

RLC model, the series model, described by (B1), has resulted accurate experimental outcomes 

[4]. This could be attributed to the fact that each antenna comes with a piece of MSL feedline 
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and the loss in this line dominates the loss in antenna structure [4]. The parallel RLC model 

recommends using the following equation [2]:  

 
cap no

cap cap no

LR

R

G
G-G

GG
G =
+

=η
 

(B2)

It is noted that if the antenna has multiple resonances which are located closely, the simple 

parallel or series RLC model is not able to accurately predict the efficiency and more 

complicated equations than (B1) or (B2) might be needed [e.g. 5]. The experiments carried out in 

[6] (and restated in [4]) show that the cap size and shape is not so critical. Other attempts like [7] 

also demonstrate the applicability of cubic or rectangular caps. Many researchers have used 

rectangular caps and have shown that this cap functions like the spherical one assumed by the 

theory. It is also discovered in [6] that the cap conductivity (and hence the type of metal) do not 

significantly change the result. However, it is observed that a good electrical contact between the 

cap and the ground plane is very important. Another important factor to consider is to place the 

antenna at the center of the cap [4]. This work shows that the Wheeler method is repeatable and 

provides high accuracy. It is also deduced from [4] that the method is not difficult to implement, 

as the cap shape and material are arbitrary (to some extent). 
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Appendix C 
 

Antenna Prototyping Employing 

DXRL Process 

 
 
A sample HAR SE-EBG-RA was fabricated using a process based on assembly of CNC milled 

parts and was successfully tested (Sec. 4.2). However, this process was somewhat limiting in 

providing small structures with very high aspect ratio (HAR) features required for high 

performance at higher microwave frequencies, and was also not suitable for batch fabrication. 

The assembly process realized gaps by inserting shims, and favorably resulted in AR of 16 

(gap=0.6mm). This could be compared to AR of 14, stated by Table C.1, if using CNC 

machining to realize the gaps. From Table C.1, the associated roughness by the CNC method is 

typically as high as 3-5µm, which was also confirmed by inspection of the machined metal 

pieces of the aforementioned prototype (~6um). Therefore, CNC machining is not the best choice 

for high frequency designs for which roughness could cause undesirable loss.  

As an alternative to CNC machining, we attempt to prototype one sample of the proposed 

HAR antennas to demonstrate the possibility of future fabrication via deep X-ray lithography 

(DXRL) processes. These process steps have been primarily conducted at the Canadian Light 

Source (CLS, SyLMAND lab), and have not previously been specifically applied to such antenna 

structures. The efforts undertaken here include assessing several of the process steps required to 

fabricate an X-ray mask incorporating the antenna layout, and then using the mask to perform 

first X-ray lithography exposures of representative antenna structures.  

 

C.1 Introduction to DXRL 
Nowadays, a number of micromachining techniques are available which are capable of 

fabricating very fine 2D or 3D micro-systems and micro-structures. These techniques include 

(but not limited to) mechanical micromachining (e.g. CNC machining/milling), laser-based 

micromachining (e.g. laser ablation), surface/bulk micromachining (mostly used with silicon 

wafers), X-ray lithography-based techniques (such as LIGA), UV-based techniques (such as UV-
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LIGA), Deep Reactive Ion Etching, and Electro-Discharge machining. These are the same 

methods used to fabricate MEMS49 except that MEMS devices usually have moving parts. 

Among these, LIGA which is a German acronym for Lithographie (deep X-ray lithography), 

Galvanoformung (electroforming), and Abformung (plastic molding) [1-2] is a micromachining 

process specializing in realization of tall micro-structures (up to few millimeters [3-4]), with 

relatively high aspect ratio (up to 100, see Table C.1), with highly accurate sub-micron feature 

sizes [4], and with nearly optical sidewall quality (see Table C.1). Starting from 1975 [5], LIGA 

has been used in a variety of applications in various realms including Micro-fluidics, Photonics, 

Micro-mechanics, and more recently Microwave Engineering. DXRL is the part of the complete 

LIGA process which is immediately applicable to the antennas in this thesis. Although the initial 

cost of mask making, X-ray exposure, and all other stages is relatively high, the process could be 

much cheaper thanks to the potential of replication using DXRL fabricated molds. Table 

C.1 compares DXRL with some other microfabrication techniques in terms of five different 

parameters.  

Table C.1 Comparison between properties of some microfabrication techniques, which are available for realization 

of HAR features [6]. 

Parameters 
CNC 

Machining 
Deep Ultra 

Violet 
Deep Reactive

Ion Etching 
Electro Discharge 

Machining 
X-ray 

Lithography Laser 

Aspect Ratio 14 22 10-25 <100 100 <10 

Accuracy 3-5µm 2-3µm <1µm 1-3µm <1µm 3-5µm 

Roughness 3-5µm 1µm 2µm 0.3-1µm <20nm 0.1-1µm

Maximum height Unlimited 300µm 300µm 3-5mm <10mm 300µm 

Mask required? No Yes Yes No Yes No 

It is deduced from Table C.1 that Electro-Discharge and DXRL micromachining methods are 

the most qualified candidates to employ for direct fabrication of the HAR features required for 

these antenna structures. However, Electro-Discharge machining (electrode/wire-based carving) 

is not suitable for HAR features of the proposed antennas because it could require separate 

fabrication of the top HAR metal layer structures and then separate assembly and mounting onto 

the microwave substrate. Also, when comparing the tolerance and sidewall roughness in Table 
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C.1, DXRL stands out. The distinguishing features of DXRL stem from the use of highly 

penetrating X-rays able to expose not only the impinged outer surface but also the other side of 

the thick layer of resist (mostly PMMA50) used in the process. Fig. C.1 describes different steps 

of the LIGA process (excluding the molding step). 

As seen, first a thick X-ray sensitive resist is glued onto a substrate with a proper thin 

adhesion layer and plating base in between (Cr/Au or Ti/TiOx). For most RF circuits, the 

substrate is a grounded dielectric slab made of alumina, quartz, GaAs, etc. Then, an X-ray 

compatible working mask is required. As seen in Fig. C.1 (b), the mask is made of a thin X-ray 

transparent membrane (e.g. Be, Ti, or Graphite) and an absorber (typically gold). As the absorber 

is of a high atomic number, negligible X-ray passes through it. After obtaining the mask, as in 

Fig. C.1 (c), it is placed adjacent to the substrate/resist and some parts of the resist are irradiated 

by X-rays, based on the desired layout patterned on the mask. Then, the exposed areas of PMMA 

can be (very selectively) dissolved in a proper developer. As in Fig. C.1 (d), utilizing the plating 

base, it is now possible to electroplate a metal (typically Ni or Au) filling the voids in the resist. 

After that, as in Fig. C.1 (e), the remaining unexposed resist is removed (so-called stripping), and 

finally using a proper etchant, the plating and adhesion layer is etched away to provide electrical 

isolation (only needed for some special applications like antennas) between the thick metal traces 

on the top of the microwave substrate. At this point, the metal traces, which included tiny gaps 

with tall sidewalls (HAR gaps), are successfully grown on the substrate. Considering that the 

substrate is either already backed by a metal (ground plane) or could be backed at this point, the 

antenna will be ready for being diced off the wafer and passed onto the measurement stage.  

As opposed to the considerable works on the DXRL-based MEMS technology, DXRL is still 

young with the fabrication of micro-scale RF components. The review shows that serious 

attention to DXRL-based RF components dates back to the 1990s [e.g. 7-10]. The lack of 

published resources, however, has become an incentive to explore the possibility of realizing 

complex 2D/3D RF components, especially for very high frequency applications [11-12] in 

which λ severely shrinks, and hence, minimum feature sizes enter the micro-scale regime. Some 

aspects of MEMS and DXRL technology have also been applied to microwave passive elements 

where the realization of inductances [13] and tunable capacitances are investigated. References 

[14-18] provide some other efforts recently made on DXRL-based RF technology. Altogether, it 
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can be concluded from such studies that utilizing the vertical dimension may provide one or a 

combination of these features: more flexibility in design (an extra parameter), higher power 

handling (higher breakdown point), less dispersion, reduced power consumption, smaller size, 

increased side coupling, and reduced cost of batch fabrication. 

 

Fig. C.1 Illustration of DXRL fabrication process [19] © 1998 IEEE. 

 

Inspecting the literature more narrowly for DXRL-involved antennas reveals the lack of 

previous efforts. The literature review on DXRL-based antennas was presented in Chap. 2 where 

the history of HAR antennas was presented. Following such efforts, this work presented some 

HAR antennas which were new from two distinct aspects. Firstly, it was the first time that HAR 

EBG cells and whole radiating structures based on them were proposed. Secondly, it was the first 

attempt to prototype such HAR antennas using DXRL fabrication. The latter is described in this 

section.        

 

 

 



193 
 

C.2 DXRL Prototyping Efforts 
A sample SE-EBG-RA is designed in HFSS for application to DXRL. As seen in Fig. C.2, the 

antenna is finalized in HFSS and a layout with GDSII format is created by the software. The file 

is then exported to ADS51 software for some specialized post-processing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. C.2. The progression from antenna simulation and design to Cr mask.   

 

The first processing is to round any sharp corner by a radius of 3µm to avoid cracks in the 

thick resist layer during exposure and development processes. The second is to fracture any of 

the polygons of the layout that have more vertices than 199 (this part has been performed in 

Layout Editor software). This is a limit set by the laser writer, which is later used for making a 

Cr mask, which will be the basis for fabricating an X-ray mask. When the layout is ready, it is 

sent to the NanoFab microfabrication facility at the University of Alberta (or any similar vendor) 

to make a Cr mask. This mask is composed of a glass sheet as the substrate and a thin layer of 

patterned Cr. The Cr mask is only usable along with UV light. Thus, the next step is to make a 
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copy of this mask, which is compatible with X-rays. To do this, the Cr mask is used in a UV 

lithography process to fabricate an Au on graphite-wafer based mask with the same layout. 

Graphite is an inexpensive rigid substrate material with off-the-shelf availability of different 

grades and different thickness, and safe handling [20], which was first introduced as an X-ray 

mask membrane in [21]. Rigid graphite offers some desirable properties, such as moderate X-ray 

absorption, relatively low cost, and electrical conductivity [21]. Its high thermal conductivity 

also helps with dissipating the X-ray energy absorbed in the Au layout patterns [22], thereby 

protecting the fine feature sizes. It is also generally robust for handling and easy to process, 

compared to other fragile thin-membrane materials such as titanium, and associated fabrication 

processes. However, there are also downsides such as being a dirt-spreading material in a clean 

room environment, and limited obtainable smoothness on sidewalls of the HAR gaps, 

fundamentally due to the grain size limit of wafers (grains are 1µm or larger). The large gains 

may cause some unfavorable striations on the sidewalls. Therefore, it is important to understand 

that this roughness (up to 1µm) could set a limit on the maximum frequency of RF components 

fabricated by such masks, while also noting that this limit is still high enough for many of the RF 

applications. When it comes to naturally high efficiency antennas of the present work, this 

roughness is somewhat less problematic as the efficiency is not directly affected by loss, but 

indirectly through the aforementioned equation, η=Rr/(Rr+RL). Accordingly, for the proposed 

high-performance HAR antennas for which Rr>>RL (radiation dominating loss), graphite could 

be a reasonable candidate, even at very high frequencies. To quantitatively show the effect of 

loss, a typical matched SE-EBG-RA has Rr ~50Ω, and RL~4Ω, which gives η=92%. According to 

(2.10), roughness could multiply RS by 2, which means loss and the RL will double. In that case, 

RL~8Ω and the new efficiency will be 87%, which is still very high. Fig. C.3 describes some 

details of the process of X-ray mask fabrication based on UV-lithography.   
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Fig. C.3 Different steps of the UV lithography process using the Cr mask towards fabrication of a graphite X-ray 

mask. 

 

As seen, a round graphite mask of 250µm thickness is used as the substrate for the X-ray 

mask. A 27µm layer of KMPR52 is then spin-coated on the graphite wafer. The next step is to 

place the patterned Cr mask in proximity to the prepared wafer, with a 10µm shim to protect the 

surface of the resist from rubbing against the mask surface. Next, using the UV source (500Watt 

Oriel Light), the KMPR is exposed to the UV light. The exposure time is adjusted based on the 

wattage set on the source, the recommended dose in the KMPR data sheet, and some extra 

experiments performed to fine-tune the dose. As recommended by the resist datasheet, a glass 

filter (PL-360-LP from Omega Optical) is used between the source and the sample to purify the 

spectrum; specifically, to cut wavelengths shorter than 365nm (i-line UV). This enhances the 

quality of patterning and provides vertical sidewalls, archived in Fig. C.5 (c).   

After exposure, the sample is submerged in a substance called developer. In case of the KMPR 

resist, as recommended by the datasheet, TMAH (a well-known developer) is used for a 

deliberately set time. This time is recommended in the datasheet but could be different and has to 

be adjusted based on several experiments for the best feature quality. The next step is to 

electroplate the absorber on the graphite. The most important factor defining quality in this case 
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is the verticality of the plated sidewalls observed under the microscope. After successful pattern 

transfer (exposure followed by development), the conductive nature of graphite assists as a seed 

layer to be utilized for electroplating of the wafer in the voids. A few test samples were prepared 

using Ni plating, to assess the feasibility before the final gold plating, as shown in Fig. C.4. For 

the best sample, the KMPR was removed and the Ni sidewalls were inspected. The result of the 

best obtained Ni-plated mask features in this study is shown in Fig. C.5 (c). As seen from the 

SEM micrograph, the sidewalls are quite vertical for a deep UV exposure (verticality achieved is 

~87 degrees). After making sure that verticality of the sidewalls is satisfactory, similar process 

steps were repeated to make another sample, this time plated with Au. The electroplating was 

performed at CAMD53 in the Louisiana State University and our inspection shows a thickness of 

22 to 24µm. 

Fig. C.4 shows the result of the complete lithography process, which are five printed antennas 

on the Au-on-graphite mask wafer. The antennas are repeated multiple times for redundancy. As 

seen, fine features are realized, with practical minimum gap size measured to be 18.8µm, likely 

accurate enough for the current EBG antenna application.       

 

 

 

 

 
 
 
 
 
 
 
 

Fig. C.4 Different views of the fabricated graphite mask, with one of the antennas on the mask highlighted; SEM 

micrographs of one representative gap and the associated pillars are included.  
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By comparison, the same gap size on the layout is 18µm. This is quite respectable, given the 

relatively crude UV-lithography process applied, and the direct pattern transfer to thick UV resist 

in a single exposure step. If required, more accurate features could be expected, for instance with 

E-beam lithography or other high resolution primary patterning, and possibly an intermediate 

transfer step into thinner resist with soft X-ray lithography. In developing this graphite mask, 

some of the efforts have been unsuccessful, due to incorrect dose (yielding sloped sidewalls), 

over electroplating, or electroplating underneath the resist. Some of these conditions are shown 

in Fig. C.5. 

 

 

Fig. C.5. Unsuccessful attempts due to over plating (a), plating underneath the resist (b), and incorrect dose resulting 

in sloped sidewalls (b); the best wafer obtained with vertical sidewalls is also shown (c).   

To prepare the mask for X-ray lithography exposures, a support ring was glued to the wafer as 

in Fig. C.6.   

(a) (b) 

(c) 
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Fig. C.6. Attaching a support ring to the wafer to achieve the graphite X-ray mask processed at SyLMAND. 

 

The next step after obtaining the X-ray mask is to expose sample HAR antenna patterns using 

the mask. The X-ray lithography is carried out at SyLMAND, a laboratory located at the end of 

one of the CLS beamlines. As depicted in Fig. C.7, the sample and the mask are mounted at the 

scanner where users gain access to the X-ray beam for X-ray lithography. Fig. C.7 shows the 

sample and mask in place. After placement, the scanner door will close and exposure will take 

place.    

 
 

 

 

 

 
 
 
 
 
 
 
 

Fig. C.7. Description of how the X-ray mask and the sample are mounted onto the scanner; photos are created by the 

author and show the fabricated X-ray mask and the sample.   

 

The first sample shown in Fig. C.8 is a test sample composed of a Si wafer (the second 

sample is fabricated on an alumina substrate with εr=9.9) with a Ti/TiOxide seed layer sputtered 

on the surface, and a 150µm thick PMMA resist glued on the top. PMMA is a well-known 

positive-tone resist which is non-sensitive to natural light, but is sensitive to X-rays.  
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This sample has undergone the exposure with calculated dose using the graphite mask in Fig. 

C.6. The dose depends on the graphite and KMPR resist thicknesses (KMPR is 27µm and is left 

on the mask). It also depends on the thickness of PMMA on the sample. A software called 

DoseSim takes every parameter into account and calculates the required exposure dose for a 

specific condition. The goal is to reach a different but appropriate dose simultaneously at the 

bottom and top of the PMMA resist resulting in vertical features at the end of the process. The 

spectrum of the beamline is adjusted using the available mirrors and filters to provide the dose 

recommended by the DoseSim. Fig. C.8 shows this sample after both the exposure and 

development. 

 

Fig. C.8. The first sample wafer undergoing an X-ray lithography experiment. The same designs shown on the Cr 

mask (Fig. C.4), and then translated to the X-ray mask, are transferred into a 150µm thick PMMA resist on a Si 

substrate.  

Inspection shows that in some locations, development has sufficiently removed the PMMA 

and the seed layer is accessible for plating. However, it is necessary to try to have every location 

well-exposed and sufficiently developed. Most likely, the calculated and delivered dose is not yet 

appropriate for this particular mask/substrate material sandwich, and requires further 

optimization, both in the calculated parameters, and also adjusting the beamline and scanner 
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parameters to achieve these. It should be emphasized that application-specific sample 

preparation, exposure, and development required for X-ray lithography, are typically very time-

consuming, especially, at the research stage, as SyLMAND processes and equipment are still 

under development. Therefore, optimization of the exposure and other parameters required for 

fabrication is recommended as a future work. Fig. C.9 (a) shows what the structure should 

ideally resemble after successful development. Because the gaps are very narrow, yet tall, during 

the exposure, secondary radiations from the substrate caused by X-rays could undesirably 

illuminate the interface between PMMA structures and the substrate. This causes the developer 

to get underneath and delaminate the resist from substrate. Pillars shown in Fig. C.9 are added 

[23] to the layout to improve the adhesion.  

 
Fig. C.9. 3D view of how the antenna shown in Fig. C.8 should look after development (a); 3D view of the antenna 

when the voids in Fig. C.9 (a) are filled with electroplating. 

 

These pillars tend to decrease the overall parallel plate capacitance of gaps. However, HFSS 

simulation shows that the reduction is small (< 2%) and could be taken into account.  

 

 

(a) (b) 
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Fig. C.10. SEM micrographs of the second antenna sample after the development step. 
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A second sample, which is similar to Fig. C.9, was also fabricated which shows the results that 

are more promising. For this sample, shown in Fig. C.10, the PMMA is thicker at 500µm, which 

is thick enough to plate 400µm of Ni, required for the actual antenna design (400 µm thick Ni 

with 18µm gaps: AR ~ 22). The substrate is 1mm alumina in this case. 

As seen, the sidewalls have generally good verticality, but the features have shrunk in one 

lateral dimension more than the other dimension. Adhesion of the resist to the substrate is also 

very good and the Ti/Ti Oxide seed layer is fully accessed for electroplating Ni. Therefore, it 

could be the matter of readjusting the exposure parameters and making more trial samples before 

the plating could occur and the antenna could be finalized. 

If the structure is developed perfectly as depicted in Fig. C.9 (a), the gaps could be plated 

using the seed layer, and the result would resemble Fig. C.9 (b). As seen, the remaining PMMA 

in the gaps would be stripped away after plating, using X-ray flood exposure and development. 

In addition, the Ti seed layer must be etched using Hydrofluoric acid, to isolate the metal 

structures.  

From this point on, the last step of the microfabrication is to dice the antenna off the wafer. 

Fig. C.11 shows a thin antenna fabricated by UV lithography (rather than X-ray lithography) and 

the Cr mask pattern transferred to an alumina wafer. 
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Fig. C.11 An example of dicing and attaching the microwave connector to antennas; the prototype shown is made by 

UV lithography and Ni plating on Alumina, and is successfully used to verify the circuit model in Sec. 4.4. 

 

The metal is 4µm electroplated Ni and the gaps are 27µm. The performance of this antenna 

was presented in Sec. 4.4. It is important to note that in terms of Ni electroplating (although 

thinner), dicing, and connector mounting, the process for this thin prototype will be very similar 

to what the HAR antenna in Fig. C.8 or C.10 would undergo. The antenna in Fig. C.11 is diced 

using a diamond-tip dicer. Then the SMA connector is attached using Silver Epoxy conductive 

glue.  
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C.3 Conclusion 
This section presented efforts to date on microfabrication of an HAR SE-EBG-RA prototype 

using both UV lithography and X-ray lithography, which also included developing processing 

steps for a graphite X-ray mask. The mask was employed in an X-ray lithography exposure, to 

demonstrate the feasibility of fabricating HAR SE-EBG-RA antenna devices. The DXRL process 

was carried out up to the electroplating step for two samples and the challenges were described. 

Overall, a clear view of the whole DXRL microfabrication process, starting from the concept 

(antenna simulation), and ending with the prototype (antenna sample) was rendered. Using 

similar microfabrication steps, various thin-metal prototypes were fabricated using UV 

lithography, and tested as presented in the earlier Chapters. 
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Appendix D 
 

The Electromagnetic Spectrum and Wireless Applications 
 

 

The electromagnetic spectrum (left), the radio spectrum applicable to medium and 

high data rate communications (middle), and typical wireless applications at these 

frequencies (right) [1] © Artech House 201054. 
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Appendix E 
 
The high data rate wireless landscape [1]55. 
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