UNIVERSITAT LEIPZIG

Faculty of Physics and Earth Sciences
Institute of Experimental Physics II
Semiconductor Physics Group

Master Thesis

Growth and Properties of NasIrOj
Thin Films

submitted by

Marcus Jenderka

in partial fulfillment of the requirements for the degree of
Master of Science (M. Sc.)
in Physics (IPSP)

Supervisors:
Prof. Dr. Michael Lorenz
Prof. Dr. Marius Grundmann

Referees:

Prof. Dr. Marius Grundmann
Prof. Dr. Michael Lorenz

Leipzig, November 19, 2012






Contents

1 Introduction and Motivation . . . . . . . . . . . .. ... ... ...

2 Theory . . . . . . . . .
2.1 Introduction to Topological Insulators . . . . . . . .. ... .. ... ...
2.2 Spin Liquids and the Kitaev Model for Hexagonal Honeycomb Lattices

2.3 NayIrO5 as a Mott Insulator . . . . . . . . . . . .. .. ... ... ....
2.3.1 Level Schemes . . . . . . . . . ...
2.3.2 The Hubbard Model . . . . . . ... ... ... ..
2.4 Intrinsic Conductivity in Ideal Semiconductors . . . . . . . . . .. .. ..
2.5 Conductivity in Disordered Solids . . . . . .. ... ... ... ......
2.6 Variable Range Hopping . . . . . . . . .. .. ... .. ... .. ...

3 Review and Properties of Single and Polycrystalline Na,IrOj . .

4 Experimental Methods . . . . . . ... .. ... ... ... ...
4.1  X-ray Diffraction . . . . . .. ...
4.2 Atomic Force Microscopy (AFM) . . . . ... ... ... ... ... ...
4.3 SEMand EDX . . .. ..
4.4 Optical Transmission . . . . . . . . .. ..o
4.5  Hall Effect and Resistivity Measurements . . . . . . . . .. .. ... ...

5 Thin Film Deposition . . . . . . . .. ... ... ... ... ......
5.1  Pulsed Laser Deposition (PLD) . . . . ... ... ... ... ... ....
5.2 Sputter Deposition of Gold Contacts . . . . . . ... ... ... .....
5.3  PECVD of SiN; as Passivation and Protective Layer . . . . . .. .. ..

6 Results and Discussion . . . . . . . .. .. ... ... ... ...
6.1 Growth of NagIrOs . . . . . . . . . . . ..
6.1.1 Structural Analysis- XRD . . . . . . ... ... o
6.1.2 Surface Morphology - AFM . . . . . . . .. ...
6.1.3 Chemical Film Composition and Surface Corrosion . . . . ... ... ..
6.2  Temperature Dependent Electrical Resistivity . . . . . .. ... ... ..
6.3  Magnetic Properties . . . . . .. .. oL
6.4  Optical Properties . . . . . . . .. ...

7 Summary and Outlook . . . . ... ... ... ... ... .. ...,



Contents

Bibliography . . . . . . . 83
A Appendix . . . .. 95
A1l AFM Images . . . . . . . e 95
A2 JCPDS Diffraction Database Patterns . . . . . . .. ... ... ... ... 100
Acknowledgments . . . . . .. ... 103
Statement of Authorship (Selbstandigkeitserklarung) . . . . . .. .. .. 105
Permission for Thesis Deposit (Erklarung fiir die Bibliothek) . . . . . . 107



1 Introduction and Motivation

Electronic correlations in layered transition metal oxides (TMOs) provide for interest-
ing new physics. In recent years, many TMOs have been discovered to show correlated
behaviour such as odd-parity superconductivity in SroRuOy4 [1], the metal-insulator

transition in CdyOs207 [2] or superconductivity in water intercalated Na,CoOs [3].

In the transition metal series, electron correlations are expected to be strongest for 3d
transition metals and decrease for 4d and 5d metals due to the increasing spatial extent
of the d orbital. It is expected [4], that the larger spatial extent alone causes the more
weakly correlated 5d TMOs to be metallic, since in this case Coulomb interactions
are reduced which is beneficial for electrical conduction. However, recent experiments
have shown that some 5d TMOs are actually insulators [5-7]. The insulating properties
were in parts related to an interplay between electron correlations and strong spin orbit
coupling [8] that in turn increases with atomic number from 3d to 5d. Also, due to the
increased spatial extent of the d orbitals, crystal field splittings and 2p hybridization
between transition metal and oxygen octahedron are enhanced. This in turn leads to
strong electron-lattice couplings that can alter and distort metal-oxygen bond lengths
and angles lifting degeneracies of bands and gaps. Thus in 5d systems spin orbit
coupling (SOC) and electron correlations are of comparable size and act cooperatively,

which can lead to intriguing new physics.

There are several proposals for intriguing emerging quantum phases in these materials
like spin liquid behaviour, topological insulators and related phases [9-13]. Some recent
experimental findings like a spin liquid state in the S=1/2 hyperkagome antiferromag-
net Naylr;Og [10, 14] and metallic spin liquid behavior in Prslr,O; [15] prove these
predictions right. Furthermore, the novel Jo,z=1/2 Mott insulating ground state in
SrolrOy4 can be ascribed to strong SOC in the presence of electron correlations leading

to Jeg being a good quantum number instead of only the spin S [8].

Another example of above 5d transition metal oxides is the Mott insulating [16] layered
iridate NagIrOs. In NayIrOs, Ir** ions form a honeycomb lattice and both strong SOC
and electron correlations are present. Based on tight binding calculations, NaylrO3
among other TMOs was recently proposed as a topological insulator at room tem-
perature with antiferromagnetic ordering [12,17]. Several further theoretical studies
using a Heisenberg-Kitaev model suggest a rich phase diagram with emergent magnet-

ically ordered, spin liquid and topological phases [13,18,19]. Especially the topological
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and spin liquid phases promise a potential for application of NayIrOg3 in fault tolerant

quantum computation.

To the best of the author’s knowledge, experimental effort on NaylrOj; was so far
limited to powder and single-crystalline samples. Partly for this reason, this thesis is
concerned with the deposition of NaylrOs thin films. Studying the feasibility of thin
film deposition of NayIrOjs is hence yet another step towards the future application of
this novel material. Deposition is done by means of pulsed laser deposition (PLD). An
array of experimental probes is employed to extensively study the structural, electrical,
optical and magnetic properties of NayIlrOgz thin films. The purpose of this thesis is
furthermore to experimentally verify proposals of the quantum phases mentioned above,

for instance to find signatures of a topological phase in NayIrOgs thin films.



2 Theory

On account of theoretical proposals for NayIrOg, this chapter begins with a brief in-
troduction to the concept of topological insulators followed by a short definition of
spin liquids and the Kitaev model. Afterwards the origin of the experimentally found
Mott insulating properties [4] together with the observed hopping conductivity will be

discussed.

2.1 Introduction to Topological Insulators

Three-dimensional topological insulators (TIs) represent a new kind of quantum struc-
ture of matter that have been predicted theoretically in 2005 [20,21] prior to their
experimental discovery in zinc-blende based HgTe quantum wells in 2007 [22]. Among
the first three-dimensional TIs investigated theoretically and experimentally are the
binary tetradymite semiconductors BisSes (cf. Fig. 2.2), BisTes and the BijShy
alloy [23-26].

Topological insulators are usual band insulators where a bulk energy gap prevents elec-
trical conduction. However, as opposed to a trivial band insulator, the material’s band
structure exhibits surface states (SSs) that allow electrons to conduct at the surface.
Those surface states are gapless and spin-split, i.e. they cross the bulk band gap and in-
dividual branches can be assigned to one of two spin directions (Fig. 2.1a). The surface

state structure is similar to the Dirac cone as known from graphene (Fig. 2.1b). Along
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Figure 2.1 3D topological insulator. a) Schematic of a typical band structure. Gapless, spin-split
surface states (SS) cross the bulk energy gap of an ordinary band insulator. b) In the kyky-momentum
plane, the SSs have a Dirac cone structure similar to graphene. ¢) The surface is like a ”planar metal”,
since electron motion in any direction is possible. The spins are locked perpendicularly to the direction
of propagation. (from [27])
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Figure 2.2 BiySe; is a 3D topological insulator with Dirac cone structure. (a) Surface electronic
band dispersion of BisSe3(111) measured by angle-resolved photoemission spectroscopy (ARPES) with
incident photon energy of 22 eV. The measurement was performed along the I'-K direction. b) High-
momentum-resolution data around the I'-point obtained by ARPES reveal a single ring formed by the
surface state V-shaped Dirac band. The intensity in the middle of the ring is due to the presence of
the bulk conduction band. (from [23])

the two-dimensional conducting surface of the topological insulator electron motion is
possible in any direction. The surface can hence be considered a ”planar metal”. The
electron spin is locked in-plane and perpendicular to the direction of propagation. It
varies continuously with the direction of propagation along the surface (Fig. 2.1c). A
differentiation can be made between a weak and a strong topological insulator in terms
of the topological protection of their surface states. In the presence of disorder, the
former becomes a trivial band insulator, while in the strong TI the topological surface
states remain protected. The 3D quantum spin Hall state or the strong topological
insulator considered here requires material with large spin orbit coupling (SOC) like
mercury or bismuth. But also 5d transition metal ions like /74" have significant SOC.
Figure 2.2 shows experimental results on BisSes, one of the first 3D topological insu-
lators discovered. In strong TIs, the beforementioned surface states are insensitive to
impurities and imperfections of the crystal. Electron motion is thus not inhibited by
backscattering and the transport is nearly dissipationless. Surface states are further
protected by time-reversal invariant (TRI) perturbations. An example for a TRI per-
turbation is a photon ejecting a photoelectron by way of the photoelectric effect. On
the other hand, introducing magnetic order into the crystal represents a perturbation
that will destroy surface states, essentially creating gaps inside the surface states. The

topological insulator then becomes insulating also on the surface [28].



2.1 Introduction to Topological Insulators

The search for novel topological insulator materials to overcome the limitations of
current materials continues and further proposals are constantly being made. Materials
design flexibility is required to enhance topological properties and to allow for the
observation of interesting topological phenomena such as the observation of Majorana
fermions (see section below). Moreover, new materials would allow for the simultaneous
tunability of electronic, magnetic and superconducting properties and thus opening
up new vistas in the envisioned application in spintronics, magnetoelectric devices or

quantum computation.

Among the continuously growing number of proposed materials are ternary tetrady-
mite-like compounds (such as BiySesS, ShyTesSe and ShoTesS) [29] or ternary famati-
nite and quaternary chalcogenides (such as CuzSbSe; and CuyCdSbSey, respectively)
[30]. Furthermore there have been proposals [31,32] and experimental proof [33, 34]
for topological insulator phases in thallium-based ternary chalcogenides T1BiTe, and
TIBiSey. Also a wide range of ternary Heusler compounds (LnAuPb, LnPdBi, LnPtSb
and LnPtBi) [35-37] are among the proposed new materials. Proposals among the
oxide materials, and as such closer to the scope of this thesis, have been made for Os-
and Ir-based pyrochlore oxides AoIrO7 and A3Os,O7, respectively [38-40], in perovskite
oxides [41] and on the kagome lattice [42]. It is hence obvious that NasIrOj is just one

of many promising candidates for new topological insulator materials.

It was already mentioned that surface states allow nearly perfect transport, as the
electron motion on the surface is protected from backscattering. Combining this feature
with the possibility of creating Majorana particles could lead to a new architecture
for quantum bits, which would be a step towards fault tolerant topological quantum
computers [43]. Majorana fermions are fundamental particles that have been devised in
particle and condensed matter physics. Their existence has yet to be proven. Majorana
fermions have half-integer spin and quantum numbers that differ from those of the

electron. They are electrically neutral and their own antiparticle.

In particle physics, neutrinos are a proposed candidate for elementary Majorana fer-
mions, in which case the sought-after neutrinoless double-beta decay is possible [44].
However, in condensed matter physics, more promising proposals were made that Ma-
jorana fermions can appear in the form of quasiparticles at the interface between topo-
logical insulators and superconductors [45,46]. For the creation of Majorana fermions
via a superconductor, a topological superconductor is required. One way to realize

such a superconductor is to place a topological insulator in contact with an ordinary
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superconductor. By way of the proximity effect! the surface states will then become
superconducting and a Majorana fermion is created [47]. Another way of achieving
such a topological superconductor is to induce superconductivity of the system by ap-
plying isostatic pressure. The bulk of the sample becomes superconducting and on its
part makes the surface state superconducting via the proximity effect [48]. Another
proposal has been that of the solid state manifestation of Majorana fermions in semi-
conducting wires that are in contact with a superconductor at one end [49,50]. In 2012,

an experiment from Delft marked a possible verification of the latter proposal [51].

2.2 Spin Liquids and the Kitaev Model for Hexagonal Honey-

comb Lattices

A topologically insulating state has been just one of two proposals on NaylrO3. An-
other emergent quantum phase proposed for NayIrOs is spin liquid behaviour [13]. The
proposal is a consequence of the hexagonal arrangement of Ir** ions forming a hon-
eycomb lattice of effective spin 1/2 moments which in turn could be a realization of
the Kitaev model [52]. In the Kitaev model spins S = 1/2 sit on the vertices of a
honeycomb lattice. The lattice consist of two equivalent sublattices and the unit cell
contains one vortex of each sublattice (see Fig. 2.3a). Depending on the direction,
there are three bonds v = {z, y, z}. The nearest-neighbour exchange interactions
J, of spins one-half on these bonds are anisotropic, ferromagnetic and may differ in
strength. The respective hamiltonian reads

HY =-1,575]. (2.1)
The model has an exact analytical solution. As a ground state we find among others a
gapless spin liquid that has a potential use in quantum computation [53]. Spin liquids
occur in frustrated magnets among other exotic quantum phases of Mott insulators. In
a (quantum) spin liquid enhanced fluctuations of correlated spins prevent an ordering

of magnetic moments even down to a temperature of 0 K (for a review on spin liquids
see [54]).

In the hexagonal unit cell of a A; BOs-type layered compound the magnetic ions, in
our case spin one-half Ir**, form a honeycomb lattice. In this case, the edge-shared

IrO¢ octahedra form 90° Ir-O-Ir bonds. Consequently, exchange interactions via these

Talso called Holm-Meissner effect

10
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Figure 2.3 The Kitaev Model. a) Spin 1/2 moments on a honeycomb lattice with two
equivalent sublattices (full and empty circles). b) Hexagonal of a Ay BOs-type layered
compound forming a honeycomb lattice with three non-equivalent links XX, YY and ZZ.
(from [52] and [13])

bonds are anisotropic and depend on the bond direction [13]. There are then three
nonequivalent bonds XX, YY, ZZ each perpendicular to the cubic axes x, y, z (see
Fig. 2.3b). On those three nonequivalent bonds only the corresponding components of
spins are coupled, e.g., S7 S} on XX-links. Precisely for this reason the model is highly
frustrated [18]. In fact, geometrical magnetic frustration has been found in experiments
on NayIrOj [4]

2.3 Na,IrO3 as a Mott Insulator

In 2010, experiments [4] showed insulating behaviour in NayIrO3 accompanied by anti-
ferromagnetic long range order. With a half-filled 5, band, NayIrOg should be metallic
according to classic band theory. Strong Coulomb repulsions in this and other TMOs
lead to the observed insulating behaviour of the so-called Mott insulator. In the follow-
ing sections, the level scheme of 5d transition metal oxides in general and NaslrOgz in
particular will be discussed. It then follows an illustration of the formation of a Mott
gap inside a half-filled d-band rendering the system insulating. A lot of the following

information that is valid for transition metal oxides in general is taken from [55-57].

2.3.1 Level Schemes

In transition metal oxides with half-filled d orbitals and hence an odd number of elec-

trons per unit cell, simple band theory would predict that the systems were metallic.

11
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Instead, for some of those systems experiments show that they are so-called Mott
insulators. The experimentally observed insulating behavior is attributed to electron
correlations, specifically strong Coulomb repulsions U between the charge carriers, that
are larger than the carrier’s kinetic energy. While in a conventional band insulator con-
duction electrons occupy a completely filled band and a band gap prohibits conduction,
in a Mott insulator electrons instead need to overcome a Mott gap U to create doubly
occupied sites and to delocalize. Furthermore, a possible display of antiferromagnetic
order below an ordering temperature T is a consequence of super-exchange interac-

tions mediated by virtual tunneling.

In 5d transition metal oxides, transition metal ions are surrounded by six oxygen atoms.
The six oxygen atoms form an octahedral crystal field with cubic symmetry or, if the
octahedron is elongated along one direction, a field with tetragonal symmetry. In both
cases, the five-fold degenerate 5d orbitals split into two highest orbitals d(z2-y?) and
d(322-r?), referred to as e, orbitals, and three low energy orbitals t5, comprised of
d(zy), d(yz) and d(zz) (Fig. 2.4). In a cubic field e, and ¢y, are doubly and triply
degenerate, respectively, and split by 10Dq =~ 3 eV [58]. On the other hand, in a
tetragonal field further degeneracies are lifted. A consequence of the crystal field is the
quenching of angular momentum such that the magnetic moment of a transition metal
compound is equal to the spin. This is usually the case for 3d transition metal ions.
In 5d transition metal ions, spin orbit coupling is one order of magnitude larger and
angular momentum is not as effectively quenched. There are other consequences of
much stronger strong spin orbit interactions in bd transition metal oxides as discussed

below.

For the explanation of Mott insulating behaviour in NayIrO3 two level schemes are
currently considered in literature that consider the large spin orbit coupling in 5d
transition metals. The first has been successfully applied to explain the novel J.s¢ =
1/2 Mott insulator in SroIrOy4 [8,59]. Another scheme includes trigonal distortions
leading to a tetragonal crystal field [60,61].

For 5d transition metal oxides the cubic crystal field splitting 10Dgq is in general large
enough to yield a tgg low spin state for the Ir*" ions in NagIrOz with the highest ¢,
orbital half filled (Fig. 2.5a); the system would now be metallic. For a typical Mott
insulator an unrealistically high U is now required to open a Mott gap in the highest
tyy band (Fig. 2.5b). It must be noted here, that in 5d transition metals Coulomb
repulsions are weaker than in 3d transition metals. Instead, high spin orbit coupling

prevents the usual angular momentum quenching. As a consequence, the ty, states

12
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Figure 2.4 Crystal-field splittings of 5d orbitals under crystal fields with cubic and tetragonal
symmetries.

effectively correspond to angular momentum L = 1. In the presence of strong spin
orbit coupling the to, bands split into an effective J ;s = 1/2 doublet and a J.5p = 3/2
quartet band (Fig. 2.5¢). The resultant narrow J.;s = 1/2 band is half-filled and now
even a small U opens a Mott gap (Fig. 2.5d) splitting the narrow band into a so-
called upper Hubbard band (UHB) and lower Hubbard band (LHB). The terminology
of Hubbard bands will be explained in section 2.3.2.

Aforementioned level scheme did not include trigonal distortions of the crystal field
due to compression or expansion along one of the four axes of IrOg octahedra. We
discuss this level scheme according to local-density approximation (LDA) calculations
by Jin [61] (see figure 2.6). A trigonal crystal field A,,; lifts the degeneracy of the ¢y,
splitting them into a e/g quartet band and a a;, doublet (Fig. 2.4). Strong hybridization
between neighbouring Ir 5d orbitals gives rise to the bonding and anti-bonding of the e;
states, that is a narrow eap at Fr and ep below Ep, respectively (Fig. 2.6a). Indeed,
spin orbit coupling already splits the half-filled e, doublet over the entire Brillouin
zone (Fig. 2.6b). In spite of the splitting, a small electron pocket at the A point is
still left rendering the system insulating. Only the combination with on-site Coulomb
repulsion U results in the opening of a Mott gap in the spin orbit-split e 45 doublet (Fig.
2.6¢). However, the LDA calculations show that even without U an increase in spin
orbit interactions can open a sufficiently large gap. This is in contrast to SrolrO,4 for

instance where the Mott gap can be attained only when the on-site U is introduced.

13



2 Theory

(@)

) t,, band

wide ¢,,~band Metal

Joyr=3/2 band J,;7=3/2 band

J ;s band split due to SO J = 1/2 Mott ground state

Figure 2.5 Schematic energy diagrams for the 5d° (tgg) low-spin configuration (a) without SOC
and U, (b) with an unrealistically large U and no SOC, (c) with SOC ((so) but no U, and (d) with
SOC and U. Possible optical transitions A and B are indicated by arrows. u denotes the Fermi level;
UHB and LHB denote the upper and lower Hubbard bands, see text. (from [59])
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Figure 2.6 Electronic band structure calculations of NayIrOz within (a) LDA, (b) LDA+SO, and
(c) LDA+U+SO0 schemes. Green, red, and blue colored energy dispersions in (a) are indicating ey, e;],
and a4 bands respectively, induced by cubic and trigonal crystal fields Acype and Ay, respectively.
The red circle in (b) is a guide to the eye for the small electron pocket at the A point. (adapted
from [61])

14



2.3 NayIrOs as a Mott Insulator

2.3.2 The Hubbard Model

It was found [4] that NayIrOj is an antiferromagnetic Mott insulator. A very sim-
ple model that in its parameter space contains an antiferromagnetic Mott insulating
ground state is the Hubbard model [62,63]. The model combines both localization and
delocalization of electrons via strong Coulomb repulsion and via a tight-binding Hamil-
tonian accounting for hopping processes, respectively. The following discussion about
the model is mainly based on [56,57]. In the model, one considers a d-dimensional cu-
bic lattice of hydrogen atoms. The protons provide L lattice sites for N = L electrons
- the system is at half filling. Furthermore, the electrons sit on the atoms with only
local electron-electron interactions. The Hubbard U is then ionization energy minus

electron affinity

U=EH — HY~ | E(H— H) | (2.2)

It is further assumed that electrons hop only between neighbouring lattice sites. This
tunneling is the tight-binding part of the model. The Hamiltonian in second quantiza-
tion reads

H=—t Z(c;cja +Hc.)+ UZniTnu (2.3)

(i5) i

where ¢! (ci,) is the creation (annihilation) operator with n;, = ¢l ¢j,. In this model
t is the hopping integral between neighbouring sites (ij) and expresses the probability
for this process to happen. It is this kinetic energy causing the tendency to delocalize.
The Hubbard U describes the on-site repulsion of two electrons at the same site. For
a Mott insulator U is much larger than t. If after a hopping process an electron has
moved to a neighbouring site now doubly occupied the energy is increased by U. Due
to this large energy cost the electrons are instead localized on their ion and cannot

move and the system is insulating.

The creation of a Mott gap can be illustrated as follows. Nearest neighbour hopping ¢
with resultant bands of small bandwidth W = 27t and Z number of nearest neighbours
is strongly repressed by the Coulomb repulsion. Adding another electron to the ground
state Eo(N) of the half-filled electron system (Fig. 2.7), where N is equal to the number
of electrons, requires an energy ut(N) = Eo(N + 1) — Eo(N) with pt(N) = U — W, /2.
The spectrum of these charge excitation form the upper Hubbard band (UHB) of width
Wi. Similarly for the removal of an electron an energy u~(N) = Eo(N) — Eo(N —1) =
W3 /2 is needed where the excitation spectrum makes up the lower Hubbard band (LHB)
of width Ws. As a consequence, a gap for charge excitations Ay = U — (W, — Ws) /2

15
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a)

Figure 2.7 The Hubbard Model. (a) Half-filled electron system illustrated by a to, band of a 5d
transition metal. (b) Formation of upper and lower Hubbard bands (UH B and LH B, respectively) as
a consequence of strong Coulomb repulsions U in the half-filled electron system. (adapted from [57])

occurs and the system is an insulator if W < U or equivalently t < U (cf. Fig. 2.7). If
the distance between the hydrogen atoms is reduced, their wave functions overlap more
and the corresponding bandwidths increase. Eventually, the Hubbard bands overlap
and the gap closes at around U ~ W. A metal-insulator transition occurs. The
Hubbard model can at present only be solved analytically in one dimension. However,

there are the following other limits of the model with exact solutions.

For U = 0 the model represents a simple metallic Fermi gas. In the atomic limit,
t = 0, the system is an insulator since the lattice sites do not communicate with each
other. As mentioned above, there is the limit of strong correlations U > W and finite
coupling ¢ between lattice sites at half band filling N = L. Tunneling of carriers is
taken as a second-order perturbation. In this case the Hubbard model is equivalent to

the insulating antiferromagnetic Heisenberg model

@) 44 - - 1
()

with nearest neighbour exchange coupling J = 4t?/U. Since at half filling n; = n; = 1,
for parallel spin configurations (5; . 5; = 1/4) the energy goes to zero. Hopping of
electrons with parallel spins is prohibited and as a result the system is antiferromag-

netically ordered.

Above model is a one band model and in this sense only valid for an atom with a

16



2.3 NayIrOs as a Mott Insulator

Néel type stripy type Zig-zag type canted type

hEEEE

Figure 2.8 Possible antiferromagnetic-ordering patterns of the Ir-sublattice. The magnetic struc-
tures (a-d) shown are of Néel, stripy, zig-zag and canted type. The shaded boxes highlight the stripy
and zig-zag chain elements. (adapted from [66])

single s orbital. Upon application of the model to d electron systems it is implicitly
assumed that strong crystal fields lift the orbital degeneracy to such a degree that
low-energy excitations can be described by a single band near the Fermi level. It is
also assumed that the ligand p band is either far away from the relevant d band or
so strongly hybridized with it as to effectively form a single band. For the descrip-
tion of more realistic situations the Hubbard model is hence often modified. Some
of these modifications include non-zero hopping beyond nearest neighbour distance or
additional nearest-neighbour interactions such as intersite Coulomb forces inside the
screening radius that are otherwise neglected. Also for some transition metal com-
pounds the oxygen p orbitals must be taken into account explicitly leading to the

concept of charge transfer insulators [64].

Experiments on NayIrO3 [65-67] showed zigzag-type magnetic order (Fig. 2.8¢). How-
ever, in the strong coupling limit, the simple Hubbard model shows antiferromagnetic
Néel-type order (Fig. 2.8a) in d > 3 dimensions. Zigzag-type order is also inconsis-
tent with the J.;r = 1/2 hamiltonians derived where the effect of Coulomb repulsion
within a Hubbard model description in the strong coupling limit was combined with
a Kitaev hamiltonian of spin 1/2 moments on a honeycomb lattice [13,18]. This so-
called Heisenberg-Kitaev model shows apart from a desired spin liquid phase either
Néel or stripy (Fig. 2.8b)order. For the Heisenberg-Kitaev model, that in its original
form considers only nearest-neighbour Heisenberg exchange interactions, a zigzag-type
order can manifest itself only upon inclusion of further neighbour exchanges [16,68,69].
However, it can be argued [70] that these further exchanges are hard to justify without
lattice distortion rendering a J.pr = 1/2 unlikely. Furthermore, the proposed model
for a topological insulator in the weak interaction limit [12] results in a canted anti-
ferromagnet (Fig. 2.8d). In conclusion, the correct microscopic mechanism explaining

the magnetic properties of NagIrO3 has at present not been found.
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2.4 Intrinsic Conductivity in Ideal Semiconductors

Motivated by experimental findings [4] in single crystals of NayIrOs associated with
variable range hopping conductivity, this and the following sections intend to give an
introduction to hopping conductivity in insulator and semiconductor materials. This
section starts with a discussion of basic facts about semiconductors, especially intrin-
sic conduction in semiconductors. Subsequently, the focus will be set on conductivity
in disordered solids, for which theories on hopping conductivity have originally been
set up. Finally, the special case of variable range hopping conductivity will be re-
viewed. The discussion of hopping conductivity is mainly based on the extensive book

by Shklovskii and Efros [71] ”Electronic Properties of Doped Semiconductors”.

An insulator is defined as having zero conductivity at zero temperature (and weak
external fields), whereas a metal has a finite conductivity. Electrons in completely
filled bands cannot conduct an electrical current and in an insulator all bands are
cither filled or empty. There exists an energy gap £, separating the highest filled from
the lowest empty band. Electrons can be thermally excited from the valence band
across the band gap £, into the conduction band leaving behind holes in the valence

band. The conductivity is then a sum of electron and hole conduction

0 = —€eNefle + EPylin (2.5)

The two types of charge carriers have a mobility . Mobility and the density of ther-
mally excited electrons and holes n. and p,, respectively, are temperature dependent.
Generally, the electrical conductivity is strongly increasing with temperature. Insu-
lators are considered semiconductors if their magnitude of Ej is such that a thermal
activation of charge carriers leads to a significant conductivity for instance at room tem-
perature [56]. At high temperatures usual semiconductors possess an intrinsic electrical
conductivity. It is due to thermal activation of charge carriers across the bandgap. In
the following the intrinsic generation of charge carriers, that is the thermal generation

and not generation due to defects, will be derived at thermal equilibrium.

One can define a carrier concentration at an energy E by the product of the density of
states g(E) and the Fermi-Dirac distribution function f(£) as [73]

n(E) = g(E) - f(E), (2.6)
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Figure 2.9 Density of states, Fermi-Dirac distribution function and free
electron concentration of a non-degenerate semiconductor at energies above
the valence band and in arbitrary units. (from [72])

where the distribution function is given as

f(E) = eXP(fB;W (2.7)

and the density of states in three dimension as

1 /2m2\*/?

9(E). = ﬁ( m) E-E 2.5)
1 [2m:\*?

g(E)y = 72 | 72 VEy—E. (2.9)

Figure 2.9 illustrates that for an ideal semiconductor the density of states is zero within
the bandgap and also that most of the carriers are located within 3kgT above and below
the conduction and valence band edges, respectively [74]. Hence, an integration from
the band edges to plus and minus infinity, respectively, yields the full concentration of

charge carriers:

1 /2m:\*?
ne = ﬁ( h?) [EO dENE — Ecexp EB_T)H, (2.10)
— L(%)g/ /EVdE\/E — ! (2.11)
Py = 9272 K2 - 14 exp( )+1 .
(2.12)
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Substituting x = (F — E¢)/kgT and ( = (u — E¢)/kgT for electrons and similarly
r = (Ey — E)/kgT and ( = (Ey — u)/kgT for holes, one gets

1 2m* 3/2 00 .1}'1/2
E), = — e k T’WQ/P d 2.13
TL( ) 22 ( h2 > ( B ) 0 xexp(x _ C) + 1’ ( )
1 2m* 3/2 oo x1/2
E), = — h kTW/d . 2.14
p(E) 272 ( h2 ) (hsT) 0o explr—¢) T 1 21

There is no analytical solution to this integral but one can define the effective density

of states at the band edges

2mmikpT\
2mmi kT

An intrinsic semiconductor has a negligible amount of impurities, such that charge
carriers in the conduction band can only originate from states in the valence band
where they leave holes behind upon thermal activation. Consequently, the number of
electrons and holes is equal:

Ne = Py = N (2.17)

Equivalently, one can write the intrinsic carrier concentration n; as (ncpv)l/ 2. Then it

follows

() = [N.B]Y2exp (—M)

kgT

2mkpT " —E
= 2 ((271'—2)2) (memy)¥* - exp <2k3%) . (2.18)

The intrinsic carrier concentration increases exponentially with increasing temperature.

For a pure n-type semiconductor and mobility dominated by lattice scattering piqstice X

T3/2 the conductivity is ¢ = —en.pu, such that

1 E,
p = — O poexp <2kBT) . (2.19)
In a measurement of temperature dependent resistivity, plotting lnp vs. 1/T yields a
straight line from which the bandgap E, can be estimated. This type of temperature
dependence is often termed activated or Arrhenius behaviour. Arrhenius behaviour
generally indicates an ideal, homogeneous and clean sample where thermal activation of

carriers is the dominant transport mechanism. Due to the large activation energy Eg/2,
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the intrinsic carrier concentration (2.18) decreases very rapidly with temperature. At
lower temperatures free charge carriers gradually freeze out and the extrinsic properties
of a semiconductor begin to dominate conduction processes. Eventually, conductivity

is solely due to electrons hopping between localized sites close to the Fermi level.

2.5 Conductivity in Disordered Solids

Perfect crystalline material shows structural short- and long-range order. In band
structure models this translational periodicity leads to a well-defined forbidden energy
gap and sharp edges at the valence and conduction band. However, in disordered solids,
such as amorphous or highly doped semiconductors, structural long-range order breaks
down. In disordered systems, the translational and possible compositional disorder has
to be taken into account in the proper variation of classical band structure models.
One of these band structure models is the Davis-Mott model [75] leading to the con-
duction mechanism of variable range hopping (VRH) with a temperature dependence
of Inp oc 1/T"/* [76]. A variable range hopping type conductivity has been reported for
Nalr,Oj3 single crystals in a temperature regime between 100 K and 300 K [4] but also
in the thin film samples investigated in this thesis (cf. Sec. 6.2). The variable range
hopping mechanism is observed in many disordered or highly doped semiconductor ma-
terials. Among them are for instance single-crystalline SrolrOy4 [77], single-crystalline
InGa03Zn0j with intrinsic structural randomness [78], polycrystalline silicon films [79],
boron doped silicon [80] and molecular beam epitaxial GaAs [81-83]. In the following
the Dawvis-Mott model will be discussed. The subsequent section then deals with the

mechanism of variable range hopping conductivity.

Davis-Mott Model The electronic structure of a crystal displaying perfect short-
and long-range order is defined by a sharp energy gap between abruptly terminating
valence and conductions bands. Within these bands, electronic states are extended,
i.e. their wavefunctions occupy the entire volume. In variance to perfect crystals,
amorphous and highly disordered material shows no long-range order. Also, the short-
range order, that is interatomic distances and bond angles, can be slightly changed.
Those spatial fluctuations in the otherwise periodic potential lead to localized states
that form band tails reaching into the energy gap. These states are localized in the
sense, that at zero temperature an electron will not diffuse to other regions in the

crystal with similar potential fluctuations [84]; in other words, the mobility in localized
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Figure 2.10 Schematic density of states diagram for amorphous semicon-
ductors according to the Davis-Mott model. In grey are the localized states
in the band tails and in the middle of the mobility gap. (adapted from [85])

states is zero at T = 0.

In the Davis-Mott model [75], the band tails are rather narrow and only extend to a
couple of meV into the gap. Furthermore, there exists a band of compensated levels
near the middle of the band gap caused by defects (cf. Fig. 2.10). Moreover, this
center band is split into an acceptor and donor band pinning the Fermi level i to the
middle of the gap. There is a sharp transition from extended to localized states at Ey
and F¢, respectively, where the mobility drops by several orders of magnitude. This
in turn creates a so-called mobility edge. The pseudogap between Fy and E¢ is hence
defined as a mobility gap in the model. On the basis of the Davis-Mott model, three
conduction processes can be devised that will each dominate at different temperature

regimes.

At very low temperatures, carriers will tunnel between localized states at the Fermi
level via thermal activation. For higher temperatures excitation of carriers into the
localized states of the band tails occurs. There, carriers can conduct charge only via
hopping processes. Finally at even higher temperatures, carriers are excited across
the mobility edge into extended states with much higher mobility. Transport inside

the extended states is equivalent to band conduction as discussed in section 2.4 and
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2.5 Conductivity in Disordered Solids

results in an activated behaviour, although the preexponential factors oy or py, respec-
tively, differ. In the following, transport inside the extended states will be discussed in
greater detail to illustrate the differences to intrinsic conduction in ideal and ordered

semiconductors.

Conduction in Extended States The general expression of conductivity in any

semiconductor is [85]

o= —e/g(E)u(E)kT%dE. (2.20)
Above expression can be rewritten using
of(E) _
L) = —p(B)L - f(B)/AT, (221)
and o can be written as
7 =c [ 9EMEBEBNL - FE)E, (2:22)

In the Davis-Mott model, one makes the assumption, that the Fermi level is situated
in the middle of the gap sufficiently far away from the band edges - i.e. Fc—pu > kgT.
Consequently, one can use Boltzmann statistics to express f(F). Furthermore, inside
the extended states a constant density of states g(E¢) and mobility uc is assumed.

Hence, the conductivity due to electrons excited into extended states reads as
o = eg(Ec)kTpcexp[—(Ec — p) /KT, (2.23)

where p¢ is the average mobility in the extended states above E¢ and p is the Fermi
level. It can be shown that in this model the average mobility puc o 1/7" [85] and the

expression (2.23) for the conductivity transforms into
o = const - exp|—(E¢ — pn) /KT (2.24)

The band gap is assumed to be linearly decreasing with temperature, i.e.

Ec—p= @ —T (2.25)

such that in the end the conductivity in the extended states can be written as

o = opexp[—FE(0)/2kT], (2.26)
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where 0y = eg(Fc)kTucexp(y/k). The preexponential factor og is temperature in-
dependent, however, its exact form depends on the approach chosen to calculate the
mobility pc in the extended states [85]. In conclusion, also for highly disordered sys-
tems an Arrhenius type activated behaviour of conductivity (cf. Sec. 2.4) can be
expected in a sufficiently high range of temperatures, but with a different prefactor

aggp-

2.6 Variable Range Hopping

The Davis-Mott model discussed in the preceding section predicts the Fermi level g
to lie in a narrow band of localized states where conduction can occur via thermally
activated and phonon-assisted hopping. The main ingredients of hopping theory are
localized states on donor and/or acceptor sites. Their wavefunction overlap and the
interaction with phonons leads to infrequent jumps. Miller and Abrahams [86] proposed
a model of a random resistance network to approach electron hopping. Some main ideas
of this idea will be presented in order to arrive at a quantitative derivation of variable

range hopping via percolation theory [71].

The Random Resistance Network In the following approach electrons are local-
ized on individual donors. There exists a probability of an electron hopping from site
i to j assisted by a phonon with energy €;;. The sites are separated by a distance r;;
and the electrons localization radius on these sites is denoted by a. In the absence of
an electric field, the number of transitions from ¢ to j and that of the reverse process
is equal. Application of a weak external field breaks this balance giving rise to a net
current that is proportional to the applied field. From this current, the resistance ;;
of the transition can be extracted. Miller’s and Abrahams model is eventually reduced
to calculating the conductivity of a network of random resistors completely determined
by the resistances R;; between the network’s vertices [71]. The resistance R;; between

two sites is given by

kT
R.. = 2.2
() €2FZJ7 ( 7)

where I';; is the number of transitions per unit time at equilibrium, i.e. without

externally applied field. At sufficiently low temperatures the transition frequency is

27’1" €
[ o< exp <_7J) exp (_k_%) . (2.28)

proportional to
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In the above definition of the transition frequency, the first exponential term represents
the probability of electron transfer from one state to another. It is dependent on the
overlap of wave functions. The probability of finding a phonon with excitation energy
equal to ¢;; is contained in the second exponential term. In turn, this excitation energy
is given by

1
€ij = §[|€z‘—6j| + & — pf + lej — pl] (2.29)

and p is the Fermi level. Some of the above notions will now be used to give a qualitative
derivation of variable range hopping. However, the same notions are important also for

a quantitative approach on variable range hopping by means of a percolation method.

A qualitative Approach According to the Davis-Mott model, at sufficiently low
temperatures conduction is due to hopping between states inside a narrow band near
the Fermi level. Mott showed [76] that for a non-vanishing density of states at the
Fermi level the temperature dependent resistivity is given by Mott’s law of variable

range hopping (VRH):

p(T) = poexp|(TO/T)Y4],  where (2.30)
_ b
Ty = ote (2.31)

with 8 a numerical coefficient. For the qualitative derivation, one considers a system
with states localized in the vicinity of the Fermi level (cf. Figs. 2.10 and 2.11). Since
the definition of the resistance R;; contains the factor exp(e;;/kT (cf. egs. (2.27) &
(2.28)), it is argued that at very low temperatures only the resistances with very small
€;; contribute to conductivity. Otherwise, for larger ¢;; the resistances are considered
too large to allow for a significant contribution to conduction. This restraint on e;;
requires that the relevant states ¢; lie in a narrow band which is symmetric around the
Fermi level (Fig. 2.11), i.e.

le; — p] < eo, (2.32)

as can be illustrated by eq. (2.29): the first term inside the brackets corresponds to the
width of the band, the second and third terms express the distance to the Fermi level.
Having established this narrow band, its density of states is furthermore set constant
and non-zero, i.e. g(e) = g(u) at low temperatures. Then, the concentration of states

inside the band is given by
N(eo) = 2g(p)€o- (2.33)

Now, to formulate an estimate of the system’s resistivity, equations (2.27) and (2.28)
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Figure 2.11 Construction of a symmetric band containing localized states that are separated from
the Fermi level p by less than ¢y. The density of states shown on the right is constant with occupied
states shaded in grey. (adapted from [71])

are combined. Also the distance between sites 7;; and ¢;; are replaced by [N (ep)]'/? and
€0, respectively. Ignoring numerical coefficients, one finally obtains for the resistivity

corresponding to the narrow band:

1 1 €0

€0
N o | _ N 2.34
=00 | e ) = 0 | (234)

If we analyze the dependence p(ey) (cf. Fig. 2.12), we see that for very low T there is
a minimum in the resistivity, that corresponds to an optimal bandwidth
LT)3/4

co=¢6(T) = W. (2.35)
It is assumed that the conductivity in its entirety is determined in order of magnitude
by the optimal band. Then, substituting (2.35) into (2.34) one obtains Mott’s law of
variable range hopping (2.30) and the expression for (2.31) Ty, where the numerical co-
efficient 8 remains indeterminable by above arguments. The derivative d(Inp)/d(kT)~*
is called the activation energy at a given temperature. It can be shown to be equal
to €y in order of magnitude and hence decreases monotonically with 7°/4. Moreover,
from (2.33) and (2.35) one discovers how the average hopping distance 7, that is the

average distance r;; between states in the optimal band, varies with temperature:
7~ [g(p)eo(T)]'? = (To/T)*, (2.36)

hence the name variable range hopping.
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Figure 2.12 Schematic illustration of resistivity of a system with localized

states inside a narrow band in the vicinity of the Fermi level as given by eq.
(2.34).

A more rigorous approach Applying percolation theory to variable range hopping
[71,87] not only yields the same expression as (2.30) but can also quantitatively derive

a value for the numerical coefficient /5 in eq. (2.31).

Coming back to the random resistance network, we apply a random site problem to our
network. We can define a bonding criterion, that if fulfilled allows for clusters of con-
nected resistances spanning the entire system. In other words, there exist conducting
channels in our sample. For the random resistance network we relate the exponential

temperature dependence of resistivity (2.27) to the bonding criterion as
27”2‘]' €ij
— 4+ — < 2.37
a * ET — : (2.37)

with percolation threshold &.. The percolation threshold describes the point, at which

the systems still contains one complete conducting channel. As a consequence of the

bonding criterion, there exist a maximal hopping distance and energy, respectively:
ag

€max = kTE and Tpax = 5 (2.38)
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It can furthermore be shown [71] that the percolation threshold . behaves as

dn, 1/4
n ] (2.39)

o= {g(uF)kTai”

where n, is the critical concentration of sites at which percolation first occurs. With
the hopping conductivity expressed as p = ppexp(&.) within the percolation approach
(cf. eq. (2.34)), one obtains the expression of the form of Mott’s law (2.30). Moreover,
one has [71]

b =4n.=21.2 (2.40)

Furthermore, the percolation method enables one to determine a critical temperature
Te above which Mott’s law of variable range hopping may not hold. Still, the density
of localized states inside the narrow band of width 2Ae¢ is a constant g(e¢) = N/2Ae,
where N is the number of states per unit volume. Outside a distance Ae from the
Fermi level it abruptly vanishes. However, within the percolation approach one can
state that Mott’s law (2.30) will hold provided €y, < Ae. Hence, one can define the
critical temperature as

KTE(T,) = Ae. (2.41)

Now, using (2.39), (2.40), and (2.41) one finds
T.=0.29 Ae(NY3a)k™! (2.42)

Above this temperature T, there is a gradual transition from variable range hopping

to nearest neighbour (NN) hopping of the form
p = poexp(E,/kT) (2.43)

with activation energy FE, being independent on temperature. For NN-hopping tem-

peratures are such that in equation (2.34)

Eij QT'Z‘J‘

kT a

(2.44)
and resistivity is minimal for nearest neighbours.

Up to now, the density of states has been considered constant within a finite interval
around the Fermi level. However, upon inclusion of significant Coulomb interactions,
the density of localized states vanishes in the vicinity of the Fermi level forming a

Coulomb gap U. Obviously, this is expected for a Mott insulator and in particular in
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NayIrOgs. In this situation the variable range hopping conductivity has the form [71]

T\ V2
B 2.45
0 X exp ( T ) (2.45)
The variable range hopping conductivity above can generally be expressed as
p(T) = poexp[(To/T)?], where 0 <p < 1. (2.46)

In the course of this discussion, we have already encountered p = 1/4 and p = 1/2.
For an analysis of experimental data, it is convenient to introduce the dimensionless
activation energy W = T'dln(p)/dT. When above law (2.46) holds, one must have

InW = —p InT + const (2.47)

so that in a log-log plot a detailed discussion of p or potentially p(7") is possible.
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3 Review and Properties of Single and Polycrys-
talline NasIrO;

The first synthesis of NalroO3 powder was reported in 1974 [88] in a study of equilibrium
phase relations for the NasO-IrO, system in air using the quenching technique. It was
found there, that NalryO3 dissociates at 1235°C. An X-ray powder pattern was indexed
on the basis of the monoclinic C2/c space group. The JCPDS database diffraction
pattern (Sec. A.6) as used in this work is based upon the 1974 data.

In the past two years, again experimental effort has been made to synthesize and study
NayIrOg single crystals and polycrystalline samples. First experimental efforts on sin-
gle crystalline NayIrO3 have been published in 2010 and have since continued. Early
powder X-ray diffraction experiments [4] on single crystals and polycrystalline samples
suggested a monoclinic C'2/¢ unit cell with asymmetrically-distorted IrOg octahedra.
The layered perovskite structure is made up of layers containing only Na atoms alter-
nating with Nalr,Og layers stacked along the ¢ axis. Within the Nalr,O3 layers the
edge sharing IrOg octahedra form a honeycomb lattice, while the Na atoms occupy the
voids between the IrOg octahedra (Fig. 3.1(a,b)).

However, two more recent single-crystal x-ray diffraction experiments see a better
match for the X-ray diffraction data with the space group C2/m [66,67]. Also, in the
C2/m structure the IrOg octahedra are much more symmetric without three distinct
Ir-O bond lengths as previously reported. Structural disorder was also investigated in
all three reports and established as a common feature. For instance, the probability
of faults in the stacking sequence along the c-axis was indeed found to be 1/10, i.e
one stacking fault every ten Nalr,Og layers [66]. Moreover, a substantial site mixing
between Na and Ir within the NalryOg layers is deemed likely [4]. The structural dis-
tortions found, i.e. the slight flattening of the IrOg octahedra perpendicular to layer
stacking, indicate the presence of the trigonal crystal field in addition to the cubic
crystal field (Fig. 3.1(c)). This in turn has consequences for the proper determination
of the electronic band structure (cf. section 2.3). The structural parameters of the
monoclinic C2/m unit cell vary slightly between the two reports at 300 K [66] and
125 K [67], probably due to the different temperatures. Table 3.1 shows the range of

measured structural parameters.
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Figure 3.1 Crystal structure of NalroOg. (a) View perpendicular to the ¢ axis showing the layered
perovskite structure where Na-only layers alternate with slabs of NalroOg. (b) View onto the basal
plane within a NalryOg layer highlighting the honeycomb lattice formed by Ir atoms. The Na, Ir and
O atoms in (a) and (b) are shown as blue, red and yellow spheres respectively. (c) Local structure
within the basal plane. Black arrows indicate the compression of IrOg octahedra due to trigonal
distortions causing the decrease of O-Ir-O bond angles across the shared edges. ((a) and (b) from [4],
(c) from [67])

Table 3.1 Structural parameters of C2/m monoclinic unit cell in NapIrO3 extracted from X-ray
diffraction data obtained from the studies as indicated.

lattice parameters: ‘ alA] ‘ b[A] ‘ c[A] ‘ B[]

ref. [88](C2/c) 5.418 | 9.394 | 10.765 | 99.58
ref. [4](C2/c) 5.426 | 9.386 | 10.769 | 99.58
ref. [66](C2/m) 5.427 | 9.395 | 5.614 | 109.04
ref. [67](C2/m) 5.319 | 9.215 | 5.536 | 108.67

Temperature dependent measurements of resistivity in the range between 7=80 K and
350 K were performed [4]. The data could not be fit with an activated behaviour
p(T) o< exp(—A/T). Instead, the data follows a p(T') oc exp[(A/T)Y4] behaviour
between 100 K and 300 K (Fig. 3.2(a)). This kind of behaviour was associated with
three dimensional variable range hopping (VRH) of carriers localized by disorder (cf.
Sec. 2.6).

The onset of antiferromagnetic ordering below temperatures of about 15 K was de-
termined experimentally with resonant X-ray scattering at Ty = 13.3 K [65] and
with neutron scattering at Ty = 15.3 K [66] and Ty = 18.1 K [67]. Moreover, the
Curie-Weiss temperature is about © ~-116 K (cf. Fig. 3.2(b)). In turn, the ratio
©/Tx =~ 8 indicates the presence of substantial geometrical magnetic frustration. The
high-temperature magnetic susceptibility is anisotropic; the out-of-plane susceptibility
being slightly larger than the in-plane one. This anisotropy could originate from trig-
onal distortions of the ITOg octahedrons [4]. The magnetic specific heat is suppressed

at low temperatures and shows a lambda-like anomaly at Tx=15 K indicating bulk
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Figure 3.2 (a) In-plane electrical resistivity p versus temperature 7' from 80 K to 300 K for a
single crystal NasIrOs. The insets 1) and 2) show the p versus 1/T and p versus T~/ dependencies,
respectively. (b) Anisotropic out-of-plane and in-plane magnetic susceptibility data x. and xqp versus
T. The inset shows the x.(T) data at low T highlighting a broad maximum at about 23 K. The arrow
indicates the Néel temperature at T at 15 K, i.e the onset of long-ranged antiferromagnetic ordering.
(from [4])

magnetic ordering [4]. A recent resonant X-ray scattering experiment [65] suggests
that the magnetic order is collinear with a large projection along the a direction [65].
In the same report, a combination of these experimental findings and density func-
tional theory (DFT) calculations strongly suggest a zig-zag antiferromagnetic-ordering
pattern (cf. Fig. 2.8) for the magnetic moments [65]. The zig-zag pattern has since

been confirmed independently using neutron scattering [66,67].

Another recent study [89] on NayIrO; combined angle-resolved photoelectron spec-
troscopy (ARPES), optical conductivity and band structure calculations. It was found
that the Ir 5d—t5, bands are narrow (~ 100 meV) due to structural and atomic disorder.
An estimation of the band ga