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ABSTRACT  

 

 Run-of-river (RoR) hydroelectric dams are an increasingly common alternate energy 

source on mountain streams. Despite reductions in size and greenhouse gas emissions compared 

to conventional impoundments, RoR dams may have ecotoxicological impacts through 

disruption of the natural flow regime. The American Dipper (Cinclus mexicanus) is a high 

trophic-level river bird that occupies mountain streams year-round and is a well-described 

indicator of stream health; thus, it is an ideal species to study potential impacts of RoR 

hydropower on river food webs. From August 2014 to November 2015, I conducted seasonal 

river bird surveys at 14 streams in coastal British Columbia, Canada and sampled food webs at 

13 of these streams (7 regulated and 6 unregulated). Regulated streams create stable habitats that 

consequently supported significantly higher dipper densities (β=0.78, SE=0.36, p=0.030), a 

higher proportion of after hatch year (AHY) dippers, and consistent occupancy during breeding 

and non-breeding seasons compared with free-flowing streams.  

 Analyses of stable isotope ratios in dipper whole blood revealed strong model support for 

differences in blood isospace between regulated and unregulated stream types, likely driven by 

the significantly lower invertebrate δ34S below RoR dams (p=0.010) and 34S-depleted blood at 

regulated streams (β=-2.42, SE=0.95, p=0.029). Given that the bacteria responsible for 34S-

depleted food webs are also the primary methylators of inorganic mercury (Hg) into its toxic and 

bioavailable form, methylmercury (MeHg), I further investigated Hg levels in American Dippers 

and their prey. Despite the observation of distinct dipper isospace between stream types, there 

was no model support for differences in mean dipper blood (417.6 ± 74.1 S.E.) ng/g ww at 

regulated streams, 340.7 ± 42.7 S.E. ng/g ww at unregulated streams) or feather (1564 .6 ± 367.2 

S.E. ng/g dw regulated, 1149.0 ± 152.1 S.E. ng/g dw unregulated) Hg concentrations between 

stream types.  

 One recently regulated stream (Douglas Creek, Harrison Watershed), however, supported 

dippers with MeHg concentrations of toxicity concern (up to 8459.5 ng/g dw in feathers and 

1824.6 ng/g ww in whole blood). With a negligible salmon subsidy at these streams and the 

absence of a known anthropogenic Hg point source, the elevated Hg concentrations recorded in 

dippers at this regulated stream could be explained by a combination of a) elevated atmospheric 

deposition of Hg in densely forested, temperate mountain streams, b) Hg-methylation by sulfate- 
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reducing bacteria under anaerobic headpond conditions, and c) increased availability of high-

protein prey.  

 Slow-flowing, stabilized stream reaches regulated by RoR dams potentially offer an 

opportunity for dippers to exploit a consistent food resource closer to their high elevation 

breeding territory, enabling them to take on a year-round “resident strategy” that is more typical 

of low elevation river habitats. The enhanced microbial activity and MeHg production that can 

occur in RoR headponds, however, suggests that even small dams with minimal storage can 

create pond-like habitats that may act as ecological traps for river bird specialists. Although at 

this point there appear to be no effects of river regulation on body condition, future work is 

needed to determine if long-term chronic MeHg toxicity can impair productivity or survival of 

predatory river birds. 
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CHAPTER 1: 

GENERAL INTRODUCTION: ECOTOXICOLOGICAL CONSEQUENCES OF 

FLOW DIVERSION FOR STREAM ECOSYSTEMS 

 

1.1 IMPACTS OF REDUCED AND STABILIZED FLOW REGIME ON STREAM 

ECOSYSTEMS: DOCUMENTED RESPONSES AND KNOWLEDGE GAPS 

1.1.1 Rivers and the importance of maintaining natural flow regimes 

 

 Rivers are dynamic ecosystems defined by a unique natural flow regime that varies with 

climate and catchment controls on runoff (Poff et al., 1997; Poff and Zimmerman, 2010). Along 

with their associated riparian zones, rivers provide numerous ecological services for humans and 

wildlife that are highly dependent on flowing waters (Naiman et al., 1993; Naiman and 

Decamps, 1997; Arthington et al., 2010). Streamflow regulates the transport of sediment and 

woody debris within a channel, which shapes the in-stream and riparian habitat that serves as a 

template for the biotic community (Poff et al., 1997). Anthropogenic activities that disrupt 

stream flow, such as hydroelectricity generation, may alter biotic community structure and 

riverine ecosystem integrity through changes to physical habitat and water quality, impaired 

longitudinal connectivity (Vannote et al., 1980), and greater invasion success of exotic and 

introduced species (Poff et al., 1997; Bunn and Arthington, 2002).  Ecological impacts of large 

hydroelectric dams are well studied (Rosenberg et al., 1997; World Commission on Dams, 2000; 

Bunn and Arthington, 2002; Renofalt et al., 2010), but the ecological consequences of smaller 

dams remain poorly understood, despite their longer history of human use and recent global re-

emergence as renewable energy sources (Abbasi and Abbasi, 2011; Robson et al., 2011; 

Anderson et al., 2015). Small dams can still modify streamflow and may similarly impact 

stream-dependent organisms that have evolved under specific flow regimes. 

Though small dams offer benefits over conventional hydropower related to reduced 

greenhouse gas emissions from reservoirs and smaller overall impact footprints, flow abstraction 

and barrier effects occur independent of stream size and will likely alter smaller stream 
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ecosystems regulated by small dams (Abbasi and Abbasi, 2011). These alterations include: loss 

of terrestrial habitat due to flooding; altered physical habitat and water quality within the 

reservoir and downstream of the dam; changes to downstream aquatic ecosystems and 

biodiversity; a reduction in sediment and nutrient transport due to barrier effects, reduced flow, 

and reduction of natural peak flows; impeded insect drift and fish migration; MeHg production; 

and, cumulative effects (World Commission on Dams, 2000; Bunn and Arthington, 2002; 

Rosenberg et al., 1997).  

As the global energy sector attempts to shift away from fossil-fuel dependence, 

hydropower projects known as run-of-river (RoR) dams are a promising alternate energy source 

on mountain streams (Robson et al., 2011; Anderson et al., 2015). Like the impacts of other 

forms of small hydropower, the ecotoxicological consequences of RoR dams remain poorly 

understood. 

 

1.1.2 Run-of-river hydropower 

 

RoR dams, also known as river diversions or non-storage hydropower, lack a precise 

definition (Csiki and Rhoads, 2010) and, therefore, regulatory approaches and associated 

environmental impacts are variable. Csiki and Rhoads (2010) offer a definition of a RoR dam as 

“a structure that extends across the width of a stream or river channel, has no mechanism 

inhibiting discharge of water over the dam, and is of a height that generally does not exceed the 

elevation of the channel banks upstream.” These gravity-fed systems function by diverting a 

portion of a stream’s flow through an underground conveyance structure (penstock) and turbines 

before returning the diverted flow to the main stream (Fig. 1.1). Typically, RoR dams differ from 

conventional hydropower in two major ways: 1) they occur on smaller rivers with smaller 

barriers; and 2) the impounded water is usually stored for less than 48 hours (forming the 

headpond), such that the overall anticipated impact is reduced (Community Energy Association, 

2008; Anderson et al., 2015). By comparison, in larger reservoirs, the residence time of stored 

water varies from several days to many years (Baxter et al., 1977). With limited water storage, it 

is argued that alterations to the natural flow regime are limited to the diversion reach of RoR 

facilities without substantial alterations to upstream and downstream areas (Lewis et al., 2012).  

 British Columbia (BC), Canada, like Europe, parts of Asia, and Oceania, is in the midst 
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of a surge in RoR hydropower development, driven by government subsidies, renewable energy 

legislation, and a growing demand for electricity (Robson et al., 2011; Anderson et al., 2015). 

British Columbia’s mountainous terrain and abundance of glaciers, lakes, and rivers is well 

suited for RoR electricity generation, which are operated by Independent Power Producers (IPPs) 

and subsidized by the British Columbia Hydro and Power Authority (BC Hydro) through 

Electricity Purchase Agreements. It is the responsibility of IPPs to comply with long-term 

provincial monitoring guidelines (Lewis et al., 2012) and flow requirements (Hatfield et al., 

2003) developed for RoR projects in British Columbia, although compliance is not always met 

(Connors et al., 2014), likely in response to project variability.  

 RoR projects in BC are typically small (<50MW), but larger facilities (50-200MW) do 

exist that can store substantial quantities of water (Lewis et al., 2012), which is often referred to 

as “pondage” (see Fig. 1.1c).  By comparison, RoR projects in Europe are significantly smaller 

than in British Columbia, typically mini (<1 MW) and micro (<100 kW) schemes with peak 

capacities of <10 kW (Anderson et al., 2015). Small-scale hydropower generally refers to dams 

with a production capacity of < 10MW, as defined by the International Union of Producers and 

Distributors of Electrical Energy (Larinier, 2008). Relative to RoR projects in other regions and 

to other forms of small hydropower, RoR dams in BC operate at a fairly large-scale. 

Despite reductions in greenhouse gas emissions (methane and nitrous oxide), barrier size, 

the extent of inundation, and water level fluctuations compared to conventional dams, RoR 

hydro may have ecological impacts associated with the disruption of natural flow regimes and 

associated infrastructure (Robson et al., 2011; Anderson et al., 2015). These dams can divert a 

substantial portion of stream flow from the main channel (Gower et al., 2012), leading to 

significantly reduced discharge in the diversion reach, which may extend for several kilometers 

(e.g. Innergex’s Rutherford Creek diversion reach extends 8.8km, impacting 33% of the total 

stream length; Table 2.1). Aquatic organisms and terrestrial consumers of aquatic biota residing 

in or along RoR-regulated streams may be affected by flow abstraction, resulting habitat 

changes, associated infrastructure, deforestation, and cumulative effects. Abbasi and Abbasi 

(2011) proposed that the environmental problems associated with small-scale hydropower would 

be similar to conventional hydropower, if analyzed on an “impact per kilowatt of power 

generated” basis.  
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Current evidence for the effects of reduced flow related to small dams, especially RoR 

dams, is variable and limited primarily to studies in Europe and Asia. This poor understanding 

originates from the diversity of small hydropower projects with respect to barrier-type, extent of 

reservoir flooding and retention time, proportion of flow diverted, and stability of flow, all of 

which alter a river’s natural flow regime. Thus, stream community responses are also highly 

variable. A recent review by Anderson et al. (2015) summarized potential effects of RoR 

hydropower on different taxa and entire river ecosystems. They concluded that RoR hydropower 

does alter habitat characteristics and biotic community structure, but the results are variable and 

the ecological significance of these effects cannot be effectively analyzed from short-term 

studies conducted in multiple regions with variable regulatory schemes. Although local impacts 

to stream physicochemistry, algal and invertebrate communities, and fish have been identified at 

certain sites, the responses are often highly variable, and the response of entire river ecosystems 

to RoR dams requires further investigation. 
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Figure 1.1 Sketch of a typical run-of-river dam (a) and examples from coastal British Columbia, 

including the Skookum Creek project in the Squamish Valley Watershed (b) and the Rutherford 

Creek headpond in the Lillooet Watershed (c). Photos and sketch by Veronica Norbury. 

 

1.1.3 Impacts of flow abstraction on in-channel habitat and stream-dependent biota  

1.1.3.1 Impacts of flow abstraction on stream physicochemistry 

 

The main hydraulic effects of RoR dams are the formation of a pool upstream of the weir 

and reduced flow below the intake (Csiki and Rhoads, 2010), which often results in changes to 

stream physicochemistry. Flow abstraction and barrier effects of RoR dams facilitate the 

accumulation of fine sediment upstream and downstream of the dam (Csiki and Rhoads, 2010). 

RoR dams on Rocky Mountain streams in Colorado caused sedimentation, a build-up of fine 

sediment, and reduced size of channel coarse substrate downstream of diversions and created 

more slow-flowing habitat compared to upstream reaches (Baker et al., 2011), with the extent of 
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impacts reduced on steeper streams. Since low-flow rivers have higher net heat exchange with 

the atmosphere and sediment (Meier et al., 2003) due to increased surface area: volume ratios 

and residence time, the diversion reach and headponds of RoR-regulated streams will likely 

experience higher summer temperatures and lower winter temperatures compared to natural 

conditions. Changes to stream physical and chemical features in response to regulation by small 

dams are typically limited to changes in temperature (Lessard and Hayes, 2003; Dewson et al., 

2007) and nutrient retention above the dam (Stanley and Doyle, 2002). Downstream fish and 

macroinvertebrate abundance and diversity often decline in response to these changes in 

streamflow and associated changes to stream physicochemistry (Poff and Zimmerman, 2010).  

 

1.1.3.2 Response of algal and benthic macroinvertebrate communities to flow abstraction 

 

Changes to algal and invertebrate communities below small dams occur in response to 

reduced flow, associated downstream sedimentation, and nutrient retention above the dam 

(Dewson et al., 2007), with macroinvertebrate abundance and diversity generally declining in 

response to changes in streamflow and associated habitat changes (Poff and Zimmerman, 2010). 

Benthic algal species diversity was significantly lower downstream of run-of-river dams in the 

Xianging watershed of China 2-3 years after river regulation than it was prior to regulation (Wu 

et al., 2009). Wu et al. attributed the decline to a reduction in downstream channel width, water 

depth, and velocity, resulting from decreased flow. A subsequent study by the same authors, 

however, found an increase in diatom species richness downstream of 23 cascade RoR dams in 

the same watershed (Wu et al., 2010). A cascade system refers to several RoR dams on the same 

river (Wu et al., 2010). Neither study identified significant changes to water quality.  

Benthic macroinvertebrate communities are usually less diverse below dams, but 

responses are variable. Macroinvertebrate density was reduced below river diversions in Maui 

(McIntosh et al., 2002). Similarly, macroinvertebrate density and biomass were lower 

downstream of five cascade dams along the Xiangxi river in China, but macroinvertebrate 

richness and water chemistry were similar upstream and downstream (Fu et al., 2008). Reduced 

benthic macroinvertebrate species richness and number of EPT (composed of Ephemeroptera 

(mayfly), Plecoptera (stonefly), and Trichoptera (caddisfly) larvae) taxa were observed below a 

1.5m high, 20m wide dam on a tributary of the Xiangi in China (Wang et al., 2013). A decline in 
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limnephilids (a family of shredding caddisfly larvae), in response to leaf litter retention 

upstream, explained reduced downstream decomposition rates below small surface release dams 

on mountain streams in central Spain (Gonzalez et al., 2013). Small surface release dams in 

northern Spain caused a significant decline in downstream benthic macroinvertebrate richness, 

diversity, and density of functional feeding groups, especially taxa involved in processing leaf 

litter (Martinez et al., 2013). Shredder and collector diversity was especially reduced in 

downstream channel habitats presumably through dams preventing passage of coarse material 

(Martinez et al., 2013). Under experimental flow abstraction in upland Australian streams, 

McKay and King (2006) did not observe a significant change in total EPT density, but they did 

record a decline in the diversity of shredders and grazers in diverted reaches. Benthic 

invertebrate communities within RoR headponds will likely be more representative of pond-like 

habitats than fast-flowing streams, similar to the shift observed in natural ponds above beaver 

dams (Naiman et al., 1988).  

Research on small dams, including the interaction between flow changes and contaminant 

exposure, is relatively advanced in France, where it has been estimated that over 60,000 small 

run-of-river (<15m high) dams exist (Fanny et al., 2013). Benthic macroinvertebrates inhabiting 

metal-contaminated RoR reservoirs had reduced functional diversity and trait assemblages 

resembling sedimentary zones of large rivers in lowlands (that require lentic, eutrophic and 

organic habitats, and experience frequent disturbance). Less contaminated RoR reservoirs had 

functional benthic macroinvertebrate trait assemblages resembling typical lotic systems (Fanny 

et al., 2013). This suggests that the combined stressors of altered flow and metal contamination 

cause significant shifts in invertebrate community structure compared to altered flow regime in 

the absence of contamination (Fanny et al., 2013).  

  

1.1.3.3 Response of resident and migratory fish to altered flow regime 

 

Highly sensitive to sedimentation and streamflow, resident and migratory fish 

populations typically exhibit negative responses to altered flow regime, but responses vary on a 

project-by-project basis (Poff and Zimmerman, 2010). A meta-analysis of potential impacts of 

RoR hydropower project to fish revealed that RoR dams negatively affect migration and increase 

mortality through entrainment in turbines, loss of spawning and nursery habitat, and cumulative 
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effects of multiple dams on the same river (Robson et al., 2011). The fluctuating flow regime 

resulting from a small 700kW dam in Spain caused a 50% decline in the downstream brown trout 

population within one year due to recruitment failure, while upstream trout densities remained 

unchanged following regulation (Almodovar and Nicola, 1999). Although the population size 

structure (mean body size) of fish differed between upstream and downstream reaches of RoR 

dams (18 dams <10MW in generating capacity) in central and Northern Portugal, species 

assemblage did not differ significantly between upstream and downstream reaches (Santos et al., 

2006). Upstream fish populations had a smaller mean body size at regulated sites with and 

without suitable fish passage, such as fish ladders (Santos et al., 2006), but these differences in 

size were not expected to cause genetic divergence among the semi-fragmented populations 

(Santos et al., 2006), since fish passages or incidental passage over weirs during flood events 

would facilitate genetic mixing.  

There is evidence to suggest that small dams on streams without fish ladders may alter 

fish species assemblages. Small surface release dams on cold, wadeable streams in Michigan 

resulted in significant downstream temperature changes (mean summer temperature ranged from 

1°C cooling to warming of over 5°C) and a decline in downstream EPT richness (Lessard and 

Hayes, 2003). Increased downstream temperature was negatively correlated with the density of 

several cold-water fish species, including: brown trout (Salmo trutta), brook trout (Salvelinus 

fontinalis), and slimy sculpin (Cottus bairdi). Overall fish species richness, however, increased 

downstream of these dams. No significant changes in water quality variables (oxygen, total 

phosphorous, conductivity), typically seen below deep hypolimnetic release dams, were recorded 

(Lessard and Hayes, 2003).  

Although RoR dams in British Columbia are typically located above natural barriers to 

salmon migration, direct and indirect impacts to movement and habitats can negatively impact 

resident fish populations. An independent review on the potential impacts of RoR power on 

salmonids (salmon, trout, chars, freshwater whitefishes, and graylings), carried out by the Pacific 

Salmon Foundation and commissioned by Clean Energy BC, found that salmonids were present 

upstream, in the diversion reach, or downstream of 43/44 operational facilities in British 

Columbia and that RoR hydroelectric facilities have the potential to negatively impact salmonid 

populations through mortality due to entrainment, stranding, and habitat changes (Connors et al., 

2014). Indirect influences on food availability may also affect resident fish populations, 
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depending on the algal and macroinvertebrate community response to changes in the hydrograph 

and associated habitat changes.  

1.1.4 Impacts of flow abstraction on riparian habitats and terrestrial/ semi-aquatic biota 

1.1.4.1 Response of riparian vegetation to altered flow regime  

  

 Riparian vegetation communities also exhibit a diverse response to flow regulation and 

stabilization of the hydrograph (Poff and Zimmerman, 2010) that can be characterized into 

upstream and downstream changes. Soils inundated by impoundments create an anoxic 

environment for vegetation, with negative impacts to species that are not adapted to low-oxygen 

environments, such as conifers (Nilsson and Berggren, 2000). The subsequent decomposition of 

inundated forests releases the greenhouse gases CO2 and methane into the atmosphere (St. Louis 

et al., 2000) and also releases Hg and nutrients (nitrogen and phosphorous) into the water 

column (Ullrich et al., 2001). In contrast, non-woody vegetation or species adapted to low-

oxygen environments, often respond positively to inundation (Poff and Zimmerman, 2010). 

Shifts in riparian vegetation resulting from RoR-regulation may not be as extensive or 

long-lived as observed from storage hydropower, but they do occur, usually resulting in less 

diverse river margin communities in downstream reaches (Nilsson et al., 1997; Nilsson and 

Berggren, 2000; Jansson et al., 2000). RoR and storage hydropower in Northern Sweden both 

created less diverse riparian vegetation communities that were partially attributed to a shift in 

river margin soil type towards more coarse-grained material (Jansson et al., 2000). This shift 

occurred in response to increased erosion caused by flow abstraction and increased water level 

fluctuations compared to free-flowing streams (Jansson et al., 2000). Erosion is likely 

responsible for the reduced plant cover and species richness along regulated stream margins 

through direct mortality of colonizing plants or decreased habitat suitability of coarser soils. By 

acting as sediment traps, reservoirs and impoundments have the potential to erode river margins 

(Jansson et al., 2000). When clear, lentic water is released from dams, erosion capacity is higher 

because of the water’s ability to increase its load of suspended material (Jansson et al., 2000). 

Although RoR dams in British Columbia are more likely to cause a build-up of sediment 

downstream of the dam in response to a loss of seasonal peak flows, recreational release events 

may cause erosion similar to what was observed in Northern Sweden.  
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In addition to increased erosion of river margins and sedimentation of in-channel 

habitats, downstream riparian ecosystems may also experience altered hydrology related to 

reduced groundwater recharge in the riparian zone. Eventually, reduced groundwater inputs 

would result in a falling groundwater table and reduction in floodplain extent, with implications 

for riparian communities (Nilsson and Berggren, 2000). Riparian zones are also naturally 

vulnerable habitats to invasion by exotic species as a product of frequent disturbances, changes 

in water availability, and an inherent dispersal mechanism of streamflow (Planty-Tabacchi et al., 

1995; Nilsson and Berggren, 2000). Changes to riparian habitats related to altered flow regime 

may further increase the success of introduced and exotic species. These changes in upstream 

and downstream riparian plant communities, combined with changes to in-stream habitat, can 

affect terrestrial consumers of aquatic or riparian food sources. 

   

1.1.4.2 Responses of riparian birds and mammals to altered flow regime  

 

Since Nilsson and Dynesius’ (1994) review, impacts of river regulation on birds and 

mammals have been seldom investigated and the responses of these taxa remain poorly 

understood (Calvert et al., 2013). The most obvious negative impact of hydropower to terrestrial 

biota is a loss of habitat following reservoir formation (Baxter, 1977). In mountain streams 

especially, the restriction of many species to steep valley bottoms results in permanent 

emigration and extirpation from newly flooded areas (Nilsson and Berggren, 2000). Small 

nonarboreal mammals that inhabit floodplains experience permanent habitat displacement during 

predictable flood events (Anderson et al., 2000) and most likely exhibit the same response during 

unpredictable flooding of reservoirs. Grizzly bears avoid areas undergoing construction for 

hydroelectric dams and likely respond negatively to improved vehicular access to impacted areas 

(Smith et al., 1990).  

 Inundation and the creation of lentic habitats above dams, however, may benefit some 

species, at least for a short time. The attraction of breeding water birds to reservoirs is well-

documented (Lid, 1981, Moksnes, 1981, translated in Nilsson and Dynesius, 1994; Reitan and 

Sandvik, 1996; Reitan and Thingstad, 1999). For example, Osprey (Pandion haliaetus) 

populations along the Willamette River, Oregon have increased in response to large 

hydroelectric reservoirs and improved nest-site availability on associated powerlines (Henny et 
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al., 1996). Ducks and wading birds often breed at high density along the margin of hydroelectric 

reservoirs in response to elevated nutrients, abundant prey, and reduced predation pressure 

(Nilsson and Dynesius, 1994). Vegetation that colonizes the drawdown zones of large 

hydroelectric reservoirs also provide nesting habitat for several shrub-nesting passerine species 

(van Oort et al., 2015) with benefits of reduced nest predation in aquatic or inundated habitats 

(Picman et al., 1993; Roy Nielsen and Gates, 2007). Reservoirs that flood forests and leave snags 

may also create habitat for breeding woodpeckers (Yeager, 1949), beavers and other mustelids 

(Nilsson and Dynesius, 1994).  

Often, the benefits of hydroelectric reservoirs are confounded by the negative impacts on 

avian productivity or contaminant exposure. Riparian habitats modified by reservoirs have been 

proposed as ecological traps for several ground-nesting species (e.g. Espie et al., 1998; Anteau et 

al., 2012). Ecological trap theory describes how a sudden environmental change uncouples the 

cues that individuals use to assess habitat quality from the true quality of the environment 

(Dwernychuk and Boag 1972, Gates and Gysel 1978). More recently, Schlaepfer et al. (2002) 

coined the term “evolutionary trap” as a situation where the use of a formerly reliable 

behavioural cue has become maladaptive because of a sudden anthropogenic habitat alteration. 

An ecological trap, under the conceptual framework described by Robertson and Hutto (2006), 

may arise when habitat alteration by anthropogenic activity causes a simultaneous increase in 

habitat attractiveness and reduction in suitability, leading to reduced fitness for individuals 

settling in the preferred habitat. For example, many species of ground-nesting water birds are 

attracted to the lush vegetation of draw-down zones, but they may experience reduced 

productivity through the unpredictable flooding of nests and drowning of recently fledged chicks 

(Espie et al., 1998; Anteau et al., 2012; van Oort and Cooper, 2015).  

The second pathway by which hydroelectric reservoirs or RoR headponds may act as 

ecological traps to avian species is through elevated exposure to aquatic contaminants, 

particularly MeHg (see section 1.2). Elevated MeHg concentrations have been detected in fish 

(Bodaly et al., 2007), passerines (Gerrard and St. Louis, 2001), aquatic avian predators (Evers et 

al., 2007) and even bats (Syaripuddin et al., 2014) that forage within reservoirs or on insects 

emerging from these lentic habitats. This proposed pathway assumes that MeHg levels 

accumulating within organisms would be sufficient to cause adverse effects to health and 

reproduction. Since fluctuating water levels are atypical of RoR dams, it is more likely that 
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stream dependent species would be more adversely impacted by MeHg exposure or other habitat 

modifications than direct mortality through inundation. 

The documented responses of birds and mammals to hydroelectricity have focused 

primarily on reservoir effects. Species that are heavily dependent on streamflow conditions and 

occupy more permanent niches that extend beyond the reservoir may be further impacted by flow 

abstraction. Since American Dipper foraging behaviour and success is heavily influenced by 

streamflow (Taylor and O’Halloran, 2001; D’Amico and Hemery 2007), D’Amico (2011) 

proposed that if outcomes of dipper diving and foraging behaviour in response to river regulation 

are non-adaptive (with negative impacts on fitness and population dynamics), then regulated 

rivers could be ecological traps for dippers. D’Amico (2011) hypothesized that under a flow 

regime stabilized by RoR dams (compensation flow), the link between streamflow and 

environmental cues would be lost, with likely changes in dipper diving behaviour. It has yet to be 

determined how dipper foraging behaviour is influenced by anthropogenic changes to flow 

regime.  A broader understanding of the response of terrestrial and semi-aquatic taxa to reduced 

flow is needed (beyond reservoir effects), as in-stream and riparian habitat changes may lead to 

cumulative effects on their fitness.  

1.2 MERCURY, METHYLMERCURY BIOMAGNIFICATION, AND HYDROELECTRICITY 

1.2.1 Mercury: a global pollutant 

 

Hg is a global pollutant, facilitated by its long atmospheric residence time, long-distance 

transport, and deposition in remote areas. Hg contamination may occur in regions distant from 

any point source through atmospheric deposition of anthropogenic sources or natural deposits 

(Fitzgerald et al., 1998; Schroeder and Munthe, 1998; Boening, 2000; Selin et al., 2009). Major 

natural sources of Hg include degassing from mineral deposits and evasions from surface soils, 

water bodies, vegetative surfaces, wild fires, volcanoes, and geothermal sources (Schroeder and 

Munthe, 1998; Boening, 2000; Wang et al., 2004). Current anthropogenic sources of Hg include 

the burning of fossil fuels, incineration of solid and sewage sludge waste, and metal smelting, 

refining and manufacturing (Schroeder and Munthe, 1998; Boening, 2000). Hg emissions from 

artisanal small-scale gold mining may exceed those from coal-fired plants (Wang et al., 2004). 



 13 

Historical anthropogenic sources of Hg include chlor-alkali plants in many industrialized 

countries. The risk that Hg poses to wildlife is largely attributed to the ability of it’s methylated 

form, methylmercury (MeHg), to biomagnify through food webs and exert toxic effects, 

especially neurotoxic and teratogenic effects, on consumers (Schroeder and Munthe, 1998).  

 

1.2.2 Factors influencing methylmercury production in free-flowing and regulated streams   

 

MeHg production is well-documented in reservoirs of large dams (Rosenberg et al., 

1997), experimental reservoirs (Bodaly et al., 2004, 2007), and beaver dams (Roy et al., 

2009a,b, Painter et al., 2015), but remains uninvestigated in RoR headponds. MeHg is a 

teratogen and neurotoxin that biomagnifies through aquatic food webs (Watras et al., 1998) and 

bioaccumulates in high trophic level predators (Hall et al., 2005). It is formed during reservoir 

flooding through microbial methylation of Hg that occurs naturally in inundated soil and the 

water column (Ullrich et al., 2001; Hall et al., 2005; Ward et al., 2010). Initial flooding of soil 

results in an influx of inorganic Hg and organic matter into the water and subsequent 

decomposition of this organic matter favours bacterial methylation of the recently mobilized and 

legacy Hg (Bodaly et al., 2004).  Sulfate-reducing anaerobic bacteria are dominant in reservoirs 

and are also the primary methylators of Hg (Compeau and Bartha, 1985). The repeated wetting 

and drying of sediment associated with water level fluctuations in ephemeral wetlands and 

hydroelectric reservoirs can prolong MeHg production after initial flooding, though this effect 

can be mitigated by strategic water management techniques (Willacker et al., 2016). In a review 

of fish Hg concentrations across western North America, Willacker et al. (2016) determined that 

between-year fluctuations in reservoir levels strongly influenced fish Hg exposure, while within-

year fluctuations had no effect.  

In addition to water management techniques, MeHg production potential is influenced by 

regional factors that affect Hg deposition and stream-level features that control methylation rate. 

Mercury concentrations in aquatic environments increase with increased atmospheric Hg 

deposition (Evers et al., 2007), which is influenced by climate, forest cover, where trees are a 

major source of dry deposition (Miller et al., 2005), and aquatic-terrestrial connectivity, where 

the presence of wetlands (St. Louis et al., 1994) and unproductive surface waters (Chen et al., 

2005) facilitate bioavailability of Hg through transport, methylation, and bioconcentration 
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(Driscoll et al., 2007; Ward et al., 2010). Increased atmospheric deposition of Hg often results in 

elevated exposure in aquatic organisms (Hammerschmidt et al., 2006), consumers of aquatic 

organisms (Guigueno et al., 2012), and even riparian wildlife (Rimmer et al., 2005).  

Several features of stream physicochemistry have also been identified as factors 

influencing Hg bioaccumulation, but the relationship is not always straightforward (Ward et al., 

2010; Lavoie et al., 2013). High dissolved organic carbon (DOC) waters often experience 

elevated Hg concentrations, likely through facilitating increased microbial growth rates (Ullrich 

et al., 2001).  Under very high DOC conditions, however, MeHg bioavailability and trophic 

transfer are reduced and demethylation rates may be enhanced, resulting in lower Hg 

bioaccumulation rates (Lavoie et al., 2013). Temperature, oxygen, and pH also regulate Hg 

mobility and microbial activity at the stream level (Ullrich et al., 2001; Lavoie et al., 2013). 

Anoxic conditions promote release of Hg from sediment, whereas oxic conditions favour 

sediment uptake of Hg (Ullrich et al., 2001). The release of MeHg from sediments and 

methylation rates increase with higher temperatures (Ullrich et al., 2001). Low pH also increases 

baseline concentrations of MeHg in periphyton and ultimately biomagnification in streams 

(Jardine et al., 2013). Hg methylation, therefore, typically increases under warm, anoxic, acidic 

(Jardine et al., 2013), and high DOC (Watras et al., 1998) conditions and it often peaks under 

warm, low flow periods (Ward et al., 2010) that may be encountered in some RoR stream 

reaches and headponds.  

Peak MeHg concentrations in reservoirs are reached within a few years of flooding, but 

maximum concentrations in predatory fish may be delayed up to 10 years after flooding and take 

up to 20 years to return to background levels (Bodaly et al., 2007). In beaver dams, maximum 

MeHg concentrations and methylation efficiency (percent of total Hg in the methylated form) in 

water occurred in dams <10 years old (Roy et al., 2009a,b). Beaver impoundments with 

coniferous riparian zones also had higher water MeHg concentrations (Roy et al., 2009b). A 

recent review on fish Hg concentrations in hydroelectric reservoirs concluded that peak 

concentrations are reached within three years of initial flooding and rapidly decline after 4-12 

years (Willacker et al., 2016).  

High elevation mountain streams may naturally experience elevated atmospheric 

inorganic Hg deposition and RoR dams may increase MeHg production at the stream level by a) 

forming small reservoirs known as headponds and b) increasing stream temperature in the spring 
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and summer under low flow conditions and increased water-atmospheric exchange. The extent of 

MeHg production may depend on characteristics of the RoR dam, such as: the extent of 

headpond flooding, fluctuation in headpond water levels, the extent of nutrient retention, and 

age.  

 

1.2.3 Mercury exposure and toxicity to avian species  

 

A geographic trend in Hg concentrations in wildlife increases from west to east across 

North America (Evers et al., 1998; Evers et al., 2007; Depew et al., 2013), but several regions in 

western North America also support birds with Hg levels of toxicity concern (Eagles-Smith et 

al., 2009; Ackerman et al., 2016; Jackson et al., 2016). Hg exposure in avian species is 

significantly influenced by foraging guild, habitat type, and ecoregion (Ackerman et al., 2016). 

Birds foraging in ocean and salt marsh habitats have the greatest Hg exposure, compared with 

relatively low concentrations in terrestrial habitats. Piscivorous and carnivorous species 

experience the highest blood-equivalent Hg concentrations, most likely in response to 

biomagnification across trophic levels (Ackerman et al., 2016; Jackson et al., 2016). Piscivorous 

birds foraging in wetlands with fluctuating water levels also experience higher Hg exposure and 

bioaccumulation than their terrestrial counterparts (Jackson et al., 2016). Elevated Hg 

concentrations have also been recorded in birds foraging on aquatic (Evers et al., 2007) or 

emergent (Gerard and St. Louis, 2001) prey associated with reservoirs. Although 

underrepresented in the literature of avian Hg exposure, birds residing at high elevations may 

also experience elevated Hg exposure through atmospheric deposition (Guigueno et al., 2012; 

Miller et al., 2005; Rimmer et al., 2005).  

Mercury concentrations in the feathers of nestling Osprey increased with higher modeled 

atmospheric deposition and reduced lake size, possibly in response to the accumulation of Hg in 

glacial meltwater (Guigueno et al., 2012).  Bicknell’s thrush Catharus bicknelli), a migratory 

songbird inhabiting montane forests dominated by conifers, had elevated blood and feather Hg 

on mountains with higher leaf litter Hg influx patterns (Rimmer et al., 2005), supporting the 

observation that MeHg exposure can occur in terrestrial habitats that lack any standing water 

typical of Hg methylation sites (Miller et al., 2005). Evergreen foliage often has higher Hg 

concentrations than their deciduous counterparts due to the longer needle lifespan and continuous 
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accumulation of Hg after initial growth (Rasmussen, 1995). The combined features of high 

elevation, highly productive temperate evergreen-dominated forests with low-flow headponds 

(that support anaerobic bacteria and retain pine needles, leaf litter, and nutrients) may facilitate 

significant Hg accumulation and methylation potential within the headponds of RoR dams. The 

extent of MeHg production will likely vary with stream physicochemistry and regulatory 

practices that dictate reservoir size and turnover time. 

Although the pathway of methylmercury toxicokinetics is not well elucidated, there is 

evidence in vertebrates to suggest a role in oxidative stress (Hoffman and Heinz, 1998; Glaser et 

al., 2010; Henry et al., 2014), inhibited mitochondrial energy metabolism (Cambier et al., 2009), 

and reduced neural cell differentiation (Ceccatelli et al., 2013). MeHg accumulates primarily 

from the consumption of contaminated food (Watras et al., 1998) and exerts negative effects on 

reproduction, immune function, growth and development, and behaviour in terrestrial and 

aquatic birds. Reproduction is the most sensitive endpoint of MeHg toxicity in birds and 

reproductive impairment from dietary MeHg exposure has been documented in piscivorous 

birds, such as the Common Loon (Gavia immer) (Burgess and Meyer, 2008; Evers et al., 2008) 

and insectivores, such as the Tree Swallow (Tachycineta bicolor) (Brasso and Cristol, 2008). 

MeHg can be maternally deposited into eggs, potentially causing embryonic death and 

developmental abnormalities, although species vary in their sensitivity to MeHg (Heinz et al., 

2009). Although chicks are protected from MeHg toxicity through depuration into growing 

feathers (Fournier et al., 2002; Kenow et al., 2003; Condon and Cristol, 2009; Kenow et al., 

2010), impaired motor coordination (Kenow et al., 2010) and reduced immune function (Kenow 

et al., 2003) have been documented in Common Loon chicks fed fish containing MeHg in 

concentrations similar to known prey levels at the high range of ambient exposure.  

 After synthesizing avian Hg exposure data across western North America, Ackerman et 

al. (2016) established blood-equivalent toxicity thresholds, ranging from impaired health, 

physiology, behaviour and reproduction at 1000 ng/g ww to complete reproductive failure at 

4000 ng/g ww. Based on their literature and raw data, they established a lowest observed adverse 

effect level (LOAL) of 200 ng/g ww, but negative impacts to avian reproduction, health, 

behaviour, and survival are not likely to occur until prolonged exposure at or near 1000 ng/g ww 

in whole blood (Ackerman et al., 2016). For example, chronic dosing studies with White Ibis 

(Eudocimus albus) revealed that altered courtship behaviour, including reduced courtship 
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behaviours in males, led to a 13% decline in productive nests when adult blood concentrations 

reached 780 ng/g ww (Frederick and Jayasena, 2010).  Jackson et al. (2011) estimated a 30% 

reduction in the probability of nest success at 1700 ng/g ww in free-living Carolina Wrens 

(Thryothorus ludovicianus) and a 20% reduction in nest success at 1200 ng/g ww.  

With variable observed impacts to avian reproduction, behaviour, health, and survival 

occurring across a wide range of experimental and natural conditions, species-level differences 

in sensitivity, and dietary exposure varying with habitat and foraging ecology, it is difficult to 

decide on an MeHg toxicity threshold suitable for dippers. The unique natural history of dippers, 

with characteristics intermediate between passerines and water birds, further confounds this 

problem. Therefore, I decided to compare mercury concentrations measured in this study to the 

blood-equivalent toxicity threshold of 1000 ng/g ww, as synthesized by Ackerman et al. (2016). 

This value represents the most up-to-date synthesis of avian Hg exposure across North America 

and reflects impacts to behaviour, reproduction, health, and survival in response to dietary MeHg 

exposure under natural and experimental conditions for terrestrial and aquatic species. 

1.3 UNTANGLING FOOD WEBS WITH STABLE ISOTOPE ANALYSIS  

 

Stable isotope analysis is a simple and inexpensive method to characterize food webs and 

trace contaminant biomagnification through food webs. Stable isotopes are variations of an atom 

with the same number of protons and electrons, but a unique number of neutrons. Stable isotopes 

are energetically stable, do not decay, and are not radioactive (Peterson and Fry, 1987). Isotopes 

fractionate at different rates in different materials, creating a distinct isotopic signature (heavy: 

light) that can be traced through mass spectrometry. The lighter elements (carbon, nitrogen, 

oxygen, hydrogen, and sulfur) are commonly used in isotope ecology because: A) they are 

abundant in biological compounds and B) the percent mass change caused by the addition of a 

neutron is greatest and most easily detectable (Michener and Lajtha, 2008). Differences in 

isotopic ratios between materials are small; therefore, isotopic composition is reported relative to 

a standard and expressed in parts per thousand deviations from the standard (Michener and 

Lajtha, 2008). International standard references include carbon from Belemnite in PeeDee 

limestone, nitrogen gas in the atmosphere, and sulfur from the Canyon Diablo meteorite 

(Peterson and Fry, 1987). Many laboratories have their own working standard materials that are 
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compared to international standards (Michener and Lajtha, 2008). The isotopic ratio of a sample 

is expressed as either enriched (positive) or depleted (negative) compared to the reference 

material.  

 Stable isotopes provide a spatially- and temporally-integrated measure of diet and unlike 

other measures of diet, are not confounded by omnivory and complex predator-prey interactions 

(Post, 2002). Stable isotopes of carbon (13C:12C), nitrogen (15N:14N), hydrogen (2H:1H), sulfur 

(34S:32S), and oxygen (18O:16O) are effectively used in ecological studies to estimate an 

organism’s relative trophic position within a food web (e.g. Anderson and Cabana, 2007), 

determine the relative contribution of different food sources to a consumer’s diet (e.g. 

Rasmussen, 2010), study seasonal shifts in diet (e.g. Darimont and Reimchen, 2002; Reimchen et 

al., 2003), and determine local differences in diets related to movement and migration (Hobson, 

1999). In ecotoxicology, stable isotopes are used to trace contaminants through food webs (Kidd 

et al., 1995; Atwell et al., 1998; Jardine et al., 2012) and have been used successfully with 

American and European dippers (Morrissey et al., 2010a,b, 2014).  

 Stable isotopes of carbon (δ13C) can be used to assess changes in the energy source of 

coastal mountain stream ecosystems following flow diversion by run-of-river dams. Several 

characteristics of δ13C make it a useful tracer of terrestrial or aquatic-derived carbon in aquatic 

systems, including: very limited fractionation with trophic transfer, integration of nutrient 

sources over time, and distinct signatures of primary producers in adjacent habitats (Finlay, 

2001). Terrestrial plant detritus has a fairly constant δ13C at -28‰, but lotic algal signatures 

range from -47 to -12‰ (Finlay and Kendall, 2007). This variability in isotopic values for algae 

is related to dissolved inorganic carbon availability, whereupon restricted boundary layer 

diffusion of CO2 occurs into algal cells under low streamflow conditions. This results in less 

discrimination against the heavy isotope in slower-flowing waters. In rivers, autochthonous 

(algal) carbon sources are 13C-depleted relative to terrestrial sources in fast-flowing upstream 

reaches, but 13C-enriched relative to terrestrial sources in slower-flowing downstream reaches 

(Rasmussen, 2010). Since regulated streams surveyed in this study area are high elevation, better 

characterized as headwater streams dominated by terrestrial inputs, I predicted that headponds 

would have a 13C-enriched isotopic signature due to restricted boundary layer diffusion occurring 

at low flows.  
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Stable isotopes of carbon may also provide information on the diet-mediated exposure 

pathway of MeHg (Jardine et al., 2012) to high-trophic level stream biota such as dippers. Last, 

δ13C may also be useful in describing dipper habitat use in relation to RoR dams. By sampling 

the stream food web along a longitudinal gradient from upstream to downstream, δ13C signatures 

of dippers can be compared to benthic macroinvertebrate signatures sampled upstream or 

downstream. In addition, the δ13C isotope is useful in tracing salmon-derived lipids that can 

make up a significant proportion of dipper diets (Morrissey et al., 2012). 

 The ratio of 15N: 14N isotopes (δ15N) increases by 2 ‰ to 5 ‰  (on average 3.4 ‰) with 

each trophic level, as the lighter isotope is preferentially excreted (Peterson and Fry, 1987; Kelly, 

2000; Hobson and Bairlein, 2003). Therefore, δ15N has been used extensively to determine the 

relative trophic position of organisms (Post, 2002; Hobson and Welch, 1992) and to trace MeHg 

biomagnification through food webs (Atwell et al., 1998; Jardine et al., 2012; Morrissey et al., 

2012). The relative contribution of fish to dipper diet will influence their trophic level and MeHg 

exposure.  

Stable isotopes of sulfur are used less often than those of carbon and nitrogen in stable 

isotope ecology, but they may provide useful information when used in conjunction with these 

isotopes. The ratio of 34S: 32S is typically conserved through food webs, like 13C:12C, although 

discrimination factors are higher for consumers with high-protein diets (Peterson and Fry, 1987; 

McCutchan et al., 2003). Measurement of δ34S is useful for distinguishing between benthic and 

pelagic food webs (Peterson and Fry, 1987) and discriminating the source of primary production 

in estuaries (Peterson et al., 1985). Similarly, conditions that stimulate bacterial sulfate reduction 

lead to increased production of 34S-depleted sulfides (e.g. H2S), which react with iron and 

organic matter in sediments, resulting in lower δ34S of the total sulfur in sediments (Peterson and 

Fry, 1987).  

Although research on sulfur isotope fractionation is limited in stream ecosystems, a 

growing body of research is showing that δ34S is useful as a marker for bacterial sulfate 

reduction and processes associated with sulfide recycling in lakes, estuaries, and wetlands 

(Detmers et al., 2001; Herbert and Wassenaar, 2005; Croisetière et al., 2009). Sulfate-reducing 

bacteria produce sulfides depleted in 34S compared with initial sulfate in pure culture and 

sediments are commonly depleted in 34S relative to seawater sulfate (Habicht and Canfield, 

1997). Within a given lake, benthic macroinvertebrates feeding on sediment (either directly or 
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through predation) had lower δ34S values than those feeding on suspended particles, reflecting 
34S-depleted sulfur in sediments (Croisetière et al., 2009). Measuring sulfur values in predatory 

fish allowed their dietary pathway (benthic or planktonic) to be distinguished (Croisetière et al., 

2009). The extent of depletion depends on multiple factors, including the rate of bacterial sulfate 

reduction (Habicht and Canfield, 1997). This isotope may be useful in quantifying and tracing 

the extent of sulfate-reducing bacterial activity associated with RoR headponds, as the δ34S 

isotopic signature is essentially conserved in consumers with little isotopic fractionation.  

Further, it may act as a marker for MeHg production within reservoirs and headponds, given that 

sulfate-reducing bacteria are the principal methylators of Hg (Compeau and Bartha, 1985).  

1.4 STUDY SPECIES: THE AMERICAN DIPPER  

1.4.1 Life history 

 

 Five species of dipper (Cinclus) inhabit swift upland streams of North and South 

America, Mexico, Europe, and Asia (Tyler and Ormerod, 1994). The American Dipper is the 

only truly aquatic songbird in North America and a valuable representative of interface ecology, 

as they use in-channel and riparian habitats for foraging and breeding (Price and Bock, 1983; 

Morrissey et al., 2004c, Walton and Wright, 2008). Dippers feed on benthic macroinvertebrates, 

salmonid eggs, and small fish within the channel of fast-moving mountain streams (Price and 

Bock, 1983; Morrissey et al., 2004b, Walton and Wright, 2008) by diving and swimming 

underwater with their wings, or running along the stream bottom (D’Amico, 2011). Dippers may 

be permanent residents on coastal mountain stream reaches or migrate to higher elevation 

reaches during the breeding season, from late March to August (Morrissey et al., 2004a).   

 These river birds have been used extensively as indicators of stream health (Ormerod and 

Tyler, 1994; Morrissey et al., 2005) and explored as indicators of the impacts of altered flow 

regime (D’Amico et al., 2000; D’Amico, 2011) and Hg contamination (Henny et al., 2005), but 

not under these stressors simultaneously. Highly sensitive to changes in streamflow (D’Amico 

and Hemery, 2007) and able to bioaccumulate contaminants to high levels relative to other 

stream consumers (Ormerod and Tyler, 1994), this species provides the opportunity to study 

synergistic interactions between contaminants, abiotic and biotic stressors—an approach that is 
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often lacking in ecotoxicological studies (Relyea and Hoverman, 2006).  Current monitoring 

protocols for RoR dams in British Columbia focus on the protection of fish and fish habitat; 

however, dippers may be better sentinels of stream health with ecological factors readily and 

effectively monitored. 

 

1.4.2 Dippers as sentinels of stream health  

 

 Several characteristics of dipper biology support the use of this species as an indicator of 

stream ecosystem integrity. First, dippers are year-round residents on mountain streams, where 

they do not stray far from the stream channel, and do not undergo extensive migration to other 

latitudes (Price and Bock, 1983; Morrissey et al., 2004a). Dipper habitat overlaps with the ideal 

placement of run-of-river dams and their limited altitudinal migration makes them indicators of 

regional stressors, such as contaminants or changes in the stream hydrograph.  

 Second, dippers are conspicuous and easily distinguished from other passerines and river 

birds. Monitoring dipper productivity and survival (Morrissey et al., 2004b, Gillis et al., 2008), 

foraging behaviour (D’Amico and Hémery, 2007), and contaminant exposure (Ormerod and 

Tyler, 1994; Henny et al., 2005; Morrissey et al., 2005), in response to different variables has 

been effectively accomplished in past studies. Dippers often build nests under bridges, which are 

easily accessible to collect eggs for measuring contaminant levels (Henny et al., 2005). Further, 

dipper eggs have been effectively used to represent contaminant levels in streams (Ormerod and 

Tyler, 1994; Henny et al., 2005; Morrissey et al., 2005) and Hg toxicity values for avian 

embryos are available (Heinz et al., 2009), facilitating interpretation of observed egg 

contaminant levels and inference of population-level impacts. Dipper blood and feathers can also 

be analyzed for contaminants, representing short-term or long-term dietary exposure.  

 Third, dippers are relatively high trophic-level predators that bioaccumulate contaminants 

from the water and their diet, reflecting local contaminant levels. Consumption of aquatic prey is 

the main pathway of Hg exposure for dippers (Henny et al., 2005). Dippers feed on benthic 

macroinvertebrates and salmonid eggs and fry, which are sensitive to contaminants and siltation 

(Price and Bock, 1983; Feck and Hall, 2004; Ormerod and Tyler, 1991). Contaminant 

bioaccumulation in dipper eggs, feathers, and blood has been documented and they are 

established bioindicators of stream quality (Ormerod and Tyler, 1994; Morrissey et al., 2005). 
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Resident dippers feeding at higher trophic level (more salmon) bioaccumulate higher 

concentrations of contaminants than migrants (Morrissey et al., 2012), as do females that feed 

preferentially on salmon during egg-laying (Morrissey et al., 2010a). The high elevation, densely 

forested stream habitat used by dippers may experience high levels of atmospheric deposition of 

Hg, similar to Bicknell’s Thrush inhabiting montane riparian areas (Rimmer et al., 2005) and 

Osprey foraging in alpine lakes (Guigueno et al., 2012). The potential methylation of Hg within 

RoR headponds may faciliate high levels of dietary uptake of MeHg by dippers foraging in this 

novel, high-elevation aquatic habitat. 

 MeHg potentially produced in reservoirs of regulated streams will be detectable in dipper 

blood, feathers, and eggs. Though there are no published MeHg turnover values for passerine 

tissues, half-lives have been published for the whole blood of Great Skua (Catharacta skua; 

Bearhop et al., 2000) at 31.5-63 days, ~74 days for Mallard (Heinz and Hoffman, 2004), and 44–

65 days for Cory’s Shearwater (Calonectris diomedea; Monteiro and Furness 2001). The MeHg 

half-life for dipper whole blood is likely less than these published values for waterbirds, as 

passerines have a higher metabolic rate. Dippers, however, have a lower metabolic rate than 

other passerines as an adaptation for life in cold waters (Murrish, 1970). Therefore, I estimated 

MeHg half-life in dipper whole blood as ~30 days, which was used a conservative turnover 

estimate for Bicknell’s Thrush (Rimmer et al., 2010). MeHg measured in feathers indicate the 

amount deposited during active feather growth (Wolfe et al., 1998). Feathers collected in the 

early fall will indicate MeHg exposure during feather growth (Hobson and Clark, 1992; Bearhop 

et al., 2002), which occurs after the late summer/early autum moult in dippers. Body feathers 

provide the most representative tissue for estimating whole bird Hg content (Furness et al., 

1986).  

The most informative stable isotope analyses will study organisms that have established 

diet-tissue fractionation factors (the factor by which the ratio of two isotopes changes during the 

energy transfer between the diet and specific tissue of the consumer), measure isotopic ratios in 

multiple tissues to measure temporal diet shifts, adequately characterize baseline isotopic ratios, 

and integrate life history of the study organisms (Jardine et al., 2006). The present study fits the 

above criteria: isotopic turnover and fractionation values are well established in avian whole 

blood (Bearhop et al., 2002; Hobson and Clark, 1992; Hobson and Bairlein, 2003; Evans Ogden 

et al., 2004), isotopic ratios will be measured in whole blood and feathers, baseline isotopic 
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ratios will be characterized in benthic macroinvertebrates, and the life history of dippers is well 

understood. Here, I measured stable isotopes of C, N, and S through river food webs in order to 

characterize changes to dipper diet and Hg exposure related to flow changes by RoR dams. 

 Turnover rates of δ13C and δ15N in avian blood are fairly rapid, indicating recent dietary 

conditions. Whole blood of the Greater Skua (Catharacta skua) had a half-life of 14.4 days for 

δ15N and 15.7 days for δ13C (Bearhop et al., 2002). Similarly, the δ13C half-life in captive 

Japanese Quail (Coturnix japonica) was 11.4 days (Hobson and Clark, 1992). The Garden 

Warbler (Sylvia borin) had a half-life of 11 ± 0.8 days for δ15N and 5.0 ± 0.7 to 5.7 ± 0.8 for δ13C 

(Hobson and Bairlein, 2003). Dunlin (Calidris alpina pacifica) have reported half-lives of 11.2 ± 

0.8 days for δ13C and 10.0 ± 0.6 days for δ15N (Evans Ogden et al., 2004). Dippers have a lower 

metabolic rate than non-aquatic passerines of the same size (Murrish, 1970), so turnover values 

are likely intermediate between those of the Garden Warbler and Greater Skua; however, birds in 

the above experiments were studied in captivity and likely have lower metabolic rates than their 

wild counterparts. Although turnover values are affected by metabolic rate and nutritional stress 

(Hobson et al., 1993), whole blood isotopic values represent fairly recent dietary information, 

likely <20 days for both δ15N and δ13C. The turnover rate of δ34S is assumed to be similar to 

carbon and nitrogen (Vander Zanden et al., 2015). Measuring multiple stable isotopes in dipper 

blood provides accurate information on their recently assimilated diet. 

1.5 STUDY AREA 

 

 The 14 mountain streams (7 regulated and 7 unregulated) surveyed during this study span 

three watersheds in the Coast Mountain range of British Columbia’s Fraser Basin: the Squamish 

(49°54'4.22"N 123°17'21.09"W), Lillooet (50°18'14.38"N 122°42'11.75"W), and Harrison River 

(49°44'32.45"N 122° 8'2.81"W) watersheds (Fig. 2). The majority of creeks and rivers surveyed 

are steep, third-order streams within the Coastal Western Hemlock, Mountain Hemlock, and 

Engelmann Spruce Subalpine fir biogeoclimatic zones. As hybrid streams (Eaton and Moore, 

2010), these creeks and rivers experience peak runoff during the winter (November-January) in 

response to heavy rainfall and a secondary peak runoff event, known as the spring freshet (April 

or May) in response to snowmelt (Coulthard et al., 2016). Minimum flows occur in the summer, 

or often in the early fall, when snowmelt has ceased and temperatures are highest (Eaton and 
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Moore, 2010). In the case of RoR-regulated streams, however, the hydrograph is stabilized (due 

to flow diversion) and the magnitude of peak flooding events are reduced. 

   

 

 
Figure 1.2 Operational run-of-river projects in southwestern British Columbia as of January 

2016 (upper left) and location of 14 study streams (7 regulated and 7 unregulated) surveyed in 

this study (lower right), spanning the Squamish, Lillooet, and Harrison watersheds in the Coast 

Mountain range of the Fraser River Basin.
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1.6 THESIS OBJECTIVES AND MAJOR HYPOTHESES 

 

Although local responses of certain taxa, particularly fish, to RoR developments have 

been identified, there are knowledge gaps on the ecosystem-level response to RoR regulation. To 

address this, I studied the response of mountain stream food webs to regulation by RoR dams 

across three adjacent watersheds in coastal British Columbia using stable isotope analysis. I also 

addressed potential MeHg exposure in RoR-reservoirs, which has not been assessed in any 

studies or reviews on the known and predicted impacts of RoR dams. I examined headponds and 

other habitats experiencing flow changes through RoR-regulation from the perspective of 

ecological traps, as I expected stream-dependent biota to encounter both benefits and costs 

related to flow regime stabilization. 

 The main objectives of this study were to 1) explore potential impacts of RoR dams on 

dipper occupancy, demographics, and body condition and 2) characterize dipper diet and MeHg 

exposure in relation to flow diversion by RoR dams. To accomplish this, I combined a study of 

American Dipper and other river bird habitat use with stable isotope and Hg analysis of dippers 

and their prey to measure changes to the stream food web and contaminant exposure. There was 

uncertainty over whether RoR dams would impair or enhance American Dipper habitat and 

components of fitness, but in sampling multiple streams, I expected that one or more responses 

might be related to the longitudinal changes associated with the RoR headponds and flow 

diversion. 

 I hypothesized that Hg concentrations would be higher in dipper tissues at regulated 

streams, reflecting the higher rates of Hg-methylation described in large hydroelectric reservoirs 

and beaver dams. I also hypothesized that the mechanism of MeHg production within RoR 

headponds would be through the activity of sulfate-reducing bacteria. I predicted dippers to have 

the highest blood and feather Hg concentrations if they were foraging at the most-recently 

inundated headponds with the highest amount of leaf litter and largest flooded area, which are 

known to increase MeHg production. I also hypothesized that headponds, dominated by slow-

flowing waters and lower oxygen conditions, would have distinct isotopic profiles compared 

with upstream and downstream reaches. Specifically, I predicted that invertebrates sampled 

within the headponds and dippers foraging within the headponds would reflect this distinct 
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isotopic signature of 13C-enrichment and 34S-depletion, indicating limited boundary layer 

diffusion at low flow and the activity of anaerobic bacteria. 

 Beyond exploring the ecotoxicological effects of RoR regulation on mountain streams, 

my study provides new information about the extent of MeHg contamination in locations of 

western North America free from known Hg point sources. In addition, it broadens our 

knowledge about Hg biomagnification in natural-flowing and regulated streams, which are less 

understood than lentic ecosystems. 
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CHAPTER 2:  

ABUNDANCE-OCCUPANCY PATTERNS OF RIVER BIRDS IN RESPONSE 

TO THE MODIFIED UPSTREAM AND DOWNSTREAM HABITAT CREATED 

BY RUN-OF-RIVER DAMS 

2.1 INTRODUCTION  

 

 With nearly two-thirds of the world’s large rivers already fragmented by dams (World 

Commission on Dams, 2000; Nilsson et al., 2005), run-of-river (RoR) dams on smaller streams 

are emerging as an alternate approach to harnessing hydroelectric energy across the globe. Also 

known as river diversions or non-storage hydropower, RoR dams differ from conventional dams 

in two main ways: 1) they operate on smaller rivers with smaller barriers (a small weir) and have 

a reduced impact area; and 2) impounded water is usually stored for less than 48 hours without 

an extensive reservoir (Community Energy Association, 2008; Anderson et al., 2015), compared 

to a residence time of several days to years for stored water in larger impoundments (Baxter et 

al., 1977). RoR projects function by diverting a portion of a stream’s flow from the dam through 

underground pipes (known as the penstock) before returning it downstream; thus, they rely on a 

steep elevation-gradient, and consequently, minimal storage. Further, it is argued that because 

altered magnitude and timing of stream flow is limited to the diversion reach (portion of the 

stream with abstracted flow), there is no substantial impact to the upstream and downstream flow 

regime (Lewis et al., 2013).  

 RoR dams are often regarded as clean or environmentally-benign energy sources because 

of their smaller overall size and reduced greenhouse gas emissions compared to conventional 

hydropower (Paish, 2002). There is, however, increasing evidence to suggest that RoR dams 

have appreciable impacts on stream biota (Robson et al., 2011; Anderson et al., 2015). American 

Dippers, the only truly aquatic songbird in North America, share the specificity for high-

elevation, fast-flowing mountain stream habitat suitable for RoR projects. Dippers are year-

round residents on mountain streams and do not undertake extensive latitudinal migration; 

however, migration to higher elevation reaches during the breeding season (late March to 

August) is common in many Pacific Northwest populations (Price and Bock, 1983; Morrissey et 
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al., 2004b, Walton and Wright, 2008). Formerly known as the Water Ouzel, these songbirds do 

not stray far from the stream channel where they breed and overwinter, feeding on benthic 

macroinvertebrates, small fish, and fish eggs by diving and swimming underwater with their 

wings, or running along the stream bottom (D’Amico, 2011). Dippers have been used 

extensively as indicators of stream health (Ormerod and Tyler, 1994; Henny et al., 2005; 

Morrissey et al., 2005). With several biotic and abiotic factors known to influence dipper fitness, 

it is possible that RoR-associated habitat modifications may alter year-round habitat use. 

 Dippers are sensitive to variation in river flow regime (D’Amico and Hemery, 2007; 

D’Amico, 2011; Royan et al., 2014) and it is possible that they will respond to changes in the 

stream foodweb related to flow diversion by run-of-river dams. Flow regulation by RoR dams 

may directly or indirectly impact dipper fitness through changes to the flow regime that affect 

prey availability, stream physicochemistry, and in-channel and riparian habitat. White-throated 

dipper (Cinclus cinclus) time-activity budgets are highly tied to streamflow (D’Amico and 

Hemery, 2007) and dippers may exhibit non-adaptive foraging in response to stabilized flow 

and/or unpredictable recreational release events. In both situations, changes in flow are not 

associated with seasonal environmental cues (rainfall or drought) and dippers may be forced to 

alter their foraging strategies, with possible consequences for their survival (D’Amico, 2011). In 

contrast, habitats modified by the stabilized flow regime may serve as a refuge for dippers as our 

climate changes and catastrophic flood events become more common (Royan et al., 2014), or 

simply by reducing the energetic demands of foraging in fast-flowing waters (D’Amico et al., 

2000). 

   A recent review on the responses of river bird specialists to sudden and extreme flow 

events concluded that White-throated Dippers are the most vulnerable species to shifts in river 

flow and flooding events (Royan et al., 2014). The headpond may serve as a pool habitat that 

supports a larger diversity of invertebrate prey more typical of lentic habitats (e.g. limnephilidae). 

With the combination of higher spring and summer temperature, lower flows, and nutrient 

retention, headponds may provide a novel habitat with benefits of improved dipper foraging 

efficiency compared to habitats experiencing high and more variable flows. Taylor and 

O’Halloran (2001) documented an immediate shift in White-throated Dipper diet following a 

sudden flood event in Ireland and predicted that preferred prey become less available/less 

energetically profitable during high water levels, which could affect chick growth and survival. 
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Brown Dippers (Cinclus pallasii) in Taiwan also experienced declines in productivity in response 

to severe floods caused by typhoons, which decreased invertebrate abundance (Hong et al., 2016). 

Late season floods and longer recovery periods for the invertebrate community were especially 

stressful to dipper reproductive output (Hong et al., 2016). Although Eurasian Dippers in the 

Pyrénées of France exhibited maximal foraging efficiency during spring snowmelt, large amounts 

of time were spent resting (D’Amico and Hemery, 2007). This indicates that foraging at high flow 

has high energetic demands, while regulated flows may reduce the energy requirements of 

foraging in addition to providing more or higher quality prey within the headpond.  

   Changes to streamflow may also indirectly impact dipper fitness through changes to 

stream physicochemistry, in-channel and riparian habitat, and associated biotic community 

structure. Winter is a time of high energetic stress for dippers, indicated by high rates of adult 

mortality (Price and Bock, 1983) and time-activity budgets dominated by foraging with little time 

spent resting (D’Amico and Hemery, 2007). Flow abstraction by RoR impoundments can alter 

stream temperatures, producing warmer than average summer waters and cooler winter waters. 

Elevated summer temperature may indirectly impact dippers through earlier emergence or 

mortality to the invertebrate prey community; however, elevated temperature may increase overall 

stream productivity and therefore benefit dippers through indirect effects on food availability. 

Colder temperatures and shallow waters in the diversion reach in winter may lead to stream 

freezing and subsequent reductions in open water habitats. By comparison, headponds may serve 

as year-round ice-free habitat for dippers.  

   Changes in natural flow within the diversion reach of run-of-river dams may alter the 

prey base to which dippers have adapted. Reduced abundance and diversity of benthic algal (Wu 

et al., 2009) and invertebrate communities (Gonzalez et al., 2013; Fanny et al., 2013), and reduced 

macroinvertebrate density (McIntosh et al., 2002) have been observed below small dams. In 

resident fish, researchers have observed variable effects downstream of small dams ranging from 

no change in species assemblage (Santos et al., 2006), to reduced density of some species but 

overall increases in species richness (Lessard and Hayes, 2003), to 50 % declines in populations 

(Almodovar and Nicola, 1999). These responses are often attributed to flow changes and 

associated changes to in-stream habitat, such as increased sedimentation and siltation. No previous 

studies have looked at dippers or other river birds in association with RoR developments, 

however, dippers are known to exhibit similar negative responses to reduced availability of 
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benthic macroinvertebrates (Ormerod and Tyler, 1991; Feck and Hall, 2004) and salmon prey 

(Obermeyer et al., 2006; Morrissey et al., 2012), loss of riffle habitat (Loegering and Anthony, 

1999; Vaughn et al., 2007), and siltation (Price and Bock, 1983). Changes to riparian vegetation 

associated with flow abstraction and associated erosion (Nilsson et al., 1997; Nilsson and 

Berggren, 2000; Jansson et al., 2000), combined with pre-existing or new forest fragmentation for 

access roads, may also reduce dipper nest site availability, which is a limiting factor for breeding 

success (Price and Bock, 1983; Mazeika et al., 2012).  

   To date, research on ecological responses to RoR impoundments has focused primarily 

on migratory fish. Variation in run-of-river projects with respect to barrier-type, extent of reservoir 

flooding and retention time, proportion of flow diverted, stability of flow, site geography, and the 

presence of resident salmonids makes monitoring the response of transient fish and fish habitat to 

this energy source difficult. By comparison, American Dippers occupy an important and more 

permanent niche at the interface between the stream channel and riparian zone. Dipper presence 

and abundance are likely highly suitable bioindicators of altered flow regime related to run-of-

river dams. Therefore, my specific objectives were to compare regulated and unregulated streams 

in terms of dipper 1) seasonal stream occupancy and year-round residency and 2) demographics 

and body condition in coastal British Columbia, Canada. I could not explicitly predict whether 

RoR dams would impair or enhance local American Dipper populations, but I hypothesized that 

dipper responses would vary in relation to inherent site characteristics of habitat quality and 

regulation practices.   

2.2 METHODS 

2.2.1 Study Site Selection 

 

 The 7 regulated streams surveyed in this study included: Brandywine Creek (BRANDY), 

Fitzimmons Creek (FITZ), Rutherford Creek (RUTH), Douglas Creek (DOUG), Fire Creek 

(FIRE), Tipella Creek (TIP), and the Soo River (SOO). The 6 free-flowing, unregulated streams 

included: Roe Creek (ROE), Madeley (MAD), Pemberton Creek (PEM), Owl Creek (OWL), 

Gowan Creek (GOW), and Sloquet Creek (SLO) (Table 2.1). Elevations of regulated streams 

ranged from 302 m-1000 m, while those of unregulated streams ranged from 55-881 m. Most 
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RoR dams on the regulated streams were low-flow, high-head schemes, where head is the 

difference in elevation of water at the intake and elevation of the turbine inlet in the powerhouse 

(Anderson et al., 2015).  Anadromous salmon (Oncorhynchus spp.) were absent upstream of the 

powerhouse on regulated streams, but five of the lower elevation unregulated reference streams 

may have supported at least one species of anadromous salmon. Resident rainbow trout 

(Oncorhynchus mykiss) inhabited all surveyed streams, with the exception of the highest 

elevation regulated stream, Fitzsimmons Creek (Table 2.1). 

 Prior to establishing survey transects in the fall of 2014, operational regulated streams 

were screened by the following selection criteria: a) suitable dipper habitat and b) accessibility 

for wading or walking in or along the stream channel and setting mist-nets across a sufficient 

portion of the stream to catch birds. Regulated streams in this study varied in their regulatory 

techniques (water retention time above the dam, % water diverted, megawatt capacity), stream 

morphology, and operational date (Table 2.1), but all were high elevation mountain streams 

providing potential year-round habitat for dippers. Unregulated streams were selected based on 

the former criteria in addition to a third criterion of similar stream geomorphology and close 

proximity to neighbouring regulated streams. 

 At each regulated stream, a 1km linear survey transect was established from 500 m 

upstream to 500 m downstream of the point of diversion. At unregulated streams, 1 km transects 

were established from 500 m upstream to 500 m downstream from a mid-point based on 

accessibility and elevation. In total, 14 linear stream kilometers (7 km regulated, 7 km 

unregulated) were surveyed in this study during breeding and non-breeding seasons.    
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2.2.2 Trapping and density surveys  

 

 All banding and re-sight methods were approved by the University of Saskatchewan 

Animal Care Committee and Environment Canada (permit no. 10268 M). From September to 

November of 2014 and 2015, 99 adult dippers (n=48 in 2014 and n=51 in 2015, plus 3 recaptures 

from 2014) were banded at 13 (7 regulated, 6 unregulated) of the 14 surveyed streams (7 

regulated, 7 unregulated). Dippers were captured using 6, 9 or 12 m mist-nets set across shallow 

reaches of each stream and banded with a unique combination of a USGS numbered metal band 

and three colour bands. Mist-nets were typically set below the dam or near the mid-point of 

reference streams within the 1km survey transect at each site. All trapping occurred during 

autumn, when dippers are less territorial and found at higher densities (Price and Bock, 1983; 

Morrissey, 2004; Whitehorne, 2010) and stream levels are low enough to set mist nests across 

the channel.  

 For each individual dipper, tarsus and bill length were measured with dial calipers to the 

nearest 0.1mm, maximum wing chord and tail length were recorded with wing rules to the 

nearest 0.5mm, and mass was recorded to the nearest gram. In 2015, I was able to reliably age 

individuals based on eye colour and condition of primary coverts; after hatch year (AHY) adults 

have dark, chestnut-coloured eyes with rounded primary converts, while hatch-year (HY) birds 

have olive-coloured eyes with pointed and often white-tipped primary coverts (Pyle, 1997). In 

2015, I attempted to sex AHY birds by size, as male dippers have slightly larger measurements 

than females; however, some birds fell in the range of overlap, so I included a category of 

“unknown sex”.  

 I captured and banded adult dippers for 2-3 consecutive days at 6 regulated and 5 

unregulated streams during the autumn of 2014 and conducted re-sighting surveys 1-2 days after 

the last banding attempt to satisfy the assumption of population closure during the primary fall 

periods. The same streams were surveyed during the spring of 2015 on two occasions: pre-

freshet (mid-late April) and post-freshet (early-mid June); during these breeding season surveys, 

one additional regulated and two unregulated sites were added to the study, for a total of 7 

regulated and 7 unregulated streams. During the fall of 2015, I followed the trapping and re-sight 

survey methodology from 2014 and added an additional re-sight survey at the end of October. 

With at least two encounter occasions within each primary sampling interval (fall 2014, spring 
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2015, and fall 2015), I was able to run a robust-design occupancy analysis. The robust design 

occupancy analysis allows “missing” data to be omitted for streams that were not initially visited 

until spring, 2015. Despite numerous attempts and a few dipper sightings during the fall and 

spring, I was unable to capture dippers at one of the unregulated streams, Roger Creek.  

 Density surveys followed the unreconciled independent double-observer approach 

(Riddle et al., 2010), whereby each observer keeps a separate tally of all observations to 

facilitate an estimation of detection probability. Within each 1 km transect, a pair of observers 

walked in an upstream or downstream direction along the stream bank and in wadeable channels 

and recorded the location and activity of all dippers and other river birds seen and heard on a 

stream transect map. To reduce communication and maximize survey integrity, observers walked 

along opposite stream banks whenever possible or staggered their survey start times by a 

distance that would not result in the first observer flushing birds ahead of the second observer. 

Unique colour combinations were easily identified from a distance of 30 m with 10x40 

binoculars. If a band code combination was not initially distinguishable, observers tracked down 

the bird and ensured the correct code was recorded. Survey duration was typically 1-1.5 hours, 

depending on the terrain. 

 

2.2.3 Statistical analyses 

2.2.3.1 Seasonal density and occupancy 

 

 Seasonal density estimates (number of dippers observed per linear stream kilometer) 

were calculated from un-reconciled independent double observer counts (Riddle et al., 2010) 

during each re-sight survey (fall 2014, pre-freshet 2015, post-freshet 2015, fall2015a, fall2015b). 

Detection probabilities for each season were estimated using the Royle-N-Mixture Model for 

repeated counts (Royle, 2004) in program PRESENCE 11.2 (Hines, 2006). These models are 

parameterized using independent counts from each observer during the survey and treating each 

observer’s count as a separate “visit”; therefore, repeated counts at the same stream are used to 

estimate detection probability (Riddle et al., 2010). Since both visits occur simultaneously using 

this approach, detection probability is estimated here as the probability that an individual bird is 

detected given that it is present and available in the study area (Riddle et al., 2010).  
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 As suspected from few discrepancies in counts between observers, detection probabilities 

were high with little variation between seasons: pre-freshet (0.93 ± 0.05); post-freshet (0.86 ± 

0.09); fall 2015A (0.97 ± 0.03); and, fall 2015B (0.85 ± 0.12). During the fall of 2014, I was the 

only observer conducting counts, so I assumed detection probability was the same as the first 

survey during the fall of 2015, since it was conducted at the same time of year. Counts from 

seasonal surveys were adjusted by seasonal detection probabilities and density was calculated as 

the number of dippers observed divided by the detection probability. Since detection 

probabilities were always high, adjusted densities were often identical to original counts.  

 To compare seasonal densities between regulated and unregulated streams, I ran a zero-

inflated generalized linear mixed effects model with a poisson family and log-link function in the 

package glmmADMB (Skaug et al., 2016; Fournier et al., 2012) in R version 3.2.3 (R Core 

Team, 2015). This model accounted for over-dispersion in the data due to an excess of zeroes 

from instances when no birds were detected. To account for repeated measures across the same 

streams over the seasons, stream was included as a random effect. Watershed was also included 

as a random effect to account for potential regional factors influencing dipper distribution and 

density. The following factors were included as fixed effects: stream type 

(regulated/unregulated), season, the presence of anadromous salmon, and intake (or midpoint, in 

the case of free-flowing streams) elevation, as these are known or hypothesized to affect dipper 

densities.  

 Regulated streams were counted as salmon-bearing if salmon were known to be present 

upstream of the powerhouse, using information provided by Innergex, the British Columbia 

Fisheries Inventories Data Queries (FIDQ), and personal observation. The status of salmon 

presence at unregulated streams was also obtained from the FIDQ and personal observation. The 

interactions between stream type*season and stream type*elevation were also tested, but I was 

unable to test the interaction between salmon*stream type, as none of the regulated streams 

supported anadromous salmon within the survey transect or upstream of the tailrace. I tested for 

partial autocorrelation of the model residuals using the pacf function in R and did not find 

evidence of temporal autocorrelation; therefore, it was not necessary to include an 

autocorrelation function in these models. 

 Seasonal dipper occupancy rates were compared between regulated and unregulated 

streams using the robust design stream occupancy analysis in program MARK (White and 
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Burnham, 1999), with streams grouped by type (regulated/unregulated). The robust design 

included 3 primary intervals (fall 2014, spring 2015, and fall 2015) and 2-3 secondary occasions 

within each primary interval (Fig. 2.1). Due to sample size limitations (11 streams surveyed in 

2014 and 14 streams in 2015), I was unable to include in-stream and riparian covariates in the 

occupancy models.  

 To compare the stream occupancy rate of marked and unmarked dippers between 

regulated and unregulated streams, I ran a multi-state occupancy model in MARK (White and 

Burnham, 1999) on the re-sight surveys. Under this model, I used two levels of detection: 

banded (coded as 2) and unbanded (coded as 1). This model allows estimation of the following 

parameters: Ψ1, probability that a site is occupied regardless of band state; Ψ2: probability that a 

site is occupied by a banded bird; ρ1, probability that occupancy was detected given true 

state=1(unbanded); ρ2, probability that occupancy was detected given true state=2 (banded); and, 

δ, probability that banded birds were observed, given detection of occupancy. With a limited 

number of streams, it was not possible to parameterize a multi-state occupancy model under the 

robust design, so equal time intervals were assigned between all re-sight survey periods. For the 

purpose of comparing occupancy between regulated and unregulated streams and not across 

seasons, this multi-state approach was the most appropriate option.  
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Figure 2.1 Schematic of the robust design for estimating American Dipper occupancy rates of 
regulated and unregulated streams, adapted from the robust design (Pollock et al., 1990) and the 
robust occupancy models of MacKenzie et al. (2003). This model allows estimating of the 
following parameters: Ψ (proportion of sites occupied at each time period); ε (probability of an 
occupied site becoming unoccupied), and ρ (detection probability on a visit to the site) between 
primary and secondary surveys (occasions). The model assumed a closed population during the 
survey interval (fall 2014, spring 2015 and fall 2015) with an open population among survey 
periods. 
 

2.2.3.2. Philopatry and year-round residency  

 

 To compare year-round residency of dippers between regulated and unregulated streams, 

I surveyed each stream twice during the breeding season (before and after the spring freshet). If a 

bird was detected on the same stream during the breeding season as where it was banded the 

previous fall, it was classified as a year-round resident. The proportion of confirmed year-round 

residents was compared between the two stream types. To assess the degree of philopatry of 

dippers at regulated and unregulated streams, I also compared the proportion of individuals 

banded in 2014 and re-sighted at the same stream in 2015.  
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2.2.3.3. Dipper age, sex, and body condition 

 

 I calculated the proportion of AHY dippers captured at each stream and tested for a 

difference between regulated and unregulated streams using a generalized linear model (glm, 

package stats, R version 3.2.3) with a binomial family and logit link function. To account for 

differences in sample size at each stream and therefore unequal variance between stream types, 

age proportions were weighted by the total number of dippers banded at each stream.  Stream 

type, elevation, salmon, and the interaction between elevation and type were included as fixed 

effects. Watershed was excluded as a random effect, since it did not explain a sufficient amount 

of variation in age proportion to warrant inclusion (standard deviation <0.001). 

 The proportion of female AHY dippers captured at each stream was also compared 

between regulated and unregulated streams using a generalized linear model (glm, package stats, 

R version 3.2.3) with a binomial family and logit link function with no random effects, as 

watershed accounted for negligible variation (standard deviation <0.001). Proportions were 

weighted by the total number of AHY dippers captured at each stream and I tested for effects of 

stream type, elevation, salmon, and the interaction between elevation and type. Only 22 AHY 

dippers were captured at 11 streams in 2015; therefore, the sex proportion data are limited by 

low sample size. 

 A scaled mass index was calculated using the smatr package in R (Warton et al., 2012) as 

a measure of body condition. Mass was scaled by wing chord length, as wing length had the 

strongest correlation with dipper mass on a log-log scale relative to other body morphometrics 

(r=0.67, p<0.0001).  Prior to developing the scaled mass index, I checked for a significant 

interaction (differences in slopes) between age and sex using 2015 demographic data. Using 

package smatr in R, I tested the single major axis regression with an interaction between wing 

and age and wing and sex. Neither age (χ2=0.085, df=1, p=0.77) nor sex (χ2=0.27, df=2, p=0.88) 

had a significant interaction with wing length as predictors of mass and therefore it was not 

necessary to calculate separate scaling equations for different ages or sexes or include age or sex 

as factors in the linear mixed effects models.  

 The scaled mass index corrects body mass for body size based on a single major axis 

regression, rather than linear combinations computed by PCA, using the following equation 
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adapted from Peig and Green (2009), following the methodology of Tonra et al. (2016) in a 

recent American Dipper study: 

 

Scaled Mass Index = Mi [L0/Li] 
bSMA   ...................................................................... (Equation 2.1)  

  

Mi= mass of bird i; 
L0= mean (or other arbitrary value) wing length (or other linear morphometric) of all individuals 
in the population; 
Li= wing length (or other linear morphometric) of individual i; 
bSMA= slope of the log-log regression between mass and wing length (or other linear 
morphometric) 
 

 Linear mixed effects model were run with package lme4 (Bates et al., 2015, R version 

3.2.3) to test for differences in body condition of dippers at regulated and unregulated streams. 

Stream type, elevation, and the presence of anadromous salmon were included as fixed effects. I 

also tested the interactions between stream type*year and stream type*elevation. Stream was 

included as a random effect to account for non-independence of dippers banded at the same 

stream. Watershed and sampling year were excluded as random effects because they did not 

explain a significant amount of variation in body condition index (standard deviation < 0. 001). 

A general linear model (glm, package stats, R version 3.2.3) and post-hoc Tukey HSD test were 

also run to test for differences in dipper body condition between individual streams.  

 

2.2.3.4. Model selection 

 

 All models were selected based on the information-theoretic approach using Akaike’s 

Information Criterion adjusted for small sample sizes (AICc, Burnham and Anderson, 2004). 

Model selection tables were generated using the package MuMIn (Barton, 2016) in R. Models 

were run using maximum likelihood (ML) estimation and parameter estimates from the best-

fitting models were calculated using restricted maximum likelihood estimation (REML). If a 

random effect did not explain substantial variation in the response variable (standard deviation 

<0.001), it was excluded from the model. When multiple models were competitive (ΔAICc ≤ 2), 

conditional model-averaged parameter estimates were calculated using the package MuMIn 
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(Barton, 2016), whereby parameters are only averaged across models when there is sufficient 

support for their inclusion as factors.  Elevation was included as a continuous variable in all 

models and stream type refers to the categories “regulated” or “unregulated”.  

2.3 RESULTS 

2.3.1 Stream occupancy and seasonal density estimates  

2.3.1.1 Seasonal count data 

 

 Variation in dipper density was higher at regulated streams compared to unregulated 

streams (Appendix 1). Dipper density at regulated streams ranged from a low of zero at some 

streams during all seasons, except fall 2014, to a maximum of 14 adult dippers/km at 

Brandywine Creek during the fall of 2014. Densities at unregulated streams ranged from a low of 

zero in all seasons to a maximum of 5 birds/km at Roe Creek during fall 2014 (Table 2.2). 

Average dipper density during the fall of 2014 was 5.9 ± 1.9 (S.E.) birds/km at regulated streams 

and 2.3 ± 1.1 birds/km at unregulated streams. Pre-freshet survey density dropped to a mean of 

1.4 ± 0.3 birds/km at regulated streams and 1.2 ± 0.4 (S.E.) birds/km at unregulated streams, but 

increased to 2.4 ± 1.3 birds/km at regulated streams during the post-freshet survey. Post-freshet 

densities remained low at unregulated streams (1.3 ± 0.3 birds/km). Early fall 2015 densities 

were low at regulated and unregulated streams compared with the previous autumn (Meanreg=1.6 

± 0.8 birds/km, Meanunreg=0.9 ± 0.5 birds/km), and dropped later on in the fall (Meanreg=1.2 ± 

0.6 birds/km, Meanunreg=0.3 ± 0.2 birds/km), with dippers becoming quite scarce at unregulated 

streams in late October (Fig. 2.2).  

 The top two models supported differences in dipper densities between seasons and stream 

type, but not the interaction between season and stream type (Table 2.3). Model-averaged 

estimates for the top two models supported significantly higher dipper denisty at regulated 

streams compared to unregulated streams across seasons (β=0.78, SE=0.36, p=0.030). Aside 

from significantly higher fall 2014 densities (p≤0.005), dipper densities were not significantly 

different among seasons, as indicated by post-hoc Tukey HSD tests (Appendix 2). Elevation and 

the presence of anadromous salmon within the survey transect did not appear to influence dipper 

density (Table 2.3). 
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 Over the 2 years, 74 dippers were sighted at regulated streams during surveys. Of these, 

54% of the birds were initially sighted in the headponds of the regulated streams, usually 

foraging along the headpond edge or diving in the pool (Fig. 2.3). As the density of dippers at 

regulated streams decreased over time, proportionately more were first sighted within headponds 

(Fig. 2.4). Dippers were also commonly sighted directly below the dam, often foraging in the 

cascade created by the weir.  

 

Table 2.2 Comparison of American Dipper densities (Mean ± S.E. birds/km) at regulated and 

unregulated streams during breeding and non-breeding seasons in streams of southwestern British 

Columbia (BC) during this study and those of other published studies in the Pacific Northwest.  
Location Year Survey 

Linear 
Distance 

(km) 

Spring 
density 
(April) 

Summer 
density 
(June) 

Early fall 
density 

(Sept/Oct) 

Late fall 
density 
(Nov) 

 Winter 
density 
(Dec-
Feb) 

Source 

Regulated 
coastal BC 

2014 6 __ __ 5.86 ± 1.88 
(2.07-14.48) 

  __ This 
study 

Unregulated 
coastal BC 

2014 5 __ __ 2.27 ± 1.05 
(0-5.17) 

  __ This 
study 

Regulated 
coastal BC 

2015 7 1.38 ± 0.31 
(0-2.15) 

2.16 ± 
1.03 

(0-8.15) 

1.62 ± 0.78 
(0-4.14) 

1.18 ± 
0.57 

(0-3.53) 

 __ This 
study 

Unregulated 
coastal BC 

2015 7 1.23 ± 0.36 
(0-2.15) 

1.33 ± 
0.30 

(0-2.33) 

0.89 ± 0.47 
(0-3.10) 

0.34 ± 
0.22 

(0-1.18) 

 __ This 
study 

Seton River, 
Lillooet, BC 

2000-
2002 

 
10.6 

 
__ 

 
up to 0.5 

 
__ 

 
__ 

  
up to 
10.8 

Walton & 
Wright, 

2008 
Chilliwack 
River, BC 

2000-
2004 

 
16 

 
3.5 ±  0.4 

(May) 
7.0 ± 0.8 
(March) 

 
2.1 ± 0.3 

 
__ 

9.8  ± 
1.4 (7.2-

11.6) 

  
8.0 ± 
0.8 

Morrissey 
et al. 

(2004a) 

Boulder 
Creek, 

Colorado 

1971-
1973 

__ (0.5-1.4)1 
 

(0-1.4)2 (0-2.2)3 (1.9-
2.2)4 

 

 (1.0-
1.8)5 

(2.0-
2.8)6 

Price and 
Bock 

(1983) 

South 
Boulder 
Creek, 

Colorado 

1971-
1973 

__ (1.2-1.4)1 (0-2.2)2 (0-4.7)3 (3.7-
4.7)4 

 (1.5-
3.8)5 

(2.2-
5.8)6 

Price and 
Bock 

(1983) 

1Density of breeding adults in April and May extracted from Price and Bock (1983) Figs.12,13, 2Density in June 
and July extracted from Price and Bock (1983), Figs.12,13, 3Density in September and October extracted from 
Price and Bock (1983), Figs.12,13, 4Density in November extracted from Price and Bock (1983), Figs.12,13, 
5Density in December-February extracted from Price and Bock (1983), Figs.12,13, 6Density in ice-free winter 
habitats (December-February) extracted from Price and Bock (1983), Figs.12,13 

 



 42 

 
Figure 2.2 Comparison of seasonal American Dipper density (Mean ± S.E.) between regulated 

and unregulated streams in southwestern British Columbia during 5 survey periods. Across 

seasons, dipper density was significantly higher at regulated streams (β=0.78, SE=0.36, 

p=0.030).  Groups sharing the same letter are not significantly different (p>0.05), as indicated by 

a post-hoc Tukey HSD test. Fall 2014 densities were significantly higher than all other seasons 

(p≤0.005), but there was no significant interaction between stream type and season and no model 

support for elevational effects or presence of salmon.  
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1Akaike’s Information Criterion, corrected for small sample sizes 
2 -2 (Log Likelihood) 
 

 

 

 

Table 2.3 Model selection results testing for differences in seasonal dipper densities between 

regulated and unregulated streams. A zero-inflated poisson GLMM was run using the 

package glmmADMB in R. Season, stream type, elevation, salmon, and interactions between 

type*elevation and season*type were included as fixed effects. Stream and watershed were 

included as a random effects.  Models with AICc weight>0 and the null model (intercept-

only) are presented for comparison. 

Response Model Structure AICc1 Δ 

AICc 

Deviance2 Model

Weight 

df 

Count (# 

dippers/ 

stream km) 

Type+Season 221.0 0.00 199.86 0.72 9 

Type+Season+Salmon 223.4 2.39 199.48 0.22 10 

 Type+Season+Salmon+

Elevation 

226.2 5.19 199.41 0.053 11 

 Type*Elevation+Season

+Salmon 

228.9 7.90 199.14 0.014 12 

 null 246.7 25.71 238.08 0 4 
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Figure 2.3 Proportion of observed dippers (Mean ± S.E.) sighted in the headpond at regulated 

streams. During double observer surveys, the initial location of each individual bird was 

recorded on a map of each stream.  

 

 
Figure 2.4 Relationship between the proportion of observed American Dippers (mean ± S.E.) 

sighted in the headponds of regulated streams and seasonal density (mean ± S.E., birds/km). At 

low dipper densities, a higher proportion (up to 100%) of birds were observed in the headpond.  
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2.3.1.2 Robust design occupancy models 

 

 The best-approximating occupancy model under the robust design was the null model 

(Table 2.4). Under this model, occupancy was estimated as constant at 100 % (Ψ =1, SE=0) over 

time (seasons) and type (regulated/unregulated), with zero probability of streams becoming 

unoccupied (ε=0, SE=0). Detection probabilities (ρ) were estimated at regulated and unregulated 

streams for each season, averaging 0.91 ± 0.06 for fall 2014, 0.82 ± 0.07 for spring 2015, and 

0.57 ± 0.08 for fall 2015. There was some model support for effects of season (t) on occupancy 

rates, but parameter estimates for the model supporting stream type (g) differences in occupancy 

were identical to the null model. The model including seasonal differences in occupancy rate (t) 

estimated 100 % occupancy during fall 2014 and spring 2015, but reduced occupancy during fall 

2015 (Ψ =0.45, SE=0), which is consistent with our observation of lower densities during this 

time. Under this model, estimates of detection probabilities and the probability of a site 

becoming unoccupied (ε) were the same as the null model.  

 

Table 2.4 Robust design occupancy model selection results comparing dipper occupancy 

between regulated and unregulated streams. Models with AICc weights >0 and the null model 

are presented for comparison. 

Model AICc1 Delta 

AICc 

AICc 

Weights 

Model 

Likelihood 

k2 Deviance3 

 

{Ψ (.)ε (.) ρ 1(.) ρ 2(.) ρ 3(.)}4 108.86 0 0.63 1 5 54.97 

{Ψ (t) ε (.) ρ 1(.) ρ 2(.) ρ 3(.)} 111.67 2.81 0.15 0.25 6 54.97 

{Ψ (g) ε (.) ρ 1(.) ρ 2(.) ρ 3(.)} 111.67 2.81 0.15 0.25 6 54.97 

{Ψ (.),ε (.), p(.)} 114.32 5.46 0.041 0.065 3 65.56 
1Akaike’s Information Criterion, corrected for small sample size 
2Number of parameters 
3 -2 (Log Likelihood) 
4 This model allows estimating of the following parameters: Ψ (proportion of sites occupied at 
each time period); ε (probability of an occupied site becoming unoccupied), and ρ (detection 
probability on a visit to the site). Effects of stream type (g), time period (t), and the interaction 
between stream type and time (g*t) are indicated for each parameter, while (.) indicates no effect 
of stream type or time. 
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2.3.1.3 Multi-state occupancy models 

 

 The multistate occupancy model suggested no difference in the occupancy rate of 

unbanded dippers (Ψ1=1, SE=0) between stream types. The multi-state occupancy model that 

included group differences in the occupancy rate of banded birds between regulated (Ψ2=1, 

SE=0) and unregulated (Ψ2=0.50, SE= 0.22) streams was competitive with the null model (Table 

2.5), which differed in AICc by only 1.67 points.  Although the null model had a lower AICc 

value, a maximum likelihood test for the effect of group differences in occupancy rate of banded 

birds (Ψ2) indicated a significant effect of stream type (χ2=4.827, df=1, p=0.028), with overall 

higher occupancy of banded birds on regulated streams. This result suggests that there is an 

effect of stream type on the occupancy rate of banded dippers, with regulated streams supporting 

higher occupancy of banded birds. The probability that banded birds were detected was constant 

for regulated and unregulated streams (δ=0.50, SE=0.086) and did not vary across seasons. 

Although detection probabilities were constant across stream type and all re-sight surveys, the 

estimated detection probability for banded birds was higher than unbanded birds (ρ1=0.44 ± 0.12 

for unbanded dippers, ρ2=0.70 ± 0.066 for banded dippers).  

 Omitting Roger Creek (the unregulated stream where I was unable to capture and band 

dippers, despite numerous attempts) from the multi-state occupancy analysis produced similar 

results, with model support for a higher occupancy rate of banded dippers at regulated streams 

(Appendix 3), and similar parameter estimates (Appendix 5). Even with the most conservative 

approach (assuming the dipper sighted at Roger Creek was banded), there was model support for 

higher occupancy rates of banded dippers at regulated streams (Appendix 4), although the 

difference was not statistically significant (Appendix 5).  
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Table 2.5 Multi-state occupancy model selection results comparing occupancy of banded and 

unbanded dippers between regulated and unregulated streams.  

Model AICc
1 Δ AICc AICc 

Weights 

Model 

Likelihood 

k2 Deviance3 

Ψ1(.)Ψ2(.)ρ1(.)ρ2(.)δ(.)4 162.92 0 0.70 1 5 93.71 

Ψ1(.)Ψ2(g) ρ1(.)ρ2(.)δ(.) 164.59 1.67 0.30 0.43 6 88.88 
1Akaike’s Information Criterion, corrected for small sample sizes 
2Number of parameters 
3 -2 (Log Likelihood) 
4 This model allows estimation of the following parameters: Ψ1, probability that a site is 
occupied regardless of band state; Ψ2: probability that a site is occupied by a banded bird; φ1, 
probability that occupancy was detected given true state=1(unbanded); φ2, probability that 
occupancy was detected given true state=2 (banded); and, δ, probability that banded birds were 
observed, given detection of occupancy. Effects of stream type (g) are indicated for each 
parameter, while (.) indicates no effect of stream type. 
 

 The multistate model including group (stream type) differences in Ψ2 (occupancy rate of 

banded birds) is further supported by seasonal differences in the proportion of banded and 

unbanded dippers observed at regulated and unregulated streams (Appendix 6). No banded 

dippers were observed during the spring surveys at unregulated streams and the proportion of 

banded birds sighted at regulated streams was higher during all seasons, except early fall 2015 

(Fig. 2.5). 
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Figure 2.5. Proportion of regulated and unregulated streams occupied by adult banded (black 

bars) and unbanded (white bars) dippers during seasonal surveys (2014-2015) in southwestern 

British Columbia.  

 

2.3.2 Philopatry and year-round residency 

 

 The proportion of adult dippers banded during the fall of 2014 and re-sighted during the 

spring 2015 surveys was 3/30 (10 %) for regulated streams and 0/18 (0 %) for unregulated 

streams. The number of dippers re-sighted during the fall of 2015 that were banded in 2014 was 

3/30 (10 %) for regulated streams and 3/18 (16.7 %) for unregulated streams (Table 2.6). One 

dipper banded at an unregulated stream during fall 2014 was re-sighted at a regulated stream 

during fall 2015. All other re-sightings were at the same stream as initial capture. Due to low 

sample size and limited survey repetition, I was unable to estimate apparent survival of dippers 

banded in fall 2014 and re-sighted in fall 2015. 
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Table 2.6 Proportion of confirmed resident dippers (sighted during breeding and non-

breeding seasons on the same stream) and second year re-sights (banded fall 2014 and re-

sighted fall 2015 on same stream) at regulated and unregulated streams  

(n=48 dippers banded during fall 2014). 

Stream Type % of confirmed resident 

dippers 

% of birds re-sighted at the same stream 

of capture 

Regulated 10 % (3/30) 10 % (3/30) 

Unregulated 0 % (0/18) 
 

16.7 % (3/18) 

 

2.3.3 Age, sex, and body condition   

2.3.3.1 Age and sex differences between regulated and unregulated streams  

 

 The best approximating model for the proportion of adult AHY dippers captured at each 

stream included stream type as the only explanatory variable and stream as a random effect 

(Table 2.7). There was no model support for the effect of elevation, the interaction between 

elevation and type, nor the presence of anadromous salmon. Regulated streams tended to have a 

higher proportion of AHY dippers compared to unregulated streams (β=1.15, Adj. SE=0.65, 

p=0.077). The mean proportion of AHY dippers banded at regulated streams was 0.60 ± 0.073 

compared to 0.22 ± 0.074 at unregulated streams (Fig. 2.6, Appendix 7). The proportion of AHY 

captured at unregulated streams ranged from 0-0.43, while the proportion of AHY dippers 

captured at regulated streams ranged from 0.43-1.0 (Fig 2.6). The fact that the null model is 

within 2 AICc units of the top model is likely related to a small sample size, since only dippers 

captured in 2015 were confidently aged and therefore included in the models. 
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Figure 2.6 Proportion of AHY dippers captured at regulated and unregulated streams in 

southwestern British Columbia during fall 2015 (n=54 dippers captured in 2015 with 29 from 

regulated and 25 from unregulated streams). Regulated streams tended to support a higher 

proportion of AHY dippers than unregulated streams (β=1.15, Adj. S.E.=0.65, p=0.077).  
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Table 2.7 Model selection results testing the effect of stream type, salmon, and elevation on 

the proportion of AHY dippers captured at regulated and unregulated streams during fall 

2015 (n=54). Models were run using glm in R, with a binomial family and logit link 

function. Proportions were weighted by the total number of AHY dippers banded at each 

stream. 

Response Model Structure df AICc1 Δ 

AICc 

Model Weight Deviance2 

Proportion of 

AHY dippers 

captured 

Stream Type 

 

2 31.6 0 0.57 26.41 

 

null 

 

1 

 

32.9 

 

1.29 

 

0.30 

 

30.54 

Stream 

Type+Elevation 

 

3 

 

34.9 

 

3.25 

 

0.11 

 

26.37 

Stream 

Type*Elevation 

 

4 

 

38.5 

 

6.91 

 

0.018 

 

25.52 

Stream 

Type*Elevation+

Salmon 

 

5 

 

43.0 

 

11.44 

 

0.0020 

 

24.48 

1Akaike’s Information Criterion, corrected for small sample sizes 
2 -2 (Log Likelihood) 
 

 The best-approximating model testing for differences in the proportion of adult female 

dippers banded at regulated and unregulated streams was the null model (Table 2.8, Appendix 8), 

indicating no effect of stream type, elevation, or anadromous salmon on dipper sex ratios.  
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Table 2.8 Model selection results testing the effect of stream type, salmon, and elevation on 

the proportion of adult (AHY) female dippers captured at regulated and unregulated streams 

during fall 2015. Weights were applied to the proportions to account for variation in the total 

number of dippers captured at each stream (n=23 AHY dippers captured in 2015). Models 

were run with glm using a “binomial” family, logit link function, and weights equal to total 

number of AHY dippers banded at each stream. Models with weight>0 and null are included 

for comparison.  

Response Model 

Structure 

df AICc1 Δ 

AICc 

Model Weight Deviance2 

Proportion of 

adult female 

dippers captured 

null 1 21.3 0 0.96 18.89 

Stream 

Type*Elevation 

 

4 

 

27.7 

 

6.33 

 

0.040 13.00 

Stream 

Type+Elevation 

 

5 

 

35.0 

 

13.66 

 

0.001 13.00 
1Akaike’s Information Criterion, corrected for small sample size 
2 -2 (Log Likelihood) 

 

2.3.3.2 Body condition and morphometrics 

 

  Model selection results supported inclusion of effects of stream type on body condition, 

but there was no model support for effects of salmon, elevation, or the interaction between type 

and elevation (Table 2.9). Although there was a trend of higher body condition at regulated 

streams, model-averaged estimates across the top two models (ΔAICc<2) indicated no significant 

difference between regulated and unregulated streams (β=0.65, adj. S.E.=1.33, p=0.62). Body 

condition, represented by a scaled mass index (SMI) was fairly consistent across all streams, with 

the exception of relatively low SMI of dippers captured at Owl Creek, an unregulated stream (Fig. 

2.7).  
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Table 2.9 Model selection results comparing American Dipper body condition (mass scaled 

by mean wing length) between stream types. Stream type, elevation, salmon, and the stream 

type*elevation interaction were included as fixed effects. Stream was included as a random 

effect. Models were run as linear mixed effects models with package lme4 in R. Models with 

weight>0 and null are included for comparison. 

Response Model Structure df AICc1 Δ 

AICc 

Model 

Weight 

Deviance2 

Body 

Condition 

Index 

Stream Type 4 581.5 0 0.55 573.04 

null 3 581.9 0.44 0.44 575.64 

Type+Elevation+Salmon 6 591.7 10.24 0.003 578.81 

Type+Elevation 5 593.7 12.28 0.001 583.10 
1Akaike’s Information Criterion, corrected for small sample sizes 
2 -2 (Log Likelihood) 
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Figure 2.7 Dipper body condition (represented by a scaled mass index) among all individual 

regulated and unregulated streams (n=99 dippers) sampled in southwestern British Columbia, 

2014-2015.  

 

2.3.4. Habitat changes related to flow diversion by RoR dams  

 

 At each stream, I typically observed a shift from rapid and cascade-dominated channels 

to channels dominated by riffle and runs in response to flow abstraction (Fig. 2.8). Reduced flow 

was also associated with an increase in channel-cover by small boulders, reductions in channel-

cover by large woody debris and size of the dominant streambed material, and increased 

sedimentation and siltation below the dam. Within the diversion reach at most regulated streams, 

I noticed an increase in the amount of periphyton (mixture of algae, bacteria, fungi, 

microinvertebrates, and detritus) and a reduction in the extent of moss covering the large 

boulders, likely in response to reduced flow and increased sunlight on the channel resulting from 

deforestation along the access roads.   
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(a) 

 
(b) 

Figure 2.8 Examples of in-stream habitat changes downstream of run-of-river dams in coastal 

British Columbia. (a) Stream channel upstream (left) and downstream (right) of the Brandywine 

Creek run-of-river dam in the Squamish watershed. (b) Stream channel upstream (left) and 

downstream (right) of the Fire Creek run-of-river dam in the Lillooet watershed. Photos were 

taken simultaneously at each stream during the fall of 2015. Photos by: V. Norbury.  

 

 The major habitat change observed at regulated streams was the creation of a novel, 

pond-like habitat directly upstream of the dam. Within this study, headpond habitat varied from 

slightly increased depth and reduced water velocity (Brandywine Creek), to a large 2km 

perimeter flooded area above the Soo River dam (Fig. 2.9).   



 56 

 
Figure 2.9 Examples of the variation in headpond formation above run-of-river dams in coastal 

British Columbia, including Douglas Creek (top left), Brandywine Creek (top right), and Soo 

River (bottom). Photos by: V. Norbury.  

  

2.3.5. Occupancy of regulated and unregulated streams by other river bird species 

 

 Common Merganser (Mergus merganser, COME) and Belted Kingfisher (Megaceryle 

alcyon, BEKI) were often observed at regulated and unregulated streams during the autumn (Fig. 

2.10), but BEKI were observed at a higher proportion of regulated streams (Fig. 2.11). Regulated 

streams also supported a higher diversity of waterfowl during the spring breeding season, 

including Harlequin Duck (Histrionicus histrionicus; HARL), Barrow’s Goldeneye (Bucephala 

islandica, BAGO), Mallard (Anas platyrhynchos, MALL), Bufflehead (Bucephala albeola, 

BUFF), and Canada Goose (Branta Canadensis, CANG). These waterfowl were almost 

exclusively observed foraging within the headponds. Harlequin ducks were the most common 

duck, observed foraging within the headponds of Fitzsimmons Creek during the early fall (likely 

before migration to the ocean) and the headponds of Brandywine, Fitzsimmons, and Rutherford 

Creeks during the breeding season. Harlequin Ducks were likely breeding in or near the 
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headponds at these higher elevation regulated streams, as part of their life cycle is to nest 

adjacent to fast-moving mountain streams. Juvenile Harlequins were observed foraging within 

the diversion reach of Rutherford Creek in June 2015. I did not observe Harlequin Ducks at any 

of the unregulated streams. Townsend’s Solitaire (Myadestes townsendi), an insectivorous 

passerine that breeds at high elevation and feeds primarily by flycatching, was also observed 

foraging directly below the weir of some regulated streams.  

 The Soo River headpond (2km perimeter) supported the highest diversity of waterfowl 

during the breeding season, including Barrow’s Goldeneye, Mallards, Buffleheads, and Canada 

Geese. In addition to waterfowl, over 20 passerine species were observed in and around this 

headpond and Pileated Woodpeckers (Dryocopus pileatus) and Northern Flickers (Colaptes 

auratus) were observed nesting in the large snags created by flooding. Headponds appear to 

create pond-like habitat for waterfowl that would not otherwise occur on these high elevation 

mountain streams in spring.  
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Figure 2.10 River birds, waterfowl, and riparian passerines observed at regulated and 

unregulated mountain streams in coastal British Columbia during breeding and non-breeding 

seasons, 2014-2015. 



 59 

 
Figure 2.11 Proportion of regulated and unregulated mountain streams occupied by the most 

commonly sighted water birds during the breeding and non-breeding seasons, 2014-2015, British 

Columbia. Only birds observed during point count surveys are included in these proportions.  

2.4 DISCUSSION   

2.4.1 Habitat use of mountain streams by American Dippers in response to reduced and 

stabilized flow created by run-of-river dams 

 

 Although both the regulated and unregulated streams in this study supported breeding and 

overwintering American Dippers, the regulated streams appeared to be selected for across 

seasons. At the regulated streams, the novel headpond habitats and diversion reach were 

frequently used for foraging. The combined evidence of high dipper densities in the low-flow 

habitats, greater occupancy rate of banded dippers at regulated streams, a higher rate of 

confirmed year-round residents, and a greater proportion of AHY adults captured at regulated 

streams, suggests that high elevation, regulated streams provide stable year-round habitat for 

American Dippers. This is interesting, given that previous annual life cycles described for 

dippers in the Pacific Northwest include either year-round residency on larger, lower elevation 
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rivers, or altitudinal migration to high-elevation breeding territories and a return to lower-

elevation, salmon-bearing streams during autumn (Price and Bock, 1983; Morrissey et al., 2004).  

 Average fall densities recorded at the regulated and unregulated streams in this study are 

comparable to those documented in other dipper populations of the Pacific Northwest, where 

densities averaged 9.8  ± 1.4 dippers/km on the Chilliwack River, British Columbia in November 

(Morrissey et al., 2004a) and up to 10.8 dippers/km on the Seton River, British Columbia 

(Walton & Wright, 2008). Peak fall densities of 14 dippers/km recorded at the Brandywine 

Creek RoR dam, however, surpasses the highest reliable estimate of dipper density of 7.2-11.6 

dippers/km recorded in early November on the Chilliwack River in British Columbia (Morrissey 

et al., 2004a)—a significantly larger river than Brandywine Creek that supports high densities of 

anadromous salmon. This is consistent with observations of non-territoriality in wintering 

American Dippers (Price and Bock, 1983; Willson and Hocker, 2008). October densities in 

Boulder, Colorado ranged from 1.9-4.7 birds/km (Price and Bock, 1983), with dippers occupying 

stream reaches kept ice-free by hydroelectric plants (Price and Bock, 1983). The relatively high 

number of dippers observed at some regulated streams is further supported by observations of 

American Dippers overwintering at high densities (up to 10.8 birds/km) at regulated streams in 

the Seton river area of the Lillooet watershed, with maximum densities observed on a reach 

regulated by a run-of-river dam (Walton and Wright, 2008).  

 Not surprisingly, 2015 autumn densities in this study were significantly lower at both 

stream types than those reported in 2014. This is likely in response to a severe drought year in 

summer 2015, which resulted in historically low water levels documented in other watersheds 

across southern B.C. (Coulthard et al., 2016). Drought conditions are expected to impair dipper 

productivity and survival through changes in water quality and macroinvertebrate community 

composition (Finn et al., 2009; Whitehead et al., 2009). Higher autumn densities would be 

expected in normal precipitation years.   

 Breeding densities at both stream types in this study were higher than those documented 

in the Seton River area of Lillooet, British Columbia (up to 0.5 dippers/km; Walton and Wright, 

2008) and high elevation streams in Boulder, Colorado, United States (1.2-1.4 dippers/km during 

spring and 0-2.2 dippers/km during summer; Price and Bock, 1983), but lower than the 

Chilliwack River, British Columbia (2.4-3 birds/km; Morrissey et al., 2004c). The regulated 

streams in this study supported more breeding dippers than unregulated streams after the spring-
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freshet, which were comparable to those observed in summer on the Chilliwack River in the 

summer. Brandywine Creek was a hotspot for year-round dipper activity, and also supported an 

unusually high summer density of 7 adult dippers/km following the spring freshet (mid-June).  

 My observation of higher seasonal densities at regulated streams is complimented by a 

higher occupancy rate of banded birds and a higher proportion of AHY dippers captured at 

regulated streams. The higher proportion of AHY dippers and resident sightings at regulated 

streams suggests higher site fidelity at these streams, although these analyses and observations 

were limited by low sample size. Overall, it appears that regulated streams support more year-

round residents and serve as more suitable year-round habitat compared to unregulated streams 

that are primarily occupied by hatch-years and transient adults. At unregulated streams, the 

proportion of banded dippers re-sighted in the early fall was comparable to the number of re-

sightings at regulated streams, but the absence of re-sights of banded dippers during the breeding 

season and late fall of 2015 suggests that these unregulated mountain stream habitats are being 

used more transiently. Higher site fidelity at regulated streams is likely driven by a stable, 

reliable food source during breeding and overwintering that requires less foraging effort. This is 

consistent with the observation that White-throated dipper populations are known to be more 

sedentary under stable habitat conditions (Galbraith & Tyler, 1982). 

 

2.4.2 Factors influencing dipper natural history strategies, productivity, and survival 

 

 Two features of dipper natural history, potentially impacted by hydropower, are known to 

influence their productivity: altitudinal migration (Morrissey et al., 2004b, Gillis et al., 2008) 

and the availability of salmonids to their diet (Tonra et al., 2016). Altitudinal migration between 

winter sites on low elevation rivers and breeding sites on high elevation streams is common in 

dippers of the Pacific Northwest (Morrissey et al., 2004a, Price and Bock, 1983). This behaviour 

is most likely driven by seasonal changes in the stream hydrograph, riparian and in-stream 

habitat features, and salmon availability (Morrissey et al., 2004a) or ice formation at very high 

elevation streams (Price and Bock, 1983). Breeding at high elevations is advantageous to dippers 

because of the greater availability of suitable nest sites such as cliff ledges, overhangs and 

boulders found more commonly on smaller, steep high elevation streams and tributaries. The 

return to larger, lower elevation salmon-bearing streams in autumn is thought to be driven by the 
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presence of open water (ice-free) habitat and a high-energy salmon subsidy (Morrissey et al., 

2004b).  

 There is evidence to suggest a fitness trade-off between migration and year-round 

residency strategies, where river residents have been reported to have higher annual and lifetime 

reproductive success whereas migrants have slightly higher annual survival (Gillis et al., 2008).  

Several studies have determined that earlier laying date is associated with higher productivity in 

dippers, through benefits of increased clutch size and fledgling survival (Price and Bock, 1983; 

Morrissey et al., 2004b, Hong et al., 2016). Delayed nesting in migratory American dippers leads 

to higher nest failure resulting from flooding (during the spring freshet) and increased nest 

failure through predation (Morrissey et al., 2004b). Although migratory strategy does not 

directly influence overall productivity, resident dippers are able to obtain mates and initiate 

nesting earlier, avoid nest failure by flooding and predation, and have more opportunity to 

initiate second clutches (Morrissey et al., 2004b). Resident dippers also spend more time resting 

and less time foraging than migrants, without any differences in energetic intake, foraging 

success, or physiological state (Whitehorne, 2010). Since migrants do not have a fitness benefit 

from moving to higher elevation breeding grounds, competition for limited resources at lower 

elevations is believed to likely be a driving force of altitudinal migration (Gillis et al., 2008). 

This argument is also supported by Price and Bock (1983), who observed that nest site 

availability is often a limiting factor for the success of breeding dippers.    

 A recent study demonstrated that dippers foraging below dams (with access to salmon 

and marine derived nutrients) had higher annual survival compared to upstream dippers. In 

addition, downstream females were in higher body condition and were more likely to attempt 

multiple broods and produce larger female offspring than upstream dippers (Tonra et al., 2016). 

American dippers breeding on reaches with salmon near Juneau, Alaska produced heavier 

fledglings and had less brood reduction than did dippers breeding on reaches without salmon 

(Orbermeyer et al., 2006). Although anadromous salmon are absent from most RoR-regulated 

streams in BC, nutrient retention within headponds may increase invertebrate productivity within 

this habitat, compared to upstream and downstream channel reaches that are otherwise fairly 

oligotrophic. The combined benefits of stable year-round habitat, improved foraging, and 

reduced competition with conspecifics at high elevation streams may outweigh the benefits of 

altitudinal migration and the lost salmon subsidy. Therefore, RoR reaches modified by flow 
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abstraction potentially offer an opportunity for dippers to exploit a consistent food resource 

closer to their high elevation breeding territory, enabling them to take on a “resident strategy” 

that is more typical of low elevation river habitats. Of course, a more robust and longer-term 

dataset is necessary to address this proposition.  

   

2.4.3 RoR headponds: valuable habitat or ecological traps? 

 

 Overall, my data suggest that RoR headponds provide valuable year-round habitat for 

American Dippers and, in some cases, seasonal breeding habitat for riparian species and 

waterfowl, complimenting observations of avian use of larger hydroelectric reservoirs. Breeding 

water birds have been documented nesting and foraging in and around hydroelectric reservoirs, 

but their response depends on time since inundation and water regulation techniques, and any 

positive impacts are often short-lived. Temporary habitats for woodpeckers are created when 

forests are inundated and trees are left standing (Yeager, 1949), as observed in the Soo River and 

Rutherford Creek headponds. Ducks and wading birds are known to breed at higher density in 

and around recently inundated reservoirs in response to elevated nutrients (Lid, 1981; Moksnes, 

1981, translated in Nilsson, 1994) and the resulting emergence of chironomids, which are more 

typical of lentic habitats (Reitan and Sandvik, 1996). Regulated streams may create better 

breeding habitat for dippers especially, as fledging typically coincides with high-flows of the 

spring freshet (Morrissey et al., 2004a), and reduced flows on these regulated streams may 

improve foraging efficiency of adults during this critical time and allow them to better provision 

their young. Infrastructure associated with RoR dams may also create nesting habitat 

inaccessible to predators, with the same benefits to productivity often observed in dippers nesting 

in bridges over creeks (Loegering and Anthony, 2006). Alternatively, RoR dams may be 

ecological traps for river bird specialists through potential negative effects on foraging 

behaviour, nest success, and exposure to elevated methylmercury in headponds.  

  An ecological trap may arise when habitat alteration by anthropogenic activity causes a 

simultaneous increase in habitat attractiveness and reduction in suitability, leading to reduced 

fitness for individuals settling in the preferred habitat (Robsertson and Hutto, 2006). In the case 

of ground-nesting waterbirds in hydroelectric reservoirs, what appears as suitable breeding and 

foraging habitat is at high-risk to unpredictable flooding, with negative impacts on productivity 
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(Markham, 1982; Espie et al., 1998; Anteau et al., 2012; van Oort and Cooper, 2015). By 

comparison, Quinlan et al. (2012) concluded that hydroelectric reservoirs do not function as 

ecological traps for the shrub-nesting songbird, Yellow Warbler (Setophage petechia) and van 

Oort et al. (2015) concluded the same for shrub-nesting Willow Flycatchers (Empidonax traillii) 

or Yellow Warblers. The response of resident river birds, including dippers, to hydropower is 

relatively uninvestigated, even though these river specialists occupy a more permanent niche 

along potentially impacted rivers than migratory water birds and riparian passerines. Therefore, I 

have outlined three mechanisms by which RoR dams could be perceived as ecological traps to 

American dippers and suggest that these questions are best addressed through a long-term study 

across regulated and free-flowing streams, with emphasis on comparisons of reproduction and 

survival.  

  The first mechanism by which RoR regulation may create ecological traps for dippers, 

conceptualized by D’Amico et al. (2011) is through non-adaptive foraging behaviour under a 

stabilized flow regime. Studies of White-throated dipper diving behaviour under natural flow 

regimes have demonstrated that annual patterns in foraging and resting behaviour match the 

annual pattern of the natural flow regime, while changes in diving behaviour are more complex 

(D’Amico and Hemery, 2007). Based on the relationships observed by D’Amico and Hemery 

(2007), D’Amico (2011) argues that under a stabilized flow regime, dippers cannot rely on 

environmental cues (rain events) as signals for changes in water level, and therefore must rely on 

immediate responses to rising water level and turbidity to adjust their foraging techniques. 

Therefore, along regulated rivers, the outcome of their foraging behaviour may be non-adaptive, 

because the link between environmental cues and actual flow is disrupted (D’Amico, 2011).  

  The second proposed mechanism by which RoR dams could act as ecological traps to 

dippers is through increased nest failure, resulting from either delayed nesting at high elevation 

(Morrissey et al., 2004b), or attraction of predators to headponds. Predators of White-throated 

dippers (Cinclus cinclus) are well described, including mink and other mustelids, rats, owls, 

hawks, and large trout (Tyler and Ormerod, 1994). American dippers likely have similar 

predators, but the response of these animals to river regulation is largely unknown. Beavers and 

other mustelids may respond positively to stabilized reservoirs, which in essence serve as beaver 

dams (Nilsson and Dyenesius, 1994), and could indirectly lead to higher nest predation. The 

open habitat created by headponds may also lead to increased predation by avian predators on 
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foraging adult and juvenile dippers. The third mechanism is through elevated exposure to 

neurotoxic contaminants such as MeHg. Elevated MeHg has been documented in reservoirs of 

beaver dams (Roy et al., 2009a,b; Painter et al., 2015) and conventional impoundments 

(Rosenberg et al., 1997)— a topic which I explore in depth in the next chapter.  

 

2.4.4 Conclusions 

 

 The data presented in this chapter suggest that low flow habitats create a stable year-

round environment for dippers that would otherwise migrate to lower elevation in fall, with no 

apparent compromise to body condition. This is likely because dipper foraging and productivity 

is more limited by high flows and available nest sites than a salmon subsidy. Additionally, lentic 

invertebrates are likely colonizing these headponds (at least initially, with the flood of nutrients), 

supported by observed foraging on limnephiliid caddisflies and their empty cases scattered along 

the headpond perimeter and infrastructure below the dam. Further, under a stabilized flow 

regime, the cost of increased nest failure by flooding that is associated with altitudinal migration 

and delayed nesting might be removed. With more frequent extreme hydrological events 

predicted with climate change, river birds are increasingly vulnerable to flow changes (Royan et 

al., 2014). Stabilized flow regime associated with RoR dams may act as a refuge from 

unpredictable flows in the short term. More thorough investigation of this species’ short and 

long-term productivity and survival are needed, however, to determine whether RoR dams act as 

ecological traps by different mechanisms than those described for waterfowl in fluctuating 

reservoirs.
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CHAPTER 3: 

 CHANGES IN AMERICAN DIPPER DIET AND MERCURY EXPOSURE IN 

RELATION TO FLOW DIVERSION BY RUN-OF-RIVER DAMS 

3.1 INTRODUCTION  

 

Run-of-river dams have the potential to alter mountain stream food webs through changes 

to stream physicochemistry that are related to a reduced and stabilized flow regime and barrier 

effects (Anderson et al., 2015). Flow abstraction and barrier effects of RoR dams create 

modified, low-flow habitats upstream and downstream of the intake and facilitate the 

accumulation of fine sediment upstream and downstream of the dam (Csiki and Rhoads, 2010). 

Barriers also disrupt longitudinal connectivity (Vannote et al., 1980), thereby fragmenting the 

river and disrupting in-channel (Poff et al., 1997) and riparian habitats (Nilsson et al., 1997; 

Jansson et al., 2000). The cumulative stressors of barriers and flow abstraction have 

consequences for stream-dependent organisms that have evolved under specific flow regimes 

and associated habitats (Bunn and Arthington, 2002). While the responses of certain taxa to flow 

abstraction by RoR dams have been studied, the ecosystem-level impacts of reduced and 

stabilized flow regime remain poorly understood and the extent of MeHg production and cycling 

remain uninvestigated. 

 Variable impacts to riparian vegetation (Nilsson et al., 1997; Nilsson and Berggren, 

2000; Jansson et al., 2000), algal (Wu et al., 2009), invertebrate (Gonzalez et al., 2013; Fanny et 

al., 2013), and fish communities (Almodovar and Nicola, 1999; Lessard and Hayes, 2003; Santos 

et al., 2006) have been observed across the globe in response to reduced flow. Typically, in-

channel communities exhibit a negative response to changes in stream temperature and siltation 

resulting from flow abstraction and stabilization of the hydrograph (Poff and Zimmerman, 2010). 

The ecotoxicological response of mammalian and avian communities to flow-abstraction is 

spatiotemporally variable, with some species benefiting from inundated habitat (e.g. Yeager, 

1949; Nilsson and Dynesius, 1994; Henny et al., 1996; Quinlan et al., 2012) while others 

experience a more dynamic relationship (e.g. Smith et al., 1990; Picman et al., 1993; Anderson 

et al., 2000; Van Oort et al., 2015). Ducks and wading birds, for example, often breed at higher 
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density in the vicinity of inundated reservoirs in response to the nutrient influx, changes in 

vegetation community, and increased prey availability (Lid, 1981; Moksnes, 1981, translated in 

Nilsson, 1994). Alongside these benefits, however, is the potential for elevated MeHg 

availability to stream-dependent biota selecting these habitats. 

 Methylmercury production has been documented in reservoirs of large dams (Rosenberg 

et al., 1997), beaver dams (Roy et al., 2009), and experimentally flooded reservoirs (Gerrard and 

St. Louis, 2001), but is unexplored at run-of-river impoundments. MeHg is formed during 

reservoir flooding through microbial methylation of Hg present in soil and water (Ullrich et al., 

2001; Hall et al., 2005; Ward et al., 2011). Initial flooding of forest soils results in an influx of 

inorganic Hg and organic matter into the water column and subsequent decomposition of this 

organic matter favours bacterial methylation of the recently mobilized and legacy Hg (Bodaly et 

al., 2004).  Unlike inorganic mercury, MeHg can biomagnify two to five fold across trophic 

levels (Ward et al., 2011) and bioaccumulate in high trophic level predators, where it acts as a 

vertebrate neurotoxin and teratogen (Wolfe et al., 1998). Ackerman et al. (2016) reviewed avian 

Hg exposure across western North America and observed that reservoirs and natural ephemeral 

wetlands are hotspots for MeHg exposure, which is reflected in the tissues of birds selecting 

these habitats.  

 A recent review on avian Hg exposure and toxicity across western North America 

concluded that birds may experience oxidative stress at blood-equivalent Hg concentrations as 

low as 200 ng/g ww, but impaired health, physiology, behaviour and reproduction tend to occur 

at concentrations of 1000 ng/g ww, with more severe impairments to health and reproduction 

above 3000 ng/g ww in blood (Ackerman et al., 2016). For example, White Ibis experienced 

impaired courtship behaviour at 730 ng/g ww in whole blood (Frederick and Jayasena, 2010) and 

free-living Tree Swallow baseline circulating corticosterone was negatively correlated with 

blood Hg below 1000 ng/g ww in whole blood (Franceschini et al., 2009). At 1700 ng/g ww in 

whole blood, Carolina Wren experienced a 30% reduction in probability of nest success (Jackson 

et al., 2011). Common Loon maximum productivity declined by 50% at adult blood 

concentrations of 4300 ng/g ww (Burgess and Meyer, 2008).  

There are two major mechanisms by which changes to stream physicochemistry 

associated with RoR dams may increase MeHg production at the stream level. The first is the 

formation of small reservoirs, known as headponds, above the dam or weir and the second is 
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increased stream temperatures in the spring and summer under reduced flow conditions. Several 

stream-level and regional factors influence MeHg biogeochemical cycling, including: water 

management techniques and the extent of initial and repeated flooding (Ullrich et al., 2001); the 

extent of wet- and dry-deposition of inorganic Hg (St. Louis et al., 1994; Miller et al., 2005; 

Hammerschmidt et al., 2006; Driscoll et al., 2007); and features of stream physicochemistry, 

such as temperature, oxygen, pH, and the amount of dissolved organic carbon (Ullrich et al., 

2001; Lavoie et al., 2013). 

Hg methylation typically increases under warm, anoxic, acidic (Jardine et al., 2013), and 

high dissolved organic carbon (Watras et al., 1998) conditions; thus, it often peaks under warm, 

low flow periods (Ward et al., 2010). In beaver dams, methylation efficiency decreased with dam 

age and was highest in impoundments less than 10 years old (Roy et al., 2009). MeHg exposure 

increased in nestling tree swallows along experimentally flooded reservoirs during the first year 

of flooding and remained elevated for 6 years (Gerrard and St. Louis, 2001), although there were 

no apparent toxicological effects. The extent of MeHg production will depend on characteristics 

of the RoR project and stream physicochemistry, such as: the extent of headpond flooding, 

frequency of changes in headpond depth, age since regulation, and levels of naturally-deposited 

inorganic Hg. With impacts of run-of-river dams varying with respect to regulation practices, 

stream physicochemistry, and watershed geochemistry, it is important to conduct local 

ecotoxicological assessments focused on a single hydropower design (Anderson et al., 2015).  

In the present study, I used American Dippers as bioindicators of the ecotoxicological 

impacts of high-head run-of-river dams on mountain stream food webs in three adjacent 

watersheds in southwestern British Columbia. The American Dipper, a river bird inhabiting fast-

flowing mountain streams, is a suitable bioindicator for studying the simultaneous impacts of a) 

decreased and stabilized flow and b) MeHg exposure. Dippers are year-round residents on fast-

flowing coastal mountain streams suitable for RoR dams, although some populations exhibit 

seasonal altitudinal migration within a watershed (Price and Bock, 1983; Morrissey et al., 

2004b). In addition to their absence of long-distance migration, dippers are high-trophic level 

predators that feed on benthic macroinvertebrates and salmonid eggs and fry (Price and Bock, 

1983; Morrissey et al., 2004b). As apex predators on mountain streams, American Dippers may 

experience changes in prey availability and a high risk of elevated dietary MeHg exposure, 

accumulation, and toxicity (Scheuhammer et al., 2007). Dippers have been successfully used as 
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indicators of stream quality and contaminant exposure (Ormerod and Tyler, 1991; Henny et al., 

2004; Morrissey et al., 2010a,b) and their foraging behaviour is strongly tied to variation in 

streamflow (D’Amico and Hemery, 2007). The simultaneous stressors of flow changes and 

potential contaminant exposure may negatively impact stream food webs, which will likely be 

reflected by dipper habitat use and productivity. 

 Stable isotope analysis is a simple and relatively inexpensive method to characterize 

food webs and trace bioaccumulation of contaminants from the diet. Stable isotopes provide a 

spatially- and temporally-integrated measure of diet and unlike other measures of diet, are not 

confounded by omnivory and complex predator-prey interactions (Post, 2002). With predictable 

enrichment of 2‰ to 5‰ per trophic level (Peterson and Fry, 1987; Kelly, 2000; Hobson and 

Bairlein, 2003), δ15N is used to determine the relative trophic position of an organism (Post, 

2002; Anderson and Cabana, 2007) and trace MeHg biomagnification through food webs 

(Atwell et al., 1998; Jardine et al., 2012; Morrissey et al., 2012). In contrast, the limited trophic 

enrichment and high site specificity of 13C and 34S facilitates tracing the energy source of a 

consumer’s diet (Finlay, 2001; Rasmussen, 2010; Jardine et al., 2012). This is especially useful 

in streams, where consumer diets vary with respect to the amount of allochthonous (terrestrial) 

and autochthonous (aquatic) inputs into the stream. Sulfur is also used as a marker for bacterial 

sulfate reduction and processes associated with sulfide recycling (Detmers et al., 2001), making 

this isotope useful in predicting the extent of MeHg production in reservoirs, as sulfate-reducing 

bacteria are the principal methylators of Hg (Compeau and Bartha, 1985). 

 With decreased flows in the headpond and diversion reach created by run-of-river dams, I 

hypothesize that these habitats may have distinct isotopic signatures, which would be reflected in 

American Dipper tissues and their aquatic prey. Specifically, I predicted that headponds would 

have a 34S-depleted signature in response to activity of sulfate-reducing bacteria in the low 

oxygen environment. Autochthonous carbon sources will have a 13C-depleted signature relative 

to terrestrial sources in these high-gradient, fast-flowing streams (Finlay, 2001; Rasmussen, 

2010). I predicted headponds to have a 13C-enriched isotopic signature due to limited CO2 uptake 

at the boundary layer of algal cells at low flows (Hecky and Hesslein, 1995; Finlay et al., 1999). 

I also predicted that dippers foraging at regulated streams would have higher blood Hg 

concentrations in response to elevated MeHg production in the headpond environment and with 

increases in trophic position (measured from δ15N isotopes).  
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This study was designed to test the effects of regulation by RoR dams on mountain 

stream food webs and investigate MeHg production associated with run-of-river headponds. 

Here, I evaluated the utility of stable isotope tracers, particularly sulfur, as a novel biomonitoring 

technique for monitoring foodweb changes in response to streamflow changes by small-scale 

impoundments. As the global energy sector attempts to shift from fossil fuel dependence to 

renewable energy sources, it is important to understand the full ecotoxicological consequences of 

independent power projects, which are typically regarded as clean or environmentally-benign 

(Paish, 2002) energy technologies. 

3.2 METHODS  

3.2.1 River bird and stream sampling  

 

 During the autumn (end of August-end of October) of 2014 and 2015, 99 adult dippers 

and 3 recaptures from 2014 were captured, banded and measured at 13 streams in coastal British 

Columbia (Permit no. 10268 M; see methods section 2.2.1). The 7 regulated streams were: 

Brandywine Creek (BRANDY), Fitzimmons Creek (FITZ), Rutherford Creek (RUTH), Douglas 

Creek (DOUG), Fire Creek (FIRE), Tipella Creek (TIP), and the Soo River (SOO). The 6 free-

flowing, unregulated streams included: Roe Creek (ROE), Madeley (MAD), Pemberton Creek 

(PEM), Owl Creek (OWL), Gowan Creek (GOW), and Sloquet Creek (SLO) (Table 2.1). I 

collected 10-15 breast feathers from each individual dipper and ~200 µl of blood from the 

brachial vein of the wing. This volume is below the recommended volume of blood that can be 

collected from passerines without causing any harm (1 % of body weight) (Owen, 2011), as 

dipper mass ranged from 42-66 g across these streams. 

 At regulated streams, invertebrates and periphyton were sampled at the following four 

locations in relation to the dam and point of diversion: a) 500 m upstream, b) within the 

headpond, c) below the dam, and d) 500 m downstream of the intake. At unregulated streams, a 

mid-point was sampled based on elevation and stream characteristics that were comparable to the 

regulated streams, then 500 m upstream, and 500 m downstream. Benthic invertebrates were 

collected during the fall of 2014 and 2015 by kick sampling across various channel habitats 

(riffles and pools) and turning rocks to mimic dipper foraging (Morrissey et al., 2004b) until a 
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sufficient sample mass (~10 mg dw) of individuals in each functional feeding group was 

obtained.  

 Benthic macroinvertebrates were rinsed with distilled and deionized water and live-sorted 

into the following representative families for each functional feeding group (Wallace and 

Webster, 1996): Heptageniidae (scrapers); Baetidae, Ephemerellidae, and Hydropsychidae 

(collector-gatherers); Perlidae, Chloroperlidae, and Perlodidae (predators); Limnephilidae, 

Tipulidae, and Pteryonarcyidae (shredders). The most commonly sampled invertebrates across 

streams included Heptageniidae, Baetidae, Perlidae, Hydropsychidae, and Ephemerellidae. If 

present, periphyton was collected from the surface of ~10 rocks at each sampling interval and 

stored as a slurry in stream water.  

 All blood and stream samples were frozen at the field sites in liquid nitrogen tanks until 

long-term storage at -20 °C. In 2015, a small number of invertebrate and blood samples from 4 

streams inadvertently thawed inside the liquid nitrogen tank for up to 1-2 weeks. I compared 

isotopic values from thawed and unthawed samples and did not find any effect of thawing on 

invertebrate or dipper blood isotopes or Hg. Thawing had no effect on the C:N ratio of dipper 

blood (p=0.52) or the relationship between dipper blood and feather Hg (p=0.67). A search of the 

literature for studies on changes to stable isotope ratios in decaying biological material also 

supports the assumption that thawing does not strongly affect isotopic values. Leaf litter left to 

decay for several months showed a small initial enrichment in 13C, followed by a decrease of 

only 0.4 ‰ after 59 months (Melillo et al., 1989). Decaying leaf litter showed a similar trend of 

initial enrichment in 15N, followed by a slight depletion, with negligible changes of ± 1‰ 

(Melillo et al., 1989). 

 

3.2.2 Stable isotope analysis of river bird and stream samples 

 

 To estimate the proportional contribution of different invertebrate functional feeding 

groups to the dipper diet, determine dipper trophic position, and study the relationship between 

stable isotopes and Hg bioaccumulation, dipper whole blood and invertebrates were analyzed for 

stable isotopes of carbon (13C/12C), nitrogen (15N/14N), and sulfur (34S/32S). The stable isotope 

ratios of a sample (Rsample, the ratio of heavy to light isotopes, e.g.,15N/14N, expressed as δ15N) is 

measured by isotope ratio mass spectrometry and expressed in parts per thousand deviations (‰) 
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from the isotope ratio of a standard reference material (Rstandard). Thus, Rsample is calculated 

according to δX=( Rsample/ Rstandard
 -1) x 1000, where X is the heavy isotope (e.g. 15N ). 

International standard reference materials are atmospheric N2
 (Air) for δ15N, Vienna Peedee 

belemnite (VPDB) for δ13C, and Vienna Canon Diablo Troilite (VCDT) for δ34S (Bond and 

Hobson, 2012).  

 Benthic macroinvertebrates, sorted by family, and periphyton were rinsed with ultrapure 

water (distilled and deionized) and any remaining debris or small invertebrates were removed 

from periphyton slurries with fine forceps. All invertebrate, periphyton, and whole blood 

samples were freeze dried for at least 48 hours until dry. Invertebrates were ground to a fine 

powder using a small mortar and pestle. Approximately 1 mg dried, homogenized invertebrate 

and whole blood, or 5 mg dried periphyton were weighed into tin capsules for combined δ13C 

and δ15N stable isotope analysis. For δ34S analysis, 2-3 mg invertebrate and whole blood or 5 mg 

periphyton were weighed into tin capsules. Lipids were not extracted from the whole blood 

samples, as avian blood has low lipid content (<5%) and δ13C is not affected by lipid extraction 

prior to analysis (Bearhop et al., 2002). Further, unnecessary lipid extraction may compromise 

samples by causing 15N-enrichment (Bearhop et al., 2002).  

 All samples were analyzed at the UC Davis Stable Isotope Facility using a PDZ Europa 

ANCA-GSL elemental analyzer interfaced to a PDZ Europa 20-20 isotope ratio mass 

spectrometer (Sercon Ltd., Cheshire, UK). Lab references for δ13C and δ15N were calibrated 

against National Institute of Standards and Technology (NIST) Standard Reference Materials 

IAEA-N1, IAEA-N2, IAEA-N3, USGS-40, and USGS-41. The long-standing measurement 

accuracy of these standard reference materials is ± 0.2 S.D. ‰ (δ13C) and ± 0.3 S.D. ‰ (δ15N). 

Precision between duplicate lab reference samples for δ13C and δ15N was ≤ 0.15 S.D. ‰ and ≤ 

0.28 S.D. ‰, respectively, for all samples (Appendix 10). Lab references for δ34S  (34S/32S) were 

calibrated against National Institute of Standards and Technology (NIST) Standard Reference 

Materials IAEA S-1, IAEA S-2, and IAEA S-3 with a long-term accuracy of ± 0.4 S.D. ‰.  

Precision between duplicate lab reference samples δ34S was ≤ 0.62 S.D. ‰ for all samples 

(Appendix 11).  

 Since there are no published turnover values for stable isotopes in dipper tissues, I 

estimated turnover (represented by half-life) from a variety of diet-change experiments for 

aquatic birds and passerines. Turnover rates of δ13C and δ15N in avian blood are fairly rapid, 
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indicating recent dietary conditions. Whole blood of the Great Skua (Catharacta skua) has a 

half-life of 14.4 days for δ15N and 15.7 days for δ 13C (Bearhop et al., 2002). Similarly, the δ13C 

half-life in captive Japanese Quail (Coturnix japonica) is 11.4 days (Hobson and Clark, 1992). 

The Garden Warbler (Sylvia borin) has a half-life of 11 ± 0.8 (S.D.) days for δ15N and 5.0 ± 0.7 

(S.D.) to 5.7 ± 0.8 (S.D.) for δ13C (Hobson and Bairlein, 2003). Dunlin (Calidris alpina pacifica) 

have reported half-lives of 11.2 ± 0.8 (S.D.) days for δ13C and 10.0 ± 0.6 (S.D.) days for δ15N 

(Ogden et al., 2004). The turnover rate of δ34S is reportedly similar to carbon and nitrogen 

(Vander Zanden et al., 2015).  Dippers have a lower metabolic rate than non-aquatic passerines 

of the same size (Murrish, 1970), so half-lives are likely intermediate between those of the 

Garden Warbler and Greater Skua; however birds in the above experiments were studied in 

captivity and may have lower metabolic rates than their wild counterparts. Therefore, whole 

blood isotopic values represent fairly recent dietary information, likely 15-30 days for both δ15N 

and δ13C, based on the half-lives reported above.  

 

3.2.3 Hg analysis of river bird and stream samples 

 

 Breast feathers were washed with a 2:1 chloroform: methanol solution for 24 hours to 

remove surface lipids, rinsed three times with ultrapure water, and air dried in a fume hood for 

48 hours (Hobson and Bairlein, 2003). Freeze dried dipper whole blood (~10 mg dw) and 

feathers (~10 mg dw) were analyzed for total Hg using a Direct Mercury Analyzer (DMA-80, 

Milestone Microwave Laboratory Systems, Shelton, Connecticut, USA) at the University of 

Saskatchewan. Periphyton, predatory invertebrates, and sediment (~50 mg dw) from a subset of 

sites were analyzed to characterize longitudinal patterns within one regulated stream based on 

results of the dipper sample analyses.  

 Calibration curves were made by plotting the absorbances of the certified reference 

material (CRM), TORT-3 (National Research Council, Ottawa, Ontario, Canada) of varying 

mass against the mass of Hg in nanograms (ng) (Jardine et al., 2012). In 2014, recoveries of the 

CRMs analyzed intermittently with the samples were 99 ± 4.0 % and 94 ± 1.0% (mean ± S.D.) 

for DORM-4 (n=10) and IAEA85 (n=5), respectively. Blank correction did not improve the 

performance of CRMs and therefore blank values were not used to adjust sample values. In 

2015, recoveries of the CRMs analyzed intermittently with the samples were 99 ± 3.0 % and  
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93 ± 3.0 % (mean ± S.D.) for DORM-4 (n=10) and IAEA85 (n=5), respectively.  

 Since turnover time has not been calculated for MeHg in dipper tissues, I followed the 

approach of Rimmer et al. (2005), and based our half-life estimates on published values from 

waterbirds. Feathers represent past dietary exposure during feather growth (Hobson and Clark, 

1992; Bearhop et al., 2002), which occurs once during the late summer or early fall moult in 

dippers. MeHg half-lives have been published for the whole blood of Great Skua (Catharacta 

skua; Bearhop et al., 2000) at 31.5-63 days, ~74 days for Mallard (Heinz and Hoffman, 2004), 

and 44–65 days for Cory’s Shearwater (Calonectris diomedea; Monteiro and Furness 2001). The 

MeHg half-life for dipper whole blood is likely less than these published values for waterbirds, 

as passerines have a higher metabolic rate. Dippers, however, have a lower metabolic rate than 

other passerines as an adaptation for life in cold waters (Murrish, 1970). Therefore, I estimated 

MeHg half-life in dipper whole blood as ~30 days, which was used a conservative turnover 

estimate for Bicknell’s Thrush (Rimmer et al., 2010). MeHg concentrations in feathers indicate 

the amount deposited during active feather growth (Wolfe et al., 1998). Feathers collected in the 

early fall will indicate fairly recent MeHg exposure, since this coincides with the timing of 

moult. Body feathers were analyzed in this study, since they provide the most representative 

sample for estimating whole bird Hg content (Furness et al., 1986), and I was interested in the 

influence of river regulation on the ratio of blood:feather MeHg.  

 Throughout this study, mercury content was analyzed as total Hg (THg), but values in 

dippers may be interpreted as dominantly MeHg. The ratio of THg: MeHg in the whole blood of 

four passerine species was close to 1:1 (Rimmer et al., 2004) and all Hg in seabird feathers is in 

the organic MeHg form (Thompson and Furness, 1989). Hg in American Dipper eggs and 

feathers is also close to 100 % MeHg (Henny et al., 2002). Invertebrate, periphyton, and feather 

Hg are reported as ng/g dry weight. Whole blood samples were weighed before and after drying 

to obtain the moisture content and convert dry weight to wet weight (Appendix 42). Whole blood 

Hg is reported in ng/g dw when modeled against feather, invertebrate, and periphyton Hg (also 

reported in ng/g dw), but reported in ng/g ww when comparing with blood isotopes and avian Hg 

data from the literature.  
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3.2.4 Statistical analyses 

3.2.4.1 Comparing dipper blood isospace and trophic position between regulated and 

unregulated streams  

 

 Dipper trophic position was calculated by subtracting Heptageniidae δ15N (baseline of the 

foodweb at each stream) from dipper whole blood δ15N, dividing by a diet-tissue trophic 

discrimination factor of 2.67 ± 0.25 ‰ (Hobson and Barlein, 2003; Pearson et al., 2003; Evans-

Ogden et al., 2004), and adding 2 (since Heptageniidae are at trophic level 2 as primary 

consumers), using the trophic position (TP) equation adapted from Jardine et al. (2006): 

 

 

TP = [(Dipper Whole Blood δ15N – primary consumer δ15N)/2.671] + 2................ (Equation 3.1) 

 
12.67 represents an average diet-tissue change in δ15N observed in insectivorous passerines 

(Hobson and Barlein, 2003; Pearson et al., 2003; Evans-Ogden et al., 2004).  

 

 A series of linear mixed effects models was run using lmer, package lme4 (Bates et al., 

2015, R version 3.2.3) to test for effects of stream type, elevation, salmon, and the interaction 

between type and elevation on dipper trophic position and blood isotope values (δ13C, δ15N, and 

δ34S). For all of these models, stream, year, and watershed were included as random effects 

(unless S.D. was <0.001, in which case they were excluded from the models) to account for the 

influence of these factors on stream isotopic profiles and non-independence of dippers. I was 

unable to test the interaction between stream type and salmon presence, since none of the 

regulated streams supported anadromous salmon upstream of the powerhouse.  

 Principal components analysis (PCA) of stable isotopes is effective in identifying niche 

partitioning among consumers (e.g. Stewart et al., 2003). I applied this method to evaluate 

effects of river regulation and associated food web changes on a single measure of dipper whole 

blood isospace. An index of whole blood isospace was created (PCA; prcomp, package stats, R 

version 3.2.3) using trophic position (see calculation below), δ13C, and δ34S. PC1, the 

combination of linearly-transformed isotopes and trophic position values accounting for the 

highest amount of variation in the data, explained 71.9 % of the variation in dipper blood 
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isospace. Linear mixed effects models were run using package lme4 (Bates et al., 2015, R 

version 3.2.3) to look at fixed effects of stream type, elevation, salmon, and the interaction 

between type and elevation on PC1. Stream, year, and watershed were included as random 

effects.  

   

3.2.4.2 Stable isotope mixing models  

 

 Bayesian mixing models were run in MixSIAR (Stock and Semmens, 2015), a graphical 

user interface for R (R Core Team, 2015), to estimate the proportional contribution of each 

invertebrate foraging guild to dippers inhabiting regulated and unregulated streams. Stable 

isotopes of carbon, sulfur, and nitrogen were all used in these mixing models, since the inclusion 

of all three isotopes produced model results with the best diagnostics and source discrimination. 

Stream was included as a fixed effect in these stable isotope mixing models, enabling the 

comparison of diet among streams, while accounting for site-specific dietary sources (Semmens 

et al., 2009). The mean and standard deviations of carbon, nitrogen, and sulfur isotopes of each 

invertebrate foraging guild were calculated for each stream transect and included as prey sources 

in the mixing models with samples from both years pooled. Since only 10 resident fish were 

captured across all streams over the 2 years (almost exclusively Coastrange Sculpin, Cottus 

aleuticus, and Rainbow Trout, Oncorhynchus mykiss), the isotopic signature of this source was 

pooled across all streams as a composite freshwater fish sample.  

 Since I did not sample any salmon fry or eggs, but observed adult salmon at some 

streams, published Pacific salmon fry stable isotope values from other watersheds were included 

at each stream as a representative source of marine derived nutrients. Salmon δ13C 

 (-20.1 ± 0.2 ‰, n=8) and δ15N (13.6 ± 0.2 ‰, n=8) were obtained from whole salmon fry 

isotope values from the Chilliwack River, British Columbia (Morrissey et al., 2004b), while 

Alaskan sockeye (Oncorhynchus nerka) eggs were used as an estimate of salmon δ34S (18.7 ± 

0.4 ‰, n=7) (Godbout et al., 2010). These literature values are appropriate, since there is little 

variation in δ34S in marine ecosystems, with marine fish averaging 16.8 ± 0.7 ‰ (Nehlich, 2015) 

and the value of seawater sulfate being highly conserved at ~21 ‰ (Peterson and Fry, 1987). 

Marine diet sources are also heavily enriched in 13C and 15N compared to freshwater and 

terrestrial sources (Peterson and Fry, 1987).  
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  By pooling invertebrate and fish samples across years, I was able to incorporate 

variability and uncertainty into the mixing models, which is a requirement for MixSIAR (Phillips 

et al., 2014). Sources were distinct on a stream-by-stream basis and combining foraging guilds 

was not necessary. At a few streams, an inadequate number of shredder samples was collected; 

therefore, I included a pooled “shredder” signature across that stream type (regulated or 

unregulated) as the shredder source at these streams, in order to incorporate variability in the 

signature.  

 Separate diet-tissue trophic enrichment factors (TEFs) for each isotope were incorporated 

into the mixing models to account for isotopic fractionation (changes in the isotopic ratio 

between dippers and their prey) (Hobson and Clark, 1992). TEFs of δ13C and δ15N were obtained 

from averaging results from three captive studies on three species of primarily insectivorous 

birds. Diet-whole blood TEFs were 1.3 ‰ for δ13C and 2.9 ‰ for δ15N in Dunlin (Calidris 

aplina) (Evans-Ogden et al., 2004), 1.7 ‰ for δ13C and 2.4 ‰ for δ15N in Garden Warbler 

(Sylvia borin) (Hobson and Bairlein, 2003), and 2.2 ‰ for δ13C, 2.7 ‰ for δ15N in Yellow 

Warbler (Setophaga petechia) (Pearson et al., 2003); therefore, I used the mean ± S.D. TEFs for 

these species in Bayesian mixing models: 1.73 ± 0.45 ‰ for δ13C and 2.67 ± 0.25 ‰ for δ15N. 

TEFs for stable isotopes of sulfur are not as well established as carbon and nitrogen, so I used the 

McCutchan et al. (2003) estimate for consumers with high protein diets (1.9 ± 1.14‰), which 

experience more trophic enrichment in 34S. This is similar to the δ34S TEF value of 0.5 ± 2.4 ‰ 

estimated for animal consumers in a recent literature review of sulfur stable isotopes (Nehlich, 

2015), which concluded that there is no known discrete difference between consumer tissues and 

diet in δ34S.  

 Mean and standard deviations of prey consumption estimates from the MixSIAR 

posterior distribution models were used in subsequent modeling to look at effects of stream type, 

elevation, and salmon on estimated diet proportions. Separate models were run for each prey 

source (invertebrate functional feeding groups, resident fish, and anadromous salmon). In cases 

where watershed and year did not explain substantial variation in diet proportions (standard 

deviation < 0.001), they were excluded from the models as random factors, and simple general 

linear models (glm, package stats, R version 3.2.3) were used to compare the proportion of each 

source between stream types, with mean prey consumption estimates for each stream modeled in 

response to steam type, elevation, salmon presence, and stream type*elevation. When at least 
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one random effect (watershed or year) accounted for variation in the diet proportion, linear 

mixed effects models were run using lmer, package lme4 (Bates et al., 2015, R version 3.2.3), 

also with stream type, elevation, salmon presence, and the interaction between stream 

type*elevation as fixed effects. Diet proportions were arcsine square-root transformed to 

improve normality.  

 

3.2.4.3 Comparing invertebrate isotope profiles upstream and downstream of regulated and 

unregulated streams 

 

 A linear mixed effects model (lmer, package lmerTest, Kuznetsova et al., 2015, R version 

3.2.3) was run for each stream type (regulated and unregulated) to test the a priori hypothesis of 

distinct invertebrate isotopic profiles in habitats modified by RoR flow diversion. Pooled 

invertebrate signatures at each sampling interval were calculated as the grand mean of the mean 

of each foraging guild (collector-gatherers, scrapers, shredders, and predators) collected at that 

location. Resident fish were excluded from the pooled estimate, as they were not collected at 

each stream. Stream and watershed were included as random effects to account for non-

independence of invertebrates sampled at the same stream and to account for watershed-level 

effects on stream isotope profiles. For unregulated streams, sampling year was also included as a 

random effect, since it did explain some variance in invertebrate isotope signatures.  For each 

model, a post-hoc Tukey test was run to compare the pooled invertebrate isotopic profiles 

between sampling intervals (glht, package multcomp, Hothorn et al., 2008, R Version 3.2.3). 

 

3.2.4.4 Comparing dipper blood and feather Hg between regulated and unregulated streams and 

relating to blood isospace  

 

 Linear mixed effects models (lmer, package lme4, Bates et al., 2015, R version 3.2.3) 

were run to evaluate the influence of blood stable isotopes (δ34S, δ13C, and trophic position), 

stream type, elevation, salmon, and the interaction between type and elevation on dipper blood 

and feather Hg. Stream, sampling year, and watershed were included as random effects to 

account for non-independence of dippers sampled at the same stream, watershed-level effects on 
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isotope profiles, and potential year-effects. If a random effect did not explain substantial 

variation in the response variable (S.D.<0.001), it was excluded from the model.  

 Correlations were calculated to compare the relationship between dipper blood Hg and 

stable isotopes between the two stream types (regulated and unregulated). The correlation 

between blood and feather Hg was also compared between stream types, as a mechanism for 

comparing residency time on the stream. Strong blood:feather Hg correlations indicate uniform 

Hg exposure, and likely constant foraging location, from the time since feather moult in the late 

summer to the time of fall sampling.  

 A general linear model (glm, package stats, R version 3.2.3) was constructed to test for 

stream-level differences in dipper blood and feather Hg and isospace by treating stream as a 

fixed effect. Post-hoc Tukey HSD tests (glht, package multcomp, Hothorn et al., 2008, R Version 

3.2.3) were run to test pairwise differences in dipper blood and feather Hg, blood δ34S, δ13C, and 

trophic position between individual streams. I also tested for significant differences in dipper 

blood and feather Hg and blood isotopes between watersheds, by running a linear mixed effects 

model with watershed as a fixed effect and stream and year trapped as random effects. If a 

random effect did not explain substantial variation in the response variable (S.D.<0.001), it was 

excluded from the model. Post-hoc Tukey HSD tests (ghlt, package multcomp, Hothorn et al., 

2008, R Version 3.2.3) were run to test pairwise differences in dipper blood and feather Hg, 

blood δ34S, δ13C, and trophic position between the three watersheds.  

  

3.2.4.5 Relationship between dipper diet and Hg exposure  

 

 Multiple regressions were run to test whether the mean diet proportion of each prey type 

was related to mean dipper blood or feather Hg for each stream type (regulated/unregulated). The 

mean proportion of each prey source at each stream, estimated from Bayesian Mixing Models, 

was modeled against mean dipper blood or feather Hg at each stream.  

 

3.2.4.6 Longitudinal gradient in periphyton and invertebrate Hg at Douglas Creek  
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 Mercury was also analyzed in predatory invertebrates (Perlidae and Perlodidae) and 

periphyton collected along a longitudinal gradient at one stream, Douglas Creek. Samples were 

collected at locations 500 m upstream of the dam, within the headpond, directly below the dam, 

500 m downstream of the dam, and 2 km downstream of the powerhouse to evaluate whether the 

headpond was a source of elevated MeHg production. Perlidae (predatory stonefly larvae) have a 

higher MeHg:THg ratio than other benthic macroinvertebrates, estimated by one study at ~100 % 

MeHg (Henny et al., 2005).  

  

3.2.4.7 Model Selection  

 

 Models were constructed to evaluate a candidate set of potentially biologically important 

variables and model selection was based on Akaike’s Information Criterion adjusted for small 

sample size (AICc, Burnham, and Anderson, 2002). Model selection tables were generated using 

the package MuMIn (Barton, 2016) in R. Linear Models were run using maximum likelihood 

(ML) estimation and parameter estimates from the best-fitting models were calculated using 

restricted maximum likelihood estimation (REML) for mixed effects models and maximum 

likelihood estimation for general linear models. When multiple models were competitive (AICc ≤ 

2), conditional model-averaged parameter estimates were calculated using the package MuMIn 

(Barton, 2016), whereby parameters are only averaged over models in which they occur. If a 

random effect did not explain substantial variation in the response variable (standard 

deviation<0.001), it was excluded from the model. Models with weight>0 and the null (intercept-

only) are presented for comparison. Elevation was included as a continuous variable in all 

models and stream type refers to the categories “regulated” or “unregulated”. 
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3.3 RESULTS 

3.3.1 American dipper diet at regulated and unregulated streams: evidence from multiple stable 

isotopes 

3.3.1.1 Dipper blood isospace and trophic position 

 

 Linear mixed-effects models of dipper blood isospace supported an effect of stream type 

(β =2.44, adj. S.E.=1.63, p=0.13, Fig 3.1), and to a lesser extent, salmon presence (β =0.045, adj. 

S.E.=2.21, p=0.98, Fig. 3.2, Table 3.1), although these differences were not significant by 

Frequentist standards (p>0.05). This model support for separation between stream types is most-

likely driven by significantly lower blood δ34S in dippers captured at regulated streams compared 

to unregulated streams (β =-2.42, S.E.=0.95, p=0.029; Figure 3.3, Appendix 13).  There was no 

model support for an effect of anadromous salmon on blood δ34S (Appendix 13). Further, the 

relationship between trophic position and blood δ34S was weak (Adj. R-sq=0.076, Fig. 3.4).  

 There was some model support for lower blood δ13C at regulated streams (β=-0.28, Adj. 

S.E.=0.77, p=0.71), but models did not support effects of elevation or salmon presence 

(Appendices 15-17) on dipper blood δ13C. Models of dipper trophic position also showed no 

strong effects of stream type, salmon presence, nor elevation, with the null model accounting for 

99% of the model selection weight (Appendices 18-20). Across stream types, dippers were 

feeding at similar trophic position, regardless of salmon presence.  
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Table 3.1 Model selection results testing for differences in dipper whole blood stable isotope 

space  (PC1 of δ13C , δ34S and trophic position (based on δ15 N) between regulated and 

unregulated streams. A linear mixed effects model was run using the package lme4 in R. 

Stream type, elevation, salmon, and the interaction between type*elevation were included as 

fixed effects. Stream, watershed, and year were included as random effects.  

Response Model Structure AICc1 Δ 

AICc 

Deviance2 Model

Weight 

df 

PC1 Type+salmon 433.6 0 418.39 0.60 7 

type 434.7 1.03 421.74 0.36 6 

null 439.0 5.36 428.34 0.041 5 

 1Akaike’s Information Criterion, corrected for small sample sizes 
   2 -2 (Log Likelihood) 
 

 

 

 
Figure 3.1 PCA plot of dipper whole blood isospace (TP=trophic position, δ13C, and δ34S), 

grouped by stream type (regulated and unregulated, n=99). There was a strong effect of stream 

type on PC1, driven by significantly lower blood δ34S in dippers captured at regulated streams 

(β=-2.42, SE=0.95, p=0.029).  
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Figure 3.2 PCA plot of dipper whole blood isospace (TP=trophic position, δ13C, and δ34S) 

grouped by streams with and without anadromous salmon (n=96). There was some model 

support for effects of salmon on blood isospace, but this factor was not significant (p=0.98). 
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Figure 3.3 Comparing American Dipper whole blood δ34S between regulated and unregulated 

stream types. Dippers foraging at regulated streams had significantly lower blood δ34S (β =-2.42, 

S.E.=0.95, p=0.029). Streams sharing a common letter are not significantly different with respect 

to dipper blood δ34S, as estimated from a post-hoc Tukey HSD tests among individual streams.  
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Figure 3.4 Relationship between dipper blood trophic position (TP) and δ34S. There was no 

significant effect of TP on blood δ34S (p=0.32) and no significant interaction between TP and 

stream type (p=0.22).  

 

3.3.1.2 Changes in stream invertebrate stable isotope signatures upstream and downstream and 

results of Bayesian stable isotope mixing models  

 

 While there was no difference in invertebrate signatures upstream and downstream of 

free-flowing streams, habitats modified by RoR dams showed distinct invertebrate isotope 

signatures (Fig. 3.5).  Invertebrates sampled immediately below RoR dams were significantly 

depleted in 34S (β=-1.33 ± 0.43, p=0.010) and significantly enriched in 13C (β=1.14 ± 0.40, 

p=0.025), compared to invertebrates sampled 500 m upstream of the dams (Table 3.2). 

Headpond invertebrates showed the same trend as invertebrates sampled below dams, but the 

difference with upstream habitats was not significant (Table 3.2). Mean stream invertebrate 

signatures at unregulated streams were not significantly different between locations for carbon, 

nitrogen, or sulfur (Table 3.3). 
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Figure 3.5 Carbon- Sulfur (Left) and Carbon-Nitrogen (Right) stable isotope plots, comparing 

stream invertebrate isotope profiles (mean ± SE) sampled upstream and downstream of seven 

regulated and seven unregulated streams. Invertebrate signatures represent the grand mean of the 

means across four foraging guild (collector-gatherers, scrapers, shredders, and predators) 

collected at multiple sampling intervals for each river. 

 

 The isotopic profile of basal invertebrates (collector-gatherers and scrapers) supported 

the observed trends in dipper isospace. Across all streams, the δ13C and δ15N signature of 

scraping and collector-gathering invertebrates were similar, while basal invertebrates at 

regulated streams showed consistently lower δ34S (Figs 3.6, 3.7). In the absence of 13C- and 15N-

enrichment, this suggests that the observed δ34S signature at these streams is not related to 

salmon presence and is either a product of a) stream geomorphology and hydrology or b) 

activity of anaerobic sulfate-reducing bacteria.  
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Figure 3.6 Stable isotope biplots of Carbon-Sulfur (LEFT panel) and Carbon-Nitrogen (RIGHT 

panel) values of baseline scraping invertebrates (Heptageniidae) at regulated and unregulated 

streams in southwestern British Columbia. 

 

 
Figure 3.7 Stable isotope biplots of Carbon-Sulfur (LEFT panel) and Carbon-Nitrogen (RIGHT 

panel) values of baseline collector-gathering invertebrates (Baetidae/Ephemerellidae) at 

regulated and unregulated streams in southwestern British Columbia. 
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Table 3.2 Estimates (± S.E.) of post-hoc Tukey contrasts comparing invertebrate δ34S, δ13C, 

and δ15N values sampled upstream and downstream of RoR-regulated streams. Positive 

estimates indicate enrichment in the heavier isotope (34S, 13C, 15N), while negative estimates 

indicate depletion. Significant differences between sampling intervals are bolded.  

 δ34S 

(‰) 

δ13C 

(‰) 

δ15N 

(‰) 

Stream reach 
comparison 

Estimate 
(± SE) 

p-value Estimate 
(± SE) 

p-value Estimate 
(± SE) 

p-
value 

500m Down - 
Below Dam 

0.51 ± 0.42 0.62 -0.75 ± 
0.39 

0.22 0.17 ± 
0.30 

0.94 

Headpond-Below 
Dam 

0.50 ± 0.44 0.66 -0.88 ± 
0.40 

0.12 -0.22 ± 
0.30 

0.89 

Below Dam-
500m Up Dam 

-1.33 ± 0.43 0.010* 1.12 ± 
0.40 

0.023* 0.037 
±0.30 

0.99 

Headpond-500m 
Down 

-0.014 ± 0.43 1.00 -0.13 ± 
0.40 

0.99 -0.39 ± 
0.30 

0.57 

500m Up- 500m 
Down 

0.82 ± 0.42 0.22 -0.37 ± 
0.40 

0.79 -0.21 ± 
0.30 

0.90 

500m Up- 
Headpond 

0.83 ± 0.44 0.23 -0.24 ± 
0.40 

0.93 0.18 ± 
0.30 

0.94 

 

Table 3.3 Estimates (± SE) of post-hoc Tukey contrasts comparing invertebrate δ34S, δ13C, and 

δ15N values sampled upstream and downstream of unregulated streams. Positive estimates 

indicate enrichment in the heavier isotope (34S, 13C, 15N), while negative estimates indicate 

depletion. Significant differences between sampling intervals are bolded. 

 δ34S 
(‰) 

δ 13C 
(‰) 

δ 15N 
(‰) 

Stream reach 

comparison 

Estimate 
(± SE) 

p-
value 

Estimate 
(± SE) 

p-
value 

Estimate 
(± SE) 

p-
value 

Mid-500m Down 

Dam 

0.12 ± 0.19 0.81 0.32 ± 0.32 0.57 -0.089 ± 0.33 0.96 

500m Up Dam-

500m Down Dam 

-0.072 ± 0.18 0.92 0.16 ± 0.32 0.87 0.026 ± 0.33 1.0 

500m Up Dam-Mid -0.19 ± 0.18 0.56 -0.16 ± 0.32 0.88 0.11 ± 0.34 0.94 
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 TEF-adjusted dipper blood isotope values fell within the range of the isotopic values of 

stream-specific invertebrate foraging guilds, pooled freshwater fish sources, and values from the 

literature for Pacific salmon, suggesting no missing dietary sources (Fig. 3.8, see Appendices 21-

33 for individual stream isotope biplots). At regulated streams, mean dipper diet consisted of 30 

± 8.1 % predatory invertebrates, followed by 23 ± 4.7 % resident fish, 21 ± 9.4 % shredders, 16 ± 

3.0 % collector-gatherers, 8 ± 3.5 % scrapers, and only 2 ± 2.5 % Pacific salmon (Table 3.4, Fig. 

3.9). Mean dipper diet was similar at unregulated streams, dominated by resident fish (30 ± 18.4 

%), predatory invertebrates (29 ± 14.5 %), collector-gatherers (18 ± 6.3 %), and shredders (15 ± 

4.6 %), with minimal contributions from scrapers (7 ± 3.1 %) and Pacific salmon (1 ± 0.5 %).  

 Bayesian mixing models estimated similar dipper diet between regulated and unregulated 

streams (Table 3.4, Appendices 34,35), but slightly higher shredder consumption at regulated 

streams (β=8.52e-02, Adj. S.E.=6.96e-02, p=0.15) compared to unregulated streams (Appendices 

35, 37). There was no model support for differences in the proportion of resident fish, predators, 

collector-gatherers, scrapers, or salmon between stream types (Table 3.5, Appendices 36-41). 

Elevation was a predictor of the proportion of shredders and collector-gatherers to dipper diet, 

with trends of higher shredder consumption at higher elevation streams (β=1.73e-04, Adj 

SE=1.0e-04, p=0.086; Appendix 37) and higher collector-gatherer consumption at lower 

elevation streams (β =-9.91e-05, Adj SE= 6.34e-05, p=0.12; Appendix 40). There was moderate 

model support for increased resident fish consumption at salmon-bearing streams (β=0.12, Adj. 

S.E.= 0.094, p=0.21; Appendix 38) (Table 3.5). Overall, dipper diet was dominated by 

invertebrates and resident fish at both stream types, with minimal contributions from Pacific 

salmon.  
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Figure 3.8 Stable isotope biplots of a) Carbon-Sulfur and b) Carbon-Nitrogen food webs at 

regulated (LEFT panel) and unregulated (RIGHT panel) streams in southern British Columbia. 

Individual TEF-adjusted dipper blood isotope values are represented as blue points, while the 

black triangles and lines represent invertebrate foraging guilds (collector-gatherers, scrapers, 

shredders, and predators) and resident fish source means ± S.D. Anadromous salmon, although 

included as a source in the mixing models, were excluded from these figures to facilitate easier 

visual distinction between invertebrate foraging guilds, as salmon values were heavily enriched 

in all three isotopes compared to the dippers. 
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Table 3.4 Summary statistics of estimated diet proportions of invertebrate foraging 

guilds, resident fish, and anadromous salmon for adult dippers, averaged across stream 

types and pooled across years. The grand mean, S.D., min, and max values of the mean 

diet proportions are presented for regulated and unregulated streams. Diet proportions at 

each stream were estimated using Bayesian mixing models in MixSIAR using multiple 

stable isotopes (δ13C, δ15N, δ34S), with separate prey samples collected at each stream. 

Regulated Streams (n = 56 dippers) Unregulated Streams (n = 40 dippers) 

Source Grand 

Mean 

S.D. Min Max Source Grand 

Mean 

S.D. Min Max 

 

Predator 

 

0.30 

 

0.081 

 

0.15 

 

0.39 

Resident 

Fish 

 

0.30 

 

0.184 

 

0.09 

 

0.39 

Resident 

Fish 

 

0.23 

 

0.047 

 

0.15 

 

0.31 

 

Predator 

 

0.29 

 

0.145 

 

0.16 

 

0.50 

 

Shredder 

 

0.21 

 

0.094 

 

0.10 

 

0.37 

 

Collector 

 

0.18 

 

0.063 

 

0.12 

 

0.28 

Collector 0.16 0.030 0.12 0.20 Shredder 0.15 0.046 0.08 0.22 

Scraper 0.08 0.035 0.03 0.14 Scraper 0.07 0.031 0.04 0.13 

Salmon** 0.02 0.015 0.01 0.05 Salmon** 0.01 0.005 0.01 0.02 
** based on literature isotope values (not measured in these study streams) 
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Figure 3.9 Summary of the mean proportional contribution of invertebrate and fish prey sources 

to the diet of American Dippers captured at regulated (n=56 dippers) and unregulated (n= 0 

dippers) streams during the autumns of 2014 and 2015. A Bayesian Mixing model in MixSIAR 

estimated the mean and credible intervals of the proportional contribution of each source at each 

stream using three stable isotopes (δ13C, δ15N, δ34S). Mean diet proportions for each stream type 

were calculated from the MixSIAR output and this information was used in a series of general 

linear models to test for differences in dipper diet between stream types. Middle, lower, and 

upper horizontal lines represent the median, 25 % and 75 % credible intervals of the mean 

contribution of each prey source to dippers sampled at regulated and unregulated streams. 

Vertical lines represent the 95 % confidence intervals of the means for each stream type. 
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Table 3.5 Model-averaged estimates of factors predicting the proportion of each prey source 

to dipper diet at regulated and unregulated streams. The predictive capacity of each factor 

was determined from a series of general linear models and linear mixed effects models with 

mean prey consumption estimates for each stream modeled in response to steam 

type*elevation and salmon presence. Separate models were run for each of the six prey 

sources. Only fixed effects in competitive models (ΔAICc<2 from top model) are presented. 

 Fixed Effects 
 

Watershed 
included as 

Random 
Effect? 

Diet Source Stream 

Type 

Elevation Salmon 
Presence 

Type* 
Elevation 

 

Shredders β=8.5e-02 

± 

5.96e-02, 

p=0.15 

β =1.73e-04  ± 
1.0e-04 

(p=0.086) 

X X No 

Salmon X X X X Yes 

Resident 

Fish 

X X β=0.12 ± 
0.094, 

(p=0.21) 

X No 

Scrapers X X X X 
 

Yes 

Collector-

gatherers 

X β =-9.91e-05 ± 
6.34e-05 
(p=0.12) 

X X No 

Predators X X X X No 

*positive estimates indicate a higher proportion of that diet source at regulated, higher elevation, 
and salmon-bearing streams. Negative estimates indicate a higher proportion of that diet source 
at free-flowing, lower elevation, non-salmon bearing streams. X=no model support for effects of 
this variable on estimated diet proportions.  
 

3.3.2 Effects of river regulation by run-of-river dams on dipper Hg exposure and body condition 

and the influence of diet 

  

 Mean dipper blood Hg was 466.0 ± 81.3 ng/g ww at regulated and 382.6 ± 50.4 ng/g ww 

at unregulated streams (Appendix 42). There was no model support for effects of stream type, 
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salmon, elevation, trophic position, or blood δ13C on dipper whole blood Hg (Table 3.6). 

Although blood δ34S was a significant positive predictor of blood Hg (β=0.029, Adj. S.E.=0.010, 

p=0.004), the inclusion of this parameter did not improve fit over the null model, suggesting no 

major influence on blood Hg (Table 3.6). Blood Hg varied by individual stream (Fig. 3.10) and 

was typically below the threshold causing reproductive impairment in avian species (1000 ng/g 

ww; Ackerman et al., 2016), with the exception of dippers sampled at Douglas Creek, where 

blood Hg was recorded at up to 1948.1 ng/g wet weight (mean 987.8 ± 167.2 ng/g ww). Only 

one other stream, the relatively low-elevation and salmon-bearing stream, Sloquet Creek, 

supported one dipper with blood Hg above the published toxicity thresholds of 1000 ng/g 

(Ackerman et al., 2016), measuring 1069.7 ng/g ww. Otherwise, a relatively low mean of 354.5 

± 82.9 ng/g ww was measured in dippers at Sloquet Creek. Blood Hg was significantly lower at 

Brandywine Creek than all other streams, except Fitzsimmons Creek, another regulated stream 

(Fig. 3.10). Trophic position (r=0.58, p<0.001, n=53) and blood δ34S (r=0.43, p=0.0012, n=53) 

were the strongest correlates with blood Hg at regulated streams, while blood δ13C was a weak 

negative correlate (r=-0.17, p=0.23, n=53; Fig. 3.12). The correlations between blood Hg and all 

stable isotopes were relatively weak at unregulated streams (r=0.22, p=0.17, n=39 with δ34S, 

r=0.24, p=0.13, n=39 with TP, and r=-0.039, p=0.81, n=39 with δ13C; Fig. 3.13).  

 

Table 3.6 Model selection results testing for differences in dipper whole blood Hg (log10) 

between regulated and unregulated streams using a linear mixed effects model. Stream type, 

elevation, salmon, blood δ34S, blood δ13C, trophic position, and interactions between 

type*elevation were included as fixed effects and stream and watershed were included as 

random effects.  

Response Model Structure AICc1 Δ 

AICc 

Deviance2 Model

Weight 

df 

Blood 

Hg (log10) 

null 2.4 0 -6.02 0.73 4 

 

Blood δ34S 

 

4.4 

 

2.01 

 

-6.23 

 

0.27 

 

5 

 1Akaike’s Information Criterion, corrected for small sample sizes 
   2 -2 (Log Likelihood) 
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Figure 3.10 American Dipper whole blood (log10) Hg concentrations (ng/g ww) at regulated 

(n=53) and unregulated streams (n=39) in order of increasing mean Hg. There was no significant 

difference in blood Hg concentration between stream types (regulated/unregulated) overall, but 

there were some significant differences between individual streams. Streams sharing a common 

letter are not significantly different in blood Hg (p-value>0.05 from post-hoc Tukey test). At 

Douglas Creek, dippers had blood Hg exceeding published toxicity benchmarks (987.8 ± 167.2 

ng/g ww).  

 

 Mean feather Hg concentration was 1564.6 ± 367.2 ng/g dw at regulated and 1149.0 ± 

152.1 ng/g dw at unregulated streams (Fig. 3.11, Appendix 42). Although feather Hg 

concentration was significantly higher in birds with higher blood δ34S (β=0.040, Adj. 

S.E.=0.011, p<0.001), the inclusion of blood δ34S did not improve model fit over the null model, 

suggesting no major influence on feather Hg (Fig. 3.12). Feather Hg concentration was not 

explained by stream type, elevation, nor the presence of anadromous salmon (Table 3.7), but 

Douglas (mean 3338.6 ± 819.0 ng/g dw) and Madeley Creeks (mean 2311.1 ± 802.6) both 

supported dippers with relatively high feather Hg concentrations (Fig. 3.11; Appendix 44). 
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Across all individual dippers, blood δ34S was a fairly strong correlate with feather Hg (r=0.46, 

p<0.001, n=59 for regulated streams and r=0.48, p<0.0012, n=38 for unregulated streams; Fig. 

3.12). Trophic position was correlated with feather Hg at regulated streams (r=0.48, p<0.001, 

n=59), but not unregulated streams (r=0.12, p=0.47, n=38). Blood δ13C showed a weak negative 

correlation with feather Hg at unregulated streams (r=-0.28, p=0.092, n=38), but not at regulated 

streams (r=-0.060, p=0.66, n=59; Fig. 3.12).  

 

Table 3.7 Model selection results testing for differences in dipper feather Hg (log10) 

between regulated and unregulated streams using a linear mixed effects model. Stream type, 

elevation, salmon, blood δ34S, blood δ13C, trophic position, and interactions between 

type*elevation were included as fixed effects and stream and year were included as random 

effects. Models with weight>0 and the null (intercept-only) are presented for comparison.  

Response Model Structure AICc1 Δ 

AICc 

Deviance2 Model

Weight 

df 

Feather 

Hg (log10) 

Blood δ34S 25.4 0 14.79 0.59 5 

 

null 

 

26.2 

 

0.71 

 

17.73 

 

0.41 

 

4 

 1Akaike’s Information Criterion, corrected for small sample sizes 
   2 -2 (Log Likelihood) 
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Figure 3.11 Comparing American Dipper feather (log10) Hg concentrations (ng/g dw) between 

regulated (n=59) and unregulated (n=38) streams. There was no model support for effects of 

stream type, salmon, or elevation on feather Hg. Streams sharing a common letter are not 

significantly different in feather Hg (p-value>0.05 from post-hoc Tukey test). 

 

 Blood and feather Hg were strongly correlated in individuals at both regulated (r=0.78, 

p<0.001, n=53) and unregulated streams (r=0.58, p<0.001, n=38) suggesting that dietary Hg 

exposure did not change between fall sampling and the late summer moult (Figure 3.13).  
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Figure 3.12 Pairwise multiple correlation analysis of trophic position, blood δ34S, and blood 

δ13C with American Dipper blood and feather Hg. Pearson correlation coefficients (r) were 

calculated for each stream type. 
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Figure 3.13 Relationship between American Dipper individual whole blood and feather Hg at 

regulated and unregulated streams. The high correlation between blood and feather Hg at these 

streams suggests consistent Hg exposure and limited movement between the summer feather 

moult and autumn blood sampling, particularly at regulated streams.  

 

 I did not observe any significant correlations between blood Hg and dipper body 

condition (Equation 2.1) or morphometrics (Fig. 3.14). There were no significant correlations 

between feather Hg and body condition or morphometrics. Blood Hg had a weak negative 

correlation with body condition index at unregulated streams (r=-0.20, p=0.21, n=39) and with 

wing chord length (r=-0.13, p=0.37, n=53) and tarsus length (r=-0.29, p=0.034, n=53) at 

regulated streams (Fig. 3.14). An unusual bill deformity was encountered in a hatch-year (HY) 

dipper at Douglas Creek (Figure 3.15). This young-of-year dipper had a second, smaller bill that 

exhibited some independent movement from the separate, anatomically normal bill 

(length=14.8mm). Body condition and other morphometrics in this HY were comparable to other 

dippers in this study, suggesting no impairment to foraging. This individual had relatively low 

blood Hg compared to other dippers captured at Douglas Creek (348.4 ng/g ww), but feather Hg 

(1736.8 ng/g dw) was comparable to other birds captured at this stream and elevated relative to 

dippers captured at other regulated and unregulated streams. 
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Figure 3.14 American Dipper body condition (represented by a scaled mass index) and 

morphometrics (wing chord, tarsus, and bill length) as a function of blood Hg (log10) at regulated 

and unregulated streams.  
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Figure 3.15 A bill abnormality observed in a hatch-year American Dipper captured at Douglas 

Creek, a RoR-regulated stream in the Harrison watershed of southwestern British Columbia. The 

primary bill measured 14.8mm, while the smaller bill was 13.9mm long and consisted of 

separate upper and lower rhomphotheca (the thin keratin sheath). The smaller bill exhibited 

independent movement from the separate, anatomically normal bill. Photos by: V. Norbury. 

 

  

 I did not identify any significant relationships or trends between dipper diet and blood or 

feather Hg concentrations (Figure 3.16).  
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Figure 3.16 The relationship between mean American Dipper blood Hg (log10) as a function of 

mean diet proportions (arcsine square-root).  Diet was defined as the proportional contribution of 

different invertebrate foraging guilds and fish sources (Shredders, Scrapers, Collectors, 

Predators, Anadromous Salmon, and Resident Fish) to individual birds occupying regulated and 

unregulated streams. Diet proportions were estimated from Bayesian mixing models in 

MixSIAR.  

 

3.3.3 Elevated Hg concentrations in dippers foraging at Douglas Creek 

  

 Since dippers captured at Douglas Creek (n=12) had significantly higher blood and 

feather Hg concentrations compared to many other regulated and unregulated streams (Fig. 3.10, 

3.11; Appendices 43, 44) and exceeded published toxicity thresholds of 1000 ng/g known to 

cause reproductive impairments in terrestrial and aquatic birds (Ackerman et al., 2016), I 

decided to further investigate the potential sources of MeHg at this stream. Dippers at Douglas 
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Creek were feeding at relatively high trophic position compared with other streams sampled in 

this study, though not significantly higher than some regulated streams (Tipella Creek, Soo 

River) or unregulated streams (Owl Creek, Sloquet Creek, Gowan Creek, Madeley Creek) (Fig. 

3.17, Appendices 18-20). Blood δ34S was also relatively high at Douglas Creek (Figs. 3.3, 3.17) 

compared with other regulated streams (Appendix 14). Blood δ13C (Fig. 3.17, Appendices 16-18) 

and body condition (Fig. 2.7) in dippers at Douglas Creek were comparable to the other streams 

sampled in this study. Estimated diet proportions for dippers at Douglas Creek were not 

markedly different from other regulated or unregulated streams (Appendix 35), dominated by 

predators (28 ± 15 %), resident fish (26 ± 8 %), shredders (20 ± 12 %), and collectors (17 ± 11 

%), with minimal contributions from scrapers (7.9 ± 7.2 %) and salmon (1.6 ± 1.6 %).  

   

 
Figure 3.17 Stream-level differences in the relationships between blood stable isotopes of 

Carbon, Sulfur, and Nitrogen or trophic position with mean blood Hg in American Dippers of 

Southwestern British Columbia.  

 

 To investigate the source of MeHg at Douglas Creek, total Hg was measured in 

periphyton and benthic macroinvertebrates (Perlidae) sampled along a longitudinal gradient 
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relative to the dam. Headpond periphyton had the highest Hg content of any other periphyton or 

invertebrate sample taken upstream or downstream of the dam (Figure 3.18). Hg was elevated in 

Perlidae sampled within the headpond compared with Perlidae sampled 500m upstream of the 

dam. Elevated Hg was also observed below the dam and 500m downstream, but decreased ~ 2 

km downstream from the tailrace to levels similar to those measured 500 m upstream of the dam. 

Whole body Hg measured 98.54 ng/g dw in one opportunistically captured Coastrange Sculpin 

500m upstream of the dam, compared with 180.5 ± 35.2 ng/g dw in headpond periphyton. 

Periphyton sampled from headponds and immediately below dams was typically more 

filamentous and abundant than other stream reaches, which had more biofilm-like growth.  

 

 

Figure 3.18 Longitudinal patterns in Hg concentrations of Douglas Creek predatory invertebrate 

(Perlidae) and periphyton samples. A pattern of elevated Hg in periphyton in the headpond and 

in predatory invertebrates and periphyton below the dam compared with upstream and >500 m 

downstream was observed. Headpond periphyton samples had higher Hg than any benthic 

samples from Douglas Creek.  

 

 Headpond periphyton was 34S-depleted relative to samples from directly below the dam 

and 2 km downstream of the powerhouse; unfortunately, I was unable to collect a periphyton 

sample from 500 m upstream of the dam, as upstream reaches were heavily shaded (Fig. 3.19). 
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Benthic macroinvertebrates from below the dam were also 34S-depleted compared with 500 m 

upstream of the Douglas Creek dam. Interestingly, invertebrate samples from 500 m upstream of 

the dam were 34S-enriched compared with 2 km downstream of the powerhouse, where Pacific 

salmon were observed, suggesting influences of stream physicochemistry at this site.  

 

 
Figure 3.19 Longitudinal patterns in δ34S of Douglas Creek benthic macroinvertebrate foraging 

guilds and periphyton. Headpond periphyton were 34S-depleted relative to all other samples. 

Invertebrates sampled below the dam were 34S-depleted relative to 500 m upstream of the dam. 

 

 

 Regulated streams surveyed in this study, including Douglas Creek had near-neutral pH 

(most-recently measured at 6.08-7.25 in 2013 by Innergex), though average pH measured at 

Douglas has declined from 7.4 in 2010 to 6.08 in 2013 (data provided by Innergex). Tannins 

released from flooded forests may decrease stream pH, with negative impacts to dipper 

productivity related to reduced eggshell thickness (Ormerod et al., 1988) or elevated MeHg 

bioavailability (Lavoie et al., 2013). Although I did not measure stream pH in this study, it is 

possible that acidity is a factor influencing MeHg production in these systems, as Common Loon 
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are at highest toxicological risk to MeHg when stream pH<6.7 and chick blood Hg > 1.4 µg/g dw 

(Scheuhammer et al., 2016). 

 There were potential watershed-level effects on dipper Hg exposure and isospace (Fig. 

3.20), though it is not possible to disentangle effects of watershed and stream type on these 

variables, since I was unable to test the watershed*stream type interaction. The Harrison 

watershed supported dippers with significantly higher blood Hg than the Squamish (β=0.47 ± 

0.17, p=0.016) and Lillooet (β=0.38 ± 0.15, p=0.031) watersheds, though this may be related to 

effects of river regulation, since both streams sampled from the Harrison watershed (Douglas and 

Tipella Creek) were regulated by RoR dams. Though feather Hg was not significantly different 

between watersheds (p>0.18), the Harrison watershed did support dippers with the highest 

feather Hg concentrations. Dippers in the Harrison watershed were also feeding at significantly 

higher trophic position than the Squamish (β=0.72 ± 0.26, p=0.017) and Lillooet (β=0.62 ± 0.23, 

p=0.019) watersheds. Blood δ13C was not significantly different between the three watersheds 

(p>0.75), but dippers in the Squamish watershed had significantly higher blood δ34S (β=3.31 ± 

1.35, p=0.038) and significantly different blood isospace (β=-3.34 ± 1.40, p=0.044) than the 

Lillooet watershed.  
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Figure 3.20 Exploring watershed-level differences in American Dipper blood and feather Hg 

exposure and blood isospace (δ13C, δ34S, and trophic position (see Equation 3.1), represented by 

PC1, the combination of linearly-transformed isotopes and trophic position accounting for the 

highest amount of variation in blood isospace). Watersheds sharing a common letter are not 

significantly different with respect to the measured variable (p>0.05), as indicated from a post-

hoc Tukey HSD test.   
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3.4 DISCUSSION  

3.4.1 Overview 

 

 The observation of significantly lower δ34S immediately below RoR dams compared with 

500 m upstream of the dam supports the hypothesis that headponds above RoR dams are 

environments potentially supporting the activity of anaerobic, sulfate-reducing bacteria. By 

comparison, there was no significant difference in invertebrate δ34S sampled upstream and 

downstream of unregulated streams. Despite my observation of distinct dipper isospace between 

stream types (driven by 34S-depletion), I did not observe higher Hg concentrations at regulated 

streams, with the exception of one regulated stream, Douglas Creek. While blood Hg 

concentrations remained low at the majority of regulated streams, stream conditions, watershed-

level Hg contamination, and foodweb structure (relatively high dipper trophic position) at 

Douglas Creek likely facilitated the significantly higher blood and feather MeHg measured at 

this site.  

 Having predicted an inverse relationship between blood Hg and blood δ34S, I was 

surprised to find that blood δ34S was a positive predictor of Hg exposure and dippers. Dippers 

sampled at the regulated stream with the highest Hg concentrations, Douglas Creek, also had 

relatively high blood δ34S. By comparison, dippers had the lowest Hg concentrations at two 

regulated streams, Fitzsimmons and Fire, where dipper blood δ34S was also the lowest observed 

across all study streams. While it is established that Hg increases with δ34S in response to salmon 

subsidy, I had predicted a negative correlation between blood δ34S and Hg exposure to reflect 

microbial activity within the headponds. Since salmon had a negligible contribution to dipper 

diet across all stream types, the positive relationship across sites I observed between blood δ34S 

and Hg is most-likely driven by a combination of a) the availability of rainbow trout prey and 

shredding invertebrates contributing to relatively high trophic position of dippers at Douglas and 

Madeley Creeks, b) stream and watershed sulfur geomorphology, and/or c) the limited extent of 

the data, with any relationships driven primarily by the stream isotopic and Hg profile at Douglas 

Creek.  
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 With a low salmon contribution to the dipper diet and the absence of a known 

anthropogenic Hg point source, some increases in Hg concentrations recorded at Douglas Creek 

may be explained by active MeHg production within that headpond. My measurement of high 

Hg and low δ34S in headpond periphyton compared with upstream and downstream of the dam 

supports the proposed pathway of MeHg production in regulated streams.  Increased Hg 

methylation due to anaerobic, sulfate-reducing conditions may occur at other RoR dams, but my 

data suggest that most RoR operations in my study area have MeHg concentrations comparable 

to free-flowing streams. Dippers also did not show predictable responses of increased Hg with 

depleted δ34S. Stable isotopes of sulfur appear to be a useful tracer of MeHg production at the 

stream-level, but confounding effects of marine subsidies and geochemistry may restrict the 

utility of this isotope for comparing MeHg exposure among different water bodies or among 

birds that forage both upstream and downstream of a single RoR dam. 3.4. Comparing dipper 

isospace and assimilated diet to nearby watersheds 

 

 While dipper whole blood δ13C and trophic position were not significantly different 

between stream types, δ34S was significantly lower at regulated streams. I did not observe the 

expected negative relationship between δ34S and blood and feather Hg, likely due to catchment-

level differences in stream δ34S and Hg profiles. Although regulated streams had significantly 

lower invertebrate δ34S signatures overall compared with unregulated streams, Douglas Creek, 

the site with elevated Hg, had relatively high δ34S. The measurements of consistently lower 

invertebrate δ34S below RoR dams compared with upstream, however, does support the 

hypothesis that the source of the depleted dipper blood sulfur is sulfate-reducing bacteria within 

headponds, rather than a lack of salmon subsidy at these high elevation streams. If salmon 

presence was the driver of elevated δ34S at regulated streams, I would have expected elevated 

invertebrate and blood δ13C and δ15N, as both of these isotopes trace salmon-derived lipids that 

may persist over winter in American Dippers (Morrissey et al., 2012). Therefore, the absence of 

enrichment in blood δ13C at salmon-bearing streams suggests negligible contribution to the diet 

of these dippers, as dippers consuming more salmon are known to produce eggs enriched in 13C 

(Morrissey et al., 2012) and the same pattern would be expected for blood. Since stream biota 

are highly variable in their δ34S signatures, driven by distinct stream geomorphology and 

hydrology (Nehlich, 2015), the consistently low invertebrate and dipper blood δ34S observed at 
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regulated streams is compelling evidence for microbial activity occurring under anaerobic 

conditions in headponds.  

 Dippers captured at mountain streams in this study were feeding on substantially less 

salmon (<2 % of diet) than reported in the Chilliwack watershed (mean of 42 ± 7 % for river 

residents and 22 ± 6 % for tributary migrants, Morrissey et al., 2004b). This could be due, in 

part, to seasonality, as dippers in this study were sampled during the fall salmon spawn, whereas 

dippers in the Chilliwack study were sampled during the breeding season (April), which 

coincides with peak salmon fry abundance (Morrissey et al., 2004b). Salmonid eggs, however, 

would have been available to dippers during the fall spawn if they inhabited my study streams; 

therefore, the absence of enrichment in dipper blood δ13C suggests a low salmon contribution, as 

dippers consuming salmon are known to produce eggs enriched in 13C (Morrissey et al., 2010a; 

Morrissey et al., 2012). Anadromous Pacific salmon are well-described sources of marine 

derived nutrients, with tissues consistently enriched in 13C, 15N, and 34S (Naiman et al., 2002). 

Mean dipper blood δ13C at regulated (-23.7 ± 2.1 ‰) and unregulated (-23.7 ± 1.6 ‰) streams 

resembled the signature of breeding Chilliwack River tributary migrants (-24.6 ± 1.4 ‰), which 

are known to consume less salmon than Chilliwack River residents that have relatively enriched 

signatures of -21.6 ± 1.5 ‰ (Morrissey et al., 2004b). 

  Dippers in this study were primarily feeding on invertebrates and resident freshwater 

fish, with the foodweb dominated by terrestrial inputs at both stream types. Mean EPT 

invertebrate δ13C signatures ranged from -27.6 ± 1.9 ‰  upstream to -26.4 ± 2.9 ‰ below dam at 

regulated streams and -26.2 ± 1.7 ‰  to -26.6 ± 2.0 ‰  at unregulated streams, which is close to  

-28‰, the highly conserved value of terrestrial leaf litter (France, 1995a). All stream riparian 

zones were dominated by mixedwood canopy (primarily Western Hemlock, Wester Red Cedar, 

Douglas Fir, Bigleaf Maple) and deciduous shrub understory, resulting in fairly high leaf litter 

inputs during the time of fall sampling. I also observed retention of leaf litter and woody debris 

in some of the RoR headponds, particularly the larger ones, such as Douglas Creek and Soo 

River. In comparison, Chillwack River resident EPT larvae δ13C was -25.4 ± 1.1 ‰, reflecting 

the significant anadromous salmon subsidy to this river (Morrissey et al., 2004b). Similar to 

dippers in this study, Chilliwack tributaries supported EPT larvae with an average δ13C value of -

27.7 ± 0.9 ‰ (Morrissey et al., 2004b). Further support for allochthonous inputs dominating at 
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these streams is the relatively low contribution of scraping invertebrates (Heptageniidae) to the 

dipper diet, averaging only 8 ± 3.5 % at regulated streams and 7 ± 3.1 % at unregulated streams. 

 Stable isotope mixing models also supported a slightly higher mean proportion of 

shredders in the diet of dippers foraging at regulated streams (21 ± 9.4 %) than unregulated 

streams (15 ± 4.6 %). I expected to see a higher proportion of shredding invertebrates (e.g. 

Limnephiliidae) at regulated streams, as they are characteristic of a) pool habitat and b) 

terrestrial inputs, and likely to respond to nutrient retention (leaf litter) or the influx of nutrients 

in the headponds. Limnephiliids are also reportedly tolerant of Hg contamination (Henny et al., 

2005). The estimated increase in shredder consumption at regulated streams is consistent with 

my observation of numerous empty limnephillid cases along headpond perimeters and 

immediately below the dam cascades on “anthropogenic foraging platforms”, where dippers 

were often observed foraging.  

  

3.4.3 Relevance of dipper Hg concentrations compared with other insectivorous passerines and 

avian piscivores across North America  

 

 Relative to other uncontaminated streams in the Pacific Northwest and Eastern North 

America, average dipper blood and feather Hg concentrations at mountain streams in the 

Squamish, Lillooet, and Harrison watersheds are fairly high (Tables 3.8, 3.9). With the exception 

of Douglas Creek and one sample from the Soo River, dipper blood Hg concentrations remain 

below published toxicity thresholds of 1000 ng/g (Ackerman et al., 2016; Jackson et al., 2016), 

known to cause reproductive and physiological impairments in several avian species (Burgess 

and Meyer, 2008; Franceschini et al., 2009; Jackson et al., 2011; Frederick and Jayasena, 2010) 

and are low compared with Hg concentrations measured in aquatic and terrestrial passerines 

consuming invertebrates at historically contaminated rivers across Eastern North America (Table 

3.8).  

 The relatively high Hg concentrations observed in this study compared with other 

uncontaminated sites across North America, however, challenge the established geographic trend 

in Hg increasing from west to east across the continent (Evers et al., 1998; Evers et al., 2007; 

Depew et al., 2013) and support more recent observations of elevated Hg exposure in predatory 

birds in western North America (Ackerman et al., 2016; Jackson et al., 2016). In the absence of 
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anthropogenic point sources (including RoR dams) and biotransport by anadromous salmon, the 

Hg concentrations recorded at these streams are best explained by increased atmospheric 

deposition at high elevation aquatic environments, which is known to influence exposure in 

piscivorous (Guigueno et al., 2012) and insectivorous (Rimmer et al., 2005) birds.  

 Blood Hg concentrations are consistently higher in songbirds residing in wetland habitats 

(freshwater or estuarine) than upland forests (Jackson et al., 2015), but high elevation aquatic 

habitats may experience even higher exposure. High elevation, heavily forested streams suitable 

for RoR dams may be sinks for atmospherically-deposited Hg from glacial meltwater or leaf 

litter. Hg concentrations in the feathers of nestling Osprey (Pandion haliaetus) increased with 

increasing modeled atmospheric deposition and reduced lake size, in response to the 

accumulation of Hg in glacial meltwater (Guigueno et al., 2012). Bicknell’s Thrush (Catharus 

bicknelli) inhabiting montane riparian zones with increased leaf litter inputs experienced higher 

blood and feather Hg exposure (Rimmer et al., 2005), as leaf litter acts as a pool of Hg that can 

become methylated under suitable conditions (Miller et al., 2005). 

 Densely forested, temperate streams may also experience elevated MeHg production 

through non-vascular plants, including mosses. It is thought that aquatic moss provides the 

architechture for a biofilm where total Hg is recycled and methylated. This has been 

demonstrated through laboratory uptake kinetic studies with the aquatic moss, Fontinalis 

antipyretica, which exhibited a high capacity to magnify Hg levels in water, even at very low 

concentrations (0.1 µg/l) increasing from 0.978 to 4860 ng/g (Diaz et al., 2012). Tsui et al. 

(2009) measured higher MeHg concentrations in streams where the periphyton community 

shifted to dominance by filamentous algae rather than a benthic biofilm, and suggested that 

filamentous algal mats harbor more methylating bacteria (with MeHg accounting for 50-100 % 

of the total Hg). Periphyton growing on the rocky shore of an oligotrophic boreal shield lake also 

bioconcentrated Hg and are significant sources of MeHg to aquatic consumers,  since the 

epilithic biofilm methylates Hg by housing sulfate-reducing bacteria (Desrosiers et al., 2006). 

Desrosiers et al. (2006) measured methylation rates of periphyton in-lab and discovered that 

MeHg production rates were reduced by 60 % with the addition of an inhibitor of sulfate-

reducing bacteria, by 40 % by an algal inhibitor, and by 40 % with a prokaryote inhibitor, 

revealing that sulfate reducing bacteria and other microorganisms may contribute to Hg 
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methylation of periphyton.  Non vascular plants (mosses, lichen, fungi) typically have higher Hg 

concentrations than those measured in vascular plants (Moore et al., 1995 in Grigal et al., 2002).   
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Table 3.8 Comparison of American Dipper whole blood Hg concentrations (mean, range, and S.E.) measured in 

insectivorous adult passerines (aquatic and terrestrial) across North America. Entries are presented in descending order 

of mean blood Hg and results from this study are bolded. 

Species1 

(n) 
Location Habitat Mean (range) 

Blood Hg (ng/g) 
ww 

S.E. Blood 
Hg ww 

Source 

REVI (5) South River, 
Virginia 

Hg-contaminated river 6720 4600 Cristol et al., 2008 

CARW 
(49) 

South River, 
Virginia 

Hg-contaminated river 4490 2270 Cristol et al., 2008 

TRES 
(78) 

South River, 
Virginia 

Hg-contaminated river 3660 2420 Cristol et al., 2008 

CARW 
(17) 

North Fork 
Hobson River, 
Virginia 

Hg-contaminated river 
forest floodplain 

3380 
(620-8380) 

1830 Jackson et al., 2011 

NESP 
(24) 

North Carolina, 
USA 

Salt Marsh (breeding) 1070 50 Winder & Emslie 
(2011) 

AMDI 
(12) 

Douglas Creek, 
British 
Columbia 

RoR-regulated mountain stream  987.76 
(315.38-1948.06) 

167.23 This study 

NOWA 
(30) 

New York City, 
New York 

Riparian 420 
(90-2080) 

80 Seewagen, 2012 

AMDI 
(53) 

Coastal British 
Columbia 

RoR-regulated mountain streams 417.55 (50.52-
1948.06) 

74.07 This study 

TRES 
(57) 

Shenandoah 
headwater, 
Virginia 

Hg-contaminated headwater 356 2410 Brasso & Cristol, 
2007 

AMDI 
(39) 

Coastal British 
Columbia 

Unregulated mountain streams 340.73 (134.11-
1069.69) 

42.73 This study 

CARW  
(9) 

North Fork 
Hobson River, 
Virginia 

Uncontaminated river forest 
floodplain 

290 
(120-520) 

140 Jackson et al., 2011 

RWBB 
(9) 

Kenridge Farm, 
New York 

Aquatic 235 71 Gillet & Seewagen 
(2014) 

NESP 
(13) 

Ontario Wetland (breeding) 220 20 Winder & Emslie 
(2011) 

SWSP 
(30) 

Southern 
Wisconsin 

Wetland 187 106 Strom & Brady 
(2011) 

TRES 
(67) 

Shenandoah 
headwater, 
Virginia 

Uncontaminated Headwater 170 150 Brasso and Cristol, 
2007 

NESP 
(47) 

North Carolina, 
USA 

Salt Marsh (wintering) 140 20 Winder & Emslie 
(2011) 

SWSP 
(40) 

Northern 
Wisconsin 

Wetland (acidic) 135 64 Strom & Brandy 
(2011) 

BITH 
(43) 

Mt. Mansfield, 
Vermont 

Montane Forest 94 470 Rimmer et al., 2005 

YRWA 
(13) 

Mt. Mansfield, 
Vermont 

Montane Forest 91 55 Rimmer et al., 2005 

RWBB 
(5) 

Bronx River, NY Aquatic 61 16 Gillet & Seewagen 
(2014) 

BLPW 
(10) 

Mt. Mansfield, 
Vermont 

Montane Forest 55 17 Rimmer et al., 2005 

1Red-Eyed Vireo (REVI), Carolina Wren (CARW), Tree Swallow (TRES), Eastern Phoebe (EAPH), Rough-Winged 
Swallow (RRSW), Nelson Sparrow (NESP), American Dipper (AMDI), Northern Waterthrush (NOWA), Red-
Winged Blackbird (RWBB), Swamp Sparrow (SWSP), Bicknell’s Thrush (BITH), Yellow-Rumped Warbler 
(YRWA), Blackpoll Warbler (BLPW) 
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3.4.4 Pathways of MeHg exposure in dippers foraging in RoR headponds and free-flowing 

mountain streams  

 

 Elevated MeHg concentrations have been previously documented in American Dippers 

consuming large amounts of salmon (Morrissey et al., 2005; Morrissey et al., 2012) and in 

dippers residing on rivers historically contaminated by cinnabar and gold mining activity (Henny 

et al., 2005) (Table 3.9).  Dippers at Douglas Creek had blood and feather Hg exceeding some 

published toxicity thresholds for birds, despite low salmon consumption and no known 

anthropogenic Hg point source. American Dippers captured at Douglas Creek had feather Hg 

concentrations surpassing those reported in feathers from streams historically contaminated by 

cinnabar and gold mining (Table 3.9).  Maximum dipper blood Hg values measured at Douglas 

Creek exceeded mean concentrations measured in Common Loon blood across North America 

(1730 ± 60 ng/g, n=644), a high-trophic level bird known to accumulate high levels of MeHg 

through its piscivorous diet (Evers et al., 2008). By comparison, White-throated Dippers sampled 

on non-salmon bearing streams had undetectable Hg concentrations in their eggs (Morrissey et 

al., 2010a). Although the relationship between dipper blood δ34S and Hg was not straightforward 

in these systems, the most parsimonious explanation for the elevated Hg measured in dippers at 

Douglas Creek is relatively high levels of atmospherically-deposit Hg, followed by methylation 

within the headponds by sulfate-reducing bacteria in filamentous periphyton, and increased 

biomagnification in dippers feeding at a relatively high trophic position. 

 As a relatively new, large, and low-velocity pool with decaying tree stumps and fine 

sediment, I suspected Douglas Creek to be a site of high Hg methylation potential. Age alone, 

however, cannot explain the elevated Hg concentrations at Douglas Creek, as two other creeks in 

the same watershed were regulated in the same year and Fitzsimmons Creek was regulated one 

year later (in 2010). Further, the Soo River, the oldest of the dams sampled (commissioned in 

1994), supported dippers with relatively high blood Hg. Anaerobic conditions of the Douglas 

Creek headpond, indicated by 34S-depleted invertebrate signatures below the dam, promote 

release of Hg from sediment, whereas oxic conditions favour sediment uptake of Hg (Ullrich et 

al., 2001). Hot springs activity in the coast mountains of B.C. are a likely geological source of 

Hg (Nriagu, 1989; King et al., 2006) at this stream and other streams in the Harrison watershed. 

Although further work is required to isolate the characteristics of headponds and stream 
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physicochemistry that influence Hg-methylation at the stream-level, I have evidence to suggest 

that headponds are a likely site of Hg-methylation. 
 

Table 3.9 Comparison of aquatic invertebrate and American Dipper feather Hg levels from 

Pacific Northwest streams containing natural and anthropogenic sources of Hg. Streams are 

presented in descending order of dipper feather Hg and results from this study are bolded.  
Location Hg Point 

Source 
MeHg 
Source 

Source 
THg 
(ng/g 
dw) 

Source 
%  
MeHg 

Source 
MeHg 
(ng/g 
dw) 

Mean 
Feather 
Hg 
(ng/g 
dw) 

SE 
Feather  
Hg 

BMF 
Feather/ 
EPT 

Source 

Douglas 
Creek, B.C. 
(RoR-
regulated) 

None Perlidae 
(Below 
dam) 

122.6 ± 
12.21 

1002 122.64 3338.6 
(346.3-
8459.5) 

819.0 27.2 This study 

Douglas 
Creek, B.C. 
(RoR-
regulated) 

None Perlidae 
(500m 
up) 

63.1 ± 
14.0 

1002 63.07 3338.6 
(346.3-
8459.5) 

819.0 52.9 This study 

Douglas 
Creek, BC 
(RoR-
regulated) 

None Headpond 
Periphyton 

180.5 ± 
35.2 

__ __ __ __ __ This study 

Coastal B.C. 
Regulated 
streams 

None __ __ __ __ 1564.6 
(196.2-
8459.5) 

367.18 __ This study 

          
Coast Fork 
Range, Oregon 

Historic 
Cinnabar 
(HgS) Mine 

Perlidae 201.64 103.6 208.90 1158 
(590-
2200) 

__ 5.5 Henny et 
al., 2005 

Coast Fork 
Range, Oregon 

Historic 
Cinnabar 
(HgS) Mine 

EPT larvae 197.9 
(153.4- 
294.7) 
 

57 
(47-71) 

111.9 
(79.8- 
210.1) 

1158 
(590-
2200) 

__ 10.3 Henny et 
al., 2005 

Coastal B.C. 
Unregulated 
streams 

None __ __ __ __ 1149.0 
(290.5-
3898.4) 

152.10 __ This study 

Chilliwack 
River, BC 

None Salmon Fry 35 ± 
10 

1002               
35 

790 60 22.6 Morrissey 
et al., 2005 

Chilliwack 
River 
Tributaries, BC 

None EPT larvae 18 ± 
4 

56 10.1 
 
 

580 60 57.4 Morrissey 
et al., 2005 

Row River 
Range, Oregon 

Historic 
Gold Mine 
District 

Perlidae 35.50 101.7 36.09 
 

375 
(296-
453) 

__ 10.4 Henny et 
al., 2005 

Row River 
Range, Oregon 

Historic 
Gold Mine 
District 

EPT larvae 47.8 
(29.7- 
80.5) 

44 
(21-85) 

21.2 
(15.3-
30.1) 

375 
(296-
453) 

__ 17.7 Henny et 
al., 2005 

Middle Fork 
Range, Oregon 

None EPT larvae 19.3 
(12.9- 
25.2) 

68(54-
81) 

13.1 
(10.5- 
18.0) 

267 
(231-
311) 

__ 20.4 Henny et 
al., 2005 

1Perlidae average from below dam and 500m downstream of the dam from 2014-2015.  
2Assumed to be 100% MeHg, based on values reported by Henny et al., 2005 for Perlidae. 
 

 My measurements of 34S-depleted headpond periphyton with high Hg and nearly 2-fold 

higher Hg concentrations in predatory invertebrates sampled below the Douglas Creek RoR dam 

compared with 500 m upstream suggest microbial activity within the headpond. The Hg 
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concentrations in periphyton sampled in the Douglas Creek headpond (180.5 ± 35.2 ng/g dw) 

surpass concentrations recorded in stream invertebrates inhabiting historic gold mining districts 

of Oregon (29.67–80.46 ng/g dw) and rival concentrations measured in stream invertebrates 

downstream of a historic cinnabar (HgS) mine in Oregon (153.40–294.65) (Henny et al., 2005).  

Predatory invertebrates (Perlidae) below the Douglas Creek dam had similar Hg concentrations 

to Perlidae downstream of the historic cinnabar mine and over 3-fold higher than Perlidae 

downstream of the historic gold mine. Perlidae upstream of Douglas Creek also had higher Hg 

concentrations than recorded in the historic Oregon gold mine district, also suggesting a natural 

or anthropogenic Hg point source upstream of the Douglas Creek RoR dam that is becoming 

methylated in the headpond and accumulating in predatory dippers. 

 The relatively high trophic position of dippers foraging at Madeley and Douglas Creek 

and the positive correlation between trophic position and Hg exposure is consistent with the 

literature on MeHg biomagnification. This could be reflecting increased availability of resident 

trout to the dipper diet. At Madeley Creek, there is a large rainbow trout population in the lake 

upstream (British Columbia Fisheries Inventories Data Queries). Though my data showed no 

significant effect of trophic position on blood δ34S (likely due to low variability in TP across 

streams), trophic position is a positive predictor of δ34S, with a slight enrichment of δ34S per 

trophic level and even higher enrichment in animals with high-protein diets (McCutchan et al., 

2003; Nehlich, 2015). Any changes in TP at Douglas Creek could confound the effect of 

microbial activity on the dipper δ34S signal. Improved foraging efficiency on invertebrates and 

resident trout eggs and fry within the Douglas Creek headpond and directly below the dam likely 

contributed to MeHg bioaccumulation in dippers at this regulated stream.   

 The relatively high dipper trophic position, blood Hg, and feather Hg concentrations 

measured at Douglas Creek is consistent with the findings of Fanny et al. (2013), who suggested 

that the combined stressors of altered flow and metal contamination cause significant shifts in 

invertebrate community structure compared to altered flow regime in the absence of 

contamination. I suspect that characteristics of stream and riparian physicochemistry (including 

elevated deposition of inorganic Hg), age since indundation, dam operation, and headpond 

features may contribute to variation in Hg levels in foodwebs of run of river streams.  
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3.4.5 Body condition and morphometrics 

 

 With no significant difference in Hg exposure between regulated and unregulated streams 

and limited diet shifts, it is not surprising that body condition and morphometrics were uniform 

across stream types. The bill deformity observed in a hatch-year dipper at Douglas Creek is 

peculiar, since this individual had fairly high feather Hg concentrations, but low blood Hg. It is 

possible that, due to its age, most of the blood Hg obtained through its diet was depurated into its 

growing feathers, which is a mechanism for chicks to prevent MeHg toxicity (Fournier et al., 

2002; Kenow et al., 2003; Condon and Cristol, 2009; Kenow et al., 2010). Though speculative at 

this point, it is also possible that elevated MeHg observed in AHY dippers at this stream could 

produce teratogenic effects in dipper offspring. Egg-injection studies have demonstrated the 

capacity for MeHg to cause bill deformities in young birds (Heinz et al., 2011; Braune et al., 

2012), but other contaminants that were not measured in this study, including selenium, also 

cause bill deformities (Hoffman et al., 1988; Ohlendorf et al., 1988).  

 

3.4.6 Toxicological effects  

 

 While I have identified increased MeHg production potential in a RoR reservoir, 

uncertainty remains over whether there will be any long-term toxicological effects to 

reproduction or behaviour at Douglas Creek.  Henny (2005) observed high nesting success in 

American Dippers residing on contaminated streams in Oregon (with mean feather Hg measured 

at 1158 (range 590-220) ng/g dw downstream of historic cinnabar mines and 375 (range 296-

453) ng/g dw downstream of historic gold mines). Feather Hg concentrations in dippers at 

Douglas Creek (mean 3338.6 ± 819.0, range 346.3-8459.5), however, are substantially higher 

than those measured at these historically-contaminated sites. Tree swallows breeding along 

experimentally flooded reservoirs (mean blood Hg increased in nestlings increased from 1210 ± 

150 ng/g ww before inundation to 2200 ± 102 ng/g ww post-flood) actually benefitted from 

inundation through benefits of earlier nest initiation, larger eggs, and faster growth in response to 

increased availability of emerging dipteran prey (Gerrard and St. Louis, 2001). Thus, Gerard and 

Louis (2001) concluded that reservoirs do not act as ecological traps for tree swallows nesting in 

riparian shrub communities modified by hydroelectric resevoirs, despite increased Hg exposure. 
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 Unlike Tree Swallows that breed near reservoirs, feed on emerging insects, and therefore 

only experience transient exposure to Hg, dippers are stream obligates that may experience 

prolonged exposure to contaminants, as indicated by the high correlation between blood:feather 

Hg in the dippers of this study. Although adverse effects thresholds for adult Common Loons 

have been established at 3000 ng/g ww in blood (Evers et al., 2008), passerines are considered 

more sensitive to MeHg toxicity (Heinz et al., 2009), and negative effects to behaviour and 

reproduction have been documented at or near 1000 ng/g ww in whole blood (Frederick and 

Jayasena, 2010; Jackson et al., 2011; Ackerman et al., 2016). With a natural history intermediate 

between passerines and piscivorous water birds, such as the Common Loon, the sensitivity of 

dippers to MeHg is also likely intermediate between these taxa. Further research on their 

productivity and survival is necessary to address dipper response to MeHg contamination at the 

concentrations measured in this study.  

 

3.4.7 Summary 
 

 Although I identified increased shredder consumption and significantly lower dipper 

blood δ34S at regulated streams, dipper mercury exposure was not consistently or significantly 

different between regulated and unregulated streams. I did, however, discover that dippers 

residing at high-elevation mountain stream habitats experience higher mercury exposure than 

passerine species residing at lower elevations, presumably related to increased atmospheric 

deposition at high elevation, densely forested streams. I also identified one case (Douglas Creek) 

where a low-flow habitat modified by a RoR dam led to enhanced MeHg bioaccumulation, with 

periphyton as a likely source of sulfate-reducing bacterial activity. Under the combined 

conditions of a) high-protein prey availability and b) elevated atmospheric deposition of Hg that 

can be methylated by sulfate reducing bacteria, American Dippers can experience exposure to 

MeHg of potential toxicity concern. Although at this point I have not observe any differences in 

body condition between stream types, future work is needed to determine if long-term chronic 

MeHg toxicity can impair productivity or survival of predatory river birds.  
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CHAPTER 4: SYNTHESIS 

4.1 HABITAT SUITABILITY OF STREAMS WITH RUN-OF-RIVER DAMS AND 

IMPLICATIONS FOR RIVER ECOTOXICOLOGY 

 

 Rivers provide numerous ecological and cultural services for humans and wildlife that are 

vulnerable to increasing demands for freshwater and renewable energy production. As it stands, 

nearly 2/3 of the world’s large rivers are altered by dams (World Commission on Dams, 2000; 

Nilsson et al., 2005), and an unknown number of small rivers are similarly impacted across the 

globe. With demonstrated negative impacts of flow abstraction on stream-dependent organisms 

through changes to physical habitat and contaminant exposure, streams that provide valuable 

ecological services cannot be taken for granted. The overarching goal of this study was to 

determine if flow-regulation by RoR dams alters American Dipper habitat use, diet, and 

exposure to MeHg. Using stable isotopes and the American Dipper as a high-trophic level 

bioindicator, I was able to characterize slight diet changes related to flow diversion, demonstrate 

MeHg production within RoR headponds, and measure MeHg biomagnification through to high-

trophic level stream obligates under suitable conditions. By colour-banding and monitoring 

dipper populations across seasons, I documented higher adult occupancy, density and year-round 

residency at regulated streams and identified headponds as potential breeding habitat for a 

variety of waterfowl. With likely benefits of improved foraging under low-flow conditions, but 

potential for elevated MeHg exposure, I hypothesized habitats modified by RoR dams may act as 

ecological traps for resident river birds and breeding waterfowl.  

 At the outset of this project, I was unable to predict the response of dippers to flow 

abstraction, since there were both potential benefits and costs to reduced flow. Having identified 

clear short-term benefits to foraging and year-round habitat availability associated with flow 

diversion by RoR dams, the question still remains over whether these benefits are outweighed by 

the costs of long-term exposure to MeHg. The data presented in this thesis suggest that dippers 

are residing year-round at regulated streams possibly to exploit consistent and more easily 

attainable food resources, as a strategy to secure nesting sites, and/or to save energy from 
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migration. Further, some rivers regulated by RoR dams provide seasonal habitat for breeding 

waterfowl, in particular Harlequin Ducks. I have also provided support for increased atmospheric 

deposition of Hg at high elevation, densely forested streams, consistent with the observations in 

another alpine passerine, the Bicknell’s Thrush (Miller et al., 2005; Rimmer et al., 2005). 

Collectively, the features of high levels of atmospherically deposited Hg, favourable conditions 

for the activity of sulfate-reducing bacteria, and improved foraging efficiency at low flows in 

RoR headponds have the potential to facilitate substantial MeHg biomagnification in apex stream 

predators. This is not surprising, given beaver impoundments (Roy et al., 2009a,b), experimental 

reservoirs (Gerrard and St. Louis, 2001) and conventional reservoirs (Rosenberg et al., 1997), 

typically at lower elevation than my study streams, have the same effect on MeHg cycling.   

 In the first data chapter, I discussed three mechanisms by which RoR dams may create 

habitats that act as ecological traps for dippers. D’Amico’s (2011) hypothesis of non-adaptive 

foraging under altered flow regime seems not to apply at RoR facilities with a reduced and 

stabilized hydrograph. In fact, dippers appear to have adapted well to foraging in these low-flow 

habitats, to the extent that they use features of the dam itself (cascade) as foraging platforms and 

feed on increasingly available limnephiliids (shredding invertebrates characteristic of lentic 

habitats). This is consistent with the earlier prediction that flow stabilization may decrease the 

energetic demands of foraging (D’Amico et al., 2000). With similar diets and no difference in 

body condition measured between regulated and unregulated streams, I do not see this as a 

mechanism for an ecological trap. The second proposed mechanism of increased nest failure (by 

flooding or predation) requires further investigation through a long-term productivity study 

involving many more marked birds. I have, however, identified several species of waterbirds, 

woodpeckers, and passerines breeding within headponds, especially the larger Soo River, that 

can be studied to test this hypothesis.  

 The third proposed mechanism for elevated MeHg exposure is supported by my 

measurements at Douglas Creek, but not at some of the smaller RoR dams, such as Brandywine 

and Fitzsimmons Creeks. These two regulated streams, which were also the two lowest-capacity 

projects, supported dippers with the lowest observed blood Hg concentrations compared with all 

other regulated and unregulated streams. This suggests that aspects of regulatory technique (such 

as water retention time in the headpond) are likely influencing MeHg production potential at the 

stream-level. Nevertheless, long-term exposure to MeHg could have long-term impacts for the 
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productivity of resident river birds and breeding waterbirds that experience transient exposure 

that coincides with the likely timing of peak MeHg production in the summer. Before concluding 

that RoR reservoirs act as ecological traps through the mechanism of MeHg toxicity, however, 

one must first demonstrate negative impacts to productivity and fitness, which will require a 

longer-term study.  

 At a theoretical level, results of this study contribute to a growing body of literature on 

the ecosystem-level impacts of flow abstraction to smaller streams, MeHg-cycling at high 

elevation streams with and without flow abstraction, and dipper biology at higher elevation, 

third-order streams. I have also provided support for the utility of sulfur isotopes for tracing 

microbial activity in streams modified by flow abstraction and contributed to our understanding 

of avian MeHg exposure in western North America and the aquatic-terrestrial connectivity of 

MeHg cycling. Though Ackerman et al. (2016) conducted a thorough review on avian Hg 

exposure across western North America and identified several hotspots of contamination, alpine 

stream environments remain underrepresented, despite the potential for elevated MeHg 

production. 

4.2 RECOMMENDATIONS FOR SUSTAINABLE HYDROELECTRICITY GENERATION 

AND FUTURE RESEARCH 

  

 At an applied level, I have accrued multiple pieces of evidence supporting dippers as 

sentinels of stream health at RoR dams, including year-round residency at these streams, shifts in 

diet, and the detection of MeHg in their tissues.  I recommend dippers as an effective 

bioindicator for changes to stream ecosystems impacted by flow abstraction and the application 

of stable isotopes in tracing food web changes and contaminant biomagnification. It should be 

noted, however, that dippers may experience more benefits to anthropogenic river regulation 

than resident and migratory fish, as they often respond positively to habitat disruptions involving 

infrastructure, such as bridges that provide nest sites (Loegering and Anthony, 2006). They will, 

however, reflect changes to the invertebrate community and contaminant biomagnification 

potential that can be used to assess risk for other species. With additional support for the aquatic-

terrestrial connectivity of contaminants and flow abstraction, monitoring the response of this 

ideal indicator of interface ecological integrity would be valuable for current and future RoR 
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projects in the Pacific Northwest and range of other dipper species. In addition to monitoring 

dipper populations, I recommend monitoring Hg and MeHg concentrations and the sulfur 

isotopic profile of stream-dependent organisms before and after RoR-regulation. To prevent 

MeHg production within RoR headponds, I recommend selecting sites with low levels of 

atmospherically-deposited Hg and maintaining adequate flow within headponds to prevent 

anaerobic conditions.  

 Current long-term monitoring guidelines for RoR dams in British Columbia emphasize 

the protection of fish and fish habitat (Lewis et al., 2012), but the complexity of these guidelines, 

lack of data for older facilities, and power producer non-compliance with monitoring 

recommendations has left the effects of RoR-regulation on salmonids and salmonid habitat in BC 

largely inconclusive (Connors et al., 2014). Dippers are arguably more easily and effectively 

monitored than fish, especially on high-elevation, steep mountain streams. I argue that the 

application of stable isotopes and non-lethal sampling of a high-trophic level bioindicator offers 

simplification to current monitoring guidelines for RoR projects in British Columbia. 

 As a short-term study over a large region, there are limitations to the conclusions that can 

be drawn from my research, but I hope to have initiated further investigation into MeHg 

production in RoR headponds and avian habitat use. The main question I would like to see 

addressed is whether year-round residency at high elevation streams has the same costs to dipper 

fitness as those experienced by altitudinal migrants; or, if flow stabilization has removed these 

costs and created the ultimate strategy, where there are no costs of delayed nesting (associated 

with altitudinal migration) or traditional costs of year-round residency at lower elevation 

(increased competition for nest sites and reduced annual survival).  

 I have identified several key areas for future research on the ecotoxicological impacts of 

RoR dams. Ideally, a before-after-control-impact study would address these questions, but with 

many RoR dams in place across North America, all within the range of the American Dipper, 

extending this study spatiotemporally could also be a reasonable approach. 

 

1) A long-term productivity study of American Dippers at regulated and unregulated 

streams would be valuable for comparing the relative impacts of nest predation (by 

predation and flooding), and MeHg concentrations in adults, eggs, and developing young 

between regulated and free-flowing streams. Quantifying year-round dipper movement 
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through radio telemetry methods is also recommended, along with comparing the body 

condition of these dippers to those benefiting from large salmon subsidies, such as those 

in the Chilliwack watershed.  

2) Further investigation into the relationship with MeHg-cycling and features of stream 

physicochemistry (e.g. pH) and regulation techniques (especially the retention time of 

water in the headpond) is highly recommended. Additionally, the relationship between 

dam age and MeHg cycling requires further investigation. The recently commissioned 

(November 2015) Tretheway Creek project in the Harrison watershed (same as Douglas 

Creek) would be an interesting stream to monitor.  

3) A more in-depth characterization of the resident fish and invertebrate community 

composition upstream and downstream of impoundments is recommended to supplement 

diet information obtained from stable isotope analysis.  

4) I recommend conducting winter surveys at these streams to compare dipper density 

between regulated and unregulated streams, as dippers are known to occupy stream 

reaches kept ice-free by hydroelectric plants (Price and Bock, 1983).  Collecting a winter 

blood and feather sample would enable further comparison of residency between 

regulated and unregulated streams. I would expect a higher winter ratio of blood: feather 

Hg at regulated streams if dippers are indeed taking advantage of ice-free pools, rather 

than migrating to lower elevation reaches.   

5) Habitat characteristics of the Soo River, combined with the relatively high Hg 

concentrations measured in the two dippers sampled at this stream, lead me to suspect 

elevated MeHg production within this headpond. The Soo River headpond covers a 

significant area, decaying trees are abundant, and there is an obvious sedimentation 

problem, to the point that silt needs to be manually removed from the intake area (Pers. 

Obs). A variety of avian species were observed breeding within the novel wetland. I 

recommend sampling resident river birds, breeding waterbirds, and passerines from this 

headpond for Hg and stable isotopes.  

6) Explore Hg stable isotope fractionation as a method of tracing the activity of sulfate-

reducing bacteria in headponds, which has been used effectively for other microbial 

pathways (Kritee et al., 2008).  
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7) Explore the utility of bryophytes for tracing MeHg production at RoR headponds, which 

are demonstrated indicators of metal contamination in streams (Diaz et al., 2012) and 

more easily collected and ubiquitous at these mountain streams than periphyton.  

8) A comparison of seasonal variation in MeHg exposure between the American Dipper and 

Pacific Wren would be a very interesting future study to investigate a) MeHg exposure in 

high elevation, resident passerines and b) the effects of aquatic vs. terrestrial diets and 

trophic position on MeHg exposure.  

4.3 CONCLUDING REMARKS 

 

 In 2014 and 2015, many watersheds in southern British Columbia experienced severe 

streamflow droughts (Coulthard et al., 2016), defined as a sustained period of below-average 

stream discharge (Van Loon and Laaha, 2015). These droughts occurred as a result of record-

breaking low snowpack and historic high summer temperatures, regardless of the wet winters 

(Coulthard et al., 2016). Using Mountain Hemlock (Tsuga mertensiana) tree ring growth, which 

is sensitive to annual maximum snow depth as a results of its influence on length of growing 

season, and a paleoenvironmental record of seasonal drought as predictors in a 

dendrohydrological model, Coulthard et al. (2016) reconstructed summer streamflow for several 

basins in southern B.C. for the past ~350 years. They concluded that although the droughts of 

2014 and 2015 were not as severe as those reconstructed for the mid-17th century, if the low-flow 

magnitudes anticipated under climate change co-occur with lowest possible natural flows, 

streamflow drought severities in small watersheds in south coastal British Columbia could 

exceed those experienced in the past ∼350 years (Coulthard et al., 2016).  

 Further, Coulthard et al. (2016) argue that current water management strategies in 

southern B.C., based on worst-case scenarios from historical streamguage data, likely 

underestimate the potential magnitude of natural droughts. This means that the minimum in-

stream flow recommendations for independent power producers in B.C., which are based on fish-

bearing status and historic flow data from gauge sites (Hatfield et al., 2003), could also be 

flawed by the use of short-term (recommended minimum of 20 years) streamflow data. Under 

the simultaneous stressors of climate change-related drought and naturally high atmospheric Hg 
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deposition, regulation of mountain streams may further exacerbate any effects of drought or 

MeHg exposure to stream-dependent organisms.  
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APPENDIX 

 

Appendix 1. Seasonal American Dipper density counts (mean ± S.E.) at regulated and unregulated streams 

in coastal British Columbia. Counts (# dippers/km) were adjusted by detection probabilities calculated from 

double-observer surveys and the number of banded birds sighted is indicated in brackets. 

Stream  Type Fall 
 2014 

Pre-Freshet Post-Freshet Fall 2015a Fall 
2015b 

Brandywine  Regulated 14.48 ± 0.48 
(4) 

1 ± 0.050 (1) 7 ± 0.60 (2) 4.13 ± 0.14 
(4) 

2.35 ± 
0.23 
(1) 

Madeley  Unregulated 0 2.15 ± 
0.10 (0) 

1 ± 0.086 (0) 0 0 

Fitzsimmons  Regulated 3.10 ± 0.10 
(2) 

0 1 ± 0.086 (0) 0 0 

Roe  Unregulated 5.17 ± 0.17 
(3) 

1 ± 0.050 (0) 1 ± 0.086 (0) 3.10 ± 0.10 
(2) 

0 

Rutherford  Regulated 5.17 ± 0.17 
(1) 

2.15 ± 
0.10  (0) 

1 ± 0.086 (0) 4.13 ± 0.14 
(0) 

0 

Pemberton  Unregulated 4.14 ± 0.14 
(1) 

2.15 ± 
0.10  (0) 

2 ± 0.17 (0) 2.07 ± 0.069 
(1) 

0 

Douglas  Regulated 7.24 ± 0.24 
(1) 

2.15 ± 
0.10  (0) 

1 ± 0.086 (0) 3.10 ± 0.10  
(0) 

3.53 ± 
0.35 
(3) 

Gowan  Unregulated 0 0 1 ± 0.086 (0) 0 1.18 ± 
0.57 
(0) 

Fire  Regulated 3.10 ± 0.10 
(2) 

1 ± 0.050 (0) 2 ± 0.17 (0) 0 0 

Sloquet  Unregulated 2.07 ± 0.069 
(1) 

2.15 ± 
0.10  (0) 

0 1.03 ± 0.034 
(0) 

0 

Soo  Regulated NA 1 ± 0.050 (0) 1 ± 0.086 (0) 0 2.35 ± 
0.23 
(1) 

Owl  Unregulated NA 1 ± 0.050 (0) 2 ± (0) 0 0 
Tipella  Regulated 2.07 ± 0.069 

(0) 
2.15 ± 
0.10  (1) 

0 0 0 

Roger  Unregulated NA 0 1 ± 0.086 (0) 0 1.18 ± 
0.57  
(0) 

Regulated (average) 5.86 ±1.88 
(2.07-14.48) 

1.38 
±0.31 
(0-2.15) 

2.16 
±1.03 
(0-8.15) 

1.62 
±0.78 
(0-4.14) 

1.18 
±0.57 
(0-
3.53) 

Unregulated (average) 2.27 
±1.05 
(0-5.17) 

1.23 
±0.36 
(0-2.15) 

1.33 
±0.30 
(0-2.33) 

0.89 
±0.47 
(0-3.10) 

0.34 
±0.22 
(0-
1.18) 
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Appendix 2.  Estimates of post-hoc Tukey contrasts comparing mean American 

Dipper densities (# dippers/km) at regulated and unregulated streams between 

seasons. Significant differences are bolded.  

Linear Hypothesis Estimate S.E. z value Pr(>|z|) 

Fall 2015A-Fall 2014=0 -1.12 0.29 -3.91 <0.001 

Fall 2015B-Fall 2014=0 -1.65 0.35 -4.71 <0.001 

Post-freshet-Fall 2014=0 -0.91 0.27 -3.42 0.01 

Pre-freshet-Fall 2014=0 -1.12 0.29 -3.91 <0.001 

Fall 2015B-Fall 2015A=0 -0.53 0.46 -1.17 0.74 

Post-freshet-Fall 2015A=0 0.21 0.39 0.54 0.98 

Pre-freshet-Fall 2015A=0 0.00 0.41 0.00 1.00 

Post-freshet-Fall 2015B=0 0.74 0.47 1.56 0.48 

Pre-freshet-Fall 2015B=0 0.53 0.46 1.16 0.75 

Pre-freshet-Post-freshet=0 -0.21 0.40 -0.53 0.98 

 

 

Appendix 3. Multi-state occupancy model selection results comparing occupancy of banded and 

unbanded American Dippers between regulated and unregulated streams (with counts from Roger 

Creek omitted). 

Model AICc
1 ΔAICc AICc 

Weights 

Model 

Likelihood 

k2 Deviance3 

Ψ1(.)Ψ2(.)ρ1(.)ρ2(.)δ(.)4  156.07 0 0.85 1 5 91.53 

Ψ1(.)Ψ2(g) ρ1(.)ρ2(.)δ(.)  159.83 3.76 0.13 0.15 6 87.86 

Ψ1(g)Ψ2(.) ρ1(.)ρ2(.)δ(.) 163.50 7.43 0.021 0.024 6 91.53 
1Akaike’s Information Criterion, corrected for small sample sizes 
2Number of parameters 
3 -2 (Log Likelihood) 
4 This model allows estimation of the following parameters: Ψ1, probability that a site is 
occupied regardless of band state; Ψ2: probability that a site is occupied by a banded bird; φ1, 
probability that occupancy was detected given true state=1(unbanded); φ2, probability that 
occupancy was detected given true state=2 (banded); and, δ, probability that banded birds were 
observed, given detection of occupancy. Effects of stream type (g) are indicated for each 
parameter, while (.) indicates no effect of stream type. 
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Appendix 4. Multi-state occupancy model selection results comparing occupancy of banded and 

unbanded American Dippers between regulated and unregulated streams (assuming the re-sighted 

bird at Roger Creek was banded). 

Model AICc
1 ΔAICc AICc 

Weights 

Model 

Likelihood 

k2 Deviance3 

Ψ1(.)Ψ2(.)ρ1(.)ρ2(.)δ(.)4 163.90 0 0.84 1 5 94.68 

Ψ1(.)Ψ2(g) ρ1(.)ρ2(.)δ(.) 167.78 3.88 0.12 0.14 6 92.07 

Ψ1(g)Ψ2(.) ρ1(.)ρ2(.)δ(.) 170.40 6.50 0.033 0.039 6 94.68 
1Akaike’s Information Criterion, corrected for small sample sizes 
2Number of parameters 
3 -2 (Log Likelihood) 
4 This model allows estimation of the following parameters: Ψ1, probability that a site is 
occupied regardless of band state; Ψ2: probability that a site is occupied by a banded bird; φ1, 
probability that occupancy was detected given true state=1(unbanded); φ2, probability that 
occupancy was detected given true state=2 (banded); and, δ, probability that banded birds were 
observed, given detection of occupancy. Effects of stream type (g) are indicated for each 
parameter, while (.) indicates no effect of stream type 
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Appendix 5. Comparison of parameter estimates (±S.E.) for multi-state occupancy models (with 

stream type differences in the occupancy rate of banded dippers) including and excluding the 

unregulated stream without any banded American Dippers (Roger Creek). Estimated parameters 

include: Ψ1, probability that a site is occupied regardless of band state; Ψ2: probability that a site 

is occupied by a banded bird; ρ1, probability that occupancy was detected given true 

state=1(unbanded); ρ2, probability that occupancy was detected given true state=2 (banded); and, 

δ, probability that banded birds were observed, given detection of occupancy.  

Model 

Structure 

Ψ1 

 

Ψ2 ρ1 ρ2 δ Likelihood 

Ratio Test 

Result1 

Assume 

resight 

unbanded 

Reg, 

Unreg=

1±0 

Reg=1±0 

Unreg= 

0.50±0.22 

Reg, 

Unreg= 

0.44± 0.12 

Reg, 

Unreg= 

0.70 ± 0.066 

Reg, 

Unreg= 

0.50±0.086 

χ2=4.83, df=1, 

p=0.028 

Omit 

Roger 

Creek  

Reg, 

Unreg=

1±0 

Reg=1±0 

Unreg= 

0.57±0.23 

Reg, 

Unreg= 

0.43±0.14 

Reg, 

Unreg= 

0.70 ± 0.066 

Reg, 

Unreg= 

0.50±0.086 

χ2=3.67, df=1, 

p=0.057 

Assume 

resight 

banded 

Reg, 

Unreg=

1±0 

Reg=1±0 

Unreg= 

0.66±0.22 

Reg, 

Unreg= 

0.43±0.15 

Reg, 

Unreg= 

0.68±0.065 

Reg, 

Unreg= 

0.50±0.084 

χ2=2.62, df=1, 

p=0.11 

1Maximum likelihood test result for the effect of stream type differences on the occupancy rate 
of banded birds (Ψ2)  
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Appendix 6. Seasonal changes in the number of marked and unmarked dippers sighted at each regulated 
and unregulated stream. Numbers represent total counts (# birds/km) with the number of marked birds 
re-sighted in brackets. Adjusted double observer counts were rounded to the nearest whole number. 
Regulated streams are marked with an asterisk.  
 Stream 
Time Brandy* Mad Fitzs* Roe Ruth* Pem Owl Soo* Roger Gow Fire* Tip* Slo Doug* 

 
Fall 2014 
Trap 1 
 

7 2 6 5 3 1 NA NA NA 4 4 1 4 5 

Fall 2014 
Count 
(marked) 

14 (4) 0 3 (2) 5 (3) 5 (1) 4 (1) NA NA NA 0 3 (2) 2 (0) 2 
(1) 

7 (1) 

Fall 2014 
Trap 2 
 

2 0 2 1 0 1 NA NA NA 0 0 0 0 0 

Total 
Marked 
before 
spring 2015 

9 2 8 6 3 2 NA NA NA 4 4 1 4 5 

Pre-freshet 
Count 
(marked) 

1 (1) 2 (0) 0 1 (0) 2 (0) 2 (0) 1 (0) 1 (0) 0 0 1 (0) 2 (1) 2 
(0) 

2 (0) 

Post-freshet 
Count 
(marked) 

7 (2) 1 (0) 1 (0) 1 (0) 1 (0) 2 (0) 2 (0) 1 (0) 1 (0) 1 (0) 2 (0) 0 0 1 (0) 

Fall 2015 
Trap 1 
 

6 1 3 2 7 5 2 2 0 2 2 1 4 3 

Total 
Marked 
before fall 
2015 
Survey 1 
(from 2014 
and 2015) 

15 3 11 8 10 7 2 2 0 6 6 2 8 8 

Fall 2015A 
Survey 
(marked) 

4 (4) 0 0 3 (2) 4 (0) 2 (1) 0 0 0 0 0 0 1 
(1) 

3 (0) 

Fall 2015 
Trap 2 
 

0 1 0 0 0 0 0 0 0 0 0 1 1 4 

Total 
Marked 
before fall 
2015 
Survey B 
from 2015 

6 2 3 2 7 5 2 2 0 4 2 2 5 7 

Total 
Marked 
before fall 
2015 B 
Survey 
(from 2014 
and 2015) 

15 4 11 8 10 7 2 2 0 10 6 3 9 12 

Fall 2015 B 
Survey 
(marked) 

2 (1) 0 0 0 0 0 0 2 (1) 1 (0) 1 (0) 0 0 0 3 (3) 
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Appendix 7. Proportion of after-hatch-year (AHY) American Dippers trapped at each regulated 

and unregulated stream during fall 2015 (n=54 dippers). 

Stream Type Proportion AHY 

Trapped 

N Anadromous Salmon 

Present 

Elevation 

(m) 

Brandywine Regulated 0.50 6 No 828 

Madeley Unregulated 0 2 No 851 

Fitzsimmons Regulated 0.67 3 No 995 

Roe Unregulated 0.33 3 No 708 

Rutherford Regulated 0.57 7 No 742 

Pemberton Unregulated 0.20 5 No 262 

Douglas Regulated 0.43 7 No 370 

Gowan Unregulated 0.43 7 Yes 140 

Fire Regulated 1 2 No 384 

Sloquet Unregulated 0.33 6 Yes 55 

Soo Regulated 0.50 2 No 589 

Owl Unregulated 0 2 Yes 366 

Tipella Regulated 0.50 2 No 338 
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Appendix 8. Proportion of female after-hatch-year (AHY) American Dippers  trapped at each 

regulated and unregulated stream during fall 2015 (n=23 AHY dippers captured during fall  

2015). Streams with only hatch-year (HY) captures in 2015 were excluded from this table. 

Stream Type Proportion AHY 

Females 

N  Anadromous 

Salmon Present 

Elevation 

(m) 

Brandywine Regulated 0.67 3 No 828 

Fitzsimmons Regulated 0.50 2 No 995 

Roe Unregulated 1 1 No 708 

Rutherford Regulated 0.50 4 No 742 

Pemberton Unregulated 1 1 Yes 262 

Douglas Regulated 0.33 3 No 370 

Gowan Unregulated 0.33 3 Yes 140 

Fire Regulated 0.50 2 No 384 

Sloquet Unregulated 0 2 Yes 55 

Soo Regulated 0 1 No 589 
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Appendix 9. Estimates of post-hoc Tukey contrasts comparing American Dipper body condition 

(represented by a scaled mass index) between regulated and unregulated streams. Significant 

comparisons are presented in bold.  

Linear 
Hypothesis 

Estimate S.E. z 
value 

Pr(>|z|) Linear 
Hypothesis 

Estimate S.E. z 
value 

Pr(>|z|) 

DOUG-
BRANDY=
0 

-1.44 1.49 -0.97 1.00 SLO-
FITZ=0 

2.22 1.69 1.32 0.98 

FIRE-
BRANDY=
0 

-4.08 1.86 -2.19 0.57 SOO-
FITZ=0 

0.99 2.96 0.33 1.00 

FITZ-
BRANDY=
0 

-4.40 1.53 -2.87 0.16 TIP-
FITZ=0 

-0.99 2.51 -0.39 1.00 

GOW-
BRANDY=
0 

-5.55 1.53 -3.63 0.02 MAD-
GOW=0 

2.80 2.25 1.24 0.99 

MAD-
BRANDY=
0 

-2.75 2.17 -1.27 0.99 OWL-
GOW=0 

-5.20 2.96 -1.75 0.86 

OWL-
BRANDY=
0 

-10.75 2.90 -3.70 0.01 PEMB-
GOW=0 

5.36 1.86 2.88 0.15 

PEMB-
BRANDY=
0 

-0.19 1.77 -0.11 1.00 ROE-
GOW=0 

2.65 1.73 1.53 0.94 

ROE-
BRANDY=
0 

-2.90 1.63 -1.78 0.84 RUTH-
GOW=0 

2.40 1.69 1.42 0.97 

RUTH-
BRANDY=
0 

-3.15 1.57 -2.00 0.71 SLO-
GOW=0 

3.37 1.69 2.00 0.71 

SLO-
BRANDY=
0 

-2.18 1.57 -1.38 0.97 SOO-
GOW=0 

2.14 2.96 0.72 1.00 

SOO-
BRANDY=
0 

-3.41 2.90 -1.18 0.99 TIP-
GOW=0 

0.16 2.51 0.07 1.00 

TIP-
BRANDY=
0 

-5.39 2.44 -2.21 0.56 OWL-
MAD=0 

-8.00 3.34 -2.39 0.42 

FIRE-
DOUG=0 

-2.64 1.93 -1.37 0.98 PEMB-
MAD=0 

2.56 2.42 1.06 1.00 

FITZ-
DOUG=0 

-2.96 1.61 -1.84 0.81 ROE-
MAD=0 

-0.15 2.32 -0.07 1.00 
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GOW-
DOUG=0 

-4.11 1.61 -2.55 0.32 RUTH-
MAD=0 

-0.40 2.28 -0.18 1.00 

MAD-
DOUG=0 

-1.31 2.23 -0.59 1.00 SLO-
MAD=0 

0.57 2.28 0.25 1.00 

OWL-
DOUG=0 

-9.31 2.95 -3.16 0.07 SOO-
MAD=0 

-0.66 3.34 -0.20 1.00 

PEMB-
DOUG=0 

1.26 1.83 0.68 1.00 TIP-
MAD=0 

-2.64 2.95 -0.90 1.00 

ROE-
DOUG=0 

-1.46 1.70 -0.86 1.00 PEMB-
OWL=0 

10.56 3.09 3.42 0.03 

RUTH-
DOUG=0 

-1.71 1.65 -1.04 1.00 ROE-
OWL=0 

7.85 3.02 2.60 0.29 

SLO-
DOUG=0 

-0.73 1.65 -0.44 1.00 RUTH-
OWL=0 

7.59 2.99 2.54 0.32 

SOO-
DOUG=0 

-1.97 2.95 -0.67 1.00 SLO-
OWL=0 

8.57 2.99 2.87 0.16 

TIP-
DOUG=0 

-3.95 2.49 -1.59 0.93 SOO-
OWL=0 

7.34 3.86 1.90 0.78 

FITZ-
FIRE=0 

-0.31 1.96 -0.16 1.00 TIP-
OWL=0 

5.36 3.52 1.52 0.95 

GOW-
FIRE=0 

-1.47 1.96 -0.75 1.00 ROE-
PEMB=0 

-2.71 1.94 -1.40 0.97 

MAD-
FIRE=0 

1.33 2.49 0.54 1.00 RUTH-
PEMB=0 

-2.97 1.90 -1.56 0.93 

OWL-
FIRE=0 

-6.66 3.15 -2.12 0.63 SLO-
PEMB=0 

-1.99 1.90 -1.05 1.00 

PEMB-
FIRE=0 

3.90 2.15 1.82 0.83 SOO-
PEMB=0 

-3.23 3.09 -1.04 1.00 

ROE-
FIRE=0 

1.18 2.03 0.58 1.00 TIP-
PEMB=0 

-5.20 2.66 -1.95 0.74 

RUTH-
FIRE=0 

0.93 1.99 0.47 1.00 RUTH-
ROE=0 

-0.25 1.77 -0.14 1.00 

SLO-
FIRE=0 

1.91 1.99 0.96 1.00 SLO-
ROE=0 

0.72 1.77 0.41 1.00 

SOO-
FIRE=0 

0.67 3.15 0.21 1.00 SOO-
ROE=0 

-0.51 3.02 -0.17 1.00 

TIP-
FIRE=0 

-1.30 2.73 -0.48 1.00 TIP-
ROE=0 

-2.49 2.57 -0.97 1.00 

GOW-
FITZ=0 

-1.15 1.64 -0.70 1.00 SLO-
RUTH=0 

0.98 1.72 0.57 1.00 

MAD-
FITZ=0 

1.65 2.25 0.73 1.00 SOO-
RUTH=0 

-0.26 2.99 -0.09 1.00 

OWL-
FITZ=0 

-6.35 2.96 -2.14 0.61 TIP-
RUTH=0 

-2.23 2.54 -0.88 1.00 

PEMB-
FITZ=0 

4.21 1.86 2.26 0.52 SOO-
SLO=0 

-1.24 2.99 -0.41 1.00 
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ROE-
FITZ=0 

1.50 1.73 0.87 1.00 TIP-
SLO=0 

-3.21 2.54 -1.27 0.99 

RUTH-
FITZ=0 

1.24 1.69 0.74 1.00 TIP-
SOO=0 

-1.98 3.52 -0.56 1.00 

 

 

Appendix 10. Precision between duplicate UC Davis Stable Isotope Facility laboratory reference 

samples for δ13CVPDB and δ15NAir. 

Tissue Year Reference 
ID 

Reference 
Name 

δ13CVPDB 
(‰) 

δ15NAir 
(‰) 

S.D. (δ13C 
‰) 

S.D. 
(δ15N 
‰) 

Whole blood 2014 G-13 Bovine 
Liver 

-21.69 7.72 0.15 0.080 

Whole blood 2014 G-17 USGS-41 
Glutamic 
Acid 

37.63 47.60 0.020 0.28 

Whole blood 2014 G-18 Nylon 5 -27.72 -10.31 0.030 0.16 
Whole blood 2014 G-20 Glutamic 

Acid 
-16.65 -6.80 0.050 0.090 

Whole blood 2015 
 

G-13 
 

Bovine 
Liver 

-21.69 7.72 0.080 0.010 

Whole blood 2015 G-18 Nylon 5 -27.72 -10.31 0.060 0.090 
Whole blood 2015 G-20 Glutamic 

Acid 
-16.65 -6.80 0.040 0.13 

Whole blood 2015 G-21 Enriched 
Alanine 

43.02 41.13 0.090 0.11 

Invertebrates 2014 G-13 Bovine 
Liver 

-21.69 7.72 0.040 0.10 

Invertebrates 2014 G-17 USGS-41 
Glutamic 
Acid 

37.63 47.60 0.12 0.14 

Invertebrates 2014 G-18 Nylon 5 -27.72 -10.31 0.080 0.13 
Invertebrates 2014 G-20 Glutamic 

Acid 
-16.65 -6.80 0.040 0.14 

Invertebrates 2015 G-13 Bovine 
Liver 

-21.69 7.72 0.070 0.11 

Invertebrates 2015 G-18 Nylon 5 -27.72 -10.31 0.060 0.12 
Invertebrates 2015 G-20 Glutamic 

Acid 
-16.65 -6.80 0.11 0.11 

Invertebrates 2015 G-21 Enriched 
Alanine 

43.02 41.13 0.070 0.050 
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Appendix 11.  Precision between duplicate UC Davis Stable Isotope Facility 

laboratory reference samples for δ34SVCDT 

Tissue Year Reference ID Reference Name δ34SVCDT 

(‰) 

S.D. 

(δ34S ‰) 

Whole blood 2014 Standard 1 Whale Baleen 18.15 0.40 

Whole blood 2014 Standard 2 Hair 1.91 0.33 

Whole blood 2014 Standard 3 Taurine -3.94 0.33 

Whole blood 2015 

 

CYS1 Cysteine 36.95 0.050 

Whole blood 2015 HHS Hair 2.19 0.33 

Whole blood 2015 MMS Mahi-Mahi 

Muscle 

20.21 0.62 

Whole blood 2015 RWB Whale Baleen 18.54 0.44 

Whole blood 2015 TAUR Taurine -3.94 0.18 

Invertebrates 2014 Standard 1 Whale Baleen 18.15 0.37 

Invertebrates 2014 Standard 2 Hair 1.91 0.22 

Invertebrates 2014 Standard 3 Taurine -3.94 0.30 

Invertebrates 2015 CYS1 Cysteine 36.88 0.16 

Invertebrates 2015 HHS Hair 1.96 0.24 

Invertebrates 2015 MMS Mahi-Mahi 

Muscle 20.32 0.43 

Invertebrates 2015 PIN Pintail Feather -2.56 0.15 

Invertebrates 2015 RWB Whale Baleen 18.30 0.43 

Invertebrates 2015 TAUR Taurine -3.93 0.28 
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Appendix 12. Mean ± S.D. of American Dipper isotope ratios (δ13C, δ15N, δ34S) and trophic 

position in whole blood samples collected at regulated and unregulated streams in coastal British 

Columbia.  

Stream Type 

n 

Blood 

δ15N, 

δ13C 

n 

Blood 

δ34S 

Mean 

Blood 

δ13C 

(‰) 

S.D. 

Blood 

δ13C 

(‰) 

Mean 

Blood 

δ15N 

(‰) 

S.D. 

Blood 

δ15N 

(‰) 

Mean 

Blood 

δ34S 

(‰) 

S.D. 

Blood 

δ34S 

(‰) 

Mean 

TP1 
S.D. 

TP 

Brandywine Regulated 13 13 -22.29 1.32 3.50 0.51 2.48 1.48 3.70 0.18 

Madeley Unregulated 4 4 -25.98 0.38 4.16 0.77 5.09 1.23 3.97 0.29 

Fitzsimmons Regulated 11 11 -24.59 3.01 4.04 1.12 -3.01 3.18 3.94 0.47 

Roe Unregulated 8 8 -22.67 1.40 2.82 0.48 4.40 0.95 4.08 0.34 

Rutherford Regulated 10 10 -22.65 1.67 3.14 0.89 2.25 1.44 3.72 0.40 

Pemberton Unregulated 7 7 -22.58 1.12 3.00 0.35 2.69 2.16 3.67 0.21 

Douglas Regulated 12 12 -23.72 1.21 3.77 0.77 4.42 2.00 4.71 0.27 

Gowan Unregulated 10 10 -24.08 1.17 3.21 0.64 2.91 1.61 4.16 0.41 

Fire Regulated 6 5 -25.64 0.60 3.21 0.65 -2.65 1.88 3.88 0.52 

Sloquet Unregulated 9 9 -23.69 1.92 3.68 0.91 1.68 2.29 4.30 0.60 

Tipella Regulated 3 3 -24.78 0.79 3.49 1.02 2.05 0.90 4.63 0.88 

Owl Unregulated 2 2 -24.62 1.12 6.90 1.16 2.28 1.07 4.93 0.43 

Soo Regulated 2 2 -26.45 0.65 5.41 0.13 2.09 1.73 4.32 0.05 

Regulated 57 56 -23.73 2.08 3.63 0.90 1.28* 3.41 4.05 0.55 

Unregulated 40 40 -23.65 1.64 3.46 1.08 3.07 2.00 4.12 0.48 
1Trophic Position (see equation 3.1) 

* American Dipper blood δ34S was significantly lower at regulated streams (β=-2.42, SE=0.95, 

p=0.029). 
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Appendix 13. Model selection results testing for differences in American Dipper whole 

blood δ34S (n=96) between regulated and unregulated streams. A linear mixed effects model 

was run using the package lme4 in R. Stream type, elevation, salmon, and the interaction 

between type*elevation were included as fixed effects. Stream, watershed, and year were 

included as random effects.   

Response Model Structure AICc1 Δ 

AICc 

Deviance2 Model

Weight 

df 

Dipper 

whole 

blood δ34S 

Type 430.6 0 417.72 0.91 6 

 

null 

 

435.3 

 

4.64 424.63 

 

0.090 

 

5 
1Akaike’s Information Criterion, corrected for small sample sizes 
2 -2 (Log Likelihood) 

 

Appendix 14. Estimates of post-hoc Tukey contrasts comparing mean American Dipper blood δ34S 

(n=96) between individual regulated and unregulated streams. Significant differences are bolded. 

Linear 
Hypothesis 

Estimate S.E. z 
value 

Pr(>|z|) Linear 
Hypothesis 

Estimate S.E. z 
value 

Pr(>|z|) 

DOUG-
BRANDY=0 

1.94 0.78 2.50 0.35 SLO-
FITZ=0 

4.69 0.85 5.53 <0.01 

FIRE-
BRANDY=0 

-5.13 1.02 -5.03 <0.01 SOO-
FITZ=0 

5.10 1.49 3.42 0.03 

FITZ-
BRANDY=0 

-5.49 0.79 -6.92 <0.01 TIP-
FITZ=0 

5.06 1.26 4.01 <0.01 

GOW-
BRANDY=0 

0.42 0.79 0.53 1.00 MAD-
GOW=0 

2.19 1.13 1.93 0.76 

MAD-
BRANDY=0 

2.61 1.11 2.35 0.45 OWL-
GOW=0 

-0.63 1.49 -0.42 1.00 

OWL-
BRANDY=0 

-0.21 1.47 -0.14 1.00 PEMB-
GOW=0 

-0.22 0.94 -0.23 1.00 

PEMB-
BRANDY=0 

0.21 0.91 0.23 1.00 ROE-
GOW=0 

1.49 0.87 1.71 0.88 

ROE-
BRANDY=0 

1.92 0.84 2.28 0.51 RUTH-
GOW=0 

-0.65 0.85 -0.77 1.00 

RUTH-
BRANDY=0 

-0.23 0.82 -0.28 1.00 SLO-
GOW=0 

-1.23 0.85 -1.45 0.96 

SLO-
BRANDY=0 

-0.81 0.82 -0.99 1.00 SOO-
GOW=0 

-0.82 1.49 -0.55 1.00 

SOO-
BRANDY=0 

-0.39 1.47 -0.27 1.00 TIP-
GOW=0 

-0.86 1.26 -0.68 1.00 
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TIP-
BRANDY=0 

-0.43 1.24 -0.35 1.00 OWL-
MAD=0 

-2.82 1.68 -1.68 0.89 

FIRE-
DOUG=0 

-7.07 1.03 -6.85 <0.01 PEMB-
MAD=0 

-2.40 1.22 -1.98 0.73 

FITZ-
DOUG=0 

-7.43 0.81 -9.19 <0.01 ROE-
MAD=0 

-0.69 1.16 -0.59 1.00 

GOW-
DOUG=0 

-1.52 0.81 -1.88 0.79 RUTH-
MAD=0 

-2.84 1.15 -2.48 0.37 

MAD-
DOUG=0 

0.67 1.12 0.60 1.00 SLO-
MAD=0 

-3.42 1.15 -2.98 0.12 

OWL-
DOUG=0 

-2.15 1.48 -1.45 0.96 SOO-
MAD=0 

-3.00 1.68 -1.79 0.84 

PEMB-
DOUG=0 

-1.73 0.92 -1.88 0.79 TIP-
MAD=0 

-3.04 1.48 -2.06 0.67 

ROE-
DOUG=0 

-0.02 0.85 -0.03 1.00 PEMB-
OWL=0 

0.41 1.55 0.27 1.00 

RUTH-
DOUG=0 

-2.17 0.83 -2.62 0.28 ROE-
OWL=0 

2.13 1.52 1.40 0.97 

SLO-
DOUG=0 

-2.75 0.83 -3.31 0.05 RUTH-
OWL=0 

-0.02 1.50 -0.02 1.00 

SOO-
DOUG=0 

-2.33 1.48 -1.58 0.93 SLO-
OWL=0 

-0.60 1.50 -0.40 1.00 

TIP-
DOUG=0 

-2.37 1.25 -1.90 0.78 SOO-
OWL=0 

-0.19 1.94 -0.10 1.00 

FITZ-
FIRE=0 

-0.36 1.05 -0.35 1.00 TIP-
OWL=0 

-0.23 1.77 -0.13 1.00 

GOW-
FIRE=0 

5.55 1.05 5.31 <0.01 ROE-
PEMB=0 

1.71 0.98 1.75 0.86 

MAD-
FIRE=0 

7.74 1.30 5.95 <0.01 RUTH-
PEMB=0 

-0.44 0.96 -0.46 1.00 

OWL-
FIRE=0 

4.92 1.62 3.03 0.10 SLO-
PEMB=0 

-1.01 0.96 -1.06 1.00 

PEMB-
FIRE=0 

5.33 1.14 4.70 <0.01 SOO-
PEMB=0 

-0.60 1.55 -0.39 1.00 

ROE-
FIRE=0 

7.05 1.08 6.52 <0.01 TIP-
PEMB=0 

-0.64 1.34 -0.48 1.00 

RUTH-
FIRE=0 

4.90 1.06 4.61 <0.01 RUTH-
ROE=0 

-2.15 0.89 -2.41 0.41 

SLO-
FIRE=0 

4.32 1.06 4.07 <0.01 SLO-
ROE=0 

-2.72 0.89 -3.06 0.10 

SOO-
FIRE=0 

4.74 1.62 2.92 0.14 SOO-
ROE=0 

-2.31 1.52 -1.52 0.94 

TIP-
FIRE=0 

4.70 1.42 3.32 0.04 TIP-
ROE=0 

-2.35 1.29 -1.82 0.83 

GOW-
FITZ=0 

5.92 0.83 7.16 <0.01 SLO-
RUTH=0 

-0.58 0.87 -0.66 1.00 
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MAD-
FITZ=0 

8.10 1.13 7.16 <0.01 SOO-
RUTH=0 

-0.16 1.50 -0.11 1.00 

OWL-
FITZ=0 

5.28 1.49 3.55 0.02 TIP-
RUTH=0 

-0.20 1.28 -0.16 1.00 

PEMB-
FITZ=0 

5.70 0.94 6.08 <0.01 SOO-
SLO=0 

0.41 1.50 0.28 1.00 

ROE-
FITZ=0 

7.41 0.87 8.50 <0.01 TIP-
SLO=0 

0.37 1.28 0.29 1.00 

RUTH-
FITZ=0 

5.26 0.85 6.21 <0.01 TIP-
SOO=0 

-0.04 1.77 -0.02 1.00 

 

 

Appendix 15. Model selection results testing for differences in American Dipper whole 

blood δ13C between regulated and unregulated streams (n=97). A linear mixed effects model 

was run using the package lme4 in R. Stream type, elevation, salmon, and the interaction 

between type*elevation were included as fixed effects. Stream and watershed were included 

as random effects.  

Response Model Structure AICc1 Δ 

AICc 

Deviance2 Model

Weight 

df 

Dipper 

whole 

blood δ13C 

null 406.9 0 398.50 0.60 4 

 

type 

 

407.8 

 

0.84 397.12 

 

0.40 

 

5 

 1Akaike’s Information Criterion, corrected for small sample sizes 
   2 -2 (Log Likelihood) 
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Appendix 16. Comparing American Dipper whole blood δ13C (‰) between regulated and 

unregulated streams (n=97). Streams sharing the same letter are not significantly different 

(p>0.05) from one another. 

 

Appendix 17. Estimates of post-hoc Tukey contrasts comparing mean American Dipper blood δ13C 

(n=97) between individual regulated and unregulated streams. Significant differences are bolded. 

Linear 
Hypothesis 

Estimate S.E. z 
value 

Pr(>|z|) Linear 
Hypothesis 

Estimate S.E. z 
value 

Pr(>|z|) 

DOUG-
BRANDY=0 

-1.43 0.65 -2.20 0.57 SLO-
FITZ=0 

0.91 0.71 1.28 0.99 

FIRE-
BRANDY=0 

-3.34 0.80 -4.18 <0.01 SOO-
FITZ=0 

-1.86 1.24 -1.49 0.95 

FITZ-
BRANDY=0 

-2.30 0.66 -3.47 0.03 TIP-
FITZ=0 

-0.19 1.05 -0.18 1.00 

GOW-
BRANDY=0 

-1.79 0.66 -2.70 0.24 MAD-
GOW=0 

-1.90 0.95 -2.01 0.71 

MAD-
BRANDY=0 

-3.68 0.93 -3.98 <0.01 OWL-
GOW=0 

-0.54 1.24 -0.43 1.00 

OWL-
BRANDY=0 

-2.32 1.23 -1.89 0.78 PEMB-
GOW=0 

1.50 0.78 1.91 0.77 

PEMB-
BRANDY=0 

-0.29 0.76 -0.39 1.00 ROE-
GOW=0 

1.41 0.73 1.93 0.76 

ROE- -0.38 0.70 -0.54 1.00 RUTH- 1.43 0.71 2.03 0.69 
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BRANDY=0 GOW=0 
RUTH-
BRANDY=0 

-0.35 0.68 -0.52 1.00 SLO-
GOW=0 

0.39 0.71 0.56 1.00 

SLO-
BRANDY=0 

-1.39 0.68 -2.05 0.68 SOO-
GOW=0 

-2.37 1.24 -1.91 0.78 

SOO-
BRANDY=0 

-4.16 1.23 -3.38 0.04 TIP-
GOW=0 

-0.70 1.05 -0.67 1.00 

TIP-
BRANDY=0 

-2.49 1.04 -2.40 0.42 OWL-
MAD=0 

1.36 1.40 0.97 1.00 

FIRE-
DOUG=0 

-1.92 0.81 -2.37 0.44 PEMB-
MAD=0 

3.39 1.01 3.34 0.04 

FITZ-
DOUG=0 

-0.88 0.68 -1.30 0.98 ROE-
MAD=0 

3.30 0.97 3.39 0.04 

GOW-
DOUG=0 

-0.36 0.68 -0.54 1.00 RUTH-
MAD=0 

3.33 0.96 3.48 0.03 

MAD-
DOUG=0 

-2.26 0.93 -2.42 0.41 SLO-
MAD=0 

2.29 0.96 2.39 0.43 

OWL-
DOUG=0 

-0.90 1.24 -0.73 1.00 SOO-
MAD=0 

-0.48 1.40 -0.34 1.00 

PEMB-
DOUG=0 

1.13 0.77 1.47 0.96 TIP-
MAD=0 

1.19 1.24 0.96 1.00 

ROE-
DOUG=0 

1.04 0.71 1.46 0.96 PEMB-
OWL=0 

2.03 1.30 1.57 0.93 

RUTH-
DOUG=0 

1.07 0.69 1.55 0.94 ROE-
OWL=0 

1.94 1.27 1.53 0.94 

SLO-
DOUG=0 

0.03 0.69 0.04 1.00 RUTH-
OWL=0 

1.97 1.25 1.57 0.93 

SOO-
DOUG=0 

-2.73 1.24 -2.21 0.56 SLO-
OWL=0 

0.93 1.25 0.74 1.00 

TIP-
DOUG=0 

-1.07 1.04 -1.02 1.00 SOO-
OWL=0 

-1.84 1.62 -1.13 1.00 

FITZ-
FIRE=0 

1.04 0.82 1.27 0.99 TIP-
OWL=0 

-0.17 1.48 -0.11 1.00 

GOW-
FIRE=0 

1.56 0.82 1.89 0.78 ROE-
PEMB=0 

-0.09 0.82 -0.11 1.00 

MAD-
FIRE=0 

-0.34 1.04 -0.33 1.00 RUTH-
PEMB=0 

-0.06 0.80 -0.08 1.00 

OWL-
FIRE=0 

1.02 1.32 0.77 1.00 SLO-
PEMB=0 

-1.10 0.80 -1.38 0.97 

PEMB-
FIRE=0 

3.05 0.90 3.39 0.04 SOO-
PEMB=0 

-3.87 1.30 -2.98 0.12 

ROE-
FIRE=0 

2.96 0.85 3.47 0.03 TIP-
PEMB=0 

-2.20 1.12 -1.97 0.73 

RUTH-
FIRE=0 

2.99 0.84 3.58 0.02 RUTH-
ROE=0 

0.03 0.74 0.04 1.00 

SLO- 1.95 0.84 2.33 0.47 SLO- -1.01 0.74 -1.36 0.98 
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FIRE=0 ROE=0 
SOO-
FIRE=0 

-0.82 1.32 -0.62 1.00 SOO-
ROE=0 

-3.78 1.27 -2.98 0.12 

TIP-
FIRE=0 

0.85 1.14 0.74 1.00 TIP-
ROE=0 

-2.11 1.08 -1.95 0.74 

GOW-
FITZ=0 

0.51 0.69 0.75 1.00 SLO-
RUTH=0 

-1.04 0.72 -1.44 0.96 

MAD-
FITZ=0 

-1.38 0.95 -1.46 0.96 SOO-
RUTH=0 

-3.80 1.25 -3.03 0.10 

OWL-
FITZ=0 

-0.02 1.24 -0.02 1.00 TIP-
RUTH=0 

-2.14 1.07 -2.01 0.71 

PEMB-
FITZ=0 

2.01 0.78 2.57 0.31 SOO-
SLO=0 

-2.76 1.25 -2.20 0.56 

ROE-
FITZ=0 

1.92 0.73 2.64 0.27 TIP-
SLO=0 

-1.10 1.07 -1.03 1.00 

RUTH-
FITZ=0 

1.95 0.71 2.75 0.21 TIP-
SOO=0 

1.67 1.48 1.13 1.00 

 

 

Appendix 18. Model selection results testing for differences in American Dipper trophic 

position (n=97) between regulated and unregulated streams. A linear mixed effects model 

was run using the package lme4 in R. Stream type, elevation, salmon, and the interaction 

between type*elevation were included as fixed effects. Stream, watershed, and year were 

included as random effects.  

Response Model Structure AICc1 Δ 

AICc 

Deviance2 Model

Weight 

df 

Dipper 

trophic 

position 

null 129.2 0 118.56 0.99 5 

 

Elevation 

 

144.3 

 

15.06 131.36 

 

0.001 

 

6 

 1Akaike’s Information Criterion, corrected for small sample sizes 
   2 -2 (Log Likelihood) 
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Appendix 19. Comparing American Dipper trophic position between regulated and unregulated 

streams (n=97). There was no significant difference in dipper trophic position between stream 

types. Streams sharing the same letter are not significantly different (p>0.05) from one another.  

 

 

Appendix 20. Estimates of post-hoc Tukey contrasts comparing mean American Dipper trophic 

position (n=97) between individial regulated and unregulated streams. Significant differences are 

bolded. 

Linear 
Hypothesis 

Estimate S.E. z 
value 

Pr(>|z|) Linear 
Hypothesis 

Estimate S.E. z 
value 

Pr(>|z|) 

DOUG-
BRANDY=0 

1.00 0.16 6.18 <0.01 SLO-
FITZ=0 

0.36 0.18 2.04 0.69 

FIRE-
BRANDY=0 

0.17 0.20 0.87 1.00 SOO-
FITZ=0 

0.39 0.31 1.24 0.99 

FITZ-
BRANDY=0 

0.24 0.17 1.42 0.97 TIP-
FITZ=0 

0.70 0.26 2.64 0.27 

GOW-
BRANDY=0 

0.46 0.17 2.77 0.20 MAD-
GOW=0 

-0.19 0.24 -0.81 1.00 

MAD- 0.27 0.23 1.16 0.99 OWL- 0.77 0.31 2.47 0.37 
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BRANDY=0 GOW=0 
OWL-
BRANDY=0 

1.23 0.31 3.99 <0.01 PEMB-
GOW=0 

-0.49 0.20 -2.50 0.35 

PEMB-
BRANDY=0 

-0.03 0.19 -0.16 1.00 ROE-
GOW=0 

-0.08 0.18 -0.43 1.00 

ROE-
BRANDY=0 

0.38 0.18 2.17 0.59 RUTH-
GOW=0 

-0.44 0.18 -2.48 0.36 

RUTH-
BRANDY=0 

0.02 0.17 0.12 1.00 SLO-
GOW=0 

0.14 0.18 0.77 1.00 

SLO-
BRANDY=0 

0.60 0.17 3.50 0.02 SOO-
GOW=0 

0.16 0.31 0.52 1.00 

SOO-
BRANDY=0 

0.62 0.31 2.02 0.70 TIP-
GOW=0 

0.47 0.26 1.79 0.84 

TIP-
BRANDY=0 

0.93 0.26 3.59 0.02 OWL-
MAD=0 

0.96 0.35 2.74 0.22 

FIRE-
DOUG=0 

-0.83 0.20 -4.09 <0.01 PEMB-
MAD=0 

-0.30 0.25 -1.17 0.99 

FITZ-
DOUG=0 

-0.77 0.17 -4.54 <0.01 ROE-
MAD=0 

0.11 0.24 0.46 1.00 

GOW-
DOUG=0 

-0.54 0.17 -3.21 0.06 RUTH-
MAD=0 

-0.25 0.24 -1.03 1.00 

MAD-
DOUG=0 

-0.73 0.23 -3.14 0.08 SLO-
MAD=0 

0.33 0.24 1.37 0.98 

OWL-
DOUG=0 

0.23 0.31 0.73 1.00 SOO-
MAD=0 

0.35 0.35 1.01 1.00 

PEMB-
DOUG=0 

-1.03 0.19 -5.36 <0.01 TIP-
MAD=0 

0.66 0.31 2.14 0.61 

ROE-
DOUG=0 

-0.62 0.18 -3.48 0.03 PEMB-
OWL=0 

-1.26 0.32 -3.87 <0.01 

RUTH-
DOUG=0 

-0.98 0.17 -5.66 <0.01 ROE-
OWL=0 

-0.85 0.32 -2.68 0.25 

SLO-
DOUG=0 

-0.41 0.17 -2.35 0.46 RUTH-
OWL=0 

-1.21 0.31 -3.85 <0.01 

SOO-
DOUG=0 

-0.38 0.31 -1.23 0.99 SLO-
OWL=0 

-0.63 0.31 -2.02 0.70 

TIP-
DOUG=0 

-0.07 0.26 -0.27 1.00 SOO-
OWL=0 

-0.61 0.41 -1.50 0.95 

FITZ-
FIRE=0 

0.06 0.21 0.30 1.00 TIP-
OWL=0 

-0.30 0.37 -0.80 1.00 

GOW-
FIRE=0 

0.29 0.21 1.39 0.97 ROE-
PEMB=0 

0.41 0.20 2.01 0.70 

MAD-
FIRE=0 

0.09 0.26 0.36 1.00 RUTH-
PEMB=0 

0.05 0.20 0.25 1.00 

OWL-
FIRE=0 

1.05 0.33 3.19 0.06 SLO-
PEMB=0 

0.63 0.20 3.13 0.08 

PEMB- -0.20 0.23 -0.90 1.00 SOO- 0.65 0.32 2.01 0.71 
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FIRE=0 PEMB=0 
ROE-
FIRE=0 

0.21 0.21 0.97 1.00 TIP-
PEMB=0 

0.96 0.28 3.44 0.03 

RUTH-
FIRE=0 

-0.15 0.21 -0.73 1.00 RUTH-
ROE=0 

-0.36 0.19 -1.94 0.76 

SLO-
FIRE=0 

0.42 0.21 2.02 0.70 SLO-
ROE=0 

0.21 0.19 1.15 0.99 

SOO-
FIRE=0 

0.45 0.33 1.36 0.98 SOO-
ROE=0 

0.24 0.32 0.76 1.00 

TIP-
FIRE=0 

0.76 0.29 2.65 0.26 TIP-
ROE=0 

0.55 0.27 2.04 0.68 

GOW-
FITZ=0 

0.22 0.17 1.30 0.98 SLO-
RUTH=0 

0.58 0.18 3.17 0.07 

MAD-
FITZ=0 

0.03 0.24 0.14 1.00 SOO-
RUTH=0 

0.60 0.31 1.92 0.77 

OWL-
FITZ=0 

0.99 0.31 3.19 0.07 TIP-
RUTH=0 
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Appendix 21. Carbon-Sulfur (a) and Carbon-Nitrogen (b) stable isotope biplots of the Douglas 
Creek foodweb (regulated). Individual American Dipper blood isotope values (TEF-adjusted) are 
represented as blue points, while the black triangles and lines represent invertebrate functional 
feeding groups and fish source means ± S.D. 

 
Appendix 22. Carbon-Sulfur (a) and Carbon-Nitrogen (b) stable isotope biplots of the Gowan 
Creek foodweb (unregulated). Individual American Dipper blood isotope values (TEF-adjusted) 
are represented as blue points, while the black triangles and lines represent invertebrate 
functional feeding groups and fish source means ± S.D. 
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Appendix 23. Carbon-Sulfur (a) and Carbon-Nitrogen (b) stable isotope biplots of the 

Brandywine Creek foodweb (regulated). Individual American Dipper blood isotope values (TEF-

adjusted) are represented as blue points, while the black triangles and lines represent invertebrate 

functional feeding groups and fish source means ± S.D. 

 

 
Appendix 24. Carbon-Sulfur (a) and Carbon-Nitrogen (b) stable isotope biplots of the Madeley 

Creek foodweb (unregulated). Individual American Dipper blood isotope values (TEF-adjusted) 

are represented as blue points, while the black triangles and lines represent invertebrate 

functional feeding groups and fish source means ± S.D. 
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Appendix 25. Carbon-Sulfur (a) and Carbon-Nitrogen (b) stable isotope biplots of the 

Fitzsimmons Creek foodweb (regulated). Individual American Dipper blood isotope values 

(TEF-adjusted) are represented as blue points, while the black triangles and lines represent 

invertebrate functional feeding groups and fish source means ± S.D. 

 

 
Appendix 26. Carbon-Sulfur (a) and Carbon-Nitrogen (b) stable isotope biplots of the Roe Creek 

foodweb (unregulated). Individual American Dipper blood isotope values (TEF-adjusted) are 

represented as blue points, while the black triangles and lines represent invertebrate functional 

feeding groups and fish source means ± S.D. 
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Appendix 27. Carbon-Sulfur (a) and Carbon-Nitrogen (b) stable isotope biplots of the 

Rutherford Creek foodweb (regulated). Individual American Dipper blood isotope values (TEF-

adjusted) are represented as blue points, while the black triangles and lines represent invertebrate 

functional feeding groups and fish source means ± S.D. 
 

 

Appendix 28. Carbon-Sulfur (a) and Carbon-Nitrogen (b) stable isotope biplots of the 

Pemberton Creek foodweb (unregulated). Individual American Dipper blood isotope values 

(TEF-adjusted) are represented as blue points, while the black triangles and lines represent 

invertebrate functional feeding groups and fish source means ± S.D. 
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Appendix 29. Carbon-Sulfur (a) and Carbon-Nitrogen (b) stable isotope biplots of the Fire Creek 

foodweb (regulated). Individual American Dipper blood isotope values (TEF-adjusted) are 

represented as blue points, while the black triangles and lines represent invertebrate functional 

feeding groups and fish source means ± S.D. 
 

 

Appendix 30. Carbon-Sulfur (a) and Carbon-Nitrogen (b) stable isotope biplots of the Sloquet 

Creek foodweb (unregulated). Individual American Dipper blood isotope values (TEF-adjusted) 

are represented as blue points, while the black triangles and lines represent invertebrate 

functional feeding groups and fish source means ± S.D. 
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Appendix 31. Carbon-Sulfur (a) and Carbon-Nitrogen (b) stable isotope biplots of the Tipella 

Creek foodweb (regulated). Individual American Dipper blood isotope values (TEF-adjusted) are 

represented as blue points, while the black triangles and lines represent invertebrate functional 

feeding groups and fish source means ± S.D. 
 

 

Appendix 32. Carbon-Sulfur (a) and Carbon-Nitrogen (b) stable isotope biplots of the Soo River 

foodweb (regulated). Individual American Dipper blood isotope values (TEF-adjusted) are 

represented as blue points, while the black triangles and lines represent invertebrate functional 

feeding groups and fish source means ± S.D. 
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Appendix 33. Carbon-Sulfur (a) and Carbon-Nitrogen (b) stable isotope biplots of the Owl 

Creek foodweb (unregulated). Individual American Dipper blood isotope values (TEF-adjusted) 

are represented as blue points, while the black triangles and lines represent invertebrate 

functional feeding groups and fish source means ± S.D. 
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A
ppendix 34. Sum

m
ary (m

ean ± S.D
.) of the stable isotope signature (δ

13C
, δ

15N
, δ

34S) of A
m

erican D
ipper diet sources (n = 96 dippers) at regulated and unregulated stream

s. 
D

iet proportions w
ere calculated using a B

ayesian M
ixing m

odel in the program
 M

ixSIA
R

 using stable isotope values (δ
13C

, δ
15N

, δ
34S) from

 separate invertebrate sam
ples 

collected at each stream
 (n=7 regulated and 7 unregulated). *Indicates w

hen the isotope values w
ere pooled across all sources from

 that stream
 type.  
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Appendix 36.  Model selection results testing for differences in the mean proportion of 

salmon (arcsine square-root transformed) in the American Dipper diet between regulated 

and unregulated streams. A linear mixed-effects model was run in R with stream type, 

elevation, salmon, and interactions between type*elevation included as fixed effects. 

Watershed was included as a random effect. Models with weight>0 and the null 

(intercept-only) are presented for comparison.  

Response Model Structure AICc1 Δ 

AICc 

Deviance2 Model

Weight 

df 

Salmon 

diet proportion 

null -31.8 0 -40.44 0.97 3 

 

Type 

 

-24.6 

 

7.16 -37.62 

 

0.027 

 

4 
1Akaike’s Information Criterion, corrected for small sample sizes 
   2 -2 (Log Likelihood)  
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Appendix 37.  Model selection results testing for differences in the mean proportion of 

shredders (arcsine square-root transformed) in the American Dipper diet between regulated 

and unregulated streams. A general linear model was run in R with stream type, elevation, 

salmon, and interactions between type*elevation included as fixed effects. Models with 

weight>0 and the null (intercept-only) are presented for comparison.  

Response Model Structure AICc1 Δ 

AICc 

Deviance2 Model

Weight 

df 

Shredder 

diet proportion 

 

Elevation -18.7 0 -27.40 0.37 3 

null -18.4 0.32 -23.62 0.32 2 

Type -17.7 1.05 -26.36 0.22 3 

Type+Elevation -15.7 3.01 -28.73 0.082 4 

Type*Elevation -11.5 7.28 -30.02 0.010 5 
1Akaike’s Information Criterion, corrected for small sample sizes 
   2 -2 (Log Likelihood) 

 

 

Appendix 38.  Model selection results testing for differences in the mean proportion of 

resident fish (arcsine square-root transformed)  in the American Dipper diet between 

regulated and unregulated streams. A general linear model was run in R with stream type, 

elevation, salmon, and interactions between type*elevation included as fixed effects. 

Models with weight>0 and the null (intercept-only) are presented for comparison.  

Response Model Structure AICc1 Δ 

AICc 

Deviance2 Model

Weight 

df 

Resident fish 

diet proportion  

null -9.3 0 -14.476 0.63 2 

Salmon -8.0 1.31 -16.632 0.33 3 

Type+Salmon -3.7 5.58 -16.69 0.039 4 

Type+Salmon+ 

Elevation 

 

1.8 

 

11.13 -16.72 

 

0.0020 

 

5 
1Akaike’s Information Criterion, corrected for small sample sizes 
   2 -2 (Log Likelihood) 
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Appendix 39.  Model selection results testing for differences in the mean proportion of scrapers 

(arcsine square-root transformed) in the American Dipper diet between regulated and unregulated 

streams. A linear mixed-effects model was run in R with stream type, elevation, salmon, and 

interactions between type*elevation included as fixed effects. Watershed was included as a random 

effect. Models with weight>0 and the null (intercept-only) are presented for comparison. 

Response Model Structure AICc1 Δ 

AICc 

Deviance2 Model

Weight 

df 

Scraper 

diet proportion 

 

null -23.4 0 -32.06 0.99 3 

 

Type 

 

-14.1 

 

9.30 -27.09 

 

0.0090 

 

4 
1Akaike’s Information Criterion, corrected for small sample sizes 
   2 -2 (Log Likelihood) 

 

 

 

Appendix 40. Model selection results testing for differences in the mean proportion of collector-

gatherers (arcsine square-root transformed) in the American Dipper diet between regulated and 

unregulated streams. A general linear model was run in R with stream type, elevation, salmon, and 

interactions between type*elevation included as fixed effects. Models with weight>0 and the null 

(intercept-only) are presented for comparison. 

Response Model Structure AICc1 Δ 

AICc 

Deviance2 Model

Weight 

df 

Collector-

Gatherer 

diet proportion 

 

null -31.1 0 -36.27 0.50 2 

Elevation -30.8 0.26 -39.48 0.44 3 

 

Elevation+Salmon 

 

-26.6 

 

4.49 -39.58 

 

0.053 

 

4 
1Akaike’s Information Criterion, corrected for small sample sizes 
   2 -2 (Log Likelihood) 
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Appendix 41.  Model selection results testing for differences in the proportion of 

predatory invertebrates (arcsine square-root transformed) in the American Dipper diet 

between regulated and unregulated streams. A general linear model was run in R with 

stream type, elevation, salmon, and interactions between type*elevation included as fixed 

effects. Models with weight>0 and the null (intercept-only) are presented for comparison. 

Response Model Structure AICc1 Δ 

AICc 

Deviance2 Model

Weight 

df 

Predator 

diet proportion 

 

null -13.3 0 -18.536 0.81 2 

Salmon -10.2 3.12 -18.88 0.17 3 

Type+Salmon -5.9 7.39 -18.95 0.020 4 

Type+Salmon+ 

Elevation 

 

-0.5 

 

12.85 -19.06 

 

0.0010 

 

5 
1Akaike’s Information Criterion, corrected for small sample sizes 
   2 -2 (Log Likelihood) 
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Appendix 42. Summary of American Dipper whole blood (n = 92) and feather (n = 97) Hg  (mean ± 

S.E.) at regulated and unregulated streams. Mercury was measured as THg, but can be interpreted as 

100% MeHg in dipper blood and feathers.  
Stream Type n 

Blood 

n 

Feather 

Mean 

Blood 

Hg 

(ng/g 

ww) 

S.E. 

Blood 

Hg 

(ww) 

Mean 

Blood 

Hg 

(ng/g 

dw) 

S.E. 

Blood 

Hg 

(dw) 

Mean 

Blood 

% 

Moisture 

S.E. 

Blood 

Moisture 

Mean 

Feather 

Hg 

(ng/g 

dw) 

S.E. 

Feather 

Hg 

Douglas Regulated 12 12 987.8 167.2 1106.5 182.7 11.1 1.2 3338.6 819.0 

Soo Regulated 2 2 473.1 19.6 525.9 23.6 10.0 0.3 1379.9 616.9 

Tipella Regulated 2 3 452.1 193.0 504.0 223.1 9.5 1.8 914.7 411.2 

Madeley Unregulated 4 3 402.3 129.9 454.9 155.0 10.2 1.5 2311.1 802.6 

Sloquet Unregulated 9 8 354.5 82.9 397.6 98.5 8.9 1.0 986.1 95.7 

Gowan Unregulated 10 10 339.5 38.14 380.5 44.6 10.9 0.8 1086.8 172.1 

Rutherford Regulated 9 10 301.8 17.76 347.6 23.4 12.6 1.7 792.3 78.7 

Owl Unregulated 2 2 294.9 118.5 337.3 135.4 12.6 0.1 942.3 262.6 

Roe Unregulated 7 8 282.8 42.6 312.3 44.6 10.2 1.7 950.6 117.0 

Fire Regulated 5 6 253.8 37.2 290.2 41.6 12.8 2.4 612.9 94.2 

Pemberton Unregulated 7 7 197.4 9.3 225.5 13.5 12.0 1.5 684.0 132.3 

Fitzsimmons Regulated 10 11 158.9 24.7 178.9 27.4 11.4 1.0 504.0 35.9 

 

Brandywine 

 

Regulated 

 

13 

 

15 

 

125.9 

 

21.5 

 

141.9 

 

23.6 

 

11.6 

 

0.7 

 

561.7 

 

131.5 

 

Regulated 

 

53 

 

59 

 

417.6 

 

74.1 

 

466.0 

 

81.3 

 

11.6 

 

0.5 

 

1564.6 

 

367.2 

 

Unregulated 

 

39 

 

38 

 

340.7 

 

42.7 

 

382.6 

 

50.4 

 

10.5 

 

0.5 

 

1149.0 

 

152.1 

 

 

 

 

 

 

 

 



 179 

Appendix 43. Estimates of post-hoc Tukey contrasts comparing mean American Dipper blood Hg 

(ng/g ww) (n=92) between individual regulated and unregulated streams. Significant differences are 

bolded.  
Linear 
Hypothesis 

Estimate S.E. z value Pr(>|z|) Linear 
Hypothesis 

Estimate S.E. z value Pr(>|z|) 

DOUG-
BRANDY=0 

0.88 0.08 10.88 <0.01 SLO-FITZ=0 0.32 0.09 3.55 0.02 

FIRE-
BRANDY=0 

0.35 0.11 3.26 0.05 SOO-FITZ=0 0.51 0.16 3.27 0.05 

FITZ-
BRANDY=0 

0.13 0.09 1.48 0.96 TIP-FITZ=0 0.45 0.16 2.87 0.16 

GOW-
BRANDY=0 

0.47 0.08 5.64 <0.01 MAD-
GOW=0 

0.04 0.12 0.33 1.00 

MAD-
BRANDY=0 

0.51 0.12 4.39 <0.01 OWL-
GOW=0 

-0.07 0.16 -0.47 1.00 

OWL-
BRANDY=0 

0.39 0.15 2.57 0.31 PEMB-
GOW=0 

-0.21 0.10 -2.17 0.59 

PEMB-
BRANDY=0 

0.26 0.09 2.70 0.23 ROE-
GOW=0 

-0.09 0.09 -0.97 1.00 

ROE-
BRANDY=0 

0.38 0.09 4.14 <0.01 RUTH-
GOW=0 

-0.03 0.09 -0.34 1.00 

RUTH-
BRANDY=0 

0.44 0.09 4.98 <0.01 SLO-GOW=0 -0.02 0.09 -0.24 1.00 

SLO-
BRANDY=0 

0.45 0.09 5.24 <0.01 SOO-
GOW=0 

0.17 0.16 1.09 1.00 

SOO-
BRANDY=0 

0.64 0.15 4.15 <0.01 TIP-GOW=0 0.11 0.16 0.69 1.00 

TIP-
BRANDY=0 

0.58 0.15 3.74 0.01 OWL-
MAD=0 

-0.11 0.18 -0.64 1.00 

FIRE-
DOUG=0 

-0.53 0.11 -4.96 <0.01 PEMB-
MAD=0 

-0.25 0.13 -1.98 0.72 

FITZ-
DOUG=0 

-0.76 0.09 -8.73 <0.01 ROE-MAD=0 -0.13 0.12 -1.06 1.00 

GOW-
DOUG=0 

-0.41 0.08 -4.90 <0.01 RUTH-
MAD=0 

-0.07 0.12 -0.58 1.00 

MAD-
DOUG=0 

-0.37 0.12 -3.20 0.06 SLO-MAD=0 -0.06 0.12 -0.51 1.00 

OWL-
DOUG=0 

-0.49 0.15 -3.15 0.07 SOO-MAD=0 0.13 0.18 0.75 1.00 

PEMB-
DOUG=0 

-0.63 0.10 -6.50 <0.01 TIP-MAD=0 0.07 0.18 0.39 1.00 

ROE-
DOUG=0 

-0.51 0.09 -5.47 <0.01 PEMB-
OWL=0 

-0.14 0.16 -0.86 1.00 

RUTH-
DOUG=0 

-0.44 0.09 -4.98 <0.01 ROE-
OWL=0 

-0.02 0.16 -0.12 1.00 

SLO-
DOUG=0 

-0.44 0.09 -5.02 <0.01 RUTH-
OWL=0 

0.04 0.16 0.27 1.00 

SOO-
DOUG=0 

-0.24 0.15 -1.58 0.93 SLO-OWL=0 0.05 0.16 0.33 1.00 

TIP-
DOUG=0 

-0.31 0.15 -1.98 0.72 SOO-OWL=0 0.24 0.20 1.20 0.99 

FITZ-
FIRE=0 

-0.22 0.11 -2.00 0.71 TIP-OWL=0 0.18 0.20 0.89 1.00 
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GOW-
FIRE=0 

0.12 0.11 1.11 1.00 ROE-
PEMB=0 

0.12 0.10 1.15 0.99 

MAD-
FIRE=0 

0.16 0.14 1.18 0.99 RUTH-
PEMB=0 

0.18 0.10 1.78 0.85 

OWL-
FIRE=0 

0.05 0.17 0.28 1.00 SLO-
PEMB=0 

0.19 0.10 1.91 0.77 

PEMB-
FIRE=0 

-0.09 0.12 -0.77 1.00 SOO-
PEMB=0 

0.38 0.16 2.36 0.45 

ROE-
FIRE=0 

0.03 0.12 0.25 1.00 TIP-PEMB=0 0.32 0.16 1.97 0.73 

RUTH-
FIRE=0 

0.09 0.11 0.79 1.00 RUTH-
ROE=0 

0.06 0.10 0.61 1.00 

SLO-FIRE=0 0.10 0.11 0.90 1.00 SLO-ROE=0 0.07 0.10 0.73 1.00 
SOO-
FIRE=0 

0.29 0.17 1.72 0.87 SOO-ROE=0 0.26 0.16 1.63 0.91 

TIP-FIRE=0 0.23 0.17 1.35 0.98 TIP-ROE=0 0.20 0.16 1.24 0.99 
GOW-
FITZ=0 

0.34 0.09 3.87 <0.01 SLO-
RUTH=0 

0.01 0.09 0.10 1.00 

MAD-
FITZ=0 

0.38 0.12 3.19 0.06 SOO-
RUTH=0 

0.20 0.16 1.27 0.99 

OWL-
FITZ=0 

0.27 0.16 1.72 0.87 TIP-RUTH=0 0.14 0.16 0.87 1.00 

PEMB-
FITZ=0 

0.13 0.10 1.31 0.98 SOO-SLO=0 0.19 0.16 1.22 0.99 

ROE-
FITZ=0 

0.25 0.10 2.62 0.28 TIP-SLO=0 0.13 0.16 0.82 1.00 

RUTH-
FITZ=0 

0.31 0.09 3.35 0.04 TIP-SOO=0 -0.06 0.20 -0.31 1.00 

 

 

Appendix 44. Estimates of post-hoc Tukey contrasts comparing mean American Dipper feather 

Hg (ng/g dw) (n=97) between individial regulated and unregulated streams. Significant 

differences are bolded. 

Linear 

Hypothesis 

Estimate S.E. z 

value 

Pr(>|z|) Linear 

Hypothesis 

Estimate S.E. z value Pr(>|z|) 

DOUG-

BRANDY=0 

0.88 0.08 10.88 <0.01 SLO-

FITZ=0 

0.32 0.09 3.55 0.02 

FIRE-

BRANDY=0 

0.35 0.11 3.26 0.05 SOO-

FITZ=0 

0.51 0.16 3.27 0.05 

FITZ-

BRANDY=0 

0.13 0.09 1.48 0.96 TIP-FITZ=0 0.45 0.16 2.87 0.16 

GOW-

BRANDY=0 

0.47 0.08 5.64 <0.01 MAD-

GOW=0 

0.04 0.12 0.33 1.00 

MAD-

BRANDY=0 

0.51 0.12 4.39 <0.01 OWL-

GOW=0 

-0.07 0.16 -0.47 1.00 
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OWL-

BRANDY=0 

0.39 0.15 2.57 0.31 PEMB-

GOW=0 

-0.21 0.10 -2.17 0.59 

PEMB-

BRANDY=0 

0.26 0.09 2.70 0.23 ROE-

GOW=0 

-0.09 0.09 -0.97 1.00 

ROE-

BRANDY=0 

0.38 0.09 4.14 <0.01 RUTH-

GOW=0 

-0.03 0.09 -0.34 1.00 

RUTH-

BRANDY=0 

0.44 0.09 4.98 <0.01 SLO-

GOW=0 

-0.02 0.09 -0.24 1.00 

SLO-

BRANDY=0 

0.45 0.09 5.24 <0.01 SOO-

GOW=0 

0.17 0.16 1.09 1.00 

SOO-

BRANDY=0 

0.64 0.15 4.15 <0.01 TIP-GOW=0 0.11 0.16 0.69 1.00 

TIP-

BRANDY=0 

0.58 0.15 3.74 <0.01 OWL-

MAD=0 

-0.11 0.18 -0.64 1.00 

FIRE-

DOUG=0 

-0.53 0.11 -4.96 <0.01 PEMB-

MAD=0 

-0.25 0.13 -1.98 0.72 

FITZ-

DOUG=0 

-0.76 0.09 -8.73 <0.01 ROE-

MAD=0 

-0.13 0.12 -1.06 1.00 

GOW-

DOUG=0 

-0.41 0.08 -4.90 <0.01 RUTH-

MAD=0 

-0.07 0.12 -0.58 1.00 

MAD-

DOUG=0 

-0.37 0.12 -3.20 0.06 SLO-

MAD=0 

-0.06 0.12 -0.51 1.00 

OWL-

DOUG=0 

-0.49 0.15 -3.15 0.07 SOO-

MAD=0 

0.13 0.18 0.75 1.00 

PEMB-

DOUG=0 

-0.63 0.10 -6.50 <0.01 TIP-MAD=0 0.07 0.18 0.39 1.00 

ROE-

DOUG=0 

-0.51 0.09 -5.47 <0.01 PEMB-

0WL=0 

-0.14 0.16 -0.86 1.00 

RUTH-

DOUG=0 

-0.44 0.09 -4.98 <0.01 ROE-

0WL=0 

-0.02 0.16 -0.12 1.00 

SLO-

DOUG=0 

-0.44 0.09 -5.02 <0.01 RUTH-

0WL=0 

0.04 0.16 0.27 1.00 

SOO-

DOUG=0 

-0.24 0.15 -1.58 0.93 SLO-0WL=0 0.05 0.16 0.33 1.00 

TIP-

DOUG=0 

-0.31 0.15 -1.98 0.72 SOO-

0WL=0 

0.24 0.20 1.20 0.99 

FITZ- -0.22 0.11 -2.00 0.71 TIP-0WL=0 0.18 0.20 0.89 1.00 
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FIRE=0 

GOW-

FIRE=0 

0.12 0.11 1.11 1.00 ROE-

PEMB=0 

0.12 0.10 1.15 0.99 

MAD-

FIRE=0 

0.16 0.14 1.18 0.99 RUTH-

PEMB=0 

0.18 0.10 1.78 0.85 

OWL-

FIRE=0 

0.05 0.17 0.28 1.00 SLO-

PEMB=0 

0.19 0.10 1.91 0.77 

PEMB-

FIRE=0 

-0.09 0.12 -0.77 1.00 SOO-

PEMB=0 

0.38 0.16 2.36 0.45 

ROE-

FIRE=0 

0.03 0.12 0.25 1.00 TIP-

PEMB=0 

0.32 0.16 1.97 0.73 

RUTH-

FIRE=0 

0.09 0.11 0.79 1.00 RUTH-

ROE=0 

0.06 0.10 0.61 1.00 

SLO-

FIRE=0 

0.10 0.11 0.90 1.00 SLO-ROE=0 0.07 0.10 0.73 1.00 

SOO-

FIRE=0 

0.29 0.17 1.72 0.87 SOO-

ROE=0 

0.26 0.16 1.63 0.91 

TIP-

FIRE=0 

0.23 0.17 1.35 0.98 TIP-ROE=0 0.20 0.16 1.24 0.99 

GOW-

FITZ=0 

0.34 0.09 3.87 <0.01 SLO-

RUTH=0 

0.01 0.09 0.10 1.00 

MAD-

FITZ=0 

0.38 0.12 3.19 0.06 SOO-

RUTH=0 

0.20 0.16 1.27 0.99 

OWL-

FITZ=0 

0.27 0.16 1.72 0.87 TIP-

RUTH=0 

0.14 0.16 0.87 1.00 

PEMB-

FITZ=0 

0.13 0.10 1.31 0.98 SOO-SLO=0 0.19 0.16 1.22 0.99 

ROE-

FITZ=0 

0.25 0.10 2.62 0.28 TIP-SLO=0 0.13 0.16 0.82 1.00 

RUTH-

FITZ=0 

0.31 0.09 3.35 0.04 TIP-SOO=0 -0.06 0.20 -0.31 1.00 

	


