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ABSTRACT 

Naphthenic acids fraction components (NAFCs) are a toxic byproduct of oil sands 

extraction and refining in the Athabasca region of Alberta, Canada, accumulating with other 

contaminants in the large volumes of oil sands process water produced.  NAFCs are incredibly 

complex mixtures identified as a contaminant of concern across a wide variety of taxa, but the 

reasons for their acute and chronic toxicity are poorly understood.   

Studies were conducted to help ascertain the toxic effects of NAFCs on the unicellular 

green algae Chlamydomonas reinhardtii wild type (WT) and two cell wall mutants: CC-400, 

which retains the innermost and outermost glycoprotein wall layers, and CC-3395, believed to be 

completely naked.  The presence of the cell wall was strongly linked to NAFC toxicity.  WT 

cells were most susceptible to NAFC toxicity (growth reduced at 10 mgL-1, but growing even at 

100 mgL-1), followed distantly by CC-400 (decreased growth at 100 mgL-1) while CC-3395 was 

unaffected.   

Microscopy experiments (visible light, confocal laser scanning, and Fourier-transform 

infrared) and thin-layer chromatography of lipids were carried out to observe physiological 

effects.  Exposure to NAFCs induced changes in cell surface protein structure and protein 

confirmations in WT and CC-400, and altered the diversity and composition of their 

phospholipid and lipid pools.  CC-3395 had minor changes in phospholipid/lipid pools.  Exposed 

WT cells showed evidence of decreased uptake of environmental macromolecules and 

palmelloid induction.  Exposed CC-400 cells exhibited loss of phospholipids and showed some 

evidence of altered internal membrane and protein structures. CC-3395 showed increased active 

transport/export after exposure.  All exposed cultures had an increase in the size and roundness 
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of cells, as well as increased presence of vacuoles and granules and indicators of osmotic stress 

or metabolic leakage. These changes were consistent with surfactant exposure, a theory 

supported by the differences in toxic impacts between cell lines, as surfactant effects vary greatly 

between similar species and similar compounds. 

Studies were also conducted to determine the potential of NAFC biotransformation by C. 

reinhardtii.  Changes in NAFC composition were observed, and were highly specific to 

compound class, structure, and algal strain.  WT and CC-400 were capable of removing classical 

O2 NAFCs, while modification of O2S and O3 composition were mediated by all three algae. 
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PREFACE 

This thesis contains two general sections, Chapters 1 and 5, which are respectively a 

general introduction and discussion.  Chapters 2, 3, and 4 were prepared as manuscripts for 

submission to scientific journals, and as such there is some repetition in the introduction, 

methods, and materials sections.  Chapter 2 has been submitted to Science of the Total 

Environment, Chapter 3 is prepared for submission to Environmental Science and Technology, 

and a modified version of Chapter 4 is in preparation for submission to Planta. 
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CHAPTER 1 
1.0 INTRODUCTION 

 

1.1   Background 

1.1.1   Athabasca Oil Sands 

Extraction and processing of the Athabascan oil sands in northern Alberta is of great 

economic and environmental interest and concern. Canadian oil sands account for an excess of 

95% of globally known in-place oil sands volumes, with the majority located in three regions of 

northern Alberta: Cold Lake, Peace River, and Athabasca (Chalaturnyk et al., 2002). Combined, 

these three deposits underlie more than 140,200 km2 and account for more than 85% of in-place 

bitumen (Government of Alberta, 2012, accessed April 5th 2012; Greene et al., 2006). Reserves 

of bitumen are estimated at 1.7 trillion barrels, with 173 billion estimated to be economically 

recoverable (Energy Resources Conservation Board, 2009).  As increased global demand 

depletes conventional sources of oil, development of unconventional petroleum sources is set to 

increase.  Further, rising gas prices and developing technology increase the proportion of 

reserves that are economically recoverable. Current operations provide more than half of all 

Canadian petroleum (Canadian Association of Petroleum Producers, 2011), an almost three-fold 

increase from 20% in 2001 (Leung et al., 2001). 

Oil sands consist of a complex of bitumen -- the most dense and viscous form of 

petroleum – mixed with water and sand or clay.  In order to form the economically relevant 

product, crude oil, bitumen must be extracted from the oil sands mixture using a modification of 

the Clarke caustic hot water method, and upgraded using a catalyzed heat and pressure process.  
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The procedure requires large volumes of water, on the scale of two to four barrels of water for 

every barrel of oil produced (Government of Alberta, 2009).  This oil sands process water 

(OSPW) is contaminated with a large number of complex and widely varied toxicants, as well as 

being highly saline and alkaline. Companies in the oil sands industry operate under a zero 

discharge policy, retaining extraction wastes in on-site tailings ponds, with more than 109 m3 

currently accumulated (Han et al., 2009).   

Despite these goals, it is expected that some discharge will occur through a mix of 

leaching, runoff, and other environmental processes.  Recent reports indicate that environmental 

contamination of water systems around the Athabasca oil sands is more extreme than previously 

thought (Kelly et al., 2009).  Even where a true zero-discharge state was obtained, sites would 

require eventual reclamation.  As such, it is essential to obtain an understanding of the nature and 

toxic behaviours of oil sands process water, as well as the ways in which it may be remediated. 

1.1.2   Tailings Ponds 

Tailings ponds contain OSPW, a complex mixture of residual bitumen, fine sediments 

(silts and clays), ions, and various organic and inorganic products.  Of greatest concern are high 

levels of salts, and dissolved organics (Energy Resources Conservation Board, 2009).  This 

process water has been found to be chronically and acutely toxic, with reports of toxicity to 

rainbow trout (Oncorhynchus mykiss) during initial development of the area (Allen, 2008); all 

fathead minnows (Pimephales promelas) exposed to fresh tailing tailings pond water died within 

48 hours (Lai et al., 1996), and reproduction and development were impaired even in aged 

OSPW (Kavanagh et al., 2011).   Later fish work has indicated histopathological changes in the 

gills and livers of yellow perch (Perca flavescens) and gold fish (Carassius auratus) (Nero et al., 

2006) and gill lesions and increased disease in yellow perch (van den Heuvel et al., 2000). In 
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constructed and natural wetlands, OSPW reduces seed germination and plant species diversity, as 

well as impacting recruitment and colonization of aquatic and terrestrial plants (Crowe et al., 

2002), decreases or prevents development of toad (Bufo boreas) and frog (Rana sylvatica) 

tadpoles (Pollet and Bendell-Young, 2000), and has been found to elevate thyroid hormone 

levels in tree swallow nestlings (Tachycineta bicolor) (Gentes et al., 2007).  However,  other 

studies have found no impact on tree swallow reproductive success, immune function, or nestling 

growth rate (Smits et al., 2000). 
 

1.2   Naphthenic Acids  

1.2.1   Structure and Toxicity 

The complex mixtures of OSPW contain numerous compounds that have been identified 

as of particular interest, including salinity, pH, and dissolved organics (Energy Resources 

Conservation Board, 2009); of these, naphthenic acids (NAs) have been identified as a 

contaminant class of concern (Clemente and Fedorak, 2005; Han et al., 2009; Headley and 

McMartin, 2004).  Tailings pond waters contain NAs in average concentrations of 40-120 mgL-1, 

(Holowenko et al., 2002; Quagraine et al., 2005)  and they have been found to have adverse 

effects on various organisms including algae, microorganisms, invertebrates, fish, and mammals 

(summarized in Quagraine et al., 2005).  These compounds form a poorly understood complex 

mixture of alkyl-substituted mono- , poly-, and a-cyclic carboxylic acids that have the general 

chemical formula CnH2n+ZO2, where the carbon number is n and ring number is a zero or a 

negative integer represented by Z (Figure 1.1).  Numerous possible isomers exist for each 

combination of n and Z allowing for an incredible array of compounds (reviewed in Headley et 

al., 2009b).  
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Studies have isolated NAs and their sodium naphthenate salts as possible primary agents 

of toxicity (Boerger et al., 1986; Dokholyan and Magomedov, 1983; Frank et al., 2008).  Further 

work has been done on their toxicity, both as isolated compounds and as complex mixtures, 

using both NAs extracted from OSPW and model compounds of classical NAs.  Their toxicity is 

poorly understood, but their amphipathic nature suggests the possibility of surfactant toxicity: 

surfactants are compounds that contain both hydrophilic and hydrophobic groups, making them 

capable of lowering surface tensions and disrupting water-air and water-lipid interfaces, and 

suggesting interactions with cell membranes as a possible basis for acute toxic response 

(Clemente and Fedorak, 2005; Frank et al., 2009; Rogers et al., 2002a; Rogers et al., 2002b).  

Classical NAs are anionic surfactants; the impact of environmental factors and co-toxins on 

anionic surfactant toxicity is difficult to predict and varies based on individual mixtures, as well 
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 Figure 1.0: Theoretical representative structures for classical NAs (O2 species) grouped 
according to z-series.  The z-series represents the number of hydrogen atoms lost with 
increased cyclicity; n represents the number of carbon atoms. Adapted after Headley et 
al. (2007). 
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as the exposed species of interest.  Anionic surfactants may or may not act synergistically with 

metals to increase toxicity; one of the most consistent trends noted, however, is that mixtures of 

oil and surfactants are consistently more toxic than predicted by individual mixture components 

(Lewis, 1992).  Only a few studies have been done on the impact of salinity on surfactant 

toxicity, but they indicate increasing toxicity with increasing salinity (Lewis, 1992).  Though this 

is also of interest, given the high salinity of OSPW – and increased gill histopathology with the 

addition of 1gL-1 of salt (Nero et al., 2006).  It is important again to note that surfactant toxicity 

varies greatly depending upon the individual compound, and NAs are a highly complex mixture.   

In addition, there is growing evidence that the acid extractable fraction referred to as oil 

sands naphthenic acids contains a variety of non-classical naphthenic acids in addition to 

classical NAs and other compounds (Headley et al., 2011b; Headley et al., 2011c), and is perhaps 

more correctly referred to as oil sands naphthenic acid fraction components (NAFCs) to 

distinguish it from purely classical or commercial NAs.  While both NAs and NAFCs induce 

toxic response, there is evidence of variability in their toxicity.  Both induce abnormal embryonic 

development in yellow perch (Perca flavescens) and Japanese medaka (Orizias latipes), but 

exposure to NAFCs resulted in a greater response than equivalent levels of NAs (Peters et al., 

2007).  Both cause modification of immune response and gene expression in mice, but the timing 

of the impact, as well as the pathways and genes altered differed between NAs and NAFCs 

(Garcia-Garcia et al., 2011).  Work with emergent macrophytes indicated lower toxicity from 

NAFCs than NAs, as well little evidence for the uptake of  NAFCs or NAs (Armstrong et al., 

2008).  The broader body of work thus indicates an inconsistent variation in response to NAs and 

NAFCs.  Worst-case exposure to NAFCs in small mammals is not predicted to cause acute 

toxicity, but repeated exposure may cause stress and adverse health effects (Rogers et al., 
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2002b).  In wetlands receiving OSPW, NAFCs have been shown to be the driving factor altering 

microbial community structure and decreasing population diversity (Hadwin et al., 2006).  

Similar effects have been shown with phytoplankton communities, though increased salinity was 

also correlated (Leung et al., 2001, 2003).  As a whole, these differences suggest that while 

commercial NA mixtures may be much better characterized than NAFCs, the results obtained 

with model compounds cannot be extrapolated to environmental effects. 

Research has indicated that constituents of NAFC mixtures exhibit differential toxicity; 

Jones et al. (2011) determined the toxicity of 35 NAFC constituents on the gram negative 

bacteria Vibrio fischeri, with EC50s ranging from 0.7 mM down to 0.004 mM.  There are trends 

delineating toxicity – compounds with a lower molecular weight, lower proportion of multi-ring 

structures, and lower carboxylic acid content tend to exhibit greater toxicity (Frank et al., 2009; 

Lo et al., 2006).  Overall, while there are many suppositions and possible explanations for 

NAFCs toxicity, the mechanisms are largely unknown. 

1.2.2   Degradation 

Field-based studies have noted decreased toxicity of OSPW as tailings pond water ages 

(Holowenko et al., 2002).  The decreased toxicity of this weathered process water can be 

attributed at least in part to microbial degradation of NAFCs (Han et al., 2009; Herman et al., 

1994); compounds which exhibit lower toxicity (low MW, low proportion of multi-ring 

structures, lower carboxylic acid content) are more easily degraded, while those recalcitrant to 

degradation (higher MW, higher proportion of multi-ring structures, increased branching, methyl 

substantiations) are more likely to exhibit lower toxicity (Herman et al., 1994; Lo et al., 2006).  

The presence of natural degradative pathways suggests the possibility of bioremediation as a tool 

to reclaim and detoxify waters, despite demonstrated acute and chronic toxicity to algal and 
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microbial communities.  NAFCs are also more recalcitrant to bioremediation than NAs (Scott et 

al., 2005), and are less sequestered by some emergent macrophytes (Armstrong et al., 2008). 

Due to weathering of oil sands-containing formations and soils, NAs are naturally present 

in surface waters of the area in concentrations of 1 – 2 mgL-1, which suggests the possibility for 

community and species level adaptation over thousands of years (Leung et al., 2003).  NAs and 

NAFCs are not the only contaminants in tailing water, however, and the effects of other 

contaminants (including salinity, metals, and other organic and inorganic compounds) must be 

accounted for.  In addition, the bitumen released from upgrading facilities may naturally be 

weathered into NAs and other recalcitrant organic acids by the same organisms (Quagraine et al., 

2005).   

Despite these challenges, in situ biodegradation of contaminated waters remains a 

remediation technique of interest.  Biodegradation has been explored in relation to oil spills 

(Macnaughton et al., 1999), petroleum contamination (Kirk et al., 2005), and crude oil (Whyte et 

al., 1996), and there is a growing body of work on its applications to tailing ponds (Clemente and 

Fedorak, 2005; Quagraine et al., 2005; Quesnel et al., 2011).  In situ degradation of OSPW offers 

a convenient and important remediation tool if its efficacy can be shown and the mechanisms 

behind it elucidated.  

1.3   Bioremediation 

1.3.1   Background and Current Work 

Microbial degradation is dependent upon growth and metabolism of cultures, which are 

impacted by a variety of geoenvironmental factors including temperature, dissolved oxygen 

levels, salinity, pH, redox potential, hardness of water, and composition of sediments (Conrad 

Environmental Aquatics Technical Advisory Group (CEATAG), 1998).  Nutrients such as 

nitrogen or phosphorous may be limiting to microbial and algal communities involved in 
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bioremediation, as they are in fresh bodies of water (Herman et al., 1993).  Salinity effects have 

been shown to alter the structure of phytoplankton communities (Leung et al., 2003) and may 

work to increase toxic effects of NAs by increasing osmotic stress (Quagraine et al., 2005).  

Other constituents of oil sands process water, such as bitumen, volatile organic compounds, 

ammonia, total dissolved solids, and trace metals cause complex environmental stress (Allen, 

2008).  The chemical structure of the compound to be degraded, as well as the species 

transforming it, both contribute to preferential break down of NAs (Herman et al., 1993).  

Contaminant fractions with larger structures, increased ring numbers and branching, or methyl 

substitutions have been found to be more persistent (Herman et al., 1993; Lo et al., 2006).  

Bioremediation approaches may be gathered under three umbrellas:  

1) Biostimulation: Viable native populations exist but require environmental alterations;  

2) Bioaugmentation: Enhancement of native environments with suitable species; or  

3) Intrinsic treatment: No large scale modifications are made to the community or the 

environment (King et al., 1992). 

Most research to date on biotransformation of oil sands NAFCs has focused on the use of 

microbial populations or constructed wetlands.  A number of bacterial groups have been found to 

occur naturally in tailings ponds, or have been isolated from enriched tailing waters, some of 

which degrade NAFCs and their related products (Quagraine et al., 2005).  These tests have been 

conducted in water phase only, and often with isolated culture strains, neglecting substrate 

interactions and community effects.  The use of constructed wetlands as bioreactors has also 

generated interest.  Studies have involved degradation by emergent macrophytes such as cattails, 

reed grass, and bulrush, in addition to their associated microrhizal communities.   However, it 

should be noted that these lab studies have focused on degradation by isolated species and 
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showed selective uptake and transformation by different species (Armstrong, 2008; Armstrong et 

al., 2008). 

1.3.2   Algal Bioremediation 

There is an extensive body of work centering about the biodegradation and 

bioremediation of petroleum hydrocarbons.  These studies – and in particular those of NA 

bioremediation – have focused in large part on the role of bacteria and fungi (Quagraine et al., 

2005). While some algal studies exist (Headley et al., 2008; Quesnel et al., 2011), published 

literature principally focuses on changes in community composition caused by exposure to NAs, 

NAFCs, and OSPW (Leung et al., 2001, 2003).  These same studies have however identified a 

number of tolerant algal strains, as summarized in Table 1.1. 

 
Table 1.1: Summary of algae found in oil sands tailings ponds by Leung et al. (2001, 2003).  
Species associated with greater than 20 mgL-1 NAs are indicated by **, those associated with 10 
– 20 mgL-1 by *. 

Green Algae  Dinophytes  Golden Algae 
Botryococcus braunii ** Ceratium hirundinella ** Chromulina spp. ** 
Chlamydomonas frigida * Glenodinium spp. ** Chrysococcus rufescens ** 
Chlorella spp. **  Gymnodinium spp. ** Mallomonas spp. ** 
Coccomyxa minor ** Peridinium cinctum * Ochromonas spp. ** 
Cosmarium depressum **      
Gloeococcus schroeteri ** Diatoms    Blue-Green Algae 
Gyromitus spp. **  Diatoma vulgare *  Aphanizomenon spp. * 
Keratococcus spp. ** Navicula cuspidata ** Merismopedia spp. ** 
Lobomonas rostrata * Navicula radiosa **  Microcystics spp. ** 
Monoraphidium convulutium * Nitzschia dissipata *   
Oocystis crassa **  Nitzschia linearis *  Other Groups 
Oocystis spp. **     Euglena acus ** 
Scourfieldia spp. *     Rhodomonas lacustrus * 

 

The presence of tolerant species is the requisite first step for investigation of algal-

mediated remediation.  One study by Headley et al. (2008) has looked at the degradation of 

model and oil sands NAs by twelve species of diatoms, blue-green, and green algae in axenic 
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culture.  It reported some transformation of model compounds by two species of diatoms, and the 

possibility of minor degradation of oil sands NAs by one species of green algae.  Quesnel et al. 

(2011) identified the unicellular green algae Dunaliella tertiolecta as a degrader of model NAs.  

These results are not as dramatic as observed reductions mediated by bacteria or emergent 

macrophytes; they may however be taken as preliminary work regarding the interaction of a 

limited number of species with a limited number of compounds over a 14 day period.  Algal 

species present in tailings ponds have had a large number of generations over which to adapt to 

their conditions and NAFCs as a carbon source. 

Algae have the possibility to become an important part of a biodegradation program.  

Emergent macrophytes are restricted to the littoral zones, while algae occupy the entire 

epilimnion of a body of water.  Photosynthetic reactions intrinsically release oxygen into water, 

aerating it and promoting aerobic environments.  This suggests the possibility of synergistic 

environmental interactions for the degradation of NAFCs and other oil sands byproducts.  In 

order to utilize both algal biodegradation and community level effects, however, a greater 

understanding must be reached of the interaction of algal communities and oil sands process 

water. 

 

1.4   Algae 

1.4.1   Algal Selection 

One of the algal species identified in OSPW is Chlamydomonas frigida, having been found 

in association with NAFC concentrations of 10 – 20 mgL-1 (Leung et al., 2003).   While there is 

little information in the literature regarding this species, the genus is well-understood due to C. 

reinhardtii‘s frequent use as a model organism. The genome has been fully sequenced (Merchant 

et al., 2007), and it is commonly used to study photosynthesis, movement, and response to light 
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and nutrition.  In addition, they may be grown either phototrophically or heterotrophically, if 

provided with a complete nutrient media; their metabolism and required handling conditions are 

well characterized; and a wide variety of mutants are available (Harris, 2001).  These factors 

make them ideal for the examination of NAFC toxicity, as the well-defined growth conditions 

and responses allows the removal of otherwise confounded variables.  The availability of C. 

reinhardtii mutants facilitates the isolation of potential modes of toxic interaction. 

The tolerance of Chlamydomonas spp. to NAs and NAFCs and their potential for 

biodegradation has not been examined.  While work has not been done with regards to OSPW, 

species of Chlamydomonas have exhibited tolerance to many of the conditions in OSPW, 

including variable pH.  C. reinhardtii is frequently a native inhabitant of acid mine tailings 

containing high amounts of metals (Das et al., 2009).  In a 13 year study of acid mine drainage 

into a Canadian Shield lake, Chlamydomonas spp. were one of only two genera to be found in 

both the contaminated and control lakes, even as metal and acid pollution continued and water 

pH dropped to 3 (Kalin et al., 2006).  Spain’s River of Fire, with a pH of 2 and heavy metal 

contamination, possesses species of Chlamydomonas that remain extremely closely related to 

neighbouring, neutrophillic species (Amarak Zettler et al., 2002).  A marine Chlamydomonas 

spp. has been found to grow at a pH of 10 (Sogaard et al., 2011).  

C. reinhardtii in axenic culture has also been found to exhibit tolerance to and degradation 

of a variety of PAHs, cyclic, and substituted-cyclic compounds, including: phenol and catechol 

(Ellis, 1977), pyrene (Lei et al., 2002), and 2-amino-4-nitrophenol (Hirooka et al., 2006).  While 

it has been found to be ineffective in the breakdown of benzo[a]pyrene (Warshawsky et al., 

1995), it does degrade benzoic compounds substituted with N, S, and Cl (Gutenkauf et al., 1998).  

While these compounds are not naphthenic acids, they illustrate the potential of Chlamydomonas 
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spp. in the biodegradation of cyclic and substituted compounds such as the classical structures of 

NAs and NAFCs.   

1.4.2   Mutant Selection 

Wild type C. reinhardtii (WT [1B-]) is a back crossed wild type strain (descended from 

lines obtained from Jean-David Rochaix, Department of Molecular Biology, University of 

Geneva).  Two cell wall mutants, CC-400 (cw15 mt+) and CC-3395 (arg7-8 cwd mt-) were 

obtained from the Chlamydomonas Genetics Center (University of Minnesota). The glycoprotein 

cell wall of C. reinhardtii is a likely route of toxic action as it moderates environmental 

influences.  Previous studies of toxicity modification induced by cell wall loss include tolerance 

to hydrodynamic stress (Barbosa et al., 2003), ionic liquids (Sena et al., 2010), cancer drugs 

(Maucourt et al., 2002), and metals and heavy metals (Macfie et al., 1994; Macfie and Welbourn, 

2000; Prasad et al., 1998).  These studies have indicated that the wild-type, walled strain is more 

tolerant of toxic insult, excepting some ionic liquids used by Sena et al. (2010).   

The seven-layered cell wall of C. reinhardtii is composed of hydroxyproline-rich 

glycoproteins rich in galactose, arabinose, mannose, and glucose (Harris, 2009, pgs 29-33).  

There is extensive O-glycosylation in their sugar bonds; O-glycosidic linkages in short-branched 

and short linear chain oligosaccharides and in polyprotein II confirmation of hydroxyproline 

sequences are stable only when glycosylated (Bollig et al., 2007; O'Neill and Roberts, 1981; 

Vallon and Wollman, 1995). In addition, the glycoprotein cell walls contain a wide variety of 

charged residues known to bind numerous compounds such as metals like cadmium, copper, 

cobalt, and nickel (Macfie et al., 1994) and act as a barrier to intracellular transport (Azencott et 

al., 2007). 
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Both cell wall mutants lack fully assembled cell walls; a full complement of cell wall 

precursor proteins is synthesized but fails to assemble, with unassembled wall  precursor 

glycoproteins excreted into the media (Voigt et al., 1991).  The mutant CC-400 is known to 

retain a rudimentary cell wall.  Of the seven wall layers (W1-W7), it lacks the inner triplet of 

W2-W4-W6 and the accompanying intracellular space layers W3-W5.  The innermost layer, W1, 

is present, as is the external loose fibrous network of W7 (Harris, 2009, pgs 38-39).  For CC-

3395, a breakdown of residual wall components is unavailable; it may however be suggested that 

any wall remnants present are more rudimentary than that of CC-400.  When examined with 

Fourier Transform Infrared spectromicroscopy (FTIR) resonant Mie-type scattering – a spectral 

artefact whose intensity has been linked to the presence of cell walls in C. reinhardtii (Svensen 

et al., 2007) – was least pronounced for CC-3395 cells, despite their high degree of roundness 

(Goff, unpublished data).  In addition, visual observation of both mutant lines indicated much 

greater variation in the size and shape of CC-400 cells (Figure 2.2, Figure 4.8).  Cells of CC-

3395 cultures were overwhelmingly round, while cultures of CC-400 included round, ovaloid, 

oblong, sickle-shaped, and irregularly-shaped cells.  This suggests that the presence of cell wall 

remnants W1 and W7 may help retain and induce such variation in size and shape, much as the 

full cell compliment retains the ovaloid shape of wild type cells.  

 

1.5. Methodologies 

1.5.1. Algal Growth 

Axenic algal cultures were grown heterotrophically in liquid Tris-Acetate-Phosphate 

(TAP) media supplemented with arginine (Gorman and Levine, 1965; Harris, 1989) under 

uniform light conditions of 100 µmol photons m-2 s-1.  Experiments were carried out in sterilized 

Erlenmeyer flasks on a mechanical shaker.    For growth and exposure trials, a known 
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concentration of algal cells was added to fresh media, or fresh media spiked with NAFCs.  Initial 

cell concentration was determined by flow cytometry.  For growth trials, subsequent culture 

densities were measured using spectrophotometric absorbance at 750 nanometres (nm). 

1.5.2   Confocal Laser Scanning Microscopy  

Confocal laser scanning microscopy (CLSM) allowed the visualization of modification of 

many biophysical parameters of living cells and biofilms (Neu et al., 2001; Neu et al., 2004).  

Here, it was used to investigate NAFC-induced modification in living cells of C. reinhardtii.  

Fluorescently labelled probes were used to investigate distribution and modification of 

polysaccharides (sugars, glycoproteins, and exopolymer matrix), nucleic acids (nucleus and 

mitochondria), neutral lipids, proteins, and cellular membranes (Lawrence et al., 2007; Lawrence 

et al., 2003).  Chlorophyll autofluorescence was used to image the chloroplast.  Images were 

collected in three channels (RGB) consisting of a chlorophyll autofluorescence (false-coloured 

blue), and one to two channels of fluorescently labelled dyes.   

1.5.3   Analytical Lipid Analysis 

Further analysis of lipid modification was done by thin layer chromatography.  This 

allowed quantification of neutral lipid and phospholipid classes and amounts, and therefore 

analysis of changes induced in general lipid pools and to the cell membranes by exposure to 

NAFCs.  Exposure to a variety of toxicants and stressors, including copper and cadmium 

(Visviki and Rachlin, 1994), osmotic stress (Guschina and Harwood, 2006), CO2 exposure 

(Thompson, 1996), and nutrient deprivation (Dean et al., 2008; Grossman, 2000; Heraud et al., 

2005) can induce changes in fatty acid amounts and compositions; such changes in lipid 

metabolism in response to the environment has been said to be key to adaptation to acute and 

chronic stress (Thompson, 1996). 
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1.5.4   Mass Spectrometry 

Due to the complex nature of OSPW, NAs, and NAFCs, identification of biologically-

mediated NAFC removal or modification is a challenging proposition.  Clear analysis of initial 

NAFC composition is an essential prerequisite to this process, leading to difficulties overlapping 

those of baseline NAFC characterization, though the same precision is not required as for NAFC 

fingerprinting.  Mass spectrometry (MS) has emerged as an important tool in the study of the fate 

and characterization of NAFCs in an environmental context (Quagraine et al., 2005).   

Soft ionization methods such as electrospray ionization (ESI) and atmospheric pressure 

chemical ionization (APCI) are of interest, as they do not require sample derivitization and yield 

spectra with rich information on the molecular ions (Headley et al., 2009b).  Both yield good 

sensitivity, (Headley et al., 2009b; Hsu et al., 2000).  In addition, adduct formation observed 

under APCI conditions was not noted with ESI techniques (Headley et al., 2002).  As such, ESI 

MS emerged as the technique of choice for analysis of environmental samples (Headley et al., 

2009b).  However, given increased awareness of the degree of complexity of the NAFC mixture, 

a trend has developed toward the use of complimentary ionization techniques to obtain a more 

complete picture of the mixture (pers. com. J. Headley, 2012). 

Low resolution ESI MS (ESI-LRMS) was used to examine the concentration of NAFCs 

in algal growth media after five days exposure.  A cleanup (Armstrong et al., 2008) was used to 

reduce ion suppression caused by high salt content in algal growth media.     Paired studies of 

high and low resolution mass spectrometry (HRMS and LRMS) have yielded similar results in 

studies of commercial NA mixtures; however, measurement of complex combinations of oil 

sands process water showed substantial differences, with LRMS resulting in numerous 

misclassifications and false-positives for NAs in mixture (Martin et al., 2008).  No significant 

changes were noted using LRMS, but results were complicated by algal organic acids excreted to 
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the media that fell within the NA envelope measured by ESI-LRMS, time-dependent 

concentration of NAFCs in exposure and control samples, and the possibility of interconversion 

or biomodification of NAFC compounds rather than their complete removal.  As such, 

complimentary HRMS was carried out to further characterize the mixture composition of algal-

exposed NAFC. 

1.5.5   Fourier Transform Infrared Spectromicroscopy 

Optical microscopy has proven to be an essential approach for in vivo studies of single 

cells, allowing subcellular imaging; when coupled with appropriate molecular biology or staining 

techniques it can provide spatio-temporal resolution of individual biomolecules (Johnsson, 2009; 

Xie et al., 2008).  These techniques, however, are limited to compounds and molecules for which 

labelling is available (Levi and Gratton, 2007), and studies of low molecular weight compounds 

which are difficult to label, or metabolism, tend to rely on bulk samples or sample preparation 

techniques which kill cells (Borland et al., 2008; Turner et al., 2008).  Vibrational 

spectromicroscopy techniques offer a variety of advantages, and amongst these techniques 

Fourier-Transform Infrared (FTIR) spectromicroscopy is of particular interest due to its 

sensitivity, broad applicability, and ease of implementation (Levin and Bhargava, 2005).  The 

replacement of the traditional globar light source with synchrotron infrared radiation eases some 

of the limitations of the technique due to increased brightness and increased throughput at 

diffraction limited spatial resolution, such as the size scale of individual cells; this has been used 

to obtain high signal-to-noise (s/n) measurements of individual biomolecules with subcellular 

resolution (Dumas et al., 2000; Holman and Martin, 2006).   

Molecular vibrations absorb IR light at specific wavelengths, allowing investigation of 

biomolecules via the resultant spectra; previous studies have identified classes of biomolecules, 
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such as proteins and lipids, as well as mapped their intracellular distribution (Heraud et al., 2005; 

Jamin et al., 1998) and followed conformational changes over time (Birarda et al., 2010; Chen et 

al., 2001; Holman et al., 2000) or accumulation/depletion of metabolic products (Goff et al., 

2010; Goff et al., 2009; Heraud et al., 2005).   

Previous work (Dean et al., 2007; Goff et al., 2009; Palmucci et al., 2011) has established 

FTIR as a tool to study in vivo algal metabolism, as well as fundamental differences in physical 

structure.  Here it was used to study NAFC-induced changes in gross morphological structure 

and cellular-level macromolecule pools of individual living cells of C. reinhardtii. 

 

1.6   Research Objectives 

The overall objective of this research was to investigate the toxicity of NAFCs to C. 

reinhardtii and determine if there was evidence for their biodegradation.  It was hypothesized 

that toxicity of NAFCs would increase in a dose-dependent manner, that the cell wall would be 

involved in mediation of toxicity, and that any cell wall/NAFC interactions could help remove 

toxic compounds from the mixture.  To this end, the following objectives were identified: 

1. Determination of NAFC toxicity to wild-type C. reinhardtii   

2. Determination of NAFC toxicity to cell wall mutants of C. reinhardtii   

3. Investigation of the physiological response of wild-type C. reinhardtii and two cell wall 

mutants to NAFC exposure 

4. Assessment of possible biotransformation, bioaccumulation, or biological removal of 

NAFCs by wild-type or cell wall mutants of C. reinhardtii. 
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CHAPTER 2 
2.0 ASSESSMENT OF THE EFFECTS OF OIL SANDS NAPHTHENIC ACIDS ON THE 

GROWTH AND MORPHOLOGY OF CHLAMYDOMONAS REINHARDTII USING 
MICROSCOPIC AND SPECTROMICROSCOPIC TECHNIQUES 

2.1   Introduction 

 Canada’s Athabasca oil sands currently provide more than half of all Canadian crude oil 

(Canadian Association of Petroleum Producers, 2011), results in the production of huge volumes 

oil sands process water (OSPW) contaminated with residual bitumen, fine sediments, ions, and a 

variety of organic and inorganic compounds; the totality of which has been found to be acutely 

and chronically toxic, as summarized by Allen (2008).  Of particular concern are salinity levels, 

pH, and dissolved organics (Energy Resources Conservation Board, 2009), with oil sands 

naphthenic acids (NAs) having been identified as a contaminant of concern (Clemente and 

Fedorak, 2005; Han et al., 2009; Headley and McMartin, 2004) and suggested as primary agents 

of toxicity, with toxic effects on various organisms including algae, protozoa, bacteria, 

invertebrates, fish, birds, and mammals (Frank et al., 2008; Quagraine et al., 2005).  These 

compounds form a poorly understood complex mixture of alkyl-substituted mono- and poly-

cyclic carboxylic acids that have the general chemical formula CnH2n+ZO2.  In addition, there is 

growing evidence that the acid extractable fraction referred to as oil sands naphthenic acids 

contains a variety of non-classical naphthenic acids in addition to other compounds (Headley et 

al., 2011b; Headley et al., 2011c); the complex mixture extracted from OSPW may be more 

properly referred to as naphthenic acid fraction components (NAFCs).   

The amphipathic nature of classical NAs suggests the possibility of surfactant 

interactions with cell membranes as a possible basis for some acute toxic responses (Clemente 
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and Fedorak, 2005; Lewis, 1991; Quagraine et al., 2005), but the mechanisms of NAFC toxicity 

are poorly understood.  It is important that we develop a better understanding of the toxic effects 

of the naphthenic acids found in tailings ponds and the mechanisms by which they interact with 

cells.   

A number of algal and bacterial species have been identified as being tolerant to NAs 

(Leung et al., 2001, 2003; Quesnel et al., 2011).  Amongst these is Chlamydomonas frigida, a 

green alga which was found to grow when exposed to NAFCs at up to 10-20 mgL-1 (Leung et al., 

2003).  Chlamydomonas reinhardtii is a commonly used model laboratory organism.  Its genome 

has been sequenced, its metabolism is extremely well characterized, various mutants are 

available, and it is known to be tolerant to wide variations in pH, metal stress, and salinity, in 

addition to being a degrader of a variety of cyclic and cyclic-substituted compounds (Ellis, 1977; 

Gutenkauf et al., 1998; Lei et al., 2002).  In this study, we use C. reinhardtii as a model organism 

to study the effects of oil sands naphthenic acids extracted from Athabasca region tailing ponds, 

through examination of growth rate, changes in growth form, and composition through imaging 

with visual, confocal laser scanning microscopy (CLSM), and Fourier-Transform infrared 

(FTIR) spectromicroscopic methods. 

 

 

2.2   Methods and Materials 

2.2.1   Algal Exposures 

 Wild type C. reinhardtii (WT [1B-]) is a back crossed wild type strain (descended from 

lines obtained from Jean-David Rochaix, Department of Molecular Biology, University of 

Geneva).  The cell wall mutants CC-400 (cw15 mt+) and CC-3395 (arg7-8 cwd mt-) were 

obtained from the Chlamydomonas Resource Center (University of Minnesota). Both lack fully 
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assembled cell walls and are known to excrete unassembled wall glycoproteins into the media 

(Voigt et al., 1997; Voigt et al., 1991).  Cultures were grown heterotrophically in liquid Tris-

Acetate-Phosphate nutrient medium (TAP) supplemented with arginine (Harris, 1989).  

Experiments were carried out in sterilized Erlenmeyer flasks on a mechanical shaker under 

uniform light conditions of 100 µmol photons m-2 s-1.  For growth trials, 10x1010 cells were 

added to TAP spiked with NAFCs at 0, 10, 20, 50, and 100 mgL-1 in a total volume of 100 mL.  

The compounds referred to hereafter as NAFCs are the acid-extractable fraction of tailings pond 

water as per Armstrong et al. (2008); NA concentration of the extract was obtained through 

negative ion electrospray mass spectrometry.  Cells for visual, CLSM, and FTIR microscopy 

underwent 24 hour exposure to 100 mgL-1 NAFCs at a cell concentration of 20x1010 L-1, with 

controls consisting of an equal number of cells transferred to an equal volume of fresh media and 

examined at the same time point.   

2.2.2   Growth Trials 

 Culture density was measured every 8 hours for 4 days via spectrophotometric 

absorbance at 750 nm (A750) using a Genesys*20 spectrophotometer (Fisher Scientific 

Company, Ottawa, Canada).  Rate of growth during exponential phase was obtained from the 

slope of the linear portion of the graph of ln(A750T
0-A750T

x) versus time.  Three sets of 

exposures were carried out for all algae.  Each set consisted of a full exposure series (0, 10, 20, 

50, 100 mgL-1 NAFC) conducted in duplicate. 

2.2.3   Statistical Analysis 

Statistical analysis was done in SPSS, with a Shapiro–Wilk normality test for normality.  

For each algae, exposure conditions were compared using a one-way ANOVA, with a Dunnett 

post hoc to test for differences between control (0 mgL-1 NAFC) and exposure cultures (10, 20, 



 

21 

50, and 100 mgL-1 NAFC), and a Tukey HSD post hoc to compare between exposure treatments.  

Comparison of growth rates under control conditions was done using a one-way ANOVA and 

Tukey HSD post hoc.  All α were set at 0.05. 

Estimates of cell size were obtained measuring the largest diameter of cells in visual 

images of control cultures and those exposed to 100 mgL-1 NAFC.  A bounding box was placed 

in the middle of a visual image and cells were measured going left to right, top to bottom, of the 

bounding box, until a count of 70 cells was reached.  Comparison of cell size was done using an 

independent-samples two-tailed t-test (equal variance assumed). 

2.2.4   Visual and Confocal Laser Scanning Microscopy Imaging 

Visual imaging was performed using a Zeiss Axioplan fluorescence and AxioVision 4.7 

imaging software (Carl Zeiss, Germany).  For fluorescence CLSM, images were obtained using a 

Zeiss Biorad MRC 1024 confocal laser scanning microscope mounted on a Microphot SA 

epifluorescence microscope with a 60x numerical aperture 1.4 oil immersion plan apochromatic 

objective lens (Nikon, Tokyo, Japan).  Cells were separately incubated with ConcanavalinA 

lectin (ConA) extracted from Jack-bean (Canavalia ensiformis) and SYPRO Orange (Sigma-

Aldrich, Oakville, Canada) as per Neu et al. (2001).  ConA was conjugated to the fluor 

fluorescein isothiocyanate which exhibits green fluorescence with an excitation wavelength of 

488 nm; an emission bandpass filter of 520± 20 nm was used.  SYPRO Orange has an excitation 

wavelength of 470 nm and an emission bandpass filter of 570± 20 nm was used.  Images were 

analyzed using National Institute of Health’s ImageJ (rsbweb.nih.gov/ij).   

2.2.5   Fourier Transform Infrared Spectromicroscopy 

 Cultures were prepared as per Goff et al. (2009), with cells resuspended in an aqueous 

solution of heavy water (D2O) and 1% agarose.  D2O was used to shift solvent absorption from 
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the amide region, while agarose was used to immobilize cells during measurements. Higher 

glycerol concentrations have been used in the past to immobilize Chlamydomonas cells for FTIR 

spectromicroscopy with minimal effect on cell viability and metabolism (Goff et al., 2009).  

 FITR spectromicroscopy measurements were carried out at the Canadian Light Source on 

beamline 01B1-01 (MidIR) using synchrotron light, with a Bruker IFS 66v/S interferometer 

coupled to a Hyperion 2000 IR confocal microscope in transmission mode.  Cells in solution 

were loaded into a holder designed for work with living cells, and compressed between two 1 

mm BaF2 optical windows with a 15 µm spacer.  To ensure selectivity of isolated single cells, 

confocal apertures were closed to 2-5 µm greater than the diameter of individual cells (variation 

in cell size is discussed in Section 3.1; apertures were primarily set to 12 to 20 µm).  Confocal 

apertures of this size allow a light spot close to the diffraction limit and an acceptable signal-to-

noise ratio, as well as allowing for any residual sample drift.  Data collection and processing was 

done using OPUS spectroscopic data analysis software (Bruker Optics, Ettlingen, Germany).  As 

is standard for FTIR measurements, differences in peaks were visually assessed.  Presented 

spectra are an average of 10 individual cells, selected on the basis of absorbance intensity and 

lack of measurement artifacts (such as atmospheric compensation and baseline variation), 

baseline-corrected and normalized to the Amide 1 band. 

 

2.3   Results 

2.3.1   Cell Growth in the Presence of Oil Sands Naphthenic Acids  

 The addition of NAFCs to the WT C. reinhardtii cell cultures resulted in a dose-

dependent decrease in the rate of growth (F(4,10)=223.128, p=0.000). However, exponential 

rates of growth were recorded even at the highest exposure concentration of 100 mgL-1 of 

NAFCs (Figure 2.1).  NAFCs occur in tailing ponds at average concentrations of 40 – 120 mgL-
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1, so high exposure levels above 100 mgL-1 of NAFCs are not environmentally relevant 

(Holowenko et al., 2002).  The rate of growth of the control treatment differed significantly from 

all exposures, and there was a pattern of significant decrease in growth rate with increasing 

levels of NAFCs.   

 

Figure 2.1: Impact of oil sands extracted naphthenic acid fraction components (NAFCs) on the 
rate of growth of C. reinhardtii wild type cells (WT) as well as the wall-less mutants CC-400 and 
CC-3395. The WT cultures exhibited a dose-depended in growth rate with exposure to increasing 
concentrations of NAFCs.  CC-400’s growth is unaffected until exposure to 100 mgL-1 of NAFC. 
CC-3395’s growth rate is unimpacted by NAFC exposure at any level tested.  Error bars are 
standard error.  Homogeneous subsets from Tukey’s test (p < 0.05) are indicated by the same 
letter/symbol.  Full ANOVA tables in Tables 7.1-7.4. 

Under control conditions, all three algal lines had rates of growth that differed 

significantly (F(2,6)=200.521, p=0.000).  The first cell wall mutant, CC-400 had a rate of growth 

significantly lower than the wild type under control conditions, with NAFCs impacting its 

growth only after exposure to 100 mgL-1 (F(4,10)=10.797, p=0.001); the second cell wall 

mutant, CC-3395, had a control rate of growth significantly lower than that of CC-400 and WT, 

and was unaffected by NAFCs at any tested exposure concentration (F(4,10)=1.405, p=0.301).   
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Naphthenic acid exposure resulted in altered cell morphology.  The cells of all three lines 

exhibited a trend to increasing roundness and diameter with exposures (Figure 2.2).  Cell 

diameter for ovoid, unexposed, wild type cells averaged 9.6 ± 1.0 µm on the long axis, and round 

exposed cells average 12.6 ± 1.4 µm in diameter (Figure 2.2 G-H, M-N).  In addition, the 

formation of palmelloids – four to sixteen cells remaining in the remnants of the mother cell wall 

– was noted in wild type cells (Figure 2.2 N).   

 

Figure 2.2: Changes in growth form and shape of C. reinhardtii after exposure to 100 mgL-1 of 
oil sands naphthenic acid fraction components (NAFCs).  Cell cultures grown in control flasks 
(A, B, C) and with exposure to 100 mgL-1NAFCs (D, E, F). At the cellular level, exposure to 100 
mgL-1 NAFCs led to clumping of the wild type cells (M) and formation of palmelloid structures 
(N) compared to untreated cells (G, H). Clumping does not occur at either the visual or 
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microscopic level in either the CC-400 cells (E, O, P) or the CC-3395 cells (F, Q, R).  Images A 
– F were taken after 72 hours exposure; G – R after 24 hours.  All scale bars are 5µm. 

The cell wall-deficient mutant CC-400 exhibited the greatest variation in cell size and 

shape under both exposed and unexposed conditions, with cells ranging from 4 - 13 µm (average 

7.5 ± 1.7 µm) without exposure and 5-22 µm (10.5 ± 3.2 µm) after (Figure 2.2 I-J, O-P).  Cell 

wall mutant CC-3395 were found to be round, with the diameter of control cells  ranging from 8 

– 12 µm (average 9.6 ± 1.2 µm) and exposed 9 – 15 µm (average 11.9 ± 1.7 µm) (Figure 2.2 K-

L, Q-R).  Independent two-tailed t-tests indicated differences between control and exposed 

population diameters at a significance level of p≤0.01 (n=70; WT: t(138)=-14.7, p=0.00; CC-

400: t(138)=-6.88, p=0.00; CC-3395: t(138)=-8.92, p=0.00).  Increased vacuolization was seen in 

both cell wall mutants (Figure 2.2 I-L, O-R). 

Exposure to NAFCs altered the growth form of wild type cells.  As shown in Figure 2.2, 

increased NAFC concentrations caused a shift from isolated cells evenly distributed through the 

media to macroscopic clumps containing palmelloids, individual cells, and exopolymer matrix.  

The change was dose dependent with clumping increasing along the concentration gradient 

(photographic assessment of 0-10-20-50-100 mgL-1 exposure series, not shown).  This change 

was most marked when the wild type cells in the untreated flask (Figure 2.2 A) were visually 

compared to those in the 100 mgL-1 treatment flask (Figure 2.2 D). Similar clumping was not 

observed in the CC-400 or CC-3395 control flasks (Figure 2.2 B, C) or following treatment with 

100 mgL-1 NAFCs (Figure 2.2 E, F). The clumping visible at the macroscopic level was also 

observed in the wild type cell cultures under microscopic observation (Figure 2.2 M, N). The 

clumping appeared to be a result of both cells in close association with each other (Figure 2.2 M) 

and the formation of palmelloids (Figure 2.2 N).  No such effects were observed in either the 

CC-400 or CC-3395 cultures (Figure 2.2 O-R). 
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2.3.2   Confocal Laser Scanning Microscopy 

Staining of the exopolymer matrix with ConA-FITC allowed additional changes in cell 

structure to be visualized (Figure 2.3).  In wild type cells unexposed to NAFCs, ConA staining 

was faintly present along the external wall, with some cells exhibiting increased fluorescence 

localized to the flagellar region (Figure 2.3 A).  After 24 hours of exposure to 100 mgL-1 NAFC, 

this pattern had changed, with more intense fluorescence indicating increased ConA binding 

surrounding entire cells and palmeloids; in addition, strong ConA fluorescence was found in the 

space between closely grouped cells, suggesting the presence of an extended glycoprotein 

exopolymer (Figure 2.3 B).   

 

Figure 2.3: ConcanavalinA binding to C. reinhardtii under normal conditions and after 24 hours 
exposure to 100 mgL-1 of oil sands naphthenic acids. Wild type cells control (A) and exposed 
(B); CC-400 control (C) and exposed (D); CC-3395 control (E) and exposed (F).  All scale bars 
are 5 µm. 
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The cell wall mutants exhibited extremely low baseline ConA binding, likely due to 

decreased presence of glycoprotein cell walls (Figure 2.3 C-F). There is, however, a visible 

increase in stainable material in the background after exposure to NAFCs (Figure 2.3 E, F).   

 

Figure 2.4: SYPRO Orange binding to C. reinhardtii under normal conditions and after 24 hours 
exposure to 100 mgL-1 of oil sands naphthenic acids. Wild type cells control (A) and exposed 
(B); CC-400 control (C) and exposed (D); CC-3395 control (E) and exposed (F).  All scale bars 
are 5 µm. 

Visualization of cell surface proteins with SYPRO Orange (Figure 2.4) also indicated 

modification of the WT cell wall after 24 hours exposure to 100 mgL-1 NAFCs (Figure 2.4 A, B).  

Protein-staining bodies increased in size and relative coverage of cell surface.  Protein staining 

was again lower for the cell wall mutants; minor modification was apparent in CC-400 exposed 

to NAFCs in the form of smoothing of surface features (Figure 2.4 C, D) whereas no changes 

were observed in cells of CC-3395 (Figure 2.4 E, F). 
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2.3.3   Fourier Transform Infrared Spectromicroscopy 

 Numerous changes were observed in the infrared spectra obtained from cells exposed to 

NAFCs compared to untreated cells (Figure 2.5). In particular, changes in the protein bands 

Amide I (AI, ~1650 cm-1) and Amide II (AII, ~1545 cm-1) were seen in the wild type and CC-

400 cells treated with NAFCs (Figure 2.5 A, B) but not observed in the CC-3395 cells (Figure 

2.5 C).  

 

Figure 2.5: Fourier transform infrared spectra of cells of C. reinhardtii. Wild-type (A), CC-400 
(B), and CC-3395 (C). Control cells (solid line) were transferred to fresh media 24 hours before 
measurement; exposure cells (broken line) were transferred to media containing 100 mgL-1 of oil 
sands naphthenic acids 24 hours before measurement. Spectra are an average of 10 cells, 
baseline-corrected and normalized to the Amide I peak.  Amide I peak (solid line) and Amide II 
peak (broken line). 

In Figure 2.5, it can be observed that there is an increase in the ratio of the AI and AII 

bands after NAFC exposure in wild type cells and in the cell wall mutant CC-400, again change 

was not observed in CC-3395 cells.  Though the precise ratio varied due to innate biological 

culture variation, as well as synchrotron beam strength and position, these patterns of change 

were consistently found.  
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2.4   Discussion 

 In this study we examined the tolerance of the green alga C. reinhardtii to naphthenic 

acids extracted from oil sands process water. In our tests, C. reinhardtii exhibited exponential 

growth at NAFC concentrations of 100 mgL-1, a tolerance significantly higher than predicted 

based on C. frigida’s environmental tolerance to NAFC concentrations up to 10 – 20 mgL-1 

(Leung et al., 2003).  While it is possible that this difference is species-specific, it seems unlikely 

that a laboratory strain would exhibit greater tolerance than an algal strain exposed to NAFCs in 

its evolutionary environment. This information suggests that naphthenic acids extracted from oil 

sands process water may not act directly as primary agents of toxicity; or may act as such only 

with exposure to synergistic agents of toxicity under field conditions. This is in agreement with 

recent work by Quesnel et al. (2011) who recently reported algal tolerances to Sigma-Aldrich 

model NA compounds up to 300 mgL-1 in Dunaliella tertiolecta. This is in keeping with the 

notion that in the natural environment NAFCs act synergistically with other OSPW toxicants, 

such as salinity, pH, heavy metals, and polycyclic aromatic hydrocarbons (PAHs). 

 Of particular interest, the cell wall mutants CC-400 and CC-3395 exhibited an increased 

tolerance to NAFC exposure in comparison to the wild type.  Previous studies have compared the 

tolerance of C. reinhardtii strains that lack cell walls to metals and heavy metals (Macfie et al., 

1994; Macfie and Welbourn, 2000; Prasad et al., 1998) hydrodynamic stress (Barbosa et al., 

2003), and cancer drugs (Maucourt et al., 2002).  Contrary to these studies our findings 

demonstrated that cell wall-deficient mutants are less affected by exposure to NAFCs than the 

wild type strain. The growth rate of CC-400 was significantly affected only when exposed to 100 

mgL-1, while the growth rate of the CC-3395 mutant was unaffected upon treatment with 100 
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mgL-1 of NAFC (Figure 2.1).  It is worth noting that D. tertiolecta, found by Quesnel et al. 

(2011) to be unaffected by 300 mgL-1 of most model NAs at 14 days of exposure, has a naked 

membrane and lacks a cell wall.  Given these observations, it is reasonable to presume that there 

may be some interaction between NAs/NAFCs and cell walls.  If there is NAFC-induced 

disruption of the cell wall, it may increase sensitivity to heavy metals and other stressors such as 

alkalinity, pH or heavy metals not present under laboratory conditions, contributing to the 

observed toxicity variation between environmental and laboratory conditions.   

The cell wall of C. reinhardtii is composed of seven layers (W1-W7) of hydroxiproline-

rich glycoproteins, and is known to regulate intracellular transport and uptake (Azencott et al., 

2007).  Glycoproteins contain a wide variety of charged residues that are known to bind a 

number of compounds such as metals (Macfie et al., 1994) and therefore influence 

environmental interactions. The cell wall mutant CC-400 is known to have a rudimentary cell 

wall, retaining the innermost and outermost layers, W1 and W7 (Harris, 2009); the remaining 

layers are synthesized and excreted into the media without assembly (Voigt et al., 1991).  

Specific breakdown of missing wall layers in CC-3395 is not available; it can however be 

suggested that it its wall is less substantial than that of CC-400.  Cells of CC-3395 exhibit lower 

levels of resonant Mie-type scattering in the FTIR spectra, the intensity of this phenomena 

having been tied to the presence of cell walls in C. reinhardtii (Svensen et al., 2007). Perhaps 

most importantly, cells of CC-400 cultures exhibited a greater variance in cell shape and size 

than those of CC-3395; CC-3395 cells were overwhelmingly round, while CC-400 contained 

round, ovaloid, and even oblong or sickle-shaped cells, suggesting the presence of cell wall 

remnants W1 and W7 may help induce and retain such variations in shape.  If CC-400 does 

retain a greater number of wall layers than CC-3395, and NAFC-cell wall interactions are 
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involved in toxicity, it could explain why the growth of CC-400 is somewhat decreased at 100 

mgL-1 of NAFC while CC-3395 remains unaffected.    

The limited effect of NAFCs on the growth of cell wall-deficient mutants (CC-400 and 

CC-3395) combined with our Concanavalin A, SYPRO Orange, and FTIR data strongly suggests 

that oil sands NAFCs are capable of interacting with the glycoprotein cell walls.  Concanavalin 

A, a sugar binding lectin that exhibits a high degree of specificity for glycoproteins containing α-

D-mannose and α-D-glucose, was used to image cell wall glycoproteins and exopolymer 

matrixes.  ConA binding visualized using CLSM (Figure 2.3) was greater in WT cells exposed to 

NAFCs.  The binding pattern changed as well, becoming more evenly distributed along the cell 

walls, as well as exhibiting increased extracellular exopolymer staining.  While the specific 

reason is unknown, this increased binding capacity indicates a change in the surface 

structure/chemistry of these cells, especially when combined with the surface protein 

modification visualized with SYPRO Orange.  There are a number of possible mechanisms by 

which NAFCs could induce this difference, including modification of oligosaccharide side 

chains, exposure of binding sites, or a build up of glycosylated peptides along the outside of 

palmelloids or individual cell walls.  Natural variation in the degree of binding of fluorescent 

anti-bodies to cell wall polypeptides and polycolonal antibodies has been found to fluctuate with 

cell reproductive stage, with strong variation in the degree of reaction to mother cell walls 

(Harris, 2009).  This appears to indicate changes in the exposed surface proteins as mother cell 

walls prepare for lysis.  Artificial modification of external cell wall proteins (signalled by 

changes in the pattern and intensity of ConA and SYPRO Orange binding) may thus interfere 

with the release of daughter cells by interfering with or interrupting native changes, leading to 

palmelloid formation.    
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Induction of palmelloid formation and changes in algal growth form were present only in 

wild type cells. Microscopic imaging indicated a change in the shape of the exposed cells with a 

shift from oval to round (Figure 2.2 A, D).  Many of the “clumps” of cells observed in the wild 

type cultures exposed to 100 mgL-1 of NAFC appear to contain palmelloids. Normally, mitotic 

division in C. reinhardtii involves the formation of two daughter cells within the cell wall 

remnants of the mother cell, followed by breakdown of the wall remnants and release of the 

daughter cells into the media.  The high frequency of mother cells containing upwards of 8 

daughter cells indicates a change in the ability of the daughter cells to degrade the surrounding 

wall. This suggests a role for NAFCs in blocking the degradation of C. reinhardtii cell walls 

following mitosis. This has been observed previously, in C. reinhardtii and C. eugametos cells 

treated with a variety of organic acids (Iwasa and Murakami, 1968; Nakamura et al., 1975), and 

in cultures severely deprived of phosphorous (Olsen et al., 1983) or under heavy rotifer predation 

(Lurling and Beekman, 2006); normal eyespots and flagella were observed within palmelloids, 

suggesting their formation is due to cell wall abnormalities rather than loss or alteration of 

flagella.  Palmelloid formation has also been observed in a C. reinhardtii mutant that had a 

defect in O-glycosylation (Vallon and Wollman, 1995).  The changes induced were too subtle to 

be seen with microscopic methods, yet resulted in palmelloid formation in asexually reproducing 

cells and prevented sexual reproduction.  It can therefore be extrapolated that even minor cell 

wall alterations can have significant impacts, resulting in defects in both sexual and asexual 

reproduction in Chlamydomonas cells.  The formation of palmelloids in wild type cultures of C. 

reinhardtii is therefore strongly indicative of NAFC-cell wall interactions, through general 

modification or alteration of crucial oligosaccharide side chains, especially when taken in 

concert with the modified ConA fluorescence. 
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 Information from FTIR further supports the suggestion that NAFCs are altering the cell 

wall structure.  After NAFC exposure, there was a distinctive change in the ratio of the AI/AII 

bands in cells of the wild type and cell wall mutant CC-400, which retains cell wall layers W1 

and W7, but not in those of CC-3395 (Figure 2.5).  This ratio is a useful indicator of protein 

secondary structure and cell health (Holman et al., 2000).  As this change is equally present in 

CC-400 (low growth stress at 100 mgL-1 NAFC) and WT (high growth stress at 100 mgL-1 

NAFC) it is unlikely to be a general stress indicator, such as the formation of heat shock proteins 

(Lindquist and Craig, 1988), and more likely to be a physiological response of the cell wall 

protein pool to NAFC exposure. 

 

2.5   Conclusions  

Though the complex mixture that makes up NAFCs is poorly understood, one class of 

compounds grouped within this umbrella is known to be classical NAs, which exhibit anionic 

surfactant properties.  Though surfactant toxicity shows extreme variation between individual 

species and surfactant compounds, they are generally known to bind to and denature cell wall 

proteins and alter membrane permeability (Lewis, 1990).  Our data suggests NAFCs are capable 

of modifying the algal cell wall, leading to palmelloid formation and reduced growth rates. This 

is further supported by imaging data which demonstrate the failure of wild type cells exposed to 

NAFCs to disintegrate the remnants of the mother cell wall as during standard mitotic division, 

resulting in palmelloid formation. If the main interaction of NAFCs is with the cell wall, it may 

help explain why a cell wall-less halophile D. tertiolecta was extremely tolerant of specific NAs 

(Quesnel et al., 2011), as well as the increased tolerance to NAFCs found in cell wall-less 

mutants of C. reinhardtii.    
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 The real toxicity of NAFCs to green algae may be indirect.  Under environmental 

conditions, NAFC-induced formation of palmelloids and macroscopic clumps may contribute to 

mechanical removal of algae from the water column; they may unable to remain suspended and 

effectively be removed from tailings ponds with NAFC concentrations above a threshold level.  

In addition, if NAFC exposure results in disruption or modification of cell wall proteins and 

altered membrane fluidity, it may increase sensitivity to heavy metals and other stressors known 

to have a greater effect on cell wall mutants. It is thus possible that interactions between cell 

walls and NAFCs are potentiating the toxicity of other tailings ponds components such as metals, 

salinity, pH, and PAHs. 

 A number of questions remain regarding the interaction of NAFCs with algae such as C. 

reinhardtii, and the direct mechanisms of toxicity for its constituent compounds.  However, the 

combination of growth data, changes in morphology, surface chemistry, and changes to the 

protein bands (AI, AII) all align with expected surfactant effects, and offer strong evidence that 

NAFCs are capable of interacting with glycoprotein cell walls in a manner important in their 

toxicity.  
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CHAPTER 3  
3.0   EVALUATION OF BIOLOGICALLY MEDIATED CHANGES IN OIL SANDS 

NAPHTHENIC ACID COMPOSITION BY CHLAMYDOMONAS REINHARDTII USING 
NEGATIVE-ION ELECTROSPRAY ORBITRAP MASS SPECTROMETRY 

 

3.1   Introduction 

Oil sands extraction and development in Fort McMurray, Alberta, Canada, results in the 

production of large volumes of oil sands process water (OSPW), a complex and toxic mixture of 

compounds that includes naphthenic acids (NAs) (Allen, 2008).  In addition, there is growing 

evidence that the acid extractable fraction referred to as oil sands naphthenic acids contains a 

variety of non-classical naphthenic acids in addition to classical (O2) NAs and other compounds 

(Headley et al., 2011b; Headley et al., 2011c), including classes with higher degrees of oxidation 

(O3 or O4) and those containing nitrogen and/or sulphur (such as O2S).  This mixture is perhaps 

more correctly referred to as oil sands naphthenic acid fraction components (NAFCs) to 

distinguish it from purely classical or commercially available NAs (Headley et al., 2011a).   

Natural biodegradation of NAFCs has been reported, but the rate of toxicity reduction is 

slow, with relatively rapid dissipation of z=0 and z=-2 classical NAs, and the remaining 

recalcitrant fraction exhibiting half-lives on the order of 12.8-13.6 years (Han et al., 2009; 

Holowenko et al., 2002).  A number of species of algae, bacteria, and some emergent 

macrophytes have been found to contribute to the biotransformation and dispersal of some 

NAFCs (Armstrong et al., 2008; Headley et al., 2009a; Quesnel et al., 2011).   
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The broader NAFC mixture derived from OSPW has been found to be harder to degrade 

than commercial NAs (Scott et al., 2005).  Furthermore, there are differences in the susceptibility 

of NAFC compounds to degradation; those which exhibit higher toxicity (low MW, low 

proportion of multi-ring structures, lower carboxylic acid content) are more easily degraded, 

while those recalcitrant to degradation (higher MW, higher proportion of multi-ring structures, 

increased branching, methyl substitutions) are more likely to exhibit lower toxicity (Herman et 

al., 1994; Lo et al., 2006).  It is possible that this is due to the positively correlated relationships 

between bioavailability and biodegradation and between bioavailability and toxicity. For 

example, increased polycyclic aromatic hydrocarbon (PAH) bioavailability is known to speed 

rates of biodegradation (Tiehm et al., 1997).  The evidence for algal degradation of NAs and 

NAFCs has been mixed, with the possibility of degradation by Selenastrum sp. (Headley et al., 

2008) and definite degradation by Dunaliella tertiolecta (Quesnel et al., 2011).  While a number 

of other species tested have shown no evidence of degradation (summarized in Headley et al., 

2008; Quagraine et al., 2005), the majority of previous studies have used low resolution mass 

spectrometry, which would have resulted in bulk measurements of NAFCs and potentially 

obscured or masked the removal or modification of mixture components. 

Previous work (Chapter 2) showed that NAFC exposure in the unicellular green algae 

Chlamydomonas reinhardtii resulted lower levels of growth suppression than suggested by the 

environmentally relevant sister species, C. frigida.  In addition, the presence of a cell wall or cell 

wall remnants was found to potentiate NAFC toxicity (Figure 2.1).  Furthermore, 

spectromicroscopy techniques indicated interaction with cell wall and cell surface proteins, 

similar to those predicted by surfactant interaction.  The presence of NAFC-protein interactions 

capable of inducing toxicity (Figure 2.1), altering protein secondary structure (Figure 2.5), and 
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altering cell surface protein structure (Figures 2.3 and 2.4) suggest the possibility of physical 

interactions strong enough to physically remove bound NAFC from media.  

In this study, Orbitrap high resolution mass spectrometry (150,000 resolving power at m/z  

200) was used to investigate changes in the composition of an NAFC aqueous mixture mediated 

by the unicellular green algae Chlamydomonas reinhardtii, and two of its cell wall deficient 

mutant strains (CC-400 and CC-3395).   

 

3.2   Materials and Methods 

3.2.1   Materials 

An NAFC extract was prepared from OSPW collected from an oil sands extraction 

operation (Fort McMurray, AB, Canada).  The standard, composed of the acid-extractable 

fraction which includes NAFCs, was prepared as per Rogers et al. (2002a) and Janfada et al. 

(2006).  Wild type C. reinhardtii (WT [1B-]) is a back crossed wild type strain (descended from 

lines obtained from Jean-David Rochaix, Department of Molecular Biology, University of 

Geneva).  The cell wall mutants CC-400 (cw15 mt+) and CC-3395 (arg7-8 cwd mt-) were 

obtained from the Chlamydomonas Resource Center (University of Minnesota).  

3.2.2   Algal Exposures 

Algae were grown axenically in sterilized Erlenmeyer flasks containing liquid, arginine-

supplemented, Tris-Acetate-Phosphate (TAP) nutrient media (Harris, 1989).  For exposure 

studies, 10x1010 cells were added to 100 mL of TAP (control) or 100 mL TAP spiked with 100 

mgL-1 of NAFCs.  Cultures were grown for four days on mechanical gyratory shakers under 

uniform light conditions of 100 µmol photons m-2 s-1.  Homogenized media samples were taken 

immediately after spiking and at four days.  The 10 mL samples were centrifuged at 3,900 RCF 
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for four minutes to pellet out algal cells, and the top 8.5 mL removed and frozen at -20 °C.  

Media blanks, with no algal cells added, were used to control for non-biologically mediated 

processes.  Exposures on all three algal strains and controls (TAP only and TAP+100 mgL-1 

NAFC) were performed once in triplicate. 

3.2.3   Mass Spectrometry Analysis 

Algal growth media contains high concentrations of buffers, salts, and other compounds; 

preliminary investigation (data not shown) found that direct injection of the TAP media for 

analysis resulted in ion suppression.  To minimize these matrix effects, sampled supernatant 

underwent a cleanup process prior to MS analysis using ENV+ solid phase extraction (SPE) 

columns (Biotage, Chartlottesville, VA, USA).  Samples were acidified to pH < 2 with formic 

acid, then run through the SPE column, rinsed with deionised water acidified with formic acid, 

and eluted in methanol.  The methanol extract was evaporated under an N2 gas stream, and the 

remaining sample reconstituted in 1 ml of 50:50 acetonitrile/water containing 0.1% NH4OH3.  

The prepared samples were run on a linear ion trap-orbitrap mass spectrometer (LTQ Orbitrap 

Velos, Thermo Fisher Scientific) using the procedure and data processing techniques described 

by Headley et al. (2011c). 

3.2.4   Statistical Analysis 

Statistical analysis of exported and processed data was done using SPSS.  Paired t-tests 

(two-tailed) were used to compare individual components of the mixture immediately after 

spiking and after four days incubation with algae.  Comparisons of the concentration of O3 

compounds at day four were done using a one-way ANOVA with a Dunnett post hoc to test for 

differences between control media (non-biological) and media containing algae, and a Tukey 

HSD post hoc to compare between algal treatments.   
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3.3   Results 

Information about NAs and NAFCs can be reported in terms of speciation (O2, O2S, O3, 

etc.), and in terms double bond equivalents (DBEs), which represents the number of rings 

present in a compound plus the number of double bonds to carbon atoms (Bae et al., 2011).  

Statistically significant changes in NAFC mixture composition were found after four days 

exposure to the three algal strains (Figure 3.1, Figure 3.2, Figure 3.3).  These changes were 

specific to chemical species and algal strain, and their observation required the full NAFC 

speciation provided by high resolution mass spectrometry.  With the exception of a decrease in 

the relative abundance of O3 species, no changes were found in the NAFC composition of the 

algae-free control.  HRMS reports NAFC amounts as relative percent abundance of the overall 

NAFC concentration; the Y-axis of all graphs is scaled as a percent of total overall NAFC 

content. 

Classical naphthenic acids, represented here by O2 species, made up the majority of the 

NAFC consortia, on the order of 90% of the total relative abundance of each sample.  There was 

no change in the overall relative abundance of the O2 species for any of the algal strains (WT 

Figure 3.1 A, CC-400 Figure 3.1 B, CC-3395 not pictured).  The DBE distribution of the O2 

species, however, showed a different trend.  As seen in Figure 3.1, there are changes in the O2 

DBE distribution over time in NAFC media from WT and CC-400 cultures.  The analysis of WT 

media showed an increased relative abundance of O2 compounds with a DBE of 1 (t(2)= -20.2, 

p=0.02) and the removal of those with DBE of 8 (t(2)=18.7, p=0.03).  The media of CC-400 

showed a minor, though significant, decrease in the relative abundance of O2 compounds with a 
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DBE of 7 (t(2)=2.92, p=0.09), and the removal of those with a DBE of 8 (t(2)=32.3, p=0.01).  No 

such changes were present in the non-algal control media or that of CC-3395. 

 
Figure 3.1: Relative abundances of O2 species in naphthenic acids fraction component mixtures 
at time zero and after four days incubation with wild type Chlamydomonas reinhardtii (A) and 
the C. reinhardtii cell wall deficient mutant CC-400 (B).  Significant differences in the average 
of the mean indicated by * for p < 0.10 and ** for p < 0.05. n=3. 
 

As illustrated in Figure 3.2, changes were observed in the relative abundance of O2S 

species.  For NAFC mixtures exposed to all algal strains, there was a significant decrease in the 

overall relative abundance of all O2S compounds.  The O2S species made up approximately 4.5% 

of the total NAFC mixture at time zero, and were composed primarily of compounds with a DBE 

of 4 or 5.  Minor amounts of O2S species with a DBE of 6 were also present, though not 

subjected to statistical analysis because of low relative abundances.  This process was less 
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compound and algae specific than changes in O2 composition (Figure 3.2 WT, CC-400, CC-

3395).  For WT and CC-3395 there was a significant decrease in O2S species with a DBE of 4 

and 5, as well as an overall decrease in the relative abundance of total O2S (WT: DBE 4 

t(2)=3.51, p=0.07; DBE 5 t(2)=5.17, p=0.03; Total t(2)=6.26, p=0.03; CC-3395: DBE 4 

t(2)=4.37, p=0.04; DBE 5 t(2)=3.88, p=0.06; Total t(2)=4.30, p=0.05). A similar pattern was 

found in CC-400 with the exception of a non-significant decrease in O2S DBE 4 (DBE 4 

t(2)=2.55, p=0.13; DBE 5 t(2)=5.12, p=0.04; Total t(2)=3.16, p=0.09). 

 
 
Figure 3.2: Relative abundance of O2S species of the naphthenic acid fraction component 
mixture in aqueous media at time zero and at termination after four days of algal exposure.  For 
all algae, the relative abundance of O2S in media decreased over time.  Error bars are standard 
deviations.  Significant differences in the average of the mean indicated by * for p < 0.10 and ** 
for p < 0.05.  O2S TOTAL represents the sum of all double bond equivalents for O2S species, 
including those not analysed individually due to low overall abundance.   
 

Changes were also observed in the total relative abundance of the more oxidized O3 

species following incubation with algal cultures (Figure 3.3, 3.4). The O3 class of NAFCs 

occurred at even lower abundance than the O2S compounds, at approximately 1% of the total 

mixture used in this study.  The O3 class included compounds with DBEs of 2 – 7; however due 

to the low overall relative abundance, no statistical analysis could be reliably calculated on the 
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individual DBE species of the O3 group. The non-biological control blank (TAP media plus 

NAFCs) exhibited an overall decrease in the relative abundance of O3 species (t(2)=3.39, 

p=0.08), a pattern not present in media incubated with algal cultures (Figure 3.3). 

 
Figure 3.3: Overall relative abundance of O3 species in naphthenic acid fraction component 
mixture in algal growth media at time zero and at termination after four days of algal exposure.  
Measure includes all double bond equivalent groups of the O3 species.  Significant differences in 
the average of the mean indicated by * for p < 0.10.  Error bars are standard deviation.  
 

When overall relative abundances of O3 species were compared at termination time at 

day four (Figure 3.4), the concentration in control media was found to differ from that in algal 

media (F(3,8)=8.562, p=0.007).  This appeared likely due to both the decreased relative 

abundance in control media and the absolute (though non-significant) increase in the relative 

abundance of O3 compounds in algal media.  Even with HRMS, it was not possible to discern if 

these were algal organic acids which read within the NAFC envelope, or if they were secondary 

NAFCs resulting from algal-mediated biotransformation.   
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Figure 3.4: Overall relative abundance of O3 species in naphthenic acid fraction component 
mixture in algal growth media at termination after four days of algal exposure.  Measure includes 
all double bond equivalent groups of the O3 species.  Error bars are standard deviation. p < 0.05 
for homogeneous subsets. 
 

A wide variety of other non-classical NAFC classes were observed via HRMS, including 

various nitrogen and sulphur containing compounds and those with a higher degree of oxidation 

(N2SO4, O3S, O4-O6, and many others); however they were relatively minor components in the 

mixtures investigated and no comment was possible on related changes. 

3.4   Discussion  

 
Based on our results, C. reinhardtii appeared capable of modifying the composition of oil 

sands extracted NAFCs, either by sorption to the cell and cell wall components, or via 

metabolism.  This process was highly specific, and algae-compound interactions appeared to be 

based both on cell wall structure and the class and structure of the NAFC constituents.  The 

amounts of classical NAs, represented by O2 species, changed in a fashion specific to both algal 

strain and DBE.  NAFCs incubated with wild type cells showed removal of DBE 8 and an 

increased relative amount of DBE 1 (Figure 3.1 A).  Cell wall mutant CC-400, which retains a 
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partial cell wall, appeared to mediate reduction in DBE 7 and the removal of DBE 8 (Figure 3.1 

B).  Results for O2S compounds (Figure 3.2) suggested that the relative abundance of all DBE 

classes of these compounds were diminished by algal exposure for all tested strains.   

These differences between compound classes and cell lines were not surprising, and a 

more specific breakdown of NAFC mixture composition would be expected to yield more 

variation.  In studies of C. reinhardtii, as with other algae, there can be markedly different 

responses to similar compounds: C. reinhardtii is capable of removing pyrene (Lei et al., 2002) 

but not benzo[a]pyrene (Warshawsky et al., 1995).  Other studies examining the removal of a 

variety of chlorinated, nitrated, and sulfonated benzoic acids by Chlamydomonas reinhardtii 

(Gutenkauf et al., 1998) showed it to be able to discriminate very specifically between the 

individual carboxylic acid compounds.  Differences in cell wall structure and exposed binding 

sites would also be expected to increase the variation in response.  Toxicity assessments (Chapter 

2) showed high levels of variation between these algal lines in their susceptibility to NAFC 

toxicity.  The cell wall deficient mutants exhibited greater tolerance to NAFCs than the wild type 

(WT) with its full glycoprotein cell wall (Figure 2.1).  Cultures of WT cells exhibited a dose-

dependent decrease in growth rate when exposed to NAFCs, with exponential growth continuing 

with exposure to 100 mgL-1 NAFCs.  The two cell wall mutants were less affected; CC-400’s 

rate of growth was decreased only after exposure to 100 mgL-1 of NAFCs, while CC-3395’s 

growth was non-impacted at this level.  Additional evidence suggested that the NAFCs have a 

surfactant interaction with the cell wall proteins (Figures 2.3 – 2.5).   

The removal of O2 class compounds with a DBE of 8 by wild type, fully walled cells and 

the cell wall mutant CC-400 which retains a partial cell wall suggested the possibility of sorption 

and removal of NAFCs from the aqueous phase.  The glycoprotein cell walls of C. reinhardtii 
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contain a number of charged residues capable of selectively binding compounds such as metal 

ions (Macfie et al., 1994).  This process is known to be dynamic and responsive and may also be 

influenced by contaminant concentration; it may involve increased production of binding sites 

and excretion of specific proteins and exudates (Kola et al., 2004).  The variation in cell wall 

structure and available binding sites between the different cell wall mutants and WT cells may 

help explain the differences in the degree of toxicity induced by NAFC exposure, as well as 

differences in the removal of specific compounds.  Though the body of research on algal 

tolerance to and degradation of NAFCs is still growing, a number of the algae found in tailings 

ponds by Leung et al. (2001, 2003) were naked or exhibited abnormal cell wall morphology.  

One marine algae, Dunaliella tertiolecta, that has been found to exhibit high tolerance to five 

model NAs and degrade four (Quesnel et al., 2011) also lacks a cell wall. 

The only change observed in the non-algal control was a decrease in the relative 

abundance of O3 compound classes over time (Figure 3.3).  At termination, the algae increased 

relative abundances of O3 compared to control as well as a non-significant absolute increase; 

there was no statistical change in the WT cells, but in comparison to the decrease in the control 

media, this suggests there may have been O3 species added to the media by algal growth.  The 

nutrient media used for culture growth contained organic acids, which C. reinhardtii is known to 

metabolize.  In addition, C. reinhardtii excretes a variety of organic acids as part of its 

metabolism.  While decreased relative abundances of compounds could likely be attributed to 

specific biomodification or physical removal by C. reinhardtii, increased levels of compounds 

reported as NAFCs must be more carefully interpreted.  Changes could have been due to the 

formation of secondary NAFCs after metabolism of primary compounds, or attributable to 

biological secretion of endogenously metabolized organic acids, potentially increased due to the 
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toxic exposure.  Control algal cultures in blank TAP media showed a decrease in the relative 

abundance of O3 present in the media, which suggested that this production is not a product of a 

metabolic pathway under non-stressed conditions. Exposure to 100 mgL-1 of NAFCs induced 

increased toxicological effects in WT cells as compared to CC-400 and the unaffected CC-3395 

(Figure 2.1) whereas the relative abundance of O3 at day 4 was relatively equivalent between all 

three lines. 

 

3.5   Conclusions 

Overall, this research showed that C. reinhardtii was capable of modifying the relative 

composition of NAFCs in solution, in a way that was dependent upon chemical compound 

classes and cell wall structure.  Though the mechanisms of removal were not clear, it appeared 

that for some compounds sorption by cellular components played an important role.  These 

results would not have been discernible with unit mass resolution MS analysis of classical NAs, 

as the changes in the distribution of NAFCs that were observed are not resolved with low mass 

resolution typically employed in earlier investigations.  
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CHAPTER 4  
4.0 INDUCTION OF PHYSICAL AND METABOLIC CHANGES IN CHLAMYDOMONAS 

REINHARDTII BY EXPOSURE TO OIL SANDS NAPHTHENIC ACIDS 

 

4.1   Introduction 

 There is a large and growing interest in the toxicological impacts of byproducts of 

industrial oil sands production.  This oil sands process water (OSPW) is highly saline and 

alkaline, and contains residual bitumen, fine sediments, ions, and a variety of organic and 

inorganic compounds; this mixture has been found to be acutely and chronically toxic across a 

variety of taxa (summarized in Allen, 2008), with special interest paid to the role of pH, salinity, 

and dissolved organics (Energy Resources Conservation Board, 2009).  Of the dissolved 

organics, naphthenic acids (NAs) have been identified as a contaminant of concern and possible 

agent of primary toxicity (Clemente and Fedorak, 2005; Han et al., 2009; Headley and 

McMartin, 2004), with toxic effects observed in a broad array of organisms (Frank et al., 2008; 

Quagraine et al., 2005).  Oil sands NAs are a highly complex and poorly understood mixture of 

alkyl-substituted mono- and poly-cyclic carboxylic acids, and there is growing evidence that the 

acid-extractable fraction previously referred to as oil sands NAs contains a variety of non-

classical naphthenic acids and other organic compounds (Headley et al., 2011b; Headley et al., 

2011c).  This mixture is herein referred to as naphthenic acid fraction components (NAFC) to 

differentiate it from purely classical or model NAs. 

 Though the toxicity of OSPW and NAFCs is well established, the mechanisms of toxicity 

are not.  Model NAs and NAFCs have been shown to exhibit different levels or pathways of 
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toxicity (Armstrong et al., 2008; Garcia-Garcia et al., 2011; Peters et al., 2007), and various 

constituents of NAFC mixtures have been found to elicit different degrees of toxic response 

(Jones et al., 2011).  Previous work (Chapter 2) has already established the importance of the cell 

wall of Chlamydomonas reinhardtii in susceptibility to NAFC toxicity: the fully walled wild 

type (WT) exhibits the greatest sensitivity to NAFC exposure, and the cell wall mutants CC-400 

(retaining the innermost and outermost layers) and CC-3395 (believed to be completely naked) 

are relatively tolerant (Figure 2.1).  Confocal laser scanning microscopy (CLSM) imaging of cell 

surface glycoproteins (Figure 2.3) and proteins (Figure 2.4) appear to indicate cell wall 

modification in WT cells exposed to 100 mgL-1 NAFCs, and Fourier-transform infrared 

spectromicroscopy (FTIR) spectra (Figure 2.5) indicated changes in protein confirmation for 100 

mgL-1 NAFC-exposed cultures of WT and CC-400.  As previously discussed, this selective 

toxicity and evidence of interaction with cell wall proteins is consistent with the general 

predicted impacts of surfactant toxicity.  The highly selective nature of the modification of 

NAFC composition, based on algae strain, chemical species, and chemical structure, is also 

consistent with the highly specific nature of surfactant-cell interactions.  As such, it was 

important to conduct further investigation of the potential of the importance of surfactant effects 

in NAFC toxicity. 

Classical NAs are anionic surfactants lacking the functional groups that would be 

expected to target a specific reactor; as such, if the amphipathic properties of these compounds 

are important in toxicity the expected acute mode of toxicity would be narcosis (Frank et al., 

2009) from NA/NAFC-induced disruption of the cell membrane, increased membrane 

permeability leading to metabolite leakage, or the disruption of surface protein confirmations 

interfering with membrane function and transport (Van Hamme et al., 2006).  Metabolic leakage 
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is often characterized by the presence of nucleic acid in the media, cellular swelling and loss of 

shape, followed by loss of integrity and finally lyses; this effect has been found to be more 

pronounced in algal strains lacking a cell wall (Sun et al., 2004).  Microbial work by Glover et al. 

(1999) examined the effect of four surfactants on a number of species and found that while 

surfactant exposure increased membrane leakage and fluidity, this was not correlated with the 

degree of toxicity observed, suggesting that other factors such as protein binding and loss of 

tertiary structure (Goncalves et al., 2003) might play an important role.  Furthermore, charged 

surfactants (both anionic and cationic) have been found to be more strongly denaturing than 

neutral ones (Nyberg, 1979).  

 It is important to note that it is difficult to generalize the environmental impacts of 

surfactants and anionic surfactants, as well as the possibility for synergistic toxicity, as the 

complex interactions vary widely based on the specific structure of the surfactant, multiple 

environmental factors, possible co-toxins, and the individual organism exposed.  Species 

sensitivity to a given surfactant and the effect of similar surfactants on the same algae may vary 

by three to four orders of magnitude (Lewis, 1990).  They may or may not act synergistically 

with metals (Lewis, 1992; Van Hamme et al., 2006), but there is a trend to increased surfactant 

toxicity when algae are co-exposed to surfactants and oil or surfactants and high levels of salinity 

(summarized in Lewis, 1992), both important factors given the high levels of salinity in OSPW 

and presence of residual bitumen.  

 In this work, further examination was made of physiological changes induced in C. 

reinhardtii and its two cell wall mutants, CC-400 and CC-3395, including predicted surfactant 

effects such as changes to phospholipids and lipid metabolism, DNA distribution, membrane 

visualization, protein distribution, and other morphological changes. 
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4.2   Materials and Methods 

4.2.1   Algal Exposures 

Three strains of C. reinhardtii were used in these experiments.  The wild type (WT, 1B-) 

is a backcrossed wild type descended from lines obtained from Jean-David Rochaix (Department 

of Molecular Biology, University of Geneva).  Two cell wall mutants lacking fully assembled 

cell walls, CC-400 (cw15 mt+) and CC-3395 (arg7-8 cwd mt-) were obtained from the 

Chlamydomonas Resource Centre (University of Minnesota).  Both produce a full complement 

of wall glycoproteins that they are unable to assemble, and are instead excreted into the media 

(Voigt et al., 1997; Voigt et al., 1991). Cultures were grown photoheterotrophically in liquid 

Tris-Acetate-Phosphate (TAP) media supplemented with arginine (Harris, 1989) in sterilized 

Erlenmeyer flasks.  Light conditions were a uniform 100 µmol photons m-2 s-1, and flasks were 

agitated on a mechanical shaker to prevent settling.  Exposures were 24 hours in length and 

carried out three times; flasks consisted of fresh TAP spiked with 20x1010 cells L-1 and 100 mgL-

1 NAFCs, or controls of fresh TAP spiked with 20x1010 L-1 cells.   

4.2.2   Lipid Analysis 

 Thin-layer chromatography (TLC) was performed to isolate and quantify neutral/polar 

lipid composition in algae grown under control conditions and NAFC exposure (Miquel and 

Browse 1992, Lightner et al. 1994, Christie 2003).  Determination of fatty acid/oil composition 

was carried out using Lee et al.’s (1998) solvent system and analyzed via gas chromatography. 

Cells from control and exposed cultures were harvested by flash-freezing pellets formed by 

centrifugation at 3900 and 20,800 RCF.  Prior to lipid extraction, samples were lyophilized and 

dry weights were determined, with sample weights compared to GC results to determine overall 
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lipid contend and amounts of specific fatty acids.  Samples were places in bead beater tubes with 

1 mL of 2:1 chloroform:methanol, along with 100-200 µL of 0.5 mm glass beads, and agitated in 

a beat-beater for three times for 60s at 4°C.  The tube contents, as well as the rinse liquid (3 x 1 

mL rinses with 2:1 chloroform:methanol) were transferred to glass tubes and evaporated under 

N2.  Samples were rehydrated using 100 µL chloroform and 30 µL was spotted on Silica Gel 60 

F254 TLC plates alongside standards for separation, using a mobile phase of 70:30:1 hexane:ethyl 

ether:glacial acetic acid. 

Plates for lipid visualization were developed in 0.05% primulin in acetone (w/v).  TLC 

spot scrapings were transferred to glass tubes with an internal standard of 100 µg 15:0 fatty acid 

and 2 mL of 3 N methanolic HCl and incubated at 80°C for two hours.  Following incubation, 2 

mL 0.9% NaCl was added and extracted twice with 2 mL hexane.  Following a final N2 

evaporation, samples were resuspended in 15 µL hexane and injected into an Agilent 6890N 

network gas chromatography (GC) system using a DB-23 column with Chemstation software.  

Samples were held at an initial temperature of 160°C for 1 minute, then ramped to 240°C at a 

rate of 4°Cmin-1 and held there for 10 minutes (Browse 1986). 

4.2.3   Fourier-Transform Infrared Spectromicroscopy 

Samples were prepared after Goff et al. (2009), with cells suspended in an aqueous D2O 

solution containing 1% agarose as an immobilizing agent in order to shift solvent absorption 

away from the amide region and prevent cellular movement during measurements.  Fourier-

transform infrared spectromicroscopy (FTIR) experiments were carried out in transmission mode 

at beamline 01B-01 (MidIR) at the Canadian Light Source using a Bruker QFS 66v/S 

interferometer coupled to a Hyperion 2000 IR confocal microscope.  Samples were loaded in a 

holder designed for work with living cells consisting of two 1mm BaF2 optical windows and a 15 
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µm spacer.  Confocal apertures 2-6 µm in diameter greater than individual cells (cells were 6-20 

µm on the short axis depending on cell line and exposure conditions; for detailed discussion on 

variation on cell size and shape see section 2.3.1.) were used to ensure selective measurement of 

individual cells.  Apertures had a minimum diameter of 12 µm, allowing a light spot close to the 

diffraction limit and an acceptable signal-to-noise ratio.  Increased presence of the solvent 

system in the measurement of smaller cells was accounted for via background measurement.  

Data was collected and processed using OPUS spectroscopic data analysis software (Bruker 

Optics, Ettlingen, Germany).  Presented spectra are an average of 10 individual cells, selected on 

the basis of absorbance intensity and lack of measurement artifacts (such as atmospheric 

compensation and baseline variation), baseline-corrected and normalized to the Amide 1 band. 

4.2.4   Confocal Laser Scanning Microscopy 

Confocal laser scanning microscopy (CLSM) was carried out using a Microphot SA 

epifluorescence microscope coupled with a Zeiss Biorad MRC 1024 confocal laser scanning 

microscope and a 60x NA 1.4 oil immersion plan apochromatic objective lens (Nikon, Tokyo, 

Japan).  Cells were incubated with Nile Red and ConcanavalinA (ConA) extracted from 

Canavalia ensiformis and conjugated to the fluor fluorescein isothiocyanate, or with one of 

SYTO 9 (S9),  SYPRO Orange (SO), or FM1-43 (all chemicals obtained from Sigma-Aldrich, 

Oakville, Canada), as per Neu et al. (2001).  Excitation wavelengths/emission wavelengths were 

568 nm/605 nm, 488 nm/522 nm, 288 nm/522 nm, 488 nm/598 nm, and 488 nm/598 nm 

respectively.  All emissions used a bandpass filter of ± 20 nm. 

4.2.5   Statistical Analysis 

Statistical analysis was done in SPSS.  Differences in algal lipid composition in cultures 

with and without exposure to 100 mgL-1 NAFCs were done using independent samples t-test 
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(two-tailed, equal variance assumed) to compare the average of the means. df for all tests was 4, 

n=3.  All α were set at 0.05. 

4.3   Results 

4.3.1   Lipid Analysis 

4.3.1.1   Phospholipid Breakdown 

 Under control conditions, the three algal strains had similar diversities in the types of 

phospholipids present, though there were differences in the relative abundances of different 

classes.  WT and CC-400 cultures were found to be more similar to each other than to CC-3395; 

for these first two, ~70% of phospholipids were represented by three classes (18:3n-3, 16:0, and 

16:3), other classes represented less than 10% of total phospholipids.  Phospholipid composition 

of the cell wall mutant CC-3395 was less concentrated, with four phospholipids that each 

contributed more than 10% of phospholipid totals (18:3n-3, 16:0, 16:3, 18:1n-9).  Table 4.1 

summarizes the phospholipid diversity for each line under control and exposure conditions, as 

well as the abundance of each phospholipid species relative to the others present. 

Table 4.1: Ranked abundances of classes of phospholipids for wild type cells and the cell wall 
mutants CC-400 and CC-3395 under control conditions and after exposure to 100 mgL-1 

naphthenic acid fraction components.  Bolded ranks indicate a class that makes up at least 10% 
of the total phospholipid mass. 
 

Wild Type  CC-400  CC-3395 
Control Exposed   Control Exposed   Control Exposed 

14:0 -- --  11 11  -- 11 
16:0 2 2  2 3  2 2 

16:1n-5 7 --  6 5  8 8 
16:1n-7 9 --  10 10  7 7 

16:2 10 --  9 7  10 10 
16:3 3 3  3 2  3 3 
18:0 8 --  8 9  9 9 

18:1n-9 5 5  7 8  4 4 
18:1n-7 6 6  5 6  6 6 
18:2n-6 4 4  4 4  5 5 
18:3n-3 1 1  1 1  1 1 
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Exposure to 100 mgL-1 NAFCs resulted in changes in the phospholipid composition of 

WT cells, most obvious in a loss of diversity, with the disappearance of the four classes of 

phospholipids initially present at the lowest concentration: 16:1n-5, 16:1n-7, 16:2, and 18:0.  

This was apparent when measured as absolute amounts of individual phospholipid classes, as 

well as when calculating each class as a percentage of total phospholipids present (Table 4.2).  In 

addition, when examined as a proportion of total phospholipids, there was an increase in the 

relative abundance of 16:3 and 18:2n-6.  At a lower significance level (p<0.10), we saw the 

concurrent increase in 16:0 and 18:3n-3 that accompanied this concentration of phospholipids 

into the classes initially present at highest abundance.  

 

Table 4.2: Phospholipid composition of wild type cells with and without exposure to 100 mgL-1 
naphthenic acid fraction components.  Absolute amount of phospholipid indicates mg of the 
given lipid per gram of dried sample.  % total phospholipids indicates what proportion of total 
phospholipids are made up by the given class.  Data in bold indicates a significant difference in 
the average of the means in control and exposed cultures (p<0.05) as per two-tailed, independent 
sample t-test.  n=3, df=4, t found in Table 7.5. 
 

 Absolute amount phospholipid  As a % of total phospholipids 
 Control (SD) / Exposed (SD)   Control (SD) / Exposed (SD) 
14:0 -- -- / -- --  -- -- / -- -- 
16:0 14 (2.5) / 25 (11)  21% (0.43%) / 27% (4.1%) 
16:1n-5 2.5 (0.55) / -- --  3.7% (0.37%) / -- -- 
16:1n-7 1.4 (0.26) / -- --  2.1% (0.18%) / -- -- 
16:2 0.85 (0.11) / -- --  1.3% (0.07%) / -- -- 
16:3 13 (2.2) / 22 (7.9)  19% (0.66%) / 23% (2.1%) 
18:0 1.7 (0.28) / -- --  2.5% (0.12%) / -- -- 
18:1n-9 5.1 (1.0) / 5.1  (4.6)  7.4% (0.27%) / 4.3% (3.9%) 
18:1n-7 2.7  (0.52) / 2.1  (3.7)  3.9% (0.24%) / 1.7% (3.0%) 
18:2n-6 5.9  (1.1) / 9.3  (3.7)  8.7% (0.16%) / 9.7% (0.45%) 
18:3n-3 20 (3.6) / 33 (13)  30% (1.06%) / 34% (3.0%) 
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 Though there was an increase in the total amount of phospholipid present in cultures 

exposed to NAFCs, this difference was non-significant owing to increased variation in exposed 

cultures.  Exposed cultures also saw an increase in the peroxidation index (Table 4.3), which is a 

unitless representation of the lipid stability.   A higher lipid peroxidation index indicates 

increased susceptibility to degradation and oxidative damage. 

 

Table 4.3: Selected analytical measures of phospholipid composition in cultures with and 
without exposure to 100 mgL-1 naphthenic acid fraction components.  Data in bold indicates a 
significant difference in the average of the means (as per two-tailed, independent sample t-test) 
in control and exposed cultures (p<0.05) in italics (p<0.10).  n=3, df=4, t found in Table 7.5. 
 

 Wild Type CC-400 CC-3395 
 
 

Control 
(SD) / Exposed 

(SD) 
Control 

(SD) / Exposed 
(SD) 

Control 
(SD) / Exposed 

(SD) 

68 96  69  41  60  63  mg phospholipid/g dry 
sample weight (12) / (40) (5.1) / (5.0) (0.48) / (3.2) 

181 194  177  195  162  165  Peroxidation index (1.2) / (12) (14) / (4.6) (12) / (11) 

12 9.1  9.3  20  12  11  Double bonds/mg 
saturated phospholipid (2.2) / (5.1) (1.9) / (3.3) (1.7) / (1.4) 

3.6 3.3  3.6  6.3  3.5  3.4  Double bonds/mg 
unsaturated phospholipid (0.71) / (2.0) (0.26) / (0.70) (0.15) / (0.22) 

 

Cultures of CC-400 cells also exhibited changes in phospholipid composition with NAFC 

exposure, though these changes were not as pronounced (Table 4.4).  While there was no change 

in diversity, the overall amount of phospholipid decreased significantly (Table 4.3).  In cultures 

exposed to NAFCs, there were significantly lower masses of 16:0, 18:0, 18:1n-9, and 18:2n-6; 

however, the relative composition of the phospholipid pool experienced fewer changes, 

exhibiting only a decreased relative abundance of 16:0 and an increased relative abundance of 

18:3n-3.  
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Table 4.4: Phospholipid composition of CC-400 cells with and without exposure to 100 mgL-1 
naphthenic acid fraction components.  Absolute amount of phospholipid indicates mg of the 
given lipid per gram of dried sample.  % total phospholipids indicates what proportion of total 
phospholipids are made up by the given class.  Data in bold indicates a significant difference in 
the average of the means (as per two-tailed, independent sample t-test) in control and exposed 
cultures (p<0.05) in italics (p<0.10).  n=3, df=4, t found in Table 7.5. 

 
 

Absolute amount phospholipid  As a % of total phospholipids 
 Control (SD) / Exposed (SD)   Control (SD) / Exposed (SD) 
14:0 0.10 (0.17) / 0.042 (0.073)  0.13% (0.2%) / 0.11% (0.20%) 
16:0 17 (1.9) / 9.3 (1.7)  25% (3.0%) / 20% (0.90%) 
16:1n-5 2.5 (0.14) / 1.9 (0.49)  3.6% (0.43%) / 3.9% (0.14%) 
16:1n-7 0.22 (0.38) / 0.087 (0.15)  0.30% (0.51%) / 0.24% (0.41%) 
16:2 1.6 (0.25) / 1.3 (0.34)  2.3% (0.23%) / 2.6% (0.10%) 
16:3 12.4 (2.5) / 11 (3.24)  18% (3.0%) / 23% (1.6%) 
18:0 2.1 (0.35) / 1.1 (0.35)  3.1% (0.67%) / 2.2% (0.28%) 
18:1n-9 2.1 (0.25) / 1.1 (0.11)  3.1% (0.60%) / 2.4% (0.34%) 
18:1n-7 2.9 (0.98) / 1.6 (0.40)  4.2% (1.1%) / 3.3% (0.09%) 
18:2n-6 5.9 (0.13) / 3.7 (0.67)  8.6% (0.56%) / 8.0% (0.41%) 
18:3n-3 21.7 (2.3) / 16 (3.8)  32% (1.7%) / 35% (0.26%) 

 

 After loss of approximately 40% of total phospholipids, the remaining phospholipids 

showed higher preponderance of double bonds, as measured by the number of double bonds 

present per mg of saturated phospholipid, and per mg of unsaturated phospholipid (Table 4.3).  

The value of the peroxidation index also increased in a similar manner and value to WT cells, but 

this change was only significant at the level of p < 0.10.   

In comparison, cultures of CC-3395 did not show these signs of altered phospholipid 

composition in response to NAFC exposure.  The only significant difference between control and 

exposed cultures was the appearance of minor amounts of 14:0 phospholipid in response to 

NAFC exposure.    
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Table 4.5: Phospholipid composition of CC-3395 cells with and without exposure to 100 mgL-1 
naphthenic acid fraction components.  Absolute amount of phospholipid indicates mg of the 
given lipid per gram of dried sample.  % total phospholipids indicates what proportion of total 
phospholipids are made up by the given class.  Data in bold indicates a significant difference in 
the average of the means (as per two-tailed, independent sample t-test) in control and exposed 
cultures (p<0.05) in italics (p<0.10).  n=3, df=4, t found in Table 7.5. 

 Absolute amount phospholipid  As a % of total phospholipids 
 Control (SD) / Exposed (SD)   Control (SD) / Exposed (SD) 
14:0 -- -- / 0.23 (0.021)  -- -- / 0.37% (0.014%) 
16:0 12 (0.93) / 13 (0.83)  21% (1.7%) / 20% (1.4%) 
16:1n-5 2.1 (0.12) / 2.3 (0.060)  3.5% (0.22%) / 3.7% (0.11%) 
16:1n-7 3.2 (0.61) / 3.0 (0.75)  5.3% (1.1%) / 4.8% (1.1%) 
16:2 1.0 (0.17) / 1.1 (0.13)  1.6% (0.27%) / 1.7% (0.17%) 
16:3 9.3 (1.8) / 10 (1.8)  15% (2.9%) / 16% (2.5%) 
18:0 1.6 (0.11) / 1.7 (0.012)  2.7% (0.20%) / 2.8% (0.15%) 
18:1n-9 8.0 (1.4) / 7.8 (1.6)  13% (2.4%) / 12% (2.5%) 
18:1n-7 3.2 (0.11) / 3.3 (0.086)  5.3% (0.22%) / 5.3% (0.14%) 
18:2n-6 4.6 (0.53) / 4.9 (0.27)  7.6% (0.82%) / 7.8% (0.32%) 
18:3n-3 15 (1.1) / 16 (1.5)  25% (1.6%) / 25% (2.0%) 

 

4.3.1.2   Other Lipids  

 Exposure to NAFCs induced changes in other lipid classes in addition to phospholipids.  

As seen in Table 4.6, there were a variety of effects on the composition of free fatty acids 

(FFAs), triacylglycerols (TAGs), cholesterol esters (CEs), and 1-2 and 1-3 diacylglyercols (1-2 

DAGs and 1-3 DAGs).  There were baseline differences under control conditions between WT, 

CC-400, and CC-3395; these differences are not discussed here, rather analysis focused on the 

changes within each line induced by NAFC exposure.   
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In WT cells exposed to NAFCs, there was a significant increase in the overall abundance 

and diversity of TAGs and 1-3 DAGs, an increase in the presence of CEs, and a weakly 

significant (p < 0.10) increase in 18:0 FFAs.  The cell wall mutant CC-400 had a significant 

increase in the overall abundance and diversity of FFAs, an increase in 18:0 1-2 DAG, and a loss 

of diversity in TAGs, 1-3 DAGs, and CEs.  The fewest changes were observed in CC-3395, 

which exhibited an increased diversity of TAGs with NAFC exposure. 

 

4.3.1.3   Lipid FTIR 

 
Figure 4.1: Fourier transform infrared spectromicroscopy of single living cells.  Spectra are the 
average of ten individual cells, baseline corrected and normalized to the Amide I band.  Wild 
type (A), CC-400 (B), CC-3395 (C).  Solid black lines represent control cells, dashed black lines 
represents cells exposed to 100 mgL-1 oil sands naphthenic acid components for 24 hours.  Solid 
grey lines are the Amide I (1650 cm-1) and Amide II (1550 cm-1) peaks.  Lipid peak (1740 cm-1) 
is marked by the black dotted line.  
  

When examined with Fourier-transform infrared spectromicroscopy, there were moderate 

to no changes in the overall relative abundance of cellular lipids.  The spectra in Figure 4.1 

represent the average spectra of individual algal cells.  The ratio of the lipid peak (1740 cm-1) to 
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the Amide I protein peak (1650 cm-1) can be used as a measure of lipid accumulation or 

depletion relative to the protein pool (Dean et al., 2010), though this was somewhat complicated 

by the change in the ratio of Amide I to Amide II (1550 cm-1) peaks in exposed WT and CC-400 

cultures.  This change is often indicative of changes to protein confirmation and secondary 

structure (Holman et al., 2000).  When compared to Amide I, there was no change in amount of 

lipids present for WT or CC-3395 cells, while CC-400 exhibited a slight increase.  When the 

increased level of Amide II was taken into account, WT and CC-400 cells exposed to NAFCs 

appeared to show a minor decrease in the presence of lipids.  Despite these variations, it was 

clear that by these measures, there were none to minor changes in the presence of lipids in 

comparison to protein. 

4.3.1.4   Lipid Confocal Using Nile Red 

Contrary to TLC and FTIR analysis of WT cells, visualization of neutral stainable lipids 

with Nile Red led to a sharp decrease in apparent lipid levels after exposure to 100 mgL-1 

NAFCs (Figure 4.2 A, B).  Control cells exhibited a relatively even distribution of neutral 

stainable lipids across the cells, with some concentration into lipid droplets.  In exposed cells, not 

only was the overall lipid fluorescence decreased, but also the distribution.  Lipids were 

concentrated along the cell membrane, and droplets were absent.   
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Figure 4.2: Nile red fluorescence enabling the visualization of neutral lipids.  Wild type cells 
under control conditions (A) and after exposure to 100 mgL-1 naphthenic acid fraction 
components (NAFCs, B).  Cells of CC-400 under control (C) and exposed (D) conditions.  Cells 
of CC-3395 under control (E) and exposed (F) conditions.  Scale bare is 5 µm. 

 

The cell wall mutants CC-400 and CC-3395 both exhibited differences from WT cells 

under control conditions (Figure 4.2 A, C, E).  Due to a lower baseline fluorescence, images for 

both mutants were taken at a higher laser intensity than WT cells.  This corroborates the similar 

ratios of lipid:Amide I seen with FTIR (Figure 4.1) in all lines, as these mutants lacked some to 

all cell wall glycoproteins, and would be expected to exhibit lower absolute levels of lipids to 

maintain the same lipid:protein ratio.  Control cells of CC-400 exhibited lipid distribution 

throughout the cell, with some concentration along the cell membrane and the presence of large 

lipid droplets.  After 24 hours exposure to 100 mgL-1 NAFCs (the lowest concentration found to 

have any impact on culture growth rate) there was an overall decrease in the neutral stainable 

lipids, though this change was not as pronounced as in exposed WT cells.   There remained lipid 
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distributed throughout the cell, with some concentration along the outer membrane.  Lipid 

droplets were also present, though they appear to be smaller in size than in unexposed cells.    

Cultures of CC-3395 appeared to have lower baseline lipid fluorescence than those of CC-400, 

and lipid droplets present were fewer and smaller.  They again exhibited lipid distribution 

throughout the cell, with minor concentration along the outer membrane.  After 24 hours 

exposure to 100 mgL-1 NAFCs (a concentration found to have no effect on the culture growth 

rate) few physiological changes were detected, with the exception of what appeared to be the 

concentration of lipid droplets. 

4.3.2   Other Physiological Changes 

4.3.2.1. Membrane Confocal Using FM1-43 

Normally staining with FM1-43 allows only visualization of outer cell membranes; it is 

likely the use of DMSO as a carrier for FM1-43 allowed penetration of the dye into the cell and 

visualization of internal membranes (Figure 4.3).   In WT cells exposed to NAFCs (Figure 4.3 

B), much of the internal detail was lost when compared to unexposed control cells (Figure 4.3 

A).  Autofluorescence and visual imaging confirmed the presence of the chloroplast and other 

structures, so this change was not likely due to loss of internal structures, but more likely related 

to decreased dye penetration.   
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Figure 4.3: FM1-43 visualization of membrane lipids.  Wild type cells under control conditions 
(A) and after exposure to 100 mgL-1 naphthenic acid fraction components (B).  Cells of CC-400 
under control (C) and exposed (D) conditions; arrows indicate brightly staining bodies and 
vacuoles, small arrows indicate increased space between the chloroplast and cell membranes.  
Cells of CC-3395 under control (E) and exposed (F) conditions; arrows indicate actively 
excreted vesicles and free dye in the intracellular space.  Scale bar is 5 µm. 

 

For the cell wall mutant CC-400, exposure to NAFCs appeared to increase the variability 

of staining.  Control cells were fairly uniform in brightness, with well-defined fluorescence of 

many internal membranes, including the chloroplast and vacuoles.  Cells exposed to NAFCs 

exhibited large variation in overall fluorescence intensity, and appeared to have more well 

defined structures, including vacuoles.  There appeared to be more space between the 

chloroplasts and the external membranes, and there were a number of small, brightly staining 

bodies present.  The other cell wall mutant, CC-3395, exhibited similar fluorescence patters 

under control conditions.  In cells exposed to 100 mg L-1 of NAFCs for 24 hours, there were 

some changes in the pattern of staining.  Overall brightness was reduced, and there appeared to 
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be concentration of free dye into intracellular spaces.  There were a number of small, globular 

areas of extremely concentrated fluorescence; during imaging the transport of these small 

vesicles to the cell surface was observed, as well as their subsequent excretion into the media.  

What appeared to be similar excretory vesicles were also noted in CC-400 cells exposed to 

NAFCs; however these were not observed to be actively excreted. 

4.3.2.2   Protein Confocal Using SYPRO Orange 

 

 
Figure 4.4: SYPRO Orange visualization of internal proteins visualized via a z-series slice 
through the centre of the cell. Wild type cells under control conditions (A) and after exposure to 
100 mgL-1 naphthenic acid fraction components (NAFCs, B).  Cells of CC-400 under control (C) 
and exposed (D) conditions.  Cells of CC-3395 under control (E) and exposed (F) conditions.  
Arrows indicate vesicles and granular structures.  Scale bar is 5 µm. 

 

As in the case of FM1-43, WT cells exposed to NAFCs and stained with SYPRO Orange 

appeared to have a decreased uptake of fluorescent dyes.  The internal detail of control cells 
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(Figure 4.4 A) was much greater than that of cells exposed to NAFCs (Figure 4.4 B).  No such 

changes were present in CC-400 cells (Figure 4.4 C, D), or CC-3395 (Figure 4.4 E, F), though 

exposed cells of CC-3395 appeared to have increased presence of small bodies that were likely 

to be granules or vesicles similar to those seen previously with FM1-43 (Figure 4.3).   

 
Figure 4.5: SYPRO Orange visualization of surface proteins, obtained via a z-series slice 
encompassing the top of the cell. Wild type cells under control conditions (A) and after exposure 
to 100 mgL-1 naphthenic acid fraction components (NAFCs, B).  Cells of CC-400 under control 
(C) and exposed (D) conditions; arrows highlight surface features lost with NAFC exposure.  
Cells of CC-3395 under control (E) and exposed (F) conditions.  Images are from the cell 
surface.  Scale bar is 5 µm. 

 

In comparison to the decreased visualization of internal proteins in WT cells, cell surface 

protein staining with SYPRO Orange was increased (Figure 4.5 A, B).  For the cell wall mutant 

CC-400, NAFC exposure appeared to decrease the presence of some surface features (Figure 4.5 

C, D).  No appreciable changes were noted in CC-3395 (Figure 4.5 E, F). 
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4.3.2.3   DNA Confocal Using SYTO 9 

 
Figure 4.6: Visualisation of cytoplasm and DNA using SYTO 9.  Smaller dots are mitochondria.  
Wild type cells under control conditions (A) and after exposure to 100 mgL-1 naphthenic acid 
fraction components (NAFCs, B).  Cells of CC-400 under control (C) and exposed (D) 
conditions.  Cells of CC-3395 under control (E) and exposed (F) conditions.  Scale bar is 5 µm. 
  

Exposure to NAFCs for 24 hours also appeared to impact morphology of the nucleus and 

cytoplasm distribution (Figure 4.6).  For all algal strains, there appeared to be a contraction of 

the size of the nucleus, though this trend was most pronounced in WT cells.  For WT and CC-

3395 cells, there was also an increased amount of cytoplasm present between the chloroplast and 

outer membrane, and an increase in vacuolization (Figure 4.6 A, B, E, F).  It was unclear if this 

was due to swelling of the cell or retraction of the chloroplast.  In comparison, cells of CC-400 

exposed to NAFCs appeared to lose cytoplasmic definition; staining was less even across the cell 

as a whole and mitochondria were not visible. 
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4.3.2.4   Eyespots Visualization 

 
Figure 4.7:  Representative cells showing autofluorescence of the eyespot (bright dot) and bleed 
through from chlorophyll autofluorescence (diffuse cup-shaped or circular fluorescence), 
indicating photosynthetic viability.  Wild type cells under control conditions (A) and after 
exposure to 100 mgL-1 naphthenic acid fraction components (NAFCs, B).  Cells of CC-400 
under control (C) and exposed (D) conditions.  Cells of CC-3395 under control (E) and exposed 
(F) conditions.  Scale bar is 5 µm.   
  

Exposure to 100 mgL-1 of NAFCs had little effect on chlorophyll autofluorescence 

(Figure 4.7).  There was, however, a loss of the structured eyespot in the cell wall mutant CC-

400 (Figure 4.7 D). 
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4.3.2.5   Visible Transmitted Light Imaging 

 
Figure 4.8:  Representative cells under visible light.  Wild type cells under control conditions (A) 
and after exposure to 100 mgL-1 naphthenic acid fraction components (NAFCs, B).  Cells of CC-
400 under control (C) and exposed (D) conditions.  Cells of CC-3395 under control (E) and 
exposed (F) conditions.  Scale bar is 5 µm.   
  

Some of the changes induced by NAFC exposure were evident with visible transmitted 

light imaging (Figure 4.8).  In contrast to other methods of visualization, many of these changes 

were similar across cell lines.  In all cultures, exposure resulted in increased cell size and 

roundness, in addition to increased texture of the cell body.  While it could not be positively 

ascertained what structures were responsible, it appeared likely to be a mix of the staining bodies 

revealed with SYPRO Orange (Figure 4.4) and FM1-43 (Figure 4.3), as well as the excretory 

vesicles imaged with FM1-43 (Figure 4.3) and vacuolization evident in S9 staining (Figure 4.6).   

Under visible light, these features were most pronounced in CC-3395, in keeping with the CLSM 

observations.  The small bodies present in WT cells exposed to NAFCs were present at higher 
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concentration than would be expected from the corresponding CLSM images; this again 

suggested decreased uptake of fluorescent dye by exposed cells which would have been in 

keeping with alteration of membrane fluidity to exclude toxic substances or stabilize the 

membrane. 

 

4.4   Discussion 

As a whole, this work indicates that exposure to NAFCs mediated a number of 

physiological and metabolic responses in C. reinhardtii.  Wild type cells and the cells of the two 

cell wall mutants, CC-400 and CC-3395, exhibited different reactions to NAFC exposure; as 

such it may be hypothesized that the cell wall and its structure contributes to the mediation and 

potentiation of NAFC toxicity. 

After exposure to NAFCs, WT cells exhibited a sharp decrease in Nile Red fluorescence 

binding (Figure 4.2), which would be expected to correlate to a similar decrease in the presence 

of neutral stainable lipids, something that was not borne out by TLC analysis (Table 4.6) or the 

FTIR ratio of overall lipids to proteins (Figure 4.1).   Taken together with the loss of detailed 

visualization of internal proteins (Figure 4.4) and membranes (Figure 4.3), this suggested that 

NAFC-exposed cells uptake lower levels of these fluorescently labelled dyes.   As this response 

was unlikely to be specific to these three fluorescent dyes, it suggested that NAFC exposure 

resulted in altered interaction with and uptake of macromolecules from the environment.   Two 

main physiological changes were observed that might have contributed to this modification of 

environmental interaction, the first being that the observed changes in phospholipid and lipid 

composition (Table 4.1, Table 4.2, Table 4.3) altered membrane permeability.  The observed loss 

in phospholipid diversity was primarily attributable to the loss of C16 mono- and polyunsaturated 
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fatty acids.  Combined with the increase in cholesterol esters (Table 4.6) this would be expected 

to have decreased membrane fluidity, as the presence of unsaturated phospholipids and 

cholesterol esters are known to respectively increase and decrease membrane fluidity (Cooper, 

2000). This response might have been expected for a number of reasons, including: stabilization 

of the membrane in direct response to surfactant insertion into the bilayer, increased membrane 

stability in response to modification of cell wall protein confirmation, or reduction of cross-

membrane diffusion and leakage.  The second change that might have contributed to decreased 

dye uptake was the modification and accumulation of cell surface proteins (Figure 4.1, Figure 

4.5) and an extensive exopolymer matrix (Figure 2.3).  Any of these combinations of factors 

would have been expected to result in the altered interaction with environmental 

macromolecules, either as a result of NAFC-altered physiology or cellular attempts to limit 

uptakes of substances such as NAFCs. 

Exposure to surfactants is known to alter protein confirmations and physically induce 

changes to membrane permeability via insertion (Lewis, 1990, 1991), both of which result in 

altered environmental interaction, and align perfectly with the changes seen in WT cells upon 

NAFC exposure.   The increase in vacuolization seen with S9 (Figure 4.6) was not obvious with 

the other dyes, but also suggested differences in intracellular transport or osmotic balance, as did 

the increased layer of cytoplasm between the chloroplast and cell membrane, and the reduced 

nuclear volume (Finan et al., 2011).  However, it was not clear if this was due to cellular 

swelling, chloroplast shrinkage, or a combination of the two, though the increased cell roundness 

(Figure 4.8) and similar chloroplast volumes/autofluorescence (Figure 4.7) suggested this was 

attributable to swelling.  Both effects would have been characteristic of metabolic leakage 
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induced by increased membrane permeability (Sun et al., 2004) or pore formation (Carrillo et al., 

2003).  

The cell wall mutant CC-400 also exhibited a variety of physiological changes in 

response to NAFC exposure, though these were less pronounced than those in the fully-walled 

WT.  There was a similar decrease in Nile Red fluorescence (Figure 4.2), though at a much less 

pronounced level.  Exposed cells had a sharp decrease in the amount of phospholipids present, 

though there was no decrease in phospholipid diversity (Table 4.3, Table 4.4), and changes in 

other lipid classes – including neutral stainable lipids – were primarily related to changes in 

diversity, rather than overall amounts (Table 4.6), again consistent with changing permeability or 

lipid metabolism.  Visualization of membranes (Figure 4.3) and internal proteins (Figure 4.4) 

retained the same degree detail as in control cells, though both showed increased presence of 

granules/vesicles similar those shown to be actively excreted by cells of CC-3395 exposed to 

NAFCs.  Changes in the distribution and definition of the nucleus, chloroplast, and mitochondria 

were present in NAFC-exposed cells (Figure 4.6); given the exponential growth of these cells 

under the given exposure conditions (Figure 2.1), it is unlikely that this represented a loss of 

mitochondria and cytoplasmic integrity.  However, the swelling, loss of cell shape, distribution 

of nuclear-staining material, as well as the loss of chloroplast integrity in some cells (Figure 4.8 

D) were again similar effects to what would be expected given metabolic leakage (Sun et al., 

2004). This has been reported not to be directly correlated to surfactant toxicity (Glover et al., 

1999) and may be less important than protein interaction (Van Hamme et al., 2006).  The loss of 

eyespot integrity (Figure 4.7 D) observed here  has also been observed with organic solvent 

exposure (Soto et al., 1979) and may be consistent with stress and toxic effects.  It is speculated 

that the arrangement of the eyespot of Chlamydomonas spp. is stabilized by the presence of a 
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variety of hydrophobic proteins, and a number of the eyespot mutants show defects in specific 

proteins (Harris, 2009, pgs 62-64), suggesting its structure is sensitive to changes in protein 

confirmation such as those than can be induced by surfactant exposure.  The penetration of some 

surfactants into the cell itself is also known to potentially disrupt thylakoid organization 

(Cserhati et al., 2002; Popova and Kemp, 2007), similar to that seen in some cells of CC-400 

(Figure 4.8), and the different wall and membrane structure would be expected to impact the ease 

of penetration of some of the complex NAFC mixture into the cell (Rosen et al., 2001; 

Vonlanthen et al., 2011). 

Despite an overall relative tolerance to NAFC exposure, the 40% decrease in 

phospholipid amounts (Table 4.1), smoothing of cell surface protein features (Figure 4.5), and 

loss of structural cholesterol esters (Table 4.6) were suggestive of surfactant-induced 

solubilization of membrane lipids that may occur at certain surfactant/lipid ratios (Carrillo et al., 

2003).  CC-400 retains the innermost cell wall layer, W1, and the outermost layer, W7.  While 

W1 is an insoluble fibrous frame, W7 is looser amorphous network of branching fibres and non-

structural glycoproteins (Harris, 2009, pgs 29-33) and is likely responsible for the wide variation 

in the shape and size of unexposed cells that was observed (Figure 4.8 C, D).  Given that 

surfactant:protein interactions are generally stronger than protein:membrane lipid interactions 

(Jones, 1992) and the loose binding of the W7 layer, it is not unreasonable to postulate its 

removal.  This was possible in NAFC-exposed WT cells as well, with the SYPRO Orange 

visualized changes in surface protein and FTIR changes in protein confirmation due to 

modification of cell wall layers W1-W6.  Though there was no loss of diversity in phospholipids 

as with exposed WT cells, the changes in the relative amounts of specific phospholipids, as well 

as the increased number of double bonds per mg  of saturated and unsaturated phospholipid 
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(Table 4.3), suggested changes to membrane fluidity as would be expected with surfactant 

exposure (Lewis, 1990; Sun et al., 2004; Van Hamme et al., 2006).   Despite these changes, there 

was not the same evidence of reduced fluorescent dye uptake as in WT cells.  It is possible 

however, that the increased surface glycoproteins and extensive exopolymer matrix found in 

exposed WT cells were strong contributors to this effect.  In addition, the effects of changes to 

the composition of phospholipid and lipid pools was different than that experienced by NAFC-

exposed WT cells, where the changes were strongly indicative of decreased membrane fluidity.  

For exposed CC-400 cultures, presence of bodies seen to be excreted in CC-3395 cells suggested 

that this may also have been part of the cells’ regulatory response to NAFCs. 

Perhaps unsurprisingly, exposure to 100 mgL-1 of NAFCs resulted in few physiological 

changes for CC-3395.  This mutant, believed to completely lack a cell wall, had a growth rate 

unaffected by exposure to NAFCs.  Nile Red staining (Figure 4.2 E, F) revealed no changes in 

the overall concentration of neutral lipids; there was a possible concentration into lipid droplets 

but this was difficult to quantify.  Exploration of surface (Figure 4.5) and cell (Figure 4.4) 

proteins revealed few changes, with the exception of the appearance of small bodies in the cell 

cross section believed to be granules or vesicles.  Membrane visualization with FM1-43 (Figure 

4.3) was perhaps the most interesting, as it revealed the presence of small vesicles actively 

secreting the uptaken dye.  Imaging with S9 (Figure 4.6) was also suggestive of possible changes 

to the osmotic balance, given the visualization of a variety of vacuoles, minor decrease in nuclear 

volume, and an increased buffer of cytoplasm between the chloroplast and cell membrane, 

though as with exposed WT cells, it was unclear if this was due to cell swelling or to chloroplast 

contraction, and resembled physiological changes induced by increased metabolite leakage (Sun 

et al., 2004).  Analysis of cellular phospholipids revealed virtually no changes in the amount or 
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composition of phospholipids: the only significant change was the appearance of minor levels of 

14:0 phospholipids not found in the examination of unexposed, control cells.  Similarly, total 

lipid pools and metabolism appeared to be relatively unaffected, given the lack of significant 

changes save for increased TAG diversity.  While CC-3395 exhibited only minor physical 

changes in response to NAFCs, there appeared to be a physiological modification in increased 

production and export of excretory vesicles. 

 

4.5   Conclusions 

The investigated effects of NAFC exposure on C. reinhardtii appeared to vary depending 

upon cell wall presence and structure.  Given the differences in cell wall structure and membrane 

composition, and the broad variation in surfactant response based on chemical and species 

(Lewis, 1992; Venhuis and Mehrvar, 2004) this was expected.  Some broad similarities were 

found that agreed with general surfactant effects, including changes in phospholipid composition 

and fluidity, differences in total lipid metabolism, protein modification, and indicators of osmotic 

stress or metabolite leakage. However, the specific mode of these effects varied depending upon 

the algal line.   

Exposed WT cells evidenced decreased uptake of fluorescent dyes, decreased membrane 

fluidity (loss of unsaturated phospholipids and increased cholesterol), in addition to modification 

of cell surface proteins, changes in confirmation of overall protein pools, and signs of osmotic 

stress or metabolic leakage including cell swelling, shrinkage of the nucleus, and increased 

vacuolization.  Cells of CC-400 exhibited different patterns of response: there was some 

smoothing of protein features on the cell surface, as well a 40% loss of phospholipids without a 

change in class diversity, which made it more difficult to quantify the effects on membrane 
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fluidity.  There was not the same evidence of reduced uptake of fluorescent dyes as in WT, but 

visualization of the cytoplasm was highly indicative of metabolic leakage.  In addition, the total 

loss of eyespots and disruption of chloroplast integrity in some cells suggested the possibility of 

increased internal contact with agents able to disrupt protein:membrane interactions or protein 

confirmations.  Unsurprisingly, few changes were observed in CC-3395 after NAFC exposure.  

Aside from the shared indicators of osmotic stress or metabolic leakage, the effects appeared 

limited to the appearance of 14:0 phospholipids, the formation in intracellular granules, and 

increased active excretion of secretory vesicles.   

The sum of induced changes in all algae was again consistent with surfactant effects, 

including changes to membrane fluidity, protein confirmation, and osmotic stress or metabolic 

leakage.  While increases were visible in vacuolization, cell size, and cell roundness, the degree 

varied.  In WT cells, total effects were consistent with altered environmental interaction through 

a combination of decreased membrane fluidity, changes in protein confirmation, and increased 

production of extracellular matrix.  Cells of CC-400 exhibited changes in lipid composition 

dwarfed by the total loss in phospholipid amounts and the greatest degree of indication of 

metabolic loss, which suggested solubilization and removal of parts of the plasma membrane and 

some cell wall proteins, and different NAFC-induced effects on membrane fluidity than were 

found in WT cells.  Though speculative, the difference in internal structure – loss of eyespot and 

changes in chloroplast organization – suggested different internal physiological responses than 

WT or CC-3395 cells.  Exposure in CC-3395 cells appeared to have minimal influence on 

membrane fluidity or environmental uptake, though there was evidence of increased vesicle 

activity, possibly linked to increased excretion of substances taken from the environment (such 

as NAFCs), osmotic stress, or repair of the cell membrane.  Changes in TAGs, DAGs, and FFAs 
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were also less pronounced than WT or CC-400, suggesting that the changes in lipid metabolism 

were minor.  Similar vesicles and brightly staining bodies were observed in exposed CC-400 

cells, though they were not actively observed to be exported, suggesting that it responded to a 

similar stressor in a similar manner, and combined the responses of the WT and CC-3395.   

Overall, the presence of a cell wall appeared to be consistent with increased physiological 

stress and change.  The retention of cell wall layers W1 and W7 in CC-400 also appeared to 

potentiate toxicity, though in a different manner than the fully-walled WT cells.  This effect 

could be attributed to different interactions between NAFC compounds and a full cell wall in 

WT cells, or possibly to increased interaction with the cellular envelope in CC-400, especially if 

the loss of globular surface features visualized with SYPRO Orange indicated removal of the 

loosely bound framework of the W7 layer. Each of the three cell lines also had different 

phospholipid compositions under control conditions, suggesting their initial membrane fluidity 

was different; this might also have been a factor in NAFC toxicity.  Regardless of the root cause, 

the presence of a cell wall or cell remnants appeared to result in a variable but significant 

response to NAFC exposure.  Amongst the stress responses induced, NAFCs appeared to have 

the ability to induce modification of phospholipid membranes, lipid metabolism, and surface 

proteins.  
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CHAPTER 5 
5.0 GENERAL CONCLUSIONS AND DISCUSSION 

 

5.1   Completion of Research Objectives 

5.1.1   Objectives 1 and 2 

Determination of NAFC toxicity to wild type, fully-walled cells of Chlamydomonas 

reinhardtii.  Exposure to NAFCs resulted in a dose-dependent decrease in the rate of growth of 

growth of WT cultures.  Exponential growth was found even after exposure to 100 mgL-1 of 

NAFCs.  This was unexpected given that the environmentally relevant species, C. frigida, has 

been found to disappear from waters containing more than 10-20 mgL-1 NAFCs (Leung et al., 

2003).  

Determination of NAFC toxicity to the cell wall mutants CC-400 and CC-3395.  

Compared to WT cultures, both cell wall mutants were relatively tolerant to NAFC exposure.  

The growth rate of CC-400 was impacted only after exposure to the highest tested concentration 

of NAFCs, 100 mgL-1.  Even this exposure concentration failed to elicit a change in the growth 

rate of CC-3395. 

5.1.2   Objective 3 

Investigation of NAFC-induced physiological responses of wild type Chlamydomonas 

reinhardtii and its cell wall mutants CC-400 and CC-3395.  Observed physical changes varied 

by cell line, with WT and CC-400 cells exhibiting the greatest similarity, and CC-3395 cultures 

displaying only limited changes after exposure.  A pattern of change present in all lines is the 
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observed increase in cell size and degree of roundness, as well as an associated increase in the 

presence of vacuoles and granules in the cytoplasm and apparent cell swelling. 

The fully walled WT also had a change in growth form, with palmelloids and 

multicelluar clumps forming, the former held together by the remnant of the mother cell wall and 

the latter by increased amounts of exopolymer matrix.  Visualization of the cell surface with 

CLSM indicated a buildup of proteins, and examination with FTIR indicated a change in the 

protein confirmation of the total cellular protein pool.  There was evidence of decreased uptake 

of fluorescently labelled dyes after NAFC exposure, given the decrease in detail of internal 

membranes and proteins, and the sharp decrease in Nile Red staining neutral lipids was not 

correlated to a change in total amount of lipids.  There was, however, a decrease in the diversity 

of phospholipids present in cells exposed to NAFCs, primarily through loss of C16 unsaturated 

fatty acids, and an increased peroxidation index.  Cells also exhibited increased amounts and 

diversities of TAGs and 1-2 DAGs, and increased amounts of CEs.   

The cell wall mutant CC-400, retaining cell wall layers W1 and W7, exhibits some 

similar patterns of change.  There is a minor smoothing of surface protein features, and the same 

FTIR-observed change in the confirmation of cellular proteins.  There was no sharp change in 

the staining of internal cellular features with fluorescently labelled dyes, but there was an 

increase in the between-cell variation in uptake, and an increase in FM1-43 and SYPRO Orange 

staining bodies, though they were not observed to be actively excreted.  Variation was also 

present in chloroplast response, with some cells appearing to experience chloroplast 

disorganization, and all cells losing a visible eyespot.  The appearance of the cytoplasm changed 

markedly, with a loss of internal detail and failure to follow the shape of the cell.  Cells of CC-

400 exposed to NAFCs experienced a loss of almost half of their phospholipids.  Though there 
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was no change in the overall diversity of phospholipids, there was a change in the relative 

amounts of different phospholipids, as well as an increase in the number of double bonds 

present, as well as in the peroxidation index.  There was a loss of diversity in TAGs, CEs, and 1-

3 DAGS, and an increase in 18:0 1-2 DAG and in the overall diversity and abundance of FFAs. 

The cell wall mutant CC-3395, believed to be completely naked, exhibited only minor 

physiological changes in response to NAFC exposure.  In addition to the increased roundness 

and size seen in all lines, the increased vacuolization/presence of granules was most marked here 

as compared to WT and CC-400.  Visualization with the membrane stain FM1-43 allowed the 

observance of the production and active transport of secretory vesicles of some form.  The only 

lipid changes detected were minor increases in diversity in the form of the appearance of small 

amounts of 14:0 phospholipid, and increased TAG diversity. 

5.1.2   Objective 4 

Assessment of potential biomodification of NAFCs.  Changes in the NAFC mixture 

composition were observed after incubation with algal cultures.  These changes were specific to 

the algal line and DBE of individual NAFC species.  Changes to the composition of classical 

(O2) NAFCs were mediated by WT and CC-400 cultures.  Both removed all DBE 8 compounds 

from the media.  There was also an increase in DBE 1 after culturing with WT cells and a 

decrease in DBE 7 after culturing with CC-400.  Non-classical O2S compounds were much less 

specific, with all algae mediating an overall decrease and the decrease of individual DBEs of the 

O2S species.  Changes were also found in the relative abundance of O3:  O3, which also occurs in 

the nutrient media, had a decreased relative abundance in the control NAFC culture lacking 

algae, as well as in the non-NAFC algae-only control cultures.  However, in the flasks containing 

both algae and NAFCs, there was an increase in their relative abundance.  This change was 
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significant in CC-400 and CC-3395; there was a similar increase in WT media but the change 

was non-significant due to a high standard deviation at the start of the experiment. 

 

5.2   Synthesis of Research Data 

5.2.1   The Role of the Cell Wall in Toxicity and Dissipation 

In C. reinhardtii the presence of the cell wall appeared to play an important role in 

susceptibility to NAFC toxicity.  Though all lines tested exceeded the tolerance threshold of 10-

20 mgL-1 predicted by the environmentally relevant species, the fully walled WT cells were most 

strongly affected by NAFC exposure, with a reduction in growth rate found at the lowest 

exposure level (10 mgL-1), followed distantly by CC-400, which retains wall layers W1 and W7, 

and whose rate of growth was impacted at the highest level of exposure (100 mgL-1).  The 

second cell wall mutant, CC-3395, had a rate of growth unresponsive to NAFC exposure.  

Though the mechanisms behind this were unclear, various forms of evidence suggested that this 

difference in toxicity was linked to the presence of the cell wall.  In WT and CC-400 cultures, 

changes to the cell surface protein confirmation after NAFC exposure were indicated by changes 

in the FTIR AI/AII ratio; in addition, investigation via CLSM with SYPRO Orange showed a 

buildup of surface proteins in exposed WT cultures, and loss of surface protein features in CC-

400.  In WT cultures, the observed appearance of palmelloid cell balls was also suggestive of 

changes to protein confirmation and the inability to degrade the original mother cell wall and 

release the daughter cells. 

Furthermore, MS analysis of aqueous NAFCs indicated that only WT and CC-400 cells 

were able to remove classical (O2) NAFCs from solution, or modify their composition.  The high 

DBE of the compounds removed (DBE 8 for WT, DBE 7 and 8 for CC-400) also suggested the 

likelihood of sorption and physical removal.  The mutant CC-3395, believed to be completely 
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naked, had rate of growth unaffected by exposure even to 100 mgL-1 NAFCs, and was unable to 

remove classical NAFCs.  Changes to non-classic components of the mixture (O2S, O3) were 

much less specific, and all three algae appeared to reduce the presence of O2S compounds of all 

DBEs, a pattern potentially indicative of biometabolism or sorption.  An apparent increase in the 

relative abundance of O3 compounds was found in all strains (though it was non-significant in 

WT cells).  However, it was not possible to discern if this was a result of the transformation of 

NAFCs to secondary metabolites, or if it was due to metabolic algal O3 organic acids 

indistinguishable from NAFC O3 compounds. 

5.2.2   Changes to Membranes and Lipid Metabolism 

Exposure to NAFCs changed lipid and phospholipid composition in the two algal lines 

whose growth was affected by exposure.  WT cells showed the most dramatic change in 

phospholipid composition, losing a number of C16 unsaturated and C18 saturated phospholipids, 

which occurred as relatively minor components.  Combined with the increased diversity and 

amount of cholesterol esters present, this was suggestive of decreased membrane fluidity.  The 

changes in CC-400 phospholipid composition after NAFC exposure were primarily related to an 

overall loss of ~40% of the amount of phospholipids present per gram of dehydrated sample.  

Phospholipid diversity in CC-400 remained unchanged, and though there were changes in the 

relative abundance of individual phospholipids, an increase in the peroxidation index, and an 

increase in the number of double bonds present per gram of saturated and unsaturated 

phospholipids. However, the effect upon membrane fluidity was more difficult to ascertain than 

for exposed WT cells, as there was not the same straight forward loss of phospholipid classes 

known to increase membrane fluidity, and increase of cholesterol esters which act to stabilize the 

membrane.  The overall loss of phospholipids and cholesterol esters suggested losses from the 
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cell membrane, possibly due to solubilization of the membrane due to NAFC interactions.  There 

were no changes in the phospholipid composition of exposed CC-3395 cells, save for the 

appearance of small amounts of 14:0.   

All three lines exhibited changes in lipid metabolism; as expected, these were most minor 

in CC-3395, which only showed an increase in the diversity of TAGs.    WT and CC-400 also 

showed changes across 1-2 DAGs, 1-3 DAGs, TAGs, FFAs, and CEs, the specific changes 

varied between the two lines, indicating that the induced responses differed. 

5.2.3   Other Morphological Changes 

Exposure to NAFCs induced a variety of morphological changes in all algae, though 

many of these differed between algal lines.  Several changes were observed consistently across 

algae species, primarily indicators of osmotic stress or metabolic leakage.  Cell sizes increased 

with NAFC exposure, as did the degree of roundness.  A larger cytoplasmic space was observed 

between the chloroplast and cell membrane in exposed cells, as was an increase in the degree of 

vacuolization and the presence of granules.  In WT cells, these latter two changes were obvious 

only in images taken with visible light, rather than visible light and CLSM of FM1-43 and 

internal SYPRO Orange: NAFC-exposed WT cells appeared to exhibit decreased uptake of 

fluorescent dyes, most exemplified by the apparent disappearance of neutral lipids stained with 

Nile Red, but not found with FTIR or TLC techniques.  In addition to the formation of 

palmelloid cell balls, NAFC exposure also induced the production of large amounts of 

exopolymer matrix around individual cells and used to bind together large multi-cellular clumps. 

In contrast, CC-400 exhibited signs of cytoplasm loss, increased staining variability, loss 

of the eyespot, and in some cells, loss of chloroplast integrity.  Though combined with its sharp 

loss of phospholipid, these changes might have been expected to have a greater effect upon the 
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cell population than those changes observed in WT cells, this was not the case, as measured by 

decreased growth rate.  The loss of chloroplast integrity in some exposed cells, and eyespots 

from the entire culture, were also potentially indicative of internal loss exposure to organic 

solvents or other agents capable of denaturing proteins.  Exposed CC-400 cultures also shared 

some hallmarks of the one major change exhibited by CC-3395: increased active excretion. 

NAFC-exposed cultures of CC-3395 were observed to have higher rates of formation and 

active excretion of secretory vesicles.  It was unknown if these bodies were functioning in 

osmotic balance, removal of toxic compounds, or membrane repair.  Some of these same bodies 

were seen in NAFC-exposed CC-400, but in that line they were not witnessed in active 

excretion. 

5.2.4   Evidence Suggesting the Importance of Surfactant Interactions in Toxicity 

Though the precise mode of toxic action of NAs and NAFCs remains unknown, this work 

offers a strong suggestion that in C. reinhardtii surfactant interactions are important determining 

factors in toxicity.  Surfactant toxicities are incredibly hard to predict or to generalize; they 

depend upon the individual surfactant compound and species exposed.  Similar compounds can 

have extremely different effects upon the same species, and very similar species can react to the 

same compound in disparate ways.  As such, the response of these three algal strains to exposure 

to NAFCs would be expected to vary, along with their ability to remove NAFC compounds from 

solution; the different cell wall structures and membrane compositions would be expected to 

interact differently with the complex mix of surfactants and toxicants that make up the 

naphthenic acid fraction components.  The two main hallmarks of surfactant toxicity, however, 

are modification of surface proteins and their confirmations, and changes in membrane fluidity.  
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Both of these have been observed in C. reinhardtii exposed to NAFCs, in addition to evidence of 

osmotic stress or metabolic leakage, both also frequently caused by surfactant exposure.   

The linking of susceptibility to NAFC toxicity and cell wall presence would agree with the 

suggestion by Van Hamme et al. (2006) that protein binding may be more important in toxicity 

than membrane permeation.  Fully walled WT cells were most affected by NAFC exposure, as 

defined by decreased growth and reproduction even with exposure to 10 mgL-1, and exhibited 

high degrees of surface protein modification.  They also exhibited controlled changes in 

phospholipid membrane composition (likely indicative of decreased membrane fluidity) and 

environmental uptake.  Conversely, the cell wall mutant CC-400 exhibited changes indicative of 

minor modification to surface proteins, but lost ~40% of their phospholipids and exhibited the 

most severe signs of membrane permeabilization, organic solvent exposure, and metabolic 

leakage, but maintained their baseline rate of growth until exposure to 100 mgL-1NAFCs.  In 

contrast, the algal strain whose growth was not impacted by NAFC exposure, CC-3395, was 

believed to be completely naked, and exhibited none of these hallmarks of protein modification 

or modification of membrane structure.   

These findings were in contrast to the majority of studies on the role of the cell wall in 

toxicity (Barbosa et al., 2003; Macfie et al., 1994; Macfie and Welbourn, 2000; Maucourt et al., 

2002; Prasad et al., 1998), in which wall-less mutants were more susceptible to toxic insult, and 

were again suggestive of the importance of cell wall proteins in NAFC interaction and toxicity. 

5.2.5   The Overall Role of NAFCs in Toxicity to C. reinhardtii  

Under laboratory conditions, NAFCs were found to be much less toxic to C. reinhardtii 

than predicted by the NA tolerance of an environmentally relevant species, C. frigida, which 

evolved with thousands of years’ exposure to low levels of NAFC components.  Whereas C. 
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fridiga disappears from tailings ponds with NA contents greater than 10-20 mgL-1, C. reinhardtii 

was found to exhibit exponential growth even after exposure to 100 mgL-1 NAFC, and its cell 

wall mutants CC-400 and CC-3395 were found to be relatively unresponsive.  While possible 

that these differences were due to inter-species differences, this was more likely attributable to 

differences between laboratory and environmental exposure conditions.  It is possible that 

NAFCs do not act as the primary agent of toxicity in green algae similar to C. reinhardtii, or that 

their full impact can only be seen synergistically in action with other OSPW components.  Other 

compounds in OSPW may act synergistically with NAFC-induced stress: high salinity, pH stress, 

and oil products are known to increase the toxic impact of surfactants (Lewis, 1992).  Separately, 

the observed changes in cell wall and membrane structure, as well as changes in environmental 

interaction, would be expected to have impacts on environmental viability.  Finally, it is possible 

that the most ecologically relevant effects of NAFC exposure come after a certain threshold 

concentration, when the formation of palmelloid structures and multicellular clumps could 

simply result in physical removal of algae from the water column via settling. 

 

5.3   Future Work 

Though this work offers strong suggestions of the role of the cell wall and the importance 

of surfactant interactions in NAFC toxicity, there is still much to be done to elucidate the 

mechanisms of toxic action.  Future work should include attempts to ascertain if the patterns of 

response to exposure hold true for algal species native to the Athabasca region and found in the 

oil sands, or even simply for other species of green algae.  Ideally, a method for directly 

observing NAFC binding to proteins and membranes could be found that could be utilized at 

environmentally relevant concentrations. 
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One of the most important discoveries for mediation of toxicity of OSPW would be 

establishing which NAFC compounds exhibit the highest toxicity; this work indicates that there 

are very selective interactions between the class and structure of NAFCs and how they interact 

with algae.  It is possible that the selective removal of certain fragments of OSPW could result in 

a marked reduction in toxicity.  Similarly, further work is needed to figure out potential 

synergistic actions between NAFCs and salinity, pH, and metals.  With the indication that 

NAFCs may not act alone as primary agents of toxicity, it is possible that simple mediation of 

other stressors could again reduce the overall toxicity of OSPW.   

Finally, it is important that high resolution mass spectrometry be included in 

bioremediation strategies, when possible.  C. reinhardtii was capable of mediating changes in the 

NAFC mixture that would not have been detected using standard low resolution mass 

spectrometry, and the use of this technique should be helpful in identifying species capable of 

mediating biological transformation of NAFC mixtures.
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CHAPTER 7 
7.0 APPENDIX A: SIGNIFICANCE TABLES 

Table 7.1: One-way ANOVA for comparison of the rates of growth of wild type, CC-3395, and 
CC-400 under control conditions (0 mgL-1 naphthenic acid fraction components). n=3. 

ANOVA  
Growth  

  Sum of 
Squares df 

Mean 
Square F Sig.  

Between 
Groups 

2.376 2 1.188 200.521 .000 
 

Within 
Groups 

.036 6 .006 
    

 
Total 2.412 8        
       

Multiple Comparisons 
Growth: Tukey HSD 
Tukey HSD 

95% Confidence 
Interval 

(I) Algae (J) Algae 

Mean 
Difference 

(I-J) 
Std. 

Error Sig. 
Lower 
Bound 

Upper 
Bound 

CC-3395 1.24343* .06285 .000 1.0506 1.4363 WT 
CC-400 .79076* .06285 .000 .5979 .9836 
WT -1.24343* .06285 .000 -1.436 -1.0506 CC-3395 
CC-400 -.45267* .06285 .001 -.6455 -.2598 
WT -.79076* .06285 .000 -.9836 -.5979 CC-400 

CC-3395 .45267* .06285 .001 .2598 .6455 
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Table 7. 2: One-way ANOVA for comparison for growth rates of wild type Chlamydomonas 
reinhardtii after exposure to a dilution series of 0, 10, 20, 50, and 100 mgL-1 naphthenic acid 
fraction components. n=3. 

ANOVA   
Growth   

  Sum of 
Squares df 

Mean 
Square F Sig.   

Between 
Groups 

.980 4 .245 223.128 .000 
  

Within 
Groups 

.011 10 .001 
    

  
Total .991 14         
        

Multiple Comparisons 

Dependent Variable:Growth 

  95% Confidence 
Interval 

  (I) 
NAFC 

(J) 
NAFC 

Mean 
Difference 

(I-J) 
Std. 

Error Sig. 
Lower 
Bound 

Upper 
Bound 

10 .38557* .02705 .000 .2965 .4746 

20 .46936* .02705 .000 .3803 .5584 
50 .54677* .02705 .000 .4577 .6358 

0 

100 .78318* .02705 .000 .6942 .8722 

0 -.38557* .02705 .000 -.4746 -.2965 
20 .08379 .02705 .067 -.0052 .1728 
50 .16121* .02705 .001 .0722 .2502 

10 

100 .39761* .02705 .000 .3086 .4866 
0 -.46936* .02705 .000 -.5584 -.3803 

10 -.08379 .02705 .067 -.1728 .0052 
50 .07742 .02705 .097 -.0116 .1664 

20 

100 .31382* .02705 .000 .2248 .4028 

0 -.54677* .02705 .000 -.6358 -.4577 

10 -.16121* .02705 .001 -.2502 -.0722 
20 -.07742 .02705 .097 -.1664 .0116 

50 

100 .23640* .02705 .000 .1474 .3254 

0 -.78318* .02705 .000 -.8722 -.6942 
10 -.39761* .02705 .000 -.4866 -.3086 

20 -.31382* .02705 .000 -.4028 -.2248 

Tukey 
HSD 

100 

50 -.23640* .02705 .000 -.3254 -.1474 
10 0 -.38557* .02705 .000 -.4638 -.3074 

20 0 -.46936* .02705 .000 -.5475 -.3912 

50 0 -.54677* .02705 .000 -.6250 -.4686 

Dunnett 
t (2-
sided)a 

100 0 -.78318* .02705 .000 -.8614 -.7050 
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Table 7.3: One-way ANOVA for comparison for growth rates of Chlamydomonas reinhardtii 
cell wall mutant CC-400 after exposure to a dilution series of 0, 10, 20, 50, and 100 mgL-1 
naphthenic acid fraction components. n=3. 

ANOVA   
Growth   

  Sum of 
Squares df 

Mean 
Square F Sig.   

Between 
Groups 

.405 4 .101 10.797 .001 
  

Within 
Groups 

.094 10 .009 
    

  
Total .498 14         
        

Multiple Comparisons 

Dependent Variable:Growth 

  95% Confidence 
Interval 

  (I) 
NAFC 

(J) 
NAFC 

Mean 
Difference 

(I-J) 
Std. 

Error Sig. 
Lower 
Bound 

Upper 
Bound 

10 -.05833 .07903 .942 -.3184 .2018 
20 .01567 .07903 1.000 -.2444 .2758 
50 .03833 .07903 .987 -.2218 .2984 

0 

100 .40167* .07903 .003 .1416 .6618 

0 .05833 .07903 .942 -.2018 .3184 
20 .07400 .07903 .876 -.1861 .3341 
50 .09667 .07903 .739 -.1634 .3568 

10 

100 .46000* .07903 .001 .1999 .7201 
0 -.01567 .07903 1.000 -.2758 .2444 
10 -.07400 .07903 .876 -.3341 .1861 
50 .02267 .07903 .998 -.2374 .2828 

20 

100 .38600* .07903 .004 .1259 .6461 

0 -.03833 .07903 .987 -.2984 .2218 
10 -.09667 .07903 .739 -.3568 .1634 
20 -.02267 .07903 .998 -.2828 .2374 

50 

100 .36333* .07903 .007 .1032 .6234 
0 -.40167* .07903 .003 -.6618 -.1416 

10 -.46000* .07903 .001 -.7201 -.1999 

20 -.38600* .07903 .004 -.6461 -.1259 

Tukey 
HSD 

100 

50 -.36333* .07903 .007 -.6234 -.1032 

10 0 .05833 .07903 .870 -.1701 .2868 

20 0 -.01567 .07903 .999 -.2441 .2128 
50 0 -.03833 .07903 .965 -.2668 .1901 

Dunnett 
t (2-
sided)a 

100 0 -.40167* .07903 .002 -.6301 -.1732 
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Table 7.4:  One-way ANOVA for comparison for growth rates of Chlamydomonas reinhardtii 
cell wall mutant CC-3395 after exposure to a dilution series of 0, 10, 20, 50, and 100 mgL-1 
naphthenic acid fraction components. n=3. 

ANOVA   
Growth   

  Sum of 
Squares df 

Mean 
Square F Sig.   

Between 
Groups 

.980 4 .245 223.128 .000 
  

Within 
Groups 

.011 10 .001 
    

  
Total .991 14         
        

Multiple Comparisons 

Dependent Variable:Growth 

  95% Confidence 
Interval 

  (I) 
NAFC 

(J) 
NAFC 

Mean 
Difference 

(I-J) 
Std. 

Error Sig. 
Lower 
Bound 

Upper 
Bound 

10 .38557* .02705 .000 .2965 .4746 

20 .46936* .02705 .000 .3803 .5584 

50 .54677* .02705 .000 .4577 .6358 

0 

100 .78318* .02705 .000 .6942 .8722 
0 -.38557* .02705 .000 -.4746 -.2965 

20 .08379 .02705 .067 -.0052 .1728 
50 .16121* .02705 .001 .0722 .2502 

10 

100 .39761* .02705 .000 .3086 .4866 

0 -.46936* .02705 .000 -.5584 -.3803 

10 -.08379 .02705 .067 -.1728 .0052 
50 .07742 .02705 .097 -.0116 .1664 

20 

100 .31382* .02705 .000 .2248 .4028 

0 -.54677* .02705 .000 -.6358 -.4577 
10 -.16121* .02705 .001 -.2502 -.0722 

20 -.07742 .02705 .097 -.1664 .0116 

50 

100 .23640* .02705 .000 .1474 .3254 
0 -.78318* .02705 .000 -.8722 -.6942 

10 -.39761* .02705 .000 -.4866 -.3086 

20 -.31382* .02705 .000 -.4028 -.2248 

Tukey 
HSD 

100 

50 -.23640* .02705 .000 -.3254 -.1474 
10 0 -.38557* .02705 .000 -.4638 -.3074 

20 0 -.46936* .02705 .000 -.5475 -.3912 

50 0 -.54677* .02705 .000 -.6250 -.4686 

Dunnett 
t (2-
sided)a 

100 0 -.78318* .02705 .000 -.8614 -.7050 
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 Table 7.5: t values for independent two-tailed t-test (equal variances assumed) performed on 
absolute and relative phospholipid composition in wild type Chlamydomonas reinhardtii and its 
cell wall mutants CC-400 and CC-3395, as per Tables 4.2-4.5. n=3, df for all tests is (4). 

 t (Table 4.2)  t (Table 4.4)  t (Table 4.5) 
Wild Type  CC-400  CC-3395 Phospholipid 

Absolute %   Absolute %   Absolute % 
14:0 -- --  .529 .111  -19.2 -44.1 
16:0 -1.71 -2.30  5.29 2.86  -.078 .533 
16:1n-5 7.92 17.2  2.20 -.908  -2.67 -1.40 
16:1n-7 9.74 20.9  .561 .159  .265 .507 
16:2 13.7 31.2  1.29 -2.54  -.519 -.212 
16:3 -1.84 -3.001  .601 -2.51  -.476 -.231 
18:0 10.5 36.0  3.77 2.25  -1.92 -.662 
18:1n-9 -.013 1.40  6.30 1.72  .181 .433 
18:1n-7 .248 1.26  2.26 1.45  -1.50 .055 
18:2n-6 -1.54 -3.81  5.51 1.68  -.881 -.401 
18:3n-3 -1.64 -2.50   2.07 -3.01  -.874 -.393 
                 
          t (Table 4.3) 

     WT CC-400 
CC-
3395 

mg phosphlipid/g dry sample -1.18 6.62 -1.25 
Peroxidation Index -2.81 -2.39 -.308 
Double bonds/mg saturated phospholipid .760 -4.88 .134 
Double bonds/mg unsaturated phospholipid .240 -6.22 .513 
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Table 7.6: t values for independent two-tailed t-test (equal variances assumed) performed on 
lipid composition in wild type Chlamydomonas reinhardtii and its cell wall mutants CC-400 and 
CC-3395, as per Table 4.6. n=3, df for all tests is (4). 
 

  t (Table 4.6) 
   WT CC-400 CC-3395     WT CC-400 CC-3395 

Total -1.43 -1.19 1.85  Total -1.50 -3.42 1.32 

16:00 -1.43 .558 .857  16:00 -1.22 -2.10 1.13 

1-
2 

D
A

G
 

18:00 -- -2.91 2.06  16:1n-5 -- 5.05 -- 

      16:03 -- -5.13 -- 

Total -5.67 1.24 .300  18:00 -2.34 -.471 1.51 

16:00 -4.80 5.18 1.48  18:1n-7 -- -4.60 -- 

18:00 -3.96 -.663 -.926  18:2n-6 -- -5.84 -- 

18:1n-9 -5.04 5.20 --  

FF
A

 

18:3n-3 -- -6.02 -- 

18:2n-6 -5.02 -- --       

1-
3 

D
A

G
 

18:3n-3 -4.96 -- --       

           
Total -3.84 -.479 -.942  Total -3.00 2.30 .771 

16:00 -2.35 -.174 .258  16:00 -2.68 .845 .724 

18:00 -5.07 -2.51 -4.72  16:1n-7 -- 5.50 .625 

18:1n-9 -- 5.80 --  

C
E 

18:00 -3.19 3.27 .651 TA
G

 

18:2n-6 -- -- -5.89       
 


