
Analysis of
Generative Chemistries

Von der Fakultät für Mathematik und Informatik
der Universität Leipzig

angenommene

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

Doctor rerum naturalium
(Dr. rer. nat.)

im Rahmen eines binationalen Verfahrens
mit der Syddansk Universitet, Odense, Dänemark

im Fachgebiet
Informatik

vorgelegt
von Cand.Scient. Jakob Lykke Andersen

geboren am 27. August 1986 in Assens, Dänemark.

Die Annahme der Dissertation wurde empfohlen von:
1. Professor Dr. Jørgen Bang-Jensen (Syddansk Universitet, Odense,

Dänemark)
2. Professor Dr. Peter Dittrich (Universität Jena)

3. Professor Dr. Martin Middendorf (Universität Leipzig)

Die Verleihung des akademischen Grades erfolgt mit Bestehen der
Verteidigung am 19.11.2015 mit dem Gesamtprädikat summa cum laude.

Abstract

For the modelling of chemistry we use undirected, labelled graphs as
explicit models of molecules and graph transformation rules for modelling
generalised chemical reactions. This is used to define artificial chemistries
on the level of individual bonds and atoms, where formal graph gram-
mars implicitly represent large spaces of chemical compounds. We use a
graph rewriting formalism, rooted in category theory, called the Double
Pushout approach, which directly expresses the transition state of chem-
ical reactions. Using concurrency theory for transformation rules, we
define algorithms for the composition of rewrite rules in a chemically
intuitive manner that enable automatic abstraction of the level of de-
tail in chemical pathways. Based on this rule composition we define
an algorithmic framework for generation of vast reaction networks for
specific spaces of a given chemistry, while still maintaining the level of
detail of the model down to the atomic level. The framework also al-
lows for computation with graphs and graph grammars, which is utilised
to model non-trivial chemical systems. The graph generation relies on
graph isomorphism testing, and we review the general individualisation-
refinement paradigm used in the state-of-the-art algorithms for graph
canonicalisation, isomorphism testing, and automorphism discovery.

We present a model for chemical pathways based on a generalisation
of network flows from ordinary directed graphs to directed hypergraphs.
The model allows for reasoning about the flow of individual molecules
in general pathways, and the introduction of chemically motivated rout-
ing constraints. It further provides the foundation for defining special-
ised pathway motifs, which is illustrated by defining necessary topolo-
gical constraints for both catalytic and autocatalytic pathways. We also
prove that central types of pathway questions are NP-complete, even for
restricted classes of reaction networks. The complete pathway model,
including constraints for catalytic and autocatalytic pathways, is imple-
mented using integer linear programming. This implementation is used
in a tree search method to enumerate both optimal and near-optimal
pathway solutions.

The formal methods are applied to multiple chemical systems: the
enzyme catalysed β-lactamase reaction, variations of the glycolysis path-
way, and the formose process. In each of these systems we use rule com-
position to abstract pathways and calculate traces for isotope labelled
carbon atoms. The pathway model is used to automatically enumerate
alternative non-oxidative glycolysis pathways, and enumerate thousands
of candidates for autocatalytic pathways in the formose process.

i

Selbständigkeitserklärung

Hiermit erkläre ich, die vorliegende Dissertation selbständig und ohne un-
zulässige fremde Hilfe angefertigt zu haben. Ich habe keine anderen als die
angeführten Quellen und Hilfsmittel benutzt und sämtliche Textstellen, die
wörtlich oder sinngemäß aus veröffentlichten oder unveröffentlichten Schriften
entnommen wurden, und alle Angaben, die auf mündlichen Auskünften beru-
hen, als solche kenntlich gemacht. Ebenfalls sind alle von anderen Personen
bereitgestellten Materialen oder erbrachten Dienst- leistungen als solche ge-
kennzeichnet.

Tokyo, den 13. April 2016

Jakob Lykke Andersen

ii

Contents

List of Figures v

List of Tables vii

Preface viii
Contributory Publications . viii
Acknowledgements . viii

1 Introduction 1
1.1 Notation . 4
1.2 First-order Terms and Unification 5

I Graphs and Molecule Modelling 9

2 Molecules as Labelled Graphs 11
2.1 Molecule Model . 11
2.2 Representation as String- and Term-labelled Graphs 15

3 Graph Morphisms and Structure Comparison 17
3.1 Labelled Graph Morphisms . 18
3.2 Representational Equality . 19
3.3 Algorithms and Complexity . 20

4 Graph Canonicalisation 22
4.1 Preliminary Definitions . 24
4.2 The Core Algorithm . 26
4.3 Algorithm Variations and Search Tree Pruning 31

5 External Molecule Representation 37
5.1 SMILES . 37
5.2 InChI . 47

II Graph Transformation and Chemical Reactions 51

6 The Double Pushout Approach 53
6.1 Introduction to Category Theory 53
6.2 Transformation Rules and Derivations 57
6.3 Labelled Graph Transformation 59

iii

Contents

6.4 Representation of Transformation Rules 60
6.5 Chemical Graph Transformation 61

7 Composition of Transformation Rules 65
7.1 Classes of Composition . 66
7.2 Binding, Unbinding, and Identification of Graphs 71
7.3 Enumeration of Partial and Full Compositions 73
7.4 Derivation by Repeated Graph Binding 74

IIIChemical Reaction Networks 77

8 Reaction Networks as Directed Hypergraphs 79
8.1 Basic Definitions . 80
8.2 Stoichiometric Matrices . 81

9 Network Generation 83
9.1 Derivation Graphs . 83
9.2 Rule Application on Collections of Graphs 84
9.3 Language Specification . 85

10 Pathways 95
10.1 Model Description . 96
10.2 Implementation using Integer Linear Programming 106
10.3 Computational Complexity . 108
10.4 Comparison to Existing Methods 115

IVApplications 121

11 Atom Tracing 123
11.1 Computing Atom Traces . 123
11.2 The β-lactamase Mechanism . 124

12 The Formose Reaction 129
12.1 Autocatalytic Pathways . 130
12.2 Product Stabilisation by Borate 132
12.3 Carbon Tracing . 137

13 The Glycolysis Pathway 141
13.1 Carbon Tracing the EMP and ED Pathways 141
13.2 Enumeration of Non-oxidative Pathways 144

14 Solving the Catalan Game 153

iv

15 Summary and Future Work 157
15.1 Modelling of Stereochemistry 158
15.2 Realisable Pathways and Atom Tracing 160
15.3 Structural Pathway Constraints 162

Appendices 165

A MedØlDatschgerl 167

Bibliography 171

List of Figures

1.1 Representation of the term f(g(X, a), h(X)) in a term heap 7

2.2 Visualisation schemes for molecules 14
2.3 Modelling of aromatic compounds 14

3.1 Illustration of graph morphisms 18

4.1 Permutation of graphs . 22
4.2 Partition refinement . 27
4.3 Vertex individualisation . 29
4.4 A search tree of ordered partitions used for graph canonicalisation 30
4.5 Abastract depiction of all permutations of a graph 32

5.1 Examples of conversion of non-aromatic compounds in SMILES . 39
5.2 A grammar for simplified SMILES strings 40
5.4 A molecule needing multiple ring-closures in SMILES 42
5.5 Counterexamples for CANGEN . 46
5.6 Example of shared hydrogens in InChI 48

6.1 Commutative diagram for the definition of a pushout 54
6.2 Illustration of graph pushouts and non-pushouts 55
6.3 Commutative diagram for the definition of a pullback 56
6.4 Illustration of graph pullback and non-pullbacks 56
6.5 Pushouts in the category of simple graphs 57
6.6 Commutative diagram for a derivation in the DPO formalism . . . 58
6.7 Example of a derivation using labelled graphs 59
6.8 Illustration of DPO rules we do not represent 60
6.9 Example of rule representation as a pushout object 61

7.1 An example of partial application of a graph transformation rule . 66
7.2 Commutative diagram for general rule composition 67

v

List of Figures

7.3 Illustration of parallel rule composition 67
7.4 Illustration of full rule composition 68
7.5 Illustration of partial rule composition 70
7.6 Illustration of general rule composition 71
7.7 Commutative diagram for graph binding 72
7.8 A match matrix used for enumerating partial rule compositions . . 73

8.1 Visualisation scheme for directed hypergraphs and reaction networks 79

9.1 Example of two steps of rule application 85
9.2 Example of a parallel strategy 87
9.3 Example of a sequence strategy . 88
9.4 Generation of isomers using a repetition strategy 90
9.5 Graphs and rules for the example of the semantics of revive strategies 91
9.6 Example of the semantics of revive strategies 91

10.1 Example of network extension with I/O edges 97
10.2 Simplification of flows . 99
10.3 Example of a flow with meaningful 2-cycles 100
10.4 Example of an expanded hypergraph 102
10.5 The example flow from Figure 10.3 in the expanded network . . . 102
10.6 A simplified network with an overall autocatalytic flow 103
10.7 A misleading overall autocatalytic flow 103
10.8 Network construction for the reduction from the 3-partition problem110
10.9 Expansion edge used by the reduction from the 3-partition problem113
10.10 Non-totally unimodular stoichiometric matrices 116
10.12 Reduction from the independent set problem 118

11.1 Transformation rules for the β-lactamase mechanism 125
11.2 Alternate transformation rules for the β-lactamase mechanism . . 126
11.3 Atom traces for the β-lactamase mechanism 126

12.1 Starting graphs for the formose chemistry 129
12.2 Transformation rules for the formose chemistry 130
12.3 The formose cycle . 131
12.5 Triggering of pathways by molecule borrowing 133
12.6 Molecules and reaction patterns for borate inhibited formose . . . 134
12.7 Borate inhibited formose network 136
12.8 Detailed mechanism for suggestions for the formose reaction . . . 138
12.9 Carbon atom traces for one round of the formose process 139
12.10 One of six possible overall rules for the formose reaction 140

13.1 Transformation rules for the glycolysis pathways EMP and ED . . 143
13.2 More transformation rules for the glycolysis pathways EMP and ED144
13.3 Overall rules for the EMP and ED glycolysis pathways 145

vi

13.4 Carbon trace of the EMP and ED glycolysis pathways 146
13.6 Transformation rules for the non-oxidative glycolysis chemistry . . 148
13.9 A candidate for a non-oxidative glycolysis pathway 151
13.10 The shortest non-oxidative glycolysis pathway 152

14.1 Solution path for level 1 of the Catalan game 153
14.2 Transformation rules for solving the Catalan game 155
14.3 Level 25 of the Catalan game . 156

15.1 Encoding of tetrahedral geometry 159
15.2 Example of isomorphism testing for the tetrahedral geometry . . . 159
15.3 Petri net analysed non-oxidative pentose phosphate pathways . . . 161
15.4 Suggested structural flow motifs for (auto)catalytic pathways . . . 162
15.5 Schematic of a chemical hypercycle 163

A.1 Grammar for rule composition expressions in PyMØD 168

List of Tables

2.1 Partial table of chemically atom neighbourhoods 12
2.4 Encoding and visualisation schemes for chemical bonds 16

5.3 Normal valences for the organic subset of elements in SMILES . . 41

10.11 A pathway with maximum production of AcP from 1 X5P 117

12.4 Number of autocatalytic pathways in the formose chemistry 132

13.5 Transformation rules for the non-oxidative glycolysis chemistry . . 147
13.7 Overview of number of non-oxidative glycolysis pathways 150
13.8 Subpathways for shortening the non-oxidative glycolysis pathway . 151

A.2 List of rule composition operators in PyMØD 168

vii

Preface
This thesis was jointly supervised (cotutelle) by Daniel Merkle, University
of Southern Denmark, Denmark and Peter F. Stadler, Leipzig University,
Germany. The research has been conducted also in close collaboration with
Christoph Flamm, University of Vienna, Austria.

The implementation of the methods in this thesis was initially based on the
Graph Grammar Library (GGL) [Mann et al. 2013a, Mann et al. 2013b], but
has turned into a new software package called MedØlDatschgerl. As of March
2016, part of this package has been publicly released as MedØlDatschgerl 0.5
[Andersen 2016, Andersen et al. 2016].

Contributory Publications

This thesis is based primarily on the following publications and manuscripts.

• Jakob L. Andersen, Christoph Flamm, Daniel Merkle and Peter F.
Stadler. Inferring chemical reaction patterns using rule composition in
graph grammars [Andersen et al. 2013b], see Chapter 7.

• Jakob L. Andersen, Christoph Flamm, Daniel Merkle and Peter F.
Stadler. 50 Shades of Rule Composition: From Chemical Reactions to
Higher Levels of Abstraction [Andersen et al. 2014b], see Chapters 7
and 11 and Sections 12.3 and 13.1.

• Jakob L. Andersen, Christoph Flamm, Daniel Merkle and Peter F.
Stadler. Generic Strategies for Chemical Space Exploration [Andersen
et al. 2014c], see Chapters 9 and 14

• Jakob L. Andersen, Christoph Flamm, Daniel Merkle and Peter F.
Stadler. Chemical Transformation Motifs — Modelling Pathways as
Integer Hyperflows [Andersen et al. 2015a], see Chapter 10.

• Jakob L. Andersen, Christoph Flamm, Daniel Merkle and Peter F.
Stadler. Maximizing output and recognizing autocatalysis in chemical re-
action networks is NP-complete [Andersen et al. 2012], see Section 10.3.

Additional related material can be found in [Andersen et al. 2014a, Andersen
et al. 2013a, Andersen et al. 2015b].

viii

Acknowledgements

Acknowledgements
A large number of people have in some way contributed to making my time
as a Ph.D. student great. First and foremost an enormous thanks to Daniel
Merkle for a lot of things, but above all for being an awesome advisor. I also
sincerely thank Christoph Flamm and Peter F. Stadler for all the discussions
and supervision (whether it be official or unofficial).

Throughout most of 2013 I was at the university in Leipzig and in the
spring of 2014 I was at the university in Vienna, and I wish to thank the
friendly people in both places for making my visits an enjoyable experience.
I also want to thank all of IMADA, and especially my former and current
office mates, for a wonderful environment. For proofreading I would also like
to thank Uffe Thorsen, Rojin Kianian, and Anders Skovgaard Knudsen. Last
but not least I am grateful for all the help and support from my family and
friends.

ix

Chapter 1

Introduction

The modelling of chemical systems is the basis for many areas of research, for
example the study of living organisms [Savinell & Palsson 1992], the efficient
synthesis of drugs [Grzybowski et al. 2009], and the question of the origin of
life [Ruiz-Mirazo et al. 2014]. Chemical reaction networks are central com-
ponents in this modelling, and they are available from various databases such
as KEGG [Kanehisa et al. 2012] that focus on metabolic networks. Each of
the databases are however very concrete models of certain chemistries, e.g.,
limited to the metabolism of specific organisms. If we wish to study chemical
systems outside their scope, for example hypothetical prebiotic chemistries,
we must have different formalisms to construct the networks we are interested
in.

Several formalisms for working with artificial chemistries have been de-
veloped [Dittrich et al. 2001], e.g., using rewriting techniques on terms or
strings to generate molecules using a rule-based approach. Though, in many
of the formalisms the molecules are modelled as quite abstract entities, such as
λ-expressions. It is common to model molecules as undirected graphs, where
atoms and bonds are directly expressed as vertices and edges. In fact, the term
“graph” first appeared in the context of describing molecules [Sylvester 1878].
Formal models for the transformation of graphs has been developed since the
early 1970s [Corradini et al. 1997], but it is only recently that graph rewrit-
ing and the modelling of chemistry have been combined to define artificial
chemistries [Benkö et al. 2003]. The use of graph rewriting allows for specific-
ation of chemistries as concise grammars, from which vast chemical reaction
networks can be generated. In [Yadav et al. 2004] the potential of a chem-
ical graph transformation system was highlighted, and libraries has since been
developed [Mann et al. 2013a, Rosselló & Valiente 2005].

In this thesis we investigate the details of using graph grammars for mod-
elling chemistry, where we develop the fundamental methods necessary to con-
struct a comprehensive chemical graph transformation system. While graphs
are commonly modelled as molecules, there is no common model, and widely
used formats such as SMILES [Weininger 1988] and InChI [Heller et al. 2015]
do not even have a published formal specification for the specific models they
use. We define a simple molecule model, suitable for generative chemistries,
and briefly contrast it with the published material on the SMILES and InChI
models. With the graph grammar approach and the formal molecule model
we define a framework for automatic generation of large reaction networks for

1

1. Introduction

spaces within given chemistries.
A reaction network, whether it be from a database or automatically gener-

ated from a graph grammar, simply represents the set of potential molecules
and reactions in a chemical system. Several computational methods have
been developed for analysing the topology of such networks, e.g., by find-
ing different notions of chemical pathways. Well-known examples of pathway
models are Flux Balance Analysis (FBA) [Orth et al. 2010], Elementary Flux
Modes (EFM) [Schuster et al. 2000], and Extremal Pathways (ExPa) [Klamt &
Stelling 2003]. However, EFM and ExPa only characterises certain basic path-
ways and while FBA can represent general pathways it uses real valued flux
vectors which can not be used for low-level reasoning of the flow of molecules,
without fundamentally changing the method. We introduce a comprehensive
general pathway model that allows for this type of reasoning, and we make a
detailed comparison to FBA. This mechanistic reasoning of the molecule flow
in our model can be extended to the atomic level when the networks are gener-
ated with graph grammars, making it even possible to trace individual atoms
throughout pathways. The methods presented here thus provide a foundation
for a computational counterpart to the isotope labelling experiments from the
wetlab [Sauer 2006, Zamboni 2011].

Certain pathways indicate self-replicating behaviour, i.e., autocatalysis
[Bissette & Fletcher 2013], which in particular is interesting when studying
living systems or prebiotic chemistries [Eschenmoser 2007a]. Autocatalytic
subsystems has even been hypothesised to be a key part of the origins of life
[Kauffman 1995]. In our pathway model we introduce necessary topological
constraints for pathways to be considered autocatalytic. This is the first step
towards automatic characterisation of pathways that implement higher levels
of organisation, such as chemical hypercycles [Eigen & Schuster 1977].

Overview

The thesis is arranged into four parts; the first three parts contains the main
description of algorithms and models of chemistry. In the fourth part we
illustrate how the methods can be applied to analyse chemical systems.

Part I: Graphs and Molecule Modelling In Chapter 2 we elaborate
on this issue and define a specific molecule model based on labelled graphs.
An integral part of graph transformation is to perform pattern matching on
graphs (monomorphism enumeration) and decide when two graphs represent
the same molecule (graph isomorphism). In Chapter 3 we introduce the form-
alisations of these two problems, and briefly review the known algorithms for
solving them. Further, in Chapter 4 we describe an algorithmic framework
for finding symmetries and deriving canonical representations of graphs. In
cheminformatics there are multiple interchange formats for molecules of which
SMILES and InChI are prominent examples. As the formats are essential for

2

precise communication of data we briefly describe the two formats and the
lack of formality in their published descriptions.

Part II: Graph Transformation and Chemical Reactions The formal
graph rewriting approach we use, called the Double Pushout (DPO) approach,
is based on category theory. In Chapter 6 we introduce basic elements of cat-
egory theory and define a variation of the DPO approach, suitable for model-
ling chemistry. Contrary to the usual setting of rewriting where a single object
is transformed into another object, the chemical rewriting requires rewriting
of a collection of objects in order to model the merging and splitting of mo-
lecules. The formal description of rewriting with chemical graph grammars is
described in Section 6.5. For working with transformation rules, e.g., to cre-
ate efficient algorithms we in Chapter 7 define methods for composing rules
in a chemically intuitive manner. We then use rule composition to define an
alternative method for transforming graphs.

Part III: Chemical Reaction Networks In Chapter 8 we introduce ba-
sic terminology for chemical reaction networks as modelled by directed multi-
hypergraphs, and discuss the ambiguities of defining paths and cycles in hy-
pergraphs. Chapter 9 builds on Part II, by defining an algorithmic framework
for computing with graph transformations and the simultaneous generation
of chemical reaction networks. In Chapter 10 we describe a general model
for chemical pathways. An integer linear programming formulation of the
pathway definition is presented, and we prove that certain pathway queries
are NP-complete. In Section 10.4 we compare our pathway model with Flux
Balance Analysis.

Part IV: Applications The combination of generative chemistries on an
atomic level and the inference of pathways gives the potential for in silico
simulation of isotope labelling experiments. In Chapter 11 we describe the
first step towards this goal, where we use rule composition to trace atoms
through a sequence of transformations. The method is in the same chapter
used on an enzyme catalysed multi-step reaction, while we in the following
chapter use it in sugar chemistry and on variations of a metabolic pathway. A
model of the formose process is analysed in Chapter 12, where we enumerate
autocatalytic cycles, calculate carbon traces, and model the borate inhibited
chemistry. In Chapter 13 we analyse the carbon traces of two variations of the
glycolysis pathway, and enumerate alternative non-oxidative pathways. As an
illustration of the versatility of our methods we apply them to a non-chemical
graph transformation game in Chapter 14.

The modelling frameworks and algorithms in this thesis have been implemen-
ted in a software package. In Appendix A we briefly outline the features of

3

1. Introduction

this software. It is currently in preparation for release as an open source pro-
ject. Finally, in Chapter 15 we discuss future extensions of the work presented
in this thesis.

1.1 Notation

In the following sections we introduce notation that will be used throughout
the thesis. Additional notation is introduced as needed.

1.1.1 Multisets

Since we need to use both normal sets and multisets we introduce the following
notation for multisets. When constructing a multiset we use double curly
brackets (i.e., {{. . . }}) to distinguish them from normal set constructors, {. . . }.
We use |Q| to denote the cardinality of Q that include duplicate objects.
In iteration contexts we introduce a multi-membership operator, ∈m, that
yields all elements of a multiset. Thus, the cardinality function could be
defined as |Q| =

∑
q∈mQ 1. For single element q we use mq(Q) to denote the

number of occurrences of q in Q, which can also be described as mq(Q) =
| {{a ∈m Q | a = q}} |.

1.1.2 Graphs

An (un)directed graph G = (V,E) is an ordered pair of the vertex set V and
the edge set E ⊆ V × V . For multigraphs the edge collection E is a multiset.
We may refer to the vertices as VG and similarly for the edges as EG.

For a directed graph G = (V,E) and an edge subset E′ ⊆ E we use δ+
E′(v)

(respectively δ−E′(v)) to denote the subset of out-edges (in-edges) of vertex v
contained in E′. If G is a multigraph the return value of δ+ (δ−) is still a set
of edges, and not a multiset of edges. When E′ is the complete edge set the
simpler notation δ+(v) and δ−(v) is used.

Vertex degrees are written with “d” instead of “δ”, i.e., d+
E′(v) and d−E′(v)

for out- and in-degrees of vertices in directed graphs, and dE′(v) for undirected
graphs. For directed graphs we also use dE′(v) = d+

E′(v) + d−E′(v).
For a vertex v ∈ V and a vertex subset V ′ ⊆ V we use d(v, V ′) to denote

the degree of v restricted to adjacent vertices in V ′.

1.1.3 Chemical Reactions

A chemical reaction is a transformation of one collection of molecules into
another, e.g., transforming 2 G3P and 1 H2O into 1 F6P and 1 Pi. We can
formally say that a reaction is an ordered pair (E,P) of multisets of molecules,
e.g., ({{G3P,G3P,H2O}} , {{F6P,Pi}}). We call the molecules in E educts and

4

1.2. First-order Terms and Unification

those in P products. Reactions are usually written as chemical equations,
instead of using the multiset notation, e.g.,

2 G3P + H2O −→ F6P + Pi

1.2 First-order Terms and Unification
In generic models of (abstracted) chemistry we find it useful to label graphs
with not just character strings but with variables and more complex struc-
tures. For the encoding of such structures we use first-order terms in the style
known from Prolog, and the associated algorithm techniques such as syntactic
unification. General material on logic programming and Prolog can be found
in [Nilsson & Maluszynski 1995], and for various types of unification see, e.g.,
[Baader & Snyder 2001] and [Knight 1989]. In the following we briefly state
the definitions and terminology needed for the following chapters.

Let F denote a set of functor symbols and V a set of variable symbols.
The set of first-order terms T (F ,V) is then defined as the smallest set such
that:

• all variables are terms, i.e., V ⊆ T (F ,V),

• and for all arities n ∈ N0, functor symbols f ∈ F , and terms t1, . . . , tn ∈
T (F ,V), we have f(t1, . . . , tn) ∈ T (F ,V)

A substitution σ is a mapping {v1 7→ t1, . . . , v|σ| 7→ t|σ|} of variables to
terms. It can be applied to a term t by replacing all occurrences of each vi
in t with the corresponding term ti. In short we write the application of a
substitution as σ(t). If a substitution only maps variables into variables such
that it is a bijection, then it is called a renaming. In algorithmic contexts we
also refer to a substitution as a set of variable bindings.

Between two terms t1 and t2 we use the following relations:

• Equality of t1 and t2 is written t1 = t2. For example f(X) = f(X), but
f(X) 6= f(Y) when X and Y are different variable symbols.

• t2 is at least as general as t1, written as t1 � t2 or t2 � t1, if there exist
a substitution σ such that σ(t2) = t1. For example, f(A,B) � f(X,X)
because the terms become equal when A and B are replaced with X in
the left term.

• t1 and t2 are isomorphic, written t1 ∼= t2, if both t1 � t2 and t2 � t1.
Equivalently, t1 ∼= t2 if there exists a renaming σ such that t1 = σ(t2).
Thus f(A,B) ∼= f(X,Y) and f(A,B) ∼= f(B,A), but f(A,B) 6∼= f(Z,Z).

• t1 and t2 are unifiable, written t1
u= t2, if there exist a substitution σ such

that σ(t1) = σ(t2). Such a substitution is called a unifier of t1 and t2.

5

1. Introduction

For example, a unifier for f(X, g(Y)) and f(Z,Z) is {X 7→ g(Y), Z 7→
g(Y)}.

The most general unifier (mgu) of two terms t1 and t2 is the unifier σ such
that for any other unifier σ′, we have σ(t1) � σ′(t1). That is, the unifier σ
produces the most general terms of all unifiers. For example, is σ′ = {X 7→
g(a), Y 7→ a, Z 7→ g(a)} is not the mgu of t1 = f(X, g(Y)) and t2 = f(Z,Z)
because there is another unifier σ = {X 7→ g(Y), Z 7→ g(Y)}, and σ(t1) =
f(g(Y), g(Y)) which is more general than σ′(t1) = f(g(a), g(a)).

Deciding if the three relations t1 ∼= t2, t1 � t2, and t1
u= t2 hold can be

seen as different levels of pattern matching with isomorphism for exact match-
ing, specialisation/generalisation for one-sided matching, and unification for
two-sided matching. Assuming we have an algorithm for computing the most
general unifier σ of t1 and t2, if it exists, we can from σ also see if the terms
are isomorphic by checking if σ is a renaming. A variant of such a unifica-
tion algorithm can also decide if t1 � t2 by performing the unification but
disallowing binding of variables in t2.

1.2.1 Implementation

We use first-order terms as labels on graphs, such that variables are shared
throughout the same graph object but disjoint from variables in other graphs.
Functor symbols are however globally shared, so for a graph G we have the
set of terms T (F ,VG). In our implementation we use the basic design of
the Warren Abstract Machine (WAM) [Warren & Center 1983], where we
associate a term heap Heap(G) with each graph G. For the full details of
term heaps and the WAM we refer to [Aït-Kaci 1991], and in the following we
only describe the basic features that we use.

A term heap is an array where each element is in one of three formats:

• f/n: a functor cell, indicating a term f(t1, t2, . . . , tn). The next n cells
represent the subterms t1, t2, . . . , tn.

• STR a: a pointer to a functor cell located at address a in the heap.

• REF a: a variable cell, pointing to an address a in the heap. If REF a
is located at address a, then the cell represents an unbound variable.
Otherwise, the cell represents a variable bound to the term at address
a.

Figure 1.1 shows an example of this term representation scheme. Note that
variable names do not exist in this scheme, and limiting variable scopes to in-
dividual heaps is thus trivially fulfilled. Labelling a graph with terms amounts
to associating addresses of terms in the heap with each vertex and edge.

For certain algorithms, e.g., subgraph matching, we need to bring the
terms from two graphs into the same scope before syntactic unification can

6

1.2. First-order Terms and Unification

1 g/2
2 REF 2
3 a/0
4 h/1
5 REF 2
6 f/2
7 STR 1
8 STR 4

Figure 1.1: Representation of the term f(g(X, a), h(X)) in a term heap, following
the design of the Warren Abstract Machine. The term is rooted at address 6.

proceed. For example, when finding a term-labelled graph monomorphism
m : G → H we merge Heap(G) and Heap(H) by letting a copy of Heap(H)
play the role of the heap in a WAM and let a copy of Heap(G) act as the
temporary register bank X in the same WAM (see [Aït-Kaci 1991]). After
unification the resulting heap and register bank, potentially with additional
variable bindings, is then used for the label mapping in the morphism m.

7

Part I

Graphs and Molecule
Modelling

Chapter 2

Molecules as Labelled Graphs
Molecules can be described in many different ways, depending on the specific
properties of interest. A common method is to describe molecules as graphs,
where vertices play the role of atoms and edges model chemical bonds. In this
chapter we first describe an abstract model of molecules as graphs, suitable for
generative chemistry. Even though this model may be adequate for the explicit
modelling of molecules in this work, we however do not limit the discussion of
methods to this model. We therefore next describe how the molecule model is
represented in the more general class of graphs labelled with first-order terms
or character strings. From a practical point of view, this enables abbreviation
of large uninteresting molecule fragments (e.g., in coenzyme A and ATP) into
smaller subgraphs with special labels. A generic modelling framework also
allows for easy encoding of higher-level systems, such as DNA computation
[Andersen et al. 2014a], or even systems without relation to chemistry.

2.1 Molecule Model

The choice of molecule model must be influenced by how it is going to be used.
In this work we use graph rewriting to instantiate reactions, which is done by
finding specific substructures of molecules and transform them independently
of the surroundings. A guiding principle for the model is therefore that chem-
ical properties must arise from locally encoded data, which in particular have
an effect on how aromaticity is modelled.

The model is also influenced by the fact that we already have a mechanism
in mind for specifying the change of a molecule. For example, we regard tau-
tomers as separate molecules because we can model their inter-conversions as
transformation rules, whereas, e.g., InChI as discussed in Section 5.2, instead
use a layered approach to represent the tautomers either as a single compound
or as multiple molecules.

We frequently need to represent substructures of molecules, as well as
proper complete molecules, but we rarely need to distinguish between the two
concepts. Therefore we use the following common definition, without lower
bounds on atom valences.

Definition 2.1 (Molecule). Let ΩB be the set of bond types {Single,Double,
Triple,Aromatic}, and ΩZ = {H,He,Li,Be,B,C,N,O, . . . ,Uuo} the set of
chemical symbols [Wieser et al. 2013]. A molecule is a labelled, connected,

11

2. Molecules as Labelled Graphs

Z Charge Valid neighbourhoods

H 0 {{Single}}
+1 {{}}

C 0 {{Single,Single,Single,Single}},
{{Single,Single,Double}}, {{Single,Triple}},
{{Double,Double}}, {{Single,Aromatic,Aromatic}},
{{Aromatic,Aromatic,Aromatic}}

N 0 {{Single,Single,Single}}, {{Single,Double}}, {{Triple}},
{{Aromatic,Aromatic}}, {{Single,Aromatic,Aromatic}}

+1 {{Single,Single,Single,Single}}
O −1 {{Single}}

0 {{Single,Single}}, {{Double}}
P 0 {{Single,Single,Single,Double}}

Table 2.1: Partial table of chemically valid multisets of incident bond types for
atoms with a given symbol and formal charge.

simple, and undirected graph G = (V,E, lV , lE), with lV : V → ΩZ × Z as
the function labelling vertices with a chemical element and a charge, and
lE : E → ΩB as the bond type function.

We have also omitted upper bounds on atom valences due to the com-
plexity of correctly defining such constraints. In the following chapters we see
that only the algorithms for inter-conversion with external molecule formats
(Chapter 5) require explicit neighbourhood constraints.

Even though we do not enumerate all chemical correct neighbourhoods
we have tabulated a subset of them in Table 2.1, and we informally refer to
a molecule as being complete if all vertices have a neighbour that a chemist
would consider valid. A molecule that is not complete is partial, which we also
refer to as a molecule fragment.

The molecule model also ignores the embedding of molecules in 3D space,
meaning it can be used to distinguish between structural isomers and but not
stereoisomers. However, it seems likely that the model can be extended with
stereochemical data (see Section 15.1). An introduction of stereochemical
properties to the molecule model would additionally entail a full specifica-
tion of the neighbourhood constraints, such that a complete molecule can be
formally defined.

2.1.1 Bond Types and Connectedness

We mostly consider biochemistry, and thus limit our model to the four bond
types in ΩB. The Single, Double, and Triple bonds are local bonds that

12

2.1. Molecule Model

can be said to consist of respectively 1, 2, and 3 pairs of electrons, while the
Aromatic bond is used for modelling the non-local aromatic property (see
Section 2.1.3).

The definition of a molecule uses normal undirected graphs, and it is there-
fore not possible to directly model three-centre bonds found for example in
the molecule diborane. However, such bonds could possibly be modelled by a
3-cycle of the participating vertices, using a new bond type.

We assume that any bonding is modelled as edges, which means that every
molecule is a connected graph. If we wish to consider the ions Na+ and Cl−
as a single compound, we would have to introduce a new bond type for ionic
bonds. We also assume that an atom never self-interact or interact with
another atom in multiple independent manners, which makes the molecule
graphs simple.

2.1.2 Notation and Visualisation

We adopt the usual chemical notation for charged atoms, i.e., N, N+, and
N2+, for a nitrogen atom with charge 0, +1, and +2, respectively. For visual-
isations of molecules we mostly follow the normal chemical schemes, though
we always depict aromatic bonds explicitly with a solid and a dashed line (see
also Table 2.4). This means that we do not use the Kekulé form of molecules
in figures, and thus Figure 2.3a and Figure 2.3b show two distinct molecules.
As usual in chemical depictions we may omit uncharged hydrogens with only
a Single bond as incident edge, and instead annotate the neighbour with an
‘H’ when a single such neighbour was omitted, or ‘Hk’ for k omissions. When
a vertex models an uncharged carbon we may depict it without the explicit
‘C’ label, and further if such a carbon vertex adheres to the neighbourhood
constraints in Table 2.1 we may omit depicting both the neighbouring hydro-
gens and the vertex label itself. Figure 2.2 shows an example of the resulting
four different depiction schemes for hydrogens and carbons.

2.1.3 Aromaticity

The definition of aromaticity is quite complicated, if such a definition even
exist [Stanger 2009]. However, aromaticity can be found in important bio-
chemical molecules, e.g., the nucleotides, and so it must be included in our
molecule model in some form. In the following we describe a simplified view
of aromaticity and various modelling issues.

When part of a compound is aromatic there are electrons that are delocal-
ised, and they can be said to participate in multiple bonds at the same time. A
classical example of an aromatic compound is benzene (see Figure 2.3a) where
the six carbon-carbon bonds in some sense are all hybrid single-double bonds.
Benzene, and other aromatic compounds, are often visualised as Kekulé struc-
tures which do not use a special aromatic bond type, but alternating single

13

2. Molecules as Labelled Graphs

C

N

C

N
C

C

C

O

N

C

ON

C

C

H

HH

H

H

H

H

H

H

H

(a)

C

N

N

O

N

ON

C

C

H

HH

H

H

H

H

H

H

H

(b)

CH3

N

CH

N
C

C

C

O

N

C

ON

CH3

CH3

(c)

CH3

N

N

O

N

ON

CH3

CH3

(d)

Figure 2.2: Visualisation of caffeine using different schemes for hydrogen and car-
bon atoms: (a) explicit hydrogens and carbons, (b) vertex labels for uncharged
carbons omitted, (c) hydrogens annotated on their neighbours, and (d) the usual
chemical depiction with both omitted carbon labels and special hydrogen an-
notation. It is assumed that carbon atoms without a label have a neighbourhood
conforming to Table 2.1.

C
H

CH

CH

C
H

CH

CH

(a)

C
H

CH

CH

C
H

CH

CH

(b)

O

C
H

C
H

CH

C
H

(c)

O

C
H

C
H

CH

C
H

(d)

Figure 2.3: The aromatic compounds benzene (a) and furan (c), visualised using
a special aromatic bond type (see Section 2.1.2). Commonly they are instead
visualised using their Kekulé structure, (b) and (d). Note that some compounds
have multiple Kekulé structures, such as derivatives of benzene.

14

2.2. Representation as String- and Term-labelled Graphs

and double bonds. The Kekulé structure for Benzene is shown in Figure 2.3b.
In terms of graph theory it could seem that finding a Kekulé structure can
be done by finding any maximum cardinality matching among the aromatic
bonds, assigning Double to the edges in the matching, and Single to the
remaining edges. However, a simple counterexample for this hypothesis is the
molecule furan, visualised in Figure 2.3c, where the vertex modelling oxygen
can not be incident to the matching.

The furan molecule also indicates that the opposite conversion, from a
Kekulé structure to explicit aromatic bonds may not be trivial, as we can
not simply search for ring systems with alternating single and double bonds.
Additionally, as cyclooctatetraene and cyclobutadiene illustrate, not all al-
ternating bond systems are aromatic. A widely use rule to avoid this problem
is Hückel’s rule where the number of certain electrons must satisfy a formula.
However, this rule does not work in general [Roberts et al. 1952]. Machine
learning methods has been developed [Mann et al. 2013a, Mann et al. 2013b]
for the prediction of aromaticity, though these naturally depend on an existing
database of compounds.

Double bonded atoms are usually closer together than single bonded atoms,
but in benzene all six carbon-carbon bonds have the same length. Addition-
ally, the reactivity for aromatic compounds is in general not the same as if
the compound was actually the Kekulé structure. Due to these behavioural
differences we chose to explicitly model aromaticity through the Aromatic
bond type. We therefore regard the Kekulé structures as different molecules
from their aromatic counterpart. As previously outlined we do not impose
valence constraints on the molecule model, and for aromaticity we likewise do
not decide the validity of how the aromatic bond type is used. An extension
of the model with stereochemical properties, Section 15.1, could potentially
give rise to more precise formal constraints for aromaticity.

2.2 Representation as String- and Term-labelled
Graphs

To allow for non-chemical models we generalise to the class of connected,
undirected graphs with first-order terms as labels on both vertices and edges.
We suggest two encoding schemes; the simple standard encoding which only
uses simple character strings, and the extended encoding which uses more
complex terms that allow for elaborate modelling.

2.2.1 Term Encoding

In the term encoding we explicitly denote atoms and bonds with functors,
such that they can be easily distinguished from non-chemical vertices and
edges during matching in mixed models. The chemical symbols and charges

15

2. Molecules as Labelled Graphs

Encoding

Bond String Term Visualisation

Single - bond(-)
Double = bond(=)
Triple # bond(#)
Aromatic : bond(:)

Table 2.4: Encoding and visualisation schemes for chemical bonds.

are additionally separated, making it possible to do general pattern matching
on the data.

An atom with chemical symbol z ∈ ΩZ and charge n ∈ Z is a vertex
with the label atom(z, n), where atom is a functor symbol, and each chemical
symbol and charge are distinct constants. Similarly is each bond mapped into
a term bond(b) for individual bond type constants b. The specific encoding is
shown in Table 2.4). Matching, for example, a nitrogen with any charge can
thus be done by searching for a vertex where the label unifies with atom(N,K),
for some free variable K.

2.2.2 String Encoding

Usually we do not need the flexibility offered by the term encoding, and we in-
stead use a simpler encoding scheme that maps all labels into simple character
strings. Bonds are encoded according to Table 2.4, while atoms are encoded
in the following manner, similar to the standard chemical notation:

• Atoms with charge 0 are encoded as the chemical symbol, e.g., Na as
Na.

• Atoms with charge +1 (resp. −1) are encoded as the uncharged version
with + (resp. -) appended, e.g., Na+ as Na+ and Cl− as Cl-.

• Let k be the charge of an atom with |k| > 1, the atom is then encoded
as the uncharged version with |k|+ (resp. |k|-) appended for k > 0 (resp.
k < 0). For example N2+ as N2+.

16

Chapter 3

Graph Morphisms and Structure
Comparison
One of the core operations during graph transformation is to find subgraphs to
transform. For chemical compounds this is similar to the problem of search-
ing for substructures. Another essential operation is to decide whether two
graphs actually contain the same information, e.g., deciding if two molecules
are duplicates of each other. In this chapter we first define different types of
graph morphisms, which can model relations between graphs, and secondly
we describe details of defining morphisms for graphs labelled with first-order
terms. Finally we briefly review the computational complexity of finding vari-
ous types of morphisms.

In this work we are mostly concerned with transforming and comparing the
graphs used for modelling molecules. The following definitions are therefore
simplified to suit the category of simple, undirected graphs, optionally with
labels. In the following definitions, let G = (VG, EG) and H = (VH , EH) be
two such graphs.

Definition 3.1 (Graph Morphisms). A graph (homo)morphism m : G → H
is a structure-preserving mapping of vertices and edges. That is if e = (u, v) ∈
EG then m(e) = (m(u),m(v)) ∈ EH . Furthermore (see also Figure 3.1)

• m is a monomorphism if it is injective: ∀u, v ∈ VG, u 6= v ⇒ m(u) 6=
m(v). When a monomorphism exists we may simply write it as G ⊆ H
or in the reverse order H ⊇ G.

• m is a subgraph isomorphism ifm is a monomorphism and (u, v) ∈ EG ⇔
(m(u),m(v)) ∈ EH .

• m is an isomorphism if it is a subgraph isomorphism, and is a bijec-
tion of the vertices. When an isomorphism exists we say G and H are
isomorphic and write it as G ∼= H.

• m is an automorphism if G and H refers to the same graph, and m is
an isomorphism. We say that m is the trivial automorphism when it is
the identity morphism idG.

In the following chapters we use detection of isomorphisms for discarding
duplicate graphs, and enumeration of monomorphisms for subgraph matching.

17

3. Graph Morphisms and Structure Comparison

G H

(a) A morphism.

G H

(b) A monomorphism.
G H

(c) A subgraph isomorphism.

G H

(d) An isomorphism.

Figure 3.1: Examples of the graph morphisms from Definition 3.1, visualised as
explicit vertex mappings in red. (a) a morphism which is not a monomorph-
ism, (b) a monomorphism which is not a subgraph isomorphism, (c) a subgraph
isomorphism which is not an isomorphism, and (d) an isomorphism.

A Note on Terminology

We have chosen the terms “monomorphism” and “subgraph isomorphism”, but
unfortunately the literature is not consistent in terminology [Conte et al. 2004].
Some authors use “subgraph isomorphism” to denote monomorphisms and
then “induced subgraph isomorphism” for what we call “subgraph isomorph-
ism”.

3.1 Labelled Graph Morphisms
To distinguish among vertices modelling different atom types, and edges mod-
elling different bond types, we label each vertex and edge with auxiliary data.
A labelled graph is a tuple G = (VG, EG, lVG , lEG), where (VG, EG) is the under-
lying graph, lVG : VG → ΩV is the function labelling vertices with elements from
some set ΩV , and lEG : EG → ΩE is the function labelling edges with elements
from some set ΩE . A graph morphism m : G→ H on labelled graphs induces
the label associations

AV (m) = {〈lVG(v), lVH(m(v))〉 | v ∈ VG}
AE(m) = {〈lEG(e), lVH(m(e))〉 | e ∈ EG}

Depending on the structure of ΩV and ΩE we can then define different kinds
of morphisms. For example, if the labels are character strings we simply
require that all the associated labels from the morphism are equal, i.e, s1 =
s2,∀(s1, s2) ∈ AV (m) ∪AE(m).

As a generalisation we label vertices and edges with first-order terms, and
direct equality of the terms is not always desired. Given two graphs G and
H labelled with first-order terms as defined in Section 1.2, and a morphism
m : G→ H. Let tG and tH be the aggregate terms

tG = assoc(lV (v1), lV (v2), . . . , lV (v|VG|),

18

3.2. Representational Equality

lE(e1), lE(e2), . . . , lE(e|EG|))
tH = assoc(lV (m(v1)), lV (m(v2)), . . . , lV (m(v|VG|)),

lE(m(e1)), lE(m(e2)), . . . , lE(m(e|EG|)))

for some arbitrary ordering of VG and EG, and a new functor symbol assoc.
If m is an isomorphism and tG ∼= tH , then G and H not only have the same
graph structure, but the labelling is the same, except for renaming of variables.
However, if m is a monomorphism we can define different levels of pattern
matching by checking if either tG ∼= tH , tG � tH , or tG

u= tH . In Chapter 6 we
describe how we transform graphs, and the initial step in the transformation is
to find a subgraph in the host graph to transform, i.e., to do pattern matching
with labelled graphs. Requiring tG ∼= tH can be interpreted as a check for exact
substructure, while tG � tH can be used to check if a pattern is less restrictive
than another. As noted in Section 1.2, deciding the relation � can be done
via one-sided unification. For transforming graphs we, as default, use the full
unification requirement, tG

u= tH , for matches.

3.2 Representational Equality

There is yet another relation between two graphs, which has relevance for
isomorphism detection. For two graphs G and H we say that they are repres-
entationally equal, G r= H, when they are represented in the exact same way.
For example, if G and H are stored as adjacency matrices then G r= H when
those matrices are equal. With adjacency lists we can similarly compare the
two lists of lists of vertices directly. For both representations we can clearly
decide equality in linear time of the size of the data structures. We extend the
notion of representational equality to labelled graphs in the natural manner,
where we further test the associated labels for representational equality in a
suitable manner.

Assume that G and H are represented as adjacency lists, and let the first
vertex of each graph be incident to both the second and the third vertex of
their corresponding graphs. In G this could be represented as 1: 2, 3, while
in H is could be represented as 1: 3, 2. The two graphs are therefore not
representationally equal, but as we already have an intrinsic total order of the
vertices we can sort the lists of incident edges. We say that an adjacency list
on this form is a globally ordered adjacency list.

When two graphs are representationally equal then they are necessarily
isomorphic, and a specific isomorphism can be constructed simply by mapping
vertices with the same index to each other. Note that we can then consider a
graph G and a graph G′ obtained by permuting the indices of G while changing
the underlying representation. If their representations are equal, then we have
found an isomorphism between G and G′, meaning that the permutation we
used to construct G′ represents an automorphism on G. In Chapter 4 we

19

3. Graph Morphisms and Structure Comparison

describe an algorithm for computing a canonical representation of a graph,
which uses permutations of indices. The canonical form can then be used
for subsequent isomorphism testing which can then be done only by checking
representational equality.

3.3 Algorithms and Complexity
For this work we are mostly interested in the problems of deciding graph iso-
morphism and enumerating monomorphisms. Additionally, we are interested
in the more specialised problem of deciding if a given graph is isomorphic to
any graph in a given set (see Chapter 9 for the context). For an overview of
algorithms for both exact and inexact graph matching see [Conte et al. 2004].

3.3.1 Monomorphism Enumeration

Given two graphs G and H it is in general NP-complete to decide whether just
a single monomorphism m : G→ H exists [Cook 1971]. For the restricted case
of planar graphs and fixed pattern G the problem can be solved in time O(n)
for n = |G| [Eppstein 1999]. All monomorphisms can even be enumerated in
time O(n+k), for k monomorphisms. However, we can not in general assume
that molecules are planar [III & Maggio 1981], and the algorithm may not
efficient in practice.

Due to availability and quality of implementation we use the VF2 al-
gorithm [Cordella et al. 2001, Cordella et al. 2004] implemented in the Boost
Graph Library [Siek et al. 2001]. The algorithm is a special variation of tree
search algorithms for enumeration of both monomorphisms, subgraph iso-
morphisms, and isomorphisms. It searches for morphisms by starting from
the empty partial morphism and then gradually extending it to a full morph-
ism. An overview of such algorithms can be found in [Solnon 2010], along with
a suggestion for a potentially faster variation than VF2. Benchmarks for the
family of VF2 algorithms can also be found in [Foggia et al. 2001], though only
for finding isomorphisms. VF2 is here compared to an algorithm employing
bit-vectors [Ullmann 1976], and recently the author has published an improved
algorithm [Ullmann 2011] where also specialised methods for molecular graphs
are considered.

3.3.2 Isomorphism Testing

Given two graphs G and H it is currently unknown if the problem of deciding
whether they are isomorphic can be done in polynomial time. Neither is
the problem known to be NP-complete. For graphs with bounded degree,
e.g., molecular graphs, the problem is however solvable in polynomial time
[Luks 1982]. The result is based on finding the automorphism group of graphs
efficiently.

20

3.3. Algorithms and Complexity

Many of the algorithms for monomorphism enumeration, e.g., VF2, can
also be used for deciding isomorphism, but for isomorphism testing there is
an additional class of algorithms based on canonicalisation algorithms. With
this technique the computational burden is in a pre-computation step on each
individual graph, and isomorphism checking can afterwards be done in lin-
ear time by checking representational equality (see Section 3.2). This is es-
pecially interesting during generation of reaction networks (see Chapter 9),
where we iteratively build a collection of non-isomorphic graphs. Each graph
in the collection is tested for isomorphism against all new candidates, and
pre-computing a canonical form seems desirable. In Chapter 4 we describe a
family of canonicalisation algorithms based primarily on [McKay 1981] and
[McKay & Piperno 2014b]. The SMILES notation [Weininger 1988] for mo-
lecules was originally published with an algorithm [Weininger et al. 1989] for
canonicalisation. However, as we illustrate in Section 5.1 this algorithm does
not work for all molecules in the sense that isomorphic molecules may be
assigned different SMILES strings.

In practice we use a combination of VF2 and the incorrect SMILES canon-
icalisation algorithm. During network generation (see Chapter 9) we check
isomorphism for molecules using SMILES, and afterwards we post-process
the graphs with VF2 to detect extraneous isomorphisms. For non-molecular
graphs we fall back to VF2. We have additionally made initial experiments
with a general purpose canonicalisation algorithm, described in Chapter 4.

21

Chapter 4

Graph Canonicalisation

The graph canonicalisation problem is about finding a canonical order of the
vertices in a given graph such that the order is the same no matter how the
vertices were ordered initially. As an example, consider Figure 4.1 where a
graph G has an initial ordering of the vertices specified by the shown indices.
If we reorder the indices of the vertices we can obtain, for example, G1 or G2
instead. We have not modified the graph structure so clearly G ∼= G1 ∼= G2,
but we have implicitly modified the representation of the graph. The globally
ordered adjacency lists of the graphs are shown below each graph, and we see
that G1 and G2 have equal adjacency lists, i.e., they are representationally
equal G1

r= G2. They are however representationally different from G.
We could now define a total order among adjacency lists and claim that

both G1 and G2 are “better” than G, e.g., because vertex 1 has fewer neigh-
bours in G1 than in G, and write G1

r
< G. How specifically the relation

r
< is

defined is unimportant for the sake of defining a canonicalisation algorithm,
but we assume that it defines a total order on the relevant class of graphs. If
the graphs are labelled (e.g., molecules) we assume the

r
<-relation takes the

labels into account.

1

4
3

2
G1

2

1
3

4
G

1

4
2

3
G2

π1 = (1 2 4)(3) π2 = (1 2 3 4)

1: 4
2: 3, 4
3: 2, 4
4: 1, 2, 3

1: 2, 3, 4
2: 1
3: 1, 4
4: 1, 3

1: 4
2: 3, 4
3: 2, 4
4: 1, 2, 3

Figure 4.1: Three isomorphic graphs represented as adjacency lists. The under-
lying indices of the vertices are shown, and the permutations π1 and π2 (in cycle
notation) describe the relationship between the indices of the graphs. From the
adjacency lists we see that G1 is representationally equal to G2, and represent-
ationally different from G. The permutation π′ = π−1

2 ◦ π1 = (2 3)(1)(4) thus
represents an isomorphism from G1 to G2.

22

In general for a graph G with n vertices we could theoretically enumerate
all reorderings of the vertices, i.e., n! graph permutations, and select any
of the graphs that are smallest according to

r
< and use it as the result of

canonicalisation. This is clearly a brute-force approach, which in practice
is infeasible. It is currently unknown for general graph classes whether a
polynomial time algorithm exists. The graph canonicalisation problem has
neither been proven NP-hard in general, but if

r
< is chosen to order graphs by

the lexicographical comparison of their adjacency matrices, then the problem
of the finding a smallest graph is NP-hard [Babai & Luks 1983].

In this chapter we describe the individualisation-refinement paradigm,
which is the basis of the currently fastest practical algorithms for graph ca-
nonicalisation, and the related problem of finding the automorphism group
of a graph. The paradigm is additionally the basis of the algorithms used
for canonicalisation in the chemical molecule formats SMILES and InChI (see
Chapter 5). A selection of fast general algorithms are listed below, with ref-
erences to descriptions of them.

• nauty [McKay 1981, Hartke & Radcliffe 2009, McKay & Piperno 2014b]

• Traces [Piperno 2008, McKay & Piperno 2014b]

• saucy [Darga et al. 2008, Katebi et al. 2010]

• bliss [Junttila & Kaski 2007]

A short overview of the core ideas is provided by [Hartke & Radcliffe 2009] and
[McKay & Piperno 2014a], while the full mathematical details can be found in
[McKay 1981], and parts of it in a revised version in [McKay & Piperno 2014b].
The paper [Piperno 2008] notably also includes detailed illustrated examples
in its descriptions. The intention in this chapter is to give an unified intuitive
understanding of the algorithmic framework, though without the proofs of
correctness which can be found in [McKay 1981]. In our description we aim
at precisely separating the core of the algorithm from the heuristics used for
optimisation.

Throughout we denote the input graph as G = (V,E) where the vertex
set is the set of integers V = {1, 2, . . . , n}. We generally use the variables
u and v to refer to arbitrary vertices, but note that for ease of notation we
also use v1, v2, . . . , vk for an arbitrary sequence of vertices. That is, vi is not
necessarily the vertex with index i, but simply the ith vertex in the context
of where it is used.

The graph may be directed or undirected, and may be labelled or not. We
assume that a relation

r
< is given that induces a total order on the graph class,

such that the brute-force strategy described in the beginning correctly gives
a canonical form. The relation must thus include comparison of vertex and

23

4. Graph Canonicalisation

edge labels when relevant. In Section 4.3.1 we describe how the labels can be
exploited to potentially speed up a canonicalisation algorithm.

The overall idea is to start the algorithm by assuming all vertices are indis-
tinguishable, and then iteratively use local information, e.g., vertex degrees,
to partition the vertices and order them. If we reach a point where we can no
longer refine the partitioning of the vertices, and some vertices are still indis-
tinguishable, then we forcibly split a partition and again use local information
for further refinement. There may be multiple choices when forcibly splitting
a partition so we construct a search tree that represents all the choices.

4.1 Preliminary Definitions

4.1.1 Ordered Partitions

For representing an intermediary result of the algorithm we use an ordered
partition of V . It is a sequence of non-empty sets π = (V1, V2, . . . , Vr) such
that V1, V2, . . . , Vr forms a partition of V , i.e.,

⋃
1≤i≤r Vi = V and ∀1 ≤ i <

j ≤ r : Vi ∩ Vj = ∅. Each individual Vi is called a cell, and cells that only
contain 1 vertex are called trivial cells. When all cells are trivial the ordered
partition is called discrete. In the other extreme there is an ordered partition
with just a single cell equal to V . This is called the unit partition.

The set of all ordered partitions of V is denoted Π. If vertex v ∈ V is in
the ith cell of π we write cell(v, π) = i. We say that π1 is at least as fine as
π2, and write it π1 � π2 [McKay & Piperno 2014b, Section 2.1], if and only if

cell(u, π2) < cell(v, π2)⇒ cell(u, π1) < cell(v, π1) ∀u, v ∈ V

That is, π1 can be obtained by splitting cells of π2 while preserving the ordering
induced by π2. When writing examples of ordered partitions we use a special
notation, e.g., [1 2 | 3] which means ({1, 2}, {3}).

The canonicalisation algorithm starts from the unit partition and searches
for a discrete partition by splitting cells when some vertices are determined
to be “less” than others. A discrete partition can thus represent the canonical
form in the sense that if vertex vi is in cell i, then vi should have index i in the
canonical form. When considering a discrete partition as stored in an array,
it will be a map from the canonical indices back to the original indices. For
example, consider the discrete partition π1 = [2 | 4 | 3 | 1] as an array of the
vertices of the input graph G. At index 1 the vertex 2 is located, indicating
it is the first vertex in the canonical form. At index 2 the vertex 4 is located,
likewise indicating it is the second vertex in the canonical form. Rewriting π1
as a permutation in cycle notation we obtain π1 = (1 2 4)(3). This example
is depicted in Figure 4.1.

24

4.1. Preliminary Definitions

4.1.2 Permutations

In the following sections we need several concepts from computational per-
mutation group theory, and we refer to [Seress 2003] for a comprehensive
treatment of this topic.

Recall that we regard V as the set of integers {1, 2, . . . , n}, and let γ be
a permutation of V . The image of a vertex v under the permutation γ is
denoted vγ . The application of two successive permutations γ1, γ2 on v is
written as (vγ1)γ2 or simply vγ1γ2 , though note that permutation application
is not commutative. The consequence of this notation is that the composition
of permutations γ1γ2 is interpreted as the application first of γ1 and then γ2.
We also use the conventional parenthesis notation with explicit composition
operators, i.e., (γ2 ◦ γ1)(v) = γ2(γ1(v)) = vγ1γ2 . The inverse of a permutation
γ is written as γ−1.

The set of all permutations of V , along with the permutation composition
operator, is also known as the symmetric group on n elements, Sn. We say that
a permutation γ ∈ Sn fixes a vertex v ∈ V , if vγ = v. Explicit permutations
will generally be written in cycle notation, without fixed elements. For a subset
X ⊆ V we define the permutation of X with γ ∈ Sn as Xγ = {xγ | x ∈ X}.
For a set of permutations A the group generated by A is the smallest group
〈A〉 that includes A. This group can be created by computing the closure of
A under permutation composition. For a vertex v ∈ V and a permutation
group S′ we say that the orbit of v under S′, written vS′ , is the set of vertices
which is the image of v under all permutations in S′, i.e., vS′ = {vγ | γ ∈ S′}.

In Figure 4.1 we saw how reordering of the vertices can be seen as a
permutation of the vertex indices. We extend the notation of permutation
application to graphs, such that Gγ , with γ ∈ Sn, denotes the permutation
of the indices of the vertices in G, and assume the underlying representation
to change accordingly. For Figure 4.1, if we assume that the canonicalisation
algorithm described below is applied to G, then it may calculate discrete
partitions corresponding to π1 and π2. During the algorithm it will then
further calculate the graphs G1 = Gπ

−1
1 and G2 = Gπ

−1
2 as candidates for the

canonical form.
Recall that a graph automorphism is an isomorphism from a graph to itself,

which can be represented by a specific permutation of the indices. This is illus-
trated in Figure 4.1 where G1

r= G2, and the permutation π′ = π−1
2 ◦π1 = (2 3)

is an automorphism on G1. We are however interested in the corresponding
automorphism on G instead. This will be explored in Section 4.3.3. The
automorphism group of G, denoted Aut(G), is the subgroup of Sn with all
automorphisms of G.

We also extend the application of a permutation to ordered partitions. For
a permutation γ ∈ Sn and an ordered partition π = (V1, V2, . . . , Vr) we define
πγ to be (V γ

1 , . . . , V
γ
r).

25

4. Graph Canonicalisation

4.1.3 Definition of Canonicalisation

In practice we do not necessarily want to compute the actual canonical from
of a graph, but rather just the needed permutation of the indices. If we let G
denote the set of graphs, and S the set of all permutations, a canonicalisation
function is then a function C : G → S taking a graph G as argument and
returning a permutation of the vertex indices. Thus for σ = C(G), we can
obtain the canonical form as Gσ. The function must fulfil the property de-
scribed in [McKay & Piperno 2014b, Property C2], that for any permutation
γ ∈ Sn, where we compute σ′ = C(Gγ), it must hold that

Gσ
r= Gγσ

′

That is, if we canonicalise any permutation of the input graph (which is iso-
morphic to G) and construct the canonical form, then the two canonical
forms are representationally equal. This property is a special case of what
is called isomorphism invariance of a function. In general we say that a
function f involving the vertex set V is isomorphism invariant if a permuta-
tion of the vertices results in a corresponding permutation of the output [Pi-
perno 2008, McKay & Piperno 2014b]. This property is required for most of
the procedures we use in the canonicalisation algorithm.

4.2 The Core Algorithm
The core components of the individualisation-refinement approach are parti-
tion refinement and vertex individualisation. They will then be used to define
a search tree where the canonical form correspond to one of the “best” leaves.

4.2.1 Partition Refinement

In the beginning of the canonicalisation algorithm we assume all vertices are
indistinguishable, represented by the unit partition. The idea is now to find
properties of the vertices that can be used to iteratively refine the partition,
for example degree information as we illustrate here. Note that the choices for
refinement can be made completely independent on how the graph relation

r
<

is defined.
We arbitrarily decide that lower degree is “better” than higher degree, and

we can thus trivially refine the unit partition by partitioning the vertices by
their degree and ordering the cells from lowest to highest vertex degree. Using
the graph in Figure 4.2a as example we start with the unit partition and arrive
at the ordered partition illustrated in Figure 4.2b. We can now iterate the
degree argument in a more general sense: the vertices in the first cell (white)
are adjacent to only some of the vertices in the second cell (green). In general
for an ordered partition π = (V1, . . . , Vr) we can consider two cells Vs and Vt
and split Vt according to the values d(v, Vs) for all v ∈ Vt. We say that we

26

4.2. The Core Algorithm

1

2

3

4

5

6

7

8

9

10

(a) [1 2 3 4 5 6 7 8 9 10]

1

2

3

4

5

6

7

8

9

10

(b) [1 2 | 3 4 5 6 7 8 9 10]

1

2
7

8

9

10
3

4

5

6

(c) [1 2 | 7 8 9 10 | 3 4 5 6]

Figure 4.2: Partition refinement, starting from the unit partition (a), using as-
cending vertex degree as ordering. (b) the result of shattering the first (and
only cell) with itself. (c) the result after shattering the second cell with the first
cell of the partition in (b) . This partition is now equitable with respect to the
chosen refinement procedure, as no more shattering will refine the partition. The
example graph was found in [Piperno 2008].

use Vs to shatter Vt [Hartke & Radcliffe 2009]. In Figure 4.2a we had the
special case where we used V to shatter itself. Shattering the second cell in
Figure 4.2b with the first cell we arrive at Figure 4.2c. Note that in this third
ordered partition we can no longer find pairs of cells where shattering results
in any cell splits, i.e., d(v, Vs) = d(u, Vs) for all u, v ∈ Vt for all pairs of cells
Vs, Vt. The partition is then said to be equitable [McKay & Piperno 2014b].

This particular refinement procedure, shown in [McKay & Piperno 2014b,
Algorithm 1], is also known as 1-dimensional Weisfeiler-Lehman refinement
[Piperno 2008], which can be seen as a generalisation of Hopcroft’s algorithm
for DFA minimisation [McKay 1981, Hopcroft 1971]. Other refinement func-
tions can be used instead, e.g., k-dimensional Weisfeiler-Lehman refinement.
In general, let G denote the set of all graphs, then we say that a refinement
function must be an isomorphism invariant function R : G×Π→ Π that makes
the partition strictly finer, or does nothing. Formally, for all graphs G ∈ G,
ordered partitions π ∈ Π, and permutations γ ∈ Sn we require

R(G, π) � π
R(Gγ , πγ) = R(G, π)γ

This leaves a lot of freedom for defining R, and in the extreme case we find
the identity function R(G, π) = π as a valid choice. In the other extreme it is
also valid to use another canonicalisation algorithm as a refinement function,
which would guarantee a discrete partition, but does not reduce the problem
at hand.

4.2.2 Vertex Individualisation and Target Cell Selection

Assume we are given an ordered partition π where the refinement function can
no longer split any cells, and the partition is not discrete. The idea is now to

27

4. Graph Canonicalisation

introduce artificial asymmetry into it by forcibly splitting the cell, and later
consider all such artificial splits.

For a graph G ∈ G, a non-discrete partition π ∈ Π, and a vertex v ∈ V be-
longing to a non-trivial cell of π, we define a strictly finer partition π ↓ v by in-
dividualising the vertex v. Let π be on the form (V1, V2, . . . , Vq−1, Vq, Vq+1, . . . , Vr)
with v ∈ Vq. Then

π ↓ v = (V1, V2, . . . , Vq−1, {v}, Vq\{v}, Vq+1, . . . , Vr)

is the ordered partition where v has been individualised into its own cell, and
that cell has arbitrarily been chosen to be smaller than the remainder of Vq.
For completeness we also define individualisation for vertices in trivial cells,
simply as the identity operation π ↓ v = π.

After individualisation, if the partition is still not discrete, we can once
again use the refinement procedure to obtain a possibly even finer partition.
Note that while there is no guarantee that the refinement procedure splits
any cells, the individualisation step always splits a cell, unless the partition
is already discrete. As every cell must be non-empty there can be at most
n cells, and therefore if we repeatedly refine and individualise we eventually
obtain a discrete partition.

In the final algorithm we consider the individualisation of every vertex in
a specific cell. To find that cell a function called the target cell selector is
introduced. It is an isomorphism invariant function Q : G × Π → 2V , that
given a graph G and a non-discrete ordered partition π = (V1, V2, . . . , Vr),
selects a non-trivial cell Vq of π. For example, Q can simply select the first
non-trivial cell of π. This is an isomorphism invariant choice as it does not
depend on the location of any vertices, but only the structure of π. The target
cell selector could also find the first largest non-trivial cell, or the first smallest
non-trivial cell. The Traces program uses a yet more complicated target cell
selector [McKay & Piperno 2014b, Section 3.2].

For ease of notation we use π(v1,v2,...,vk) to denote the ordered partition
obtained after repeated rounds of refinement, target cell selection, and vertex
individualisation. For the empty sequence we define

π() = R(G, π)

next, if the partition is not discrete, for any v1 ∈ Q(G, π()) we define

π(v1) = R(G, π() ↓ v1))

and generally

vk+1 ∈ Q(G, π(v1,v2,...,vk))
π(v1,v2,...,vk,vk+1) = R(G, π(v1,v2,...,vk) ↓ vk+1)

28

4.2. The Core Algorithm

1

2
7

8

9

10

5

6
3

4

(a) π(1) = [1 | 2 | 7 8 9 10 | 5 6 | 3 4]

1

2
7

10

8

9

6

5

4

3

(b) π(1,7) = [1 | 2 | 7 | 10 | 8 | 9 | 6 | 5 | 4 | 3]

Figure 4.3: Vertex individualisation and refinement of the ordered partition from
Figure 4.2c, using the target cell selector that selects the first non-trivial cell. (a)
Individualisation of vertex 1, and subsequent refinement. The first non-trivial
cell is {7, 8, 9, 10}. (b) Individualisation of vertex 7, and subsequent refinement.
The partition is discrete and is thus a candidate for creating the canonical form.

As an example, consider the graph from Figure 4.2 and the partition π() =
[1 2 | 7 8 9 10 | 3 4 5 6] we obtained through refinement. Using the target
cell selector that returns the first non-singleton cell we have both vertex 1 and
2 for individualisation. Figure 4.3a shows the result of individualising vertex
1 and the subsequent refinement (see Figure 4.4 for the individualisation of
2). Using the same target cell selector we now have a choice between vertex
7, 8, 9, and 10. Figure 4.3b shows the result when individualising vertex 7.
The obtained partition π(1,7) is discrete and is a candidate for creating the
canonical form. As described in Section 4.1.2 we can interpret the partition
as map from the potentially canonical graph back to the input graph. The
map is a bijection so we can create the inverse map π−1

(1,7), which maps vertices
in the input graph into the vertices of the potentially canonical graph. The
candidate graph is therefore Gπ

−1
(1,7) .

4.2.3 Canonicalisation as a Tree Search

The vertex individualisations are used to introduce artificial asymmetry when
the refinement procedure can not split any more cells. However, performing an
arbitrary vertex individualisation is not isomorphism invariant so in order to
find the canonical form we must consider all individualisations in the chosen
cell. Starting from an initial ordered partition this exploration of choices
induces a tree of partitions, where the leaves correspond to discrete partitions
that are all candidates for constructing the canonical form. An example is
shown in Figure 4.4.

Formally, given a graph G ∈ G and an initial ordered partition π ∈ Π
we denote the search tree as T (G, π). Each node in the tree is determined
uniquely by the sequence of individualised vertices [McKay & Piperno 2014b,
Section 2.3], so we can simply say that the root node is the empty sequence
τr = (), which represents the partition πτr = π(). Let τ = (v1, v2, . . . , vk) be a
node of T (G, π), representing the partition πτ = π(v1,v2,...,vk). If πτ is discrete
then τ is a leaf of T (G, π). Otherwise, let W = Q(G, πτ) be the target cell of

29

4. Graph Canonicalisation

1

2
7

8

9

10

5

6
3

4

π(1) = [1 | 2 | 7 8 9 10 | 5 6 | 3 4]

1

2
7

8

9

10
3

4

5

6

π() = [1 2 | 7 8 9 10 | 3 4 5 6]

2

1

7

8

9

10
3

4

5

6

π(2) = [2 | 1 | 7 8 9 10 | 3 4 | 5 6]

1

2
7

10

8

9

6

5

4

3

π(1,7) = [1 | 2 | 7 | 10 | 8 | 9 | 6 | 5 | 4 | 3]

1

7 8 9 10

2

7 8 9 10

2

1

7

10

8

9

4

3
6

5

π(2,7) = [2 | 1 | 7 | 10 | 8 | 9 | 4 | 3 | 6 | 5]

1

2

8

9

7

10

5

6
3

4

π(1,8) = [1 | 2 | 8 | 9 | 7 | 10 | 5 | 6 | 3 | 4]

1
2
3
4
5
6
7
8
9
10

Colour order

1

2
9

8

10

7

6

5

3

4

π(1,9) = [1 | 2 | 9 | 8 | 10 | 7 | 6 | 5 | 3 | 4]

Figure 4.4: A search tree T (G, π) starting with the refinement of the unit parti-
tion in the root. Each node in the tree represents a sequence of vertex individual-
isations, where the latest vertex being individualised is shown in the nodes. For
most tree nodes the corresponding partition is shown along with the coloured
graph it represents. In the coloured graphs the vertices are labelled with the
vertex indices from the input graph, and coloured with “numbers” correspond-
ing to the potential canonical vertex indices. Note that the coloured graphs in
the leaves of the left half of the tree (the children of τ = (1)) are all isomorphic.
This is also true among the children in the right half of the tree (the children of
τ = (2). However between the halves of the tree, the graphs are not isomorphic.
They greyed out nodes correspond to nodes pruned from automorphism discovery
(see Section 4.3.3), when depth-first traversal of the tree is used. The example is
heavily inspired by [Piperno 2008, Figure 3], though here using different functions
for refinement and target cell selection.

30

4.3. Algorithm Variations and Search Tree Pruning

πτ , then the children of τ are

{τ(v1,v2,...,vk,u) | u ∈W}

That is, τ has a child representing each choice of vertex individualisation
within the selected target cell. In Figure 4.4 most of the tree for our example
graph is visualised. Each node of the tree is labelled with the newly individu-
alised vertex. In the following we as a shorthand use L(G, π) to denote the
set of leaf nodes of T (G, π).

Recall that we defined a canonicalisation function as taking a graph as an
argument and returning the permutation of vertex indices needed to construct
the canonical form. Using the search tree defined above we can now define the
basic canonicalisation algorithm in the individualisation-refinement approach:
Let R : G × Π → Π be a fixed refinement function, and let Q : G × Π → 2V

be a fixed target cell selector. Further let
r
< : G → G be a fixed relation that

induces a total order of G. The basic canonicalisation function C : G → S can
then be calculated with the following procedure.

1. Let G = (V,E) ∈ G be the input graph to canonicalise.

2. Start from the unit partition π = (V), and traverse the tree T (G, π).

3. Find a leaf node τc corresponding a
r
<-smallest graph:

τc = arg min
τ∈L(G,π)

{
Gπ
−1
τ

}

4. Let the result be the permutation π−1
τc mapping vertices of G into the

canonical vertices.

In a concrete implementation we naturally also need to define an algorithm
to calculate the tree. For example, nauty, saucy, and bliss generates the tree
in depth-first order, while Traces uses breadth-first generation combined with
experimental paths from newly calculated nodes down to a leaf.

4.3 Algorithm Variations and Search Tree Pruning
The description above leaves room for large variations in concrete algorithms,
and thereby variations in how fast those algorithms run in practice. For ex-
ample, we obtain the brute-force algorithm simply by selecting the identity
function as the refinement function, i.e., R(G, π) = π. In addition to vari-
ations of the core components there are techniques that prune branches from
the search while it is being generated, thereby skipping evaluation of the re-
finement function, which in practice is the most time-consuming component.

The following sections define several optimisation techniques, of which
some most of them change the canonical form. For a better understanding

31

4. Graph Canonicalisation

G

r
<-smallest

(a)

G r
<-smallest

(b)

G

r
<-smallest

(c)

G r
<-smallest

(d)

Figure 4.5: Abstract depiction of the set of all permutations of a graph G. Each
slice of the set is a subset of permutations that are representational equal. One
of the subsets correspond to the

r
<-smallest representation. (a) If the identity

refinement function is used the algorithm explores all n! permutations, and the
canonical form is only determined by the

r
<-relation. (b) With a non-trivial re-

finement function, some equivalence classes of representations (depicted in grey)
will not be considered. The canonical form may now be different, if the global
r
<-smallest equivalence class was pruned. (c) Using graph automorphisms it is
possible to prune among the equivalent graphs, in all classes (see Section 4.3.3).
(d) In an efficient implementation both types of pruning would most likely be
used.

of how they change the core algorithm we first introduce a different view on
canonicalisation. Let G be a graph with n vertices, to be canonicalised in
the sense that a “best” permutation from the permutation group Sn must
be found. Consider all permuted graphs Gγ for γ ∈ Sn, and group them
by representational equality as illustrated in Figure 4.5. Using the brute-
force approach with the identity function for refinement the search tree will
contain all graphs, as indicated in Figure 4.5a. The canonical form will be
determined purely by the

r
<-relation on graphs. A refinement function does

however not need to preserve this minimum graph, as depicted in Figure 4.5b.

32

4.3. Algorithm Variations and Search Tree Pruning

For example the
r
<-relation can order vertices by descending degree and the

refinement function can order them by ascending degree. Unless the graph
is regular this will produce a different canonical form than the brute-force
algorithm.

A different type of optimisation is based on detecting automorphisms in
the graph and using them to prune redundant subtrees. This pruning situation
is depicted in Figure 4.5c, and explore in detail in Section 4.3.3.

4.3.1 Exploiting Vertex and Edge Labels

The core algorithm works both for labelled and unlabelled graphs as the final
graph comparison with

r
< is assumed to compare labels. However, the labels

can be incorporated earlier to provide stronger refinement.

Vertex Labelled Graphs

Let the input graph G ∈ G be vertex-labelled with elements from a set ΩV with
the labelling function lV : V → ΩV . Additionally let the operators

r
< and r=

be defined for pairs of elements ΩV , in a manner consistent with isomorphism
checking between graphs of G.

Instead of starting the algorithm with the unit partition we can construct
a finer partition π′ by partitioning and sorting V by the labels. That is, we
construct π′ such that for all u, v ∈ V

cell(u, π′) = cell(v, π′) if lV (u) r= lV (v)

cell(u, π′) < cell(v, π′) if lV (u)
r
< lV (v)

Note that using π′ instead of the unit partition may change the canonical form
calculated by the algorithm.

In the literature of the mentioned algorithms the incorporation of ver-
tex labels is done implicitly by canonicalising both a graph and an ordered
partition, instead of just a graph as described here.

Edge Labelled Graphs

Edge labels can be incorporated in at least two different ways. One method is
to construct a vertex labelled, bipartite graph G′ = (V ∪E,E′) where vertices
V ∪E are labelled both with their labels in G and with a tag specifying their
membership in V and E. The new graph G′ is then canonicalised where the
labels can be incorporated as described above.

We also suggest another method which does not require the construction
of an auxiliary graph, however it may not be feasible (or practical) for all
types of labels. Let ΩE be the set of edge labels, and assume we use the
refinement function based on vertex degrees described above. Instead of simply

33

4. Graph Canonicalisation

counting the total degree we can count the occurrence of each unique label.
E.g., for chemical molecules we can use a 4-vector to count the vertex degree
with respect each bond type. In general the requirement for such generalised
counters is that they have a total order defined.

4.3.2 Node Invariants

We can define a pruning scheme based on computing a isomorphism invariant
value φ(τ), in a totally ordered set, for each tree node τ in the following way
(see also [Junttila & Kaski 2007, Section 3.3]). For a node τ in the search tree
let τ1, τ2, . . . , τl denote the path from the root node τr = τ1 to τ = τl. Then
let φ(τ) = (φ(τ1), φ(τ2), . . . , φ(τl)) be the sequence of node invariants for the
path, starting from the root. Given a node τ at depth l and a node τ ′ at depth
l′ we can now lexicographically compare the first min{l, l′} elements of φ(τ)
and φ(τ ′). If they are different we can decide that the node with the smallest
invariant prefix is better, and prune the subtree rooted at the node with the
larger invariant prefix.

In the literature various invariants have been proposed, e.g., counting the
number of cells in the partitions, or the sequence of cell sizes. The name
of Traces stems from the introduction of a new invariant which contains the
sequence of positions of every cell split. That is, if

π = (V1, V2, . . . , Vt−1, Vt, Vt+1, . . . , Vr)

is split into

π = (V1, V2, . . . , Vt−1, Vt′ , Vt′′ , Vt+1, . . . , Vr)

then the position of the split is
∑

1≤i≤t′ |Vi|. When considering partitions to
be stored in arrays, the split position is exactly the index of the first vertex
in the cell Vt′′ . As cells are split during the refinement procedure it is possible
with this invariant to abort a partition refinement if it is evaluated to be worse
than the currently best trace of cell splits. The pruning by node invariants is
also described in general by items (A) and (B) in [McKay & Piperno 2014b,
Section 2.4].

4.3.3 Automorphism Discovery

Consider again the search tree in Figure 4.4 and note that the two partitions

π(1,7) = [1 | 2 | 7 | 10 | 8 | 9 | 6 | 5 | 4 | 3]
π(1,8) = [1 | 2 | 8 | 9 | 7 | 10 | 5 | 6 | 3 | 4]

give representationally equal graphs. That is, if G′ = G
π−1

(1,7) and G′′ = G
π−1

(1,8)

then G′
r= G′′. Therefore there is a trivial isomorphism from G′ to G′′ that

34

4.3. Algorithm Variations and Search Tree Pruning

maps the ith vertex of G′ to the ith vertex of G′′. We can recast this into an
automorphism α on G, which can be described as α(π(1,7)(v)) = π(1,8)(v),∀v ∈
V (see also [McKay 1981, 2.18]). The automorphism is thus

α ◦ π(1,7) = π(1,8) ⇔
α = π(1,8) ◦ π−1

(1,7)

α = (3 4)(5 6)(7 8)(9 10)

Geometrically this automorphism mirrors the graph in the axis through ver-
tex 1 and 2. Such a morphism is called an explicit automorphism, as we con-
struct it from explicitly by comparing leaves of the search tree. As described
in [McKay & Piperno 2014b, Section 2.4] the set of all explicit automorph-
isms found during the algorithm generates the automorphism group of G. In
some cases it is also possible to find implicit automorphisms without com-
paring leaves, when non-discrete partitions have a certain structure, e.g., see
[McKay 1981, 2.24] and [McKay & Piperno 2014b, Sections 3.5 and 3.6].

Any available automorphism can be used to prune the the search tree.
Consider again Figure 4.4 and the partition π(1) = [1 | 2 | 7 8 9 10 | 5 6 | 3 4],
and assume we have discovered the automorphism α as described above. Note
that α fixes vertex 1, which is the vertex being individualised to reach π(1).
When we now individualise respectively vertex 9 and 10 we get

π(1) ↓ 9 = [1 | 2 | 9 | 7 8 10 | 5 6 | 3 4]
π(1) ↓ 10 = [1 | 2 | 10 | 7 8 9 | 5 6 | 3 4]

Notice though that the permutation of π(1) ↓ 9 with automorphism α gives
exactly the partition π(1) ↓ 10. The refinement function will use the structure
of the graph to split cells, but as an automorphism exactly preserves the graph
structure the two resulting partitions must induce the same graph represent-
ation. We can therefore skip the subtree τ = (1, 10) (which happens to just
be a leaf), as it contains the same leaves as τ ′ = (1, 9). The formal proof of
this property requires several new definitions and additional theorems. They
can be found in [McKay 1981, McKay & Piperno 2014b].

The general pruning scheme is as follows. Let A ⊆ Aut(G) be a subset
of known automorphisms on G, and τ = (v1, v2, . . . , vk) an internal node of
T (G, π). The children of τ will be given by the set of vertices in the target cell
W = Q(G, πτ). Now construct A′ ⊆ A as the set of known automorphisms
that fixes each vi, 1 ≤ i ≤ k. That is, all permutations in A′ will map each
of the already individualised vertices to them self. For each w ∈ W we can
calculate the orbit of w under the permutations A′, as the closure of w when
applying A′. In our example this means 7 and 8 are in the same orbit when
using only α, and 9 and 10 are in the same orbit. The set W is in this manner
partitioned into subsets W1,W2, . . . ,Wp, and it suffices to explore just one
child from each of these subsets.

35

4. Graph Canonicalisation

In Figure 4.4 we have greyed out several nodes due to the automorphism
pruning. From the discussion above it is clear why node (1, 10) is pruned.
However, notice that α also fixes vertex 2, and the same automorphism can
thus be used to prune nodes (2, 10) and (2, 8). The last pruned node, (2, 9),
is due to the discovery of an automorphism between π(1,7) and π(1,9), which
fixes both vertex 1 and 2.

The original description of nauty [McKay 1981] used both implicit and
explicit automorphisms to perform pruning. However, it only used a list of
these automorphisms A, but a permutation group is closed under composition.
Therefore all permutations constructed from combinations of permutations in
A are also automorphisms. When calculating the automorphisms A′ that fixes
a sequence of vertices, the algorithm thus may miss some of the combined per-
mutations. For example, two known automorphisms could be γ1 = (1 2)(3 4)
and γ2 = (1 2)(5 6), of which neither fixes vertex 1 and 2. So when pruning
children in a tree node descending from individualisation of vertex 1 and 2
it will not be possible to use γ1 and γ2 for pruning. If we calculated their
composition γ1 ◦ γ2 = (3 4)(5 6) we see that it would be a usable. The auto-
morphism group of a graph may be very large, and it is therefore not feasible
to compute the composition closure of the known automorphisms in general.
To alleviate this problem the Traces algorithm in practice introduced the use
of Schreier-trees [Seress 2003] that can efficiently represent the closure, and
facilitate orbit calculations in subgroups with fixed vertices.

36

Chapter 5

External Molecule Representation

In the previous chapters we have only dealt with graphs and molecules ab-
stractly and their in-memory representations, while we in this chapter will
focus on methods for representing molecules as text strings. Two popular
formats are SMILES and InChI, that both are line notations, meaning mo-
lecules are encoded as single-line ASCII strings. This makes them convenient
for communication of data, but despite the popularity of these formats there
are no published complete formal specifications for them.

5.1 SMILES

In the Simplified Molecular-Input Line Entry System (SMILES) a molecule is
modelled as labelled graph, which is linearised to an ASCII string by recording
a depth-first traversal of the graph. The format was first described in [Wein-
inger 1988] and later by Daylight Chemical Information Systems [Daylight
Chemical Information Systems 2011], and is to some extent able to encode
aromaticity and stereochemical properties. SMILES strings are often human
readable and writeable which may have contributed to the formats popularity.
However, due to ambiguities in the initial descriptions there are now multiple
interpretations of the format [O’Boyle 2012], and no complete formal specific-
ation has ever been published. The most comprehensive description seems
to be the OpenSMILES [James 2012] effort, which contains additional details
on the aromaticity model. As the underlying format is able to represent all
molecules using the model described in Section 2.1 we describe a simplified
SMILES format and highlight its possible differences with the original descrip-
tion [Weininger 1988].

There can be multiple SMILES strings for a molecule depending on both
the chosen root for the depth-first traversal of the molecule graph, and on
the order of which neighbours are visited. Using a canonical order of the
atoms it is thus possible to compute a canonical SMILES string. Initially an
algorithm for canonicalisation was published [Weininger et al. 1989], but it did
not account for the stereochemical specifications and, as we illustrate below,
it is not a proper canonicalisation algorithm. In the following we present the
algorithm and compare it to the more general individualisation-refinement
algorithm presented in Chapter 4.

37

5. External Molecule Representation

5.1.1 Molecule Model

There is no explicit definition of the molecule model for SMILES in [Wein-
inger 1988], but from the descriptions it seems that the basics are similar
to our model, described in Section 2.1: a molecule is a undirected, simple
graph labelled with bond types and chemical elements. The vertices are fur-
ther labelled with a charge and an isotope number, and the graph is allowed
to be disconnected. Additionally the model can represent certain types of
stereochemical properties, but for simplicity we leave them out of this discus-
sion. Edges are labelled with the same bond type as we use Single, Double,
Triple, and Aromatic, though the aromaticity model is more complex. The
molecule model does not contain any restrictions on chemical valence or vertex
degrees.

From [Weininger 1988, (4) Aromaticity Dectection] is it clear that the
goal is to convert Kekulé-like structures into their proper form, using the
Aromatic bond type, when the molecules fulfil certain rules. The paper does
not give a self-contained definition of these rules, but simply states that for “a
ring” to qualify as aromatic all atoms must be sp2 hybridised and the number
of excess π electrons must fulfil the formula 4n + 2, n ∈ N0, also known as
Hückel’s rule. There is no explicit constraint that all Aromatic bonds must
form a union of cycles in the molecule graph, or that Aromatic bonds must
be in any cycle. Multiple examples of aromaticity detection are shown, though
none with polycyclic aromatic compounds, leading to uncertainty of whether
“a ring” actually means “a ring-system” or a graph theoretic cycle and how
the arising conflicts are resolved [Apodaca 2007].

The paper itself [Weininger 1988] does not explicitly state what “sp2 hy-
bridisation” is and how excess π electrons are counted. A table of bond con-
figurations for this purpose is provided by OpenSMILES [James 2012], though
this part of the specification is explicitly noted as being under discussion.

The aromaticity detection algorithm in SMILES is supposed to also work
in the inverse direction; if a compound is not aromatic in the model, but spe-
cified in a SMILES string as aromatic, then it is supposed to be converted
into its proper form without using the Aromatic bond type. This is exem-
plified by the compunds cyclobutadiene and cyclooctatetraene, illustrated in
Figure 5.1, which when specified as aromatic are supposed to be converted
into the shown form, with alternating Single and Double bonds. These
two molecules are mentioned to be anti-aromatic, though this term is not
defined in the paper, and it is unclear whether it affects the conversion. In
general the conversion is unclear, as it is described only to preserve certain
properties, e.g., sp2 hybridisation, charges, and hydrogen count. Furthermore,
when considering derived compounds the conversion is ambiguous, assuming
the natural definition of isomorphism. This is illustrated for a derivative of
cyclobutadiene in Figure 5.1c.

38

5.1. SMILES

CH

CHCH

CH

(a) Cyclobutadiene

CH

CH

C
H

C
H

CH

CH

C
H

C
H

(b) Cyclooctatetraene
CH3

C

C

OH

C

NH2

C

SHCH3

C

C

NH2

C

OH

C

SH CH3

C

C

NH2

C

OH

C

SH

? ?

(c) Ambiguous conversion of non-aromatic compounds

Figure 5.1: According to [Weininger 1988] the compounds cyclobutadiene (a),
and cyclooctatetraene (b) can be specified as aromatic, but must be converted
into their proper form without Aromatic bonds. This leads to ambiguity as
shown in (c) with a molecule based on cyclobutadiene.

5.1.2 String Encoding

The original SMILES publication [Weininger 1988] did not contain a formal
grammar that valid SMILES strings must follow, however a grammar is given
by [James 2012]. A grammar for a simplified version of SMILES, e.g., without
stereochemical information and isotopes, and only for connected graphs, is
shown in Figure 5.2. A molecule is serialised into a character string by travers-
ing a rooted spanning tree of the molecule graph in a depth-first manner, and
appending substrings for vertices and edges when they are first encountered.
Edges not covered by the chosen tree are each assigned an integer, which is
then appended to the substring for both of the incident vertices. The following
sections describes the specific semantics of the format.

Atom Representation

An atom is in general represented by the 〈bracketAtom〉 grammar, where the
chemical symbol is enclosed in square brackets. Charges of absolute value
N 6= 0 are encoded as ‘-〈N 〉’ for negative charges and ‘+〈N 〉’ for positive
charges. When N = 1 the number can be left out, e.g., for protons, ‘[H+]’, or
chloride ions, ‘[Cl-]’.

Certain atoms can be marked “aromatic” by writing them in lower case
(non-terminal 〈aromaticSymbol〉), for the purpose of representing Aromatic
bonds implicitly.

Uncharged atoms in the organic subset, 〈aliphaticOrganic〉, can be writ-

39

5. External Molecule Representation

〈smiles〉 :: 〈chain〉

〈chain〉 :: 〈branchedAtom〉 〈chainTail〉

〈chainTail〉 :: 〈bond〉 〈chain〉 | ε

〈branchedAtom〉 :: 〈atom〉 〈ringbond〉* 〈branch〉*

〈branch〉 :: ‘(’ 〈bond〉 〈chain〉 ‘)’

〈ringbond〉 :: 〈bond〉? (〈digit〉 | ‘%’ 〈digit〉 〈digit〉)

〈atom〉 :: 〈bracketAtom〉 | 〈aliphaticOrganic〉 | 〈aromaticOrganic〉

〈aliphaticOrganic〉 :: ‘B’ | ‘C’ | ‘N’ | ‘O’ | ‘F’ | ‘P’ | ‘S’ | ‘Cl’ | ‘Br’ | ‘I’

〈aromaticOrganic〉 :: ‘b’ | ‘c’ | ‘n’ | ‘o’ | ‘p’ | ‘s’

〈bracketAtom〉 :: ‘[’ 〈symbol〉 〈hCount〉? 〈charge〉? ‘]’

〈hCount〉 :: ‘H’ 〈digit〉?

〈charge〉 :: (‘-’ | ‘+’) 〈digit〉? 〈digit〉?

〈symbol〉 :: 〈elementSymbol〉 | 〈aromaticSymbol〉

〈elementSymbol〉 :: ‘H’ | ‘He’ | ‘Li’ | ‘Be’ | ‘B’ | ‘C’ | ‘N’ | ‘O’ | . . . | ‘Uuo’

〈aromaticSymbol〉 :: ‘b’ | ‘c’ | ‘n’ | ‘o’ | ‘p’ | ‘s’ | ‘as’ | ‘se’

〈bond〉 :: ‘-’ | ‘=’ | ‘#’ | ‘:’ | ε

〈digit〉 :: ‘0’ | ‘1’ | . . . | ‘9’

Figure 5.2: A grammar for simplified SMILES strings, with the starting symbol
〈smiles〉, based on [James 2012].

ten without brackets when the number of adjacent hydrogen atoms follow
specific rules. This can be combined with marking the atom “aromatic” for
the atoms described by the non-terminal 〈aromaticOrganic〉. The details of
implicit hydrogen atoms are described in a following section.

Bond Representation

Each of the four bond types, Single, Double, Triple, and Aromatic are
represented respectively as ‘-’, ‘=’, ‘#’, and ‘:’. Most Single and Aromatic
bonds can be represented implicitly, using the empty string. For example,
water can be represented as both ‘[H]-[O]-[H]’ and ‘[H][O][H]’. The rule
is that an implicit bond is Aromatic if and only if both incident atoms are
marked “aromatic” by using lower-case chemical symbols. Thereby ‘[C][C]’
is equivalent to ‘[C]-[C]’, ‘[c][C]’ to ‘[c]-[C]’, and ‘[c][c]’ to ‘[c]:[c]’.

Branch Representation

The different branches in a subtree are enclosed in parentheses in order to
separate them. However, the last traversed branch may be appended without

40

5.1. SMILES

Element Normal valences

B 3
C 4
N 3 (and 5 [James 2012])
O 2
P 3 and 5
Non-aromatic S 2, 4, and 6
Aromatic S 3 and 5
F, Cl, Br, and I 1

Table 5.3: Normal valences for the organic subset of elements, as specified by
[Weininger 1988] and [James 2012].

a parenthesis. Water can thus be written as both ‘[O]([H])([H])’ and
‘[O]([H])[H]’.

Implicit Hydrogen Atoms

Hydrogen atoms with neutral charge and only one Single bond as incid-
ent edges can be represented implicitly in two ways. A bracketed atom can
specify up to 9 extra neighbouring hydrogen atoms with the 〈hCount〉 non-
terminal. An atom without brackets, i.e., the organic subset specified by
〈aliphaticOrganic〉 and 〈aromaticOrganic〉, implicitly defines neighbouring hy-
drogen atoms such that the atom reaches a so-called “lowest normal valence”.
The paper [Weininger 1988] describes these valences as noted in Table 5.3,
which includes a special case for some cases of “aromatic sulfur”. However,
the molecule model only specifies that a bond can be aromatic and the use of
lower-case letters in SMILES strings for “aromatic atoms” seems only to be
a short-hand enabling implicit bonds. It is therefore not entirely clear when
sulfur should be considered aromatic.

Another ambiguity is in the method for counting valences when Aromatic
bonds are involved, as nothing is stated in the paper. In [May 2013] this
problem is explored in relation to several SMILES implementations. One
approach used is to let Aromatic bonds contribute 1.5 to valence sums, and
use special rounding rules. Another is to let them contribute 1 to the sums
and add an additional 1 to the sum of each atom incident to an aromatic
bond. A third approach is to only add the additional 1 to aromatic atoms
that are not incident to double or triple bonds.

41

5. External Molecule Representation

N

CH2

P

P

N

O

O

C
H2

Figure 5.4: The molecule represented by the SMILES string
‘N12CCCCP1P3N(OO2)CCCC3’, using 3 ring-closure integers. By reusing
ring-closure integers for non-overlapping intervals, only 2 numbers are needed:
‘N12CCCCP1P1N(OO2)CCCC1’.

Cyclic Structures

The use of parenthesis only allows for encoding trees, and thus special notation
is used to represent the remaining edges in molecules with cycles. Each of
these edges is assigned an integer between 0 and 99, which is appended to
the substrings for the incident atoms (see the non-terminals 〈branchedAtom〉
and 〈ringbond〉). The bond type for such ring closure edges can be specified
explicitly before at least one of the integers, but must of course be in agreement
if present at both ends. The molecule 1,3-cyclohexadiene can therefore be
represented by all of ‘C1CCC=CC=1’, ‘C=1CCC=CC1’, and ‘C=1CCC=CC=1’. If no
bond type is specified at either end, the bond becomes implicit and is thus
either Single or Aromatic depending on the atom specifications.

The ring-closures forms intervals in the SMILES string, as exemplified
with the molecule ‘N12CCCCP1P3N(OO2)CCCC3’ visualised in Figure 5.4. Before
assigning ring-closure integers we can depict the intervals as:

i2︷ ︸︸ ︷
N CCCCP P N(OO)CCCC︸ ︷︷ ︸ ︸ ︷︷ ︸

i1 i3

Interval i1 and i3 do not overlap so they can unambiguously be assigned the
same integer, e.g, giving the SMILES string ‘N12CCCCP1P1N(OO2)CCCC1’.

5.1.3 Canonical Strings

The SMILES format can be combined with graph canonicalisation to obtain
canonical strings for molecules. This was attempted in [Weininger et al. 1989]
where a two-phase algorithm, CANGEN, was presented. In the first phase
of the algorithm it finds a supposedly canonical order for the vertices of the
molecule graph, using a method similar to the individualisation-refinement

42

5.1. SMILES

method described in Chapter 4. However, the algorithm does not produce a
canonical order for all molecules which we illustrate with an example below.
To further explain the problem with the algorithm we describe it using the
algorithmic framework from Chapter 4. The second phase of the algorithm
uses a canonical vertex order to generate the canonical SMILES string.

Graph “Canonicalisation”

In the description of the SMILES format above we have left out certain as-
pects, e.g., isotopes and stereochemistry, These aspects are not covered by the
algorithm in [Weininger et al. 1989] intended for canonicalisation.

In the following description of the algorithm we use the terminology intro-
duced in Chapter 4.

Initial Vertex Partitioning The algorithm constructs an initial ordered
partition using vertex labels, as described in Section 4.3.1. Each vertex label
is a tuple of the following numbers [Weininger et al. 1989, Table I]:

1. number of connections

2. number of non-hydrogen bonds

3. atomic number

4. sign of charge

5. absolute charge

6. number of attached hydrogens

There is however some uncertainty about how these values should be calcu-
lated. From the examples it seems that “number of connections” is the vertex
degree, when hydrogens that can be made implicit are ignored. The “number
of non-hydrogen bonds” is a weighted sum over the same edges, i.e., without
implicit hydrogens. There is no description of which weight Aromatic bonds
has. It is clearly possible to map the sign of charge into integers, though no
specific mapping is given, meaning different implementations may use different
mappings.

Representation of Ordered Partitions The CANGEN algorithm is not
described as using ordered partitions, but instead stores the rank of each
vertex. This is simply a synonym for the cell number of a vertex (see Sec-
tion 4.1.1).

43

5. External Molecule Representation

Refinement The CANGEN algorithm refines a partition by calculating a
specific product for each vertex depending on the neighbourhood of the vertex.
Let ρ : N → N be the function that given a positive integer i returns the ith
prime number, and let r : V → N be the cell number for each vertex. For each
vertex v ∈ V the number r′(v) is calculated as

r′(v) =
∏

(v,u)∈δ(v)
ρ(r(u))

That is, r′(v) is the product of the prime numbers corresponding to the
ranks of the neighbours. The list of vertices are then sorted lexicographic-
ally according to the tuples (r(v), r′(v)), and new cell numbers r′′ are assigned
such that r′′(v) = r′′(u) if (r(v), r′(v)) = (r(u), r′(u)) and r′′(v) < r′′(u) if
(r(v), r′(v)) < (r(u), r′(u)). This procedure is repeated as long as cell num-
bers change.

It is well-known that the result of prime factorisation of natural numbers is
unique, so the product of prime numbers ensures that vertices in the same cell
have the same product if and only if they have the same neighbourhood. This
refinement procedure is thus equivalent to the one based on vertex degrees
outlined in Section 4.2.1, assuming it can be implemented without integer
overflow.

Target Cell Selector and Vertex Individualisation CANGEN always
selects the first non-trivial cell. A vertex is then individualised by doubling
all the cell numbers and reducing the vertex to be individualised with 1. New
consecutive cell numbers are then calculated. This clearly performs the same
vertex individualisation as described in Section 4.2.2, as the doubling preserves
the cell structure, and the reduction by 1 orders the individualised vertex just
before its old cell.

Tree Search Aside from the ambiguities in the descriptions in [Weininger
et al. 1989], the main problem is in the tree search. CANGEN simply does
not explore the complete tree, but only a single path. After refinement the
algorithm individualises only the first vertex in the target cell. However, a cell
must be treated as an unordered set and the “first” vertex is thus determined
by the input order of the vertices. CANGEN is therefore not isomorphism
invariant, i.e., it is not a canonicalisation algorithm. In Section 5.1.4 we show
a small counterexample that further proves this fact.

String Generation

The SMILES format specifies multiple methods to implicitly represent prop-
erties, most notable hydrogen atoms. In the string generation we assume that
all these methods are used whenever possible, meaning all hydrogen atoms

44

5.1. SMILES

with charge zero and only a Single bond as incident edges will be made im-
plicit. An exception to this is molecular hydrogen H2 which is always assigned
‘[H][H]’ as its SMILES string.

Recall that a SMILES string is generated by traversing the molecule graph
in a depth-first manner starting from an initial vertex. This initial vertex is
selected simply to be the one with the lowest canonical index, which is not
an implicit hydrogen. By the initial vertex partitioning described above the
initial vertex will, if possible, be an “end atom”, i.e., an atom with just one
edge to vertices that are not implicit hydrogens.

During branching in the depth-first traversal the algorithm selects the next
subtree where the root has the lowest canonical index. However, the authors
prefer to not have ring-closures with double and triple bonds and thus uses a
slightly modified scheme. Unfortunately the description is not entirely clear,
and it notably does not mention Aromatic bonds. The following is therefore
our interpretation of the authors intention.

• Let v be the current vertex in the traversal and N(v) = {u1, u2, . . . , ud}
the remaining non-visited neighbours of v.

• Mark all edges (v, ui) if there exists a cycle in the graph using the edge.

• Partition N(v) into two lists: NP (v) containing all ui where the edge
(v, ui) is unmarked, and the list NC(v) corresponding to the neighbours
connected with a marked edge.

• Sort NP (v) and NC(v) according to the canonical vertex order.

• If NP (v) is non-empty, visit the subtree corresponding to the first vertex.

• Otherwise, sort NC(v) such that vertices connected to v with Double,
Triple, and Aromatic bonds are ordered before Single bonds. The
non-Single bonds all compare equal in this procedure, and the sorting
must be stable with respect to the previous order.

• Visit the first vertex of NC(v).

Ring-closure integers must finally be assigned in a canonical manner, and
inserted in sorted order on vertices with multiple ring-closures. Recall that
the ring-closures induce intervals on the final SMILES string. The paper does
not completely state how the assignment should be done, but from the ex-
amples it seems that the intervals are first sorted lexicographically by their
starting position and end position. They are then assigned the lowest avail-
able positive integer when processing them in sorted order. Note that this
assignment strategy incidentally ensures that the fewest possible ring-closure
integers are used (for the given tree traversal), as the problem is equivalent to
graph colouring on interval graphs and the assignment strategy gives optimal
solutions [Cormen et al. 2001].

45

5. External Molecule Representation

CH3

C

CH

C

C
H2

CH3

C
H

C

C
H2

CH3

CH

(a)

CH3

C

CHC

CH3

C

OH

(b)

Figure 5.5: Counterexamples for the CANGEN algorithm. (a) A proposed
counterexample from [Neglur et al. 2005], which however is not a valid mo-
lecule in the molecule model of SMILES. Benzene rings in Kekulé form must
be converted into a cycle of Aromatic bonds. (b) A counterexample based on
cyclobutadiene, which in [Weininger 1988] is explicitly stated to not use Aro-
matic bonds, but alternating Sinlge and Double bonds. The “canonical”
form as generated using CANGEN depends on the input order of the two methyl
carbons.

5.1.4 Counterexample for Canonicalisation

Constructing a counterexample to prove that the CANGEN algorithm does
not produce a canonical vertex order is not too difficult. However, we must
be careful to select a molecule which is covered by the molecule model. For
example, in [Neglur et al. 2005] a counterexample is presented, which is visu-
alised in Figure 5.5a. Though, this molecule is based on the Kekulé form of
a benzene ring, which in [Weininger 1988] is clearly described as not being in
the molecule model.

We can instead use cyclobutadiene as a basis, which is similarly clearly de-
scribed to be modelled with alternating single and double bonds. An example
of such a molecule is shown in Figure 5.5b, where the incorrect behaviour
can be triggered by two different inputs where the two methyl groups have
their order swapped. The first component of the vertex label is the num-
ber of connections to non-implicit hydrogens, which orders the carbons in the
CH3 groups and the oxygen in OH group before the rest of the atoms. The
second component is the weighted sum of the connections, which is not differ-
ent between these three atoms. The third component is however the atomic
number, which orders the carbons before the oxygen. The refinement proced-
ure in CANGEN does not exploit edge labels, and the first equitable partition
thus have the first cell containing exactly the two carbons in the methyl group.
As the algorithm only considers the individualisation of the “first” of these
vertices we can obtain two different canonical forms, depending on the input
order of the methyl carbons.

46

5.2. InChI

5.2 InChI

The International Chemical Identifier (InChI) is a molecule format developed
as project under the International Union of Pure and Applied Chemistry
(IUPAC) [InChI 2015]. The phrase “InChI” is used both for the actual mo-
lecule format, the algorithms involved, and a concrete program for encoding
and decoding InChI strings, made available by InChI Trust [InChI Trust 2015].

On the webpage of InChI Trust and in a recently published paper [Heller
et al. 2015] it is stated that the InChI format is intended to be an open stand-
ard for representing molecules. There is no single document labelled as being
the specification of this standard, but a comprehensive description can be
found in [Heller et al. 2015] and in the technical manual [Stein et al. 2011].
However, in the technical manual it is explicitly stated that “Mathematical
details of the algorithms used will not be presented.”. The recent paper [Heller
et al. 2015] contains a short textual description of part of the canonicalisa-
tion algorithm, without mathematical details, and with a statement that the
algorithm has been based upon [McKay 1981, Hartke & Radcliffe 2009]. As
illustrated in Chapter 4 there is a huge amount of flexibility in specifying a con-
crete canonicalisation algorithm even within the individualisation-refinement
paradigm, and different choices lead to different canonical forms. Without a
precise specification of the InChI standard it thus becomes extremely difficult
to reproduce the format in a compatible manner. In [Heller et al. 2015, Soft-
ware] we however learn that we are not supposed to reimplement the standard,
as “InChI, by intention, is assumed to have only a single software implement-
ation”. Furthermore, in [InChI Trust 2015, Technical FAQ: 3.2] it is stated
that the official InChI software “acts as the final arbiter of the correctness”.
There is therefore no separation between the specification and the implement-
ation of InChI. This is contrary to the usual practise in software development
[Sommerville 2011], and in software standardisation.

Despite the lack of precise documentation for InChI, the format is in wide-
spread use. In the following sections we briefly outline the core ideas for the
molecule model and canonicalisation in InChI. The descriptions are in general
deduced from [Heller et al. 2015].

5.2.1 Molecule Model

The molecule model of InChI contains several submodels, arranged in a layered
manner such that they refine each other. For example, the least specific model
represents only the number of each atom type in the molecule, while more spe-
cific models adds bonds, hydrogen placement, and stereochemical properties.
An overview of the layers in the model can be found in [Stein et al. 2011,
Figure 1], and in the following we provide a more formal description of a few
of the layers.

47

5. External Molecule Representation

O

P
OH

OH

OH

(a)

O

P
O

O

O

H, 3

(b)

Figure 5.6: An example of shared hydrogens in InChI, for modelling multiple
tautomers. (a) Ordinary structural formula for phosphate. (b) Depiction of
phosphate in the InChI model up to the hydrogens layer, with the four oxygen
atoms sharing three hydrogens.

Empirical Formula Layer In the least specific model a molecule is a
multiset of chemical symbols.

Skeletal Connection Layer This layer adds bonds to the molecule, and
distinguishes between hydrogens with only one bond and bridging hydrogens
with multiple bonds (e.g., found in diborane). A molecule is then a pair
M = 〈G, k〉, where G = (V,E, lV) is a vertex labelled graph with unlabelled
edges, and k ∈ N0. The vertices of G are each labelled with one of the chemical
symbols, and it seems that if such a vertex is labelled as hydrogen, then it is
a bridging hydrogen. The integer k is the number of non-bridging hydrogens
in the molecule. The edges are not labelled, and no bond types are therefore
modelled.

Hydrogens Layer In the third layer the hydrogen count is incorporated
into the graph structure. The details of this incorporation is somewhat un-
clear, but what is clear is that special vertices are added to the graph from
the previous layer. They are labelled as “shared hydrogens” and with a pos-
itive integer. Edges are then added between these vertices and the ordinary
vertices from the previous layers. A “shared hydrogen” vertex v with count
kv > 0, connected to vertices v1, v2, v3 means that v1, v2, and v3 share kv
non-bridging hydrogens. In the special case that a “shared hydrogen” vertex
has degree 1, the hydrogens it represents are simply attached to this neigh-
bour. Otherwise the hydrogens represent different tautomers of the molecule,
as detected by the patterns in [Heller et al. 2015, Table 2]. In Figure 5.6 a
phosphate molecule is shown in this model.

Additional Layers The following layers in the model include specification
of charges, fixation of positions for the shared hydrogens, stereochemistry, and
isotope specification. While short descriptions of these layers are provided,
the details of what they model are intermixed with algorithmic descriptions,
making their specification rather unclear.

48

5.2. InChI

5.2.2 Normalisation

A large part of both [Heller et al. 2015] and [Stein et al. 2011] is devoted to
the normalisation procedures applied to molecules before they are converted
into the InChI model. They are introduced in order to obtain a common rep-
resentation for molecules that ordinarily would be considered the same. Note
though that the molecule model that the normalisation is applied to is not
explicitly defined in either document, but from the examples it seems similar
to the model we have defined in Section 2.1, possibly with extra valence con-
straints. Some of the normalisation steps seek to move charges while changing
bond types, e.g., see [Heller et al. 2015, page 17ff], while other steps may add
or remove protons [Heller et al. 2015, page 19ff].

5.2.3 Canonicalisation

In [Heller et al. 2015] the canonicalisation process is described as starting from
a canonicalisation of the lowest layer, and then rerunning the canonicalisation
with an additional layer while maintaining the canonical form of the previous
layer. Formally we can phrase this in the following way. Let C(i) be the
function producing the canonical form of molecules in layer i, and let P (i)

be the projection function that converts a molecule in layer j > i to the
corresponding molecule in layer i. Then for a molecule in the ith layer M (i)

1
and molecule in the layer above M (i+1)

2 , which are isomorphic on layer i, i.e.,
M

(i)
1
∼= P (i)(M (i+1)

2), the canonicalisation functions must not only satisfy

C(i)
(
M

(i)
1

)
r= C(i)

(
P (i)

(
M

(i+1)
2

))
but also that the projection and canonicalisation must commute:

C(i)
(
P (i)

(
M

(i+1)
2

))
r= P (i)

(
C(i)

(
M

(i+1)
2

))
For example, given a molecule in the hydrogens layer, we must obtain the same
result no matter if we first canonicalise and then remove the shared hydrogens,
or we first remove the shared hydrogens and then canonicalise. Using the
terminology from Figure 4.5, this means that the

r
<-best permutations of

molecules on level i+1 must correspond to a subset of the
r
<-best permutations

on level i.
A full description of the canonicalisation algorithms naturally depends on

a formal specification of the molecule models, including the specification for
how to project molecules into lower layers. The canonicalisation process, as
implemented in the InChI software, is illustrated with a flow chart in [Heller
et al. 2015, Figure 10], and a textual description is provided for some layers
in the model.

49

5. External Molecule Representation

5.2.4 String Encoding

A molecule can after canonicalisation be serialised into an ASCII string. Each
string starts with ‘InChI=’ followed by a version number for the encoding.
Each layer is then appended in order, of which we briefly describe the first
few layers.

Empirical Formula Layer Recall that in this layer a molecule is a multiset
of chemical symbols. The encoding starts with ‘/’ and is then followed by
each chemical symbol and the number of its occurrences in the molecule, e.g.,
‘/C2H6O’. The symbols are ordered such that carbon is first, hydrogen is
second, and the remaining symbols are in alphabetical order. Symbols with
count zero are not represented, and symbols with a single occurrence are
written without an explicit count.

Skeletal Connection Layer In this layer it is assumed that all atoms
that are not non-bridging hydrogens has been assigned consecutive indices
starting from 1. The layer starts with the string ‘/c’ and is then written
as a depth-first traversal of the graph, similar to the structure of SMILES
strings, though only using the canonical vertex indices in the string. As
an example [Heller et al. 2015, page 20], the molecule guanine has empir-
ical formula layer is ‘/C5H5N5O’, and the skeletal connection layer is then
‘/c6-5-9-3-2(4(11)10-5)7-1-8-3’. The paper [Heller et al. 2015] however
does not provide a precise grammar and the semantics for serialisation of this
layer.

Hydrogens Layer The string for this layer starts with ‘/h’ and contains a
specification of each shared hydrogen. No precise specification is given, but ex-
amples such as ‘/h1H,(H4,6,7,8,9,10,11)’ for guanine indicate that first all
shared hydrogens with degree 1 are listed on the form 〈vertex id〉‘H’〈count〉,
where 〈count〉 is the number of hydrognes represented by the “shared hy-
drogen” vertex. The 〈count〉 is omitted when it is 1. Next the remaining
shared hydrogens are specified on the form ‘(H’〈count〉‘,’〈vertex ids〉‘)’, where
〈vertex ids〉 is a comma-separated list of vertex indices.

50

Part II

Graph Transformation and
Chemical Reactions

Chapter 6

The Double Pushout Approach
There are several different approaches to defining graph rewriting systems, for
example replacement systems where single vertices or edges are replaced with
graphs. For the modelling of chemistry we use the Double Pushout (DPO)
approach, which is one of the algebraic graph rewriting formalisms. A general
overview of graph rewriting can be found in [Corradini et al. 1997], and for
details on algebraic graph transformation see [Ehrig et al. 2006, Ehrig 1979].

6.1 Introduction to Category Theory
To formally define the DPO approach we need a few concepts from category
theory. For the full details we refer to [Ehrig et al. 2006, Appendix A], while
we here only state the definitions and aim at an intuitive understanding of the
constructions in categories of graphs.

Definition 6.1 (Category, see [Ehrig et al. 2006, Definition A.1]). A category
C consists of

• a class of objects Ob(C),

• a class of morphisms Mor(C) where each morphism f : A → B maps
A ∈ Ob(C) to B ∈ Ob(C), and

• a morphism composition operator ◦ : Mor(C)×Mor(C)→Mor(C)

such that

• the class of morphisms is closed under composition: for each pair of
morphism f : A→ B, g : B → C there is a morphism g ◦ f : A→ C,

• there is an identity morphism idA : A → A for each object A ∈ Ob(C),
and

• morphism composition is associative.

Note that there can be multiple morphisms from one object to another, e.g.,
if a graph G matches as a subgraph in H in different ways, that correspond
to multiple morphisms m : G→ H.

In the following sections we only use categories where the objects are some
class of (labelled) graphs and all morphisms are monomorphisms (see Defini-
tion 3.1).

53

6. The Double Pushout Approach

A B

C D

D′′

f

g

f ′
g′

d′′

g′′

f ′′

Figure 6.1: Illustration of the definition of a pushout (Definition 6.2). The pair
of morphisms f ′, g′ is a pushout of f, g if i) the morphisms commute, and ii) for
all morphisms f ′′, g′′ that commute with f, g, there exists a unique morphism d′′

that commutes with the other morphisms.

Concepts in category theory are often illustrated using commutative dia-
grams, which are directed graphs where the vertices represent objects and the
edges represent morphisms. A diagram, or part thereof, is said to commute
when composing morphisms along different paths, with the same start and
end point, results in the same morphism.

6.1.1 Pushouts and Pullbacks

Definition 6.2 (Pushout, see [Ehrig et al. 2006, Definition A.17]). Given
two morphisms f : A → B and g : A → C in some category, the morphisms
f ′ : C → D and g′ : B → D forms a pushout of f and g if and only if (see also
Figure 6.1)

i) g′ ◦ f = f ′ ◦ g, i.e., the square commutes, and

ii) for all pairs of morphisms f ′′ : C → D′′, g′′ : B → D′′ with g′′◦f = f ′′◦g,
there exists a unique morphism d′′ : D → D′′ such that f ′′ = d′′ ◦ f ′ and
g′′ = d′′ ◦ g′.

The object D is called the pushout object.

An interpretation of a pushout for graphs is that the graph D is the union
of B and C with equality specified by common vertices and edges in A. In
Figure 6.2 we show an example of a graph pushout, along with candidates
for the pushout that satisfy the first condition of the definition, but not the
second. The candidate D in Figure 6.2b is not a pushout object because it is
too large. The extra vertex and edge makes it possible to find an even larger
candidate D′′ and two different morphisms, indicated by the choice of either
the blue or green mapping. The candidate in Figure 6.2c is on the other hand
too small, as we have mapped the extra vertex of B and C to the same vertex
in D. When considering a second pushout candidate D′′ we are not able to
find any morphism from D to D′′ such that the diagram commutes.

54

6.1. Introduction to Category Theory

A B

C D

(a)
A B

C D

D′′

(b)

A B

C D

D′′

(c)

Figure 6.2: Illustration of a pushout and pushout candidates in the category of
undirected graphs. (a) a pushout, which “glues” B and C along A to obtain the
pushout object D. (b) a pushout candidate which is too large. Two commuting
morphismsD → D′′ can be found: one using the blue mapping, and one using the
green mapping. (c) a pushout candidate which is too small. Unrelated vertices
of B and C have been merged, and with a second pushout candidate D′′ we can
not find any commuting morphisms D → D′′.

Suppose we are in the opposite situation of a pushout, i.e., given f ′, g′ and
want to find suitable morphisms f, g. This dual construction is a pullback:

Definition 6.3 (Pullback, see [Ehrig et al. 2006, Definition A.22]). Given
two morphisms f ′ : C → D and g′ : B → D in some category, the morphisms
f : A→ B and g : A→ C form a pullback of f ′ and g′ if and only if (see also
Figure 6.3)

i) g′ ◦ f = f ′ ◦ g, i.e., the square commutes, and

ii) for all pairs of morphisms f ′′ : A′′ → B, g′′ : A′′ → C with g′◦f ′′ = f ′◦g′′,
there exists a unique morphism a′′ : A′′ → A such that f ′′ = f ◦ a′′ and
g′′ = a′′ ◦ g.

55

6. The Double Pushout Approach

A′′

A B

C D

f

g

f ′
g′

a′′

f ′′

g′′

Figure 6.3: Illustration of the definition of a pullback (Definition 6.3), the dual of
a pushout. The pair of morphisms f, g is a pullback of f ′, g′ if i) the morphisms
commute, and ii) for all morphisms f ′′, g′′ that commute with f, g, there exists
a unique morphism a′′ that commutes with the rest.

A B

C D

(a)

A B

C
D

A′′

(b)

Figure 6.4: Illustration of a pullback and a pullback candidate in the category of
undirected graphs. (a) a pullback, which intersects B with C using D to obtain
the pullback object A. (b) a pullback candidate which is too small. There is no
morphism A′′ → A due to the edge in A′′. However, even when ignoring this
edge problem the resulting morphism would not commute with the remaining
morphisms.

For categories of graphs we can interpret a pullback as the construction
of the common subgraph of B and C determined by their embedding in D.
In Figure 6.4 we have illustrated a graph pullback, and a candidate that does
not fulfil both criteria.

The third variation of the situation we need is the pushout complement,
where f and g′ are given, and we wish to find g and f ′.

Definition 6.4 (Pushout Complement, see [Ehrig et al. 2006, Definition
A.20]). Given two morphisms f : A → B and g′ : B → D in some category,

56

6.2. Transformation Rules and Derivations

(a) (b) (c)

Figure 6.5: The pushout object of (a), in the category of simple graphs is either
not existing or is the graph depicted in (b), where the two edges are merged. For
multigraphs the pushout object would be the graph depicted in (c).

the morphisms g : A → C and f ′ : C → D forms the pushout complement of
f and g′ if and only if f ′ and g′ is the pushout of f, g.

6.1.2 The Category of Simple Graphs

We only consider simple graphs in the following chapters, and this restriction
gives rise to multiple definitions of a pushout, pullback, and a pushout com-
plement. Consider the construction of a pushout for the span in Figure 6.5a.
For graphs where parallel edges are allowed we can create the pushout object
depicted in Figure 6.5c, which conforms to the idea of a disjoint union of the
non-common vertices and edges. However, for simple graphs this is not a
possibility and we either need to define that no pushout exists for this span,
or that non-common edges can be merged in the pushout object and thus let
the graph in Figure 6.5b be the pushout object. In [Braatz et al. 2011] they
chose the latter option, which necessitates the definition of minimal pushout
complements. For the modelling of chemistry we take the other option, and
let no pushout be defined for this case. The span in Figure 6.5a can in the
context of transformation of molecules arise if a rule specifies that a bond
must be created between two atoms, but they are already bonded. Letting
the pushout be defined would mean that one of the bonds either vanish, or we
would need to define how any two bonds can be merged in a meaningful way.
In both cases the transformation will have a side-effect not explicitly specified
by the rule, which we deem highly undesirable.

6.2 Transformation Rules and Derivations
A graph transformation rule in the DPO formalism is a span p = (L l←− K r−→
R). The left-hand graph L plays the role of a precondition for the application
of the rule, while the right-hand graph R is a post-condition. Their relation
is specified by the context graph of the rule K, also called the gluing graph,
together with the morphisms l and r. If the morphisms are unimportant or
clear from the context we may write a rule simply as p = (L,K,R).

The transformation of a graph G using p proceeds in the following manner
(see Figure 6.6).

1. Find a match morphism m : L→ G, if it exists.

57

6. The Double Pushout Approach

L K R

G D H

l r

m d m′

l′ r′

Figure 6.6: The diagram for a derivation G
p,m==⇒ H in the Double Pushout

formalism of G to H using the rule p and the matching morphism m.

2. Construct D as the pushout complement of l,m, if it exists.

3. Construct H as the pushout of d, r, if it exists.

We call such a transformation a derivation of H from G, using the rule p
and the matching morphism m. As a shorthand we write a derivation as
G

p,m==⇒ H, or as either G p=⇒ H or G⇒ H if the match morphism and rule are
unimportant. Assuming m is found, the existence of D can be characterised
by what is called the gluing condition: G, p,m satisfy the gluing condition if
both the dangling condition and identification condition are satisfied.

dangling condition: there are no edges in EG\m(EL) incident to a vertex
in m(VL\l(VK)). That is, if p specifies the deletion of a vertex, it can
only be applied if it also specifies the deletion of all the edges incident
to the vertex.

identification condition: there are are no distinct vertices u, v ∈ VL with
m(u) = m(v), u ∈ l(VK), v 6∈ l(VK), and similarly for distinct edges
of EL. That is, if p specifies the deletion of a vertex or edge, but the
preservation of another vertex or edge, then the matching morphism m
may not identify those vertices or edges with each other.

A proof for the equivalence of the existence of the graph D and the gluing
condition is given in [Ehrig et al. 2006, Fact 3.11]. Additionally it states that
when D exists, then it is unique up to isomorphism.

Note that a transformation rule has a certain symmetry, in that there is
no particular difference between the left and right sides, except for the names
we have given them. Thus we can immediately define the inverse derivation
H

p−1,m′====⇒ G, using the inverse transformation rule p−1 = (R r←− K
l−→ L)

and the co-match m′. This is a quite useful property for the modelling of
chemistry, where reactions in general are invertible.

We can define different classes of graph transformation by restricting l,
r, or m to be monomorphisms, which for example is explored in [Habel
et al. 2001], though with l always restricted to be a monomorphism such
that uniqueness of D is guaranteed. In order to maintain uniqueness when

58

6.3. Labelled Graph Transformation

〈H, H+〉 〈O, O-〉

H C C

O H

H

〈-, =〉
〈=, -〉

-

-

-

-

D

H O

H C C

O H

H

-
-

=
-

-

-

-

G

H+ O

H C C

O H

H

-

=
-

-

-

-

-

H

〈H, H+〉 〈O, O-〉

C C
〈-, =〉

〈=, -〉

K

H O

C C

-
-

=

L

H O

C C

+ -

=
-

R

Figure 6.7: Example of a derivation using labelled graphs. The context graph
K and intermediary graph D are both labelled with pairs of strings, while the
remaining graphs are labelled with strings. To reduce clutter in K and D we
depict pairs with equal components 〈S, S〉 simply as S.

rules are inverted we also restrict r to be a monomorphism. We additionally
restrict the matching morphism m to be a monomorphism, as a atoms could
otherwise be merged when matched by a rule. Note that with this restriction
the identification condition is always fulfilled.

6.3 Labelled Graph Transformation

For our purposes we need that a transformation rule not only specifies a
structural change of graphs, but also the possible change of the labels on
vertices and edges. This gives rise to the question of how to label the context
graph of both rules and derivations. Let Ω be the set of possible labels to be
used on graphs to be transformed. We then define that a transformation rule
(L l←− K r−→ R) is labelled such that L and R are labelled graphs over Ω while
K is a labelled graph over Ω × Ω. The morphism l restricted to the labels
is the function fst : Ω × Ω → Ω returning the first component of an ordered
pair, and likewise for r the label restriction is the function snd : Ω × Ω → Ω
returning the second component. The intermediary context graph D of a
derivation (see Figure 6.6), is as K a graph with pairs of labels. Figure 6.7
illustrates a derivation where labels are changed. In the graphs K and D we
have simplified the visualisation such that a pair where the first and second

59

6. The Double Pushout Approach

a

L K

b

R

(a)

a

L

〈a, b〉

K

b

R

(b)

Figure 6.8: The rule in (a) models the removal of an edge with label a and the
addition of the same edge but with label b. We do not represent this kind of
transformation, but instead allow rules to change labels as in the rule in (b).

component are the same, are depicted simply as the common label. To further
reduce clutter in illustrations in the following chapters, we omit edges from K
and D when they change labels.

6.4 Representation of Transformation Rules

A transformation rule p = (L l←− K
r−→ R) in the category of simple graphs

could naturally be represented directly by three graphs and two vertex maps.
However, this is arguably a rather verbose representation when restricted to
monomorphisms where K is a subgraph of both L and R and thus stored
three times. To obtain a more compact representation that also allows for
simpler algorithm implementations we disallow certain rules. Consider the
rule depicted in Figure 6.8a, which models first the removal and then the
addition of an edge, but with a different label. Figure 6.8b show a functionally
equivalent rule, which models the label change directly, i.e., in the underlying
graph the edge is invariant. Only if we were to attach auxiliary data to edges
then the application of these two rules would have observable differences.

To simplify our representation of a rule we opt to not allow rules such as in
Figure 6.8a, that is for all rules p = (L l←− K r−→ R) we require that for all two
vertices u, v ∈ K, if (u, v) 6∈ EK then (l(u), l(v)) 6∈ EL∨(r(u), r(v)) 6∈ ER. Now
let p = (L l←− K

r−→ R) be a labelled transformation rule as described in the
previous section, where Ω is the label set for L and R and Ω×Ω is the label set
for K. We can then create a new undirected, labelled graph Cp = (Vp, Ep,mp)
being the pushout object of L l←− K r−→ R. The vertices and edges are labelled
with the function mp : Vp ∪Ep → Ω′×Ω′, where Ω′ = Ω∪{nil} is the original
label set augmented with a distinct new label nil that will indicate the absence
of a label. Each vertex in Vp and edge in Ep were created because they were
in one of L\l(K), R\r(K), or K. For vertices/edges created from L\l(K)
with label α in L we attach the new label 〈α,nil〉. Similarly a vertex/edge
in R\r(K) have a label on the form 〈nil, β〉, and a vertex/edge in K on the
form 〈α, β〉. Clearly the original rule can be recovered from the placement of
the nil labels.

Figure 6.9 shows how the rule p = (L,K,R) from Figure 6.7 is represented

60

6.5. Chemical Graph Transformation

〈H, H+〉 〈O, O-〉

C C
〈-, =〉

〈=, -〉

K

H O

C C

-
-

=

L

H O

C C

+ -

=
-

R

〈H, H+〉 〈O, O-〉

C C

〈-,nil〉
〈-, =〉

〈=, -〉

Cp

Figure 6.9: Pushout diagram for the construction of the graph Cp representing
the rule p = (L,K,R) from Figure 6.7.

by the pushout object Cp.
Note that the rules that are not representable in this manner are exactly

those for which we have previously opted not to define a pushout in the cat-
egory of simple graphs.

6.5 Chemical Graph Transformation

In the modelling of chemistry we use transformation rules in the Double
Pushout formalism to instantiate chemical reactions. The DPO rules spe-
cify transformation in a two-step process, first removal and then addition.
Labelled graph transformation rules can further specify that the label of a
vertex or edge changes. A chemical reaction can similarly be described as
sets of bonds to be broken, formed, or changed, e.g., from a single bond to a
double bond.

Recall that a reaction is an ordered pair (G,H) of multisets of molecules
(see Section 1.1.3), where we here assume that a molecule is a graph. We
can view the educts G and products H each as a single disconnected graph,
where each connected component corresponds to the individual graphs of the
multisets G andH. We can interpret a DPO derivation G p,m==⇒ H as a chemical
reaction, simply by forgetting p and m, and thus we can discover reactions
through graph transformation.

In the area of formal grammars we have objects, usually strings, and re-
write rules that transform a single object into a single other object, and the
generalisation to graph grammars is straightforward: the objects are graphs
and the rewrite rules each transform one graph into another. However, for
chemical graph transformation we want to work with connected graphs as
the individual objects, but apply transformation rules to multisets of those

61

6. The Double Pushout Approach

graphs, in order to allow for molecules to merge and split. We formally de-
scribe this alternate kind of a graph grammar and a graph language in the
following manner.

Definition 6.5 (Graph Grammar and Graph Language). For a graph cat-
egory C let C′ be the subcategory of C restricted to the connected graphs.
A graph grammar over C is an ordered pair (G,P), with G as a finite set of
initial graphs with G ⊆ Ob(C′) and P as a finite set of Double Pushout trans-
formation rules in C. The language of a grammar L(G,P) is the subset of
Ob(C′) derivable from the initial graphs using the given transformation rules:

G0 = G

Gi =

h ∈ H
∣∣∣∣∣∣G p=⇒ H, p ∈ P, G =

⋃
0≤j<i

Gj

 i > 0

L(G,P) =
⋃
i≥0
Gi

From a chemical perspective we can loosely say that a graph grammar
is a formalisation of a chemistry, consisting of starting compounds and a
specification of the types of reactions we assume can take place. We then
say that the language of a chemical graph grammar is the chemical space or
chemical universe of the chemistry (see also [Grzybowski et al. 2009, Dittrich
et al. 2001]). In many cases we can not fully describe a chemistry only by a
graph grammar, e.g., because the molecules have bounded size. In Chapter 9
we describe an algorithmic framework for generating a graph language with
further constraints, and for formal computations with graph grammars.

The special use of connectedness gives rise to a classification of deriva-
tions. Consider an arbitrary derivation {{ga, gb, gb}}

p,m==⇒ {{hc, hd}}, and let q
be another connected graph. Then we can construct an extended derivation
{{ga, gb, gb, q}}

p,m==⇒ {{hc, hd, q}} using the same rule and match, but where q is
simply added on both sides. In the context of chemistry this corresponds to
augmenting a chemical equation with another molecule, even though it does
not participate in the reaction. We call the derivations where the left- and
right-hand sides are minimal proper :

Definition 6.6 (Proper derivation). A derivation G p,m==⇒ H with the left-hand
side G = {{g1, g2, . . . , gn}} is proper if and only if

gi ∩ img(m) 6= ∅, ∀1 ≤ i ≤ n

That is, all connected components of G are hit by the match.

With the above definition we now say that only proper derivations should
be interpreted as chemical reactions.

62

6.5. Chemical Graph Transformation

6.5.1 Atom Maps and Validity of Adjacency Changes

Chemically valid graph transformation rules have the special property that
they neither delete nor create vertices. This would amount to destroying and
creating atoms, which is well beyond the scope of biochemistry. For a rule
p = (L l←− K r−→ R) the differences between the three graphs are thus restricted
to the edge set, and in a derivation G p=⇒ H we then preserve the vertices. For
a derivation we can therefore define a bijection a : VG → VH , between the
vertices of G and H. Using the morphism names of Figure 6.6 we can define
the map as a = r′ ◦ l′−1, with the restriction to the vertex sets. In chemistry
this map is called the atom map of a reaction, and it plays an important role
for understanding chemical systems (see Chapter 11). We discover reactions
using graph transformation, so the atom maps are explicitly determined by the
model. However, atom maps are usually not present in the various chemical
databases and it then becomes a challenge to enumerate the chemically valid
maps, e.g., see [Chen et al. 2013, Mann et al. 2013c].

As for molecules we only informally use the notion of chemical validity,
and we do not restrict algorithms or discussions to rules with invariant vertex
sets. Note though that when no vertices are deleted or created, then the
dangling condition of DPO transformation is trivially fulfilled for the rule and
its inverse [Andersen et al. 2013b].

In our molecule model (see Section 2.1) we have not included formal valence
requirements for atoms. This is not only because of the complication of
constructing a well-defined rule set, but also because the use of the Double
Pushout formalism to a large extend removes the need for such constraints.
Recall that during transformation of a graph there are no side-effects, and all
changes are explicitly described by the rule. If we assume the input graphs are
valid molecules, then we can simply require that for a rule to be chemically
valid its transformation must be invariant with respect to the chemical neigh-
bourhood constraints. For example, if a rule specifies the removal of a double
bond, incident to a carbon atom, then from Table 2.1 we see that the match-
ing carbon must have either the neighbourhood {{Single,Single,Double}}
or {{Double,Double}}. In order for the rule to guarantee the products are
valid molecules, then it must add a double bond again or add two single bonds.
Similar reasoning can be used for all other cases, but we do not provide a full
formalisation in this work. Informally we say that a chemical valid transform-
ation rule must conform to this yet to be defined set of adjacency constraints.
In Section 15.1 we briefly sketch the introduction of local geometry into the
molecule model, which naturally leads to a potential formalisation.

6.5.2 Comparison of the DPO and SPO Formalism

This section is based on [Andersen et al. 2013b, Appendix A].

In order to model reaction patterns as graph transformation we essentially

63

6. The Double Pushout Approach

just need a formal method for specifying the transformation of a subgraph
L into a subgraph R when matched on a graph G. The Double Pushout
formalism provides such a method, but so does the Single Pushout (SPO)
formalism. In SPO a rule is specified as a partial morphism p : L � R,
meaning the formalism works in a different graph category than DPO, where
the morphisms do not need to be total functions, and not preserve edges in
the usual manner. A detailed comparison of SPO and DPO can be found,
e.g., in [Ehrig et al. 1997] and [Löwe 1993], while here we briefly state their
difference when considering chemical transformation.

Even though the rules in the two formalisms are differently specified we
can covert between the two. Given an SPO rule p : L � R we construct the
an equivalent DPO rule (L l←− K r−→ R) by letting K be the domain of p, with
r as the restriction of p to its actual domain, and l as the monomorphism
that embeds K into L. Conversely, given a DPO rule (L l←− K

r−→ R), with l
injective, we can construct the equivalent SPO rule p : L � R as p = r ◦ l−1.
In the following descriptions we use the DPO specification format.

The main difference between the two formalisms is in how a rule is used to
transform graphs. Where the DPO formalism rejects a candidate transforma-
tion when the match do not fulfil the gluing condition, the SPO formalism still
has a well-defined transformation by performing extra deletions: The dangling
condition is concerned with the edges EG\m(EL) that are incident to a vertex
in m(VL\l(VK)). These edges are deleted in an SPO transformation to resolve
the problem. Recall that the identification condition states (for vertices) that
we can not have distinct vertices u, v ∈ VL with m(u) = m(v), such that
u ∈ l(VK), v 6∈ l(VK), because it means the vertex m(u) = m(v) must be both
deleted and preserved. In the SPO formalism such conflicts are resolved for
both vertices and edges by deleting the offending vertex/edge.

Another way to view the difference between the formalisms is that DPO
rules are pure, in the sense that they specify all changes, while the changes
of SPO rules may extend beyond what the rules specify. However, if we are
only concerned with chemical transformations where the matching morphism
is injective and no vertices are created or deleted, then the gluing condition
is trivially fulfilled. Thus for chemical transformation the SPO and DPO
formalisms are equivalent.

We primarily focus on chemical transformations but when convenient, e.g.,
in certain rule compositions, we introduce non-chemical rules. In these cases
we find it easier to work with DPO rules which do not have side effects, and are
based on total morphisms instead of partial morphisms. That DPO rules do
not have side effects additionally means that they are always invertible, simply
by exchanging the left and right graphs and the morphisms. Further, for
modelling chemistry the DPO formalism is particular appealing as it explicitly
exposes the context graph, which is related to the concept of transition states
in chemical reactions.

64

Chapter 7

Composition of Transformation
Rules
This chapter is an expanded version of the methods described in [Andersen
et al. 2013b] and [Andersen et al. 2014b].

For ordinary mathematical functions with multiple arguments there is the
concept of partial application. For example, if f(x, y) = xy then we can define
a new function f ′(x) = x2 by partially applying f to the number 2 in the
second position. A specialised form of partial application, called currying, is an
integral part of the programming language Haskell. With the chemical view on
DPO rules, where they are applied not just to a single graph but to a multiset
of connected graphs, we can view a rule p = (L,K,R) with k connected
components in L as a function of up to k unordered arguments. Similarly to
partial function application we can then imagine that a transformation rule
can be partially applied to a graph, with the result being a new rule, with fewer
connected components in its left side graph. For example, the rule depicted
in Figure 7.1b have two connected components in the left-hand graph, and
it can therefore be applied to either an enol and a molecule with a carbonyl
group, or a single molecule with both features. We can now derive a new rule,
Figure 7.1c, where a formaldehyde molecule have been bound to one of the
components of the original rule. Suppose we bind another graph to the new
rule. The last component would then be used and the resulting rule have the
form (∅, ∅, H). Such a rule is essentially equivalent to a constant function,
implying that a DPO derivation can be calculated by iterated graph binding.

A more general concept than partial application is function composition.
Consider two DPO rules p1 = (L1,K1, R1) and p2 = (L2,K2, R2) and suppose
we have a monomorphism from L2 to R1. Then if we first have a derivation
G1

p1=⇒ G2, then we for sure can find a match of L2 in G2 and potentially a
derivation G2

p2=⇒ G3. If we can define a composition p2◦p1 the two derivations
can be combined into G1

p2◦p1===⇒ G3.
The concept of rule composition is in the area of graph transformation

related to both D-concurrency [Ehrig et al. 1991] and E-concurrency [Ehrig
et al. 2006, Golas 2010]. In this chapter we first describe the most general form
of composition, similar to D-concurrency, and then several special cases with
relevance to the modelling of chemistry. Secondly we describe algorithms for
enumerating compositions, and how to use them for enumerating derivations
starting from a collection of graphs.

65

7. Composition of Transformation Rules

C

O H

H

(a) Formaldehyde

C

C

O

H

O

C

L

C

C

O

H

O

C

K

C

C

O

H

O

C

R

(b) Aldol addition

C

C

O

H

L

C

C

O

H

K

C

O

H H

C

C

O

H

R

(c) Aldol addition with formaldehyde bound

Figure 7.1: An example of partial application of a graph transformation rule.
Formaldehyde (a) can be bound to one of the components of the left-hand graph
of aldol addition (b). The resulting rule (c) represents the addition of formalde-
hyde to an enol.

7.1 Classes of Composition

In the general case a composition of two rules pi = (Li
li←− Ki

ri−→ Ri) for
i = 1, 2, is done by means of a common subgraph of L1 and R2. Formally (see
also [Ehrig et al. 1991, Section 6.2]) we say that p1 and p2 are composed using
a graph D with morphisms d1 : D → R1, d2 : D → L2, and write p = p1 •D p2
as shorthand for the composed rule if it exists. Note that the order of the
operands is the reverse compared to the usual composition operator ◦, such
that p is equivalent to first applying p1 and then p2. The composed rule exist
if the diagram in Figure 7.2 exists with the squares (1), (2), (2’), (3), (3’),
and (4) all being pushouts. We then have p = p1 •D p2 = (L l←− K r−→ R) with
l = s1 ◦ w1 and r = t2 ◦ w2 as the resulting composition. Algorithmically we
can describe the construction of p as

1. Construct E as the pushout object of (1).

2. Construct C1 and C2 as the pushout complement objects of respectively
(2) and (2’).

3. Construct L and R as the pushout objects of respectively (3) and (3’).

4. Construct K as the pullback object of (4).

66

7.1. Classes of Composition

D

L1 K1 R1 L2 K2 R2

L C1 E C2 R

K

(1)

(2) (2’)(3) (3’)

(4)

d1 d2

u1 v1 e1 e2 v2 u2

w1 w2l r

l1

s1

r1

t1

l2

s2

r2

t2

Figure 7.2: Commutative diagram for general rule composition [Ehrig et al. 1991,
Section 6.2]. The two rules pi = (Li

li←− Ki
ri−→ Ri) for i = 1, 2 are composed

using the common common graph D and the morphisms d1 and d2. The resulting
rule is p = p1 •D p2 = (L l←− K r−→ R) with l = s1 ◦ w1 and r = t2 ◦ w2.

L1 R1

L2 R2

p1

p2
L ∼= L1 ∪ L2 R ∼= R1 ∪R2

p

Figure 7.3: Composition p = p1 •∅ p2 with an empty common subgraph, giving
a composed rule which models the parallel transformation using p1 and p2.

If any of the constructions are not defined, then the composition is not defined.
In the followings section we describe simplified cases of composition for

specific choices of the common subgraph D.

7.1.1 Parallel Composition

For D being the empty graph we can always compose the rules, and obtain
a rule which combines the effect of p1 and p2, i.e., p = (L1 ∪ L2

l1∪l2←−−− K1 ∪
K2

r1∪r2−−−→ R1∪R2). Intuitively we can see this using the diagram in Figure 7.2,
where D = ∅ means that pushout (1) degenerates to a disjoint union, i.e.,
E = R1 ∪ L2. The image of e1 is thus disjoint from the copy of L2, and the
completion of pushouts (2) and (3) then propagates L2 into C1 and L without
modification. Symmetrically R1 is propagated into R. In short we write this
merging of two rules as p = p1 •∅ p2 and visualise it as in Figure 7.3.

67

7. Composition of Transformation Rules

L1 R1 L2 R2
p1 p2

L ∼= L1 R R2
p

(a) Abstract depiction

D

L1 K1 R1 L2 K2 R2

L C1 E C2 R

K

(1)

(2) (2’)(3) (3’)

(4)

d1

e2 v2 u2

w1 w2l r

d2

u1 v1 e1

l1

s1

r1

t1

l2

s2

r2

t2

(b) Specialisation of the composition diagram

CH3
C

CH2

CH
CH2

CH

CH
C
H2

CH2

CH2
C
H2

p1

CH3
C

CH2

CH
CH2

CH

CH
C
H2

CH2

CH2
C
H2

C
C

C
C

C

C p2

C
C

C
C

C

C

CH3
C

CH2

CH
CH2

CH

CH
C
H2

CH2

CH2
C
H2

p

CH3
C

C
H2

CH
C
H2

CH

CH
C
H2

CH2

CH2
C
H2

(c) Chemical example

Figure 7.4: Full composition p = p1 •⊇ p2 where D is a copy of L2 and d2
is an isomorphism. (a) Abstract depiction; L2 is isomorphic to a subgraph of
R2. (b) Specialised commutative diagram for full composition. As d2 is an
isomorphism so will e1, v1 and u1 be. (c) Chemical example; p1 = (G,G,G) is
the identity rule for a graph G encoding the educts cyclohexene and isoprene.
The second rule, p2, is the transformation rule for the Diels-Alder reaction. The
composed rule therefore encodes the overall rule of the Diels-Alder reaction on
the input molecules. The context graphs and D are omitted from the drawings
for simplicity. The monomorphism d1 ◦ d2 is shown with red dashed lines.

7.1.2 Full Composition

When we see DPO rules as a kind of abstract functions where the left- and
right-side graphs respectively are the pre- and postconditions we can look
at the case where the precondition of p2 is fulfilled completely by the post-
condition of p1, as illustrated in Figure 7.4a. We call this special case full

68

7.1. Classes of Composition

composition and formally specify it as when D ∼= L2, d2 = idL2 and d1 being
a monomorphism. The effect of d2 being the identity morphism, and thereby
an isomorphism, is illustrated in Figure 7.4b. Because (1) is a pushout we
must have e1 being an isomorphism, which in turn makes both v1 and u1
isomorphisms as well.

A chemical example of full composition is shown in Figure 7.4c, where p1
additionally is a special identity rule that requires a specific graph and does
not change it. The effect of this choice of p1 is discussed in Section 7.2. For
full composition we note that due to the complete embedding of L2 in R1 we
have L ∼= L1, meaning the resulting rule have the same precondition as p1.
As shorthand we may write p1 •⊇ p2 to denote an arbitrary full composition
or the enumeration of all such compositions, depending on the context.

We can additionally define the symmetric kind of full composition, p1•⊆p2
where d1 is an isomorphism and d2 a monomorphism. Further we have the
special case p1 •∼= p2 where both d1 and d2 are isomorphisms. However, we
reserve the term full composition for p1 •⊇ p2 which particularly is useful for
a method for calculating atom traces, see Chapter 11.

7.1.3 Partial Composition

For chemical graph transformation we have the perspective that graphs can
be interpreted as multisets of their connected components, and if the rule
p2 models the merging of two molecules then L2 will have two connected
components. In a full composition we had both of those components embedded
in R1, but we can generalise to the case where a subset of the components are
embedded in R1, as visualised in Figure 7.5a.

Formally we can describe this type of composition by letting D ∼= L′2
and introducing the graph L′′2 such that L2 is the disjoint union of L′2 and
L′′2, illustrated in Figure 7.5b. As for full composition we require d1 to be a
monomorphism. Note that this specification generalises both parallel and full
composition, but we however refer to parallel composition explicitly and do
not include it in partial composition, i.e., we require D 6∼= ∅. As shorthand we
write p1 •c⊇ p2 for an arbitrary partial composition, or all of them, due to the
splitting of L2 into components and requiring R1 ⊇ D.

Figure 7.5c shows a chemical example with partial composition, where
L2 has two connected components. The smaller component is used as the
common subgraph D is thus not a precondition in the resulting rule, while
the other component is preserved in L.

In the symmetric case of partial rule composition we can instead require
components of R1 to be a subgraph of L2 and write p1 •c⊆ p2.

69

7. Composition of Transformation Rules

L1 R1 L′2

L′′2

p2
R2

p1
L1

L′′2

p2
R R2

(a) Abstract depiction

∅

L′′2

L1 K1 R1 L2 K2 R2

L C1 E C2 R

K

D ∼= L′2

(1)

(2) (2’)(3) (3’)

(4)

(0)

d1 d2

u1 v1 e1 e2 v2 u2

w1 w2l r

l1

s1

r1

t1

l2

s2

r2

t2

(b) Specialisation of the composition diagram

CH

CH
C
H2

CH2

CH2
C
H2

p1

CH

CH
C
H2

CH2

CH2
C
H2

C
C

C
C

C

C

p2

C
C

C
C

C

C

CH

CH
C
H2

CH2

CH2
C
H2

C
C

C
C

p

CH

CH
C
H2

CH2

CH2
C
H2

C
C

C
C

(c) Chemical example

Figure 7.5: Partial composition p = p1 •c
⊇ p2 where D is a copy of a non-empty

subset of the connected components of L2, and d2 is the inclusion morphism
back into L2. (a) Abstract depiction; connected components of L2 are either
completely matched into R2 or not at all. (b) Specialised commutative diagram
for partial composition. The selection of connected components of L2 to form
D is specified by pushout (0), that degenerates to a disjoint union. To exclude
parallel composition from partial composition we require D 6∼= ∅. (c) Chem-
ical example; p1 is the identity rule for cyclohexene and p2 is the Diels-Alder
transformation rule. The composed rule encodes the partial application of the
Diels-Alder reaction to the molecules, leaving the diene to be instantiated at a
later stage. The context graphs and D are omitted for simplicity. The partial
morphism d1 ◦ d2 is shown with red dashed lines.

70

7.2. Binding, Unbinding, and Identification of Graphs

L1 R1 L2 R2
p1 p2

L R
p

(a) Abstract depiction
C

C

C
C

C

C p1

C
C

C
C

C

C

C

C
C

C

C
C

p2

C

C
C

C

C
C

C
C

C
C

C

C
C

C

C
C

p
C

C

C
C

C

C
C

C

C
C

(b) Chemical example

Figure 7.6: General rule composition where D is a common subgraph of both
R1 and L2. The commutative diagram is shown in Figure 7.2. (a) Abstract
depiction, with the common subgraph D shown as the intersection of R1 and
L2. (b) Chemical example; the rule for the Diels-Alder reaction is composed
with itself. The context graphs and D are omitted for simplicity. The partial
morphism d1 ◦ d2 is shown with red dashed lines.

7.1.4 General Composition

We now briefly return to the most general case of composition where D simply
must be a common subgraph of R1 and L2. As shorthand notation we use
p1•∩p2, and visualise the relation abstractly as in Figure 7.6a, while a chemical
example is shown in Figure 7.6b.

Several further subclasses of composition can be defined, for example re-
quiring D to be maximal with respect to inclusion in R1 and L2, but we have
not encountered a natural use of further classes in the context of chemistry.

7.2 Binding, Unbinding, and Identification of
Graphs

In the beginning of this chapter we argued that given a graph and a rule
we can define how to bind the graph onto the rule and obtain a new rule
modelling the partial application. To formalise graph binding we now consider
a rule p1 = (∅, ∅, G) to be equivalent to the graph G, since it models the
unconditional creation of G. The creation of H in the derivation G p2,d1===⇒ H
is then equivalent to the full composition p1 •⊇ p2 = (∅, ∅, G) •⊇ p2 = (∅, ∅, H)
(see Figure 7.4b). Consider now a division of L2 into the disjoint subgraphs
L′2 and L′′2, and assume we want to model the binding of G to L′2. We can then
see this as the partial composition p = (∅, ∅, G)•L′2 p2, illustrated in Figure 7.7.
From the division of L2 into disjoint graphs and the definition of pushouts we
have that the resulting composed rule have L′′2 as its left-side graph, which

71

7. Composition of Transformation Rules

∅

L′′2

∅ ∅ G L2 K2 R2

L′′2 L′′2 C2 R

K

D ∼= L′2

E ∼= G ∪ L′′2

(1)

(2) (2’)(3) (3’)

(4)

(0)

d1 d2

u1 v1 e1 e2 v2 u2

w1 w2l r

r1

t1

l2

s2

r2

t2

l1

s1

Figure 7.7: Commutative diagram for binding a graph G to a rule p2 by reduction
to a partial composition (∅, ∅, G) •c

⊇ p2. Pushout (0) makes L2 the disjoint union
of L′2 and L′′2 , while the morphism d1 embeds L′2 into G. For (1) to be a pushout
we thus have E being the disjoint union of G and L′′2 . Pushouts (2) and (3) then
propagates L′′2 , the unbound part of L2, to be the left-side graph of the resulting
rule.

exactly was the part of L2 we did not want to bind onto.
In Section 7.4 we use graph binding to define an algorithm for enumerating

derivations from a set of input graphs, but graph binding also have direct use
in a chemical setting. Many reactions in biochemistry have compounds, such
as water, as educts and products that are present in a high quantity such that
we can argue they are always present. Reaction patterns, in form of DPO
rules, can then be simplified by binding the abundant compounds to obtain
the rules modelling only the “interesting” part of the reaction pattern. Graph
binding can only simplify the educt side of the reaction pattern, while for the
product side we need to use the symmetric composition p1 •c⊇ (H, ∅, ∅), which
we then refer to as graph unbinding.

The third trivial manner to create a rule from a graph G is to create the
identity rule (G,G,G). In Chapter 11 we describe how we use such identity
rules together with full composition to calculate atom traces. The property
we use is that the result of the composition (G,G,G) •⊇ p2 is a rule (G,D,H)
corresponding the lower half of the usual DPO diagram for the derivation
G

p2=⇒ H.
Based on their use we refer to the rules (∅, ∅, G), (G, ∅, ∅), and (G,G,G)

respectively as the bind rule, unbind rule, and the identity rule for the graph
G.

72

7.3. Enumeration of Partial and Full Compositions

R1
1 R2

1 R3
1

L1
2 1 2

L2
2 1 1

(a) Match matrix

R1
1 R2

1 R3
1 R∅1

L1
2 1 2 1

L2
2 1 1 1

(b) Extended match matrix

Figure 7.8: Example of (a) a match matrix and the same matrix with (b) its
virtual extension to model unmatched connected components. The top row spe-
cifies 1 possibility for L1

2 ⊆ R1
1 and 2 for L1

2 ⊆ R3
1. The extended matrix further

specifies that L1
2 can be unmatched. The bottom rows can be interpreted sim-

ilarly. We display the number of morphisms instead of a representation of the
morphisms themselves.

7.3 Enumeration of Partial and Full Compositions

In the previous sections we defined classes of composition by different con-
straints on the common subgraph D and the morphisms d1 and d2. For
composition of two rules p1 and p2 we may wish to enumerate all possible
compositions within a certain class. In the case of full composition we can
clearly enumerate all morphisms d1 : L2 → R1 using the algorithms described
in Section 3.3, while for parallel composition there is only a single composi-
tion as D must be the empty graph. Partial composition is somewhat more
complicated as we need to enumerate all partitions of L2 into {{L′2, L′′2}} and
for each of those enumerate all monomorphisms d1 : L′2 → R1. In practice
we wish to avoid creating the intermediary graph L′2 and instead work with
partial morphisms µ : L2 � R1 such that dom(µ) = img(d2). Note that µ
must be injective as d1 : D → R1 is required to be a monomorphism. In the
following we describe an algorithm which enumerates all such µ for partial
composition.

Let k1 and k2 be the number of connected components of respectively R1
and L2, and then let R1 =

{{
R1

1, R
2
1, . . . , R

k1
1

}}
, L2 =

{{
L1

2, L
2
2, . . . , L

k2
2

}}
for

an arbitrary ordering of the components. As a first step we compute all sets
of monomorphisms Mi,j = {Li2 → Rj1} and arrange them in a k2 × k1 matrix.
Figure 7.8a illustrates an example of a match matrix, with |Mi,j | written in
each cell. Only a subset of the components of L2 need to be selected for the
final morphism, so we extend the match matrix with a virtual column R∅1
as illustrated in Figure 7.8b, where we imagine a single morphism to exist.
All selections of 1 morphism in each row are now candidates for combination
into a final partial morphism µ : L2 � R1. We have explicitly defined partial
composition such that it does not include parallel composition, meaning the
choice of the virtual morphism in column R∅1 for all rows at the same time is
not a candidate. Additionally, the same component of R1 can be selected by
multiple components of L2, e.g., in Figure 7.8 both L1

2 and L1
2 can select R3

1.
If the images of the selected morphisms are not disjoint then the combined

73

7. Composition of Transformation Rules

morphism µ is not injective, and must therefore be excluded.
By enumeration of all morphism selections under the mentioned conditions

we clearly enumerate all viable partitions L2 = {{L′2, L′′2}}, with L′′2 consisting
of the components where the R∅1 column is selected. As all componentwise
monomorphisms are represented in the matrix, the enumeration of selections
will enumerate all monomorphisms for each partition of L2.

Even though full compositions can be enumerated by direct enumeration
of monomorphisms L2 → R1, we in practice reuse the algorithm described
above, though without the virtual column R∅1.

A complete example for enumeration of all partial rule compositions can
be found in [Andersen et al. 2013b, Appendix B].

7.4 Derivation by Repeated Graph Binding

In Section 7.2 we argued that a derivation G
p=⇒ H is equivalent to a full

composition (∅, ∅, H) = (∅, ∅, G) •⊇ p, and we thus do not need a dedicated
algorithm for computing derivations. We can now consider the following enu-
meration problem: given a set of graphs G and a rule p = (L,K,R), compute
all proper derivations G p=⇒ H with G ⊆ G. This is a simplified subproblem
used in the framework described in Chapter 9, and arguably a subproblem of
generating the language of a graph grammar (Definition 6.5). The problem
could theoretically be solved using the match matrix approach described in
the previous section, with p1 = (∅, ∅,G) and special handling to recover the
actual derivations. However, for the framework in Chapter 9 the set of graphs
G is growing dynamically and can become very large, meaning it may not
be feasible to pre-compute all individual morphisms. In a future implement-
ation the match matrix algorithm and the approach described below could
potentially be unified.

Let k be the number of connected components of L, then we can solve the
problem by enumerating all multisets of graphs from G with size 1 through k,
and then enumerate all derivations that are proper using each multiset as G.
Note that the number of multisets of cardinality k from a ground set of size
n, also known as the number of multicombinations or k-combinations with
repetition, is given by the multichoose function((

n

k

))
=
(
n+ k − 1

k

)

In the extreme case each multiset gives a unique derivation, but in practice
we observe that some graphs can never be matched by the rule and thus many
multisets are never viable.

In order to adapt to the cases of unmatchable graphs we use repeated graph
binding to compute derivations. The details of this method is presented in
Algorithm 1. The main idea is that all derivations G p=⇒ H with G =

74

7.4. Derivation by Repeated Graph Binding

Algorithm 1: Computing derivations by repeated graph binding.
Input: G, a list of unique graphs, in arbitrary order.
Input: p = (L,K,R), a transformation rule.

1 k ← number of connected components of L
2 Q0 ← {〈p, {{}} , 1〉}
3 for i = 1 to k do
4 Qi ← ∅
5 foreach 〈p′, G′,m〉 ∈ Qi−1 do
6 for j = m to |G| do
7 g ← G[j]
8 foreach partial composition (∅, ∅, g) •c⊇ p′ do
9 (L′′,K ′′, R′′)← result of the composition

10 G′′ ← G′ ∪ {{g}}
11 if L′′ ∼= ∅ then
12 yield derivation G′′ p=⇒ R′′

13 else
14 Qi ← Qi ∪ {〈(L′′,K ′′, R′′), G′′, j〉}

{{a, b, b, c}}, can be calculated by first binding a to p, then binding b to each
result, and so forth. Each intermediary result can then be specified by a
multiset of already bound graphs G′ and a rule p′ modelling p with G′ bound.
Additionally we keep track of the next graph we should try to bind, meaning
the multisets implicitly will be tried in a total order determined by the order
of the input graphs G. If a graph binding results in a rule with an empty left-
side graph it can bind no further graphs, and the right-side graph corresponds
to the right-side of a proper derivation.

It should be noted that in the algorithm we do not directly compute the
matching morphism for the derivations. In some cases the algorithm addi-
tionally do duplicate computation; for a derivation {{a, a}} p=⇒ H it first binds
a once to p. As we know that one further a can be bound we get at least
two intermediary results with the rules p1 and p2 that can bind another copy
of a. In the next round we exactly do this binding and the algorithm will,
at least, twice yield the derivation. However, in practice we rarely encounter
derivations with the same graph multiple times in the left side, and thus the
duplicate computation is not a performance problem.

It should be noted that the algorithm used in the framework described in
Chapter 9 is slightly different, as we require additional control on the candidate
multisets, where only a subset of graphs from G is used in the initial round of
graph binding.

75

Part III

Chemical Reaction Networks

Chapter 8

Reaction Networks as Directed
Hypergraphs
A directed hypergraph is an ordered pair H = (V,E) of vertices and hy-
peredges. In contrast to a normal graph, in each edge (e+, e−) ∈ E of a
hyper-digraph the tail e+ and head e− is not just a single vertex, but a set
of vertices. Further, in a directed multi-hypergraph the edges are pairs of
multisets of vertices. A chemical reaction network is essentially such a multi-
hypergraph [Zeigarnik 2000], where each vertex models a molecule and each
edge models a reaction. The tail of an edge models the multiset of educts
and the head models the products. In the remainder of this work we refer to
directed multi-hypergraphs simply as hypergraphs.

Notationally we use the convention that objects with a superscripted plus +

refer to “out”-related elements relative to vertices (e.g., out-edges), and that
a superscripted minus − refer to “in”-related elements.

For visualising hypergraphs and reaction networks we use schemes similar
to the one illustrated in Figure 8.1. Vertices are depicted as rounded nodes
and the hyperedges as boxes. However, for the simple edges (e+, e−) with
|e+| = |e−| = 1 we omit the box and draw an arrow directly from the single
tail vertex to the single head vertex. Note that the multiplicity in a head or
tail is depicted explicitly with parallel arrows between the vertex and the box.

Hypergraph representations of reaction networks can be recreated from a
multitute of sources, e.g., via observations from experiments [Bishop et al. 2006,
Fialkowski et al. 2005, Grzybowski et al. 2009], from various databases [Karp
& Caspi 2011] such as KEGG [Kanehisa et al. 2012] and MetaCyc [Altman
et al. 2013], or from published SBML files [Hucka et al. 2004] and stoi-

g1

g2
g3 g4 g5 g6 g7

Figure 8.1: Visualisation scheme for directed multi-hypergraphs and chem-
ical reaction networks, exemplified by a hypergraph with the three edges:
({{g1, g2}} , {{g3}}), ({{g4}} , {{g5}}), and ({{g6, g6}} , {{g7}}). Vertices are depicted as
rounded nodes and hyperedges as boxes, though for edges with singleton tail and
head multisets we replace the box by a direct arrow. Multiplicity in the tail and
head sets is explicitly depicted with parallel arrows.

79

8. Reaction Networks as Directed Hypergraphs

chiometric matrices. The various sources naturally can not cover all possible
chemistries, and may not even be complete within their chemical scope. In the
next chapter we describe an algorithmic framework for automatic generation of
reaction networks from models of chemistry based on graph grammars. These
networks are labelled with the exact molecule graphs and reaction patterns
used to discover them in the first place.

Reaction networks can for example model a set of reactions available for
drug synthesis or the reactions in a living cell, and it then becomes interesting
to find (optimal) conversion routes, usually called pathways, within the net-
works. It does not seem like there is a universal, exact definition of what a
pathway actually is, but in Chapter 10 we suggest a formal definition based
on a generalisation of network flows from digraphs to directed hypergraphs.
This definition is similar to the well-known chemical fluxes from Flux Balance
Analysis (FBA) [Kauffman et al. 2003], but with differences that makes it pos-
sible to analyse pathways from a mechanistic point of view. In Section 10.4 we
compare our pathway modelling framework to FBA. For the pathway model
we briefly discuss different notions of autocatalysis (Chapter 10), and define
basic models of catalytic and autocatalytic pathways.

8.1 Basic Definitions
For the formal discussion of directed multi-hypergraphs, and especially of the
computational complexity of algorithms, we need a few definitions, all based
on a directed multi-hypergraph H = (V,E). In some settings it becomes
useful the reinterpret H as a bipartite digraph, which in [Zeigarnik 2000] is
referred to as the “bipartite digraph of mechanisms” in the context of reaction
networks. Here we simply call it the underlying digraph:

Definition 8.1 (Underlying Digraph). The underlying digraph of H is a dir-
ected, bipartite multi-graph UDG(H) = (V ′, E′) with

V ′ =V ∪ E

E′ =
{{

(v, e) | e = (e+, e−) ∈ E, v ∈m e+
}}

∪
{{

(e, v) | e = (e+, e−) ∈ E, v ∈m e−
}}

For discussing the complexity of algorithms we use the size of hypergraphs
as the basic measurement of instance sizes:

Definition 8.2 (Size). The size of H, denoted size(H), is the number of
vertices and edges in the underlying digraph. I.e., size(H) = |V | + |E| +∑
e∈E(|e+|+ |e−|).

The characteristic that distinguishes hypergraphs from normal digraphs
is that the cardinality of at least one tail or head is larger than 1. As a
short-hand we call this cardinality the edge degree:

80

8.2. Stoichiometric Matrices

Definition 8.3 (Edge Degree). The edge degree of an edge e = (e+, e−) ∈
E is the maximum cardinality of the head and tail. The edge degree of a
hypergraph H is the maximum edge degree of all edges.

The hypergraphs where either all heads or tails are singleton sets has
particular interest in chemistry.

Definition 8.4 (Forward and Backward Edges/Hypergraphs [Gallo et al. 1993]).
An edge (e+, e−) ∈ E is a backward-edge (B-edge) if |e−| = 1, and it is a
forward-edge (F-edge) if |e+| = 1. The whole hypergraph H is a B-hypergraph
if all edges are B-edges. Similarly H is an F-hypergraph if all edges are F-
edges.

8.1.1 Paths and Cycles

In directed hypergraphs there are multiple choices for defining what a “path”
and a “cycle” is. For example, [Zeigarnik 2000] describes that a cycle in the
underlying digraph could be called a hypercycle, but also suggests a more
complex definition where a hypercycle is a minimal subset of the hyperedges
E′ ⊆ E such that for all vertices the in- and out-degree, restricted to E′, is
the same: ∀v ∈ V : d−E′(v) = d+

E′(v). While the first definition has an obvious
generalisation to a hyperpath, the second can lead to multiple kinds of hyper-
paths, e.g., does a path start and end in a single vertex, or a set of vertices?
For the latter definition it has been proven NP-hard to find such a hyper-
cycle [Özturan 2008]. Another kind of hyperpath can be found in [Fagerberg
et al. 2015], discussed for B-hypergraphs, but generalisable to hypergraphs
with any edge degree. Finally it should be noted that in the chemical literat-
ure there is an unrelated concept also called a hypercycle [Eigen 1971, Eigen
& Schuster 1977], which involves cycles of cycles in a reaction network, and a
notion of autocatalysis (see also Chapter 10 and Section 15.3).

In the following sections we however do not work directly with paths and
cycles, but only use a simple characterisation of hypergraphs:

Definition 8.5 (Acyclicity). The hypergraph H is acyclic if the underlying
digraph UDG(H) is acyclic.

8.2 Stoichiometric Matrices
In this work we use almost entirely directed multi-hypergraphs as the math-
ematical objects for modelling reaction networks, but much literature (e.g.,
see [Papin et al. 2004]) represent networks as stoichiometric matrices.

Let H = (V,E) be a directed multi-hypergraph, and let V = v1, . . . , v|V |
and E = e1, . . . , e|E| be sequences of the vertices and edges in some arbitrary
order. We can then accurately represent H as two matrices; the in-incidence
matrix S− and the out-incidence matrix S+, both in the domainn N|V |×|E|0 . For

81

8. Reaction Networks as Directed Hypergraphs

each pair of vertices and reactions, vi, ej , the matrices are defined as S+
i,j =

mvi(e+
j) and S−i,j = mvi(e−j). Thus the columns of S+ represents the tail-

multiset of each hyperedge, while S− represents the head-multisets. The actual
stoichiometric matrix is defined as S = S− − S+, which in chemical terms is
the change of the number of each molecule that each reaction induces. Not
every hypergraph can therefore be accurately represented as a stoichiometric
matrix, specifically it is those with a hyperedge (e+, e−) with e+ ∩ e− 6= ∅.
For chemistry this means that the stoichiometric matrix can not represent
catalysts of single reactions.

82

Chapter 9

Network Generation
This chapter is based the methods described in [Andersen et al. 2014c].

We have previously defined the notion of a graph grammar (Definition 6.5),
primarily for modelling the concept of a chemistry without explicitly defining
each molecule and reaction. In order to explore the chemical space defined
by a grammar we in this chapter describe a domain-specific programming
language for computation with graph grammars. Several such frameworks
already exists for non-chemical areas such as model checking and verification,
proof representation, and modelling control flow of programs. A concrete ex-
ample is the strategy language [Fernández et al. 2012] for PORGY [Pinaud
et al. 2012, Andrei et al. 2011]. However, the existing frameworks are build
on the classical model of graph computation where a rewrite rule transforms
a single graph into another graph. For modelling chemistry we need the al-
ternate interpretation described in Section 6.5, where multisets of connected
graphs are transformed into another multiset of connected graphs. The func-
tional programming language presented here, and in [Andersen et al. 2014c],
is to our knowledge the first attempt for this type of graph rewriting.

A program in the language, also called an exploration strategy or simply a
strategy, is a function taking a collection of graphs and returning another col-
lection of graphs. Initially the goal of this framework was to generate the space
of a chemistry, defined by a graph grammar, so in addition to computation
with collections of graphs the execution of a strategy builds a specially labelled
directed multi-hypergraph, called a derivation graph, which keeps track of all
discovered derivations. Before we formally define the language and its se-
mantics we first define derivation graphs and then discuss the simple example
of repeatedly applying a transformation rule to a collection of graphs.

9.1 Derivation Graphs

In the evaluation of the rule application strategy we discover derivations. To
record these we build a directed multi-hypergraph, labelled with graphs and
transformation rules, and call it a derivation graph. For practical reasons we
omit the matching morphisms for the individual derivations.

Let C be a category of simple graphs, and recall that the set of graphs
is denoted Ob(C). Further, let DPO(C) denote the set of transformation
rules in the DPO formalism over the category, as described in the previous

83

9. Network Generation

chapters. A derivation graph in the graph category C is a labelled directed
multi-hypergraph H = (V,E, lV , lE), without parallel edges, but with loops
allowed. The labelling functions are defined as lV : V → Ob(C) and lE : E →
2DPO(C), with the constraint that the derivations indicated by the labels are
actually valid. That is, for all edges (e+, e−) ∈ E, then for each associated rule
p ∈ lE(e+, e−) there exists a derivation G p=⇒ H, where G =

{{
lV (v) | v ∈m e+}}

is the multiset of graphs associated with e+ and H = {{lV (v) | v ∈m e−}}
the multiset from e−. Additionally, each graph in the vertices must be a
connected graph, and all graphs associated with the vertices must be unique
up to isomorphism, i.e., for all u, v ∈ V, u 6= v we have lV (u) 6∼= lV (v).

The matching morphisms of the derivations are omitted both because we
have rarely needed them, and because the derivations are discovered using
Algorithm 1, which do not yield the matching morphisms in the first place.
When needed, the matching morphisms can be computed from the information
in the derivation graph.

For the inference of pathways (Chapter 10) we are usually not interested in
pathways that only differ in the transformation rule used to generate reactions.
Therefore we have not allowed parallel edges in a derivation graph, but instead
annotate each edge with a set of transformation rules.

The allowance of loop edges, i.e., edges (e+, e−) with e+ = e−, may seem
strange. The educts and products are the same of such a reaction, but the
atom map (Section 6.5.1) may not be the identity morphism, and thus we
allow for recording the existence of a derivation of this type.

9.2 Rule Application on Collections of Graphs
The core of the framework is the possibility of applying a rule, but before
we formally define the framework we take a look at a simplified situation.
Assume we are given a graph grammar with the set of starting graphs G and
a single rule p, and want to compute the set of graphs obtainable after two
applications of the rule. That is, if we use p as a function on sets of graphs
with the definition

p(U) = U ∪
⋃

U
p=⇒H

H

then we want to compute p(p(G)). We can calculate each application G1 = p(G)
and G2 = p(G1) using Algorithm 1. However, note that G1 ⊇ G and thus in
the second application we enumerate at least all the derivations we also found
in the during the first application.

To avoid duplicate computation we keep track of two sets of graphs: the
universe of all graphs U discovered so far, and the recently discovered graphs
S ⊆ U . We can then redefine rule application for a rule p as

p(S,U) = (S ′,U ′)

84

9.3. Language Specification

S = U U1

S1

U2

S2

p

p

Figure 9.1: Illustration of two applications of a rule p to set of graphs U with
a special subset S, i.e., the computations (U1,S1) = p(U ,S) and (U2,S2) =
p(U1,S1). Each derivation must use at least one graph from the subset. Two
examples of abstract derivations are shown with the endpoints indicating in which
sets the graphs are members.

S ′ =
⋃

G
p=⇒H

G⊆U
G∩S6=∅

H\U

U ′ = U ∪ S ′

where S ′ is the set of newly discovered graphs from enumerating all derivations
where at least one graph from S is used. Assuming a second round of rule
application we thus only consider derivations where the left side contains at
least one new graph. An evaluation of (U2,S2) = p(p(U ,S)) with this scheme
is illustrated in Figure 9.1.

9.3 Language Specification
A state is a pair F = 〈UF ,SF 〉 with SF ⊆ UF ⊆ Ob(C). Let F be the set of all
such states, then a strategy is a function f : F → F , A program is a strategy
evaluated on the empty state 〈∅, ∅〉. The execution of a program additionally
builds a derivation graph H = (V,E, lV , lE) starting from the empty graph.

The sets UF and SF of a state F will be referred to as respectively the
universe and the subset of the state. Usually we use them as if they are sets,
but some strategies use them as lists of unique graphs, i.e., they order the
graphs or their result depend on an order.

In the following we describe different kinds of strategies, where we generally
assume they are each given a state F = 〈UF ,SF 〉 and returns a new state
F ′ = 〈UF ′ ,SF ′〉. Many of the strategies are parametrised, which we note with
square brackets around the parameters, i.e., a strategy Q with parameters k
and T is written as Q[k, T].

9.3.1 Rule Application

A transformation rule p ∈ DPO(C) is a strategy, with the semantics that p
is applied to a graph state 〈UF ,SF 〉 as explained in the previous section to

85

9. Network Generation

obtain a set of derivations

D = {G p=⇒ H | G ⊆ UF ∧G ∩ SF 6= ∅} (9.1)

and the resulting sets of graphs are constructed as

SF ′ =
⋃

G
p=⇒H∈D

H\UF (9.2)

UF ′ = UF ∪ SF ′ (9.3)

The derivation graph H is augmented such that a new vertex is created for
each graph in SF ′ not already represented in H, and similarly is the set of
hyperedges augmented with the derivations in D. If an hyperedge already
exists, then p is added to the associated set of rules. Note that this requires
isomorphism checking of each candidate graph from SF ′ against all previously
discovered graphs.

9.3.2 Parallel

A parallel strategy is defined in terms of a set of substrategies {Q1, Q2, . . . , Qn}.
The result of applying a parallel strategy is the union of the results from ap-
plying the individual substrategies. For an input state F let Fi = Qi(F),
then

F ′ = parallel[{Q1, Q2, . . . , Qn}](F)
UF ′ =

⋃
1≤i≤n

UFi

SF ′ =
⋃

1≤i≤n
SFi

A simple use of parallel strategies is to model the possibility of different re-
actions happening independently on the same input. As an example, consider
modelling the formose chemistry which consists of keto-enol tautomerism and
aldol addition, both reversible reactions (see Chapter 12 for the grammar).
Let p2 and p3 denote the transformation rules respectively for the enol-keto
reaction pattern and the aldol addition pattern. The evaluation of the parallel
strategy Q = parallel[{p2, p3}] then tries to apply both rules on the same
input, i.e., independently, as illustrated in Figure 9.2.

9.3.3 Sequence

To obtain a more imperative style of writing in the framework, and increase
left-to-right readability we introduce special notation for composition of strategies.
Let Q1, Q2, . . . , Qn be a list of substrategies, and let Q be the composed
strategy Qn ◦ · · · ◦ Q2 ◦ Q1. We then write Q equivalently as Q1 → Q2 →

86

9.3. Language Specification

CH2 O

OH OH

(a)

CH2 O

Formaldehyde

OH O

Glycolaldehyde

OH OH

1,2-ethenediol

OH

OH

O

Glyceraldehyde

p3

p2

(b)

Figure 9.2: Application of a parallel strategy Q = parallel[{p2, p3}] to a state
F , with p2 being the transformation rule for the enol to keto conversion and p3
being the transformation rule for aldol addition (see Chapter 12). (a) the reaction
network in the input state F , with UF = {formaldehyde, 1,2-ethenediol} and
SF = {1,2-ethenediol}. (b) the reaction network after evaluation of Q(F), with
two new molecules; glycolaldehyde and glyceraldehyde. The resulting state F ′
has UF ′ = {formaldehyde, 1,2-ethenediol, glycolaldehyde, glyceraldehyde} and
SF ′ = {glycolaldehyde, glyceraldehyde}. In both networks the subset of the
states are highlighted.

· · · → Qn. Additionally, if Q1 = Q2 = · · · = Qn = Q′, we may use the usual
notation for powers of functions, Q = Q′n, for the sequence.

An example of the application of a sequence strategy can be seen in
Figure 9.3, in which two sequential steps of the formose chemistry (paral-
lel strategies) are derived starting from a state with UF = {formaldehyde,
glycolaldehyde} and SF = {glycolaldehyde}.

9.3.4 Repetition

The sequencing strategy only allows composition of a fixed number of strategies,
whereas the repetition strategy is used to compose a single strategy with itself
“as much as possible”.

A repetition strategy Q is parametrised by a non-negative integer n and
an inner strategy Q′, and is written as repeat[Q′, n]. The inner strategy is
sequenced with itself until the subset in the state reaches a fixed point or it
is empty, however at most n times: Let Fi = Q′i(F) for some input state F ,
then the repetition strategy is formally defined as

Q = repeat[Q′, n] = Q′k

k = min{0, 1, . . . , n}

87

9. Network Generation

CH2 O

OH O

(a)

CH2 O

OH O OH OH

p1

(b)

CH2 O

OH O OH OH

OH

OH

O

p3

p1

p2

(c)

Figure 9.3: Application of the sequence strategy Q =
parallel[{p1, p2, p3, p4}] → parallel[{p1, p2, p3, p4}] to a graph state F0,
with pi denoting the transformation rules for keto-enol tautomerism and
reversible aldol addition (see Chapter 12). (a) the initial reaction network from
F0 with UF0 = {formaldehyde, glycolaldehyde} and SF0 = {glycolaldehyde}.
(b) the intermediary reaction network after evaluation of the first step of the
strategy. The difference in state is that 1,2-ethenediol is now added to the
universe and subset, while glycolaldehyde no longer is in the subset. (c) the
reaction network after complete evaluation of Q(F0). The final state F2 has all
four molecules in the universe and only glyceraldehyde in the subset. Note that
in the last step of the strategy the reverse keto-enol reaction is discovered, but
glycolaldehyde is already in the universe so it will not be added to the subset of
F2. The subset of the state is highlighted in each network.

such that

Fk = Fk+1 ∨ SFk+1 = ∅ ∨ k = n

This means that Q′ will be executed until no new graphs can be discovered,
though limited to at most k iterations. The result of the computation is then
the last non-empty state. We motivate this condition of a non-empty subset
of a produced state by our definition of rule application, which requires at
least one graph from the subset. By returning the last state with non-empty
subset the repetition strategy can be used as a pre-computation in a sequence
to find a kind of closure under some inner strategy.

Note that for k = 0 the strategy becomes the identity strategy, i.e., the
resulting state is the same as the input state. If n is set large enough to

88

9.3. Language Specification

not limit the repetition in practice, we write this unbounded repetition as
Q = repeat[Q′].

The side-effect of executing strategies that contain rule application is the
construction of a derivation graph. Even though the last application of Q′ in a
repeat strategy may not discover new graph it can still discover new derivations
among the already known graphs. We therefore define that internally a repeat
strategy must execute k + 1 repetitions. This allows repetition strategies to
be used for calculating the closure of reactions as well as molecules.

In Figure 9.3 the strategy for deriving two steps of the formose network
is shown. As a generalisation the strategy Q = repeat[n, parallel[{p1, p2}]]
can be used to derive (at most) n steps of the network. Figure 9.4 shows
another example using the repetition strategy, where all isomers of glyceral-
dehyde 3-phosphate (G3P) are generated.

9.3.5 Revive

Consider the following high-level description of a “if possible”-strategy: Given
a single graph g, try to apply the rule p. If the application of p is successful,
then let H denote all the produced graphs and return H\{g} (all graphs not
already known). If the application of p is not successful, then {g} should be
returned. The simple strategy Q = p applied to F = 〈{g}, {g}〉 only partially
achieves this, as illustrated in the following. Let F ′〈U ′,S ′〉 = Q(F) be the
resulting state after evaluation of the strategy on F . Using the definition of
the rule application strategy, Equations (9.1) to (9.3), we get

• SF ′ = H\{g} and UF ′ = H ∪ {g} if p is successfully applied, and

• SF ′ = ∅ and UF ′ = {g} if p can not be applied.

However, the desire was to have SF ′ = {g} in the unsuccessful case. The
intention of the revive strategy is to provide a mechanism to model this be-
haviour.

A rule application strategy discovers a (possibly empty) set of derivations.
We say that a graph g is consumed during the execution of a rule application
strategy if any of the discovered derivations G⇒ H have g ∈ G. In the natural
way we extend this and say that a graph g is consumed in the execution of
a strategy if it is consumed by any of its substrategies. A revive strategy,
revive[Q′], is parametrised by a single substrategy, Q′, and is defined as:

F ′ = revive[Q′](F)
F = Q′(F)
UF ′ = UF
SF ′ = SF ∪ {g ∈ SF | g ∈ UF ′ ∧ g is not consumed in the execution of Q′(F)}

That is, any graph from the input subset which is still in the output universe
and was not consumed, will be added to the output subset. Our motivating

89

9. Network Generation

O

OH

OP

O

OH

OH

G3P

(a)

O

OH

OP

O

OH

OH
OH

OHOP

OH

OH

Op1

(b)

O

OH

OP

O

OH

OH
OH

OHOP

OH

OH

O

OHO

POH

OH

O O

p1

p2

p2

(c)

O

OH

OP

O

OH

OH
OH

OHOP

OH

OH

O

OHO

POH

OH

O O

OH

OHOP

OH

OH

O

p1

p2

p2

p1

p1

(d)

O

OH

OP

O

OH

OH
OH

OHOP

OH

OH

O

OHO

POH

OH

O O

OH

OHOP

OH

OH

O

p1

p2

p2

p1

p1

p2

(e)

Figure 9.4: The strategy Q = repeat[parallel[{p1, p2}]] applied to the the
initial graph state F0 with U0 = S0 = {G3P} (shown in (a)). (b)–(d) the
intermediary reaction networks from evaluation of Q(F0). Each step discovers a
new isomer which constitutes the new subset. Additionally, the reaction to the
previous isomer is discovered. However, this molecule is already in the universe
of the current state and is therefore not added to the subset. (e) the final step
in the repetition results in an empty subset as only known molecules (those in
the universe) are rediscovered. The state from (d) is therefore the result of the
evaluation. In all networks the subset of the current state is highlighted.

90

9.3. Language Specification

a

a

b

(a) g1

a

a

a

b b

(b) g2

a

a

b

L

a

a

K

a

a

c

R

l r

(c) p = (L l←− K r−→ R)

Figure 9.5: Graphs and transformation rule for the example of the semantics of
revive strategies.

g1

a ab

a

a

a

b b

g2

g3

a ac

a

a

a

c b

g4

a ab

a

a

a

c c

g5

p p

Figure 9.6: Illustration of the application of repeat[p] to the state
〈{g1, g2}, {g1, g2}〉. Only the subset of the graph states are shown. The first
application of p results in two new graphs, g3 and g4, but as p can only be ap-
plied to g4 the final subset is only a single graph, g5, instead of both g3 and
g5.

example can now be solved with the strategy Q = revive[p]. If the application
of p is unsuccessful, then g is not consumed and will be added to the resulting
subset.

As another example, consider the following problem. Two graphs, g1 and
g2, and the transformation rule p, as illustrated in Figure 9.5 are given.
We wish to develop a strategy to transform all edge labels using rule p,
with the intend to use this strategy as a pre-computation for a subsequent
strategy. That is, the subset of the graph state after evaluation of the strategy
must contain the completely transformed graphs in the subset. The strategy
Q = repeat[p] may seem like the most intuitive approach to model this pro-
cess. However, the evaluation of Q(〈{g1, g2}, {g1, g2}〉) does not give the in-
tended result, which is illustrated in Figure 9.6. The problem is that the repe-
tition strategy will continue as long as any new graph can be discovered, and
does not preserve the most derived graphs in the subset. Using the strategy
repeat[revive[p]] correctly solves the problem, and we can informally say that
repeat[Q′] implements “as long as possible” with respect to a set of graphs

91

9. Network Generation

while repeat[revive[Q′]] implements “as long as possible” with respect to
individual graphs.

9.3.6 Derivation Predicates

For the purpose of precise modelling and problems with combinatorial explo-
sion it is convenient to limit the set of derivations a transformation rule can
produce. We define two variations of the concept of derivation predicates,
which both introduce extra constraints in Equation (9.1) to prune unwanted
derivations. The strategy leftPredicate[P,Q′] is defined by the predicate
P on a multiset of graphs and a transformation rule, and by the substrategy
Q′. A candidate derivation from the graphs G with the rule p found by Q′,
is only fully calculated and accepted if P (G, p) is true. The other variant is
the strategy rightPredicate[P,Q′] which is also defined by a predicate and
a substrategy, though with the predicate P evaluating a complete derivation.
Thus, a derivation G p=⇒ H is only accepted if P (G p=⇒ H) is true. Clearly the
left-predicate strategy is redundant from the perspective of modelling, how-
ever if the desired constraint only depends on the left side of the candidate
derivation and the rule, then it can be evaluated earlier in practice.

The predicates can for example be used to model the simple constraint
that all derived graphs must be at most a certain size, say 42 vertices. In a
chemical context this is highly relevant as molecules in some chemistries can
not reach large sizes. This requires a right predicate strategy as information
about the right side of the derivation (the products) are needed. Assuming Q′
is the inner strategy for deriving graphs we can introduce the constraint as

Q = rightPredicate[P,Q′]

P (G p=⇒ H) ≡ ∀h ∈ H : |Vh| ≤ 42

As another example, we might want to restrict that some molecule g should
not be an educt in any reaction with the transformation rule being p′. This
constraint does not require the information of a complete derivation, and may
as such be formulated as a left predicate strategy:

Q = leftPredicate[P,Q′]
P (G, p) ≡ ¬(p = p′ ∧ g ∈ G)

with Q′ being an arbitrary strategy.

9.3.7 Filter, Sort, Take and Add

To facilitate more elaborate use of strategies for computing sets of graphs
we define several strategies which correspond to functions on lists in other
languages. As a graph state is composed of both a universe and a subset, all
of these strategies are defined in two variations.

92

9.3. Language Specification

A filter strategy is parametrised by a predicate on a graph and a graph
state:

F ′ = filterSubset[P](F)
UF ′ = UF

SF ′ = {g ∈ SF | P (g, F)}

F ′ = filterUniverse[P](F)
UF ′ = {g ∈ UF | P (g, F)}
SF ′ = {g ∈ SF | P (g, F)}

A sorting strategy is parametrised with a predicate on two graphs and a
graph state, used as a less-than predicate in a stable sort of a list of graphs:

F ′ = sortSubset[P](F)
UF ′ = UF

SF ′ = stableSort[P](SF)

F ′ = sortUniverse[P](F)
UF ′ = stableSort[P](UF)
SF ′ = SF

The choice that the sorting algorithm must be stable is motivated by the desire
to allow lexicographical sorting by sequencing several sorting strategies.

A take strategy is parametrised with a natural number:

F ′ = takeSubset[n](F)
k = min{n, |SF |}

UF ′ = UF

SF ′ = {SF,1, SF,2, . . . , SF,k}

F ′ = takeUniverse[n](F)
k = min{n, |UF |}

UF ′ = {UF,1, UF,2, . . . , UF,k}
SF ′ = SF ∩ UF ′

An addition strategy appends a given set of graphs to either the universe
and optionally also to the subset:

F ′ = addSubset[{g1, g2, . . . , gn}](F)
UF ′ = UF ∪ {g1, g2, . . . , gn}
SF ′ = SF ∪ {g1, g2, . . . , gn}

F ′ = addUniverse[{g1, g2, . . . , gn}](F)
UF ′ = UF ∪ {g1, g2, . . . , gn}
SF ′ = SF

An example usage of these strategies is the procedure of ranking graphs
according to some property and taking the best n graphs for subsequent cal-
culation, i.e.:

Q′ = sortSubset[P]→ takeSubset[n]

Note that the sorting predicate P can be based on any external data such
as results from wet lab experiments. A concrete example of this is shown in
[Andersen et al. 2013a].

We previously mentioned that the overall strategy implementing a program
is evaluated on the empty state, and thus the addition strategies must be used
to introduce graphs. Typically a program is then on the form

addUniverse[U]→ addSubset[S]→ Q

93

9. Network Generation

for starting with a set of passive graphs U and active graphs S. The addition
strategies are however not restricted to this scheme, and can be placed in the
middle of a strategy to inject further graphs. As a notational shortcut we use
F := Q to say that F is the result of executing the program Q. That is, it
means F = Q(〈∅, ∅〉).

94

Chapter 10

Pathways
This chapter is based on [Andersen et al. 2015a].

A method for studying chemical reaction networks is to search for path-
ways. Well-established theories such as Flux Balance Analysis (FBA) [Pa-
poutsakis 1984, Watson 1984, Fell & Small 1986, Kauffman et al. 2003, Orth
et al. 2010], Elementary Flux Modes (EFM) [Schuster & Hilgetag 1994, Schuster
et al. 2000, Behre et al. 2012, Zanghellini et al. 2013], Extremal Pathways
(ExPa) [Klamt & Stelling 2002, Klamt & Stelling 2003, Wagner & Urb-
anczik 2005], and Chemical Organizations (CO) [Kaleta et al. 2006, Centler
et al. 2008, Kaleta et al. 2009] have been developed for this purpose. There
is thus no single definition of what a pathway actually is, but informally it
is usually understood as something that has a well-defined interface of in-
put/output molecules and a specification of how the input is transformed into
the output using the reactions available in the network. A similar concept is
well-known for normal digraphs, where network flows have been used extens-
ively for modelling and analysis of networks [Ahuja et al. 1993, Bang-Jensen
& Gutin 2009].

In this chapter we define a pathway model, based on a generalisation
of flows from digraphs to directed hypergraphs. Such hyperflows have been
formally studied for restricted classes of graphs [Cambini et al. 1997, Gallo
et al. 1998], which however do not include general chemical reaction networks.
A hyperflow is essentially the same as a chemical flux, which we describe in
more detail in Section 10.4. We define a pathway to be an integer hyperflow,
meaning a pathway can be interpreted as the number of times each reaction
happens. This type of pathway is called a route in [Zeigarnik 2000], though
in the context of defining cycles in hypergraphs.

The introduction of the integrality constraint for hyperflows means that
the linear programming approach used in FBA (see Section 10.4) is no longer
applicable, and several natural questions become NP-complete (Section 10.3).
We therefore implement the pathway model with integer linear programming.
However, an important benefit of our approach is that pathways can be inter-
preted as a low-level description of what happens to each individual molecule
when following the pathway. This makes the integer hyperflows similar to
concepts known from Petri net theory [Petri 1962], and we briefly discuss this
connection in Section 15.2.

Throughout this chapter we assume a directed multi-hypergraph H =
(V,E) to be given as input for analysis. See Chapter 8 for basic definitions

95

10. Pathways

for hypergraphs.

Catalysis and Autocatalysis

When an overall reaction is catalysed by some compound C, then C is used
as an educt and regenerated again as a product. In its simplest form it is thus
a reaction E + C −→ P + C, and more generally a pathway with this type
of overall reaction. A specialised version of catalysis is called autocatalysis,
where the catalyst C is produced in a higher quantity than it is consumed,
i.e., a pathway where the overall reaction E +C −→ 2C +W can be realised
when taking reaction rates into account. In the following we only focus on the
topological constraints for autocatalysis.

Autocatalysis is on a more general level the concept of self-replication,
which is an integral part of living systems. It has even been hypothesised
that autocatalysis is a key ingredient in the origins of life [Kauffman 1995].
There are several formalisms related to autocatalysis, e.g., the autocatalytic
sets [Kauffman 1986, Hordijk & Steel 2004] where a set of reactions is called
autocatalytic when all reactions are catalysed by molecules produced by the
reactions in the set itself. It thus related to semi-self-maintaining sets from
Chemical Organization theory [Dittrich & Speroni Di Fenizio 2007]. Another
set-theoretic notion of autocatalysis can be found in [Kun et al. 2008] where
breadth-first marking of reaction networks from specified input molecules is
used for the analysis. A molecule is then deemed autocatalytic if it is not
reachable from the input compounds, but enables the production of further
unreachable molecules.

In this work we illustrate that our pathway model enables a formal defini-
tion of necessary constraints for both catalytic and autocatalytic pathways. A
full-fledged model, that incorporates the inherent causal relationship between
the input of an (auto)catalyst and its subsequent production, is not part of the
initial model, but will be discussed in Section 15.3. The constraints we intro-
duce relate to the overall reaction of pathways, and we therefore use the term
overall (auto)catalysis. However, with the aim of approaching a more precise
model of autocatalysis we use elaborate local routing constraints. Furthermore
we use breadth-first marking, similar to [Kun et al. 2008], as a precomputation
to obtain a variant of autocatalysis without trivially reachable candidates.

10.1 Model Description

In order to model the input and output of molecules for a pathway we first
extend the given network with additional hyperedges, and then formally define
the basic pathway model with notions of catalytic and autocatalytic pathways.
As the basic model allows for pathways that in some situations can be seen as
misleading and having futile branches, we then expand the hypergraph to allow

96

10.1. Model Description

F

B C

A

(a)

F

B C

A

(b)

Figure 10.1: (a) A small network, H. (b) The extended network, H. Note that
most of the input/output edges in the extended network will be constrained in
the final formulation, and thus for many chemical networks many of these edges
will effectively be removed to model specific interface conditions.

for additional routing constraints and expand the definitions of (auto)catalytic
pathways.

10.1.1 Integer Flows on Extended Hypergraphs

We need a mechanism to introduce and extract molecules from the network,
and we therefore define the extended hypergraph H of H as

H = (V,E)
E = E ∪ E− ∪ E+

E− = {e−v = (∅, {{v}}) | v ∈ V }
E+ = {e+

v = ({{v}} , ∅) | v ∈ V }

(10.1)

which has additional “half-edges” e−v and e+
v , for each v ∈ V . These explicitly

represent potential input and output channels to and from H, see Figure 10.1.
Recall the multiplicity function for multisets, where we for a vertex v ∈ V

and an edge e ∈ E can write mv(e−) for the number of occurrences of v in the
head of e (and mv(e+) for the tail). We use δ+(·) and δ−(·) to denote a set of
incident out-edges and in-edges respectively, and thus use δ+

E
(v) as the set of

out-edges from v, restricted to the edge set E, i.e., δ+
E

(v) = {e ∈ E | v ∈ e+}.
Likewise, δ−

E
(v) denotes the restricted set of incident in-edges of v.

Definition 10.1. An integer hyperflow on H is a function f : E → N0 satis-
fying, for each v ∈ V the conservation constraint∑

e∈δ+
E

(v)

mv(e+)f(e)−
∑

e∈δ−
E

(v)

mv(e−)f(e) = 0 (10.2)

We mostly speak of integer hyperflows, and will for brevity refer to them
simply as flows.

97

10. Pathways

In order to constrain the in- and out-flow to certain vertices we specify a
set of inputs (sources) S ⊆ V and outputs (targets/sinks) T ⊆ V . Thus

f(e−v) = 0 ∀v 6∈ S and f(e+
v) = 0 ∀v 6∈ T (10.3)

serve as additional constraints in an I/O-constrained extended hypergraph,
which is completely specified by the the triple (H, S, T).

We adopt the notion of an overall flow from the chemical overall reaction
for a pathway, which is simply a convenient notation for the I/O flow. For a
flow f we syntactically write the overall flow as

f(e−v1) v1 + · · ·+ f(e−v|V |) v|V | −→ f(e+
v1) v1 + · · ·+ f(e+

v|V |
) v|V |

However, as usual for chemistry we omit the terms with zero as coefficient.
Flows are non-negative by definition. While we for reversible reactions

could have allowed negative flows (see Section 10.4), we adhere to the usual
framework of flow problems. It is therefore necessary to model every reversible
reaction by two separate edges e = (e+, e−) and e′ = (e−, e+). This separation
of the flow will later allow us to define useful chemical constraints on the flow.

A capacity function u : E → N0, finally limits the flow from above, i.e.,
f(e) ≤ u(e), as in many typical flow problems. We however do not use the
capacity function explicitly.

10.1.2 Specialised Flows – Overall (Auto)catalysis

We here define a simple notion of both catalysis and autocatalysis in terms
of the I/O flow of a network. As we only constrain the flow of the overall
reaction, we call this overall (auto)catalysis. Catalysis, in the chemical sense,
is when a molecule is consumed by some reaction sequence and is regenerated.
Thus, as a basic model of catalysis we say a vertex v ∈ V is overall catalytic
in a flow f if both its input and output flows are non-zero and they are equal:

0 < f(e−v) = f(e+
v) (10.4)

Similarly, autocatalysis is when a molecule is consumed in a reaction sequence,
regenerated again, and at least one extra copy is produced. In terms of flow
we say a vertex v ∈ V is overall autocatalytic in a flow f if

0 < f(e−v) < f(e+
v) (10.5)

We extend the terminology to say that a flow f is overall (auto)catalytic if
some vertex is overall (auto)catalytic in f .

10.1.3 Chemically Simple Flows and Vertex Expansion

Modelling reversible reactions as pairs of irreversible ones gives rise to path-
ways were both an edge e and its inverse e−1 have positive flow. Consider the

98

10.1. Model Description

C 1

1 1 D

A B 1

1 21

1 1

(a) f1

C

1 1

A B

1 21

1 1

(b) f2

1 1

A B

1 1

(c) f3

Figure 10.2: Simplification of a flow f1 to an equivalent flow f3, by removal of
futile 2-edge subpathways. (a) The molecule D is created through B+C −→ D,
but can only be interpreted as being consumed through the reverse reaction. (b)
After removal of 1 flow from the reactions B + C←→D, the molecule C now
participates in a futile 2-edge flow. (c) Removing 1 flow from B←→C and the
I/O edges ∅←→B, we arrive at the simplest flow.

hypergraph annotated with a flow in Figure 10.2a. Here we see three pairs of
reversible reactions with positive flow: B +C←→D, B←→C, and the I/O
reactions ∅←→B. However, we can argue that this flow is not “simple” in
the sense that there is no interpretation of the flow without a futile conversion
of matter. In the pathway a single copy of D is created, through the reaction
B +C −→ D, and it can only be routed into a single reaction, D −→ B +C.
The subpathway B + C −→ D −→ B + C is thus a futile 2-edge branch that
we can simplify away, yielding the equivalent flow in Figure 10.2b. The same
reasoning can now be applied to C, and subsequently B, resulting in the flow
depicted in Figure 10.2c.

Formally we say that a flow f is not chemically simple if there is a vertex
v ∈ V that has only one in-edge e ∈ E with positive flow and only one out-
edge e′ ∈ E with positive flow, where the two edges are each others inverse,
e′ = e−1.

The original flow in Figure 10.2a fulfils the requirement for overall autocata-
lysis in vertexB (Equation (10.5)), but clearly the in-flow of 1B is not involved
in the extra production of B, which goes against the idea of general autocata-
lysis. The simplified flow, Figure 10.2c, is however not overall autocatalytic,

99

10. Pathways

F

B 1 C

A 1
2

1

2

1 1

Figure 10.3: Example of a flow with meaningful 2-cycles, in the network from
Figure 10.1b. Only edges with non-zero flow are shown.

and it is therefore desirable to constrain the model such that non-simple flows
are not possible, in order to further approach a precise characterisation of
autocatalysis.

From the shown example it is tempting to simply disallow all 2-cycles
of flow. This is the approach effectively used in FBA-related methods (see
Section 10.4), and also in flows on normal graphs [Ahuja et al. 1993, Bang-
Jensen & Gutin 2009]. However, as illustrated in Figure 10.3, this is too strong
a constraint. We can interpret this flow such that no flow is directly reversed:

1. ∅ −→ A

2. A −→ B

3. ∅ −→ F twice

4. B + 2F −→ C

5. C −→ A+B

6. B −→ A

7. A −→ ∅ twice

Since this interpretation is a series of chemically meaningful transformations,
it should not be excluded from the pathway model.

To facilitate the constraints that disallow flows that are not chemical simple
we expand the extended hypergraph into a larger network. Each vertex is
expanded into a subnetwork that represents the routing of flow internally in
the expanded vertex. Formally, for each v ∈ V

V −v = {u−v,e | ∀e ∈ δ−E (v)} (10.6)
V +
v = {u+

v,e | ∀e ∈ δ+
E

(v)} (10.7)

Ev =
{({{

u−
}}
,
{{
u+
}})
| u− ∈ V −v , u+ ∈ V +

v

}
That is, v is replaced with a bipartite graph (V −v ∪ V +

v , Ev) with the vertex
partitions representing the in-edges and out-edges of v respectively, and the
edge set being the complete set of edges from the in-partition to the out-
partition. We say that Ev is the set of transit edges of v.

100

10.1. Model Description

The original edges are reconnected in the natural way; for each e =
(e+, e−) ∈ E the reconnected edge is ẽ:

ẽ = (ẽ+, ẽ−)

ẽ− =
{{
u−v,e | v ∈m e−

}}
ẽ+ =

{{
u+
v,e | v ∈m e+

}}
We finally define the expanded hypergraph as

H̃ = (Ṽ , Ẽ)
Ṽ =

⋃
v∈V

V −v ∪
⋃
v∈V

V +
v

Ẽ =
⋃
v∈V

Ev ∪ {ẽ | e ∈ E}

We expand the definition of a flow function to f : Ẽ → N0 and pose the usual
conservation constraints, but on H̃: for all v ∈ Ṽ∑

e∈δ+
Ẽ

(v)

mv(e+)f(e)−
∑

e∈δ−
Ẽ

(v)

mv(e−)f(e) = 0 (10.8)

The I/O constraints translates directly to the expanded network. In Sec-
tion 10.1.4 we formally describe the relationship between flows on the extended
and the expanded network.

Using the expanded network we can prevent flow from being directly re-
versed; a flow f must satisfy that for every pair of mutually inverse edges
e = (e+, e−), e′ = (e−, e+) ∈ E, we have

f((u−v,e, u+
v,e′)) = 0 ∀v ∈ e− (10.9)

Figure 10.4 shows the expanded version of the network from Figure 10.1b, with
these constraints in effect. Note that the expansion of the network also opens
the possibility of forbidding other 2-sequences of edges, and in general the
possibility of posing constraints on the routing of flow internally in vertices.

When querying for chemical pathways with partially unknown I/O spe-
cification we have found it useful to distinguish between reversible reactions
that are in the original network H and the reversible I/O reactions. That is,
we may choose to not pose the above constraints on transit edges (u−v,e, u+

v,e′)
when e = e−v ∧ e′ = e+

v , thus allowing excess input-flow to be routed directly
out of the network again.

Figure 10.3 showed a valid flow with a meaningful 2-cycle. The expanded
flow is shown in Figure 10.5, and we note that no 2-cycles exist in this flow.

101

10. Pathways

F

B

C

A

(a)

F

B

C

A

(b)

Figure 10.4: The network from Figure 10.1b expanded into H̃. The vertices of
H̃ are the small filled circles, while the large circles, A, B, C and F , only serves
as visual grouping of the actual vertices. (a) The expanded network with most
transit edges. The transit edges constrained to zero flow in Equation (10.9) are
omitted. (b) The expanded network, with the source set S = {A,F} and sink set
T = {A}, where edges directly or indirectly constrained to flow zero are omitted.

F

B

1

C

A

1
2

1

2

1 1

1

1 1

2

1 1

1

Figure 10.5: The example flow from Figure 10.3 in the expanded network, with
only edges with non-zero flow shown. Note that no 2-cycles exist in this flow.

102

10.1. Model Description

A

2

C

2

B

21 3
1 2

1
1

(a)

A

1

C

1

B

11 2
1 1

1

(b)

Figure 10.6: A simplified network with an overall autocatalytic flow. (a) The
vertex A is both overall autocatalytic and an intermediate vertex in the flow. (b)
The same motif for overall autocatalysis, but without A being an intermediate
vertex.

Overall Catalysis and Autocatalysis

In Equations (10.4) and (10.5) we defined the I/O constraints for overall cata-
lysis and autocatalysis. These constraints are converted in the obvious manner
to the expanded network H̃. However, the expanded network reveals another
possibility for somewhat misleading flows, exemplified in Figure 10.6a. Vertex
A is overall autocatalytic, but is also utilised as an intermediary molecule. The
same autocatalytic motif can be expressed by a simpler flow, Figure 10.6b.

In the interest of finding the simplest (auto)catalytic flows, we introduce
the following constraints. Let f be a flow and v ∈ V a vertex satisfying the
I/O constraints for overall catalysis Equation (10.4) (resp. overall autocata-
lysis Equation (10.5)). In the expanded network f must additionally satisfy
the transit constraints (note that δ±E (v) does not include the I/O edges):

f((u+
v,e′ , u

−
v,e′′)) = 0 ∀e′ ∈ δ−E (v), e′′ ∈ δ+

E (v)

That is, all transit flow in an overall (auto)catalytic vertex must flow either
from the input edge e−v or towards the output edge e+

v .

Exclusive Autocatalysis

If a compound is overall autocatalytic, it merely means that; if it is available
then even more can be produced. However, this does not mean that it can not
be produced solely by the other input compounds Solutions can therefore be
found that may be surprising. One such solution is illustrated in Figure 10.7.
As a variant of our definition of autocatalysis we define that a vertex v, is
exclusively overall autocatalytic if and only if it is overall autocatalytic and

103

10. Pathways

A

C

B

2

1

1

2

Figure 10.7: The vertex C is overall autocatalytic, but not autocatalytic in the
chemical sense.

is not trivially reachable from the other input vertices, S\{v}. A vertex v is
trivially reachable from a vertex set S′ if it can be marked during a simple
breadth-first marking of the hypergraph H = (V,E). For completeness, the
pseudocode is shown in Algorithm 2.

Algorithm 2: Breadth-first marking of a hypergraph
Input : A directed (multi-)hypergraph H = (V,E).
Input : A set of starting vertices S′ ⊆ V .
Output: A marked subset of the vertices.

1 foreach v ∈ S′ do mark v
2 while no more hyperedges can be marked do
3 foreach (e+, e−) ∈ E do
4 if all v ∈ e+ are marked then
5 mark e
6 foreach v ∈ e− do mark v

Note that breadth-first marking of hypergraphs, and variations thereof, has
in the literature also been referred to as finding scopes of molecules [Handorf
et al. 2005, Ebenhöh et al. 2004]. Breadth-first marking has in those studies
been used alone to analyse metabolic networks, and define set-theoretical no-
tions of pathways and later of autocatalysis [Kun et al. 2008]. The methods
thus do not have focus on the underlying mechanism of the pathways, but
only reachability.

10.1.4 Properties of the Expanded Hypergraph

The expansion of the networks obviously changes the size of the underlying
model, and it is therefore necessary to investigate how large the expanded net-
work can get, in order to bound the computational complexity of algorithms.

Proposition 10.1. The size of the extended network and the expanded net-
work is polynomial in the size of the original network.

Proof. The size of the extended network is size(H) = size(H) + 4 · |V |, as two
half-edges are added to each vertex. For the expanded network, H̃, the size
depends on the in- and out-degree of the vertices in the extended network.
Let d−

E
(v) denote the in-degree of v ∈ V , and d+

E
(v) the out-degree. Note that

104

10.1. Model Description

the degree counts the number of unique incident edges, so for e ∈ E, v ∈ V :
mv(e−) > 1 the size contribution of e to d−

E
(v) is still only 1. Then the size of

the expanded network is

size(H̃) = size(H)− |V |+
∑
v∈V

(d−
E

(v) + d+
E

(v)) + 3
∑
v∈V

d−
E

(v) · d+
E

(v)

≤ size(H)− |V |+ 2 · |V | · |E|+ 3 · |V | · |E|2

where the inequality stems from the fact that at most all vertices are in all
head and tail sets, in the original network.

Translation of Flow

Proposition 10.2. A feasible flow f : Ẽ → N0 on H̃ can be converted into
an equivalent feasible flow g : E → N0 on H, with: g(e) = f(ẽ), for all e ∈ E.

Proof. If f is feasible, Equation (10.8) holds for all ṽ ∈ Ṽ . By the definition
of H̃, we can say that Equation (10.8) holds for all ṽ ∈ V −v ∪ V +

v for all
v ∈ V . Recall that all transit edges have singleton heads and tails, and
f(e) = f(ẽ),∀e ∈ E. Thus, by addition of Equation (10.8) in each v ∈ V we
get

∀v ∈ V :
∑

u−v,e∈V −v

out-flow of u−v,e︷ ︸︸ ︷∑

u+∈V +
v

f((u−v,e, u+))−

in-flow of u−v,e︷ ︸︸ ︷
mu−v,e

(e−)f(e)

+
∑

u+
v,e∈V +

v

out-flow of u+

v,e︷ ︸︸ ︷
mu+

v,e
(e+)f(e)−

in-flow of u+
v,e︷ ︸︸ ︷∑

u−∈V −v

f((u−, u+
v,e))

 = 0

Here, the flow along each transit edge is first added and then subtracted again,
so we can simplify the expression to

∀v ∈ V :
∑

u−v,e∈V −v

−mu−v,e
(e−)f(e) +

∑
u+
v,e∈V +

v

mu+
v,e

(e+)f(e) = 0

Using the definition of V −v and V +
v (Equations (10.6) and (10.7)) we can verify

that these relaxed constraints are exactly those of Equation (10.2), i.e., the
constraints on flows in H.

Proposition 10.3. Let f : E → N0 be a feasible flow on H. It can then be
decided in polynomial time, in the size of H, if a feasible flow g : Ẽ → N0 in
H̃ exists such that g(ẽ) = f(e) for all e ∈ Ẽ. If it exists it can be computed in
polynomial time.

105

10. Pathways

Proof. The proof proceeds by a reduction to finding a feasible flow in bi-
partite normal directed graphs, with balance constraints. We refer to [Ahuja
et al. 1993, Bang-Jensen & Gutin 2009] for a definition of this problem. Recall
that the edges of H are translated directly into a subset of the edges in H̃,
and we as such are tasked with finding a feasible flow on all the transit edges,
which can be decomposed into finding a feasible flow for each expanded vertex
independently. Let v ∈ V , then the hypergraph (V −v ∪ V +

v , Ev) only contains
edges with singleton head and tail multisets. It is therefore a normal directed,
bipartite graph. We then define the flow balance function b : V −v ∪V +

v → N0 as
∀u−v,e ∈ V −v : b(u−v,e) = mv(e−)f(e) and ∀u+

v,e ∈ V +
v : b(u+

v,e) = −mv(e+)f(e).
Using the natural lower bound of flow l ≡ 0 and infinite upper bound finally
gives us the complete specification. A feasible integer flow, if one exists, can be
found in polynomial time in the size of the network [Ahuja et al. 1993, Bang-
Jensen & Gutin 2009].

We can define many different pathway problems, depending on which ex-
tra constraints we introduce. As we see in Section 10.3 there are classes of
constraints that makes the problems strongly NP-hard, even for networks with
bounded degree reactions. The last proposition shows a potentially practical
algorithmic approach to working with flows in the expanded network. In the
next section we however show a simpler approach to directly find the flows in
the expanded network, using integer linear programming.

10.2 Implementation using Integer Linear
Programming

For analysing reaction networks we are not just interested in a single pathway
problem, but a variety of problems with different classes of constraints. As
proven in Section 10.3 some of these constraints makes the problem of finding
a pathway NP-hard. We therefore use integer linear programming as a basis
for finding pathways, which makes it trivial to add custom (linear) constraints
when a specific problem calls for it. Using an ILP solver additionally enables
the search for optimal pathway using user defined objective functions.

The ILP formulation characterising feasible flows is based on an expanded
hypergraph H̃ = (Ṽ , Ẽ). The flow function is modelled by an integer variable
xe for each edge e ∈ Ẽ, and by constraints for flow conservation. The basic
constraints are thus∑

e∈δ+
Ẽ

(v)

mv(e+) · xe−
∑

e∈δ−
Ẽ

(v)

mv(e−) · xe = 0 ∀v ∈ Ṽ

xe ∈ N0 ∀e ∈ Ẽ

This definition is similar to an ILP formulation of a classical network flow
problem, but with important differences; H̃ is a hypergraph so an edge e ∈ Ẽ

106

10.2. Implementation using Integer Linear Programming

may be in both δ−
Ẽ

(u) and δ−
Ẽ

(v) (or δ+
Ẽ

(u) and δ+
Ẽ

(v)) for u 6= v. Additionally,
H̃ is a multi-hypergraph, and thus the coefficients mv(e+) and mv(e−) are
introduced, which may be larger than 1.

Additionally, the constraints for chemical flows specified in Equation (10.9)
are added in the obvious way. In the following sections we describe constraints
for finding catalytic and autocatalytic flows. For the formulation we useM to
denote a classical “large enough” constant, and as some parts of the catalysis
and autocatalysis models are similar we first describe the formulation of these
common parts.

10.2.1 Strict Flow Through Overall (Auto)catalytic Vertices

In our definition of (auto)catalysis we require that if a vertex is (auto)catalytic,
then no flow can enter the vertex from the network and exit the vertex to the
network again. Let zv be the indicator variable for the vertex v ∈ V being
(auto)catalytic, then the requirement is trivially enforced by the following
constraints:

xe ≤M · (1− zv) ∀e = (u−v,e′ , u
+
v,e′′) ∈ V

−
v × V +

v : e′ 6= e−v ∧ e′′ 6= e+
v

10.2.2 Overall Catalysis

We model catalysis by introducing an indicator variable zcv ∈ {0, 1} for each
v ∈ V indicating whether v is catalytic or not. Thus we can enforce a solution
to be catalytic by posing the constraint∑

v∈V
zcv ≥ 1

The actual constraints for the indicator variables are obtained partially by
the section above on strictness of flow. Below follows the last requirement,
Equation (10.4), which is realised through a set of auxiliary indicator variables,
z0
v , z

<
v , z

>
v ∈ {0, 1}

x−v = x+
v = 0⇔ z0

v = 1 ≡
{

1− z0
v ≤ x−v + x+

v

M · (1− z0
v) ≥ x−v + x+

v

x−v < x+
v ⇔ z<v = 1 ≡

{
x−v < x+

v +M · (1− z<v)
x−v ≥ x+

v −M · x<v

x+
v < x−v ⇔ z>v = 1 ≡

{
x+
v < x−v +M · (1− z>v)
x+
v ≥ x−v −M · z>v

0 < x−v = x+
v ⇔ zcv = 1 ≡

zcv ≥ 1− z<v − z>v − z0

v

zcv ≤ 1− z0
v

zcv ≤ 1− z<v
zcv ≤ 1− z>v

107

10. Pathways

10.2.3 Overall Autocatalysis

As for catalysis we model autocatalysis with a set of indicator variables zav ∈
{0, 1} for all v ∈ V , and force a solution to autocatalytic with the constraint

∑
v∈V

zav ≥ 1

We use the constraints for strictness of flow and model the remaining con-
straint, Equation (10.5), using the auxiliary variable set z−v , indicating x−v > 0:

0 < x−v ⇔ z−v = 1 ≡
{

z−v ≤ x−v
M · z−v ≥ x−v

0 < x−v < x+
v ⇔ zav = 0 ≡

zav ≤ x−v
x−v < x+

v +M · (1− zav)
M · zav + x−v ≥ x+

v −M · (1− z−v)

10.2.4 Solution Enumeration

A typical use of solvers for integer programs is to find a single optimal solution.
However, from a chemical perspective we are also interested in near-optimal
solutions and in some cases even all solutions. The structure of our formulation
additionally have influence on when two solutions are considered different.
Often we might not consider two solutions different if they only differ in the
flow on the transit edges, i.e., those introduced by the vertex expansion. This
makes it difficult to use build-in features in solvers, such as the solution pool
in IBM ILOG CPLEX, to enumerate solutions.

For finding multiple solutions we therefore explore a search tree based on
the domain of the variables; each vertex in the tree represents a restriction
of the variable domains, with children representing more constrained domains
and the parent representing a less constrained domain. Note that this tree, in
theory, is infinite as some variable may have no upper bound. In each vertex
we use an ILP solver to find an optimal solution for the sub-problem. If the
problem is infeasible the sub-tree is pruned, otherwise a path to a leaf in the
tree is constructed to represent the solution found by the ILP solver. The
quality of the found solution at the same time acts as a lower bound on the
objective function of the sub-tree (when minimising the function). Vertices in
the tree are explored in order of increasing lower bound.

If a different value of flow is not to be considered a difference in the solu-
tion we simply do not consider the corresponding variables to be part of the
branching procedure.

108

10.3. Computational Complexity

10.3 Computational Complexity

This section is based on parts of [Andersen et al. 2012], but adapted to the path-
way model described above. The formulations have additionally been slightly
altered to highlight the connection to the synthesis planning problem.

Here we assume all flows are integer, but it should be noted that real-valued
flows have also been studied for special classes of networks, e.g., gain-free
hypergraphs [Jeroslow et al. 1992], and B-hypergraphs [Cambini et al. 1997,
Gallo et al. 1993, Gallo et al. 1998].

We can define a wide range of hyperflow problems depending on the specific
structure of the input network and on which constraints we impose on the flow.
As a basis we assume the that integer hyperflows must be found in an I/O
constrained network (H, S, T) (see Section 10.1.1).

One variation is the synthesis planning problem where the input network
is an acyclic B-hypergraph [Fagerberg et al. 2015, Hendrickson 1977]. The
goal is to produce a molecule t ∈ V from a set of available chemicals S ⊆ V ,
such that some objective is optimised. For example, minimising a weighted
sum of the used chemicals. For a class of objective functions it is possible to
enumerate the k best synthesis plans in time polynomial in k and the size of
the network.

The synthesis planning problem can be generalised in several ways, but
we focus on the introduction of upper bounds on the input flow, which makes
the problem strongly NP-complete. We consider variations of the following
generalisation:

MAX-Output Given is a distinguished target vertex t ∈ T , a desired output
flow γ ∈ N0, and a bound on input flow b : S → N0, is there a flow f
such that f(e+

t) = γ and f(e−s) ≤ b(s),∀s ∈ S.

In the following NP-completeness proofs we reduce from the 3-partition prob-
lem:

3PART Given a multiset of integers {{a1, a2, . . . , a3m}}, can they be parti-
tioned into m triples each with sum A = 1

m

∑3m
i=1 ai.

The 3-partition problem is strongly NP-complete [Garey & Johnson 1975].
This holds even when A/4 < ai < A/2, meaning that the target sum A can
only be obtaining by exactly 3 numbers. In the following reductions this
assumption will be used to make sure that only triples are created.

We first prove that MAX-Output is strongly NP-complete for acylic net-
works, by a reduction from 3PART. The reduction is then modified to prove
that the result also holds when all hyperedges have bounded degree. Finally
we modify the construction to use B-hypergraphs. In [Andersen et al. 2012]
the same basic reduction is also used to show NP-completeness of MAX-

109

10. Pathways

z1 z2 . . . zm−1 zm

q1
. . .

q2
. . .

...
...

...
...

q3m−1
. . .

q3m
. . .

A A A A

a1

a2

a3m−1

a3m

Figure 10.8: Abstract view of the network constructed for the reduction from
3PART. The diamonds represent the switching graphs which may each consume
flow directly from a number-vertex qi and a triple-vertex zj . Not shown is a
connection from each switching graph and a goal vertex g.

Output restricted to a single input vertex, and for a variation with overall
autocatalytic flows.

10.3.1 The Main Reduction

Given a 3PART instance of n = 3m integers {{a1, a2, . . . , an}}, let A =
1
m

∑n
i=1 ai be the target sum for each of the m triples. We assume A/4 <

ai < A/2, such that the target sum can only be obtained by exactly 3 num-
bers. Construct a directed multi-hypergraph H with vertices qi, 1 ≤ i ≤ 3m
for each number ai, and vertices zj , 1 ≤ j ≤ m for each target triple. The
overall idea is to construct an intermediary network with “switches” that each
consume flow from a number-vertex and a triple-vertex to model the assign-
ment of a number to a triple. Each switch will, when active, route flow to a
special goal vertex. This scheme is visualised in Figure 10.8, where a matrix
of switches, depicted as diamond nodes, are connected directly to number-
vertices and triple-vertices.

Note that we use the notation from chemical reactions for specifying hy-
peredges. Aside from the vertices qi and zj , we add a goal vertex g. For each
pair of numbers and triples (i, j), 1 ≤ i ≤ 3m, 1 ≤ i ≤ m we create a switch

110

10.3. Computational Complexity

with new vertices wij , vij , and xij , and the following hyperedges:

ai qi −→ wij

ai zj −→ vij

wij + vij −→ xij

xij −→ ai g

(10.10)

Each of these switching networks simply serve to make the overall conversion
ai qi + ai zj −→ ai g possible, but we have opted to break the conversion into
multiple steps in order to simplify the subsequent proof modifications.

Finally we create an I/O constrained network by specify the source and
sink vertices as S = {q1, q2, . . . , q3m, z1, z2, . . . , zm} and T = {g}.

Note that this construction yields an acyclic hypergraph. Each switch
(i, j) contributes 3 · (ai + 2) + 4 = 3ai + 10 to the size of the network, while
number-vertices, triple-vertices, and the goal vertex contribute 3m + m + 1
to the size. The I/O extension (Equation (10.1)) adds 4 for each of the three
intermediary vertices in each switch, and another 4 · (3m + m + 1) for the
remaining vertices. The size of the I/O extended network is thus

m ·
3m∑
i=1

(3ai + 10 + 4 · 3) + (1 + 4) · (3m+m+ 1)

=3m ·
3m∑
i=1

ai + 66m2 + 20m+ 5

As 3PART is strongly NP-complete we can assume that all numbers ai are
bounded by a polynomial in n = 3m. The network size is thus polynomial in
the size of the 3PART instance.

Theorem 10.1 ([Andersen et al. 2012]). MAX-Output is strongly NP-
complete for acyclic hypergraphs.

Proof. Clearly MAX-Output is in NP, as a candidate flow f can be checked
for feasibility in polynomial time of the size of the network. The completeness
is proven by a reduction from 3PART, with the I/O constrained network
(H, S, T) being constructed as described above. We restrict the input flow
with b(qi) = ai, 1 ≤ i ≤ 3m and b(zj) = A, 1 ≤ j ≤ m. The special goal vertex
t ∈ T is set to the goal vertex g, and the required output flow γ is set to m ·A.

The claim is then that the 3PART instance is a “yes”-instance if and only
if there is a flow f solving the MAX-Output instance. Assume the numbers
{{a1, a2, . . . , a3m}} can indeed be partitioned into triples T1, T2, . . . , Tm, each
with the sum A. A flow f can then be constructed with

f(e+
g) = γ = m ·A

f(e−qi) = ai 1 ≤ i ≤ 3m

111

10. Pathways

f(e−zj) = A 1 ≤ j ≤ m

For each triple Tj = {aj1 , aj2 , aj3} we set flow 1 on each hyperedge in the
switches (j1, j), (j2, j), and (j3, j). The remaining hyperedges get flow 0.

Each ai is assigned to exactly one triple Tj , so at most one switch in the ith
row has non-zero flow, meaning exactly ai flow is drained from qi, fulfilling the
conservation constraint for qi. Each Tj consists of 3 numbers, corresponding
to 3 switches with flow 1, draining a total of A flow from zj as the sum of Tj
is A. The conservation constraint is thus also fulfilled for each zj . Finally, the
m columns of switches each routes A flow to g, which balances the flow of g.

In the other direction, assume f is a feasible flow for the MAX-Output
instance. This means the goal vertex g has out-flow m · A, which can only
come from the switches. Each of the m columns of switches can contribute at
most A flow to g due to the bound on input flow to each zj . Thus in order to
reach m ·A flow in g this maximum must be used. A switch can have at most
flow 1, as the input flow to each qi is bounded. For the 3-partition problem we
assumed that A/4 < ai < A/2, so the maximum flow of A in a column can only
be obtained by exactly 3 switches with non-zero flow. Each qi is thus paired
with exactly one zj through a switch with flow 1. We can therefore construct
a valid partitioning for the 3PART instance by assigning ai to triple Tj if
switch (i, j) have flow 1.

10.3.2 Reducing the Edge Degree to Two

The main reduction constructs a hypergraph with a maximum edge degree of
max{ai}, while for non-trivial chemical reaction networks this maximum can
still be as low as 2. It is therefore important to show that a network with
constant edge degree does not make the problem easier.

The only edges with degree more than 2 in the network are three of the
edges in each switch:

ai qi → wij

ai zj → vij

xij → ai g

The idea is to replace each of these edges with a subgraph with edge degree at
most 2, and leave the rest of the network intact. These individual subgraphs
must have at most polynomial size in n = 3m, but as the new edges will have
constant degree, we just have to argue that the number of edges and vertices
is polynomial in n.

We first construct a subgraph for expanding a flow of 1 to a flow of k, and
reverse all the edges to get a merging of k to 1.

Assume k = 2u. The expansion can easily be implemented by a series of
edges

xi → 2xi+1 0 ≤ i < u

112

10.3. Computational Complexity

x

1→ 2b1

1→ 2b1

1→ 2br

y

Figure 10.9: An expansion edge x 1→k−−−→ y, with k =
∑r

i=1 2bi . The flow is on
the left duplicated to r flows. In the middle they are expanded by repeated
duplication to powers of 2. On the right are the r power of 2 flows summed.

with x0 as the input vertex and xu as the output vertex of the subgraph. The
subgraph can be abstracted to a special edge denoted as x0

1→2u−−−→ xu.
Assume any positive k, in binary representation, with blog kc + 1 bits.

Let b1, b2, . . . br denote the position from the right side of all the 1-bits in k

such that k =
∑r
i=1 2bi . We can create a general expansion edge, x 1→k−−−→ y, by

combining r instances of (1→ 2bi)-expansion edges as depicted in Figure 10.9.
The left and right side of the graph are trees that respectively create r 1-flows
from a single 1-flow and combines the r resulting 2bi-flows to a single k-flow.
The size of the complete expansion edge is in O(log2 k) as r is at most the
number of bits in k, and each of the (1→ 2bi)-expansions are of size O(log k).

A (k → 1)-merge edge can, as mentioned, be implemented by simply
reversing all edges in an expansion edge.

Corollary 10.1 ([Andersen et al. 2012]). MAX-Output is strongly NP-
complete for acyclic hypergraphs, with bounded hyperedge degree.

Proof. Using expansion and merge edges all the switches in the network form
the previous reduction can be implemented with a degree of at most 2 and
with polynomial size in the individual ai. As 3PART is strongly NP-complete,
the reduction can be carried out in polynomial time.

10.3.3 Restriction to B-hypergraphs

The network created in the main reduction is not a B-hypergraph, but we can
make a slightly modified construction with this restriction.

Corollary 10.2. MAX-Output is strongly NP-complete for acyclic B-hyper-
graphs, with bounded edge degree.

113

10. Pathways

Proof. Only the hyperedges xij −→ ai g in each switch (i, j) violates the B-
property. We can replace the switches in Equation (10.10) with the following
construction.

ai qi −→ wij

ai zj −→ vij

wij + vij −→ xij

xij −→ g

(10.11)

That is, instead of creating ai goal flow in a switch (i, j) we create flow 1.
Clearly the network is still polynomial in size. Each column will now create
3 goal flow instead of A goal flow, so modify the output flow constraint to
γ = 3m. As this network is a B-hypergraph we only need merge-edges to
reduce the edge degree to 2. Merge edges (see Figure 10.9 with all hyperedges
inverted) only use B-hyperedges, to the complete network is a B-hypergraph
with edge degree 2.

If we wish to restrict the output flow to 1 we can attach a merge edge
g

3m→1−−−−→ g′, with a new goal vertex g′. Thus, when comparing with synthesis
planning, as described in the beginning of this section, we see that the only
difference is the bound on the input flow.

10.3.4 Alternative Reduction

For Section 10.4 in the comparison of integer hyperflows to Flux Balance
Analysis we explicitly use a reduction of the well-known Independent-Set
problem to MAX-Output. We therefore present the reduction here, along
with an ILP formulation for solving Independent-Set.

Independent-Set Given an undirected graph G and an integer k ∈ N, find a
set of vertices V ′ ⊆ VG, of cardinality k, such that no edge in the graph
is between vertices of V ′, i.e., EG ∩ V ′ × V ′ = ∅.

ILP Formulation for Maximum Independent-Set

Let G = (V,E) be the input graph.

max
∑
v∈V

xv

s.t. xu + xv ≤ 1 ∀(u, v) ∈ E
xv ∈ {0, 1} ∀v ∈ V

The resulting independent set is the vertices v ∈ V with xv = 1.

114

10.4. Comparison to Existing Methods

Reduction to MAX-Output

LetG be the input graph and k the integer for the Independent-Set problem.
We first construct a directed multi-hypergraph H:

H = (VH, EH)
VH = {vg} ∪ {ve | e ∈ EG}
EH = {({{ve | e ∈ δ(v)}} , {{vg}}) | v ∈ VG}

We thus construct a vertex for each edge in G and an extra “goal vertex”.
The hyperedges correspond to the vertices of G, with the goal vertex as the
head and the rest of the vertices corresponding to the incident edges of G as
the tail. As source set we use S = {ve | e ∈ EG}, and let vg be the only sink
vertex. The output flow of vg is set to γ = k, while the upper bound on input
flow to each ve is set to 1.

Each hyperedge in EH can at most have flow 1 due to the input flow
bounds, which can be used to signify that the corresponding vertex in G is
included in the independent set. Selecting flow 1 on two hyperedges corres-
ponding to adjacency vertices in G is not possible, as this would drain flow
from the same vertex in the hypergraph, which bounded to be 1. The hy-
peredges in EH with flow 1 thus correspond to an independent set in G.

10.4 Comparison to Existing Methods
The basic pathway model described in Section 10.1.1 is quite similar to the
formalism used in FBA, EFM and ExPa, with the latter two methods primarily
aiming to categorise specific classes of pathways [Papin et al. 2004]. In the
following we recast FBA in terms of hypergraphs as the underlying models of
reaction networks to clarify the similarities but also the differences with our
present approach.

The mathematical development of FBA, EFM, and ExPa is based upon
the concepts of the stoichiometric matrix (sse Section 8.2) and flux vectors.
Recall that the stochiometric matrix S only describes the original reaction
network if all hyperedges have disjoint head and tail. All direct catalysts,
however, are cancelled out in the stochiometric matrix, hence the equivalence
fails whenever there are reaction hyperedges with e+∩e− 6= ∅. This somewhat
limits the scope of FBA. Although it is possible in principle to replace reactions
with direct catalysts by a sequences of intermediate reactions that consume
and regenerate the catalyst, the resulting FBA network is no longer directly
equivalent to the original and special care must be taken to ensure equivalence
of solutions.

A flux vector f ∈ R|E| for a network H = (V,E) models a pathway,
and must satisfy the usual conservation constraint, S · f = 0 (cmp. Equa-
tion (10.2)). Reversible reactions are modelled in one of two ways:

115

10. Pathways

• Combined: reversible reactions are modelled as a single reaction, but
with the flow/flux allowed to be negative. The flow/flux of irrevers-
ible reactions is constrained to be non-negative. This is the approach
followed when finding EFMs [Schuster & Hilgetag 1994].

• Separate: reversible reactions are modelled as two inverse reactions,
and the flow/flux on all reactions must be non-negative. This is the
approached followed when finding ExPas [Schilling et al. 2000]. We also
follow this approach both for mathematical simplicity and because it
allows us to make use of the enhanced modelling capabilities offered by
the expanded network.

The extension of the stoichiometric matrix S to incorporate I/O reactions
can also be implemented using both the “combined” and the “separate” way
of handling reversible reactions. The I/O constraints from Equation (10.3),
specified by S and T , translate naturally to the corresponding constraints on
the extended flux vector.

Linear Programming versus Integer Linear Programming

With FBA we additionally define a linear objective function to find an op-
timal flux vector, possibly with additional linear constraints [Savinell & Pals-
son 1992]. As a flux vector is real-valued, and all the stated constraints are
linear, it can be found using linear programming (LP) in polynomial time
[Khachiyan 1980, Karmarkar 1984]. Herein lies a major difference to the
model presented in this contribution, where we require an integer hyperflow.
We can thus characterise the linear program from FBA as the LP relaxation
of the basic pathway problem presented in Section 10.1.1.

The LP relaxation of an ILP yield an integer solution only under special
conditions. The best known sufficient condition is that the matrix of con-
straint coefficients is totally unimodular (TU), i.e., when all its square sub-
matrices have determinants −1, 0, or +1, and thus all entries of the matrix
are also −1, 0, or +1. This is the case for example for integer flows in graphs
[Ahuja et al. 1993, Bang-Jensen & Gutin 2009]. As the simple examples in
Figure 10.10 shows, this not true in general for stochiometric matrices and
hence for hyperflows.

Even though total unimodularity is not a necessary condition, it is not
too difficult to construct reaction networks with linear optimisation problems
where the integer problem and the LP relaxation have drastically different
optimal solutions. As an example consider the carbon rearrangement network
described in Section 13.2, and the question: given 1 xylulose 5-phosphate
(X5P) and an arbitrary amount of phosphate (Pi), find a pathway that max-
imises the production of acetylphosphate (AcP). As X5P contains 5 carbon
atoms and AcP contains 2, it is clear that the maximum production from a
single molecule must be at most 2 AcP. It turns out that the optimal integer

116

10.4. Comparison to Existing Methods

A e B

e

A −2
B 1

(a)

A

e2

B

Ce1

e1 e2

A −1 −1
B 1 −1
C 0 1

(b)

Figure 10.10: Examples of reaction networks with not totally unimodular stoi-
chiometric matrices. (a) all entries in a TU matrix must be −1, 0, or +1. (b)
the submatrix consisting of the top two rows has determinant 2.

Flow Reaction

1.0 G3P + DHAP −→ FBP
1.0 G3P −→ DHAP
0.5 R5P −→ X5P
0.5 E4P + F6P −→ G3P + S7P
1.5 Pi + X5P −→ AcP + G3P + H2O
0.5 Pi + F6P −→ AcP + E4P + H2O
0.5 Pi + S7P −→ AcP + R5P + H2O
1.0 FBP + H2O −→ Pi + F6P

Overall X5P + 1.5 Pi −→ 2.5 AcP + 1.5 H2O

Table 10.11: A pathway with maximum production of AcP from 1 X5P. See
Section 13.2 for a table of molecule abbreviations.

solution just 1 AcP, by the single reaction X5P + Pi −→ AcP + G3P + H2O.
However, the optimal solution to the LP relaxation of the problem yields 2.5
AcP, via the pathway described in Table 10.11. A scaling of this flow with a
factor 2 gives an integer solution of course. Since LP solutions with integer-
valued constraint matrices and objective functions with integer coefficients
are rational, it is mathematically always possibly to scale the LP solution to
integer values. The actual numbers, however, may become very large. Tak-
ing physiological constraints into account, the number of available individual
molecules may be small, as low as 100 copies [Guptasarma 1995], and even
smaller for biological macromolecules.

More importantly, however, the example above shows that the ILP frame-

117

10. Pathways

work allows us to phrase questions on the network in a more sophisticated
way. In FBA, we are effectively confined asking for overall yield. In the in-
teger hyperflow setting we can just as well ask whether there is a pathway to
produces 7 AcP from exactly 3 X5P.

Integrality Gap

In the previous example we maximised the production of a specific molecule,
and saw that the ILP solution have objective value 1 and the LP relaxation
have objective value 2.5. The ratio between these values is known as the
integrality gap, and it is known that this gap can scale with the input in-
stance. For a simple example, consider the reaction networks stemming from
the polynomial-time reduction described in Section 10.3.4, reducing the well-
known Independent-Set problem to maximising the production of a single
molecule in a reaction network with bounded input. Applying the reduction
to complete graphs with n vertices, and formulating the problem in terms of
hyperflows, we obtain an integrality gap of n2 : for integer flows we can use at
most 1 reaction, thus giving a maximum output of 1. When the integrality
constraint is removed we can let the flow be 0.5 on all reactions, giving an
output of n

2 . The reaction networks for the complete graphs of size 3 and 4
are shown in Figure 10.12. This illustrates that the use of the LP relaxation
is not just a technical detail, but changes the nature of the problem entirely.

Solution Enumeration

A linear program may have an uncountable number of optimal solutions as
the variables are in the domain of real numbers. The solutions can however
be described by enumerating the, possibly exponentially many, corners of the
optimal face of the polyhedron defined by the linear program[Matheiss &
Rubin 1980, Swart 1985]. This has also been applied to FBA [Lee et al. 2000].

In Section 10.2.4 we described a simple method for enumerating solutions
when using integer linear programming. When restricting the solutions to
be integer, we only have finitely many candidates with upper bounds on flow
values, and it is straight-forward to enumerate not only optimal solutions, but
also near-optimal solutions.

118

10.4. Comparison to Existing Methods

vg

v1,2

v1,3v2,3

e1

1 | 1
2

e2

0 | 1
2

e3

0 | 1
2

1 | 1

1 | 10 | 1

1 | 3
2

(a)

v1,4 e1

1 | 1
2

v1,2

v1,3

e40 | 1
2

vg e2 0 | 1
2

v2,4

v3,4 e3

0 | 1
2

v2,3

1 | 1

1 | 1

1 | 1

0 | 1
0 | 1

0 | 1

1 | 2

(b)

Figure 10.12: Reduction from the independent set problem to the problem of
maximising output from a molecule in a reaction network, applied to the two
graphs (a) K3 and (b) K4. The hyperedges are annotated with both a feasible
integer flow and a feasible non-integer flow, written as 〈integer〉 | 〈non-integer〉.
Allowing a maximum inflow of 1 to all vertices vi,j and maximising the outflow
of vg corresponds to finding a maximum independent set in the original graph.

119

Part IV

Applications

In this part we illustrate how the methods presented in the previous
chapters can be used to analyse models of chemistry. The first chapter in-
troduces a methods for calculating atom traces, which is also used for analysis
the the subsequent chapters. Those next chapters are however mostly inde-
pendent and can be read in any order. In the first three chapters we apply
the methods to chemical examples, while we in the last chapter illustrate that
they can also be used to solve a non-chemical graph transformation problem.

Chapter 11

Atom Tracing
This chapter is based on part of [Andersen et al. 2014b].

One method for studying living organisms is through what is called isotope-
labelling experiments [Sauer 2006, Zamboni 2011]. In such an experiment
the system under consideration are given modified input molecules, where the
number of neutrons have been changed in one or more atoms. The molecules in
the system are then measured in order to deduce where the modified atoms are
located. Thus, combining the results with a reaction network modelling the
system it may be possible to reason about the concrete trace of the labelled
atoms through the system, and thereby study the detailed function of the
organism. For such an analysis it is therefore important to have a model of
the reaction network for the organism, annotated with accurate atom maps
each reaction, and algorithms for their manipulation. However, atom maps
are in most cases not available in chemical reaction databases.

As a subproblem we here consider a method based on rule composition for
calculating the overall atom trace through a sequence of reactions modelled
by DPO derivations. In Sections 12.3 and 13.1 we use this method for ana-
lysing complete pathways, while we in this chapter illustrate it by calculating
the overall atom maps for an enzyme-catalysed multi-step reaction called β-
lactamase. As a basis for the modelling of this mechanism we used the MACiE
(Mechanism, Annotation, and Classification in Enzymes) database [Holliday
et al. 2005, Holliday et al. 2012]. It is a publicly available, hand-curated
database of enzymatic reaction mechanisms, where the individual steps of the
overall enzyme reaction have been experimentally verified. Detailed stepwise
mechanistic information can be accessed, in pictorial form, for more than 300
overall enzyme reactions. However, atom traces for the overall enzyme reac-
tions are not available, and information of the mechanism’s flexibility with
respect to a reordering of individual steps to achieve a given overall reaction
is not included.

11.1 Computing Atom Traces

Recall that reactions modelled by derivations G p=⇒ H can be represented
by a rules (G,D,H) obtained through the full composition (G,G,G) •⊇ p
(Section 7.2). The atom map for the reactions can then be obtained by these
rules as described in Section 6.5.1. For a more concise notation we simply use •

123

11. Atom Tracing

to mean •⊇, and ıG as a shorthand for the identity rule (G,G,G). Additionally
we assume that the rule composition operator is left-associative, i.e., a • b • c
means (a • b) • c.

Given a multiset of educt graphs G and a sequence of transformation rules
p1, p2, . . . , pk, possibly modelling complete chemical reactions, we can compute
all k-step reactions specified by the rules as ıG•p1•p2•. . .•pk. If specific target
multiset of molecules H is desired, we can extend the composition expression
to ıG • p1 • p2 • . . . • pk •H ıH where the last composition implements an
isomorphism check of the right-hand side by composing with ıH usingH as the
common subgraph. Assuming H consists only of complete molecules, and that
no complete molecule is a proper subgraph of another complete molecule, we
can simply use full composition for this last step as well. Using full composition
also enables the constraint thatH only specifies a sub-multiset of the produced
molecules. Such a “check-point constraint” can also be inserted in the middle
of a composition sequence if there is a specific requirement for an intermediary
state of the system.

11.2 The β-lactamase Mechanism
β-lactamases (MACiE entry 0002, EC number 3.5.2.6) are bacterial enzymes
that convey resistance against β-lactame antibiotics such as penicillins by
catalysing the overall reaction

β-Lactam
(CHEBI:35627)

+ water
(CHEBI:15377)

→ substituted β-amino acid
(CHEBI:33705)

by means of a 5-step mechanism, which is detailed in MACiE as follows (see
database entry for full details):

1. Lys73 deprotonates Ser70 thereby initiating a nucleophilic addition onto
the carbonyl carbon of the β-lactam.

2. The resulting intermediate collapses, cleaving the C-N bond of the β-
lactam and the nitrogen deprotonates Ser130.

3. Ser130 deprotonates Lys73.

4. Glu166 deprotonates water, which initiates a nucleophilic addition at
the carbonyl carbon.

5. Collapse of this intermediate leads to cleavage of the acyl-enzyme bond
and liberates Ser70, which in turn deprotonates the Glu166.

The 5 individual steps were modelled as transformation rules p1, . . . , p5 depic-
ted in Figure 11.1. For step (2) an alternative mechanism has been suggested
in [Atanasov et al. 2000]: protonation of the β-lactam nitrogen occurs as the

124

11.2. The β-lactamase Mechanism

C

CC

O

O

H NH2

C

C

L

C

CC

O

O

H NH2

C

C

K

C

CC

O−

O

H NH2
+

C

C

R

(a) p1

C

C C

N
O−

O

O
H

C

L

C

C C

N
O

O

O
H

C

K

C

C C

N
O

O

O−
H

C

R

(b) p2

O−

NH2
+H

C

C

L

O

NH2H

C

C

K

O

NH2H

C

C

R

(c) p3

C

C

C

N

O O

OH

O−O

C H

C

L

C

C

C

N

O O

OH

OO

C H

C

K

C

C

C

N

O− O

OH

OO

C H

C

R

(d) p4

C

C

C

N

O−

O
OH

O

O

C H

C

C

L

C

C

C

N

O

O
OH

O

O

C H

C

C

K

C

C

C

N

O

O
OH

O−

O

C H

C

C

R

(e) p5

Figure 11.1: Transformation rules for the 5-step enzyme β-lactamase mechanism
(MACIE entry 0002, EC number 3.5.2.6).

first step in the reaction as an initiation step and not as a consequence of the
C-N bond cleavage. We modelled this alternative as a replacement of rule p2
by two transformation rules p1b and p2b, depicted in Figure 11.2.

The atom traces for the overall reaction is computed by a composition of
the rules p1, . . . , p5 with the identity rule for the input compounds, i.e., the
β-lactam, water, and the catalysts (Glu166, Lys73, and twice Ser130). Let G
and H be the the graph representation of the input and output compounds,
respectively. The overall composition

ıG • p1 • p2 • p3 • p4 • p5 • ıH (11.1)

results in the two overall rules depicted in Figure 11.3. Both are in agreement
with the overall mechanism given in MACiE and differ only in their hydrogen

125

11. Atom Tracing

C

C C

N

O
H

C

L

C

C C

N

O
H

C

K

C

C C

N+

O−
H

C

R

(a) p1b

C

C C

NH+

O−

O

L

C

C C

NH
O

O

K

C

C C

NH
O

O

R

(b) p2b

Figure 11.2: Transformation rules to replace step p2 from Figure 11.1, based on
the mechanism as suggested in [Atanasov et al. 2000].

O

S

H

H

O

O

H

H

CO 2 H

NH 2

CO 2 H

CO 2 H

N

C

O

O

N
H

N
H 2 Ph

O

N
H

Ph

NH 2

NH 2

CO 2 H

NH 2

CO 2 H

CO 2
-

N

C

O
H

H

O

O
HH

N

S

CO 2 H

OCO 2 H

CO 2 HN

N

H 2

H 2

CO 2 H

NH 2

NH 2

CO 2 H

CO 2
-

8 10

H

C

C C

C

C

C

C

C

(a)

O

S

H

H

O

O

H

H

CO 2 H

NH 2

CO 2 H

CO 2 H

N

C

O

O

N
H

N
H 2 Ph

O

N
H

Ph

NH 2

NH 2

CO 2 H

NH 2

CO 2 H

CO 2
-

N

C

O
H

H

O

O
HH

N

S

CO 2 H

OCO 2 H

CO 2 HN

N

H 2

H 2

CO 2 H

NH 2

NH 2

CO 2 H

CO 2
-

8 10

H

C

C C

C

C

C

C

C

(b)

Figure 11.3: The two overall reactions resulting from either composition Equa-
tions (11.1) and (11.2), using the elementary steps of the β-lactamase (MACiE
entry 0002, EC number 3.5.2.6). Red bonds are broken and green bonds are
formed during the transformation. While the overall reactions (as typically found
in metabolic databases such as KEGG or MetaCyc) are identical, they differ in
their hydrogen trace and the size (8 or 10) of the cyclic virtual transition state.
Note that the acid/basic catalysts (the two amino acids lysine and glutamine)
needed for the reaction to work still show up as precondition in the overall rules.
Using partial composition results in two more generic overall reactions. These
two rules are depicted as the strict subgraphs resulting from removing the grey
parts from the catalysts.

126

11.2. The β-lactamase Mechanism

traces. The overall cyclic virtual transition states are an 8 cycle and a 10
cycle, which only differ by the exchange of a hydrogen in the amino group of
Glu. The alternative model for step 2, which corresponds to

ıG • p1 • p1b • p2b • p3 • p4 • p5 • ıH (11.2)

results in the same two overall rules.
In order to check the flexibility of the reaction with respect to the order of

the individual steps of the enzyme mechanism, we investigated all permuta-
tions of the rules for the composition order and verified whether the resulting
overall rule produces the substituted β-amino acid as final product. Formally,
we compute

ıG • pσ(1) • . . . pσ(5) • ıH

for all 120 permutations σ. Only the following three compositions are well-
defined and result in the expected overall rules: (p1, p2, p3, p4, p5), (p1, p2, p4, p3, p5),
and (p1, p2, p4, p5, p3). A detailed inspection shows that step p3 is the recycling
step of the mechanism, which can be applied concurrently to steps p4 and p5.

The same experiment based on the rule set {p1, p1b, p2b, p3, p4, p5} shows
that eight compositions are possible, all resulting in the same atom traces as
given above. The first two steps need to be p1 and p1b, their relative order
however is arbitrary. The subsequent rules p2b, p4, and p5 must be in this
order. The recycling step p3 requires the rules p1 and p1b as prerequisite, but
can be performed concurrently to the remaining steps, i.e., it may appear in
position 3, 4, 5, or 6, thus accounting for the 8 feasible permutations.

This method allows for an automated analysis of the flexibility of the
ordering of individual steps. Note that usually a relatively small number of
all possible permutations have to be computed, as most often already the
composition of a prefix of an arbitrarily chosen permutation is not possible.
For instance, in the previous example, only two of the 30 possible initial two
steps are feasible, which prunes most compositions early. The DPO framework
provides an inroad to reduce the computational efforts even further. Since each
rule is reversible, feasibility can be tested by exploring the space of overall rules
from both ends and checking for overlaps at intermediate steps rather then
expanding the possible pathways from one end only.

When using full composition we must specify all educt molecules in the ini-
tial graph, but we can instead use partial composition to automatically detect
the required functionality of the catalysts and the additional compounds (in
this case a water molecule). Let G′ be the graph representation of β-lactam
which is the core compound of the reaction, and H ′ the corresponding core
product molecule. The partial composition of the rules

ıG′ •c⊇ p1 •c⊇ p2 •c⊇ p3 •c⊇ p4 •c⊇ p5 •c⊇ ıH′

127

11. Atom Tracing

result in the overall rule as depicted highlighted in Figure 11.3, i.e., any grey
molecule or edge disappears. The overall rules show the automatic inference
of the necessity of the four functional units of the catalysts and the necessity
of the water molecule, as they are subsequently added to the left side of the
overall rule during the partial rule composition. When defining transformation
rules the difficulty often lies in the question of defining the size of the context
around a reaction centre: a large context leads to a very specific rule, while a
too small context might lead to chemically invalid reactions. Comparing full
and partial compositions can be employed as a method to detect the functional
units of the catalysts.

The atom mapping of the full composition result shows that in the com-
posed rule with the 8-cycle the acid-base catalysts lysine and glutamic acid
are unmodified during the overall process although they are necessary for the
mechanism. In the composed rule with the 10-cycle only the acid-base catalyst
glutamic acid is unmodified. The other catalysts and the water molecule are
modified, however only based on the fact that the hydrogen atom for proton
donation is different from the accepting hydrogen.

128

Chapter 12

The Formose Reaction
The formose reaction, first described in [Butlerov 1861], is a process where
formaldehyde is converted into sugars. First the conversion is slow but then
rapidly consumes formaldehyde, while turning brown and getting a sweet
taste. The sudden conversion hints at an autocatalytic reaction and mul-
tiple candidates for its mechanism has been proposed, e.g., in [Breslow 1959]
and [Benner et al. 2010]. The process is further interesting as it has been
hypothesised to have taken place on the prebiotic Earth [Benner et al. 2010],
and it may thus be a source of complex carbohydrates. A recent review of
formose studies can be found in [Delidovich et al. 2014].

Based on [Benner et al. 2010, Figure 9] we have modelled the chemistry
of formose by a graph grammar with starting graphs for formaldehyde and
glycolaldehyde, Figure 12.1. The transformation rules, shown in Figure 12.2,
model two reversible reactions: keto-enol tautomerism and the aldol reaction.
As the initial condensation of formaldehydes is a reaction we leave it out
of the model, and instead include glycolaldehyde as a seed molecule. The
language of this grammar is clearly infinite, so in order to analyse the network
for the chemistry we generally assume that each molecules have at most 9
carbon atoms. We can thus generate the complete network with the following
exploration strategy.

Q = addUniverse[formaldehyde]
→ addSubset[glycolaldehyde]
→ rightPredicate[P,

repeat[parallel[{p1, p2, p3, p4}]]
]

P (G p=⇒ H) ≡∀h ∈ H : h has at most 9 carbon atoms

The resulting network consists of 284 molecules and 978 reactions, and can be
calculated in less than a minute on a normal desktop computer.

CH2 O

(a)

OH O

(b)

Figure 12.1: Starting graph for the formose chemistry: (a) formaldehyde and (b)
glycolaldehyde.

129

12. The Formose Reaction

C

C O

H

L

C

C O

H

K

C

C O

H

R

(a) p1 = p−1
2 , keto to enol conversion

C

C O

H

L

C

C O

H

K

C

C O

H

R

(b) p2 = p−1
1 , enol to keto conversion

C

C

O

H

O

C

L

C

C

O

H

O

C

K

C

C

O

H

O

C

R

(c) p3 = p−1
4 , aldol addition

C

C

O

H

O

C

L

C

C

O

H

O

C

K

C

C

O

H

O

C

R

(d) p4 = p−1
3 , aldol splitting

Figure 12.2: Transformation rules for the formose chemistry. (a), (b) the rules
p1 and p2 model keto-enol tautomerism. (c), (d) the rules p2 and p3 model aldol
addition and aldol splitting.

From the grammar it follows that each molecule has exactly one double
bond. As a shorthand we use the naming scheme C〈N〉〈t〉 for each molecule,
where 〈N〉 specifies the number of carbon atoms and 〈t〉 indicates the position
of the double bond. We use a for aldehydes, e for enol forms, and k for ketones.
When relevant we may use further annotations, e..g, to specify the position of
the enol- and keto-double bonds. Formaldehyde is then referred to as C1a, or
simply C1, while glycolaldehyde becomes C2a.

12.1 Autocatalytic Pathways

This section is based on part of the results of [Andersen et al. 2015a].

One of the features of the formose reaction is that it is autocatlytic, because

130

12.1. Autocatalytic Pathways

OH

OH

OH

OH

OH

O

OH

OH

1, p1

OH

OH

OH

OH

OH

O
1, p3

CH2 O

O

OH

OH

OH

1, p4

OH OOH OH

2

11, p1

1, p1

1, p1

1, p2

1, p2

Figure 12.3: An overall autocatalytic pathway in the formose chemistry. The
reactions are annotated with the flow of the pathway, and the transformation
rule used to generate reaction.

it suddenly converts huge amounts of formaldehyde into larger sugars. With
our graph grammar model, based on [Benner et al. 2010], we can find a short
pathway which is overall autocatalytic in glycolaldehyde, in the sense de-
scribed in Chapter 10. This pathway, which convert 1 glycolaldehyde (C2a)
and 2 formaldehyde (C1) into 2 glycolaldehyde, is depicted in Figure 12.3.
However, experimental evidence exists [Ricardo et al. 2006, Kim et al. 2011]
that this base cycle can not account for the massive consumption of formalde-
hyde. Thus, the question is which other potentially autocatalytic cycles exist
in the chemistry.

Here we study this question in a limited form, by enumerating overall
autocatalytic pathways with the overall reaction C2a + 2 C1 −→ 2 C2a. We
use the reaction network described in the introduction, containing sugars with
at most 9 carbon atoms. To further limit the scope of enumeration we consider
two pathways equal if they have non-zero flow on the same set of hyperedges.
Technically we add an indicator variable ze ∈ {0, 1} for each hyperedge e, and
constrain it to be 1 if and only if the flow on e is positive. The enumeration
algorithm (Section 10.2.4) is then asked to only branch on these indicator
variables.

Table 12.4 shows the resulting number of solutions found, grouped by the
number of reactions used and the maximum size of molecules involved. The
enumeration was split into 6 queries, one for each row of the table, and the
combined computation time was approximately 134 hours. We were not able
to find all the solutions corresponding to the two unknown entries en the
table. Each of those queries, in the current implementation, needs more than

131

12. The Formose Reaction

Maximum #C

Unique reactions used 4 5 6 7 8 9 Sum

6 0 0 1 1 1 2 5
7 0 0 0 0 0 2 2
8 1 5 7 17 37 68 135
9 0 0 12 12 37 69 130
10 0 12 50 274 849 — ≥ 1185
11 0 5 41 190 738 — ≥ 974

Table 12.4: Overview of the number of overall autocatalytic flows in the formose
chemistry. Solutions are grouped by the number of unique reactions used, and
by the number of carbon atoms in the largest molecule used. We were not able
to compute the missing entries due the demand of computation time (more than
200 hours) and memory (more than 64 GB RAM). The pathway in Figure 12.3 is
the single pathway in the first column, where the largest molecule has 4 carbon
atoms.

200 hours of computation time and more than 64 GB memory.
This computational analysis of the chemical space of the formose process

reveals that there potentially is a very high number of autocatalytic cycles.
However, the base cycle from Figure 12.3 has a special property: starting from
just 1 glycolaldehyde and at least 2 formaldehyde, and only using the reac-
tions in the quantity specified by the flow, this is the only pathway of those
enumerated that can be realised without borrowing a molecule. Informally we
can then speak of one pathway “triggering” another by temporarily lending
it a molecule. This concept is exemplified in Figure 12.5 with a chain of 3
pathways starting from the base cycle are illustrated. A formal treatment of
the concept of when a pathway is “realisable” and what it specifically means
that a pathway “trigger” another is out of scope for this work, but in Sec-
tion 15.2 we outline some ideas in this direction. Here we simply note that
the automatic enumeration of pathways conforming to a certain motif, such
as autocatalysis, opens for higher-order analysis of chemistries.

12.2 Product Stabilisation by Borate
This section is based on part of the results of [Andersen et al. 2014c].

The formose reaction has been discussed as a prebiotic source of carbohydrates,
and especially five-carbon sugars are interesting in this context as they are
needed to form nucleotides [Benner et al. 2012]. However, the unguided for-
mose reaction results in a mix of sugars of different sizes [Decker et al. 1982],
and extra conditions must be imposed to select for specific molecules. An ex-

132

12.2. Product Stabilisation by Borate

(a) (b) (c)

Figure 12.5: Schematic overview of 3 autocatalytic pathways in the formose
chemistry, where carbon-carbon double bonds and carbonyl groups are shown,
while hydroxyl groups and hydrogens are implicit. The first pathway can trigger
the second pathway via the green molecule, and the second pathway can in turn
trigger the third pathway using either the purple or orange molecule. The overall
autocatalytic compound, glycolaldehyde, is shown in blue.

perimentally confirmed candidate for such a condition is the addition of borate
to the reaction [Ricardo et al. 2004, Benner et al. 2010, Kim et al. 2011]. The
idea is that a borate can form a complex with a sugar by attachment to a
1,2-diols group, i.e., a pair of neighbouring hydroxyl groups on the carbon
chain (see [Ricardo et al. 2004, Figure 1]). This inhibits the usual keto-enol
tautomerisation reactions.

Using the strategy language, described in Chapter 9, we here try to model
the borate inhibited formose reaction. The aim is to automatically generate a
reaction network consistent the experimentally observed compounds. To keep
the model simple we use a borate-like molecule, Figure 12.6a, with just two
hydroxyl groups instead of a complete molecule. For enabling the formation of
borate complexes we use the transformation rule shown in Figure 12.6b. This
rule is additionally equipped with the matching constraint that the two car-
bons may not have incident double bonds. This reaction pattern is described
in [Benner et al. 2010] as inhibiting keto-enol tatutomerism by making the
hydrogen atoms attached to the carbon atoms non-acidic. To approximate
this behaviour we relabel these vertices from H to D, thereby preventing the
reaction pattern of enolisation, p1, from matching at these locations.

For this proof-of-concept modelling we limit the molecule size to 5 carbon
atoms, which we model with a right predicate strategy around the application
of the basic formose reaction patterns:

rightPredicate[P#C , parallel[{p1, p2, p3, p4}]]

P#C(G p=⇒ H) ≡ ∀h ∈ H : h has at most 5 carbon atoms

133

12. The Formose Reaction

R

B

OH

OH

(a) Borate

B
R

O

O

H

H

OH

C

C

OH

L

B
R

O

O

H

H

OH

C

C

OH

K

B
R

O

O

H

H

OH

C

C

OH

R

(b) Borate + 1,2-diol reaction pattern, “addBorate”

H

CO

B

L

〈H, D〉

CO

B

K

D

CO

B

R

(c) Relabelling of hydrogen to make it non-reactive, “HtoD”

Figure 12.6: Molecules and reaction patterns for borate inhibition of the formose
reaction. The borate molecule (a) is modelled with only two hydroxyl groups to
simplify the model. (b) the reaction pattern for forming borate complexes with
1,2-diols. This rule additionally has a matching constraint: none of the carbon
atoms may not have incident double bonds. To approximate the subsequent non-
reactivity of the hydrogens on the carbon atoms we relabel them to D using the
reaction “HtoD” (c).

As a reference, we generate the non-inhibited reaction network with the strategy
QBFS:

QBFS = addUniverse[{formaldehyde}]
→ addSubset[{glycolaldehyde}]
→ repeat[

rightPredicate[P#C , parallel[{p1, p2, p3, p4}]]
]

Not all molecules can actually bind with borate and must therefore be pre-
served while the other molecules form complexes. This is modeled with a
revive strategy around the actual complex forming reaction pattern, “addB-
orate”. After the potential forming of a borate complex, the relevant hydrogen
atoms must be made inactive using the rule “HtoD”. The number of relevant
hydrogens may not be the same for all molecule and therefore the relabelling

134

12.2. Product Stabilisation by Borate

strategy is embedded in both a repeat and revive strategy. This models the
notion of “as many times as possible” on a collection of molecules. The re-
action network with borate inhibition can thus be calculated by the following
strategy:

Qborate = addUniverse[{formaldehyde,borate}]
→ addSubset[{glycolaldehyde}]
→ repeat[

revive[addBorate]
→ repeat[revive[HtoD]]
→ rightPredicate[P#C , parallel[{p1, p2, p3, p4}]]

]

Let G denote the set of molecules used and generated by the evaluation of
Qborate on the empty graph state. This set of molecules contain both borate
complexes and simple carbohydrates without boron. To obtain the equivalent
set of molecules with the borate removed we can use the strategy

Qcanon = addSubset[G]
→ repeat[revive[DtoH]]
→ repeat[revive[removeBorate]]

with “removeBorate” being the inverse transformation rule of “addBorate”,
and “DtoH” being the inverse of “HtoD”. Note that “removeBorate” requires
water molecules as educts, but if “addBorate” was ever used in Qborate these
molecules must be in G.

As a variant of the network, we also calculate the network with a an extra
molecule, dihydroxyacetone, in the subset:

Q+
borate = addUniverse[{formaldehyde,borate}]

→ addSubset[{glycolaldehyde, dihydroxyacetone}]
→ repeat[

revive[addBorate]
→ repeat[revive[HtoD]]
→ rightPredicate[P#C , parallel[{p1, p2, p3, p4}]]

]

In Figure 12.7 the reference reaction network created with QBFS is shown.
Reactions in black are active only in the basic formose reaction with formal-
dehyde and glycolaldehyde as the set of input molecules. If borate is added to
the input set of molecules, the reactions highlighted in blue are active, while
the rest of the network is inactive. Finally if dihydroxyacetone is added to

135

12. The Formose Reaction

OH

OH

OH

OH

OH

O

OH

OH

C4k

OH

OH

OH

OH

C4e

O

OH

OH

OH

OH

O

OH

OH

OH

OH

OH

OH

OH

OH

O

OH

OH

OH

OH

OH

O

OH

Dihydroxyacetone, C3k

OH

OH

OH

C3e

OH

OH

O

C3a

O

OH

OH

OH

OH

C5a

O

OH

OH

OH

OH OH

C2e

OH O

Glycolaldehyde, C2a

OH

OH

OH

O

OH

C5b

OH

OH

O

OH

OH

C5k3

OH

OH

OH

OH

OH

OH

O

OH

OH

OH OH

OH

OH

OH

OH

p3

p1

p2

+C1
p3

−C1
p4

p1

p2

p1

p2

+C2e
p3

−C2e
p4

p1p2

p2

p1

p2

p1

+C1
p3

−C1
p4

+C1
p3

−C1
p4

+C1
p3

−C1
p4

+C2a
p3

−C2a
p4

+C1
p3

−C1
p4

+C2a
p3

−C2a
p4

p1

p2

p1 p2

p1

p2

p1

p2

+C2e
p3

−C2e
p4

p1p2

+C1
p3

−C1
p4

p1 p2

Figure 12.7: The reaction network of the formose chemistry as calculated with
the strategy QBFS. The blue subnetwork correspond to the borate inhibited net-
work calculated with Qborate. The green and blue networks together with the red
reaction (C5b to C3e) correspond the network calculated with Q+

borate, i.e., with
dihydroxyacetone as an input compound. Each reaction is annotated with the
reaction pattern, pi, used to realise the concrete reaction. For the aldol reactions,
p3 and p4, the secondary educt (+) or product (−) is additionally shown. The
addition of borate in Q+

borate is done with the strategy revive[addBorate], mean-
ing that at most 1 borate is added in each iteration. The red reaction is no longer
available if the addition is done with the strategy repeat[revive[addBorate]],
meaning “add as many as possible”.

136

12.3. Carbon Tracing

the input set of molecules the reactions highlighted in green are activated in
addition to the blue part of the network. The evaluation of Qborate leaves only
the blue reactions, which are selective pathways from glycolaldehyde (C2a) to
five-carbon sugars (C5b, C53, C5l,2) active, while the rest of the network is
shut down via borate inhibition. These pathways rely on a constant replenish-
ment of glycolaldehyde. Here dihydroxyacetone (C3k) comes into play. C3k
can only be formed from within the formose network via retro-aldol reaction
from higher carbohydrates. If added to the reaction network an catalytic loop
is activated (sub-network in green: C3k, C3e, C4k, C4e, C5b, retro-aldol red
dashed arrow to C3e and C2a) supporting the blue sub-network since C2a ends
up as some five-carbon sugars in the blue sub-network. C3e enters another
round in the cycle to construct another C2a. These computational results
are in very good agreement with the experimental results presented in [Kim
et al. 2011].

12.3 Carbon Tracing
This section is based on part of the results of [Andersen et al. 2014b].

As evident from Section 12.1 there are many theoretical possibilities for autocata-
lysis in the formose chemistry. In [Breslow 1959] a cycle is suggested which
utilises dihydroxyacetone, depicted as the black pathways in Figure 12.8. How-
ever, using our model of the chemistry, based on [Benner et al. 2010], we see
a slightly shorter pathway bypassing dihydroxyacetone, depicted in green in
Figure 12.8. In this section we analyse the possible carbon traces in these
pathways, using the method described in Chapter 11.

The input graph G is comprised of two formaldehyde and one glycolal-
dehyde molecule, and the goal H consists of two copies of glycolaldehyde.
Both are represented by their corresponding identity rules ıG = (G,G,G),
ıH = (H,H,H). The two proposed pathway are represented as the following
composition expressions, where we use • to denote full composition •⊇.

ıG • p1 • p2 • p1 • p2 • p1 • p−1
1 • p

−1
2 • p

−1
1 • ıH (12.1)

and

ıG • p1 • p2 • p1 • p−1
1 • p1 • p2 • p1 • p−1

1 • p
−1
2 • p

−1
1 • ıH (12.2)

Based on a prefix composition of Equations (12.1) and (12.2), the traces
for the intermediates can be computed. The carbon traces are summarised
in Figure 12.9. Note that in this figure sequences of isomerisation and aldol-
addition steps are depicted as one step in order to minimize clutter.

The rule composition based on Equation (12.2) results in six non-isomorphic
composed overall rules, each having a different carbon trace for the 4 carbon
atoms of G. One of those rules is depicted in Figure 12.10. While 4! carbon

137

12. The Formose Reaction

O

HO HO

+

O

O

HO

OH

HO

OH

OH

OH

OH

O

HO

OH

OH

OH

OH

O

OH

O

O

+

+

OH

OH

OH

HO

OH

OH

HO

O

OH

HO

O

OH

+

OH

HO
O

OH

OH
OH

OH

OH
OH

HO

O

OH

OH

HO

OH

OH

O

+

Figure 12.8: Detailed mechanism for suggestions for the formose process. The
labels p1 and p2 indicate the keto-enol tautomerisation (forward and backward),
p3 and p4 refer to aldol- and retro-aldol reaction. The pathways indicated by the
black arrows have dihydroxyacetone as an intermediate, while the pathway with
green arrows are shorter and do not use dihydroxyacetone. In order to allow and
easy visual tracking of carbon atoms, the sequence of compounds is duplicated
after the second aldol addition.

traces is a trivial upper bound, the mechanism allows only for six of them as
the carbon from the second added formaldehyde cannot end up as the car-
bonyl carbon in the resulting glycolaldehyde. If a labelling experiment could
be performed with all carbons uniquely labelled and if the glycolaldehydes
after exactly one instantiation of the reaction cycle would be analysed, then
not twelve but only nine different glycolaldehydes could be observed. If the
mechanism follows Equation (12.1) (i.e., dihydroxyacetone is not an interme-
diate of the mechanism), the two input formaldehydes never combine into the
same glycolealdehyde, reducing the set of overall reactions to four rules. Us-
ing the same labelling experiment as above, only six different glycolaldehydes
could be observed.

138

12.3. Carbon Tracing

Figure 12.9: Carbon atom traces for one round of the formose process based on
the mechanisms in Figure 12.8. Green reaction arrows indicate possible carbon
atom traces following the shorter formose cycle, and black reaction arrows indic-
ate possible traces following the cycles having dihydroxyacetone as intermediate.
The carbonyl (resp. alcohol) carbon of the starting molecule glycolealdehyde is
labelled 1 (resp. 2). After condensation of this molecule with two formaldehydes
labelled x and y, the intermediate molecule decomposes into two glycolealde-
hydes. Depending on the mechanism, the labelled carbon atoms end up in 9
(resp. 6) different positions of the resulting glycolealdehydes (shorter cycle: blue
molecules, longer cycles: blue and purple molecules). Note that the carbon from
the second formaldehyde (y) can not end up as the carbonyl carbon in the res-
ulting glycolealdehydes. The shorter cycle allows for a strict subset of carbon
traces only, the two formaldehydes never recombine into a glycolealdehyde. From
the 6 (resp. 4) possible composed overall reactions of the longer (resp. shorter)
cycle, the one that results in the two blue glycolaldehydes A and B is depicted
in Figure 12.10.

139

12. The Formose Reaction

CH2
〈2〉

CH
〈1〉

CH2
〈x〉

CH2
〈y〉

OH

OO

O

L

CH2
〈2〉

CH
〈1〉

CH
〈x〉

CH2
〈y〉

O

O

H

O

H
O

K

CH2
〈2〉

CH
〈1〉

CH
〈x〉

CH2
〈y〉

OH

OO

OH

R

Figure 12.10: One of six possible overall rules based on the composition Equa-
tion (12.2) including carbon atom trace information. The mapping of the atoms
corresponds to creation of the glycolaldehydes denoted A and B in Figure 12.9.

140

Chapter 13

The Glycolysis Pathway
Glycolysis is one of the central pathways in carbon metabolism, which converts
1 glucose molecule (a C6 sugar) into 2 pyruvate molecules (a C3 acid) while
creating energy-rich ATP molecules. There are multiple variations of the
glycolysis process (see [Bar-Even et al. 2012] for a review), with the most
common being the Embden-Meyerhof-Parnas (EMP) pathway. An alternate
pathway is the Entner-Doudoroff (ED) pathway [Entner & Doudoroff 1952],
which only creates 1 ATP molecule as opposed to the EMP which creates
2 ATP molecules for each glucose. In the first section we illustrate how the
methods described in Chapter 11 can be used to automatically create accurate
atom maps the overall EMP and ED pathways.

After the glycolysis pathway the two resulting pyruvates can be converted
into C2 molecules which can then be used in the citric acid cycle. However,
also 2 CO2 molecules are created during this conversion, meaning only 4 of
the original 6 carbon atoms actually end up as C2 molecules. Recently it has
been found [Bogorad et al. 2013] that it is possible to engineer a non-oxidative
glycolysis pathway with perfect conversion. It thus converts 1 glucose molecule
into 3 C2 compounds, but without the creation of ATP. In the second half
of this chapter we use enumerate many possible implementations of such a
pathway, using the pathway model described in Chapter 10.

13.1 Carbon Tracing the EMP and ED Pathways
This section is based on part of the results of [Andersen et al. 2014b].

Isotope labelling experiments in glycolysis are commonly used to analysis the
activity of the different pathway variations (e.g., see [Borodina et al. 2005]).
It is known that the EMP and ED pathways lead to different carbon traces,
but since atom maps are usually not available in databases it can be tedious
and error prone to analyse trace data manually. We here demonstrate that a
chemistry model based on DPO transformation rules enables the automatic
inference of atom traces for complete pathways, illustrated with the EMP
and ED pathways. The two pathways have been modelled using the following
transformation rules:

p1 Pyranose-furanose

p2 Furanose-linear

p3 Ketose-aldose

p4 ATP-phosphorylation

p5 ATP-dephosphorylation

p6 NAD+-phosphorylation

141

13. The Glycolysis Pathway

p7 Phosphomutase
p8 Enolase
p9 Keto-enol

p10 NAD+-oxoreductase
p11 Lactonohydrolase
p12 Hydrolyase

p13 Reverse aldolase

The rules were manually created using information from MACiE database
(described in Chapter 11) to ensure accurate atom maps for the individual
reaction patterns. They are visualised in Figures 13.1 and 13.2.

We use G(EMP) to denote the graph of educts to the EMP pathway,
consisting of 1 glucose, 2 ATP, 2 ADP, 2 phosphates, and 2 NAD+. For the
ED pathway we likewise have G(ED), consisting of 1 glucose, 1 ATP, 1 ADP,
1 phosphate, and 2 NAD+. Correspondingly we have H(EMP) as the output
graph of the EMP pathway, with 2 pyruvates, 4 ATP, 2 NADH, 2 water, and
2 H+. In the case of the ED pathway H(ED) models 2 pyruvates, 2 ATP, 2
NADH, 2 water, and 2 H+. Note that the same approach as presented in the
β-lactamase example (Section 11.2) for automatically inferring the necessary
functional groups could be applied, and an explicit definition of the catalysts
in G(·) and H(·) would not be necessary.

For EMP we compute the composition

ıG(EMP) •
Glucose → 2 G3P︷ ︸︸ ︷

p4 • p1 • p4 • p2 • p13 • p3

• (p6 •∅ p6) • (p5 •∅ p5) • (p7 •∅ p7) • (p8 •∅ p8) • (p5 •∅ p5) • (p9 •∅ p9)︸ ︷︷ ︸
2 G3P → 2 Pyruvate

•ıH(EMP)

and for ED we compute

ıG(ED) • p4 • p10 • p11 • p12 • p13︸ ︷︷ ︸
Glucose → G3P + Pyruvate

• p6 • p5 • p7 • p8 • p5 • p9︸ ︷︷ ︸
G3P + Pyruvate → 2 Pyruvate

•ıH(ED)

The resulting rules are depicted in Figure 13.3. To reduce clutter we only
draw the glucose and pyruvate components. Formally this can be achieved
by composing with rules on the left and right that binds and unbinds the
unwanted components. Clearly, the carbon traces of the two rules differ. Such
an approach can be used for an automated design of labelling experiments to
detect the activity of pathway alternatives.

The prefixes of the rule composition expressions allows to infer all the
intermediate compounds and their corresponding atom traces relatively to the
input compounds. The summary of this analysis is depicted in Figure 13.4
for both pathways, though only with the traces for carbon atoms shown. The
black reaction arrows show the EMP pathway, while the green arrows show
the ED pathway. The six carbon atoms from glucose are converted into two
pyruvate molecules in two different ways depending on whether EMP or ED
was used to catabolise glucose. While the EMP pathway has a fructose 1,6-
bisphosphate as an intermediate, in which a pentose ring is cleaved, in the ED
pathway the hexose ring of the glucose 6-phosphate is cleaved. The carbon

142

13.1. Carbon Tracing the EMP and ED Pathways

C

C
C

C

C
O

H

L

C

C
C

C

C
O

H

K

C

C
C

C

C
O

H

R

(a) p1, Pyranose-furanose

C

C
C

C

O

H

L

C

C
C

C

O

H

K

C

C
C

C

O

H

R

(b) p2, Furanose-linear

OC

C
H

O H

H

L

OC

CHO H

H

K

OC

CHO H

H

R

(c) p3, Ketose-aldose

C

OH

AZP

O
Pi

O
Pi

O Pi

OH

L

C

OH

AZP

O
Pi

O
Pi

O Pi

OH

K

C

OH

AZP

O
Pi

O
Pi

O Pi

OH

R

(d) p4, ATP-phosphorylation

C

OH

AZP

O
Pi

O
Pi

O Pi

OH

L

C

OH

AZP

O
Pi

O
Pi

O Pi

OH

K

C

OH

AZP

O
Pi

O
Pi

O Pi

OH

R

(e) p5, ATP-dephosphorylation

C

O

H

NAD+

OH

Pi

O

H

L

C

O

H

NAD

OH

Pi

O

H

K

C

O

H

NAD

OH

Pi

O

H+

R

(f) p6, NAD+-phosphorylation

PiO

C
C

OH

L

PiO

C
C

OH

K

PiO

C
C

OH

R

(g) p7, Phosphomutase

Figure 13.1: Transformation rules for modelling the reactions in the EMP and
ED pathways for glycolysis. In the modelling we have abbreviated certain groups
into graphs with non-chemical labels. For example, part of phosphate groups are
represented by vertices with the label Pi, and adenosine is represented by the
label AZP.

143

13. The Glycolysis Pathway

OHCH2

C H

L

OHCH2

C H

K

OHCH2

C H

R

(a) p8, Enolase

C

C O

H

L

C

C O

H

K

C

C O

H

R

(b) p9, Keto-enol

O

C

O

H

H

NAD+

L

O

C

O

H

H

NAD

K

O

C

O

H+

H

NAD

R

(c) p10, NAD+-oxoreductase

CO

C
O

OHH

L

CO

C
O

OHH

K

CO

C
O

OHH

R

(d) p11, Lactonohydrolase

CC

OH

O H

H

C

O

L

CC

OH

O H

H

C

O

K

CC

OH

O H

H

C

O

R

(e) p12, Hydrolyase

O
C

C

C O

H

L

O
C

C

C O

H

K

O
C

C

C O

H

R

(f) p13, Reverse aldolase

Figure 13.2: More transformation rules for modelling the reactions in the EMP
and ED pathways for glycolysis.

trace of one of the two pyruvates is identical, while it is inverted in the other
pyruvate.

13.2 Enumeration of Non-oxidative Pathways

This section is based on part of the results of [Andersen et al. 2015a].

Metabolic pathways have also been studied with the aim of using modified mi-
crobes to produce biofuel, or other compounds of commercial interest (e.g., see
[Tao et al. 2001, Causey et al. 2003]). In this setting the glycolysis pathways
can play a key role, by breaking glucose into smaller carbohydrates. However,
the natural pathways based on EMP and ED only creates 2 C2 molecules from
each C6 sugar, while the remaining two carbon atoms are expelled as CO2.

144

13.2. Enumeration of Non-oxidative Pathways

CH2〈6〉

C 〈5〉
H

CH 〈4〉

C
H
〈3〉

C
H
〈2〉

CH〈1〉

OH

OH

OH

OH
OH

O

L

CH2
〈6〉

C
〈5〉

C〈4〉

C〈3〉

C
〈2〉

CH
〈1〉

O

O

H

OH

O

H

K

CH3
〈6〉

C
〈5〉

C
〈4〉

C
〈3〉

C
〈2〉

CH3
〈1〉

OH

OH

O

O

O

O

R

(a) EMP

CH2〈6〉

CH〈5〉

CH
〈4〉

CH
〈3〉

CH 〈2〉

CH
〈1〉

OH

OHOH

OH

OH

O

L

CH2
〈6〉

C〈5〉

C
〈4〉

CH
〈3〉

C〈2〉

C
〈1〉

OH

O
H

O

O

H

K

CH3
〈6〉

C
〈5〉

C
〈4〉

CH3
〈3〉

C
〈2〉

C
〈1〉

OH

O

O

O

O

OH

R

(b) ED

Figure 13.3: Simplified transformation rule for the overall (a) EMP pathway and
(b) ED pathway, with each carbon atom labelled. Some hydroxyl-groups appear
to be destroyed and created due to the simplification such that only glucose and
pyruvate is depicted.

A recent study [Bogorad et al. 2013] addresses this attacks the aforemen-
tioned problem by hand-crafting a non-oxidative glycolysis (NOG) pathway,
which fully converts C6 molecules into C2 molecules. The general logic of
this designed pathway is to couple the splitting reaction that produces the
desired C2 body and a C4 body as putative wast, to a carbon rearrangement
network, which then recycles the C4 body into molecules, that can be fed back
into the NOG as educts. With this strategy NOG achieves a 100 % carbon
atom economy.

The paper [Bogorad et al. 2013] discusses several sources of variation for
the structure of the NOG pathway. First the splitting reaction can be per-
formed by two types of phosphoketolase (PK) enzymes, differing only in the
their input sugar preference; either fructose (F) or xylulose (X). Second the
carbon rearrangement network can go either via fructose 1,6-bisphosphate
(FBP, a C5 sugar) or sedoheptulose 1,7-bisphosphate (SBP, a C7 sugar). This
freedom allows for different structural designs for the NOG pathway, of which
3 suggestions are shown in [Bogorad et al. 2013, Figure 2]. In this section

145

13. The Glycolysis Pathway

O OH

OH

OH

HO

HO
O OH

OH

OH

HO

PO

PO OH

OH

OHHO

O
PO

OH

OHHO

O

OP

O

PO

OH

OH

OP

O

+

66

66

6

5

5

5 5

5

44

44

4

33

33

22

22

2

3

11

11

1

O

PO

OH6

5

4

PO

O

PO

OH6

5

4

O

6

5

4

-O

OP

HO

O

6

5

4

OP

O

6

5

4

O

OP2

3

1HO

O

OP2

3

1HO

O

PO

2

3

1

O

PO

OH

2

3

1

O

PO

2

3

1

O

O

O

OH

OH

HO

PO
6

5

4

3

2

1

O

OH

OH

HO

PO
6

5

4

3

2

1

OOH

OH

OHHO

PO
6

5

4

3

2

1

OOH

OH

OP2

3

1HO

OPO

O

OH

O

1

2
3

HO
HO

HO
HO

HO
HO

Figure 13.4: Carbon trace of two glycolysis pathways. The Embden-Meyerhof-
Parnas pathway (EMP) is depicted with black reaction arrows, and the Entner-
Doudoroff pathway (ED) is depicted with green reaction arrows. The six carbon
atoms from glucose are converted into two pyruvate molecules, highlighted in
blue, in two different ways depending on whether EMP or ED was used to cata-
bolise glucose. The trace for one pyruvate overlaps in the pathways, while the
sequence of carbons is inverted in the other pyruvate.

146

13.2. Enumeration of Non-oxidative Pathways

Abbr. Name Description Example Reaction

AL Aldolase A generic aldol addition. G3P + DHAP −→ FBP
AlKe Aldose-Ketose Aldehyde to ketone conversion. R5P −→ Ru5P
KeAl Ketose-Aldose Ketone to aldehyde conversion. Ru5P −→ R5P
PHL Phosphohydrolase Use water to cleave off phosphate. FBP + H2O −→ F6P + Pi
PK Phosphoketolase Break C-C-bond and add phosphate. F6P + Pi −→ AcP + E4P
TAL Transaldolase Move C3-end. F6P + E4P −→ G3P + S7P
TKL Transketolase Move C2-end. G3P + S7P −→ X5P + R5P

Table 13.5: List of generic transformation rules for modelling the non-oxidative
glycolysis chemistry.

we illustrate that many more equivalent solutions can be found automatically.
We use a generic model of the chemistry in order to explore related reactions
for which concrete enzymes may not yet exist.

Most of the molecules in the chemistry are sugar phosphates, where we use
the naming scheme C〈N〉P for a sugar with 〈N〉 carbon atoms and a single
phosphate group. The bisphosphates, sugars with two phosphate groups, are
abbreviated as C〈N〉P2. However, for the molecules with a well-known name
we use the following abbreviations.

Pi: Phosphate

AcP: Acetyl phosphate

G3P: Glyceraldehyde 3-phosphate

DHAP: Dihydroxyacetone phosphate

E4P : Erythrose 4-phosphate

Ru5P: Ribulose 5-phosphate

X5P: Xylulose 5-phosphate

R5P: Ribose 5-phosphate

G6P: Glucose 6-phosphate

F6P: Fructose 6-phosphate

FBP: Fructose 1,6-bisphosphate

S7P: Sedoheptulose 7-phosphate

Modelling

The molecules are encoded as graphs in the straight-forward manner, though
without stereochemical information. This implies that certain classes of mo-
lecules are represented as a single molecule, e.g., Ru5P and X5P.

We have modelled the generic transformation rules listed in Table 13.5, and
shown in Figure 13.6. In [Bogorad et al. 2013] the use of phosphoketolase is
associated with specific names for the specific reactions:

• XPK for X5P + Pi −→ AcP + G3P

• XPK for F6P + Pi −→ AcP + E4P

We extend the naming scheme to cover educts with 7 and 8 carbons:

147

13. The Glycolysis Pathway

CH
C

O
H

OH

CH

O

L

CH
C

O
H

OH

CH

O

K

CH
C

O
H

OH

CH

O

R

(a) Al, Aldolase

OC

CHO H

H

L

OC

CHO H

H

K

OC

C
H

O H

H

R

(b) AlKe, Aldose-Ketose

OC

C
H

O H

H

L

OC

CHO H

H

K

OC

CHO H

H

R

(c) KeAl, Ketose-Aldose

P

O

OH

OH

O

C

OHH

L

P

O

OH

OH

O

C

OHH

K

P

O

OH

OH

O

C

OHH

R

(d) PHL, Phoshohydrolase

P

O

OH

OH

O

H

C

C

OC
O

H

OH

L

P

O

OH

OH

O

H

C

C

OC
O

H

OH

K

P

O

OH

OH

O

H

C

C

OC
O

H

OH

R

(e) PK, Phosphoketolase

C
H2

OH

C

O
CHCH

OO

H

CH

OH

L

C
H2

OH

C

O
CHCH

OO

H

CH

OH

K

C
H2

OH

C

O
CHCH

OO

H

CH

OH

R

(f) TAL, Transaldolase

CH2

OH

C
O

CHCH

OO

H

L

CH2

OH

C
O

CHCH

OO

H

K

CH2

OH

C
O

CHCH

OO

H

R

(g) TKL, Transketolase

Figure 13.6: Transformation rules for modelling the non-oxidative glycolysis
chemistry.

148

13.2. Enumeration of Non-oxidative Pathways

• SPK for S7P + Pi −→ AcP + X5P

• OPK for C8P + Pi −→ AcP + G6P

Network

To create the reaction network we use the starting molecules Pi, AcP, G3P,
DHAP, E4P, R5P, Ru5P, F6P, S7P, and FBP. The network is created by
iterating the application of all the transformation rules listed in Table 13.5,
until no new molecules are discovered. This chemistry is theoretically infinite,
so we impose the restriction that no molecule with more than 8 carbon atoms
may be created. We can express this precisely with the following exploration
strategy.

QNOG = addSubset[{Pi,AcP,G3P,DHAP,E4P}]
→ addSubset[{R5P,Ru5P,F6P, S7P,FBP}]
→ rightPredicate[P#C,

repeat[parallel[{Al,AlKe,KeAl,PHL,PK,TAL,TKL}]]
]

P#C(G p=⇒ H) ≡∀h ∈ H : h has at most 8 carbon atoms

The execution of the strategy results in a network with 81 molecules and 414
reactions.

Pathways

For the overall reaction F6P + 2 Pi −→ 3 AcP + 2 H2O we have enumerated
all solutions using at most 8 unique reactions and with at most 11 reactions
happening in total. To further constrain the chemistry we excluded all sugars
without phosphate groups, and disabled the reactions generated with PK and
AL that acts only on C2 molecules. In total we find 263 different pathways,
which were computed within a few minutes on a normal desktop computer.
In Table 13.7 we categorise the pathways according to the properties

• number of unique reactions used,

• number of reactions used (i.e., sum of flow on internal hyperedges),

• whether the only bisphosphate used is FBP,

• the histogram of different PK reactions (see the modelling above).

The table shows the number of solutions in each combination. Interestingly
it turns out that the solution space where FBP is the only bisphosphate used
is quite similar to the space where other bisphosphates are allowed. The solu-
tions are distributed the same except for a 1-shift in the number of reactions.

149

13. The Glycolysis Pathway

Only FBP Other Bisphosphates

8 Unique Reactions 7 Unique Reactions 8 Unique Reactions

PK Type Reactions Reactions Reactions
X, F, S, O 8 9 10 11 7 8 9 10 11 8 9 10 11

0, 0, 0, 3 – – – – – – – – – – – 4 16
0, 0, 1, 2 – – – – – – – – – – 3 2 –
0, 0, 2, 1 – – – – – – – – – – 4 – –
0, 0, 3, 0 – – 1 2 – – 1 2 – – – 9 20
0, 1, 0, 2 – – – – – – – – – – 4 4 –
0, 1, 1, 1 – – – – – – – – – 3 – – –
0, 1, 2, 0 – 1 – – – 1 – – – – 8 2 –
0, 2, 0, 1 – – – – – – – – – – 6 – –
0, 2, 1, 0 – 1 – – – 1 – – – – 9 – –
0, 3, 0, 0 – – 2 4a – – 2 4 – – – 14 24
1, 0, 0, 2 – – – – – – – – – – 2 4 –
1, 0, 1, 1 – – – – – – – – – 1 – – –
1, 0, 2, 0 – 1 – – – 1 – – – – 6 2 –
1, 1, 0, 1 – – – – – – – – – 2 – – –
1, 1, 1, 0 1 – – – 1 – – – – 3 – – –
1, 2, 0, 0 – 2 – – – 2 – – – – 10 – –
2, 0, 0, 1 – – – – – – – – – – 4 – –
2, 0, 1, 0 – 1 – – – 1 – – – – 7 – –
2, 1, 0, 0 – 2c – – – 2 – – – – 10 – –
3, 0, 0, 0 – – 2b 4 – – 2 4 – – – 12 20

Table 13.7: Overview of number of NOG pathways, listed by the histogram of the
number of phosphoketolase reactions used. The numbers are further categorised
by whether FBP is the only bisphosphate used or not, and by the number of
reactions and unique reactions used. Categories marked with subscript a, b, and
c refer to [Bogorad et al. 2013, Figure 2], and we see that not only are there
alternate solutions in the exact same categories, but in the case of a we even
find a shorter pathway with the same properties. Note that the left block is
similar to the middle block of categories, but with 1 less flow. This is due to a
replacement of part of the pathway with a shorter pathway, see Table 13.8. The
pathway shown in Figure 13.9 is from the framed blue category, and the pathway
in Figure 13.10 is from the framed green category. Their counterparts with the
replacement from Table 13.8 are the unframed shaded numbers.

150

13.2. Enumeration of Non-oxidative Pathways

FBP + H2O PHL−−−−→ Pi + F6P
E4P + F6P TAL−−−→ G3P + S7P

G3P + DHAP AL−−→ FBP
DHAP + E4P + H2O → S7P + Pi

(a)

DHAP + E4P AL−−→ C7P2

H2O + C7P2
PHL−−−−→ S7P + Pi

DHAP + E4P + H2O → S7P + Pi

(b)

Table 13.8: Two pathways with the same overall reaction. (a) a 3-reaction path-
way using FBP as bisphosphate. This subpathway is highlighted in Figure 13.9.
(b) a 2-reaction pathway using a bisphosphate with 7 carbons. This subpathway
is highlighted in Figure 13.10.

By subsequent analysis we found a 1-to-1 mapping between these two solution
sets such that the only difference in the pathway is the subpathways described
in Table 13.8.

In Figure 13.9 one of the solutions are illustrated in detail. This solution
has similar properties to the solution shown in [Bogorad et al. 2013, Figure 2a]:
the phosphoketolase reactions all has F6P as educt, and the only bisphosphate
used is FBP. However, this solution can be regarded as being shorter than
[Bogorad et al. 2013, Figure 2a] as it uses fewer reactions, though the number
of unique reactions is the same. Allowing other bisphosphates than FBP to
be used enables even shorter solutions to be found. Figure 13.10 shows the
shortest solution, which uses a bisphosphate with 7 carbon atoms. Its use of
phosphoketolase is also different, as it uses both XPK, FPK, and SPK.

Our investigation nicely illustrates how vast the design space for a non-
oxidative pathway is. Even if the reaction chemistry was restricted to only a
handful of enzyme functionalities, systematic exploration of the space without
computational approaches is inefficient and many interesting solutions may be
missed.

151

13. The Glycolysis Pathway

TAL

OP

OH

OOH

OH

OH

OHO

OH OHS7P

TKL
OH

POH

O

O

OH

OH

OHO

R5P

OH

O

OH

OH

O

PO

OH

OH

Ru5P/X5P

TKL

O

OH

OP

O

OH

OH

G3P

OH

POH

O

O

O

OH

DHAP
AL

OHOP

OH

OH

O

OH OH

O P

OH

OH

O

O

FBP

OH

O OH

OH

OH

OP

O

OH

OH

F6P OH

POH

O

O

OH

OH

O

E4P

PK
OH

O OH

OH

OH

OP

O

OH

OHF6P
OH

POH

O

O

O

CH3

AcP

O

OH

OP

O

OH

OH

G3P

OH

O OH

OH

OH

OP

O

OH

OH

F6P

PK

OH

POH

O

O

O

CH3

AcP

OH

POH

O

O

OH

OH

O

E4P

OH

O OH

OH

OH

OP

O

OH

OH

F6P

PK
OH

POH

O

O

O

CH3

AcP

OH

POH

O

O

OH

OH

O

E4P

AlKe

AlKe

PHL

Figure 13.9: Illustration of a pathway similar to the one depicted in [Bogorad
et al. 2013, Figure 2a], but using fewer reactions. This solution category is the
framed blue cell of Table 13.7. The highlighted subpathway is the pathway from
Table 13.8a.

152

13.2. Enumeration of Non-oxidative Pathways

OH

POH

O

O

O

OH

DHAP

AL

OH P

OH

O

O

OH O

P

OH

OH
O

OH

OH

OH

O

C7P2

OP

OH

OOH

OH

OH

OHO

OH OH

S7P

PK

OH

POH

O

O

OH

OH

OHO

R5P

OH

POH

O

O

O

CH3

AcP

OH

O

OH

OH

O

PO

OH

OH

Ru5P/X5P

PK O

OH

OP

O

OH

OH

G3P

OH

POH

O

O

O

CH3

AcP

OH

POH

O

O

OH

OH

O

E4P

PK
OH

O OH

OH

OH

OP

O

OH

OHF6P
OH

POH

O

O

O

CH3

AcP

PHL

AlKe

AlKe

Figure 13.10: Illustration of the shortest NOG pathway, denoted by the framed
green cell in Table 13.7. It uses three different phosphoketolase reactions: XPK,
FPK, and SPK. The highlighted subpathway is the pathway from Table 13.8b.

153

Chapter 14

Solving the Catalan Game
This chapter is based on parts of [Andersen et al. 2014c].

While the topic of this work is to formally model chemistry, the presented
methods can be used in non-chemical settings as well. We illustrate this fact
here by modelling a small puzzle game called Catalan [increpare games 2011].
In each level the player is presented with a simple undirected graph without
labels. The goal is to transform the graph into a single vertex using the
following rewriting rule; given a vertex v with degree exactly 3, identify v with
its neighbours and preserve simpleness of the graph by identifying parallel
edges and deleting loops. Figure 14.1 shows level 1 with the intermediary
graphs towards the goal graph with a single vertex.

The transformation rule in the game can not be formulated as a single rule
in the DPO formalism, because such rules must explicitly match the vertices
and edges that are changed, while the Catalan transformation rule needs to
change arbitrarily many edges. In the following we show how the strategy
framework described in Chapter 9 can be used to implement a move in the
game, using only DPO rules.

Let g be the graph for a Catalan level, with all edge labels set to the
empty string and all vertex labels set to the arbitrarily chosen label “0”. For
the implementation using strategies we can describe a move as:

1. Find a vertex v with at least 3 neighbours and mark it by changing the
label to “A”. Mark the 3 matched neighbours with the label “R”.

2. If possible, find another fourth neighbour of v and mark v with “FAIL”.

3. Discard all graphs with a vertex with the label “FAIL”.

0

0
0

0

0

0

0

0

0
0

0

0

0

0
0

0

0 0

0

0

0

0

0

0 0

0

0

0

0

0

0

Figure 14.1: Level 1 of the Catalan game and the intermediary graphs during
transformation to a graph with a single vertex.

154

4. For all edges e with both end-vertices having label “R”, remove e.

5. For all edges (u, r) with u having label “0” and r having label “R”, add
(u, v) if it does not exist already and then remove (u, r).

6. For all edges (u, r) with u having label “0” and r having label “R”,
remove (u, r).

7. Remove all neighbours of v having label “R”.

8. Unmark v by changing the label to “0”.

Step 3 can be implemented with a filtering strategy while the other steps each
require a transformation rule. The following strategy can be used to solve a
level, in the sense that if a graph with a single vertex with label “0” is found,
then a path to that graph is equivalent to a solution.

Qcatalan = addSubset[{g}]→ repeat[
mark→ revive[markForFail]→ filterUniverse[Pfail]
→ repeat[revive[removeInterR]]
→ repeat[revive[reattachExternal]]
→ repeat[revive[removeAttached]]
→ removeR → unmark

]
P (g′, F) ≡ no vertex of g′ has the label “FAIL”

The details of the transformation rules (mark, markForFail, removeInterR,
reattachExternal, removeAttached, removeR and unmark) are shown in Fig-
ure 14.2.

With strategy Qcatalan all 56 levels of Catalan could be solved, all but one
level took less than 10 minutes of computation time. Figure 14.3b shows the
derivation graph created when executing the strategy with g encoding level
25 of the game, and Figure 14.3a shows g. In contrast to chemical reaction
networks, the derivation graphs from this strategy degenerates into normal
digraphs. This is simply due to the connectedness of all left- and right-hand
sides of the used rules.

155

14. Solving the Catalan Game

0

00

0

L

〈0, A〉
〈0, R〉〈0, R〉

〈0, R〉

K

A

RR

R

R

(a) mark

A0

L

A〈0, FAIL〉

K

AFAIL

R

(b) markForFail

A

R

R

L

A

R

R

K

A

R

R

R

(c) removeInterR

A

R

R

0

L

A

R

R

0

K

A

R

R

0

R

(d) reattachExternal

A

R

0

L

A

R

0

K

A

R

0

R

(e) removeAttached

R

R

R

A

L

A

K

A

R

(f) removeR

A

L

〈A, 0〉

K

0

R

(g) unmark

Figure 14.2: Transformation rules for solving the Catalan game.

156

0

0

0

0

0

0

0

0

00

0

0

0

(a) (b)

Figure 14.3: (a) Level 25 of the Catalan game. (b) The derivation graph created
during execution of Qcatalan of level 25 of the Catalan game. Vertices are depicted
as black dots, and a path equivalent to a solution is highlighted in red.

157

Chapter 15

Summary and Future Work
In this thesis we have presented a wide range of algorithms and modelling
techniques for generative chemistry. Among them are:

• A molecule model where chemical properties are encoded locally, and
an encoding scheme for representing molecules as graphs labelled with
character strings or first-order terms.

• A model for generic reaction patterns using an adapted version of the
Double Pushout approach for graph rewriting.

• Definitions of rule composition, based on concurrency theory, that are
relevant for working with chemical reactions. These definitions forms
the basis of the core algorithms for generating molecules.

• A strategy framework for automatic generation of chemical reaction net-
works, which can also be used for graph grammar computation with
connected graphs.

• A coherent formal model for chemical pathways in reaction networks,
that enables detailed reasoning of the flow of molecules.

• A simplistic model for catalytic and autocatalytic pathways.

• An implementation of the pathway model using integer linear program-
ming, with a tree search algorithm for enumerating both optimal and
near-optimal solutions.

The methods have been used to define an algorithm for calculating atom traces
for reaction sequences. We have also used the methods to analyse models
of the formose chemistry, several versions of the glycolysis pathway, and the
enzyme catalysed β-lactamase reaction. In addition we have used the strategy
framework in [Andersen et al. 2014a] to implement a virtual machine for DNA-
templated computing, and in [Andersen et al. 2013a] to generate a reaction
network for hydrogen cyanide biased towards mass spectrometry results from
a wet lab experiments. Furthermore, in [Andersen et al. 2015b] we have used
the methods to create an in silico model of Eschemoser’s glyoxylate scenario
[Eschenmoser 2007b], which provides a hypothesis for the prebiotic creation of
core metabolites from hydrogen cyanide, using a series of autocatalytic cycles.

159

15. Summary and Future Work

In Appendix A we provide a brief overview of the software package we
have developed, which implements the presented models and algorithms. This
software has been used to perform the practical applications, and it is currently
in preparation for release as an open source project.

During the development of the methods we have found many possibilities
for future research, of which preliminary results have been obtained for several
of them. In the following sections we briefly outline a few of the possibilities.

15.1 Modelling of Stereochemistry

The molecule model described in Section 2.1 defines molecules in a very broad
sense, in that it does not formally constrain the amount of bonds an atom
can participate in. Realistically only a finite set of neighbourhoods are chem-
ically valid, as outlined by Table 2.1, which is related to molecular geometry
and stereochemistry. For example the Valence-Shell Electron-Pair Repulsion
(VSEPR) theory [Gillespie 1963] can be used as a basis for enumerating valid
geometries, and thereby refine the molecule model. An incorporation of local
geometry will additionally enable precise modelling of several types of stereoi-
somerism, e.g., chirality and cis-trans isomerism.

The extension of the graph model can possible be done with a variant
of what is called the ordered list method [Petrarca et al. 1967, Wipke &
Dyott 1974], which we briefly outline in the following. When using adjacency
lists to represent the molecule graphs then the collection of incident edges to
a vertex is conceptually just a set of edges. In the ordered list method these
collections are represented as ordered lists, where the order of the edges rep-
resents a configuration in a local geometry. How a configuration is encoded in
the list may thus be different for different geometries.

As an example consider the tetrahedral geometry, that carbon atoms can
exhibit. We can decide that the first edge in the list points “up”, and the last
three edges are ordered counter-clockwise when seen from “above”. This is
illustrated in Figure 15.1 where all 24 permutations are partitioned according
to which configuration they encode. Note that the lists that are equivalent
can be characterised by the permutation group G≡ = 〈(1)(2 3 4), (1 2)(3 4)〉.

When deciding isomorphism between molecules we must take into account
that each of the two configurations can be represented by 12 different per-
mutations of the incident edges. Given a candidate morphism, which is an
isomorphism in the underlying labelled graph, we can create the permuta-
tion induced by the morphism as illustrated in Figure 15.2. This permutation
can be checked for membership in G≡, the permutation group of equivalence.
In the shown example the permutation is not a member, and the candidate
morphism is invalid.

Preliminary investigations show that similar encoding schemes can be used
for the geometries common in biomolecules. One of the challenges is that the

160

15.1. Modelling of Stereochemistry

[, , ,] [, , ,] [, , ,] [, , ,]
[, , ,] [, , ,] [, , ,] [, , ,]
[, , ,] [, , ,] [, , ,] [, , ,]

[, , ,] [, , ,] [, , ,] [, , ,]
[, , ,] [, , ,] [, , ,] [, , ,]
[, , ,] [, , ,] [, , ,] [, , ,]

Figure 15.1: Encoding of configurations in the tetrahedral geometry using the
ordered list method. Each of the two configurations can be encoded with 12
different permutations of the incident edges.

a

b
c

d

s

t
u

v

[a, b, c, d]

Induced permutation: (1 3)(2)(4)

[s, t, u, v]

Figure 15.2: Example of isomorphism testing for the tetrahedral geometry, given
a morphism which is already an isomorphism in the underlying labelled graph.
The given morphism, shown with red arrows, induce a permutation of the neigh-
bours (1 3)(2)(4). This permutation is not in the permutation group for equi-
valence G≡, so the candidate morphism is not an isomorphism with respect to
stereoisomerism.

stereochemical properties must arise from local data, such that the Double
Pushout formalism can be extended to stereochemistry. Another challenge
is to enable partial specification of configurations, in a natural manner that
works well in a generative setting. On top of the modelling challenges we
also need to define how to extend the algorithms for isomorphism detection,
monomorphism enumeration, and graph canonicalisation.

The modelling of local geometry will also lay the foundation for describing
the geometry of transition states in reactions, and thereby include adjacency
constraints in a formal definition of chemically valid transformation rules.

161

15. Summary and Future Work

15.2 Realisable Pathways and Atom Tracing

The pathway model described in Chapter 10 is based on integer hyperflows,
which is closely related to what is known as transition invariants (T-invariants)
in Petri net theory, see [Desel 1998] and [Petri 1962]. We can reinterpret an
extended hypergraph H = (V,E) as a Petri net with V as the places and E as
the transitions. A flow f on H is fact then exactly equivalent to a T-invariant
(cmp. Equation (10.2) and [Desel 1998, Proposition 7]).

Petri net theory has previously been used to analyse reaction networks
[Chaouiya 2007, Koch 2010, Koch et al. 2010]. Tools such as Pathway Logic
[Eker et al. 2002, Talcott & Dill 2005] have been developed specifically for
working with biological networks and Petri nets. Pathway Logic notably also
uses rewriting techniques, though on a higher level of abstraction than the
atomic level we have presented in this work. The Petri net view gives rise to a
stricter definition of “a pathway” than integer hyperflows provides. Consider
a flow f on an extended hypergraph/Petri net H = (V,E). We can then
create an initial marking mI : V → N0 representing the input flow: mI(v) =
f(e−v), ∀v ∈ V . Similarly we can create a target marking mO : V → N0 with
mO(v) = f(e+

v),∀v ∈ V , representing the output flow. We can then say that
f is a realisable pathway if and only if the marking mO can be reached from
mI using a sequence of transition firings that in total correspond to the flow
f . For pathways that are not realisable an interesting question is then how
many copies of molecules we need to borrow to make the pathway realisable
[Rasmussen 2012]. An example of borrowing is shown in Figure 15.3 with two
pathways for the non-oxidative pentose phosphate pathway. Another example
was shown already in Figure 12.5 with overall autocatalytic pathways in the
formose chemistry, where we informally argued that a “can initialise”-relation
can be defined between pathways when one pathway can borrow molecules
from another pathway to make itself realisable. This example was in fact found
automatically using an experimental implementation for post-processing flow
solutions. The post-processing constructs specific reachability problems in
Petri nets, and uses the Low Level Petri Net Analyzer (LoLA) [Schmidt 2000]
for solving the problems.

In Chapter 11 we defined a basic method for atom tracing that used com-
position of transformation rules to compute the overall traces. However, this
method “blindly” applies the rule sequence to all combinations of molecules
that matches, and the sequence of rules must be given in advance. An inter-
esting prospect is to automatically infer the rule sequences by enumerating
realisable pathways, and control the rule application to the specific molecules
determined by the pathway. With this future approach will thus be possible
to automatically enumerate all possible atom traces for all possible pathways
conforming to a given specification, in a network automatically generated from
a given exploration strategy utilising graph grammars.

162

15.2. Realisable Pathways and Atom Tracing

C5P C5P C5P C5P

TKL TKL

C3P C7P C7P C3P

TAL TAL

C6P C4P C5P C5P C4P C6P

TKL TKL

C6P C3P C3P C6P

AL

C6P

(a)

C5P C6P C5P

TKL TKL

C7P C4P C5P C3P

TKL

C3P C6P C5P

TAL TAL

C6P C4P C7P C4P C5P

TKL

C5P C7P C6P AL

TKL TAL

C6P C3P C4P C6P C6P

borrowed molecule

(b)

Figure 15.3: Two pathways implementing the non-oxidative pentose phosphate
pathway, with the overall reaction 6 C5P −→ 5 C6P. Both pathways are shown
with duplication of molecules and reactions, such that each of them represent a
single occurrence in the pathway. (a) The “classical” pathway [Meléndez-Hevia
& Isidoro 1985], which is realisable. (b) An non-realisable alternative pathway,
which is realisable if a copy of C6P is borrowed.

163

15. Summary and Future Work

S P

E

(a)

S

P

(b)

Figure 15.4: Suggestion for structural flow motifs for (a) catalytic pathways and
(b) autocatalytic pathways.

15.3 Structural Pathway Constraints
In Chapter 10 we defined an elaborate pathway model that allows for a basic
definition of overall (auto)catalytic pathways. However, it is clear that the
notion of general (auto)catalysis entails a causal relationship between the in-
put of a compound and its subsequent production. The expansion of reaction
networks to enable local routing constraints was introduced, to some extend,
for disallowing flows without such relationships.

The challenge is to define, more precisely, which topological constraints
are necessary for a hyperflow to (auto)catalytic. A suggestion is to introduce
non-local constraints on flows, e.g., requiring that a catalytic flow induces
a cycle in the underlying directed graph as depicted in Figure 15.4a. An
autocatalytic pathway could then be a catalytic pathway with an additional
“ear” of flow for the production of the autocatalytic compound, Figure 15.4b.
Such constraints would certainly ensure the causal relationship, but it still
leaves the question of whether the concepts of (auto)catalysis entails further
topological constraints.

The use of structural constraints may lead to an approach to automatically
enumerate chemical hypercycles [Eigen 1971, Eigen & Schuster 1977], Such a
hypercycle is, when restricted to a topological definition, a higher-order cycle
in the network consisting of autocatalytic cycles connected by catalysis, as
illustrated in Figure 15.5. Special care must however be taken to ensure a
precise characterisation, to avoid further confusion about the concept [Szath-
máry 1988, Szathmáry 2013].

164

15.3. Structural Pathway Constraints

Figure 15.5: [Szathmáry 1988, Fig. 2], schematic of a chemical hypercycle.

165

Appendices

167

Appendix A

MedØlDatschgerl
As of March 2016, part of this package has been publicly released as MedØlD-
atschgerl 0.5 [Andersen 2016, Andersen et al. 2016].

The methods described this work are implemented in a software package
called MedØlDatschgerl (MØD), which additionally contains extensive sup-
port for automatic generation of figures. MØD consists of the following parts:

libMØD The main library, implemented in C++11.

PyMØD A Python 3 module with bindings to the C++ layer, and additional
convenience functionality.

PostMØD A shell script for compiling figures specified by the C++ library.

mod A shell script for invocation of a Python interpreter with PyMØD loaded,
and subsequent invocation of the post-processor.

mod.sty A LATEX package for direct inclusion of depictions of molecules and
transformation rules in documents.

A limited version of MØD can be invoked at http://cheminf.imada.sdu.
dk/mod/playground.html, where the Python interface is available and auto-
matically generated figures can be downloaded. In the following we provide a
very brief overview of the features of MØD.

Graphs and Rules

Graphs for modelling molecules and transformation rules for modelling reac-
tion patterns are available as classes in the library. Molecules can for example
be constructed from SMILES strings (with a special interpretation). For ex-
ample, a graph representing caffeine can be loaded in the Python interface
with ‘caffeine = smiles("Cn1cnc2c1c(=O)n(c(=O)n2C)C")’. Transforma-
tion rules can loaded with code similar to ‘p = ruleGML("ruleFile.gml")’,
where ‘ruleFile.gml’ is a text file with a specification of the rule. Both graph
and rule objects have methods for counting monomorphisms and isomorph-
isms.

169

http://cheminf.imada.sdu.dk/mod/playground.html
http://cheminf.imada.sdu.dk/mod/playground.html

A. MedØlDatschgerl

〈rcExp〉 :: 〈rcExp〉 ‘*’ 〈op〉 ‘*’ 〈rcExp〉
| ‘rcBind(’ 〈graphs〉 ‘)’
| ‘rcUnbind(’ 〈graphs〉 ‘)’
| ‘rcId(’ 〈graphs〉 ‘)’
| 〈rules〉

Figure A.1: Grammar for rule composition expressions in PyMØD, where
〈graphs〉 is a normal Python expression returning either a single graph or a
collection of graphs. Similarly is 〈rules〉 a Python expression returning either
a single rule or a collection of rules. See Table A.2 for the description of 〈op〉.
The three functions ‘rcBind’, ‘rcUnbind’, and ‘rcId’ refers to the construction
of rules from graphs, described in Section 7.2.

Math Operator 〈op〉

•∅ *rcParallel*
•⊇ *rcSuper(allowPartial=False)*
•c⊇ *rcSuper*
•⊆ *rcSub(allowPartial=False)*
•c⊆ *rcSub*
•∩ *rcCommon*

Table A.2: List of rule composition operators in PyMØD, usable as 〈op〉 in the
grammar in Figure A.1.

Interface for Rule Composition

In Chapter 7 we defined a series of specialised forms of rule composition,
indicated by specific operators, e.g., •⊇ for full composition and •∩ for the
most general type of composition. In the Python interface these operators
are directly available and can be used to build expression trees following the
grammar in Figure A.1. Table A.2 lists the Python notation for each rule
composition operator. They are implemented using overloading on the build-
in multiplication operator to obtain infix notation for the expressions.

A rule composition expression can be passed to an evaluator which will
carry out the composition and discard duplicate results, as determined by
isomorphism between rules. The result of each 〈rcExp〉 is coerced into a list
of rules, and the operators consider all selections of rules from their argu-
ments. That is, if ‘P1’ and ‘P2’ are two lists of rules, then the evaluation of
‘P1 *rcSuper* P2’ results in the list

⋃
p1∈P1

⋃
p2∈P2

p1 •c⊇ p2

170

Interface for Exploration Strategies

The exploration strategies for network generation presented in Chapter 9 are
implemented in the Python interface, such that strategies can be specified
in a similar syntax as the mathematical one. For example, the breadth-first
expansion, limited by molecule size, in the formose chemistry (see Chapter 12)
can be done with the following code.
s t r a t = (

addUniverse (formaldehyde)
>> addSubset (g l yco l a ldehyde)
>> r i gh tP r ed i c a t e [

lambda d : a l l (a . vLabelCount ("C") <= 6 for a in d . r i g h t)
] (

r epeat ([p1 , p2 , p3 , p4])
)

)
dg = dgRuleComp ([formaldehyde , g l y co l a ldehyde] , s t r a t)
dg . c a l c ()

The variables ‘formaldehyde’ and ‘glycolaldehyde’ are graphs represent-
ing the starting molecules and ‘p1’, ‘p2’, ‘p3’, and ‘p4’ are variables for the
transformation rules. Strategies are created as expression trees that are then
given to an evaluator which executes the strategy, performs graph isomorph-
ism testing, and creates the derivation graphs representing reaction networks.
The derivation graph object, here called ‘dg’, can then be queried (e.g., for
conversion to external formats) or used for pathway calculations.

Interface for Hyperflow Calculation

The hyperflow model in Chapter 10 is realised using the IBM ILOG CPLEX
Optimization Studio for defining and solving integer linear programming mod-
els. A model can be specified directly from a given derivation graph object,
where extension and expansion is done automatically. Predefine modules for
overall catalysis and autocatalysis can be enabled, and using predefined vari-
ables one can add a custom linear objective function custom linear constraints.
For example, enumeration of the 10 overall autocatalytic solutions using the
least amount of unique reactions can be done with the following code.
f l ow = dgFlow (dg)
f low . addSource (formaldehyde)
f low . addSource (g ly co l a ldehyde)
f low . addSink (g ly co l a ldehyde)
f low . o v e r a l lAu t o c a t a l y s i s . enable ()
f low . ob j e c t i v eFunct i on = isEdgeUsed
f low . setSolverEnumerateBy (

enumerat ionVarSpec i f i e r=isEdgeUsed ,
maxNumSolutions=10

)
f low . c a l c ()

Here we additionally specify that solutions are considered equivalent if they
use the same set of reactions (‘enumerationVarSpecifier=isEdgeUsed’).

171

A. MedØlDatschgerl

Figure Generation

The software can automatically generate many types of visualisations, e.g., for
graphs, rules, derivation graphs, and flow solutions, which all somehow involve
the depiction of graphs. The coordinates for graph layouts are generated using
Graphviz [Gansner & North 2000] for general graphs and Open Babel [OL-
Boyle et al. 2011] for molecules and transformation rules involving molecules.
The final rendering is done using the LATEX package Tikz [Tantau 2013]. The
general procedure for figure generation is:

• In libMØD: Generate a specification of the graph in Tikz format.

• In libMØD: If the graph is a molecule or a transformation rule involving
molecules, then generate coordinates for the vertices with Open Babel.
Otherwise generate a specification of the graph in Graphviz format.

• In libMØD: Output commands to PostMØD for final figure generation.

• In PostMØD: If it is a general graph, then generate coordinates using
the Graphviz specification.

• In PostMØD: Use LATEX to compile the Tikz specification, using the
generated coordinates, into a final PDF file for the figure.

A graph, rule, derivation graph, or flow solution represented by a variable
‘a’ can in this manner be visualised by executing ‘a.print()’ in the Python
interface.

Including Figures in LATEX

During the writing of this thesis a LATEX package was developed to make
visualisations of molecules and transformation rules more easily available in
documents. For example, the depictions in Figure 2.2 are specified with the
following LATEX code.
\modset{ sm i l e s / . s t y l e={none , edges as bonds , r a i s e charges , with co l our }}
\ sm i l e s {Cn1cnc2c1c(=O)n(c(=O)n2C)C}
\ sm i l e s [s imple carbons] {Cn1cnc2c1c(=O)n(c(=O)n2C)C}
\ sm i l e s [c o l l a p s e hydrogens] {Cn1cnc2c1c(=O)n(c(=O)n2C)C}
\ sm i l e s [c o l l a p s e hydrogens , s imple carbons] {Cn1cnc2c1c(=O)n(c(=O)n2C)C}

Each ‘\smiles’ macro expands into an ‘\includegraphics’ for a specific PDF
file, and a PyMØD script is generated which can be executed to compile the
needed files. Transformation rules can similarly be visualised, e.g.,
\ruleGML{ r u l e F i l e . gml}{\dpoRule}

which expands into ‘\dpoRule{fileL.pdf}{fileK.pdf}{fileR.pdf}’, where
the three PDF files depict the left side, context, and right side of the rule.
The ‘\dpoRule’ macro then constructs the final rule diagram with the PDF
filesincluded.

172

Bibliography
[Ahuja et al. 1993] R. K. Ahuja, T. L. Magnanti and J.B. Orlin. Network flows: Theory,

algorithms, and applications. Prentice Hall, Englewood Cliffs, NJ, 1993. (Cited on
pages 95, 100, 105, and 116)

[Aït-Kaci 1991] Hassan Aït-Kaci. Warren’s abstract machine: A tutorial reconstruction.
MIT Press, Cambridge, MA, USA, 1991. (Cited on page 6)

[Altman et al. 2013] T. Altman, M. Travers, A. Kothari, R. Caspi and P. D. Karp. A
systematic comparison of the MetaCyc and KEGG pathway databases. BMC Bioin-
formatics, vol. 14, page 112, 2013. (Cited on page 79)

[Andersen et al. 2012] Jakob L. Andersen, Christoph Flamm, Daniel Merkle and Peter F.
Stadler. Maximizing output and recognizing autocatalysis in chemical reaction net-
works is NP-complete. Journal of Systems Chemistry, vol. 3, no. 1, 2012. (Cited on
pages viii, 108, 109, 111, and 112)

[Andersen et al. 2013a] Jakob L. Andersen, Tommy Andersen, Christoph Flamm, Mar-
tin M. Hanczyc, Daniel Merkle and Peter F. Stadler. Navigating the Chemical
Space of HCN Polymerization and Hydrolysis: Guiding Graph Grammars by Mass
Spectrometry Data. Entropy, vol. 15, no. 10, pages 4066–4083, 2013. (Cited on
pages viii, 93, and 157)

[Andersen et al. 2013b] Jakob L. Andersen, Christoph Flamm, Daniel Merkle and Peter F.
Stadler. Inferring chemical reaction patterns using rule composition in graph gram-
mars. Journal of Systems Chemistry, vol. 4, no. 1, page 4, 2013. (Cited on pages viii,
63, 65, and 74)

[Andersen et al. 2014a] Jakob L. Andersen, Christoph Flamm, Martin M. Hanczyc and
Daniel Merkle. Towards an Optimal DNA-Templated Molecular Assembler. In
ALIFE 14: The Fourteenth Conference on the Synthesis and Simulation of Liv-
ing Systems, volume 14, pages 557–564, 2014. (Cited on pages viii, 11, and 157)

[Andersen et al. 2014b] Jakob L. Andersen, Christoph Flamm, Daniel Merkle and Peter F.
Stadler. 50 Shades of Rule Composition: From Chemical Reactions to Higher Levels
of Abstraction. In François Fages and Carla Piazza, editors, Formal Methods in
Macro-Biology, volume 8738 of Lecture Notes in Computer Science, pages 117–135,
Berlin, 2014. Springer International Publishing. (Cited on pages viii, 65, 123, 137,
and 141)

[Andersen et al. 2014c] Jakob L. Andersen, Christoph Flamm, Daniel Merkle and Peter F.
Stadler. Generic Strategies for Chemical Space Exploration. International Journal
of Computational Biology and Drug Design, vol. 7, no. 2/3, pages 225 – 258, 2014.
(Cited on pages viii, 83, 132, and 153)

[Andersen et al. 2015a] Jakob L. Andersen, Christoph Flamm, Daniel Merkle and Peter F.
Stadler. Chemical Transformation Motifs — Modelling Pathways as Integer Hyper-
flows. 2015. In preparation. (Cited on pages viii, 95, 130, and 144)

[Andersen et al. 2015b] Jakob L. Andersen, Christoph Flamm, Daniel Merkle and Peter F.
Stadler. In silico Support for Eschenmoser’s Glyoxylate Scenario. Israel Journal of
Chemistry, 2015. (Cited on pages viii and 157)

[Andersen et al. 2016] Jakob L. Andersen, Christoph Flamm, Daniel Merkle and Peter F.
Stadler. A Software Package for Chemically Inspired Graph Transformation, 2016.
Submitted, TR: http://arxiv.org/abs/1603.02481. (Cited on pages viii and 167)

173

http://arxiv.org/abs/1603.02481

Bibliography

[Andersen 2016] Jakob L. Andersen. MedØlDatschgerl (MØD). http://mod.imada.sdu.dk,
2016. (Cited on pages viii and 167)

[Andrei et al. 2011] O. Andrei, M. Fernández, H. Kirchner, G. Melançon, O. Namet and
B. Pinaud. PORGY: Strategy driven interactive transformation of graphs. In In Pro-
ceedings of the 6th International Workshop on Computing with Terms and Graphs
(TERMGRAPH 2011), volume 48 of Electronic Proceedings in Theoretical Com-
puter Science, pages 54–68, 2011. (Cited on page 83)

[Apodaca 2007] Richard L. Apodaca. SMILES and Aromaticity: Broken?, 2007. http:
//depth-first.com/articles/2007/11/28/smiles-and-aromaticity-broken/.
(Cited on page 38)

[Atanasov et al. 2000] B. P. Atanasov, D. Mustafi and Makinen M. W. Protonation of the
beta-lactam nitrogen is the trigger event in the catalytic action of class A beta-
lactamases. Proc. Natl Acad. Sci., vol. 97, no. 7, pages 3160–3165, 2000. (Cited on
pages 124 and 126)

[Baader & Snyder 2001] F. Baader and W. Snyder. Unification Theory. In Alan JA Robin-
son and Andrei Voronkov, editors, Handbook of automated reasoning, volume 1,
chapter 8, page 447–533. Elsevier, 2001. (Cited on page 5)

[Babai & Luks 1983] László Babai and Eugene M. Luks. Canonical Labeling of Graphs. In
Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing,
STOC ’83, pages 171–183, New York, NY, USA, 1983. ACM. (Cited on page 23)

[Bang-Jensen & Gutin 2009] Jørgen Bang-Jensen and Gregory Z. Gutin. Digraphs: Theory,
Algorithms and Applications. Springer Monographs in Mathematics, 2009. (Cited
on pages 95, 100, 105, and 116)

[Bar-Even et al. 2012] Arren Bar-Even, Avi Flamholz, Elad Noor and Ron Milo. Rethinking
glycolysis: on the biochemical logic of metabolic pathways. Nature Chemical Biology,
vol. 8, no. 6, pages 509–517, 2012. (Cited on page 141)

[Behre et al. 2012] J. Behre, L. F. de Figueiredo, S. Schuster and C. Kaleta. Detecting
structural invariants in biological reaction networks. Methods Mol Biol., vol. 804,
pages 377–407, 2012. (Cited on page 95)

[Benkö et al. 2003] Gil Benkö, Christoph Flamm and Peter F. Stadler. A graph-based toy
model of chemistry. Journal of Chemical Information and Computer Sciences,
vol. 43, no. 4, pages 1085–1093, 2003. (Cited on page 1)

[Benner et al. 2010] S. A. Benner, H.-J. Kim, M.-J. Kim and A. Ricardo. Planetary Organic
Chemistry and the Origins of Biomolecules. Cold Spring Harbor Perspectives in
Biology, vol. 2, no. 7, 2010. (Cited on pages 129, 131, 132, 133, and 137)

[Benner et al. 2012] Steven A. Benner, Hyo-Joong Kim and Matthew A. Carrigan. Asphalt,
water and the prebiotic synthesis of ribose, ribonucleosides, and RNA. Acc. Chem.
Res., vol. 45, no. 12, pages 2025–2034, 2012. (Cited on page 132)

[Bishop et al. 2006] K. J. M. Bishop, R. Klajn and B. A. Grzybowski. The Core and Most
Useful Molecules in Organic Chemistry. Angew. Chem. Int. Ed., vol. 45, pages
5348–5354, 2006. (Cited on page 79)

[Bissette & Fletcher 2013] Andrew J. Bissette and Stephen P. Fletcher. Mechanisms of
Autocatalysis. J Angew Chemie Int Ed, vol. 52, no. 49, pages 12800–12826, 2013.
(Cited on page 2)

[Bogorad et al. 2013] Igor W. Bogorad, Tzu-Shyang Lin and James C. Liao. Synthetic non-
oxidative glycolysis enables complete carbon conservation. Nature, vol. 502, no. 7473,
pages 693–697, 2013. (Cited on pages 141, 145, 147, 150, 151, and 152)

174

http://mod.imada.sdu.dk
http://depth-first.com/articles/2007/11/28/smiles-and-aromaticity-broken/
http://depth-first.com/articles/2007/11/28/smiles-and-aromaticity-broken/

Bibliography

[Borodina et al. 2005] Irina Borodina, Charlotte Schöller, Anna Eliasson and Jens Nielsen.
Metabolic Network Analysis of Streptomyces tenebrarius, a Streptomyces Species
with an Active Entner-Doudoroff Pathway. Applied and Environmental Microbio-
logy, vol. 71, no. 5, pages 2294–2302, 2005. (Cited on page 141)

[Braatz et al. 2011] Benjamin Braatz, Ulrike Golas and Thomas Soboll. How to delete cat-
egorically — Two pushout complement constructions. Journal of Symbolic Compu-
tation, vol. 46, no. 3, pages 246–271, 2011. Applied and Computational Category
Theory. (Cited on page 57)

[Breslow 1959] R. Breslow. On the Mechanism of the Formose Reaction. Tetrahedron Let-
ters, vol. 1, no. 21, 1959. (Cited on pages 129 and 137)

[Butlerov 1861] Alexandr Mikhaylovich Butlerov. Einiges über die chemische Structur der
Körper. Zeitschrift für Chemie, vol. 4, pages 549–560, 1861. (Cited on page 129)

[Cambini et al. 1997] Riccardo Cambini, Giorgio Gallo and Maria Grazia Scutellà. Flows
on hypergraphs. Mathematical Programming, vol. 78, pages 195–217, 1997. (Cited
on pages 95 and 108)

[Causey et al. 2003] T. B. Causey, S. Zhou, K. T. Shanmugam and L. O. Ingram. En-
gineering the metabolism of Escherichia coli W3110 for the conversion of sugar to
redox-neutral and oxidized products: Homoacetate production. Proceedings of the
National Academy of Sciences, vol. 100, no. 3, pages 825–832, 2003. (Cited on
page 144)

[Centler et al. 2008] Florian Centler, Christoph Kaleta, Pietro Speroni di Fenizio and Peter
Dittrich. Computing chemical organizations in biological networks. Bioinformatics,
vol. 24, pages 1611–1618, 2008. (Cited on page 95)

[Chaouiya 2007] Claudine Chaouiya. Petri net modelling of biological networks. Briefings
in Bioinformatics, vol. 8, no. 4, pages 210–219, 2007. (Cited on page 160)

[Chen et al. 2013] William Lingran Chen, David Z. Chen and Keith T. Taylor. Automatic
reaction mapping and reaction center detection. Wiley Interdisciplinary Reviews:
Computational Molecular Science, vol. 3, no. 6, pages 560–593, 2013. (Cited on
page 63)

[Conte et al. 2004] D. Conte, P. Foggia, C. Sansone and M. Vento. Thirty Years of Graph
Matching in Pattern Recognition. International Journal of Pattern Recognition and
Artificial Intelligence, vol. 18, no. 03, pages 265–298, 2004. (Cited on pages 18
and 20)

[Cook 1971] Stephen A. Cook. The Complexity of Theorem-proving Procedures. In Proceed-
ings of the Third Annual ACM Symposium on Theory of Computing, STOC ’71,
pages 151–158, New York, NY, USA, 1971. ACM. (Cited on page 20)

[Cordella et al. 2001] Luigi Pietro Cordella, Pasquale Foggia, Carlo Sansone and Mario
Vento. An improved algorithm for matching large graphs. In Proc. of the 3rd IAPR-
TC15 Workshop on Graph-based Representations in Pattern Recognition, pages
149–159, 2001. (Cited on page 20)

[Cordella et al. 2004] L.P. Cordella, P. Foggia, C. Sansone and M. Vento. A (Sub) Graph
Isomorphism Algorithm for Matching Large Graphs. IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 26, no. 10, page 1367, 2004. (Cited on
page 20)

[Cormen et al. 2001] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest and Clifford
Stein. Introduction to algorithms. MIT Press and McGraw-Hill, 2 édition, 2001.
(Cited on page 45)

175

Bibliography

[Corradini et al. 1997] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel and
M. Löwe. Algebraic Approaches to Graph Transformation – Part I: Basic Con-
cepts and Double Pushout Approach. In Grzegorz Rozenberg, editor, Handbook
of Graph Grammars and Computing by Graph Transformation, chapter 3, pages
163–245. World Scientific, 1997. (Cited on pages 1 and 53)

[Darga et al. 2008] Paul T. Darga, Karem A. Sakallah and Igor L. Markov. Faster Symmetry
Discovery Using Sparsity of Symmetries. In Proceedings of the 45th Annual Design
Automation Conference, DAC ’08, pages 149–154, New York, NY, USA, 2008. ACM.
(Cited on page 23)

[Daylight Chemical Information Systems 2011] Inc. Daylight Chemical Information Sys-
tems. Daylight Theory Manual, 2011. http://www.daylight.com/dayhtml/doc/
theory/index.html. (Cited on page 37)

[Decker et al. 1982] Peter Decker, Horst Schweer and Rosmarie Pohlamnn. Bioids : X.
Identification of formose sugars, presumable prebiotic metabolites, using capillary
gas chromatography/gas chromatography-mas spectrometry of n-butoxime trifluoro-
acetates on OV-225. Journal of Chromatography A, vol. 244, pages 281–291, 1982.
(Cited on page 132)

[Delidovich et al. 2014] Irina V. Delidovich, Alexandr N. Simonov, Oxana P. Taran and
Valentin N. Parmon. Catalytic Formation of Monosaccharides: From the Formose
Reaction towards Selective Synthesis. ChemSusChem, vol. 7, no. 7, pages 1833–1846,
2014. (Cited on page 129)

[Desel 1998] Jörg Desel. Basic linear algebraic techniques for place/transition nets. In
Lectures on Petri Nets I: Basic Models, pages 257–308. Springer, 1998. (Cited
on page 160)

[Dittrich & Speroni Di Fenizio 2007] Peter Dittrich and Pietro Speroni Di Fenizio. Chem-
ical Organisation Theory. In Mohamed Al-Rubeai and Martin Fussenegger, editors,
Systems Biology, volume 5 of Cell Engineering, pages 361–393. Springer Nether-
lands, 2007. (Cited on page 96)

[Dittrich et al. 2001] Peter Dittrich, J. Ziegler and Wolfgang Banzhaf. Artificial chemistries
— a review. Artifical Life, vol. 7, no. 3, pages 225–275, 2001. (Cited on pages 1
and 62)

[Ebenhöh et al. 2004] O. Ebenhöh, T. Handorf and R. Heinrich. Structural analysis of ex-
panding metabolic networks. In Genome informatics. International Conference on
Genome Informatics, volume 15, page 35, 2004. (Cited on page 104)

[Ehrig et al. 1991] H. Ehrig, A. Habel, H.-J. Kreowski and F. Parisi-Presicce. Parallelism
and Concurrency in High-Level Replacement Systems. Math. Struct. Comp. Science,
vol. 1, pages 361–404, 1991. (Cited on pages 65, 66, and 67)

[Ehrig et al. 1997] H Ehrig, R Heckel, M Korff, M. Löwe, L Ribeiro, A Wagner and A Cor-
radini. Algebraic Approaches to Graph Transformation - Part II: Single Pushout
Approach and Comparison with DoublePushout Approach. In Grzegorz Rozenberg,
editor, Handbook of Graph Grammars and Computing by Graph Transformation,
pages 247–312. World Scientific, Singapore, 1997. (Cited on page 64)

[Ehrig et al. 2006] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange and Gabriele Taenthzer.
Fundamentals of algebraic graph transformation. Springer-Verlag, Berlin, D, 2006.
(Cited on pages 53, 54, 55, 56, 58, and 65)

[Ehrig 1979] Hartmut Ehrig. Introduction to the algebraic theory of graph grammars (a
survey). In Volker Claus, Hartmut Ehrig and Grzegorz Rozenberg, editors, Graph-
Grammars and Their Application to Computer Science and Biology, volume 73 of
Lecture Notes in Computer Science, page 1–69. Springer Berlin Heidelberg, 1979.
(Cited on page 53)

176

http://www.daylight.com/dayhtml/doc/theory/index.html
http://www.daylight.com/dayhtml/doc/theory/index.html

Bibliography

[Eigen & Schuster 1977] Manfred Eigen and Peter Schuster. The hypercycle: A principle of
natural self-organization. Die Naturwissenschaften, 1977. (Cited on pages 2, 81,
and 162)

[Eigen 1971] Manfred Eigen. Selforganization of matter and the evolution of biological mac-
romolecules. Naturwissenschaften, vol. 58, no. 10, pages 465–523, 1971. (Cited on
pages 81 and 162)

[Eker et al. 2002] Steven Eker, Merrill Knapp, Keith Laderoute, Patrick Lincoln, and Car-
olyn Talcott. Pathway Logic: Executable Models of Biological Networks. In Fourth
International Workshop on Rewriting Logic and Its Applications (WRLA’2002,
volume 71 of Electronic Notes in Theoretical Computer Science. Elsevier, 2002.
(Cited on page 160)

[Entner & Doudoroff 1952] Nathan Entner and Michael Doudoroff. Glucose and Gluconic
Acid Oxidation of Pseudomonas Saccharophila. Journal of Biological Chemistry,
vol. 196, pages 853–862, 1952. (Cited on page 141)

[Eppstein 1999] David Eppstein. Subgraph Isomorphism in Planar Graphs and Related Prob-
lems. Journal of Graph Algorithms and Applications, vol. 3, no. 3, pages 1–27, 1999.
(Cited on page 20)

[Eschenmoser 2007a] Albert Eschenmoser. On a hypothetical generational relationship
between HCN and constituents of the reductive citric acid cycle. Chem. Biodivers.,
vol. 4, pages 554–573, 2007. (Cited on page 2)

[Eschenmoser 2007b] Albert Eschenmoser. The search for the chemistry of life’s origin.
Tetrahedron, vol. 63, pages 12821–12844, 2007. (Cited on page 157)

[Fagerberg et al. 2015] Rolf Fagerberg, Christoph Flamm, Rojin Kianian, Daniel Merkle
and Peter F. Stadler. Finding the K Best Synthesis Plans. 2015. In preparation.
(Cited on pages 81 and 108)

[Fell & Small 1986] D A Fell and J R Small. Fat synthesis in adipose tissue. An examination
of stoichiometric constraints. Biochemical Journal, pages 781–786, 1986. (Cited on
page 95)

[Fernández et al. 2012] M. Fernández, H. Kirchner and O. Namet. A Strategy Language for
Graph Rewriting. In Proceedings of the 21st International Symposium on Logic-
Based Program Synthesis and Transformation (LOPSTR 2011), volume 7225 of
Lecture Notes in Computer Science, pages 173–188, 2012. (Cited on page 83)

[Fialkowski et al. 2005] M. Fialkowski, K.J.M. Bishop, V.A. Chubukov, C.J. Campbell and
B.A. Grzybowski. Architecture and Evolution of Organic Chemistry. Angew. Chem.
Int. Ed., vol. 44, pages 7263–7269, 2005. (Cited on page 79)

[Foggia et al. 2001] Pasquale Foggia, Carlo Sansone and Mario Vento. A performance com-
parison of five algorithms for graph isomorphism. In Proceedings of the 3rd IAPR
TC-15 Workshop on Graph-based Representations in Pattern Recognition, pages
188–199, 2001. (Cited on page 20)

[Gallo et al. 1993] Giorgio Gallo, Giustino Longo, Stefano Pallottino and Sang Nguyen. Dir-
ected hypergraphs and applications. Discrete Applied Mathematics, vol. 42, no. 2–3,
pages 177–201, 1993. (Cited on pages 81 and 108)

[Gallo et al. 1998] G. Gallo, C Gentile, D Pretolani and G. Rago. Max Horn SAT and the
minimum cut problem in directed hypergraphs. Math. Programming, vol. 80, pages
213–237, 1998. (Cited on pages 95 and 108)

[Gansner & North 2000] Emden R. Gansner and Stephen C. North. An open graph visualiza-
tion system and its applications to software engineering. SOFTWARE - PRACTICE
AND EXPERIENCE, vol. 30, no. 11, pages 1203–1233, 2000. (Cited on page 170)

177

Bibliography

[Garey & Johnson 1975] Michael R. Garey and David S. Johnson. Complexity results for
multiprocessor scheduling under resource constraints. SIAM J. Comput., vol. 4,
pages 397–411, 1975. (Cited on page 109)

[Gillespie 1963] R. J. Gillespie. The valence-shell electron-pair repulsion (VSEPR) theory
of directed valency. Journal of Chemical Education, vol. 40, no. 6, page 295, 1963.
(Cited on page 158)

[Golas 2010] Ulrike Golas. Analysis and correctness of algebraic graph and model trans-
formations. Vieweg+Teubner, Wiesbaden, D, 2010. (Cited on page 65)

[Grzybowski et al. 2009] B.A. Grzybowski, K.J.M. Bishop, B. Kowalczyk and C.E. Wilmer.
The ’wired’ universe of organic chemistry. Nature Chemistry, vol. 1, pages 31–36,
2009. (Cited on pages 1, 62, and 79)

[Guptasarma 1995] Purnananda Guptasarma. Does replication-induced transcription regu-
late synthesis of the myriad low copy number proteins of Escherichia coli? Bioessays,
vol. 17, no. 11, pages 987–997, 1995. (Cited on page 117)

[Habel et al. 2001] Annegret Habel, Jürgen Müller and Detlef Plump. Double-pushout graph
transformation revisited. Mathematical Structures in Computer Science, vol. 11,
pages 637–688, October 2001. (Cited on page 58)

[Handorf et al. 2005] Thomas Handorf, Oliver Ebenhöh and Reinhart Heinrich. Expanding
Metabolic Networks: Scopes of Compounds, Robustness, and Evolution. Journal of
Molecular Evolution, vol. 61, pages 498–512, 2005. (Cited on page 104)

[Hartke & Radcliffe 2009] Stephen G Hartke and AJ Radcliffe. Mckay’s canonical graph
labeling algorithm. Communicating mathematics, vol. 479, pages 99–111, 2009.
(Cited on pages 23, 26, and 47)

[Heller et al. 2015] Stephen R Heller, Alan McNaught, Igor Pletnev, Stephen Stein and
Dmitrii Tchekhovskoi. InChI, the IUPAC International Chemical Identifier. Journal
of Cheminformatics, vol. 7, no. 1, page 23, 2015. (Cited on pages 1, 47, 48, 49,
and 50)

[Hendrickson 1977] James B. Hendrickson. Systematic synthesis design. 6. Yield analysis
and convergency. Journal of the American Chemical Society, vol. 99, no. 16, pages
5439–5450, 1977. (Cited on page 108)

[Holliday et al. 2005] Gemma L. Holliday, Gail J. Bartlett, Daniel E. Almonacid, Noel M.
O’Boyle, Peter Murray-Rust, Janet M. Thornton and John B. O. Mitchell. MACiE:
a database of enzyme reaction mechanisms. Bioinformatics, vol. 21, pages 4315–
4316, 2005. (Cited on page 123)

[Holliday et al. 2012] Gemma L Holliday, Claudia Andreini, Julia D Fischer, Syed Asad
Rahman, Daniel E Almonacid, Sophie T Williams and William R Pearson. MACiE:
exploring the diversity of biochemical reactions. Nucleic Acids Research, vol. 40,
pages D783–D789, 2012. (Cited on page 123)

[Hopcroft 1971] John Hopcroft. An n log n algorithm for minimizing states in a finite
automaton. In Theory of machines and computations (Proc. Internat. Sympos.,
Technion, Haifa, 1971), pages 189–196. Academic Press, New York, 1971. (Cited
on page 27)

[Hordijk & Steel 2004] W Hordijk and M Steel. Detecting autocatalytic, self-sustaining sets
in chemical reaction systems. Journal of Theoretical Biology, vol. 227, pages 451–
461, 2004. (Cited on page 96)

[Hucka et al. 2004] Michael Hucka, ABBJ Finney, Benjamin J Bornstein, Sarah M Keat-
ing, Bruce E Shapiro, Joanne Matthews, Ben L Kovitz, Maria J Schilstra, Akira
Funahashi, John C Doyleet al. Evolving a lingua franca and associated software

178

Bibliography

infrastructure for computational systems biology: the Systems Biology Markup Lan-
guage (SBML) project. Systems biology, vol. 1, no. 1, pages 41–53, 2004. (Cited on
page 79)

[III & Maggio 1981] Howard E. Simmons III and John E. Maggio. Synthesis of the first
topologically non-planar molecule. Tetrahedron Letters, vol. 22, no. 4, pages 287–
290, 1981. (Cited on page 20)

[InChI Trust 2015] InChI Trust, 2015. http://www.inchi-trust.org/. (Cited on page 47)
[InChI 2015] InChI. The IUPAC International Chemical Identifier (InChI), 2015. http://

www.iupac.org/home/publications/e-resources/inchi.html. (Cited on page 47)
[increpare games 2011] increpare games. Catalan, 2011. http://www.increpare.com/2011/

01/catalan/. (Cited on page 153)
[James 2012] Craig A. James. OpenSMILES specification, 2012. http://www.opensmiles.

org/opensmiles.html. (Cited on pages 37, 38, 39, 40, and 41)
[Jeroslow et al. 1992] R. G. Jeroslow, R. K. Martin, R. R. Rardin and J. Wang. Gainfree

Leontief substitution flow problems. Mathematical Programming, vol. 57, pages
375–414, 1992. (Cited on page 108)

[Junttila & Kaski 2007] Tommi A Junttila and Petteri Kaski. Engineering an Efficient Ca-
nonical Labeling Tool for Large and Sparse Graphs. In ALENEX, volume 7, pages
135–149. SIAM, 2007. (Cited on pages 23 and 34)

[Kaleta et al. 2006] C Kaleta, F Centler and P Dittrich. Analyzing molecular reaction net-
works: from pathways to chemical organizations. Molecular Biotechnology, vol. 34,
pages 117–123, 2006. (Cited on page 95)

[Kaleta et al. 2009] Christoph Kaleta, Stephan Richter and Peter Dittrich. Using chemical
organization theory for model checking. Bioinformatics, vol. 25, pages 1915–1922,
2009. (Cited on page 95)

[Kanehisa et al. 2012] M Kanehisa, S Goto, Y Sato, M Furumichi and M Tanabe. KEGG
for integration and interpretation of large-scale molecular data sets. Nucleic Acids
Research, vol. 40, pages D109–D114, 2012. (Cited on pages 1 and 79)

[Karmarkar 1984] Narendra Karmarkar. A new polynomial-time algorithm for linear pro-
gramming. In Proceedings of the sixteenth annual ACM symposium on Theory of
computing, pages 302–311. ACM, 1984. (Cited on page 115)

[Karp & Caspi 2011] P.D. Karp and R. Caspi. A survey of metabolic databases emphasizing
the MetaCyc family. Archives of Toxicology, vol. 85, pages 1015–1033, 2011. (Cited
on page 79)

[Katebi et al. 2010] Hadi Katebi, Karem A Sakallah and Igor L Markov. Symmetry and
satisfiability: An update. In Theory and Applications of Satisfiability Testing–SAT
2010, pages 113–127. Springer, 2010. (Cited on page 23)

[Kauffman et al. 2003] K. J. Kauffman, P. Prakash and J. S. Edwards. Advances in flux
balance analysis. Current Opinion in Biotechnology, vol. 14, no. 5, pages 491–496,
2003. (Cited on pages 80 and 95)

[Kauffman 1986] S. A. Kauffman. Autocatalytic sets of proteins. Journal of theoretical
biology, vol. 119, no. 1, pages 1–24, 1986. (Cited on page 96)

[Kauffman 1995] S. A. Kauffman. At home in the universe: The search for laws of self-
organization and complexity. Oxford University Press, USA, 1995. (Cited on pages 2
and 96)

[Khachiyan 1980] Leonid G Khachiyan. Polynomial algorithms in linear programming.
USSR Computational Mathematics and Mathematical Physics, vol. 20, no. 1, pages
53–72, 1980. (Cited on page 115)

179

http://www. inchi-trust.org/
http://www.iupac.org/home/publications/e-resources/inchi.html
http://www.iupac.org/home/publications/e-resources/inchi.html
http://www.increpare.com/2011/01/catalan/
http://www.increpare.com/2011/01/catalan/
http://www.opensmiles.org/opensmiles.html
http://www.opensmiles.org/opensmiles.html

Bibliography

[Kim et al. 2011] Hyo-Joong Kim, Alonso Ricardo, Heshan I Illangkoon, Jung Kim Kim,
Matthew A Carrigan, Fabianne Frye and Steven A Benner. Synthesis of Carbo-
hydrates in Mineral-Guided Prebiotic Cycles. J. Am. Chem. Soc., vol. 133, no. 24,
pages 9457–9468, 2011. (Cited on pages 131, 132, and 137)

[Klamt & Stelling 2002] S. Klamt and J. Stelling. Combinatorial complexity of pathway
analysis in metabolic networks. Molecular Biology Reports, vol. 29, pages 233–236,
2002. (Cited on page 95)

[Klamt & Stelling 2003] S. Klamt and J. Stelling. Two approaches for metabolic pathway
analysis? Trends in Biotechnology, vol. 21, no. 2, pages 64–69, 2003. (Cited on
pages 2 and 95)

[Knight 1989] Kevin Knight. Unification: A Multidisciplinary Survey. ACM Comput. Surv.,
vol. 21, no. 1, pages 93–124, March 1989. (Cited on page 5)

[Koch et al. 2010] I. Koch, W. Reisig and F. Schreiber. Modeling in systems biology: The
petri net approach. Computational Biology. Springer, 2010. (Cited on page 160)

[Koch 2010] Ina Koch. Petri Nets – A Mathematical Formalism to Analyze Chemical Reac-
tion Networks. Molecular Informatics, vol. 29, no. 12, pages 838–843, 2010. (Cited
on page 160)

[Kun et al. 2008] Ádám Kun, Balázs Papp and Eörs Szathmáry. Computational identifica-
tion of obligatorily autocatalytic replicators embedded in metabolic networks. Gen-
ome Biology, vol. 9, page R51, 2008. (Cited on pages 96 and 104)

[Lee et al. 2000] Sangbum Lee, Chan Phalakornkule, Michael M Domach and Ignacio E
Grossmann. Recursive MILP model for finding all the alternate optima in LP models
for metabolic networks. Computers & Chemical Engineering, vol. 24, no. 2, pages
711–716, 2000. (Cited on page 119)

[Löwe 1993] M. Löwe. Algebraic approach to single-pushout graph transformation. Theor.
Comp. Sci., vol. 109, pages 181–224, 1993. (Cited on page 64)

[Luks 1982] Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in
polynomial time. Journal of Computer and System Sciences, vol. 25, no. 1, pages
42–65, 1982. (Cited on page 20)

[Mann et al. 2013a] Martin Mann, Heinz Ekker and Christoph Flamm. The Graph Gram-
mar Library - A Generic Framework for Chemical Graph Rewrite Systems. In Keith
Duddy and Gerti Kappel, editors, Theory and Practice of Model Transformations,
volume 7909 of Lecture Notes in Computer Science, pages 52–53. Springer Berlin
Heidelberg, 2013. (Cited on pages viii, 1, and 15)

[Mann et al. 2013b] Martin Mann, Heinz Ekker and Christoph Flamm. The Graph Gram-
mar Library - a generic framework for chemical graph rewrite systems. CoRR,
vol. abs/1304.1356, 2013. (Cited on pages viii and 15)

[Mann et al. 2013c] Martin Mann, Feras Nahar, Heinz Ekker, Rolf Backofen, Peter F Stadler
and Christoph Flamm. Atom mapping with constraint programming. CP, vol. 13,
pages 805–822, 2013. (Cited on page 63)

[Matheiss & Rubin 1980] TH Matheiss and David S Rubin. A survey and comparison of
methods for finding all vertices of convex polyhedral sets. Mathematics of operations
research, vol. 5, no. 2, pages 167–185, 1980. (Cited on page 119)

[May 2013] John May. SMILES Implicit Valence of Aromatic Atoms, 2013. http://
efficientbits.blogspot.dk/2013/09/smiles-implicit-valence-of-aromatic.
html. (Cited on page 41)

[McKay & Piperno 2014a] Brendan D McKay and Adolfo Piperno. nauty and Traces, 2014.
http://pallini.di.uniroma1.it/. (Cited on page 23)

180

http://efficientbits.blogspot.dk/2013/09/smiles-implicit-valence-of-aromatic.html
http://efficientbits.blogspot.dk/2013/09/smiles-implicit-valence-of-aromatic.html
http://efficientbits.blogspot.dk/2013/09/smiles-implicit-valence-of-aromatic.html
http://pallini.di.uniroma1.it/

Bibliography

[McKay & Piperno 2014b] Brendan D McKay B.ay and Adolfo Piperno. Practical graph
isomorphism, II. Journal of Symbolic Computation, vol. 60, pages 94–112, 2014.
(Cited on pages 21, 23, 24, 26, 27, 28, 29, 34, and 35)

[McKay 1981] Brendan D. McKay. Practical Graph Isomorphism. In Congressus Numer-
antium, volume 30, pages 45–97. Utilitas Mathematica Pub. Incorporated, 1981.
http://cs.anu.edu.au/~bdm/papers/pgi.pdf. (Cited on pages 21, 23, 27, 35, 36,
and 47)

[Meléndez-Hevia & Isidoro 1985] Enrique Meléndez-Hevia and Angel Isidoro. The game of
the pentose phosphate cycle. Journal of Theoretical Biology, vol. 117, no. 2, pages
251–263, 1985. (Cited on page 161)

[Neglur et al. 2005] Greeshma Neglur, Robert L. Grossman and Bing Liu. Assigning Unique
Keys to Chemical Compounds for Data Integration: Some Interesting Counter Ex-
amples. In Bertram Ludäscher and Louiqa Raschid, editors, Data Integration in
the Life Sciences, volume 3615 of Lect. Notes Comp. Sci., pages 145–157. Springer,
Berlin, 2005. (Cited on page 46)

[Nilsson & Maluszynski 1995] Ulf Nilsson and Jan Maluszynski. Logic, programming, and
prolog. John Wiley & Sons, Inc., New York, NY, USA, 2nd édition, 1995. (Cited
on page 5)

[O’Boyle 2012] Noel M O’Boyle. Towards a Universal SMILES representation-A standard
method to generate canonical SMILES based on the InChI. J. Cheminformatics,
vol. 4, page 22, 2012. (Cited on page 37)

[OLBoyle et al. 2011] Noel M OLBoyle, Michael Banck, Craig A James, Chris Morley, Tim
Vandermeersch and Geoffrey R Hutchison. Open Babel: An open chemical toolbox.
J Cheminf, vol. 3, page 33, 2011. (Cited on page 170)

[Orth et al. 2010] J. D. Orth, I. Thiele and B. Ø. Palsson. What is flux balance analysis?
Nature Biotech., vol. 28, pages 245–248, 2010. (Cited on pages 2 and 95)

[Özturan 2008] Can Özturan. On finding hypercycles in chemical reaction networks. Appl.
Math. Letters, vol. 21, pages 881–884, 2008. (Cited on page 81)

[Papin et al. 2004] Jason A Papin, Joerg Stelling, Nathan D Price, Steffen Klamt, Stefan
Schuster and Bernhard O Palsson. Comparison of network-based pathway analysis
methods. Trends in biotechnology, vol. 22, no. 8, pages 400–405, 2004. (Cited on
pages 81 and 115)

[Papoutsakis 1984] E T Papoutsakis. Equations and calculations for fermentations of bu-
tyric acid bacteria. Biotech Bioeng, vol. 26, pages 174–187, 1984. (Cited on page 95)

[Petrarca et al. 1967] Anthony E. Petrarca, Michael F. Lynch and James E. Rush. A
Method for Generating Unique Computer Structural Representations of Stereoi-
somers. Journal of Chemical Documentation, vol. 7, no. 3, pages 154–165, 1967.
(Cited on page 158)

[Petri 1962] Carl Adam Petri. Kommunikation mit automaten. 1962. (Cited on pages 95
and 160)

[Pinaud et al. 2012] Bruno Pinaud, Guy Melançon and Jonathan Dubois. PORGY: A
Visual Graph Rewriting Environment for Complex Systems. Comput. Graph.
Forum, vol. 31, no. 3, 2012. (Cited on page 83)

[Piperno 2008] Adolfo Piperno. Search space contraction in canonical labeling of graphs
(preliminary version). CoRR, abs/0804.4881, 2008. (Cited on pages 23, 26, 27,
and 30)

[Rasmussen 2012] Thomas Glue Rasmussen. Analysing chemical reaction pathways with
Petri nets. Master’s thesis, University of Southern Denmark, 2012. (Cited on
page 160)

181

http://cs.anu.edu.au/~bdm/papers/pgi.pdf

Bibliography

[Ricardo et al. 2004] A Ricardo, M A Carrigan, A N Olcott and S A Benner. Borate minerals
stabilize ribose. Science, vol. 303, page 196, 2004. (Cited on pages 132 and 133)

[Ricardo et al. 2006] Alonso Ricardo, Fabianne Frye, Matthew A. Carrigan, Jeremiah D.
Tipton, David H. Powell and Steven A. Benner. 2-Hydroxymethylboronate as a
Reagent To Detect Carbohydrates: Application to the Analysis of the Formose Re-
action. Journal of Organic Chemistry, vol. 71, pages 9503–9505, 2006. (Cited on
page 131)

[Roberts et al. 1952] John D. Roberts, Andrew Streitwieser and Clare M. Regan. Small-
Ring Compounds. X. Molecular Orbital Calculations of Properties of Some Small-
Ring Hydrocarbons and Free Radicals1. Journal of the American Chemical Society,
vol. 74, no. 18, pages 4579–4582, 1952. (Cited on page 15)

[Rosselló & Valiente 2005] F. Rosselló and G. Valiente. Graph Transformation in Molecular
Biology. Lect. Notes Comp. Sci., vol. 3393, pages 116–133, 2005. (Cited on page 1)

[Ruiz-Mirazo et al. 2014] Kepa Ruiz-Mirazo, Carlos Briones and Andrés de la Escosura.
Prebiotic Systems Chemistry: New Perspectives for the Origins of Life. Chemical
Reviews, vol. 14, pages 285–366, 2014. (Cited on page 1)

[Sauer 2006] Uwe Sauer. Metabolic networks in motion: 13C-based flux analysis. Molecular
Systems Biology, vol. 2, page 62, 2006. (Cited on pages 2 and 123)

[Savinell & Palsson 1992] Joanne M. Savinell and Bernhard Ø Palsson. Network Analysis
of Intermediary Metabolism using Linear Optimization. I. Development of Math-
ematical Formalism. Journal of Theoretical Biology, vol. 154, pages 421–454, 1992.
(Cited on pages 1 and 115)

[Schilling et al. 2000] Christophe H Schilling, David Letscher and Bernhard Ø Palsson. The-
ory for the systemic definition of metabolic pathways and their use in interpreting
metabolic function from a pathway-oriented perspective. Journal of theoretical bio-
logy, vol. 203, no. 3, pages 229–248, 2000. (Cited on page 115)

[Schmidt 2000] Karsten Schmidt. LoLA A Low Level Analyser. In Mogens Nielsen and
Dan Simpson, editors, Application and Theory of Petri Nets 2000, volume 1825
of Lecture Notes in Computer Science, pages 465–474. Springer Berlin Heidelberg,
2000. (Cited on page 160)

[Schuster & Hilgetag 1994] Stefan Schuster and Claus Hilgetag. On elementary flux modes
in biochemical reaction systems at steady state. Journal of Biological Systems, vol. 2,
no. 02, pages 165–182, 1994. (Cited on pages 95 and 115)

[Schuster et al. 2000] S. Schuster, D. A. Fell and T. Dandekar. A general definition of meta-
bolic pathways useful for systematic organization and analysis of complex metabol-
icnetworks. Nature Biotech., vol. 18, pages 326–332, 2000. (Cited on pages 2 and 95)

[Seress 2003] Á. Seress. Permutation group algorithms. Cambridge Tracts in Mathematics.
Cambridge University Press, 2003. (Cited on pages 24 and 36)

[Siek et al. 2001] Jeremy G Siek, Lie-Quan Lee and Andrew Lumsdaine. Boost graph lib-
rary: The user guide and reference manual. Pearson Education, 2001. http:
//www.boost.org/libs/graph/. (Cited on page 20)

[Solnon 2010] Christine Solnon. AllDifferent-based filtering for subgraph isomorphism. Ar-
tificial Intelligence, vol. 174, no. 12–13, pages 850–864, 2010. (Cited on page 20)

[Sommerville 2011] I. Sommerville. Software engineering. International Computer Science
Series. Pearson, 2011. (Cited on page 47)

[Stanger 2009] Amnon Stanger. What is. . . aromaticity: a critique of the concept of
aromaticity—can it really be defined? Chemical Communications, no. 15, pages
1939–1947, 2009. (Cited on page 13)

182

http://www.boost.org/libs/graph/
http://www.boost.org/libs/graph/

Bibliography

[Stein et al. 2011] S Stein, S Heller, D Tchekhovskoi and I Pletnev. IUPAC Interna-
tional Chemical Identifier (InChI) - InChI version 1, software version 1.04 (2011)
- Technical Manual, 2011. http://www.inchi-trust.org/download/104/InChI_
TechMan.pdf. (Cited on pages 47 and 49)

[Swart 1985] Garret Swart. Finding the convex hull facet by facet. Journal of Algorithms,
vol. 6, no. 1, pages 17–48, 1985. (Cited on page 119)

[Sylvester 1878] J. J. Sylvester. On an application of the new atomic theory to the graph-
ical representation of the invari- ants and covariants of binary quantics, with three
appendices. American Journal of Mathematics, vol. 1, no. 1, pages 64–128, 1878.
(Cited on page 1)

[Szathmáry 1988] Eörs Szathmáry. A hypercyclic illusion. Journal of theoretical biology,
vol. 134, no. 4, pages 561–563, 1988. (Cited on pages 162 and 163)

[Szathmáry 2013] Eörs Szathmáry. On the propagation of a conceptual error concerning
hypercycles and cooperation. J. Syst. Chem., vol. 4, page 1, 2013. (Cited on page 162)

[Talcott & Dill 2005] Carolyn Talcott and David L. Dill. The pathway logic assistant. In
Third International Workshop on Computational Methods in Systems Biology,
pages 228–239, 2005. (Cited on page 160)

[Tantau 2013] Till Tantau. The TikZ and PGF Packages, 2013. (Cited on page 170)

[Tao et al. 2001] Han Tao, Ramon Gonzalez, Alfredo Martinez, Maria Rodriguez, LO In-
gram, JF Preston and KT Shanmugam. Engineering a homo-ethanol pathway inEs-
cherichia coli: Increased glycolytic flux and levels of expression of glycolytic genes
during xylose fermentation. Journal of bacteriology, vol. 183, no. 10, pages 2979–
2988, 2001. (Cited on page 144)

[Ullmann 1976] J. R. Ullmann. An Algorithm for Subgraph Isomorphism. J. ACM, vol. 23,
no. 1, pages 31–42, January 1976. (Cited on page 20)

[Ullmann 2011] Julian R. Ullmann. Bit-vector Algorithms for Binary Constraint Satis-
faction and Subgraph Isomorphism. J. Exp. Algorithmics, vol. 15, pages 1.6:1.1–
1.6:1.64, February 2011. (Cited on page 20)

[Wagner & Urbanczik 2005] C Wagner and R Urbanczik. The geometry of the flux cone of
a metabolic network. Biophys J., vol. 89, pages 3837–3845, 2005. (Cited on page 95)

[Warren & Center 1983] David HD Warren and Artificial Intelligence Center. An abstract
Prolog instruction set, volume 309. SRI International Menlo Park, California, 1983.
(Cited on page 6)

[Watson 1984] M R Watson. Metabolic maps for the Apple II. Biochemical Society Trans-
actions, vol. 12, pages 1093–1094, 1984. (Cited on page 95)

[Weininger et al. 1989] David Weininger, Arthur Weininger and Joseph L. Weininger.
SMILES. 2. Algorithm for generation of unique SMILES notation. Journal of Chem-
ical Information and Computer Sciences, vol. 29, no. 2, pages 97–101, 1989. (Cited
on pages 21, 37, 42, 43, and 44)

[Weininger 1988] D. Weininger. SMILES, a chemical language and information system. 1.
Introduction to methodology and encoding rules. Journal of Chemical Information
and Computer Sciences, vol. 28, no. 1, pages 31–36, 1988. (Cited on pages 1, 21,
37, 38, 39, 41, and 46)

[Wieser et al. 2013] Michael E Wieser, Norman Holden, Tyler B Coplen, John K Böhlke,
Michael Berglund, Willi A Brand, Paul De Bièvre, Manfred Gröning, Robert D
Loss, Juris Meijaet al. Atomic weights of the elements 2011 (IUPAC Technical
Report). Pure and Applied Chemistry, vol. 85, no. 5, pages 1047–1078, 2013. (Cited
on page 11)

183

http://www.inchi-trust.org/download/104/InChI_TechMan.pdf
http://www.inchi-trust.org/download/104/InChI_TechMan.pdf

Bibliography

[Wipke & Dyott 1974] W. Todd Wipke and Thomas M. Dyott. Stereochemically unique
naming algorithm. Journal of the American Chemical Society, vol. 96, no. 15, pages
4834–4842, 1974. (Cited on page 158)

[Yadav et al. 2004] ManeeshK. Yadav, BrianP. Kelley and StevenM. Silverman. The Poten-
tial of a Chemical Graph Transformation System. In Hartmut Ehrig, Gregor Engels,
Francesco Parisi-Presicce and Grzegorz Rozenberg, editors, Graph Transformations,
volume 3256 of Lecture Notes in Computer Science, pages 83–95. Springer Berlin
Heidelberg, 2004. (Cited on page 1)

[Zamboni 2011] Nicola Zamboni. 13C metabolic flux analysis in complex systems. Curr Opin
Biotech, vol. 22, pages 103–108, 2011. (Cited on pages 2 and 123)

[Zanghellini et al. 2013] J Zanghellini, D E Ruckerbauer, M Hanscho and C Jungreuth-
mayer. Elementary flux modes in a nutshell: properties, calculation and applica-
tions. Biotechnol J., vol. 8, pages 1009–1016, 2013. (Cited on page 95)

[Zeigarnik 2000] A. V. Zeigarnik. On Hypercycles and Hypercircuits in Hypergraphs. In
P. Hansen, P. W. Fowler and M. Zheng, editors, Discrete Mathematical Chemistry,
volume 51 of DIMACS series in discrete mathematics and theoretical computer sci-
ence, pages 377–383. American Mathematical Society, Providence, RI, 2000. (Cited
on pages 79, 80, 81, and 95)

184

	List of Figures
	List of Tables
	Preface
	Contributory Publications
	Acknowledgements

	Introduction
	Notation
	Multisets
	Graphs
	Chemical Reactions

	First-order Terms and Unification
	Implementation

	Graphs and Molecule Modelling
	Molecules as Labelled Graphs
	Molecule Model
	Representation as String- and Term-labelled Graphs

	Graph Morphisms and Structure Comparison
	Labelled Graph Morphisms
	Representational Equality
	Algorithms and Complexity

	Graph Canonicalisation
	Preliminary Definitions
	The Core Algorithm
	Algorithm Variations and Search Tree Pruning

	External Molecule Representation
	SMILES
	InChI

	Graph Transformation and Chemical Reactions
	The Double Pushout Approach
	Introduction to Category Theory
	Transformation Rules and Derivations
	Labelled Graph Transformation
	Representation of Transformation Rules
	Chemical Graph Transformation

	Composition of Transformation Rules
	Classes of Composition
	Binding, Unbinding, and Identification of Graphs
	Enumeration of Partial and Full Compositions
	Derivation by Repeated Graph Binding

	Chemical Reaction Networks
	Reaction Networks as Directed Hypergraphs
	Basic Definitions
	Stoichiometric Matrices

	Network Generation
	Derivation Graphs
	Rule Application on Collections of Graphs
	Language Specification

	Pathways
	Model Description
	Implementation using Integer Linear Programming
	Computational Complexity
	Comparison to Existing Methods

	Applications
	Atom Tracing
	Computing Atom Traces
	The beta-lactamase Mechanism

	The Formose Reaction
	Autocatalytic Pathways
	Product Stabilisation by Borate
	Carbon Tracing

	The Glycolysis Pathway
	Carbon Tracing the EMP and ED Pathways
	Enumeration of Non-oxidative Pathways

	Solving the Catalan Game

	Summary and Future Work
	Modelling of Stereochemistry
	Realisable Pathways and Atom Tracing
	Structural Pathway Constraints

	Appendices
	MedØlDatschgerl

	Bibliography

