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ABSTRACT

Synthesis of structures is a very difficult task even with only a small number of
components that form a system; yet it is the catalyst of innovation. Molecular structures
and nanostructures typically have a large number of similar components but different

connections, which manifests a more challenging task for their synthesis.

This thesis presents a novel method and its related algorithms and computer programs for
the synthesis of structures. This novel method is based on several concepts: (1) the
structure is represented by a graph and further by the adjacency matrix; and (2) instead of
only exploiting the eigenvalue of the adjacency matrix, both the eigenvalue and the
eigenvector are exploited; specifically the components of the eigenvector have been
found very useful in algorithm development. This novel method is called the Eigensystem

method.

The complexity of the Eigensystem method is equal to that of the famous program called
Nauty in the combinatorial world. However, the Eigensystem method can work for the
weighted and both directed and undirected graph, while the Nauty program can only work

for the non-weighted and both directed and undirected graph. The cause for this is the

ii



different philosophies underlying these two methods. The Nauty program is based on the
recursive component decomposition strategy, which could involve some unmanageable
complexities when dealing with the weighted graph, albeit no such an attempt has been
reported in the literature. It is noted that in practical applications of structure synthesis,
weighted graphs are more useful than non-weighted graphs for representing physical

systems.

Pivoted at the Eigensystem method, this thesis presents the algorithms and computer
programs for the three fundamental problems in structure synthesis, namely the

isomorphism/automorphism, the unique labeling, and the enumeration of the structures or

graphs.

il



ACKNOWLEDGMENTS

I would like to take this opportunity to express my sincere thanks to my supervisor,
Professor C. Zhang, for his invaluable guidance, stimulating discussion, and never-ending

encouragement in the whole research as well as the critical review of the manuscript.

I would like to extend special thanks to other members of my advisory committee:
Professor R. Burton, Professor A. Dolovich, and Professor K. Takaya, for their
worthwhile guidance and suggestions as my advisory committee members in the whole

research.

I wish to acknowledge Dr. Q. Li from Nanyang Technological University (Singapore) for
her valuable suggestions, Mr. F. X. Wu for the discussion on the algorithm, and Mr.
Edwin Zhang for the partial correction of my English writing. Ms. Wanda Drury has

kindly made English correction for the first 4 chapters.

I also wish to gratefully acknowledge the support for this work from the Natural Science

and Engineering Research Council (NSERC) of Canada.

v



This thesis is dedicated to my wife Yi and my son Xu.



TABLE OF CONTENTS

page

PERMISSION TO USE.... ..ottt e e e e e i
ABSTRACT ... e et e e et e e e e ii
ACKNOWLEDGMENTS.......ouiiiiiiiiiiiiii ettt et e e e e e e eneaas iv
DEDICATION. ...ttt ettt e et e e e e e v
TABLE OF CONTENTS. ...ttt e e e e e et et e e e e e e e vi
LISTOF TABLES ...ttt e e e ae e e X
LISTOF FIGURES. ...ttt ettt ea e e s xii
AC R ON Y M S o e e e et et e e a e aaeaan XV
NOMENCLATURE. ...ttt et e r e e e e aaen Xvi
L. INTRODUCTION. ..ottt ettt e e e ene e e reeaeas 1
1.1 Design of Physical Systems or Artifacts..........cccoeuveeienieniiirenieiinieenniane. 1
1.2 Structure Synthesis. ... ....c.ouiiiiiiiiiiii e 2
1.3 Fundamental Questions in Structure Synthesis............coeveieeiiveiiieninineninnn 4
LA Related WOTK......oooimiiiii et 7
14,1 Basic ComCePES. . e iet ittt eniiitee ittt ittt eneentenereerersaneeasanaenaanes 7

1.4.2 Graph Isomorphism/Enumeration...........c..ocveviiiienieeenineneneniennee oo 8

1.5 Objectives and Scope of the Thesis...........ocveiiiieiiiiiiiiiiiieaes 9
1.6 Organization of the Thesis........o.ovviiiiiiiiiii i e e 9

2. BACKGROUND AND LITERATURE REVIEW........ccoiiiiiiiiiiiiiiiiiinianeen 11
2.1 INTOUCHION. ..ottt ettt e e e e e e et e e e aee et en e e enaanaeneneas 11
2.2 Preliminari€s. ... o.ovineuiniiinie ettt e e 11
2.2 L GIaph. ..o e 11

2.2.2 Isomorphism and AUtomorphiSm...........couveniuininiriiiiieiiii e 15

vi



2.2.3 Computational CompleXity............c.vvuviriiiiiiiiiiiiiiiiiiiiiiieieneene. 19

2.3 Knowledge Representations of Artifacts Using Graphs.............c.cocveinnnne. 22
2.3.1 Graph Representation of Mechanisms............c..ccovvvviiiieiiniineniennnnnn. 22
2.3.2 Graph Representation of Circuits............cc.oevvieeiiiiiinineeiiieeieeenan 23
2.3.3 Graph Representation of Molecules.............cccevvvieieniiiiiniiniieeieennn 24
2.3.4 Graph Representation of Assemblies............ccovviiiiiiiiiiiiiiiinieninnn. 25
2.3.5 Graph Representation of Design Processes.............ccccvvvuvenviirenennennen. 26

2.4 Algorithms for Graph Isomorphism............cccoeiiiiiiiiiiiiiiiiiiiieens 27
2.4.1 Characteristic Polynomial-based Algorithms............c..cc.cooiiiiiiiiian. 28
2.4.2 Canonical Labeling-based Algorithms...........ccceeeviiiiiiiiiiiiniiannn 30
2.4.3 Direct Enumeration of Graphs.............ccoeuiiuiiiiiiniiiiiiiiene e 35
2.4.4 Evolutionary Computation Approach............c.covvviviiiiiiiiiininiieninnnn.. 37

2.5 Discussion and Concluding Remarks...........ccocoiiiiiiiiiiiiiiiinnn 38

3. ANEW APPROACH FOR GRAPH ISOMORPHISM: EIGENSYSTEM.............. 41

3. T INtrOAUCHION. .. e ettt ettt ettt et e et s e et e ea e e et e rn e eas 41

3.2 Quadratic Form and Quadric Surface..............veeviiiiiiiiniiiiiiiiiiiiieneen 42

3.3 Graph versus Quadric Surface............ooevuiiiiiiiiniiiiieiii e 44

3.4 Linear Transformations for the Quadric Surface............cocovvieiiiiiinnne. 46

3.5 Canonical Representation of the Quadric Surface................ccocviiiiiiiininnn 50

3.6 Quadric Surface and Eigensystem. ... .....ccc.vvuveieniiiiiiniiieciiiiiniciiin 53

3.7 Summary and DisSCUSSION............vuirieiiiiiretateeeeieteeieeieeeeerieenenenearaees 55

4. ALGORITHM FOR GRAPH ISOMORPHISMS........ccooiiiiiiiiiiiiiiiiiniee 58

4.1 INtTOAUCHION. . ..o.ivetieetei e e ettt e et s 58

4.2 Algorithm I - All Eigenvalues Are Distinct............cocevuiiiiiiiiiiniiiiinininnnn. 59
4.2.1 Theorem L. ..o e e e 59
4.2.2 Example: Non-cospectral Graphs............c..cccoeiiviiiiiiiiiiiiinininiin 66
4.2.3 Example: Cospectral Graphs...........cccooiiiiiiiiiiiiiiiiiciniiiieicaea 67 B
4.2.4 Example: Graphs with Group Mappings..........c.coceieiiiiiininiiiininn.. 74

4.3 Algorithm II - Part of Eigenvalues Are Distinct............c.cooooviiiiiiiiiiin, 77
431 Corollary 1. ..ot e e e e 77
4.3.2 Example: One-t0-One Mapping............coceveviiiniiiiniiniiiiiiiinninnnn. 79

vii



4.3.3 Example: Group-to-Group Mapping...........ccoceveuveniiniininniiiinininnnn 82

4.4 Adjusted Adjacency MatriX.........c.oiuieiiininiiienniiiiie e e e renennae 89
4.4.1 Definition of Adjusted Adjacency MatriX............covevervenvenieninninennee 90
4.4.2 Adjusted Adjacency Matrix versus Adjacency MatrixX...........c.coooeeninni 92

4.5 Graph Isomorphism for Digraphs..........c.oviiuieieiiiiiiiiiiiieeiere e eeeneen 99

4.6 Complexity ANalYSiS.......ouvuiiiiniiiieiiiieir et e e aanes 103

4.7 Discussion and Concluding Remarks.............coooviiiniiiiiiiiinicininn 105

. GRAPH COUNTING AND STRUCTURE ENUMERATION..........c.c.vevennnne. 107

ST INtrodUCHON. ....vuitiiiii e 107

5.2 The Graph Counting Problem..............ccviiiiiiiiiiiiiiiiiinre e 107
5.2.1 Counting of ISOMOIPhiSMS. ........cvieiininiiiiiiiiiieii e 109
5.2.2 Counting of AutomorphiSms.............ccoeeviiiiieiniiiiiinii, 117

5.3 Canonical Labeling............couuiuiuiiiiiiiiiiiie et eeeee 123
5.3.1 Step 1: The Basic EXPression...........oeuueuiiuiiiinniriieiieiieiienenenn 125
5.3.2 Step 2: Coping with Ambiguity in Labeling...................ccciiiiiienn.n. 127
5.3.3 Step 3: The Smallest Automorphism............cc.coieviiininiiiiiiiiiennn 130
5.3.4 Summary of Algorithm for Unique Labeling of a Graph...................... 131
5.3.5 EXAMPIES....eueniniiiiiieiiee e 132

5.4 Enumeration of StrUCIUIES. . .......euieivinenee it eei e eeeeeeeaes 135
5.4.1 Graphs Meeting COnStraints. ...........ovvuveienininirreeeeeeneneneiinnieenn. 135
5.4.2 Distinct Graph Enumeration............ccvcveiiiniiiiniiciiiiiiiniiiaeaees 138

5.5 Concluding Remarks.............cciviiiiiiiiiiiiii e 140

. APPLICATION I: SYNTHESIS IN MECHANICAL DESIGN...........ccoccueuen.e. 141

6.1 INtrOdUCHION. ....oviiinin i e et 141

6.2 Basic COMCEPLS. .....iuiinininitiie ittt 143

6.3 Others' StUIes.......uvuiiiiiiiiii e 146

6.4 The Enumeration of Kinematic Chains..............cccoeiviiviiiniiiiiiiinn, 147
6.4.1 Graph Representation............ocvuvueieeenieeriieeeri e eeeieeneeeenarareennee 147
6.4.2 Enumeration of Kinematic Chains: Step 1.............coooviviiiiinnn 150
6.4.3 Distinct Kinematic Chains: Step 2..........ocoveiiviiiiiiiiiiiiiini, 154

6.5 Concluding Remarks. ..........c.oevuiniiiiiiiiniiiiiieii e ea e ceeeenenen 156

viii



7. APPLICATION II: SYNTHESIS IN MOLECULE DESIGN.........c.ccccciunnannen.. 157

B B 1t (o To 1 e a o« T 157
7.2 Basic Concepts...........c.cccenenennnn. ettt ettt ee ettt eaaere et e aaens 157
7.2.1 Chemical Graph.........ccoiuiiiiiiiiiiiiiie e 157

7.2.2 ChemiCal ISOMETS. . .u vttt et ettt et ene e e eaeeaneeeaneens 159

7.3 Isomer Enumeration of the Alkane Series........ccvoiiiiiiviiiiiiiiiiiiiineanann. 160
7.4 Concluding Remarks. .........c.ocvviiiiiiiiiiiiiii i ieeeeee e eanens 166

I 10\ (0 B 5] (03 168
R 01 o T O 168
IR O] 111 510101510 TR 171
I S 11 ) (0] 1 - S 172
LIST OF REFERENCES. ...ttt ittt et eineene e eaes 174
APPENDIX A: PROGRAM FOR GRAPH ISO-/AUTO-MORPHISM .................. 183
APPENDIX B: PROGRAM FOR CANONICAL LABELING OF GRAPHS........... 191
APPENDIX C: PROGRAM FOR ENUMERATION OF MECHANISMS.............. 201

APPENDIX D: PROGRAM FOR ENUMERATION OF THE ALKANE SERIES..... 217

X



LIST OF TABLES

Table page
2.1 Four isomorphisms of two isomorphic graphs shown in Figure 2.5................... 16
2.2 A case of partitioning proCcedure. ...........cccoeveereriiuiniiiiiiieerreeeeeeeaa 33
4.1 Mapping @, for the graphs shown in Figure 4.4..............cooiiiiiiiiiiiiiiiniinnn. 72
4.2 Mapping @, for the graphs shown in Figure 4.7............c.cooioviiiiiiiiiiiin 76
4.3 The mapping by comparing unique eigenvectors between X; and Xp................. 80
4.4 The one-to-one mapping created with the intersection between ¢+ and @s......... 8l
4.5 The mapping by comparing unique eigenvectors between X, and Xp................. 85
4.6 The one-to-one mapping created by investigating all the mappings................... 85
4.7 The group-to-group mappings by comparing all the unique eigenvectors............ 87
4.8 The one-to-one mapping between two weighted digraphs.....................oooeii 103
4.9 The time complexity of algorithm I-1...........ococoiiiiiiiii 104
4.10 The time complexity of algorithm I-2........c.coviiiiiniiiiniiiii 104
5.1 Common mappings @»s to the unique eigenvectors..............cccveviveininiiiininnn. 114
5.2 Counting of isomorphisms between two graphs shown in Figure 5.1................ 117
5.3 Counting of automorphisms for the graph shown in Figure 5.5....................... 120

5.4 Counting of isomorphisms between the graphs shown in Figures 5.5 and 5.7...... 121

5.5 The canonical codes of the graphs discussed previously as the examples............ 133
6.1 Number of link combinations for a given Nup to 12 and Fupto 9.................. 145
6.2 The number of distinct kinematic chains with up to 12 links for known cases...... 147



6.3 Number of kinematic chains meeting a given Nup to 12 and Fupto9..............
6.4 Number of possible kinematic chains with up to 12 links and 9 DOFs...............

6.5 Number of all distinct kinematic chains with up to 12 links and 9 DOFs............

7.1 The number of combinations of carbons having different carbon-carbon bonds. ...

7.2 The number of chemical graphs meeting the constraints of configuring alkanes...

7.3 Number of all isomers of the Alkanes Series up to 16 carbons........................

Xi



LIST OF FIGURES

Figure page
2.1 Examples of a simple graph and two non-simple graphs...................coceuinene. 12
2.2 A directed graph (digraph)............cocoiiiiiniiiii e 12
23 Alabeled graph..........ooiiiuiiiiiiiii e e 13
2.4 A weighted graph and its AM........... T PP 14
2.5 Two isomorphic graphs with eight Vertices............c.ocvoiiiiieiniinenniniiininennn. 16
2.6 Three automorphisms of the graph shown in Figure 2.5a...................o 17
2.7 Examples of symmetric graphs.............cccoiiiiiiiiiiiiiii e 17
2.8 The number of automorphisms of two graphs with 32 and 8 vertices................. 18
2.9The world Of NP ....ooniniiii e 21
2.10 An industrial gear drive and its graph representation............c....ccceveieeieninnnn. 23
2.11 Cyclic sequential circuit and graph model.................ooiiiiiiiiiiininnnine 24
2.12 A typical organic molecule and its graph model...................coon, 24
2.13 An aircraft hydraulic assembly and its assembly graph.................c.cccoeuenen. 26
2.14 A hybrid graph representation of the FBS architecture...........c....c.cooeeiiiinien. 27
2.15 Two 8-vertex non-isomorphic trees having the same graph spectrum............... 29
2.16 Two non-isomorphic kinematic chains both with the same graph spectrum....... 30

3.1 The AMs and their quadric surfaces for the graphs shown in Figure 2.5............. 4§
3.2 An ellipse, its circle degeneracy, and their semiaxes.............coveeeveienenininennn 49

3.3 Two weighted graphs both with 3 vertices................... o 49

xii



3.4 The quadric surface of the graphs having all distinct semiaxes........................ 51

3.5 Two isomorphic weighted graphs both with 3 vertices...............coceeeviiinan... 52
3.6 The quadric surface of the graphs having coincident semiaxes........................ 53
3.7 The framework of the Eigensystem approach for graph isomorphism................ 55
4.1 Two 8-vertex non-isomorphic graphs having different graph spectrums............ 66
4.2 Two 12-vertex non-isomorphic cospectral graphs.............c.coceviiiiiiiiininenan 67
4.3 The procedure of finding mapping &, for the graphs shown in Figure 4.2.......... 69
4.4 Two isomorphic graphs both with 17 vertices...........c..c.oceiiiiiiiiiiiiiiinenn 69
4.5 The procedure of finding mapping @&, for the graphs shown in F_igur¢ 44 e 71
4.6 The procedure of finding mapping @&, for the graphs shown in Figure 44.......... 73
4.7 Two isomorphic graphs both with 10 vertices..............cccoeiiireiiiiiinenenininannn. 74
4.8 The procedure of finding mapping @&, for the graphs shown in Figure 4.7.......... 75
4.9 Two isomorphic graphs with partially coincident eigenvalues......................... 82
4.10 Two non-isomorphic graphs with partially coincident eigenvalues.................. 86
4.11 A 5-vertex graph, the AM and the AAM..........oooiiiiiiiiiiiiiiiiiiireecie 90
4.12 Two non-isomorphic cospectral graphs on AM...........ccocoeviiiiiiniiiiinin. 93
4.13 Two non-isomorphic cospectral graphs on AM..........cccooeeiiiiiiiiiiii, 94
4.14 Six pairs of cospectral graphs (trees) on AM..........coiiviviiiiiiiiiiiiiiiienenenn. 95
4.15 Two weighted digraphs both with 6 vertices..............ccveiiiiiiiiiiiiiiiniin 102
5.1 An example of counting of ISOMOIPhiSMS. ... ....covvveieiiniriiiiiiniiii, 110
5.2 The eigenvectors corresponding to the distinct eigenvalues..............ooeviinini. 111
5.3 The mappings created for each pair of unique €igenvectors............c..oeueeennne 113
5.4 The iterative procedure for searching a one-to-one isomorphic mapping............ 116
S5.5A14-vertex Graph.......oviiiiiiiiii 118

xiii



5.6 TWO Sroup-to-group MaPPiNgS. .......ueueenrnrnerereeeeeereranenenenraeneenenrornenenn 119
5.7 Another graph with 14 vertices.............ccciiiiiiiiiiiiiiiiiii e 120
5.8 Adjusted adjacency matrix and itS COde..........ocoiuiriiniiiiiiiiii e 124

5.9 Two isomorphic graphs and their respective smallest automorphic graphs........... 128

5.10 The basic expression after sorting the first unique eigenvector...................... 129
5.11 The basic expression after sorting the second unique eigenvector................... 129
5.12 Three graphs with 12 Vertices..........c.coeeiiiiiiiiiiriiiiiiiiiiiiirne s 132
5.13 Seven isomorphic graphs each with 10 vertices.............cccceiiiiiiiiiniieninn.. 133
5.14 Enumeration of 8-vertex graphs (4 vertices for 3 degrees and other 4 for 2)....... 139
6.1 Three suspension topologies and their kinematic diagramé ............................ 143
6.2 The graph representations of the kinematic chains shown in Figure 6.1............. 148
6.3 Six kinematic chains and their graph representations......................cooiiini 149
6.4 Two six-link kinematic chains each with totally 1 DOF but partly 0 DOF.......... 152
6.5 Illustration of configuring kinematic chains...............cccccveviiiiriiieeninininn 153

7.1 Chemical formula, chemical graph, and the graph with omitted hydrogen atoms... 158
7.2 Chemical constitutional formula and ‘colored’ chemical graph....................... 159
7.3 Chemical isomers: graphite and diamond................ccoveiiiiiiininniiiiinie 160
7.4 The chemical constitutional formula of octane (CsH;s) and its chemical graph..... 161
7.5 lustration of configuring chemical graphs ofalkanes.................................; 163

7.6 Two molecular multiple teeth gear systems ...........cccocviiiniiiiii, 167

Xiv



CSP:

DAG:

DOF:

EA:

FBS:

GA:

GIL:

NP:

ACRONYMS

adjusted adjacency matrix
adjacency matrix

constraint satisfaction problem
directed acyclic graph

degree of freedom
evolutionary algorithms
function-behavior-state

graph automorphism

graph isomorphism

non-deterministic polynomial-time

XV



NOMENCLATURE

The i* eigenvalue

The eigenvalue matrix of matrix 4

The eigenvalue matrix, in which the eigenvalues are in an ascending order, of
matrix 4

A vertex mapping among the vertices between two graphs

The vertex mapping based on the eigenvector pair (X, y) corresponding to the i
distinct eigenvalue between two graphs

The vertex mapping based on the eigenvector pair (X, -y) corresponding to the i

distinct eigenvalue between two graphs

The common mapping among vertices up to the i distinct eigenvalue, i.e., @, =
(& N ) U (40 D)

The eigenvector corresponding to the i eigenvalue of matrix 4

The eigenvector, in which the components are in an ascending order,

corresponding to the ™ eigenvalue of matrix 4

xvi



CHAPTER 1
INTRODUCTION

1.1 Design of Physical Systems or Artifacts

Physical systems (or artifacts) consist of a set of physical elements connected in a
semantically sensible manner. Such a view of systems is also called a structural view.
Behaviors of the artifact consist of a causal model of dynamic interactions between these
structural elements in the form of a sequence of behavioral states and transitions between
these states. Functions of the artifact describe the overall intentional consequences of the
behavior. The structure (or the artifact) has a boundary which separates the structure from
the rest of world. The portion of things in the rest of world which interacts with the
artifact is called the environment. An artifact may be further decomposed into sub-
artifacts and components. Components are those elements that are not further
decomposed per se. Artifacts or sub-artifacts have two patterns in terms of connectivity

among their elements: the tree pattern and the network pattern.

Design (of artifacts) is defined as an activity that generates a description of an artifact
based on functional specifications and constraints [Tong and Sriram 1992]. Constraints
can be of structural, behavioral, or resource limitations. The design process therefore

involves three main types of knowledge about a domain: functional, behavioral, and



structural. Therefore, the mapping between these three types of knowledge is central to

the design process [Reich 1991].

Design is further classified into routine and non-routine designs [Tong and Sriram 1992;
Gero 1994]. In routine design, the designer knows both the space of possible problems
and the space of possible solutions. Therefore, the design in this case reduces to finding a
mapping function between these two known spaces. Non-routine design is further divided
into two subclasses: innovative and creative. In innovative design, the problem and
solution spaces can be augmented by way of changing the dimensions of prescribed
structures. In creative design, either the’ problem space or the solution space is lacking.
Designs generated in the creative design process thus define novel classes of artifacts.
Therefore, the creative design process is a process where new ideas or solutions are

synthesized in the absence of prior examples [Suh 1990].

1.2 Structure Synthesis

A closer look at design can find that a design process includes many steps. The function
needs to be transformed into the expected behavior. The actual behavior of a structure,
which is potentially being a solution to a design problem, then needs to be evaluated
against the expected behavior. An unsatisfactory evaluation will trigger a process to look
for new structures. This process is called synthesis. Informally, synthesis means putting
things together. Formally, structure synthesis involves configuring elements into a system

structure that satisfies the expected behavior.



It may be clear that structure synthesis is an essential step in a creative design process, as
there is not any pre-known structure prototype. Structure synthesis may also be useful in
the re-design process which is a design between the routine design and the creative
design. A typical scenario in the re-design process where structure synthesis is useful can
be described as follows. The motivation of a design is dissatisfaction with an existing
artifact with respect to some newly added functional and/or constraint requirements. The
designer would then like to seek a ‘new’ structure which could be ‘merged’ into the
existing structure to form an overall structure that can meet the updated requirements. It is
clear that finding a new structure is a creative design process. The merging process may
require changing the dimensions of the existing structures, which is characterized as

routine design.

Structure synthesis is found in many applications in science and engineering disciplines.
In mechanical engineering, for example, the structural synthesis of kinematic chains or
mechanisms requires enumerating all potential isomers under a given set of constraints in
order to find the optimal design [Johnson and Towfigh 1978; Crossley 1965]. Design and
development of modular robotic systems requires the enumeration of all possible
assembly configurations out of the modules and to find an obtimal one among them for a
specific task [Chen and Burdick 1998]. In biology, identification of isomorph/isomer
could be used in tracking the evolution of the genotype and the phenotype of a virtual
creature, which further infers what kind of creature it is [Sims 1994]. In chemistry,
organic chemists must identify all possible molecular structures for chemical

documentation systems [Randic 1974]). As a recent trend in mathematical and



computational chemistry, topological indices of molecular structures are studied to
describe molecular similarity/dissimilarity and to estimate molecular properties for novel
drug discovery, molecular design, and tbxicological hazard assessment [Basak and
Magnuson 1988; Basak et al. 2001]. In biochemistry, structure synthesis is used for
predicting molecular networks from massive amounts of genome information and for

functionally detecting related enzyme clusters [Ogata ez al. 2000].

1.3 Fundamental Qu_estiops in Structure Synthesis

There are two fundament questions to be answered with structure synthesis. The first
question is whether the description of the structure is unique or canonical. The second
question is how to transform from a description of function and constraint into a

description of structure.

The uniqueness of the description or the representation is important. For example, two
different structures, both of which are good candidates for solution to a design problem,
may be regarded to be the same because of a non-unique representation of them. In an
opposite situation, two similar designs may be regarded as different and they then go
through a design process, which implies a waste of design resources (the designer’s time

and effort).

The transformation process in the second question is very challenging and is, in fact, the
substance in a creative design process — the mapping from the (new) problem space to the

(new) solution space. The challenge is brought in because it is very difficult to model the

4



transformation problem and to develop a computational algorithm for such a
transformation. Such an effort was attempted by Tomiyama and Yoshikawa [1987], but
they have not succeeded. Approaches complementary to the computational approach are
the empirical ones. In the empirical approach, the basic procedure is to develop a
knowledge base which includes the function and structure and then find the
correspondence between them at different levels. With the help of such a knowledge base,
a design problem is modeled by decomposing its function into a suitable function lattice,
and then this lattice is matched with those in the knowledge base. A successful matching

results in a set of structures, which are to be integrated into an artifact.

Another useful idea for structure synthesis is to enumerate all possible structures subject
to a set of constraints. This synthesis process starts with a ‘known’ structure that meets
the functional and constraint requirements. The synthesis problem is formulated as
finding all possible alterative structures for that known structure (which may be called the

seed structure) subject to the constraint applied to the seed structure.

The following are more formal statements of the fundamental problems with structure

synthesis, which lay the foundation for this thesis research.

Characterization of structures. The characterization of structures is to create structure -
patterns by encoding the structure features which can completely and efficiently identify

the structures. An incomplete characterization of a structure does not correctly represent



the structure and would cause a mistake in structure synthesis, while an inefficient

characterization of a structure will result in an unmanageable time-consuming effort.

Similarity of structures. Once a structure is characterized, there is a need to match it to
known structures to determine its novelty. Structures could vary from each other.
Depending on different abstraction levels and associated viewpoints or contexts that
make the levels meaningful, two structures may be recognized either as same or different.
For example, two TV sets may be considered as the same from their functions (one
abstraction level), while they may be considered as different because of their different
sizes (another abstraction level). When a kind of database with reference index is built for
structures (say TV sets), similarities of structure together with their different abstraction
levels need to be addressed. If two structures are the same, this thesis will refer to them as

having hard similarity; otherwise they will be considered to have soft similarity.

Enumeration of structures. In order to find a new or an optimal design in various
structure configurations, designers usually need to answer the following question: How
many different configurations are possible from a type of structure? The process to find
all distinct configurations is called enumeration. Enumeration of distinct structures is thus

an important kernel for structure synthesis.

It should be noted that throughout this thesis the term ‘structure’ in the context of

structure synthesis represents topological information of a physical system. The



topological information includes, depending on design interests, (1) types of components,

(2) types of connections, and (3) patterns of connectivities.

1.4 Related Work
1.4.1 Basic Concepts

The complexity of structure synthesis is such that synthesis requires (1) the selection of
one among tens, hundreds, or thousands of structure options seemingly similar, and (2)
the comparison/identification/differentiation of structures. Therefore, the structure

synthesis process must be aided by computer.

A formal representation of structures is thus needed for computer processing. The graph
is a natural choice for such a representation. Basically, a graph consists of a set of vertices
and a set of edges that connect the vertices in various ways. A more formal description of
graph theory is found in Chapter 2. Structure synthesis then becomes graph synthesis.
Comparison of two structures becomes comparison of two graphs, and enumeration of
structures becomes enumeration of graphs. In graph theory, graph sameness (similarity)
and graph enumeration are called, respectively, graph isomorphism (subgraph
isomorphism) and the counting of graphs. Again, for a more formal discussion of them
refer to Chapter 2. Graph isomorphism is such that two graphs are exactly the saﬁe, while
subgraph isomorphism is such that a graph, say 4, is ‘matched’ with another graph, say B,
in the sense that graph B contains graph 4. Subgraph isomorphism becomes graph

isomorphism if graph B has the same size as graph 4.



1.4.2 Graph Isomorphism/Enumeration

There are two basic ideas underlying various approaches for graph isomorphism. The first
idea is to manipulate a graph via a permutation procedure (row and column exchange).
The second idea is to define a variable which is related to the graph and (further) to define
a function on the variable; the optimization of this function leads to a representation of
the graph. Approaches based on the first idea may be called the graph theory approach,
while approaches based on the second idea may be called the evolutionary computational

approach.

It is difficult to solve the graph isomorphic identification problem for a general graph (a
graph without any constraint on it). Many studies have been developed attempting to
solve particular classes of graph isomorphism problems [Babai 1995; Babel 1995;
Bodlaender 1990; Fortin 1996; Luks 1982; Read and Corneil 1977]. In this thesis, the

isomorphism problem for general graphs is examined.

Currently, the algorithm for (general) graph isomorphism, which has yet to be challenged
by any counterexample, would refer to the Nauty (No AUTomorphisms, Yes?) program
presented by McKay [1981]. Nauty is a backtrack program for computing automorphism
groups of undirected graphs and digraphs. It can also produce a canonical labeling for
graphs. However, this program cannot handle weighted graphs which are often seen in
many applications. Furthermore, as the Nauty program has not resolved the NP hard

nature of graph isomorphism, it would be a good strategy to examine the graph |

isomorphism with its related issues from a different angle.



In the evolutionary computational approach, the current state of the art is such that the
most complex graph (which has been tested) is small in size in terms of the number of
vertices. The evolutionary computation approach is still in an exploratory stage. The
capability of this kind of approach can be limited by the particular evolutionary algorithm

(e.g., Genetic Algorithm) employed.

1.5 Objectives and Scope of the Thesis

As discussed before, graph isomorphism and its relevant problems are still not solved
well. With the rapid advancement of nanotechnology and biotechnology, the problem of
synthesis of structures with hundreds and thousands of nano objects is emerging as
critical. Based on a preliminary finding (&hich the author obtained several years ago) that
a graph could be represented by a quadratic surface, and that both eigenvalues and
eigenvectors are useful to characterize the graph or the quadratic surface [He et al. 2000,
2001, 2002a, 2002b, 2002c, 2003], this thesis study aims to further elaborate this finding
for developing a more effective method for graph isomorphism and its relevant problems
(i.e., the three fundamental issues discussed before) in the general area of structure

synthesis.

1.6 Organization of the Thesis

Chapter 2 gives a background and literature review about graph and graph-based methods
for structure synthesis. Selected concepts in graph theory that are involved in graph-based
structure synthesis are introduced. The most known graph-based algorithms on structure

enumeration are introduced and analyzed.



The approach developed in this thesis, called the ‘Eigensystem’ approach, is introduced
and elaborated in Chapters 3, 4, and 5, respectively. Chapter 3 gives a basic introduction
to the Eigensystem approach, and its geometric significance. Chapter 4 describes in detail
(1) the basic algorithms associated with the Eigensystem approach, (2) a new matrix
called ‘adjusted adjacency matrix’, (3) the computational complexity of the Eigensystem
approach, and (4) the method as well as the algorithm for digraph isomorphic
identification. As a result, the discussion in Chapter 4 addresses the second fundamental
issue (see Section 1.3). Chapter 5 gives the algorithm for solving the graph counting
problem using the Eigensystem approach. Subsequently, structure enumeration and
structure characteristic problems (i.e., the first and third fundamental issues) are solved

based on this algorithm.

Chapters 6 and 7 describe the applications of the proposed Eigensystem approach in

structure synthesis of mechanism design and molecular structure design, respectively.

Chapter 8 summarizes the Eigensystem approach, gives the conclusion, and discusses the

future direction of work in this field.
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CHAPTER 2
BACKGROUND AND LITERATURE REVIEW

2.1 Introduction

As mentioned previously in Chapter 1, graph models and graph algorithms have been
widely used for representing and synthesizing structures. There exist numerous research
projects and publications about graph theory and applications. The applications include
various areas ranging from mechanism structures, electrical networks and
communications networks, chemistry, and geography, to architecture [Wilson and
Beineke 1979]. The purpose of this chapter is to provide background and a literature
review of the graph-based methods closely related to the research objectives defined in
Chapter 1. In particular, Section 2.2 presents some primary concepts/notions to provide a
set of unified terminologies for the reminder of the thesis. Section 2.3 discusses
knowledge representation using graphs for various applications. Some typical methods
known in the literature for structure synthesis are introduced in Section 2.4. A summary is

given in Section 2.5.

2.2 Preliminaries
2.2.1 Graph

A graph is an ordered pair G = (¥, E), where V is a finite, non-empty set of objects called -

vertices (or nodes) and E is a set of pairs of vertices called edges (or arcs). The sets ¥ and

11



E are also denoted as V(G) and E(G), respectively. Further, a graph is denoted as a simple
graph if E is a set of distinct elements of 2-subsets of V, that is, there is at most one edge
between any two vertices in the graph and there is no self-loop at any vertex. Figure 2.1
shows examples of a simple graph and two non-simple graphs. The graphs shown in
Figure 2.1 are connected because there is a path connecting every pair of vertices. The

reminder of the thesis will use the term ‘graph’ for the simple and connected graphs.

simple graph two non-simple graphs

Figure 2.1 Examples of a simple graph and two non-simple graphs.

If E(G) of graph G is a set of ordered pairs of vertices, that is, edge e = {u, v} € E(G) is
directed from initial vertex u of e to terminal vertex v of e, then the graph G is denoted as
a directed graph (or digraph); otherwise, the graph G is called an undirected graph (see

Figure 2.1). Figure 2.2 shows a directed graph.

Figure 2.2 A directed graph (digraph).
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A labeled graph refers to the graph whose vertices are labeled (see Figure 2.3); a labeled

graph is denoted as V,(G) = {1, 2, 3, ..., n}. Graphs shown in Figure 2.1 and Figure 2.2

are unlabeled graphs.

Figure 2.3 A labeled graph.

Two vertices of a graph are adjacent if they are connected by an edge. The number of the
vertices adjacent to a vertex is called the degree of the vertex. The graph in which all
vertices have the same degree is a regular graph. The adjacency matrix (AM) of a graph
is a matrix with rows and columns labeled by graph vertices, with a 1 or 0 in position (v;,
V), according to whether v; and v; are adjacent or not. The AM must have Os on the

diagonal because of no self-loop. The following is the AM of the graph shown in Figure

2.3:

W N -
O = mm O e
— e O e N
S O = = W
oo = o b

It should be noticed that the above-mentioned AM is a symmetric. Indeed, for an

undirected graph, the AM is a symmetric. The set of eigenvalues of the AM of a graph is

13



called the spectrum of the graph. Graphs having the same graph spectrum are called the

cospectral graphs.

Edge describes a very generic property, i.e., connectivity between any two vertices. When
information beyond the connectivity needs to be represented, a descriptor is associated
with the edge. This descriptor can be represented by a number (e.g., 1, 2, etc.). This
number is also called the weight. Therefore, a weighted graph is a graph having a weight
(or a number) associated with each edge. The AM of a weighted graph can be represented
by assigning the weight of each edge at the position (v;, v;). Figure 2.4 illustrates a

weighted graph and its AM.

HOWN
TN~ NI G
00 = O Hh DN
o ©C = W
o 00 o P

Figure 2.4 A weighted graph and its AM.

Distance of any two vertices is defined as the shortest path between them. The shortest
path is the least number of connected edges from one vertex to another. A distance
matrix, which is another way to represent a graph, is defined as putting the distance at the

position (v;, v). The distance matrix for the graph shown in Figure 2.3 is as follows:
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A detailed introduction of these concepts can be found in Harary [1969] and Carre

[1979].

2.2.2 Isomorphism and Automorphism

Two graphs are equal if they have the same vertex set and the same edge set. There are
other ways in which two graphs may be regarded as the ‘same’. For example, one could
regard two graphs as being the ‘same’ if it is possible to relabel the vertices of one and
obtain the other. Such graphs are identical in every respect except for the labels of the
vertices. In this case, two graphs are called isomorphic. Graph isomorphism (GI) is the
problem of determining if two graphs are isomorphic. Two graphs, 4 and B, are
isomorphic if (1) there is a one-to-one correspondence between their vertices, and (2)
there is an edge between two vertices of graph A if and only if there is an edge between
the two corresponding vertices of graph B. Mathematically, given two graphs G;( Vl, E)
and Gy(V>, E>), a one-to-one mapping ¢ of V; onto V; is called an isomorphism if and

only if (1, v) € E| & (6(w), 6(v)) € E; Yu,ve V.

It is possible that more than one isomorphism exists for two isomorphic graphs. For

example, Figure 2.5 shows two isomorphic graphs with eight vertices. There exist four
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isomorphisms (one-to-one mappings), as listed in Table 1, 61(v), G2(v), G3(v), and G4(v),

between these two graphs.

7

(@) )

Figure 2.5 Two isomorphic graphs with eight vertices.

Table 2.1 Four isomorphisms of two isomorphic graphs shown in Figure 2.5.

Vertex v in Fig. 2.5a 1 2 3 4 5 6 7 8
Vertex o,(v) in Fig. 2.5b 4 6 5 3 7 8 1 2
Vertex o2(v) in Fig. 2.5b 4 2 1 8 7 3 5 6
Vertex o3(v) in Fig. 2.5b 7 3 5 6 4 2.1 8
Vertex 64(v) in Fig. 2.5b 7 8 1 2 4 6 5 3

If there is an isomorphism (one-to-one mapping) between a set of vertices of a graph and
the set of vertices of the original graph, it is called automorphism. Mathematically, graph
automorphism (GA) can be stated as: Given a graph G(V, E), a one-to-one mapping ¢ of
V onto V is called an automorphism if and only if (4, v) € E & (o(u), 6(v)) € E
VYu,ve ¥V . It is obvious from the definition that every graph has at least one

automorphism. The automorphism group (a set of automorphisms) of a graph
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characterizes its symmetric property. From Figure 2.5a, it can be seen that the graph is
symmetric to edge 15, edge 37, and both edge 15 and edge 37, respectively. This means
that there are three automorphisms associated with this graph. Figure 2.6 illustrates these
three automorphisms. Note that the graph in Figure 2.5a has four automorphisms in total,
as the graph is an automorphism of itself. As a special situation, if a graph, when viewed
from any vertex or edge, looks the same, the graph is called the symmetric graph. An
example of the symmetric graph is shown in Figure 2.7. In general, the stronger the
symmetry of a graph is, the more the number of the automorphisms is. For instance, 3,840
automorphisms exist for the graph with 32 vertices shown in Figure 2.8a [McKay 1981],

and 40,320 automorphisms exist for the graph with 8 vertices shown in Figure 2.8b!

(a) symmetry to edge 15 (b) symmetry to edge 37 (c) symmetry to both 15 and 37

Figure 2.6 Three automorphisms of the graph shown in Figure 2.5a.

ORI

Figure 2.7 Examples of symmetric graphs.
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(a) 3,840 automorphisms (b) 40,320 automorphisms

Figure 2.8 The number of automorphisms of two graphs with 32 and 8 vertices.

It is believed that given a graph, a set of its isomorphic graphs and a set of its
automorphic graphs should share some common properties and behaviors. Enumeration
of these two sets of graphs for a given graph should be of potential interest and
significance in structure synthesis. The enumeration of all isomorphisms between two
graphs is called the graph isomorphism counting problem. The enumeration of all

automorphic graphs for a graph is called the graph automorphism counting problem.

A graph invariant is a graph-theoretical property or parameter that is preserved by
isomorphism. In other words, it is a property that does not depend on the way in which a
graph is labelled. Typical invariants include the number of vertices, the number of edges,
the degree of each vertex, etc. The AM is not a graph invariant because it depends on how
the graph is labelled. The set of graph invariants which can uniquely identify a graph is

called the complete invariants of the graph.
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For more materials on GI and GA refer to Hoffmann [1982] and Harary [1969].

2.2.3 Computational Complexity

A naive algorithm enumerating or counting isomorphisms between two graphs is done by
factorizing all possible vertex mappings of a graph and then comparing them with one
another. For this technique, the comparisons of up to n! times are needed. Such an
amount of comparison is too huge to be completed with contemporary computing
technology. For example, for a graph with 15 vertices, the number of such comparisons is
1,307,674,368,000 (15!). Research into efficient algorithms for graph isomorphisms and
automorphisms aims to reduce the number of comparisons. Finding the number of such
comparisons, given an algorithm for graph isomorphism, is not a simple task, and this is
based on complexity theory. Complexity Theory deals with the resources required during
computation to solve a problem. The most common resources are time (how many steps
does it take to solve a problem) and space (how much memory does it take to solve a
problem). Time complexity is most commonly discussed in complexity analysis. The time
complexity of a problem is the number of steps that it takes to solve an instance, as a
function of the size of the instance. If an instance that is » bits long can be solved in n’
steps, then this is said to have a time complexity of n?. Of course, the exact number of
steps will depend on what machine or language is used. To avoid this machine or
language dependent problem, a symbolism called Big O notation is used in complexity
theory, computer science, and mathematics, to describe the asymptotic behavior of
functions. Basically, it tells about how fast a function grows or declines. If a problem has

time complexity O(n%) on one typical computer, then it will also have complexity o)
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on most other computers. So this notation allows us to generalize away from the details of
a particular computer. The time complexity is a polynomial time if the execution time of a
computation is no more than a polynomial function of the problem size n, i.e., O(n")

where £ is a constant.

Four well-known complexity classes in complexity theory are associated with the GI

problem as follows:

P. In complexity theory, the class P consists of those decision problems that can be solved
on a deterministic Turing machine in an amount of time that is polynomial in the size of
the input. Turing machine is an abstrac£ model of computer, which has an unlimited
amount of information storage, to give a mathematically precise definition of algorithm.
Deterministic means permitting at most one next move at any step in a computation. The
question “For a positive integer N, is there a positive integer m such that N = 4m?” is a P

problem.

NP. NP (Nondeterministic Polynomial-time) is the set of decision problems solvable in
polynomial time on a nondeterministic Turing machine. The term nondeterministic means

permitting more than one choice of next move in some steps in a computation.

NP-complete. The complexity class NP-complete is the set of problems that are the
hardest problems in NP in the sense that they are the ones most likely not to be in P. If a

particular algorithm can work on a particular NP-complete problem quickly, then it works
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on all NP problems quickly. Problem B is called NP-hard if there exists NP-complete
problem A that can be solved in polynomial time using a polynomial algorithm for the
problem B. Every NP-complete is thus an NP-hard problem. As an example, the well-
known Traveling Salesman problem belongs to a NP-complete problem. The description
of this problem is: Given a set of cities, the distances between them, and a bound C, does

there exist a tour of all the cities having total length C or less?.

#P. The complexity class #P (pronounced “sharp P”) is the set of counting problems
associated with the decision problems in the set NP. While an NP problem is often of the
form “Are there any solutions that satisfy certain constraints?” the corresponding #P
problem asks ‘how many’ rather than ‘are there any’. Clearly, an #P problem must be at
least as hard as the corresponding NP problem. If it is easy to count answers, then it must

be easy to tell whether there are any answers.

NP-complete

Figure 2.9 The world of NP [Garey and Johnson 1979].

Figure 2.9 illustrates the world of NP assuming that P = NP. The GI problem occupies an
important position in the world of complexity analysis. It is one of the few problems
which is in NP but is known neither in P nor NP-complete [Read and Corneil 1977;
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Schoning 1988; Kobler et al. 1993; Fortin 1996]. Therefore, the graph isomorphism/

automorphism counting problems are #P problems [Mathon 1979].

For further information on computational complexity refer to Garey and Johnson [1979]

as well as Balcazar et al. [1994].

2.3 Knowledge Representations of Artifacts Using Graphs

To treat a structure synthesis problem in a particular application using graph theory, there
should be a way to represent domain knowledge of that particular application using
graphs. In the following, graph or graph-like or network representation for selected
applications is discussed. The term artifact refers to a generic object or system in any

application domain.

2.3.1 Graph Representation of Mechanisms

Figure 2.10 describes a typical application of graph representation for mechanisms/
kinematic chains in machine design. The engineering drawing of an industrial gear drive
shown in Figure 2.10a is converted into a schematic kinematic diagram shown in Figure
2.10b, in which shaded shapes and lines represent the mechanical components in Figure
2.10a, while the circles represent connections. The representation shown in Figure 2.10b
ignorés information regarding physical shapes of components, while focuses on the
connectivity among components. The representation shown in Figure 2.10b is still in the
scope of mechanical system design and is further converted into Figure 2.10c in which

labeled vertices represent the components in Figures 2.10a and 2.10b, edges represent the
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connections among the components. In Figure 2.10c, assigned weights on the edges
represent different types of the connections. Throughout this thesis, the graph shown in
Figure 2.10c is under investigation. Studies on graph representation of kinematic chains
can be found in [Crossley 1965, 1966; Davies and Crossley 1966; Woo 1967;
Mruthyunjaya and Raghavan 1979; Sohn and Freudenstein 1986; Ambekar and Agrawal

1987; Tang and Liu 1993; Schmidt et al. 2000].

& \\\\\\\\\§

(a) physical representation  (b) schematic representation (c) weighted graph

Figure 2.10 An industrial gear drive and its graph representation [Ambekar and Agrawal
1987].

2.3.2 Graph Representation of Circuits

Graph has been also applied for representations of digital systems in synthesis [Wilson
and Beineke 1979; Giovanni 1992; Ubar 1996]. Figure 2.11 shows the directed graph
model of a cyclic sequential circuit whose components convert into the vertices and flows
convert into the directed edges. It should be noted that the information captured with the
graph is of topolospecifically including the type of elements and the flow direction from

one element to another.
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(a) cyclic sequential circuit (b) graph model

Figure 2.11 Cyclic sequential circuit and graph model [Giovanni 1992].

2.3.3 Graph Representation of Molecules

Graph representations of chemical compounds have a long history in molecule design and
chemical documentation [Sussenguth 1963; Randic 1974; Wilson and Beineke 1979;
Basak et al. 1994]. Weighted graphs are usually used for representing chemical
compounds where the weighted vertices are the atoms and the weighted edges are the
covalent bonds. Figure 2.12 illustrates a typical organic molecule and its graph model in
which hydrogen atoms are omitted in the graph model for similarity. Addition of the

hydrogen atoms on the present graph model is always possible.

o —0

Figure 2.12 A typical organic molecule and its graph model [Fortin 1996].
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2.3.4 Graph Representation of Assemblies

Heisserman [1999] introduced the Boeing Company’s approach of comparing designs
between complex aircraft assembly structures, which was implemented in the Boeing’s
Genesis generative design system. An aircraft hydraulic assembly was represented by a
directed acyclic graph (DAG) which constructs a hierarchical assembly, the occurrence
tree, and the connections between the DAG and the tree. Figure 2.13 shows a simple
aircraft hydraulic assembly and its associated DAG. Three entities form the basis of tree
representation: parts, part-usages, and occurrences. Each part is defined once with all
users sharing that common definition: Part-usages locate ‘child’ parts. For example, the
‘child’ part ‘filter’ shown in Figure 2.13 is located by two part-usages, A and B in the
coordinate system of a ‘parent’ assembly. Occurrences are instances of part-usages.
Between part-usage and its occurrence is a one-to-many relationship represented with
arcs. Some operations, such as comparison operation and merge operation, can then be

performed on the assembly graph to compare and merge different versions of a design.
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Figure 2.13 An aircraft hydraulic assembly and its assembly graph [Heisserman 1999].

2.3.5 Graph Representation of Design Processes

In an attempt to automate a design or structure synthesis process fully, a framework
which decides what information should be recorded needs to be developed. One of such
frameworks, which is based on the concept of function-behavior-state (FBS), was
proposed [Li and Zhang 1999]. This framework suggests a hybrid graph representation
shown in Figure 2.14, which is constructed on the basis of line graphs with both directed

and undirected subgraphs and both weighted and non-weighted graphs, for various

26



categories of design knowledge based on the FBS architecture, and then a general

algorithm was developed for the hybrid graph-based comparison.

) 3 E' Knowledge base

Legend:
QO Function
/\ Structure
O Constraint
hr: heuristic design rules

Figure 2.14 A hybrid graph representation of the FBS architecture [Li and Zhang 1999].

2.4 Algorithms for Graph Isomorphism

Structure synthesis reduces to graph synthesis. In graph synthesis, the most important
algorithm is graph isomorphism algorithm. Numerous studies have been devoted to this
subject but they have not produced an algorithm having a provable polynomial worst case
that exists for general graphs. Some have developed special polynomial time algorithms
for a restricted class of graphs [Luks 1982; Bodlaender 1990; Babel 1995], but most of
them do not have a polynomial time worst case [Read and Corneil 1977; Babai 1995;
Fortin 1996]. Theoretical unable of a robust algorithm does not discourage the
development of ‘fast’ algorithms for practical problems if they work intuitively.
Therefore, development of algorithms for graph isomorphism becomes business not for
mathematician only. Around the world, graph isomorphism articles are published in a

variety of journals, e.g., Journal of Graph Theory, Journal of Algorithms, SIAM Journal

27



on Computing, Journal of Computer and System Sciences, Information Processing
Letters, Mechanism and Machine Theory, ASME Transactions Journal of Mechanical
Design, IMECH Proceedings, Journal of Chemical Information and Computer Sciences,
and The Journal of Chemical Physics. Among all these algorithms two categories of
algorithms most relevant to the method and algorithm developed in this thesis study are
(1) characteristic polynomial-based algorithms and (2) canonical labeling-based

algorithms.

2.4.1 Characteristic Polynomial-based Algorithms

Harary made a conjecture in 1962 [Harary 1962] that two graphs G; and G, are
isomorphic if their AMs (4, and 4,) have the same graph spectrum (eigenvalues or
characteristic polynomials). However, this conjecture was immediately announced not
true by a counterexample and then more counterexamples were provided [Harary et al.
1971]. In fact, it was already a matter of public record that the conjecture was not true,
since in 1957 Collatz and Sinogowitz displayed two different trees with 8 nodes (see
Figure 2.15) having the same characteristic polynomial, i.e., P(1) = A% - 74° + 94
[Collatz and Sinogowitz 1957]. Though this conjecture is not true for general graphs, it
may be true for a restricted class of graphs [Harary 1962; Harary et al. 1971; Mowshowitz
1972]. In order to adopt the idea of characteristic polynomial to characterize graphs up to
isomorphism, the generalized matrix functions or the immanants [Littlewood 1940] were
used instead of AMs. The generalized matrix functions are defined and applied to AMs
with the properties of all permutations of the symmetric group. The generalized matrix

functions thus imply more information on a graph than the AM. However,
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counterexamples were found for the generalized characteristic polynomial approach

[Turner 1968].
1 4 ) 6
:><: PN 1* < o
307 2 es J6 4 5 Neg
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Figure 2.15 Two 8-vertex non-isomorphic trees having the same graph spectrum [Collatz
and Sinogowitz 1957].

Many publications proposed characteristic polynomials to characterize the graphs
representing various engineering applications [Uicker and Raicu 1975; Yan and Hall
1981, 1982; Spialter 1963, 1964; Balaban and Harary 1971; Kudo et al. 1973]. Uicker
and Raicu [1975] applied the characteristic polynomials of two kinematic chains to
determine if they are isomorphic. They presented a theorem that two kinematic chains
that are isomorphic to each other have identical characteristic polynomials for their
associated AMs. They proved that this is a necessary condition for isomorphism, but has
not been proven a sufficient condition. Unfortunately, the converse of this theorem was
not true since many counterexamples of kinematic chains having same characteristic
polynomial but distinct structure were found. Figure 2.16 describes two distinct kinematic
chains with the same characteristic polynomial, i.e., P(4) = A'* - 164"+ 904% - 41" -

22615+ 24° +2527% - 48 4% - 96 4> + 324
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Figure 2.16 Two non-isomorphic kinematic chains both with the same graph spectrum.

In chemistry, Spialter asserted in 1963 that the characteristic polynomial of the atom
connectivity matrix (closely related to AM) of the graph of a molecule structure was
sufficient for the purposes of chemical documentation [Spialter 1963, 1964]. This
assertion was refuted by Balaban and Harary [1971]. Some time after this refutation, in
the same journal, Kudo [Kudo ef al. 1973] claimed that the original assertion was correct

but no proof was offered.

From all these findings, it is evident that the characteristic polynomial of a graph is an

invariant of the graph but not complete invariants of the graph.

2.4.2 Canonical Labeling-based Algorithms

The canonical label of a graph means that the canonical label of one graph is the same as
the canonical label of another graph if and only if these two graphs are isomorphic.
Partitions are commonly used for generating the canonical label of a graph [Corneil and
Gotlieb 1970; Schmidt and Druffel 1976; Babai et al. 1980; McKay 1981; Mittal 1988].

A partition of a set V is the set of disjoint non-empty subsets of ¥ whose union is V. An
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ordered partition of V is a sequence (V4, V3, ..., ¥;) such that {V}, V>, ..., V;} is a

partition of V. Comneil and Gotlieb [1970] gave an algorithm for canonical labeling:

(1) Partitioning the vertices of a graph into m cells where each cell consists of the vertices
having the same degree; sorting these cells with the degree sequence in a descending
order.

(2) To each vertex ueV, associate a list (a1, a2, ..., am) Where a; is the number of the
vertices in cell i (1 < i < m) which are adjacent to the vertex u; sorting the lists
lexicographically for each cell in a descending order.

(3) If the associated lists of cell i (1 < i < m) are not identical, then splitting cell i into n
new cells such that each cell has the identical lists, and let m <~ m+n-1, go to (2).

(4) If there exists only one vertex for each cell then the refinement is finished; otherwise
go to (5).

(5) Defining the directed quotient graph of the graph based on the refined partition of V.

(6) For each cell i, if it has more than one vertex (but, of course, the lists are identical),
then for a vertex v in cell i, splitting cell i into two cells, one which only contains the
vertex v and one is the cell i without v (a new child for vertex v). Refining the
partition (let m « m+1) by going though step (2) to (5). Then backtracking to the
partition without splitting the cell , splitting the cell i with another vertex and refining
the partition until each vertex in the cell i has been done. If not all directed quotient
graphs generated from refining the cell i are identical, then partitioning the vertices in
the cell i such that two vertices belong to the same subcell if and only if they possess

identical vertex quotient graphs.

31



(7) Generating the terminal quotient graph based on the final partition.

Take the graph in Figure 2.5a as an exaxhplc using the algorithm. The graph in Figure
2.5a is a regular graph with 3 degrees for each vertex. Therefore, from step (1) of the
algorithm, the degree partition of ¥ includes only one cell including 8 vertices. Assume

that vertex 1 is split into a new cell. The division of cells is as follows:

Cell Index Vertices
I 1
II 2,3,4,5,6,7,8

Following step (2), it is found that vertex 1 in cell I has only three connections with the
vertices in cell II and thus, the list is (0, 3). Vertices 2, 5, and 8 in cell II are adjacent to
vertex 1 in cell I and have two connections with the vertices in cell II, respectively.
Therefore, these three vertices have the list (1, 2). Similarly, vertices 3, 4, 6, and 7 in cell
II have the list (0, 3); see Table 2.2a. According to step (3), cell II can be splitted into two
cells as they have two different lists, i.e., the list (1, 2) for vertices 2, 5, and 8 as well as
the list (0, 3) for vertices 3, 4, 6, and 7. Table 2.2b shows the cells. Further partition can
be done based on the cells shown in Table 2.2b. Table 2.2 shows a complete situation of

partition.
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Table 2.2 A case of partitioning procedure.

a. from step (2) of the algorithm b. from step (3), splitting cell Hin a
Cell Index  Vertex List Cell Index Vertex List
I 1 ©,3) I 1 0,0,3)
I 2 (1,2 i 5 (1,2,0)
5 (1,2) 2 (1,1,1)
8 (1,2) 8 (1,1, 1)
3 ©,3)
4 0,3) I 3 0,2,1)
6 (0, 3) 4 0,2, 1)
7 0, 3) 6 0,2,1)
7 0,2,1
c. splitting cell 1 in b d. splitting cell IV in ¢
CellIndex  Vertex List Cell Index Vertex List
I 1 ©,1,2,0) I 1 0,1,2,0,0)
I 5 (1,0,0,2) I 5 (1,0,0,2,0)
I 2 (1,0,1, 1) I 2 (1,0, 1,0, 1)
8 1,0,1,1) 8 (1,0,1,0,1)
v 4 ©,1,0,2) v 4 0,1,0,1, 1)
6 0,1,0,2) 6 0,1,0,1,1)
3 0,0, 1,2) :
7 0,0, 1,2) v 3 0,0,1,1,1)
7 0,0,1,1,1)

This algorithm is based on the conjecture that the final partitioning resulting from the
algorithm is the automorphism partition of V. Unfortunately, this conjecture has been
shown to be not true. However, the backtracking idea has been widely used for uniquely
coding graphs [Shah et al. 1974; Berztiss 1973] and labeling graphs [McKay 1981]. Also,

Schmidt and Druffel [1976] and Mittal [1988] applied the backtracking algorithm for GI
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of two graphs in which the partition is based on the distance matrices of graphs instead of

the degrees of the vertices of graphs.

It is well known that the canonical labeling algorithm Nauty presented by McKay [1981]
is a very powerful and, currently, the preferred method for the GI problem. Conceptually,
Nauty examines every automorphism of a graph and computes a canonical label. This
label is simply the AM of the ‘smallest’ automorphism. The scheme used to define the
smallest automorphism is to construct a label for a graph by concatenating the rows of its
AM to form a binary number, computing the label of every automorphism of the graph,
and then returning the smallest one. Two major operations are performed on partition in
Nauty, i.e., refining a partition and generaﬁng the children of a partition. Indeed, the basic
algorithm in Nauty is basically a partitioning procedure similar to the algorithm discussed
before. Nauty recognizes an automorphism by checking if two distinct final partitions
have the same AM after relabeling the vertices. Therefore, all automorphisms of a graph
can be recognized during partitioning and the smallest one is the canonical label of the
graph. It is noted that once Nauty has found an automorphism, it immediately puts the
automorphism to work to try to prune the search space. This pruning thus evidently

reduces the running time to the results.

In order to reduce the number of reordering, heuristic isomorphism procedures have been
applied by employing properties that are invariant under GI [Unger 1964; Sussenguth
1965; Comeil and Kirkpatrick 1980]. For example, no isomorphism between two

undirected graphs, G and G,, may map vertex u of G) onto vertex v of G if the degree of
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u does not equal the degree of v. This rule has been applied in the above-mentioned

partition algorithms, including in Nauty.

Several studies have been done for uniquely coding or labeling graphs in engineering
such as the min code of kinematic chains [Ambekar and Agrawal 1987], Hamming
number code [Rao and Raju 1991], topological ordering of vertices [Kim et al. 1992],
degree code [Tang et al. 1993], feature code [Zhang and Li 1999], and so on. These

approaches have not provided mathematic proof of their sufficient condition to general

graphs. '

2.4.3 Direct Enumeration of Graphs

Enumeration of all possible graphs or structures given certain conditions is a useful step
in structure synthesis (see discussions in Chapter 1). These graphs or structures must be
non-isomorphic to each other. Indirect approach to structure enumeration means that
enumeration involves a procedure for detection of isomorphic graphs, and direct
approach means that enumeration does not involve any procedure for detection of

isomorphic graphs.

A typical example of using the direct approach is found in structure synthesis of
kinematic chains [Crossley 1964, 1966; Davies and Crossley 1966; Mruthyunjaya 1979;
Tischler et al. 1995; Rao and Deshmukh 2001]. Structural synthesis of all distinct
possible kinematic chains with the specified number of links and degrees of freedom is

useful in order to select the best possible chain for the special task at the conceptual stage
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of design. The method used by Crossley [1964, 1966] is based on intuition to enumerate
kinematic chains, while Davies and Crossley [1966] used a so-called Franke’s notation to
describe kinematic chains. Mruthyunjaya [1979] proposed a transformation of binary
chains to construct all possible chains with required links and degrees of freedom.
Tischler et al. [1995] developed a new method to produce a complete list of chains. These
methods may still produce isomorphic chains, and the test for isomorphism, sometimes, is

needed.

Rao and Deshmukh [2001] proposed a method based on a basic matrix, loose matrix, and
chain matrix to enumerate planar kinematic chains without the need to test isomorphisms.
This method followed the fact that a planar closed kinematic chain can be viewed as a
combination of two structures: the outmost closed polygon (basic loop) and the
remainder. Since the basic loop is formed by removing the remainder from the kinematic
chains, both the basic loop and the remainder would exist as free joints. The ordered free
joints (basic vertices) of the basic loop are represented by distance matrix called basic
matrix while the free joints (loose vertices) of the remainder are represented by distance
matrix called loose matrix. Chain matrix is a sum of basic matrix and loose matrix. All
the possible combinations can be generated by joining any loose vertex to any basic
vertex while keeping the labels of the basic vertices invariant and varying the labels of the
loose ;fenices. The author stated in that paper that the possibility of obtaining isomorphs

is nil, but no proof has been given.
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It is noted that all these direct methods lack mathematic evidence proving that isomorphic
graphs do not exist. Therefore, the results from these methods are often doubted and have

even been proven incorrect.

2.4.4 Evolutionary Computation Approach

Another commonly used method in structure synthesis is the so-called Evolutionary
Algorithms (EA) [Antonsson and Cagan 2001] which are stochastic search methods that
mimic the metaphor of natural biological evolution. Different EA have evolved during
the last 40 Yyears: Genetic Algorithms (GA), Evolutionary Strategies (ES), and
Evolutionary Programming (EP). However, all were inspired by the same principle of
natural evolution. A good introductory éurvey of them can be found in [Fogel 1994].
Among GA, ES, and EP, GA is perhaps the most widely known type of EA today and has
been successfully applied to many science and engineering problems in various domains
[Goldberg 1989]. Basically, the GA starts its evolution with a random generation of a
population of individuals (also denoted as chromosomes), usually represented as strings
or arrays of genes (a gene is the smallest building block of the solution). This population
is submitted to an iterative process (each iteration of the search is called a generation)
composed of three principal steps: evaluation (according to a fitness function), selection
of the best individuals, and application of the genetic operators which include: crossover
(reconfiguration of the chromosomes) and mutation (random change of components of a

chromosome). This process is repeated until a defined termination criterion is reached.
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The graph isomorphism problem could be set up with GAs as follows: mapping
chromosome of two graphs 4 and B is an array of pairing genes. Each gene is a pair of
two values that are the vertex number in 4 and the mapping vertex number in B. N initial
chromosomes may be generated by randomly matching each vertex in 4 with a vertex
having the same degree in B for N times. The correctness ratio of the edges matched
between two graphs could be defined as the fitness function and evaluated for each
chromosome. All chromosomes are put together onto a roulette wheel where each
individual is assigned a sector of the roulette wheel proportional to its correctness ratio.
The offspring for the next generation is selected by spinning N times the wheel. The
higher the correctness ratio of a chromosome is, the higher the probability that the
chromosome is selected. Crossover operator happens with a certain probability for the
selected N chromosomes to partially exchange the mapping information of two
chromosomes and create the new population. Mutation operator on the chromosomes
after crossover is applied with a certain probability for randomly changing the mapping of
a vertex. The mutated N chromosomes are then evaluated with the fitness function and an

iterative process repeats until a termination is reached.

2.5 Discussion and Concluding Remarks

From the previous discussion, it can be concluded that the characteristic polynomial is an
invariant but not complete invariants for isomorphism. This means that having the same
characteristic polynomial is a necessary but not a sufficient condition of isomorphic
graphs. Clearly, algorithms based on the characteristic polynomial may not always work

for general graphs.
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Nauty is a practical canonical labeling-based algorithm which is powerful and provides
the preferred method so far for the GI problem. The reason this method out performs (in
general) the other canonical labeling algorithms is that by concentrating on one graph at a
time, ideas from the realm of group theory can be brought to bear on the problem,
decreasing the running time. Besides, Nauty can provide all automorphisms of a graph.
Roughly, the computational complexity of Nauty is O(mn’), where n is the number of the
vertices of a graph but m is an integer number without a reasonable bound. One of the

other advantages of Nauty is that there is no floating point computing needed.

In addition, few researchers used non-traditional approaches for solving GI problems,
such as Hopfield neural networks [Li and Zhang 1998] and optimization algorithms
[McGregor 1979]. Non-traditional approaches applied so far to GI problems, either neural
networks or optimization algorithms, do not seem intuitively inviting [Fortin 1996].
Theoretically, the approach based on the Hopfield network cannot prove a polynomial
worst case, since it is not possible to guarantee that it will always return the correct result,
while the approach based on optimization algorithms converts a GI problem into a
constraint satisfaction problem, and then uses specially tuned constraint algorithms. The
latter approach does not seem inviting because the constraint satisfaction problem is

knoWn to be NP-hard, and the GI problem could very possibly be in P [Fortin 1996].

The direct approach to the structure synthesis may do well without testing for

isomorphism. However, two reasons limit the application of these kinds of methods. One
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is that these methods have not yet been proven mathematically sufficient to eliminate
isomorphic graphs completely. In fact, sometimes, the test for isomorphism has to be
done. The other reason is that the applications of these methods are limited in mechanical
engineering, in particular in structure synthesis of kinematic chains. The generality of
these methods is very poor. For instance, though the test results of the method given by
Rao and Deshmukh [2001] are correct for kinematic chains up to 10 links with 1 or 2
degree-of-freedom, there is no proof that no isomorphic chain can appear in another case,
say 11 links. In fact, this method of determining both distinct basic loops and their
distinct relabeling of the loose vertices for a given links and degrees of freedom itself

involves the isomorphism problem.

In short, the graph isomorphism problems, as well as their related structure synthesis
problems, have not been satisfactorily solved. Nauty seems to the best method available
today, in the sense that no counterexample has been found and that it has the complexity

of O(mn3 ). Clearly, it is worthwhile to explore a new approach.
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CHAPTER 3
A NEW APPROACH FOR GRAPH ISOMORPHISM: EIGENSYSTEM

3.1 Introduction
Adjacency matrices (AMs) of graphs play a very important role in solving the graph
isomorphism (GI) problem. Many algorithms developed for GI tests start from AMs of
graphs. The proposed approach in this thesis also comes from the analysis of AMs of
graphs. However, unlike all other approaches, the proposed approach transforms graphs
(which are described by their AMs) into their quadric surfaces, and thus converts the

problem of graph isomorphism into the problem of quadric surface comparison.

This chapter presents the fundamentals of this new approach. In particular, Section 3.2
introduces the mathematical background for the quadratic form and quadric surface.
Section 3.3 discusses the relationship between the quadric surface and the graph. Section
3.4 discusses linear transformation on the quadric surface. Section 3.5 discusses the
unique representation of the quadric surface. Section 3.6 gives a summary with

discussion.

41



3.2 Quadratic Form and Quadric Surface
For an nxn real matrix 4 = [a;], i, j = 1, 2, ...n, if matrix 4 is pre-multiplied and post-

multiplied by a row matrix and a column matrix of »n variables xi, x3, ... X, respectively, a

function is given by
a, a, a, It x
a; a4y A, || X2
F= [xl X, X, . "
anl anZ T ann xn
= a,x; +a,x,x ++a,xx+
+a,xx, +a22x22 +-+a,,x,x, + 3.1

.............................................

2
+a,xx, t+a,x,x, ++a,x,

This function is called the quadratic form, and matrix A4 is called the matrix of the
quadratic form. The terms on the principal diagonal of this square array involve the
squares of the variables xi, x2, ... X,; the remaining terms involve all the possible cross-

products.

Letting the function F equal to 1 leads to the following equation:

F= anxl2 +a,x,x, +---+a,x,x +
+ay XX, +apxt +-tay,x,x, +
............................................. (32)
+a,xx, +a,x,x, ++a,x
=]
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Alternatively, Equation (3.2) can be stated as: finding the values for variables x, x3, ... X,
such that the quadratic form can maintain a unity. Geometrically, Equation (3.2) describes
a surface, i.e., a quadric surface. In the three-dimensional space, there are three types of
quadric surfaces: elipsoid, paraboloid, or hyperboloid. Furthermore, function F contains
no linear terms, and thus the sign of the variables does not affect the function. This
implies that any vector X, defined by (x; x2 ... x,) and satisfying Equation (3.2), will have
the same length, regardless of the sign of vector x. Hence, the quadric surface is
symmetrical about its origin. A surface of this kind is referred to as a central quadric
surface. It has either hyperbolic or ellipsoidal characteristics, or both, depending on the

values and the algebraic signs of the coefficients a;; in function F.

For a given matrix, its quadratic form is unique; yet the converse is not true. That is to
say, for a given quadratic form, there may be many matrices corresponding to it. For

example, the following matrices of 4

1 2 31 (11 1}t o0 2|1 -1 3
2 3 1[,{3 3 0[,{4 3 1|,|5 3 3 3.3)
31 2( |52 2|41 2|3 -1 2 ’

all satisfy the quadratic form

F =x! +3x2 +2x +4x,x, + 6x,x, +2x,x,
% (34)

=[x, X3 xa]A X3

X3
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Yet, if the matrix is symmetric, the matrix and the quadratic form will have a one-to-one

correspondence.

3.3 Graph versus Quadric Surface

Considering the AM of a graph as the coefficient matrix A of Equation (3.1), the
quadratic form expressed by Equation (3.1) is thus the quadratic form expressing the
graph. Accordingly, the quadric surface expressed by Equation (3.2) is the quadric surface
expressing the graph. As such, variable x; in Equation (3.1) denotes vertex i in the graph,

and item a;x,x; for i, j =1, 2, ...n represents a connection, with a weight value of a;,

between vertices i and j. Further, assume that x, x;, ... x, are the co-ordinates in a
rectangular co-ordinate system. A graph with n vertices can be transformed into a quadric

surface in the n-dimensional space, where each dimension represents a vertex of the

graph.

Without loss of generality, the graph considered here is the undirected labeled graph (in
Chapter 4, the extension to the directed graph will be given). The AM of an undirected
graph is symmetrical; therefore, a graph and the quadric surface of the graph have a one-

to-one correspondence. The question arises:

Can the graph isomorphism problem be converted into the quadric surface identification

problem?



This thesis study was actually started with trying to answer the above question. The first
challenge in answering this question is whether there is a canonical expression for the
quadric surface corresponding to a graph. This challenge is important, as the AM of a
graph is not invariant (i.e., different labelings can lead to different AMs). This can be
illustrated further using an example. Two isomorphic graphs shown in Figure 2.5 have

different AMs and have different expressions of the quadric surfaces, see Figure 3.1.

01 001 0O01 01001001
1 01 0 00 O0°1 1 001 0100
01 01 001 O 000O0T1O0T11
00101100 I 01000110
1 001 01 020 1 01 001 00
00011010 010114000
001 00101 00110001
1100001 0 1010001 0
F, =2x,x, +2x,%5 +2x,%g + 2, %, + I F, =2x)x} +2x,x; + 2x{x; + 2x;x; +
2x,xg + 22, + 2%, % + 2x,%, + 2x5x5 +2x3x; + 2x3%7 + 2x3x5 +
2x,x¢ +2x5xg + 2x5%, + 2%, %, 2x,x5 +2x3x7 + 2x5xg + 2x7 %5
=1 =1
(a) the graph in Fig. 2.5a (b) the graph in Fig. 2.5b

Figure 3.1 The AMs and their quadric surfaces for the graphs shown in Figure 2.5.

Finding a canonical expression for a quadric surface can be mathematically stated as:

finding a one-to-one mapping G between x;, xa, ...x, and x;,x;,-x,, i.e., X; = 0(x;) for

alli,j=1, 2, ...n. It is clear that when such a mapping exists, the identification of two

quadric surfaces (i.e., examining whether they are actually the same) is easily done using
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their corresponding canonical expressions. The hope to have such a mapping is
enlightened because mathematically, a linear transformation could serve as a mapping
between the variables x, x5, ...x, and x],x;,---x,

ne

3.4 Linear Transformations for the Quadric Surface

In the quadric surface theory, different coordinate reference systems correspond to
different forms of the representation of the same quadric surface, i.e., different matrices 4
(see Equation (3.4) in preceding}discussions). In general, cross product terms, i.e., a;xx;
(##)), are present in the expression of a quadric surface. It corresponds that matrix A4 is not
a diagonal matrix. The principal coordinate reference system is the one upon which the
cross-product terms disappear. According to the quadric surface theory, there are one or
more than one linear transformation that can find the principal coordinate reference

system from any reference system.

Consider the quadratic form F given by Equation (3.1). Applying a linear transformation

to variables xy, x;, ...x, in F leads to

X b4
M=’ (3.5)
x] Ly

in which C is an arbitrary sequence matrix of order n and orthogonal, and yy, y,, ...y, are
new variables. When matrix C is nonsingular (there is always an nonsingular orthogonal
C), the new variables are uniquely related to the original variables x;, x, ...x,, and hence

for given variables x), x3, ...X,, substituting Equation (3.5) into Equation (3.1) results in
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[xl X, xn]z[yl Y o yn}CT (3.6)

and
N i
F=[y ey letad?? =y ey A7 3.7
- 1 yZ yn : - 1 y2 yn : ( . )
Y Y
where
A=CTAC 3.9)

Matrix A in Equation (3.8) is a diagonal one [Guillemin 1949], i.e.,

A 0 0
0 e 0
a=crac=| B (3.9)
0 0 - A4
The quadratic form F expressed in terms of the new variables y1, y2, ...y» I8
» Ao o 0Ty
¥, 0 12 e 0 Y,
F: “es . = Ry . . . . .
by yn]A: b » 2 DI (3.10)
Yn 0 0 - A4y
=4y + Ay, ++ 4.y,
Letting F=1 leads to
F=Ay}+ Ay} ++ Ay =1 (3.11)
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Equation (3.11) is also called the normal expression of the quadric surface. In Equation
(3.11), the principal axes yi1, y», ...y of the quadric surface form a mutually orthogonal

1

1
set, where , TR
Jal ]

surface. Geometrically, the orthogonal matrix C in Equation (3.5) determines the

‘/%_ are called the lengths (or the semiaxes) of the quadric

directions of these semiaxes, while these semiaxes determine the shape of the quadric

surface.

The quadric surface is ellipsoidal when all 4 in Equation (3.11) are positive. When A is
negative the respective semiaxe is imaginary, and hence the respective surface, if
containing both positive 4 and negative A4, is of both the hyperbolic and ellipsoidal
characteristics. When all A are negative, the surface is an imaginary ellipse; it is
customary to include this situation in the classification of completely ellipsoidal surfaces.
It is noted that coincident A in Equation (3.11) indicates a certain degree of the
degeneracy of the corresponding quadric surface. For example, in the three-dimensional
space, the coincidence of two A in the case of an ellipsoid results in an ellipsoid of
revolution, and the coincidence of all three A results in a sphere. Furthermore, the
coincidence of A implies that the directions of the corresponding semiaxes are not unique.
This can be illustrated using Figure 3.2. Figure 3.2a describes an ellipse and its unique
directions of the semiaxes, while Figure 3.2b shows a circle, degenerated from the ellipse
shown in Figure 3.2a, in which the directions of the semiaxes are not unique. This further

implies that if there is no coincident A in Equation (3.9), matrix C is unique; otherwise
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matrix C is not unique. This is because the column vectors of matrix C corresponding to

A are not unique.

(a) An ellipse and its semiaxes (b) A circle and its semiaxes

Figure 3.2 An ellipse, its circle degeneracy, and their semiaxes.

It is noted that the linear transformation does not change the shape of a quadric surface
regardless of whether there are coincident A. This means that the diagonal matrix A in
Equation (3.9) is unique for a given matrix 4. Therefore, the principal axes and the
semiaxes of a quadric surface may be used as a canonical representation of a respective

graph. An example is given in Figure 3.3 for illustrating this point.

(a) (b)

Figure 3.3 Two weighted graphs both with 3 vertices.
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3.5 Canonical Representation of the Quadric Surface

Figures 3.3a and 3.3b show two graphs, respectively, and their isomorphisms are

examined. The quadratic matrices for the graphs in Figure 3.3a and 3.3b are, respectively,

0 1 -1 0 -1 2
A= 1 0 2|, B=|-1 0 1 (3.12)
-1 2 0 2 10

B4 0 1 -1fx
F =[x x, x}]4 xé =[x x ] 10 2 xé (3.13)
| X3 | -1 2 0fx|
=2x]x; —2x/x; +4x,x; =1
(x] 0 -1 2| x/]
F,=[x % x] xg = x5 x]-1 o0 1 x% (3.14)
[ X; | 2 1 0ffxj]
= —2x/x; +4x/x; + 2x7x; =1
The two quadric surfaces have the same normal expression, i.e.,
F, =F, =0.7321y] +2.0000y} —2.7321y} =1 (3.15)
Their linear transformation matrices are, respectively,
x, 0.8881 0.0000 —0.4597 | y, x| [-03251 0.7071 -0.6280| y,

x, [=| 03251 0.7071 0.6280 |y, |, |x;|=| 0.8881 0.0000 —0.4597| y,
X —0.3251 0.7071 -0.6280 | y, X3 0.3251 0.7071  0.6280 | y,
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Equation (3.15) implies that the quadric surface has the hyperbolic as well as ellipsoidal
characteristics because each intersection of the surface along Y3 axis is an ellipse, and
each intersection along Y; or Y, axis is a hyperbola. Figure 3.4 illustrates the quadric

surface and the relationships among the co-ordinate systems Y;Y,Ys, X;X;X;, and
X7X5X5 . It can be seen from this figure that after the linear transformations these two
quadric surfaces F, and F, overlap completely in the Y;Y,Y3 system, and also that there
exists a one-to-one mapping between two co-ordinate systems X[X;X; and X[X7X7,
that is, X] & XJ, X} e X7, and X} ¢ X] . Therefore, the two graphs shown in Figure
3.3 are isomorphic, and further there is only one such a mapping. Note that variables X,
X, and X3 correspond to the vertices of a graph. The one-to-one mapping as shown
implies that there are correspondences in vertices between the two graphs, i.e., A(1) &>
B(2), A(2) & B(3), and A(3) & B(1), where the number within the parenthesis means the

vertex label.

Figure 3.4 The quadric surface of the graphs having all distinct semiaxes.
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There is an exception to the above procedure for graph isomorphism, where some A are
coincident. In this case, the linear transformation is not unique; see Figure 3.2. An
example is given to illustrate this exception. Figure 3.5 shows two isomorphic' weighted
graphs. The quadric surfaces F, and F; correspond to the graphs shown in Figure 3.5a and

3.5b (respectively), and their normal expressions are, corresponding

(D\l L
1 ) 3 1
- G
1
(2 \1(1

(@ (b)

Figure 3.5 Two isomorphic weighted graphs both with 3 vertices.

0 1 -1]x]
Fo=[x x5 x] 1 0 1|x|=2xx,-2x/x} +2x}x] =1 (3.16)
-1 1 0fx
0 -1 Ifx
Fo=[x x5 x]-1 0 1]x}|==2x")+2x%]+2x0x] =1 (3.17)
1 1 0|
r_pr_ 2 2 2 _
Fo=F, =y +y,-2y; =1 (3.18)

From Equation (3.18), the normal quadric surface is a hyperboloid of revolution where
the semiaxes on Y, and Y are the same. The quadric surface and the relationships among

the co-ordinate systems X[ XX}, X7X7Xj, and Y,Y,Y3 are shown in Figure 3.6, where
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only the semiaxis on X is coincident with that on X] (i.., 4(2) «> B(3)). The other two
axes are not coincident. This does not, however, imply that these two graphs are not
isomorphic. In fact, there are two isomorphic mappings for the other two vertices between
the two graphs (in Figure 3.5), that is, A(1) < B(1) and 4(3) & B(2), or A(1) <> B(2) and
AQ3) < B(1). It is clear that further analysis is needed for this situation to determine
whether there is an isomorphic mapping among the other vertices between the two

graphs.

ot

B LA

Figure 3.6 The quadric surface of the graphs having coincident semiaxes.

3.6 Quadric Surface and Eigensystem

The kemnel of the proposed approach is to transform the quadric surfaces of two graphs

into their normal expressions and then to examine whether the quadric surfaces have the
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same semiaxes and whether the original co-ordinate axes of the quadric surfaces are
coincident to each other in the new co-ordinate system. The procedure can also be
considered as comparing diagonal matrices A and linear transformation matrices C in

Equation (3.9) of two graphs.

Since linear transformation matrix C given by Equation (3.9) is a nonsingular orthogonal
one, it has
c'=c (3.19)
Submitting Equation (3.19) into Equation (3.9) yields
A=CACT (3.20)

in which 4 is a symmetrical matrix and A is a diagonal matrix.

Indeed, Equation (3.20) describes an eigendecomposition of 4 where A in diagonal matrix
A is the eigenvalues of A, and the i™ column in the transformation matrix C is the
eigenvector corresponding to eigenvalue 4. When both the eigenvalues and the
corresponding eigenvectors of a matrix are put together this is named the eigensystem of
the matrix. Therefore, the proposed approach for GI can be geometrically interpreted
using the linear transformations of quadric surfaces and realized using the
eigendecomposition of the AMs of graphs. In this sense, the proposed approach is called
the Eigensystem approach. Figure 3.7 illustrates the framework of the Eigensystem

approach for graph isomorphism.
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Graph
(directed & digraph,
weighted & non-weighted)

l Adjacency Matrix

[ Quadric Surface J Geometric Eigendecompostiton
Int tion; |
‘ nterpreta lon; { Mathematic
Normal Expression { Realization
(linear transformation) P

the Semiaxes |<.—._’ Eigenvalues |q¢—/|

Directions 4——:—’ E Eigenvectors |g——
{ Quadric Surface | Of the Semiaxes P g ' Eigensystem

Figure 3.7 The framework of the Eigensystem approach for graph isomorphism.

3.7 Summary and Discussion

The concepts of quadratic forms and quadric surfaces were applied to develop a new
approach called the Eigensystem approach. In this approach, an undirected graph with n
vertices was transformed into a quadric surface in an n-dimensional space, and the
adjacency matrix of the graph becomes the matrix of the quadratic form. This
transformation is unique for a given undirected labeled graph. The problem of solving the
graph isomorphism becomes the problem of comparing quadric surfaces. The general
quadratic form of a graph was further converted into its normal expression. This
conversion process leads to two sets of parameters: the principal reference system and th;e

semiaxes. If two quadric surfaces have different semiaxes (i.e., different geometrical
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shapes), the two graphs, corresponding to the two quadric surfaces, are not isomorphic. If
two quadric surfaces have the same semiaxes, the two graphs may be isomorphic. In this
case, further comparison of the direction of the semiaxes (or the principal axes) between
the two quadric surfaces is neéded. Two graphs are isomorphic if the directions of the
semiaxes of their quadric surfaces are coincident to each other. In other words, two
graphs are isomorphic if their corresponding quadric surfaces have the same geometrical
shape and coincident principal axes. It is noted that the geometrical shape of a quadric
surface is unique and unchangeable during the linear transformations for the normal
expression, and this kind of linear transformation is unique unless there is at least a
semiaxis whose length is coincident with the length of one of the other semiaxes. In the
geometrical sense, the situation can easily be interpreted by the case of degenerating an
ellipsoid into a sphere where the lengths on the three axes are the same, and thus the co-

ordinate system having the normal expression is not unique.

Finding the normal expression of a quadric surface and the linear transformation of the
co-ordinate system from its original expression to its normal expression is equivalent to
eigendecomposing the matrix of the quadric form. The lengths of the semiaxes of the
quadric surface correspond to the eigenvalues of the matri;(, and the directions of their
semiaxes are the eigenvectors corresponding to the eigenvalues. In short, the graph
isomorphism problem could geometrically be interpreted by the quadric surfaces of the

graphs and solved by the comparison of the eigensystems of the graphs.
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The Eigensystem approach goes beyond the characteristic polynomial approach which is
only determined by the eigenvalues of the AM of a graph. The information of the
eigenvectors contributes to a further differentiation of graphs. However, when there are
coincident eigenvalues in two graphs, the corresponding eigenvectors are not unique. In
this case, if the principal axes of two quadric surfaces are coincident, the two
corresponding graphs are isomorphic, but if the principal axes of two quadric surfaces are
not coincident, the two graphs may also be isomorphic. This situation introduces a
challenge. The reminder of the thesis will address the challenge and present algorithms

for implementing the Eigensystem approach.
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CHAPTER 4
ALGORITHM FOR GRAPH ISOMORPHISMS

4.1 Introduction

In Chapter 3, a new approach called the Eigensystem approach was described. In this
approach, a graph is viewed as a quadratic surface, and a canonical representation of the
graph may be developed through the canonical representation of the quadratic surface. In
this chapter, algorithms for implementing this new approach into computer codes are
developed. The presentation of the algoﬁthms will start with simple situations and then
move to more complex situations. In particular, Section 4.2 presents algorithm I for the
graphs having all distinct eigenvalues. Section 4.3 presents algorithm II for the graphs
having part of distinct eigenvalues (at least one distinct eigenvalue). In order to hapdle the
special situation in which all eigenvalues of graphs are coincident, Section 4.4 presents a
new matrix representation for the graph called ‘adjusted adjacency matrix’ (AAM). AAM
ensures that there is at least one distinct eigenvalue. By replacing AM with AAM,
algorithms I and II can then work for all the cases. Section 4.5 introduces the method
based on algorithm I and II to solve the graph isorriorphism (GD problem- for digraphs.
The computational complexity of the Eigensysfem approach is analyzed in Section 46

Finally, Section 4.7 gives the discussion and concluding remarks.
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4.2 Algorithm I — All Eigenvalues Are Distinct

4.2.1 Theorem 1

Without loss of generality, assume that the graph concerned is an undirected, weighted
with positive values, and labeled graph. The adjacency matrix of this kind of graph is thus
a nonnegative symmetrical matrix, and each entry on the principal diagonal of the AM is
zero. Let 4 be the AM of a graph with n vertices, x a nonzero n by 1 vector (a column
vector), and A a scalar, such that 4x=Ax. Then A is an eigenvalue of 4, and x is an
eigenvector of 4 corresponding to A. (4, x) is referred to as an eigenpair of A. The
factorization A=XAX" is the eigendecomposition of A where A=diag(41, 4, ...4,) is the

eigenvalue matrix of A and X =[x, x, ...x,] is the eigenvector matrix of A, respectively.

The collection of both A and X is the eigensystem of A4.

Since 4 is a real symmetrical matrix, all values of eigenpairs are real. When an
eigenvalue is distinct from all other eigenvalues, its normalized eigenvector is unique
[Ortega 1987; Bai et al. 2000; Liu and Lai 2000]. This situation is called a unique

eigenpair.

For the unique eigenpair, the component in each eigenvector has a one-to-one
correspondence with the vertex in a graph. In Chapter 3, the unique eigenvectors were
used for identification of graph isomorphism. Assume that there is a row permutation
matrix P which exchanges the rows of an adjacency matrix 4 between the i and fh. PAPT

thus exchanges both the rows and columns of 4 between the i and j®, which further
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corresponds to the exchange of labels of the i™ vertex and the /™ vertex. It is further noted
that

PAP™=P(XAXT jPT=(PX) A(PX).
Here, PX exchanges the rows of eigenvector matrix X between the i and fh. This means

that all eigenvectors in X have to exchange the components between the i™ and j™, while

the i vertex and the /™ vertex in a graph are exchanged by their labeling.

If two graphs are isomorphic, the eigenvalues of the two respective AMs should be the
same, and the unique eigenvectors corresponding to the distinct eigenvalues should be

equivalent. This leads to the following theorem of the Eigensystem approach:

Theorem 1. Two graphs G, and G, both with distinct eigenvalues, are isomorphic if and
only if they have the same graph spectrum and there exists a mapping @ for the vertices
Jfrom Gy onto G, such that X,=@X,S between the eigenvectors of X, and the eigenvectors

of X», where S is a diagonal matrix with £lon the diagonal entry.

Theorem 1 gives a necessary and sufficient condition for identification of the graph
isomorphism when two graphs have distinct eigenvalues. The following is the proof of

Theorem 1.

Proof of necessity:
Suppose that 4 and B are the AMs of two graphs G, and Gp, respectively, and the two

graphs are isomorphic. The goal of the proof is to lead to the expression X,=@X;S.
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First, according to the definition of graph isomorphism, there should be the following
equation
A= PBP’ 4.1)

where P is an elementary permutation matrix.

Second, the characteristic polynomials of A and B are, respectively,

det(4 — AI) = det(PBP” — AI') = det(PBP” — A(PIP")) = det(P(B - AI)P")

4.2)
= det(P)det(B — AI)det(P") = det(B — Al)

in which P =PI and I = PP" = PIPT.

Equation (4.2) indicates that two isomorphic graphs have the same characteristic

polynomial and, thus, have the same eigenvalues A=A,=A; (graph spectrum).

Third, 4 and B are eigendecomposed into, respectively,

_ T
A=X, AXaT 43)
B=X,AX,
Substituting Equation (4.3) into Equation (4.1) yields
X, AXx," = P(X,4X,")P" = (PX,)A(PX,)" (4.4)

Since each eigenvalue of A is distinct from all other eigenvalues, its corresponding
normalized eigenvector must be unique. This means that both the eigenvector matrices X,

and X, are unique.
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Fourth, the uniqueness of a normalized eigenvector is established upon its scalar, i.e.,
regardless of the direction of the eigenvector. For instance, if there exists a normalized
eigenvector x for a distinct 4 such that

Ax=7x, 4.5)

the vector -x is also an eigenvector corresponding to A. Define a matrix S as follows

s, 0 - 0
0

S=|. S:Z L (4.6)
0 0 s

in which s,,s, ---s, can only be £1. Therefore, if X is the eigenvector matrix related to

Equation (4.5), XS should also be a valid eigenvector matrix. The following deduction

shows this point.

A=(X8)A(XS) = XSASTXT = X(sAST )x”

T

s; 0 - 04 O - 0Js, O - 0
_x s, - 0|0 A4 - 00 5, - O X
0 0 0 s5,J0 0 0 240 0 0 s, @4.7)
stA 0 - 0 A 0 - 0
2 con
-x| 0 oA gX’=X(.)}?.. O lxr
0 s24, 0 0 0 A
=XAX"=4
Hence, from Equation (4.4) there should be
X,=PX;S 4.8)

Take ¢=P. This completes the proof of the necessity of Theorem 1. m
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Proof of sufficiency:

Let two graphs have the same spectrum, i.e., A, = A, and their eigenvector matrices have
the relationship X, = PX,S where P is a fow permutation matrix and S is a sign matrix
defined in Equation (4.6). Matrix 4 can be eigendecomposed into

A=X,AXT =(PX,S)4,(PX,S) = PX,(SA,S7 )XTPT 49)
= PX,A,X]P" = P(X, A, X7 )P" = PBP" '
Equation (4.9) indicates that B can be transformed into the same matrix as A after

performing a row and column permutation. Therefore, graph G, is isomorphic to graph

G,. This completes the proof of sufficiency of Theorem 1. m

According to Theorem 1, the procedure for the identification of graph isomorphism for
each graph having distinct eigenvalues involves two steps: (1) determining if the
spectrums of two graphs are the same, and (2) finding a possible mapping ¢ (permutation
matrix P) between unique eigenvectors of two graphs. The comparison of the spectrums
of two graphs can be performed by sorting the eigenvalues of each spectrum in an
ascending order (or in a descending order), respectively, and then by comparing the
eigenvalues one by one between the two sorted sets. The following is algorithm I-1 which

compares the spectrums of two graphs.

I-1 comparison of the spectrums of two graphs (A, B)

1. calculating eigenvalues A, and A, of matrices 4 and B, respectively

2. sorting A, and A, in an ascending order, e.g., 4. and 4; , respectively
3. A=9

4. fori=l1,2,...n,do
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5. comparing if 4 in A, is equalto A” in 4,

6. if A is not equal to A" then stop with ‘non-isomorphic’
7. if A is equal to 4| then mark both 47 and A" as ‘coincident’
8. A=A

9. retumn ‘same graph spectrum’

Finding a permutation matrix P between two eigenvector matrices is a complicate task.
There are primarily four steps in finding P: sorting, comparing, matching, and

intersecting. These steps are described below.

(1) Sorting the components of the eigenvectors x; in X, xf and -xf in X3, which

correspond to A;, in ascending orders (or in descending orders); this results in x}*, x;’

and -x/°, respectively.

(2) Comparing the sorted components one by one between two pairs of the eigenvectors
(x;%, x;*) and (x}%,-x}?), respectively. If both of these two pairs are different, a kind
of mapping ¢ in Theorem 1 does not exist. Appling Theorem 1, the two graphs are
non-isomorphic.

(3) Finding a mapping between the vertex of graph 4 and the vertex of graph B using the

sorted eigenvectors as a mediate because the component index in the eigenvector

corresponds to the vertex labeling in the graph (see previous discussion). Denote such

a mapping @, related to the pair (x?, x_), and @., related to the pair (x;, - x?).



(4) Intersecting mappings @. and @., respectively, with previous common mapping set
@.., to produce current common mapping @, i.e., &= (¢+ N D) U (. N D). If
common mapping @; is empty, two graphs are non-isomorphic; otherwise, nonempty

mapping &, is permutation matrix P.

The following is algorithm I-2 which finds permutation matrix P or &,:

1-2 finding permutation matrix of two graphs (A, B)

1. calculating eigenvectors X, and X}, of matrices A and B, respectively
2. =1

3. for each distinct eigenvalue 4, i=1, 2,...r (r<n), do

4. sorting eigenvector x; in X, in an ascending order, e.g., X"
. . . . . b
5. sorting eigenvectors x. and —x’ in X} in an ascending order, e.g., x;” and -x}’,
respectively

6. X, =0 4.=0

7. for each component x;* in x;* and x]’ in X}, je[1, n], do
8. if x* # x}’ then break with ¢, =&
9. if x;* =x’_, then mark the j™ component of x/* as the same mapping group as

the (j-1)™ component

10. ¢+ < a mapping pair of the original component indices of x’ and x’ in x;
and x’, respectively

1. x=0,6=0

12.  for each component x’ in x;* and —x;’ in —x’, je[1, n], do

13. if x* #—x]’ then break with ¢. = @
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14. if x;* = x/_, then mark the ™ component of x/° as the same mapping group as
the (j-1)™ component

15. ¢. < a mapping pair of the original component indices of x}* and —x in
x! and —x/, respectively

16. if ¢+ = and @. = J then stop with ‘non-isomorphic’

17 @ =(Dun@g)V(Dung)

18.  if & =D then stop with ‘non-isomorphic’

19. if all eigenvalues are distinct then stop with ‘isomorphic graphs’

20. return @,

The following examples provide an illustration for algorithms I-1 and I-2.

4.2.2 Example: Non-cospectral Graphs

Figure 4.1 illustrates two graphs with 8 vertices.

(b)
Figure 4.1 Two 8-vertex non-isomorphic graphs having different graph spectrums.

According to algorithm I-1, the eiegnvalues of these two graphs are, respectively,
Aq.=diag(-1.6180, 0.6180, 0.6180, -1.6180, -0.6180, 1.6180, -2.5414, 3.5414)

Ap=diag(-1.0000, 1.0000, -0.5616, 0.0000, -2.0000, -2.5616, 1.5616, 3.5616)
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Sorting A, and A, in ascending orders, respectively, yields

A, =diag(-2.5414, -1.6180, -1.6180, -0.6180, 0.6180, 0.6180, 1.6180, 3.5414)

A, =diag(-2.5616, -2.0000, -1.0000, -0.5616, 0.0000, 1.0000, 1.5616, 3.5616)

Comparing A, with 4, one by one concludes that these two graphs have different

spectrums, and thus they are non-isomorphic according to Theorem 1.

4.2.3 Examples: Cospectral Graphs

Figure 4.2 shows a pair of graphs with 12 vertices. Their graph spectrums A, and A, as

well as sorted spectrums 4, and 4, are, respectively,

6 5

(a) (b)

Figure 4.2 Two 12-vertex non-isomorphic cospectral graphs.

A,=diag(0.6350, 0.4150, 1.4142, 1.5713, 1.7668, 0.0000, -0.9815, -1.5382, -1.4142, -
2.0000, 2.7580,-2.6264)
Ap=diag(0.0000, -2.0000, 0.6350, 0.4150, 1.5713, 1.4142, 1.7668, -0.9815, -1.4142, -

1.5382, 2.7580, -2.6264)
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A, = 4, =diag(-2.6264, -2.0000, -1.5382, -1.4142, -0.9815, 0.0000, 0.4150, 0.6350,

1.4142,1.5713, 1.7668, 2.7580)

Since these two graphs are cospectral and have all distinct eigenvalues, algorithm I-2 is to

be applied for further determining whether they are isomorphic. Suppose that x? (x°)

represents the eigenvector of the graph shown in Figure 4.2a (4.2b), corresponding to 4;

in 4, (A;). According to algorithm I-2, part of the procedure of finding the permutation
matrix P is demonstrated in Figure 4.3. The 10" component (-0.3821) in x{ is the

smallest one and thus ordered as the first component in x’;’ ; while the g™ (9“‘) component

(-0.3795) in x’ is the smallest one and thus ordered as the first (second) component in

x’}. Since the first component in x’* is not equal to the first one in x’7, there is no
mapping ¢+ between X7 and x’7. For the same reason, there is also no mapping ¢.
between x’7 and —x"]. This fact, i.e., both the mapping ¢ and @. are empty, results in

@&=J. It implies that there is no permutation matrix P existing between these two graphs.

Therefore, these two graphs are not isomorphic.

Figure 4.4 shows another pair of graphs with 17 vertices. Their graph spectrums A, and

Ap, as well as the ordered spectrums A4, and A4, , are, respectively,
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No. Xy x'l“ A+ X'lb xf No.

1 0.2192 -0.3821 -0.3795 -0.2192 1
2 0.2192 -0.3157 -0.3795 -0.2192 2
3 0.2445 -0.3157 -0.2445 -0.0260 3
4 0.0260 -0.2989 -0.2305 -0.2445 4
5 -0.2600 -0.2600 -0.2192 0.2547 5
6 -0.3157 0.0260 %] -0.2192 -0.2305 6
7 0.2305 0.2192 -0.0260 0.3767 7
8 0.3795 0.2192 0.2547 -0.3795 8
9 -0.3157 0.2305 0.2989 -0.3795 9
10 -0.3821 0.2445 0.3210 0.2989 10
11 -0.2989 0.3795 0.3210 0.3210 11
12 03795 " 0.3795 0.3767 0.3210 12
No. x¢ x'* A. -x? -x>  No.

1 02192 -0.3821 -0.3767 0.2192 1
2 0.2192 -0.3157 -0.3210 0.2192 2
3 0.2445 -0.3157 -0.3210 0.0260 3
4 0.0260 -0.2989 -0.2989 0.2445 4
5 -0.2600 -0.2600 -0.2547 -0.2547 5
6 -0.3157 0.0260 %) 0.0260 0.2305 6
7 0.2305 0.2192 0.2192 -0.3767 7
8 0.3795 0.2192 0.2192 0.3795 8
9 -0.3157 0.2305 0.2305 0.3795 9
10 -0.3821 0.2445 0.2445 -0.2989 10
11 -0.2989 0.3795 0.3795 -0.3210 11
12 03795 — L 0.3795 0.3795 -0.3210 12

Figure 4.3 The procedure of finding mapping @, for the graphs shown in Figure 4.2.

4

s

@ (b)

Figure 4.4 Two isomorphic graphs both with 17 vertices [Randic 1974].
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A~Ap=diag(0.2724, 0.3167, -0.0735, -0.4794, -0.7891, 0.8935, -1.4324, -1.7687, -
2.1954, -2.2543, -2.4962, -2.8303, 1.6312, 1.9591, 2.0818, 3.1644, 4.0000)

A, = 4, =diag(-2.8303, -2.4962, -2.2543, -2.1954, -1.7687, -1.4324, -0.7891, -0.4794, -

0.0735, 0.2724, 0.3167, 0.8935, 1.6312, 1.9591, 2.0818, 3.1644, 4.0000)

These two graphs have the same spectrum and all distinct eigenvalues. Algorithm I-2 is to
be applied to determine whether there is a mapping ¢ between two eigenvector matrices.
Figure 4.5 demonstrates the procedure of finding mapping @,. The 15™ component (—
0.4380) in x{ is the smallest one and thus ordered as the first component in x’}'; while
the 11™ component (—0.4380) in x’ is the smallest one and thus ordered as the first

component in x’7. Since the first component in X7 is equal to the first one in x’7, this

means that there is a mapping between the 15™ component in x; and the 11" component
in x?. Using the same procedure, the one-to-one mappings can be found for the other
components of between x; and x’. These result in a one-to-one mapping ¢.. Note that it

is easy to verify that ¢ is empty. Hence, @ is the same as ¢+, and is shown in Table 4.1.

Further, Figure 4.6 demonstrates the procedure of finding mapping @ in which mapping
¢ has a one-to-one mapping but g is empty. It can be seen that mapping ¢. in Figure
4.6 is the same as mapping @, in Table 4.1. Therefore, the intersection of them leads to

D=y
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4 X, X, 4 o B xllb X:' B
1 0.3118 -0.4380 15 11 -0.4380 0.3306 1
2 0.2754 -0.2828 9 13 -0.2828 0.3118 2
3 0.3239 -0.2816 17 17 -0.2816 0.0050 3
4 0.0050 -0.1973 12 9 -0.1973 -0.1140 4
5 0.2544 -0.1865 16 16 -0.1865 -0.1568 5
6 0.3306 -0.1568 8 5  -0.1568 -0.0581 6
7 -0.0581 -0.1140 13 4 -0.1140 0.3239 7
8 -0.1568 -0.0830 11 8 -0.0830 -0.0830 8
9 -0.2828 -0.0581 7 6 -0.0581 -0.1973 9
10 0.2734 0.0050 4 3 0.0050 0.2734 10
11 -0.0830 0.0237 14 14  0.0237 -0.4380 11
12 -0.1973 0.2544 5 15 0.2544 0.2754 12
13 -0.1140 02734 10 10 0.2734 -0.2828 13
14 0.0237 0.2754 2 12 02754 0.0237 14
15 -0.4380 0.3118 1 2 0.3118 0.2544 15
16 -0.1865 0.3239 3 7 0.3239 -0.1865 16
17 -0.2816 0.3306 6 1 0.3306 -0.2816 17
4 v 4ep - < B
1 0.3118 -0.3306 =+—— -0.3306 1
2 0.2754 -0.3239 -0.3118 2
3 0.3239 -0.3118 -0.0050 3
4 0.0050 -0.2754 0.1140 4
5 0.2544 -0.2734 0.1568 5
6 0.3306 -0.2544 0.0581 6
7 -0.0581 -0.0237 -0.3239 7
8 -0.1568 -0.0050 0.0830 8
9 -0.2828 %) 0.0581 0.1973 9
10 0.2734 0.0830 02734 10
11 -0.0830 0.1140 04380 11
12 -0.1973 0.1568 -0.2754 12
13 -0.1140 0.1865 0.2828 13
14 0.0237 0.1973 -0.0237 14
15 -0.4380 0.2816 -0.2544 15
16 -0.1865 0.2828 0.1865 16
17 -0.2816 0.4380 0.2816 17

Figure 4.5 The procedure of finding mapping &, for the graphs shown in Figure 4.4.
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Table 4.1 Mapping @ for the graphs shown in Figure 4.4.

Graph @;: vertex no. of graph (a) & vertex no. of graph (b)

Figg44a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Fig.44b 2 12 7 3151 6 S 1310 8 9 4 14 11 16 17

The remaining eigenvector pairs (x/, x°) and (x?, —x?) for i=3, 4, ...17 follow the
same procedure, and as a result, @;=¢. Finally, it can be concluded that these two

graphs are isomorphic with the mapping as shown in Table 4.1. The matrix expression of

@y can be generated from Table 4.1, i.e.,

—
<o
1

O O O O O © O O O© © © O © O © O m
C OO0 oL o o0 o0 o Cc oo -0 00
©C O O O = O O O O O O O o o o o o
(=T - Bl B w N < N - BN < BN = B = O k=2 = < < o I - S
C O 0O 0O o O OO0 o =0 0 0 o o o
o O o0 oo oo oo o0 o0 o0 —~=0o 0o
O O CcC oo o 0O 0 0 oo oo o oo
o O o oo~ OO0 0C O COCC OO0 o CCc oo
[= I =T = B - I B = I = R == R = R R e B e i« 2 = B = I =]
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4 ios M % ’
I -0.4309 -0.1698 1
2 -0.3848 -0.0769 2
3 -0.3156 0.4082 3
4 -0.1808 -0.3156 4
5 -0.1698 -0.1284 5
6 -0.1284 0.2557 6
7 -0.0769 0.0030 7
8 0.0030 0.0478 8
9 %) 0.0086 -0.4309 9
10 0.0448 -0.3848 10
11 0.0478 0.2517 11
12 0.1123 0.3680 12
13 0.1870 0.0448 13
14 0.2517 0.1123 14
15 0.2557 0.1870 15
16 0.3680 -0.1808 16
17 0.4082 0.0086 17
4 x i, -xt B
1 0.0769 -0.4082 4 3 -0.4082 0.1698 1
2 -0.3680 -0.3680 2 12 -0.3680 0.0769 2
3 -0.0030 -0.2557 7 6 -0.2557 -0.4082 3
4 -0.4082 -0.2517 15 11 -0.2517 0.3156 4
5 -0.1870 15 -0.1870 0.1284 5
6 0.1698 14 -0.1123 -0.2557 6
7 -0.2557 8 -0.0478 -0.0030 7
8 0.1284 13 -0.0448 -0.0478 8
9 -0.0448 17 -0.0086 0.4309 9
10 0.3848 7  -0.0030 03848 10
11 -0.0478 2 0.0769 -0.2517 11
12 0.4309 5 0.1284 -0.3680 12
13 0.3156 1 0.1698 -0.0448 13
14 -0.1123 16  0.1808 -0.1123 14
15 -0.2517 4 0.3156 -0.1870 15
16 0.1808 10 0.3848 0.1808 16
17 -0.0086 9 0.4309 -0.0086 17

Figure 4.6 The procedure of finding mapping @&, for the graphs shown in Figure 4.4.
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4.2.4 Example: Graphs with Group Mappings
Figure 4.7 gives two graphs both with 10 vertices. They have the same graph spectrum,

ie.,

4
(@

Figure 4.7 Two isomorphic graphs both with 10 vertices.

A4, = 4, =diag(-2.2308, -2.0953, -1.2766, -0.7376, -0.6960, 0.4773, 1.2131, 1.3557,

1.5073, 2.4831)

Figure 4.8 illustrates a part of the procedure of finding permutation matrix P. It is seen
from Figure 4.8 that the components in the eigenvector may be identical. The identical

components are grouped. From Figure 4.8, after comparing the first eigenvector pair
(x{,x!), mapping @, (= @) includes group-to-group mappings, i.e., any element of a
group in x{ can map to any element of the corresponding group in x’. For example, in

mapping ¢+ shown in Figure 4.8, the group-to-group mappings exist between A(S, 6) and
B(5, 7), A9, 10) and B(6, 8), A3, 4) and B(1, 2), and A(7, 8) and B(9, 10). After

comparing the second eigenvector pair (x5, X3), two mappings ¢ and ¢. are obtained.
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By intersecting mapping @, with mappings ¢ and ¢., respectively, @, is found with two
one-to-one mappings (see Table 4.2). Further comparisons conclude that the two

mappings of @, are also valid to the remaining pairs of eigenvectors. Therefore, these two

graphs are isomorphic.

4o R ¢ 8
1 0.4830 -0.5057 2 4 -0.5057 0.1547 1
2 -0.5057 -0.2858 -0.2858 0.1547 2
3 0.1547 -0.2858 } 56 57 { -0.2858 0.4830 3
4 0.1547 -0.2140 -0.2140 -0.5057 4
5 -0.2858 -0.2140 } %10 6,8 { -0.2140 -0.2858 5
6 -0.2858 0.1547 3,4 1,2 0.1547 -0.2140 6
7 0.3226 0.1547 0.1547 -0.2858 7
N AANE - ST G I L
10 -0.2140 0.4830 1 3 0.4830 03226 10
A x I R -xi B
1 0.4830 -0.5057 -0.4830 -0.1547 I
2 -0.5057 -0.2858 -0.3226 -0.1547 2
3 0.1547 -0.2858 -0.3226 -0.4830 3
4 0.1547 -0.2140 -0.1547 . 0.5057 4
5 -0.2858 -0.2140 -0.1547 0.2858 5
6 -0.2858 0.1547 @ 0.2140 0.2140 6
7 0.3226 0.1547 0.2140 0.2858 7
8 0.3226 0.3226 0.2858 0.2140 8
9 -0.2140 0.3226 0.2858 -0.3226 9
10 -0.2140 0.4830 0.5057 -0.3226 10

Figure 4.8 The procedure of finding mapping @, for the graphs shown in Figure 4.7.
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x; R T Xt B

0.0000 -0.5428 3 2 -0.5428 0.5428 1
0.0000 -0.3355 10 6  -0.3355 -0.5428 2
-0.5428 02591 6 5  -0.2591 { 0.0000 3
0.5428 -0.1601 7 10 -0.1601 0.0000 4
0.2591 {0.0000} L2 3.4 {0.0000} -0.2591 5
-0.2591 0.0000) ’ 0.0000 -0.3355 6
-0.1601 0.1601 8 9 0.1601 0.2591 7
0.1601 02591 5 7 0.2591 0.3355 8
0.3355 03355 9 8 0.3355 0.1601 9
-0.3355 0.5428 4 1 0.5428 -0.1601 10

4 x ;L EL, -x -x, B
1 0.0000 -0.5428 3 1 -0.5428 =————— -0.5428 1
2 0.0000 -0.3355 10 8  -0.3355 0.5428 2
3 -0.5428 02591 6 7 -0.2591 0.0000 3
4 0.5428 -0.1601 7 9  -0.1601 0.0000 4
5 0.2591 {0.0000} L2 3.4 {0.0000 0.2591 5
6 -0.2591 0.00002 ’ 0.0000 0.3355 6
7 -0.1601 0.1601 8 10 0.1601 -0.2591 7
8 0.1601 02591 5 5 0.2591 -0.3355 8
9 0.3355 03355 9 8 0.3355 -0.1601 9
10  -0.3355 05428 4 2 0.5428 0.1601 10

Figure 4.8 (Continued)

Table 4.2 Mapping @, for the graphs shown in Figure 4.7.

&, Graph Vertex No.
Figg47a 1 2 3 4 5 6 7 8 9 10
¢|ﬁ¢z+
Figgd7b 3 4 2 1 7 5109 8 6
Figg47a 1 2 3 4 5 6 7 8 9 10
DN @

Fig47b 3 4 1 2 5 7 910 6 8
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4.3 Algorithm II — Part of Eigenvalues Are Distinct

4.3.1 Corollary 1

When an eigenvalue is not distinct from the others, the corresponding eigenvector is not
unique. In this case, two isomorphic graphs may have different eigenvectors for
coincident eigenvalues. Theorem 1 thus cannot be applied to identify the graphs having
coincident eigenvalues. Nevertheless, the necessary condition of Theorem 1 (i.e., having
the same set of eigenvalues and having the equivalent eigenvectors corresponding to
distinct eigenvalues) still applies to the situation where there are coincident eigenvalues.

This discussion results in the following corollary:

Corollary 1. When two graphs G, and G, are isomorphic and they have part of their
eigenvalues distinct, they are isomorphic if they also satisfy the following conditions: (1)
the spectrums of G, and Gy, must be the same, and (2) there exists a one-to-one mapping ¢

such that X, = ¢ X, where X and X, are the subsets of the eigenvectors of G, and Gp,

respectively, corresponding to the subsets of the eigenvalues which are distinct.

Corollary 1 indicates a necessary condition for two isomorphic graphs which have
coincident eigenvalues (partial). There is no guarantee that two graphs G, and G;, which
have part of their eigenvalues distinct, are isomorphic if they meet the necessary
condition. A further checking is necessary. This checking process is to examine whether ¢
(also P) satisfies Equation (4.1) or not. If such a case, these two graphs are isomorphic;
otherwise, they are not isomorphic. Corollary 1 thus requires an algorithm to perform: (1)
comparing eigenvalues, (2) finding mappings, and (3) checking the mappings. The first
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two steps involve algorithm I-1 and I-2, respectively. For the last step, if in mapping @,
there is a one-to-one mapping ¢, the checking procedure simply puts ¢into Equation (4.1)
to see whether ¢ meets the equation. However, if there is no such an one-to-one mapping
existed in all mappings in @,; in other words, all mappings in @&, are a group-to-group
mapping, one has to find whether there is a one-to-one mapping common to all the group-
to-group mappings. If a common one-to-one mapping does not exist, two graphs are not
isomorphic. If a common one-to-one mapping exists, the checking procedure is triggered.

This checking procedure is illustrated as follows.

Among all groups, the group having the least number of vertices is chosen as the first
trial. If a pair of vertices in this group (e.g., vertex u, of graph G, and vertex v, of graph
G}) has a one-to-one relation, elements a. and b, in 4 and B (respectively) are changed
into a,+x and by,+x, respectively. This leads to new matrices 4" and B’, respectively.
Then a recursive process is applied by taking 4" and B’ as two new input matrices until

a final result is obtained. An algorithm below fulfills this checking procedure.

I1-3 checking isomorphism of two graphs (A, B, ®)
1. if mapping @ contains a one-to-one mapping, say ¢, checking if A=¢B¢. If A=¢B¢,
then stop with ‘isomorphic graphs’
for each group-to-group mapping @ in @, do
find the mapping group g in ¢ having the least number of vertices
u, = randomly select one vertex from g on 4 side

for each vertex v, in group g on B side, do

IS T

let u, & v, and modify both the elements of 4 at a., and B at b,,, with a,+x

and by,+x into A" and B’, respectively
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7. comparison of the spectrums of two graphs (A’, B’)

8. @ = finding permutation matrix of two graphs (A’, B’)

9. if part of eigenvalues is coincident then checking permutation matrix of two

graphs (A’, B, @)

Algorithm II-3 is further illustrated by the following examples.

4.3.2 Example: One-to-One Mapping

Both two graphs shown in Figure 2.5 have 8 vertices. They have the same graph

spectrum, i.e.,

A=Ay=diag(-2.4142, -1.7321, -1.0000, -1.0000, 0.4142, 1.0000, 1.7321, 3.0000)

and the corresponding eigenvector matrices are, respectively,

/0.0000
0.3536
-0.5000
X, = | 03536
0.0000
-0.3536
0.5000
-0.3536

-0.6280 0.2604
0.2299  0.0779
0.0000 0.2604

-0.2299 -0.5986
0.6280 0.2604

-0.2299  0.0779
0.0000 0.2604
0.2299 -0.5986

0.2392
-0.6074
0.2392
0.1290
0.2392
-0.6074
0.2392
0.1290
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0.0000
0.3536
0.5000
0.3536
0.0000
-0.3536
-0.5000
-0.3536

0.5000
0.0000
-0.5000
0.0000
0.5000
0.0000
-0.5000
0.0000

0.3251
0.4440
0.0000
-0.4440
-0.3251
-0.4440
0.0000
0.4440

0.3536\

0.3536
0.3536
0.3536
0.3536
0.3536
0.3536
0.3536/




/~0.5000
-0.3536
0.3536
X, = | 0:0000
-0.5000
0.3536
0.0000
\-0.3536

0.0000
-0.2299
0.2299
0.6280
0.0000
-0.2299
-0.6280
0.2299

0.3416
-0.4707
-0.4707

0.3416

0.3416
-0.2124

0.3416
-0.2124

-0.0913
-0.3917
-0.3917
-0.0913
-0.0913

0.5744
-0.0913

0.5744

-0.5000
-0.3536
0.3536
-0.0000
0.5000
0.3536
0.0000
-0.3536

-0.5000 0.0000
0.0000 0.4440
0.0000 -0.4440
0.5000 0.3251

-0.5000  0.0000
0.0000 0.4440
0.5000 -0.3251
0.0000 -0.4440

-0.3536)
-0.3536
-0.3536
-0.3536
-0.3536
-0.3536
-0.3536
-0.3536

Theorem 1 is not suitable for this case because of partially coincident eigenvalues (43 =

A4 = -1.0000). However, according to Corollary 1, the eigenvectors corresponding to the

distinct eigenvalues can still be used for finding possible isomorphic mappings. By

algorithm I-2, part of the results for the comparison of unique eigenvectors between X,

and X; can be obtained as shown in Table 4.3.

Table 4.3 The mapping by comparing unique eigenvectors between X, and X,.
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Based on Table 4.3, a one-to-one mapping is created when mapping @ intersects with

mapping ¢+, which is listed in Table 4.4.

Table 4.4 The one-to-one mapping created with the intersection between ¢+ and @..

Graph &N G
A 1 2 3 4 5 6 7 8
B 7 3 5 6 4 2 1 8

Further study indicates that this one-to-one mapping is also common to mappings &+, g-,
@, and ¢ . Therefore, according to Corollary 1, the checking procedure is needed for this
one-to-one mapping to determine whether it is an isomorphic mapping between two

graphs. It is easy to transform the mapping shown in Table 4.4 into a row permutation,

say @:
[0 000001 0]
00100000
00001000
00000100
?=l0 0010000
01000000
10000000
0000000 1]

One can verify that ¢ satisfies Equation (4.1) in replacement of P. Therefore, these two

graphs are isomorphic.
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4.3.3 Examples: Group-to-Group Mapping
Figure 4.9 shows two graphs, both with 7 vertices. They have the same graph spectrum,

ie.,

(a) (b

Figure 4.9 Two isomorphic graphs with partially coincident eigenvalues.

A=Ap=diag(-2.2470, -2.2470, -0.5550, -0.5550, 0.8019, 0.8019, 4.0000)

and the corresponding eigenvector matrices are, respectively,

/7-0.4097 03433  0.3329 -0.4182 -0.0703  0.5299 -0.3780
02202 -04871 -0.1194 -0.5210 -0.5010 -0.1864 -0.3780.
0.0130  0.5344 -0.4818 -02315 02932 -0.4469 -0.3780
x,=| 02435 04758 04814 02323 03705 03853 -0.3780
04259 03230 -0.1185 05212 -04581 02754 -0.3780
-0.5239  -0.1063  0.3336 04176 -0.1666 -0.5079 -0.3780
\_0.5181 -0.1316 0.5345 -0.0005 05322 -0.0494 -0.3780 )
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[~ 0.1652
0.4588
-0.3694
X,=| 02944
0.5004
0.0717
\_-0.5324

0.5084
-0.2742
-0.3863

0.4461

0.1878
-0.5297

0.0479

0.4920
-0.3527
0.1435
0.0941
-0.3131
0.4700
-0.5339

0.2088
-0.4016
0.5149
-0.5262
0.4332
-0.2545
0.0254

-0.1979
0.2648
0.5281
0.3937

-0.0372

-0.4401

-0.5116

-0.4965
-0.4643
-0.0824
0.3615
0.5332
0.3034
-0.1549

-0.3780 )
-0.3780
-0.3780
-0.3780
-0.3780
-0.3780
-0.3780 )

Only one eigenvalue (4;=4.0000) is distinct from the others. Therefore, only the

eigenvector corresponding to A; can be used to find possible one-to-one mappings

according to Corollary 1. Unfortunately, the comparison of this eigenvector between X,

and X, gives a group-to-group mapping (see the last column of X, and X3), i.e., any vertex

in A might map to any vertex in B. Algorithm II-3 is then applied to this situation.

Suppose that vertex | in 4 has a one-to-one relation with vertex 1 in B if they are

isomorphic. Change the entries a;; and b;; from 0 into 1 (a;;+1). This leads to ‘new’

matrices A" and B’. 4" and B’ are then considered as two ‘new’ matrices to algorithms

I-1, I-2, and II-3, respectively. The eigenvalues and the corresponding eigenvectors of A’

and B’ are, respectively,

A = A} =diag(-2.2470, -2.0302, -0.5550, -0.3052, 0.8019, 1.1592, 4.1763)

("~ 0.0000
0.2319
-0.4179
0.5211
-0.5211
0.4179
\_-0.2319

-0.3999
0.5237
-0.3728
0.0822
0.0822
-0.3728
0.5237

0.0000
-0.4179
-0.5211
-0.2319

0.2319

0.5211

0.4179

0.4518
0.2734
0.0165

-0.5683
-0.5683
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0.0165
0.2734

0.0000
.0.5211
0.2319
0.4179
-0.4179
-0.2319
0.5211

0.6485
-0.1296
-0.4900

0.1812

0.1812
-0.4900
-0.1296

-0.4641
-0.3663
-0.3474
-0.3708
-0.3708
-0.3474
-0.3663 )




/~ 0.0000
0.5211
-0.2319
-0.4179
0.4179
0.2319
-0.5211

They have the same eigenvalues, and they are all distinct. By algorithm I-2, part of the

0.3999
-0.0822
-0.5237

0.3728

0.3728
-0.5237
-0.0822

0.0000
-0.2319
0.4179
-0.5211
0.5211
-0.4179
0.2319

-0.4518

0.5683
-0.2734
-0.0165
-0.0165
-0.2734

0.5683

0.0000
-0.4179
-0.5211
-0.2319

0.2319

0.5211

0.4179

-0.6485
-0.1812
0.1296
0.4900
0.4900
0.1296
-0.1812

-0.4641)
-0.3708
-0.3663
-0.3474
-0.3474
-0.3663
-0.3708 )

results of the comparison of unique eigenvectors between X, and X, can be obtained as

shown in Table 4.5. A common one-to-one mapping is found when investigating all the

mappings listed in Table 4.5. This common one-to-one mapping is shown in Table 4.6. A

matrix can be created based on Table 4.6 and is shown below:

<
I
cC OO0 O O~

,7
(=]

o O O - O O O

-0 O O O O ©
S © O O = O O
O = O O O O O
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Table 4.5 The mapping by comparing unique eigenvectors between X, and X;.

hr+ ¢ P+ o s ¢ P+
AB | A&B | A©B | AoB | AeoB | AoB | Ao B
51711 1 {34422 |6]3]4]1 1
314 ({3 (4|26 |5|7}|S5|7 |6/ |5]4])2
7 3 6 5 4 2 3 4 6 5 2 3 5 7
1 1 (4 ]2 |1 1 {6 5|1 1 {7 (6|23
216 |5 7|57 4}1213}|3 144|276
6 | 5|2 |3 |73 ]|7]|6/|4]|2]|S5]|7]|3]4
4 |2 | 716]6]|5]1 1L {7 (3|1 1 16 |5

Table 4.6 The one-to-one mapping created by investigating all the mappings.

Graph

ey Wal MoV Wal Nal Way. M

2
6

3
4

5

7

6
5

Equation (4.1) is satisfied when ¢greplaces P. Hence, these two graphs are isomorphic.

Figure 4.10 illustrates another example, where two graphs have, respectively, 15 vertices.

This pair of graphs has the same eigenvalues, i.e.,

A=Ay=diag(-3.1642, -3.1642, -1.6180, -1.6180, -0.7616, -0.4142, -0.2271, -0.2271,
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0.6180, 0.6180, 0.6367, 1.3914, 1.3914, 2.4142, 4.1249)




(@)

Figure 4.10 Two non-isomorphic graphs with partially coincident eigenvalues [Yan and

Hall 1982].

There are 5 distinct eigenvalues, i.e., 15=-0.7616, 1=-0.4142, 1,=0.6367, 1,4=2.4142, and

A15=4.1249. The eigenvectors corresponding to these distinct eigenvalues are listed as

follows:

[ 0.0501

0.0501
0.0501
0.2320
0.2320
0.2320
-0.3705
X=| ceerene -0.3705
-0.3705
0.0501
0.0501
0.0501
-0.3705

K -0.3705
-0.3705

0.1562
0.1562
0.1562
0.0000
0.0000
0.0000
-0.3772
-0.3772
-0.3772
-0.1562
-0.1562
-0.1562
0.3772
0.3772

03772 -
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0.3131
0.3131
0.3131
-0.3573
-0.3573
-0.3573
-0.0695
-0.0695
-0.0695
0.3131
0.3131
0.3131
-0.0695
-0.0695
-0.0695

0.3772
0.3772
0.3772
0.0000
0.0000
0.0000
0.1562
0.1562
0.1562
-0.3772
-0.3772
-0.3772
-0.1562
-0.1562
-0.1562

0.2572
0.2572
0.2572
0.3897
0.3897
0.3897
0.1568
0.1568
0.1568
0.2572
0.2572
0.2572
0.1568
0.1568
0.1568

\

J



\

-0.0501
-0.0501
-0.0501
-0.2320
-0.2320
-0.2320
0.3705
0.3705
0.3705
-0.0501
-0.0501
-0.0501
0.3705
0.3705
0.3705

-0.1562
-0.1562
-0.1562
0.0000
0.0000
0.0000
0.3772
0.3772
0.3772
0.1562
0.1562
0.1562
-0.3772
-0.3772
-0.3772

-03131
03131
-0.3131
0.3573
0.3573
0.3573
0.0695
0.0695
0.0695
-0.3131
03131
03131
0.0695
0.0695
0.0695

0.3772
0.3772
03772
0.0000
0.0000
0.0000
0.1562
0.1562
0.1562
-0.3772
-0.3772
-0.3772
-0.1562
-0.1562
-0.1562

-0.2572\

-0.2572
-0.2572
-0.3897
-0.3897
-0.3897
-0.1568
-0.1568
-0.1568
-0.2572
-0.2572
-0.2572
-0.1568
-0.1568

-0.1 568/

Through algorithm I-2, two group-to-group mappings are found and listed in Table 4.7.

Table 4.7 The group-to-group mappings by comparing all the unique eigenvectors.

Dys Graph Group 1 Group 2 Group 3 Group 4 Group §
, A 1,2,3 4,5,6 7,89 10,11,12 13,14,15

s B 1,2,3 4,5,6 7,89 10,11,12  13,14,15
i A 1,2,3 4,5,6 7,8,9 10,11,12  13,14,15

s B 10, 11, 12 4,5,6 13,14, 15 1,2,3 7,89
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Algorithm II-3 is applied here. As each group has the same number of vertices, the first
group (Group 1) is selected as a start to find a possible one-to-one mapping from group-
to-group mappings @;s. Consider rnappiﬁg @/, If it is an isomorphic mapping, each pair
of groups between 4 and B must match. This means that the members in a group in 4
must have a one-to-one relation with the members in the corresponding group in B. For
example, in Group 1, there must be one of the six one-to-one mappings, i.e., 4(1, 2, 3) &
B(1,2,3),4(1,2,3) < B(1, 3,2), A(1, 2, 3) & B(2, 1, 3), A(1, 2, 3) <> B(2, 3, 1), A(1, 2,
3) & B3, 1, 2), or A(1, 2, 3) & B(3, 2, 1). Take member 1 in Group 1 in 4. It must
match one of three members in Group 1 in B, i.e., A4(1) & B(1), A(1) & B(2), or A(1) &
B(3). Suppose that there is a mapping A(1) <> B(1). By changing the entries a;; and by
with a;+1 and by1+1, respectively, two new adjacency matrices A" and B’ are obtained.

These two matrices have the same eigenvalues, i.e.,

A, = 4, =diag(-3.1642, -3.0734, -1.6180, -1.4249, -0.7595, -0.4014, -0.2271, -0.0888,

0.6180, 0.6267, 0.8338, 1.3914, 1.4722, 2.6022, 4.2132)

It can be seen that all eigenvalues are distinct. Through algorithm I-2, their eigenvectors
are compared to find whether there exists a common mapping. The eigenvectors of 4’

and B’ corresponding to the eigenvalue ] = —3.1642 are listed as follows, respectively,

x/'=( 0.0000 0.3010 -0.3010 -0.1242 -0.3929 0.5170 0.1344 -0.2585 0.1242

0.1556  -0.3469 0.1913 0.2338 -0.2126 -0.0212)"
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x; =( 0.0000 0.3010 -0.3010 0.1242 -0.5170 0.3929 -0.1242 0.2585 -0.1344

0.0000 -0.3010 0.3010 0.2585 -0.1242 -0.1344)"

There is not any mapping between x and x, because of different eigenvector

components. This means that the hypothesis 4(1) <> B(1) is not true for isomorphism.
Similarly, mappings A(1) < B(2) and A(1) «& B(3) are also found not true for

isomorphism. Hence, mapping @, between 4 and B is not true for isomorphism. The
same procedure used for @ can be applied to @);. One can lead to the conclusion that
mapping &y; is not true for isomorphism as well. Therefore, the two graphs shown in

Figure 4.10 are not isomorphic.

4.4 Adjusted Adjacency Matrix

As discussed above, once two graphs are represented by two adjacency matrices, their
eigenvalues and eigenvectors corresponding to distinct eigenvalues can be used for
determining whether these two graphs are isomorphic. Therefore, it requires that there
exist at least one distinct eigenvalue (this means that the corresponding eigenvector is
unique) in the AM of a graph. However, this condition is not always satisfied with AM as
the representation of a graph. The solution to this problem is to find a new matrix
representation for graph; this new matrix has a one-to-one relation with a graph, and
hopefully the new matrix is a symmetric one. The new matrix is called the adjusted

adjacency matrix (AAM), which is discussed below.

89



4.4.1 Definition of Adjusted Adjacency Matrix

The adjusted adjacency matrix of a graph with n vertices is defined as

_ |same as the adjacency matrix ;i # j
77 | n—degree(v,) # 0 ;i=j

In fact, the sum of entries with nonzero value at each row of the AM is equal to the
degree of the corresponding vertex, i.e., degree(v;) for vertex v;. Figure 4.11 shows a 5-
vertex graph as well as its AM and AAM. In this graph, vertices 1 and 2 have two

degrees, vertices 3 and 4 have three degrees, and vertex S has four degrees.

y 5 0 0 0 1 1] 3 0 0 1 1]

00101 0 3101

4 01011 01 211

1 10101 101 21

3 1 111 0] 11 1 1 1]
graph AM AAM

Figure 4.11 A S5-vertex graph, the AM and the AAM.

According to this definition, the AAM of a graph is unique and sufficient when
representing the graph. Hence, any two graphs are isomorphic if and only if their AAMs

are equivalent. With the AAM of a graph, there is the following theorem:

Theorem 2. The adjusted adjacency matrix of a graph with n vertices has a unique

eigenvalue n.
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Proof. Consider the matrix

where M is the AAM of a graph. To prove that » is a unique eigenvalue of matrix M, one

needs to show that matrix B has a unique eigenvalue 1.

Matrix B has two properties: (1) every element of the matrix is no less than 0 (; 20),

and (2) the sum of every row/column of the matrix is 1 (Zb,.j =1; j=12,---,n). Matrix

i=l
B with the above properties is called the doubly stochastic matrix, which has a largest
eigenvalue 1 and its corresponding eigenvector [I 1 --- 1] [Liu and Lai 2000].
Because the graph associated with matrix M and matrix B is strongly connected (for each
entry (7, /) in matrix M, there exists an integer k such that the associated graph is
connected by & edges between vertex i and vertex j), matrix B is an irreducible matrix.
More precisely, matrix B is an irreducible nonnegative matrix due to Property (1).
Furthermore, it is known that an irreducible nonnegative matrix with a nonzero principal
diagonal is primitive [Minc 1988]. It is known that an nXn nonnegative primitive matrix,
matrix B in this case, has a unique eigenvalue, i.e., I which is the largest among all the

eigenvalues [Seneta 1981]. Matrix M thus has a unique eigenvalue 7, and its

corresponding eigenvector [I 1 --- 1] . m

91



With AAM, instead of AM, both Theorem 1 and Corollary 1 together with algorithms I-1,
I-2, and II-3 are still applicable for GI detection without any change. This is because they

are built upon the symmetry property of matrices for graphs.

4.4.2 Adjusted Adjacency Matrix versus Adjacency Matrix

AAM ensures that a graph has at least one distinct eigenvalue and thus the Eigensystem
approach can be applied for solving isomorphism problems of general graphs. Besides,
there is a surprising phenomenon from many tests: most pairs of non-isomorphic
cospectral graphs on their AMs have different graph spectrums on their AAMs. This
means that graph isomorphic identification should be conducted more effectively with

AAM than with AM. The following are several examples to demonstrate this point.

Figure 2.15 illustrated a pair of trees which have the same graph spectrum on AM but are

non-isomorphic. The AAMs of this pair of trees are, respectively,

A =diag(1.9452, 4.8390, 6.4932, 7.0000, 7.0000, 7.0000, 7.7226, 8.0000)

A;=diag(2.3542, 4.0000, 7.0000, 7.0000, 7.0000, 7.0000, 7.6458, 8.0000)

It can be seen that the two trees are not isomorphic because they have different graph

spectrums on AAM.

Figure 4.12 shows another example of two cospectral graphs on AM. The AMs of these

two graphs have the same eigenvalues
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Figure 4.12 Two non-isomorphic cospectral graphs on AM.

A=Ap=diag(-2.4998, -1.6893, -1.4142, -0.9472, 0.0000, 0.0000, 0.9472, 1.4142, 1.6893,

2.4998)

!

The eigenvalues of these two graphs based on AAMs are, respectively,

A, =diag(4.8441, 5.7530, 6.0000, 6.8948, 7.4450, 8.0000, 8.7681, 8.8019, 9.4930,

10.0000)

4, =diag(4.8162, 5.7119, 6.1981, 6.7568, 7.5550, 7.7564, 8.7501, 9.2086, 9.2470,

10.0000)

Since A’ and A} are different, these two graphs are not cospectral on AAM. One can

immediately conclude that the two graphs are not isomorphic.
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Figure 4.13 shows another pair of graphs, both with 10 vertices. The two graphs have the

same graph spectrum on AM:

@) (®

Figure 4.13 Two non-isomorphic cospectral graphs on AM.

A;~=Ap=diag(-2.4289, -2.0693, -1.5279, -0.9182, 0.0000, 0.4528, 1.0000, 1.1354, 1.6037,

2.7523)

The eigenvalues of these two graphs based on AAMs are, respectively,

A, =diag(4.3617, 5.1341, 5.9379, 6.7547, 7.5416, 7.6967, 8.5509, 8.7930, 9.2295,

10.0000)

4, =diag(4.3990, 5.0782, 5.8922, 6.8406, 7.4351, 8.0000, 8.2729, 8.7685, 9.3134,

10.0000)

These two graphs are not isomorphic since A/, and A; are different.
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More examples can be seen in Figure 4.14 where each pair of graphs (trees) has the same
graph spectrum on AM but different on AAM as shown in the following. Hence, the

graphs (trees) in each pair are not isomorphic.

(8) (h) ®

Figure 4.14 Six pairs of cospectral graphs (trees) on AM [Harary ez al. 1971].
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Figure 4.14 (Continued)

A=Ay=diag(-2.5616, -1.5616, -1.0000, -1.0000, -1.0000, 1.0000, 1.0000, 1.0000, 1.5616,
2.5616)

A, =diag(4.6385, 6.3820, 6.3820, 6.3820, 6.8326, 8.6180, 8.6180, 8.6180, 9.5289,

10.0000)

A, =diag(4.4384, 5.0000, 7.0000, 7.0000, 7.0000, 8.5616, 9.0000, 9.0000, 9.0000,

10.0000)

A=A~diag(-2.0840, -1.5718, -1.0000, -0.4317, 0.0000, 0.4317, 1.0000, 1.5718, 2.0840)
{A; =diag(4.4574, 5.0936, 6.3820, 6.8551, 7.7892, 8.0000, 8.6180, 8.8047, 9.0000)
A, =diag(4.3563, 5.4277, 6.0000, 6.9108, 8.0000, 8.0000, 8.4679, 8.8373, 9.0000)
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A~A~diag(-1.9032, -1.0000, -1.0000, 0.1939, 1.0000, 2.7093)

{A; =diag(0.0000, 3.0000, 3.0000, 5.0000, 5.0000, 6.0000)

A, =diag(1.2679, 2.0000, 2.5858, 4.7321, 5.4142, 6.0000)

Ag=Ay=A=diag(-2.0000, -1.7785, -1.0000, 0.0000, 0.0000, 1.2892, 3.4893)

4, =diag(1.3820, 1.5858, 2.6972, 3.6180, 4.4142, 6.3028, 7.0000)
A, =diag(1.5858, 1.5858, 2.0000, 4.4142, 4.4142, 6.0000, 7.0000)

4] =diag(0.0000, 2.0000, 4.0000, 4.0000, 4.0000, 6.0000, 7.0000)

A=A=diag(-2.7152, -1.2758, -1.0000, 0.0000, 0.0000, 0.0000, 1.0000, 1.2758, 2.7152)

{AA; =diag(3.1294, 4.8773, 5.5858, 6.0000, 7.4838, 8.0000, 8.4142, 8.5095, 9.0000)

. =diag(3.0437, 4.6972, 5.5612, 7.0000, 7.0000, 7.7454, 8.3028, 8.6498, 9.0000)

A=An=diag(-2.4289, -2.0693, -1.5279, -0.9182, 0.0000, 0.4528, 1.0000, 1.1354, 1.6037,
2.7523)

4; =diag(4.3617, 5.1341, 5.9379, 6.7547, 7.5416, 7.6967, 8.5509, 8.7930, 9.2295,

10.0000)

A, =diag(4.3990, 5.0782, 5.8922, 6.8406, 7.4351, 8.0000, 8.2729, 8.7685, 9.3134,

10.0000)
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This phenomenon is present in all the cases of the cospectral graphs mentioned in
[Collatz and Sinogowitz 1957, Harary et al. 1971]. It is interesting to note that the
converse, i.e., two non-cospectral graphs based on AMs become cospectral graphs based
on AAMs, has not yet happened. However, not all cospectral graphs on AM, which are
not isomorphic, have different graph spectrums on AAM. So far, two examples have been
found to be true. The first example is the one shown in Figure 4.2 where two cospectral

graphs are not isomorphic, but their eigenvalues on AAM are the same, i.c.,

A=A =diag(6.4779, 7.2414, 7.7530, 7.7701, 8.4181, 9.4450, 9.7365, 10.1955, 10.8019,

10.8953, 11.2652, 12.0000)

The second example is the one shown in Figure 4.10. As discussed before, these two

graphs are not isomorphic, but are cospectral on AM. They are also cospectral on AAM.

A, = A, =diag(6.8713, 6.8713, 9.6972, 9.6972, 10.0000, 10.5334, 10.5334, 12.0000,

12.0000, 13.3028, 13.3028, 13.5953, 13.5953, 14.0000, 15.0000)

Despite this fact, it is more effective to have the algorithms based on AAM than to have
the algorithms based on AM for graph isomorphic identification. Besides, AAM ensures
the Eigensystem approach works. The most important advantage of AAM is that it
ensures at least one distinct eigenvalue, which meets the condition of algorithms I-1, 1I-2,

and II-3.
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4.5 Graph Isomorphism for Digraphs

The graph isomorphism problem for a directed graph is discussed here. Both AM and
AAM are symmetrical for an undirected graph, and therefore their eigenvalues and
eigenvectors are real. For a digraph, however, the AM (or AAM) is not symmetrical and
thus the complex number may present in eigenvalues and eigenvectors of the AM (or
AAM). Therefore, the algorithms (I-1, I-2, II-3) developed previously may not be directly
applied for GI detection for digraphs. For an unsymmetrical matrix, there is still the
eigenvalue issue. It can be easily proved that when eigenvalues are distinct, their
corresponding eigenvectors are unique. Therefore, it appears that the three algorithms

developed for the undirected graphs may be adapted to be useful to the directed graph.

For an eigenvalue A (real or complex number), x (real or complex number) is the
eigenvector corresponding to A when the equation Ax=Ax is valid. For A, which is a
diagonal matrix containing all eigenvalues (real and complex number), there is AX=X4,
1e.,

A=XAX! (4.10)
where X contains the eigenvectors (real or complex number) corresponding to A. It is
easy to understand that the definition of graph isomorphism for the undirected graph is
equally applicable to the directed graph. This means that Equation (4.1) should be
satisfied for two isomorphic directed graphs. Now let 4 and B be the AAMs of two
directed graphs, respectively. Suppose that these two graphs have the same graph
spectrum A. This implies the following equation:

B=YAY". (4.11)
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Then substituting Equation (4.10) and Equation (4.11) into Equation (4.1) leads to

XAX'=PYAY'PT (4.12)

Noticing P’=P™' and (PY)'=Y"'P", Equation (4.12) can be further written as

XAX'=(P)APY)! 4.13)

If each eigenvalue of A is distinct from other eigenvalues of A, similar with Theorem 1,

Equation (4.13) satisfies if and only if there is

X=PYS (4.14)
where S is a sign matrix
s, 0 0
0 0 s |

where the diagonal entries of S are either £1, or +i. In fact, substituting both Equation

(4.14) and Equation (4.15) into Equation (4.10) leads to
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A=PYSA(PYS)" = PYSAS™'Y"' P = PY(SAS™ )y~ P!

ss 0 -« 04 O - O)% O -~ O
=PYO s, == 00 4 - 0 0 %2 e 0 yp
[0 0 s,J0 0 -« 4,0 0 - ¥

(4, 0 0
0

=PY| . 2’ Y'P' =P(Y AY™ )P = PBPT
(0 0 A,

The above discussion actually implies: Theorem 1 is valid to the directed graph subject to
the condition that the S matrix may contain +1, or i. It can be further verified that the
three algorithms (I-1, I-2, II-3) which are applicable to the undirected graph are valid to

the directed graph provided that the following changes are made:

(1) Sorting eigenvalues or eigenvectors in an ascending order with (first) their real part

and (then) their complex part.
(2) For each eigenvector pair (x?,x’), finding the possible mappings by comparing not

only (x{,x’) and (x¢,—x’), but also (x{,x’ -i) and (x7,—x} -i).

For example, Figure 4.15 describes two weighted digraphs both with 6 vertices. Their

AAM are defined as
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Figure 4.15 Two weighted digraphs both with 6 vertices.
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The eigenvalues and the corresponding eigenvectors are, respectively,

(0.3349

0.7316
0.3739
-0.2814
-0.2423

\-0.2736

-0.0330
0.7727
-0.1109
0.1753
-0.5852
0.1279

-0.2122-0.0279i
-0.4289-0.1391i
0.5545
-0.1017-0.4504i
0.1727+0.4407i
-0.0481+0.0627i
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-0.2122+0.0279i
-0.4289+0.1391i1
0.5545
-0.1017+0.45041
0.1727-0.4407i
-0.0481-0.0627i

0.0372
-0.2359
0.1882
0.2940
-0.8848
0.1956

=, O O O N

A=Ap=diag(-1.0383, 2.3589, 3.7915-1.4728i, 3.7915+1.4728i, 5.5333, 8.5631)

-0.2822"
-0.6353
-0.4525
-0.3221
-0.3566
-0.2847




(02814 0.1753  -0.1017-0.4504i -0.1017+0.4504i 0.2940 -0.3221")
0.3349 -0.0330 -0.2122-0.0279i -0.2122+0.0279i 0.0372 -0.2822
-0.2423 -0.5852  0.1727+0.4407i  0.1727-0.4407i -0.8848 -0.3566

X=
i 0.7316 0.7727  -0.4289-0.1391i -0.4289+0.1391i -0.2359 -0.6353
-0.2736  0.1279 -0.0481+0.0627i -0.0481-0.06271 0.1956 -0.2847
q 0.3739 -0.1109 0.5545 0.5545 0.1882 -0.4525 )

It can be found that these two digraphs have the same graph spectrum, and then
eigenvalues are distinct. Further, their corresponding eigenvectors (X, and X;) are

equivalent. The following mapping can be found by algorithm I-2, as shown in Table 4.8.

Table 4.8 The one-to-one mapping between two weighted digraphs.

Graph [/ aY MaY Mal MaY Wal
A 1 2 3 4 5 6
B 2 4 6 1 3 5

Therefore, these two weighted digraphs are isomorphic.

4.6 Complexity Analysis

From algorithms I-1 and I-2, the time complexity for a single detecting cycle is dominated
by (1) the eigendecomposition of AAM, (2) comparison of unique eigenvectors between
graphs, and (3) the validations of vertex mappings. The time cost for the comparison of
unique eigenpairs of two graphs is mainly for sorting eigenvalues and sorting each
eigenvector. The time complexity of algorithms I-1 and I-2 can be analyzed, as shown in

Table 4.9 and 4.10, respectively. It is noted that for an n-size sorting problem, O(nign)
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runs are needed [Cormen et al. 2001]. For an n-size eigendecomposition problem, O(x®)

runs are needed [Bai et al. 2000].

Table 4.9 The time complexity of algorithm I-1.

Step No. Time Complexity Notes

1 T = O(n) Eigendecomposing AAMs
2 T, = O(nlgn) Sorting eigenvalues

4-8 Tss=0(n) Comparing eigenvalues
Total Tr1 = O + nlgn + n)

Table 4.10 The time complexity of algorithm I-2.

Step No. Time Complexity " Notes

1 Ti =0 Eigendecomposing AAMs
3 my(T4s + T7q5 + Ty9) m, is n in the worst case
4-5 Tas = O(nlgn) Sorting eigenvectors

7-15 T7.5 =0(n) Comparing eigenvectors
17 Ti7=O0(my) my is 2" in the worst case
Total Tr2 = O(n® + mi(nlgn + n + my))

Hence, in the worst case, the computational complexities for algorithms I-1 and I-2 are
O(r’) and O(n® + n2"), respectively. However, the practical computational complexity of
these algorithms in most cases is much better than in the worst case. Actually, the
application of some rules, which will be discussed in Chapter 5, can prune the searching

of possible mappings and thus speed the performance of these algorithms.
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When there are group-to-group vertex mappings for the graphs having coincident
eigenvalues, a recursive process has to be done, which may consist of several detecting
cycles, as described in algorithm II-3. Hencé, the time complexity of algorithm II-3 can be
written as

Ta = m3 (T + Tr)
where m; is an integer without any reasonable bound, i.e., T3 = O(msn® + msmy(nlgn + n

+my)).

4.7 Discussion and Concluding Remarks

The algorithms in the Eigensystem approach for graph isomorphism were introduced in
this chapter. Since the eigenvector corresponding to a distinct eigenvalue is unique, both
eigenvalues and unique eigenvectors can be applied for determining if two graphs are
isomorphic. It was proven that two graphs, each of which has all distinct eigenvalues, are
isomorphic if and only if they have the same graph spectrum and their corresponding
eigenvector matrices are equivalent; algorithms I-1 and I-2 were developed for this case.
If coincident eigenvalues exist in graph spectrums, only the eigenvectors corresponding to
distinct eigenvalues can be used for finding possible one-to-one mappings of the vertices
between two graphs. If not one-to-one but group-to-group mappings exist, a checking
program has to be performed to find possible one-to-one mappings; this program is

algorithm II-3. The implementation of these algorithms can be seen in Applendix A.

The Eigensystem approach requires that the adjacency matrix of a graph must have at

least one distinct eigenvalue. A new matrix called adjusted adjacency matrix (AAM) was
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proposed for representing a graph. AAM ensures at least one distinct eigenvalue, which
meets the condition of Corollary 1. It was also found that use of AAM for representing
graphs and conducting graph isomorphism detections would be more efficient than use of
AM. In particular, it has been found that cospectral graphs in terms of AM are likely not
cospectral in terms of AAM. This interesting point has further led to the finding that
cospectral in terms of AM but non-isomorphic graphs are not cospectral in terms of
AAM. This means that the graph isomorphic detection based on AAM would need less

computation time.

In general, the AAM of a diagraph is an unsymmetrical matrix. Complex numbers may
exist in eigenvalues and in the corresponding eigenvectors. It has been shown that with
modifications, algorithms (I-1, I-2, II-3) developed for the undirected graph can be
applied to the directed graph. It is noted that most of the algorithms for graph
isomorphism published for engineering and science application have not dealt with the

digraph.

The computational complexity of the Eigensystem approach has been analyzed. It has
been shown that this approach does not render to an algorithm with a polynomial time. In
the worst case, the approach reaches the complexity of exponential time. This result is the
same as that achieved by the Nauty program. However, in practice, the use of AAM could
greatly reduce the computational time, as the co-spectra on AM is (highly) likely not the
co-spectra on AAM. Interestly, it is noted from the present study that such a likelihood

could go with 80-90%.
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CHAPTER 5
GRAPH COUNTING AND STRUCTURE ENUMERATION

5.1 Introduction

The Eigensystem approach (Chapter 3) with its algorithms (Chapter 4) has so far
provided a tool for solving the second fundamental problem raised in Chapter 1. The first
and third fundamental problems raised in Chapter 1 are related to the graph counting
problem, in particular (1) the counting of two isomorphic graphs and (2) the counting of
automorphisms (for one graph). The graph counting essentially explores the property of
the symmetry of a graph. In this chapter, the Eigensystem approach to the graph counting
problem is studied. In particular, Section 5.2 discusses the graph counting problem.
Section 5.3 discusses how to uniquely label the graph based on the solution proposed for
the graph counting problem. It is important to note that the canonical labeling is a key
step towards an effective and efficient method for computer storage of graphs, and thus it
is a foundation for addressing the first and third fundamental problems (see Chapter 1).
Section 5.4 discusses the structure enumeration under certain constraints. Finally, a

concluding remark is given in Section 5.5.

5.2 The Graph Counting Problem

The basic notion of the graph counting problem and the basic idea to solve this problem

are first discussed here. It is known from Chapter 4 that two graphs, represented by their
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adjacency matrices 4 and B, are isomorphic if there is a row permutation matrix P such
that Equation (4.1) is satisfied. The graph counting problem is to find all different P
matrices that satisfy Equation (4.1). The number of different P matrices presents the
degree of symmetry of two graphs. For example, the two graphs shown in Figure 4.7 are
isomorphic, as discussed in Chapter 4, and they have two isomorphic mappings. It can be
intuitively observed from the graph shown in Figure 4.7b that the graph is left-right
symmetrical along the pattern enclosed by the vertex set (1, 2, 3, 4, 5, 7). Another pair of
isomorphic graphs shown in Figure 4.9 has 14 isomorphisms; the number of
isomorphisms for this graph is much higher than that of the graph shown in Figure 4.7 (2
in this case). The reason is easy to understand; i.e., the former has a higher degree of the

symmetry than the latter.

The counting of automorphisms describes the symmetry of a graph. Its mathematical

definition can be stated as follows (see also Chapter 2):

A=P4P" (.1
where 4 is the adjacency matrix (or the adjusted adjacency matrix) of a graph and P is a
row permutation matrix. There could be more than one P matrix that satisfies the above

equation. The number of such P matrices is the number of automorphisms of a graph.

The Eigensystem approach (i.e., algorithms I-1, I-2, and II-3 discussed in Chapter 4) can
be applied for solving the graph counting problem if the control flow of algorithm II-3 is

changed to: the search for a one-to-one mapping continues until all possible mappings
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between two graphs are examined. Algorithm III-4 modifies algorithm II-3, as mentioned,

and is described in the following:

111-4 counting permutation matrices of two graphs (A, B, ®)

1. for each mapping g€ @, do
if mapping @is a one-to-one mapping
if A=¢B¢ then ¥ « ¢

else

2
3
4
5. finding the mapping group g in ¢ having the least number of vertices
6 u, = randomly select one member from g on A4 side

7 for each member v, in group g on B side, do

8 suppose that 4 and B are isomorphic with u, <> v, by modifying both the

elements of 4 at a,, and B at by, with a,+x and by,+x into A" and B’,

respectively
9. comparison of the spectrums of two graphs (A’, B)
10. &’ = finding permutation matrix of two graphs (A’, B')
11. ¥'= counting permutation matrices of two graphs (A’, B', ®’)

5.2.1 Counting of Isomorphisms

Counting of isomorphisms can be illustrated with the following example using algorithms
I-1, I-2, and III-4. Two isomorphic graphs are constructed as follows. Figure 5.1a shows a
30-vertex graph which is a “master” graph. Figures 5.1b and S5.1c show two 28-vertex
graphs, which are derived from the master graph by removing two respective vertices and
their edges, respectively. The two 28-vertex graphs have the same graph spectrum on

AAMs, ie.,
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Figure 5.1 An example of counting of isomorphisms.

Ap=A~diag(22.1442, 23.0000, 23.0000, 23.0000, 23.0000, 23.0000, 23.1864, 23.1864,
23.5858, 24.6784, 25.0000, 25.0000, 25.0000, 25.0000, 25.0000, 25.0000,
25.4707, 25.4707, 26.4142, 27.0000, 27.0000, 27.0000, 27.0000, 27.0000,

27.1774, 27.3429, 27.3429, 28.0000)

There are six distinct eigenvalues for each of the two graphs shown in Figure 5.1b and
5.1c, i.e., 41, Ao, Aio, A19, A2s, and Apg. The eigenvectors of the two graphs corresponding
to these distinct eigenvalues are shown in Figure 5.2. The mappings for each pair of
unique eigenvectors are created and listed in Figure 5.3. Based on the mappings shown in

Figure 5.3, the common mappings, i.e., @3, are created and listed in Table 5.1.
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/-0.0933
0.1798
-0.2101
0.2101
-0.2101
0.1798
-0.0933
0.1798
-0.2101
0.2101
202101
0.2101
-0.2101
0.2101
-0.1798
0.2101
-0.2101
0.2101
-0.1798
0.0933
-0.1798
0.2101
-0.2101
0.1798
-0.2101
0.2101

K—O.l798

0.0933

Figure 5.2 The ei genvecfors corresponding to the distinct eigenvalues.

0.2380
-0.2873
0.0841
0.0841
0.0841
-0.2873
0.2380
-0.2873
0.0841
0.0841
0.0841
0.0841
0.0841
0.0841
-0.2873
0.0841
0.0841
0.0841
-0.2873
0.2380
-0.2873
0.0841
0.0841
-0.2873
0.0841
0.0841
-0.2873
0.2380

-0.3166
0.2092
0.1247

-0.1247
0.1247
0.2092

-0.3166
0.2092
0.1247

-0.1247
0.1247

-0.1247
0.1247

-0.1247

-0.2092

-0.1247
0.1247

-0.1247

-0.2092
0.3166

-0.2092

-0.1247
0.1247
0.2092
0.1247

-0.1247

-0.2092
0.3166
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-0.3971
-0.0822
0.1404
0.1404
0.1404
-0.0822
-0.3971
-0.0822
0.1404
0.1404
0.1404
0.1404
0.1404
0.1404
-0.0822
0.1404
0.1404
0.1404
-0.0822
-0.3971
-0.0822
0.1404
0.1404
-0.0822
0.1404
0.1404
-0.0822
-0.3971

-0.3755
-0.2211
-0.0529
0.0529
-0.0529
-0.2211
-0.3755
-0.2211
-0.0529
0.0529
-0.0529
0.0529
-0.0529
0.0529
0.2211
0.0529
-0.0529
0.0529
0.2211
0.3755
0.2211
0.0529
-0.0529
-0.2211
-0.0529
0.0529
0.2211
0.3755

0.1890°
0.1890
0.1890
0.1890
0.1890
0.1890
0.1890
0.1890
0.1890
0.1890
0.1890
0.1890
0.1890
0.1890
0.1890
0.1890
0.1890
0.1890
0.1890
0.1890
0.1890
0.1890
0.1890
0.1890
0.1890
0.1890

0.189(?/
0.189




-0.0933
0.1798
-0.2101
0.2101
-0.2101
0.2101
-0.2101
0.1798
-0.2101
0.2101
-0.1798
0.2101
-0.2101
0.2101
-0.1798
0.0933
-0.1798
0.2101
-0.2101
0.1798
-0.0933
0.1798
-0.2101
0.2101
-0.2101
0.2101
-0.1798
0.0933

0.2380
-0.2873
0.0841
0.0841
0.0841
0.0841
0.0841
-0.2873
0.0841
0.0841
-0.2873
0.0841
0.0841
0.0841
-0.2873
0.2380
-0.2873
0.0841
0.0841
-0.2873
0.2380
-0.2873
0.0841
0.0841
0.0841
0.0841
-0.2873
0.2380

-0.3166 0.3971
0.2092 0.0822
0.1247 -0.1404

-0.1247 -0.1404
0.1247 -0.1404

-0.1247 -0.1404
0.1247 -0.1404
0.2092 0.0822
0.1247 -0.1404

-0.1247 -0.1404

-0.2092 0.0822

-0.1247 -0.1404
0.1247 -0.1404

-0.1247 -0.1404

-0.2092 0.0822
0.3166 0.3971

-0.2092 0.0822

-0.1247 -0.1404
0.1247 -0.1404
0.2092 0.0822

-0.3166 0.3971
0.2092 0.0822
0.1247 -0.1404

-0.1247 -0.1404
0.1247 -0.1404

-0.1247 -0.1404

-0.2092 0.0822
0.3166 0.3971
Figure 5.2 (Continued)
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-0.3755
-0.2211
-0.0529
0.0529
-0.0529
0.0529
-0.0529
-0.2211
-0.0529
0.0529
0.2211
0.0529
-0.0529
0.0529
0.2211
0.3755
0.2211
0.0529
-0.0529
-0.2211
-0.3755
-0.2211
-0.0529
0.0529
-0.0529
0.0529
0.2211
0.3755

-0.1890"\
-0.1890
-0.1890
-0.1890
-0.1890
-0.1890
-0.1890
-0.1890
-0.1890
-0.1890
-0.1890
-0.1890
-0.1890
-0.1890
-0.1890
-0.1890
-0.1890
-0.1890
-0.1890
-0.1890
-0.1890
-0.1890
-0.1890
-0.1890
-0.1890
-0.1890
-0.1890
-0.189




A+ e Bro+ o | o | B Pos+ Pss. P
BoC | BeoC | BeoC BoC |l BoC BoC | BoC | BoC | BeoC
313 (34122 1{1]1]16 Ijrirt1rt1j1ef1 1
S{5|5]6 (6|8 7121 7|28 711617 217 (2822
9| 7]|9f10] 8|11 IS| 11|15 2 2002121221133
1m{9f{1rj12{i1s}is 19115419 28128 6 | 8|6 |15] 4] 4
1313113141917 21117 {2120 212 (828|175 |5
1719 (17]18]21]20 2712727 |22 6 | 8 |24(22(24|27| 6 | 6
231231232424 |22 414|143 8 |11 3|3 |3 717
251251252627 |27 10 10| 5 15115 5| 515 8| 8
I5{11|15] 2 3 1211012 7 1917 9 9 (109109
19|15|19{8 {4/ 4 1411214 9 2112011 9 |11{12]10] 10
21 {17 21]20 5 1611411613 24122113 1131133141111
2712712712219} 6 18 (18 [ 18 | 19 27 (27|17 |19 |17} 18 |12 | 12
I {1 |1 ]l6|10} 7 2212412223 3 1231231232413 (13
71217 (2811119 26 1261|2625 4 | 4 |25(125|25]26| 14| 14
20(16 (201 |12]10 31313 @ 155|441 4]3]15]15
28 28 (28211312 S|5]|5 9 (6 |10j10]|10] 5 |16 16
2 12 (2]11]14]13 9 9|10 107 [12]12]12 17 | 17
6| 8 1516 | 14 11y 9 |1fi2 119 | 14114114 9 | 18} 18

20 8 |17 (17 )18 13 (13 (1314 121016 |16 [ 16 | 13 19‘ 19
24122 (2427|1819 17119 |17 | 18 1311218 18{18 (19|20 20
4 14|4]3]22|23 23 (23 |23|24 14 |13 22]22|22]23 21121
106 [10|5 23|24 25125125126 16 | 14 | 26 | 26 | 26 | 25 { 22 | 22
121012 25 | 25 2 11 17 | 18 [ 1S | 1515} 2 | 23| 23
141214 26 | 26 6|8 |6115 18(19|19]19(19| 8 [24 |24
1611411611311 |1 20 8 |17 22123121121 )21}20)25]25
18 (18|18 (19 7 |16 24 122 |24 |27 23 |24 |27 (2727|2226 |26
22 124 (22(23]20]21 20(16 (20| 1 25 (25(20]20]20] 1|27 |27
2612626252828 28 | 28 | 28 | 21 26 126 |28 )28 |28)21)28) 28

Figure 5.3 The mappings created for each pair of unique eigenvectors.
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Table 5.1 Common mappings @ to the unique eigenvectors.

@  Operation Result
i+ B h+ L o1
D (DG ( DN B)= D NP = (s O D) U (AN ) A+ U A
Do (DN o) V(DN dho) = (B+ N drow) U (A- N do) h+ U B
Dy (PN G U (ProN do)=PioN o =(h+ N o) U (AN pe)  h+ U G
Pys (P19 N s) U (DPrg N as) = (dr+ O ase) U (G- N s.) A+ U A
Pz DPos N\ P =(h1+ N ) U ($1- N ¢hg) A+ U o1

Two common group-to-group mappings, i.e., ¢+ and @., are obtained from Table 5.1.
According to the definition of the graph counting problem, one needs to find all one-to-
one mappings (if any) from these two group-to-group mappings. In the following, the
procedure (using algorithms I, II, and IIT) for identifying only one one-to-one mapping
from ¢ is demonstrated (the procedure for getting the other one-to-one mappings is

similar).

Figure 5.4 illustrates the iterative procedure for searching for a one-to-one mapping from
&+ (see the first column). Both B(1, 7) & C(1, 21) and B(20, 28) « C(16, 28) groups in
&+ have the least number of vertices (two). One of these two groups, e.g., B(1, 7) & C(1,
21) in this case, is thus selected as a start. Assume that B(1) <> C(1) and change the
entries by and ¢ of the AAMs of these two graphs into b;; = b;; + 1 and ¢; = ¢q1 +1.
The two modified AAMs are regarded as two new inputs to algorithms I-1 and I-2. Then

some new common mappings could be created, such as the mapping shown in the second
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column in Figure 5.4. Choose the group B(19, 21) <> C(15, 17) from the second column
as an example and start with B(19) &> C(15) in particular. With a new iterative loop, a
new mapping is created as shown in the third column in Figure 5.4. Likewise, choose the
group B(S, 9) & C(5, 19) from the third column as an example and start with B(S) &
C(5) in particular. This results in a new common mapping shown in the fourth column in
Figure 5.4. Likewise, choose the group B(2, 24) <> C(2, 8) from the fourth column as an
example and start with B(2) <> C(2) in particular. Then a new common mapping is
created in the fifth column in Figure 5.4. There is only one group in this new common
mapping. Two mappings are possible in this group, ie., {B(10) <& C(12), B(16) &
C(26)} and {B(10) & C(26), B(16) «> C(12)}. Start with B(10) <> C(12) in particular.
No common mapping can be found in the sixth column in Figure 5.4. Then, go back to
the fifth column in Figure 5.4 and consider B(10) <> C(26). This results in a final
common one-to-one mapping, as shown in the seventh column in Figure 5.4. The whole
procedure is a depth-first backtracking search. The seventh column in Figure 5.4 lists the
one-to-one mapping which was first obtained through this backtracking search. There are
in total 32 isomorphic mappings between the two graphs which can be found, and they

are listed in Table 5.2.
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1 3 4 6 7
[ Let1o1 |[Let19 15| Let565 Let2 2 | 10 | Let 10 & 26

BoC B C BoC BeC BoC 12 BoC
3 st s s | s o] o1 9 | 19
5 o 139195555 515
9 B9 |B|17|B|17]|13 17 | 13
1| 91172317 {23|13]23] 13] 23 13 | 23

13|13 [ 3 3 13|23 23 23
17 119 | 11 23 3 3 3 3

23 123 1230 9 |11 11 [ 25 | 11 | 25 11 | 25
25 |25 | 25 | 25 | 25 |25 | 25| 7 | 25 | 7 25 | 7
s|ulwfs|a|wr|a||a]nr 21 | 17
19 |15 |21 (17|19 |15] 1915 19]15 19 | 15
20017 s s |unlis|innlis|n 15 | 11
27 127 27 |27 |27 0272727 27| 27 27 | 27
1 |1 |7 laf7lal7]2an) 7|2 7 | 21

7 12|11 1 1|1 |1 1
20 | 16 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | @ [ 28 | 28
28 | 28 | 20 | 16 | 20 | 16 | 20 | 16 | 20 | 16 2 | 16
2 2 2 L ) 2 2
6 | 8 | 24| 8 | 24| 8 | 24| 8 [24] 8 24 | 8
8 |20 6 | 20| 6 | 20 22 22 22
24 | 22| 8 | 22| 8 | 22 20 20 8 | 20
4 1 4106 |10]6 26| 6 |26/ 6 26 | 6
10| 6 | 141014 )10 |10]10]10] 12 10 | 26
2101612 16|12]14]|12]|16] 26 16 | 12
14 | 12 | 26 | 26 | 26| 26| 16| 26| 14 | 10 14 | 10
16 | 14 | 4 | 4 | 12]14]12]14]12] 24 12 | 24
18 | 18 | 12 | 14 | 18 | 24 | 18 | 24 | 18 | 14 18 | 14
22 | 24 | 18| 18 | 4 4 4 4 4 4 4 4
26 | 26 | 22 | 24 | 22 | 18|22 18] 2218 2 | 18

Figure 5.4 The iterative procedure for search for a one-to-one isomorphic mapping.
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Table 5.2 Counting of isomorphisms between two graphs shown in Figure 5.1.

Graph

Vertex Label

(b

1 23456 7 8 91011121314151617 18192021 22 23 24 25 26 27 28

©

1 2 3 4 52221201926252423101112131415161718 9 8 7

1 22524232221201312 3 4 S 62726191817161514 7 8 91

1 8 714132021222310 918192627 6 5 41716152425 2 31

1 8 91819202122 5 6 714131211102324151617 4 3 225262728
1 3121320212223242526191817 4 5 627281110 9 8 71

1 2252619202122 5 4 312131415242310112827 6 7 8 91

1 7 6 52221201918 9102324151413121128272625 2 3 41716
1 9102322212013 14 7 6 5 41718192627281112 3 225241516
21201314 7 1 225261918 9101112 3 4171615242322 5 62728
21201918 9 3121314 7 627262524151617 4 52223101128
2122 5 4 3 9102324252627 6 714151617 18192013 12 11 28
2122232425 7 6 5 4 3121110 918171615 14132019 262728
21201312 3 918192625241514 7 6272811102322 5 41716
21201926 25 7141312 3 41718 910112827 6 52223241516
2122 5 6 7 25242310 91817 4 31211282726192013 141516
21222310 9 1 23 456 7141524252627281112132019181716
16 1514 13 1211 28272625242310 9 8 7 6 5222120191817 4 3 2 1
1615242310112827 6 7141312 3 2252619202122 5 41718 9 8 1
1617 4 5 627281110 918192625 2 3121320212223241514 7 8 1
161718192627281112 3 4 5 6 7 8 910232221201314152425 2 1
161514 7 6272811102324252619201312 3 2 1 8 91817 4 52221
1615242526272811121314 7 6 5222310 9 8 1 2 3 41718192021
1617 4 312112827261918.9102322 5 6 7 8 1 225241514132021
161718 910112827 6 5 4 3121320192625 2 1 8 7141524232221
2811102324151617 4 3121314 7 8 91819202122 5 6272625 2 1
28111213 1415161718 910232425 2 3 4 5222120192627 6 7 8 1
2827 6 5 41716152425261918 9 8 7141320212223101112 3 2 1
282726191817161514 7 6 5 4 3 225242322212013121110 9 8 1
281110 918171615141312 3 4 522232425 2 1 8 7 62726192021
281112 3 4171615242310 91819201314 7 8 1 2252627 6 52221
2827 6 71415161718192625242322 5 4 3 2 1 8 9101112132021
2827262524151617 4 5 6 71413201918 9 8 1 2 3121110232221

2
2
8
8
0

N

00 00 N NN N
— i ot
N 00 00 00 o0

5.2.2 Counting of Automorphisms

The difference between Equation (4.1) and Equation (5.1) is that matrix B in Equation

(4.1) is replaced by matrix 4 in Equation (5.1). Hence, the counting problem of

automorphisms can be readily solved with algorithms I-1, I-2, and [II-4 by replacing B

with 4 in Equation (4.1). Figure 5.5 shows a 14-vertex graph; its symmetry is easily

observed. The eigenvalues of this graph, based on its AAM, are
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Figure 5.5 A 14-vertex graph.

A=diag(8.6681, 8.6681, 8.8993, 8.8993, 10.0911, 10.0911, 11.0849, 11.0849, 12.0000,

12.5457, 12.5457, 12.7108, 12.7108, 14.0000)

There are two distinct eigenvalues, i.e.,, Ao and A;4. The eigenvectors Xy and x;4 that

correspond the eigenvalues Ay and 4,4, respectively, are:

X9 =[0.2673 0.2673 0.2673 0.2673 0.2673 0.2673 0.2673 -0.2673 -0.2673 -0.2673 -

0.2673 -0.2673 -0.2673 -0.2673]"

x14 = [0.2673 0.2673 0.2673 0.2673 0.2673 0.2673 0.2673 0.2673 0.2673 0.2673

0.2673 0.2673 0.2673 0.2673]"

Two groups are created according to X9 and Xx;4. One group consists of half of the vertices
from label 1 to label 7, and the other group consists of the other half of vertices from

label 8 to label 14. From these two groups, one can find two group-to-group mappings;
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see Figure 5.6 (one mapping is shown with the solid arrow and the other with the dashed

arrow).

group 1 group 2
G(1,2,3,4,5,6,7, 8,9,10, 11, 12, 13, 14)

w, v
q ‘x ..M.\""'--.A
G(1,2,3,4,5,6,7, 8,9,10,11, 12, 13, 14)
group 1 group 2

Figure 5.6 Two group-to-group niappings.

As an example, consider the group-to-group mapping @; especially start with G(1) <>

G(1) for searching for one-to-one mappings. According to algorithm II-3 (or III-4),
modify g, of the AAM of G into g;,+1, and obtain a new AAM. After the new AAM is
input to the algorithms (algorithms I-1 and II-2), one can find two one-to-one mappings
which are listed as No. 1 and No. 2 in Table 5.3, respectively. Continuing this procedure,
one can finally obtain all the one-to-one mappings for this example, which are listed in
Table 5.3 (in total, 14 one-to-one mappings). This concludes that for the graph shown in

Figure 5.5, there are 14 automorphisms in total.
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Table 5.3 Counting of automorphisms for the graph shown in Figure 5.5.

Auto. Vertex Label

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 1 7 6 5 4 3 2 8 14 13 12 11 10 9
2 1 2 3 4 5 6 7 8 9 10 11 12 13 14
3 2 1 7 6 5 4 3 9 8 14 13 12 11 10
4 2 3 4 5 6 7 1 9 10 11 12 13 14 8
5 3 4 5 6 7 1 2 10 11 12 13 14 8 9
6 3 2 1 7 6 5 4 10 9 8 14 13 12 11
7 4 3 2 1 7 6 5 11 10 9 8 14 13 12
8 4 5 6 7 1 2 3 11 12 13 14 8 9 10
9 5 6 7 1 2 3 4 12 13 14 8 9 10 11
10 5 4 3 2 1 7 6 12 11 10 9 8 14 13
11 6 7 1 2 3 4 5 13 14 8 9 10 11 12
12 6 5 4 3 2 1 7 13 12 11 10 9 8 14
13 7 6 5 4 3 2 1 14 13 12 11 10 9 8
14 7 1 2 3 4 5 6 14 8 9 10 11 12 13

Consider the graph shown in Figure 5.7, which is isomorphic to the graph shown in
Figure 5.5. It can be found that there are 14 isomorphic mappings between the graph

shown in Figure 5.5 and the graph shown in Figure 5.7, and they are listed in Table 5.4.

Figure 5.7 Another graph with 14 vertices.
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Table 5.4 Counting of isomorphisms between the graphs shown in Figures 5.5 and 5.7.

No. Vertex Label

Fig55 1 2 3 4 5 6 7 8 9 10 11 12 13 14
8 13 11 9 14 12 10 1 6 4 2 7 5 3
8 10 12 14 9 11 13 1 3 5 7 2 4 6
9 11 13 8 10 12 14 2 4 6 1 3 5 17
9 14 12 10 8 13 11 2 7 5 3 1 6 4
10 8 13 11 9 14 12 3 1 6 4 2 7 5
10 12 14 9 11 13 8 3 5 7 2 4 6 1

. 11 13 8 10 12 14 9 4 6 1 3 5 71 2

Fig57 11 9 14 12 10 8 13 4 2 7 5 3 1 6
12 14 9 11 13 8 10 5 7 2 4 6 1 3
12 10 8 13 11 9 14 5§ 3 1 6 4 2 71
3 8 10 12 14 9 11 6 1 3 5 7 2 4
3 11 9 14 12 10 8 6 4 2 7 5 3 1
14 12 10 8 13 11 9 7 5 3 1 6 4 2
14 9 11 13 8 10 12 7 2 4 6 1 3 5

Here one may come to a surprise with the number ‘14°, because it is also the total number
of automorphisms of the graph shown in Figure 5.5. Underlying this phenomenon is an
important property about the relationship between isomorphisms and automorphisms. The
number of isomorphisms between two graphs is the same as the number of

automorphisms of each graph. The proof of this property is given below.

Suppose that two graphs, which are represented with their respective AAMs (4 and B),
are isomorphic with m isomorphisms. That is to say, there are P, P,, ...P, where P; is a
row permutation matrix for i=1, 2, ...m, and P; satisfies the following equation:

B=PAP! fori=1,2,...m (5.2)

Equation (5.2) can be rewritten as

121



B=PAP] =P, AP] =-...=PAPT =-..= P 4AP] (5.3)

Noticing that P/ P, = I (identity matrix) and P77, = (P7P,) , there should be

A=R'BR =IAI" =R RAR'R) = =P RARTR) =--=R'R4FTR,] (54)

Let P'= PP, fori =2, ...m, Equation (5.4) is rewritten as

A=JAI" =PJAP)" =---=PAP/" =-..= P/ AP, (5.5)

Equation (5.5) indicates that graph A has m automorphisms (let 7 =1 ). Likewise, it can

be proved that graph B has m automorphisms. m

Suppose that graph 4 has m automorphisms, i.e.,

A=PAP| fori=1,2,...m (5.6)

It is noted that there is a pe P; in Equation (5.6) such that p is an identity matrix /. Now,

suppose that graph B is isomorphic to 4 with an isomorphism ¢, i.e.,

B=gdp" .7

There is

B=g¢dp" =gPAPT¢" = (¢P,)A(gP)" fori=1,2,...m (5.8)
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Equation (5.8) indicates that the two graphs 4 and B have m isomorphisms between them.

With algorithms I-1, I-2, and II4, two graphs shown in Figure 2.8 are counted,
respectively. The graph shown in Figure 2.8a has 3,840 automorphisms, which are the
same as the result obtained with the program Nauty [McKay 1981]. The graph shown in
Figure 2.8b has 40,320 automorphisms. This result can be illustrated intuitively. Since the
graph shown in Figure 2.8b is a complete regular graph (i.e., each vertex has a connection
with the other vertices), each vertex in the graph can be replaced by any of the other
vertices. Therefore, it has 8! (40,320) automorphisms. This has demonstrated that the
Eigensystem approach can work for the worst scenario (i.e., the highest degree of

symmetric or regular graph) from the viewpoint of detection of graph automorphisms.

5.3 Canonical Labeling

In order to store graphs in an efficient way, a kind of code uniquely representing a graph
is described. Basically, such a kind of code can be generated by concatenating the rows of
the (adjusted) adjacency matrix of a graph. For an undirected non-weighted graph, the
code can be simplified as a binary number string by concatenating the up-right triangular
part of the (adjusted) adjacency matrix, as illustrated in Figure 5.8. However, such a code
depends on the labeling of the presented graph and thus is not invariant to its isomorphic
graphs. If such a code is designed for uniquely representing a graph, the prerequisite is
that the labeling of the graph must be canonical to all its isomorphic graphs. This

prerequisite, i.e., the canonical labeling of a graph, can be achieved by the Eigensystem
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approach through three steps, which are discussed in the following. Prior to discussion of
these steps, a basic labeling strategy that must be followed in the three steps is described

first. This basic labeling strategy is stated as:

3.1 10 0 1]n 110i011010100111
— Y Y
173101 0

1 17310 0n n A A
0 01 31 1ir, = 66A7 (hex)

010173 1|n

(1 0 01 173)r

Adjusted adjacency matrix The code

Figure 5.8 Adjusted adjacency matrix and its code.

At anytime when relabeling a graph by comparing the components of the unique
eigenvectors of the graph, the vertex corresponding to the minimum component is

reassigned the lowest label.

An example following this rule can be seen in Figure 4.5 where the unique eigenvector
x{ (x?) was sorted in an ascending order. Vertex 15 has the minimum component (-
0.4380) in x| and thus is reassigned the lowest label (label 1) when relabeling the graph
shown in Figure 4.4a, vertex 9 has the second minimum component (-0.2828) in x{ and
thus is reassigned the second lowest label (label 2), and so on. Similarly, vertex 11 has
the minimum component (-0.4380) in x? and thus is reassigned the lowest label (label 1)

when relabeling the graph shown in Figure 4.4b, vertex 13 has the second minimum
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component (-0.2828) in x’ and thus is reassigned the second lowest label (label 2), and

so on. In the following discussion, this basic strategy is applied without any further

elucidation.

5.3.1 Step 1: The Basic Expression

Take the graphs shown in Figure 4.4 as an example to illustrate the steps towards a

canonical labeling of a graph. For the two graphs shown in Figure 4.4, the sorting of the

first unique eigenvectors x{ and x’ in an ascending order, results in eigenvectors X'}
and x'}, respectively, as shown in Figure 4.5. The ascending orders of x’{ and x'} are

unique because the eigenvectors x; and x? are unique. Therefore, the labeling
corresponding to x’} (x’’) is unique in this case and is, hereafter, called the basic

expression. Given an arbitrary labeling of a graph, the basic expression can be written
out. For the graph with an initial labeling shown in Figure 4.5, the following relabeling
leads to the basic expression: vertices {15,9, 17, 12, 16, 8, 13, 11, 7, 4, 14, 5, 10, 2, 1, 3,
6} of graph A are relabeled into vertices {1, 2, 3,4,5,6,7, 8,9, 10, 11, 12, 13, 14, 15, 16,
17}. For the graph with an initial labeling shown in Figure 4.5b, the relabeling for the
basic expression is such that vertices {11, 13,17, 9, 16, 5, 4, 8, 6, 3, 14, 15, 10, 12, 2, 7,
1} of graph B are relabeled into vertices {1, 2, 3,4, 5,6,7, 8,9, 10, 11, 12, 13, 14, 15, 16,

17}.

It is clear that the basic expression so far discussed is the unique expression for a graph

and all its isomorphic graphs. Therefore, the code generated from the basic expression of
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the graph shown in Figure 4.4 is canonical, i.e.,, 00017026220703A0931909142211
A020000. It is noted that the canonical code is reversible to the canonical labeling, the

AAM (or AM) matrix, and the graph.

As previously discussed in Chapters 3 and 4, however, both an eigenvector and its
negative have the same effect on finding isomorphic (automorphic) mappings in the
Eigensystem approach. This situation could result in two different basic expressions for a
set of isomorphic graphs when sorting the unique eigenvector corresponding to the
minimum distinct eigenvalue. For instance, for the two graphs shown in Figure 4.4, the
negative vector -X; of the eigenvector x; results in the relabeling as follows: vertices {3,
1,2,10,5,14,4,7, 11, 13, 8, 16, 12, 17, 9, 15} into vertices {1, 2, 3,4, 5,6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17}. Furthermore, the canonical code of the graph in this case is
00123018A20A8170C0C5543048226020000 which is different from the one based on
x; . Therefore, a rule is needed to resolve this ambiguity. This rule is hereafter called the

Vector Choose Rule I and is described below.

Vector Choose Rule I:

(1) sorting the unique eigenvector X and its negative vector -X in an ascending order, say
x” and -x’, respectively

(2) if x” is the same as -x" then go to Vector Choose Rule II; otherwise go to (3)

(3) for each component x; € x’, i=1,2, ...n

’

X

1

@ if

#

x,,_..1| then break
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(5) if |x/| < |x,_,,,| then return —x else return x

In Vector Choose Rule I, if Step (2) yields the same result with x” and -x” then the next

rule (Vector Choose Rule II) is applied.

Vector Choose Rule 11:
(1) Construct the canonical codes based on x’ and -x’, respectively, denoted by Code"
and Code

(2) The canonical code (final) is min{Code”, Code}

Revisit the graphs shown in Figure 4.4. One can find that the ambiguity is resolved after
Vector Choose Rule I is applied. The final result, the canonical code of the graph, is

00017026220703A0931909142211A020000.

5.3.2 Step 2: Coping with Ambiguity in Labeling

It may be possible that not all graphs have a unique basic expreésion after only
considering the first unique eigenvector. In other words, after Step 1, there is still
ambiguity in unique labeling. For instance, the two graphs shown in Figure 5.9a have the

same spectrum on their AAMs:

A~=Ap=diag(4.2907, 5.1088, 6.2954, 6.8061, 7.0000, 8.0000, 8.3174, 8.9032, 9.2784,

10.0000)
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(a) two graphs

6 5 6 0
3 3
2 4
9 10
1 1

(b) the respective smallest automorphic graphs

Figure 5.9 Two isomorphic graphs and their respective smallest automorphic graphs.

The basic expressions of these two graphs (4,=4.2907) are shown in Figure 5.10. Note
that the vectors - x; and - x’ have the same basic expression for graphs 4 and B,
respectively, (see Figure 5.10). It can be seen from Figure 5.10 that two groups exist in
the basic expression (after Step 1). In this case, the second unique eigenvector should be
considered for relabeling the vertices within these two groups to reach the canonical
label. The relabeling gets back to Step 1 but with x4 (x53), and this results in Figure 5.11
for the graphs shown in Figure 5.9a. It can be seen from Figure 5.11 that vertex 6 (-
0.6936) should be labeled lower than vertex 4(-0.1773) according to the basic labeling

strategy. It should be noted that the relabeling procedure at this time is based on the basic
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expression which was generated the first time. Therefore relabeling here is just focused

on the uncertain part, which are the two shadowed groups shown in Figure 5.10.

Relabel

4 X;‘ - x;l - ,la A & B ’f - X[l, X? B
1 -0.2253  0.2253 | -0.6712 10 10 -0.6712 | 0.2253 -0.2253 1
2 -0.2253  0.2253 | -0.3244 8 8 -0.3244 | 0.2253 -0.2253 2
3 0.0048 -0.0048 -0.0048  0.0048 3
4 0.1646 -0.1646 0.2684 -0.2684 4
5 -0.2684 0.2684 -0.1646  0.1646 5
6 0.1646 -0.1646 -0.1646  0.1646 6
7 -0.1822  0.1822 |} 0.1822 -0.1822 7
8 0.3244 -0.3244 -0.3244  0.3244 8
9 -0.4282 0.4282 0.4282 -0.4282 9
10 0.6712 -0.6712 -0.6712 0.6712 10
Figure 5.10 The basic expression after sorting the first unique eigenvector.
. | Thel® The2™  The R .
4 X2 X2 relabel A © B relabel | X2 X2 B
1 -0.1363  0.1363 10 10 10 10 0.1363 -0.1363 1
2 -0.1363  0.1363 8 8 8 8 0.1363 -0.1363 2
3 -0.2162  0.2162 4 6 6 5 0.2162 -0.2162 3
4 0.1773 -0.1773 6 4 5 6 -0.1134  0.1134 4
5 0.1134 -0.1134 3 3 3 3 -0.1773  0.1773 5
6 0.6936 -0.6936 7 7 7 7 -0.6936  0.6936 6
7 -0.3250 0.3250 } -0.3250 7
8 0.2679 -0.2679 02679 8
9 0.0228 -0.0228 0.0228 9
10 -04613 04613 -0.4613 10

Figure 5.11 The basic expression after sorting the second unique eigenvector.

Similarly, vertex 6 of graph B is assigned a lower label number than vertex 5 of graph B

when considering vector -x5. However, at this point, vertices 1 and 2 have produced an

ambiguity in determining that labels, because a switch of vertex 1 and vertex 2 does not
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affect anything. Note that this ambiguity stems from the first unique eigenvector. Thus,
one needs to consider the third unique eigenvector and so forth until the last unique
eigenvector. Similarly, the next relabeling procedure is based on the basic expression
generated so far and only focused on the shadowed group as indicated in Figure 5.11. In
this case, there is still a group-to-group mapping in the common mapping. Therefore, the
process finds one-to-one mappings according to algorithm III-4 and so on until all
possible mappings are examined. For this particular example, the search for one-to-one
mappings was coincidently done before when the graph counting problem was discussed;

see Figure 5.4.

5.3.3 Step 3: The Smallest Automorphism

After running Step 1 and Step 2 above, the ambiguity in labeling should be resolved.
However, it is known that a graph may have automorphisms besides the trivial one (i.e.,
itself). All automorphic graphs are representatives of that graph. The canonical codes of
automorphic graphs, as generated by the above two steps, could be different. A question
then arises of which code is chosen as the canonical code of the graph. The idea is to find
the ‘smallest’ automorphism given a graph. The smallest automorphic graph is one of the
automorphic graphs whose canonical code is the smallest one. For example, two
automorphisms exist for graphs 4 and B shown in Figure 5.9a, respectively. Applying the
procedure in Step 1 and Step 2, one can find a unique labeling for each of the
automorphic graphs. The smallest automorphic graphs are shown in Figure 5.9b. From
these, the canonical codes of the two graphs shown in Figure 5.9a are generated,

respectively, and they are the same, i.e., 00F13588C000. Therefore, the two graphs are
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isomorphic. In this case, one can see that the canonical code is also used for the detection

of isomorphisms for two graphs.

5.3.4 Summary of Algorithm for Unique Labeling of a Graph

The process of unique labeling of a graph aims to formulate a canonical code representing
the graph. This code represents the structural information of a graph uniquely. Therefore,
graph isomorphism detection can also benefit this code system because if the codes of
two graphs are the same, the two graphs are isomorphic; otherwise, they are not. This
point has been demonstrated by bringing together two graphs (whether or not they are

isomorphic has been already known) in the above discussion for unique labeling of a

graph.

There are three steps to reach a unique labeling and thus a canonical code of a graph. The
first step is to sort the unique eigenvector in a predefined order, which leads to the basic
expression of a graph. The basic expression may not be unique after the first step, because
some components in the eigenvector may be the same, which implies that the labeling for
the vertices corresponding to these components is uncertain. The second step is basically
the same as the first by seeking the second unique eigenvector, the third, etc., until the
labeling for all the vertices are made certain. The third step considers the automorphic
graph of the graph under labeling because different automorphic graphs may have
different codes. In this step, the unique labeling of automorphic graphs is considered,
which makes use of the procedure of Step 1 and Step 2 to find the smallest automorphic

graph. The final canonical code corresponds to the smallest automorphic graph.
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It is noted that the canonical label for a digraph or a weighted graph (undirected or
directed) can also be created with these steps. For the case of digraph (weighted or not),
instead of concatenating the upper-right triangular part of the rows of the (adjusted)
adjacency matrix of the graph, concatenating the whole rows of AAM is necessary to
formulate the canonical code of a digraph. The weighted undirected graph follows the

same procedure as the non-weighted undirected graph.

5.3.5 Examples

Figure 5.12 shows three graphs. Each graph has 12 vertices. Through the Eigensystem
approach, the canonical codes of these graphs are formed, i.e., 00582A261955A0000,
003816152C65C0000, and 00582A261955A0000, respectively. Since the canonical
codes of the first and third graphs are the same but differ from the canonical code of the
second graph, the first and third graphs are isomorphic to each other, but they are not

isomorphic to the second graph.

Figure 5.12 Three graphs with 12 vertices.

Figure 5.13 shows 7 graphs each with 10 vertices. The Eigensystem approach gives the

following conclusion for these graphs: each of these graphs has 120 automorphisms and
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has the same canonical code, i.e., 00729A254920. Hence, these graphs are isomorphic to

each other.

wn

=)

=
K¢
) : S >es g

Figure 5.13 Seven isomorphic graphs each with 10 vertices.

Table 5.5 lists the canonical codes of the graphs that were previously discussed as the

examples. A note is given on the table to indicate whether the graphs are isomorphic.

Table 5.5 The canonical codes of the graphs discussed previously as the examples.

Figure Canonical Code Note

2.5 (a) 0OE6CEAQ, (b) 00E6CEA0 Isomorphic graphs

2.15 (a) 03F08000, (b) 01E08440 Non-isomorphic graphs
4.1 (a) OB8ESF780, (b) 0IEACE70 Non-isomorphic graphs
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Table 5.5 (Continued)

4.2

4.4

4.7

49

4.10

4.12
4.13

4.14

5.1

5.5
5.7

59

(a) 0038162C1128C0800,
(a) 003886192A6820000

(a) 00017026220703A0931909142211A020000,
(b) 00017026220703A0931909142211A020000

(a) 007092255200, (b) 007092255200
(a) 07DEEC, (b) 07DEEC

(a) 1861CC330C0E020040400003458,
(b) 1861CC330C0E020040400001DOA

(a) 00DOE068C800, (b) 00703384C800
(a) 00F158312080, (b) 00F1C2308880

(a) 0070B2293000, (b) 01E030A4C400;
(c) 0073211000, (d) 007020AA00;

(e) 7C21, (f) 1ECI;

(2) ODCCES, (h) 07D22B, (i) 1F8CEO;
(j) 00F2718000, (k) 00F2F08000;

(1) 00F158312080, (m) 00F1C2308880

(b) 0000088800050400012800024400108200
2110010500222008018201820602090060

060000000000000000000000000

(c) 0000088800050400012800024400108200
2110010500222008018201820602090060

060000000000000000000000000
0604A0A824101020806484C,
0604A0A824101020806484C

(a) 00F13588C000, (b) 00F13588C000

Non-isomorphic graphs

Isomorphic graphs

Isomorphic graphs

Isomorphic graphs
Non-isomorphic graphs

Non-isomorphic graphs

Non-isomorphic graphs

Non-isomorphic graphs

Isomorphic graphs

Isomorphic graphs

Isomorphic graphs
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5.4 Enumeration of Structures

The third fundamental problem in structure synthesis is the enumeration of structures.
Since the semantics of structures can be represented by graphs or networks, the
enumeration of structures becomes the enumeration of graphs. As discussed in Chapter 1,
the nature of enumeration is to find all non-isomorphic structures given a set of
conditions or constraints. The constraints must come from applications. The two key
techniques for the enumeration of structures are now (1) detection of isomorphic graphs
and (2) conversion of constraints defined on the structure from a particular application
domain into constraints on a graph. The constraints on a graph could be, for example, the
total number of vertices of a graph, the degrees of vertices, etc. The current strategy taken
in the Eigensystem approach is to count all graphs meeting the constraints and then

remove the isomorphic ones.

5.4.1 Graphs Meeting Constraints

The two basic constraints on the vertex of a graph are (1) the total number of the vertices
and (2) the degree of each vertex. Extra constraints can be added depending on the
application problem under investigation. A method is developed for enumerating all

graphs subject to the two types of constraints as mentioned.
This method includes the following basic points. First, divide the vertices into different

groups V; (i=1, 2, ...m) according to their degrees, where m is the total number of such

groups. Each vertex in group V; has the same degree d. Let n; be the total number of the
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vertices in each ¥; and let ¢; be the current capacity of each vertex in V; to be connected in

the constructed graph. It is clear that ¢; = d; at an initial time, and at any time
2n =N (5.9)

and

T, =ny, (5.10)
where N is the total number of vertices in a graph and 7; is the total capacity of the
vertices in ¥;, which could be connected to the constructed graph. 7; is called the number

of tokens in V.

Second, the graph construction runs until one of the following conditions is satisfied: (1)
no group exists, (2) no token can be offered, and (3) no vertex can accept any token.
When the construction process stops and all the above conditions are satisfied, this
indicates a valid configuration or graph; otherwise, the construction process goes back to

the step where the present process is initiated.

Third, the so-called valid structure is defined by two integrity rules. /ntegrity Rule I: for
any vertex in a vertex group, only one token can be offered at any time. Integrity Rule 2: a
valid structure is the one that satisfies the three conditions mentioned before

simultaneously.

The sketch of the algorithm for the graph construction process is described as follows:
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Step 1: Take out a vertex ue V; (i=[1, m]), where ¢; in V; is the highest among those in
other vertex groups. Give vertex u a label / where / is a number ordered from 1 to N. Note
that now the number of the vertices in ¥; changes to n;-1, and the number of the tokens in
Vi changes to T;-c;. Since u has a capacity of ¢; to connect with other vertices, c¢; tokens
need to be taken from vertex groups (including its own vertex group) to connect with

vertex u. There are many possible ways to draw tokens, and they manifest different

graphs.

Step 2: Once a vertex ve V; provides a token to vertex u, it has to be taken out from V;and
is assigned a label /+1. A connection (i.e., an edge) between v and u is established and
represented by the adjacency matrix. At this time, the resource (i.e., #; and T}) in ¥} has to
be changed. If V; is empty after vertex v is left, remove V; from the group list and decrease
m by one. If v still has capacity after a token of it is contributed to vertex u, i.e., ¢>0,
create a new vertex group Vp+, put v as well as its current capacity ¢; into Vu+1, and

increase m by one. Likewise, all vertices which provide tokens are dealt with.

Step 3: After Step 2, all vertices connected with vertex u are found and labeled. Some of
them still have capacities and thus are put into new vertex groups (but they are labeled).
Therefore, two kinds of vertex groups exist: labeled vertex groups and unlabeled vertex
groups (the vertex groups have not yet been connected in the constructed graph). Take out
a vertex u from the labeled vertex group having the smallest label. Vertex u has capacity

and thus tokens are needed from other vertex groups (both labeled and unlabeled). There
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are many possible ways to draw tokens, and they manifest different graphs. The

construction procedure goes back to Step 2.

As an example, if a graph is subject to the following constraints: (1) the total number of
vertices is 8, (2) 4 vertices have 2 degrees, and (3) the other 4 vertices have 3 degrees, the
method described above gives 108 graphs meeting these constraints. This method is also
used for the application cases that will be introduced in Chapters 6 and 7 where some
more constraints (derived application) are added in addition to the two constraints
mentioned above. The method described above needs to be extended accordingly to deal

with the extra constraints.

5.4.2 Distinct Graph Enumeration

The graphs created by the proposed method may have isomorphic graphs. Distinct graph
enumeration requires to remove these isomorphic graphs. At this time, the canonical

labeling of graphs is applied for a graph isomorphism test.

Continue the discussion of the example previously mentioned. In this example, the graph
has 8 vertices, in which 4 vertices have 2 degrees and the other 4 vertices have 3 degrees.
It is known that there are 108 graphs that meet the constraints. Applyiﬁg the »canonical
labeling algorithm to these graphs leads to 25 distinct canonical codes, which imply that
25 graphs are distinct among 108 graphs. These 25 distinct graphs with their canénical

codes are shown in Figure 5.14.
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It may be clear by now that the enumeration of structures is a task depending on
applications. The next two chapters are devoted to the demonstration of the structure

enumeration for two applications: machine design and molecule design, respectively.

9 o A 9 v

(1) 0061B5A0  (2) 0061B720  (3) 0062E6A0  (4) 0066D8A0  (5) 00671660

Cy 7 9

(6) 006B3488  (7)00719720  (8) 00729690  (9) 00ASOFOC  (10) 00E18F20

FL &b A

(11) 00E196A0 (12) 00E1A720 (13) 00EIC6A0 (14) 00EIE520  (15) 00E3A680

ARy

(16) 00ES9680  (17) 00ESC4A0 (18) 00ESCS510  (19) 00ESD108  (20) 00ESD201

A 0 O 0 &

(21) 00ESF040  (22) 00E6S8ES0  (23) 00E9B240  (24) 01635460  (25) 01A70CCO

Figure 5.14 Enumeration of 8-vertex graphs (4 vertices for 3 degrees and other 4 for 2).
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5.5 Concluding Remarks

The Eigensystem approach has been further extended to solving the graph counting
problem and the graph canonical labeling or coding problem. These two problems are the
basis for developing algorithms for the structure/graph enumeration, which is the third
fundamental problem as mentioned in Chapter 1. One of the main purposes of the
canonical labeling of a graph is to have a compact code which uniquely represents the
graph and all graphs isomorphic to it. Therefore, the computer storage and retrieval of
graphs are very efficient. It is important to note that the Eigensystem approach has
provided a complete solution to graph isomorphism, graph counting, and graph labeling
or coding in the sense that the solution is applicable to (1) non-weighted undirected
graphs, (2) weighted undirected graphs, (3) non-weighted directed graphs, and (4)
weighted directed graphs. The program Nauty has not shown the solution to the graph
counting and graph labeling problems for the weighted graphs. The method with its
algorithm developed in this thesis study to enumerate all graphs to the constraints is
novel; however, a more general method may be developed along with the constraint
satisfaction paradigm [Tsang 1993]. This is because the issue addressed here is
conceptually a constraint satisfaction problem. There is a wealth of solving tools available

to find all the solutions to a set of predefined constraints.

The implementation of the algorithm for canonical labeling of graphs can be seen in

Appendix B.
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CHAPTER 6
APPLICATION I: SYNTHESIS IN MECHANICAL DESIGN

6.1 Introduction

At several early phases for designing machines or mechanisms, decisions must be made
as to where the parts must be placed, how far and in what directions the parts must move,
which parts must be connected to which other parts, and how they must be connected, and
what the critical dimensions of the parts must be. Obviously, this phase involves the
interactions between geometry and motions, and it will result in drawings or sketches of
the general layout of the machine and will indicate how it will operate. These design tasks
(the studies of position, displacement, rotation, speed, velocity, and acceleration) are
referred to as the kinematic design of the machine [Uicker et al. 2003]. Kinematics is the
base of any design which concerns motion and is further divided into two complementary

fields: kinematic analysis and kinematic synthesis.

Kinematic analysis refers to the analysis of kinematic motion behavior, e.g., given the
motion of one link, find the motion of other links. Kinematic synthesis involves three
steps: type synthesis, number synthesis, and dimensional synthesis. Type synthesis refers
to the selection of types of mechanisms: a linkage, a geared system, belts and pulleys, ‘olr
even a cam system. Number synthesis deals with the number of links (parts of a

mechanism) and the number of joints or kinematic pairs or just pairs (the connections,
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joint between the links) that are required to obtain a certain mobility. It relates to the
problem of the enumeration of structures, which is concerned in this thesis. Dimensional

synthesis refers to the determination of the dimensions of the individual links.

Highly simplified schematic diagrams and kinematic chains are used for describing a
machine or mechanism when studying its kinematics. For examples, Figure 6.1 shows
three suspension topologies used in automobiles, their schematic diagrams, and their
related kinematic chains, respectively. Figure 6.1 also shows that there are two results of
a number synthesis for a six bar and one degree of freedom linkages, i.e., the six bars
shown in each of Figures 6.1a and 6.1b, because the one shown in Figure 6.1c is the same

as the one in Figure 6.1a (to be revisited later).

Kinematic synthesis is an important topic in the design, in particular in the creative
design, of a machine [Johnson 1978]. This chapter discusses the application of the
Eigensystem approach for mechanical design synthesis, in particular for number
synthesis. Section 6.2 gives the concepts on mechanisms/kinematic chains. Section 6.3
reviews others’ studies on the enumeration of mechanisms. Section 6.4 presents the
Eigensystem approach, which was described in Chapter 5, as applied to the enumeration
of structures (mechanisms/kinematic chains). Finally, Section 6.5 gives a concluding

remark.
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(a) Honda CR250 Pro-link  (b) Kawasaki KX250 Uni-trak  (c) Suzuki RM250 Full-floater

Figure 6.1 Three suspension topologies and their kinematic diagrams [Yan and Chen
1985].

6.2 Basic Concepts

When several links are movably connected together by joints, they are said to form a
kinematic chain. Links containing only two pair element connections are called binary
links; those having three, four, and five are called ternary, quaternary, and pentagonal
links, respectively. If every link in the chain is connected to at least two other links, the
chain forms one or more closed loops, and is called a closed kinematic chain; otherwise,
the chain is referred to as an open kinematic chain.
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Prior to kinematic synthesis, the number of degrees of freedom (DOF) of the mechanism
must be determined. When a link moves fréely in a plane, it has three DOFs: the freedom
to translate along two independent directions and the freedom to rotate about an axis
perpendicular to the link. When two links are connected by a turning pair, the pair
provides a constraint of order 2 and thus these two links have four DOFs. For a
mechanism with the ground considered as one of the links, the relation between F
(degrees of freedom), N (number of links) and J (number of joints) is given by Grubler’s
equation [Uicker et al. 2003]

F=3(N-1)-2J (6.1)

Furthermore, let p be the highest connectivity of the link that can be used to form a chain
and n; be the number of links with connectivity i, 2 < i < p. Two constraint equations exist
among links and joints, i.e.,

ny+-+n+-+n,=N (6.2)
and

2ny +---+in +---+pn, =2J (6.3)

For a given N and F, the highest connectivity p is easily determined using the following

formula [Rao and Deshmukh 2001]

N-F+l F=0,1

2
p= _ (64)
min(N—F—l,ii—l) F22
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Once p is known by Equation (6.4) for a given N and F, all »; can be obtained by solving
the linear equations from Equation (6.1) to Equation (6.3). For example, if F =1 and N =
6, by Equation (6.4), the highest connectivity p = 3. According to Equation (6.1) through
(6.3), one combination of links is obtained, i.e., (n3=2, n;=4). f F=3 and N=8§, thenp =
4 by Equation (6.4). There are two combinations of links n; (2 < i < p) which meet
Equations (6.1), (6.2), and (6.3). They are (ns=0, ny=2, n,=6) and (ns=1, n3=0, n,;=7),
respectively. Table 6.1 lists the number of combinations of links for a given N up to 12

and Fupto9.

Table 6.1 Number of link combinations for a given Nup to 12 and Fup to 9.

Degrees of freedom (DOF)
N 1 2 3 4 5 6 7 8 9
4 1 na n/a na na na na na na
5 0 1 na na na wna na na na
6 1 1 1 na nfa na na na na
7 1 2 1 1 na n/a nla na na
8 3 2 2 1 1 nfa n/a n/a na
9 3 4 3 2 1 1 na n/a n/a
10 7 5 S 3 2 1 1 n/a n/a
11 8 9 6 5 3 2 1 n/a
12 15 11 10 7 5 3 2 1 1

Number synthesis of kinematics enumerates all the distinct possible kinematic chains
with the specified number of links and degrees of freedom. In general, this includes three

tasks: (1) for a given N and F, determining the highest connectivity p and the possible
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combinations of n; (2 < i < p), as discussed above, (2) enumerating all possible kinematic
chains for each combination of links, and (3) identifying distinct kinematic chains from

them.

6.3 Others’ Studies

Many studies were reported in the past using different approaches to enumerate all the
distinct kinematic chains with the given number of links and degrees of freedom. These
methods reported so far are based on intuition [Crossley 1965, 1966], Franke’s notation
[Davies and Crossley 1966; Haas and Crossley 1969; Soni 1971], graph theory [Crossley
1965; Dobrjanskyj and Freudenstein 1967, Woo 1967; Freudenstein 1967], and
transformation of binary chains [Manolescu 1973; Mruthyunjaya 1979]. Mruthyunjaya
[1984] developed a computer program based on the method of transformation of binary
chains for the structural synthesis of kinematic chains with up 10 links and 3 DOFs.
Butcher and Hartman [2002] have enumerated 6856 single DOF chains with 12 links.
Sohn and Freudenstein [1986] used the concept of dual graphs and generated chains with
up to 11 links and two DOFs. Tuttle et al. [1989] used the theory of symmetric groups to
generate planar kinematic chains by performing contraction and expansion operations on
a base structure and obtained 2 DOFs chains with 12 links. Hwang and Hwang [1992]
have reported a computer-aided method to generate planar kinematic chains using the
concept of contracted link adjacency matrix. Rao and Raju [1991] reported the Hamming
number technique for the synthesis of chains, but the results still need to be tested for
isomorphism. Tischler et al. [1995] presented the method for generating the chains with

the idea of avoiding tests for isomorphism but concluded that it may not be possible to
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synthesize distinct chains without testing for isomorphism. This situation occurred in the
report of [Rao and Deshmukh 2001], where they used the concept of loop formation to
construct kinematic chains without isorhorphism. However, this method still cannot

guarantee that no isomorphic chain exists in the results generated.

~ By collecting the literature, Table 6.2 lists the number of distinct kinematic chains, which
is known as a correct record, with up to 12 links and 3 DOF. It is noted that these

kinematic chains consider the same types of links and joints.

Table 6.2 The number of distinct kinematic chains with up to 12 links for known cases.

Number of links DOF=1 DOF=2 DOF=3

4 1

5 1 :
6 2 1

7 4

8 16

9 40

10 230 98

11

12 6856

6.4 The Enumeration of Kinematic Chains
6.4.1 Graph Representation

The Eigensystem approach can be used for structure synthesis of mechanisms/kinematic

chains. The canonical codes of graphs can identify distinct graphs without an

147



isomorphism test. Prior to enumerating kinematic chains, however, the schematic
diagrams of kinematic chains must be converted into graph representations (see Figure
6.1). The conversion between a schematic diagram and a graph representation is done by
replacing each link in the schematic diagram with a vertex in a graph representation and
replacing each joint between two links in the schematic diagram with an edge between
two vertices in the graph. Figure 6.2 shows the graph representations of the kinematic
chains shown in Figure 6.1. Note that the graph representation shown in Figure 6.2 is
different from the graph representation shown at the bottom of Figure 6.1. Figure 6.3

shows other six kinematic chains and their graph representations.

4 2 2
3 6 5 4 1 5
5 6 3 6

1 1 3

(a) (®) (©)

Figure 6.2 The graph representations of the kinematic chains shown in Figure 6.1.
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Figure 6.3 Six kinematic chains and their graph representations.
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6.4.2 Enumeration of Kinematic Chains: Step 1

After the combinations of links are obtained for a given link number N and degrees of
freedom F, the next objective is to enumerate kinematic chains. Two steps are followed
here for this objective. The first step is to enumerate kinematic chains meeting a set of
constraints. The second step is to remove isomorphic ones from the kinematic chains

meeting the constraints,

To enumerate kinematic chains meeting the given constraints is to enumerate all possible
kinematic chains for each combination of links. There are two types of information
included in a combination of links: the number of links and the degrees of freedom for
each link. When kinematic chains are éonverted into graph representations, these two
types of information are changed into the number of vertices and the degrees of every
vertex because links and DOFs of links in kinematic chains are converted into vertices
and degrees of vertices in graph representations, respectively, as discussed in Section
6.4.1. A general method was developed and discussed in Chapter 5 to enumerate graphs
meeting these constraints, i.e., a given number of vertices and degrees of each vertex.
Therefore, the method can be applied here for enumerating the kinematic chains meeting
a given combination of links. Table 6.3 lists the numbers of these kinematic chains for a

given Nupto 12 and Fup to 9.

However, one must notice that among kinematic chains generated based on the above
step, there may be cases in which the overall DOF of the kinematic chain is greater than

zero, but some of the features have DOF < 0. An example of this kind of case is shown in

150



Figure 6.4, where the links marked by a cycle form a zero DOF chain. For this reason, the
kinematic chains listed in Table 6.3 are called the incomplete kinematic chains. The
kinematic chains shown in Figure 6.4 are incomplete, and they are actually degraded into
four links with one DOF. This thus calls for the elimination of such degraded cases. The
solution is to define new constraints and to incorporate them into the general pool of
constraints. In particular, the following constraint is established, i.e., any closed loop or
combination of loops created during the construction of a graph must greater than zero

DOF. This constraint is incorporated into the general method developed in Chapter 5.

Table 6.3 Number of kinematic chains meeting a given Nup to 12 and Fup to 9.

Degrees of freedom (DOF)

N 1 2 3 4 5 6 7 8 9

4 1 n/a n/a nfa na na na na pa
5 0 1 n/a na n/a na na na na
6 7 0 1 na na na na na na
7 0 20 0 1 na na na na na
8 222 0 34 0 1 na na na na
9 0 681 0 52 0 1 na n/a na

10 9863 0 1565 0 75 0 1 n/a n/a
11 0 31235 0 3184 O 103 0 1 n/a
12 609582 0 82243 0 6030 O 136 0 1
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Figure 6.4 Two six-link kinematic chains each with totally 1 DOF but partly 0 DOF.

Figure 6.5 graphically illustrates how this constraint works for a kinematic chain with
four binary links and four ternary links (links and joints correspond to vertices and edges,
fespectively). ‘In Figure 6.5, the label in a cycle represents the label of the vertex, and the
label on an edge represents the step of a graph construction process. In Figure 6.5a, vertex
2 accepts a token from vertex S at the fourth step and then accepts a token from vertex 3
at the fifth step. Once vertex 2 accepts this token from vertex 3, a closed loop is formed
among vertices 1, 2, and 3. The sub-chain corresponding to this closed loop has zero
DOF. Therefore, such a configuration is eliminated by the program. In Figure 6.5b, when
vertex 3 accepts a token from vertex 5 at the fifth step, one closed loop is formed among
vertices 1, 2, 3, and 5, and the corresponding sub-chain has one DOF. The construction
procedure continues until the seventh step where vertex 4 accepts a token from vertex 5.
In total, three loops are obtained, i.e., loop (1, 2, 4, 5), loop (1, 2, 3, 5), and loop (1, 3, 4,
5). It is interesting to note that a compound loop (1, 2, 3, 4, 5) formed from these three
loops has zero DOF. Such a configuration (i.e., the compound loop with the zero DOF)
also has to be eliminated. Figure 6.5c shows closed loops and that their compound loops
formed at any step have greater than zero DOF. Therefore, such a configuration is

accessible.
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Figure 6.5 Illustration of configuring kinematic chains.

Table 6.4 lists the numbers of kineméiic chains with up to 12 links and up to 9 DOFs
using the program developed with this thesis study. The program system which finds all

kinematic chains meeting the constraints is called ‘E_mechanism’ (see Appendix C).

Table 6.4 Number of possible kinematic chains with up to 12 links and 9 DOFs.

Degrees of freedom (DOF)

N 1 2 3 4 5 6 7 8 9

4 1 n/a n/a n/a n/a n/a n/a n/a n/a
5 0 1 n/a n/a n/a n/a n/a n/a n/a
6 4 0 1 n/a n/a n/a n/a n/a n/a
7 0 10 0 1 n/a n/a n/a n/a n/a
8 63 0 20 0 1 n/a n/a n/a n/a
9 0 232 0 32 0 1 n/a n/a n/a
10 1775 0 668 0 51 0 1 n/a n/a
11 0 7885 0 1534 0 74 0 1 n/a
12 75440 0 26637 0 3210 0 102 0 1
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6.4.3 Distinct Kinematic Chains: Step 2

The kinematic chains generated in Table 6.4 may include isomorphs, which must be

removed. At this point, the Eigensystem approach is employed for this purpose. The

procedure is such that the canonical codes for all the kinematic chains listed in Table 6.4

are found. Among the kinematic chains with the same canonical code, only one is kept.

Table 6.5 lists the total number of distinct kinematic chains with up to 12 links and up to

9 DOFs. It is noted that the numbers marked with a star are the same as the numbers

shown in Table 6.1. The others listed in Table 6.4 are first reported to the author’s

knowledge. The result obtained thus is remarkable in having proved the validity of the

Eigensystem approach for the enumeration of kinematic chains or mechanisms.

Table 6.5 Number of all distinct kinematic chains with up to 12 links and 9 DOFs.

N {DOF| nygs-4-3-» |Number| X N |DOF| ng-¢~5~4~3-> |Number| X
4| 1 |0-0-0-0-0-4 1 1" 9| 2 |0-0-0-0-4-5 19 40
51 2 |0-0-0-0-0-5 1 1’ 0-0-0-1-2-6 16
6| 1 |0-0-0-0-2-4 2 2" 0-0-0-2-0-7 3
3 | 0-0-0-0-0-6 1 1" 0-0-1-0-1-7 2
71 2 |0-0-0-0-2-5 3 4 4 | 0-0-0-0-2-7 8 10
0-0-0-1-0-6 1 0-0-0-1-0-8 2
4 | 0-0-0-0-0-7 1 1 6 | 0-0-0-0-0-9 1 1
8| 1 |0-0-0-0-4-4 9| 1610 1 |0-0-0-0-64 50| 230
0-0-0-1-2-5 5 0-0-0-1-4-5 95
0-0-0-2-0-6 2 0-0-0-2-2-6 57
3 | 0-0-0-0-2-6 6 7 0-0-0-3-0-7 3
0-0-0-1-0-7 1 0-0-1-0-3-6 15
5 | 0-0-0-0-0-8 1 1 0-0-1-1-1-7 8
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Table 6.5 (Continued)

10 0-0-2-0-0-8 2 12| 1 |0-0-0-4-0-8 37
0-0-0-0-4-6 46| 98" 0-0-1-0-5-6 506
0-0-0-1-2-7 38 0-0-1-1-3-7 716
0-0-0-2-0-8 8 0-0-1-2-1-8 147
0-0-1-0-1-8 5 0-0-2-0-2-8 63
0-1-0-0-0-9 1 0-0-2-1-0-9 7
0-0-0-0-2-8 12 14 0-1-0-0-4-7 49
0-0-0-1-0-9 2 0-1-0-1-2-8 46
0-0-0-0-0-10 1 1 0-1-0-2-0-9 5

11 0-0-0-0-6-5 153| 839 0-1-1-0-1-9
0-0-0-1-4-6 359 0-2-0-0-0-10 2
0-0-0-2-2-7 193 3 | 0-0-0-0-6-6 463 | 2424
0-0-0-3-0-8 13 0-0-0-1-4-7 1029
0-0-1-0-3-7 74 0-0-0-2-2-8 530
0-0-1-1-1-8 34 0-0-0-3-0-9 32
0-0-2-0-0-9 3 0-0-1-0-3-8 226
0-1-0-0-2-8 0-0-1-1-1-9 102
0-1-0-1-0-9 2 0-0-2-0-0-10 8
0-0-0-0-4-7 89| 190 0-1-0-0-2-9 27
0-0-0-1-2-8 77 0-1-0-1-0-10 5
0-0-0-2-0-9 12 1-0-0-0-1-10 2
0-0-1-0-1-9 11 5 | 0-0-0-0-4-8 171| 354
0-1-0-0-0-10 1 0-0-0-1-2-9 141
0-0-0-0-2-9 16 19 0-0-0-2-0-10 21
0-0-0-1-0-10 3 0-0-1-0-1-10 19
0-0-0-0-0-11 1 1 0-1-0-0-0-11 2

12 0-0-0-0-8-4 410 | 6856" 7 | 0-0-0-0-2-10 21 24
0-0-0-1-6-5 1873 0-0-0-1-0-11 3
0-0-0-2-4-6 2339 9 | 0-0-0-0-0-12 1 1
0-0-0-3-2-7 648
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6.5 Concluding Remarks

It must be pointed out that in the practical design of mechanisms, structure synthesis may
not be only bar linkage systems but also other structural schemes, such as spring
mechanisms, belt-pulley mechanisms, cam-linkage mechanisms, gear-linkage
mechanisms, chain-sprocket mechanisms, and hydraulic piston-cylinder mechanisms.
Besides, they can be connected into a planar system or a spatial system. All of these
mechanisms can be represented into a graph by ‘coloring’ its edges and vertices (although
it was not mentioned before, the Eigensystem approach can handle the situation when
both edges and vertices are weighted). For example, in Figure 6.1, the kinematic pair
between link 5 and link 6 differs from the other kinematic pairs. In order to represent this
difference, a different weight can be applied onto the edges between vertices 5 and 6 of
the graphs, as shown in Figure 6.2. Therefore, a weighted graph is created. The
enumeration of such kinematic chains becomes the enumeration of a weighted graph. As
discussed in Chapter 4, the Eigensystem approach can also deal with the isomorphism
problems of weighted and directed graphs. Therefore, the Eigensystem approach can
efficiently solve this kind of problem of the enumeration of structures. Evidently, the
Eigensystem approach is applicable to the enumeration of all four structures/graphs: (1)
non-weighted undirected graph, (2) weighted undirected graph, (3) non-weighted digraph,

and (4) weighted digraph.
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CHAPTER 7
APPLICATION II: SYNTHESIS IN MOLECULE DESIGN

7.1 Introduction

Synthesis of molecular structures plays‘a very important role in predicting molecular
properties, discovering new materials, and designing novel drugs [Basak and Niemi 1990;
Gute and Basak 2001]. Synthesis of molecular structures is also a necessary tool for
chemical documentation, which refers to the unambiguous naming and the indexed
system for chemical substances (single molecules and molecule complexes). The
application of the Eigensystem approach for synthesis in molecular design is discussed in
this chapter. Section 7.2 gives the basic concepts of molecular structures and their
representations. Section 7.3 discusses the isomer enumeration of the Alkane Series.

Section 7.4 gives a concluding remark.

7.2 Basic Concepts
7.2.1 Chemical Graph

A molecule is a combination of atoms held together by valence bonds and is represented
by a chemical constitutional formula. The constitutional formula for the chemist is a
special kind of graph called the chemical graph, which provides a representation of the
topological structure of a species, with the vertices representing the individual atoms and

the edges representing the valence bonds between pairs of atoms. Figure 7.1 illustrates a
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chemical graph. Figure 7.1a shows a chemical constitutional formula of a compound that
consists of carbon and hydrogen atoms. Figure 7.1b illustrates its chemical graph, where
closed vertices represent carbon atoms, and open vertices represent hydrogen atoms.
Every carbon atom must be tetravalent (a chemical valence of four), while every
hydrogen atom is univalent. All closed vertices must therefore be of valence 4 in the
~graph, and all open vertices must be of valence 1. Sometimes, hydrogen atoms are
omitted in a chemical graph for simplicity. Figﬁre 7.1c shows the chemical graph with the

hydrogen atoms omitted.

CH
CPb————%?——-—(HI; '*"-'SEh'___"
CH;
(b)

(a) ©

Figure 7.1 Chemical formula, graph, and the graph with omitted hydrogen atoms.

However, in many situations, the chemical graphs have to be ‘colored’ because there are
sometimes of various kinds of atoms and more than one valence bond between two
atoms. Different weights can be used to describe the different colors. Figure 7.2 shows
two chemical constitutional formulas and the chemical graphs, where the number of
valence bonds is used as weights of edges and the different shapes (weights) are used for

representing different atoms (hydrogen atoms are omitted).
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CH, —C
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o) CH====CH
(a) Chemical constitutional formula (b) Chemical graph

Figure 7.2 Chemical constitutional formula and ‘colored’ chemical graph.

Although in most cases it is sufficient to know only the constitution of the molecule
[Bohanec and Perdih 1993], it should be noted that sometimes it is necessary to know the
geometry of the structures [Wilson and Beineke 1979]. In this situation, ‘coloring’ the

chemical graph would be a very complicated task.

7.2.2 Chemical Isomers

Clearly, not all conceivable graphs correspond to molecules, for each of the atoms
forming a given structure has a given valence which must be satisfied in the structure into
which it is incorporated. It is evident that, in general, the same set of atoms chemically
united to yield a single molecule may be connected together in different ways; the
resulting structures are known as chemical isomers. For example, graphite is a chemical
isomer of diamond because they have the same atom set but different atom patterns; see
Figure 7.3. Determining the number of isomers for a specific molecule involves the
application of graph enumeration. In fact, isomer enumeration has been one of the major
applications of graph theory to chemistry [Wilson and Beineke 1979]. There are many
reports which focused on determining isomers or enumerating isomers [Henze and Blair

1931; Randic 1974; Bohanec and Perdih 1993; Faulon 1998].
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Figure 7.3 Chemical isomers: graphite and diamond.

7.3 Isomer Enumeration of the Alkane Series

A hydrocarbon is any chemical compound containing only carbon and hydrogen.
Hydrocarbons can be separated into acyclic and cyclic types. The acyclic hydrocarbons

are characterized by a branched tree structure and can be separated into three categories:

(1)  Alkanes contain only single bonds and have the general formula CyHaps2.
2) Alkenes contain a double bond and have the general formula C,Hzp.

(3)  Alkynes contain a triple bond and have the general formula C,Hjy».

According to the definition of alkanes, one can configure itg chemical graph with carbon
atoms regarded as vertices and chemical bonds regarded as edges by following three
constraints: (1) meeting the general formula, (2) only single bonds between two carbons,
and (3) no cycle is permitted. Figure 7.4 illustrates the chemical constitutional formula of
octane (CsHis) and its chemical graph where hydrogen atoms are omitted. It is noted that
in Figure 7.4b there are four kinds of vertices in terms of the degrees of these vertices

from 1 to 4. Indeed, for the chemical graphs of alkanes, the highest degree of vertices is 4,
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because a carbon has 4 chemical bonds. If given a number of carbons at this point, one
can calculate the combinations of such kinds of vertices such that the general formula is

satisfied. The following discusses the method of calculating these combinations.

CH;3 H;

CH;—C—CH——CH,—CHj

CH3

(a) chemical formula CgH;; (b) chemical graph without hydrogen

Figure 7.4 The chemical constitutional formula of octane (CsHs) and its chemical graph.

Suppose that n; (1 < i < 4) represents the number of the carbons having i/ bonds connected
with other carbons. For a carbon having i bonds connected with other carbons (i.e., a
vertex having i degrees in the chemical graph), it needs to connect another 4-i hydrogen
atoms (every carbon must have 4 chemical bonds). For a given number of carbons N
(hydrogen atoms 2N+2), there is

n+n,+n,+n,=N 7.1
and

3n,+2n,+n, =2N+2 (7.2)
By combining Equations (7.1) and (7.2) and solving these linear equations, one can
achieve all possible combinations of carbons for a given N. For example, if N=5, three

solutions can be achieved by Equations (7.1) and (7.2), i.e., (m=2, n;=3, n3=0, ns=0),
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(m=3, n=1, n3=1, ns=0), and (n;=4, n,=0, n3=0, ns=1). Table 7.1 lists the relationship

between the number of carbons up to 16 and its carbon-carbon bond combinations.

Table 7.1 The number of combinations of carbons having different carbon-carbon bonds.

N Comb. N Comb. N Comb. N Comb.
1 1 5 3 9 8 13 16
2 1 6 4 10 10 14 19
3 1 7 5 11 12 15 21
4 2 8 7 12 14 16 24

With these combinations of carbons, the chemical graphs meeting the general formula
CinHzq+2 can be enumerated by following the method discussed in Chapter 5. However, an
additional constraint has to be employed when configuring the chemical graphs of alkanes
using this method; i.e., no cycle is permitted during configurations of graphs, as
mentioned above as the third constraint. This constraint can easily be incorporated into
the general constraints. Figure 7.5 shows the illustration of how this constraint works,
where the label on the edge indicates the step of the search. In Figure 7.5a, vertex 2
(carbon) accepts a token from vertex 5 (carbon) at the fourth step and then accepts a
token from vertex 3 (carbon) at the fifth step. Once vertex 2 accepts this token from
vertex 3, a closed loop is formed among vertices 1, 2, and 3. This closed loop results in a
cycle of carbons. Therefore, such a configuration must be eliminated. The same situation
happens in Figure 7.5b when vertex 4 (carbon) accepts a token from vertex 6 (carbon) at
the sixth step. In this case, the closed loop is formed among vertices 1, 3, 4, and 6.

Therefore, the configuration must also be eliminated. However, in Figure 7.5¢, there is no

162



closed loop formed and thus this configuration is accessible and one chemical graph is
generated. Table 7.2 lists the number of the chemical graphs with up to 16 carbon atoms

meeting all three constraints of alkanes.

Figure 7.5 Illustration of configuring chemical graphs of alkanes.

Table 7.2 The number of chemical graphs meeting the constraints configuring alkanes.

Carbons Graphs | Carbons Graphs | Carbons Graphs | Carbons Graphs
1 1 5 4 9 71 13 2746
2 1 6 7 10 172 14 7078
3 1 7 14 11 426 15 18374
4 2 8 31 12 1076 16 48050

The chemical graphs of alkanes generated in Table 7.2 may include isomorphs. These
isomorphs must be removed. At this point, the Eigensystem approach is employed for the
isomer enumeration. The procedure is such that the canonical codes for all the chemical
graphs listed in Table 7.2 are found. Among the chemical graphs of alkanes with the same
canonical code, only one is kept. Table 7.3 lists the total number of isomers of the Alkane
Series with up to 16 carbons. It should be noted that the results achieved here are the
same as the records in chemistry. Appendix D lists the program codes.
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Table 7.3 Number of all isomers of the Alkanes Series up to 16 carbons.

N ng-n3-ny-ny Number z N n4=nz-na-n, Number z
1 |0-0-0-0 1 119 [|1-1-2-5 8
2 | 0-0-0-2 1 1 1-2-0-6 2
3 10-0-1-2 1 1 2-0-1-6 2
4 | 0-0-2-2 1 2] 10 | 0-0-8-2 1 75
0-1-0-3 1 0-1-6-3 7
5 | 0-0-3-2 1 3 0-2-4-4 17
0-1-1-3 1 0-3-2-5 10
1-0-0-4 1 0-4-0-6
6 | 0-0-4-2 1 5 1-0-5-4 6
| 0-1-2:3 2 1-1-3-5 17
0-2-04 1 1-2-1-6 8
1-0-1-4 1 2-0-2-6 5
7 | 0-0-5-2 1 9 2-1-0-7 2
0-1-3-3 3 11 | 0-0-9-2 | 159
0-2-1-4 2 0-1-7-3 8
1-0-2-4 2 0-2-5-4 27
1-1-0-5 1 0-3-3-5 24
8 | 0-0-6-2 1 18 0-4-1-6
0-1-4-3 4 1-0-6-4
0-2-2-4 5 1-1-4-5 33
0-3-0-5 1 1-2-2-6 28
1-0-34 3 1-3-0-7 4
1-1-1-5 3 2-0-3-6 10
2-0-0-6 1 2-1-1-7 8
9 [ 0-0-7-2 1 35 3-0-0-8 1
0-1-5-1 5 12 | 0-0-10-2 1 355
0-2-34 9 0-1-8-3 10
0-3-1-5 3 0-2-6-4 43
1-0-4-4 5 0-3-4-5 55
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Table 7.3 (Continued)

N n4-n3-ny-n, Number X N n4=n3=-ny-My Number x
12 | 0-4-2-6 24 14 | 0-3-6-5 206
0-5-0-7 2 0-4-4-6 183
1-0-7-4 11 0-5-2-7 52
1-1-5-5 58 0-6-0-8 4
1-2-3-6 73 1-0-9-4 18
1-3-1-7 21 1-1-7-5 153
2-0-4-6 20 1-2-5-6 364
2-1-2-7 28 1-3-3-7 275
2-2-0-8 1-4-1-8 52
3-0-1-8 2-0-6-6 61
13 | 0-0-11-2 1| 802 2-1-4-7 186
0-1-9-3 12 2-2-2-8 132
0-2-74 63 2-3-0-9 14
0-3-5-2 109 3-0-3-8 28
0-4-3-6 69 3-1-1-9 21
0-5-1-7 11 4-0-0-10 2
1-0-8-2 15 15 | 0-0-13-2 1] 4347
1-1-6-5 97 0-1-11-3 16
1-2-4-6 174 0-2-9-4 127
1-3-2-7 86 0-3-7-5 360
1-4-0-8 8 0-4-5-6 423
2-0-5-6 35 0-5-3-7 182
2-1-3-7 76 0-6-1-8 23
2-2-1-8 31 1-0-10-4 23
3-0-2-8 11 1-1-8-5 233
3-1-0-9 4 1-2-6-6 717
14 | 0-0-12-2 1| 1858 1-3-4-7 759
0-1-10-3 14 1-4-2-8 254
0-2-8-4 92 1-5-0-9 15
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Table 7.3 (Continued)

N n4-n3-ny-ny Number )] N n4-n3-ny-my Number
15| 2-0-7-6 98 16 | 1-0-11-4 27
2-1-5-7 405 1-1-9-5 342
2-2-3-8 428 1-2-7-6 1311
2-3-19 101 1-3-5-7 1859
3-0-4-8 71 1-4-3-8 942
3-1-2-9 90 1-5-1-9 128
3-2-0-10 14 2-0-8-6 155
4-0-1-10 7 2-1-6-7 824
16 | 0-0-14-2 1| 10359 2-2-4-8 1222
0-1-12-3 19 2-3-2-9 508
0-2-104 174 2-4-0-10 37
0-3-8-5 606 3-0-5-8 154
0-4-6-6 920 3-1-3-9 302
0-5-4-7 560 3-2-1-10 102
0-6-2-8 124 4-0-2-10 28
0-7-0-9 6 4-1-0-11 8
7.4 Concluding Remarks

As examples, the isomers of the Alkane Series with up to 16 carbbns have been
enumerated in this chapter. For a given number of carbons, the combinations of different
carbons having different chemical bonds with other carbons are first calculated so that
these combinations of the carbons can meet the general formula C,Hzn+2 and also meet '
the single bond criteria. With these combinations of the carbons, all chemical graphs
meeting the general formula C,H,,+, can be achieved by incorporating the constraint (no

closed loop is permitted) into the method discussed in Chapter 5. The Eigensystem
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approach has been applied lastly to enumerate all isomers of the Alkane Series. Canonical
codes of all chemical graphs of Alkane series have been created through the Eigensystem
approach. Unique canonical labels have been collected to create the enumeration of
distinct kinematic chains. For the known cases available in publications, the related
results obtained through the Eigensystem approach have been checked and confirmed the

same as those reported in chemistry literature [Wilson and Beineke 1979].

Computational synthesis of nanotube based gears was studied by Han et al. [1997]; see
Figure 7.6 where two molecular multiple teeth gear systems are fashioned from carbon
nanotubes. The fact that the Eigensystem approach works effectively in structure
synthesis for moleculae design well implies that the Eigensystem approach can be used in

structure synthesis for nano molecular machine design.

On-line Off-line

Figure 7.6 Two molecular multiple teeth gear systems [Han et al. 1997].
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CHAPTER 8
CONCLUSIONS

8.1 Overview

Structure synthesis is a step in design that has the highest potential to result in innovative
products. This thesis study was motivated by two things: (1) the lack of effective
computational tools for general structure synthesis and (2) the author’s preliminary
finding that both eigenvalues and eigenvectors are useful to general graph (or structure)

synthesis.

There are three fundamental problems in structures synthesis. Problem I: Coding and
indexing of structures for efficient computer storage and retrieval of structures. Problem
II: Identification of structure isomorphism (a kind of similarity). Problem III:
Enumeration of structures subject to a set of constraints. The objective of this thesis study
was to develop theories/methods, algorithms, and computer programs to support the

solving process of these three problems.

As a first step, graphs were used to represent the structures. A graph contains a set of
vertices and edges. Both the vertex and the edge can have different types. When the types
are expressed in the graph, the colored graph forms. With this notion and the notion of

hierarchical organization, the graph becomes a powerful tool to represent various

168



scenarios of the structure. With the graph, structure synthesis becomes graphs synthesis.
Furthermore, the graph can be represented by the matrix, in particular, the adjacency

matrix (AM). This then makes it possible to computer-manipulate the graph.

Among the three fundamental problems, Problem II, the graph isomorphism problem is
the basic. If there is a one-to-one mapping between two graphs, an isomorphic
relationship is established between these two graphs, or these two graphs are said to be
isomorphic. This problem is known to the graph theorist as the Non-deterministic
Polynomial (NP) problem, which means that the computational time for solving such a
kind of problem can be overwhelmingly long and, in the worst situation of some
applications, it may be beyond the capacity of the modern computing facility. Problem II

was first tackled in this thesis.

After a literature review (Chapter 2), the discussion was focused on the full development
of the method based on both the eigenvalues and eigenvectors of the adjacency matrix of
the graph — a finding generated by the author [He et al. 2000]. The key feature of this
method was to largely make use of the information of eigenvectors, particularly their
components, in seeking a one-to-one mapping between two graphs. This method was
called the Eigensystem approach. It was demonstrated that the complexity of this
Eigensystem approach was O(mzn® + msmy(nlgn + n + my)), which is the same as the well
known program called Nauty for the detection of graph isomorphisms. In addition to the
completely different thought underlying the Eigensystem method compared with that

underlying the program Nauty, the Eigensystem approach allows graphs with weight or
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non-weight and with directed edge or undirected edge to be all converted, i.e., their
isomorphisms are detectable. It is noted that the current version of the program Nauty has
only demonstrated the detection of isomorphic graphs with non-weight (both undirected

and directed edge).

To tackle the first and third problems, this thesis further described the extension of the
Eigensystem approach for the basic problem called graph counting. The graph counting
problem adds one more requirement on top of the graph isomorphism, i.e., finding all the
one-to-one mappings (instead of just one such a mapping, which is the case for the graph
isomorphism problem). After the graph counting problem was elucidated, the canonical
labeling of graphs was discussed. It was demonstrated that the Eigensystem approach can
readily be extended to perform the canonical labeling, which results in a compact code for
a graph. Such a code has a one-to-one correspondence to a graph and all its isomorphic
graphs. Computer storage of graphs can be made possible via such a canonical code. A
method was proposed to solve the third fundamental problem (i.e., the enumeration of
graphs). This method was basically constraint-oriented, i.e., converting application
problems into constraint equations on the graph, and then finding all the solutions which
satisfy the constraints. The role of the Eigensystem approach here was a tool to screen out
the isomorphic graphs that only met the constraint equations among all the graphs

generated.

Two examples were made to illustrate how to apply the methods and tools developed: one

is the machine design, and the other is the molecular design. These examples were also
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used to verify the methods and tools by comparing their results with others’ results that

are known to be correct. There were also some new results generated.

8.2 Contribution

This thesis has proposed a novel method and developed a suite of computer algorithms
and programs for structure or graph synthesis. This new method, together with its
algorithms/ programs, may be simply called the Eigensystem approach. The spectra of
graphs covered by the Eigensystem approach include weighted/non-weighted,
directed/undirected graphs. The complexity of the Eigensystem approach is O(mn® +
mymi(nlgn + n + my)), the same as that of the program Nauty which is the best
algorithm/program today for graph isomorphism, graph counting, and canonical labeling
problems. However, the program Nauty has so far demonstrated its applicability to non-
weighted graphs only. In the author’s opinion, the extension of the program Nauty to any
kind of weighted graph can be very difficult owing to the fundamental thought underlying

this program.

The developed method, which was based on the constraint satisfaction problem together
with the isomorphism detection for the enumeration of structures, can be very general and
robust. The application of this method to the mechanism design problem has resulted in
new findings for the total number of distinct structures of the kinematic chains that has 12
links and (S, 7, 9) DOFs. It is noted that, in the literature, the report for the total number

of distinct structures has been given for the 12 bar linkage with 1 DOF only.
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8.3 Future Work

Three issues, (1) synthesis of 3D structures, (2) enumeration of structures, and (3)

optimization of the algorithms, need to be addressed in the future.

The synthesis of 3D structures is becoming important in fields such as biochemistry. In
mechanical engineering, the need for 3D structure synthesis is emerging with the
expected design and development of microstructures and nanostructures. Different from
the synthesis of topological structures, the synthesis of 3D structures needs to consider the
geometrical information of structures together with the topological information. Here, the
major challenge is how the geometrical information of a 3D structure can be represented

into a graph.

In the general algorithm for the graphs enumeration developed in Chapter 5, only two
constraints (the total number of vertices and the degrees of vertices) were considered.
When new constraints are considered, the algorithm has to be extended in an ad-hoc
manner. The constraint satisfaction problem (CSP) appears to be readily applicable to the
problem of the structure enumeration. The benefits of CSP include: (1) CSP allows for
representing constraints in a declarative manner, and hence the adding of new constraints
does not require changing the algorithm for searching solutions that satisfy the
constraints, and (2) CSP has a rich suite of programs available to find all solutions given

a set of constraints.
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The major goal of the computer program developed in this thesis is to examine whether
the proposed algorithms are correct. At this point, the implementation of the algorithms
was developed in the MATLAB 6.5 environment. To improve the efficiency of the
implementation of these algorithms, it should be possible to code these algorithms outside
of any mathematical computation package environment. There is also some room to
streamline these algorithms for faster computational rates, for example, incorporating

Vector Choose Rule I discussed in Chapter 5 into algorithm I-2.
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APPENDIX A
PROGRAM FOR GRAPH ISO-/AUTO-MORPHISM

The program in Appendix A is used for graph isomorphism/automorphism test. It consists
of seven functions running in MATLAB 5.0 and later version, i.e., graph,
QuadraticForm, recusive, CompareVector, checkisomorphism, DeterminingSign,
and NodeMatching. The main function is graph(A,B) in which two augments A and B
are adjacency matrices of two graphs, respectively. All possible isomorphism/
automorphism mappings are returned by running the program. A brief description for

each function is introduced at the beginning of each function.

Program for graph isomorphism/automorphism and their counting

MATLAB M-file

August 2003

Main function graph(A,B)

-- for graph isomorphism, A and B are adjacency matrices of two graphs
-- for graph automorphism, enter B=A

o o o o o o

function graph(A,B)

% Input --- adjacency matrices of graph A and B

% Output -- ‘all possible isomorphic mappings between A and B

global FeaGro;

% FeaGro -- The matrix stored the node relationships of garph A and B
% with constructing the same feature (component of
eigenvector)

% into group

global group;

% number of feature groups
global n;

% n - node number of graph
global TOL;

global Bnode;

global total;

if (nargin-~=2)
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disp('Input arguments are undefined!');
error (' ');

end

i=size(A);

j=size(B) ;

if (1(1)~=1i(2) | jF(1)~=3(2))
disp('Must be square matrices!');
error(' ');

end

if (~isequal(A,A') | ~isequal(B,B'))
disp('Must be symmetric matrices!');
error(' ');

end

TOL = 0.0001;

group=1;

if (i(1)~=j (1))
disp('They are not isomorphic graphs because of having different
nodes. ') ;
else
n=1i(1);
P=ones(n,1);
Am=A*P;
Bm=B*P;
AAm=A;
BBm=B;
for k=1:n
AAm{k,k)=n-Am(k) ;
BBm(k, k) =n-Bm (k) ;
end
FeaGro (group) .number=1;
FeaGro (group) .index=zeros (2,n) ;
result=QuadraticForm(AAm, BBm) ;
if (result==2) »
total=1;
result=recusive (AAm, BBm,n, FeaGro,group) ;
disp('Group-to-group mapping case') ;
if (totalsl)
disp('These two graphs are isomorphic with !');
disp(total-1);
disp(' vertex mappings stored in "result.txt".');
file=fopen('result.txt', 'w');
for j=1l:total-1

for k=1:n
fprintf (file, '$3d',Bnode(j) .index(k)) ;
end
fprintf (file, '\n');
end
fclose(file);
else
disp('These two graphs are not isomorphic.');
end

elseif (result==1)

for j=1:group

disp(FeaGro(j) .index) ;

end

disp('These two graphs are isomorphic.');
elseif (result==-1)

disp('These two graphs are not isomorphic.');
else

disp('Oops! I can not make a decision now.');
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disp('An optional relationship of node numbers between graph A and
B:');
[DisFea, DisInx] =sort (FeaGro (group) .index"') ;
disp(DisInx') ;
end

function result=QuadraticForm(A,B)

% A,B -- adjacency matrices of graph A and B, respectively

% result -- return 1 if having one-to-one relationship, return 0 if
can't make a decision, return 2 if further test is needed,
otherwise -1

Av,Bv -- eigenvector matrices of A and B graphs

o0 O° o o° o

global FeaGro;
global Av;
global Bv;
global n;
global TOL;
ABm = A';
[Av,Ad] =eig (ABm) ;
ABm = B';
[Bv,Bd] =eig (ABm) ;
M=ones(n, 1) ;
ABd=Ad*M;
[Adl, IAd] =sort (ABd) ;
ABd=Bd*M;
[Bdl, IBd] =sort (ABd) ;
if (abs(Adl1-Bd1l)<TOL)
x=1;
r=2;
for i=1:n-1
if (abs(Adl(i+1)-Adl(x))>TOL)
if (i==x)
r=CompareVector (IAd(i) ,IBd(i));
if (r<0)
break;
end
end
X=1+1;
end
end
if (x==n & r>=0)
r=CompareVector (IAd (n) ,IBd(n));
end
if (x==1 & r>=0)
% only one eigenvalue, I guess that they are isomorphic
result=1;
else
if (r==2)
% every eigenvalue has at least a repeated root
result=0;
elseif (r==1)
% isomorphic
result=1;
elseif (r==-1)
% non-isomorphic
result=-1;
else
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% Further test is required
result=2;
end
end
else
% non-isomorphic: eigenvalues are different
result=-1;
end

function r=recusive(A,B,n,FeaGroPre, Fgroup)

% A,B ---- adjacency matrices of graph A and B
$n------ number of vertices

% FeaGroPre ---- mapping relationships in feature groups
% Fgroup -- number of feature groups

global FeaGro;
global group;
global Bnode;
global total;

for k=1:Fgroup
AA=A;
BB=B;
group=1;
FeaGro (group) =FeaGroPre (k) ;
[TemFeaGro, Ifg] =sort (FeaGroPre (k) .index') ;

j=1;
t(1)=n;
t(2)=n;

for i=2:n
if (TemFeaGro(i,1l)==TemFeaGro(i-1,1))

j=j+1;
else
if (§>1)
if (t(1)>3)

t(1)=j; % the number of vertices in a feature group
t(2)=1i-1; % the location of the final vertex in a feature

group
end
j=1;
end
end
end
% Compare the last feature group
if (§>1)
if (t(1)>3)
t(l)=j; % the number of vertices in a feature group
t(2)=1i; % the location of the final vertex in a feature group
end
end

mm=t (2) -t (1)+1; % Location of the first vertex in the group
ma=Ifg(mm,1);
% Change an element of matrix A by plusing ma at 'ma‘'
AA(ma,ma)=AA(ma,ma)+ma;
for j=1:t (1)

mb=Ifg (mm+j-1,2);

% Plus the element of matrix B by ma at 'mb'

BB (mb, mb) =BB (mb, mb) +ma;

r=QuadraticForm(AA,BB) ;
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if (r==2)
r=recusive (AA,BB,n, FeaGro,group) ;

else
if (r==1)
for 1=1:group
[DisFea,DisInx] =sort (FeaGro(l) .index') ;
r=checkisomorphism(A,B,DisInx) ;
if (r==1)
Bnode (total) .index=([0 1] *DisInx’';
disp (Bnode (total) .index) ;
total=total+l;
end
end
end
end
BB (mb, mb) =BB (mb, mb) -ma;
group=1l;
FeaGro (group) =FeaGroPre (k) ;
end

end

function r=CompareVector(Ia, Ib)

% Ia, Ib -- Respective column number of A and B matrices, which have a
% same eigenvalue of A and B graphs

% r -- return 1 if same and unique; return 0 if same and not unique;
otherwise -1

%

global FeaGro;

global group;

global Av;

global Bv;

global n;

global TOL;

M=zeros(n,1);

M(Ia)=1;

ABi=DeterminingSign (Av*M) ;

[Va,Val]l=sort (ABi);

M=zeros(n,1);

M(Ib)=1;

ABi=DeterminingSign (Bv*M) ;

[Vb,VbI]=sort (ABi) ;

cl=0.0;

for j=1:n
cl=cl+abs(Va(j)-vb(j));

end

TemGroupl=0;

if (abs(cl)<TOL)
TemGroup=group;
TemFeaGro=FeaGro;
NodeMatching(Va,VaI,VbI);
TemGroupl=group;
TemFeaGrol=FeaGro;
group=TemGroup;
FeaGro=TemFeaGro;

end

c2=0.0;

for j=1:n
c2=c2+abs(Va(j)+Vb(n-j+1));

end
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if (abs(c2)<TOL)
for j=1:n
VBI(j)=VbI(n+1l-j);
end
NodeMatching(Va,VaI,VBI);
for j=1:TemGroupl
FeaGro (group+j) =TemFeaGrol(j) ;
end
group=group+TemGroupl;
else
if (abs(cl)<TOL)
group=TemGroupl;
FeaGro=TemFeaGrol;
end
end
if (group==0 | (abs(cl)>TOL & abs(c2)>TOL))
=-1;
else
j=group;
group=1;
for i=2:3
k=0;
for 1l=1:group
if (isequal (FeaGro(l) .index,FeaGro(i) .index))
k=1;
break;
end
end
if (k==0)
group=group+1l;
FeaGro (group) =FeaGro (i) ;
end
end
if (FeaGro(l) .number==n)
r=1;
else
r=0;
end
end

function r=checkisomorphism(a,B,x)

global FeaGro;
global n;

pmatrix=zeros(n,n);
for i=1:n

m=x(il2) H

pmatrix(i,m)=1;
end
C=pmatrix*B*pmatrix’';
if (isequal(a,C))

r=1;

% checked;
else

=-1;

% failed

end
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function x=DeterminingSign (matr)

% matr -- an eigenvector
% X -- the standard expression of the eigenvector in Eigensystem
approach

% The rule: (1) if the eigenvector is symmetrical to its negative
% then do nothing

% (2) for each eigenvector comparing the absolute values of
between the smallest

% component and the largest component

% (3) let the component having the largest absolute value as a
% negative and change the sign of the eigenvector if
needed

global n;

global TOL;

aa=sort (matr) ;
bb=sort (-matr) ;
if (abs(aa-bb)<TOL)

x=matr;
else

sign=1;

for i=1l:n

=abs (aa (i) +aa(n-i+1));

if (y>TOL)
if (abs(aa(i))<abs(aa(n-i+1)))
sign=-1;
end
break;
end
end
x=sign*matr;

end

function r=NodeMatching (matr, IaV, IbV)

% matr -- a eigenvector of graph A reordered to the compared column
% IaV,IbV -- index matrices of the eigenvector matr for A and B,
respectively

% r -- return 1 if there is a one-to-one relationship; return 0

% if can't make a decision; otherwise return -1

%

global FeaGro;
global group;
global n;
global TOL;
x=matr (1) ;
GroupN=1;
Tem(1,IaV(1))=GroupN;
Tem (2, IbV (1) ) =GroupN;
for i=2:n
if (abs(matr(i)-x)>TOL)
x=matr (i) ;
GroupN=GroupN+1;
end
Tem(1l,IaVv(i))=GroupN;
Tem (2, IbV (i) ) =GroupN;
end
for 1=1:group
r=0;
temp=Tem;
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FeaGroT=FeaGro(l) .index;
GroupN=1;
FeaGroMid=zeros(2,n);

for i=1:n
if (temp(1,i)>=0)
FeaGroPre=zeros(2,n);
FeaGroCur=FeaGroPre;
for j=1:n
if (FeaGroT(1,3j)==FeaGroT(1,1i))
FeaGroPre(l,j)=1;
end
if (FeaGroT(2,j)==FeaGroT(1,1i))
FeaGroPre(2,j)=1;
end
if (temp(l,j)==temp(1,i))
FeaGroCur(1l,j)=1;
end
if (temp(2,j)==temp(1,i))
FeaGroCur(2,3j)=1;
end
end
TemResult=FeaGroPre & FeaGroCur;
kl=1;
k2=1;
for j=1:n
if (TemResult(1,3j)>0)
FeaGroMid (1, j) =GroupN;
FeaGroT(1,j)=-1;
temp(l,j)=-1;
kl=k1l+1;
end
if (TemResult (2,7j)>0)
FeaGroMid (2, j)=GroupN;
FeaGroT(2,j)=-1;
temp (2,3)=-1;

k2=k2+1;
end
end
if (kl==1 I k2==1)
r=-1;
break;
end
GroupN=GroupN+1;
end
end
if (r==-1)
FeaGro(l) .number=-1;
else

FeaGro (1) .number=GroupN-1;
FeaGro(l) . index=FeaGroMid;
end
end
GroupN=group;
group=0;
for 1=1:GroupN
if (FeaGro(l) .number-~=-1)
group=group+1;
FeaGro (group) =FeaGro (1) ;
end
end
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APPENDIX B
PROGRAM FOR CANONICAL LABELING OF GRAPHS
The program in Appendix B is used for finding unique codes of graphs by canonically
labeling the graphs. It consists of eight functions running in MATLAB 5.0 and later
version, 1i.e., LabelingGraph, QuadraticForm, recusive, CompareVector,
checkisomorphism, CanonicalLabel, DeterminingSign, and NodeMatching. The main
function is LabelingGraph(A) in which augment A is adjacency matrix of a graph. The
unique code for a graph is returned by running the program. A brief description for each

function is introduced at the beginning of each function.

Program for canonical labeling of graphs
MATLAB M-file

August 2003

Main function LabelingGraph(A)

-- A is the adjacency matrix of a graph

o° o° o o o

function Cano=LabelingGraph (a)
% Input --- the adjacency matrix of a graph
% Output -- canonical labeling and the canonical code

global FeaGro;

% FeaGro -- The matrix stored the node relationships of garph A and B
% with constructing the same feature (component of
eigenvector)

% into group

global group;

% number of feature groups
global n;

% n - node number of graph
global TOL;

global Bnode;

global total;

global Cano;

countTimel=cputime;
Cano="'";
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B=A;

i=size (a);

j=size (B);

if (i(1)~=1(2))
disp('Must be square matrices!');
error(' ');

end

if (~isequal(a,A'))
disp('Must be symmetric matrices!');
erroxr(' ');

end
TOL = 0.0001;
group=1;

if (i(1)~=j(1))
disp('They are not isomorphic graphs because of having different
nodes.');
else
n = 1i(1);
P=ones(n,1);
Am=A*P;
Bm=B*P;
AAm=A;
BBm=B;
for k=1:n
AAm(k,k)=n-Am(k) ;
BBm(k,k)=n-Bm(k) ;
end
FeaGro (group) .number=1;
FeaGro (group) . index=zeros (2,n) ;
result=QuadraticForm(AAm, BBm) ;
if (result==2)
result=recusive (AAm,BBm,n, FeaGro,group) ;
elseif (result==1)
for j=1:group
[DisFea,DisInx] =sort (FeaGro(j) .index"') ;
r=checkisomorphism(a,B,DisInx) ;
if (r==1)
disp('Canonical Labeling of the graph');
disp(DisInx');
disp ([0 1]*DisInx');
end
end
disp ('Canonical Code of the graph');
disp(Cano) ;
elseif (result==-1)
disp('These two graphs are not isomorphic.');
else
disp('Oops! I can not make a decision now.');
disp('An optional relationship of node numbers between graph A and
B:');
[DisFea,DisInx] =sort (FeaGro (group) .index"') ;
$disp (DisInx');
end
end
countTime2=cputime;
disp('Time cost (seconds):');
disp (countTime2-countTimel) ;
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function result=QuadraticForm(A,B)

% A,B -- adjacency matrices of graph A and B, respectively

% result -- return 1 if having one-to-one relationship, return 0 if
can't make a decision, return 2 if further test is needed,
otherwise -1

o° o o

% Av,Bv -- eigenvector matrices of A and B graphs
%
global FeaGro;
global Av;
global Bv;
global n;
global TOL;
ABm = A';
[Av,Ad] =eig (ABm) ;
ABm = B';
[Bv,Bd] =eig (ABm) ;
M=ones(n, 1) ;
ABd=Ad*M;
[Adl, IAd] =sort (ABd) ;
ABd=Bd*M;
[Bd1l, IBd] =sort (ABd) ;
if (abs(Ad1-Bd1l)<TOL)
x=1;
r=2;
for i=1:n-1
if (abs(Ad1l(i+1)-Adl(x))>TOL)
if (i==x)
r=CompareVector (IAd (i), IBd(i));
if (r<o0)
break;
end
end
x=1+1;
end
end
if (x==n & r>=0)
r=CompareVector (IAd(n),IBd(n));
end
if (x==1 & r>=0)
% only one eigenvalue, I guess that they are isomorphic
result=1;
else
if (r==2)
% every eigenvalue has at least a repeated root
result=0;
elseif (r==1)
% isomorphic
result=1;
elseif (r==-1)
% non-isomorphic
result=-1;
else
% Further test is required
result=2;
end
end
else
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% non-isomorphic: eigenvalues are different
result=-1;
end

function r=recusive(A,B,n,FeaGroPre, Fgroup)

% A,B ---- adjacency matrices of graph A and B

$n ------ number of vertices

% FeaGroPre ---- mapping relationships in feature groups
% Fgroup -- number of feature groups

global FeaGro;
global group;
global Bnode;
global total;

for k=1:Fgroup
AA=A;
BB=B;
group=1;
FeaGro (group) =FeaGroPre (k) ;
[TemFeaGro, Ifg] =sort (FeaGroPre (k) . index!') ;
i=1;
t(1l)=n;
t(2)=n;
for i=2:n
if (TemFeaGro(i,l)==TemFeaGro(i-1,1))

J=3+1;
else
if (3>1)

if (e(1)>3)
t(1l)=j; % the number of vertices in a feature group
t(2)=i-1; % the location of the final vertex in a feature
group
end
j=1;
end
end
end
% Compare the last feature group
if (3>1)
if (t(1)>3)
t(1l)=j; % the number of vertices in a feature group
t(2)=1i; % the location of the final vertex in a feature group
end
end
mm=t (2) -t (1) +1; % Location of the first vertex in the group
ma=Ifg(mm,1);
% Change an element of matrix A by plusing ma at 'ma’
AA (ma,ma)=AA(ma,ma)+ma;
for j=1:t(1)
mb=Ifg (mm+j-1,2);
% Plus the element of matrix B by ma at 'mb’'
BB (mb, mb) =BB (mb, mb) +ma ;
r=QuadraticForm(AA, BB) ;
if (r==2) '
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r=recusive (AA, BB, n, FeaGro,group) ;
else
if (r==1)
for 1=1:group
[DisFea,DisInx] =sort (FeaGro(l) .index"') ;
r=checkisomorphism(a,B,DisInx) ;
if (r==1)
Bnode (total) .index=[0 1] *DisInx';
% disp(DisInx');
% disp(Bnode (total) .index) ;
total=total+l;
end
end
end
end
BB (mb, mb) =BB (mb, mb) -ma;
group=1;
FeaGro (group) =FeaGroPre (k) ;
end
end

function r=checkisomorphism(a,B,x)

global FeaGro;
global n;
global Cano;

pmatrix=zeros(n,n);
pmatrixl=zeros(n,n);
for i=1:n
columnA=x(i, 1) ;
columnB=x (i, 2) ;
pmatrix (i, columnB)=1;
pmatrixl (i, columnA)=1;
end
Aa=pmatrixl*A*pmatrixl’;
Bb=pmatrix*B*pmatrix’;
if (isequal (Aa,Bb))
r=1;
Cano=CanonicallLabel (Aa) ;
else
r=-1;

function r=CompareVector (Ia,Ib)

% Ia, Ib -- Respective column number of A and B matrices, which have a
% same eigenvalue of A and B graphs

% r -- return 1 if same and unique; return 0 if same and not unique;
otherwise -1

%

195



global FeaGro;

global group;

global Av;

global Bv;

global n;

global TOL;

M=zeros(n,1);

M(Ia)=1;

ABa=AV*M;

signl=DeterminingSign (ABa) ;

ABa=signl*ABa;

M=zeros(n,1);

M(Ib)=1;

ABb=BV*M;

sign2=DeterminingSign (ABDb) ;

ABb=sign2*ABb;

[Va,Vall=sort (ABa) ;

[Vb,VbI]=sort (ABDb) ;

cl=0.0;

for j=1:n
cl=cl+abs (Va(j)-vb(j));

end

TemGroupl=0;

if (abs(cl)<TOL)
TemGroup=group;
TemFeaGro=FeaGro;
NodeMatching(Va,Vval,VbI);
TemGroupl=group;
TemFeaGrol=FeaGro;
group=TemGroup;
FeaGro=TemFeaGro;

end
[Va,Val]l =sort (-ABa);
c2=0.0;

for j=1:n
c2=c2+abs(Va(j)-vb(j));
end
if (abs(c2)<TOL)
NodeMatching(Va,val,VbI);
for j=1:TemGroupl
FeaGro (group+3j)=TemFeaGrol (j) ;
end
group=group+TemGroupl;
else
if (abs(cl)<TOL)
group=TemGroupl ;
FeaGro=TemFeaGrol;
end
end
if (group==0 | (abs(cl)>TOL & abs(c2)>TOL))
=-1;
else
j=group;
group=1;
for i=2:j
k=0;
for 1l=1l:group
if (isequal(FeaGro(l) .index, FeaGro (i)
k=1;
break;
end
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end
if (k==0)
group=group+1;
FeaGro (group) =FeaGro (i) ;
end
end
if (FeaGro(l) .number==n)
r=1;
else
r=0;
end
end

function pCano=Canonicallabel (matr)

% matr -- The adjacency matrix which is the canonical labeling
% Cano -- the canonical labeling
global n;

global Cano;

pmatrix=zeros(n,n);
for i=1:n

pmatrix(i,n-i+1)=1;
end
matrl=pmatrix*matr*pmatrix’';
r=0;
for i=1:n-1

for j=i+1l:n

if (matr(i,j)~=matri(i,j))

r=1;
break;
end
end
if (r==1)
break;
end
end
if (r==1)

if (matr(i,j)>matril(i,j))
matr=matrl;
end :
end
m=n* (n-1)/2;
r=4-mod(m,4);
sym=zeros (1, m+r) ;
ind=r+1;
for i=1:n-1
for j=i+1l:n
sym(1l,ind)=matr(i,j);
ind=ind+1;
end
end
pCano="'";
for i=1:4:m+r
x=8*sym(1,1i)+4*sym(1,i+1)+2*sym(1l,i+2)+sym(1,i+3);
if (x<10) ,
pCano=strcat (pCano, int2str(x));
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elseif (x==10)
pCano=strcat (pCano, 'A') ;
elseif (x==11)
pCano=strcat (pCano, 'B') ;
elseif (x==12)
pCano=strcat (pCano, 'C') ;
elseif (x==13)
pCano=strcat (pCano, 'D') ;
elseif (x==14)
pCano=strcat (pCano, 'E') ;
else
pCano=strcat (pCano, 'F') ;
end
end
r=fix{((m+3)/4);
if (isempty(Cano))
Cano=pCano;
else
for i=1l:r
if (pCano(i)~=Cano(i))
if (pCano(i)>Cano(i))
pCano=Cano;
end
break;
end
end
end

function sign=DeterminingSign (matr)

% matr -- an eigenvector

% sign -- the sign of the standard expression of the eigenvector in
Eigensystem approach

% The rule: (1) if the eigenvector is symmetrical to its negative
% then do nothing

% (2) for each eigenvector comparing the absolute values of
between the smallest

% component and the largest component

% (3) let the component having the largest absolute value as a
% negative and change the sign of the eigenvector if
needed

global n;

global TOL;

aa=sort (matr) ;
bb=sort (-matr) ;
if (abs(aa-bb)<TOL)
sign=1;
else
sign=1;
for i=1:n
y=abs(aa(i)+aa(n-i+1));
if (y>TOL)
if (abs(aa(i)-aa(n-i+1))<TOL)
if (aa(i)>0)
sign=-1;
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end

else
if (abs(aa(i))<abs(aa(n-i+1)))
sign=-1;
end
end
break;
end

end
end

function r=NodeMatching(matr,IaV,IbvV)

% matr -- a eigenvector of graph A reordered to the compared column
% IaV,IbV -- index matrices of the eigenvector matr for A and B,
respectively

% r -- return 1 if there is a one-to-one relationship; return 0

% if can't make a decision; otherwise return -1

% .

global FeaGro;
global group;
global n;
global TOL;
x=matr (1) ;
GroupN=1;
Tem (1, IaV(1l))=GroupN;
Tem (2, IbV (1)) =GroupN;
for i=2:n
if (abs(matr(i)-x)>TOL)
x=matr (i) ;
GroupN=GroupN+1;
end
Tem(1l,Iav(i))=GroupN;
Tem (2, IbV (i) )=GroupN;
end
for 1=1:group
r=0;
temp=Tem;
FeaGroT=FeaGro(l) .index;
GroupN=1;
FeaGroMid=zeros(2,n) ;
if (FeaGro(l) .number==1)
FeaGroT=ones(2,n) ;
end
for i=1:FeaGro(l).number
tmax=0;
tmin=n;
FeaGroCur=zeros(2,n) ;
for j=1:n
if (FeaGroT(1,j)==1)
FeaGroCur(1l,j)=temp(1,3j);
if (temp(1,3j)>tmax)
tmax=temp(1,3);
end
if (temp(1,3j)<tmin)
tmin=temp(1,3j);
end
end

199



if (FeaGroT(2,j)==1i)
FeaGroCur(2,j)=temp(2,3);
end
end
for ii=tmin:tmax
k1=0;
k2=0;
for j=1:n
if (FeaGroCur(l,j)==ii)
FeaGroMid (1, j)=GroupN;
kl=k1l+1;
end
if (FeaGroCur(2,j)==1i)
FeaGroMid (2, j) =GroupN;
k2=k2+1;
end
end
if (k1~=k2)
r=-1;
break;
end
GroupN=GroupN+1;
end
if (r==-1)
break;
end
end

if (r==-1)
FeaGro(l) .number=-1;
else
FeaGro (1) .number=GroupN-1;
FeaGro(l) .index=FeaGroMid;
end

end
GroupN=group;
group=0;

for 1=1:GroupN

if (FeaGro(l) .number~=-1)
group=group+1;
FeaGro (group) =FeaGro (1) ;
end

end
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APPENDIX C
PROGRAM FOR ENUMERATION OF MECHANISMS

The program in Appendix C is used for listing all alternative mechanisms meeting design
constraints of mechanisms, i.e., the number of linkages and the number of degrees of
freedom. These alternative mechanisms have been converted into graphs and are stored in
output files with formats of adjacency matrices. The graphs stored in output files are then
uniquely coded by using the program in Appendix B to enumerate all distinct graphs
(mechanisms). The class name of the program is E_mechanism. It is written in Java code
and must be compiled in JDK 1.2 or later version environment before running it. A brief

description for each method in the class is introduced at the beginning of each method.

// Program for enumeration of kinematic chains meeting constraints
// JAVA

// August 2003

// Main function E_mechanism

import java.io.*;
import java.lang.*;
import java.util.¥*;

class E_mechanism

{
public static int graph=0;
public static File outputFile;
public static FileWriter out;

public static void main(String[] args) throws IOException

// dof -- Degree of Freedom
// 1inkN -- number of links
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// groupN -- the maximum joint values that the link
could have

// 2 binary; 3 ternary; 4 quaternary;

// linkTypel[] -- number of the ith link for
i=2,3,..,groupN.

// 1inkG[i] [§j] -- number of the jth kind of 1link type at
the ith possible group

// typeN -- number of possible groups where various
types of links combine together

int [] linkType=new int[20];

int [][] temType=new int[50] [3];

int [][] linkG=new int [200] [20];

int [][] curType=new int [50] [3];

int [][] graphAAM=new int [50] [50];

int x,dof, 1inkN, groupN, typeN;

String str;

BufferedReader stdin = new BufferedReader (new
InputStreamReader (System.in));
System.out.print ("\nDegree of Freedom
str=stdin.readLine() ;
dof=Integer.parselnt(str,10);
System.out.print ("\n\nNumber of links
str=stdin.readLine() ;
linkN=Integer.parselnt (str,10);
System.out.print ("\n\nFilename of kinematic chains: ");
str=stdin.readLine() ;
System.out.println();
groupN=findJointValues (dof, 1inkN) ;
findLinkNumbers (dof, 1inkN, groupN, 1linkType) ;
String s=new String(enuNumber (1inkType,groupN, 1inkN}) ;
typeN=findLinkGroup (groupN, s, dof, 1inkG) ;
System.out.println();
System.out.print (typeN) ;
System.out.println(" file(s) saving potential kinematic
chains will be created.\n");
for (int i=1;i<=typeN;i++)

");

ll)’.

s=new String(str);

s=s.concat ("_");

s=g.concat (String.valueOf (i)) ;

outputFile= new File(s.concat (".kc_"));
out = new FileWriter (outputFile);
out.write(linkN) ;

out.write (groupN+100) ;

for (int j=2;j<=groupN;j++)

temType [j-1] [0]=3;

temType [j-1] [1]1=-1inkG[i] [j];

temType [j-1] [2]1=0;
out.write(linkG({il [§]1);

}

graphAAM[0] [1]1/=2;

for (x=groupN;x>=2;x--)

if (temType([x-1] [1]!=0) break;

// pick up one link with the maximum joint
values

temType [x-1] [1]++;

graphAAM[0] [0]=0; //counting face number of
graph

graphAaM([1] [1]=x;
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int
cur_groupN=waitConnectingList (temType, groupN, curType) ;

enumerationKC(graphAAM, 1, 1, x, curType, cur_groupN, dof) ;
out.close() ;
System.out.println(graph) ; '

System.out.println("Total graphs (isomorphic and
nonisomorphic): "+graph);

// Determining the maximum joint values of the link that a kinematic
chain could have

public static int findJointValues (int dof,int 1linkN)

{
int groupN;
if (dof>=2) {
int i=linkN-dof-1;
int j=(linkN+dof-1)/2;
if (i>j) groupN=j;
| else groupN=i;
else groupN=(linkN-dof+1)/2;
| return groupN;

// Determining possible number of each link in a kinematic chain
public static void findLinkNumbers (int dof,int 1linkN, int

groupN, int [l linkType)
{

for (int i=3;i<=groupN;i++)
linkType[i]=(linkN-dof-3)/(i-2);
| linkType [2] =1inkN;

// Recurisive procedure for enumerating all possible link groups
public statiec String enuNumber (int L[], int groupN,int 1linkN)

int n;
String r;

r=" L".concat (String.valueOf (groupN)) ;
r=r.concat (" ");
if (groupN==2)

if (L[groupN]<linkN) r=r.concat (String.valueOf (-
n);

else r=r.concat (String.valueOf (1inkN)) ;

return r;

if (linkN==0)

r=r.concat (String.valueOf (0)) ;
return r;

if (L[groupN]<linkN) n=L[groupN];
else n=1inkN;

String Num=new String();

for (int i=0;i<=n;i++)

Num=Num.concat (x) ;
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Num=Num. concat (String.valueOf (i) ) ;
Num=Num.concat (enuNumber (L, groupN-1, 1inkN-1i)) ;

}

return Num;

}

// Determining the number of each link in a possible kinematic
chain

public static int findLinkGroup (int groupN,String str, int
dof,int []1[] 1linkG)

{

int row,col,precC;
int [] jointV=new int [200];
String s=new String();

row=1;

col=groupN;

preC=col+l;

StringTokenizer st = new

StringTokenizer (str.substring(1));

while (st.hasMoreTokens()) {
s=st .nextToken () ;
if (s.charAt(0)=='L"')

col=Integer.parselnt (s.substring(1),10);
if (col>=preC) {
if (jointV[row] ==dof+3) {

TOW++;
for (int
i=groupN;i>col;i--)
{
1linkG([row] [i]=1inkG[row-1] [i];
jointV[rowl =jointV[row] + (3-i) *1inkG[row] [i];
else {
jointV[row] =0;
for (int

i=groupN;i>col;i--)

jointV([row] =jointV[row] +(3-1i) *1inkG[row] [i];

preC=col;

else {
1inkG [row] [col] =Integer.parseInt(s,10);
if (linkGI[row] [coll==-1) row--;
else jointV[row]=jointV[row]+(3-
col) *1inkG [row] [col] ;

if (jointV([row] !=dof+3) row--;
return row;

}

// Enumerating all possible kinematic chains

204



public static void enumerationKC(int[] [] AAM, int aAm, int

1_num,int r_joint,int [][] preType,int cur_groupN, int dof) throws
IOExcept%on

int i,j,n,num,aam, gNumber;

int []1[] linkGroup=new int [100] [20];

int {][] curType=new int [50] [3];

int [][] ncurType=new int [50] [3];

int []1[] graphAAM=new int [50] [50];

// linkGroup{il [j] -- number of the link curType([jl[] in
the ith group

String str=new String();

str=chainEnumeration (preType, cur_groupN,r_joint) ;
if (!str.equals("-1"))

gNumber=findChainGroup (cur_groupN, str, linkGroup) ;
for (i=1;i<=gNumber;i++)

for (int ii=1;ii<=cur_groupN;ii++)

curType[ii] [0] =preType[ii] [0];
curType [ii] [1] =preType[ii] [1];
§urType[ii][2]=preType[ii][2];

for (int ii=1;ii<=alAm;ii++)

for (int jj=1;jj<=aldm;jj++)
} graphAAM[iil (§j]1=AAM[ii] [§3];
num=cur_groupN;
aam=aAm;
for (j=1;j<=cur_groupN;j++)

n=1inkGroup[i] [j];
if (n==0) continue;
int y=curTypeljl [1];
if (y>0) // It already joins into the

{

chain

curType[j] [0] -=n;
graphAAM([1 num] [y]l=n;
graphAAM [y] [1_num]=n;
curType[j] [2]1=0;
int ’
jj=checkZeroDOF (graphAAM, aam,1_num,y, dof) ;
if (jj==1) break;
jj=checkZeroDOF2 (graphAAM, aam, 1_num,y) ;
| if (jj==1) break;

the chain

else { // It doesn't yet join into

int z=aam+1l;
for (int k=1;k<=n;k++)

aam++;
num++;

graphAAM[aam] [aam] =curType[j] [0];
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graphAAM[1_num] [aam]=1;
graphAAM[aam] [1_num] =1;

curType [num] [0] =curType[j] [0]-1;
curType [num] [1] =aam;
if (n>1) curType[num] [2]=2;
else curType [num] [2]=0;

curType[j] [1] +=n;

}

if (j<=cur_groupN) continue;
num=waitConnectingList (curType,num,ncurType) ;
if (num<2)

{

if (num==0)

/* if (isPlanarKC (graphAAM, aam)==0)
* /saveGraphAAM (graphAAM, aam) ;

else {
for (j=1;j<=num;j++)
if (ncurTypel[j]l [0]>0 &&
ncurType[j] [1]1>0) break;
if (j<=num)
int i_num=ncurType(j] [1];
int c_1 num=ncurType[j] [1];
int c_r_num=ncurType[j] [0];
ncurType [j]1 [2]1=0;
pickupLink (graphAAM, aam, i_num,ncurType, num) ;
int [] [] nncurType=new
int [50] [3];
num=waitConnectingList (ncurType, num, nncurType) ;

enumerationKC (graphAAM, aam,c_1_num,c_r_ num,nncurType,num,dof) ;

}

}

public static void pickupLink(int (] [] graphAAM,int aam, int
k,int[] [] curType,int num)

int 1i,3;
for (j=1;j<=aam;j++)

if (graphAAM(k] [j]>0)
for (i=1;i<=num;i++)
if (curTypelil] [1]==7)

curType[i] [0]=0;
break;
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// Removing completely connected links from the waiting list for

connection
// curTypel[] [0] - remain of joint values; curTypel] [1] - link

No.
// if (curTypel(] [1]1<0) then it means the link doesn't yet join

into the chain, and
// -curTypell [1] represents the number of this kind of link

public static int waitConnectingList (int([] [] preType, int
preNum, int {] [] curType)

int curNum=0;
for (int j=1;j<=preNum;j++)
if (preTypeljl[1]!=0 && preTypelj] [0]!=0)

curNum++;

curType [curNum] [0] =preType [j] [0];

curType [curNum] [1] =preType [j] [1];
curType [curNum] [2] =preType [j] [2];

}

return curNum;

}

// Recurisive procedure for enumerating all possible chains
public static String chainEnumeration({int[] [] curType, int

indexN, int 1linkN)

{
int n,ii,jj,.kk;
int [] L=new int[20];

int [] mark=new int[20];

int [][] linkGroup=new int [100] [20];
String str;

ii=1;

kk=0;

for (int i=1;i<=indexN;i++)

if (curTypel(i] [1]1<0)

{
1i++;
L{ii]l=-curTypel(i] [1]; // nonconnected link
kk-=curType[i] [1];
mark [i]l=ii;
}
( else if (curTypeli] [2]>0)

for (jj=1;jj<i;jj++)
if (curTypel(i] [2]==curTypel[jjl] [2])
int k=mark[jj];
L[k] ++;

kk++;
mark [i] =k;
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break;

if (§j==i)
{

ii++;
L[ii]=1;
kk++;

mark [i]=1ii;

}

else {
ii++;
L[ii]l=1;
kk++;
mark [i]=1ii;

if (kk<linkN) return ("-1");
str=enuNumber (L, ii, 1inkN) ;
int gNumber=findChainGroup(ii-1,str,linkGroup) ;
int [][] tmp=new int [100] [20];
for (int i=1;i<=gNumber;i++)

for (int j=1;j<ii;j++)
for (jj=1;jj<=indexN;3jj++)
if (mark([jjl==j+1)
if (curTypeljjl [2]>0)

int x=linkGroup[i] [j];
if (x==0) break;
for (kk=1;kk<=indexN;kk++)

if (curType[kk] [2]==curTypeljj] [2])

tmp [1] [kk]=1;
X--;

if (x==0) break;

else tmp[i] [jjl=1inkGroup[il [j]:
break;
}
}
}
}
String s=new String();
for (int i=1;i<=gNumber;i++)

{

for (int j=indexN;j>=1;3--)

.concat (" L");

.concat (String.valueOf (j+1));
.concat (" ");

.concat (String.valueOf (tmp [i] [§1));

} )

nonnon
W nu
nnhnn
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return s;

// find a kinematic chain group
public static int findChainGroup (int cur_groupN, String
str,int[] [1 linkGroup)

int row,col,preC,mark;
String s=new String();

mark=1;
row=1;

col=cur_groupN;

preC=col+l;

StringTokenizer st = new

StringTokenizer (str.substring(1l));

while (st.hasMoreTokens()) {
s=st.nextToken() ;
if (s.charAt(0)=='L')

col=Integer.parselnt (s.substring(1),10) -

if (cols=preC) {
if (mark==1)

TOW++;
for (int i=cur_groupN;i>col;i--)

linkGroup [row] [i] =1inkGroup [row-1] [i];

else mark=1;

}

preC=col;
else {

linkGroup [row] [col]l =Integer.parselnt (s,10);
if (linkGroup [row] [col]l==-1) mark=0;
}

}

return row;

}

// Check if this connection will result in a 0 DOF among links
// return 1 -- a 0 DOF; return 0 -- no 0 DOF
public static int checkZeroDOF (int[] [] graphAAM, int aam, int
prenum, int curnum, int deg)

int i,j,x,y,tri;

// checkining if there is a triangle among three links
for (i=1;i<=aam;i++)

j=graphAAM [prenum] [i] +graphAAM [curnum] [i];
if (j==2 && il!=prenum && i!=curnum) break;

if (i<=aam) return (1);

// checkining if there are more than two connections,

// each of which is jointed by one 1link, between the two
links :
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for (i=1;i<=aam;i++)

{

if (prenum!=i)

tri=0;
for (j=1;j<=aam;j++)

if (j!=prenum && j!=i)

x=graphAAM [prenum] [j] +graphAaM[i] [j];
} if (x==2) tri++;

if (tri>=3) return (1);

if (curnum!=1i)

{
tri=0;
for (j=1;j<=aam;j++)

if (j!=curnum && j!=i)

x=graphAAM [curnum] [j]+graphAAM[i] [j];
} if (x==2) tri++;

if (tri>=3) return (1);

}
// check if there is a zero DOF for 7 linked chains
for (i=1;i<=aam;i++)

for (j=1;j<=aam;j++)

%f (i!=j && graphAAM[i] [§]==1)

int ii=isZeroDOF (graphAAM,aam,i,j);
if (ii==1) return (1);

}
}

} ,
// check if the DOF of partialy binary chains is more than

the DOF of the mechanism
for (i=1;i<=aam;i++)

if (graphAAM[i] [i]==2 && graphAAM[i] [0]!=-1)
int bi=1;
graphAAM[i] [0]=-1;

for (j=1;j<=aam;j++)
if (graphAAM[i] [§]1==1)

bi=binaryChains (graphAAM, aam,j,i,bi);
if (bi>=deg+2 && bi<aam) return (1);

}
// check if DOF=0 for the kinematic chains with the joint

between prenum & curnum
int [] temp=new int [50];
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temp [prenum] =1;
temp [curnum] =1;
for (i=1;i<=aam;i++)

if ((graphAAM[prenum] [i]!=0 || graphAAM[curnum] [i] !=0) &&

il=prenum && i!=curnum)

temp [i]=1;
if (i!=1) nextLink(graphAAM, aam, temp,i);
}
int DOF=0;

for (i=1l;i<=aam;i++)
if (temp(il==1)
tri=0;

for (j=1;j<=aam;j++)
if (graphAaM[i] [§]1>0) tri++;

if (tri<=2) temp[il=0; // the ith link has no closed

loop

}

}

for (i=l;i<=aam;i++)

{
if (temp[i]l==0) continue;
int tmp=0;
for (j=1;j<=aam;j++)

if (i!=j) tmp+=graphAAM[i] (j]*temp(j];

DOF+=3-tmp; // (3-tmp)*L=dof+3

if (DOF<=3) return (1);
else return (0);

}

// Check if this connection will result in a 0 DOF among links

// return 1 -- a 0 DOF; return 0 -- no 0 DOF

public static int checkZeroDOF2 (int [] [] graphAAM,int aam,int

prenum, int curnum)

int [] [] temp=new int[50] [50];
int [] sign=new int[50];

int [] signl=new int[50];

int 1i,j,k,n, tmp;

n=2;
sign[prenum]=1;
sign{curnum] =1;
while (n!=aam)

for (i=1l;i<=aam;i++)

{

for (j=1;j<=aam;j++)

if (i!=3j) templi] [j]l=graphAaM[i] [j];
else templ[i] [j1=0;

}

for (i=1;i<=aam;i++)
signl[i]l=sign(il;
for (i=1;i<=aam;i++)
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if (sign[i]==1)
for (j=1;j<=aam;j++)
if (temp[i] [j]1==1 && sign[jl==0 && signl[j]==0)

signl([j]=1;
N++;
}
| }
}
for (i=1l;i<=aam;i++)
sign[i]=signl([i];
for (i=1;i<=aam;i++)

if (sign[il==0)
{
for (j=1;j<=aam;j++)

temp [1] [§]=0;
temp (3] [i1=0;

}
}
int r=1;
while (r==1)

r=0;
for (i=1;i<=aam;i++)

tmp=0;

for (j=1;j<=aam;j++)
tmp+=temp [i] [§];

if (tmp==1)

r=1;
for (k=1;k<=aam;k++)

temp [i] [k]=0;
temp (k] [1]=0;

}
}

int DOF=0;
int t=1;
for (i=1l;i<=aam;i++)

tmp=0;

for (j=1;j<=aam;j++)
tmp+=temp [1] [§];

%f (tmp!=0)

DOF+=3-tmp;
t=0;

}

if (DOF<=3 && t==0)
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n=-1;
break;

if (n==-1) return (1);
else return (0);

public static int binaryChains(int[] [] graphAAM, int aam, int
cur, int pre,int bi)

int i;
if (graphAAM[cur] [cur] !=2 || graphAAM[cur] [0]==-1) return (bi);
for (i=1;i<=aam;i++) ’
if (graphAAM(cur] [i]==1 && i!=pre) break;
graphAAM[cur] [0]=-1;
bi++;
bi=binaryChains (graphAaAM, aam,i,cur,bi);
return (bi);

public static int isZeroDOF (int (] [] graphAAM, int aam,int nodel, int
node2)

int i,3,k1,k2;
for (i=1;i<=aam;i++)
k1=0;
k2=0,‘
if (i!=nodel && i!=node2)
for (j=1;j<=aam;j++)
if (j!=nodel && j!=node2 && j!=1i)

if (graphAAM([i] [j]1>0 && graphAAM[nodel] [j1>0) kl++;
if (graphAAM[i] [j]1>0 && graphAAM[node2] [§]1>0) k2++;

if (k1>=2 && k2>=2) return (1);

}

return (0);

// finding next link
public static void nextLink(int[] [1 graphAAM,int aam, int[]
temp, int k)
for (int i=1;i<=aam;i++)

?f (graphAAM[k] [i] !=0 && temp[i]==0)

temp[i]=1;
if (i!=1) nextLink (graphAAM, aam, temp,i);
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// Check if the mechanism is a planar kinematic chains
public static int isPlanarKC(int (][] gAAM, int index)

int [] [] graphAAM=new int [50] [50];
int [] number=new int [20];

int {] [] temp=new int [20] [20];
int [] L=new int[20];

int [] kk=new int[6];

int i,3,k,x,y,xx,yy,num, aam;
String str=new String() ;

for (i=1;i<=index;i++)

for (j=1;j<=index;j++)
graphAAM[i] [j]1=gAAM[i] [j];

for (i=1;i<=index;i++)
if (graphAAM{i] [i]==2)
{

int n=0;
for (j=1;j<=index;j++)

%f (graphAAM[i] [j]1==1)

nN++;
kknl=j;

x=kk [1] ;
y=kk[2];
graphAAM{[i]l [0]=-1;
graphAAM[x] [y]=1;
graphAAM[y] [x]=1;
graphAAM(i] [x]=0;
graphAAM{x] [1]=0;
graphAAaM[i] [y]=0;
| graphAaM(y] [1]=0;

int col=0;
aam=0;
for (i=1;i<=index;i++)

if (graphAAaM[i] [0)}==-1) continue;
aam++;

col=0;

for (j=1;j<=index;j++)

if (graphAAM[j] [0]==-1) continue;
col++;
graphAAM({aam] [col] =graphAAM[i] [j];

}

for (i=0;1<20;i++)
L{il=1;

214



k=0;
for (i=1;i<=aam;i++)

if (graphAaM[i] [i]>3)

k++;
number [k] =1i;

if (k>=5) // K5
str=enuNumber (L, k+1,5) ;
num=£findChainGroup (k, str, temp) ;
for (i=1;i<=num;i++)

int kkk=0;
for (j=1;j<=k;j++)

if (temp(il] [j1==1)

kk [(kkk] =number[j] ;
kkk++;

}

for (x=0;x<5;x++)

xx=kk [x] ;
for (y=0;y<5;y++)

yy=kk(y]l;
if (graphAaM[xx] [yy]==0) break;

if (y<5) break;

if (x==5) return (-1);
}

for (i=1;i<=aam;i++)
if (graphAAM[i] [i]==3)

k++;
number [k] =i;

if (k>=6) // K3,3

str=enuNumber (L, k+1,6) ;
num=findChainGroup (k, str, temp) ;
int [] kl=new int[6];

int [] k2=new int[6];

int kki1,kk2;
for (i=1;i<=num;i++)

int kkk=0;
for (j=1;j<=k;j++)

if (temp(i] [j1==1)

kk [kkk] =number [j] ;
kkk++;
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}

int[] [] tmp=new int [20] [20];
str=enuNumber (L, 6,2) ;

int nn=findChainGroup (5, str,tmp);
for (j=1;j<=nn;j++)

kk1l=1;

kk2=0;

k1 [kk1]=kk (0] ;

for (int 3jj=1;33<=5;3j++)

%f (emp [3] [331==1)

kkl++;
k1[kkll=kkI[jj];

else {
kk2++;
k2 [kk2]=kk[jj];

}
int ii,3jj;
for (ii=1;ii<=3;ii++)
{
xx=k1[ii];
for (jj=1;3i<=3;jj++)

yy=k2[33];
if (graphAAM[xx] [yy]l==0) break;

if (jj<=3) break;
if (ii>3) return (-1);

}
}

return (0);

// Save AAM of a graph (kinematic chains)
public static void saveGraphAAM(int[] [] graphAAM,int aam) throws
IOException

graph++;
for (int i=l;i<=aam;i++)

for (int j=1;j<=aam;j++)

if (i==j) out.write(aam-graphAaMm[i] [§]);
else out.write(graphAAM[i] [j]);
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APPENDIX D
PROGRAM FOR ENUMERATION OF THE ALKANE SERIES

The program in Appendix D is used for listing all alternative structures of the Alkane
series for a given number of carbon atoms. These alternative structures have been
converted into graphs and are stored in output files with formats of adjacency matrices.
The graphs stored in output files are then uniquely coded by using the program in
Appendix B to enumerate all distinct graphs (molecular structures). The class name of the
program is E_Alkane. It is written in Java code and must be compiled in JDK 1.2 or later
version environment before running it. A brief description for each method in the class is

introduced at the beginning of each method.

// Program for enumeration of the Alkane Series meeting constraints
// JAVA

// August 2003

// Main function E_Alkane

import java.io.*;
import java.lang.*;
import java.util.*;

class E_Alkane
public static int graph=0;
public static File outputFile;
public static FileWriter out;

public static void main(String(] args) throws IOException

// 1inkN -- number of carbons

// groupN -- the maximum carbon-carbon bonds that the
carbon could have

// linkType(] -- number of the ith carbon for

i=2,3,..,groupN.
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// 1inkG[i] [§j] -- number of the jth kind of carbon type

at the ith possible group

// typeN -- number of possible groups where various

types of carbons combine together

int [] linkType=new int[20];

int [][] temType=new int [50] [3];
int []1([] linkG=new int [200] [20];
int []([] curType=new int [50][3];
int (][] graphAAM=new int [50] [50];
int x,1inkN, groupN, typeN;

String str;

groupN=4;
BufferedReader stdin = new BufferedReader (new

InputStreamReader (System.in));

Series: ");

System.out.print ("\n\nNumber of Carbon Atoms = ");
str=stdin.readLine () ;

linkN=Integer.parselnt (stxr,10);

System.out.print ("\n\nFilename of Isomers of Alkane

str=stdin.readLine () ;
System.out.println();
findChemicalBonds (1inkN, 1inkType) ;
String s=new

String (enuNumber (1inkType,groupN, 1inkN, 2*1inkN+2)) ;

typeN=findBondGroup (groupN, s, 1inkG) ;

System.out .println() ;
System.out.print (typeN) ;
System.out.println(" file(s) saving potential isomers

are created.\n");

values

{ for (int i=1;i<=typeN;i++)

s=new String(str);

s=s.concat ("_");

s=s.concat (String.valueOf (i) ) ;

outputFile= new File(s.concat (".kc_"));

out = new FileWriter (outputFile);
out.write(1linkN)} ;

out.write (groupN+100) ;

for (int j=1;j<=groupN;j++)

temType [j] [0]=3;
temType [§] [1]=-1inkG[i] [j];
temType [j] [2]=0;
| out.write(linkGI[il] [§1);
for (x=groupN;x>=1;x--)
if (temTypel[x] [1] !=0) break;
// pick up one link with the maximum joint

temType [x] [1] ++;
graphAAMI[1] [1] =x;
int

cur_groupN=waitConnectinglList (temType, groupN, curType) ;

enumerationkC(graphAaM, 1,1, x, curType, cur_groupN} ;

nonisomorphic) :

out.close();

}
"+graph) ;

System.out.println("Total: graphs (isomorphic and
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// Determining possible H atom number of each carbon in a alkane
public static void findChemicalBonds (int 1linkN,int [] linkType)

// linkType[4] -- four bonds with other Carbon atoms

// Max number of carbon atoms connected
without H atom

// linkType[3] -- three bonds with other Carbon atoms

// Max number of carbon atoms connected with
one H atom

// linkType[2] -- two bonds with other Carbon atoms

// Max number of carbon atoms connected with
two H atoms

// linkType[l] -- one bond with other Carbon atoms

// max number of carbon atoms connected with

three H atoms
linkType (4] =(1inkN-2)/3;
linkType([3]=(1inkN-2)/2;
linkType (2] =1inkN+1;
linkType[1]=2* (1inkN+1)/3;

// Recurisive procedure for enumerating all possible link groups
public static String enuNumber (int L[], int groupN,int 1linkN, int

bond)

int n;

String r;

r=" L".concat (String.valueOf (groupN)) ;

r=r.concat (" ");

if (groupN==1)

if (L[groupN]<linkN) r=r.concat (String.valueOf (-

1));

else {
int re=bond-1linkN* (4-groupN) ;
if (re!=0) r=r.concat(String.valueOf(-1));
else r=r.concat (String.valueOf (1inkN));

}

return r;

}

if (1inkN==0)

{
if (bond!=0) r=r.concat (String.valueOf (-1));
else r=r.concat (String.valueOf (0));
return r;

if (L[groupN]<linkN) n=L[groupN];

else n=1inkN;

String Num=new String();

for (int i=0;i<=n;i++)
Num=Num.concat (r) ;
Num=Num. concat (String.valueOf (i) ) ;
Num=Num. concat (enuNumber (L, groupN-1, 1inkN-

i,bond-i* (4-groupN)));

return Num;
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// Recurisive procedure for enumerating all possible link groups
public static String enuBondNumber (int L[],int groupN, int 1inkN)

int n;
String r;

r=" L".concat (String.valueOf (groupN)) ;
r=r.concat(" ");
if (groupN==1)

if (L[groupN]<linkN) r=r.concat (String.valueOf (-
1)) ;

else r=r.concat (String.valueOf (1inkN)) ;

return r;

if (1inkN==0)

r=r.concat (String.valueOf (0) ) ;
return r;

if (L[groupN]<linkN) n=L[groupN] ;
else n=1inkN;

String Num=new String();

for (int i=0;i<=n;i++)

Num=Num.concat (r) ;
Num=Num.concat (String.valueOf (i)) ;
Num=Num.concat (enuBondNumber (L, groupN-1,1inkN-
i));
}

return Num;

}
// Determining the number of each link in a possible kinematic
chain
public static int findBondGroup (int groupN, String str,int [][]
1inkG)

int row,col,preC;
String s=new String();

int tmp=0;

row=1;

col=groupN;

preC=col+l;

StringTokenizer st = new
StringTokenizer (str.substring(l));

while (st.hasMoreTokens()) {

s=st.nextToken() ;
if (s.charAt(0)=='L"')

col=Integer.parselnt (s.substring(1),10);
if (col>=preC)

YOW++;
if (tmp==0)

for (int
i=groupN;i>col;i--)
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linkGl[row] [i]=1inkG[row-1] [i];

else tmp=0;

}

preC=col;

else
1linkG{row] {col]l =Integer.parselnt (s,10);
if (linkGlrow] [coll==-1) {row--; tmp=1;}
}
}
return row;

}

// Enumerating all possible kinematic chains
public static void enumerationKC(int [] [] AAM, int aAm, int
1 num,int r joint,int [][] preType,int cur_groupN) throws IOException

int i, j,n,num,aam, gNumber;

int (][] linkGroup=new int ([100] [20];
int [][] curType=new int [50] [3];

int ([]1[] ncurType=new int [50] [3];
int [1[] graphAAM=new int [(50] {50];

// linkGroup(il] [j] -- number of the link curTypeljl[] in
the ith group
String str=new String();
str=chainEnumeration (preType, cur_groupN,r_ joint);
if (!str.equals("-1"))
gNumber=findBondGroup (cur_groupN, str, 1inkGroup) ;
for (i=1;i<=gNumber;i++)
{

for (int ii=1;ii<=cur groupN;ii++)

curType [ii] [0] =preType(ii] [0];
curType [ii] [1] =preType[ii] [1];

curType [1ii] [2] =preType [ii] [2];

for (int ii=1;ii<=alAm;ii++)

{
for (int jj=1;jj<=ahAm;jj++)
graphAAM[ii] [§j1=RAM[ii] [j3];
}
num=cur_groupN;
aam=aAm;
for (j=1;j<=cur_groupN;j++)
{

n=1linkGroup [i] [j];
if (n==0)
continue;
int y=curTypeljl [1];
if (y>0) // It already joins into.
the chain
{ // No loop existed
break;
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/* curType[j] [0] -=n;
graphAAM[1_num] [y]=n;
graphAAM[y] [(1_num]=n;

curType [j] (2]1=0;
*/

the chain

else { // It doesn't yet join into
int
z=aam+1;
for
(int k=1;k<=n;k++)

aam++;
num++;

graphAAM [aam] [aam] =curType [j] [0] ;
graphAAM([1_num] [aam]=1;
graphAAM{aam] [1_num]=1;
curType [num] [0] =curType [§] [0]-1;
curType [num] [1] =aam;
if (n>1) curType[num][Z]:z}
else curType[num] [2]=0;

}
curType [j] [1] +=n;

if (j<=cur_groupN) continue;

num=waitConnectingList (curType,num, ncurType) ;
if (num<2)

if (num==0)
saveGraphAAM (graphAAM, aam) ;

else {
for (j=1;j<=num;j++)
if (ncurTypel(jl [0]>0 &&
ncurType [j] [1]1>0) break;
if (j<=num)

int i_num=ncurType[j} [1];
int
c_1_num=ncurType [j] [1];
int ¢_r_num=ncurType [j] [0];
neurType [] [2]1=0;

pickupLink (graphAAM, aam, i_num, ncurType,num) ;
int [l [] nncurType=new
int [50] [3];

num=waitConnectingList (ncurType, num, nncurType) ;

enumerationKC(graphAAM,aam,c_l_num,c_r_num,nncurType,num);
'
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}

public static void pickupLink(int[] [] graphAAM, int aam, int
k,int[] [l curType,int num)

int 1i,3j;
for (j=1;j<=aam;j++)

?f (graphAAM[k] [§]50)
for (i=1;i<=num;i++)
%f (curType [i] [1]==3)

curType [i] [0]=0;
break;

// Removing completely connected links from the waiting list for
connection

// curTypel] [0] - remain of joint values; curTypel] [1] - link
No.

// if (curTypell [1]1<0) then it means the link doesn't yet join
into the chain, and

// -curType[] [1] represents the number of this kind of link

public static int waitConnectingList (int[] [] preType, int
preNum, int [] [] curType)

int curNum=0;

for (int j=1;j<=preNum;j++)
if (preTypeljl [1]!=0 && preTypelj]l [0]!=0)
{

curNum++;
curType [curNum] [0] =preType []j] [0];
curType [curNum] [1] =preType [j] [1];

curType [curNum] [2] =preType [j] [2];

}

return curNum;

}

// Recurisive procedure for enumerating all possible chains
public static String chainEnumeration(int[] [] curType, int
indexN, int 1linkN)

int n,ii,jj,kk;

int [] L=new int[20];
int [] mark=new int({20];
int [][] linkGroup=new int [100] [20];
String str;
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ii=0;
kk=0;
for (int i=1;i<=indexN;i++)

if (curTypeli] [1]1<0)
ii++;
L[iil=-curType (il [1); //
nonconnected link
kk-=curType [i] [1];
mark(i]l=1i;
else if (curType(i] [2]>0)

for (jj=1;3j<i;jj++)

if
(curType [i] [2] ==curType [jj] [2]) {
int k=mark({jjl;
L[k]++;
kk++;
mark[i]=k;
break;
}
if (§j==1)
{ y
11++;
L[iil=1;
kk++;
mark([i]=1ii;
}
else {
ii++;
L{ii]=1;
kk++;

mark[il=1ii;

}

if (kk<linkN) return ("-1");
str=enuBondNumber (L, ii, 1inkN) ;

int gNumber=findBondGroup (ii, str,linkGroup) ;

int [](] tmp=new int [100] [20];

for (int i=1;i<=gNumber;i++)

for (int j=1;j<=ii;j++)
for (jj=1;jj<=indexN;jj++)
if (mark(jjl==3)
if (curTypeljjl [2]>0)

int
x=1linkGroup (il [i];

if (x==0) break;

for

{

(kk=1;kk<=indexN; kk++)
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(curType [kk] (2] ==curType(jj] [2])

{
tmp [1] [kk]=1;
X-=-;
if (x==0)
break;
}
}
else
tmp [i] [§j)=1inkGroup[i] [j];
break;

}
}
String s=new String();

for (int i=1;i<=gNumber;i++)

{

for (int j=indexN;j>=1;3j--)

s=s.concat (" L");
s=s5.concat (String.valueOf (j));
s=s.concat (" ");

s=s.concat (String.valueOf (tmp[i] [§]));

}

return s;

// Save AAM of a graph (kinematic chains)
public static void saveGraphAAM(int[] [] graphAAM, int aam) throws
IOException

graph++;
for (int i=1;i<=aam;i++)

for (int j=1;j<=aam;j++)

if (i==j) out.write(aam-graphAAM[i] [j]);
else out.write(graphAaM([i] [j]);
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