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Selbstständigkeitserklärung
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Mentoren Markus Jäger, Herrn Dr. Joachimi, Sebastian Eichelbaum, Gerik Scheuer-
mann und Christian Heine, die mich zu verschiedenen Zeiten in meinem Werdegang
in die richtige Richtung gelenkt haben und von denen ich menschlich, methodisch
und fachlich unglaublich viel lernen durfte.
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1

Chapter 1

Introduction

The abilities of computers and the human brain to solve complex problems comple-
ment each other. Computers are efficient in performing trivial operations on massive
amounts of stored data, but they cannot imagine or question what they calculate and
they cannot interpret the results. Humans, on the other hand, lack specialized storage
and processing skills, but they are able to formulate their problems theoretically and
to find suitable representations. Hence, synergy arises when humans feed computers
with meaningful data, let them perform meaningful operations automatically and
evaluate and interpret the results afterwards. The crux is that computers work
only with numbers, while the human eye is naturally trained to distinguish different
patterns, sizes, colors, or shapes. Therefore, to leverage stored data and computed
results, one has to make knowledge hidden behind the numbers visible to the eye in
order to form a mental image of the data. This is literally1 the definition and the
task of visualization in computational environments.

This thesis is about visualizing a kind of data that is trivial to process by
computers but difficult to imagine by humans because nature does not allow for
experience and intuition with this type of information: high-dimensional data. Such
data often result from representing observations of objects under various aspects or
as single entities with different properties. In many applications, a typical, laborious
task for object-based data is to find related objects or to group those that are
more similar to each other than to other objects. One classic solution for this task
is to imagine the data as vectors in a Euclidean space with object variables as
dimensions; a so-called information space. Utilizing Euclidean distance as a measure
of similarity, in this vector representation, objects with similar properties and values
accumulate to groups, so-called clusters, that are exposed by cluster analysis on the

1Oxford Dictionaries: [verb] visu|al|ize - 1 Form a mental image of; imagine; 2 Make (something)
visible to the eye.
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high-dimensional point cloud. Because similar vectors can be thought of as objects
that are alike in terms of their attributes, the point cloud’s clustering structure
and individual cluster properties, like their size or compactness, summarize data
categories and their relative importance, respectively. Furthermore, (dis-)similarities
among the objects can be derived from their points’ affiliation to particular clusters
and the overall clustering quality can be evaluated from cluster separation or the
noise-ratio—the amount of those points that do not belong to clusters but instead
reside between and around them.

Traditional cluster analysis usually means to execute an algorithm that finds a
meaningful hierarchy or segmentation of the input data, followed by the inspection
of its output, which, depending on the internal representation, typically ranges from
pure numbers or tabular summaries to tree-like layouts. Because those summaries
primarily focus on cluster segmentation rather than on the depiction of individual
cluster properties, a popular alternative is the attempt to look directly at the point
cloud, exploiting that the human eye is naturally trained in detecting patterns and
coherent groups efficiently. That is, striving to preserve all pairwise distances in the
high-dimensional space, the input points are projected into the plane so that the
analyst can quickly identify clustering structure and individual cluster properties.
However, there is a fundamental problem with such a direct visualization. If the
point cloud’s intrinsic dimensionality is higher than two, information usually has to
be discarded to find a two-dimensional embedding that can be mapped on the eye’s
retina. This information loss, called the projection error, can cause occlusions in the
visualization and can even suggest structure that is not present. Moreover, because
this approach does not distinguish between clusters and noise, for large data sets,
the depiction of cluster separation can be distorted or hidden entirely. Of course,
this makes it difficult (or even impossible) to identify and compare clusters and leads
to false insights about the data.

The contribution of this thesis is a novel visual analysis approach that facilitates
exploration of high-dimensional point clouds without suffering from structural occlu-
sion. The presented work is based on implementing two key concepts: The first idea
is to discard those geometric properties that cannot be preserved and, thus, lead to
the typical artifacts. Topological concepts are used instead to shift away the focus
from a point-centered view on the data to a more structure-centered perspective.
The advantage is that topology-driven clustering information can be extracted in
the data’s original domain and be preserved without loss in low dimensions. To
this end, the high-dimensional point cloud is abstracted by a simpler representation
whose topological description accurately describes the clustering, but which can
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still be visualized occlusion-free using a landscape metaphor that shows clusters
and their hierarchy as differently shaped hills. Topology-based quality measures
describe cluster properties and are mapped on the hills in the landscape so that
the analyst can quickly identify and compare significant features. Furthermore, to
facilitate annotation and to stimulate further analysis of individual features, the
data points of the underlying point cloud are augmented on their corresponding
hills. The second key idea is to split the interactive visual analysis process into two
phases: A topology-based global analysis and a subsequent geometric local analysis
phase. The occlusion-free global overview enables the analyst to identify all features
and link selected clusters or arbitrary point sets to other visualization techniques
that permit analysis of those properties that are not captured by the topological
abstraction, e.g. cluster shape or value distributions in particular dimensions or
subspaces (cf. Chapter 2). The advantages of separating structure from data point
analysis are two-fold. While the structural view on the high-dimensional clustering
allows for an occlusion-free presentation in the first place, restricting local analysis
only to subsets of the data also significantly reduces artifacts and visual complexity in
traditional visualizations that focus on the data points themselves. That is, compared
to visualizing the complete data with direct visualizations, the additional topological
layer enables the analyst to identify structure that was hidden before and to focus
on particular features by suppressing irrelevant points during local feature analysis.

This thesis addresses the topology-based visual analysis of high-dimensional point
clouds for both the time-invariant and the time-varying case. Time-invariant means
that the points are static (or stationary) in the sense that they do not change in
their number or positions. That is, the analyst explores the clustering of a fixed and
constant set of points. The extension to the time-varying case implies the analysis of
a varying clustering, i.e., high-dimensional points that do change in their number and
positions and, thus, cause clusters to appear as new, to merge or split, or to vanish.
Such temporal cluster analysis is important for many application domains where
analysts study changing categories and objects. Especially for high-dimensional
data, both tracking—which means to relate features over time—but also visualizing
changing structure are difficult problems to solve.

The remainder of this thesis is structured as follows: Chapter 2 provides a brief
introduction to cluster analysis, common applications and alternative visualization
techniques for high-dimensional point data. It also reveals where competing visualiza-
tions have issues with this data type and it motivates how topological ideas can solve
these problems. Following that chapter, this thesis’ subject matter is presented in
two major parts; one for the visual analysis of static point clouds and the other part
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for its extension to time-varying data. Part I contains detailed explanations about
the topological representation, topology-based visualization, and the development
and implementation of an interactive visual analysis framework. Part II explains
how these ideas and data structures are extended to abstract time-varying input
data and how the topological description of changing clusterings can be visualized
at high structural detail but without structural occlusion. In both major parts, the
utility and efficiency of the approach are demonstrated based on several example
data sets; which are described in further detail in Appendix A.

1.1 Remarks

The research results presented in this doctoral thesis build on, improve and develop
further preliminary work contained in the author’s diploma thesis. With regard
to intersecting content, both theses primarily share basic parts of the topological
representation and a prototype implementation of the 3-D topological landscape
metaphor as proposed by Weber et al. [169]. As for the topological abstraction, the
approach investigated in the diploma thesis—namely using an upsampled Gabriel
graph (cf. Chapter 3 in this doctoral thesis)—is now generalized in this doctoral thesis
as one possible solution among other neighborhood graphs. The initial approach
was not yet optimized to scale for larger data sets, did not support as many feature
properties, and did not assist the analyst in finding appropriate parameter values by
using intuitive widgets. As for the visualization, this doctoral thesis first describes
modifications of the 3-D landscape metaphor to reduce its dimensionality and to
provide more information about features and data points. Eventually, the original
visualization is completely substituted by a more precise and faster to construct
2-D landscape variation (cf. Chapter 4). The extension to an interactive analysis
framework supporting feature selection and linking as well as the whole extension to
time-varying data are exclusive contributions of this doctoral thesis.

The work on this thesis was carried out within the scope of a Priority Programme
(“Schwerpunktprogramm (SPP)”) about “Scalable Visual Analytics: Interactive
Visual Analysis Systems of Complex Information Spaces” funded by the German
Research Foundation (“Deutsche Forschungsgemeinschaft (DFG)”). In particular, this
work was conducted in connection with a participating project about topology-based
visualization of document data represented in the vector space model (cf. Chapter 2);
led by Professor Dr. Gerik Scheuermann and Professor Dr. Gerhard Heyer. For this
reason, the development of the topological methods and the visualization were inspired
and guided by this target application. However, the solutions are not restricted to
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this particular application. In fact, the obtained results make valuable contributions
to several research fields, like visualization and analysis of high-dimensional point
data, high-dimensional scalar field topology, topology-based visualization, temporal
clustering of high-dimensional data, and time-varying scalar field topology in high
dimensions. In principle, the solutions are applicable in those scenarios where
the analyst wants to learn the structure of high-dimensional point data or high-
dimensional scalar fields. To cope with this versatility, the example data used in this
thesis cover a variety of different application domains.

Although this thesis is the work of one author, the presented research results
originate from intensive collaboration with several colleagues over a couple of years.
To appreciate this and to be in line with the familiar publication style of the target
audience, the pronoun “we” will be used.

List of Publications

This thesis recapitulates and unifies conducted research. As typical for PhD students
in computer science, the majority of the results has already been published in various
journals, books, and conference proceedings. These are the relevant peer-reviewed
publications for this thesis (sorted by their date of appearance):

[P1] P. Oesterling, C. Heine, H. Jänicke, and G. Scheuermann. Visual Analysis of High-
Dimensional Point Clouds using Topological Landscapes. IEEE Pacific
Visualization Symposium (PacificVis 2010). Ed. by S. North, H.-W. Shen, and J.
van Wijk. 2010, pp. 113–120

[P2] P. Oesterling, G. Scheuermann, S. Teresniak, G. Heyer, S. Koch, T. Ertl, and
G. H. Weber. Two-stage Framework for a Topology-Based Projection and
Visualization of Classified Document Collections. IEEE Symposium on Visual
Analytics Science and Technology (VAST). IEEE Computer Society, 2010, pp. 91–98

[P3] P. Oesterling, C. Heine, H. Jänicke, G. Scheuermann, and G. Heyer. Visualization
of High-Dimensional Point Clouds Using Their Density Distribution’s
Topology. IEEE Transactions on Visualization and Computer Graphics 17.11
(2011), pp. 1547–1559. issn: 1077-2626

[P4] P. Oesterling, C. Heine, G. H. Weber, and G. Scheuermann. Visualizing nD Point
Clouds as Topological Landscape Profiles to Guide Local Data Analysis.
IEEE Transactions on Visualization and Computer Graphics 19.3 (2013), pp. 514–526.
issn: 1077-2626
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[P5] P. Oesterling, C. Heine, G. H. Weber, and G. Scheuermann. A Topology-Based
Approach to Visualize the Thematic Composition of Document Collec-
tions. Text Mining: From Ontology Learning to Automated Text Processing Appli-
cations. Ed. by C. Biemann and A. Mehler. Theory and Applications of Natural
Language Processing. Springer International Publishing, 2014, pp. 63–85. isbn:
978-3-319-12654-8

[P6] P. Oesterling, P. Jähnichen, G. Heyer, and G. Scheuermann. Topological Visual
Analysis of Clusterings in High-Dimensional Information Spaces. it - In-
formation Technology 57.1 (2015). Special Issue: Visual Analytics, pp. 3–10. issn:
1611-2776

[P7] P. Oesterling, C. Heine, G. H. Weber, D. Morozov, and G. Scheuermann. Com-
puting and Visualizing Time-Varying Merge Trees for High-Dimensional
Data. Topology-Based Methods in Visualization (TopoInVis). (to appear, received
“best paper award”). Springer, 2015

The author also contributed to the following publications:

[P8] G. H. Weber, D. Morozov, K. Beketayev, J. Bell, P.-T. Bremer, M. Day, B. Hamann,
C. Heine, M. Haranczyk, M. Hlawitschka, V. Pascucci, P. Oesterling, and G. Scheuer-
mann. Topology-Based Visualization and Analysis of High-Dimensional
Data and Time-varying Data at the Extreme Scale. DOE Exascale Research
Conference. LBNL-5691E-Poster. Portland, OR, 2012

[P9] T. Liebmann, P. Oesterling, S. Jänicke, and G. Scheuermann. A Geological
Metaphor for Geospatial-temporal Data Analysis. IVAPP ’14: Proceedings of
the 5th International Conference on Information Visualization Theory and Application.
SciTePress, 2014

[P10] P. Jähnichen, P. Oesterling, T. Liebmann, G. Heyer, C. Kuras, and G. Scheuermann.
Exploratory Search Through Interactive Visualization of Topic Models.
Digital Humanities 2015 (to appear). 2015
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Chapter 2

Thematic Classification,
Difficulties and Solution Approach

Given a notion of similarity, finding related objects or grouping similar ones is a
typical task in various fields of application. For objects with multiple attributes,
finding groups is typically desired at a global scale to find those objects that are
alike throughout all variables. In this case, occurring groups describe a categorial
segmentation of the data and judging group cohesion, hierarchy, and separability
reveals each category’s significance and facilitates comparison. One possible solution
for this task is to represent objects as high-dimensional vectors in a space with
object properties as dimensions, henceforth called an information space, and to
use the Euclidean distance between two points to specify the similarity between
their corresponding objects. Note that, strictly speaking, distance is a measure of
dissimilarity because the similarity between two points’ objects is inverse to their
distance in the information space. However, we refer to the Euclidean distance as a
similarity measure because this term is commonly used in the literature. Objects
with similar properties and values then accumulate to groups, so-called clusters, that
are exposed by cluster analysis on the resulting high-dimensional point cloud. A
clustering essentially is the set of all clusters and describes structure at a global
scale. This includes information about the number of clusters, their hierarchy if
they are embedded in each other, their separation, or the occurrence of noise and
outliers—which are basically those points that do not belong to any cluster and occur
separately or only in small groups. The clustering specifies the overall quality of the
categorial segmentation and enables the analyst, e.g., to find related objects based on
their group affiliation. Clusters themselves specify structural information at a local
scale. This typically includes a cluster’s number of points and their distribution, a
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cluster’s spread or compactness, or its shape. Based on these properties, clusters can
be identified and compared using various notions of significance.

Performing cluster analysis on a vector-based representation of domain entities
has become a widely-used tool to solve problems in many fields of application. In
general, this approach is useful in those scenarios where knowledge can be derived
(either directly or indirectly) from the grouping behavior of multiply-attributed
objects in their corresponding information space. For example, if text data, image
data, or speech sound data are represented as vectors in a space of words, pixel
positions, or sonorant features, respectively, the corresponding documents, pictures
and vocal tracts cluster if they are about the same topic, scenery, or if they rhyme.
Representative for various models to transform real-world data into vector format,
Figure 2.1 explains a classic approach to represent documents as high-dimensional
points. Another example is the analysis of a data set describing the composition
of olive oils with a feature vector consisting of percentages of fatty acids (cf. Ap-
pendix A.5). In this example, one is interested if these oils form clusters based on their
combination of fatty acids, and whether these clusters correspond, e.g., to geographic
growing regions. There are many other popular applications of high-dimensional
clustering like analyzing gene expression data [174], comparing cars based on their
technical specifications, or studying breast cancer data [132] or wine quality [35, 151].
To accommodate this diversity, the example data used in this thesis also consist of a
rich set of real-world objects from various application domains (cf. Appendix A).
More data and application examples can be found in the UCI Machine Learning
Repository [7].

2.1 Cluster Analysis: A Brief Introduction

In short, clustering or cluster analysis, sometimes also referred to as unsupervised
learning, aims at finding “natural”, “useful”, or “meaningful” grouping of entities,
given unlabeled data and a measure of similarity. It has long been used as a tool in
a wide variety of applications, including biology, marketing, astronomy, psychology,
pattern recognition, genomics, earth-quake studies, and data mining. As already
mentioned earlier, we consider a clustering (as a noun) as the set of all occurring
groups together with noise and outliers, i.e., a segmentation of all the objects in the
data. There is no universally agreed upon definition of a cluster [53], but mostly,
clusters are described by considering the internal homogeneity and the external
separation. Depending on the data distribution and the underlying application,
clusters typically represent classes or categories, and a good clustering produces
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Figure 2.1: Turning text data into point data: To analyze the thematic composition
of a text collection, a popular approach transforms documents into high-dimensional
vectors using the vector space model [143, 144]. After filtering unimportant words
and ignoring grammar and word order, each occurring word is assigned to one
dimension of the document space. The entries of a particular vector could be the
word frequency in this document, or a more sophisticated weighting like, e.g., the term
frequency–inverse document frequency (tf-idf) [149]. Accumulations in the resulting
point cloud represent documents that share vocabulary and word significances—
i.e., documents that share topics. The number of clusters reflects topic count,
subclusters and their nesting describe sub-topics, cluster size represents the number
of documents about this topic, and cluster compactness and separateness indicate a
topic’s generality and preciseness, respectively.

clusters with high intra-cluster similarity and low inter-cluster similarity. However,
the quality of the clustering mainly depends on the chosen clustering implementation
and on the similarity measure used. Typical challenges for cluster analysis are the
discovery of clusters with arbitrary shape, the ability to deal with noise and outliers,
and scalability with respect to data size and dimensionality. Furthermore, cluster
algorithms should make only few restrictions to data attributes, the processing order,
and the domain knowledge required to determine parameters.

There are many references for clustering techniques [5, 42, 43, 53, 71, 84, 95, 156]
and important survey papers in the literature [175, 9, 17, 55, 85]. Here, we only
summarize the key concepts and most important techniques gathered together from
the cited literature.

Distance and Similarity Measures. For meaningful clustering results, it
is vital to have a precise definition of closeness and how to measure the distance
(dissimilarity) or similarity between data objects. Since data objects are described
by multiple features, it is reasonable to represent them as a multidimensional vector;
with individual features that could be quantitative or qualitative, continuous or
discrete, or nominal/binary or ordinal.

A distance or dissimilarity function D on a set X is defined to satisfy (1) symmetry:
D(xi, xj) = D(xj, xi) and (2) positivity: D(xi, xj) ≥ 0 for all xi and xj. If also the
conditions (3) triangle inequality: D(xi, xj) ≤ D(xi, xk) + D(xk, xj) for all xi, xj,
and xk and (4) reflexivity: D(xi, xj) = 0 iff xi = xj hold, it is called a metric.
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Table 2.1: Some typical similarity and dissimilarity measures.

Minkowski distance Dij =
(

d∑
l=1
|xil − xjl|p

)1/p

, called the Lp norm

Euclidean distance Dij =
(

d∑
l=1
|xil − xjl|2

)1/2

, for L2

City-block distance Dij =
d∑

l=1
|xil − xjl|, for L1

Mahalanobis distance Dij = (xi − x̄j)S−1(xi − x̄j)T , where S is the covariance
matrix

Pearson correlation Dij = (1− rij)/2, where rij =

d∑
l=1

(xil−x̄i)(xjl−x̄j)√
d∑

l=1
(xil−x̄i)2∗

d∑
l=1

(xjl−x̄j)2

Cosine similarity Sij = cosα = xT
i xj

‖xi‖‖xj‖

A similarity function is defined to satisfy (1) symmetry: S(xi, xj) = S(xj, xi) and
(2) positivity: 0 ≤ S(xi, xj) ≤ 1 for all xi and xj. If it also satisfies the conditions
(3) S(xi, xj)S(xj, xk) ≤ [S(xi, xj) + S(xj, xk)]S(xi, xk) for all xi, xj and xk and (4)
S(xi, xj) = 1 iff xi = xj, it is called a similarity metric.

Distance functions are typically used to measure continuous features, while
similarity measures are more important for qualitative variables. Some typical
measures for continuous features are summarized in Table 2.1. Their selection is
problem and application dependent. There are also similarity measures for binary
features (their dissimilarity can be obtained from Dij = 1− Sij), like the Jaccard
coefficient or the Sokal and Sneath measure [175]. In this thesis, the similarity
measure used for the topological analysis defaults to the Euclidean distance. For
document analysis, an instance of high-dimensional cluster analysis, it is often
convenient to use the cosine similarity in order to reduce the document space to the
(surface of the) unit hypersphere in Rd.

Types of clustering algorithms. Clustering algorithms are primarily distin-
guished based on their methodology. They are often categorized into being either:

“partitional” or “hierarchical”, which means they either construct a previously known
number of independent partitions or a hierarchical level-of-resolution decomposition
of the data objects; “exclusive” or “overlapping”, which means individual objects
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can or cannot belong to multiple groups; “deterministic” or “probabilistic”, which
means a definite and percental cluster affiliation; or “agglomerative” (or bottom-up)
or “divisive” (or top-down), which means the cluster finding starts with single-point
clusters or the complete data set.

Clustering methods. Many clustering methods were introduced for each
available clustering type. Making no claim to be complete in any sense, we only
mention a representative selection of the most important and established techniques
and refer to the literature cited above for further reading and in-depth explanations.

Partitioning (or flat) algorithms construct a partition of a database D of n objects
into a set of k clusters. Given a number of desired groups k, the goal is to find k

clusters that optimize a partitioning criterion. Well-known partitioning algorithms
are k-means [116], k-medoids [95], CLARA [95] or CLARANS [123]. K-means is the
best known and its criterion function is based on the sum of squared errors—one of
the most widely used criteria. The algorithm is simple: partition the data into k
non-empty subsets; compute seed points as the centroids (mean point) of the clusters
of the current partition; assign each data point to the cluster with the nearest seed
point; repeat from step two and stop when no more (or only slight) new assignments.
This approach has a run time complexity of O(Nkd) and works well for compact and
hyperspherical clusters. Drawbacks, on the other hand, are that there is no universal
method for identifying the initial partitions and the number of clusters k, and that
the algorithm is not guaranteed to converge to a global minimum. Moreover, the
clustering result varies depending on the initial choice of seeds, all objects are forced
into a cluster, and the algorithm is also sensitive to outliers. To overcome the most
crucial problems, many variants of k-means were introduced [175].

Hierarchical algorithms create a hierarchical decomposition of the data objects
and yield a successive level of clusters by iterative fusions or divisions. This approach
does not require the number of clusters k as an input, but needs a termination
condition. The algorithms are mainly classified as agglomerative and divisive methods.
Agglomerative starts with n single-instance clusters and successively joins the two
closest groups until all objects belong to the same group. Divisive clustering proceeds
in the opposite way, i.e., it starts with one universal cluster and splits groups
recursively. The results of hierarchical clustering are typically depicted by a binary
tree or a dendrogram— whose root node represents the whole data set and whose leaf
nodes represent the data objects. The height of the dendrogram usually expresses the
distance between each pair of objects (points or clusters). Thus, it shows several levels
of nested partitioning and a clustering can be obtained by cutting the dendrogram
at different levels; then each subtree represents a cluster. Based on the different
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definitions of the distance between two clusters, there are many agglomerative and
divisive algorithms. The most popular methods include single-linkage to define cluster
distance by the two closest objects in different clusters, complete-linkage to define
inter-cluster distance by the farthest distance of objects, and average-linkage based
on the clusters’ means. Classic hierarchical clustering lacks robustness and is sensitive
to noise and outliers. Furthermore, it cannot correct previous misclassification since
each point is handled only once during the process. The computational cost is at
least O(n2), which is problematic for very large data sets. Improved variants, like
BIRCH [177], of the classic approach have been presented to deal with larger data
sets and noise and outliers by using specifically tuned data structures.

Density-based algorithms are based on connectivity and density functions. They
require that the density in a neighborhood of a data point should be high enough
if it belongs to a cluster. The most prominent density-based implementations are
DBSCAN [52], OPTICS [6], DENCLUE [77], and CLIQUE [1]. DBSCAN creates
clusters based on two user-specified thresholds: eps, the maximum radius of the
neighborhood, and minPts, the minimum number of points in the eps-neighborhood
of a particular point. Using an R*-tree data structure for more efficient queries, and
building on eps and minPts to define “core objects”, “density connectedness”, and
“density reachability”, DBSCAN finally considers a cluster to be “a maximal set of
density-connected points” and can distinguish “core points” from “border points”
and “noise points”. OPTICS generalizes DBSCAN for multiple values of eps to find
clusters of varying density. It produces a (linear) order of the points that, if plotted
on the x-axis together with a special distance on the y-axis, produce a 2-D plot that
shows clusters as valleys (cf. Figure 5.12c on page 133). OPTICS does not produce
a strict partitioning, but the 2-D plot, from which a hierarchical partitioning can
be extracted based on detecting “steep” areas. It has a stronger focus on finding
appropriate parameters and concentrates less on the visualization of the clustering.
DENCLUE seeks clusters with local maxima of the overall density function and
also requires a user-specified threshold to specify the window width of the filter
kernel used to construct the density function. The overall density function can be
calculated as the sum of the influence function of all data points. Visualizing the
result of density-based clustering is a challenge particularly for high-dimensional
density functions. The major advantage of density-based clustering methods is their
capability to find clusters of arbitrary shape, to handle noise and outliers, and to
scan the data only once. A major drawback, however, is their dependence on the
adjusted neighborhood size. While a too large neighborhood combines clusters in
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the data, a too small size splits clusters and can even assign each data point to its
own cluster.

Grid-based algorithms use a multi-resolution grid data structure. They basically
assign data points to the appropriate grid cell, compute the density of each cell,
eliminate cells whose density is below a certain threshold, and compose clusters from
contiguous groups of dense cells. The complexity of this approach typically depends
on the number of grid cell instead than on the number of objects. A strength of
grid-based techniques is that there are no distance calculations involved and that
it is easy to determine neighbored clusters. However, cluster shapes are limited to
the union of grid-cells and thus the accuracy of the clustering may be degraded
at the expense of simplicity of the method. Prominent methods are STING [165],
CLIQUE [1], or WaveCluster [150]. WaveCluster employs wavelet transformations
for a representation of the data objects and the key idea is that clusters can be easily
distinguished in the transformed space.

In this thesis, the terms cluster, clustering, and feature are used a lot. They are
typically interchangeable to reflect that clusters are the general subject of interest.
This does not only include cluster properties to describe an individual feature found
in the data but also the segmentation of the data into clusters. That is, we also
consider cluster hierarchy, cluster separation, the number of clusters, and the presence
of noise or suspicious accumulations as features of the data that are revealed by
cluster analysis. Finding and furthermore visualizing these features to the analyst are
the main subject of the presented topology-based visual cluster analysis approach.

2.1.1 Problems with Clustering High-Dimensional Data

Most techniques listed above lack capabilities to deal with high-dimensional data,
i.e. their performance decreases with increasing data dimensionality. To make
clustering applicable to large-scale data, parallel algorithms can more efficiently use
computational resources and incremental techniques do not require the storage of
the entire data. These approaches have challenges and difficulties [175] on their own
and are not covered by this introduction. Instead, we address fundamental problems
accompanying high-dimensional spaces. Because it is difficult to imagine high-
dimensional spaces, it is already complicated to realize how features and algorithms
exactly behave in the original space. Furthermore, due to the exponential growth
of possible values with each dimension, it becomes intractable to enumerate all
subspaces. This becomes problematic because for a large number of attributes, some
will usually not be meaningful for a given cluster; while others might correlate. This
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is known as the local features relevance and refers to the problem that different
clusters might be found in different subspaces. While these issues are related to the
semantics of the working methodology of clustering techniques for high-dimensional
data, there is a more subtle, yet fundamental problem in high-dimensional spaces.

Distance-Based Similarity Measures

More than fifty years ago, Richard Bellman first spoke about “a malediction that has
plagued the scientist from the earliest days” [12]. While his statement, basically, refers
to the problems caused by increasing the number of independent variables in different
fields of application, especially for metric spaces, where the problem often is termed
the curse of dimensionality, this means an exponential increase of volume and data
sparsity with each additional dimension. Particularly for distance-based approaches,
it has been shown [157, 14, 76] that depending on the chosen metric, distances between
points either depend on the dimensionality (L1 norm), or approach a constant (L2

norm) or zero (Ld≥3 norm). That is, for L2, the ratio between the distances to
a point’s farthest and closest point approaches one. As a consequence, distance
variation vanishes in higher dimensions and some distance-based relationships such
as nearest neighbors become fragile in those spaces [76, 14]. Of course, if distances
become uniform, every distance-based approach is affected by this phenomenon.
To illustrate the effects for proximity-based problems like similarity and clustering
search, we consider the Medline data set (cf. Appendix A.8). It consists of 1 250
vectors in a 22 095-dimensional space, divided into five equally sized clusters. The
black graph shown in Figure 2.2a indicates the distance distribution between any
two points. It reveals that even though the distances range from 0.0 to 1.414, around
98.1% of them are greater than 1.37. The key issue is that both the inter-cluster
distances (green) and the intra-cluster distances (red), which are obtained from
given classification information, show the same behavior. However, for clustered
data, such a graph typically shows two peaks: one peak for the distances inside the
clusters and another one representing the average distance between the clusters [157].
Consequently, because only one peak is present, any purely distance-based approach
will have problems with finding the underlying clustering of this data set.

2.2 Visualization of High-Dimensional Data

Since there are many clustering techniques which support different data aspects,
features, and various notions of a cluster, the most desired strategy to detect groups
would be to simply “look” at the point cloud in its original domain. Such a visual
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Figure 2.2: Medline data set: Two plots showing the occurrences of all pair-wise
distances (black) and their partition into inter-cluster (green) and intra-cluster (red)
distances (a) in the original 22 095-D space and (b) after projecting the points into a
lower dimensional space to counter the curse of dimensionality.

approach aims at delegating feature identification to the human eye-system, which
is naturally trained and very effective in detecting coherent groups and telling
apart structure from noise. Hence, to detect structure quickly and at both a
global and a local scale, direct visualization of high-dimensional data has become
a popular alternative to traditional cluster analysis. Because of its importance for
many applications, visualizing high-dimensional data developed to an important and
independent research branch affiliated to Information Visualization [23, 96, 152]
and Visual Analytics [98, 100, 163, 99]. Classical challenges in these research areas
include dealing with excessive data sizes, large dimensionality, visual complexity,
screen resolution, and, most importantly, structural occlusion and overlapping data
representatives. Although there are manifold concepts to visualize high-dimensional
data efficiently, like, e.g., pixel-based methods [97] which unveil trends in the data’s
attributes by arranging all items in recursive patterns, the remainder of this section
focuses on the most prominent techniques to visualize high-dimensional point data:
variations of projections and axis-based techniques.

2.2.1 Projective Visualization Techniques

In Euclidean geometry, projections are mappings from an arbitrary-dimensional
Euclidean space into a subspace of smaller dimensionality. In the context of data
visualization and clustering, projections aim to find a lower-dimensional representa-
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tion of a point cloud that preserves pair-wise distances and, thus, the clustering in
the original space. In practice, the desired target space is typically two- or three-
dimensional to show the projected data as a scatterplot [27], e.g., on the screen. To
find suitable representations in the projected space, typical optimization criteria to
preserve structure include, among others, the aggregation of a maximum of variance,
a maximal distance between cluster centroids, or reducing the projection error, e.g.,
by minimizing the difference of pair-wise distances in both spaces. However, if
the intrinsic dimensionality of the data is higher than two, information has to be
discarded to find a two-dimensional embedding.

There are many dimension reduction techniques and the most popular ones
are often based on singular value decomposition, like principal component analysis
(PCA) [92] or latent semantic indexing [39]; on least square approximations or
multidimensional scaling (MDS) [107], e.g. Sammon’s mapping [145]; or on neuro-
computational algorithms like Kohonen’s Self-Organizing Maps (SOM) [104]. These
approaches are restricted by underlying assumptions about the data’s structure, e.g.
linearity for PCA, dimensionality of the manifold for SOM, and neglect for the curse
of dimensionality in MDS. This often results in distortions which cause illusionary
artifacts and clutter. More complex approaches are often based on these basic
techniques. Paulovich et al. [136] proposed an MDS projection of a representative
subset of the input points through a numerical solution that aims at preserving a
similarity relationship given by a metric in the original space. Jänicke et al. [86]
use a manifold learning to layout the high-dimensional input points based on a 2-D
force-directed layout of the Euclidean minimum spanning tree. Gansner et al. [65]
embed high dimensional graphs as geographic-like maps in 2-D. After embedding
the graph in 2-D, they perform a clustering on either the graph or the embedded
point set to finally create and color the countries using Voronoi diagrams. With
Glimmer, Ingram et al. [80] present a multilevel algorithm for multidimensional
scaling designed to exploit modern graphics processing unit (GPU) hardware.

For moderate dimensionality, the scatterplot matrix [10], Prosection View [63]
or Hyperbox [4] provide 2-D projections of all possible attribute configurations.
However, because these techniques consider only two dimensions at one time, the
analyst has to assemble a mental image about the data from different 2-D views.
Since projective techniques often do not scale well for large data sets and many
dimensions, specific enhancements were introduced to improve their usability: Tatu et
al. [161] describe quality measures for scatterplot matrices for automatic analysis
that detects potentially relevant visual structures from the set of all possible can-
didates. Elmquist et al. [51] introduced Rolling the Dice, an interactive method to
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explore multidimensional data by traversing its scatterplot matrix using animations.
Although this approach facilitates better understanding of correlations between single
dimensions by animations, in the end, the user always faces only two dimensions of
a potentially very high dimensional point cloud at one time. Other contributions to
improve scatterplots include continuity [8], illumination [148], or flow [28],

Projections that only work on the raw points and a chosen metric are referred
to as unsupervised projections. Supervised projections, on the other hand, use
additional information to optimize the low-dimensional layout. Prominent examples
are the orthogonal centroid method (OCM) [88] or linear discriminant analysis
(LDA) [62]. LDA uses a segmentation of the input data into k classes to perform a
supervised projection into an optimal (k − 1)-dimensional space, while maximizing
inter-class distances and minimizing intra-class distances. Note that the application
of LDA assumes that clusters are related to classes. While this is a rather strong a
priori condition, it is still widely accepted in many applications, e.g. for newspaper
articles, which are often categorized. Choo et al. [30] report on the combination
of unsupervised PCA and supervised OCM and LDA as two-stage projections to
minimize the information loss in the final 2-D image. For example, one of their two-
stage transformations, termed LDA+PCA, first projects the data into the optimal
intermediate space preserving its clustering structure, followed by a PCA projection
down to 2-D. Due to this split, the projection error of the PCA can be reduced
compared to using PCA alone to project the data directly from original space.

Projections were integrated into powerful visual exploration systems for high
dimensional data analysis. Jeong et al. proposed iPCA [89], a system that visualizes
the results of PCA using multiple coordinated views and a rich set of user interactions
with the PCA output. With DimStiller, Ingram et al. [79] presented a modular
system for dimensionality reduction and analysis. As a series of analysis steps, the
analyst chains together “operators” into expressions, which finally lead to reusable
workflows. ClusterSculptor [122] is a visual analytics tool for high-dimensional
data that uses many of the techniques mentioned above. Choo et al. implemented
iVisClassifier [31], a framework in which the analyst explores and classifies data based
on supervised LDA projections. With particular attention to document collections,
Paulovich et al. presented HiPP [135], a hierarchical point placement strategy for
displaying, interacting, and organizing large multi-dimensional data sets by defining
a hierarchical structure that enables the user to analyze data sets on different levels
of detail. Recently, Liu et al. [113] proposed to explore high-dimensional data sets
based on subspace analysis and dynamic projections, using transition graphs for
flexible navigation through the identified unique 2-D linear projections.
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Figure 2.3: Transforming a 2-D scatterplot into parallel coordinates: (a) In a 2-D
scatterplot, point coordinates are determined by the values of two variables on the
horizontal and the vertical axis. (b) Instead of using the intersection points of the
(virtual) lines perpendicular to the axes, each point can also be represented by a
line connecting both axes at the values of both variables. This turns clusters into
line-bundles. (c) Arranging the axes in parallel, finally, leads to a parallel coordinate
plot, which supports visualization of higher dimensional data by adding more axes.

2.2.2 Axis-based Visualization Techniques

Axis-based techniques differ from conventional scatterplots in that they do not
comply with the Cartesian norm to align axes perpendicularly to each other. Strictly
speaking, 2-D scatterplots are also based on (two) axes. However, because these
are perpendicular, their number is limited to only two in the plane. Prominent
examples for axis-based techniques are parallel coordinate plots (PCP) [82], where
the axes are arranged in parallel next to each other, or star plots [27], where the
axes are arranged circularly around a center point. In both cases, individual data
points extend to polylines that connect the axes at their corresponding value. Note
that without pairwise perpendicularity, potentially many dimensions or attributes
can be visualized at once, though not necessarily as intuitive and familiar as in
2-D or 3-D scatterplots. If multiple vectors share similar values and dimensions,
i.e. if they belong to accumulations in the high-dimensional space or in particular
subspaces, their corresponding polylines also accumulate. This comes in handy
to detect clusters as thick polyline bundles that stand out in the visualization (cf.
Figure 2.3). In theory, axis-based techniques can visualize arbitrary dimensional
data. In practice, however, the screen resolution and the eye’s accuracy constitute
natural limits to detect structure. Because features in PCPs can sometimes be
hard to interpret, Inselberg et al. [81] elaborate on the relation between various line
segment constellations and their counterparts in the vector space, and they also
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(a) (b)

Figure 2.4: Parallel coordinate plot of the 25-D Isolet data set (cf. Appendix A.4):
(a) Clustering structure is indicated primarily by line bundles of different colors.
While the relation between clusters and classes is actually unknown, single-colored
bundles are at least an indicator of potential separation. (b) Without using colors,
however, the clustering is unclear for the most part because neither potential groups
nor exact value distributions in each dimensions are recognizable. In both cases,
identifying and comparing individual clusters is (very) difficult.

provide a rich set of applications. Tatu et al. [161] also specify quality measures
for parallel coordinate plots to find a suitable ordering of the axes that reflects
structure best. Other suggestions to improve the usability of axis-based techniques
include using alpha-blending to emphasize where multiple line segments accumulate,
splatting [178], interaction [68], and illustration [120].

2.2.3 Problems and Difficulties

Direct visualization of high-dimensional data aims at the identification of patterns
and structure in the drawing as a noticeable number of coherent groups of remarkable
size, shape, separation, or distance to each other. To this end, the visualization
has to preserve pair-wise (dis-)similarities in order to reflect structure suitably.
However, with increasing data size and dimensionality, both projections and axis-
based techniques also struggle increasingly with accurate depiction of clustering
structure. This holds primarily for visual complexity. Since each data point is
represented by at least one pixel, the drawings usually suffer from occlusion—at
the latest when the data size exceeds the number of available pixels on the screen.
Furthermore, because direct visualizations do not distinguish between structure and
noise, for large data, noise typically covers the visualization and can distort cluster
separation, or even hide it entirely. This results in misleading and false insights
about the data. But there are also specific problems with both techniques.
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As for axis-based techniques, a polyline for one single data point already requires
many pixels. For large and high-dimensional data, this negatively affects visual clutter
and occlusions caused by crossing line segments. Furthermore, feature identification
is complicated by the order of the axes. While the clustering might be obvious in one
particular order, it could be missed in other orders—most likely when discriminable
axes are not neighbored. Another major problem is that line bundles of actually
separated clusters can still cross frequently. This is demonstrated in Figure 2.4a
based on the 25-D Isolet data set (cf. Appendix A.4). Although the PCP suggests
multiple clusters as differently colored line bundles, it is still difficult to identify or
compare them. The situation becomes even worse for unclassified data, i.e. if all
polylines have the same color (cf. Figure 2.4b).

As for projections, if the intrinsic dimensionality of the data is higher than two,
information has to be discarded to find a two-dimensional embedding. This infor-
mation loss, called the projection error, can obscure existent structure and indicate
illusionary structure that is not present. In other words, projective visualizations
have a fundamental problem: although they rely on the visual identification of
structure—as conveyed by distances and closeness—they cannot ensure distance
preservation in the first place. Projection artifacts are thus inevitable and occur
even for data of only moderate dimensionality. This can be observed for the Reuters
data set (cf. Appendix A.7). It consists of 800 vectors with 11 941 dimensions,
assigned equally to k = 10 classes (the letters are used in Figure 2.5): acquisitions
(’a’), corn (’c’), earn (’e’), grain (’g’), interest (’i’), money-fx (’m’), crude (’r’), ship
(’s’), trade (’t’), and wheat (’w’). Utilizing given classification information for a
supervised projection, Figure 2.5a shows the result of the Rank-2 LDA [30] which
consists of two subsequent LDA projections: the first one from the original space
into an intermediate (k − 1) = 9-dimensional space and a second projection down
to two dimensions. Although the projection seems to preserve the clustering well,
two clusters on the right-hand side (’c’,’g’,’w’) and in the upper left-hand corner
(’i’,’m’) consist of points of different classes. The pivotal question is why? There are
two possible explanations: both clusters are indeed mixed in the original domain
or the mixture is actually an occlusion artifact caused by the projection error of
the second LDA. Because the first LDA preserves the clustering in the (k − 1) = 9-
dimensional space, this intermediate space can be explored with a scatterplot matrix.
Figures 2.5b-c acknowledge that the second assumption is true. Looking at the point
cloud from the directions of the 7th and 8th (cf. Figure 2.5b) or the 7th and 9th

(cf. Figure 2.5c) dimensions reveals that the points that are mixed in Figure 2.5a
form their own clusters in the intermediate 9-D space. This does not surprise much
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Figure 2.5: Projection of the Reuters data set (cf. Appendix A.7): (a) Scatterplot
of the Rank-2 LDA showing separated clusters with points of individual classes and
two clusters containing points of mixed classes. Looking at the intermediate 9-D
space (b) from the 7th and 8th and (c) from the 7th and 9th dimension reveals that
both (alleged) clusters actually consist of separated accumulations per class.

given that the second LDA uses only two dimensions to discriminate the classes
which contribute most to the optimization criterion. Nevertheless, due to the lack of
any knowledge about the intermediate space, the analyst would most likely tend to
assume mistakenly that both clusters are really mixed in the original space. Also
note that without the opportunity to color the points according to their class, the
potential artifacts would have been missed at all. The same is true even for classified
data if there is no a priori knowledge about the relation between clusters and classes.

In summary, although they are used frequently for that purpose, projections
and axis-based techniques seem suboptimal for visual cluster analysis of large and
high-dimensional data. Because they are susceptible to illusionary artifacts, visual
complexity, occlusion, and, most importantly, because they do not differentiate
between structure and noise, they depend on the data’s benignity for proper de-
piction of structure. However, this benignity typically decreases with increasing
data complexity. That is, if the data becomes more complex or grows in size and
dimensionality, the visualization becomes cluttered and difficult to interpret. In other
words, the more structure there is in the data, the harder it becomes to identify any
structure at all. This is even worse for noisy data or if classification information is
unavailable to make use of colors in the visualization. From a clustering point of view,
structural occlusion (occurring for whatever reason) simply prevents the analyst from
identifying primary clustering information and from comparing individual clusters.
Even if clusters are visible, their (illusionary) extent might not be meaningful and to
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compare cluster sizes, points or polylines need to be counted manually—which also
assumes that there are no duplicates in the data.

2.3 Novel Topology-Based Solution Approach

The intended preservation of geometric properties like distances, positions, or clus-
ter shapes in the final visualization is merely a tool to convey structure in high-
dimensional data. However, especially for visual cluster analysis, this tool must be
questioned if the result is not guaranteed to be correct and if basic cluster properties
are difficult to identify and compare [93]. It turns out that knowledge about single
points, absolute distances, exact locations or shapes actually describes secondary
clustering information that complicates the depiction of fundamental properties in
the first place. Moreover, using representatives for every single data point to let them
simulate high-dimensional proximities is neither promising nor necessarily needed to
provide a structural overview. Therefore, the goal is to break the habit of applying
non-scalable techniques to large and complex data and to find a more appropriate
tool for visual analysis of high-dimensional point clouds.

To come up with another solution, we first have to define what is actually desired.
Speaking of clusterings, the primary subject of interest are point accumulations
surrounded by sparse or empty regions. That is, one is interested in how many
coherent groups there are, whether they are embedded in each other, or whether
they are well-separated or surrounded by noise. Quantitative properties of individual
clusters typically include the number of points, information about their spread or
compactness, or their distribution to derive coherence and intra-cluster similarities.
Note that for such a clustering description, neither the points themselves nor their
pairwise distances are needed. Taking a closer look, it is actually the information
derived from point distances that prevents the analyst from identifying the clustering.
Thus, if we could do without secondary properties like cluster distances or a cluster’s
shape or relative position, we could better focus on primary properties. It appears
that preserving global knowledge has to be the first step and that an abstraction of
the point cloud into regions of data appearance would suffice for this purpose.

Topological tools are efficient at summarizing data prior to visualization. Typically,
they segment a domain into parts of equal behavior or properties. We can build on
these ideas if we abstract the point cloud and convert it into another form that is
suitable to detect clusters as regions of data occurrence. To this end, we consider the
point cloud’s density function and obtain from topological analysis a segmentation
into (nested) dense regions. Regions of high density represent clusters, low-dense
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Figure 2.6: Topology-based visual analysis approach: The high-dimensional point
cloud is abstracted by its density function to represent clusters as dense regions.
Maxima (red) of the function indicate feature candidates and saddle (yellow) densities
describe region hierarchy and/or separation. The merge tree captures the function’s
topology, i.e. how the regions evolve. Each merge tree edge stores three region
properties—a region’s size, persistence and stability (cf. Chapter 3.2.4)—and a list
of all points in that region. The structural description provided by the merge tree
is visualized as a topological landscape. Each tree edge is represented by a hill
that accurately reflects region properties, point distributions and the data points
themselves (cf. Chapter 4). Colors in the drawing indicate correspondences among
regions, merge tree edges and hills.

regions represent noise, and regions of zero density indicate cluster separation.
Furthermore, regions have properties, like the number of points comprised or an
absolute density; which is high for compact clusters or lower if they are spread. But
we cannot say anything about geometry anymore. Not about a dense region’s shape,
its geometric extent, its relative position or how far away it is from another separated
region. If we wanted to preserve such information in a 2-D image, we would instantly
be back in the realm of projection errors and information loss.

We use the density function’s topology as a tool to simplify the data in its original
domain. This abstraction makes it possible to preserve structural knowledge without
loss and to visualize it occlusion-free. The topological analysis of the density function
yields a tree whose edges describe dense regions and how they merge; hence its name
merge tree. Each edge is annotated with three region properties and a list of data
points together with their densities. To make the complex information provided by
the merge tree easier to comprehend, it is represented using an intuitive landscape
metaphor. Dense regions show up as (nested) hills and individual cluster properties
are indicated by the shapes of the hills (cf. Figure 2.6). The underlying data points
will be augmented to the hills of their corresponding clusters.

Such a topological approach has several advantages: First, both the density
function and its topology can be calculated for arbitrary dimensional data. That is,
independent from the point cloud’s dimensionality, we always end up with a 2-D or
3-D landscape visualization that is free of structural occlusion. Second, the topological
description is preserved without loss. This means that every dense region that truly
occurs in the original space will clearly be visible in the landscape. Moreover, because
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density information is conveyed by height values, noise points do not cover structure,
but will be placed separately at the bottom of the landscape. Third, topology-
based quality measures provide clustering information accurately and thus facilitate
identification of and precise comparison between significant features. Finally, based
on the global overview, individual features can be selected and analyzed in further
detail using (geometric) techniques that focus on properties that are not captured by
the density function’s topology. This includes the analysis of approximated cluster
shape or distances using projections, or analyzing subspaces via parallel coordinate
plots. Note that focusing on only a few features reduces the visual complexity of these
techniques and that a selection of individual features would otherwise be complicated
in the presence of noise or if features overlap.

In summary, because a visualization cannot preserve both structure and geometric
details at the same time, we analyze them separately. At first, geometric properties
(such as distance and shape) are discarded to provide an appropriate clustering
overview that does not suffer from structural occlusion. Afterwards, the analyst can
explore the data, annotate single points, or brush-and-link particular features to
linked views for further, local analysis. Hence, scalability issues are solved by the
assumption that the data contain fewer features than points and that local analysis
is applied to only a few features at one time.

The related work and the theoretical concepts involved in each part of the process
pipeline of the novel topological approach for both time-invariant and time-varying
data will be introduced in the corresponding chapters.
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Part I

Visual Analysis of
Time-Invariant Clusterings
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Figure Part 1: Overview of the visual analysis framework for high-dimensional data
that do not change over time: The analyst obtains a structural perspective on the
data by analyzing the input point cloud’s density function topologically. Clustering
structure and individual cluster properties are described by the function’s merge tree.
The topological analysis and the complexity of the merge tree depend on parameters
for whose selection we present interactive controller widgets. Eventually, the merge
tree is visualized as a topological landscape. Hills, their nesting, size, and shape
accurately reflect the high-dimensional clustering. Selection mechanisms help the
analyst to isolate and link features to projections or parallel coordinates for local
analysis of those properties not captured by the topological view.

The first major part of this thesis is about topology-based visual analysis of high-
dimensional point clouds that do not change over time. That is, during data inspection
both the number of points as well as their coordinates are fixed. Subsequent to the
topological analysis, clustering structure will be depicted using a landscape metaphor.
However, the static landscape visualization is not final. It is rather a vantage point
of an interactive visual analysis loop and is intended to facilitate data exploration
top-down, localizing feature investigation on demand. By presenting clustering
structure occlusion-free, the analyst can filter individual features by linking clusters
and point sets to other views. This permits data inspection under various aspects and
at finer granularity using traditional techniques for high-dimensional point data. The
final framework supports the analyst with parameter widgets, appropriate selection
mechanisms and optimized views to permit convenient clustering exploration without
suffering from structural occlusion and visual artifacts.
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Figure Part 1 illustrates the analysis pipeline and also provides a visual guideline
for the content of the next chapters. As indicated by the blue parts, the algorithmic
core of the topology-based approach is introduced in Chapter 3. This chapter contains
explanations about the efficient construction of the density function, its topological
representation by the merge tree, implemented algorithms and data structures, and
also a discussion of runtime and memory aspects. Chapter 4, indicated by the red
part, introduces multiple topology-based landscape visualizations to depict clustering
structure and the underlying data points. Their usability for high-dimensional
clustering visualization is evaluated and demonstrated based on several example data
sets. Finally, Chapter 5, as indicated by the green parts, describes the extension of
the topological method to an interactive visual analysis framework. This includes
the determination of crucial parameters, for which we introduce helpful widgets
to support the analyst in finding suitable thresholds, the definition of selection
mechanisms for linking subsets to other views, the presentation of a modular prototype
implementation, and the application to various real-world data sets.
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Chapter 3

Topological Representation

The high-dimensional point cloud is abstracted by its density function because the
topology of this function can be determined in the original space and be preserved
without loss in a low-dimensional visualization. The density estimation can be
thought of as reconstructing a probability space from the given samples which is
then analyzed topologically to study the data in terms of critical points and dense
regions, including their hierarchy and region properties.

This chapter introduces an efficient approximation of a suitable high-dimensional
density function and describes the algorithms, data structures, and optimizations
required to obtain a suitable clustering description. It also presents supported
topology-based quality measures to evaluate cluster significance. An intensive study
of all involved parameters, a result section that discusses runtime and memory
consumption issues, as well as a final discussion of advantages and drawbacks
concludes this chapter about the algorithmic core and the topological representation.

3.1 Related Work

In order to determine a suitable density function in a high dimensional space, we
need methods to fill the void between data samples and methods to describe closeness
between points. Given an appropriate density approximation, topological methods
then identify and describe the structure of the point cloud’s density function. This
section provides an overview of the related and adopted concepts and algorithms.

3.1.1 Neighborhood Description

Let δ(x, y) denote the distance of two points x, y in a d-dimensional Euclidean space
Rd, the Voronoi diagram [58] of a point set P = {p1, p2, . . . , pn} is a partition of Rd
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into cells ci = {x ∈ Rd|∀j 6= i : δ(x, pi) ≤ δ(x, pj)}. Each cell’s points have the same
closest point of P .

A simplicial complex M is a finite collection of simplices (vertices, edges, triangles,
tetrahedra; and their generalizations to arbitrary dimensions) such that each simplex’
faces are elements of M , and each intersection of a simplex pair of M is either empty
or a face of both.

The Delaunay triangulation [58] of a point set P in Rd in so-called general position
is a simplicial complex such that for each simplex there exists an empty circum-
hypersphere. There is a well known duality: two cells ci, cj are neighbors in the
Voronoi diagram if and only if the Delaunay triangulation contains an edge between
pi and pj. There are algorithms [13] that can compute the Delaunay triangulation
directly and they perform well in two and three dimensions. The number of simplices
is in O(nd/2) in the worst case [58], giving an exponential lower bound on the runtime
with respect to the dimension. We will refer to the vertices and edges of the Delaunay
triangulation, omitting all other simplices, as the Delaunay graph (DG).

A neighborhood graph [87], also called a proximity graph, is a graph in which
neighbored vertices are connected by an edge. The Delaunay graph is a suitable
neighborhood graph as it maps Voronoi cell neighbors to edges.

The Gabriel graph (GG) [64] of a point set P in Rd is a graph (P,E) that contains
an edge between two vertices u, v if and only if the Gabriel lune contains no point
from P , except on its border. The Gabriel lune is the smallest hypersphere with
both u and v on its border. The Gabriel graph can be computed (naively) using
O(n3) distance calculations by testing for each point pair u, v ∈ P whether their
Gabriel lune does not contain any other w ∈ P,w 6= u,w 6= v. Note that a distance
calculation in a high dimensional space usually takes O(d) time, giving an overall
runtime of O(dn3). However, the algorithm can test each point pair independently
and thus runs in parallel using up to n(n− 1)/2 processors.

The relative neighborhood graph (RNG) [87] of a point set P in Rd is a graph
(P,E) that contains an edge between two vertices u, v if and only if their RNG-lune
is devoid of points from P . This lune is the union of two hyperspheres being centered
around u and v and having a radius equal to the distance of u and v (cf. Figure 3.1a).
The construction of the RNG and the GG differs only in the test for each edge.

A spanning tree of a point set P is a connected, acyclic graph (P,E). The
Euclidean minimum spanning tree (EMST) of a point set P in Rd is the spanning
tree where the sum of all weights (in this case the Euclidean distance between the
edges’ endpoints) is minimal compared to all other spanning trees.
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(a)

initial point set nearest neighbor graph

minimum spanning tree

Gabriel graph

relative neighborhood graph

Delaunay graph

(b)

Figure 3.1: Neighborhood graphs of a point set: (a) The Gabriel lune (top) and the
relative neighborhood lune (bottom) define the regions of influence for a particular
pair of points u and v that is required to be empty so that there is an edge between
both points in the neighborhood graph. (b) Different neighborhood graphs with an
increasing number of edges (from left to right and from top to bottom).

The nearest neighbor graph (NNG) [87] of a point set P in Rd is the smallest
graph (P,E) where each vertex has an edge to its nearest neighbor.

A special subset relationship exists between the introduced neighborhood graphs
in Euclidean spaces:

NNG ⊆ EMST ⊆ RNG ⊆ GG ⊆ DG

Because the Euclidean minimum spanning tree is a connected graph, all its super-
graphs are connected as well; connectedness will be required for the topological
analysis. Being a supergraph of the NNG also implies that the connection of each
vertex to its nearest neighbor is also contained. Example illustrations of the neigh-
borhood graphs used for the topological analysis are shown in Figure 3.1b.

3.1.2 Scalar Field Topology

In scientific visualization, data are often provided as a discrete scalar function, called
a scalar field, describing, e.g., pressure, density or temperature. Studying a scalar
function intends to reveal its structure to find out whether it contains (un)expected or
suspicious features that require closer investigation. In addition to visual approaches,
like volume rendering [111] or extracting isosurfaces using marching cubes [115],
computing the topology of a scalar function has proven to be efficient to investigate
the data’s structure. Topological analysis aims at a complete study of the variation
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of the function, described by critical points or entire regions [166], and to simplify
the view on the data prior to visualization.

Let the data be given as a point set P = {p1, p2, . . . , pn} in Rd, with corresponding
scalar measurements H = {h1, h2, . . . , hn}. To interpolate values for points not in P ,
the data is extended to the entire space by means of a mesh with vertex set P , and
a continuous function f that satisfies f(pi) = hi.

A superlevel set of a function f : Ω → R,Ω ⊂ Rd for a value v is the set of all
points x ∈ Ω where f(x) ≥ v. It may consist of multiple connected components,
whose evolution with varying v is of particular interest. Imagine the function f as a
landscape, initially fully submerged by water, and the value v as the current water
level. When the water is slowly drained, i.e., v is decreased, hills will start to emerge
from the water, which corresponds to new superlevel sets created at f ’s local maxima.
When draining the water further, hills/superlevel sets will merge at points called
saddles. The draining process is stopped when the landscape is free of water, i.e.
when v reaches f ′s global minimum. Although the metaphor uses a 2-D landscape,
the concepts are applicable in any dimension.

The merge tree is a labeled directed graph that encodes changes of superlevel set
connectivity. Leaves represent local maxima, inner nodes represent saddles, the root
represents the global minimum, and edges connect nodes according to the process
outlined. Each node is labeled with the value v of its corresponding event. Figure 2.6
(on page 23) illustrates these correspondences. Each point in the merge tree, be it a
node or on an arc, corresponds to exactly one connected component of a superlevel
set for one value v. For piecewise-linear functions on simplicial grids, Carr et al. [24]
give an algorithm to compute the augmented merge tree: Initially, each grid vertex
is represented by one node in an otherwise empty tree and one set in a union-find
data structure. The algorithm processes all grid vertices u in order of decreasing
function value and (1) determines the sets of u’s upper link, i.e., grid neighbors with
higher function value, (2) adds an arc, i.e., a directed edge, from u’s node to each
set’s lowest node, and (3) unites these sets with u’s set and declares u’s node as the
new set’s lowest node. The augmented merge tree consists of different types of nodes:
maxima are nodes without outgoing arcs, regular nodes have one outgoing and one
incoming arc, saddles are nodes with multiple outgoing arcs, and the unique root
node has no incoming arcs. The unaugmented merge tree can be computed from
the augmented merge tree by removing all regular nodes and replacing paths of arcs
by superarcs. The remaining nodes are referred to as supernodes. In this thesis, we
refer to the unaugmented merge tree simply as the merge tree and point out the
augmented version if needed. Moreover, to ensure a consistent nomenclature, we
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henceforth use points to refer to input data items, vertices and edges to refer to
items of the neighborhood graph, and superarcs and supernodes to refer to items of
the merge tree. Because we never work directly on the augmented merge tree, we
sometimes use arc and node as acronyms for superarc and supernode, respectively.

To remove ambiguities, the merge tree algorithm requires a function where all
maxima, minima, and saddles occur at distinct function values. For functions that
violate this condition, called non-Morse functions, simulation of simplicity [47] adds
small symbolic perturbations to break ties in the order in which vertices are processed.
These small perturbations as well as noise in the data can easily complicate the
merge tree, but can be detected and removed by topological simplification. In this
process, superarcs are annotated with a measure of robustness, e.g., the size of the
domain subset that corresponds to the superarc, or the superarc’s persistence [46]—the
difference between the maximum and minimum function value of a region. Repeatedly,
the leaf superarc of lowest robustness is removed from the tree, potentially turning a
saddle into a regular node, which, together with its two incident superarcs, is then
replaced by a superarc. For example, topology-based simplification is helpful to
remove topological structures based on local geometric measures in 3-D [26].

The merge tree can be partitioned into branches, which are paths that are
monotonic with respect to the function values. The branches can be organized in a
branch decomposition [133, 134], which is a tree. Each of this tree’s nodes is a branch;
the root is the branch of highest persistence. One node is a child of another node
if the branch it represents has lower persistence than the other node’s branch and
both branches are connected by a saddle. It is also possible to construct the branch
decomposition for other region properties. Very “deep” branch decompositions with
many hierarchy levels can be re-balanced [169]. Child branches whose saddles values
are close to that of its parent are moved up in the hierarchy and become its siblings.
This reduces the depth of the branch hierarchy and in particular removes artifacts
due to symbolic perturbation. However, the re-balanced branch decomposition no
longer reflects the exact nesting properties of the superlevel sets.

For a sublevel set of the function f , i.e. for the set of all points x ∈ Ω where
f(x) ≤ v, the above definitions can be inversed to define the split tree; a tree whose
leaf nodes reflect the minima of f and which, hence, describes the splitting behavior
of f ’s features for varying v. Carr et al. [24] describe an algorithm to merge both
trees into the contour tree to describe the evolution of level sets. A level set of f
at some function value v is the set {x ∈ Ω | f(x) = v} and may consist of zero,
one, or more connected components. For lower dimensions, these sets of connected
components are known as isolines (2-D) and isosurfaces (3-D). In general, they are
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Figure 3.2: Algorithmic pipeline of the topological analysis: Optional sampling
represents the input data by a smaller point set of very similar clustering structure.
To approximate the high-dimensional density function, we evaluate the densities at
the remaining points, construct the neighborhood graph and upsample the density
function at the midpoints of that graph’s edges. After an optional reinsertion of
non-samples, we compute the merge tree of the upsampled neighborhood graph and
remove noisy fluctuations using topological simplification. The simplified merge tree
contains a maximum (red) for each dense region/cluster. Saddles (green) and their
densities describe cluster hierarchy or separation.

referred to as contours. If the function value f(x) is thought of as time, we can
watch the evolution of contours of f over time, seeing them appear, join, split, and
disappear. The contour tree is a graph in which each contour is contracted to a single
point and that tracks these topological changes. The contour tree is not necessary
for the topology-based visual analysis presented in this thesis. However, because
algorithms and visualizations that are applicable to contour trees are also applicable
to the less complex merge tree, we occasionally refer to the contour tree at several
places throughout this thesis.

3.2 Basic Algorithm

Analyzing the clustering of the input data topologically consists of multiple parts.
From an implementation point of view, these sub-routines can be thought of as
parameterized modules that are linked together as a chain and executed consecutively.
Input of the first module is a high-dimensional point cloud and output of the last
module is a simplified merge tree encoding the point cloud’s clustering (cf. Figure 3.2).
Algorithmic scalability is achieved by inserting or excluding optional modules or by
changing parameters of mandatory modules to reduce the accuracy of the topological
abstraction. While these optimizations will be explained in Chapter 3.3, this section
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describes the mandatory parts required to obtain a merge tree as a structural
description of the point cloud.

3.2.1 Approximation of the Density Function

Given a set P = {p1, p2, . . . , pn} of points in a fixed-dimensional Euclidean space Rd,
the implicit density function of P is typically estimated by applying a filter kernel,
e.g. the Gaussian filter

f(x) = 1
n(σ
√

2π)d

n∑
i=1

exp

(
−δ(x, pi)2

2σ2

)
,

with δ(x, pi) being the Euclidean distance between sample point x and data point
pi. The kernel window width σ, henceforth called the filter radius, describes the
influence of all points to the density of a particular sample. To accelerate the density
estimation, we use a cut-off radius and define that points with a distance from the
sample higher than this threshold do not contribute to its density. A consequence
of this simplification is that samples can have zero density if their neighborhood
defined by σ does not contain any point pi ∈ P .

Because it is infeasible to compute the topology of P ’s density function analytically,
a common alternative is to construct a mesh on the given points. In lower dimensions,
the function is usually sampled on a regular grid of sufficiently small resolution. In
higher dimensions, however, this approach is impractical because regular grids grow
exponentially with every additional dimension. Hence, we seek another sampling
scheme that is both economic to be applicable to high-dimensional data and accurate
to detect all clusters. To this end, we aim for a simpler function f ′ of very similar
topology that is a piecewise-linear interpolation on a complex of simplices.

The optimal simplicial complex is the high-dimensional Delaunay triangulation.
However, using the Delaunay triangulation on P with f ′(pi) = f(pi),∀pi ∈ P , has
two disadvantages: a prohibitive runtime of O(nd/2) [59] to construct it and a rather
coarse approximation of f since the density between two points can be lower than at
those points. In this case, f ′ would lack topological features to reveal those regions
that are separated by low density (cf. Figure 3.3a).

Coarseness, the second disadvantage, can be countered by adding all topologically
relevant points of f to the Delaunay triangulation; which are very hard to compute.
Fortunately, the topology is merely a tool to identify dense regions and their nesting.
So as long as all dense regions are found accurately, we can ignore the exact positions
of f ’s topological features. Therefore, we use a heuristic that adds a further sample
on the midpoint m of each mesh edge and require f ′(m) = f(m) if the density at this
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Figure 3.3: (a) Without searching for a potential saddle of low density between two
neighbored dense regions, the saddle would lie on one of the regions’ borders and
separation would be missed. The topological analysis would “see” the lower rather
than the upper configuration. (b) Because the triangles 4pkpipj and 4pkpim share
the angle α, the distance δ(m, pk) can be computed efficiently from the distances
between pi, pj and pk using the law of cosines in O(1).

position is lower than at the edge’s endpoints. We refer to this process as upsampling.
It suffices to add only those midpoints of lower density, as only then they can affect
the topology. It is also possible that a new maximum is found at the midpoint of an
edge inside a cluster. However, in this case, m would lack a point pi ∈ P to represent
this maximum. This becomes problematic during the later visual analysis, which is
intended to segment only the given data points P . We only split edges if needed,
thus keeping the size of the graph small and allowing us to terminate the calculation
of f(m) once it exceeds the minimum of both endpoints. Upsampling also requires
the distances from an edge’s midpoint to all other given points pi ∈ P . To accelerate
the density evaluation at a midpoint, a special property of Euclidean spaces can
be exploited: for the midpoint m between pi and pj, the distance δ(m, pk) can be
computed in O(1) instead of O(d) only from the distances x = δ(pj, pk), y = δ(pi, pk)
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and z = δ(pi, pj) observing that pi, pj, pk span a planar subspace that includes m
and in which the general law of cosines holds (cf. Figure 3.3b):

x2 = y2 + z2 − 2yz cosα (for 4pkpipj)

δ(m, pk)2 = y2 +
(
z

2

)2
− 2yz2 cosα (for 4pkpim)

δ(m, pk)2 = y2 +
(
z

2

)2
− 2yz2

(
x2 − y2 − z2

−2yz

)

= y2 + 1
4z

2 − yz
(
− x2

2yz + y2

2yz + z2

2yz

)

= y2 + 1
4z

2 + 1
2x

2 − 1
2y

2 − 1
2z

2

= 1
2x

2 + 1
2y

2 − 1
4z

2

This means precalculated distances from the preceding density estimation of the
input points P can be reused for upsampling. Because the topological analysis
requires pair-wise distances in several of its sub-routines, it is beneficial to store
them in a distance matrix. It is also sufficient to work with squared distances to
avoid expensive calls of the square root function. Note that storing a distance
matrix is basically a trade-off between runtime and memory consumption. Typically
memory consumption is less critical and calculating many distances in O(d) can
quickly become a runtime bottleneck for high-dimensional data, especially if they
are determined repeatedly.

The prohibitive runtime to construct the Delaunay triangulation in arbitrary
dimensions can be mitigated by using subsets instead. Since the edges in the void
between dense regions are only needed to look for missing topological events, other
neighborhood graphs can also be used as long as they detect the clustering accurately.
Approximating the Delaunay triangulation is considered an optimization and will
discussed in more detail in Chapter 3.3.1.

The final approximation of the density function is an upsampled neighborhood
graph with f ′(v) = f(v) for the positions of all graph vertices vi.

3.2.2 Topology of the Density Function

The standard merge tree algorithm [24] is a simple graph algorithm and can be applied
to the approximation of f given by the upsampled neighborhood graph together
with the vertex densities. During the merge tree computation, all graph vertices are
processed in decreasing order sorted by their density. Utilizing a union-find data
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structure, superlevel set evolution is recorded based on the neighborhood information
provided by the graph. Superlevel set components are born at the maxima of the
density function and they grow in size until they merge with another component of
another region. This evolution from birth to potential merge eventually describes the
nesting structure and number of dense regions of the density function. The merge
tree is assembled simultaneously to the union-find data structure, and thus keeps
track of exactly these changes.

The standard algorithm constructs the fully augmented merge tree which contains
all regular nodes. Together with the maxima, each regular node represents a given
data point pi ∈ P . Hence, for a structural summary of the data set, information
about regular nodes is unimportant. To simplify the topological description and
to visualize it later on, we require the unaugmented merge tree. Therefore, we
remove all regular nodes, but still remember them with their densities as a list of
implicit regular nodes for each remaining arc of the unaugmented merge tree. This
information will be required to relate the underlying data points to their clusters in
the final visualization.

Because the merge tree accurately captures the clustering in terms of dense
regions, it is not necessary to investigate the splitting behavior of level sets or to
study all minima of the density function. Still, it is worth mentioning that the
density function has saddles of zero density for each well-separated dense region.
This results from discarding those points with a distance higher than σ during
the density estimation, which leads to a non-Morse density function. Depending
on the order in which equally valued vertices are processed during the merge tree
construction, which is typically defined by simulation of simplicity [47], one of the
saddles at zero density will be the global minimum. However, while these saddles of
zero density are required to confirm cluster separation, they are still equivalent for
the structural summary. Hence, we combine them to a multi-minimum to eliminate
topological artifacts and misleading hierarchy caused by simulation of simplicity.
This approach also avoids an accentuation of non-existent relationships and structure
in the final visualization.

In summary, the topological description consists of the unaugmented, rebalanced
merge tree. Superarcs that connect saddles and maxima represent dense regions,
superarcs connecting saddles primarily describe region hierarchy, and multiple in-
coming superarcs of a global minimum with zero density represent well-separated
regions. Note that depending on the amount of noise in the data, saddles (or the
global minimum) of the density function are typically found either directly on low
density noise points, on the borders of the dense regions, or on upsampled midpoints.



3.2. Basic Algorithm 39

merge tree simplified merge tree

de
ns

it
y

Figure 3.4: Topological simplification based on a 2-D point set: (left) Black dots
at the bottom represent the underlying data. The gray graph and the colored dots
indicate the density function and its critical points (red=maximum, green=saddle,
blue=global minimum), respectively. The merge tree is shown to the right. (right)
After topological simplification, only the prominent features remain. The implicit
regular nodes of removed features are assigned to their parents with the density of
the previously shared saddle. Conceptually, the simplified topology equals that of
the function containing plateaus at the places where noisy features occurred before.

3.2.3 Merge Tree Simplification

Depending on the kernel window width σ, the estimated density function usually
contains little variations caused by outliers or accumulations of only a few points.
Compared to accumulations of many points, these minor features occur inside and
outside the clusters and are thus considered noise without any special meaning in
most applications of cluster analysis. Of course, if the density function is noisy,
so is its topology. That is, in the merge tree, structural noise caused by small
fluctuations is represented by many small (leaf) superarcs of minor significance.
These insignificant arcs complicate the tree’s structure and also its visualization later
on. To focus only on the prominent features and to avoid cluttered visualizations of
the merge tree, topological noise is eliminated with topological simplification.

To define a superarc’s significance, the analyst specifies minimum thresholds
for topology-based properties, like a region’s persistence. As will be explained in
Chapter 3.2.4, we support three quality measures to tell apart structure from noise.
Based on these region properties, insignificant leaf superarcs are removed from the
merge tree, leaving a new leaf superarc of higher significance, until only significant
superarcs remain. Whenever a superarc is pruned, its list of implicitly stored regular
nodes is assigned to the parent superarc and the density of these nodes is changed
to the previously shared saddle. Thinking of the density function as a height-field,
as illustrated in Figure 3.4 in the 2-D case, topological simplification can be thought
of as cropping subhills and leaving plateaus behind [26]. Note that assigning implicit
regular nodes to the parent superarc is necessary to preserve the underlying data
points for final visualization. There is a special case for the global minimum: to
store the implicit regular nodes of simplified superarcs that were children of the
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global minimum, we create a symbolic (or virtual) child superarc that hosts noisy
data points and outliers. The densities of the nodes on this dummy superarc are
all zero, which is the density assigned after topological simplification if these points
were children of a global minimum with zero density. The purpose of this symbolic
superarc is to preserve the noise points for later visualization, e.g. to place them
separately at the height of the lowest possible density, as shown for the right-most
accumulation in Figure 4.10 on page 83.

3.2.4 Topology-Based Region Properties

Subtrees of the merge tree correspond to (sub)clusters of the point cloud. While
important knowledge about the global clustering—like cluster separation, hierarchy,
or the presence of noise—are already indicated by the merge tree’s saddles or the
overall complexity of the tree, we still lack region properties to evaluate cluster
importance or relevance. To help the analyst identify and compare significant
features, we support three measures:

A cluster’s size size(C) = |C| is the number of points it contains. In terms of the
density function’s topology, a region’s size reflects the number of those neighborhood
graph vertices that are comprised by that region’s corresponding superlevel set
component when it merges with another component at a saddle. For a superarc of
the merge tree, size is defined as the number of implicitly stored regular nodes; plus
one for the maximum in case of a leaf superarc. Note that upsampled points are
virtual and never contribute to a feature’s size.

A cluster’s persistence [46] pers(C) = max
p∈C

dens(p)−min
p∈C

dens(p) is the absolute
difference of the maximum and minimum density of its corresponding region. For a
superarc, persistence is simply the absolute difference of the function values of both
end-nodes. Relative to its surrounding density, persistence specifies how significant
and distinct a region is. For well-separated clusters, where the saddle density is zero,
persistence is equal to the maximum density inside the cluster.

Borrowing from the idea of d-dimensional hypervolume, a cluster’s stability
stab(C) = ∑

p∈C
dens(p) is defined as the sum of the contained points’ densities.

Conceptually, this measure summarizes the function value distribution and represents
the amount of energy required to erode the cluster. While a region with many points
close to the density maximum is both stable and expensive to erode, a region with
many point densities near the saddle density is unstable and cheap to erode. This
idea will be picked up and become clearer in the visualization of the merge tree (cf.
Chapter 4). A region’s stability is maximal if all cluster points have the same density.
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From these region properties, a cluster’s shape or extent can be approximated.
While a large-sized cluster of low persistence must be rather spread, a small-sized one
of high persistence must be very compact. Because they are defined by simple num-
bers, these properties can also be preserved in low dimensional visualizations—unlike
geometric properties like the shape or the point distribution of a high-dimensional
cluster. These topology-driven quality measures are also intuitive for common infor-
mation spaces and can reveal sophisticated insights. In general, high density reflects
data coherence. This is because only similar entities accumulate in the information
space and can thus contribute to their mutual density. Then, coherence can be
quantified by evaluating compactness, as conveyed by persistence and size, or by
judging the intra-cluster distribution using that region’s stability. For example, in
a document space, evaluating a cluster’s compactness reveals how precise multiple
documents report on a particular topic and evaluating cluster persistences is helpful
to compare their corresponding topics’ overall importance. If documents are less
alike, they are rather scattered in the information space. In this case, a cluster’s
stability also takes the density distribution into account, which is useful to not miss
less persistent, but large-sized document accumulations. Similar considerations apply
for other applications, e.g. to evaluate and quantify how much images match a
particular motif or scenery.

Apart from being used for feature identification and feature comparison, the
topology-based quality measures are also important for the merge tree simplification
(cf. Chapter 3.2.3). To specify a minimum feature significance, the analyst provides
thresholds for persistence, size, or stability to remove superarcs from the tree based
on these properties. In Chapter 5, we will present interactive widgets to help finding
appropriate thresholds and to simplify the merge interactively.

3.3 Optimizations

The basic algorithm described in Chapter 3.2 already generates a merge tree to
describe the input point cloud’s clustering structure. Nevertheless, applying the
algorithm even to data of only moderate size and dimensionality quickly leads to
problems with runtime and memory consumption. This is primarily because of the
expensive simplicial complex, i.e. the Delaunay triangulation, whose cells increase
exponentially in number and complexity with every additional dimension. To make
the algorithm scalable to point clouds of large size and dimensionality, we present
strategies to adjust the accuracy of the neighborhood description and to reduce data
size with only small effects on the density function’s topology.
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3.3.1 Approximation of the Delaunay Triangulation

The exponential increase in runtime when computing the Delaunay triangulation
in arbitrary dimensions suggests a consideration of other neighborhood graphs as
surrogates. However, because smaller surrogates are not simplicial anymore, a
precondition of the merge tree algorithm is not met. Yet, this condition is only
sufficient and not necessary, as it is trivial to construct a simplicial complex for which
the deletion of some edges does not alter the output of the merge tree algorithm.
High-dimensional simplices also force each vertex to have an increasingly high edge
degree. This results in very dense neighborhood graphs that can quickly have trivial
topology; represented by a degenerated merge tree that consists of only one superarc.
Using sparser subsets of the Delaunay graph avoids this and also decreases the
algorithm’s runtime substantially because fewer edges also imply less upsampling.

In comparison to the Delaunay graph (DG), the Gabriel graph (GG), the relative
neighborhood graph (RNG), and the Euclidean minimum spanning tree (EMST)
increasingly omit long edges of each simplex. The density along these omitted edges
is usually lower than the densities along the preserved edges, which is why we make
only small mistakes because the saddles of the merge tree are also likely to be
preserved. Still, the chance increases to remove an edge that hosts the best saddle.

Regarding runtime-complexity, the Gabriel graph and the relative neighborhood
graph can be computed in O(n3). As this can still take very long, a faster computation
of these graphs is presented in Chapter 3.3.2. The Euclidean minimum spanning tree
is the smallest possible Delaunay graph approximation. Having the fewest edges and
an asymptotic runtime of O(n2), it is the most efficient neighborhood graph that is
still connected. Note that connectedness is a precondition of the edge-based standard
merge tree algorithm [24]. Figure 3.5 shows the DG, the GG, the RNG, and the
EMST for an artificial 2-D point set, along with the respective merge trees of the
density functions for a fixed filter radius σ. The topological effects of varying the
neighborhood graph can be analyzed with a persistence diagram [32]. It shows the
saddle and maximum values of each branch of the merge tree’s branch decomposition
in a scatterplot. Figure 3.6a shows the persistence diagram corresponding to the
scenario shown in Figure 3.5. The sixteen separated circles in the upper left part
of the diagram indicate that all four clusters can be detected as regions of high
persistence with all four neighborhood graphs.

Because changing the underlying graphs does not affect the maxima and the
global minima of the density functions, the persistence of the corresponding root
branches are also equivalent; these are the four circles in the top left corner. However,
with decreasing graph complexity, the circles of the branches corresponding to the
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(a) (b)

(c) (d)

Figure 3.5: Comparison of (a) the Delaunay graph, (b) the Gabriel graph, (c) the
relative neighborhood graph, and (d) the minimum spanning tree. The overlayed
merge trees (red=maximum, green=saddle, blue=minimum), that were simplified
using a 10% persistence threshold, illustrate the changes in the density function’s
(dark=dense) topology when using less complex neighborhood graphs. Note that the
upsampled vertices are inserted after the graph construction.

other three clusters increasingly move to the left. This is a result of less graph
connectivity and thus less freedom (i.e. graph edges) to connect the superlevel sets.
Because edges vanish from the graph, so do upsampled midpoints, which forces other
vertices of lower density to serve as saddle candidates. Another important observation
is increasing topological noise, i.e. branches of low persistence represented by circles
residing near the diagonal. Two things about noise are important when reducing the
number of graph edges: First, while the DG and the GG tend to produce topological
noise only in low-density regions (the lower part of the diagonal), the RNG and the
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Figure 3.6: Persistence diagrams of the merge trees for (a) different neighborhood
graphs (cf. Figure 3.5a-d) and (b) different sampling strategies (cf. Figure 3.7a-c).
Each circle corresponds to the persistence interval of a particular branch.

EMST also produce noise in high-density areas, i.e. inside the clusters, as indicated
by the distribution of purple circles (RNG) and blue circles (EMST) along the whole
diagonal. Second, the persistence of noisy features, as indicated by their distance to
the diagonal, also increases; especially for the EMST. The reason for these effects is
that the neighborhood graph is increasingly degenerating to a tree and the (initially
appropriate) neighborhood description inside the clusters is breaking into separated
parts. As a consequence, cluster parts, complete clusters, or even whole regions
could be represented by a subtree that is connected to the remaining graph by only
one edge. This means that the evolution of superlevel sets becomes more and more
dominated and restricted by the graph structure itself. Hence, superlevel sets appear
for each subtree and cause topological noise.

Fortunately, additional noise caused by using less complex neighborhood graphs
is only moderate and can be countered with topological simplification. As indicated
by the dotted line in Figure 3.6a, a 10% persistence threshold removes the majority of
topological noise—and leads to the simplified merge trees shown in Figure 3.5. The
empty space between the sixteen isolated circles and those representing noise also
reveals that there is in fact a possible simplification threshold that would preserve
only the four main features for any of the neighborhood graphs. In general, with
decreasing neighborhood graph complexity, the simplification threshold has to be
increased to isolate only the most prominent features.
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Algorithm 1: Pseudo-code of the improved neighborhood graph computation.
Statements colored in red only apply for the Gabriel graph construction.

Input : a point set P = (p1, p2, . . . pn)
Output : the relative neighborhood/Gabriel graph G

1 compute all pairwise distances δ(pi, pj)
2 compute each point’s nearest neighbor NN(pi)
3 sort P for decreasing δ(pi, NN(pi))
4 G← (P, ∅)
5 for i← 1 to n do
6 sort P for increasing distance from pi into P ′
7 for j ← 1 to i− 1 do
8 skipedge ← false
9 ∆ ← δ(pi, pj)2−δ(pj, NN(pj))2

10 for x ∈ P ′ with δ(pi, x)2 < ∆ do
11 if δ(pi, x)2+δ(pj, x)2 < δ(pi, pj)2 then
12 skipedge ← true and abort loop
13 end
14 if skipedge = false then
15 G← G+ (pi, pj)
16 end
17 end

3.3.2 Faster Neighborhood Graph Construction

For a large number of points, the näıve computation of the relative neighborhood
graph and the Gabriel graph can be very slow. There are optimizations for the two
and three dimensional case, but they do not extend to higher dimensions.

For both graphs, a precomputed distance matrix can be used to store for each
point a list of all other points sorted by increasing distance. For the RNG we found
that when testing two points u, v, the innermost loop runs much faster if we test
the points in the order of increasing distance from u, knowing that the loop can be
aborted as soon as v is encountered, because the remaining points all have a distance
greater than δ(u, v) and therefore cannot lie inside the RNG lune (cf. Algorithm 1).

For the Gabriel graph, the following observations can be made: in Euclidean
spaces, each triplet of (non-collinear) points u, v, w uniquely defines a plane, and the
intersection of u, v’s Gabriel lune with the plane is a circle with center c. Because
of Thales’ theorem, which holds in this plane, the test whether w is outside the
Gabriel lune can be written as δ(u, v)2 ≤ δ(u,w)2 + δ(v, w)2. Using this method, we
no longer need to compute the circle centers and can determine the Gabriel graph
using only the pairwise distances between the original points. Also, the inner loop of
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the näıve Gabriel graph algorithm aborts earlier if the points are tested in increasing
distance from u. Compared to the RNG algorithm, we can abort even sooner, namely
if δ(u,w)2 ≥ δ(u, v)2 − δ(v,NN(v))2 and NN(v) denotes v’s nearest neighbor, since
the increasing distance from u must be compensated by a decreasing distance from v

for w to lie inside the Gabriel lune.
We observed that the innermost loop was finished on average after 5–10 iterations

for our data sets: for lower dimensions because a point inside the lune was found
quickly and in higher dimensions because the length of the loop decreased drasti-
cally due to the “curse of dimensionality”. The runtime of the algorithm becomes
dominated by distance calculations and sorting. Since each point can still be treated
independently, the algorithm can be parallelized using a maximum of n processors.

The neighborhood graph construction requires all points to be distinct, but in
practice, this requirement may not be met. Therefore, we construct the unique point
set from the original data points and remember for each unique point the set of data
points it represents.

3.3.3 Sampling and Reinsertion

Sampling is an optional phase to reduce the number of input points and, therefore,
to reduce the algorithm’s overall runtime. As we assume the given points to be
samples of an unknown probability density function f̂ , which we approximated with
f , we can consider the effect of a further reduction in samples. The mean integrated
square error between f̂ and f can be approximated ([154]):

ε = 1
4σ

4
∫

(∆f̂(x))2dx + 1
n(σ
√

2)d
,

where the first term can be thought of as a systematic error resulting from kernel
density estimation in general and the second term as a random error based on
sampling. There is an inverse linear relation between the random error and the
number of samples, and for high dimensions the systematic error dominates. As f̂ is
unknown, the error cannot be computed, but it can still be minimized with respect
to σ ([154]):

σd+4
opt = d

(∫
(∆f̂(x))2dx

)−1 1
n(σ
√

2)d
.

Substituted back into the original formula gives a relation between the total error
and the number of samples: ε(n) ∼ n4/(4+d). This formula can be used to determine
the minimum number of samples m that does not increase the error by more than
δ: m/n ≥ δ−d/4−1.
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(a) (b)

(c) (d)

Figure 3.7: Comparison of different sampling strategies based on an artificial 2-D data
set: (a) The complete data set. (b) The remaining points after randomly sampling
20% of the input points. (c) The remaining points after additionally sampling only
those points that have a density greater than 20% of the maximum density. (d) The
relative neighborhood graph after reinsertion of all non-samples.

We use both random sampling as it is very fast and indiscriminate as well as
density-based sampling to remove samples with a density lower than a certain
threshold. The threshold might be a fixed percentage of the maximum density or a
value determined automatically. Figure 3.7 provides an example for both sampling
strategies. Figure 3.7b shows the result of randomly sampling 20% of the artificial
2-D point set in Figure 3.7a, along with the density function’s merge tree based on the
relative neighborhood graph. In Figure 3.7c, an additional density-based sampling
step further removes samples with a density lower than 20% of the maximum density.
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The persistence diagram in Figure 3.6b illustrates the topological effects for this
scenario. Because the maximum density typically changes after sampling, density
values are normalized in the diagram. The relevant observation is that all four clusters
are detected reliably after random sampling (green), after density-based sampling
(purple), and after applying both (blue). The four clusters can also be isolated from
noise with a 20% persistence threshold. Note that density-based sampling does not
change the maxima. This ensures that prominent features can still be compared
in the reduced point set. However, since scattered and vague features in low-dense
areas could be eliminated by sampling, this step is virtually related to simplification.
Moreover, for noisy data, density-based sampling can increase the persistence of
those features that are surrounded by noise. As a consequence, sampling can break
subcluster relationships and overemphasize a region’s persistence because saddles can
be lower than before sampling was applied. Therefore, sampling with high thresholds
should be applied with caution as it decreases the signal-noise ratio and can eliminate
existent structure or distort relationships among the features.

Although sampling accelerates the topological analysis and still preserves the
main features, the final clustering description is incomplete. This is because non-
sampled points are excluded from the remaining analysis process once they were
discarded. If the analyst needs a visualization of the complete data set later on,
non-sampled data points have to be reinserted into the neighborhood graph prior
to the merge tree computation. To reverse sampling if both strategies were applied,
non-samples are inserted in the inverse order of their removal. Let S denote the set
of sampled points and S̄ the set of non-samples. We approximate the neighborhood
for each point p̄ ∈ S̄ by graph edges to its sampled neighbors. Depending on the
used neighborhood graph, p̄ may have several valid neighbors. However, because
the reinsertion step is not intended to improve the approximation of the density
function, but only aims to connect non-samples to their corresponding regions, we
add a single edge from p̄ to its nearest neighbor NN(p̄) ∈ S to the graph of S. It
is also necessary to test whether the newly inserted edge needs to be upsampled
to avoid that noise points are related to nearby clusters that contains the nearest
neighbors. A consequence of connecting p̄ with only one edge to the neighborhood
graph of S are star-like structures that develop at some sampled points p ∈ S (cf.
Figure 3.7d). If the non-samples are reinserted for both sampling strategies, these
structures develop recursively. Again, the purpose of reinserting non-samples is to
ensure that the merge tree contains all input data points on its superarcs. Therefore,
if the analyst is only interested in a structural overview rather than visualizing the
data points, skipping the optional reinsertion provides a faster structural preview.
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Table 3.1: Parameters of the algorithmic core of the topological analysis.

Part of the Algorithm Requirement Type Number
Similarity measure mandatory metric 1

Sampling optional numeric 2
Filter kernel mandatory kernel type 1

Neighborhood graph mandatory graph type 1
Upsampling recommended boolean 1
Reinsertion optional boolean 2

Simplification optional numeric 3

3.4 Parameters and Runtime

While the algorithmic core of the topological analysis requires only a few mandatory
parameters, a couple of additional parameters, of which some are optional, are needed
to make the algorithm applicable to more complex data and to control and simplify
the accuracy of the topological abstraction. Although the topological approach was
designed to work on raw point data, there are still some variable parts that are not
apparent at first sight, but whose adjustment could be critical in particular fields
of application. This section summarizes all mandatory and optional parameters.
Table 3.1 provides an overview of all available parameters, sorted by the order in
which they are needed.

Similarity measure. Although it defaults to the Euclidean distance, technically
speaking, the similarity measure is interchangeable. Using another metric adapted for
higher dimensions can be beneficial, e.g., to overcome problems with the Euclidean
distance very high-dimensional spaces. The default metric could even be replaced by
an application-driven metric that works directly on the domain entities. For example,
instead of representing text documents by vectors and using their distances or angles
to describe similarity, they could also be compared based on their original content
with automatic language processing and sophisticated text mining approaches. In this
context, however, it should be mentioned that leaving the vector-based information
space could lead to problems with respect to upsampling, which requires to compare
real objects with samples at midpoints that do not have a valid representative in the
data. Particularly for the text example, it is not immediate how to define a (virtual)
document that resides in the middle between two real documents.
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Sampling. This is an optional step to increase the algorithm’s scalability by
working on a representative subset of very similar clustering structure. This phase
has two parameters: a threshold for random sampling to define a percentage of the
input data that should be kept, and a threshold for density-based sampling to define
a percentage of the maximum density that a particular point has to exceed.

Filter kernel. The filter kernel used for density estimation is also interchangeable.
For the sake of simplicity, it defaults to the Gaussian filter because this one is used
frequently for density-based clustering. However, the Gaussian filter is isotropic
in that it has the same variance in every dimension, i.e. the region of influence is
actually a hypersphere. The estimated density function is also subject to the filter
radius σ and requires to evaluate Euclidean distances. As it is conceivable that
neither the assumptions about the underlying data, nor data size or dimensionality
justify using this kernel type, replacing it by another kernel could be reasonable.
Still, it is important to understand that basically every structural insight taken from
the topological analysis depends on this parameter and its window width σ. While a
too large σ combines actually separated regions, a too small σ splits clusters and
can even assign every data point to its own cluster. Because finding a suitable σ is
vital, Chapter 5.2.1 presents topology-based strategies and an interactive widget to
determine the window width of this parameter effectively.

Neighborhood graph. The parameter type is a neighborhood graph to ap-
proximate each vertex’ neighborhood. Choosing between the Gabriel graph (GG),
the relative neighborhood graph (RNG) or the Euclidean minimum spanning tree
(EMST) is a trade-off between runtime and accuracy of the clustering description.
Not only are the RNG and the GG worse in runtime complexity, they also contain
substantially more edges that require additional upsampling. As a rule of thumb,
with increasing data size and dimensionality, less complex neighborhood graphs
should be used. In our experiments it turned out that while the GG can handle up
to around 30 000 points in some dozens of dimensions, for more complex data, the
RNG or even the EMST are recommended. The effect of using sparser neighbor-
hood graphs is increasing structural noise that can be countered with topological
simplification. Instead of using the upsampled versions of these graphs, other graphs
and (up)sampling schemes are also imaginable as long as they match the target
application, i.e. cluster analysis, and can be processed by the merge tree algorithm,
which requires connected graphs by default.

Upsampling. Strictly speaking, upsampling is rather optional than mandatory.
Because omitting this part can heavily distort the clustering description, it is actually
recommended. Upsampling aims to improve the accuracy of the approximated density
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function by detecting missing saddles of zero density that are required to confirm
cluster separation. It is important to understand that without upsampling, the
number of saddles does not necessarily change. Because a cluster typically exhibits
less density at its border than in its center, without upsampling, saddles would likely
only “move” from the empty space between the clusters to one of their borders.
Although separation is likely missed in this case, the number of clusters found is
still the same. For noisy data, upsampling could also be omitted because noise
points between the clusters could act as saddle points of low density. Taking such
considerations into account, skipping the upsampling step can accelerate the analysis.
However, if the semantic and the structure of the data is largely unknown, upsampling
is recommended to avoid misleading insights about the data.

Reinsertion. Reinserting non-samples is optional and primarily ensures that
the merge tree contains all input data points. It requires two boolean parameters to
define whether randomly skipped points and low-density points should be reinserted
into the neighborhood graph. Because sampling aims to work on a representative
subset of the input data, skipping the reinsertion can accelerate the analysis if the
focus is primarily on clustering structure rather than on analyzing individual points.

Topological simplification. Although the presence of noise might be an in-
teresting insight in some applications, in general, it is recommended to remove
small fluctuations of the density function to obtain a clear and precise clustering
description. Still, topological simplification is optional and requires up to three
parameters to define minimum thresholds for a dense region’s persistence, size, and
stability. Note that vague features could be missed if one of these thresholds is too
large; especially if the clustering is inhomogeneous, e.g. if some clusters are scattered
and thus less persistent and stable, but large in size. These aspects will be discussed
in the conclusion at the end of this chapter (cf. Chapter 3.6).

Parameter changes

As already mentioned in Chapter 3.2 about the basic algorithm, the algorithmic core
of the topological analysis follows a straightforward modular design. This implies
that parameter changes usually affect subsequent parts of the algorithm. Because
changing parameters will play an important role during the visual analysis, an
efficient reuse of intermediate computational results is important to facilitate fluent
and interactive exploration later on (cf. Chapter 5). Fortunately, the most time-
consuming parts will not be changed frequently during the analysis. This primarily
holds for computing the distance matrix, which is used by several sub-routines, but
also for sampling and the choice of the neighborhood graph. Once these parameters
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are adjusted, subsequent parts like the density estimation and upsampling can reuse
the pre-constructed neighborhood graph. A parameter that likely requires repeated
adjustment is the filter radius σ. As will be explained in more detail in Chapter 5.2.1,
the analyst typically has to run the topological analysis for different values of σ
in order to detect the clustering suitably. According to the parameter order, as
summarized in Table 3.1, changing σ requires to repeat upsampling, the merge tree
construction and simplification. Note that the situation changes if density-based
sampling is part of the analysis. In this case, changing σ also affects the neighborhood
graph construction and the reinsertion of non-samples. The most frequently changed
parameters are probably the simplification thresholds. Because simplifying the merge
tree is fast and actually the last sub-routine, changing these thresholds is not a
runtime bottle-neck and hardly affects the overall runtime. Of course, changing
any of the above parameters also updates the merge tree visualization later on (cf.
Chapter 4).

3.4.1 Runtime Complexity

Although the sub-routines of the algorithmic pipeline have a defined limiting behavior
with respect to the input data’s size and dimensionality, the expected runtime of
a particular execution of the topological analysis also depends crucially on some
factors unrelated to the data size. The three most important factors are the data
structure itself, its dimensionality, and random factors, e.g., during random sampling.
The data structure, i.e., the number of (sub)clusters and their hierarchy, affects the
complexity of the topological description which, in turn, affects those steps that
work on the merge tree, e.g., the simplification, which depends on the number of
leaf nodes. The data dimensionality affects the runtime of the algorithm in that
the number of neighbors typically increases with each additional dimension. This
affects those operations working on the neighborhood graph edges, like upsampling or
the reinsertion of non-samples. Finally, random factors affect the expected runtime
because even equally-sized samples of the same data can lead to very different
neighborhood graphs (and merge trees). Taking these considerations into account,
it is difficult to quantify the expected costs for an arbitrary data set because the
expected runtime is not only restricted by the data size. For example, it is easily
possible that a specific number of points is faster to analyze in a high-dimensional
space than in a two-dimensional space.

Nevertheless, the asymptotic runtime complexity results from the sum of the
runtime complexities of each of the individual sub-routines. Taking only the most
relevant sub-routines into account and assuming no implementation-specific opti-
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mizations, these are the following steps (with n being the data’s size and d being the
dimensionality): making the initial data set unique requires a sort, i.e., linearithmic
time O(n log n), and a sweep in linear time O(n) to remove adjacent duplicates;
random sampling requires a shuffle of the input data in linear time; calculating
the distance matrix with (n2 − n)/2 entries takes quadratic time O(dn2) in total;
estimating the density function in quadratic time; density-based sampling requires
a sweep in linear time; constructing the neighborhood graph naivly for arbitrary
dimensions requires cubic time for the Gabriel graph, cubic time for the relative
neighborhood graph, and quadratic time for the Euclidean minimum spanning tree;
performing the upsampling takes O(e n′), where e is the number of graph edges and
n′ is the number of sampled points; density-based and random-based reinsertion
each in quadratic time, i.e., O(2n′ n′′) to determine in two sweeps for each of the
non-samples n′′ = n − n′ the nearest neighbored sample and the density of the
mid-point of this edge; constructing the merge tree in O(n̂ log n̂+N +Mα(M)) [24]
where n̂ is the number of neighborhood graph vertices, N is the number of edges
and M is the number of union-find merges performed; and simplifying the merge
tree with an asymptotic cost of mainly O(t log t) [25], where t is the original size of
the merge tree.

3.5 Examples and Results

In this section, we apply the algorithm to various example data sets introduced in
Appendix A. To this end, we use several parameter settings and consider runtime and
memory aspects of the analysis pipeline. Note that strategies to set up parameters
efficiently as well as visualizing clustering structure and exploring the data is not part
of this example section. These issues will be addressed in Chapter 4 and Chapter 5.

The computational platform used for all experiments is a machine with two 2.6
GHz quad-core processors and 32 GB of random access memory. With the exception
of the merge tree algorithm, all sub-routines run concurrently whenever possible.

3.5.1 Artificial 2-D Data Set

For demonstration purposes, the first example data set is two-dimensional. This
should achieve a better understanding of the topological approach because we can
illustrate relationships and intermediate results. Of course, the observations and
explanations made for this example also hold for higher dimensional data. The
example data consists of a noisy 2-D point cloud with clusters of varying shape,
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compactness and size. It is illustrated in Figure 3.8a and explained in more detail in
Appendix A.1.

Because the data is only two-dimensional, its density function can be imagined
as a height field. As indicated in Figure 3.8c, the data can be extended to 3-D by
assigning each data point a height value according to its density as determined by
density estimation. This causes regions of higher density to stand out as separated
hills. To extend the points to a domain suitable for topological analysis, we use the
Delaunay triangulation and obtain the terrain shown in Figure 3.8d. The equally
distributed isolines on the hills represent superlevel set borders to accentuate height
information. Thinking of a single isoline that decreases in its height, it first appears
on a peak, merges with another isoline in a valley, and, after it comprised the whole
landscape, it (typically) vanishes at zero height. The objective of the topological
analysis is to capture these events for all isolines of the landscape and to summarize
their evolution in terms of critical points. Figure 3.8e shows all critical points of the
height field. It contains a maximum (red) on each peak, a saddle (green) in each
valley where superlevel sets merge, and one global minimum (blue) to represent the
point of lowest density. The merge tree, which is not shown in the terrains, connects
these critical points according to the merging behavior of neighbored regions. Because
noise in the data easily complicates the structural description and visual complexity,
we eliminate insignificant features with topological simplification. Figure 3.8f shows
the critical points that remain after the simplification. There is one density maximum
per cluster and saddles of lower density indicate subclusters or cluster separation.
The merge for this data set is shown in Figure 3.8b.

A major advantage of the density-based approach is its capability to detect
clusters of arbitrary shape, as long as dense regions are separated by regions of lower
density. In terms of the density function’s topology this means saddle-maximum
pairs evolve inside a cluster and take its form until they reach lower density at its
border (cf. Figure 3.9a). However, this behavior depends on the selected filter radius
σ. While σ must be sufficiently small to discriminate nearby clusters, a small filter
radius also increases topological noise and can split those clusters that are larger
than σ itself. Although evolving saddle-maximum pairs are the key to find clusters
of arbitrary shape, resulting topological noise typically needs to be reduced prior to
further exploration (cf. Figure 3.9b).

Upsampling is necessary to detect missing saddles of the density function. How-
ever, as illustrated in Figure 3.9b, in case of noisy data, using the noise points as
saddles could also suffice. Although a lower saddle might be found at an upsam-
pled position in the noisy areas, its density is unlikely much lower. That is, the
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: Artificial 2-D data set (cf. Appendix A.1) imagined as a height field:
(a) Noisy point cloud with clusters of different shape, size, and compactness. Some
clusters are intertwined, others contain each other. Colors highlight the relation
between clusters and classes; noise points are colored in black. (b) The final merge
tree accurately captures the clustering structure. There is one density maximum (red)
per cluster and cluster hierarchy and separation are described by connecting saddles
(green). (c) The topological analysis can be imagined as analyzing the implicit
height field defined by the points’ densities. (d) Landscape-like representation of
the height field that results from rendering the (2-D) Delaunay triangulation with
augmented isolines to indicate some superlevel sets. (e) The large number of critical
points (red=maximum, green=saddle, blue=global minimum) reflects a noisy density
function. (f) These fluctuations are countered with topological simplification. Given
suitable simplification thresholds, one density maximum per (sub)cluster remains.
Remaining saddles and their densities indicate cluster hierarchy, separation, or
ambient noise between the clusters.
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(a) (b)

Figure 3.9: Artificial 2-D data set: (a) Height graph consisting of the (upsampled)
RNG edges (red) and with vertices colored according to their density (dark=dense).
The unsimplified merge tree is augmented. Depending on the point distribution and
the selected filter radius σ, arbitrarily shaped clusters are detected as maximum-
saddle pairs that evolve inside the clusters until they reach lower density. (b) The
large number of insignificant saddle-maximum pairs is reduced with topological
simplification. After simplification, only one density maximum per cluster remains.

overall clustering would still be captured by the merge tree and the time-intensive
upsampling could be omitted. Nevertheless, because separation could be missed if
saddles are non-zero, it is not recommended to rely on noise in unknown data sets.
To demonstrate the importance of upsampling, Figure 3.10a shows the 2-D data
set after noise removal together with the upsampled Gabriel graph edges and the
critical points of the density function. Except for the subcluster hierarchy in the top
left corner, all saddles and the global minimum are located on upsampled vertices
between the clusters. Note that not all upsampled positions act as saddles between
the dense regions and that most of them become regular nodes once two regions were
identified to be separated. Moreover, upsampled vertices are not stored as implicit
regular nodes because they do not represent real data points. Figure 3.10b shows the
same scenario without upsampling. Because there are no virtual upsamples in the
height graph anymore, only real data points of lowest density can act as the saddles.
This implies that saddles are located on the cluster borders. From a clustering
point of view, these non-zero saddles can only describe one big cluster with several
sub-structures and, because saddle densities are now higher, the persistence of these
features also decreases. This is why some density maxima vanish in Figure 3.10b
because they are now considered noise and are removed by topological simplification



3.5. Examples and Results 57

(a) (b)

Figure 3.10: The importance of upsampling demonstrated with the artificial 2-D
data set: (a) After noise removal, the critical points of the density function are
located on the upsampled midpoints (black dots) of the Gabriel graph edges. Cluster
separation is detected reliably. (b) Without upsampling, the critical points reside
on the cluster borders, which is why cluster separation is missed. From a clustering
point of view, the non-zero saddles densities can only reflect one big cluster with
several sub-structures.

using the same threshold like in Figure 3.10a. While reducing the simplification
thresholds would restore the previously found features, their actual separation would
still be missed.

The runtime of the topological analysis depends on the individual choice of
parameters. Table 3.2 provides some statistics for several parameter settings. We
distinguish primarily between the neighborhood graph and different sampling strate-
gies. In all configurations, the filter radius is fixed to σ = 30.0 (the data domain
has an extent of 800x800 pixels) and the simplification threshold is fixed to 10% of
the maximum persistence—which is typically a good value to remove noise. Note
that simplifying by another region property or using other thresholds would slightly
change the runtimes for the simplification step. We use the Euclidean minimum
spanning tree (EMST), the relative neighborhood graph (RNG) and the Gabriel
graph (GG). The used sampling strategies include running the topological analysis
(i) without sampling, (ii) with sampling only 20% randomly and density-based, and
(iii) with sampling, but without reinserting the non-samples afterwards. The results

1Total times include preprocessing like computing a distance matrix or removing duplicates.
Duplicates still contribute to the density function and are added correctly to the merge tree.

2Randomness causes the graph sizes and the runtimes of subsequent phases to vary a little.
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Table 3.2: Statistics for the artificial 2-D data set (times in seconds). The filter radius
is fixed to σ = 30.0 (pixels) and the simplification threshold is threshpers = 10% of
the maximum persistence.

neigh-
borhood
graph

number
of

edges

time
for

graph

time
for

upsam-
pling

time
for re-
insert-

ion

time
for

merge
tree

time
for sim-
plifica-
tion

total
time1

without sampling
EMST 31 833 27.37 1.8 - 0.21 1.03 36.07
RNG 44 942 96.01 2.87 - 0.28 0.46 105.59
GG 77 077 98.14 4.94 - 0.91 0.22 111.05

with sampling (20% random, 20% density)
EMST 5 365 0.57 0.34 11.34 0.29 5.38 18.42
RNG 6 540 2.01 0.34 12.66 0.28 3.69 19.47
GG 10 046 1.80 0.47 12.95 0.27 3.46 19.44

with sampling (20% random, 20% density) without reinsertion2

EMST 5 177 0.51 0.28 - 0.02 0.04 1.33
RNG 6 287 1.73 0.33 - 0.03 0.04 2.59
GG 10 586 2.24 0.54 - 0.04 0.02 3.35

clearly reveal that the total times are dominated by the times required to construct
the neighborhood graph and that there are huge differences in the total time de-
pending on the sampling strategy. Because the Gabriel graph produces the most
edges it also requires the most time to compute and consumes the highest amount of
memory. Furthermore, subsequent upsampling of the graph increases linearly with
the number of edges. Compared to the graph constructing and upsampling, creating
and simplifying the merge tree is generally fast and takes only a small part of the
total time. The runtime bottleneck, hence, is located in the first part of the analysis.
This is also the reason why the sampling strategies aim to reduce the costs of these
phases. The table reveals that sampling reduces the total time almost linear to the
amount of sampling applied. The fastest result and lowest memory consumption can
be obtained by applying sampling, but skipping the reinsertion. This approach not
only minimizes the runtime and memory consumption, working on a smaller subset
also accelerates the merge tree construction and the simplification step.

Changing the filter radius σ also has an effect on the runtime and memory
consumption of the topological analysis. Table 3.3 summarizes statistics for different
filter radii; using the Gabriel graph and fixing the simplification threshold to a



3.5. Examples and Results 59

Table 3.3: Statistics for the artificial 2-D data set (times in seconds). The neighbor-
hood graph type is fixed to the Gabriel graph and the simplification threshold is
threshpers = 10% of the maximum persistence.

filter
radius
σ

time
for

upsam-
pling

number
of

upsam-
ples

time
for

merge
tree

number
of max-

ima

time
for sim-
plifica-
tion

total
time

0.1 0.14 77 077 35.39 31 834 0.0 137.87
10.0 7.81 13 049 0.33 3 884 0.53 106.93
30.0 4.64 2 109 0.91 543 0.22 105.85
60.0 5.10 623 1.30 204 0.09 108.65
150.0 10.11 171 2.06 104 0.02 122.58
500.0 32.54 62 1.66 99 0.13 139.49

constant of 10% of the maximum persistence. The filter radius σ varies between
the smallest possible value, which is σ < 0.5 for two neighbored pixels, and a too
large value that cannot separate all clusters anymore. For an increasing σ, the table
reveals an inverse relation between the time required for upsampling and the number
of upsamples found. This is due to the cut-off radius, which allows us to skip the
evaluation of a midpoint’s density once it cannot increase anymore because all other
points are too far away. As a consequence, for smaller filter radii, less points are
relevant for the density estimation of a single evaluation. For σ < 0.5, the filter radius
is even smaller than (half of) the shortest possible edge length in this 2-D example
data set. This is why the density estimation of a midpoint can be skipped entirely,
which also holds in general if the filter radius is smaller than half of the length of
the currently processed graph edge. For an increasing filter radius, the effect of this
optimization vanishes. Furthermore, the number of upsamples found also decreases
with an increasing filter radius because the midpoint densities increase as well and
would turn into (uncaptured) regular nodes or local maxima of the density function.
The worst-case of the number of required upsamples in this example scenario is for
σ < 0.5; when every graph edge hosts a zero-density saddle. This is also the worst
runtime for the merge tree construction, which is otherwise rather constant and
independent from the filter radius.
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3.5.2 High-Dimensional Data Sets

The observations made for the artificial 2-D data set also apply for data of higher
dimensionalities. There are only quantitative differences like a more expensive
distance calculation in O(d) in Rd, or an increasing number of neighborhood graph
edges because high-dimensional points generally also have an increasing number of
“neighbors” with each additional dimension. These properties affect the runtime and
memory consumption of the neighborhood graph and also the costs of subsequent
steps like upsampling and computing and simplifying the merge tree. However,
beyond the limitations of the similarity measure and the chosen filter kernel, the
algorithm itself does not make any restrictions to the data’s dimensionality. Although
the regions of influence used for the neighborhood graph construction also become
high-dimensional, i.e. a hyper-sphere for the Gabriel graph and a hyper-lune for the
relative neighborhood graph, the inside-region test is still implemented only with
simple distance evaluations.

Real-World Data Sets

To demonstrate the versatility of the topological approach and its independence from
the underlying application domain, we apply it to several high-dimensional data sets
that are explained in more detail in Appendix A. Table 3.4 summarizes the results
for different neighborhood graphs. The values for the filter radius σ used to create
the density function are considered suitable to detect the point cloud’s clustering
structure. Finding these suitable parameters is not part of this result section, but
will be addressed in Chapter 5 about interactive visual analysis.

The total times for all three graph types indicate that the algorithm scales
for some thousands of points in higher dimensions, even without prior sampling.
However, for the most complex data set, there are significant differences in the size
and runtime of the neighborhood graphs. While the number of EMST edges is always
below the number of points, the number of GG edges can be a multiple of the data
size. As can be seen for the Isolet data set, this can even be some orders of magnitude
and reflects the high edge degree of each graph vertex in high-dimensional spaces.
This also underlines the importance of using sparser neighborhood graphs to mitigate
time-consuming upsampling. Upsampling also gets increasingly inefficient because
the number of edges between two regions typically increases with every additional
dimension, while only one upsample is required to confirm cluster separation. Note
that the number of EMST edges is not exactly n− 1 if the data contains duplicates,
i.e. points with identical coordinates. In a preprocessing step, we remove duplicates
and increase the multiplicity of the one remaining point at this position to avoid
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Table 3.4: Statistics for the real-world data sets in Appendix A (times in seconds).
The filter radii were determined manually with the strategies introduced in Chapter 5.

property Iris
(A.6)

Medline
(A.8)

Italian
oils

(A.5)

Reuters
(A.7)

Segmen-
tation
(A.3)

Isolet
(A.4)

points 150 1 250 572 800 2 310 7 797
dimensions 4 4 8 9 19 25
filter radius σ 0.8 0.01 22 0.06 30.0 0.7

EM
ST

edges 146 1 245 570 633 2 085 7 796
graph time < 0.01 0.02 < 0.01 < 0.01 0.06 1.40
upsamples 12 178 310 55 319 6 717
total time < 0.01 0.04 0.01 0.02 0.17 3.00

R
N

G

edges 189 1 816 833 828 2 786 15 995
graph time < 0.01 0.08 0.01 0.01 0.22 4.87
upsamples 22 282 527 76 719 14 320
total time < 0.01 0.11 0.02 0.04 0.36 7.44

G
G

edges 498 5 555 4 361 3 975 8 066 766 576
graph time < 0.01 0.08 0.01 0.02 0.24 6.93
upsamples 124 1 118 3 553 529 3 704 738 879
total time < 0.01 0.13 0.05 0.05 0.42 23.16

problems with the neighborhood graph. Increasing a point’s multiplicity ensures
proper density estimation and a correct merge tree with all input data points.

Artificial 100-D Data Set

This artificial data set consists of 127 995 points in 100 dimensions and is explained
in more detail in Appendix A.2. The complexity of this data set makes it useful to
investigate the runtime behavior of the presented algorithm and to demonstrate both
the strengths and the limitations of the topological approach.

Table 3.5 shows the results of analyzing the data set with different neighborhood
graphs and with different sampling strategies. During these experiments, we fix
the filter radius to σ = 650.0 and use a 10% threshold for density-based and
random sampling. The used sampling strategies are: no reinsertion of non-samples,
reinsertion of non-samples discarded by density-based sampling, reinsertion of non-
samples discarded by random sampling, and reinsertion of all non-samples. The total
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times provided by the table do not include the time required to pre-calculate the
distance matrix, which takes around 25 seconds with our implementation.

The table reveals some important aspects regarding the algorithm’s scalability.
The first observation concerns the relation between the number of points and their
dimensionality: In higher dimensions, the number of neighborhood graph edges
typically increases quickly—and so do the computational costs. This implies that in
lower dimensions, where fewer neighborhood graph edges exist, more input data points
are manageable without a significant increase in runtime or memory consumption.
To reduce the overall costs of the topological analysis, we can either reduce the data
points or the number of graph edges. These strategies are implemented with prior
sampling and by using sparser neighborhood graphs. For the 100-D example, the
quickest possible result can be obtained by using the Euclidean minimum spanning
tree (EMST) and without reinserting non-samples. In this case, constructing the
neighborhood graph and computing the merge tree takes around 27 seconds (including
around 25 seconds for the distance matrix). Because density-based sampling without
reinsertion does not lead to a suitable representation of the input data set, reinserting
the non-samples from density-based sampling takes around 21 seconds and slightly
decelerates the merge tree computation, leading to a total of around 48 seconds.
A noticeable decrease in runtime can be observed for the reinsertion of the 90%
input points that were discarded by random sampling. This process takes around 7
minutes and decelerates the merge tree computation to around 27 seconds. Finally,
computing the merge tree after the reinsertion of all non-samples takes around 17
minutes in total for the EMST.

The algorithm takes even longer for more complex neighborhood graphs. While
the relative neighborhood graph (RNG) contains around 23 000 edges and takes
approximately six seconds, the Gabriel graph (GG) already contains around 13
million edges and takes approximately 2.5 minutes. Moreover, upsampling becomes
a critical factor in high-dimensional spaces. While upsampling takes only one second
for the RNG, it takes around 17 minutes on the GG and also doubles the number
of graph nodes. Note that most of these upsampled positions will be (redundant)
regular nodes in the merge tree later on and only result from the large number
of neighbors in high-dimensional spaces. Table 3.5 also reveals that even though
using the RNG is not much slower than using the EMST, there are critical drops in
runtime for the Gabriel graph. Computing the merge tree based on the GG already
takes around 2 minutes and reinserting the non-samples discarded by density-based
sampling takes around one hour. Applying the analysis to the complete input data
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Table 3.5: Statistics for the artificial 100-D data set (times in seconds). The filter
radius is fixed to σ = 650.0 and sampling is performed with a 10% threshold for both
random and density-based sampling.

neighborhood graph times for reinsertion and merge tree

type edges
[time]

up-
samples
[time]

none
[merge tree]

density
[merge tree]

random
[merge tree]

both
[merge tree]

EMST 7 830
[1.22]

19
[0.43]

-
[0.06]

18.79
[0.24]

432.86
[27.63]

870.19
[156.97]

RNG 23 119
[5.47]

301
[1.27]

-
[0.38]

21.71
[0.61]

543.4
[30.15]

803.57
[184.64]

GG 13.31·106

(149.78)
11.67·106

(1 049.85)
-

[132.55]
3 650.61
[134.41] n/a n/a

set, maybe even without any prior sampling and using the complex Gabriel graph,
would certainly take several hours or even days. Therefore, the basic idea of the
introduced optimizations is to reduce the data size to some ten-thousand points
for around 50-D, or more points for fewer dimensions, and to handle increasing
dimensionality with less complex neighborhood graphs.

3.6 Conclusion and Discussion

We presented a multiple stage process to approximate the clustering structure of a
high-dimensional point cloud. This approximation aims at the study of the data in
terms of dense regions, including nesting structure and individual region properties.
We introduced optimizations to reduce the runtime of the algorithm: moderate
random sampling is applied because it does not change the overall shape of the
estimated density function, and therefore preserves its topology. However, since
this also increases the impact of noise especially in low-density regions, additional
density-based sampling favors regions of high density. Furthermore, instead of using
the Delaunay graph, which is inefficient to compute in high-dimensional spaces,
sparser graphs can be used to represent neighborhood relations between points. The
merge tree’s complexity increases with the “sparseness” of the neighborhood graph,
but this can be countered with topological simplification. Still, there is not one
neighborhood graph for all cases, as it can be observed that the sparseness may only
be increased along with the dimension: while for lower dimensions the Gabriel graph
should be used, for medium-dimensional data, it should be sufficient to use the sparser
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RNG or even the EMST. To obtain results within seconds or a few minutes, data
size is currently limited to approximately 100 000 points in around 100 dimensions.
Although bigger data sets could be analyzed by more approximation, eventually, the
algorithm’s usability for cluster analysis is limited by the curse of dimensionality
because it uses a distance-based proximity measure. While this could be countered
with an application-driven metric, we opted for an application-independent, multi-
purpose approach that works on raw point data. Another solution to overcome
problems with distance calculations in very high-dimensional spaces is to project the
data to a lower dimensional space that is less affected by the curse of dimensionality.
For example, for classified data consisting of k classes, linear discriminant analysis
strives to preserve the clustering structure in an intermediate k−1-dimensional space
that can then be analyzed topologically.

A limitation of the topological approach is its inability to preserve absolute dis-
tances and geometric cluster properties like shape, extent, or local point distribution.
However, the density-based notion of clusterings, i.e., clusters are dense regions that
are separated by regions of low density, allows us to find clusters without constraining
the input data with respect to these properties. Still, some clusterings cannot be
captured by this notion. For example, a dense cluster inside a sparse cluster usually
leads to only one density maximum, and also close clusters might be combined if their
point distribution is anisotropic. The topological analysis of the density function
can also not provide information about empty regions in the data set, and, like every
density-based approach, the clustering result heavily depends on one parameter: the
filter radius σ of the Gaussian kernel. Compared to hierarchical clustering methods,
like OPTICS [6], we only consider one segmentation and cannot detect clusters at
different density levels or hierarchies. That is, while a large σ is required to detect
large clusters, it will combine accumulations of small clusters at the same time.
Likewise, a small filter radius σ separates small and nearby clusters, but splits large
clusters at the same time. Although topological simplification can mitigate these
effects by removing noise caused by using too small filter radii, the clustering found
is still only one possible segmentation and is primarily characterized by the adjusted
filter radius.

A strength of the topological approach is its capability to detect the clustering and
cluster separation in arbitrary dimensions. Moreover, the topological analysis is robust
with respect to noise and captures distinct cluster properties, namely persistence,
size, and stability, for arbitrarily shaped clusters. By relating these quality measures,
cluster properties can be approximated, e.g., whether they are compact or scattered.
Note that only by discarding unpreservable geometric properties, we can focus on
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key properties to obtain a suitable description of the high-dimensional clustering.
Presenting the manifold information provided by the merge tree in a clear and
intuitive fashion and guiding the analyst in finding appropriate thresholds to set up
important parameters of the topological analysis will be the subject of Chapter 4
and Chapter 5, respectively.



66 Chapter 3. Topological Representation



67

Chapter 4

Topological Visualization

The unaugmented merge tree resulting from the topological analysis describes the
input point cloud’s clustering structure. Its hierarchy reflects that of the dense
regions found in the data and its superarcs reflect quantitative properties like a
region’s distinctness, separation, compactness, or size. By storing the underlying
data points as implicit regular nodes, the merge tree also relates individual points to
their clusters or noisy regions. Based on the point densities, the analyst can evaluate
point distributions and the importance of each point for its corresponding feature.
The latter can be derived from comparing a point’s density to the density maximum
of its cluster to find out whether it is positioned close to the center or at the border.

Presenting this complex information clearly, intuitively and without occlusion
artifacts requires an effective visual metaphor to facilitate proper and convenient
visual analysis. To achieve this goal, we advance previous work on a terrain-like
visualization of scientific data as 3-D topological landscapes [169]. This metaphor
harnesses the human’s naturally trained ability to read and understand the structure
of a terrain and to quantify the importance of individual hills based on their height
and extent. We extend this idea for visual cluster analysis to visualize the clustering,
including cluster hierarchy and cluster properties, as nested hills of different shape
and extent. Furthermore, we augment the landscape with the underlying data
points to allow the analyst to relate individual points to features, to annotate them
with additional meta-information, and to link them to other views for further local
analysis.

This chapter introduces several topology-based landscape visualizations for visual
analysis of high-dimensional point clouds. We present variations of the original 3-D
topological landscape, which was designed for the more complex contour tree [24],
and we introduce a novel 2-D landscape metaphor specifically designed for the merge
tree and the targeted clustering application. Finally, we compare advantages and
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drawbacks of the landscape variations and we discuss the benefit of topology-based
visualization compared to using standard techniques for high-dimensional data, e.g.
projections or parallel coordinate plots.

4.1 Related Work

Tree layouts. Because the merge tree encodes the complete clustering, a traditional
tree layout in the plane would apparently suffice to present the clustering structure.
There are many tree layouts [67, 75], of which (variations of) dendrograms [69]
and Icicle Plots [106] are the most commonly used techniques to analyze structure
visually [109]. Tree and graph layouts [139] perform well for rather small and
simple data, but these methods present only little information beyond hierarchy
and thus provide only a one-sided global perspective. Tree-based layouts have
also been developed specifically for topological structures like the contour tree. A
prominent example is the 3-D toporrery layout [134]. Inspired by the classical
design of a mechanical orrery, the hierarchy of stars, planets and moons is replaced
with a hierarchy of maxima, minima, and saddles that can be filtered interactively
by importance with respect to a given metric. However, because the toporrery
is embedded in 3-D, it suffers from general problems like view-dependency and
occlusion of geometry for a particular viewing direction. That is, depending on
the size and complexity of the tree, the analyst may need to rotate the scene to
find an appropriate line of sight. To alleviate occlusion problems when drawing
contour trees, Heine et al. [74] propose various aesthetic criteria and present a fast
algorithm to visualize the tree in the 2-D plane. Nevertheless, tree layouts are limited
regarding their capability to show properties beyond the linkage of nodes. Since
one node property is typically represented by the y-axis or the z-axis in a 2-D or
3-D layout, respectively, to consider multiple node and edge properties, the layout
would have to adhere to several drawing conventions. However, these characteristics
could be mutual exclusive. For example, the requirement to minimize occlusions and
intersections might contradict the goal to reflect node and edge properties by their
extent and breadth. Moreover, using several colors, shapes, and sizes to discriminate
nodes and edges can quickly lead to confusion and cluttered diagrams. This is
particularly relevant for large trees; like a merge tree describing a clustering with
multiple properties per node and edge.

Topological visualizations. To provide visual access to the complex informa-
tion provided by a contour tree, Weber et al. introduced topological landscapes [169],
an intuitive metaphor for scientific scalar data that utilizes the human’s familiarity
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with terrains. Reflecting scalar values as height on the z-axis, the landscape con-
tains hills and sinks for every maximum and minimum, respectively. A topological
landscape, thought of as 2-D function, has the same topology like the input contour
tree in the sense that a horizontal plane at an arbitrary height ε intersects as many
hills and sinks as the contour tree has superarcs containing ε. That is, the terrain
has same contour tree (of the height values). Two arc properties can be represented
by a hill’s/sink’s height/depth and its base area in the xy-plane. Because height
information reflects absolute scalar values, the height/depth of a hill/sink denotes
a feature’s persistence and the base area reflect a feature’s volume, which is often
approximated by the number of grid vertices in that region. Subsequent work aimed
at eliminating limitations in the initial implementation of this metaphor. This pri-
marily concers its accuracy and usability to compare features. Harvey et al. [72] use
a tree-map [153] construction scheme to improve the accuracy of mapping a quality
measure to a feature’s area in the terrain. However, even though tree-maps always
ensure correctly sized and evenly shaped hills, rectangular features can still be hard
to compare for very different aspect ratios [105]. Beketayev et al. [11] create a direct
correlation between a scalar function and its topological landscape by introducing the
notion of geometric proximity into the topological landscapes, reflecting the distance
of topological features within the function domain. Demir et al. [40] presented a vari-
ation of the original landscape metaphor with an improved layout without the need
for (expensive) re-parametrization and supporting dynamic and interactive changes
to the terrain to enable focus-and-context style zooming. Takahashi et al. [160]
adopted the Isomap [162] algorithm and proposed a 3-D arrangement of the input
positions that reflects the topology as a tree-like structure. Using an approximated
Morse-Smale complex embedded in 2-D space, Gerber et al. [66] propose a method
for visual exploration of high-dimensional scalar functions that combines topological
and geometric techniques to provide interactive visualizations of discretely sampled
scalar fields. Correa et al. introduced topological spines [34], a representation of a
scalar field that preserves the topological and local geometric structure, including
structural cycles that are useful for exposing symmetries in the data.

Visualizing text data. The thematic composition of text data represented as
high-dimensional vectors (cf. Figure 2.1 on page 9) is often depicted with projections
that optimize some general or method-specific criteria. Prominent examples include
Sammon’s mapping [145], the Text Map Explorer [138] or the Projection Explorer
(PEx) [137]. Instead of illustrating text items as points or graphs, more intuitive
metaphors show features using heat maps in WEBSOM [94], as landscapes in
SPIRE/IN-SPIRE [172], as islands using wavelets in TopicIslands [121], or as height
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.1: Construction of the 3-D topological landscape (images courtesy of [169]):
(a) A contour tree. (b) Its branch decomposition (maximizing feature persistence).
(c) Topological landscape having the same topology like the contour tree. Hills and
sinks represent maxima and minima, respectively. Nested hills preserve the hierarchy
of the tree. Colors indicate the relation between branches and their corresponding
part of the landscape. (d) Topological landscape after metric-based distortion and
smoothing to make it look more natural. (e) Triangle configuration for a single
branch. Height information (seen from above) represents the scalar values: the
height of the border vertices reflects the branch’s saddle/minimum value, the center
vertex reflects the branch’s maximum/minimum. (f)-(g) Subdividing the triangles
reproduces the original configuration for child branches. (h) Child branches are
positioned on a spiral in decreasing order of their saddle values.

fields in VxInsight [38]. Note that if such metaphors are based on lower-dimensional
representations of the data, they still suffer from feature aggregation and thus from
information loss.

3-D Topological Landscapes Metaphor

Because the original topological landscape metaphor [169] will be extended for cluster
analysis, we first explain this visualization in a little more detail.

Construction. As illustrated in Figures 4.1a-c, the landscape is constructed
based on the contour tree’s branch decomposition. Each branch is represented by
a distinct part of the landscape and child branches are placed inside their parent
branch’s area to preserve the topology. The landscape is constructed recursively:
The root branch is initially described by a simple quad patch divided into eight
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triangles (cf. Figure 4.1e). To give this configuration a hill-like shape, the border
vertices (marked blue) and the center vertex (marked red) are assigned a height
equal to the branch’s minimum and maximum value, respectively. If the root branch
has child branches, the eight triangles are subdivided to reproduce the original
configurations for each child patch. As indicated in Figure 4.1f, subdividing the
triangles four times produces four more child patches. If more child patches are
required, further subdivision quadruplicates the number of available patches for every
two subdivision steps (cf. Figure 4.1g). Afterwards, in decreasing order sorted by
their saddle value, the child branches are positioned on a spiral starting from the
center (cf. Figure 4.1h). If a child branch has no children on its own, the vertices of
its patch are adjusted according the initial configuration; using the saddle for the
border vertices (marked green). Otherwise, the procedure is repeated recursively for
the eight triangles of the child patch. The height values of unused patches on the
spiral are interpolated linearly between the last child branch’s saddle value and the
parent branch’s saddle/minimum value. Vertices of the parent’s triangulation that
do not belong to a child patch are also interpolated linearly between the surrounding
vertices. To increase the expressive power of the metaphor, an additional smoothing
step transforms sharp-edged pyramids into naturally looking hills.

Metric-based distortion. The terrain still has a perceptual problem because
the sizes of the hills’ base areas (in the xy-plane) only depend on the complexity of
the branch decomposition. That is, they become increasingly smaller for branches
deeper in the hierarchy and are, thus, perceived less significant. However, a branch’s
significance and its position in the hierarchy are not connected in any way, and the
base areas are lacking a precise meaning. Hence, they can be considered a variable
to optimize and reflect another branch property. Weber et al. [169] scale it according
to the corresponding region’s volume, which is approximated by the number of
grid vertices. The authors call this post-process “metric-based distortion” because
the triangulation is distorted subsequently to the landscape construction and lets
base areas reflect a chosen metric. It is required to assign this property, e.g. the
volume, proportionally to all of the branch’s corresponding triangles. For example,
in Figure 4.1f, these would be the yellow triangles; including the triangles of unused
child patches. Using an iterative process in a coarse-to-fine manner recursively
through the hierarchy, all vertex positions are then adjusted without changing their
connectivity. Figure 4.1d shows the distorted and smoothed landscape for the input
contour tree.
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4.2 Extended 3-D Topological Landscape

Because the 3-D topological landscape only requires a scalar function’s contour tree,
it could already be used to visualize a merge tree of a potentially high-dimensional
density function. However, if applied to visual cluster analysis, the original landscape
design has a disadvantage regarding the metric-based distortion and, because it
focuses only on the function’s structure, the landscape is not suitable to explore the
underlying data points. To alleviate these issues, we will first remediate the problem
with incorrect base areas and will then extend the metaphor with additional features
to facilitate exploration of clustered high-dimensional point clouds.

4.2.1 Modified Metric-based Distortion

While it is easy to compare the base areas of moderately distorted hills, problems
arise for nested hills. To evaluate the volume of a hierarchical feature, the base areas
of child hills have to be subtracted from the area of the parent. For example, in
Figure 4.1f the base area of the parent hill only consists of the yellow triangles; plus the
gray ones of unused child patches. Comparing such perforated base areas of varying
shape, however, quickly becomes cumbersome and also inaccurate. Most importantly,
by distributing the volume equally to all triangles, the perceived significance of
the center hill is affected adversely because an equal distribution does not consider
the scalar value distribution. This is a problem for the clustering application, or
more precisely for density functions of well-separated clusterings. Imagine a simple
scenario with five identical, separated clusters. The saddles of the density function
(which are located at upsampled positions) will have zero density and the undistorted
landscape of the merge tree’s branch decomposition will look like the one shown
in Figure 4.2a. If the volume of the root branch, which represents one of the five
clusters, is now distributed equally to the gray triangles, the distorted landscape
looks like the one shown in Figure 4.2b. Even though the total area of the gray
triangles is exactly the same like that of each of the other four colored hills, the
base area of the center hill, and thus the volume of its corresponding cluster, is
likely perceived smaller or even insignificant compared to the other four clusters of
the same size. This representational problem can be solved by considering how the
volume is distributed inside the region, i.e. how the scalar values of the grid vertices
are distributed on the branches.

Because the saddle values of the density function are vital for the clustering
description, a branch’s volume distribution is modified as follows: At first, the volume
is separated into two partial volumes. The first one, v1, represents those grid vertices
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(a) (b) (c)

Figure 4.2: Modified metric-based distortion: The scenario consists of five identical,
separated clusters. The branch decomposition consists of the root branch with
four child branches; each branch has the same density maximum and all saddles
and the global minimum are zero. (a) Undistorted 3-D topological landscape. (b)
Landscape after the metric-based distortion. Because the volume of the root branch
is distributed equally to all gray triangles, the based area of the center hill is smaller.
(c) Landscape after the modified metric-based distortion. By distributing the volume
according to the density distribution on the branches, only those triangles that
contain these height values reflect the partial volumes. Because the implicitly stored
regular nodes of the root branch, i.e. the cluster’s points, all have a density higher
than zero, only the eight triangles of the center hill reflect this volume.

with a density higher than the saddle s1 of the branch’s first child branch. The
other volume, v2, represents the number of grid vertices with a density below s1.
Afterwards, v1 is distributed equally to the eight triangles of the center hill of the
parent branch’s triangulation and v2 is assigned equally to all remaining triangles.
Figure 4.2c shows the result of the modified volume distribution. The landscape
contains five equally sized hills for five equally sized clusters. Note that the volume
could be distributed accurately by considering all partial volumes between all saddle
pairs and a distribution of these volumes only to those triangles on the spiral that
contain these height values. However, for the clustering application, the accentuation
of v1 sufficiently points out the sizes of separated clusters and subclusters.

In the remainder of this chapter, we provide example images based on the Reuters
data set (cf. Appendix A.7). Figure 4.3 shows the smoothed 3-D topological landscape
before and after the modified metric-based distortion. Using a suitable filter radius
σ (whose determination will be addressed in Chapter 5.2.1), the landscape reveals
fifteen separated clusters of varying density and size. Cluster separation is indicated
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(a) (b)

Figure 4.3: 3-D topological landscape of the 9-D Reuters data set (cf. Appendix A.7):
(a) The undistorted 3-D landscape reveals fifteen separated clusters of varying density;
the hills are colored randomly to discriminate them visually. (b) The base areas of
the distorted landscape reveal that the clusters also differ in their size. The precise
shapes of the base areas have no meaning and are actually an artifact of the distortion
algorithm, which solves an optimization problem iteratively.

by the valleys between the hills, which reflect the saddle densities and are, thus, at
zero level for separated dense regions. A cluster’s density and number of points,
are reflected by the corresponding hill’s height and base area, respectively. A hill’s
relative height also reflects that cluster’s persistence.

4.2.2 Data Point Representation

The landscape already illustrates high-dimensional clustering structure. It reflects all
merge tree arcs, including their hierarchy and two arc properties. However, it does
not consider the implicitly stored regular nodes, i.e. the underlying data points. Still,
their visual representation could be important for the analyst to study intra-cluster
distributions or to display additional meta-information per data item.

The merge tree stores the data points as a list together with each superarc to relate
them to the region where they belong to. This gives a relation between a point and its
cluster—and thus to its hill in the landscape. Based on this information, we can place
glyphs for all data points at the height of their corresponding density. A simple glyph
could be a small sphere that is colored according to possibly available classification
information. More complex glyphs can be used to provide more meta-information.

To position a glyph on its hill, it is placed randomly on the contour at the height
of its density ε. Conceptually, this contour results from the intersection of the hill’s
triangles with a horizontal plane at height ε. Because each triangle may have a
different amount of intersection with the contour, we select a random triangle using
probabilities proportional to the amount of triangle-contour intersection. If each
triangle had the same chance of being selected to host the glyph, glyphs would
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(a)

(b)

(c)

Figure 4.4: Data point representation in the 3-D landscape of the 9-D Reuters data
set: (a) A particular glyph is placed randomly on the contour at the height of its
density. Because for many glyphs, accumulations would occur at sharp triangles if
the location is determined by selecting a random triangle, a triangle is determined
proportional to the amount of contour intersection. (b) A range query in the span
space efficiently returns only those triangles that could host the glyph at a certain
height ε. (c) The landscape augmented with the data points, which are colored
according to their class. The color distribution of the glyphs indicates that clusters
primarily correspond to the classes.

accumulate at the corners of sharp triangles, resulting in a distorted impression of
the point distribution (cf. Figure 4.4a). To exclude those triangles efficiently that
do not intersect a certain contour and therefore have a probability of zero, we use
a span space [114] data structure for each branch (cf. Figure 4.4b). In the span
space, every triangle is represented by a single point with an x- and y-coordinate
corresponding to the triangle’s minimum and maximum height value, respectively.
To place a single glyph, a range query R on a simple 2D-tree, the two-dimensional
specialization of a kD-tree, then quickly identifies those triangles that contain a
particular ε. The construction of a kD-tree is known to take O(n log n) and a single
range query takes O(

√
n+ |k|) [13]. To accelerate the placement of all glyphs, they

are processed branch-wise for each hill (concurrently), requiring one span space for
each branch. Figure 4.4c shows the 3-D landscape with the augmented data points
based on the Reuters data set. The glyphs are colored according to their class. Their
color distribution on the hills reveals that clusters primarily correspond to the classes.
Furthermore, the height distribution of the glyphs reflects the density distribution
inside the clusters. The higher glyphs are located on a hill, the higher the average
density is inside the cluster (and the more compact the cluster is).
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Figure 4.5: Hill-based labeling in the landscape of the 9-D Reuters data set: (a)
Annotating the hills with the number of points in these clusters quickly reveals their
size and avoids having to look at the landscape from above to evaluate base areas.
(b) For classified data, pie-charts above the hills reveal the class distribution inside
the clusters and display the name of the most frequent class.

4.2.3 Labeling

To provide additional information about clusters and individual points, hills in the
landscape as well as data glyphs located on them can be labeled interactively.

Hill-based labeling. Labels above the hills provide more information about the
clusters. For example, they can present exact cluster sizes, which is helpful to
compare similarly sized hills and avoids having to look at the landscape from above
to evaluate base areas. If classification information is available, more complex
labels like pie-charts could also summarize the class-distribution inside the clusters.
Figure 4.5 gives two examples based on the Reuters data set. Depending on the
application domain, labels could also display the result of more sophisticated data
analysis. For example, in case of text document data, the label above a hill could
present statistical results of the documents in that cluster, or a determined topic
based on their content. Labels can also trigger an action if clicked on them, e.g. by
linking the corresponding points to other views.

From an implementation point of view, determining labels for the hills is just an
operator on the merge tree. This operator may require only the merge tree itself,
e.g. to determine cluster sizes based on implicitly stored regular nodes, or it may
process additional information, e.g. to summarize their properties or content. A
label’s position is simply that of the center vertex of its hill in the landscape. This
position is stored together with each maximum during the landscape construction.
Furthermore, labels always face the viewer, i.e. their orientation is updated when
the landscape is rotated during data inspection.
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Figure 4.6: Glyph-based labeling in the landscape of the 9-D Reuters data set: Using
a movable focus lens, only those glyphs inside the lens are labeled. Depending on
their glyph positions inside the lens, labels are displayed in two scrollable lists. For
classified data, labels are colored by class. To facilitate interactive inspection, the
focus lens is connected to the position of the mouse cursor.

Glyph-based labeling. Typically, the analyst also needs information about single
points to make sense of the data, e.g. to locate interesting data items or to find
out why several points do or do not belong to the same cluster. For this purpose,
we annotate data glyphs with meta-information like an entity’s name, id, or class.
However, for large data sets, showing labels for all glyphs at the same time quickly
occludes other labels and the landscape. Therefore, we implemented the excentric
labeling [56] to annotate only those glyphs inside a movable focus lens. In its simplest
case, the lens has a rectangular or circular shape and is connected to the position
of the mouse cursor on the screen. Two scrollable lists to the left and to the right
of the lens contain the labels, sorted by the vertical order of the points inside the
lens. For classified data, labels are colored by class to be in line with the glyphs.
Figure 4.6 shows an example based on the Reuters data set using the class names.

To determine the glyphs inside the movable focus-lens in real-time, the labeling is
implemented with a two-dimensional kD-tree. For a fixed viewing direction, i.e. after
changing the view on the landscape, a 2D-tree is constructed based on the screen
space coordinates of all visible glyphs. While moving the focus-lens, label candidates
are then identified by a range query on the kd-tree using the range defined by the
focus lens.
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(a)

(b) (c)

Figure 4.7: 2-D topological atoll of the 9-D Reuters data set: (a) Using a hypsometric
tint, the landscape is colored by height values. This already helps compare height
values irrespective of perspective distortion. (b) Because density information is now
conveyed by colors, height information is redundant and can be discarded. The
result is a 2.5-D visualization. (c) Inspecting the visualization from above gives a
2-D atoll-like visualization in which absolute densities, persistence, and feature sizes
(base areas) are visible at the same time. Isolines help the analyst compare point
densities inside the clusters.

4.3 2-D Topological Atoll

Compared to the occlusion problems that projections and axis-based techniques
have for high-dimensional data, the 3-D topological landscape is already free of
structural occlusion in the sense that all clusters in the original domain truly appear
as separated hills. However, the landscape suffers from typical problems of 3-D
visualizations, like perspective distortion and view-dependent occlusion of geometry.
Depending on the camera position, hills in the background appear smaller and are
often occluded. Glyphs residing on a hill’s back-side are also invisible. If large hills
are positioned at the landscape’s border, these drawbacks have a negative effect on
the visual analysis. It is also impossible to compare height values and base areas at
the same time because both properties require to inspect the landscape from different
angles.

These problems occur because the landscape’s geometry conveys more than one
feature property and requires more than two dimensions for this purpose. Distributing
the required information more efficiently to the available information channels can
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mitigate these issues. One information channel that is still unused is the landscape’s
color. Since colors only discriminate hills visually, this attribute can be used to
display a feature property in order to simplify the landscape’s geometry.

By using a hypsometric tint, which indicates elevation by colors as commonly used
in geographic maps, we transfer information about densities from a triangle’s height
attribute to its color. To preserve the expressive power of the landscape metaphor,
we use a transfer function that maps naturally occurring colors to different height
levels: going from blue (water) and yellow (beach) through green (grass) into brown
(mountains) and finally to white (snowy mountain top). Black isolines augmented to
the landscape at various height levels help compare density values (cf. Figure 4.7a).
Because height information is now redundant, the terrain can be flattened by setting
the z-coordinates of all vertices to zero (cf. Figure 4.7b).

While these explanations illustrate how the 3-D landscape is transformed into
a 2-D visualization, a more efficient implementation would directly create a flat
triangulation. Understanding the former z-information as a 2-D scalar field, an
extraction of isolines using marching triangles, a specialization of marching cubes [115]
for isosurfaces, and using a color map with the transfer function above directly leads
to the same result.

The landmasses surrounded by water remind the viewer of a bird’s eye view on
an atoll rich of islands. This metaphor is useful to depict clusterings whose density
function contains saddles of low density. These are represented and perceived easily
by the blue area around the islands. Figure 4.7c gives an example based on the
Reuters data set. Compared to the 3-D landscape, all clusters and data glyphs are
visible in the same view, and cluster sizes and their persistence as well as absolute
densities of clusters and points can be identified and compared at the same time.

4.4 2-D Topological Landscape Profile

The original topological landscape requires three dimensions to visualize a contour
tree because ambiguities need to be solved when representing local minima by sinks
and merge saddles by valleys (cf. Figure 4.1b,d). However, these ambiguities do
not arise for the less complex merge tree which only captures the appearance and
merging behavior of superlevel sets. Consequently, its simpler structure allows the
merge tree to be visualized as a 1-D function having the same topology. This 1-D
function can be imagined as a cut through a 3-D density height field; hence its name
2-D topological landscape profile. In this section, we present a novel 2-D landscape
metaphor specifically designed for a merge tree. While visualizing a merge tree as a
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Figure 4.8: Transforming a merge tree’s 3-D topological landscape into a 2-D
landscape profile with the same topology: (a) Schematic illustration of the 3-D
landscape seen from above. Spiral shaped arrows, alternating colors and numbers
indicate the spiral layout of the hills and the hierarchy of the child branches. (b) By
unrolling the spiral layout, all child patches are placed next to each other. A lateral
cut through the 3-D landscape provides a 2-D view on the hills.

2-D landscape profile is also valuable for other research fields, here, the metaphor is
developed particularly for visual cluster analysis.

Conceptually, the 2-D landscape profile could be obtained from a variation of
the 3-D topological landscape for merge trees. Although the profile will not be
constructed this way later on, it is still interesting to see the relation between
both visualizations. We make the following observations (cf. Figure 4.8): The 3-D
landscape of a merge tree only consists of hills and valleys belonging to the maxima
and saddles, respectively. That is, because there are no sinks and ambiguities, the
spiral layout of the child branches can be unrolled by placing them next to each
other. The topology of this 3-D landscape still reflects that of the input merge
tree. However, the analyst still has to inspect the landscape from different angles to
compare heights and base areas. This is avoided by depicting a feature’s volume/size
by its hill’s width instead of its base area, i.e. by using only one dimension instead
of two. Furthermore, the volume/size that was previously assigned to all triangles
around the hills is now distributed only to the triangles between the hills. When
looking at this landscape from the side, all hills are visible at the same time and,
after the metric-based distortion, their width and the gaps between them accurately
reflect the volumes/sizes of all individual merge tree arcs. Because depth-information
is now redundant, it can be discarded by considering only a lateral cut—a profile—of
the landscape.
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(a) (b)

Figure 4.9: 2-D topological landscape profile of an artificial 2-D data set: (a) 2-D
point cloud with clusters of varying size (number of points) and compactness. The
merge tree encodes the clustering structure. (b) 2-D profile with the merge tree
augmented. In the profile, separated clusters are represented by separated hills. A
hill’s height, width and area reflects that cluster’s persistence, size, and stability,
respectively. The subtrees of saddle nodes are sorted by persistence to place similarly
persistent/high hills next to each other. Histograms or stacked bar charts (colored
by class) on the hills indicate the point density distribution inside the clusters.

4.4.1 Properties of the Landscape Profile

The 2-D profile allows for a much clearer clustering depiction and a more precise dis-
play and comparison of individual cluster properties. It requires less user interaction
to explore the data and conveys structure at both a global and a local scale.

Global structure. The 2-D profile has the same topology as its input merge
tree in the sense that each cut of a horizontal line through the profile intersects as
many hills as the tree has superarcs containing this value. It thus quickly reveals
the number of clusters and their hierarchy, and whether clusters are separated or
surrounded by noise. However, it is important to recall that Euclidean distance does
not reflect similarity in the topological context. In a topological landscape, structural
information is conveyed only by the hierarchy of the hills and the valleys between
them. Figure 4.9 provides an example: If multiple neighbored hills share valleys at
zero height, this just indicates that these regions are well-separated. It tells nothing
about how far away from each other they are in the original domain. Because the
profile’s topology is invariant with respect to changing the position of these hills, we
cannot say that a particular cluster is “closer” to that of its neighbored hill than
to any other separated cluster. Such information about distances is not captured
by the density function’s topology. If at all possible, spatial relations may only be
derived from valleys above zero height. In this case, the non-zero density saddles
indicate a spatial overlap, e.g. subclusters, in terms of the adjusted filter radius
σ. Note that a large filter radius could also combine actually separated regions.
Therefore, the first step to reading and understanding topology-based visualizations
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correctly is to resist interpreting distances between hills in any way other than based
on the valleys between them. While this could appear counterintuitive at the first
sight, it is actually this abstraction that allows us to preserve the clustering in lower
dimensions.

There is only little space for optimizations without changing the profile’s topology.
One possible modification is to accentuate well-separated clusters by increasing the
gap between those hills that are separated by a valley at zero height (cf. Figure 4.9b).
Another optimization is to sort the subtrees of saddle nodes. This changes the
position of the corresponding hills, but still preserves the profile’s topology. For
example, in Figure 4.9b, all subtrees were sorted by persistence. This places the most
prominent features to the left and gives the profile a global downward trend from
left-to-right. Placing similarly persistent hills next to each other facilitates convenient
comparison between them. Nevertheless, it is not possible to switch arbitrary hills
just by sorting subtrees of saddle nodes—as this would quickly destroy the profile’s
topology. Sorting subtrees by cluster size or stability is also possible. Hills could even
be sorted by inter-cluster distance in the original domain. However, the advantage
is very limited since each hill has only two neighbors. Sorting by topology-driven
quality measures better reflects the topological context of the profile itself and these
measures can also be preserved without loss in two dimensions.

Local cluster information. Similar to the 3-D landscape, hills in the profile
describe individual cluster properties. While the values of a hill’s height and width (of
its base line) still denote the cluster’s persistence and size, respectively, a hill’s shape
additionally reflects the cluster’s stability. This is because the profile is basically a
topology-based serialization of the input points on the x-axis together with their
densities on the y-axis. The shape of the profile only results from ordering implicitly
stored regular nodes so that they take the form of a hill for leaf superarcs and that
of a slope for superarcs that connect two saddles. The convention is that at each
height, the width of a hill reflects the number of points that have at least this density.
Therefore, the hill’s shape accurately reflects the density distribution of the points,
i.e. the cluster’s stability as defined in Chapter 3.2.4. This implies that the hill
of a “stable” cluster, where many points are close to the density maximum, are
rectangular-shaped, and less stable hills, with many points close to the saddle density,
are more triangular- or peak-shaped. Plateaus at different height levels indicate
suspicious subfeatures, but are also a typical effect of topological simplification. The
alternating two-tone coloring scheme of the hills accentuates their hierarchy if they
are nested.
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Figure 4.10: 2-D topological landscape profile of the 9-D Reuters data set: Hills
in the landscape represent clusters in the data. Their height, width, and area
reflect a cluster’s persistence, size, and stability, respectively. Alternating colors
represent the hierarchy of nested regions; cluster separation is emphasized by an
additional gap between those hills separated by a valley at zero height. Histograms
represent the data points at the height of their densities and can be colored by
class. Excentric labeling for histogram fragments and hill-based labeling provides
additional meta-information.

The data points are augmented to the profile as (horizontal) histograms for
annotation and to show the point distributions. Individual points are represented
by the fragments of the histograms. The length of all histograms on a particular
hill totals to the cluster’s size. If classification information is available, histograms
extend to stacked bar charts, one bar and color per class (cf. Figure 4.9b). With
this representation the analyst can quickly determine whether classes correspond
to clusters. As already mentioned for the Euclidean distance between the hills, the
distance between histogram fragments does not indicate spatial similarity. While the
fragments of a particular bar do have similar densities, they are probably located
at very different positions inside the cluster; likely in a circular fashion around the
density maximum (cf. Figure 5.10 on page 131).

Advantages. There are several advantages of the 2-D landscape profile over
the 3-D landscape: no view-dependent occlusion that hides features, no perspective
distortion that complicates feature comparison, no strangely distorted base areas,
more accurate depiction of individual cluster properties to simplify feature comparison,
another cluster property conveyed by a hill’s shape, no invisible and randomly placed
data points, a more compact and discriminable display of the data points as colored
histograms, less user interaction required to navigate through the scene, less complex
geometry and faster construction scheme, and no expensive metric-based distortion.
Drawbacks, on the other hand, are a slight decrease in the expressive power of the
landscape metaphor compared to the more natural looking hills in 3-D and a little
less efficient screen-space utilization by the layout from left-to-right compared to the
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Algorithm 2: Pseudo-code to construct the 2-D landscape profile.
Input : root node of the merge tree
Output : topological landscape profile

1 procedure PaintLandscapeProfile( root)
2 x← 0.0
3 PaintPart( root, x)

4 procedure PaintPart( node, x)
5 if HasParentArc( node) then
6 arc ← GetParentArc( node)
7 if IsLeaf( node) then
8 DrawHill( arc, x) // cf. Figure 4.11a
9 else

10 DrawInnerPart( arc, x) // cf. Figure 4.11b

11 for i← 1 to NumberChildNodes( node) do
12 childNode ← GetChildNode( node, i)
13 PaintPart( childNode, x)
14 x← x + SubTreeSize( childNode)
15 end

spiral layout in 3-D. Figure 4.10 shows a 2-D topological landscape profile of the
Reuters data set. Compared to the 3-D landscape shown in Figure 4.3, the profile
contains more hierarchical features. This is because we removed vague hierarchies
in the 3-D landscape by re-balancing (cf. Chapter 3.1.2) the merge tree’s branch
decomposition for two reasons: First, we wanted to avoid massively distorted base
areas for hierarchical features while giving initial example illustration. The second
reason is that these little differences in height values would not have been noticed
in the 3-D visualization. Both reason are actually drawbacks of the 3-D landscape
metaphor. In contrast, the 2-D landscape profile easily reveals vague hierarchies
because even small differences in height values are visible for the valleys, and because
this hierarchy is additionally emphasized by alternating hill colors.

4.4.2 Construction and Implementation

The construction of the 2-D landscape profile works directly on the merge tree instead
of on its branch decomposition. Because feature properties are mapped to only one
dimension each, there is also no metric-based distortion required as an expensive
post-process. Hence, the construction is much simpler and faster than that of the
3-D landscape.
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(a) (b)

Figure 4.11: Construction scheme of the 2-D landscape profile: (a) A leaf superarc is
represented by a hill whose height and width values reflect the superarc’s persistence
and size, respectively. The shape of the hill is affected by the distribution of the
implicitly stored regular nodes; its area thus reflects the cluster’s stability. The red
arrow indicates the currently processed node; x is the current position on the x-axis.
(b) Non-leaf superarcs reserve space for child superarcs and are represented by a
slope to the right. s1, s2, s3 represent the size of the whole subtrees. In both cases,
shapes of hills and slopes result from a binning of the density distribution. Changing
the binning parameter affects the geometry’s complexity and its accuracy.

The profile is generated with a simple recursive algorithm. Because each superarc
of the merge tree is represented by a distinct part of the profile, we just need to
traverse the merge tree starting from its root node and consider each superarc’s
persistence, number of implicitly stored points, and its stability to create hills and
slopes. Algorithm 2 and Figure 4.11 provide a detailed description of the profile
construction. For simplicity, y-coordinates in the profile directly map to density
values and the x-coordinate of the profile is initialized to 0.0. Ranges on the x-axis
also directly map to feature size, i.e. the total width of the profile equals the size of
the data set. A node’s parent superarc and child superarc are its superarcs towards
the merge tree’s root node and leave nodes, respectively. The root node has no parent
superarc and the leaves have no child superarcs. The granularity of the histograms
and the shape of the hills results from a conventional binning approach, i.e. they
depend on a parameter to define the height of the horizontal bins.

The two-tone coloring accentuates the hierarchy of nested regions and is based
on the implicit branch decomposition. That is, sub-hill relationships are highlighted
by switching the colors for each hierarchy level. For classified data, both used colors
should be discriminable from the histogram colors. For aesthetic reasons, the profile’s
height is scaled to a fixed percentage of its width and, to focus on the main features
in a profile, we also provide the option to shorten long slopes and plateaus by taking
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the logarithm of each superarc’s size. Finally, the profile’s appearance is spiced up
with a bevel effect and a reflection on the ground.

The runtime complexity of the profile construction depends on the number of
points in the data set. Because each data point contributes to the shape of its hill,
every (implicitly stored) point is considered once during the merge tree traversal,
which gives a complexity of O(n).

4.5 Examples and Results

In this example section, we apply the presented topology-based visualizations to
several data sets. The focus is on their capability to provide an appropriate global
clustering overview and to visualize the structure of unclassified data—when colors
cannot be used to discriminate data points visually. We discuss these aspects for
the different landscape variations and also compare them to standard techniques for
high-dimensional data, like projections or parallel coordinate plots.

The structure of this results section is similar to that of Chapter 3.5. We start
with the artificial 2-D example again to illustrate relations between the visualization
and the underlying data set. Afterwards, topology-based visualization is applied to
several real-word data sets and strengths and limitations are addressed based on the
artificial 100-D data set. Visualizing the clustering structure of unclassified data and
considering document-related applications complete this results section.

The time required to construct the merge tree visualization is negligible compared
to the topological analysis. In this example section, the computation times to create
the landscapes were typically less than one second. Potential runtime-bottlenecks
can be identified primarily for the 3-D landscape if it consists of considerably many
triangles. This happens for very complex merge trees or after landscape smoothing.
In this case, the metric-based distortion and the glyph placement can take some
seconds. For example, small filter radii quickly increase the number of density
maxima and thus the number of hills and the triangulation’s complexity. Note that
strategies to determine appropriate parameters as well as local analysis aspects are
addressed in Chapter 5.

4.5.1 Global Overview

An accurate global overview is important to understand the data and to stimulate
further analysis. A suitable clustering overview points out all clusters contained
in the data and allows the analyst to identify and compare features based on their
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Figure 4.12: Mapping between clusters and hills in the 2-D landscape profile based
on the artificial 2-D data set: (top) The data set and a density-colored version
augmented with the merge tree. (bottom) 2-D topological landscape profile with
hills of varying characteristics. The structure of the profile and the shape of the hills
accurately reflect the merge tree and the properties of its superarcs.

properties. Only if structure is presented accurately, the analyst can validate existing
knowledge or find new insights that are worth further analysis.

Artificial 2-D Data Set

The purpose of the artificial 2-D data set (cf. Appendix A.1) is to demonstrate as
much features as possible. Figure 4.12 shows the 2-D data set (top left), a density-
colored version with the augmented merge tree (top right), and the corresponding
2-D topological landscape profile (bottom).

The profile exhibits thirteen separated hills, one for each maximum of the density
function. The order of the hills is defined by the merge tree, but can be adjusted by
sorting subtrees of saddle nodes, e.g. to place the highest hills to the left. As already
discussed and now clearly visible in this example, topology cannot (and does not
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intend to) preserve cluster shapes in the final visualization. However, topology-based
quality measures can be preserved and are helpful to approximate properties like
compactness and shape. Region properties, like their persistence, size, stability, and
density distribution, affect the characteristics of each hill and thus quantify a cluster’s
significance. The analyst can quickly identify dense or large-sized features by looking
for hills of large height or width, respectively. For example, as indicated by the
width of their hills, the cyan spiral-shaped cluster contains substantially more points
than the purple cluster in its center. Furthermore, a hill’s shape reflects the density
distribution and provides valuable information about the cluster’s compactness and
approximated shape. For example, the hill belonging to the cyan star-shaped cluster
has a triangular shape to reflect the typical density gradient from high density in
the center to lower density at the border. This hill’s aspect ratio also suggests a
compact cluster because few points produce high density. Valleys and their depth
denote cluster distinctness relative to their surrounding density. While valleys at
zero height indicate cluster separation, non-zero valleys reflect subclusters or clusters
surrounded by noise.

Another important aspect is how the topological approach deals with noise. Not
only is the topological analysis robust with respect to noise, noise points also do not
hide features or clutter the visualization. Since the data points are positioned at
the height of their density, representatives of noise points are typically found at the
bottom of the landscape. Figure 4.12 shows noise as black histogram accumulations.
Because black points cover the whole data domain, accumulations of black histograms
can also be found at the bottom of several hills to reflect their belonging to that
region. Note that black histogram fragments occasionally occur on the hills as
well. These fragments represent the black data points of higher density inside the
clusters. This behavior is just for demonstration purposes as it actually contradicts
the definition of clusters and noise.

4-D Iris Data Set

The Iris plants (cf. Appendix A.6) are a rather small and low-dimensional data set
containing only 150 points in four dimensions. It is known from this standard data set
that one class is separable from the other two; while the latter are not separable from
each other. We use this data set to illustrate how this already established knowledge
is represented in the topological context of the landscape metaphor. Figures 4.13a-b
show a PCA projection and a parallel coordinate plot for the Iris data. The colors of
the data representatives reflect their class affiliation. It is visible in both visualizations
that the classes form clusters, that the red and green points overlap (as confirmed



4.5. Examples and Results 89
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Figure 4.13: Visualizing the 4-D Iris data set: (a) The PCA and (b) the parallel
coordinate plot reveal that clusters correspond to classes and that two clusters
overlap and one cluster is isolated. Identifying a cluster’s size or compactness is still
difficult. (c) The topology of the 3-D landscape reflects the same situation: three
density maxima, of which two are separated by non-zero density and one is isolated
by zero density. (d) After the metric-based distortion and coloring the data points
by class, the landscape accurately reflects the already known information about the
clustering and furthermore provides information about cluster size and compactness.

by the PCP), and that the green cluster is isolated. Consequently, the topological
3-D landscape in Figure 4.13c shows an isolated hill and another hilly structure
containing two peaks. This configuration describes a density function with three
density maxima, of which two are separated by a non-zero saddle density and one is
separated from the other by zero density (as reflected by the low valley between the
gray and the blue hill). The larger height of the center hill furthermore reflects a
higher density of this cluster, which is a typical result if a similarly sized cluster is
more compact. Figure 4.13d shows the volumetric distorted 3-D landscape in which
the data glyphs are also colored according to their class. As can be identified from
the color distribution, the structure of the landscape accurately reflects the already
known relationships between the three classes. The ratio between the height and
the base area of the hill belonging to the green cluster also reveals that these points
are more compact. Another advantage of the topological abstraction is that we can
easily identify the overlapping region: these are the data glyphs at the height of the
saddle density on the blue hill.

8-D Italian Olive Oils Data Set

An interesting aspect of the Italian olive oils data set (cf. Appendix A.5) is to find out
whether the oils share combinations of fatty acids and how groups of similar oils relate
to the growing regions as specified by classification information. Figure 4.14 shows a
PCA-projection, a parallel coordinate plot (PCP), and the three presented variations
of the topological landscape metaphor. Although the PCA and the PCP convey
structure primarily by color, they still indicate a fairly good clustering. However, the



90 Chapter 4. Topological Visualization

(a) (b) (c)

(d) (e)

Figure 4.14: Different visualizations of the 8-D Italian olive oils data set: (a) The PCA
projection and (b) the parallel coordinate plot (PCP) convey clustering structure
primarily based on colors. Cluster properties can only be estimated and hierarchy
can only be guessed. Occlusion and the necessity to count points manually make it
impossible to compare cluster sizes. (c) The topological atoll, (d) the 3-D landscape
and (e) the 2-D landscape profile accurately reveal the clustering structure and
individual cluster properties. The profile is the most efficient and accurate variation
of the landscape metaphor.

projection error of the PCA is approximately 30%, i.e. the projection preserves only
70% of the variance in the original 8-dimensional space, which is why we can assume
that some of the clusters are actually more separated than the projection is able to
express. The PCP confirms this to some extent because polyline bundles are spread
or even inverse in some dimensions. This behavior indicates separation at least in
these subspaces. Beyond these limited results, it is difficult in both visualizations
to identify the number of clusters, their hierarchy or individual properties like their
sizes.

The topology-based visualizations shown in Figures 4.14c-e accurately describe
the clustering structure in the original domain. The very low valleys between the
hills in the 2-D landscape profile notify three separated clusters, each with some
subclusters. Based on the color distribution of the histograms, we conclude that
the three clusters correspond to the three major growing areas on Sardinia and in
Northern and Southern Italy. This confirms that the olive oils form clusters based
on their combination of fatty acids and that they differ for the growing regions.
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Furthermore, the profile reveals knowledge that was misleading or hidden entirely
in the PCA and in the PCP. First, cluster separation is not that obvious in both
visualizations and it is difficult to identify the most prominent clusters. This is
because a cluster’s extent does not necessarily reflect its number of points and
because occluded points are not visible at all, e.g. to count them individually.
Second, structure is misleading even for those clusters that are clearly visible. For
example, while the PCA suggests that the yellow “Liguria West” cluster is larger than
the pink “Umbria” cluster, comparing the width of both hills reveals the opposite.
Also the perceived dominance of the blue “Apulia South” cluster compared to the
rather unremarkable purple and red “Sardinia” clusters cannot be confirmed by the
profile in which these two hills are actually higher. A capital illusion in the PCA is
a wrong subcluster relationship between the purple “Sardinia Coast” and the blue
“Apulia South” points. While these clusters seem to overlap in the PCA, the valley
between their hills in the profile reveals that these points actually correspond to
different clusters that are separated in the original domain. This illusion is caused
by the 30% projection error.

Note that the 3-D landscape and its 2-D atoll-like variation basically provide the
same structural insights. However, even though some users may favor their expressive
power, they are not as precise and efficient as the 2-D profile. For example, cluster
sizes are difficult to compare based on distorted base areas and, most importantly,
little differences in saddle heights are harder to notice in 3-D. This makes it difficult
to identify slight hierarchies, which can be observed for the cluster belonging to
Northern Italy, i.e. the gray and blue hills in the profile and in the 3-D landscape.
While the atoll in Figure 4.14c somewhat confirms this hierarchy by shallow water,
the 3-D landscape hardly reveals this hierarchy. The analyst has to look at the
landscape from the side to observe this little decrease in height. In the profile, this
hierarchy is clearly visible at the first sight. Nevertheless, their focus on structure
instead of on geometric properties and colors makes both landscape metaphors still
more useful for cluster analysis than lossy and occlusion-prone direct visualizations.

We conclude from the global overview that olive oils from Sardinia, Northern Italy,
and Southern Italy are different from each other and also have different intra-cluster
similarities. The latter is indicated by the density distributions inside the clusters, i.e.
by differently shaped hills. In fact, a detailed statistical analysis of the features shows
that southern oils have much higher eicosenoic acid on average and slightly higher
palmitic and palmitoleic acid content. The oils from Northern Italy and Sardinia
have some difference in the average oleic, linoleic, and arachidic acids [57].
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(a)

(b)

(c)

(d)

Figure 4.15: Different visualizations of the 19-D image segmentation data set: (a)
The PCA projection (the projection error is ≈ 35.76%) and (b) the parallel coordinate
plot convey structure primarily by color. Although both images indicate a separated
cluster (cyan “sky” points), the hierarchy of the remaining clusters is unclear and
cluster properties are difficult to identify and compare. (c) The 3-D topological
landscape and (d) the 2-D landscape profile accurately illustrate the clustering
structure in the 19-D space. While cluster separation and suspicious accumulations
of data glyphs are slightly more difficult to identify in the 3-D landscape, the 2-D
profile presents structure and cluster properties clearly and accurately.

19-D Image Segmentation Data Set

The advantage of the topology-based visualization becomes clearly apparent with
increasing data size and dimensionality. Figure 4.15 shows the PCA, a PCP, a
3-D landscape, and a 2-D landscape profile of the 19-D image segmentation data
set (cf. Appendix A.3). While the projection error of the PCA and the visual
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complexity of the PCP typically increase for high-dimensional data, the appearance
of the landscape metaphor is not affected by data size or dimensionality. Although
the cyan “sky” cluster clearly stands out in both the PCA and the PCP, clustering
structure is conveyed primarily based on the color distribution rather than on
separated accumulations of point representatives. Still, the PCP confirms separation
in the subspaces starting from the 10th dimension, and the PCA suggests three
accumulations of red points, which is not visible in the PCP though. As already
mentioned, identifying cluster hierarchy or comparing cluster properties is very
difficult because both standard techniques suffer from occlusion and visual complexity.

The topological landscapes shown in Figures 4.15c-d show a complex clustering
with individual hills for every class. The landscape profile also emphasizes the
separation of the cyan “sky” cluster by an extra space to isolate this hill visually.
Because cluster separation is harder to detect in the 3-D landscape, the 2-D profile is
more efficient to detect this feature of a particular clustering. Both landscapes also
confirm three clusters for the red “brickface” points, as was already indicated by the
PCA. Two of the easier to identify clusters in the PCA and the PCP are the brown
“path” cluster and the cyan “sky” cluster. However, in both images it is difficult
to compare them in terms of their compactness or size. While their compactness
is indicated by the spatial closeness of the points and polylines, it is impossible to
evaluate their size because their extent could be an artifact and because counting the
points manually is not an option. In contrast, looking at the profile quickly reveals
their precise density and size. Because the hills have almost the same width, but
are different their heights, the “path” cluster must be more compact than the “sky”
cluster.

The subcluster hierarchy of the cyan “sky” points is slightly visible in the PCA and
the PCP. However, this is not the case for the brown “path” points. In contrast, the
topology-based visualizations do not only confirm these subclusters with individual
hills, they furthermore indicate even more local accumulations based on groups
of different heights for the data point representatives. Another advantage of the
2-D profile compared to the 3-D landscape is that the distances between the hills
accurately reflect the volume of the regions before they merge at the next saddle.
Because this volume is distributed equally between the triangles of the hills in the
3-D landscape, the hills are placed closer to each other and thus these details about
intermediate sizes are lost.
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(a) (b) (c) (d)

(e) (f)

(g)

Figure 4.16: Artificial 100-D data set: (a) The PCA projection and (b) the parallel
coordinate plot clearly have problems with large data sets of high dimensionality.
(c)-(d) A common strategy to suppress noise is to reduce the opacity when drawing
individual data points or polylines. Although this works reasonably well for the PCA,
the correct clustering or cluster properties cannot be identified in both visualizations.
(e) A part of the unsimplified 2-D landscape profile showing that every point actually
has its own density maximum and that the clustering is primarily defined by the
saddle densities. (f)-(g) The topological landscapes accurately depict the clustering
and cluster properties. Noise is placed at the bottom and does not cover the
visualization.

Artificial 100-D Data Set

The artificial 100-D data set (cf. Appendix A.2) was already used in Chapter 3.5.2
to analyze scalability issues for the algorithmic core of the topological analysis. We
revisit this data set to demonstrate how its complexity affects the topology-based
visualization and to compare the landscape with the output of standard techniques.
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Figure 4.16 shows images of the 100-D data set for the PCA projection, a parallel
coordinate plot (PCP), the 3-D topological landscape and the 2-D landscape profile.
As for the standard techniques, the PCA and the PCP in Figures 4.16a-b quickly
reveal that both techniques have severe problems with illustrating the clustering
structure of this data set. Because the large amount of noise points typically
reduces the quality of these visualizations, we also provide alpha-blended versions in
Figures 4.16c-d. In this case, individual points or polylines are rendered with reduced
opacity so that only their accumulations, i.e. clusters, are accentuated in the final
image. This is a common strategy to suppress the depiction of noise in sparse areas
with only little pixel complexity. As can be seen in both images, this strategy works
fairly well for the PCA where only dense areas of different color remain. However,
increasing transparency in the PCP does not help to accentuate individual polyline
bundles because those polylines corresponding to noise still cross frequently and thus
increase the pixels’ opacity. That is, the transparency effect vanishes if there are
too many noise points. Regarding the ability to communicate the clustering of this
data set, at least the transparency-optimized PCA projection suggests a clustering.
Identifying the number of clusters and their hierarchy, or even comparing clusters in
their size, is not possible because the projection error is approximately 95%.

Figures 4.16f-g show the 3-D landscape and the 2-D landscape profile of this
data set. The most obvious property is that in both visualizations the depiction
of structure is not covered by the 50% noise and that all 20 clusters are clearly
visible as separated hills. This demonstrates that the topological analysis and the
overall appearance of the landscapes do not at all depend on the dimensionality of
the underlying data. Only the distribution of the data glyphs on the hills in the
3-D landscape could complicate inspecting the landscape’s structure; but the glyph
placement is optional and can be deactivated at any time to inspect only the hills
and their hierarchy. For example, in Figure 4.16f, the 42 665 red glyphs make it
difficult to inspect the valleys between the hills or to distinguish the noise glyphs
from the reddish glyphs of other classes. In the 2-D landscape profile, these issues
are no problem at all. As shown in Figure 4.16g, the profile consists of 20 separated
hills and the noise points are summarized by one red histogram bar. The individual
properties of all clusters are clearly visible and can be compared precisely based on
the hill properties and the labels above them.

The clear structure of the landscapes results from topological simplification.
Furthermore, the curious shape of the hills as well as the suspicious distribution of
the data glyphs indicates interesting behavior during the analysis. As demonstrated
in Figure 4.16e based on a 10% randomly sampled subset, the unsimplified landscape
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(a)

(b)

Figure 4.17: Artificial 100-D data set for different parameter settings: In both cases
only a 10% randomly sampled subset is used and regions with less than 50 points
are simplified topologically. (a) The 2-D landscape profile and the 3-D landscape
using the relative neighborhood graph and after reinsertion of non-samples. (b) The
2-D landscape profile and the 3-D landscape using the Euclidean minimum spanning
tree and without reinsertion of non-samples to provide a quick structural overview if
the presence of noise is unimportant. From a clustering point of view, the overall
structure in all three scenarios (cf. Figure 4.16) is almost the same for different
parameter settings.

profile actually consists of 20 noisy hills and a single hill for every individual noise
point. The gray “areas” on the hills are actually many thin hills for individual points
inside the clusters. The interesting aspect is that the height of the hills inside the
clusters is only slightly higher than 1.0—which is not obvious in the images, but
results from printing statistics about the point densities—and that it is actually the
non-zero saddle densities that make the points inside a cluster being related to each
other. After topological simplification, only the point with the density maximum
remains and the other points are assigned a density of the former saddle value. This
is why the hills are peak-shaped and why the other points accumulate at the bottom
of the hill. Although it is difficult to imagine the situation in the 100-D space, the fact
that all cluster points have almost the same density, but lower density in between, is
assumed to result from the clusters being very sparse and having a “tetrahedral”-like
shape in the original domain.
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Figure 4.17 indicates that the overall structure of the landscapes is also robust
to changing parameters of the topological analysis. Compared to showing all data
points, here we use only a 10% random subset and simplify clusters with less than
50 data points. Figure 4.17a shows the 3-D landscape and the 2-D profile for using
a larger filter radius (which affects the densities), the relative neighborhood graph,
and with reinsertion of the non-sampled points. Figure 4.17b shows the landscapes
for the Euclidean minimum spanning tree and without reinsertion of non-samples.
As can be seen, the overall clustering structure is the same in all three scenarios and
accurately reveals 20 separated clusters of varying size. To detect cluster separation,
smaller filter radii could be necessary to observe whether hills become separated or
split into several sub-hills once the filter radius is smaller than a cluster’s diameter.
As explained above, in very high-dimensional spaces, reducing the filter radius can
somewhat distort the distribution of the point densities inside the clusters. This is a
limitation of the Gaussian kernel.

4.5.2 Unclassified Data

To demonstrate how unclassified data affect the landscape metaphor compared to
the output produced by standard techniques, we revisit some of the example data
sets, but discard classification information provided with the data. To this end, we
simply color all data glyphs uniformly in black.

The key advantage of the topological approach over direct visualizations is its focus
on structure instead of on relying on colors to convey information. As a consequence,
the clustering structure learned from the topological landscape is not affected at
all by the availability of classification information. This should be demonstrated
based on some already known example images: The Rank-2 LDA of the Reuters
data set in Figure 2.5 (on page 21) indicated two clusters that contain points of
several classes. This observation stimulated further analysis with a scatterplot matrix.
Discarding the classification information of the Reuters data set leads to the Rank-2
LDA and the parallel coordinate plot shown in Figures 4.18a-b. Because suspicious
accumulations of mixed colors do not stimulate further analysis anymore, we miss
subclusters and important cluster hierarchy due to occlusion artifacts caused by the
projection error. Beyond the fact that there are clusters, the PCP cannot present a
clear clustering description either. In contrast, the 3-D topological landscape, the 2-D
atoll, and the 2-D landscape profile shown in Figures 4.18c-e have exactly the same
structure like before and thus still provide the same insights about the clustering.
Individual clusters can still be identified and compared, and the data glyphs for each
cluster can still distinguished, annotated and selected for further analysis.
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(a) (b) (c)

(d) (e)

Figure 4.18: 9-D Reuters data set without classification information: (a)-(b) The
uniformly colored Rank-2 LDA and PCP do not contain clusters of mixed classes
anymore. Hence, further analysis of suspicious features is not stimulated, which
leads to wrong insights about the clustering. (c)-(e) Because they only focus on
structure, the topological landscape variations provide the same clustering insights if
classification information is unavailable.

The analysis of the Italian olive oils data set showed that cluster hierarchy as
well as cluster properties were quite misleading in the PCA/PCP and that cluster
identification was primarily based on colors (cf. Figure 4.14 on page 90). Without
classification information, the single-colored PCA and PCP in Figures 4.19a-b suggest
fewer clusters than before in the colored versions and the analyst cannot distinguish
these features based on spatial closeness anymore. That is, the point distribution in
the projection can only suggest that these points are either in the same cluster or at
least in a subcluster relationship. The topological landscape profile in Figure 4.19c,
on the other hand, still provides the same insights about the clustering.

The situation gets even worse for noisy unclassified data. As shown for the
PCA and the PCP of the artificial 100-D data set in Figure 4.20, the only useful
visualization is the transparency-optimized projection. Nevertheless, because color
support is missing, the raw point distribution in this image can only indicate half of
the truly available clusters. Figure 4.21 provides several landscapes visualizations
with and without showing the data glyphs. In both cases, the overall clustering
structure and individual cluster properties are clearly visible. While showing all
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(a) (b) (c)

Figure 4.19: 8-D Italian olive oils data set without classification information: (a)-(b)
The uniformly colored PCA and PCP do not contain accumulations of different colors
anymore. The spatial distribution of the points and polylines can only suggest fewer
clusters than before because color is unused as an information channel. (c) Because
topology-based visualization does not rely on colors to communicate structure, the
landscape profile provides the same structural insights if classification information is
unavailable.

(a) (b) (c) (d)

Figure 4.20: Artificial 100-D data set without classification information: (a)-(b)
Drawing pixels with 50% transparency for the PCA and the PCP does not reveal
the clustering. The projection only suggests one big cluster with a few subclusters.
(c)-(d) For 99% transparency the noise vanishes in the PCA, but the projection still
shows only half of the clusters contained in the data. The PCP does not benefit
from transparency optimization.

data glyphs could make it more difficult to identify cluster separation in the 3-D
landscape and the 2-D atoll, structural occlusion or clusters covered by noise are still
no problem and the color of the data glyphs is also not required to obtain structural
insights. The landscape profile shown in Figure 4.21e provides the most accurate
global overview. Changing classification information would only change the color of
the histograms.

4.5.3 Application 1: Visualization of Document Collections

In Figure 2.1 (on page 9), we already referred to the vector space model to trans-
late text data into high dimensional point clouds. In essence, a high-dimensional
document vector is constructed by considering the importance of every word of
the total vocabulary for a particular document. Among other approaches, two of
the most frequently uses strategies are to use the word frequency, i.e., how often a
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(a) (b)

(c) (d)

(e)

Figure 4.21: Artificial 100-D data set without classification information: (a)-(d)
3-D topological landscape and 2-D atoll visualization with and without augmented
data glyphs. While all clusters and their individual properties are clearly visible in
both cases, identifying cluster hierarchy and separation is slightly more difficult with
the augmented data points. (e) The 2-D landscape profile accurately depicts the
clustering structure and individual properties. Augmented histograms do not clutter
the visualization.

particular word occurs in the considered document, or to weight the word frequency
against the number of other documents that also contain this word; called the term
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frequency–inverse document frequency (tf-idf) [149]. From a semantic point of view,
documents cluster in the document space if they share vocabulary and if these words
are similarly important for these documents, i.e., if the documents are about the same
topic. Clusters and properties like their size, compactness, point distribution, and
hierarchy then reveal the number of topics, their overall significance, their generality
or preciseness, or the occurrence of sub-topics, like different ball games as sub-topics
of a sports-related topic.

New York Times Corpus

The New York Times Annotated Corpus1 contains over 1.8 million articles written
and published by the New York Times between January 1, 1987 and June 19, 2007
with article meta-information provided by the New York Times Newsroom, the New
York Times Indexing Service and the online production staff at nytimes.com. As part
of the New York Times’ indexing procedures, most articles are manually summarized
and tagged by a staff of library scientists.

The example data set consists of documents from the year 2001. We considered
50 random documents per day, but filtered them for 10 different tags; allowing up
to 250 documents per tag. This results in 1 896 documents with a vocabulary of
46 393 different words. To avoid issues with the curse of dimensionality in such high-
dimensional spaces, but also to accelerate distance calculations and the neighborhood
graph construction, we utilize the classification information provided by the tags to
project the point cloud with linear discriminant analysis (LDA) to an intermediate
(t− 1) = 9-dimensional space, with t = 10 being the number of tags.

Figure 4.22a shows a visualizations of the documents’ thematic composition using
the atoll-like 2-D landscape metaphor. Islands correspond to topics and their sizes
reflect the number of documents for each topic. The (random) colors of the document
glyphs reflect their class association. Instead of using the tag-names to label the
islands, a semantic analysis of the documents provides a topic descriptor. To this
end, we consider the words shared by all the documents on each superarc of the
merge tree and use the two most frequent words as a label. This approach takes into
account that a single descriptor does not necessarily reflect a topic sufficiently enough.
It also provides an example of an application-dependent labeling, implemented as an
operator on the merge tree. Figure 4.22b shows the 2-D topological atoll for a larger
filter radius and without metric-based distortion. Although the distance between
hills in the landscape metaphor does not communicate spatial closeness between
the corresponding clusters in the original domain, merging features with a larger

1http://www.ldc.upenn.edu
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(a) (b)

(c)

Figure 4.22: Thematic composition of a document collection as a 2-D topological atoll
based on the New York Times data set: (a) 2-D atoll with ten islands corresponding
to the ten groups of tagged documents. The size of the base areas reflects the number
of documents for each topic. Labels indicate the two most frequent words shared by
the documents on each island. (b) 2-D atoll for a larger filter radius and without
metric-based distortion. The merging behavior caused by using a larger filter radius
can approximate which clusters are closer to each other than to other clusters. (c)
Excentric labeling of the documents using their original titles.

filter radius can be used to approximate which clusters are closer to each other. As
indicated by the shallow water between the islands in the center, i.e. by the non-zero
saddle values between these superarcs in the merge tree, these clusters must be closer
to each other than to, e.g., the “palestinian/israeli” cluster or the “election/bush”
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cluster. Otherwise, they would have merged at the same time or the center clusters
would not have merged with for a larger σ. Using different filter radii is a general tool
to investigate such issues. However, this approach has to be applied with caution
to avoid misleading insights about wrong subcluster relationships; in this example,
the clusters are indeed well-separated in the original domain. Figure 4.22c shows an
excentric labeling of the documents with their document titles.

IPC Patent Collection

Access to patent information is of importance for a variety of interest groups today.
Besides many other properties, the majority of information describing the nature
of a patent is still conveyed through its textual content, therefore making natural
language processing a mandatory part of solutions for patent analysis. The sheer
mass, complexity, high dimensionality, and heterogeneity of patent data make scalable
visual analytics approaches for patent analysis [103] a hard task. One particularly
relevant type of meta-information that is available for patent applications is manually
assigned classification information. This classification information organizes the vast
numbers of patents into predefined classes representing certain technical or functional
aspects. Several different schemes for patent classification, such as the International
Patent Classification (IPC), Japanese F-terms, and the US classification, exist.

In order to generate an example data set, we test against the IPC comprising
more than 70 000 classes, hierarchically organized into sections, classes, sub-classes,
main groups, and sub-groups. The final data set consists of 1 552 randomly selected
patents from different IPC hierarchies (up to 200 each): A61K...38/17, C12N...1/21,
H04Q...7/22, B41C...1/10, C09D...11/00, C09J...7/02, G01N...33/53, H04Q...11/04.
We used patent data2 from the European Patent Office (EPO). As a preprocessing step,
the data has been analyzed and the text content was stored in vectorized form within
a search index. From this index the tf-idf values for all dimensions of the term vectors
have been computed. Linear discriminant analysis is used to project the document
vectors into the intermediate 7-dimensional space. First, we examine whether the
landscape metaphor reflects the nesting structure of the chosen patent hierarchy.
Figure 4.23 shows the 2-D atoll for this data set. Mainly five groups can be identified:
The purple and brown glyphs in the upper-right corner, belonging to H04Q patents,
clearly address networking, as the labels (and the annotated document titles) relate
to atm, address, message, mail, and call. In fact, the H04Q IPC-hierarchy categorizes
patents belonging to “electricity” (H), “electric communication technique”(H04) and
“selecting (switches, relays, etc)” (H04Q). Although the group of pink, blue, and

2from ’Text of EP-A documents’ and ’Text of EP-B documents’
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Figure 4.23: Thematic composition of patents as a 2-D topological atoll based on
IPC patent data: The nesting structure of the islands in the 2-D topological atoll
reflects the IPC hierarchy of the test data set. Five coherent island groups can be
identified for patents covering similar sections of the IPC hierarchy. The remarkable
shape of the center hill is an artifact of the metric-based distortion of the atoll.

black glyphs on the right-hand side belongs to completely different IPC-sections
(A61K, C12N, G01N), the corresponding patents all concern medical issues in their
major field: A - Human Necessities, C - Chemistry, G - Physics. Because they share
the medical vocabulary, they still constitute one topic in the vector space model.
Finally, the centered hill belongs to the B41C cluster and the green and golden glyphs
describe clusters related to applications of materials in chemistry and metallurgy
(C09D, C09J).

4.5.4 Application 2: Classification of Unclassified Data

Assuming an unclassified entity would match one of the given classes, it is possible
to use the topological analysis in combination with a prior LDA projection for
classification purposes. Provided that we already have learned the LDA projection
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Figure 4.24: Classification of unclassified documents based on IPC patent data: The
spheres and the cones represent the training data and the test data, respectively. Both
point clouds were projected with the LDA projection matrix that was determined
based on only the training data. The (stored) colors of the cones confirm that the
test data are projected into the correct regions in the target space. Entities of the
test data can be assigned the label of the most occurring class on their islands.

for a given classified training data set, the nature of LDA, as a linear dimension
reduction, ensures that similar unclassified vectors are projected into the same target
area in the lower dimensional space. While this is an intrinsic feature of a linear
projection itself, we can utilize that unclassified data will be part of the clustering of
the training data as described by the density function’s merge tree. In other words,
we can relate unclassified data to the regions in which they are projected using the
LDA projection matrix generated for the classified training data set. There are two
possible strategies to relate both point clouds: They are either merged into one point
cloud or the topological analysis is applied only to the classified point cloud and
the topology of the merged point cloud is approximated. Similar to the reinsertion
used after sampling, the combined point cloud’s topology can be approximated by
adding an edge to the neighborhood graph between each unclassified data point
and its nearest classified neighbor. After upsampling these edges and determining
the densities for the unclassified points, the merge tree is computed as before. In
both cases, similar classified and unclassified entities occur on the same superarcs
of the merge tree. Hence, we can assign an unclassified entity the label of the most
frequently occurring class on this superarc. Another strategy would be to use the
reduced set of classified entities on the same superarc and to analyze their content
to find the most suitable class in terms of the underlying application.
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Since patent offices are interested in automatic classification of new patent
applications according to the existing classification schemes, we use patent data to
demonstrate the classification. To this end, we split the patents into 50% classified
training data and 50% unclassified test data, which means that we henceforth ignore
their class label. For demonstration purposes, however, we remember the test data’s
class association to validate the results in the visualization. After determining the
training set’s LDA projection matrix, we use it to project both patent sets and use
their combination for the topological analysis. Figure 4.24 shows the (undistorted)
2-D topological atoll for the combined data. As reflected by the color distribution of
the glyphs, the training data (represented by spheres) and the test data (represented
by cones) appear in combination on their own islands. Note that the color of the
cones is actually unknown, but was stored for validation purposes. This confirms
that patents of a specific class are projected in the same target area if they share
vocabulary. In addition to providing means to classify unclassified data, determining
the LDA projection matrix on a subset of the data also accelerates the preprocessing
necessary to project the input data in a lower dimensional space to avoid problems
with the curse of dimensionality. While finding the LDA projection matrix for all
documents took 28 seconds in this example, using only 50% of the data to determine
the projection matrix took only 12s. To evaluate the quality of the classification, we
determine for each branch of the merge tree, i.e. for each island in the atoll, how
many of the branch’s test data entities were correctly assigned the label of the most
occurring training class on that branch. On average, 89.4% of the test data were
classified correctly. In particular, in the noisy region of the medicine archipelago,
approximately 76.7% were classified correctly and around 99.6% were correct on the
remaining branches corresponding to separated clusters.

4.6 Conclusion and Discussion

Depending on the complexity and dimensionality of the data, direct visualizations
can have severe issues when it comes to accurate depiction of the clustering structure
of high-dimensional points clouds. To mitigate problems with structural occlusion,
visual complexity, and illusionary (non-existent) structure, we presented topology-
based visualizations that build on the topological abstraction of the point data by
their density function’s merge tree. Utilizing the human’s naturally trained ability
to read and understand the structure of a terrain, we developed three landscape
metaphors: an extended version of the original 3-D topological landscapes [169]
suitable to explore and annotate clusters and individual points, a 2-D atoll-like
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variation representing clusters as islands and showing more feature properties at the
same time, and a novel 2-D topological landscape profile that provides the most
accurate depiction of the complete information of the merge tree in one view. The
presented variations of the landscape metaphor differ primarily in three aspects:
expressive power, accuracy, and computational costs. Unfortunately, these properties
seem to be mutually exclusive. While the 3-D landscape is certainly the most
natural looking and easiest to comprehend metaphor for quantitative, hierarchical
relationships, constructing the landscape and comparing individual hills is more
complicated than for the other two variations. Not only is it difficult to compare
differently shaped base areas and height information with perspective distortion, the
metric-based distortion of the landscape is also pretty expensive and does not always
converge to an optimum; leading to strange distortion artifacts for complex data
sets. Furthermore, the additional smoothing also increases the triangle complexity
and decelerates the data glyph placement. While some of these considerations
also apply for the 2-D atoll visualization, this metaphor avoids occluding geometry
and makes it easier to compare several feature properties at the same time. The
2-D landscape profile, on the other hand, is probably the least attractive or natural
looking implementation of the landscape metaphor. However, it conveys the complete
information provided by the merge tree (additionally showing a cluster’s stability
as a third feature property), permits accurate feature comparison, requires the
least amount of user interaction to explore the scene, has the simplest and fasted
construction scheme, and does not require any post-processing like a metric-based
distortion or triangle smoothing step.

Compared to conventional direct visualizations, the presented topology-based
landscape metaphor focuses on structure rather than on the underlying data points
and on colors provided by classification information. The key idea is to reduce
occlusion artifacts by expecting less features than data points to focus on the primary
subjects of interest. The intended preservation of high-dimensional distances to let
the data points simulate high-dimensional neighborhood relationships contradicts
this idea because this vast amount of (pair-wise) information can, generally, not be
preserved and leads to the typical artifacts. The cost of the topological abstraction,
and thus of the topology-based visualization, is that information derived from
distances cannot be conveyed by the landscape metaphor. This primarily includes
information about absolute positions, inter-cluster distances, cluster shapes, and
distances and distributions of the points inside the clusters. This information has
to be discarded to obtain an occlusion-free depiction of high-dimensional clustering
structure. Still, this loss is considered a price worth paying for if the alternative



108 Chapter 4. Topological Visualization

is an occlusion-prone visualization and wrong insights. In the end, the major
advantage of topology-based visualizations is that geometric information can still be
approximated by relating the preserved cluster properties to each other, and that
the visualization’s clarity is not subject to classification information or the data’s
benignity and simplicity.
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Chapter 5

Interactive Visual Analysis

Topological analysis of a point cloud’s density function and the topology-based
visualization of the merge tree as a landscape are only core components of a more
complex visual analysis framework for high-dimensional point data. Although the
landscape metaphor provides an adequate global overview of the clustering and
already indicates local details like the density distribution, the visualization itself is
only a snapshot of a specific parameter setting. However, suitable parameters are
generally not known in advance and need to be determined manually. Furthermore,
the analyst is also interested in local details of individual features, e.g. to find out
why particular points do or do not belong to the same cluster. The density function’s
topology alone cannot provide details about individual dimensions, subspaces, or
geometric properties like cluster shape or cluster distances. Therefore, we aim for
an interactive analysis tool that utilizes synergetic effects between an accurate,
topology-based global overview and local analysis of individual features in linked
views to study those data aspects that are not captured by the density function’s
topology.

In this chapter, we develop a framework for interactive visual analysis of high-
dimensional point clouds and present interactive controller widgets to help the analyst
find appropriate parameters to set up a suitable structural overview. We define
potential features provided by the landscape metaphor and extend the visualization
with selection mechanisms to link subsets to other views for further inspection.
Synergetic effects between the topological overview and local analysis in linked views
arise from gathering knowledge about individual features that would have been
missed by exploring the complete data with the standard techniques alone.
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5.1 Related Work

Structural overview and local details. Separating global structural analysis
from local geometric details is in accordance with the classic information-seeking
mantra: “overview first, zoom and filter, then details-on-demand”, as proposed by
Shneiderman [152]. The utilization of several interactive plots used for brushing
and linking of features to other views relates to the concept of multiple coordinated
views; Roberts et al. [141] provide an overview. Using these concepts for visual
cluster analysis, Fua et al. [61] introduced structure-based brushes to navigate through
hierarchical cluster trees. They use a special 2-D brushing tool to permit individual
selection of subtrees at different levels of detail. In [60] they applied this technique
to PCPs by aggregating data as bands of varying translucency. Yang et al. [176]
extended this work to support other traditional visualization methods, such as star
plots or scatterplot matrices. Johannson et al. [91] proposed the use of pre-clustering
to present inherent data structure via high-precision textures and different transfer
functions. Novotny et al. [124] used clustering on a binned data representation to
combine outliers, trends, and focused data items in an aggregated parallel coordinate
plot.

Visual aids for parameter choice. The controllers presented in this chapter
are based on the idea of scented widgets [171], user interface components enhanced
with embedded visualizations to quickly judge interesting thresholds. The idea to
determine parameters interactively is also in line with dynamic queries, as described
by Ahlberg et al. [2].

5.2 Global Overview and Parameter Widgets

The quality of the topological analysis heavily depends on two aspects: How accurate
the density function abstracts the clustering of the input points and how complex the
topological description finally is. Both parameters influence the landscape metaphor
regarding its correctness and visual clarity—and thus regarding its utility to display
the clustering. The accuracy of the density function is controlled by the filter radius σ
of the Gaussian filter kernel, whose suitable determination for the topological analysis
can be challenging. A too large σ will result in the whole point cloud appearing as
one dense region, while a too small σ splits clusters and can even assign each points
to its own cluster. Obviously, the correct value is somewhere in between and depends
on the data. Another difficulty are noisy data sets, i.e. those containing points and
small accumulations outside the clusters. Even if a particular filter radius detects all
clusters separately, the density function likely still contains little fluctuations. In the



5.2. Global Overview and Parameter Widgets 111

landscape, this structural noise is represented by small and thin hills that complicate
the visualization and make it difficult to identify prominent features.

Because an adequate global overview is crucial for subsequent local analysis, we
provide the analyst with interactive widgets to set up the topological view.

5.2.1 Filter Radius of the Density Function

If the filter radius σ is too large, the result is a rather blurry density distribution and
merges dense regions. Too small, and it creates peaks at small noise accumulations
and inside dense regions. Conceptually, we want to find a σ that minimizes the
number of hills in the landscape and maximizes their height at the same time. This
reflects that each dense region has its own maximum, but noise points do not. One
strategy to find a good filter radius is to run the topological analysis for different
values of σ and to observe how the landscape changes. This process could start
with an optimal σopt = 4/(n(d+ 2))1/(d+4) which minimizes the approximate mean
integrated square error, if the original point distribution followed a d-variate normal
density [154]. As this assumption is usually not true, the user can then modify σ

based on evaluating various properties of the landscape:

1. The number of hills. Unless the data actually contains only one cluster, the
presence of one large hill or only a few hills is an indicator of a too large σ.
Likewise, many small hills with only a few data glyphs on them indicate that
σ is currently too small.

2. The data glyph distribution on the hills. For separated clusters, the
point densities are significantly higher than the saddle densities at upsampled
midpoints between the clusters. These points of high density would be located
on the upper part of the hills. If many points are arranged at the bottom, i.e.
at saddle height, they either represent noise or a too small σ currently splits
single regions into several ones.

3. Suspicious accumulations on the hills. If the data glyphs on a hill occur in
groups at different heights, σ is too large and combines dense regions of different
densities. Because a hill’s shape also reflects the data point distribution, a too
large σ can be expected if a hill contains plateaus at different heights.

Figure 5.1 shows how the 3-D landscape changes for different filter radii based on
the image segmentation data set (cf. Appendix A.3). By reading the landscape,
the filter radius is determined visually: Starting with a too large σ and decreasing
it continuously, the analyst watches for noticeable hills of large size and extent
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(a) σ = 30 000 (b) σ = 1 000

(c) σ = 100 (d) σ = 50

(e) σ = 10 (f) σ = 0.0001

Figure 5.1: Examining the 3-D topological landscape for the 19-D image segmentation
data set: (a) A too large filter radius combines all clusters to one dense region. All
points have almost the same high density. Flat hills with only one data glyph
represent noise. (b)-(c) For clustered data, decreasing σ leads to different densities
for clusters and noise. Hills start to appear for the cyan and orange points. (d)
A suitable filter radius is found if separated hills occur in the landscape and if a
further reduction would only split existing clusters. (e)-(f) For too small values of σ,
every data glyph is placed on its own hill, representing that every point is assigned
to its own dense region. Note that for aesthetic reasons, height values are rescaled
to a percentage of the landscape’s extent. That is, density information is actually
decreasing while decreasing the filter radius.

that stand out and are separated by deep valleys from other hills. For the image
segmentation data set, this happens for σ ≈ 50 and is indicated in Figure 5.1d.
However, although this strategy is helpful to refine σ, in general, rebuilding the
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(a) σ = 30 000
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(b) σ = 1 000
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(c) σ = 100
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(d) σ = 50
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(e) σ = 10
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(f) σ = 0.0001

Figure 5.2: Examining the persistence diagram for the 19-D image segmentation
data set: (a)-(f) While decreasing the filter radius continuously, branches move along
the diagonal and converge to their final position on the ordinate. For clustered data,
branches of high persistence depart from the diagonal. Hence, the desired radius is
characterized by many persistent branches far away from the diagonal.

landscape several times and inspecting its structure and the glyph distribution is a
rather demanding and cumbersome task. Therefore, this strategy is intended for fine
adjustment. For convenient determination we aim for parameter widgets that are
more intuitive and easier to handle.

Examining Persistence Diagrams

Instead of evaluating the final landscapes for different values of σ, another strategy
is to analyze directly the merge trees of the different density functions. To this end,
we consider the merge tree’s branch decomposition (cf. Chapter 3.1.2) and display it
in a persistence diagram. The changes of the density function’s topology are then
analyzed by observing the persistence diagram while varying the filter radius between
the two extremes. There is a general behavior for clustered data, which is explained
based on the image segmentation data set in Figure 5.2.
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Starting with a too large filter radius σ, the persistence diagram in Figure 5.2a
consists of the root branch represented by a single circle in the upper left corner
and multiple noisy branches of near-zero persistence in the upper right corner near
the diagonal. After reducing the filter radius in Figures 5.2b-c, the noisy branches
start to spread along the diagonal and persistent branches start to depart from the
diagonal. This change signifies that clusters become apparent in the point cloud.
The low persistent branches indicate very small point accumulations at different
density levels and they occur in already found clusters and in those regions where
clusters are still combined. A further reduction of σ in Figure 5.2d leads to more
branches of high persistence and an accumulation of noisy branches on the lower
part of the diagonal. This is a critical situation, as it reflects that separable regions
indeed exist. If the data consisted of only one cluster, the circles would just have
moved from the right-hand side to the lower bottom without departing from the
diagonal. This behavior would reflect that similarly distributed points cannot be
separated into several dense regions; unless every point is in its own region. A further
reduction of σ (cf. Figure 5.2e) forces the circles to converge towards their final
position on the ordinate. Note that the circles do not really move upwards. This is
just caused by the changing scale of the ordinate. A circle’s final position depends
on the multiplicity of the given input points. That is, if multiple points occur at
exactly the same position, they would finally have a minimum density depending
on the number of duplicates. For example, if there are two points with the same
coordinates, both have a density of, at least, two. The diagram in Figure 5.2f reflects
the case of a too small filter radius. It assigns each point to its own density maximum
and the corresponding circles accumulate at the height of their points’ density. For
the image segmentation example, the diagram reveals that the data contains many
doublets and even some triplets.

Based on these observations, we can provide a guideline for choosing an ap-
propriate filter radius: Varying the value of σ between the two trivial cases, the
analyst examines the persistence diagram. If branches depart significantly from the
diagonal, this indicates a suitable initial value for the filter radius σ. This value can
then be adjusted by analyzing the hills and the glyph distribution in the landscape.
Visual determination of σ based on the persistence diagram will be supported by the
simplification controller presented in Chapter 5.2.2.

Filter Radius Suitability Graph

The visual determination of the filter radius with a persistence diagram already
yields good results because persistence is usually a good indicator of cluster signifi-
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cance. However, the diagram ignores that scattered clusters could also be relevant.
These would be missed because large-sized clusters of low persistence would still be
represented by circles near the diagonal.

To improve the criterion of a suitable initial radius and to avoid having to inspect
several landscapes or diagrams, we construct a function that defines the suitability
of a particular filter radius to detect the clustering. A plot of this function then
reveals a suitable initial filter radius. The definition of suitability is based on cluster
stability. Stability is affected by persistence and cluster size, but also considers the
point distribution. Hence, it is more accurate than the product of persistence and
size. To evaluate σ’s suitability ξ, we consider the merge tree MT of σ’s density
function, sum up all superarc stabilities, and normalize this sum by σ:

ξ(σ) =

n∑
∀arc∈MT

stab(arci)

σ
, with stab(arc) =

n∑
∀r∈R

(f(ri)− f(s)),

with f being the density function, R being the set of the superarc’s implicitly stored
regular nodes, and s being the superarc’s saddle node. A plot results from evaluating
the suitabilities for different filter radii. Figure 5.3a shows the filter radius suitability
graph for the image segmentation data set. Due to σ-normalization, the graph has
large values for small radii and small values for large radii. The desired filter radius
is characterized by a value near the local minimum of the function, which is σ ≈ 35.0
for this data set.

The analyst is provided with an interactive graph widget that initially shows the
plot for the smallest and largest possible values of σ. These values can be determined
based on the shortest neighborhood graph edge and the longest pair-wise distance.
The initial graph is a line perpendicular to the diagonal and the analyst refines
this graph interactively. The abstraction of the changing topology by a single plot
also permits automatic determination of σ. This is achieved by evaluating different
radii equidistantly on a logarithmic scale or with a traditional divide-and-conquer
approach between the two initial values. The graph is refined automatically at the
position where the first minimum is found, i.e. where an evaluation leads to a smaller
value than at its two neighboring evaluations. Automatic determination returns
either the plot or the value of σ at the local minimum.

5.2.2 Simplification of Structural Noise

Structural noise caused by small fluctuations in the density function translates into
many small and thin hills in the topological landscape. These features of minor
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Figure 5.3: Interactive parameter widgets, demonstrated on the 19-D image seg-
mentation data set: (a) In the filter radius suitability graph, the density function’s
benignity to capture the clustering is plotted for different filter radii. The desired
filter radius σ is characterized by the local minimum of the graph. The analyst
refines the plot interactively. (b) Simplification controller with three slider widgets
to define minimum thresholds for a feature’s persistence, size, and stability. The
distribution of the features in terms of these properties is augmented with circles
to the slider widgets. Thresholds are adjusted by moving the sliders on the vertical
axes.

persistence and size are typically unimportant and thus simplified topologically to
avoid visual clutter and to focus only on the prominent features. According to
the simplification process as explained in Chapter 3.2.3, merge tree superarcs are
removed if they do not exhibit enough persistence, size, or stability. We provide the
analyst with an interactive simplification controller with three scented slider widgets
for these quality measures.

Scented widgets [171] provide the user with additional information to make an
educated guess of an appropriate value for a particular property. For example, such
a scent could be a value distribution conveyed as histograms augmented to a slider
widget to indicate the frequency of different values in the data. Based on this idea,
the sliders in the simplification controller display the distribution of the features
in terms of their persistence, size, and stability. This allows the analyst to quickly
identify interesting thresholds if some features stand out. Because feature properties
change during topological simplification, the value distributions are determined based
on the merge tree’s branch decomposition. This is helpful because branches already
provide a multi-resolution view on the merge tree and thus make the controller’s
scent less susceptible to variations between two simplifications. They also indicate
which thresholds are necessary to preserve only the prominent features.



5.2. Global Overview and Parameter Widgets 117

(a) (b)

(c)

(d)

Figure 5.4: Interactive simplification of the 19-D image segmentation data set:
(a) Moving one of the sliders in the simplification controller simplifies the merge
tree in real-time and updates the value distribution in all three sliders. Currently
selected thresholds are accentuated as blue bands. (b) 3-D topological landscape
after topological simplification. (c) The simplification controller is also linked to the
visualization. If the user drags a slider, the hills that would be removed with the
current thresholds are colored red. (d) After releasing the slider, the landscape is
reconstructed and shows only the remaining prominent features.

Figure 5.3b shows the interactive simplification controller with the three scented
slider widgets. The persistence slider widget is a persistence diagram to distinguish
structure from noise by the distance of the circles from the diagonal. The persistence
diagram has the advantage to show persistent features for different merge densi-
ties along the horizontal x-axis. This allows the analyst to distinguish persistent
subclusters from separated features of lower saddle density.
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Simplification thresholds are adjusted by dragging the sliders on the vertical
axes. This is demonstrated in Figure 5.4 for the image segmentation data set.
Dragging one of the sliders simplifies the merge tree in real-time and updates the
value distributions in all sliders accordingly. That is, the circles of preserved superarcs
move if their branches vary in their persistence, size, or stability, and the circles of
simplified branches vanish from the slider widgets. Current threshold selections are
accentuated as blue bands in the widgets. Furthermore, the simplification controller
is linked to the landscape visualization. While the analyst moves one of the sliders,
those hills that would be removed by simplification are colored red (Figure 5.4c).
After releasing the slider, the landscape visualization is reconstructed and shows the
structure without noisy features. Figures 5.4b,d show the 3-D landscape and the
2-D landscape profile after topological simplification using the thresholds adjusted in
the simplification controller in Figure 5.4a.

The simplification controller is updated whenever the merge tree changes. As
this is also the case when the density function changes due to a different filter radius
σ, the persistence diagram of the simplification controller is also used to determine a
suitable filter radius according to the explanations above (cf. Chapter 5.2.1).

5.3 Feature Selection and Local Analysis

The key advantage of the topological analysis over the attempt to preserve high-
dimensional relationships in a low-dimensional image is that the density function’s
topology can be preserved without loss. This preservation facilitates an occlusion-free
clustering depiction in 2-D to reveal cluster hierarchy, separation and individual
cluster properties. However, the global perspective on the data alone cannot tell why
clusters have subclusters, or why points of the same class do or do not belong to
the same cluster. A hill in the landscape only signifies that globally there is a dense
region, possibly containing local density maxima. To obtain information beyond this
global perspective and to learn more about the semantics of the data, the analyst
has to study in which dimensions or subspaces similar data entities differ locally.

Reliable identification of truly occurring features and convenient selection of
arbitrary subsets are important requirements for proper visual analysis of high-
dimensional data. However, these requirements are not ensured when features occlude
each other or if they are covered by noise, which is often the case in projections or
axis-based techniques. Moreover, if important features are missing, further local
analysis is not stimulated, which leads to misleading or wrong insights. From that
point of view, the topology-based global perspective on the data provides a suitable



5.3. Feature Selection and Local Analysis 119

overview to permit local analysis on-demand because all features can be identified,
compared and selected reliably and conveniently in one view.

The ability to select individual features permits a linking of subsets to other
views. The idea behind this linking is a thorough analysis of those aspects that
are not caught by the topological view, e.g. to study a cluster’s approximate shape
with a projection or to inspect the value distribution in a few dimensions using a
parallel coordinate plot. Linking only subsets also improves the quality and reduces
the visual complexity of these standard techniques substantially if they can focus on
fewer points.

5.3.1 Features in the Landscape

Potential features provided by the visualization are categorized into two groups: those
described by the landscape and those indicated by data glyphs. In the remainder of
this chapter, we focus on the 2-D topological landscape profile.

The most obvious feature is a hill representing a (sub)cluster. Hills are always
visible separately and stimulate local analysis because the analyst can read and
compare their properties efficiently. For example, cluster sizes are compared easily
by the widths of their hills, which also include point duplicates. Cluster hierarchy
or well-separated clusters can be identified quickly based on inspecting the valleys
between the hills. The presence of noise, which is also a potential feature to learn
about unknown data sets, is indicated by valleys at non-zero height or as an individual
histogram at zero height in the 2-D landscape profile after simplification. Suspiciously
shaped hills also indicate a feature. Especially those hills containing plateaus often
indicate subclusters of different densities that are still combined by a too large filter
radius. Hence, for clarification, the data could be analyzed at higher resolution.

Noticeable accumulations and the overall distribution of the data glyphs on the
landscape can also reveal interesting features. Although data glyphs always appear
in the 2-D landscape profile whenever a hill grows wider, the occurrence of glyphs
is generally easier to perceive than a hill growing in its width. Because height
information reflects densities, the user can easily identify accumulations of a certain
density. Likewise, the presence of noise is quickly detected at the foot of a hill or
at the bottom of the landscape. If classification information is available, potential
features are the relation between the hills and single-colored glyphs, or suspicious
accumulations of individual or mixed colors, e.g. when points of one class occur at
several hills.
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5.3.2 Selection and Linked Views

There are multiple mechanisms to select interesting features or arbitrary subsets.
While most of them apply for the landscape metaphor in general, some are easier to
implement for the 2-D landscape profile. Therefore, we introduce and explain the
interactive selection based on the 2-D profile variation of the metaphor.

Clusters and subclusters are selected by clicking directly on a hill in the profile.
Individual data points or arbitrary point sets are selected by drawing a rectangle
around their glyphs. Multiple selections can be concatenated. If classification
information is available to color the data glyphs, selected points are linked together
with their assigned color. This way, they can be related in different views, e.g. to
discover a particular cluster in a projection.

An advanced functionality is to assign different colors to individual selections. This
makes it possible to distinguish selections in linked views if the data is unclassified
or if subsets of points of the same class should be compared. To indicate the color
of a selection in the landscape, either a hill’s color changes after clicking on it or
the selection rectangle is filled with that color. A set of discriminable colors can be
generated algorithmically and should also consider the colors already assigned to the
classes. Finally, the histograms and stacked bar charts for classified data support a
bar-wise picking to select different accumulations of a particular density and class.

Linking to Axis-based Techniques

Axis-based techniques like star plots or parallel coordinate plots allow the analyst to
study the homogeneity of the points throughout many dimensions. However, for many
points, the visualization quickly becomes complex and suffers from occlusion. This is
why the number of polylines has to be limited and subsets have to be accentuated to
avoid overloaded drawings. Utilizing the global overview of the topological landscape
accomplishes both goals by linking only selected features of interest.

For axis-based techniques, focusing only on subsets substantially reduces the
number of crossing polylines and thus the visual complexity. There is an implicit
correlation between the topological landscape and axis-based techniques: Hills in the
landscape correspond to polyline bundles in axis-based visualizations. This is simply
because points of a global cluster necessarily have to share similar values throughout
many dimensions. To analyze why a particular cluster consists of subclusters or why
points of the same class are not in the same cluster, we link selected features to an
axis-based technique, e.g. a parallel coordinate plot.

Figure 5.5 shows an example of local feature analysis with a parallel coordinate
plot based on the image segmentation data set. Utilizing the occlusion-free depiction
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(a)

(b) (c) (d)

Figure 5.5: Local feature analysis by linking subsets to a PCP-view based on the
19-D image segmentation data set: (a) In the 2-D landscape profile, clusters and point
sets are selected by clicking on the hills or by using selection rectangles. (b) Focusing
on only a few features substantially reduces the visual complexity of a PCP and
thus simplifies feature comparison. (c) Using different colors for individual selections
helps to analyze subsets of the same class and reveals (d) in which dimensions the
points differ and why the cluster splits into subclusters. This accentuation of polyline
bundles also works for unclassified data.

of clustering structure in the 2-D landscape profile, the analyst can easily pick
some clusters with individual selection rectangles (cf. Figure 5.5a). As shown in
Figure 5.5b, the PCP of only the selected points is much clearer. Because it focuses
on only a subset, it is easy to inspect in which dimensions these points differ to
understand why they do not belong to the same cluster. To analyze subclusters of a
single class, Figures 5.5c-d demonstrate the advantage of using different colors for
each selection. By using two different colors for the two hills of the brown “path”-
cluster, we can distinguish these selections in the linked view. The PCP reveals that
even though these points have the same global trend, in some dimensions their values
are widely spread (d1), shifted (d10-d13, d16-d17) or even inverted (d14-d15). Note that
for unclassified data, assigning different colors to individual selections is helpful to
point out polyline bundles in an otherwise monochrome PCP.
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Linking to Projective Techniques

Unsupervised projections, like the principal component analysis (PCA), consider
the input data as a whole and typically try to find an embedding that is best on
average for all given points. As a consequence, specifically for the PCA, the largest
variance of multiple clusters in one image typically does not reflect the largest
variance of each individual cluster. That is, properties like distances and shapes
of the features of interest are inaccurate if other points take part in the projection.
Even for low-dimensional well-separated clusterings, a 2-D projection likely contains
overlapping regions and distorted shapes if the clusters are oriented just differently
enough. Therefore, in order to minimize the projection error, the optimization
criterion should be applied to only few points. Utilizing the global overview provided
by a topological landscape helps to accomplish this goal by selecting only meaningful
features and subsets.

Representative for other projective methods, we demonstrate linking selections
to a PCA because it is a widely used and intuitive projection. Typically, other
projections are also more accurate if unselected points can be discarded. Particularly
for the PCA, we can also specify the projection error as the variance that is not
explained by the first two principal components. This information quantifies the
reliability of the projection between several selections. This is helpful because for
high-dimensional data the projection error can still be rather large for only few points.
Restricting the data with the topological overview at least keeps this error small.

Local feature analysis with a projection to learn more about a cluster’s approxi-
mated shape, extent, point distribution or distance to another cluster is demonstrated
in Figure 5.6. For example, in the PCA projection of the complete data set (cf.
Figure A.3a on page 200), the cyan “sky” points are depicted with only around
84% of their variance in the original domain. To improve the projection quality of
only these points, we can simply click on each of the three hills in the landscape
(cf. Figure 5.6a) to select and link the corresponding points with different colors to
the PCA-view. This increases the explained variance of these points in the PCA
to approximately 92% in Figure 5.6b. Due to the different colors of the selections,
these subclusters can also be distinguished visually in the projection—even if no
classification was available.

The plateaus and histogram accumulations on the leftmost “sky” hill suggest
that even more subclusters could be separated. Although the first two principal
components account for around 92% of the cyan points’ original variance, the first
three principal components account for almost 99.3% variance. Because the green
points in Figure 5.6b do not reflect local accumulations, this could be a projection
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(a) (b) PC1+PC2 (c) (d) PC2+PC3

Figure 5.6: Local feature analysis by linking subsets to a PCA-view based on the
19-D image segmentation data set: (a) Clicking directly on the hills selects their
points and changes the color of the hills to that of the selections. (b) Because the
optimization criterion is applied to only these points, the projection error decreases
if less points take part in the projection. The linked points are colored according
to the selections, which allows the analyst to distinguish otherwise equally colored
points. (c) Suspicious plateaus and histogram accumulations can be analyzed in
further detail if they are selected with rectangles of different colors. (d) Projecting
these points on the second and third principal component results in a scatterplot in
which these points are indeed separated.

artifact and the desired separation must be hidden in the third principal component.
In fact, selecting the histograms with different colors (cf. Figure 5.6c) and projecting
these points onto the second and third principal component yields a projection that
reflects this separation. The PCA did not consider this view on the cyan points
because it features less data variance than Figure 5.6b. However, the landscape
visualization suggested further investigation to obtain more separation in the linked
projection.

5.4 Visual Analysis Framework

To facilitate accurate and convenient analysis of high-dimensional point data, we
combine the presented algorithms, metaphors, and mechanisms into an interactive
visual analysis tool. This framework implements the algorithmic core of the topo-
logical analysis, the topology-based visualization of the merge tree, the widgets to
support the user in finding appropriate parameters, and the selection and linking
mechanisms to explore the data interactively and on demand. This section describes
the prototype implementation and the typical workflow of the analysis process.
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5.4.1 Prototype Implementation

The prototype is implemented in OpenWalnut1 [50, 49], an open source visualization
tool intended for scientific visualization and research. Although OpenWalnut’s focus
is on multi-modal medical and brain data visualization, its versatile and flexible design
and architecture make it useful for a large variety of applications. OpenWalnut follows
a simple, yet effective modular paradigm. Modules are responsible for individual
tasks performed on input data fed to or loaded by the module itself. Furthermore,
modules are connected to a data-flow network. There are three module types: sources,
which only provide data on their output connector; filters, which read data from
their input connector, process it and provide the result on their output connector;
and sinks, which only read data from their input connector and, generally, visualize
it. If data on a connector is updated, so are all connected modules—thus triggering
updates recursively. Every module can also create GUI-widgets to receive input from
the user, like sliders, buttons, item menus, color choosers, or input fields for several
numeric types. Modules can also create views to render graphics.

Figure 5.7 shows a screenshot of the visual analysis framework implemented in
OpenWalnut. The main window is separated into three major areas: the module
graph (top right), the control panel with GUI-widgets for the currently selected
module (bottom right), and multiple graphic views maintained by the modules (left).
The module graph shows the different module types with different colors and displays
the input- and output connectors at the top and on the bottom of the modules,
respectively. The currently activated module is highlighted by a dotted frame and
the control panel shows the GUI-widgets of this module. Only one module can be
selected and configured at a time.

The module graph for the topological analysis is straightforward and requires
only few components: A data loader module (blue) reads data from input files
and generates high-dimensional vectors with meta-information. This information is
passed to the topology module (upper gray box), which constructs the merge tree.
This module also has a second output connector to provide intermediate results for
potential visualization with other modules. The simplification module (lower gray
box) transforms the merge tree into the simplified merge tree. The visualization
modules (green) generate the variations of the landscape metaphor based on the
simplified merge tree and the meta-information (like labels, colors, etc) provided by
the data module. The second output connector of the simplification module provides
pseudo-simplification information, e.g. which leaf superarcs would be removed while
the sliders are dragged. This information is necessary to provide interactive previews

1http://www.openwalnut.org/
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Figure 5.7: Overview of the analysis tool implemented in OpenWalnut: The main
window consists of the module graph (top right), the control panel (bottom right)
and the graphic views maintained by their respective modules. The module graph
consists of a data loader, a topology module, a simplification module, and a 2-D
and 3-D landscape visualization module. Arrows indicate the data flow between the
modules. The control panel shows GUI widgets for the parameters of the module
that is activated in the graph; here the topology module. The filter radius suitability
controller and the simplification controller belong to the topology module and the
simplification module, respectively. In this implementation, the PCA and the PCP
belong to the 2-D landscape view. Selecting any part of the profile updates both
linked views. Changing a parameter in any module or interactive controller triggers
an (recursive) update in all connected modules.

as demonstrated in Figure 5.4. Note that the simplification module is optional.
Because it has the same output type, the unsimplified merge tree from the topology
module could also be connected directly to the visualization modules that expect a
merge tree on their input connectors.

Module parameters are configured in the control panel. In Figure 5.7, the control
panel currently shows the parameters of the topology module. These are basically
the parameters explained in Chapter 3.4, i.e. thresholds for sampling and reinsertion,
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the graph types or the filter radius. The filter radius and the three simplification
thresholds are configured either in the control panel after activating the respective
modules, or in the graphic views hosted by these modules. The views of the filter
radius suitability graph and the simplification controller are placed at the bottom.
Just like changing the value of a GUI-widget in the control panel, interacting with
these controllers updates the module’s output connector; and thus its connected
modules. The main view in the middle belongs to the 2-D landscape profile module
and the view of 3-D landscape module is placed next to the simplification controller.
In this prototype implementation, the PCA view and the PCP view belong to
the profile module. They are only displayed if the analyst selects any part of the
landscape profile.

5.4.2 Typical Workflow of the Analysis Process

The visual analysis process follows the information-seeking mantra as defined by
Shneiderman [152]: “overview first, zoom and filter, then details-on-demand”. At
first, the analyst creates an appropriate global overview based on the landscape
metaphor. This includes finding a suitable filter radius and thresholds to suppress
structural noise with topological simplification. Afterwards, the analyst inspects the
clustering and compares significant clusters based on the characteristics of the hills
in the landscape. Local feature analysis is performed by linking subsets to standard
techniques to learn more about the semantics of the data. The user loops through
these steps several times during the analysis.

An exemplary workflow is as follows: The analyst constructs (or loads) the
module graph as described above (cf. Figure 5.7). Initially, all graphic views as
well as the filter radius controller and the simplification controller are empty (cf.
Figures 5.8a-b). After loading a data set, the analyst activates the topology module
and specifies the neighborhood graph type and sampling thresholds in the control
panel. A suitable filter radius is then determined with the controller widget: At first,
the widget is initialized for the current data set by a random click in the controller.
This evaluates the suitabilities for the two extreme cases, i.e. a too small and a too
large value for σ (determined based on pair-wise distances), which leads to a line
perpendicular to the diagonal (cf. Figure 5.8c). The graph is now refined either
automatically or manually. The evaluation for a single filter radius can be accelerated
by using a sparse neighborhood graph and by using only a sample of the data without
reinsertion of non-samples. This reduces the time to find a suitable σ because the
topological analysis has to be applied multiple times. Once the approximate position
of the local minimum has been found, a few more evaluations at higher accuracy
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Different states of the controller widgets based on the image segmen-
tation data set: (a)-(b) Initially, the filter radius plot and the three sliders of the
simplification controller are empty. (c) After loading the input data, the suitability
graph is initialized for the smallest and largest possible values of the filter radius σ.
(d) When the merge tree changes, the three sliders in the simplification controller
are initialized to show the value distribution of the branches for the unsimplified
tree. (e) To find the local minimum, the suitability graph is refined automatically or
manually for different values on the x-axis. (f) Dragging one of the sliders in the
simplification controller updates the value distribution in all three sliders in real-time.
The desired thresholds leave only prominent features with high property values. In
the persistence diagram, these are the circles far away from the diagonal.
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refine the plot near this location. Alternatively, the graph could be precomputed
automatically at higher accuracy if time is not a critical factor. The filter radius
controller supports two clicking modes: Right-clicking in the graph only refines
the plot without updating the module’s output connector. This avoids consecutive
updates of connected modules during the determination of the filter radius. Left-
clicking the graph additionally updates the merge tree on the output connector of
the topology module. That is, if the user left-clicks on the graph near the local
minimum (cf. Figure 5.8e), the connected simplification controller automatically
initializes the three sliders with the respective value distributions of the merge tree’s
branch decomposition (cf. Figure 5.8d). The focus now switches to this controller
to remove noisy features in real-time. The analyst adjusts the sliders so that only
those branches with high values for persistence, size, or stability (cf. Figure 5.8f)
remain. In the persistence diagram, these are the circles far away from the diagonal.
While dragging a slider, the simplified merge tree is updated on the module’s output
connector. This triggers an update of the connected visualization module(s). If the
landscape was already constructed before, changing the slider in the controller or in
the control panels highlights remove candidates by changing the color of these hills
to red. If the user releases the slider, the profile is reconstructed for the simplified
merge tree. The analyst can refine parameter settings by reading the landscape,
e.g. by looking for noticeable plateaus or suspicious data glyph accumulations that
suggest a smaller filter radius to split a cluster.

The global clustering overview is stable and robust in that little adjustments
of any parameter do not lead to significant changes in the landscape. That is,
moderate changes of the filter radius or the simplification thresholds only add or
remove some small hills without changing the profile’s overall structure. To find
a suitable overview, typically 7-10 refinements were necessary in our experiments
to find the local minimum of the plot. Depending on the parameter setting, each
single evaluation typically takes around one second for the data sets used in this
thesis. However, the evaluation of a σ’s suitability takes longer for larger data
sets or disadvantageous parameter settings. Changing simplification thresholds to
reveal or hide small features is typically fast and can be applied in real-time. Once
an appropriate overview has been found, the local analysis phase starts with the
identification of interesting features and their linking as described in Chapter 5.3.
Linking selected subsets to another view and creating the PCA or the PCP is also
fast and happens in real-time for medium-sized data sets. Still, projecting high-
dimensional data can quickly become expensive depending on the applied projection
technique and its implementation.
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5.5 Examples and Results

In this example section, we focus on the interactive analysis process and on local
feature inspection. We revisit some of the real-world data sets from the result section
in Chapter 4.5 about the global overview and explore features individually. This
aims to achieve a better understanding of the topological view on the data, to reveal
features that are invisible in standard techniques, and should demonstrate how the
structural view and geometric details complement each other for in-depth analysis of
high-dimensional clusterings. After reviewing data analysis aspects, we also consider
advantages of the framework for unclassified data.

5.5.1 Data Analysis

In a similar vein to the analysis of global overview aspects in Chapter 4.5.1, here
we address data analysis aspects of the visualization combined with the introduced
selection mechanisms and the presented controller widgets. In particular, we focus on
the capabilities of the landscape metaphor to suggest or indicate suspicious features
and how the analyst gets to their bottom using selections and linked views. At first,
we revisit the artificial 2-D data set to illustrate some of the peculiarities of the
topological approach and then we exemplify the typical workflow of the proposed
analysis based on a high-dimensional data set.

Artificial 2-D Data Set

Being able to select individual features in the artificial 2-D data set helps to better
understand the involved topological concepts and to demonstrate the advantages
of the density-based approach. Figures 5.9a-b show the 2-D topological landscape
profile and the scatterplot of the artificial 2-D data set. One advantage of the
topological approach is its robustness with respect to noise. Not only is the detection
of clusters insusceptible to noise, the final visualization is also not cluttered by the
depiction of noise. Most importantly, it is easy to isolate structure from noise because
the latter is typically located at the bottom of the landscape. As demonstrated in
Figures 5.9c-d, clusters and noise can easily be selected with two selections: one for
the points with low density and another selection for the points with higher density.
While the analyst is typically not interested in selecting noise, this is still an easy
and convenient way to focus only on the clusters in the data. The artificial 2-D data
set is also useful to visualize how the topological approach treats the data internally,
i.e. how the merge tree segments the point cloud’s density function into coherent
regions. For this purpose, selections help us to show how these regions actually look
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(a) (b)

(c) (d)

(e) (f)

Figure 5.9: Selections in the artificial 2-D data set: (a) The 2-D topological landscape
profile for a suitable parameter setting. (b) The artificial 2-D data set. (c) Because
densities are encoded by height information in the landscape metaphor, the analyst
can easily separate clustering structure from noise with two selections. The lower
selection isolates the black histograms at the bottom of the hills. (d) Based on the
colors of the selections, the linked scatterplot reveals that structure and noise can be
separated perfectly. (e) By selecting hills and inner parts of the profile with different
colors, the data can be colored according to the merge tree segmentation. (f) The
linked scatterplot illustrates how dense regions grow around the density maxima and
merge with neighbored regions. “Noise” points are actually those points that have a
low density and are located at the border of the dense regions.

like for a typical clustering. Figures 5.9e-f present a coloring of the data set based on
the superarcs of the merge tree. Since hills and inner parts of the profile represent
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(a) (b) (c) (d)

Figure 5.10: Density functions of individual clusters of the artificial 2-D data set:
(a) Several selections of different color for the histograms on the hill belonging to the
star-shaped cluster. (b) The color distribution in the scatterplot indicates how groups
of similar density are located inside the cluster. Typically, the density decreases from
the center towards the border, which is why these selections form “rings” around the
density maximum. (c)-(d) The same scenario for the arrow-shaped cluster.

superarcs, we can select all corresponding parts of the profile with different colors to
see how they relate to the underlying data. Figure 5.9f reveals this segmentation
and illustrates that noise is actually part of these regions, which explains why black
histogram accumulation occurs at the bottom of multiple hills in Figure 5.9a. In
terms of the density function’s topology, a dense region is defined by those points
that are comprised by a growing superlevel set until it merges with another one at
a saddle. That is, topology cannot tell apart structure from noise, but it considers
noise to have a density close to the saddle density of a region. As shown by the
colored segmentation, noise points around the clusters have the color of the selected
inner parts of the profile, representing this region until it merges with a neighbored
region. The largest noise region belongs to the lower histograms on the leftmost hill.
This is basically the noise that comprises all the clusters.

Individual selections also allow us to take a closer look at the density function
inside the clusters. Figure 5.10 shows several selections at different heights for subsets
of the star-shaped and the arrow-shaped clusters. Figures 5.10b,d illustrate that
even though the topological analysis cannot preserve arbitrarily shaped clusters, it
still detects them reliably. The selections and the linked scatterplots also reveal
how data points at similar height actually relate to each other: they typically only
have a similar distance to the density maximum of a homogeneous cluster—which
is a cluster with a high density peak inside and decreasing density values towards
the border. While distance information cannot be preserved, this behavior at least
offers valuable clues concerning the distribution of points with similar density. It also
gives information about the approximate compactness of a cluster. Note that the
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(a) (b)

(c) (d)

Figure 5.11: Analyzing different accumulations of the same class in the 19-D image
segmentation data set: (a) Gray “cement” points have their own hill in the middle
of the landscape, but also accumulate on the main hill. (b) To inspect this behavior
in more detail, both accumulations are selected with different colors. (c) The linked
PCP reveals that even though these points belong to the same class, they still differ
pretty much in several dimensions. Interpreting these dimensions semantically would
clarify in which aspects these pixel fragments actually differ. (d) The PCA projection
also confirms that these points accumulate separately.

histograms at the peak of a hill represent the most similar points. This information
is valuable for the underlying application domain, e.g. to identify the most similar
documents of a particular topic in a document collection.

19-D Image Segmentation Data Set

We already revealed some interesting features of this data set while we introduced
linking subsets to axis-based techniques and projections in Chapter 5.3.2. Another
suspicious observation that is not apparent at the first sight are accumulations of
histograms of the same class at different locations in the landscape. As shown in
Figure 5.11a, the gray “cement” points have their own hill in the middle of the profile,
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(a) (b)

(c)

(d)

Figure 5.12: Visualizing the 25-D Isolet data set: (a) Rank-2 LDA projection with
a projection error of around 58% from the intermediate space down to 2-D. While
the point distribution suggests only three or four clusters, the color distribution
indicates that clusters could still be combined in the main cluster. (b) The parallel
coordinate plot suggests a complex clustering, but the precise structure is hidden and
clusters are difficult to identify and compare. (c) Reachability plot as provided by
OPTICS. It shows 25 valleys to represent clusters for different reachability distances;
a horizontal cut would produce a particular clustering. (d) The 3-D topological
landscape shows 26 separated hills of different height and extent and, thus, provides
the clearest depiction of the clustering structure in the original space.

but additionally accumulate at a similar density on the main hill. To find out why
both accumulations do not belong to the same cluster, we select them with different
colors (cf. Figure 5.11b). Linking these points to a PCP, as shown in Figure 5.11c,
shows that although they are in the same class, they still differ pretty much in the first
and between the 9th and 18th dimension. The differences in these subspaces prevent
the points from being in the same cluster. To interpret this situation semantically
and to understand what exactly makes these pixel fragments different from each
other in the underlying images, the analyst has to consider which image aspects
these dimensions actually describe. The PCA projection in Figure 5.11d also shows
that the projection error can be decreased to around 10% by selecting only these
points and that they indeed accumulate in separated regions.

25-D Isolet Data Set

In the Isolet (Isolated Letter Speech Recognition) data set (cf. Appendix A.4) 150
subjects spoke the name of each letter of the alphabet twice. Trying to learn its
clustering structure, we start with visualizing the data with standard techniques.
Figure 5.12 shows the Rank-2 LDA projection, the parallel coordinate plot, and a
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(a)

(b) (c)

(d) (e) (f)

Figure 5.13: Parameter settings for the 25-D Isolet data set: (a) 2-D topological
landscape profile showing 26 hills of different height, shape and width. The hills
represent clusters in the sonorant information space. These are those recordings
that are pronounced similarly, i.e the spoken letters themselves. Cluster hierarchies,
furthermore, exist for those letters that rhyme. (b) Filter radius suitability controller
with the local minimum at ≈ 0.78 used to create the landscape profile in Figure
(a). (c) Landscape profile for a too large filter radius showing that many clusters
are still combined. (d) Simplification controller with the adjusted thresholds used to
create the landscape profile in Figure (a). (e) Part of the landscape profile before
topological simplification. Small and thin hills represent fluctuations in the density
function. (f) Same part of the profile after simplification.

reachability plot as provided by the OPTICS clustering method (cf. Chapter 2.1 on
page 12). The reachability plot shows clusters as valleys to present a hierarchical
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partitioning of the data for different values of the density descriptor on the ordinate.
This value is similar to the filter radius σ of a Gaussian kernel. The data items are
colored according to given classification information. Because there is no a priori
knowledge about the relation between clusters and classes, the point distribution in
the LDA projection can only suggest three or four clusters. Even if we face occlusion
artifacts of truly separated clusters, we cannot tell which of them are closer or even in
a subcluster hierarchy. The PCP indicates more separated clusters based on the color
and the distribution of the polyline bundles throughout all dimensions. However,
individual bundles are still hard to identify, count, and compare. The reachability
plot shows many different clusters, but it has a stronger focus on finding appropriate
parameters and concentrates less on the visualization of the clustering and individual
cluster properties for a particular cluster segmentation.

Figure 5.12d and Figure 5.13a show the 3-D topological landscape and the 2-D
landscape profile for the 25-D Isolet data set. The isolated hills in both landscape
metaphors easily reveal substantially more clustering structure than the LDA pro-
jection or the PCP. The computation time to obtain the landscapes is about three
seconds. The interesting aspect of this data set is the semantic behind the clusters
and the relation between them. In the information space spanned by various sonorant
features for each recording, points accumulate if they share similar vocal aspects,
i.e. if they are pronounced similarly and thus sound alike. As can be seen from the
labels and the distribution of the colored histograms in the 2-D profile, these point
accumulations are the letters themselves. Furthermore, some letters, like “m/n”,
“k/j”, “b/e/d”, “t/p”, or “f/s”, are in a subcluster relationship because they sound
more similar to each other than to other letters. This is reflected by deep valleys
between those letters that sound different and valleys at higher density between those
letters that rhyme. In terms of the information space, similar letters are located in
the same subspaces and thus accumulate to clusters and subclusters.

To find suitable thresholds for the filter radius σ and to simplify the structural
overview, the analyst uses the interactive controller widgets. Figure 5.13b shows
the filter radius suitability controller for the Isolet data set. After several manual
refinements, which take around 1.5 seconds each and use optimized parameters
settings, the local minimum was found at σ ≈ 0.78, which is also the value used to
create the profile in Figure 5.13a. Figure 5.13c shows an example of a too large filter
radius. If σ is larger than the inter-cluster distance, separated clusters are merged
and the structural insights about the clustering are misleading. Nevertheless, the
histogram accumulations at different heights and the suitability graph suggest that
this value is likely inappropriate and should be reduced further. Figure 5.13d shows
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(a)

(b) (c)

(d) (e)

Figure 5.14: Local analysis of the 25-D Isolet data set: (a) Selection of only a few
clusters for further inspection in linked views. (b) Rank-2 LDA of only the four
selected clusters. (c) Clipped part from Figure 5.12a showing the four selected
clusters in the misleading Rank-2 LDA projection of the complete data set. (d) PCP
showing only the four selected clusters to inspect in which dimensions these points
differ. (e) PCP of the complete Isolet data set in which local analysis of only a few
clusters is complicated by the presence of all other points.

the simplification controller with an adjusted minimum cluster size of 10 points.
This threshold leaves 26 prominent features and was used to create the profile in
Figure 5.13a. Figure 5.13e,f show the effect of topological simplification before and
after simplification. While fluctuations in the density function are represented by
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small and thin peaks in the unsimplified profile, after simplification, the profile shows
only the remaining main clusters.

To demonstrate the advantage of the topological analysis and the synergetic
effects caused by linking individual features to geometry-based standard techniques,
in Figure 5.14a only the ’S’, ’F’, ’X’ and ’H’ clusters are selected with a single
rectangle. Although the profile already reveals the correct subcluster hierarchy, the
linked LDA projection of only these points (cf. Figure 5.14b) confirms that the
occlusion-prone LDA projection of the complete data (cf. Figure. 5.14c) is quite
misleading. However, the projection is still useful to approximate other properties
like a cluster’s shape or inter-cluster distances. Linking the same subset to a PCP
(cf. Figure 5.14d) highlights in which dimensions the points actually differ. This
inspection would be difficult in the presence of all other points (cf. Figure 5.14e) and
without means to fade them out.

5.5.2 Unclassified Data

Another advantage of the interactive visual analysis and the occlusion-free depiction
of clustering structure is that the topological overview can be used to accentuate
structure in otherwise monochrome standard visualizations. This is demonstrated
in Figure 5.15 based on the Reuters data set (cf. Appendix A.7). The profile
in Figure 5.15a shows the clustering of the data points without considering the
classification information. The labels above the hills display cluster sizes. To
highlight individual clusters and to indicate where in the standard visualizations of
the complete data these subsets are located, we select three individual features with
different colors. The PCA and the PCP in Figures 5.15b-c show the complete data set,
but additionally highlight the picked clusters using the color of their selections. This
combination of topology-based overview and geometry-based local analysis is helpful
in those scenarios where the analyst has to explore features with standard techniques
in the context of the complete data set. This would be difficult if features cannot
be discriminated visually or if features are missed at all due to occlusion artifacts.
Such an approach to highlight features in linked visualizations was also used by
Fua et al. [61], who term it structure-based brushing, to navigate through hierarchical
cluster trees. We improve this concept by providing additional information about
feature prominence and by supporting more sophisticated selection in the structural
view. Showing cluster quality measures helps the analyst identify interesting features
before linking them to other views.
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(a)

(b) (c)

Figure 5.15: Accentuating features in standard visualizations of the complete data set
based on the 9-D Reuters data without classification information: (a) 2-D landscape
profile with labels showing cluster sizes and three selections of two individual hills
and a sub-hill hierarchy. (b) PCA projection of the complete data set with the three
selected clusters highlighted by using the color of their selections. (c) PCP showing
the complete data set and the polyline bundles of the selected clusters with the color
of their selections. This approach helps to compare these features in the context of
the complete data.

5.6 Conclusion and Discussion

Although standard visualizations like projections and axis-based techniques suffer
from information loss, projection artifacts, occlusions, and visual complexity, these
methods are still valuable to approximate point distributions and to explore subspaces
and individual dimensions. Therefore, to benefit from synergetic effects between
the topological approach and these conventional techniques, we propose to split the
visual analysis of high-dimensional point clouds into two separated phases: in the
global overview phase, we neglect geometric properties to obtain an appropriate
presentation of the clustering. This structural overview is independent from the
data’s dimensionality, is robust with respect to noise, preserves structural information
without loss, illustrates features and data points occlusion-free, and provides means
to compare, annotate, and select arbitrary features like clusters, subclusters or point
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sets. In the local analysis phase, the analyst leaves the global scope and analyzes
features individually and in more detail than the topological abstraction could explain.
To this end, selected features are linked to standard techniques to explore those
properties not captured by the merge tree, e.g. approximated cluster shape, inter-
cluster distances, or point distributions in particular dimensions. The key idea is that
by focusing on only a few clusters, the artifacts and visual complexity of a projection
or a parallel coordinate plot can be reduced substantially. The synergetic effects
arise from the fact that these features could not have been selected individually using
these standard techniques alone. To help the analyst find an appropriate parameter
setting, we also presented intuitive controller widgets and strategies to read and
interpret the behavior of the landscape while changing parameters.

In addition to the limitations of the topological abstraction (cf. Chapter 3.6
on page 63) and the topology-based visualization (cf. Chapter 4.6 on page 106),
disadvantages of the presented framework are limited scalability and restricted feature
properties, the necessity to resist interpreting Euclidean distances in the topological
context of the landscape metaphor, and certainly a required basic understanding
of the topological concepts involved. Although the landscape metaphor itself can
convey quantitative and hierarchical relationships, interpreting it and understanding
the effects of parameter changes is certainly not immediate for the lay user. However,
as already mentioned earlier, studying both the underlying concepts and how the
final visualization is meant to be read is considered worth the efforts if the alternative
is occlusion-prone and illusionary depiction of high-dimensional point data.
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Part II

Visual Analysis of
Time-Varying Clusterings
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Figure Part 2: Overview of the visual analysis framework for high-dimensional
data that change over time: Independent from the application domain, the merge
trees of temporally adjacent high-dimensional scalar functions are transformed into
each other while storing structural changes of the dynamic tree as tracking records.
After topological simplification, which removes insignificant superarcs from the trees,
tracking information is adjusted accordingly. The complex information provided by
the time-varying tree is visualized with a topological landscape profile per time step,
augmented with visual links to indicate feature evolution. Temporal cluster analysis
is one application for time-varying merge trees and requires a prior transformation
of the point data into a time-varying density function. Interactive controller widgets
help the analyst to determine crucial parameters, and arbitrary features can be
selected and filtered in different directions in time.

The second major part of this thesis is about topology-based visual analysis
of high-dimensional, time-varying clusterings. That is, compared to time-invariant
point clouds, the number of points as well as their coordinates can change over time.
In a similar vein to Part I of this thesis, temporal cluster analysis is considered a
specific application of high-dimensional, time-varying scalar field topology. This aims
at a study of the clustering in terms of dense regions and their evolution over time.
Because existing approaches to compute and visualize superlevel sets and contours
of low-dimensional scalar fields do not scale to higher dimensions, we introduce
a novel method that identifies and tracks features in arbitrary dimensional scalar
functions using time-varying merge trees. We analyze the evolution of the function
by tracking changes in the merge tree and we relate features by matching subtrees
between consecutive time steps. While the analysis of the changing scalar function is
independent from the underlying application domain, for temporal cluster analysis,
we extend the topological approach described for static point clouds by abstracting
a dynamic point cloud by its varying density function. Topology-based quality
measures, like persistence, size, or stability, again, describe cluster significance and
help the analyst inspect and track significant features. Using the time-varying merge
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tree, we develop a structural visualization of the changing function that illustrates
both features and their temporal evolution.

Figure Part 2 summarizes the algorithmic pipeline of the time-varying analysis
and also provides a visual guideline for the next chapters. In Chapter 6, indicated
by the blue parts, we first introduce the time-varying merge tree and the algorithmic
core. This includes the representation and topological description of time-varying
data, how features are related and tracked over time, and how tracking information is
simplified to focus only on significant features. To visualize the complex information
provided by the time-varying merge tree, a prototype visualization is described in
Chapter 7. Building on the topological landscape metaphor, landscape profiles are
linked together to reveal the clustering at the given points in time and visual links
are used to indicate the evolution of individual features over time. While the time-
varying merge tree and its visualization are independent from the application domain,
temporal cluster analysis is considered an instance of high-dimensional, time-varying
scalar field topology in Chapter 8. This chapter explains the preprocessing necessary
to turn a set of point clouds into a dynamic density function and it applies the
time-varying merge tree to topic tracking in time-dependent document collections.
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Chapter 6

Topological Representation

In many fields of application, time-varying data result from observing or simulating
a system over a specific period. To make data storage and processing feasible, the
observation process is typically discretized by taking snapshots that represent the
system at certain points in time. These timeslices are typically sampled on a grid to
specify observations at certain locations and different granularities. A time-varying
description is obtained by interpolating the samples in both space and time. That is,
for each timeslice, cell interpolation extends the sampled grid values to the whole
domain, and linear interpolation between consecutive timeslices provides observations
for arbitrary points in time. Depending on the dimensionality of the domain, i.e.
the dimensionality of the grid vertices, and on the dimensionality of the observed
measurements, i.e. the function values at the grid vertices, practical examples
for scientific visualization include scalar-, vector-, or tensor fields to describe, e.g.,
temperature, pressure, velocity, or stress at multiple locations in a 1-D, 2-D, or 3-D
space for a fixed moment or over time.

With increasing size and dimensionality, time-varying data become difficult to
visualize and analyze. One solution to this challenge is to detect features, i.e.
interesting data subsets, at each point in time and to track their evolution, including
feature birth, death, join, and split. This form of summary allows more compact
and less cluttered visualizations, enables quantitative analysis, e.g. recording the
variation of the number of features with time, and provides a vantage point for
further data exploration. Just as already demonstrated for high-dimensional, but
time-invariant data, topological methods provide efficient data summaries.

If meaningful features of scalar fields are defined by thresholding, the merge
tree compactly encodes features for all possible thresholds, as demonstrated by
Bremer et al. [20], who studied combustion simulations. However, to track features
over time, existing methods often fix a threshold. Changing this value during
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the analysis requires expensive recomputation of the tracking information [170]
and supporting threshold changes over time or on a per-feature basis depends on
specifying a large number of parameters a priori. Moreover, existing methods correlate
features via spatial overlap in consecutive time steps—an approach that can lead
to ambiguities [155] and becomes computationally intractable in higher dimensions.
Although topological methods have been applied successfully to analyzing time-
varying data, current approaches are only practical for scalar fields defined on
two- and three-dimensional domains. Time-varying Reeb graphs [45, 118] require
complicated distinction of cases for topological events; their number increases with
the dimensionality and no case tables have been presented beyond the 3-D case.

To address these issues, we introduce time-varying merge trees—a topological
summary of time-varying scalar fields. Instead of using a single threshold, time-
varying merge trees track all features for all thresholds over time, supporting threshold
selection after and informed by the time-varying merge tree’s visualization. To avoid
tracking ambiguities, the algorithm records all necessary changes to the merge tree
within the time interval between adjacent time steps, establishing a clean topological
foundation for feature tracking. By focusing on merge trees for threshold-based
feature tracking, we are able to provide a complete set of cases for arbitrary dimensions
and prove their correctness. Compared to the more expressive Reeb graph, the loss
in expressiveness is negligible for threshold-based feature tracking; it still captures
all application-relevant events.

6.1 Related Work

Defining and tracking features [146, 140] is one solution to visualizing large time-
varying data sets. Here, we only consider features in scalar fields and refer to
Laramee et al. [110] for a survey of vector field methods.

Many feature definitions for time-varying scalar fields are based on isosurfaces.
These are surveyed by Mascarenhas et al. [119]. Kettner et al. [102] presented the
Safari interface. It shows the properties of a sample of isosurfaces, allowing analysts
to make an informed choice of which isosurfaces to inspect. It does not, however,
show how the sampled isosurfaces are related in time. Szymczak [159] presented
an interface where the analyst can query contours that evolve in particular ways,
e.g., split or join between certain time steps, or hit the boundary. To support this
operation, the method computes contour trees for each consecutive pair of time
steps and annotates them with the subdomains they intersect. Similarly, Sohn and
Bajaj [155] track contours over time using a similarity measure that considers spatial
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overlap of the inside and outside of contours. The results for one fixed isovalue can
be shown as a tracking graph. Ji and Shen [90] use the earth mover’s distance to
determine correspondence among contours. Bremer et al. [19] use the Morse-Smale
complex to compute burning regions restricted to an isotherm for a range of fuel
consumption thresholds. Once an appropriate fuel consumption threshold is identified,
they use the Reeb graph of a 4-D space-time isosurface to track these regions over
time [19, 167]. In later work, Bremer et al. [20] used the merge tree to compute
statistics concerning burning regions within a single time step. Once an appropriate
threshold is identified, burning regions are tracked over time via overlap. Keller and
Bertram [101] present a method to compute a time-varying isosurface from a so-called
hyper-Reeb graph, i.e., a Reeb graph augmented by Betti numbers indicating, among
other things, genus changes. While isosurface extraction is applicable for arbitrary
dimensions [15], d-dimensional regular grids of hypercubes and isosurfaces extracted
as sets of (d− 1)-dimensional simplices are quickly becoming impractical in higher
dimensions, and Bhaniramka et al. [15] provide only 4-D and 5-D examples; they
also report on excessive (i.e. 2d) case tables for dimensions greater than four. The
variance in these feature correspondence definitions can be explained by the lack of
an underlying principle. In contrast, our method observes the topological behavior
with respect to linear interpolation in time. In addition to basing feature tracking
on a clean topological foundation, this approach also estimates when topological
changes take place at sub-time step resolution.

For a family of real-valued functions on a common d-manifold without boundary,
Edelsbrunner et al. [44] define Jacobi sets to compute the time-varying contour tree
of a function on the 3-sphere [45]. Their method computes the contour tree for
the start time directly and then changes it when topological events of a feature
given by the Jacobi sets require it. However, changes to the contour tree require
detailed case analysis and the algorithm is difficult to extend to higher dimensions [45,
117]. By restricting considerations to the merge tree, our algorithm considers fewer
and simpler cases, and—most importantly—makes it independent of the domain’s
dimension. Instead of tracking critical points explicitly, Cohen-Steiner et al. [33] use
the stability of persistence diagrams to define vineyards for time-varying, real-valued
functions: evolving persistence diagrams in which critical value pairs can be traced
visually or by computing a matching between them.
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6.2 Algorithm Overview

We visualize time-dependent, real-valued functions defined on domains of any di-
mension by studying how superlevel sets evolve with time. Since most applications
provide time-varying functions as a sequence of scalar field snapshots, a reasonable
approach to encode varying structure is to capture the function’s topology at the
given time steps and to find out how these features relate to each other between
consecutive time steps. The time-varying merge tree supports to identify and track
two feature types: Those defined by complete regions of the function, i.e. families
of superlevel sets between critical points as represented by the superarcs of the
merge tree, and those features defined by thresholding, i.e. the components of a
single superlevel set belonging to a particular threshold ε. For example, in terms
of a density function and clustering, features of the complete function are dense
regions described by a density maximum and a saddle. Tracking such features is
independent from their actual density, i.e. all clusters are tracked irrespective of their
density. On the other hand, tracking only a superlevel set of the density function
means to fix the density to a certain value ε and to study how the dense regions
of the complete function evolve only regarding this single value. This implies that
only those regions containing this density will be captured by the corresponding
superlevel set. For cluster analysis, this feature type is useful, e.g., to study the
clustering in terms of a minimum or maximum density, or to find those clusters
that exhibit a particular density over time. For document analysis, an application
of high-dimensional, temporal clustering, analyzing superlevel sets reveals at which
times, or for how long particular topics satisfy a user-specified topical importance,
as defined by the the clusters’ density (cf. Chapter 8).

The algorithm consists of the following steps which can be run concurrently for
pairs of consecutive snapshots (cf. Figure Part.2):

(1) Compute the merge tree for each scalar field in the input sequence.

(2) Find the sequence of structural changes that transforms each merge tree into its
successor and store these changes of the complete function as tracking records
or changes of a particular superlevel set as linked level-tracking events.

(3) Use topological simplification to remove noise from the merge trees and adjust
tracking information accordingly.

—————– (cf. Chapter 7 about the visualization)—————–
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(4) Represent each tree as a 2-D landscape profile and translate tracking records
into visual links connecting related hills, or overlay tracking graphs to show
superlevel set evolution in the context of the complete function.

6.3 Merge Tree Transformation

To determine related features between two consecutive time steps, we compute
the merge tree evolution by continuously transforming the first merge tree into
the second. At any point during this transformation, the merge tree correctly
represents the topology of the linearly interpolated function. For example, a varying
2-D function can be imagined as a fluctuating height field where increasing and
decreasing function values cause grid vertices to transpose—or swap—in their height
value. All transpositions take place in a distinct order, and each pair of grid vertices
transposes exactly once or never. The merge tree varies according to the changing
structure of the fluctuating height field.

The merge tree construction algorithm implies that the tree can only change
if the order of the grid vertices changes in terms of their function values. That
is, instead of considering infinitely many merge trees, the transformation can be
discretized by considering only the finite number of potential changes that arise from
transposing vertices. Moreover, it is immediate from the merge tree construction that
only transpositions of grid vertices in the same region can affect the tree’s structure.
Therefore, it suffices to observe changes to the tree whenever two nodes joined by an
arc transpose and their common arc collapses: only after these transpositions can
the number and the order of superarcs change. It is also necessary to work on the
fully augmented version of the merge tree because otherwise we could miss when a
regular node becomes critical through a transposition. For example, a regular node
can turn into a maximum node after transposing with another regular node or with
a saddle.

We imagine a dynamic tree, whose arcs grow, shrink, and collapse whenever their
end-nodes transpose in their height values. The transformation terminates when each
node reaches its final position in the tree; we obtain the merge tree of the second
function.

6.3.1 Algorithm

The basic idea of the merge tree transformation is to let the arcs collapse when
their end-nodes transpose. If multiple transpositions occur simultaneously, we order
them based on the lexicographical order of their incident nodes; a straightforward
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Figure 6.1: Transposition of a single merge tree arc: (left) If nodes u and l transpose
in their height value, as defined by linear interpolation, the merge tree needs to be
reconstructed with the correct superarcs. (center) Only the arcs incident to u and
l (red) are affected, whereas the rest of the tree remains unchanged. (right) While
some arcs (black) are implicitly correct, others (dotted red) need to be validated.

extension of simulation of simplicity [47] to ensure that at any time there is a single
superarc whose nodes are to transpose next. Because reconstructing the whole merge
tree from scratch after every single arc collapse would be computationally expensive,
we consider how the merge tree can change after a single transposition. Figure 6.1
illustrates a transposition for arc (u, l), with u and l being the upper and lower nodes,
respectively. There are two types of arcs: those not affected by the transposition,
and thus implicitly preserved in the tree; and those that may change, and, therefore,
require additional validation.

Implicitly Correct Merge Tree Arcs

The correctness of implicitly preserved arcs after the transposition follows from the
following lemma.

Lemma 1 (Arc Lemma). For a fixed domain and a fixed vertex order F , there is an
arc (u, l), with F (u) > F (l), in the merge tree of F if and only if the component of l
in the domain restricted to the vertices w with F (w) > F (l) contains the vertex u
and does not contain any vertex w with F (u) > F (w) > F (l).

The proof of the lemma follows immediately from the algorithm used to construct
merge trees. It follows from the Arc Lemma that the transposition of u and l affects
the merge tree only locally.

Property 1. Any arc that does not contain u or l remains in the merge tree.

Proof. Since the only change in the order F is the transposition of vertices u and
l, if the two properties of the Arc Lemma hold for an arc (x, y), with x, y /∈ {u, l},



6.3. Merge Tree Transformation 151

before the transposition, they continue to hold after the transposition. (And if they
do not hold before, they do not hold after.)

This property implies that the merge tree remains unchanged above all of u’s
and l’s children, as well as below l’s parent and thus only arcs incident to u and l

need further validation. While it is immediate that u and l are still connected after
the transposition, the Arc Lemma also implies an arc between u and l’s parent node.

Property 2. u inherits l’s parent node.

Proof. Let p be l’s parent node. The component of l before the transposition is the
same as the component of u after the transposition. Since the order of nodes between
l and p before, and u and p after the transposition are the same, the Arc Lemma
implies that we have an arc (u, p) in the tree after the transposition.

The validation of u’s and l’s child arcs depends on their connection in the
underlying grid. The nodes’ links do not change, but their upper links do, and thus
require analysis. For node l, the change of its upper link is limited.

Property 3. l retains the merge tree arcs to all the components that remain in its
upper link.

Proof. For any arc (w, l), the two properties of the Arc Lemma hold before the trans-
position. After the transposition, the first property holds because if the component
of w remains in l’s upper link, then u belonged to a different component of l than w
(so its removal could not have disconnected w from l). The second property holds
because there is one less node between w and l. In other words, (w, l) remains an
arc after the transposition.

Merge Tree Arcs That Need Validation

To understand the changes to u’s children, we need to determine how its upper link
is affected by the transposition. l can become a new upper link component; it can
become part of an existing upper link component (a regular node); or l can combine
an arbitrary number of u’s previous upper link components. We need to check which
of u’s upper link components are in l’s upper link, once l is higher than u. In other
words, we determine whether l is connected to some of u’s upper link components
and thus becomes a regular node or a saddle. If l is not connected to any of u’s
upper link components, it becomes a new maximum within the upper link of u.

To this end, we start a traversal towards the merge tree’s root from each grid
node x in l’s upper link. The traversal follows the unique path from x to the root of
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Figure 6.2: Two examples of a collapsing superarc: (a) An artificial function with
two maxima on a 1-D grid. (b) Inner part of the merge tree showing the nodes
around the function’s saddle. (c) Example 1: When node 2’s function value rises
above node 8’s function value we start a traversal from node 2’s upper link, i.e. from
node 3, towards the merge tree’s root node. Because this traversal reaches node 8,
both neighbored nodes must belong to the same upper link component (of node 8).
Therefore, node 2 inherits the superarc connection to node 7 in the intermediate
merge tree at the time of this swap event. (d) Example 2: When node 8’s function
value rises above that of node 14 we start two traversals from node 8’s upper link,
i.e from nodes 7 and 9. The first traversal from node 7 reaches node 8, which means
that no superarc needs to be redirected. However, because the second traversal from
node 9 reaches node 14, node 8 inherits the superarc connection to node 9.

the tree. Node l lies on this path since x belongs to the superlevel set component
of l. Node u lies on this path if and only if x falls in the superlevel set component
of some node y in u’s upper link (possibly, with x = y). The component of y in
the upper link of u is represented, without loss of generality, by an arc (y, u). In
this case, l inherits the arc (y, l) after the swap. Indeed, both conditions of the Arc
Lemma are satisfied. If u does not lie on the path from x to the root, then, after the
transposition, there is no connection in the superlevel set component of l between l

and u’s former upper link. In this case, no arc is redirected to l. Figure 6.2 illustrates
the results of two example traversals based on an artificial 1-D function.

6.3.2 Implementation

The implementation of the merge tree transformation is straightforward. Our
implementation starts with the augmented merge tree of the first time step and two
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lists of the grid vertices sorted descending by their values at the first and second time
step. The first list will be re-ordered over time for correct determination of a node’s
(changing) upper link. The second list is to determine potential transpositions of new
arcs that occur after a transposition. The time of an arc collapse is inferred from
the linear interpolation between the vertices’ values in the first and the second time
step. To process all transpositions in the correct order we keep them in a priority
queue. The algorithm ensures that if the nodes of an arc transpose, we insert them
into the priority queue before the transposition takes place. In other words, we do
not miss any arc collapses. Algorithm 3 provides a pseudo-code implementation
of the transformation process. The code already contains commands necessary for
feature tracking (cf. Chapter 6.4). Because feature tracking is independent from
the transformation itself, these commands are commented out (using a double slash
“//”).

Optimization

Although arc transpositions may change the structure of the merge tree, it turns out
that many of them are topologically neutral and do not change the tree’s structure.
This is especially true if the participating end-nodes of the collapsing arc are both
regular nodes. Because it is necessary to process the fully augmented merge tree to
not miss when regular nodes turn into critical nodes, for topologically neutral events
between regular nodes, the traversal to validate u’s only child arc is a waste of time:
the intermediate merge tree would be correct if we just switched nodes u and l.

For transposing regular nodes, which is by far the most frequent event, we can
determine if a new maximum can appear without performing a traversal to validate
u’s only child arc: a maximum can be born only if the vertices are neighbors in
the grid. While this condition is necessary, but not sufficient, for the lower node to
annihilate its upper link, its contrapositive—if the two vertices are not neighbors—
ensures that a new maximum cannot be born. We insert the neighbor-condition into
Algorithm 3 (Step 8) and quickly swap both regular nodes if they are not neighbored
in the grid. The pseudo-code of this optimization is given in Algorithm 4.

6.3.3 Runtime Complexity

The number of arc collapses during the transformation depends on how many node
pairs change their relative order in the sorted sequences of both time steps. That is,
a transformation’s complexity depends on the structural variation of the function. In
the worst case, if the vertices reverse their order, their number is bounded by O(n2),
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Algorithm 3: Transformation of the merge tree of time step i into the
merge tree of time step i+ 1. Optional parts are commented out.

Input : A merge tree MT for time step i
A list orderNow of sorted grid vertices at time step i
A list orderThen of sorted grid vertices at time step i+ 1

Output : A merge tree for time step i+ 1 and tracking information
1 for each arc a = (u, l) in MT do
2 if u is behind l in orderThen then
3 Push a on priorityQueue with priority swaptime ∈ [0, 1]

4 while priorityQueue is not empty do
5 Pop a = (u, l). (u is the upper node and l is the lower node closer to the root node)
6 // Handle outstanding superlevel tracking events, see Chapter 6.4.2
7 Put u behind l in orderNow

8 // Optional optimization, see Algorithm 4 in Chapter 6.3.2
9 Remove a from MT

10 if l is not root node of MT then
11 Let a′′ = (l, p) be the arc incident to l towards the root
12 Remove a′′ from priorityQueue
13 Remove a′′ from MT

14 (Determine which of u’s children become l’s children)
15 Let N be the set of grid neighbors of l
16 for each neighbor n ∈ N do
17 if n is in front of l in orderNow (i.e. in the upper link) then
18 if traversal from n towards MT ’s root node leads to u then
19 Let a′ = (u, u′

n) be the arc incident to u
20 Remove a′ from priorityQueue
21 Remove a′ from MT
22 Add arc (u′

n, l) to MT
23 if u′

n is behind l in orderThen then
24 Push (u′

n, l) on priorityQueue with priority swaptime
25 Stop traversal
26 else if traversal from n towards MT ’s root node leads to l then
27 Stop traversal

28 Add arc (l, u) to MT
29 if l was not root node of MT then
30 Let p be the parent node of l before the swap
31 Add arc(u, p) to MT
32 if u is behind p in orderThen then
33 Push (u, p) on priorityQueue with priority swaptime

34 // Store tracking information for this swap event, see Chapter 6.4.1
35 // Update outstanding superlevel tracking events, see Chapter 6.4.2
36 // Handle outstanding superlevel tracking events, see Chapter 6.4.2
37 // Assemble tracking information for features of the complete function, see Chapter 6.4.1

for n tree nodes. Potential push-updates to the priority queue (Steps 24 and 33) take
O(log a), for a arcs in the queue. For non-optimized events, the traversal to validate
node l’s upper link depends on the number of tree nodes on the paths between l’s
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Algorithm 4: Optimization if regular nodes pass each other (to be inserted
at Step 8 in Algorithm 3).

1 if isRegular(u) and isRegular(l) then
2 if u and l are not neighbors in the grid then
3 Let a′ = (u, u′) and a′′ = (l, p) be the arcs incident to a
4 Remove a′ from priorityQueue
5 Remove a′′ from priorityQueue
6 Swap node u and l
7 if u′ is behind l in orderThen then
8 Push (u′, l) on priorityQueue with priority swaptime
9 if u is behind p in orderThen then

10 Push (u, p) on priorityQueue with priority swaptime
11 Goto Step 4 of Algorithm 3

upper link nodes and l itself. Generally, this number is bounded by n, but depends
on the function itself and on the grid’s granularity. In our experiments (cf. Chapter 7
and Chapter 8), however, we observed that the number of arc collapses is usually
less than 5% of n2 and that the 90th percentile of the traversal lengths is around
10% of n; while no traversal was longer than 30% of n.

6.4 Feature Tracking

By using a continuous transformation, we can identify structural changes of the
augmented merge tree and we know the exact time and the correct order of all events.
This allows us to compile tracking information event-by-event and to understand
feature tracking as an independent extension of the transformation process. Although
it is necessary to transform the fully augmented merge tree to notice all topological
events, for feature tracking, it suffices to track only the unaugmented merge tree,
i.e. the superarcs. This is because once we keep track of all regions accurately, the
regular nodes neither affect the number of features, nor their hierarchy or properties.
Because regular nodes are stored implicitly together with the superarcs, quality
measures can still be determined for each feature.

As already mentioned in the algorithm overview in Chapter 6.2, the time-varying
merge tree supports feature tracking in terms of the superarcs for the complete
function, or in terms of the components of specific superlevel sets. For both cases,
we present operators to extend the merge tree transformation.
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6.4.1 Tracking the Complete Function

Between two time steps, superarcs may be born, die, or match with a superarc
of the following merge tree. For birth- and death-events we keep track on which
parent superarcs they take place because the tree may undergo many changes. For
example, a newborn superarc may move within the tree, or it may give birth to other
superarcs. Similarly, a superarc on which another superarc died may move or die.
In rare circumstances, an arc can also give birth to the arc it dies on afterwards.
Therefore, we have to store tracking information recursively. To display superarc
relations later on in the visualization, each superarc needs a representative. We use
its upper supernode for this purpose. Leaf superarcs are thus represented by their
maxima, and inner ones by their upper saddle node. For each transposition, we verify
if the superarcs of the tree are affected. If necessary, we create or destroy tracked
superarcs accordingly, and we record on which superarcs these changes take place. If
superarcs do not change, we still record when regular nodes change their association
to a superarc, and we update a superarc’s representative if required. Updating
the representative is important because a moving feature can be represented by a
completely different set of grid vertices in the next time step.

Implementation

For every superarc we maintain a tracking record that stores the following information:
the initial representative, the current representative, the superarc born from, and
the superarc died on. Initially we determine all superarcs of the merge tree, set
their representative, but leave the entries for superarc “born from” and “died on”
empty. We also store for each node to which superarc it belongs. Regarding the
nomenclature, being born on another superarc means that the lower node which
becomes a new critical node after the transposition changes its superarc affiliation to
the newly created superarc. That is, the new superarc gets born on the superarc the
lower node belonged to before the transposition. The opposite defines the meaning
of a superarc dying on another one.

Tracking features of the complete function happens event-by-event and is thus
an independent part of the transformation process (Algorithm 3, step 34). One
possibility to track superarcs, including their precise place of birth/death and correct
times, is to consider the node types before and after an arc collapse and to handle
this event according to the case table shown in Figure 6.3. The table summarizes all
possible configurations of an arc collapse. They result from taking all combinations,
but neglecting symmetrical events (e.g. “a saddle node rises above a maximum”
versus “a maximum falls below a saddle”) and impossible events (e.g. “two maxima
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Figure 6.3: Case table to track features of the complete function: The case table
summarizes how tracking records are updated according to the node types of the
swapping nodes before and after a single transposition. For every possible configu-
ration (dotted boxes), the bold arc is about to collapse and all possible results are
shown to the right. In principle, superarcs die when supernodes pass each other, and
a new superarc is born when the passing node becomes a supernode.

swap”). Possible results of a configuration reflect possible changes of l’s upper link.
Furthermore, the table indicates in which configurations superarcs are born or die
and in which cases a node’s superarc affiliation changes.

The tracking consists of creating, destroying, or updating affected tracking records
after every arc collapse. For example, if before a transposition the lower node is a
saddle s and the upper node is a regular node r (cf. Figure 6.3, right column, second
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row) and both nodes are saddles after the transposition (case 0), a new superarc is
created with s as its current representative and s’s previous superarc as the “born
from” entry. Then we set r to be s’s previous superarc’s new representative and
update the superarc connecting both nodes. For simplicity, events relating to the
minimum of the tree are considered to be either regular or saddle events.

Post-Processing

Once the transformation, and thus feature tracking, finishes, we know for each
original superarc whether it matches a superarc in the final merge tree or whether
it dies. For dying and newborn superarcs, we also know where exactly the death
and the birth happen; this information is recorded in the “born from” and “died on”
entries of the tracking records.

Because a function’s main features naturally appear as maximum-saddle pairs
of significant persistence, size, or stability, we restrict further processing only to
leaf superarcs. To create pairwise relations between original and final superarcs,
we post-process the tracking records (Algorithm 3, step 37) as follows: If the “died
on” entry for an original leaf record is empty, we associate that record’s initial
representative with its current representative, and store this as a match record. If the
“died on” entry of an original leaf record is not empty, we recursively follow it until
we reach the record where “died on” is empty. We associate the original record’s
initial representative with the found record’s current representative and store this
as a death record. Finally, for each new leaf record, we recursively follow the “born
from” entry, associate the found record’s initial representative and the new record’s
current representative, and store this as a birth record. This produces a set of records,
classified into either match, birth, or death events, that describe how features of the
complete function, as described by leaf superarcs, relate to each other between the
original and the final tree.

6.4.2 Tracking Superlevel Sets of the Function

In addition to the analysis of the complete function, analysts also study the evolution
of threshold-based features. In this case, one is interested at which times superlevel
set components appear, join, split, or vanish; or if components belong together in
both time steps. Note that these events do not relate to the homonymous events of
the complete function: while a birth/death event in the complete function means
the appearance/extinction of a new/existent superarc in the tree, a superlevel set
component gets born/dies if an existent superarc just starts/finishes containing a
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particular value ε. That is, even if the structure of the merge tree does not change at
all, a superlevel set can exhibit manifold changes just because nodes of the dynamic
tree change in their values. To notice all topological changes of the superlevel set,
we need to find out at which times superarcs of the time-varying merge tree start or
finish containing ε. This requires awareness of structural changes of the complete
function because newborn superarcs could affected the superlevel set.

When a superarc starts or stops containing the threshold ε, we store the event’s
type, its time, and the participating superarcs as a superlevel tracking event. Suc-
cessive events of each component are then linked together to obtain a complete
description of the changing superlevel set. Source of these linked events is either
a new component that gets born during the transformation, or a component that
already existed in the first time step. If a superarc contains ε throughout the whole
transformation, the superlevel set component directly matches in both time steps.

Implementation

Tracking a superlevel set also happens simultaneously to the merge tree transfor-
mation. However, the transformation is only based on arc collapse events, i.e. on
those events that potentially change the tree’s structure. Because this implies that
we could miss that one or more tree nodes pass value ε between two consecutive
transpositions, we have to extend the transformation’s granularity to cope with
tracking events of superlevel set components.

Before the transformation starts, we determine for all critical tree nodes the
time when they pass ε according to linear interpolation. Pass-times are then added
to a priority queue that is used during the transformation at two places: Before
performing an arc collapse, we handle “outstanding” tracking events in the queue,
i.e. those with a pass-time smaller than the current arc collapse time. After the
arc collapse, we update the priority queue based on the node type of both involved
arc nodes. If a regular node becomes a critical node we determine the time when
it passes ε and potentially add it to the priority queue. Likewise, if a critical node
becomes regular after the arc collapse, we remove it from the priority queue. Note
that once the transformation has finished, the queue could still contain pass events
that occur subsequent to the last arc collapse.

To handle a critical node n when it passes value ε, we identify the superlevel
tracking event based on n’s node type, e.g. whether it is a saddle or a maximum,
and whether n passes ε from below or above. Figure 6.4 summaries all possible
configurations and their corresponding superlevel tracking event types. Newly
generated superlevel tracking events are stored together with n’s adjacent superarcs
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Figure 6.4: Event types for tracking superlevel set components: Superlevel set
components appear, join, split, and vanish when superarcs of the varying merge
start/stop containing threshold ε. The type of the superlevel set component’s
topological change depends on the type of the critical node passing value ε (red line)
and whether it passes the threshold from below or from above.

to connect them with their future events. The transformation’s pseudo-code shown in
Algorithm 3 also indicates at which places the transformation needs to be extended
in order to track superlevel sets (Steps 6, 35, and 36).

6.5 Simplification

Similar to topological simplification of the merge tree of a time-invariant scalar
function (cf. Chapter 3.2.3), we also eliminate fluctuations and noisy structure of the
dynamic function. To focus only on the prominent features of the high-dimensional,
temporal data, we simplify the structure within a time step and adjust the tracking
information that is related to removed features. To help the analyst find appropriate
simplification thresholds, a simplification controller as described in Chapter 5.2.2 can
be used to remove noise from the merge trees belonging to the given time steps. Note
that changing simplification thresholds for the merge tree at time step i requires to
adjust the tracking information between time steps i− 1 and i, and between time
steps i and i+ 1.

Pre-Simplification

The timeslices can be simplified prior to the topological analysis. To this end, we
determine the merge trees for all given scalar functions, simplify them individually
based on user-specified thresholds, and adjust function values in the grid according to
their simplified values in the trees. Conceptually, this approach removes fluctuations
of the density function and leaves plateaus behind. As a consequence, noisy regions
are not tracked anymore, and the transformed merge trees, the tracking records
of the complete function, and linked superlevel tracking events are automatically
consistent. However, this also implies that changing simplification thresholds requires
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to repeat the whole analysis, i.e. the transformations and feature tracking. For larger
data, repetitive transformations constitute a runtime bottleneck if simplification
thresholds are changed frequently. To alleviate these issues we can use the following
post-processing methods instead.

Merge Trees

The merge trees at the given time steps are simplified in exactly the same way like
in the time-invariant case. That is, based on the branch decomposition of the merge
tree at time step i, the sliders of the interactive simplification controller indicate the
value distributions of the branches in terms of their persistence, size, and stability.
The merge trees can be simplified with the same thresholds for all time steps, or
with different thresholds for each individual time step. The latter is helpful for local
analysis to increase or decrease the structural granularity only at a certain point in
time, or to understand which noisy features eventually evolve to prominent features.

Tracking Information of the Complete Function

If a superarc is removed from the tree, we also have to adjust those tracking records
that have this superarc as their origin or target, i.e. as their initial or current
representative. To this end, we redirect the tracking record by replacing the removed
superarc by its parent superarc. Tracking records may become redundant by this
process. We remove the record if: (a) it is a birth record, but the target was simplified;
(b) it is a death record, but the origin was simplified; and (c) if it is a match record,
but both the origin and the target superarcs were simplified.

Tracking Information of Superlevel Sets

Superlevel tracking events occur if superarcs of the dynamic merge tree start/finish
containing value ε. Because the quality measures of these superarcs change during the
transformation, and because it is possible that these superarcs no longer exist after
the transformation, we cannot know whether superlevel set components temporally
belong to noisy features of the complete function. Therefore, we simplify superlevel
set events based on time persistence, which is the time interval between two critical
events, i.e. a user-specified lifetime for a component. Because linked superlevel
tracking events can easily be imagined as a graph, we can recursively peel off those
arcs whose end-nodes (i.e. tracking events) differ in time by less than a user-specified
threshold. Note that whole connected components of the graph could be removed by
simplification. It is also necessary to remove source events that represent simplified
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superarcs at the given time steps, i.e. those belonging to structural noise of the given
functions.

6.6 Conclusion and Discussion

We introduced time-varying merge trees as a compact description of time-varying
scalar fields and described an algorithm that computes the augmented and the
unaugmented version of these trees. To track features over time, we transform the
merge trees of consecutive time steps into each other, record all changes of the
varying tree, and finally relate subtrees between the given time steps. Supported
features are those described by complete superarcs or by superlevel set components
of the changing function. Because the transformation works only on the grid edges
and on the merge tree itself, it does not require complex case distinctions and, thus,
scales to higher dimensions.

Because the time-dependent merge tree algorithm works on-line, i.e., new time
steps do not affect the result for previous time steps, the algorithm can be used
with streaming data. However, a requirement of the current implementation is
that the number of grid vertices must not change. This is generally the case for
scalar fields provided on a grid, but limits the application for high-dimensional data
where regular grids are impractical and more flexible grids are needed. The current
approach would also benefit from a topological simplification that works directly
on the time-varying merge tree. The current solution—to simplify each merge tree
independently—potentially removes “weak indicators”: tiny structures that in time
grow to features of interest. Because of merges and splits it is difficult to define an
equivalence of structures over time, which would be the first step before telling apart
features and noise.

The complexity of a transformation, and thus its runtime, depends on the
topological variance between two time steps. But what is the lower bound on
the algorithmic complexity of both the augmented and unaugmented version of
the problem? While we know that the events we consider in the augmented case
are both necessary and sufficient, the unaugmented version may need to process
fewer events; though we are currently unable to characterize which ones. Hence,
a potential improvement is to investigate how the storage of topology changing
events of an initial transformation of the augmented tree could lead to a persistent
data structure that allows quick extraction of superlevel sets and optimal runtime of
subsequent transformations based on the (smaller) unaugmented tree. Asymptotically,
the algorithm could benefit from a data structure that optimizes the operation of
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identifying region adjacency after an arc collapse. In practice, however, the run time
of the algorithm is mostly affected by the large number of changes to the event queue.
As most inserted arc events get canceled, a form of deferred event handling would
help.

We did not yet study the extension of the transformation to time-varying contour
trees. Because it is trivial to adapt our algorithm to give the time-varying split tree,
it is possible to extract the augmented merge and split tree for a given time and
combine them into the contour tree. But this does not immediately give a tracking
of the contour tree’s superarcs.
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Chapter 7

Topological Visualization

Visualizing the structure of a high-dimensional scalar function is already challenging
for time-invariant data. As demonstrated in Part I of this thesis, topological analysis
and topology-based visualization based on the merge tree are efficient tools to solve
typical problems for visualization of high-dimensional data, like structural occlusion
and visual complexity. However, for time-dependent data, the time-varying merge
tree is even more complex and provides complex information: the hierarchy as well
as three quantitative properties for all features at the given time steps; tracking
information to relate features over time; and the types and exact times for all
events regarding the features of the complete function and those defined by a single
superlevel set.

This chapter introduces a visualization of the time-varying merge tree that is
based on the topological landscape metaphor. It shows the structure of the scalar
fields at the given time steps and indicates feature correspondence and structural
changes across time using visual links. To reduce the clutter caused by showing
many features and links over time, we add an additional layer of visual simplification
and give special attention to feature groups that do not change their topology,
representing them by one visual link rather than many. A variation of the visual
design also supports analysis of single-threshold feature evolution that, compared to
related work, suggests visually how to pick and adapt thresholds. The result is an
interactive visualization framework that supports in-depth analysis of time-varying
features in high-dimensional scalar fields.

7.1 Related Work

Visualizing tracked features can be challenging. Bremer et al. [18] survey methods
and applications of topological feature tracking in molecular analysis, combustion
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Figure 7.1: Strong variation in the topological description caused by a small variation
of the underlying scalar function: (a) Color-coded density function (dark=dense)
showing six separated regions of varying density. (b) The merge tree of the density
function with a multi-saddle and one maximum per dense region. Without loss
of generality, leaves are sorted decreasing by their density value. (c) Two regions
join by increasing density in the void between them. (d) The merge tree has a
non-zero density saddle for the joined regions and a multi-saddle for the remaining
separated regions. The blue leaf node covered the maximal distance in the sorted
order. Consequently, every visualization of the time-varying merge tree would have to
reflect this complex change, which likely leads to intersections and occlusion artifacts.

simulations, and porous materials analysis. The results are shown as feature tracks
embedded in the original domain. Similarly, Chen et al. [29] showed an embedding
of the Reeb graph in the original data to track level sets of particle data. Other
approaches store the tracking in a graph that is then shown using graph layout
techniques. Widanagamaachchi et al. [170] present tracking graphs that update
quickly when the analyst changes the isovalue of the tracked features. Because we
compute tracking information for all features up front, we need to compute the layout
of the tracking information only once. In contrast to these techniques, our method
is able to show additional feature properties, e.g. their size and robustness. More
related work about the topological visualization aspect is also part of the papers
cited in Chapter 6.1 (on page 146).

7.2 Visualization Design

Topological concepts have proven to be efficient in summarizing, simplifying, and
visualizing otherwise difficult to illustrate high-dimensional data. However, for time-
varying applications, visualizing a dynamic merge tree quickly becomes complicated
for a subtle reason: the tree can change substantially even for small changes of the
underlying scalar function. This is demonstrated in Figure 7.1 based on a 2-D density
function whose merge tree changes dramatically by adding only a single point to the
underlying point cloud. It is obvious that this instability of the changing topological
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description has to be reflected by any visualization of the dynamic merge tree. For
example, picking up the 3-D topological landscape metaphor, one possibility to
illustrate the time-varying merge tree could be to represent each time step by its
own layer of earth in a 3-D geological sediment metaphor with individual landscapes
conceptually stacked on top of one another. A problem with such an intuitive
metaphor would be that a sudden and strong change of the merge tree could force
a particular feature to appear at very different locations in adjacent sediments.
Problems with intersection and occlusion would then be inevitable, leading to strange
and unintuitive artifacts that are not explainable by a geological metaphor itself. In
consideration of these facts, we have to come up with a simple and yet informative
and easy to read visual representation of the changing tree.

The visual design of the time-varying merge tree is based on two require-
ments: First, because we aim for an application-independent visual analysis of
high-dimensional scalar fields, the visualization should convey the complete infor-
mation provided by the time-varying merge tree. While it could suffice for certain
applications to limit this information, e.g. by discarding feature hierarchy or some
properties, we still seek a drawing that shows all supported properties of the time-
varying merge tree to make the topological approach applicable to many applications.
Second, the visual complexity and the amount of interaction required to explore
the data should be kept small. Provided that one dimension in the final drawing
will be needed to depict time, the remaining information of the time-varying merge
tree is certainly too complex to base the visualization on a continuous design, like a
sediment- or flow-like illustration in 3-D. Such a design would certainly introduce
massive occlusion, visual clutter and (self-)intersection of hierarchical features.

To address these issues, we use a discrete design that separates the depiction
of structure from that of temporal evolution to avoid unnecessary problems with
occlusion while tracing features visually. To display the structure of the high-
dimensional scalar fields occlusion-free at the given time steps, we adopt and extend
the landscape profile metaphor. To reduce intersections and visual complexity, we
display temporal feature evolution with visual links between consecutive profiles.

7.2.1 Merge Trees as Landscape Profiles

Because we focus on (static) merge trees, which can be visualized in two dimensions
as a landscape profile, the third dimension is still available to convey the time aspect
of the data. We take the set of simplified merge trees at each time step, construct
their landscape profiles and arrange them one after another according to their time
stamp. Furthermore, we render the scene with orthographic projection to facilitate
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Figure 7.2: Exemplification of a complex topological event occurring between two
consecutive time steps; explained with single merge trees and their corresponding
2-D landscape profiles: (a) Two superarcs (A and B) are connected by a green (birth)
and a red (death) visual link if the first superarc (A) gives birth to another superarc
(B) on which it dies afterwards. This often happens for moving features or if the
maximum inside a regions changes to another grid vertex. A green and a red link
between two hills can also result from simplification, i.e. when a parent hill inherits a
visual link from a removed child hill. (b) The colored dots in the first profile indicate
the coordinates used for the representative supernodes of the corresponding tracking
record’s visual link.

feature comparison between the different time steps. For aesthetic reasons, height
values are normalized by the maximum height of all profiles, which is also restricted
to a percentage of the maximum width of all profiles. To focus on the main features in
a profile, we also provide the option to shorten long slopes and plateaus by taking the
logarithm of each superarc’s size. A variation of ambient occlusion [48] furthermore
enhances the perception of depth between the profiles with shadows.

7.2.2 Tracking Information of the Complete Function

As illustrated in Figure 7.2, every superarc of a merge tree is represented by a distinct
part in the landscape profile. Because every tracking record associates two superarcs
of two consecutive merge trees, we create a visual link between the corresponding
parts of the profiles. For each record, we identify both superarcs by the record’s
initial and current representative, identify their areas in the profiles, and use these
areas’ centroids as the visual link’s origin and target coordinates. In its simplest
form, a link is a line. To indicate the type of the structural events, we use black,
green and red links to represent match, birth, and death records, respectively.
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Without simplification, every tracked leaf superarc either matches to, or dies on
another superarc in the transformed merge tree of the next time step. Hence, each
hill has either one black or one red outgoing link. Similarly, for a newborn superarc,
the corresponding hill in the target profile has a green incoming link. Note that hills
can be the origin of more than one green link because a superarc can give birth to
many other superarcs. Likewise, a hill can also be the target of many red links if
several superarcs die on the same one. After topological simplification, parent hills
inherit redirected visual links from their former children.

If examined from above, the profiles in combination with the visual links look
similar to isotracking graphs as used by Sohn et al. [155], or Bremer et al. [20].
However, in our case the links show the evolution of features of the complete function
rather than only of individual isocontours. Furthermore, the width of the hills
specifies a feature property and the topology-based layout of the hills also ensures
that hierarchical features are close to each other and can be sorted, e.g., by persistence,
size, or stability. If examined from a side view, the profiles also describe hierarchy
and feature properties and can thus help the analyst identify interesting subsets.

Tracking Information Filter and Interactive Selection

The analyst can filter tracking information by selecting arbitrary parts of the profiles.
Visual links are then filtered either forwards, backwards, or in both directions in time.
The filter preserves only those links that emerge from a user-selected hill or that are
(recursively) reachable from a user-selected hill by a traversal through the ’born from’
or ’died on’ entries of the corresponding tracking records. More sophisticated analysis
is achieved by combining simplification and interactive selection. For example, small
features could be excluded from the simplification if they are related to the evolution
of user-selected features—e.g. if noise evolves to a prominent user-selected feature.

Link Reduction and Minimization of Link Intersections

The presence of many related features translates into many visual links between
adjacent profiles (cf. Figure 7.3a) and makes it difficult to trace structural evolution
visually. Although topological simplification is the primary tool to remove irrelevant
hills (cf. Figure 7.3b), we further reduce the remaining links to increase readability
and visual clarity. We use the following strategies:

1. Link aggregation is applied to those hills with multiple incoming or outgoing
links. The number of links is reduced by grouping them by type/color. To this
end, the involved links are split into smaller segments that are combined if the
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(a) (b)

(c) (d)

Figure 7.3: Link reduction strategies for the time-varying merge tree visualization of
the scenario explained in Figure 7.4: (a) Landscape profiles and visual links without
topological simplification and no application of any link reduction strategy. (b) After
topological simplification (minimum region size is 60 grid vertices). (c) After link
unification. (d) After match-link combination.
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angle between close-by segments of the same type/color is only small. As a
result, every hill has at most one incoming or outgoing link per type/color,
which forks if necessary so that all aggregated links reach their targets.

2. Link unification is applied if links of different type/color have exactly the same
origin and target hills. Such link configurations represent special topological
events occurring in one and the same region, e.g. if a superarc gives birth to
another one on which it dies afterwards (cf. Figure 7.2a). This often happens
for moving features, where two maxima exist in the meantime: one maximum
at the old location that vanishes and the maximum at the new location that
is rising during the merge tree transformation. Another reason for multiple
links with the same origin and target is that parent hills can inherit redirected
links of simplified child hills. If such detailed insights go beyond the scope
of the intended analysis, such relations can be treated as a simple match by
unifying the involved links into one (black) match link. This is demonstrated
in Figures 7.3b-c for the hills on the left-hand side.

3. Match-link combination is applied to hierarchical features that do not change
between two time steps. In this case, individual (black) match links belonging
to subfeatures are combined into a single match link to connect the hills at the
lowest shared saddles. This strategy is illustrated in Figures 7.3c-d for the hills
on the right-hand side. A single black link between two profiles indicates that
the structure of the function remains constant entirely.

4. Re-sorting saddle node children in the merge trees can be used to change
the positions of the hills without changing the topology of the profiles. This
strategy was already introduced to sort the hills from-left-to right either by
persistence, size, or stability. In the time-varying case, changing the positions
of the hills could be used to optimize the number of crossing links. However,
note that switching subtrees does not allow to switch arbitrary hills; and can,
thus, also increase the number of crossing links.

It is also possible to implement other visual links and aggregation strategies. For
example, bifurcations in the aggregation could reflect the exact times of the structural
changes. However, depending on the variance of the dynamic scalar function, this
might contradict our primary goal of reducing the number of visual links and their
crossings between the profiles.
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Figure 7.4: Visualization of the time-varying merge tree based on an artificial 2-D
function (shown to the right) after topological simplification: t0: flat function. t1:
three main features are born. t2: all features move and noise is added. t3: all features
move, one splits, the other two grow in size and persistence, respectively. t4: features
move and join. t5: one feature dies, another is rotated, noise is removed.

Artificial 2-D Function

Figure 7.4 shows the visualization of a time-varying merge tree, for better under-
standing, based on an artificial function that represents a density-based clustering
in 2-D; the scenario is described in the caption. The sample grid contains 2 500
vertices and the computation of the topologically most complex time step takes less
than a second on our machine with two 2.6 GHz quad-core processors. Because
the transformations between consecutive timeslices are processed concurrently, the
total time to obtain the image, including topological simplification to remove noisy
features, is approximately one second.
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As revealed by this example scenario, the tracking is robust with respect to noise
and feature shape, and moving features are recognized if their spatial difference is
small enough. Typically, a moving feature is identified as a superarc whose implicit
regular nodes (i.e. the grid vertices) only change, or as a superarc that gives birth to
a new one on which it dies afterwards. A counter-example is given in time steps t1
and t2. Because the spatial difference of the right feature in the function is too big,
a new feature gets born and the old one vanishes. A higher time resolution would
be needed to infer this as a fast moving feature. In general, the old feature would
die (like in t5), but here it matches to one of the maxima produced by the added
noise in that area. Because noise was removed by topologically simplification, the
link target correctly points to the removed hill’s parent hill. If a feature splits, the
new one typically matches to one of the former maxima (cf. t3, second hill) or a new
feature is born (like on the right hill in t3). Likewise, if features join, they first share
a higher saddle and then one feature would die on the other (like on the first hill in
t4). In t3, the first two hills change their order because the hills in the profiles are
sorted by persistence to put the highest hills to the left.

7.2.3 Tracking Graphs of Superlevel Sets

Tracking information about a superlevel set is inherently affected by the variation of
the complete function. Hence, it is desirable to illustrate changes of a superlevel set
in the visual context of the complete function to help the analyst find interesting
thresholds. Because scalar values, and thus a particular threshold ε, are encoded
by height information in the landscape profiles, superlevel set components can be
identified as the intersection of a profile with a horizontal line at height ε. That is,
intersection lines on the hills and their individual width specify the number and the
approximated size of the superlevel set components. Arranging landscape profiles next
to each other, thus, facilitates visualization of tracking graphs at the corresponding
height of the adjusted threshold to illustrate how superlevel set components evolve
over time. To focus on the tracking graph, while still maintaining the context of the
complete function, we only show the silhouettes of the profiles above the adjusted
value. Threshold modification is enhanced visually by showing bold intersection lines
to point out the superlevel set components (and their size) at the given time steps.

Figure 7.5 shows an example tracking graph based on the artificial 2-D function
(cf. Figure 7.4). Topological simplification was omitted for demonstration purposes,
which is why the profiles still contain small hills corresponding to noise. The adjusted
threshold for the superlevel set is accentuated by the bold line segments on the
hills. Above the black line segments, the context of the profiles is only suggested
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Figure 7.5: Visualizing superlevel set tracking information based on the unsimplified
function of the scenario described in Figure 7.4: Superlevel set components are
highlighted as bold line segments on the hills. The context of the complete function
is indicated by the silhouettes of the profiles above the adjusted threshold. Birth,
death, and match events reveal at which times features of the complete function
start/stop containing value ε. The green birth and the red death event of the second
hill between t1 and t2 confirm that this dense region cannot be matched in both time
steps. Instead, the superlevel set component belonging to the new region is born
shortly after t1, and the component belonging to the old region dies shortly before t2.

by dotted silhouettes. The threshold ε can be changed interactively to identify the
superlevel set components at the given time steps for other height values. However,
the tracking graph is, generally, not updated in real-time, as this requires to repeat
the transformations for another ε. This drawback will be addressed in some more
detail at the end of this chapter. Regarding the 2-D example scenario, we can make
several observations: The coordinates of the green birth events between t0 and t1,
and the red death events between t4 and t5 reveal at which times (z-coordinate) and
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in which order these superlevel set components appear and disappear, respectively.
Conceptually, these are the times, when the hills, indicated by the silhouettes,
of the next/previous time step have exactly this height value according to linear
interpolation. Between t1 and t2 we can see that most hills belonging to noise do
not have a corresponding superlevel tracking event. This is because their height is
still below the adjusted threshold. Moreover, the red death event and green birth
event of the second hill confirm that, because it is moving too far for only one time
step, these features cannot be matched. It is also visible from the parallel red and
green link that there were two density maxima for the most time; the new one that
is born shortly after the first time step and the old one that dies shortly before the
second time step. The transformation from t2 to t3 shows how the superlevel set
component on the right main hill grows in size by aggregating surrounding noise.
This reflects how the corresponding dense region belonging to this maximum also
grows because the surrounding density peaks die in this region while the density
increases (also see the transition from t2 to t3 in the function in Figure 7.4). It is also
visible from the merge events in this area that the noisy features must have died on
the main component after their saddles passed the adjusted threshold ε; the opposite
would have been indicated by red death links instead of the shown merge events.
The tracking graph of the remaining time steps primarily reflects how the features
die when their density in the complete function falls below the selected threshold ε.
Independent from the currently chosen threshold, the analyst can always identify
meaningful values of ε from the visual context of the profiles to analyze the tracking
graphs of prominent or suspicious features.

Graph Layout and Implementation

To obtain the graph layout, it is necessary to determine 3-D coordinates for all
topological events to connect them with an edge. Note that there is only one degree
of freedom in 3-D because an event’s time and the threshold ε itself already fix two
dimensions. In order to embed the tracking graph in the context of the complete
function, an event’s remaining x-coordinate is determined based on the unique
position of its involved superarc on the profiles. That is, events are placed in front
of the hills on which the superlevel set component can be found, or which contained
the superlevel set component at the event’s time. It could happen that superarcs of
intermediate events have no counterpart on the profiles because they (dis)appeared
during the transformation. In this case, we use the ’born from’ and ’died on’ entries
of the corresponding tracking record to find the related superarc and its position on
the profile.
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Because superlevel set tracking information is available for each pair of consecutive
time steps, the tracking graph can be constructed concurrently for each pair of
consecutive profiles. We iterate through the set of source events, i.e. those describing
initially existing or newborn superlevel set components, and recursively handle their
linked events. With this strategy, the graph is generated path-wise and we can skip
recursive calls if paths “cross” at merge events that were already handled. For each
event, we determine its own position to place a glyph and to draw edges. For existing
and newborn superlevel set components, we determine position based on the involved
superarc’s position on the first profile. Positions for split, merge, and death events
are determined based on the hill’s coordinates in the second profile. Glyphs and
edges belonging to birth and death events are colored green and red, respectively.
For aesthetic reasons and to increase its readability, the layout is modified at some
places: We spread linked incoming/outgoing events around merge/split events; we
use straight lines for birth/death events that are not connected to merge/split events;
and the position of a superlevel set component at a given time step is set to the
midpoint of the line segment on its hill.

7.3 Conclusion and Discussion

To enable inspection and exploration of time-varying, high-dimensional scalar fields,
we visualize time-varying merge trees by combining landscape profiles—suitable for
single merge trees—with a tracking information overlay. Visual clutter caused by
showing many hills and links is countered by implementing another layer of abstraction
to aggregate, unify, and combine visual links and by opting for a discrete design
rather than for a continuous visualization. The presented prototype visualization is
capable of presenting the complete information provided by the time-varying merge
tree, thus making it versatile and also independent from the underlying application
domain. To focus on particular features, the analyst can filter and trace them
individually and in different directions in time. The granularity of the topological
abstraction can be changed at the given time steps with interactive controllers to
define appropriate values for the filter radii and the simplification thresholds.

Concerning visual aspects, the visualization is currently limited to showing a
few time steps in a single image because the representation is not yet optimized.
This limitation results from showing the complete function and more properties
per feature and time step than competing techniques—which show tracking graphs
of single isolevel sets without any feature properties—and from adapting existing
approaches rather than using a visual representation optimized for time-varying trees.
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The optimal depiction of time-varying merge trees, i.e. dynamic trees with several
properties for nodes and edges, remains an open question. However, the proposed
visualization design is flexible in that it can easily be modified. For example, a
less complex visualization, e.g. in two dimensions, could be obtained by discarding
some of those supported properties that are less relevant for a particular application
domain.

For tracking superlevel sets of the input scalar function, the context of the
complete function, as indicated by the silhouettes of the profiles, is helpful to find
interesting thresholds. Nevertheless, a drawback of the current implementation is that
changing the threshold ε requires to repeat the merge tree transformations in order
to update the tracking graph for another superlevel set. This is an indirect drawback
of the transformation itself, and could be countered by a persistent data structure to
accelerate superlevel set extraction (cf. Chapter 6.6 on page 162). Changing ε and
updating the intersection lines on the hills to identify and compare other superlevel
sets and the approximated size of their components at the given time steps still
happens in real-time.
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Chapter 8

Application: Temporal Clustering

The computation and visualization of the time-varying merge tree are independent
from a specific application. The required input only consists a of set of scalar
functions defined on an arbitrary dimensional grid. One example application for the
topology of high-dimensional, time-varying scalar fields is temporal cluster analysis.
Similar to reducing the problem of studying a high-dimensional, but time-invariant
point cloud to the study of a scalar field given by the point cloud’s density, this
approach can be extended by abstracting a dynamic point cloud by its varying
density function and analyzing its merge tree topology over time. Exemplary for
various applications that use a vector representation to encode multiple properties
and semantic behavior of domain entities, the challenging task then is to determine
and track clustering structure in the high-dimensional space and to illustrate the
evolution of high-dimensional features appropriately on the screen.

This chapter explains how timesliced point data can be turned into a dynamic
density function to be analyzed topologically with the time-varying merge tree. We
use categorized documents and consider document analysis as an instance of temporal,
high-dimensional cluster analysis. Building on the ideas to analyze time-invariant
text data, documents assigned with meta-information about time are represented in
the vector space model to analyze changes in the thematic composition over time.
Starting with an initial set of documents, we visualize topic evolution—reflected
by changing clusters—by continuously adding new documents. Contained topics as
well as their evolution and the relation between them are finally visualized with the
landscape metaphor augmented with visual links as described in Chapter 7.
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8.1 Related Work

For point cloud data, Turkay et al. [164] present a system to explore time-varying
clusters along with their structural properties, but this splits information into
multiple views that need to be integrated in the mind of the analysts. In contrast,
our visualization technique shows all relevant metrics in the same view as the cluster
evolution. In subsequent work, von Landesberger et al. [108] present a system
for visualizing spatially-referenced dynamic categorial data, i.e., trajectories that
have a time-varying category. This method, representative of a much larger body
of 2-D trajectory and univariate time-series data, usually defines clusters between
trajectories, but our document data is modeled as single points in high-dimensional
space over time.

Topic tracking developed several visual designs that are able to indicate feature
properties. ThemeRiver [73] and stacked graphs [22] show the varying importance
of document clusters over time. However, in the underlying model, clusters cannot
join or split, e.g., for diversifying topics. TextFlow [36] extends the stacked graphs
concept to show topic evolution as river-flows that join and split. But hierarchical
relations among topics cannot be communicated and showing more than one property
per topic has not been attempted, yet. Building on TextFlow, Cui et al. developed
RoseRiver [37] which allows users to progressively explore the complex evolution
of hierarchical topics. In a similar vein, Xu et al. [173] and Sun et al. [158] use
flow-like depictions with splitting and merging topics augmented with tag clouds
for visual analysis of topic competition and topic cooepitition (a combination of
“cooperation” and “competition”) of social media data over time. These designs are
based on a psychological model that assumes humans would put each real-world
object into exactly one category. Experiments have shown that there are no clear
category boundaries, e.g., that there is a smooth transition from cup to bowl, that
categories may nest, that each category has an ideal instance, and that instances
have a certain degree of membership with their category [142]. Studying the merge
tree of a point cloud’s density function seems to better match this model: it can
capture category nesting, has an integrated measure of membership degree, and local
maxima represent ideal instances. ParallelTopics [41] combines parallel coordinate
plots, scatterplots, and flow-like depictions of topics over time to permit effective
full text analysis of larger documents that may contain multiple topics based on the
probabilistic topic model Latent Dirichlet Allocation.
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8.1.1 Creating the Time-Varying Density Function

Because regular sampling is impractical in high-dimensional spaces, we approximate
the density function in a similar way like in the time-invariant case (cf. Chapter 3).
That is, to obtain a sufficiently accurate sampling scheme to identify region count,
nesting, and region properties, we first determine the densities at all input point
positions. After connecting these points with a neighborhood graph, missing saddles
are upsampled, i.e. inserted at the midpoint of a graph edge if the density at this
point is lower than at the edge’s end-points.

For time-varying data, this sampling scheme is extended as follows: To make
the computation of the time-varying merge tree tractable, we construct a grid that
remains unchanged over time, but still supports sampling the density functions of
all time steps with sufficient accuracy. First, we merge all input point clouds into a
single set of points whose positions act as grid vertices. This makes it possible to find
all regions of high density in any time step. To detect separated regions, we connect
the vertices with a neighborhood graph, determine vertex densities and upsample
midpoints of grid edges if necessary. The density estimation of the global graph
depends on a filter radius σglobal. Note that a too large filter radius combines clusters,
while a σglobal too small splits clusters and can even assign every data point to its
own cluster. Because the choice of this parameter is vital, we provide the analyst
with a filter radius suitability controller (cf. Chapter 5.2.1) to find an appropriate
threshold efficiently. Using the global, up-sampled graph as the constant grid, we
iterate through all time steps and determine the individual density functions based
on those points with earlier time stamp.

Note that any change in scalar function at time step i requires to repeat the
merge tree transformations between time steps i− 1 and i, and between time steps
i and i+ 1. While our implementation defaults to using the same filter radius for
all time steps, it is also possible to use different filter radii for each time step, e.g.
for local analysis of a particular feature at finer granularity, or to combine multiple
features to reduce visual complexity if a particular time step is more complex than
others. However, if the density functions for each timeslice are estimated with
different filter radii, the density function of the global grid has to be estimated with
σglobal = min(σi) to ensure both a constant grid for the merge tree transformations
and that the missing saddles are found in all time steps.
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8.1.2 Analysis of Document Collections

The literature for natural language processing knows many models and techniques to
define text features and to describe, process, and finally visualize otherwise difficult
to analyze, unstructured text data. One popular approach, called the vector space
model [144], represents a document collection as vectors in a space with words
as dimensions. Documents that share vocabulary will accumulate to (sub)clusters
and thus their topical composition is mapped to the clustering structure of the
high-dimensional point cloud (cf. Chapter 4.5.3 on page99). Specifically for time-
dependent text data, analyzing the vector space model aims at studying how topics
appear, grow or shrink, how they join as a result of documents that combine word
usage that was topic-exclusive before, or how topics split because new documents
contain subsets of topic-related words and thus accumulate to groups in particular
subspaces, e.g. if a new product is presented for an established technology branch.

New York Times Data Set

The data used in the first experiment consists of ten days of news data from September
2001 and comes from the New York Times Annotated Corpus [147]. It comprises 2 610
documents with V = 346 996 unique words. Preprocessing includes normalization of
number and currency occurrences as well as removal of the most frequent stop words.
To counter issues of the Gaussian kernel with the curse of dimensionality in too high-
dimensional spaces, we use Latent Dirichlet Allocation [16] to project the document’s
dimensionality V down to a space of K = 30 latent semantic concepts. Latent
Dirichlet Allocation is a hierarchical Bayesian model that describes documents as
multinomial distributions over K topics and each topic as a multinomial distribution
over the V unique terms. A separate Dirichlet prior is placed on both distributions.
More precisely, we used an online version [78] of the original algorithm to successively
fit each day of news data to the model and re-inferred the document distributions
of each day after learning the latent topics. This process results in K-dimensional
document vectors that are assumed to accumulate in the vector space model if they
share one or more semantic concepts.

Using the relative neighborhood graph to approximate the vertex neighborhood,
we create the time-varying density function with σglobal = 0.5 as described in Chap-
ter 8.1.1. The global grid consists of 4 862 vertices (including 2 358 upsampled
positions) and 5 696 edges. The merge tree transformation times range from 0.2 to
1.3 seconds on our machine with two 2.6 GHz quad-core processors. Because the
transformations run concurrently, the total time to analyze the data and to construct
the visualization takes around 2.5 seconds. The topologically most complex trans-
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formation (from the first to the second time step) requires to process up to 650 000
superarc collapses, of which around 490 000 represent (optimized) transpositions
of two regular nodes that do not change the number of superarcs, i.e. the density
function’s topology as described by the merge tree.

Figure 8.1 shows an image of the time-varying merge tree applied to the 30-D
density function. The ten landscape profiles reflect the thematic composition of the
documents from September 7th until September 16th. Hills represent dense regions
in the topic space, i.e. accumulations of documents that share thematic concepts.
Based on a hill’s shape, the analyst can approximate the extent of the corresponding
high-dimensional cluster: if documents are very similar, they accumulate to compact
groups of high density. Furthermore, the ratio between a cluster’s size and its
density can approximate the cluster’s spread and thus its topical preciseness or
generality. These properties are conveyed by the hills’ width and height values.
Because at each day only those documents with an earlier time stamp contribute
to this time step’s density function, the width of the profiles increases over time to
reflect increasing cluster sizes. The main insight taken from this example is that until
the 9/11-attacks appeared in the news on September 12th, the topical composition
was stable and clusters primarily grew in terms of their size and density. This is
because newly arriving documents are mostly added to already existing topics. The
sudden structural shifts in the profiles starting on September 12th back up what
would be expected to happen in the topic space: while some topics unrelated to
the attacks stop growing, a few other topics dominate. While some topics join into
new hierarchies because their context suddenly changes, also new topics appear
and become very prominent over time. An example is indicated by the hill marked
with a star in the last landscape profile in Figure 8.1. This hill initially appears
on September 12th on another hill and then grows continually, while its parent hill
stops growing. A further inspection of the corresponding documents reveals that
the documents belonging to the hill until September 12th are about obituary. While
this topic was also relevant for the daily newspaper before the attacks, starting
from September 12th, obituary-related documents also start to contain words closely
related to the attacks or companies and people that resided in the towers. This
extension in word usage causes new document vectors to spread into a subspace of
the obituary documents. However, because they still share dimensions (words) with
other vectors of that topic, they accumulate to a subcluster of the obituary topic,
represented by a sub-hill on the parent topic’s hill in the landscape profile.

The semantic insights provided by the vector space model are rather limited. For
features that are more complex than the thematic composition, the application of
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Figure 8.1: Ten days of New York Times newspaper data from September 2001
showing the changes in the thematic composition for the days before and after the
9/11-attacks: Hills on a profile describe clusters of documents that share one or more
concepts and thus accumulate in the topic space. The increasing width and height of
the profiles reflects that data size, and thus individual densities, increases over time
because documents are added on a daily base. While topics are stable and primarily
grow until September 11th, from September 12th structure apparently changes.
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competing topic models and adapted visualizations, such as TextFlow [36], certainly
permits deeper insights regarding language processing aspects. Nevertheless, since
visual analysis of document data represented in vectorized format indeed is a typical
use case, the topological approach has distinct advantages over competing techniques,
like projections: First, the occlusion-free clustering depiction of the landscape profiles
supports to illustrate temporal feature evolution clearly; a task difficult to perform
with occlusion-prone scatterplots, especially for time-dependent point data. Second,
the topological view provides an implicit and meaningful topic alignment by respecting
their hierarchy and by placing related topics next to each other. Arranging the topics
is also a problem for river-like visualizations like ThemeRiver [73] and TextFlow [36];
which furthermore do not reflect hierarchy and can display only one topic property.
Finally, the topology-based definition, preservation and illustration of cluster quality
measures allows the analyst to inspect changing topics at higher detail and to simplify
the structural view based on these properties.

As for the visualization, the analyst can filter the evolution of single topics by
interactive selection of individual hills. To focus on a particular topic, the granularity
can also be adjusted by using different thresholds for the filter radius and to simplify
the structural view on the data. Specifically for document analysis, a sophisticated
annotation could be implemented to provide additional information. For example,
thematic descriptors could be placed above the hills—which, however, is not trivial
to implement in the above example because topics are multinomial distributions
over the vocabulary and because documents can also belong to multiple thematic
concepts. Furthermore, the visual design is still flexible to discard some topological
information. Although the properties defined by the time-varying merge tree aim to
make the topological analysis generally applicable, specifically for document data,
the visualization could be adapted by discarding some properties. For example,
by focusing only on topic hierarchy and on the number of documents per topic,
hills in the profiles can be reduced to showing only the baselines. That is, by
discarding the information about a hill’s shape and its height, it is possible to
reduce the dimensionality of the visualization to two dimensions. This would also
reduce clutter caused by the visual links between the profiles and would allow for
another link representation. For example, colored rivers per topic could be used for
a flow-like metaphor to indicate the evolution of topics and their size over time, like
in TextFlow [36]. However, while the merge tree hierarchy could define a meaningful
topic layout in this case, the problem of crossing rivers would still remain. In fact,
because rivers would have a larger breadth than simple lines, the amount of occlusion
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and clutter caused by differently colored rivers of varying width could also complicate
tracing them visually.

Reuters Data Set

The second example data consists of categorized documents from the Reuters-21 578
collection [7] that appeared on the Reuters newswire in 1987. This time-varying
Reuters data set is similar to the static Reuters data set (cf. Appendix A.7) in
that it originates from the same source of documents but additionally considers
the articles’ time of appearance to group them into timeslices. To demonstrate
accurate feature tracking in high-dimensional spaces, we extract documents for ten
economy-related categories (“acq”, “earn”, “money-fx”, “grain”, “trade”, “interest”,
“ship”, “wheat”, “corn”, “crude”). The documents are preprocessed by removing
stop words and using the tf-idf [143, 144] document-term weighting to define word
importances for each dimension in the vector space model. To avoid problems with
the curse of dimensionality in spaces with ten-thousands of dimensions, we use Linear
Discriminant Analysis (cf. Chapter 2.2.1 on page 15), a supervised projection that
uses given classification information per document to minimize information-loss, and
project the data to a (numClasses− 1 = 9)-dimensional space. The data set finally
consists of 5 309 documents, manually divided into eight time slices, 20 days each,
from 02/21/1987 to 10/19/1987.

Figure 8.2 shows a visualization of the time-varying merge tree of the Reuters
data set. The global filter radius is σglobal = 0.3 and the total time to obtain the
image is around one second. The most complex transformation required processing
approximately around 33 000 superarc collapses. Because classification information
is available for the documents, we can augment the data points as colored histograms
on the hills to indicate how documents of different classes are distributed across
the clusters. As indicated by the color distribution of the histograms, dense regions
primarily match to documents of a single class, while some documents of related
classes are in a subcluster relationship. The valleys between the hills of unrelated
topics are typically low because they reflect the density between the corresponding
clusters. Likewise, for related topics, like “grain”, “wheat”, and “corn”, the subspace
spanned by the vocabulary used in these documents is more scattered and also
contains less specific documents that lead to higher saddle densities. The rectangular
shape of the hills suggests that clusters are compact in the sense that document
densities are close to the cluster’s maximum density. This is also indicated by the
placement of the histograms close to the hilltops and reflects that these documents are
fairly similar in terms of their content. The landscape in Figure 8.2 was constructed
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Figure 8.2: Logarithmized visualization of the time-varying merge tree based on the
Reuters data set: The hills and the visual links between the profiles indicate how
document groups evolve over time. The colored histograms indicate that documents
primarily accumulate by class and form subclusters for related categories. The
document collection is stable in that, over time, document groups primarily grow in
size and density, while some subclusters break apart and grow individually.

by taking the logarithm of each superarc’s size to narrow the hills and the slopes. This
can be useful to obtain a more convenient overview if the data contains many features
of very different size. Taking the logarithm then accentuates small features and
attenuates large ones. In contrast, Figure 8.3 shows the same visualization without
taking the logarithm. Although the correct depiction of feature size facilitates more
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Figure 8.3: Unlogarithmized visualization of the time-varying merge tree based on
the Reuters data set: Compared to the logarithmized version of the time-varying
merge tree in Figure 8.2, without taking the logarithm of each superarc’s size, it is
harder to identify the colored histograms and to detect and trace small features.

accurate feature comparison, it also becomes harder to identify the data glyphs and
to detect and trace small features visually. Regarding the temporal evolution of
the features, dense regions are primarily stable, but grow in size and persistence.
Furthermore, some clusters split occasionally into more subclusters that become
increasingly prominent. This reflects that, over time, newly arriving documents are
primarily added to the already existing topics, while some documents slightly deviate
from the main topics and create sub-topics on their own.
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Figure 8.4: Tracking graph of a superlevel set based on the Reuters data set:
Analyzing superlevel set components of the density function in the topic space is
useful to analyze those documents groups that are similar enough to produce a
predefined thematic relevance. The tracking graph then reveals at which times
document groups start/stop containing this threshold. The visual context of the
complete function, furthermore, helps to identify interesting thresholds.

Tracking superlevel sets in the topic space helps the analyst to track features
regarding a predefined density threshold. In terms of the vector space model this
means to analyze those topics and sub-topics whose documents are similar enough
to produce a minimum thematic relevance. This happens when similar documents
are close to each other in the topic space and produce accumulations of high density.
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Then, a region’s density can be thought of as topic’s distinctness or significance and
analyzing superlevel sets of the function segments the thematic composition relative
to the selected relevance threshold. This can be used to identify and track those topics
that are not necessarily persistent, but whose documents are still sufficiently similar
to satisfy a defined minimum importance. Figure 8.4 shows a tracking graph of the
function and reveals how the document groups evolve in terms of the pre-selected
minimum group coherence. The tracking graph and the individual superlevel set
components disclose that not all features exhibit this minimum coherence in the
first time steps. However, over time, superlevel set components grow in size and
more and more topics also pass this threshold. The visual context of the complete
function still reveals those features that are not captured by the adjusted threshold.
Based on this information, the analyst can change the threshold to focus on these
features. The context provided by the silhouettes also summarizes how the topics
are distributed for other thresholds. This is useful to find out the thresholds for only
the most prominent features. Finding these interesting and relevant thresholds in
the first place is difficult for other techniques that only track and show the temporal
evolution of single isolevel sets without additional knowledge about the context of
the complete function.

8.2 Conclusion and Discussion

We showed the utility of the time-varying merge tree using two real-world text
data sets and tracked topics in document collections that change with time. This
required the transformation of high-dimensional point clouds into a time-varying
scalar function. Although the time-dependent merge tree algorithm can work with
streaming data on-line, this is not the case for the preprocessing necessary to turn
point clouds into scalar fields. Here, we currently unify the neighborhood graphs of
all time steps to have a consistent domain. This is necessary because the number
of nodes in the merge tree must not change during the transformation. It would
be attractive to remove this restriction of the merge tree algorithm to constant
domains so that, for the application of temporal cluster analysis, we can also have a
streaming solution. However, this would also require an optimal solution to update
the neighborhood graph for new points efficiently; which is still an open problem.

Tracking topics in document collections and visualizing their evolution over time
is a reasonable application to demonstrate the utility of the time-varying merge tree
for high-dimensional, temporal clusters analysis. However, even though the vector
space model has a long standing in language processing, the semantic insights of
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this document representation are rather limited. This implies that the semantic
knowledge taken from the topological analysis are limited as well, which is also due
to the fact that this model was chosen by availability rather than being state of the
art. Therefore, instead of extracting new knowledge by analyzing the information
space topologically, our major goal was to demonstrate that the time-varying merge
tree can indeed identify, track, and finally illustrate otherwise hard to detect and
visualize high-dimensional scalar field structure. From these considerations it follows
that, even though the landscape metaphor can depict topics as hills, domain experts
may require additional instruction and guidance in steering and reading the output of
the time-varying merge tree. Still, since providing a thematic overview is a common
vantage point for detailed document analysis, the topological analysis in combination
with the vector space model can still be helpful to reveal the thematic composition
over time, and to analyze other semantic aspects with competing topic models on
demand in a linked view.
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Chapter 9

Thesis Conclusion

The contribution of this thesis is a novel topology-based approach for visual analysis
of high-dimensional point clouds for both time-invariant and time-varying data. By
abstracting the input data by a simpler representation, namely the point cloud’s
density function, the focus is shifted away from the points themselves to a more
structure-based perspective that is easier to determine and describe. Furthermore, the
topological description of this surrogate permits a more accurate and occlusion-free
depiction of global clustering structure; compared to competing standard methods
like, e.g., lossy projections or complex and sometimes difficult to interpret parallel
coordinate plots. These techniques are prone to visual complexity and structural
occlusion in the sense that actually separated features often overlap in the final
visualization. This easily leads to wrong and delusive insights about the data
on the user’s side. The introduced topology-based approach makes effective and
elegant contributions for showing the structure of high-dimensional point data
from the information visualization and the visual analytics point of view. As for
information visualization, the global overview as a landscape extends the set of
available techniques in that it shows the clustering as it occurs in the original
domain. This improves the quality and the reliability of the visualization. Regarding
visual analytics, which often focuses on interactive and incremental analysis loops
performed manually by the analyst, we also extended the topology-based global
overview to an interactive analysis tool. This framework helps users in finding
appropriate parameters and also allows for local feature inspection on demand in
linked views. These advancements expand the set of available tools for visual and
interactive exploration of high-dimensional clustering structure. We also showed how
the presented approach can be combined with supervised projections to simplify
the data’s complexity and how this combination can improve competing two-stage
projections, such as the one proposed by Choo et al. [30]. While this thesis did not
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focus much on the application-dependent “insights” described by the clustering, its
contribution is rather the potential to make this structure visible in the first place;
making the approach useful for many applications. With document analysis, we
gave one example application for high-dimensional clusterings. However, the vector
space model was only picked for availability rather than being state of the art, as
it is not necessarily the most suitable representation for text data when it comes
to explanatory power and interesting insights (content-wise). Beyond this specific
application, the topological approach makes valuable contributions to other fields,
like visual analysis of high-dimensional point data, visualizing high-dimensional
scalar field topology, topology-based visualization metaphors, temporal clustering of
high-dimensional point clouds, and studying the changing topology of time-varying,
high-dimensional scalar fields. In general, the presented solutions are applicable
when analysts desire the clustering structure of high-dimensional point clouds or the
topology of high-dimensional scalar fields, as defined by the merge tree.

Concerning scalability issues, the topological approach admittedly does not scale
well for “big data”, i.e. millions of points in thousands of dimensions. This limitation
primarily results from the necessity to approximate high-dimensional neighborhood
relationships with rather expensive neighborhood graphs, and from relying on sim-
ilarity measures that have intrinsic problems with the data’s dimensionality (i.e.,
the “curse of dimensionality”). However, for the supported data complexity, which
is specified to approximately 100 000 points in around 100 dimensions (including
optimizations), the main advantage of the topological approach over competing tech-
niques is that for these data sizes, the final depiction of clustering structure is more
accurate and, most importantly, independent from the data’s size and dimensionality.
Nevertheless, there is still huge potential for improvements. This primarily includes
the usage of more sophisticated sampling strategies to reduce the input data, faster
neighborhood graph construction, using sparser graphs (like the unconnected nearest
neighbor graph), applying other filter kernels to control the accuracy of the density
function, utilizing increased parallelism (maybe on the GPU to exploit extreme
numbers of processors), or supporting other topology-based or even geometric cluster
properties, like approximated shape.

The extension of the topological approach to time-varying data also makes valuable
contributions for the analysis of varying high-dimensional scalar functions without
being dependent on the data’s dimensionality itself. Related work about time-varying
scalar field topology is also advanced by extending it to higher dimensions and by
tracking and visualizing both features defined by superlevel set components and those
defined by complete superarcs. Previous work only considered isolevel sets in low
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dimensional spaces. Concerning the visualization, the depiction of changing structure
as concatenated 2-D landscape profiles admittedly requires some familiarization with
the topological concepts involved. However, the design is not yet optimized for a
specific application, but instead aims to convey the complete information provided
by the time-varying merge tree. The proposed prototype is still flexible enough
to be adjusted for a particular application, e.g., by discarding some properties to
obtain a simpler or more instinctive depiction. There is also room for improvements
regarding the construction and visualization of time-varying merge trees. This
primarily concerns the restriction to constant domains during the transformation,
but also the visual metaphor used to depict changing structure. While solving the
latter problem likely requires more research on the information visualization side,
i.e. by finding novel techniques to visualize dynamic trees with multiple properties
per edge and node, solving the restriction to constant domains requires to find
new strategies to update the high-dimensional neighborhood graph and the density
function efficiently for each additionally added data point.

Despite these limitations and the outlined future work (also see the conclusions
of the individual chapters), the research results presented in this thesis were very
much appreciated by the scientific community. The underlying publications were
cited frequently by other leading groups and were presented in the most relevant
journals and at reputable conferences of the target community. Earlier work of
the project also stimulated other scientists to pick up this problem and to conduct
successful research based on the key ideas of our initial results; like approximating
high-dimensional neighborhood efficiently with neighborhood graphs as a viable
alternative to impractical regular grids.
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Appendix A

Data Sets

The topological visual analysis presented in this thesis is demonstrated and validated
based on various example data sets of different size and dimensionality. The used
data sets originate from different application domains and their thematic diversity
aims to expose the algorithm’s utility for high-dimensional data in general. The data
sets were selected primarily based on their characteristics in order to demonstrate the
advantages of the topology-based visualization over competing techniques, to discuss
runtime and memory consumption issues, and to reveal limitations regarding the
input data’s size and complexity. While the real-world data sets used in this thesis
were gathered together from the relevant online repositories, we also generated some
data sets manually for demonstration purposes. In case of artificial 2-D data, we
used a standard graphics editor to directly draw the desired point clouds as an image.
For high-dimensional data sets, one can easily make use of convenient generators [3,
21, 70] to create synthetic clusterings. This appendix introduces all data sets used
in this thesis and provides further information about their semantics, origin, and
properties. Table A.1 summarizes their relevant characteristics.

Table A.1: Summary of the data sets and their quantitative properties.

name points dimensions classes
artificial 2-D data set 31 834 2 15
artificial 100-D data set 127 995 100 21
image segmentation data set 2 310 19 7
Isolet speech recognition data set 7 797 25 26
Italian olive oils data set 572 8 9
Iris plants data set 150 4 3
Reuters newswire data set 800 9 10
Medline medical text data set 1 250 22 095 5
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A.1 Artificial 2-D Data Set

Figure A.1: Artificial 2-D data set. The purpose of the artificial 2-D data
set is to describe a clustering scenario
with as many feature properties as pos-
sible. The data set was generated manu-
ally with a graphics editor and the data
points are stored in an image as non-
white pixels at the location of their cor-
responding pixel positions. Pixel colors
indicate the cluster affiliation of the re-
spective data points. The data set con-
sists of 31 834 points and contains sev-
eral clusters of different extent, number
of points, compactness and shape. While

some of the clusters are partially intertwined, others contain each other. Furthermore,
equally distributed black pixels represent noise in the clustering. Although black
pixels inside the clusters actually contradict the definition of noise, their distribution
is primarily for demonstration purposes. The point cloud has an extent of 800x800
pixels; the smallest possible distance between two points is one pixel. The major
advantage of the artificial 2-D example data set is that we can illustrate intermediate
results to improve the reader’s understanding of the involved topological concepts.
This data set is used in Chapter 3.5.1 (on page 53), in Chapter 4.5.1 (on page 86),
and in Chapter 5.5.1 (on page 129).

A.2 Artificial 100-D Data Set

The artificial 100-D data set was created with a clustering generator described
by Handl et al. [70]. The generator uniformly arranges multinomial distributions
in an arbitrary dimensional space, allowing different standard deviations for each
dimension. Each data point is provided with meta-information about the name and
the color of its corresponding cluster. The point cloud contains 20 clusters of varying
size (number of points) and extent; having a total number of 85 330 data points.
Furthermore, we added an extra 50% amount of (red) noise points; leading to a final
data size of 127 995 points in 100 dimensions. The purpose of this artificial data set
is to demonstrate both the strengths and limitations of the topological approach
and to compare our topology-based visualization with competing techniques for
high-dimensional point data. Figure A.2 shows the principal component analysis
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(a) (b)

(c) (d)

Figure A.2: Artificial 100-D data set: (a) PCA projection with a projection error of
approximately 95% and (b) a parallel coordinate plot showing the data points with
their corresponding colors. In both visualizations, clusters are difficult to identify
and compare. (c)-(d) Rendering geometric primitives (i.e., points and lines) with
lower opacity per pixel accentuates the dense regions. This strategy slightly increases
the number of visible point accumulations but still shows only around half of the
truly existing clusters. The clustering structure conveyed by both visualizations is
still misleading.

Table A.2: Properties and meta-information of the artificial 100-D data set.

number of points

20
cl

as
se

s + class1 6 421 + class2 5 704 + class3 4 159 + class4 3 208
+ class5 4 431 + class6 3 807 + class7 3 585 + class8 3 919
+ class9 5 668 + class10 2 832 + class11 5 139 + class12 2 761
+ class13 4 681 + class14 3 129 + class15 4 546 + class16 4 070
+ class17 5 225 + class18 3 873 + class19 4 051 + class20 4 121

total: 85 330

no
ise + 42 665

total: 127 995

(PCA) and a parallel coordinate plot (PCP) using different transparency thresholds.
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It is obvious that these standard techniques have severe issues with illustrating
the clustering structure of this data set appropriately. Table A.2 provides meta-
information about the individual clusters and the composition of the complete data
set. This data set is used in Chapter 3.5.2 (on page 61), in Chapter 4.5.1 (on page 94),
and in Chapter 4.5.2 (on page 98).

A.3 19-D Image Segmentation Data Set

(a) (b)

Figure A.3: 19-D image segmentation data set: (a) PCA projection with a projection
error of approximately 35.76%, i.e., preserving only 64.24% of the point cloud’s
variance in the original domain. (b) A parallel coordinate plot of the same data set.
The axes are sorted according to the attribute order as defined by the data set.

In the image segmentation data set from the UCI machine learning repository [7],
each instance represents a 3x3 pixel region drawn randomly from a database of
seven outdoor images. The images were handsegmented to create a classification
for every region using the following classes: “brickface”, “sky”, “foliage”, “cement”,
“window”, “path”, “grass”. Each instance has 19 attributes that describe various
features like the position of a region’s center pixel, line densities, edge detection,
contrast, and color values. There are 330 instances per class, which makes a total of
2 310 instances. Figure A.3 shows a PCA projection and a parallel coordinate plot for
this data set. While both techniques reveal a few clusters primarily as accumulations
of different colors, the exact clustering remains largely unknown. This data set is
used in Chapter 3.5.2 (on page 60), in Chapter 4.5.1 (on page 92), in Chapter 5.2
(on page 110), in Chapter 5.4.2 (on page 126), and in Chapter 5.5.1 (on page 132).
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A.4 25-D Isolet Data Set

(a) (b)

Figure A.4: 25-D Isolet data set: (a) The Rank-2 LDA projection with a projection
error of approximately 58%. Although the color distribution suggests multiple
clusters, the spatial point distribution can only reflect four or five clusters. (b) The
parallel coordinate plot suggests more clusters than the projection, but individual
clusters and their properties are still difficult to identify and compare.

In the Isolated Letter Speech Recognition (Isolet) data set from the UCI machine
learning repository [7], 150 subjects spoke the name of each letter of the alphabet
twice; thus producing 52 samples for each speaker. From the 7 797 recordings—three
examples are missing due to difficulties in recording—a total of 617 attributes were
extracted from the pronunciation of each letter. These attributes include spectral
coefficients, contour features, sonorant features, pre-sonorant features, and post-
sonorant features. The collection of all attributes is described in more detail in the
paper by Cole and Fanty [54]. All attributes are continuous, real-valued attributes
scaled into the range [−1.0, 1.0]. The exact order of appearance of the features is
not known. One additional attribute indicates the class, i.e. the spoken letter, of
each sample record. However, this attribute is not used in the vector representation
of the samples.

To cope with the curse of dimensionality (cf. Chapter 2.1.1) in high-dimensional
spaces, but also to enable visual comparison with competing techniques, we do not
use the Isolet data set in its original 618-dimensional space. Instead, we project it
into a lower-dimensional space using linear discriminant analysis (LDA), a supervised
projection that uses classification information to minimize information-loss in an
optimal (numClasses− 1)-dimensional space (cf. Chapter 2.2.1). LDA strives to
preserve clustering structure by minimizing intra-class distances and maximizing
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inter-class distances in the reduced dimensional space. Having a total of 26 classes,
the projected Isolet data set finally consists of 7 797 points in a 25-dimensional space.
Figure A.4 shows the Rank-2 LDA projection (cf. Chapter 2.2.1) and a parallel
coordinate plot of the Isolet data. This data set is used in Chapter 2.2.3 (on page 19),
in Chapter 3.5.2 (on page 60), and in Chapter 5.5.1 (on page 133).

A.5 8-D Italian Olive Oils Data Set

(a) (b)

Figure A.5: 8-D Italian olive oils data set: (a) In the PCA projection (with a
projection error of approximately 29.59%) and in (b) the parallel coordinate plot,
clusters are indicated primarily based on equally colored accumulations whose
hierarchy and spatial relation is otherwise hard to identify due to the projection
error and occlusion artifacts. Individual cluster properties can only be estimated
because it is infeasible to identify and count all data items manually.

In the Italian olive oils data set, 572 olive oil samples from different growing areas in
Italy were analyzed chemically. There are nine collection areas from three primary
regions: four from Southern Italy (North and South Apulia, Calabria, and Sicily),
two from Sardinia (Inland and Coastal), and three from Northern Italy (Umbria,
East Liguria, and West Liguria). The data consists of the percentage composition
of eight fatty acids (palmitic, palmitoleic, stearic, oleic, linoleic, linolenic, arachidic,
eicosenoic) found in the lipid fraction of the olive oils. An analysis of this data is
given by Forina et al. [57]. A statistical investigation of the data in the case study
“STAT 503X Case Study 2: Italian Olive Oils” 1 reveals that southern oils have
much higher eicosenoic acid on average eicosenoic and slightly higher palmitic and
palmitoleic acid content. The north and sardinian oils have some difference in the

1http://www.public.iastate.edu/ dicook/stat503/05/cs-olive.pdf
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average oleic, linoleic, and arachidic acids. Among the southern oils, there is some
difference in most of the averages. Northern oils have some difference in most of
the averages. Figure A.5 shows the PCA projection and a parallel coordinate plot
for this data set. The images reveal some clusters but hide the correct relationship
between them. We use this data set to demonstrate that our topological analysis
is able to detect and confirm that the olive oils, or more precisely the composition
of their fatty acids, cluster based on their growing regions. This data set is used in
Chapter 3.5.2 (on page 60), in Chapter 4.5.1 (on page 89), and in Chapter 4.5.2 (on
page 97).

A.6 4-D Iris Plants Data Set

(a) (b)

Figure A.6: 4-D Iris flowers data set: (a) The PCA projection (with a projection error
of only 3%) and (b) the parallel coordinate plot reliably reflect the already known
relationship between the tree clusters of the Iris flowers. Nevertheless, comparing
individual cluster properties, like compactness or size, is difficult because points
would need to be counted manually and because value distributions need to be
evaluated on the PCP axes.

The Iris flower- or Fisher’s Iris data set (named by Sir Ronald Fisher who introduced
it) [7] is one of the most popular examples in pattern recognition. The data consists
of 50 instances from each of three types of Iris flowers: Iris setosa, Iris virginica
and Iris versicolor. Four features were measured from each sample: the length and
the width of the sepals and petals, in centimeters. It is known that one class is
separable from the other two; while the latter are not separable from each other.
Having only 150 instances and only four dimensions, this is a rather small data set.
However, because it is cited frequently in the literature and often used to compare
competing visualizations for higher-dimensional data, we also use this data set to
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demonstrate how already established knowledge can be recovered and visualized with
the presented topological approach. Figure A.6 shows the PCA projection and a
parallel coordinate plot. Although both visualizations reflect the described structure
reasonably, it is still difficult to determine and compare individual properties like
cluster size. This data set is used in Chapter 3.5.2 (on page 60) and in Chapter 4.5.1
(on page 88).

A.7 9-D Reuters Data Set

(a) (b)

Figure A.7: 9-D Reuters data set: (a) The Rank-2 LDA projection (with a projection
error of approximately 56% from the intermediate 9-D space) of a subset of the
original Reuters-21 578 data set. The projection reveals a fairly good clustering,
but also shows two clusters that contain points of mixed classes. (b) The parallel
coordinate plot reveals that some of the mixed accumulations, like the one containing
the orange points, are actually separated. This is not visible in the projection.
Because the correct relation between the clusters is hidden in both visualizations, it
is difficult to identify and compare individual clusters.

The Reuters-21 578 Text Categorization Collection data set is available in the UCI
machine learning repository [7]. The documents appeared on the Reuters newswire
in 1987 and were assembled and indexed with categories manually. For the sake of
comparison with other techniques, we use a reduced version of this collection that
was preprocessed and kindly provided by Choo et al. [30], who used this data to
demonstrate their introduced supervised projection techniques for high-dimensional,
clustered point clouds. The authors extracted 800 documents for ten economy-related
categories (“acq”, “earn”, “money-fx”, “grain”, “trade”, “interest”, “ship”, “wheat”,
“corn”, and “crude”). After applying language processing techniques to turn the raw
text data into vector space format, they end up with a point cloud consisting of
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800 points in a 3 907-dimensional space. In this thesis, we use a 9-D LDA-projected
version of this data set to demonstrate the advantages of our topological approach
over the combination of supervised projection techniques like, e.g., the Rank-2 LDA
to project the data down to 2-D (cf. Chapter 2.2.1). The data finally consists
of 800 points in a 9-dimensional space and each point is categorized with one of
the classes mentioned above. Figure A.7 shows the Rank-2 LDA projection and a
parallel coordinate plot. This data set is used in Chapter 2.2.3 (on page 20), in
Chapter 3.5.2 (on page 60), in Chapter 4.2 (on page 72), in Chapter 4.3 (on page 78),
in Chapter 4.5.2 (on page 97), and in Chapter 5.5.2 (on page 137).

A.8 4-D Medline Data Set

(a) (b)

Figure A.8: 4-D Medline data set: (a) PCA projection with a projection error of
approximately 38% from the intermediate 4-D space (that results from the LDA
projection from the original space). (b) A parallel coordinate plot showing in which
dimensions the clusters differ. Although the data set is quite small and simple, the
2-D projection still only reveals four of the five existing clusters.

The Medline data set is a text collection related to medical science from the National
Institutes of Health. The data was generated manually and kindly provided by
Choo et al. [30], who selected 500 documents for five topics (“heart attack”, “colon
cancer”, “diabetes”, “oral cancer”, and “tooth decay”). After performing natural
language processing techniques to turn the text data into vector format, the data set
finally contains 1 250 points in a 22 092-dimensional space. In this thesis, we use two
versions of this data set. The original data to demonstrate the effects of the curse of
dimensionality in very high-dimensional spaces, and a Rank-2 LDA projected version
to evaluate runtimes issues of the presented topological analysis. This data set is
used in Chapter 2.1.1 (on page 14) and in Chapter 3.5.2 (on page 60).
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[50] S. Eichelbaum, M. Hlawitschka, A. Wiebel, and G. Scheuermann. Open-
Walnut - An Open-Source Visualization System. Proceedings of the
6th High-End Visualization Workshop. Ed. by W. Benger, A. Gerndt, S. Su,
W. Schoor, M. Koppitz, W. Kapferer, H.-P. Bischof, and M. D. Pierro. 2010,
pp. 67–78.

http://doi.acm.org/10.1145/2425296.2425323
http://doi.acm.org/10.1145/2425296.2425323


216 Bibliography

[51] N. Elmqvist, P. Dragicevic, and J.-D. Fekete. Rolling the Dice: Multi-
dimensional Visual Exploration using Scatterplot Matrix Naviga-
tion. IEEE Transactions on Visualization and Computer Graphics 14 (2008),
pp. 1141–1148. issn: 1077-2626.

[52] M. Ester, H.-. P. Kriegel, J. Sander, and X. Xu. A Density-Based Al-
gorithm for Discovering Clusters in Large Spatial Databases with
Noise. Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining. AAAI Press, 1996, pp. 226–231.

[53] B. Everitt, S. Landau, and M. Leese. Cluster Analysis. London: Arnold,
2001.

[54] M. A. Fanty and R. Cole. Spoken Letter Recognition. Advances in Neural
Information Processing Systems (NIPS). 1990.

[55] D. Fasulo. An Analysis of Recent Work on Clustering Algorithms.
Tech. rep. 01-03-02. Department of Computer Science and Engineering, Uni-
versity of Washington, 1999.

[56] J.-D. Fekete and C. Plaisant. Excentric Labeling: Dynamic Neighbor-
hood Labeling for Data Visualization. Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems. CHI ’99. Pittsburgh, Penn-
sylvania, USA: ACM, 1999, pp. 512–519. isbn: 0-201-48559-1.

[57] M. Forina, C. Armanino, S. Lanteri, and E. Tiscornia. Classification of
Olive Oils from their Fatty Acid Composition. Food Research and Data
Analysis (1983), pp. 189–214.

[58] S. Fortune. Computing in Euclidean Geometry. Ed. by D.-Z. Du and F.
Hwang. 2nd ed. Lecture Notes Series on Computing 4. World Scientific Press,
1995. Chap. Voronoi Diagrams and Delaunay Triangulations, pp. 193–233.

[59] S. Fortune. Voronoi Diagrams and Delaunay Triangulations. Handbook
of Discrete and Computational Geometry. Ed. by J. E. Goodman and J.
O’Rourke. Boca Raton, FL, USA: CRC Press, Inc., 1997, pp. 377–388.

[60] Y.-H. Fua, M. O. Ward, and E. A. Rundensteiner. Hierarchical Parallel
Coordinates for Exploration of Large Datasets. Proceedings of the
Conference on Visualization ’99. San Francisco, California, United States:
IEEE Computer Society Press, 1999, pp. 43–50. isbn: 0-7803-5897-X.



Bibliography 217

[61] Y.-H. Fua, M. O. Ward, and E. A. Rundensteiner. Structure-Based Brushes:
A Mechanism for Navigating Hierarchically Organized Data and
Information Spaces. IEEE Transactions on Visualization and Computer
Graphics 6 (2000), pp. 150–159. issn: 1077-2626.

[62] K. Fukunaga. Introduction to Statistical Pattern Recognition (2nd
ed.) San Diego, CA, USA: Academic Press Professional, Inc., 1990. isbn:
0-12-269851-7.

[63] G. W. Furnas and A. Buja. Prosection Views: Dimensional Inference
through Sections and Projections. Journal of Computational and Graph-
ical Statistics 3 (1994), pp. 323–385.

[64] R. K. Gabriel and R. R. Sokal. A New Statistical Approach to Geo-
graphic Variation Analysis. Systematic Biology 18.3 (1969), pp. 259–270.

[65] E. Gansner, Y. Hu, and S. Kobourov. GMap: Visualizing Graphs and
Clusters as Maps. IEEE Pacific Visualization Symposium (PacificVis 2010).
2010, pp. 201–208.

[66] S. Gerber, P.-T. Bremer, V. Pascucci, and R. Whitaker. Visual Exploration
of High-Dimensional Scalar Functions. IEEE Transactions on Visual-
ization and Computer Graphics 16 (2010), pp. 1271–1280. issn: 1077-2626.

[67] M. Graham and J. Kennedy. A Survey of Multiple Tree Visualisation.
Information Visualization 9.4 (2010), pp. 235–252. issn: 1473-8716.

[68] P. Guo, H. Xiao, Z. Wang, and X. Yuan. Interactive Local Clustering Op-
erations for High-Dimensional Data in Parallel Coordinates. IEEE
Pacific Visualization Symposium (PacificVis 2010). 2010, pp. 97–104.

[69] J. Han and M. Kamber. Data Mining: Concepts and Techniques. The
Morgan Kaufmann series in data management systems. Elsevier, 2006. isbn:
9781558609013.

[70] J. Handl and J. Knowles. Cluster Generators for Large High-Dimensional
Data Sets with Large Numbers of Clusters.
http://dbkgroup.org/handl/generators. 2005.

[71] J. Hartigan. Clustering Algorithms. New York: Wiley, 1975.

[72] W. Harvey and Y. Wang. Topological Landscape Ensembles for Visu-
alization of Scalar-Valued Functions. Computer Graphics Forum 29.3
(2010), pp. 993–1002. issn: 1467-8659.



218 Bibliography

[73] S. Havre, E. Hetzler, P. Whitney, and L. Nowell. Themeriver: Visualizing
Thematic Changes in Large Document Collections. IEEE Transactions
on Visualization and Computer Graphics 8.1 (2002), pp. 9–20.

[74] C. Heine, D. Schneider, H. Carr, and G. Scheuermann. Drawing Contour
Trees in the Plane. IEEE Transactions on Visualization and Computer
Graphics 17.11 (2011), pp. 1599–1611. issn: 1077-2626.
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