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ABSTRACT

Synthesis of structures is a very difficult task even with only a small number of

components that form a system; yet it is the catalyst of innovation. Molecular structures

and nanostructures typically have a large number of similar components but different

connections, which manifests a more challenging task for their synthesis.

This thesis presents a novel method and its related algorithms and computer programs for

the synthesis of structures. This novel method is based on several concepts: (1) the

structure is represented by a graph and further by the adjacency matrix; and (2) instead of

only exploiting the eigenvalue of the adjacency matrix, both the eigenvalue and the

eigenvector are exploited; specifically the components of the eigenvector have been

found very useful in algorithm development. This novel method is called the Eigensystem

method.

The complexity of the Eigensystem method is equal to that of the famous program called

Nauty in the combinatorial world. However, the Eigensystem method can work for the

weighted and both directed and undirected graph, while the Nauty program can only work

for the non-weighted and both directed and undirected graph. The cause for this is the
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different philosophies underlying these two methods. The Nauty program is based on the

recursive component decomposition strategy, which could involve some unmanageable

complexities when dealing with the weighted graph, albeit no such an attempt has been

reported in the literature. It is noted that in practical applications of structure synthesis,

weighted graphs are more useful than non-weighted graphs for representing physical

systems.

Pivoted at the Eigensystem method, this thesis presents the algorithms and computer

programs for the three fundamental problems in structure synthesis, namely the

isomorphism/automorphism, the unique labeling, and the enumeration of the structures or

graphs.
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CHAPTER 1
INTRODUCTION

1.1 Design of Physical Systems or Artifacts

Physical systems (or artifacts) consist of a set of physical elements connected in a

semantically sensible manner. Such a view of systems is also called a structural view.

Behaviors of the artifact consist of a causal model of dynamic interactions between these

structural elements in the form of a sequence of behavioral states and transitions between

these states. Functions of the artifact describe the overall intentional consequences of the

behavior. The structure (or the artifact) has a boundary which separates the structure from

the rest of world. The portion of things in the rest of world which interacts with the

artifact is called the environment. An artifact may be further decomposed into sub-

artifacts and components. Components are those elements that are not further

decomposed per se. Artifacts or sub-artifacts have two patterns in terms of connectivity

among their elements: the tree pattern and the network pattern.

Design (of artifacts) is defmed as an activity that generates a description of an artifact

based on functional specifications and constraints [Tong and Sriram 1992]. Constraints

can be of structural, behavioral, or resource limitations. The design process therefore

involves three main types of knowledge about a domain: functional, behavioral, and
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structural. Therefore, the mapping between these three types of knowledge is central to

the design process [Reich 1991].

Design is further classified into routine and non-routine designs [Tong and Sriram 1992;

Gero 1994]. In routine design, the designer knows both the space of possible problems

and the space ofpossible solutions. Therefore, the design in this case reduces to finding a

mapping function between these two known spaces. Non-routine design is further divided

into two subclasses: innovative and creative. In innovative design, the problem and

solution spaces can be augmented by way of changing the dimensions of prescribed

structures. In creative design, either the problem space or the solution space is lacking.

Designs generated in the creative design process thus defme novel classes of artifacts.

Therefore, the creative design process is a process where new ideas or solutions are

synthesized in the absence ofprior examples [Sub 1990].

1.2 Structure Synthesis

A closer look at design can find that a design process includes many steps. The function

needs to be transformed into the expected behavior. The actual behavior of a structure,

which is potentially being a solution to a design problem, then needs to be evaluated

against the expected behavior. An unsatisfactory evaluation will trigger a process to look

for new structures. This process is called synthesis. Inforinally, synthesis means putting

things together. Formally, structure synthesis involves configuring elements into a system

structure that satisfies the expected behavior.
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It may be clear that structure synthesis is an essential step in a creative design process, as

there is not any pre-known structure prototype. Structure synthesis may also be useful in

the re-design process which is a design between the routine design and the creative

design. A typical scenario in the re-design process where structure synthesis is useful can

be described as follows. The motivation of a design is dissatisfaction with an existing

artifact with respect to some newly added functional and/or constraint requirements. The

designer would then like to seek a 'new' structure which could be 'merged' into the

existing structure to form an overall structure that can meet the updated requirements. It is

clear· that fmdiIlg a new 'structure is a creative design process. The merging process may

require changing the dimensions of the existing structures, which is characterized as

routine design.

Structure synthesis is found in many applications in science and engineering disciplines.

In mechanical engineering, for example, the structural synthesis of kinematic chains or

mechanisms requires enumerating all potential isomers under a given set of constraints in

order to find the optimal design (Johnson and Towfigh 1978; Crossley 1965]. Design and

development of modular robotic systems requires the enumeration of all possible

assembly configurations out of the modules and to find an optimal one among them for a

specific task [Chen and Burdick 1998]. In biology, identification of isomorph/isomer

could be used in tracking the evolution of the genotype and the phenotype of a virtual

creature, which further infers what kind of creature it is [Sims 1994]. In chemistry,

organic chemists must identify all possible molecular structures for chemical

documentation systems [Randic 1974]. As a recent trend in mathematical and
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computational chemistry, topological indices of molecular structures are studied to

describe molecular similarity/dissimilarity and to estimate molecular properties for novel

drug discovery, molecular design, and toxicological hazard assessment [Basak and

Magnuson 1988; Basak et al. 2001]. In biochemistry, structure synthesis is used for

predicting molecular networks from massive amounts of genome information and for

functionally detecting related enzyme clusters [Ogata et af. 2000].

1.3 Fundamental Questions in Structure Synthesis

There are two fundament questions to be answered with structure synthesis. The frrst

question is whether the description of the structure is unique or canonical. The second

question is how to transform from a description of function and constraint into a

description of structure.

The uniqueness of the description or the representation is important. For example, two

different structures, both of which are good candidates for solution to a design problem,

may be regarded to be the same because of a non-unique representation of them. In an

opposite situation, two similar designs may be regarded as different and they then go

through a design process, which implies a waste of design resources (the designer's time

and effort).

The transformation process in the second question is very challenging and is, in fact, the

substance in a creative design process - the mapping from the (new) problem space to the

(new) solution space. The challenge is brought in because it is very difficult to model the

4



transformation problem and to develop a computational algorithm for such a

transformation. Such an effort was attempted by Tomiyama and Yoshikawa [1987], but

they have not succeeded. Approaches complementary to the computational approach are

the empirical ones. In the empirical approach, the basic procedure is to develop a

knowledge base which includes the function and structure and then find the

correspondence between them at different levels. With the help of such a knowledge base,

a design problem is modeled by decomposing its function into a suitable function lattice,

and then this lattice is matched with those in the knowledge base. A successful matching

results in a set of structures, which are to be integrated into an artifact.

Another useful idea for structure synthesis is to enumerate all possible structures subject

to a set of constraints. This synthesis process starts with a 'known' structure that meets

the functional and constraint requirements. The synthesis problem is formulated as

finding all possible alterative structures for that known structure (which may be called the

seed structure) subject to the constraint applied to the seed structure.

The following are more formal statements of the fundamental problems with structure

synthesis, which lay the foundation for this thesis research.

Characterization of structures. The characterization of structures is to create structure .

patterns by encoding the structure features which can completely and efficiently identify

the structures. An incomplete characterization of a structure does not correctly represent
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the structure and would cause a mistake in structure synthesis, while an inefficient

characterization of a structure will result in an unmanageable time-consuming effort.

Similarity of structures. Once a structure is characterized, there is a need to match it to

known structures to determine its novelty. Structures could vary from each other.

Depending on different abstraction levels and associated viewpoints or contexts that

make the levels meaningful, two structures may be recognized either as same or different.

For example, two TV sets may be considered as the same from their functions (one

abstraction level), while they may be considered as different because of their different

sizes (another abstraction level). When a kind of database with reference index is built for

structures (say TV sets), similarities of structure together with their different abstraction

levels need to be addressed. If two structures are the same, this thesis will refer to them as

having hard similarity; otherwise they will be considered to have soft similarity.

Enumeration of structures. In order to find a new or an optimal design in various

structure configurations, designers usually need to answer the following question: How

many different configurations are possible from a type of structure? The process to find

all distinct configurations is called enumeration. Enumeration ofdistinct structures is thus

an important kernel for structure synthesis.

It should be noted that throughout this thesis the term 'structure' in the context of

structure synthesis represents topological information of a physical system. The
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topological information includes, depending on design interests, (1) types of components,

(2) types of connections, and (3) patterns of connectivities.

1.4 Related Work

1.4.1 Basic Concepts

The complexity of structure synthesis is such that synthesis requires (1) the selection of

one among tens, hundreds, or thousands of structure options seemingly similar, and (2)

the comparison/identification/differentiation of structures. Therefore, the structure

synthesis process must be aided by computer.

A formal representation of structures is thus needed for computer processing. The graph

is a natural choice for such a representation. Basically, a graph consists of a set of vertices

and a set of edges that connect the vertices in various ways. A more formal description of

graph theory is found in Chapter 2. Structure synthesis then becomes graph synthesis.

Comparison of two structures becomes comparison of two graphs, and enumeration of

structures becomes enumeration of graphs. In graph theory, graph sameness (similarity)

and graph enumeration are called, respectively, graph isomorphism (subgraph

isomorphism) and the counting of graphs. Again, for a more formal discussion of them

refer to Chapter 2. Graph isomorphism is such that two graphs are exactly the same, while

subgraph isomorphism is such that a graph, say A, is 'matched' with another graph, say B,

in the sense that graph B contains graph A. Subgraph isomorphism becomes graph

isomorphism if graph B has the same size as graph A.
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1.4.2 Graph IsomorphismlEnumeration

There are two basic ideas underlying various approaches for graph isomorphism. The fIrst

idea is to manipulate a graph via a permutation procedure (row and column exchange).

The second idea is to define a variable which is related to the graph and (further) to define

a function on the variable; the optimization of this function leads to a representation of

the graph. Approaches based on the fIrst idea may be called the graph theory approach,

while approaches based on the second idea may be called the evolutionary computational

approach.

It is difficult to solve the graph isomorphic identification problem for a general graph (a

graph without any constraint on it). Many studies have been developed attempting to

solve particular classes of graph isomorphism problems [Babai 1995; Babel 1995;

Bodlaender 1990; Fortin 1996; Luks 1982; Read and Comeil 1977]. In this thesis, the

isomorphism problem for general graphs is examined.

Currently, the algorithm for (general) graph isomorphism, which has yet to be challenged

by any counterexample, would refer to the Nauty (No AUTomorphisms, Yes?) program

presented by McKay [1981]. Nauty is a backtrack program for computing automorphism

groups of undirected graphs and digraphs. It can also produce a canonical labeling for

graphs. However, this program cannot handle weighted graphs which are often seen in

many applications. Furthermore, as the Nauty program has not resolved the NP hard

nature of graph isomorphism, it would be a good strategy to examine the graph

isomorphism with its related issues from a different angle.
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In the evolutionary computational approach, the current state of the art is such that the

most complex graph (which has been tested) is small in size in terms of the number of

vertices. The evolutionary computation approach is still in an exploratory stage. The

capability of this kind of approach can be limited by the particular evolutionary algorithm

(e.g., Genetic Algorithm) employed.

1.5 Objectives and Scope of the Thesis

As discussed before, graph isomorphism and its relevant problems are still not solved

well. With the rapid advancement of nanotechnology and biotechnology, the problem of

sYnthesis of structures with hundreds and thousands of nano objects is emerging as

critical. Based on a preliminary fmding (which the author obtained several years ago) that

a graph could be represented by a quadratic surface, and that both eigenvalues and

eigenvectors are useful to characterize the graph or the quadratic surface [He et al. 2000,

2001, 2002a, 2002b, 2002c, 2003], this thesis study aims to further elaborate this fmding

for developing a more effective method for graph isomorphism and its relevant problems

(i.e., the three fundamental issues discussed before) in the general area of structure

SYnthesis.

1.6 Organization of the Thesis

Chapter 2 gives a background and literature review about graph and graph-based methods

for structure SYnthesis. Selected concepts in graph theory that are involved in graph-based

structure SYnthesis are introduced. The most known graph-based algorithms on structure

enumeration are introduced and analyzed.
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The approach developed in this thesis, called the 'Eigensystem' approach, is introduced

and elaborated in Chapters 3, 4, and 5, respectively. Chapter 3 gives a basic introduction

to the Eigensystem approach, and its geometric significance. Chapter 4 describes in detail

(1) the basic algorithms associated with the Eigensystem approach, (2) a new matrix

called 'adjusted adjacency matrix', (3) the computational complexity of the Eigensystem

approach, and (4) the method as well as the algorithm for digraph isomorphic

identification. As a result, the discussion in Chapter 4 addresses the second fundamental

issue (see Section 1.3). Chapter 5 gives the algorithm for solving the graph counting

problem using the Eigensystem approach. Subsequently, structure enumeration and

structure characteristic problems (i.e., the first and third fundamental issues) are solved

based on this algorithm.

Chapters 6 and 7 describe the applications of the proposed Eigensystem approach in

structure SYnthesis ofmechanism design and molecular structure design, respectively.

Chapter 8 summarizes the Eigensystem approach, gives the conclusion, and discusses the

future direction ofwork in this field.
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CHAPTER 2
BACKGROUND AND LITERATURE REVIEW

2.1 Introduction

As mentioned previously in Chapter 1, graph models and graph algorithms have been

widely used for representing and synthesizing structures. There exist numerous research

projects and publications about graph theory and applications. The applications include

various areas ranging from mechanism structures, electrical networks and

communications networks, chemistry, and geography, to architecture [Wilson and

Beineke 1979]. The purpose of this chapter is to provide background and a literature

review of the graph-based methods closely related to the research objectives defined in

Chapter 1. In particular, Section 2.2 presents some primary concepts/notions to provide a

set of unified terminologies for the reminder of the thesis. Section 2.3 discusses

knowledge representation using graphs for various applications. Some typical methods

known in the literature for structure synthesis are introduced in Section 2.4. A summary is

given in Section 2.5.

2.2 Preliminaries

2.2.1 Graph

A graph is an ordered pair G = (V, E), where V is a fmite, non-empty set of objects called

vertices (or nodes) and E is a set of pairs of vertices called edges (or arcs). The sets V and

11



E are also denoted as V(G) and E(G), respectively. Further, a graph is denoted as a simple

graph if E is a set of distinct elements of 2-subsets of V, that is, there is at most one edge

between any two vertices in the graph and there is no self-loop at any vertex. Figure 2.1

shows examples of a simple graph and two non-simple graphs. The graphs shown in

Figure 2.1 are connected because there is a path connecting every pair of vertices. The

reminder of the thesis will use the term 'graph' for the simple and connected graphs.

D
simple graph two non-simple graphs

Figure 2.1 Examples of a simple graph and two non-simple graphs.

IfE(G) of graph G is a set of ordered pairs of vertices, that is, edge e = {u, v} E E(G) is

directed from initial vertex u ofe to terminal vertex v ofe, then the graph G is denoted as

a directed graph (or digraph); otherwise, the graph G is called an undirected graph (see

Figure 2.1). Figure 2.2 shows a directed graph.

Figure 2.2 A directed graph (digraph).
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A labeled graph refers to the graph whose vertices are labeled (see Figure 2.3); a labeled

graph is denoted as Vn(G) = {I, 2, 3, ... , n}. Graphs shown in Figure 2.1 and Figure 2.2

are unlabeled graphs.

3

Figure 2.3 A labeled graph.

Two vertices of a graph are adjacent if they are connected by an edge. The number of the

vertices adjacent to a vertex is called the degree of the vertex. The graph in which all

vertices have the same degree is a regular graph. The adjacency matrix (AM) of a graph

is a matrix with rows and columns labeled by graph vertices, with a 1 or 0 in position (Vi,

Vj), according to whether Vi and Vj are adjacent or not. The AM must have Os on the

diagonal because of no self-loop. The following is the AM of the graph shown in Figure

2.3:

1 2 3 4
1 0 1 1 0

2 1 0 1 1

3 1 1 0 0

4 0 I 0 0

It should be noticed that the above-mentioned AM is a symmetric. Indeed, for an

undirected graph, the AM is a symmetric. The set of eigenvalues of the AM of a graph is

13



called the spectrum of the graph. Graphs having the same graph spectrum are called the

cospectral graphs.

Edge describes a very generic property, i.e., connectivity between any two vertices. When

information beyond the connectivity needs to be represented, a descriptor is associated

with the edge. This descriptor can be represented by a number (e.g., 1, 2, etc.). This

number is also called the weight. Therefore, a weighted graph is a graph having a weight

(or a number) associated with each edge. The AM of a weighted graph can be represented

by assigning the weight of each edge at the position (Vi, Vj). Figure 2.4 illustrates a

weighted graph and its AM.

1 2 3 4
1 0 4 6 0

2 4 0 1 8

3 6 1 0 0

4 0 8 0 0

Figure 2.4 A weighted graph and its AM.

Distance of any two vertices is defined as the shortest patJ;1 between them. The shortest

path is the least number of connected edges from one vertex to another. A distance

matrix, which is another way to represent a graph, is defined as putting the distance at the

position (Vi, Vj). The distance matrix for the graph shown in Figure 2.3 is as follows:
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1 2 3 4
1 0 1 1 2

2 101 1

3 1 102

4 2 1 2 0

A detailed introduction of these concepts can be found in Harary [1969] and Carre

[1979].

2.2.2 Isomorphism and Automorphism

Two graphs are equal if they have the same vertex set and the same edge set. There are

other ways in which two graphs may be regarded as the 'same'. For example, one could

regard two graphs as being the 'same' if it is possible to relabel the vertices of one and

obtain the other. Such graphs are identical in every respect except for the labels of the

vertices. In this case, two graphs are called isomorphic. Graph isomorphism (GI) is the

problem of determining if two graphs are isomorphic. Two graphs, A and B, are

isomorphic if (1) there is a one-to-one correspondence between their vertices, and (2)

there is an edge between two vertices of graph A if and only if there is an edge between

the two corresponding vertices of graph B. Mathematically, given two graphs Gt(Vt, E t )

and G2(V2, E2), a one-to-one mapping cr of VI onto V2 is called an isomorphism if and

only if(u, v) E E I <=> (cr(u), cr(v» E E2 'ifu, VE VI'

It is possible that more than one isomorphism exists for two isomorphic graphs. For

example, Figure 2.5 shows two isomorphic graphs with eight vertices. There exist four
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isomorphisms (one-to-one mappings), as listed in Table 1, O"l(V), 0"2(V), 0"3(V), and 0"4(V),

between these two graphs.

_+----+---+-...5

7

(a)

7

(b)

Figure 2.5 Two isomorphic graphs with eight vertices.

Table 2.1 Four isomorphisms of two isomorphic graphs shown in Figure 2.5.

Vertex v in Fig. 2.5a 2 3 4 5 6 7 8

Vertex O"l(V) in Fig. 2.5b 4 6 5 3 7 8 1 2

Vertex 0"2(V) in Fig. 2.5b 4 2 1 8 7 3 5 6

Vertex 0"3(V) in Fig. 2.5b 7 3 5 6 4 2 1 8

Vertex 0"4(V) in Fig. 2.5b 7 8 1 2 4 6 5 3

If there is an isomorphism (one-to-one mapping) between a set of vertices of a graph and

the set of vertices of the original graph, it is called automorphism. Mathematically, graph

automorphism (GA) can be stated as: Given a graph G(V, E), a one-to-one mapping 0" of

V onto V is called an automorphism if and only if (u, v) E E ¢::> (O"(u) , O"(v)) E E

tlu, v E V . It is obvious from the defmition that every graph has at least one

automorphism. The automorphism group (a set of automorphisms) of a graph
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characterizes its symmetric property. From Figure 2.5a, it can be seen that the graph is

symmetric to edge 15, edge 37 , and both edge 15 and edge 37 , respectively. This means

that there are three automorphisms associated with this graph. Figure 2.6 illustrates these

three automorphisms. Note that the graph in Figure 2.5a has four automorphisms in total,

as the graph is an automorphism of itself. As a special situation, if a graph, when viewed

from any vertex or edge, looks the same, the graph is called the symmetric graph. An

example of the symmetric graph is shown in Figure 2.7. In general, the stronger the

symmetry ofa graph is, the more the number of the automorphisms is. For instance, 3,840

automorphisms exist for the graph with 32 vertices shown in Figure 2.8a [McKay 1981J,

and 40,320 automorphisms exist for the graph with 8 vertices shown in Figure 2.8b!

373

7

__+---+----l1-e5

(a) symmetry to edge 15 (b) symmetry to edge 37 (c) symmetry to both 15 and 37

Figure 2.6 Three automorphisms of the graph shoWn in Figure 2.5a.

<)~o
Figure 2.7 Examples of symmetric graphs.
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32

9 10

16

i!=::::::----____.17

18

(a) 3,840 automorphisms

3

7

(b) 40,320 automorphisms

Figure 2.8 The number ofautomorphisms of two graphs with 32 and 8 vertices.

It is believed that given a graph, a set of its isomorphic graphs and a set of its

automorphic graphs should share some common properties and behaviors. Enumeration

of these two sets of graphs for a given graph should be of potential interest and

significance in structure synthesis. The enumeration of all isomorphisms between two

graphs is called the graph isomorphism counting problem. The enumeration of all

automorphic graphs for a graph is called the graph automorphism counting problem.

A graph invariant is a graph-theoretical property or parameter that is preserved by

isomorphism. In other words, it is a property that does not depend on the way in which a

graph is labelled. Typical invariants include the number of vertices, the number of edges,

the degree of each vertex, etc. The AM is not a graph invariant because it depends on how

the graph is labelled. The set of graph invariants which can uniquely identify a graph is

called the complete invariants of the graph.
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For more materials on GI and GA refer to Hoffmann [1982] and Harary [1969].

2.2.3 Computational Complexity

A naIve algorithm enumerating or counting isomorphisms between two graphs is done by

factorizing all possible vertex mappings of a graph and then comparing them with one

another. For this technique, the comparisons of up to n! times are needed. Such an

amount of comparison is too huge to be completed with contemporary computing

technology. For example, for a graph with 15 vertices, the number of such comparisons is

1,307,674,368,OO<J(15!). Research into efficient algorithms for graph isomorphisms and

automorphisms aims to reduce the number of comparisons. Finding the number of such

comparisons, given an algorithm for graph isomorphism, is not a simple task, and this is

based on complexity theory. Complexity Theory deals with the resources required during

computation to solve a problem. The most common resources are time (how many steps

does it take to solve a problem) and space (how much memory does it take to solve a

problem). Time complexity is most commonly discussed in complexity analysis. The time

complexity of a problem is the number of steps that it takes to solve aD. instance, as a

function of the size of the instance. If an instance that is n bits long can be solved in n2

steps, then this is said to have a time complexity of n2
• Of course, the exact number of

steps will depend on what machine or language is used. To avoid this machine or

language dependent problem, a symbolism called Big 0 notation is used in complexity

theory, computer science, and mathematics, to describe the asymptotic behavior of.

functions. Basically, it tells about how fast a function grows or declines. If a problem has

time complexity O(n2
) on one typical 9omputer, then it will also have complexity O(n2

)
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!
on most other computers. So this notation allows us to generalize away from the details of

a particular computer. The time complexity is a polynomial time if the execution time of a

computation is no more than a polynomial function of the problem size n, i.e., D(n')

where k is a constant.

Four well-known complexity classes in complexity theory are associated with the GI

problem as follows:

P. In complexity theory, the class P consists of those decision problems that can be solved

on a deterministic Turing machine in an amount of time that is polynomial in the size of

the input. Turing machine is an abstract model of computer, which has an unlimited

amount of information storage, to give a mathematically precise definition of algorithm.

Deterministic means permitting at most one next move at any step in a computation. The

question "For a positive integer N, is there a positive integer m such that N = 4m?" is a P

problem.

NP. NP (Nondeterministic Polynomial-time) is the set of decision problems solvable in

polynomial time on a nondeterministic Turing machine. The term nondeterministic means

permitting more than one choice of next move in some steps in a computation.

NP-complete. The complexity class NP-complete is the set of problems that are the

hardest problems in NP in the sense that they are the ones most likely not to be in P. If a

particular algorithm can work on a particular NP-complete problem quickly, then it works
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on all NP problems quickly. Problem B is called NP-hard if there exists NP-complete

problem A that can be solved in polynomial time using a polynomial algorithm for the

problem B. Every NP-complete is thus an NP-hard problem. As an example, the well­

known Traveling Salesman problem belongs to a NP-complete problem. The description

of this problem is: Given a set of cities, the distances between them, and a bound C, does

there exist a tour of all the cities having total length C or less?

#P. The complexity class #P (pronounced "sharp P") is the set of counting problems

associated with the decision problems in the set NP. While an NP problem is often of the

form "Are there any solutions that satisfy certain constraints?" the corresponding #P

problem asks 'how many' rather than 'are there any'. Clearly, an #P problem must be at

least as hard as the corresponding NP problem. If it is easy to count answers, then it must

be easy to tell whether there are any answers.

Figure 2.9 The world ofNP [Garey and Johnson 1979].

Figure 2.9 illustrates the world ofNP assuming that P *" NP. The GI problem occupies an

important position in the world of complexity analysis. It is one of the few problems

which is in NP but is known neither in P nor NP-complete [Read and Comeil 1977;
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Schoning 1988; Kobler et al. 1993; Fortin 1996]. Therefore, the graph isomorphism!

automorphism counting problems are #P problems [Mathon 1979].

For further infonnation on computational complexity refer to Garey and Johnson [1979]

as well as Balcazar et al. [1994].

2.3 Knowledge Representations of Artifacts Using Graphs

To treat a structure synthesis problem in a particular application using graph theory, there

should be a way to represent domain knowledge of· that particular application using

graphs. In the following, graph or graph-like or network representation for selected

applications is discussed. The tenn artifact refers to a generic object or system in any

application domain.

2.3.1 Graph Representation of Mechanisms

Figure 2.10 describes a typical application of graph representation for mechanisms/

kinematic chains in machine design. The engineering drawing of an industrial gear drive

shown in Figure 2.1 Oa is converted into a schematic kinematic diagram shown in Figure

2.10b, in which shaded shapes and lines represent the mechanical components in Figure

2.10a, while the circles represent connections. The representation shown in Figure 2.IOb

ignores infonnation regarding physical shapes of components, while focuses on the

connectivity among components. The representation shown in Figure 2.10b is still in the

scope of mechanical system design and is further converted into Figure 2.10c in which

labeled vertices represent the components in Figures 2.1Oa and 2.1Ob, edges represent the
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connections among the components. In Figure 2.10c, assigned weights on the edges

represent different types of the connections. Throughout this thesis, the graph shown in

Figure 2.1 Oc is under investigation. Studies on graph representation of kinematic chains

can be found in [Crossley 1965, 1966; Davies and Crossley 1966; Woo 1967;

MruthYUnjaya and Raghavan 1979; Sohn and Freudenstein 1986; Ambekar and Agrawal

1987; Tang and Liu 1993; Schmidt et al. 2000].

3
2

5

6

(a) physical representation (b) schematic representation (c) weighted graph

Figure 2.10 An industrial gear drive and its graph representation [Ambekar and Agrawal
1987].

2.3.2 Graph Representation of Circuits

Graph has been also applied for representations of digital systems in synthesis [Wilson

and Beineke 1979; Giovanni 1992; Dbar 1996]. Figure 2.11 shows the directed graph

model of a cyclic sequential circuit whose components convert into the vertices and flows

convert into the directed edges. It should be noted that the information captured with the

graph is of topolospecifically including the type of elements and the flow direction from

one element to another.
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f

o - PI, PO node • - Fan-out node
o -Combinational node • - Storage node

(a) cyclic sequential circuit (b) graph model

Figure 2.11 Cyclic sequential circuit and graph model [Giovanni 1992].

2.3.3 Graph Representation of Molecules

Graph representations of chemical compounds have a long history in molecule design and

chemical documentation [Sussenguth 1963; Randic 1974; Wilson and Beineke 1979;

Basak et al. 1994]. Weighted graphs are usually used for representing chemical

compounds where the weighted vertices are the atoms and the weighted edges are the

covalent bonds. Figure 2.12 illustrates a typical organic molecule and its graph model in

which hydrogen atoms are omitted in the graph model for similarity. Addition of the

hydrogen atoms on the present graph model is always possible.

H H

J--b r/ ~H-C c-c

~C-< "'C-H
I C-C/
o I I

H H

Figure 2.12 A typical organic molecule and its graph model [Fortin 1996].
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2.3.4 Graph Representation of Assemblies

Heisserman [1999] introduced the Boeing Company's approach of comparing designs

between complex aircraft assembly structures, which was implemented in the Boeing's

Genesis generative design system. An aircraft hydraulic assembly was represented by a

directed acyclic graph (DAG) which constructs a hierarchical assembly, the occurrence

tree, and the connections between the DAG and the tree. Figure 2.13 shows a simple

aircraft hydraulic assembly and its associated DAG. Three entities form the basis of tree

representation: parts, part-usages, and occurrences. Each part is defmed once with all

users sharing that common defmition: Part-usages locate 'child' parts. For example, the

'child' part 'filter' shown in Figure 2.13 is located by two part-usages, A and B in the

coordinate system of a 'parent' assembly. Occurrences are instances of part-usages.

Between part-usage and its occurrence is a one-to-many relationship represented with

arcs. Some operations, such as comparison operation and merge operation, can then be

performed on the assembly graph to compare and merge different versions of a design.
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.°1 pipe 2pIpe

Part-usage

Directed acyclic graph Occurrence tree

Figure 2.13 An aircraft hydraulic assembly and its assembly graph [Heisserman 1999].

2.3.5 Graph Representation of Design Processes

In an attempt to automate a design or structure synthesis process fully, a framework

which decides what information should be recorded needs to be developed. One of such

frameworks, which is based on the concept of function-behavior-state (FBS), was

proposed [Li and Zhang 1999]. This framework suggests a hybrid graph representation

shown in Figure 2.14, which is constructed on the basis of line graphs with both directed

and undirected subgraphs and both weighted and non-weighted graphs, for various

26



categories of design knowledge based on the FBS architecture, and then a general

algorithm was developed for the hybrid graph-based comparison.

f·..·..··..··__··..····..._··········_··__·...·..·····.....·...····-···----··-··....··-····--··-1
j Knowledge base j

I LOb) rE~J rD:::OJ [h,1 hr2hrJ I
: :
i i
~ i

ILe~n!:~: I
i 0 Constraint i

I Ihr: heuristic design rules
t.._...- ___.._ _ ___..1

Figure 2.14 A hybrid graph representation ofthe FBS architecture [Li and Zhang 1999].

2.4 Algorithms for Graph Isomorphism

Structure synthesis reduces to graph synthesis. In graph synthesis, the most important

algorithm is graph isomorphism algorithm. Numerous studies have been devoted to this

subject but they have not produced an algorithm having a provable polynomial worst case

that exists for general graphs. Some have developed special polynomial time algorithms

for a restricted class of graphs [Luks 1982; Bodlaender 1990; Babel 1995], but most of

them do not have a polynomial time worst case [Read and Comeil 1977; Babai 1995;

Fortin 1996]. Theoretical unable of a robust algorithm does not discourage the

development of 'fast' algorithms for practical problems if they work intuitively.

Therefore, development of algorithms for graph isomorphism becomes business not for

mathematician only. Around the world, graph isomorphism articles are published in a

variety of journals, e.g., Journal of Graph Theory, Journal of Algorithms, SIAM Journal
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on Computing, Journal of Computer and System Sciences, Information Processing

Letters, Mechanism and Machine Theory, ASME Transactions Journal of Mechanical

Design, IMECH Proceedings, Journal of Chemical Information and Computer Sciences,

and The Journal of Chemical Physics. Among all these algorithms two categories of

algorithms most relevant to the method and algorithm developed in this thesis study are

(l) characteristic polynomial-based algorithms and (2) canonical labeling-based

algorithms.

2.4.1 Characteristic Polynomial-based Algorithms

Harary made a conjecture in 1962 [Harary 1962] that two graphs G1 and G2 are

isomorphic if their AMs (A 1 and A2) have the same graph spectrum (eigenvalues or

characteristic polynomials). However, this conjecture was immediately announced not

true by a counterexample and then more counterexamples were provided [Harary et al.

1971]. In fact, it was already a matter of public record that the conjecture was not true,

since in 1957 Collatz and Sinogowitz displayed two different trees with 8 nodes (see

Figure 2.15) having the same characteristic polynomial, i.e., P(It) = 1t8 - 71t6 + 9lt4

[Collatz and Sinogowitz 1957]. Though this conjecture is not true for general graphs, it

may be true for a restricted class of graphs [Harary 1962; Harary et al. 1971; Mowshowitz

1972]. In order to adopt the idea of characteristic polynomial to characterize graphs up to

isomorphism, the generalized matrix functions or the immanants [Littlewood 1940] were

used instead of AMs. The generalized matrix functions are defined and applied to AMs

with the properties of all permutations of the symmetric group. The generalized matrix

functions thus imply more information on a graph than the AM. However,
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counterexamples were found for the generalized characteristic polynomial approach

[Turner 1968].

(a)

7
• .8

2

~3):
(b)

Figure 2.15 Two 8-vertex non-isomorphic trees having the same graph spectrum [Collatz
and Sinogowitz 1957].

Many publications proposed characteristic polynomials to characterize the graphs

representing various engineering applications [Vicker and Raicu 1975; Van and Hall

1981, 1982; Spialter 1963, 1964; Balaban and Harary 1971; Kudo et al. 1973]. Vicker

and Raicu [1975] applied the characteristic polynomials of two kinematic chains to

determine if they are isomorphic. They presented a theorem that two kinematic chains

that are isomorphic to each other have identical characteristic polynomials for their

associated AMs. They proved that this is a necessary condition for isomorphism, but has

not been proven a sufficient condition. Unfortunately, the converse of this theorem was

not true since many counterexamples of kinematic chains having same characteristic

polynomial but distinct structure were found. Figure 2.16 describes two distinct kinematic

chains with the same characteristic polynomial, i.e., P(A) = Al2
- 16AlO + 90A8

- 4A7
-
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Figure 2.16 Two non-isomorphic kinematic chains both with the same graph spectrum.

In chemistry, Spialter asserted in 1963 that the characteristic polynomial of the atom

connectivity matrix (closely related to AM) of the graph of a molecule structure was

sufficient for the purposes~.of chemical documentation [Spialter 1963, 1964}. This

assertion was refuted by Balaban and Harary [1971]. Some time after this refutation, in

the same journal, Kudo [Kudo et al. 1973] claimed that the original assertion was correct

but no proofwas offered.

From all these findings, it is evident that the characteristic polynomial of a graph is an

invariant of the graph but not complete invariants of the graph.

2.4.2 Canonical Labeling-based Algorithms

The canonical label of a graph means that the canonical label of one graph is the same as

the canonical label of another graph if and only if these two graphs are isomorphic.

Partitions are commonly used for generating the canonical label of a graph [Comeil and

Gotlieb 1970; Schmidt and Druffel 1976; Babai et ale 1980; McKay 1981; Mittal 1988].

A partition of a set V is the set of disjoint non-empty subsets of V whose union is V. An
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ordered partition of V is a sequence (VI, V2, ... , Vr) such that {VI, V2, ... , ~} is a

partition of V. Comeil and Gotlieb [1970] gave an algorithm for canonical labeling:

(1) Partitioning the vertices of a graph into m cells where each cell consists of the vertices

having the same degree; sorting these cells with the degree sequence in a descending

order.

(2) To each vertex UE V, associate a list (al, a2, ... , am) where ai is the number of the

vertices in cell i (1 ~ i ~ m) which are adjacent to the vertex u; sorting the lists

lexicographically for each cell in a descending order.

(3) If the associated lists of cell i (l ~ i ~ m) are not identical, then splitting cell i into n

new cells such that each cell has the identical lists, and let m~ m+n-l, go to (2).

(4) If there exists only one vertex for each cell then the refinement is finished; otherwise

go to (5).

(5) Defining the directed quotient graph of the graph based on the refined partition of V.

(6) For each cell i, if it has more than one vertex (but, of course, the lists are identical),

then for a vertex v in cell i, splitting cell i into two cells, one which only contains the

vertex v and one is the cell i without v (a new child for vertex v). Refming the

partition (let m ~ m+1) by going though step (2) to (5). Then backtracking to the

partition without splitting the cell i, splitting the cell i with another vertex and refming

the partition until each vertex in the cell i has been done. If not all directed quotient

graphs generated from refining the cell i are identical, then partitioning the vertices in

the cell i such that two vertices belong to the same subcell if and only if they possess

identical vertex quotient graphs.
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(7) Generating the tenninal quotient graph based on the fmal partition.

Take the graph in Figure 2.5a as an example using the algorithm. The graph in Figure

2.5a is a regular graph with 3 degrees for each vertex. Therefore, from step (1) of the

algorithm, the degree partition of V includes only one cell including 8 vertices. Assume

that vertex 1 is split into a new cell. The division ofcells is as follows:

Cell Index

I

IT

Vertices

1

2, 3,4, 5, 6, 7, 8

Following step (2), it is found that vertex 1 in cell I has only three connections with the

vertices in cell IT and thus, the list is (0, 3). Vertices 2, 5, and 8 in cell IT are adjacent to

vertex 1 in cell I and have two connections with the vertices in cell IT, respectively.

Therefore, these three vertices have the list (1, 2). Similarly, vertices 3, 4, 6, and 7 in cell

IT have the list (0,3); see Table 2.2a. According to step (3), cell IT can be spliUed into two

cells as they have two different lists, i.e., the list (1, 2) for vertices 2, 5, and 8 as well as

the list (0, 3) for vertices 3, 4, 6, and 7. Table 2.2b shows the cells. Further partition can

be done based on the cells shown in Table 2.2b. Table 2.2 shows a complete situation of

partition.
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Table 2.2 A case ofpartitioning procedure.

a. from step (2) of the algorithm b. from step (3), splitting cell IT in a

Cell Index Vertex List Cell Index Vertex List

I 1 (0,3) I 1 (0,0,3)

II 2 (1,2) II 5 (1,2,0)
5 (1,2) 2 (1, 1, 1)
8 (1,2) 8 (1, 1, 1)
3 (0,3)
4 (0,3) ill 3 (0,2, 1)
6 (0,3) 4 (0,2, 1)
7 (0,3) 6 (0,2, 1)

7 (0,2, 1)

c. splitting cell II in b d. splitting cell IV in c

Cell Index Vertex List Cell Index Vertex List

I 1 (0, 1,2,0) I 1 (0, 1,2,0,0)

II 5 (1,0,0,2) II 5 (1, 0, 0, 2, 0)

ill 2 (1,0, 1, 1) ill 2 (1,0, 1,0, 1)
8 (1,0,1,1) 8 (1,0, 1,0, 1)

IV 4 (0, 1, 0,2) IV 4 (0, 1, 0, 1, 1)
6 (0, 1, 0,2) 6 (0, 1,0, 1, 1)
3 (0,0, 1,2)
7 (0,0, 1,2) V 3 (0,0, 1, 1, 1)

7 (0,0, 1, 1, 1)

This algorithm is based on the conjecture that the final partitioning resulting from the

algorithm is the automorphism partition of V. Unfortunately, this conjecture has been

shown to be not true. However, the backtracking idea has been widely used for uniquely

coding graphs [Shah et al. 1974; Berztiss 1973] and labeling graphs [McKay 1981]. Also,

Schmidt and Druffel [1976] and Mittal [1988] applied the backtracking algorithm for GI
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of two graphs in which the partition is based on the distance matrices of graphs instead of

the degrees of the vertices of graphs.

It is well known that the canonical labeling algorithm Nauty presented by McKay [1981]

is a very powerful and, currently, the preferred method for the GI problem. Conceptually,

Nauty examines every automorphism of a graph and computes a canonical label. This

label is simply the AM of the 'smallest' automorphism. The scheme used to define the

smallest automorphism is to construct a label for a graph by concatenating the rows of its

AM to form a binary niunber, computing the label of every automorphism of the graph,

and then returning the smallest one. Two major operations are performed on partition in

Nauty, i.e., refining a partition and generating the children of a partition. Indeed, the basic

algorithm in Nauty is basically a partitioning procedure similar to the algorithm discussed

before. Nauty recognizes an automorphism by checking if two distinct final partitions

have the same AM after relabeling the vertices. Therefore, all automorphisms of a graph

can be recognized during partitioning and the smallest one is the canonical label of the

graph. It is noted that once Nauty has found an automorphism, it immediately puts the

automorphism to work to try to prune the search space. This pruning thus evidently

reduces the running time to the results.

In order to reduce the number of reordering, heuristic isomorphism procedures have been

applied by emploYing properties that are invariant under GI [Unger 1964; Sussenguth

1965; Comeil and Kirkpatrick 1980]. For example, no isomorphism between two

undirected graphs, GI and G2, may map vertex u of G1 onto vertex v of G2 if the degree of
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u does not equal the degree of v. This rule has been applied in the above-mentioned

partition algorithms, including in Nauty.

Several studies have been done for uniquely coding or labeling graphs in engineering

such as the min code of kinematic chains [Ambekar and Agrawal 1987], Hamming

number code [Rao and Raju 1991], topological ordering of vertices [Kim et al. 1992],

degree code [Tang et al. 1993], feature code [Zhang and Li 1999], and so on. These

approaches have not provided mathematic proof of their sufficient condition to general

graphs..

2.4.3 Direct Enumeration of Graphs

Enumeration of all possible graphs or structures given certain conditions is a useful step

in structure synthesis (see discussions in Chapter 1). These graphs or structures must be

non-isomorphic to each other. Indirect approach to structure enumeration means that

enumeration involves a procedure for detection of isomorphic graphs, and direct

approach means that enumeration does not involve any procedure for detection of

isomorphic graphs.

A typical example of using the direct approach is found in structure synthesis of

kinematic chains [Crossley 1964, 1966; Davies and Crossley 1966; Mruthyunjaya 1979;

Tischler et al. 1995; Rao and Deshmukh 2001]. Structural synthesis of all distinct

possible kinematic chains with the specified number of links and degrees of freedom is

useful in order to select the best possible chain for the special task at the conceptual stage
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of design. The method used by Crossley [1964, 1966] is based on intuition to enumerate

kinematic chains, while Davies and Crossley [1966] used a so-called Franke's notation to

describe kinematic chains. Mruthyunjaya [1979] proposed a transformation of binary

chains to construct all possible chains with required links and degrees of freedom.

Tischler et al. [1995] developed a new method to produce a complete list of chains. These

methods may still produce isomorphic chains, and the test for isomorphism, sometimes, is

needed.

Rao and Deshmukh [2001] proposed a method based on a basic matrix, loose matrix, and

chain matrix to enumerate planar kinematic chains without the need to test isomorphisms.

This method followed the fact that a planar closed kinematic chain can be viewed as a

combination of two structures: the outmost closed polygon (basic loop) and the

remainder. Since the basic loop is formed by removing the remainder from the kinematic

chains, both the basic loop and the remainder would exist as free joints. The ordered free

joints (basic vertices) of the basic loop are represented by distance matrix called basic

matrix while the free joints (loose vertices) of the remainder are represented by distance

matrix called loose matrix. Chain matrix is a sum of basic matrix and loose matrix. All

the possible combinations can be generated by joining any loose vertex to any basic

vertex while keeping the labels of the basic vertices invariant and varying the labels of the

loose vertices. The author stated in that paper that the possibility of obtaining isomorphs

is nil, but no proof has been given.
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It is noted that all these direct methods lack mathematic evidence proving that isomorphic

graphs do not exist. Therefore, the results from these methods are often doubted and have

even been proven incorrect.

2.4.4 Evolutionary Computation Approach

Another commonly used method in structure synthesis is the so-called Evolutionary

Algorithms (EA) [Antonsson and Cagan 2001] which are stochastic search methods that

mimic the metaphor of natural biological evolution. Different EA have evolved during

the last 40' 'years: Genetic Algorithms (GA), Evolutionary Strategies (ES), and

Evolutionary Programming (EP). However, all were inspired by the same principle of

natural evolution. A good introductory survey of them can be found in [Fogel 1994].

Among GA, ES, and EP, GA is perhaps the most widely known type ofEA today and has

been successfully applied to many science and engineering problems in various domains

[Goldberg 1989]. Basically, the GA starts its evolution with a random generation of a

population of individuals (alsq denoted as chromosomes), usually represented as strings

or arrays of genes (a gene is the smallest building block of the solution). This population

is submitted to an iterative process (each iteration of the search is called a generation)

composed of three principal steps: evaluation (according to a fitness function), selection

of the best individuals, and application of the genetic operators which include: crossover

(reconfiguration of the chromosomes) and mutation (random change of components of a

chromosome). This process is repeated until a defined termination criterion is reached.
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The graph isomorphism problem could be set up with GAs as follows: mapping

chromosome of two graphs A and B is an array of pairing genes. Each gene is a pair of

two values that are the vertex number in A and the mapping vertex number in B. N initial

chromosomes may be generated by randomly matching each vertex in A with a vertex

having the same degree in B for N times. The correctness ratio of the edges matched

between two graphs could be defmed as the fitness function and evaluated for each

chromosome. All chromosomes are put together onto a roulette wheel where each

individual is assigned a sector of the roulette wheel proportional to its correctness ratio.

The offspring for the next generation is selected by spinning N times the wheel. The

higher the correctness ratio of a chromosome is, the higher the probability that the

chromosome is selected. Crossover operator happens with a certain probability for the

selected N chromosomes to partially exchange the mapping information of two

chromosomes and create the new population. Mutation operator on the chromosomes

after crossover is applied with a certain probability for randomly changing the mapping of

a vertex. The mutated N chromosomes are then evaluated with the fitness function and an

iterative process repeats until a termination is reached.

2.5 Discussion and Concluding Remarks

From the previous discussion, it can be concluded that the characteristic polynomial is an

invariant but not complete invariants for isomorphism. This means that having the same

characteristic polynomial is a necessary but not a sufficient condition of isomorphic

graphs. Clearly, algorithms based on the characteristic polynomial may not always work

for general graphs.

38



Nauty is a practical canonical labeling-based algorithm which is powerful and provides

the preferred method so far for the GI problem. The reason this method out performs (in

general) the other canonical labeling algorithms is that by concentrating on one graph at a

time, ideas from the realm of group theory can be brought to bear on the problem,

decreasing the running time. Besides, Nauty can provide all automorphisms of a graph.

Roughly, the computational complexity of Nauty is O(mn3
), where n is the number of the

vertices of a graph but m is an integer number without a reasonable bound. One of the

other advantages ofNauty is that there is no floating point computing needed.

In addition, few researchers used non-traditional approaches for solving GI problems,

such as Hopfield neural networks [Li and Zhang 1998] and optimization algorithms

[McGregor 1979]. Non-traditional approaches applied so far to GI problems, either neural

networks or optimization algorithms, do not seem intuitively inviting [Fortin 1996].

Theoretically, the approach based on the Hopfield network cannot prove a polynomial

worst case, since it is not possible to guarantee that it will always return the correct result,

while the approach based on optimization algorithms converts a GI problem into a

constraint satisfaction problem, and then uses specially tuned constraint algorithms. The

latter approach does not seem inviting because the constraint satisfaction problem is

known to be NP-hard, and the GI problem could very possibly be in P [Fortin 1996].

The direct approach to the structure synthesis may do well without testing for

isomorphism. However, two reasons limit the application of these kinds of methods. One
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is that these methods have not yet been proven mathematically sufficient to eliminate

isomorphic graphs completely. In fact, sometimes, the test for isomorphism has to be

done. The other reason is that the applications of these methods are limited in mechanical

engineering, in particular in structure synthesis of kinematic chains. The generality of

these methods is very poor. For instance, though the test results of the method given by

Rao and Deshmukh [2001] are correct for kinematic chains up to 10 links with 1 or 2

degree-of-freedom, there is no proof that no isomorphic chain can appear in another case,

say 11 links. In fact, this method of detennining both distinct basic loops and their

distinct relabeling of the loose vertices for a given links and degrees of freedom itself

involves the isomorphism problem.

In short, the graph isomorphism problems, as well as their related structure synthesis

problems, have not been satisfactorily solved. Nauty seems to the best method available

today, in the sense that no counterexample has been found and that it has the complexity

of O(mn3
). Clearly, it is worthwhile to explore a new approach.
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CHAPTER 3
A NEW APPROACH FOR GRAPH ISOMORPHISM: EIGENSYSTEM

3.1 Introduction

Adjacency matrices (AMs) of graphs playa very important role in solving the graph

isomorphism (Gl) problem. Many algorithms developed for GI tests start from AMs of

graphs. The proposed approach in this thesis also comes from the analysis of AMs of

graphs. However, unlike all other approaches, the proposed approach transforms graphs

(which are described by their AMs) into their quadric surfaces, and thus converts the

problem ofgraph isomorphism into the problem of quadric surface comparison.

This chapter presents the fundamentals of this new approach. In particular, Section 3.2

introduces the mathematical background for the quadratic form and quadric surface.

Section 3.3 discusses the relationship between the quadric surface and the graph. Section

3.4 discusses linear transformation on the quadric surface. Section 3.5 discusses the

unique representation of the quadric surface. Section 3.6 gives a summary with

discussion.
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3.2 Quadratic Form and Quadric Surface

For an nXn real matrix A = [aij], i, j = 1, 2, .. .n, if matrix A is pre-multiplied and post-

multiplied by a row matrix and a column matrix of n variables Xl, X2, ... Xn, respectively, a

function is given by

all al2 aln XI

F=[xi
a21 a22 a2n X2x2 ... xn

ani an2 ann Xn

(3.1)

This function is called the quadratic form, and matrix A is called the matrix of the

quadratic form. The terms on the principal diagonal of this square array involve the

squares of the variables Xl, X2, ... Xn; the remaining terms involve all the possible cross-

products.

Letting the function F equal to 1 leads to the following equation:

F = allx: +al2 x2xI +···+alnxnxi +
2+ a21 x1x2+ a22 x2 + ... + a2n xnx2+

(3.2)

=1
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Alternatively, Equation (3.2) can be stated as: fmding the values for variables x}, X2, •.• Xn

such that the quadratic form can maintain a unity. Geometrically, Equation (3.2) describes

a surface, i.e., a quadric surface. In the three-dimensional space, there are three types of

quadric surfaces: elipsoid, paraboloid, or hyperboloid. Furthermore, function F contains

no linear terms, and thus the sign of the variables does not affect the function. This

implies that any vector x, defined by (Xl X2 ••• xn) and satisfying Equation (3.2), will have

the same length, regardless of the sign of vector x. Hence, the quadric surface is

sYmmetrical about its origin. A surface of this kind is referred to as a central quadric

surface. It has either hyperbolic or ellipsoidal characteristics, or both, depending on the

values and the algebraic signs of the coefficients aij in function F.

For a given matrix, its quadratic .form is unique; yet the converse is not true. That is to

say, for a given quadratic form, there may be many matrices corresponding to it. For

example, the following matrices ofA

(3.3)

all satisfy the quadratic form

(3.4)
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Yet, if the matrix is symmetric, the matrix and the quadratic fonn will have a one-to-one

correspondence.

3.3 Graph versus Quadric Surface

Considering the AM of a graph as the coefficient matrix A of Equation (3.1), the

quadratic form expressed by Equation (3.1) is thus the quadratic form expressing the

graph. Accordingly, the quadric surface expressed by Equation (3.2) is the quadric surface

expressing the graph. As such, variable Xi in Equation (3.1) denotes vertex i in the graph,

and item aijxixj for i, j =1, 2, ...n represents a connection, with a weight value of aij'

between vertices i and j. Further, assume that XI, X2, ••• Xn are the co-ordinates in a

rectangular co-ordinate system. A graph with n vertices can be transfonned into a quadric

surface in the n-dimensional space, where each dimension represents a vertex of the

graph.

Without loss of generality, the graph considered here is the undirected labeled graph (in

Chapter 4, the extension to the directed graph will be given). The AM of an undirected

graph is symmetrical; therefore, a graph and the quadric surface of the graph have a one­

to-one correspondence. The question arises:

Can the graph isomorphism problem be converted into the quadric surface identification

problem?
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This thesis study was actually started with trying to answer the above question. The first

challenge in answering this question is whether there is a canonical expression for the

quadric surface corresponding to a graph. This challenge is important, as the AM of a

graph is not invariant (Le., different labelings can lead to different AMs). This can be

illustrated further using an example. Two isomorphic graphs shown in Figure 2.5 have

different AMs and have different expressions of the quadric surfaces, see Figure 3.1.

0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1

I 0 I 0 0 0 0 1 I 0 0 I 0 I 0 0

0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 1

0 0 1 0 1 1 0 0 0 1 0 0 0 1 1 0

1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0

0 0 0 1 1 0 1 0 0 1 0 1 1 0 0 0

0 0 1 0 0 1 0 1 0 0 1 1 0 0 0 1

1 1 0 0 0 0 1 0 1 0 1 0 0 0 1 0

F,. = 2X1X2 +2x1xs +2x1xs +2X2X3 + =t:- 2" 2" 2" 2"F2 = X1X2 + x1Xs + x1Xs+ X2X4 +
2x2xS +2X3X4 +2X3X6 +2x4xS + 2" 2" 2" 2"X2X6 + x3XS + X3X7 + x3XS +
2X4 X6 +2xSx6 +2X6X7 +2x7x S

2" 2" 2" 2"X4X6 + X4X7 + XSx6 + x7XS

=1 =1

(a) the graph in Fig. 2.5a (b) the graph in Fig. 2.5b

Figure 3.1 The AMs and their quadric surfaces for the graphs shown in Figure 2.5.

Finding a canonical expression for a quadric surface can be mathematically stated as:

fmding a one-to-one mapping (J' between Xl, X2, .. .Xn and x;, x; " .. x: , i.e., x~ = 0'(x j ) for

all i, j = 1, 2, .. .n. It is clear that when such a mapping exists, the identification of two

quadric surfaces (i.e., examining whether they are actually the same) is easily done using
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their corresponding canonical expressions. The hope to have such a mapping is

enlightened because mathematically, a linear transformation could serve as a mapping

between the variables Xl, X2, •• •Xn and x;, x; , ••• x: •

3.4 Linear Transformations for the Quadric Surface

In the quadric surface theory, different coordinate reference systems correspond to

different forms of the representation of the same quadric surface, i.e., different matrices A

(see Equation (3.4) in preceding discussions). In general, cross product terms, i.e., aijXiXj

(i;¢:j), are present in the expression ofa quadric surface. It corresponds that matrix A is not

a diagonal matrix. The principal coordinate reference system is the one upon which the

cross-product terms disappear. According to the quadric surface theory, there are one or

more than one linear transformation that can fmd the principal coordinate reference

system from any reference system.

Consider the quadratic form F given by Equation (3.1). ApplYing a linear transformation

to variables Xl, X2, •. •Xn in F leads to

(3.5)

in which C is an arbitrary sequence matrix of order n and orthogonal, and YI, Y2, .. .Yn are

new variables. When matrix Cis nonsingular (there is always an nonsingular orthogonal

C), the new variables are uniquely related to the original variables Xl, X2, •. •Xn, and hence

for given variables Xl, X2, •. •Xn , substituting Equation (3.5) into Equation (3.1) results in
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and

Yl Yl

(3.6)

Yn

where

Matrix A in Equation (3.8) is a diagonal one [Guillemin 1949], i.e.,

(3.7)

(3.8)

o
o

(3.9)

The quadratic form F expressed in terms of the new variables Yl, Y2, .. .Yn is

Yl A, 0 0 Yl

F=[Yl Yn]A
Yz

= [Yl
0 Az 0 Yz

Yz ... Yz ... Yn (3.10)

Yn 0 0 A.n Yn

=A,YIZ + lzYi + ... + A.ny;

Letting F=1 leads to
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Equation (3.11) is also called the normal expression of the quadric surface. In Equation

(3.11), the principal axes Yl, Yz, .. .Yn of the quadric surface fonn a mutually orthogonal

set, where ~, ~I~I,"., ~I~n I are called the lengths (or the semiaxes) of the quadric

surface. Geometrically, the orthogonal matrix C in Equation (3.5) detennines the

directions of these semiaxes, while these semiaxes detennine the shape of the quadric

surface.

The quadric surface is ellipsoidal when all A, in Equation (3.11) are positive. When A, is

negative the respective semiaxe is imaginary, and hence the respective surface, if

containing both positive A, and negative ..1" is of both the hyperbolic and ellipsoidal

characteristics. When all A, are negative, the surface is an imaginary ellipse; it is

customary to include this situation in the classification of completely ellipsoidal surfaces.

It is noted that coincident A, in Equation (3.11) indicates a certain degree of the

degeneracy of the corresponding quadric surface. For example, in the three-dimensional

space, the coincidence of two A, in the case of an ellipsoid results in an ellipsoid of

revolution, and the coincidence of all three A, results in a sphere. Furthennore, the

coincidence of A, implies that the directions of the corresponding semiaxes are not unique.

This can be illustrated using Figure 3.2. Figure 3.2a describes an ellipse and its unique

directions of the semiaxes, while Figure 3.2b shows a circle, degenerated from the ellipse

shown in Figure 3.2a, in which the directions of the semiaxes are not unique. This further

implies that if there is no coincident A, in Equation (3.9), matrix C is unique; otherwise
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matrix C is not unique. This is because the column vectors of matrix C corresponding to

Aare not unique.

(a) An ellipse and its semiaxes (b) A circle and its semiaxes

Figure 3.2 An ellipse, its circle degeneracy, and their semiaxes.

It is noted that the linear transformation does not change the shape of a quadric surface

regardless of whether there are coincident A. This means that the diagonal matrix A in

Equation (3.9) is unique for a given matrix A. Therefore, the principal axes and the

semiaxes of a quadric surface may be used as a canonical representation of a respective

graph. An example is given in Figure 3.3 for illustrating this point.

(a) (b)

Figure 3.3 Two weighted graphs both with 3 vertices.
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3.5 Canonical Representation of the Quadric Surface

Figures 3.3a and 3.3b show two graphs, respectively, and their isomorphisms are

examined. The quadratic matrices for the graphs in Figure 3.3a and 3.3b are, respectively,

A =[ ~ ~ -~],
-1 2 0

B=H -~ ~] (3.12)

Their quadric surfaces Fa and Fb are, respectively,

{

0 -1 2][X;]
x; x; -~ ~ ~ :~

The two quadric surfaces have the same nonnal expression, i.e.,

F: = F: = 0.7321y~ + 2.0000yi -2.7321y; = 1

Their linear transfonnation matrices are, respectively,

(3.13)

(3.14)

(3.15)

[
X~] [ 0.8881 0.0000 -0.4597][Yt] [X;] [-0.3251 0.7071 -0.6280][Yt] .
X2 = 0.3251 0.7071 0.6280 Y2' x~ = 0.8881 0.0000 -0.4597 Y2

x; -0.3251 0.7071 -0.6280 Y3 x3 0.3251 0.7071 0.6280 Y3
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Equation (3.15) implies that the quadric surface has the hyperbolic as well as ellipsoidal

characteristics because each intersection of the surface along Y3 axis is an ellipse, and

each intersection along YI or Y2 axis is a hyperbola. Figure 3.4 illustrates the quadric

surface and the relationships among the co-ordinate systems YIY2Y3, X;X;X;, and

XX;X; . It can be seen from this figure that after the linear transfonnations these two

quadric surfaces Fa and Fb overlap completely in the YIY2Y3 system, and also that there

exists a one-to-one mapping between two co-ordinate systems X;X;X; and XX;X; ,

that is, X; H X;, X; H X; , and X; H X; . Therefore, the two graphs shown in Figure

3.3 are isomorphic, and further there is only one such a mapping. Note that variables Xl,

X2, and X3 correspond to the vertices of a graph. The one-to-one mapping as shown

implies that there are correspondences in vertices between the two graphs, i.e., A(I) H

B(2), A(2) H B(3), and A(3) H B(I), where the number within the parenthesis means the

vertex label.

6

.4 .

2

o

-2

-6
··.i.

···.t.

.~ .~.. " .... '-,

,:... ~

Figure 3.4 The quadric surface ofthe graphs having all distinct semiaxes.
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There is an exception to the above procedure for graph isomorphism, where some A, are

coincident. In this case, the linear transformation is not unique; see Figure 3.2. An

example is given to illustrate this exception. Figure 3.5 shows two isomorphic' weighted

graphs. The quadric surfaces Fa and Fh correspond to the graphs shown in Figure 3.5a and

3.5b (respectively), and their normal expressions are, corresponding

(a) (b)

Figure 3.5 Two isomorphic weighted graphs both with 3 vertices.

X;{ ~
1 -IX']Fa =[x;

,
0 ~ :~ =2x;x; -2x;x; +2x;x; =I (3.16)x2

-1 1

x;{-:
-1 IX;]Fh =[x~ " 0 ~ :~ =-2x;x; +2x;x;+2x;x; =I (3.17)x2

1

F' F,' 2 2 2 2 I (3.18)a = h =Yt + Y2 - Y3 =

From Equation (3.18), the normal quadric surface is a hyperboloid of revolution where

the semiaxes on Y 1 and Y2 are the same. The quadric surface and the relationships among

the co-ordinate systems X~X;X;, X;X;X;, and Y1Y2Y3 are shown in Figure 3.6, where
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only the semiaxis on X; is coincident with that on X; (i.e., A(2) H B(3)). The other two

axes are not coincident. This does not, however, imply that these two graphs are not

isomorphic. In fact, there are two isomorphic mappings for the other two vertices between

the two graphs (in Figure 3.5), that is, A(t) H B(1) andA(3) H B(2), or A(1) H B(2) and

A(3) H B(t). It is clear that further analysis is needed for this situation to determine

whether there is an isomorphic mapping among the other vertices between the two

graphs.

• .... ~ • >'

~ ~ ..~. ' ...

.A·f······ . ,.,
• I •••• ~ ~ •

.~ ;... ~

.... ·>··r
. ; ... ~......

• • • ~ •• > ••

".'
" .

Figure 3.6 The quadric surface of the graphs having coincident semiaxes.

3.6 Quadric Surface and Eigensystem

The kernel of the proposed approach is to transform the quadric surfaces of two graphs

into their normal expressions and then to examine whether the quadric surfaces have the
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same semiaxes and whether the original co-ordinate axes of the quadric surfaces are

coincident to each other in the new co-ordinate system. The procedure can also be

considered as comparing diagonal matrices A and linear transformation matrices C in

Equation (3.9) of two graphs.

Since linear transformation matrix C given by Equation (3.9) is a nonsingular orthogonal

one, it has

CT = C-l

Submitting Equation (3.19) into Equation (3.9) Yields

A=CACT

in which A is a sYmmetrical matrix and A is a diagonal matrix.

(3.19)

(3.20)

Indeed, Equation (3.20) describes an eigendecomposition ofA where A. in diagonal matrix

A is the eigenvalues of A, and the ith column in the transformation matrix C is the

eigenvector corresponding to eigenvalue ~. When both the eigenvalues and the

corresponding eigenvectors of a matrix are put together this is named the eigensystem of

the matrix. Therefore, the proposed approach for GI can be geometrically interpreted

using the linear transformations of quadric surfaces and realized using the

eigendecomposition of the AMs of graphs. In this sense, the proposed approach is called

the Eigensystem approach. Figure 3.7 illustrates the framework of the Eigensystem

approach for graph isomorphism.
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Graph
(directed & digraph,

weighted & non-weighted)

r---------·- ... -- ... ---------·---·---------·~-·=- _---=.=--------------!

Geometric 1

Interpretation:

Nonnal Expression
(linear transfonnation)

,.._--....=..=---......,-:.=.:---.._--_._....._----------------------_..

I

i Mathematic
: Realization

the Semiaxes Eigenvalues

Quadric Surface

Directions
of the Semiaxes

~.._ ...~ Eigenvectors ~_.....
Eigensystem

~ .. _ __ - __ .. - • .. ..1

Figure 3.7 The framework of the Eigensystem approach for graph isomorphism.

3.7 Summary and Discussion

The concepts of quadratic forms and quadric surfaces were applied to develop a new

approach called the Eigensystem approach. In this approach, an undirected graph with n

vertices was transformed into a quadric surface in an n-dimensional space, and the

adjacency matrix of the graph becomes the matrix of the quadratic form. This

transformation is unique for a given undirected labeled graph. The problem of solving the

graph isomorphism becomes the problem of comparing quadric surfaces. The general

quadratic form of a graph was further converted into its normal expression. This

conversion process leads to two sets of parameters: the principal reference system and the

semiaxes. If two quadric surfaces have different semiaxes (Le., different geometrical
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shapes), the two graphs, corresponding to the two quadric surfaces, are not isomorphic. If

two quadric surfaces have the same semiaxes, the two graphs may be isomorphic. In this

case, further comparison of the direction of the semiaxes (or the principal axes) between

the two quadric surfaces is needed. Two graphs are isomorphic if the directions of the

semiaxes of their quadric surfaces are coincident to each other. In other words, two

graphs are isomorphic if their corresponding quadric surfaces have the same geometrical

shape and coincident principal axes. It is noted that the geometrical shape of a quadric

surface is unique and unchangeable during the linear transfonnations for the nonnal

expression, and this kind of linear transfonnation is unique unless there is at least a

semiaxis whose length is coincident with the length of one of the other semiaxes. In the

geometrical sense, the situation can easily be interpreted by the case of degenerating an

ellipsoid into a sphere where the lengths on the three axes are the same, and thus the co­

ordinate system having the nonnal expression is not unique.

Finding the nonnal expression of a quadric surface and the linear transfonnation of the

co-ordinate system from its original expression to its nonnal expression is equivalent to

eigendecomposing the matrix of the quadric fonn. The lengths of the semiaxes of the

quadric surface correspond to the eigenvalues of the matrix, and the directions of their

semiaxes are the eigenvectors corresponding to the eigenvalues. In short, the graph

isomorphism problem could geometrically be interpreted by the quadric surfaces of the

graphs and solved by the comparison of the eigensystems of the graphs.

56



The Eigensystem approach goes beyond the characteristic polYnomial approach which is

only determined by the eigenvalues of the AM of a graph. The information of the

eigenvectors contributes to a further differentiation of graphs. However, when there are

coincident eigenvalues in two graphs, the corresponding eigenvectors are not unique. In

this case, if the principal axes of two quadric surfaces are coincident, the two

corresponding graphs are isomorphic, but if the principal axes of two quadric surfaces are

not coincident, the two graphs may also be isomorphic. This situation introduces a

challenge. The reminder of the thesis will address the challenge and present algorithms

for implementing the Eigensystem approach.
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CHAPTER 4
ALGORITHM FOR GRAPH ISOMORPHISMS

4.1 Introduction

In Chapter 3, a new approach called the Eigensystem approach was described. In this

approach, a graph is viewed as a quadratic surface, and a canonical representation of the

graph may be developed through the canonical representation of the quadratic surface. In

this chapter, algorithms for implementing this new approach into computer codes are

developed. The presentation of the algorithms will start with simple situations and then

move to more complex situations. In particular, Section 4.2 presents algorithm I for the

graphs having all distinct eigenvalues. Section 4.3 presents algorithm IT for the graphs

having part of distinct eigenvalues (at least one distinct eigenvalue). In order to handle the

special situation in which all eigenvalues of graphs are coincident, Section 4.4 presents a

new matrix representation for the graph called 'adjusted adjacency matrix' (AAM). AAM

ensures that there is at least one distinct eigenvalue. By replacing AM with AAM,

algorithms I and IT can then work for all the cases. Section 4.5 introduces the method

based on algorithm I and IT to solve the graph isomorphism (GI) problem for digraphs.

The computational complexity of the Eigensystem approach is analyzed in Section 4.6.

Finally, Section 4.7 gives the discussion and concluding remarks.
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4.2 Algorithm I - All Eigenvalues Are Distinct

4.2.1 Theorem 1

Without loss of generality, assume that the graph concerned is an undirected, weighted

with positive values, and labeled graph. The adjacency matrix of this kind of graph is thus

a nonnegative sYIl1llletrical matrix, and each entry on the principal diagonal of the AM is

zero. Let A be the AM of a graph with n vertices, x a nonzero n by 1 vector (a column

vector), and A. a scalar, such that Ax=A.x. Then A. is an eigenvalue of A, and x is an

eigenvector of A corresponding to A.. (A., x) is referred to as an eigenpair of A. The

factorization A=XAXT is the eigendecomposition of A where A=diag(A.t, ,,1.2, •• •k) is the

eigenvalue matrix ofA and X =[x1 x 2 ••• xn ] is the eigenvector matrix ofA, respectively.

The collection of both A and Xis the eigensystem ofA.

Since A is a real symmetrical matrix, all values of eigenpairs are real. When an

eigenvalue is distinct from all other eigenvalues, its normalized eigenvector is unique

[Ortega 1987; Bai et ale 2000; Liu and Lai 2000]. This situation is called a unique

eigenpair.

For the unique eigenpair, the component in each eigenvector has a one-to-one

correspondence with the vertex in a graph. In Chapter 3, the unique eigenvectors were

used for identification of graph isomorphism. Assume that there is a row permutation

matrix P which exchanges the rows of an adjacency matrix A between the ith and loth. PApT

thus exchanges both the rows an~ columns of A between the i th and jth, which further
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corresponds to the exchange of labels of the lh vertex and the J-tb vertex. It is further noted

that

PApT=P(XAXT)pT=(pX) A( pX)T.

Here, PX exchanges the rows of eigenvector matrix X between the i th andJ-tb. This means

that all eigenvectors in X have to exchange the components between the i th and/h
, while

the i th vertex and thelh vertex in a graph are exchanged by their labeling.

If two graphs are isomorphic, the eigenvalues of the two respective AMs should be the

same, and the unique eigenvectors corresponding to the distinct eigenvalues should be

equivalent. This leads to the following theorem of the Eigensystem approach:

Theorem 1. Two graphs Ga and Gb, both with distinct eigenvalues, are isomorphic ifand

only if they have the same graph spectrum and there exists a mapping t/Jfor the vertices

from Gb onto Ga such that Xa=rjJX~ between the eigenvectors ofXa and the eigenvectors

ofXb, where S is a diagonal matrix with :±lon the diagonal entry.

Theorem 1 gives a necessary and sufficient condition for identification of the graph

isomorphism when two graphs have distinct eigenvalues. The following is the proof of

Theorem 1.

Proof of necessity:

Suppose that A and B are the AMs of two graphs Ga and Gb, respectively, and the two

graphs are isomorphic. The goal of the proof is to lead to the expressionXa=rjJX~.
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First, according to the defmition of graph isomorphism, there should be the following

equation

where P is an elementary permutation matrix.

Second, the characteristic polynomials ofA and B are, respectively,

det(A - AI) =det(PBpT
- AI) =det(PBpT

- )"(PIpT » =det(P(B - AI)pT
)

=det(P)det(B - AI)det(pT
) = det(B - AI)

in which P = PI and 1= ppT = PIpT
•

(4.1)

(4.2)

Equation (4.2) indicates that two isomorphic graphs have the same characteristic

polynomial and, thus, have the same eigenvalues A=Aa=Ab (graph spectrum).

Third A and Bare eigendecomposed into, respectively,

Substituting Equation (4.3) into Equation (4.1) yields

(4.3)

(4.4)

Since each eigenvalue of A is distinct from all other eigenvalues, its corresponding

normalized eigenvector must be unique. This means that both the eigenvector matrices Xa

and Xb are unique.
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Fourth, the uniqueness of a normalized eigenvector is established upon its scalar, i.e.,

regardless of the direction of the eigenvector. For instance, if there exists a normalized

eigenvector x for a distinct Asuch that

AX=Ax,

the vector -x is also an eigenvector corresponding to A. Define a matrix S as follows

(4.5)

S= (4.6)

in which sl' S 2 ••• S n can only be ±1. Therefore, ifX is the eigenvector matrix related to

Equation (4.5), XS should also be a valid eigenvector matrix. The following deduction

shows this point.

(4.7)

[
S~A, 0

=X ! si:
=xAX T =A

Hence, from Equation (4.4) there should be

(4.8)

Take fjr=P. This completes the proof of the necessity ofTheorem 1. •
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Proof of sufficiency:

Let two graphs have the same spectrum, Le., Aa = Ab, and their eigenvector matrices have

the relationshipXa = PXbS where P is a row permutation matrix and S is a sign matrix

defmed in Equation (4.6). Matrix A can be eigendecomposed into

A =XaAaX; =(PXbS)Ab(PXbSY =PXb(SAbST)xJ p T

=PXbAbXJ p T =P(XbAbX:}PT =PBpT
(4.9)

Equation (4.9) indicates that B can be transformed into the same matrix as A after

performing a row and column permutation. Therefore, graph Ga is isomorphic to graph

Gb. This completes the proof of sufficiency of Theorem 1.•

According to Theorem 1, the procedure for the identification of graph isomorphism for

each graph having distinct eigenvalues involves two steps: (1) determining if the

spectrums of two graphs are the same, and (2) fmding a possible mapping t/J (permutation

matrix P) between unique eigenvectors of two graphs. The comparison of the spectrums

of two graphs can be performed by sorting the eigenvalues of each spectrum in an

ascending order (or in a descending order), respectively, and then by comparing the

eigenvalues one by one between the two sorted sets. The following is algorithm 1-1 which

compares the spectrums of two graphs.

1-1 comparison ofthe spectrums oftwo graphs (A, B)

1. calculating eigenvalues Aa and Ab ofmatrices A and B, respectively

2. sorting Aa and Ab in an ascending order, e.g., A~ and A; , respectively

3. .-to=0

4. for i=l, 2, .. .n, do

63



5. comparing if A;a in A; is equal to A: in A;
6. if A;a is not equal to A: then stop with 'non-isomorphic'

7. if A;a is equal to ~-l then mark both A;~I and A;a as 'coincident'

8. ~ = A;a

9. return 'same graph spectrum'

Finding a permutation matrix P between two eigenvector matrices is a complicate task.

There are primarily four steps in finding P: sorting, comparing, matching, and

intersecting. These steps are described below.

(1) Sorting the components of the eigenvectors x~ in Xa, x~ and - x~ in Xb, which

correspond to ~, in ascending orders (or in descending orders); this results in x;a, X;b

and - X;b , respectively.

(2) Comparing the sorted components one by one between two pairs of the eigenvectors

(x;a, X;b) and (x;a ,_X;b), respectively. If both of these two pairs are different, a kind

of mapping ¢J in Theorem 1 does not exist. Appling Theorem 1, the two graphs are

non-isomorphic.

(3) Finding a mapping between the vertex of graph A and the vertex of graph B using the

sorted eigenvectors as a mediate because the component index in the eigenvector

corresponds to the vertex labeling in the graph (see previous discussion). Denote such

a mapping ~+, related to the pair (x~ , x~), and ~_, related to the pair (x~ , - x~).
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(4) Intersecting mappings {4-+ and {4-., respectively, with previous common mapping set

lA-I to produce current common mapping f/Ji, i.e., lA = ({4-+ f1 f/Ji-I) U (~. f1 lA.I)' If

common mapping lA is empty, two graphs are non-isomorphic; otherwise, nonempty

mapping f/Jn is permutation matrix P.

The following is algorithm 1-2 which fmds permutation matrix P or f/Jn:

1-2 finding permutation matrix oftwo graphs (A, B)

1. calculating eigenvectors Xa and Xb ofmatrices A and B, respectively·

2. ~ =1

3. for each distinct eigenvalue A.,., i=l, 2, ...r (~n), do

4. sorting eigenvector x~ inXa in an ascending order, e.g., x~a

5. sorting eigenvectors x~ and - x~ inXb in an ascending order, e.g., X~b and - X;b,

respectively

6. x~ =0; {4-+ = 0

7 .c. h 'a"a d'b. 'b· [1 ] d. lor eac component xij m Xi an Xij m Xi ,jE ,n, 0

8. if x~a "# X~b then break with {4-+ = 0

9. if x;a = X~_I then mark the/h component of x~a as the same mapping group as

the (j_l)th component

10. {4-+ f- a mapping pair of the original component indices of x;a and X~b in x7

and x~, respectively

11. x~ = 0; {4-. = 0

12 .c. h 'a"a d 'b' 'b· [1 ] d. lor eac component Xij in Xi an - Xij m - Xi ,jE ,n, 0

13. if x~a "# _X~b then break with {4-. = 0
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14. if x;a =X~_1 then mark the jth component of x;a as the same mapping group as

the (j_l)th component

15. tA. ~ a mapping pair of the original component indices of x~a and - X;b in

x~ and - x~ , respectively

16. if tA+ = 0 and tA. = 0 then stop with 'non-isomorphic'

17. t/Ji = (t/Ji• l n tA+) u (t/J;.l n tA.)

18. if t/J; = 0 then stop with 'non-isomorphic'

19. ifall eigenvalues are distinct then stop with 'isomorphic graphs'

20. return t/Jn

The following examples provide an illustration for algorithms 1-1 and 1-2.

4.2.2 Example: Non-cospectral Graphs

Figure 4.1 illustrates two graphs with 8 vertices.

2-==---------

3__-----.-....

2-------~

3__-----~4

(a) (b)

Figure 4.1 Two 8-vertex non-isomorphic graphs having different graph spectrums.

According to algorithm 1-1, the eiegnvalues of these two graphs are, respectively,

Aa=diag(-1.6180, 0.6180, 0.6180, -1.6180, -0.6180, 1.6180, -2.5414, 3.5414)

Ab=diag(-1.0000, 1.0000, -0.5616, 0.0000, -2.0000, -2.5616, 1.5616,3.5616)
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Sorting Aa and Ab in ascending orders, respectively, Yields

A; =diag(-2.5414, -1.6180, -1.6180, -0.6180,0.6180,0.6180, 1.6180,3.5414)

A; =diag(-2.5616, -2.0000, -1.0000, -0.5616, 0.0000, 1.0000, 1.5616,3.5616)

Comparing A; with A; one by one concludes that these two graphs have different

spectrums, and thus they are non-isomorphic according to Theorem 1.

4.2.3 Examples: Cospectral Graphs

Figure 4.2 shows a pair of graphs with 12 vertices. Their graph spectrums Aa and Ab, as

well as sorted spectrums A; and A; are, respectively,

10

(a)

7

(b)

Figure 4.2 Two 12-vertex non-isomorphic cospectral graphs.

Aa=diag(0.6350, 0.4150, 1.4142, 1.5713, 1.7668,0.0000, -0.9815, -1.5382, -1.4142,­

2.0000, 2.7580, -2.6264)

Ab=diag(O.OOOO, -2.0000, 0.6350, 0.4150, 1.5713, 1.4142, 1.7668, -0.9815, -1.4142, ­

1.5382,2.7580, -2.6264)
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A: = A; =diag(-2.6264, -2.0000, -1.5382, -1.4142, -0.9815, 0.0000, 0.4150, 0.6350,

1.4142, 1.5713, 1.7668,2.7580)

Since these two graphs are cospectral and have all distinct eigenvalues, algorithm 1-2 is to

be applied for further detennining whether they are isomorphic. Suppose that x~ (x~)

represents the eigenvector of the graph shown in Figure 4.2a (4.2b), corresponding to A;

in A: (A;). According to algorithm 1-2, part of the procedure of fmding the pennutation

matrix P is demonstrated in Figure 4.3. The 10th component (-0.3821) in x~ is the

smallest one and thus ordered as the fIrst component in x': ;while the 8th (9th
) component

(-0.3795) in xf is the smallest one and thus ordered as the fIrst (second) component in

x';. Since the first component in x': is not equal to the first one in x';, there is no

mapping ¢I+ between x': and x';. For the same reason, there is also no mapping ¢I.

between x': and - x';. This fact, i.e., both the mapping ¢I+ and ¢I- are empty, results in

t/Jy=0. It implies that there is no pennutation matrix P existing between these two graphs.

Therefore, these two graphs are not isomorphic.

Figure 4.4 shows another pair of graphs with 17 vertices. Their graph spectrums Aa and

Ab' as well as the ordered spectrums A: and A;, are, respectively,
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No. xa 'a tPt+ 'b xb No.
I XI XI I

1 0.2192 -0.3821 -0.3795 -0.2192 1
2 0.2192 -0.3157 -0.3795 -0.2192 2
3 0.2445 -0.3157 -0.2445 -0.0260 3
4 0.0260 -0.2989 -0.2305 -0.2445 4
5 -0.2600 -0.2600 -0.2192 0.2547 5
6 -0.3157 0.0260 0 -0.2192 -0.2305 6
7 0.2305 0.2192 -0.0260 0.3767 7
8 0.3795 0.2192 0.2547 -0.3795 8
9 -0.3157 0.2305 0.2989 -0.3795 9
10 -0.3821 0.2445 0.3210 0.2989 10
11 -0.2989 0.3795 0.3210 0.3210 11
12 0.3795~ 0.3795 0.3767 0.3210 12

No. xa 'a tPt- 'b _xb No.
1 XI -XI I

1 0.2192 -0.3821 -0.3767 0.2192 1
2 0.2192 -0.3157 -0.3210 0.2192 2
3 0.2445 -0.3157 -0.3210 0.0260 3
4 0.0260 -0.2989 -0.2989 0.2445 4
5 -0.2600 -0.2600 -0.2547 -0.2547 5
6 -0.3157 0.0260 0 0.0260 0.2305 6
7 0.2305 0.2192 0.2192 -0.3767 7
8 0.3795 0.2192 0.2192 J{ 0.3795 8
9 -0.3157 0.2305 0.2305 0.3795 9
10 -0.3821 0.2445 0.2445 -0.2989 10
11 -0.2989 { 0.3795 0.3795} -0.3210 11
12 0.3795~ 0.3795 0.3795 -0.3210 12

Figure 4.3 The procedure of finding mapping fIJI for the graphs shown in Figure 4.2.

(a) (b)

Figure 4.4 Two isomorphic graphs both with 17 vertices [Randic 1974].
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Aa=Ab=diag(0.2724, 0.3167, -0.0735, -0.4794, -0.7891, 0.8935, -1.4324, -1.7687, ­

2.1954, -2.2543, -2.4962, -2.8303, 1.6312, 1.9591,2.0818,3.1644,4.0000)

A~ = A; =diag(-2.8303, -2.4962, -2.2543, -2.1954, -1.7687, -1.4324, -0.7891, -0.4794, -

0.0735,0.2724,0.3167,0.8935, 1.6312, 1.9591,2.0818,3.1644,4.0000)

These two graphs have the same spectrum and all distinct eigenvalues. Algorithm 1-2 is to

be applied to determine whether there is a mapping ¢J between two eigenvector matrices.

Figure 4.5 demonstrates the procedure of finding mapping <Pt. The 15th component (­

0.4380) in x~ is the smallest one and thus ordered as the first component in x':; while

the 11 th component (-0.4380) in xt is the smallest one and thus ordered as the fIrst

component in x':. Since the first component in x': is equal to the fIrst one in x't, this

means that there is a mapping between the 15th component in x~ and the 11 th component

in xt. Using the same procedure, the one-to-one mappings can be found for the other

components of between x~ and xt. These result in a one-to-one mapping t/JI+. Note that it

is easy to verify that t/JI- is empty. Hence, l/JI is the same as t/JI+, and is shown in Table 4.1.

Further, Figure 4.6 demonstrates the procedure of finding mapping t1J}, in which mapping

~_ has a one-to-one mapping but f/Jl+ is empty. It can be seen that mapping f/Jl- in Figure

4.6 is the same as mapping rpl in Table 4.1. Therefore, the intersection of them leads to

t1J},= rpl.
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A xa 'a t/JI+ 'b xb B
I Xl

A H B XI I

1 0.3118 -0.4380 15 11 -0.4380 0.3306 1
2 0.2754 -0.2828 9 13 -0.2828 0.3118 2
3 0.3239 -0.2816 17 17 -0.2816 0.0050 3
4 0.0050 -0.1973 12 9 -0.1973 -0.1140 4
5 0.2544 -0.1865 16 16 -0.1865 -0.1568 5
6 0.3306 -0.1568 8 5 -0.1568 -0.0581 6
7 -0.0581 -0.1140 13 4 -0.1140 0.3239 7
8 -0.1568 -0.0830 11 8 -0.0830 -0.0830 8
9 -0.2828 -0.0581 7 6 -0.0581 -0.1973 9
10 0.2734 0.0050 4 3 0.0050 0.2734 10
11 -0.0830 0.0237 14 14 0.0237 -0.4380 11
12 -0.1973 0.2544 5 15 0.2544 0.2754 12
13 -0.1140 0.2734 10 10 0.2734 -0.2828 13
14 0.0237 0.2754 2 12 0.2754 0.0237 14
15 -0.4380 0.3118 1 2 0.3118 0.2544 15
16 -0.1865 0.3239 3 7 0.3239 -0.1865 16
17 -0.2816 0.3306 6 1 0.3306 -0.2816 17

t/JI-
'b _xbA xa 'a A H B B

I XI -XI I

1 0.3118 -0.4380 -0.3306 4 -0.3306 1
2 0.2754 -0.2828 -0.3239 -0.3118 2
3 0.3239 -0.2816 -0.3118 -0.0050 3
4 0.0050 -0.1973 -0.2754 0.1140 4
5 0.2544 -0.1865 -0.2734 0.1568 5
6 0.3306 -0.1568 -0.2544 0.0581 6
7 -0.0581 -0.1140 -0.0237 -0.3239 7
8 -0.1568 -0.0830 -0.0050 0.0830 8
9 -0.2828 -0.0581 0 0.0581 0.1973 9
10 0.2734 0.0050 0.0830 -0.2734 10
11 -0.0830 0.0237 0.1140 0.4380 11
12 -0.1973 0.2544 0.1568 -0.2754 12
13 -0.1140 0.2734 0.1865 0.2828 13
14 0.0237 0.2754 0.1973 -0.0237 14
15 -0.4380 0.3118 0.2816 -0.2544 15
16 -0.1865 0.3239 0.2828 0.1865 16
17 -0.2816 0.3306 0.4380 0.2816 17

Figure 4.5 The procedure of finding mapping f/J} for the graphs shown in Figure 4.4.
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Table 4.1 Mapping cPt for the graphs shown in Figure 4.4.

Graph ~: vertex no. of graph (a) H vertex no. of graph (b)

Fig.4.4a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Fig.4.4b 2 12 7 3 15 6 5 13 10 8 9 4 14 11 16 17

The remaining eigenvector pairs (x~ , x~) and (x~ , - x~) for i=3, 4, ... 17 follow the

same procedure, and as a result, cPt7=l/JI. Finally, it can be concluded that these two

graphs are isomorphic with the mapping as shown in Table 4.1. The matrix expression of

cPt7 can be generated from Table 4.1, Le.,

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

QJ17 = 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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A xa 'a f/Jl.+ 'b xb B
2 X 2 A ~B

X 2 2

1 0.0769/-0.4082 -0.4309 -0.1698 1
2 -0.3680 -0.3680 -0.3848 -0.0769 2
3 -0.0030 -0.2557 -0.3156 0.4082 3
4 -0.4082 -0.2517 -0.1808 -0.3156 4
5 -0.1870 -0.1870 -0.1698 -0.1284 5
6 0.1698 -0.1123 -0.1284 0.2557 6
7 -0.2557 -0.0478 -0.0769 0.0030 7
8 0.1284 -0.0448 0.0030 0.0478 8
9 -0.0448 -0.0086 0 0.0086 -0.4309 9
10 0.3848 -0.0030 0.0448 -0.3848 10
11 -0.0478 0.0769 0.0478 0.2517 11
12 0.4309 0.1284 0.1123 0.3680 12
13 0.3156 0.1698 0.1870 0.0448 13
14 -0.1123 0.1808 0.2517 0.1123 14
15 -0.2517 0.3156 0.2557 0.1870 15
16 0.1808 0.3848 0.3680 -0.1808 16
17 -0.0086 0.4309 0.4082 0.0086 17

A xa 'a f/Jl.- 'b _xb B
2 X 2 A ~ B

-X 2 2

1 0.0769/-0.4082 4 3 -0.4082 0.1698 1
2 -0.3680 -0.3680 2 12 -0.3680 0.0769 2
3 -0.0030 -0.2557 7 6 -0.2557 -0.4082 3
4 -0.4082 -0.2517 15 11 -0.2517 0.3156 4
5 -0.1870 -0.1870 5 15 -0.1870 0.1284 5
6 0.1698 -0.1123 14 14 -0.1123 -0.2557 6
7 -0.2557 -0.0478 11 8 -0.0478 -0.0030 7
8 0.1284 -0.0448 9 13 -0.0448 -0.0478 8
9 -0.0448 -0.0086 17 17 -0.0086 0.4309 9
10 0.3848 -0.0030 3 7 -0.0030 0.3848 10
11 -0.0478 0.0769 1 2 0.0769 -0.2517 11
12 0.4309 0.1284 8 5 0.1284 -0.3680 12
13 0.3156 0.1698 6 1 0.1698 -0.0448 13
14 -0.1123 0.1808 16 16 0.1808 -0.1123 14
15 -0.2517 0.3156 13 4 0.3156 -0.1870 15
16 0.1808 0.3848 10 10 0.3848 0.1808 16
17 -0.0086 0.4309 12 9 0.4309 -0.0086 17

Figure 4.6 The procedure of finding mapping tJi.J. for the graphs shown in Figure 4.4.
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4.2.4 Example: Graphs with Group Mappings

Figure 4.7 gives two graphs both with 10 vertices. They have the same graph spectrum,

i.e.,

4

(a)

4

(b)

Figure 4.7 Two isomorphic graphs both with 10 vertices.

Aa =Ab =diag(-2.2308, -2.0953, -1.2766, -0.7376, -0.6960, 0.4773, 1.2131, 1.3557,

1.5073, 2.4831)

Figure 4.8 illustrates a part of the procedure of finding permutation matrix P. It is seen

from Figure 4.8 that the components in the eigenvector may be identical. The identical

components are grouped. From Figure 4.8, after comparing the first eigenvector pair

(x~ ,xt), mapping cP} (= ¢I+) includes group-to-group mappings, i.e., any element of a

group in x~ can map to any element of the corresponding group in x~. For example, in

mapping ¢I+ shown in Figure 4.8, the group-to-group mappings exist between A(5, 6) and

B(5, 7), A(9, 10) and B(6, 8), A(3, 4) and B(I, 2), and A(7, 8) and B(9, 10). After

comparing the second eigenvector pair (x~, x~), two mappings f/Jl.+ and f/Jl.- are obtained.
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By intersecting mapping CPt with mappings ¢Jl+ and ¢Jl., respectively, t!J]. is found with two

one-to-one mappings (see Table 4.2). Further comparisons conclude that the two

mappings of t!J]. are also valid to the remaining pairs of eigenvectors. Therefore, these two

graphs are isomorphic.

A x a 'a t/JJ.+ 'b xb B
I XI

A HB XI I

1 0.4830 -0.5057 2 4 -0.5057 0.1547 1
2 -0.5057 -0.2858} 5 6 5, 7 { -0.2858 0.1547 2
3 0.1547 -0.2858 ' -0.2858 0.4830 3
4 0.1547 -0.2140}9 10 6,8 { -0.2140 -0.5057 4
5 -0.2858 -0.2140 ' -0.2140 -0.2858 5
6 -0.2858 0.1547} 3 4 1,2 { 0.1547 -0.2140 6
7 0.3226 0.1547 ' 0.1547 -0.2858 7
8 0.3226 0.3226} 7 8 9 10 { 0.3226 -0.2140 8
9 -0.2140} 0.3226 ' , 0.3226 0.3226 9
10 -0.2140 0.4830 1 3 0.4830 0.3226 10

A x a 'a tA- 'b _xb B
I XI

A H B
-XI I

1 0.4830 -0.5057 -0.4830 -0.1547 l
2 -0.5057 -0.2858 -0.3226 -0.1547 2
3 0.1547 -0.2858 -0.3226 -0.4830 3
4 0.1547 -0.2140 -0.1547 0.5057 4
5 -0.2858 -0.2140

0
-0.1547 0.2858 5

6 -0.2858 0.1547 0.2140 0.2140 6
7 0.3226 0.1547 0.2140 0.2858 7
8 0.3226 0.3226 0.2858 0.2140 8
9 -0.2140 0.3226 0.2858 -0.3226 9
10 -0.2140 0.4830 0.5057 -0.3226 10

Figure 4.8 The procedure of finding mapping t!J]. for the graphs shown in Figure 4.7.
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A xa x/a f/Jl+ Ib xb B
2 2 A HB

X2 2

1 0.0000 -0.5428 3 2 -0.5428 0.5428 1
2 0.0000 -0.3355 10 6 -0.3355 -0.5428 2
3 -0.5428 -0.2591 6 5 -0.2591 { 0.0000 3
4 0.5428 -0.1601 7 10 -0.1601 0.0000 4
5 0.2591 { O.OOOO} 1,2 3,4 { O.OOOO} -0.2591 5
6 -0.2591 0.0000 0.0000 -0.3355 6
7 -0.1601 0.1601 8 9 0.1601 0.2591 7
8 0.1601 0.2591 5 7 0.2591 0.3355 8
9 0.3355 0.3355 9 8 0.3355 0.1601 9
10 -0.3355 0.5428 4 1 0.5428 -0.1601 10

A x a 'a f/Jl- Ib _xb B
2 x 2 A H B

-X 2 2

1 0.0000 -0.5428 3 1 -0.5428 .. -0.5428 1
2 0.0000 -0.3355 10 8 -0.3355 0.5428 2
3 -0.5428 -0.2591 6 7 -0.2591 0.0000 3
4 0.5428 -0.1601 7 9 -0.1601 0.0000 4
5 0.2591 { O.OOOO} 1,2 3,4 { 0.0000 0.2591 5
6 -0.2591 0.0000 0.0000 0.3355 6
7 -0.1601 0.1601 8 10 0.1601 -0.2591 7
8 0.1601 0.2591 5 5 0.2591 -0.3355 8
9 0.3355 0.3355 9 8 0.3355 -0.1601 9
10 -0.3355 0.5428 4 2 0.5428 0.1601 10

Figure 4.8 (Continued)

Table 4.2 Mapping f1J.}. for the graphs shown in Figure 4.7.

lPJ. Graph Vertex No.

Fig.4.7a 1 2 3 4 5 6 7 8 9 10
(/)1 n f/Jl+

Fig.4.7b 3 4 2 1 7 5 10 9 8 6

Fig.4.7a I 2 3 4 5 6 7 8 9 10
(/)1 n f/Jl-

Fig.4.7b 3 4 1 2 5 7 9 10 6 8
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4.3 Algorithm II - Part of Eigenvalues Are Distinct

4.3.1 Corollary 1

When an eigenvalue is not distinct from the others, the corresponding eigenvector is not

unique. In this case, two isomorphic graphs may have different eigenvectors for

coincident eigenvalues. Theorem 1 thus cannot be applied to identify the graphs having

coincident eigenvalues. Nevertheless, the necessary condition of Theorem 1 (i.e., having

the same set of eigenvalues and having the equivalent eigenvectors corresponding to

distinct eigenvalues) still applies to the situation where there are coincident eigenvalues.

This discussion results in the following corollary:

Corollary 1. When two graphs Ga and Gb are isomorphic and they have part of their

eigenvalues distinct, they are isomorphic if they also satisfy the following conditions: (1)

the spectrums ofGa and Gb must be the same, and (2) there exists a one-to-one mapping t/J

such that X; = t/J X; where X; and X; are the subsets ofthe eigenvectors ofGa and Gb,

respectively, corresponding to the subsets ofthe eigenvalues which are distinct.

Corollary 1 indicates a necessary condition for two isomorphic graphs which have

coincident eigenvalues (partial). There is no guarantee that two graphs Ga and Gb, which

have part of their eigenvalues distinct, are isomorphic if they meet the necessary

condition. A further checking is necessary. This checking process is to examine whether t/J

(also P) satisfies Equation (4.1) or not. If such a case, these two graphs are isomorphic;

otherwise, they are not isomorphic. Corollary 1 thus requires an algorithm to perform: (l)

comparing eigenvalues, (2) finding mappings, and (3) checking the mappings. The first
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two steps involve algorithm 1-1 and 1-2, respectively. For the last step, if in mapping tPm

there is a one-to-one mapping f/J, the checking procedure simply puts f/J into Equation (4.1)

to see whether f/J meets the equation. However, if there is no such an one-to-one mapping

existed in all mappings in tpn; in other words, all mappings in tPn are a group-to-group

mapping, one has to find whether there is a one-to-one mapping common to all the group-

to-group mappings. If a common one-to-one mapping does not exist, two graphs are not

isomorphic. If a common one-to-one mapping exists, the checking procedure is triggered.

This checking procedure is illustrated as follows.

Among all groups, the group having the least number of vertices is chosen as the first

trial. If a pair of vertices in this group (e.g., vertex Ux of graph Go and vertex Vy of graph

Gb) has a one-to-one relation, elements axx and byy in A and B (respectively) are changed

into axx+x and byy+x, respectively. This leads to new matrices A' and B' , respectively.

Then a recursive process is applied by taking A' and B' as two new input matrices until

a final result is obtained. An algorithm below fulfills this checking procedure.

11-3 checking isomorphism oftwo graphs (A, B, tP)

1. ifmapping tPcontains a one-to-one mapping, say f/J, checking ifA=¢fJf. IfA=f/JB f,

then stop with 'isomorphic graphs'

2. for each group-to-group mapping ¢J; in tp, do

3. fmd the mapping group g in ¢J; having the least number of vertices

4. Ux = randomly select one vertex from g on A side

5. for each vertex vy in group g on B side, do

6. let Ux H vy and modify both the elements ofA at axx and B at byy with axx+x

and byy+x into A' and B' , respectively
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7. comparison ofthe spectrums oftwo graphs (A', B' )

8. f/J = finding permutation matrix oftwo graphs (A', B' )

9. if part of eigenvalues is coincident then checkingpermutation matrix of two

graphs (A', B' , f/J)

Algorithm 11-3 is further illustrated by the following examples.

4.3.2 Example: One-to-One Mapping

Both two graphs shown in Figure 2.5 have 8 vertices. They have the same graph

spectrum, i.e.,

Aa=Ab=diag(-2.4142, -1.7321, -1.0000, -1.0000, 0.4142, 1.0000, 1.7321,3.0000)

and the corresponding eigenvector matrices are, respectively,

0.0000 -0.6280 0.2604 0.2392 0.0000 0.5000 0.3251 0.353

0.3536 0.2299 0.0779 -0.6074 0.3536 0.0000 0.4440 0.3536

-0.5000 0.0000 0.2604 0.2392 0.5000 -0.5000 0.0000 0.3536

Xa = 0.3536 -0.2299 -0.5986 0.1290 0.3536 0.0000 -0.4440 0.3536

0.0000 0.6280 0.2604 0.2392 0.0000 0.5000 -0.3251 0.3536

-0.3536 -0.2299 0.0779 -0.6074 -0.3536 0.0000 -0.4440 0.3536

0.5000 0.0000 0.2604 0.2392 -0.5000 -0.5000 0.0000 0.3536

-0.3536 0.2299 -0.5986 0.1290 -0.3536 0.0000 0.4440 0.3536
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0.5000 0.0000 0.3416 -0.0913 -0.5000 -0.5000 0.0000 -0.3536

-0.3536 -0.2299 -0.4707 -0.3917 -0.3536 0.0000 0.4440 -9.3536

0.3536 0.2299 -0.4707 -0.3917 0.3536 0.0000 -0.4440 -0.3536

Xb= 0.0000 0.6280 0.3416 -0.0913 -0.0000 0.5000 0.3251 -0.3536

-0.5000 0.0000 0.3416 -0.0913 0.5000 -0.5000 0.0000 -0.3536

0.3536 -0.2299 -0.2124 0.5744 0.3536 0.0000 0.4440 -0.3536

0.0000 -0.6280 0.3416 -0.0913 0.0000 0.5000 -0.3251 -0.3536

-0.3536 0.2299 -0.2124 0.5744 -0.3536 0.0000 -0.4440 -0.3536

Theorem 1 is not suitable for this case because of partially coincident eigenvalues (A.3 =

A.t = -1.0000). However, according to Corollary 1, the eigenvectors corresponding to the

distinct eigenvalues can still be used for finding possible isomorphic mappings. By

algorithm 1-2, part of the results for the comparison of unique eigenvectors between Xa

andXb can be obtained as shown in Table 4.3.

Table 4.3 The mapping by comparing unique eigenvectors between Xa and Xb.

tPt+ t/JJ.+ tPs+ ~+ f/JT. ~

AHB AHB AHB AHB AHB AHB

3 5 1 7 7 1 3 1 4 2 1 1

6 2 4 2 6 2 7 5 6 6 2 2

8 8 6 6 8 8 2 2 5 4 3 3

1 4 3 1 1 4 4 3 3 1 4 4

5 7 7 5 5 7 6 6 7 5 5 5

2 3 2 3 2 3 8 8 1 7 6 6

4 6 8 8 4 6 1 4 2 3 7 7

7 1 5 4 3 5 5 7 8 8 8 8
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Based on Table 4.3, a one-to-one mapping is created when mapping tA+ intersects with

mapping ¢Jl.+, which is listed in Table 4.4.

Table 4.4 The one-to-one mapping created with the intersection between tA+ and ¢Jl.+.

Graph ¢t+ n t/JJ.+

A

B

1

7

2

3

3

5

4

6

5

4

6

2

7

1

8

8

Further study indicates that this one-to-one mapping is also common to mappings tPs+, ~,

f/JJ-, and ¢8-. Therefore, according to Corollary 1, the checking procedure is needed for this

one-to-one mapping to determine whether it is an isomorphic mapping between two

graphs. It is easy to transform the mapping shown in Table 4.4 into a row permutation,

say ¢:

0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0
¢=

0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

One can verify that ¢ satisfies Equation (4.1) in replacement of P. Therefore, these two

graphs are isomorphic.
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4.3.3 Examples: Group-to-Group Mapping

Figure 4.9 shows two graphs, both with 7 vertices. They have the same graph spectrum,

i.e.,

(a) (b)

Figure 4.9 Two isomorphic graphs with partially coincident eigenvalues.

Aa=Ab=diag(-2.2470, -2.2470, -0.5550, -0.5550, 0.8019, 0.8019, 4.0000)

and the corresponding eigenvector matrices are, respectively,

-0.4097 0.3433 0.3329 -0.4182 -0.0703 0.5299 -0.3780

0.2202 -0.4871 -0.1194 -0.5210 -0.5010 -0.1864 -0.3780·

0.0130 0.5344 -0.4818 -0.2315 0.2932 -0.4469 -0.3780

Xa = -0.2435 -0.4758 -0.4814 0.2323 0.3705 0.3853 -0.3780

0.4259 0.3230 -0.1185 0.5212 -0.4581 0.2754 -0.3780

-0.5239 -0.1063 0.3336 0.4176 -0.1666 -0.5079 -0.3780

0.5181 -0.1316 0.5345 -0.0005 0.5322 -0.0494 -0.3780
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0.1652 0.5084 0.4920 0.2088 -0.1979 -0.4965 -0.3780

0.4588 -0.2742 -0.3527 -0.4016 0.2648 -0.4643 -0.3780

-0.3694 -0.3863 0.1435 0.5149 0.5281 -0.0824 -0.3780

Xb= -0.2944 0.4461 0.0941 -0.5262 0.3937 0.3615 -0.3780

0.5004 0.1878 -0.3131 0.4332 -0.0372 0.5332 -0.3780

0.0717 -0.5297 0.4700 -0.2545 -0.4401 0.3034 -0.3780

-0.5324 0.0479 -0.5339 0.0254 -0.5116 -0.1549 -0.3780

Only one eigenvalue (A,7=4.0000) is distinct from the others. Therefore, only the

eigenvector corresponding to A,7 can be used to find possible one-to-one mappings

according to Corollary 1. Unfortunately, the comparison of this eigenvector between Xa

andXb gives a group-to-group mapping (see the last column ofXa andXb), i.e., any vertex

in A might map to any vertex in B. Algorithm ll-3 is then applied to this situation.

Suppose that vertex 1 in A has a one-to-one relation with vertex 1 in B if they are

isomorphic. Change the entries all and bll from 0 into 1 (all+l). This leads to 'new'

matrices A' and B'. A' and B' are then considered as two 'new' matrices to algorithms

1-1,1-2, and 11-3, respectively. The eigenvalues and the corresponding eigenvectors of A'

and B' are, respectively,

A: =A~=diag(-2.2470, -2.0302, -0.5550, -0.3052,0.8019, 1.1592,4.1763)

0.0000 -0.3999 0.0000 0.4518 0.0000 0.6485 -0.4641

0.2319 0.5237 -0.4179 0.2734 -0.5211 -0.1296 -0.3663

-0.4179 -0.3728 -0.5211 0.0165 0.2319 -0.4900 -0.3474

X' = 0.5211 0.0822 -0.2319 -0.5683 0.4179 0.1812 -0.3708
a

-0.5211 0.0822 0.2319 -0.5683 -0.4179 0.1812 -0.3708

0.4179 -0.3728 0.5211 0.0165 -0.2319 -0.4900 -0.3474

-0.2319 0.5237 0.4179 0.2734 0.5211 -0.1296 -0.3663
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0.0000 0.3999 0.0000 -0.4518 0.0000 -0.6485 -0.4641

0.5211 -0.0822 -0.2319 0.5683 -0.4179 -0.1812 -0.3708

-0.2319 -0.5237 0.4179 -0.2734 -0.5211 0.1296 -0.3663

X' = -0.4179 0.3728 -0.5211 -0.0165 -0.2319 0.4900 -0.3474
b

0.4179 0.3728 0.5211 -0.0165 0.2319 0.4900 -0.3474

0.2319 -0.5237 -0.4179 -0.2734 0.5211 0.1296 -0.3663

-0.5211 -0.0822 0.2319 0.5683 0.4179 -0.1812 -0.3708

They have the same eigenvalues, and they are all distinct. By algorithm 1-2, part of the

results of the comparison of unique eigenvectors between X~ and X; can be obtained as

shown in Table 4.5. A common one-to-one mapping is found when investigating all the

mappings listed in Table 4.5. This common one-to-one mapping is shown in Table 4.6. A

matrix can be created based on Table 4.6 and is shown below:

1 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 1 0 0 0

f/J= 0 1 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 1 0 0

0 0 1 0 0 0 0
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Table 4.5 The mapping by comparing unique eigenvectors between Xa and Xb.

f/JJ+ tP2- t/JJ+ tp.. t/Js- t/J6- f/JT+

AHB AHB AHB AHB AHB AHB AHB

5 7 1 1 3 4 4 2 2 6 3 4 1 1

3 4 3 4 2 6 5 7 5 7 6 5 4 2

7 3 6 5 4 2 3 4 6 5 2 3 5 7

1 1 4 2 1 1 6 5 1 1 7 6 2 3

2 6 5 7 5 7 2 3 3 4 4 2 7 6

6 5 2 3 7 3 7 6 4 2 5 7 3 4

4 2 7 6 6 5 1 1 7 3 1 1 6 5

Table 4.6 The one-to-one mapping created by investigating all the mappings.

Graph f/JJ+n fJl- n t/JJ+ n tp.. n f/Js- n t/J6- n f/JT+

A

B

1 2

6

3

4

4

2

5

7

6

5

7

3

Equation (4.1) is satisfied when ¢J replaces P. Hence, these two graphs are isomorphic.

Figure 4.10 illustrates another example, where two graphs have, respectively, 15 vertices.

This pair of graphs has the same eigenvalues, i.e.,

Aa=Ab=diag(-3.1642, -3.1642, -1.6180, -1.6180, -0.7616, -0.4142, -0.2271, -0.2271,

0.6180,0.6180,0.6367, 1.3914, 1.3914,2.4142,4.1249)

85



2 ~=-=======~~--=----....:::::. 3 2 ~--_--.:!~====.:::::e3

(a) (b)

Figure 4.10 Two non-isomorphic graphs with partially coincident eigenvalues rYan and
Hall 1982].

There are 5 distinct eigenvalues, i.e., 25=-0.7616, 26=-0.4142,211=0.6367,214=2.4142, and

215=4.1249. The eigenvectors corresponding to these distinct eigenvalues are listed as

follows:

0.0501 0.1562 0.3131 0.3772 0.2572

0.0501 0.1562 0.3131 0.3772 0.2572

0.0501 0.1562 0.3131 0.3772 0.2572

0.2320 0.0000 -0.3573 0.0000 0.3897

0.2320 0.0000 -0.3573 0.0000 0.3897

0.2320 0.0000 -0.3573 0.0000 0.3897

-0.3705 -0.3772 -0.0695 0.1562 0.1568

Xa= ........ -0.3705 -0.3772 -0.0695 0.1562 0.1568

-0.3705 -0.3772 -0.0695 0.1~62 0.1568

0.0501 -0.1562 0.3131 -0.3772 0.2572

0.0501 -0.1562 0.3131 -0.3772 0.2572

0.0501 -0.1562 0.3131 -0.3772 0.2572

-0.3705 0.3772 -0.0695 -0.1562 0.1568

-0.3705 0.3772 -0.0695 -0.1562 0.1568

-0.3705 0.3772 . -0.0695 -0.1562 0.1568
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-0.0501 -0.1562 -0.3131 0.3772 -0.2572

-0.0501 -0.1562 -0.3131 0.3772 -0.2572

-0.0501 -0.1562 -0.3131 0.3772 -0.2572

-0.2320 0.0000 0.3573 0.0000 -0.3897

-0.2320 0.0000 0.3573 0.0000 -0.3897

-0.2320 0.0000 0.3573 0.0000 -0.3897

0.3705 0.3772 0.0695 0.1562 -0.1568

0.3705 0.3772 0.0695 0.1562 -0.1568

Xb= 0.3705 0.3772 0.0695 0.1562 -0.1568

-0.0501 0.1562 -0.3131 -0.3772 -0.2572

-0.0501 0.1562 -0.3131 -0.3772 -0.2572

-0.0501 0.1562 -0.3131 -0.3772 -0.2572

0.3705 -0.3772 0.0695 -0.1562 -0.1568

0.3705 -0.3772 0.0695 -0.1562 -0.1568

0.3705 -0.3772 0.0695 -0.1562 -0.156

Through algorithm 1-2, two group-to-group mappings are found and listed in Table 4.7.

Table 4.7 The group-to-group mappings by comparing all the unique eigenvectors.

4>ts Graph Group 1 Group 2 Group 3 Group 4 Group 5

A 1,2,3 4,5,6 7,8,9 10,11,12 13, 14, 15
f/J;s

B 1,2,3 4,5,6 7,8,9 10, 11, 12 13, 14, 15

A 1,2,3 4,5,6 7,8,9 10, 11, 12 13, 14, 15
f/J~

B 10, II, 12 4,5,6 13, 14, 15 1,2,3 7,8,9
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Algorithm ll-3 is applied here. As each group has the same number of vertices, the frrst

group (Group 1) is selected as a start to fmd a possible one-to-one mapping from group­

to-group mappings l/)15. Consider mapping l/);s' If it is an isomorphic mapping, each pair

of groups between A and B must match. This means that the members in a group in A

must have a one-to-one relation with the members in the corresponding group in B. For

example, in Group 1, there must be one of the six one-to-one mappings, i.e., A(I, 2,3) H

B(I, 2, 3), A(I, 2, 3) H B(I, 3,2), A(I, 2, 3) H B(2, 1,3), A(l, 2, 3) H B(2, 3, 1), A(l, 2,

3) H B(3, 1, 2), or A(l, 2, 3) H B(3, 2, 1). Take member 1 in Group 1 in A. It must

match one of three members in Group 1 in B, Le., A(1) H B(I), A(l) H B(2), or A(1) H

B(3). Suppose that there is a mapping A(I) H B(I). By changing the entries all and bll

with all+l and bll+1, respectively, two new adjacency matrices A' and B' are obtained.

These two matrices have the same eigenvalues, i.e.,

A~ = A; =diag(-3.1642, -3.0734, -1.6180, -1.4249, -0.7595, -0.4014, -0.2271, -0.0888,

0.6180,0.6267,0.8338, 1.3914, 1.4722,2.6022,4.2132)

It can be seen that all eigenvalues are distinct. Through algorithm 1-2, their eigenvectors

are compared to fmd whether there exists a common mapping. The eigenvectors of A'

and B' corresponding to the eigenvalue A; = -3.1642 are listed as follows, respectively,

x:1=( 0.0000 0.3010 -0.3010 -0.1242 -0.3929 0.5170 0.1344 -0.2585 0.1242

0.1556 -0.3469 0.1913 0.2338 -0.2126 -0.0212)T
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X~l=( 0.0000 0.3010 -0.3010 0.1242 -0.5170 0.3929 -0.1242 0.2585 -0.1344

0.0000 -0.3010 0.3010 0.2585 -0.1242 -0.1344)T

There is not any mapping between x:1 and X~l because of different eigenvector

components. This means that the hypothesis A(1) H B(I) is not true for isomorphism.

Similarly, mappings A(1) H B(2) and A(I) H B(3) are also found not true for

isomorphism. Hence, mapping l/J;s between A and B is not true for isomorphism. The

same procedure used for l/J;s can be applied to l/J~. One can lead to the conclusion that

mapping l/J~ is not true for isomorphism as well. Therefore, the two graphs shown in

Figure 4.10 are not isomorphic.

4.4 Adjusted Adjacency Matrix

As discussed above, once two graphs are represented by two adjacency matrices, their

eigenvalues and eigenvectors corresponding to distinct eigenvalues can be used for

determining whether these two graphs are isomorphic. Therefore, it requires that there

exist at least one distinct eigenvalue (this means that the corresponding eigenvector is

unique) in the AM of a graph. However, this condition is not always satisfied with AM as

the representation of a graph. The solution to this problem is to find a new matrix

representation for graph; this new matrix has a one-to-one relation with a graph, and

hopefully the new matrix is a symmetric one. The new matrix is called the adjusted

adjacency matrix (AAM), which is discussed below.
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4.4.1 Definition of Adjusted Adjacency Matrix

The adjusted adjacency matrix ofa graph with n vertices is defined as

a .. ={same as the adjacency matrix ; i * j
IJ n - degree(v;) *0 ; i =j

In fact, the sum of entries with nonzero value at each row of the AM is equal to the

degree of the corresponding vertex, i.e., degree(vi) for vertex Vi. Figure 4.11 shows a 5-

vertex graph as well as its AM and AAM. In this graph, vertices 1 and 2 have two

degrees, vertices 3 and 4 have three degrees, and vertex 5 has four degrees.

0 0 0 1 1 3 0 0 1 1

0 0 1 0 1 0 3 1 0 1

0 1 0 1 1 0 1 2 1 1

1 0 1 0 1 1 0 1 2 1

1 1 1 1 0 1 1 1 1 1

graph AM AAM

Figure 4.11 A 5-vertex graph, the AM and the AAM.

According to this definition, the AAM of a graph is unique and sufficient when

representing the graph. Hence, any two graphs are isomorphic if and only if their AAMs

are equivalent. With the AAM ofa graph, there is the following theorem:

Theorem 2. The adjusted adjacency matrix of a graph with n vertices has a unique

eigenvalue n.
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Proof. Consider the matrix

1
B=-M

n

where M is the AAM of a graph. To prove that n is a unique eigenvalue of matrix M, one

needs to show that matrix B has a unique eigenvalue 1.

Matrix B has two properties: (I) every element of the matrix is no less than 0 (bij ~ 0),

n

and (2) the sum of every row/column of the matrix is 1 (Ibij =1; j =1,2,···,n). Matrix
;=)

B with the above properties is called the doubly stochastic matrix, which has a largest

eigenvalue 1 and its corresponding eigenvector [1 1 ... IY [Liu and Lai 2000].

Because the graph associated with matrix M and matrix B is strongly connected (for each

entry (i, j) in matrix M, there exists an integer k such that the associated graph is

connected by k edges between vertex i and vertex j), matrix B is an irreducible matrix.

More precisely, matrix B is an irreducible nonnegative matrix due to Property (1).

Furthermore, it is known that an irreducible nonnegative matrix with a nonzero principal

diagonal is primitive [Mine 1988]. It is known that an n x n nonnegative primitive matrix,

matrix B in this case, has a unique eigenvalue, i.e., 1 which is the largest among all the

eigenvalues [Seneta 1981]. Matrix M thus has a unique eigenvalue n, and its

corresponding eigenvector [1 1 ... lY .•
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With AAM, instead ofAM, both Theorem 1 and Corollary 1 together with algorithms 1-1,

1-2, and 11-3 are still applicable for GI detection without any change. This is because they

are built upon the sYmmetry property ofmatrices for graphs.

4.4.2 Adjusted Adjacency Matrix versus Adjacency Matrix

AAM ensures that a graph has at least one distinct eigenvalue and thus the Eigensystem

approach can be applied for solving isomorphism problems of general graphs. Besides,

there is a surprising phenomenon from many tests: most pairs of non-isomorphic

cospectral graphs on their AMs have different graph spectrums on their AAMs. This

means that graph isomorphic identification should be conducted more effectively with

AAM than with AM. The following are several examples to demonstrate this point.

Figure 2.15 illustrated a pair of trees which have the same graph spectrum on AM but are

non-isomorphic. The AAMs of this pair oftrees are, respectively,

A; =diag(1.9452, 4.8390, 6.4932, 7.0000, 7.0000, 7.0000, 7.7226, 8.0000)

A; =diag(2.3542, 4.0000, 7.0000, 7.0000, 7.0000, 7.0000, 7.6458, 8.0000)

It can be seen that the two trees are not isomorphic because they have different graph

spectrums on AAM.

Figure 4.12 shows another example of two cospectral graphs on AM. The AMs of these

two graphs have the same eigenvalues

92



6

(a)

4

6

(b)

4

Figure 4.12 Two non-isomorphic cospectral graphs on AM.

Aa=~=diag(-2.4998, -1.6893, -1.4142, -0.9472, 0.0000, 0.0000, 0.9472, 1.4142, 1.6893,

2.4998)

The eigenvalues of these two graphs based on AAMs are, respectively,

A~ =diag(4.8441, 5.7530, 6.0000, 6.8948, 7.4450, 8.0000, 8.7681, 8.8019, 9.4930,

10.0000)

A; =diag(4.8162, 5.7119, 6.1981, 6.7568, 7.5550, 7.7564, 8.7501, 9.2086, 9.2470,

10.0000)

Since A: and A~ are different, these two graphs are not cospectral on AAM. One can

immediately conclude that the two graphs are not isomorphic.
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Figure 4.13 shows another pair of graphs, both with 10 vertices. The two graphs have the

same graph spectrum on AM:

(a)

7 3

(b)

Figure 4.13 Two non-isomorphic cospectral graphs on AM.

Aa=Ab=diag(-2.4289, -2.0693, -1.5279, -0.9182, 0.0000, 0.4528, 1.0000, 1.1354, 1.6037,

2.7523)

The eigenvalues of these two graphs based on AAMs are, respectively,

A~ =diag(4.3617, 5.1341, 5.9379, 6.7547, 7.5416, 7.6967, 8.5509, 8.7930, 9.2295,

10.0000)

A; =diag(4.3990, 5.0782, 5.8922, 6.8406, 7.4351, 8.0000, 8.2729, 8.7685, 9.3134,

10.0000)

These two graphs are not isomorphic since A: and A~ are different.
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More examples can be seen in Figure 4.14 where each pair of graphs (trees) has the same

graph spectrum on AM but different on AAM as shown in the following. Hence, the

graphs (trees) in each pair are not isomorphic.

3

(a) (b)

(g) (h) (i)

Figure 4.14 Six pairs ofcospectral graphs (trees) on AM [Harary et al. 1971].
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;.e-------:=-2

.--- 3
4

0)

7

9

(k)

----6

(1)

6 3

(m)

Figure 4.14 (Continued)

Aa=Ab=diag(-2.5616, -1.5616, -1.0000, -1.0000, -1.0000, 1.0000, 1.0000, 1.0000, 1.5616,

2.5616)

A; =diag(4.6385, 6.3820, 6.3820, 6.3820, 6.8326, 8.6180, 8.6180, 8.6180, 9.5289,

10.0000)

A; =diag(4.4384, 5.0000, 7.0000, 7.0000, 7.0000, 8.5616, 9.0000, 9.0000, 9.0000,

10.0000)

Ac=Ardiag(-2.0840, -1.5718, -1.0000, -0.4317, 0.0000, 0.4317,1.0000,1.5718,2.0840)

{
A; =diag(4.4574, 5.0936, 6.3820, 6.8551, 7.7892, 8.0000, 8.6180, 8.8047, 9.0000)

A; =diag(4.3563, 5.4277, 6.0000, 6.9108, 8.0000, 8.0000, 8.4679, 8.8373, 9.0000)
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Ae=Ardiag(-1.9032, -1.0000, -1.0000,0.1939, 1.0000,2.7093)

{
A~ ~~ag(o.OOOO,3.0000, 3.0000, 5.0000, 5.0000, 6.0000)

Af -dlag(1.2679, 2.0000, 2.5858, 4.7321,5.4142,6.0000)

Ag=Ah=A,=diag(-2.0000, -1.7785, -1.0000, 0.0000, 0.0000, 1.2892, 3.4893)

A; =diag(1.3820, 1.5858,2.6972,3.6180,4.4142,6.3028, 7.0000)

A; =diag(1.5858, 1.5858,2.0000,4.4142,4.4142,6.0000, 7.0000)

A; =diag(O.OOOO, 2.0000,4.0000,4.0000,4.0000,6.0000, 7.0000)

AJ=Ak=diag(-2.7152, -1.2758, -1.0000, 0.0000, 0.0000, 0.0000, 1.0000, 1.2758,2.7152)

fA: =d:ag(3 .1294, 4.8773, 5.5858, 6.0000, 7.4838, 8.0000, 8.4142, 8.5095, 9.0000)

"1k =dlag(3.0437, 4.6972, 5.5612, 7.0000, 7.0000, 7.7454, 8.3028, 8.6498, 9.0000)

AFAm=diag(-2.4289, -2.0693, -1.5279, -0.9182, 0.0000, 0.4528, 1.0000, 1.1354, 1.6037,

2.7523)

{

A; =diag(4.3617, 5.1341, 5.9379, 6.7547, 7.5416, 7.6967, 8.5509, 8.7930,9.2295,

10.0000)

A: =diag(4.3990, 5.0782, 5.8922, 6.8406, 7.4351, 8.0000, 8.2729, 8.7685, 9.3134,

10.0000)
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This phenomenon is present in all the cases of the cospectral graphs mentioned in

[Collatz and Sinogowitz 1957; Harary et al. 1971]. It is interesting to note that the

converse, i.e., two non-cospectral graphs based on AMs become cospectral graphs based

on AAMs, has not yet happened. However, not all cospectral graphs on AM, which are

not isomorphic, have different graph spectrums on AAM. So far, two examples have been

found to be true. The first example is the one shown in Figure 4.2 where two cospectral

graphs are not isomorphic, but their eigenvalues on AAM are the same, i.e.,

A; =A; =diag(6.4779, 7.2414, 7.7530, 7.7701, 8.4181, 9.4450, 9.7365,10.1955,10.8019,

10.8953, 11.2652, 12.0000)

The second example is the one shown in Figure 4.10. As discussed before, these two

graphs are not isomorphic, but are cospectral on AM. They are also cospectral on AAM.

A; = A; =diag(6.8713, 6.8713, 9.6972, 9.6972, 10.0000, 10.5334, 10.5334, 12.0000,

12.0000, 13.3028, 13.3028, 13.5953, 13.5953, 14.0000, 15.0000)

Despite this fact, it is more effective to have the algorithms based on AAM than to have

the algorithms based on AM for graph isomorphic identification. Besides, AAM ensures

the Eigensystem approach works. The most important advantage of AAM is that it

ensures at least one distinct eigenvalue, which meets the condition of algorithms 1-1, 1-2,

and II-3.
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4.5 Graph Isomorphism for Digraphs

The graph isomorphism problem for a directed graph is discussed here. Both AM and

AAM are symmetrical for an undirected graph, and therefore their eigenvalues and

eigenvectors are real. For a digraph, however, the AM (or AAM) is not symmetrical and

thus the complex number may present in eigenvalues and eigenvectors of the AM (or

AAM). Therefore, the algorithms (1-1, 1-2, 11-3) developed previously may not be directly

applied for GI detection for digraphs. For an unsymmetrical matrix, there is still the

eigenvalue issue. It can be easily proved that when eigenvalues are distinct, their

corresponding eigenvectors are unique. Therefore, it appears that the three algorithms

developed for the undirected graphs may be adapted to be useful to the directed graph.

For an eigenvalue A (real or complex number), x (real or complex number) is the

eigenvector corresponding to A when the equation Ax=A.x. is valid. For A, which is a

diagonal matrix containing all eigenvalues (real and complex number), there is AX=XA,

i.e.,

(4.10)

where X contains the eigenvectors (real or complex number) corresponding to A; It is

easy to understand that the definition of graph isomorphism for the undirected graph is

equally applicable to the directed graph. This means that Equation (4.1) should be

satisfied for two isomorphic directed graphs. Now let A and B be the AAMs of two

directed graphs, respectively. Suppose that these two graphs have the same graph

spectrum A. This implies the following equation:

B=yAyl. (4.11)
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Then substituting Equation (4.10) and Equation (4.11) into Equation (4.1) leads to

Noticing pT=p-1 and (py)-l=ylp-l, Equation (4.12) can be further written as

XAX I=(PY)A(pY)-I

(4.12)

(4.13)

If each eigenvalue of A is distinct from. other eigenvalues of A, similar with Theorem 1,

Equation (4.13) satisfies if and only if there is

X=PYS

where S is a sign matrix

(4.14)

o
o

(4.15)

o 0 s"

where the diagonal entries of S are either ±1, or ±i. In fact, substituting both Equation

(4.14) and Equation (4.15) into Equation (4.10) leads to
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A = PYSA(PYS)-1 = PYSAS-Iy-Ip-I = py(S AS-I )y-Ip-I

Sl 0 0 A, 0 0 XI 0 0

= p 0 S2 0 0 ~ 0 0 X2 0 y-lp-l

0 0 Sn 0 0 An 0 0 Xn
A, 0 0

0 ~ 0
y-Ip-l =pryAy-I )P-I =PBpT=P

0 0 An

The above discussion actually implies: Theorem 1 is valid to the directed graph subject to

the condition that the S matrix may contain ±1, or ±i. It can be further verified that the

three algorithms (1-1, 1-2, 11-3) which are applicable to the undirected graph are valid to

the directed graph provided that the following changes are made:

(1) Sorting eigenvalues or eigenvectors in an ascending order with (frrst) their real part

and (then) their complex part.

(2) For each eigenvector pair (x~ IX~), finding the possible mappings by comparing not

only (x~ I x~) and (x~ ,- x~), but also (x~ ,x~ . i ) and (x~ ,- x~ . i ).

For example, Figure 4.15 describes two weighted digraphs both with 6 vertices. Their

AAM are defmed as
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6

(a)

2

3

(b)

Figure 4.15 Two weighted digraphs both with 6 vertices.

3 0 0 2 1 2 4 2 0 0 0 2

0 3 0 5 3 3 2 3 1 0 2 0

0 0 4 0 1 6 0 0 5 2 0 0
A= B=

2 0 2 4 0 0 5 0 3 3 3 0

0 2 0 0 5 0 0 3 0 0 4 1

3 0 1 0 0 4 0 0 1 0 6 4

The eigenvalues and the corresponding eigenvectors are, respectively,

Aa=Ab=diag(-1.0383, 2.3589, 3.7915-1.4728i, 3.7915+1.4728i, 5.5333, 8.5631)

0.3349 -0.0330 -0.2122-0.0279i -0.2122+O.0279i 0.0372 -0.2822

0.7316 0.7727 -0.4289-0. 1391i -0.4289+0. 139li -0.2359 -0.6353

0.3739 -0.1109 0.5545 0.5545 0.1882 -0.4525
Xa=

-0.2814 0.1753 -0.1017-0.4504i -0.1 017+O.4504i 0.2940 -0.3221

-0.2423 -0.5852 0.1727+0.4407i 0.1727-0.4407i -0.8848 -0.3566

-0.2736 0.1279 -0.0481+0.0627i -0.0481-0.0627i 0.1956 -0.2847
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-0.2814 0.1753 -0.1017-0.4504i -0.1017+O.4504i 0.2940 -0.3221

0.3349 -0.0330 -0.2122-0.0279i -0.2122+O.0279i 0.0372 -0.2822

-0.2423 -0.5852 0.1727+O.4407i 0.1727-0.4407i -0.8848 -0.3566
Xb=

0.7316 0.7727 -0.4289-0.1391i -0.4289+0. 139li -0.2359 -0.6353

-0.2736 0.1279 -0.0481+O.0627i -0.0481-0.0627i 0.1956 -0.2847

0.3739 -0.1109 0.5545 0.5545 0.1882 -0.4525

It can be found that these two digraphs have the same graph spectrum, and then

eigenvalues are distinct. Further, their corresponding eigenvectors (Xa and Xb) are

equivalent. The following mapping can be found by algorithm 1-2, as shown in Table 4.8.

Table 4.8 The one-to-one mapping between two weighted digraphs.

Graph

A

B

1

2

2

4

3

6

4

1

5

3

6

5

Therefore, these two weighted digraphs are isomorphic.

4.6 Complexity Analysis

From algorithms I-I and 1-2, the time complexity for a single detecting cycle is dominated

by (I) the eigendecomposition of AAM, (2) comparison of unique eigenvectors between

graphs, and (3) the validations of vertex mappings. The time cost for the comparison of

unique eigenpairs of two graphs is mainly for sorting eigenvalues and sorti~g each

eigenvector. The time complexity of algorithms I-I and 1-2 can be analyzed, as shown in

Table 4.9 and 4.10, respectively. It is hoted that for an n-size sorting problem, O(nlgn)
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runs are needed [Connen et al. 2001]. For an n-size eigendecomposition problem, D(n3
)

runs are needed [Bai et al. 2000].

Table 4.9 The time complexity of algorithm 1-1.

Step No. Time Complexity Notes

1 T I = D(n3
) Eigendecomposing AAMs

2 T2 = D(nlgn) Sorting eigenvalues

4 - 8 T4-8 = O(n) Comparing eigenvalues

Total TI-1 = D(n3 + nlgn + n)

Table 4.10 The time complexity of algorithm 1-2.

Step No.

1

3

4-5

7 -15

17

Total

Time Complexity

T1 = D(n3
)

ml(T4-5 + T7-15 + Tl1)

T4-5 = D(nlgn)

T7-15 = D(n)

T1 7 = O(m2)

Notes

Eigendecomposing AAMs

mI is n in the worst case

Sorting eigenvectors

Comparing eigenvectors

m2 is 2n in the worst case

Hence, in the worst case, the computational complexities for algorithms 1-1 and 1-2 are

D(n3
) and D(n3 + n2n

), respectively. However, the practical computational complexity of

these algorithms in most cases is much better than in the worst case. Actually, the

application of some rules, which will be discussed in Chapter 5, can prune the searching

ofpossible mappings and thus speed the perfonnance of these algorithms.
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When there are group-to-group vertex mappings for the graphs having coincident

eigenvalues, a recursive process has to be done, which may consist of several detecting

cycles, as described in algorithm 11-3. Hence, the time complexity of algorithm II-3 can be

written as

T11-3 = m3 (T1-1 + TI-2)

where m3 is an integer without any reasonable bound, Le., Tn-3 = O(m3n3 + m3ml(nlgn + n

+ m2)).

4.7 Discussion and Concluding Remarks

The algorithms in the Eigensystem approach for graph isomorphism were introduced in

this chapter. Since the eigenvector corresponding to a distinct eigenvalue is unique, both

eigenvalues and unique eigenvectors can be applied for determining if two graphs are

isomorphic. It was proven that two graphs, each of which has all distinct eigenvalues, are

isomorphic if and only if they have the same graph spectrum and their corresponding

eigenvector matrices are equivalent; algorithms I-I and 1-2 were developed for this case.

If coincident eigenvalues exist in graph spectrums, only the eigenvectors corresponding to

distinct eigenvalues can be used for finding possible one-to-one mappings of the vertices

between two graphs. If not one-to-one but group-to-group mappings exist, a checking

program has to be performed to find possible one-to-one mappings; this program is

algorithm 11-3. The implementation of these algorithms can be seen in Applendix A.

The Eigensystem approach requires that the adjacency matrix of a graph must have at

least one distinct eigenvalue. A new matrix called adjusted adjacency matrix (AAM) was
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proposed for representing a graph. AAM ensures at least one distinct eigenvalue, which

meets the condition of Corollary 1. It was also found that use of AAM for representing

graphs and conducting graph isomorphism detections would be more efficient than use of

AM. In particular, it has been found that cospectral graphs in terms of AM are likely not

cospectral in terms of AAM. This interesting point has further led to the finding that

cospectral in terms of AM but non-isomorphic graphs are not cospectral in terms of

AAM. This means that the graph isomorphic detection based on AAM would need less

computation time.

In general, the AAM of a diagraph is an unsYmmetrical matrix. Complex numbers may

exist in eigenvalues and in the corresponding eigenvectors. It has been shownthat with

modifications, algorithms (1-1, 1-2, 11-3) developed for the undirected graph can be

applied to the directed graph. It is noted that most of the algorithms for graph

isomorphism published for engineering and science application have not dealt with the

digraph.

The computational complexity of the Eigensystem approach has been analyzed. It has

been shown that this approach does not render to an algorithm with a polynomial time. In

the worst case, the approach reaches the complexity of exponential time. This result is the

same as that achieved by the Nauty program. However, in practice, the use of AAM could

greatly reduce the computational time, as the co-spectra on AM is (highly) likely not the

co-spectra on AAM. Interestly, it is noted from the present study that such a likelihood

could go with 80-90%.
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CHAPTER 5
GRAPH COUNTING AND STRUCTURE ENUMERATION

5.1 Introduction

The Eigensystem approach (Chapter 3) with its algorithms (Chapter 4) has so far

provided a tool for solving the second fundamental problem raised in Chapter 1. The frrst

and third fundamental problems raised in Chapter 1 are related to the graph counting

problem, in particular (1) the counting of two isomorphic graphs and (2) the counting of

automorphisms (for one graph). The graph counting essentially explores the property of

the sYmmetry of a graph. In this chapter, the Eigensystem approach to the graph counting

problem is studied. In particular, Section 5.2 discusses the graph counting problem.

Section 5.3 discusses how to uniquely label the graph based on the solution proposed for

the graph counting problem. It is important to note that the canonical labeling is a key

step towards an effective and efficient method for computer storage of graphs, and thus it

is a foundation for addressing the first and third fundamental problems (see Chapter 1).

Section 5.4 discusses the structure enumeration under certain constraints. Finally, a

concluding remark is given in Section 5.5.

5.2 The Graph Counting Problem

The basic notion of the graph counting problem and the basic idea to solve this problem

are first discussed here. It is known from Chapter 4 that two graphs, represented by their
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adjacency matrices A and B, are isomorphic if there is a row permutation matrix P such

that Equation (4.1) is satisfied. The graph counting problem is to fmd all different P

matrices that satisfy Equation (4.1). The number of different P matrices presents the

degree of sYIllllletry of two graphs. For example, the two graphs shown in Figure 4.7 are

isomorphic, as discussed in Chapter 4, and they have two isomorphic mappings. It can be

intuitively observed from the graph shown in Figure 4.7b that the graph is left-right

sYIllllletrical along the pattern enclosed by the vertex set (1, 2, 3, 4, 5, 7). Another pair of

isomorphic graphs shown in Figure 4.9 has 14 isomorphisms; the number of

isomorphisms for this graph is much higher than that of the graph shown in Figure 4.7 (2

in this case). The reason is easy to understand; i.e., the former has a higher degree of the

symmetry than the latter.

The counting of automorphisms describes the sYmmetry of a graph. Its mathematical

definition can be stated as follows (see also Chapter 2):

(5.1)

where A is the adjacency matrix (or the adjusted adjacency matrix) of a graph and P is a

row permutation matrix. There could be more than one P matrix that satisfies the above

equation. The number of such P matrices is the number ofautomorphisms of a graph.

The Eigensystem approach (i.e., algorithms 1-1, 1-2, and 11-3 discussed in Chapter 4) can

be applied for solving the graph counting problem if the control flow of algorithm 11-3 is

changed to: the search for a one-to-one mapping continues until all possible mappings
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between two graphs are examined. Algorithm ID-4 modifies algorithm ll-3, as mentioned,

and is described in the following:

111-4 countingpermutation matrices oftwo graphs (A, B, f/J)

1. for each mapping ¢J E f/J, do

2. if mapping fjJ is a one-to-one mapping

3. ifA=fjJBf then tp f- fjJ

4. else

5. finding the mapping group g in fjJ having the least number ofvertices

6. Ux = randomly select one member from g on A side

7. for each member vy in group g on B side, do

8. suppose that A and B are isomotphic with Ux H Vy by modifying both the

elements of A at axx and B at byy with axx+x and byy+x into A' and B' ,

respectively

9. comparison ofthe spectrums oftwo graphs ( A', B')

10. tP' = finding permutation matrix oftwo graphs (A', B')

11. tp= countingpermutation matrices oftwo graphs (A', B', tP')

5.2.1 Counting of Isomorphisms

Counting of isomotphisms can be illustrated with the following example using algorithms

1-1,1-2, and ID-4. Two isomotphic graphs are constructed as follows. Figure 5.1a shows a

3D-vertex graph which is a "master" graph. Figures 5.1b and 5.1c show two 28-vertex

graphs, which are derived from the master graph by removing two respective vertices and

their edges, respectively. The two 28-vertex graphs have the same graph spectrum on

AAMs, Le.,
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(a)

4

5

6

7

8

9

10

11
12 13

28

21

20

19
18

17
14 15 16

(b)

2

28

27
26

25 24 23 22

(c)

17

Figure 5.1 An example of counting of isomorphisms.

Ab=Ac=diag(22.1442, 23.0000, 23.0000, 23.0000, 23.0000, 23.0000, 23.1864, 23.1864,

23.5858, 24.6784, 25.0000, 25.0000, 25.0000, 25.0000, 25.0000, 25.0000,

25.4707, 25.4707, 26.4142, 27.0000, 27.0000, 27.0000, 27.0000, 27.0000,

27.1774,27.3429,27.3429,28.0000)

There are six distinct eigenvalues for each of the two graphs shown in Figure 5.1b and

5.1c, i.e., AI, ~, ..1.10, ..1.19, ..1.25, and ..1.28• The eigenvectors of the two graphs corresponding

to these distinct eigenvalues are shown in Figure 5.2. The mappings for each pair of

unique eigenvectors are created and listed in Figure 5.3. Based on the mappings shown in

Figure 5.3, the common mappings, Le., ~8, are created and listed in Table 5.1.
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-0.0933 0.2380 -0.3166 -0.3971 -0.3755 0.1890

0.1798 -0.2873 0.2092 -0.0822 -0.2211 0.1890

-0.2101 0.0841 0.1247 0.1404 -0.0529 0.1890

0.2101 0.0841 -0.1247 0.1404 0.0529 0.1890

-0.2101 0.0841 0.1247 0.1404 -0.0529 0.1890

0.1798 -0.2873 0.2092 -0.0822 -0.2211 0.1890

-0.0933 0.2380 -0.3166 -0.3971 -0.3755 0.1890

0.1798 -0.2873 0.2092 -0.0822 -0.2211 0.1890

-0.2101 0.0841 0.1247 0.1404 -0.0529 0.1890

0.2101 0.0841 -0.1247 0.1404 0.0529 0.1890

-0.2101 0.0841 0.1247 0.1404 -0.0529 0.1890

0.2101 0.0841 -0.1247 0.1404 0.0529 0.1890

-0.2101 0.0841 0.1247 0.1404 -0.0529 0.1890

Xb= 0.2101 0.0841 -0.1247 0.1404 0.0529 0.1890

-0.1798 -0.2873 -0.2092 -0.0822 0.2211 0.1890

0.2101 0.0841 -0.1247 0.1404 0.0529 0.1890

-0.2101 0.0841 0.1247 0.1404 -0.0529 0.1890

0.2101 0.0841 -0.1247 0.1404 0.0529 0.1890

-0.1798 -0.2873 -0.2092 -0.0822 0.2211 0.1890

0.0933 0.2380 0.3166 -0.3971 0.3755 0.1890

-0.1798 -0.2873 -0.2092 -0.0822 0.2211 0.1890

0.2101 0.0841 -0.1247 0.1404 0.0529 0.1890

-0.2101 0.0841 0.1247 0.1404 -0.0529 0.1890

0.1798 -0.2873 0.2092 -0.0822 -0.2211 0.1890

-0.2101 0.0841 0.1247 0.1404 -0.0529 0.1890

0.2101 0.0841 -0.1247 0.1404 0.0529 0.1890

-0.1798 -0.2873 -0.2092 -0.0822 0.2211 0.1890

0.0933 0.2380 0.3166 -0.3971 0.3755 0.189

Figure 5.2 The eigenvectors corresponding to the distinct eigenvalues.
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-0.0933 0.2380 -0.3166 0.3971 -0.3755 -0.1890

0.1798 -0.2873 0.2092 0.0822 -0.2211 -0.1890

-0.2101 0.0841 0.1247 -0.1404 -0.0529 -0.1890

0.2101 0.0841 -0.1247 -0.1404 0.0529 -0.1890

-0.2101 0.0841 0.1247 -0.1404 -0.0529 -0.1890

0.2101 0.0841 -0.1247 -0.1404 0.0529 -0.1890

-0.2101 0.0841 0.1247 -0.1404 -0.0529 -0.1890

0.1798 -0.2873 0.2092 0.0822 -0.2211 -0.1890

-0.2101 0.0841 0.1247 -0.1404 -0.0529 -0.1890

0.2101 0.0841 -0.1247 -0.1404 0.0529 -0.1890

-0.1798 -0.2873 -0.2092 0.0822 0.2211 -0.1890

0.2101 0.0841 -0.1247 -0.1404 0.0529 -0.1890

-0.2101 0.0841 0.1247 -0.1404 -0.0529 -0.1890

Xc= 0.2101 0.0841 -0.1247 -0.1404 0.0529 -0.1890

-0.1798 -0.2873 -0.2092 0.0822 0.2211 -0.1890

0.0933 0.2380 0.3166 0.3971 0.3755 -0.1890

-0.1798 -0.2873 -0.2092 0.0822 0.2211 -0.1890

0.2101 0.0841 -0.1247 -0.1404 0.0529 -0.1890

-0.2101 0.0841 0.1247 -0.1404 -0.0529 -0.1890

0.1798 -0.2873 0.2092 0.0822 -0.2211 -0.1890

-0.0933 0.2380 -0.3166 0.3971 -0.3755 -0.1890

0.1798 -0.2873 0.2092 0.0822 -0.2211 -0.1890

-0.2101 0.0841 0.1247 -0.1404 -0.0529 -0.1890

0.2101 0.0841 -0.1247 -0.1404 0.0529 -0.1890

-0.2101 0.0841 0.1247 -0.1404 -0.0529 -0.1890

0.2101 0.0841 -0.1247 -0.1404 0.0529 -0.1890

-0.1798 -0.2873 -0.2092 0.0822 0.2211 -0.1890

0.0933 0.2380 0.3166 0.3971 0.3755 -0.189

Figure 5.2 (Continued)
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tA+ tAo ¢AJ+ t/JJ- tAl)+- tAo- tAlH- tA9- f!JzS+ f!Jzs- f!Jzg

BHC BHC BHC BHC BHC BHC BHC BHC BHC

3 3 3 4 2 2 1 1 1 16 1 1 1 1 1 16 1 1

5 5 5 6 6 8 7 21 7 28 7 16 7 21 7 28 2 2

9 7 9 10 8 11 15 11 15 2 20 21 2 2 2 11 3 3

11 9 11 12 15 15 19 15 19 8 28 28 6 8 6 15 4 4

13 13 13 14 19 17 21 17 21 20 2 2 8 20 8 17 5 5

17 19 17 18 21 20 27 27 27 22 6 8 24 22 24 27 6 6

23 23 23 24 24 22 4 4 4 3 8 11 3 3 3 4 7 7

25 25 25 26 27 27 10 6 10 5 15 15 5 5 5 6 8 8

15 11 15 2 3 3 12 10 12 7 19 17 9 7 9 10 9 9

19 15 19 8 4 4 14 12 14 9 21 20 11 9 11 12 10 10

21 17 21 20 5 5 16 14 16 13 24 22 13 13 13 14 11 11

27 27 27 22 9 6 18 18 18 19 27 27 17 19 17 18 12 12

1 1 1 16 10 7 22 24 22 23 3 3 23 23 23 24 13 13

7 21 7 28 11 9 26 26 26 25 4 4 25 25 25 26 14 14

20 16 20 1 12 10 0 3 3 3 4 0 5 5 4 4 4 3 15 15

28 28 28 21 13 12 5 5 5 6 9 6 10 10 10 5 16 16

2 2 2 11 14 13 9 7 9 10 10 7 12 12 12 7 17 17

6 8 6 15 16 14 11 9 11 12 11 9 14 14 14 9 18 18

8 20 8 17 17 18 13 13 13 14 12 10 16 16 16 13 19 19

24 22 24 27 18 19 17 19 17 18 13 12 18 18 18 19 20 20

4 4 4 3 22 23 23 23 23 24 14 13 22 22 22 23 21 21

10 6 10 5 23 24 25 25 25 26 16 14 26 26 26 25 22 22

12 10 12 7 25 25 2 2 2 11 17 18 15 15 15 2 23 23

14 12 14 9 26 26 6 8 6 15 18 19 19 19 19 8 24 24

16 14 16 13 1 1 8 20 8 17 22 23 21 21 21 20 25 25

18 18 18 19 7 16 24 22 24 27 23 24 27 27 27 22 26 26

22 24 22 23 20 21 20 16 20 1 25 25 20 20 20 1 27 27

26 26 26 25 28 28 28 28 28 21 26 26 28 28 28 21 28 28

Figure 5.3 The mappings created for each pair ofunique eigenvectors.
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Table 5.1 Common mappings ~s to the unique eigenvectors.

tP Operation Result

fPt t/JI+ U t/JI- t/JI+ u t/JI.

'A (fPt n ~+) U (!PI n ~-) = fPt n ~+ = (t/JI+ n ~+) u (t/JI- n~) t/JI+U t/JI-

fPto ('A n t/JIO+) U ('A n (6Io-) = (t/JI+ n t/JIO+) U ((6I. n t/JIo-) t/JI+U t/JI-

fPt9 (fPto n t/JI9+) u (fPto n t/JI9-) = fPto n t/JI9- = (t/JI+ n t/JI9-) u Ct/JI- n t/JI9-) t/JI+ U t/JI.

~s (fPt9 n ¢ls+) U (fPt9 n ¢ls-) = (t/JI+ n ¢ls+) U (t/JI- n ¢ls-) t/JI+ U t/JI-

~s ~s n ¢ls = (t/JI+ n ¢ls) U (t/JI- n ¢ls) t/JI+ U t/JI.

Two common group-to-group mappings, i.e., t/JI+ and t/JI-, are obtained from Table 5.1.

According to the definition of the graph counting problem, one needs to find all one-to­

one mappings (if any) from these two group-to-group mappings. In the following, the

procedure (using algorithms I, IT, and TIl) for identifying only one one-to-one mapping

from t/JI+ is demonstrated (the procedure for getting the other one-to-one mappings is

similar).

Figure 5.4 illustrates the iterative procedure for searching for a one-to-one mapping from

t/JI+ (see the first column). Both B(I, 7) ~ C(I, 21) and B(20, 28) ~ C(l6, 28) groups in

t/JI+ have the least number ofvertices (two). One of these two groups, e.g., B(I, 7)~ C(l,

21) in this case, is thus selected as a start. Assume that B(1) ~ C(1) and change the

entries bll and CII of the AAMs of these two graphs into bll = bll + 1 and CII = CII +1.

The two modified AAMs are regarded as two new inputs to algorithms 1-1 and 1-2. Then

some new common mappings could be created, such as the mapping shown in the second
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column in Figure 5.4. Choose the group B(19, 21) H C(15, 17) from the second column

as an example and start with B(l9) H C(l5) in particular. With a new iterative loop, a

new mapping is created as shown in the third column in Figure 5.4. Likewise, choose the

group B(5, 9) H C(5, 19) from the third column as an example and start with B(5) H

C(5) in particular. This results in a new common mapping shown in the fourth column in

Figure 5.4. Likewise, choose the group B(2, 24) H C(2, 8) from the fourth column as an

example and start with B(2) H C(2) in particular. Then a new common mapping is

created in the fifth column in Figure 5.4. There is only one group in this new common

mapping. Two mappings are possible in this group, i.e., {B(10) H C(12), B(l6) H

C(26)} and {B(10) H C(26), B(l6) H C(12)}. Start with B(lO) H C(l2) in particular.

No common mapping can be found in the sixth column in Figure 5.4. Then, go back to

the fifth column in Figure 5.4 and consider B(lO) H C(26). This results in a final

common one-to-one mapping, as shown in the seventh column in Figure 5.4. The whole

procedure is a depth-first backtracking search. The seventh column in Figure 5.4 lists the

one-to-one mapping which was first obtained through this backtracking search. There are

in total 32 isomorphic mappings between the two graphs which can be found, and they

are listed in Table 5.2.

115



1 2 3 4 5 6 7

f/JJ+ Let I H I Letl9H IS LetS H S Let 2 H2 10H Let 10 H 26

BHC BHC BHC .BHC BHC 12 BHC

3 3 5 5 / !····SH 9 19 9 19 9 19
I.

•••••••••••••••
Iii>

5 5 9 13 /
19 5 5 5 5 5 5I .... / I •••••.••••••••

9 7 13 19 13 13 17 13 17 13 17 13
11 9 17 23 17 23 13 23 13 23 13 23
13 13 3 3 3 3 23 9 23 9 23 9
17 19 11 7 23 9 3 3 3 3 3 3
23 23 23 9 II 7 II 25 11 25 11 25
25 25 25 25 25 25 25 7 25 7 25 7

··•· ..·19 ·· ..··1515 11 ......../ 21 17 21 17 21 17 21 17
19 IS i2

I H
19 15 19 15 19 15 19 15-, .......

21 17 15 II 15 11 15 11 15 11 15 II

27 27 27 27 27 27 27 27 27 27 27 27

I
7 21 7 21 7 21 7 21 7 21

....

..... 1 1 1 1 1 I 1 I 1 1

20 16 28 28 28 28 28 28 28 28 0 28 28
28 28 20 16 20 16 20 16 20 16 20 16

I / / ................
2 2 2 2 2 2 ···.z.·..·......... 2 2 2 2
6 8 24 8 24 8

>H IH p / 24 8 24 8.... ....... S.. ....

8 20 6 20 6 20 6 22 6 22 6 22
24 22 8 22 8 22 8 20 8 20 8 20

4 4 10 6 10 6 26 6 26 6 26 6

10 6 14 10 14 10 10 10 ····10
.

10 26

12 10 16 12 16 12 14 12 I ,2"/ ·.i1~·.··· 16 12
> .......... ~\.I

14 12 26 26 26 26 16 26 14 10 14 10
16 14 4 4 12 14 12 14 12 24 12 24
18 18 12 14 18 24 18 24 18 14 18 14
22 24 18 18 4 4 4 4 4 4 4 4
26 26 22 24 22 18 22 18 22 18 22 18

Figure 5.4 The iterative procedure for search for a one-to-one isomorphic mapping.
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Table 5.2 Counting of isomorphisms between two graphs shown in Figure 5.1.

Graph Vertex Label

(b) 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 192021 22232425262728

1 2 3 4 5 22 21 20 19 2625 24 23 10 11 12 13 14 15 16 17 18 9 8 7 627 28
1 225 24 23 2221 20 13 12 3 4 5 62726 19 18 17 16 15 14 7 8 9 10 11 28
I 8 7 14 13 20 21 22 23 10 9 18 19 26 27 6 5 4 17 16 15 24 25 2 3 12 II 28
1 8 9 18 192021 22 5 6 7 14 13 12 II 1023 24 15 16 17 4 3 225 262728
1 2 3 12 132021 2223 242526 19 18 17 4 5 62728 11 10 9 8 7 14 15 16
1 225 26 192021 22 5 4 3 12 13 14 15 2423 10 11 2827 6 7 8 9 18 17 16
1 8 7 6 5 2221 20 19 18 9 1023 24 15 14 13 12 II 2827 26 25 2 3 4 17 16
1 8 9 1023 2221 20 13 14 7 6 5 4 17 18 19262728 11 12 3 22524 15 16

21 20 13 14 7 8 225 26 19 18 9 10 11 12 3 4 17 16 15 2423 22 5 627 28
21 20 19 18 9 8 2 3 12 13 14 7 6272625 24 15 16 17 4 52223 10 II 28
21 22 5 4 3 2 8 9 102324252627 6 7 14 15 16 17 18 1920 13 12 II 28
21 2223 24 25 2 8 7 6 5 4 3 12 11 10 9 18 17 16 15 14 13 20 192627 28
21 20 13 12 3 2 8 9 18 192625 24 15 14 7 62728 11 1023 22 5 4 17 16
21 20 19 26 25 2 8 7 14 13 12 3 4 17 18 9 10 II 28 27 6 5 22 23 24 15 16
21 22 5 6 7 8 225 2423 10 9 18 17 4 3 12 II 282726 1920 13 14 15 16
21 2223 10 9 8 1 2 3 4 5 6 7 14 15 2425262728 II 12 1320 19 18 17 16

(c) 16 15 14 13 12 II 28 27 26 25 24 23 10 9 8 7 6 5 22 21 20 19 18 17 4 3 2 I
16 152423 10 II 2827 6 7 14 13 12 3 22526 192021 22 5 4 17 18 9 8 I
16 17 4 5 62728 II 10 9 18 19 2625 2 3 12 13 2021 2223 24 15 14 7 8 1
16 17 18 19262728 11 12 3 4 5 6 7 8 9 10 23 2221 20 13 14 15 2425 2 1
1615147627281110232425261920131232 I 891817452221
16 152425262728 II 12 13 14 7 6 52223 10 9 8 1 2 3 4 17 18 192021
16 17 4 3 12 II 28 27 26 19 18 9 10 23 22 5 6 7 8 I 2 25 24 15 14 13 20 21
16 17 18 9 10 II 2827 6 5 4 3 12 13 20 192625 2 I 8 7 14 15 24232221
28 II 10 23 24 15 16 17 4 3 12 13 14 7 8 9 18 19 20 21 22 5 6 27 26 25 2 1
28 11 12 13 14 15 16 17 18 9 1023 2425 2 3 4 52221 20 192627 6 7 8 1
2827 6 5 4 17 16 15242526 19 18 9 8 7 14 13 2021 2223 10 II 12 3 2 I
28 27 26 19 18 17 16 15 14 7 6 5 4 3 225 24 23 2221 20 13 12 II 10 9 8 I
28 II 10 9 18 17 16 15 14 13 12 3 4 5 22 23 2425 2 I 8 7 62726 192021
28 11 12 3 4 17 16 152423 10 9 18 1920 13 14 7 8 I 225 2627 6 522 21
2827 6 7 14 15 16 17 18 192625 242322 5 4 3 2 I 8 9 10 II 12 132021
28 27 26 25 24 15 16 17 4 5 6 7 14 13 20 19 18 9 8 I 2 3 12 II 10 23 22 21

5.2.2 Counting of Automorphisms

The difference between Equation (4.1) and Equation (5.1) is that matrix B in Equation

(4.1) is replaced by matrix A in Equation (5.1). Hence, the counting problem of

automorphisms can be readily solved with algorithms I-I, 1-2, and ill-4 by replacing B

with A in Equation (4.1). Figure 5.5 shows a 14-vertex graph; its symmetry is easily

observed. The eigenvalues of this graph, based on its AAM, are
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13

8

10

Figure 5.5 A 14-vertex graph.

A=diag(8.6681, 8.6681, 8.8993, 8.8993, 10.0911, 10.0911, 11.0849, 11.0849, 12.0000,

12.5457, 12.5457, 12.7108, 12.7108, 14.0000)

There are two distinct eigenvalues, i.e., k and A14. The eigenvectors Xg and Xl4 that

correspond the eigenvalues k and A14' respectively, are:

Xg = [0.2673 0.2673 0.2673 0.2673 0.2673 0.2673 0.2673 -0.2673 -0.2673 -0.2673 ­

0.2673 -0.2673 -0.2673 -0.2673]T

XI4 = [0.2673 0.2673 0.2673 0.2673 0.2673 0.2673 0.2673 0.2673 0.2673 0.2673

0.2673 0.2673 0.2673 0.2673]T

Two groups are created according to Xg and X14. One group consists ofhalf of the vertices

from label 1 to label 7, and the other group consists of the other half of vertices from

label 8 to label 14. From these two groups, one can find two group-to-group mappings;
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see Figure 5.6 (one mapping is shown with the solid arrow and the other with the dashed

arrow).

group 1 group 2

G (1,2,3,4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14)........ . I
(~5·····>::"'·········

k················· ....

G (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14)

group 1 group 2

Figure 5.6 Two group-to-group mappings.

As an example, consider the group-to-group mapping <D; especially start with G(1) H

G(1) for searching for one-to-one mappings. According to algorithm ll-3 (or ID-4),

modify gIl of the AAM of G into gll+l, and obtain a new AAM. After the new AAM is

input to the algorithms (algorithms 1-1 and ll-2), one can fmd two one-to-one mappings

which are listed as No.1 and No.2 in Table 5.3, respectively. Continuing this procedure,

one can finally obtain all the one-to-one mappings for this example, which are listed in

Table 5.3 (in total, 14 one-to-one mappings). This concludes that for the graph shown in

Figure 5.5, there are 14 automorphisms in total.
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Table 5.3 Counting ofautomorphisms for the graph shown in Figure 5.5.

Auto. Vertex Label

No. 2 3 4 5 6 7 8 9 10 11 12 .13 14

1 1 7 6 5 4 3 2 8 14 13 12 11 10 9
2 1 2 3 4 5 6 7 8 9 10 11 12 13 14
3 2 1 7 6 5 4 3 9 8 14 13 12 11 10
4 2 3 4 5 6 7 1 9 10 11 12 13 14 8
5 3 4 5 6 7 1 2 10 11 12 13 14 8 9
6 3 2 1 7 6 5 4 10 9 8 14 13 12 11
7 4 3 2 1 7 6 5 11 10 9 8 14 13 12
8 4 5 6 7 1 2 3 11 12 13 14 8 9 10
9 5 6 7 1 2 3 4 12 13 14 8 9 10 11
10 5 4 3 2 1 7 6 12 11 10 9 8 14 13
11 6 7 1 2 3 4 5 13 14 8 9 10 11 12
12 6 5 4 3 2 1 7 13 12 11 10 9 8 14
13 7 6 5 4 3 2 1 14 13 12 11 10 9 8
14 7 1 2 3 4 5 6 14 8 9 10 11 12 13

Consider the graph shown in Figure 5.7, which is isomorphic to the graph shown in

Figure 5.5. It can be found that there are 14 isomorphic mappings between the graph

shown in Figure 5.5 and the graph shown in Figure 5.7, and they are listed in Table 5.4.

8

13 10

Figure 5.7 Another graph with 14 vertices.
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Table 5.4 Counting of isomorphisms between the graphs shown in Figures 5.5 and 5.7.

No. Vertex Label

Fig. 5.5 2 3 4 5 6 7 8 9 10 11 12 13 14

8 13 11 9 14 12 10 1 6 4 2 7 5 3
8 10 12 14 9 11 13 1 3 5 7 2 4 6
9 11 13 8 10 12 14 2 4 6 1 3 5 7
9 14 12 10 8 13 11 2 7 5 3 1 6 4

10 8 13 11 9 14 12 3 1 6 4 2 7 5
10 12 14 9 11 13 8 3 5 7 2 4 6 1

Fig.5.7
11 13 8 10 12 14 9 4 6 1 3 5 7 2
11 9 14 12 10 8 13 4 2 7 5 3 1 6
12 14 9 11 13 8 10 5 7 2 4 6 1 3
12 10 8 13 11 9 14 5 3 1 6 4 2 7
13 8 10 12 14 9 11 6 1 3 5 7 2 4
13 11 9 14 12 10 8 6 4 2 7 5 3 1
14 12 10 8 13 11 9 7 5 3 1 6 4 2
14 9 11 13 8 10 12 7 2 4 6 1 3 5

Here one may come to a surprise with the number '14', because it is also the total number

of automorphisms of the graph shown in Figure 5.5. UnderlYing this phenomenon is an

important property about the relationship between isomorphisms and automorphisms. The

number of isomorphisms between two graphs is the same as the number of

automorphisms of each graph. The proof of this property is given below.

Suppose that two graphs, which are represented with their respective AAMs (A and B),

are isomorphic with m isomorphisms. That is to say, there are Ph P2, .. .Pm where Pi is a

row permutation matrix for i=1, 2, .. .m, and Pi satisfies the following equation:

B = p;Al{ for i =1,2, ...m

Equation (5.2) can be rewritten as
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Noticing that p'Tp. =I (identity matrix) and p;Tp. =(p'TP; t 'there should be

(5.3)

Let p;' = p'Tp; for i =2, .. .m, Equation (5.4) is rewritten as

A -1'"IT - p'AP'T - - n'" n'T - - p'AP'T- 1'1 - 2 2 -' •• - T j 1'1T; - ••• - m m (5.5)

Equation (5.5) indicates that graph A has m automorphisms (let p.' = I). Likewise, it can

be proved that graph B has m automorphisms. _

Suppose that graph A has m automorphisms, i.e.,

A = p;AI{ for i =1, 2, ...m (5.6)

It is noted that there is a peP; in Equation (5.6) such that p is an identity matrix I. Now,

suppose that graph B is isomorphic to A with an isomorphism f/J, i.e.,

There is
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Equation (5.8) indicates that the two graphs A and B have m isomorphisms between them.

•

With algorithms 1-1, 1-2, and ill-4, two graphs shown in Figure 2.8 are counted,

respectively. The graph shown in Figure 2.8a has 3,840 automorphisms, which are the

same as the result obtained with the program Nauty [McKay 1981]. The graph shown in

Figure 2.8b has 40,320 automorphisms. This result can be illustrated intuitively. Since the

graph shown in Figure 2.8b is a complete regular graph (i.e., each vertex has a connection

with the other vertices), each vertex in the graph can be replaced by any of the other

vertices. Therefore, it has 8! (40,320) automorphisms. This has demonstrated that the

Eigensystem approach can work for the worst scenario (i.e., the highest degree of

symmetric or regular graph) from the viewpoint ofdetection of graph automorphisms.

5.3 Canonical Labeling

In order to store graphs in an efficient way, a kind of code uniquely representing a graph

is described. Basically, such a kind of code can be generated by concatenating the rows of

the (adjusted) adjacency matrix of a graph. For an undirected non-weighted graph, the

code can be simplified as a binary number string by concatenating the up-right triangular

part of the (adjusted) adjacency matrix, as illustrated in Figure 5.8. However, such a code

depends on the labeling of the presented graph and thus is not invariant to its isomorphic

graphs. If such a code is designed for uniquely representing a graph, the prerequisite is

that the labeling of the graph must be canonical to all its isomorphic graphs. This

prerequisite, i.e., the canonical labeling of a graph, can be achieved by the Eigensystem
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approach through three steps, which are discussed in the following. Prior to discussion of

these steps, a basic labeling strategy that must be followed in the three steps is described

first. This basic labeling strategy is stated as:

"3 1 1 0 0 1 Ii
1·········"3 1 0 1 0 r

2

1 1',....~,.... 1 0 0 7,

o 0 1 "3. 1 1 r4

o 1 0 1········3... 1 r
s

10011······'3... r
6

Adjusted adjacency matrix

l 1 ~.:~:.iO J 1 oj 1 0 1 010 1 1 1
~ '--y-f-J y y

=66A7 (hex)

The code

Figure 5.8 Adjusted adjacency matrix and its code.

At anytime when relabeling a graph by comparing the components of the unique

eigenvectors of the graph, the vertex corresponding to the minimum component is

reassigned the lowest label.

An example following this rule can be seen in Figure 4.5 where the unique eigenvector

x~ (xf) was sorted in an ascending order. Vertex 15 has the minimum component (-

0.4380) in x~ and thus is reassigned the lowest label (label 1) when relabeling the graph

shown in Figure 4.4a, vertex 9 has the second minimum component (-0.2828) in x~ and

thus is reassigned the second lowest label (label 2), and so on. Similarly, vertex 11 has

the minimum component (-0.4380) in xt and thus is reassigned the lowest label (label 1)

when relabeling the graph shown in Figure 4.4b, vertex 13 has the second minimum
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component (-0.2828) in xt and thus is reassigned the second lowest label (label 2), and

so on. In the following discussion, this basic strategy is applied without any further

elucidation.

5.3.1 Step 1: The Basic Expression

Take the graphs shown in Figure 4.4 as an example to illustrate the steps towards a

canonical labeling of a graph. For the two graphs shown in Figure 4.4, the sorting of the

fIrst unique eigenvectors x~ and xt in an ascending order, results in eigenvectors x'~

and x't, respectively, as shown in Figure 4.5. The ascending orders of x': and x': are

unique because the eigenvectors x~ and xt are unique. Therefore, the labeling

corresponding to x': (x't) is unique in this case and is, hereafter, called the basic

expression. Given an arbitrary labeling of a graph, the basic expression can be written

out. For the graph with an initial labeling shown in Figure 4.5, the following relabeling

leads to the basic expression: vertices {15, 9,17,12,16,8,13,11,7,4,14,5,10,2,1,3,

6} of graph A are relabeled into vertices {I, 2, 3,4,5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17}. For the graph with an initial labeling shown in Figure 4.5b, the relabeling for the

basic expression is such that vertices {II, 13, 17, 9, 16, 5,4, 8, 6, 3, 14, 15, 10, 12,2, 7,

I} of graph B are relabeled into vertices {I, 2, 3,4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17}.

It is clear that the basic expression so far discussed is the unique expression for a graph

and all its isomorphic graphs. Therefore, the code generated from the basic expression of
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the graph shown in Figure 4.4 is canonical, i.e., 00017026220703A0931909142211

A020000. It is noted that the canonical code is reversible to the canonical labeling, the

AAM (or AM) matrix, and the graph.

As previously discussed in Chapters 3 and 4, however, both an eigenvector and its

negative have the same effect on finding isomorphic (automorphic) mappings in the

Eigensystem approach. This situation could result in two different basic expressions for a

set of isomorphic graphs when sorting the unique eigenvector corresponding to the

minimum distinct eigenvalue. For instance, for the two graphs shown in Figure 4.4, the

negative vector - x~ of the eigenvector x~ results in the relabeling as follows: vertices {3,

1,2,10,5,14,4,7,11,13,8,16,12,17,9, 15} into vertices {I, 2, 3,4,5,6,7,8,9,10,

11, 12, 13, 14, 15, 16, 17}. Furthermore, the canonical code of the graph in this case is

00123018A20A8170COC5543048226020000 which is different from the one based on

x~ . Therefore, a rule is needed to resolve this ambiguity. This rule is hereafter called the

Vector Choose Rule I and is described below.

Vector Choose Rule I:

(1) sorting the unique eigenvector x and its negative vector -x in an ascending order, say

x' and - x' , respectively

(2) if x' is the same as -x' then go to Vector Choose Rule II; otherwise go to (3)

(3) for each component x; e x', i=l, 2, ...n

(4) if Ix;1 "* IX:-i+11 then break
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(5) if Ix;1 < IX~-i+11 then return -x else return x

In Vector Choose Rule I, if Step (2) yields the same result with x' and - x' then the next

rule (Vector Choose Rule IT) is applied.

Vector Choose Rule II:

(1) Construct the canonical codes based on x' and - x', respectively, denoted by Code+

and Code-

(2) The canonical code (final) is min{Code+, Code-}

Revisit the graphs shown in Figure 4.4. One can fmd that the ambiguity is resolved after

Vector Choose Rule I is applied. The final result, the canonical code of the graph, is

00017026220703A0931909142211A020000.

5.3.2 Step 2: Coping with Ambiguity in Labeling

It may be possible that not all graphs have a unique basic expression after only

considering the fIrst unique eigenvector. In other words, after Step 1, there is still

ambiguity in unique labeling. For instance, the two graphs shown in Figure 5.9a have the

same spectrum on their AAMs:

Aa=Ab=diag(4.2907, 5.1088, 6.2954, 6.8061, 7.0000, 8.0000, 8.3174, 8.9032, 9.2784,

10.0000)
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5

10

(a) two graphs

10

2

(b) the respective smallest automorphic graphs

Figure 5.9 Two isomorphic graphs and their respective smallest automorphic graphs.

The basic expressions of these two graphs (AJ=4.2907) are shown in Figure 5.10. Note

that the vectors - x~ and - xf have the same basic expression' for graphs A and B,

respectively, (see Figure 5.10). It can be seen from Figure 5.10 that two groups exist in

the basic expression (after Step 1). In this case, the second unique eigenvector should be

considered for relabeling the vertices within these two groups to reach the canonical

label. The relabeling gets back to Step 1 but with x; (x~), and this results in Figure 5.11

for the graphs shown in Figure 5.9a. It can be seen from Figure 5.11 that vertex 6 (­

0.6936) should be labeled lower than vertex 4(-0.1773) according to the basic labeling

strategy. It should be noted that the relabeling procedure at this time is based on the basic
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expression which was generated the first time. Therefore relabeling here is just focused

on the uncertain part, which are the two shadowed groups shown in Figure 5.10.

A xQ xQ IQ Relabel Ib xb xb B
I - I -XI

A HB -x 1 - I I

1 -0.2253 0.2253 10 10 0.2253 -0.2253 1
2 -0.2253 0.2253 8 8 0.2253 -0.2253 2
3 0.0048 -0.0048 -0.0048 0.0048 3
4 0.1646 -0.1646 0.2684 -0.2684 4
5 -0.2684 0.2684 -0.1646 0.1646 5
6 0.1646 -0.1646 -0.1646 0.1646 6
7 -0.1822 0.1822 0.1822 -0.1822 7
8 0.3244 -0.3244 -0.3244 0.3244 8
9 -0.4282 0.4282 0.4282 -0.4282 9
10 0.6712 -0.6712 -0.6712 0.6712 10

Figure 5.10 The basic expression after sorting the frrst unique eigenvector.

A xQ -x;
The 1st The2n The 1st

xb xb B
2 relabel A H B relabel - 2 2

1 -0.1363 0.1363 10 10 10 10 0.1363 -0.1363 1
2 -0.1363 0.1363 8 8 8 8 0.1363 -0.1363 2
3 -0.2162 0.2162 4 6 6 5 0.2162 -0.2162 3
4 0.1773 -0.1773 6 4 5 6 -0.1134 0.1134 4
5 0.1134 -0.1134 3 3 3 3 -0.1773 0.1773 5
6 0.6936 -0.6936 7 7 7 7 -0.6936 0.6936 6
7 -0.3250 0.3250 0.3250 -0.3250 7
8 0.2679 -0.2679 -0.2679 0.2679 8
9 0.0228 -0.0228 5 5 4 4 -0.0228 0.0228 9
10 -0.4613 0.4613 9 9 9 9 0.4613 -0.4613 10

Figure 5.11 The basic expression after sorting the second unique eigenvector.

Similarly, vertex 6 of graph B is assigned a lower label number than vertex 5 of graph B

when considering vector - x~. However, at this point, vertices 1 and 2 have produced an

ambiguity in determining that labels, because a switch of vertex 1 and vertex 2 does not
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affect anything. Note that this ambiguity stems from the fIrSt unique eigenvector. Thus,

one needs to consider the third unique eigenvector and so forth until the last unique

eigenvector. Similarly, the next relabeling procedure is based on the basic expression

generated so far and only focused on the shadowed group as indicated in Figure 5.11. In

this case, there is still a group-to-group mapping in the common mapping. Therefore, the

process finds one-to-one mappings according to algorithm ill-4 and so on until all

possible mappings are examined. For this particular example, the search for one-to-one

mappings was coincidently done before when the graph counting problem was discussed;

see Figure 5.4.

5.3.3 Step 3: The Smallest Automorphism

After running Step 1 and Step 2 above, the ambiguity in labeling should be resolved.

However, it is known that a graph may have automorphisms besides the trivial one (Le.,

itself). All automorphic graphs are representatives of that graph. The canonical codes of

automorphic graphs, as generated by the above two steps, could be different. A question

then arises of which code is chosen as the canonical code of the graph. The idea is to fmd

the 'smallest' automorphism given a graph. The smallest automorphic graph is one of the

automorphic graphs whose canonical code is the smallest one. For example, two

automorphisms exist for graphs A and B shown in Figure 5.9a, respectively. ApplYing the

procedure in Step 1 and Step 2, one can fmd a unique labeling for each of the

automorphic graphs. The smallest automorphic graphs are shown in Figure 5.9b. From

these, the canonical codes of the two graphs shown in Figure 5.9a are generated,

respectively, and they are the same, Le., 00F13588COOO. Therefore, the two graphs are
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isomorphic. In this case, one can see that the canonical code is also used for the detection

of isomorphisms for two graphs.

5.3.4 Summary of Algorithm for Unique Labeling of a Graph

The process ofunique labeling ofa graph aims to fonnulate a canonical code representing

the graph. This code represents the structural infonnation of a graph uniquely. Therefore,

graph isomorphism detection can also benefit this code system because if the codes of

two graphs are the same, the two graphs are isomorphic; otherwise, they are not. This

point has been demonstrated by bringing together two graphs (whether or not 'they are

isomorphic has been already known) in the above discussion for unique labeling of a

graph.

There are three steps to reach a unique labeling and thus a canonical code of a graph. The

first step is to sort the unique eigenvector in a predefined order, which leads to the basic

expression of a graph. The basic expression may not be unique after the first step, because

some components in the eigenvector may be the same, which implies that the labeling for

the vertices corresponding to these components is uncertain. The second step is basically

the same as the fIrst by seeking the second unique eigenvector, the third, etc., until the

labeling for all the vertices are made certain. The third step considers the automorphic

graph of the graph under labeling because different automorphic graphs may have

different codes. In this step, the unique labeling of automorphic graphs is considered,

which makes use of the procedure of Step 1 and Step 2 to fmd the smallest automorphic

graph. The final canonical code corresponds to the smallest automorphic graph.
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It is noted that the canonical label for a digraph or a weighted graph (undirected or

directed) can also be created with these steps. For the case of digraph (weighted or not),

instead of concatenating the upper-right triangular part of the rows of the (adjusted)

adjacency matrix of the graph, concatenating the whole rows of AAM is necessary to

formulate the canonical code of a digraph. The weighted undirected graph follows the

same procedure as the non-weighted undirected graph.

5.3.5 Examples

Figure 5.12 shows three graphs. Each graph has 12 vertices. Through the Eigensystem

approach, the canonical codes of these graphs are formed, Le., 00582A261955AOOOO,

003816152C65COOOO, and 00582A261955AOOOO, respectively. Since the canonical

codes of the first and third graphs are the same but differ from the canonical code of the

second graph, the first and third graphs are isomorphic to each other, but they are not

isomorphic to the second graph.

7

2 3.--_---::.

8

10

9

7

Figure 5.12 Three graphs with 12 vertices.

Figure 5.13 shows 7 graphs each with 10 vertices. The Eigensystem approach gives the

following conclusion for these graphs: each of these graphs has 120 automorphisms and
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has the same canonical code, i.e., 00729A254920. Hence, these graphs are isomorphic to

each other.

2
4--~-+---+--8

5

3'--"\-1---1'---.7

78

lO....~~~M

9__-+--i~___

2

Figure 5.13 Seven isomorphic graphs each with 10 vertices.

Table 5.5 lists the canonical codes of the graphs that were previously discussed as the

examples. A note is given on the table to indicate whether the graphs are isomorphic.

Table 5.5 The canonical codes of the graphs discussed previously as the examples.

Figure Canonical Code Note

2.5 (a) OOE6CEAO, (b) OOE6CEAO Isomorphic graphs

2.15 (a) 03F08000, (b) OlE08440 Non-isomorphic graphs

4.1 (a) 08E5F780, (b) OIEACE70 Non-isomorphic graphs
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Table 5.5 (Continued)

4.2 (a) 0038162Cl128C0800,
Non-isomorphic ~phs

(a) 003886192A6820000

(a) 00017026220703A0931909142211A020000,
4.4

(b)00017026220703A0931909142211A020000
Isomorphic graphs

4.7 (a) 007092255200, (b) 007092255200 Isomorphic graphs

4.9 (a) 07DEEC, (b) 07DEEC Isomorphic graphs

(a) 1861CC330COE020040400003458,
4.10

(b) 1861CC330COE020040400001DOA
Non-isomorphic graphs

4.12 (a) 00DOE068C800, (b) 00703384C800 Non-isomorphic graphs

4.13 (a) 00F158312080, (b) 00F1C2308880 Non-isomorphic graphs

(a) 0070B2293000, (b) 01E030A4C400;

(c) 0073211000, (d) 007020AAOO;

(e) 7C21, (f) 1EC1;
4.14

(g) ODCCE8, (h) 07D22B, (i) 1F8CEO;
Non-isomorphic graphs

(j) 00F2718000, (k) 00F2F08000;

(1) 00F158312080, (m) 00FIC2308880

(b) 0000088800050400012800024400108200

2110010500222008018201820602090060

5.1 060000000000000000000000000 Isomorphic graphs

(c) 0000088800050400012800024400108200

2110010500222008018201820602090060

060000000000000000000000000

5.5 0604AOA8241 01020806484C,

5.7 0604AOA8241 01020806484C
Isomorphic graphs

5.9 (a) 00F13588COOO, (b) 00F13588COOO Isomorphic graphs
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5.4 Enumeration of Structures

The third fundamental problem in structure synthesis is the enumeration of structures.

Since the semantics of structures can be represented by graphs or networks, the

enumeration of structures becomes the enumeration of graphs. As discussed in Chapter 1,

the nature of enumeration is to fmd all non-isomorphic structures given a set of

conditions or constraints. The constraints must come from applications. The two key

techniques for the enumeration of structures are now (1) detection of isomorphic graphs

and (2) conversion of constraints defmed on the structure from a particular application

domain into constraints on a graph. The constraints on a graph could be, for example, the

total number ofvertices ofa graph, the degrees of vertices, etc. The current strategy taken

in the Eigensystem approach is to count all graphs meeting the constraints and then

remove the isomorphic ones.

5.4.1 Graphs Meeting Constraints

The two basic constraints on the vertex of a graph are (1) the total number of the vertices

and (2) the degree of each vertex. Extra constraints can be added depending on the

application problem under investigation. A method is developed for enumerating all

graphs subject to the two types ofconstraints as mentioned.

This method includes the following basic points. First, divide the vertices into different

groups V; (i=l, 2, .. .m) according to their degrees, where m is the total number of such

groups. Each vertex in group V; has the same degree di• Let ni be the total number of the

135



vertices in each Vi and let Ci be the current capacity of each vertex in V; to be connected in

the constructed graph. It is clear that Ci = d; at an initial time, and at any time

m

Ln. =N
I

;=1

and

(5.9)

(5.10)

where N is the total number of vertices in a graph and 1'; is the total capacity of the

vertices in V;, which could be connected to the constructed graph. Ti is called the number

of tokens in Vi.

Second, the graph construction runs until one of the following conditions is satisfied: (1)

no group exists, (2) no token can be offered, and (3) no vertex can accept any token.

When the construction process stops and all the above conditions are satisfied, this

indicates a valid configuration or graph; otherwise, the construction process goes back to

the step where the present process is initiated.

Third, the so-called valid structure is defined by two integrity rules. Integrity Rule 1: for

any vertex in a vertex group, only one token can be offered at any time. Integrity Rule 2: a

valid structure is the one that satisfies the three conditions mentioned before

simultaneously.

The sketch ofthe algorithm for the graph construction process is described as follows:
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Step 1: Take out a vertex UE V; (i=[I, m]), where Cj in V; is the highest among those in

other vertex groups. Give vertex U a label I where I is a number ordered from 1 to N. Note

that now the number of the vertices in V; changes to nj-I, and the number of the tokens in

V; changes to T;-cj. Since U has a capacity of Cj to connect with other vertices, Cj tokens

need to be taken from vertex groups (including its own vertex group) to connect with

vertex u. There are many possible ways to draw tokens, and they manifest different

graphs.

Step 2: Once a vertex ve Vj provides a token to vertex u, it has to be taken out from Vj and

is assigned a label/+1. A connection (Le., an edge) between v and U is established and

represented by the adjacency matrix. At this time, the resource (Le., nj and Tj) in Vj has to

be changed. If Vj is empty after vertex v is left, remove Vj from the group list and decrease

m by one. If v still has capacity after a token of it is contributed to vertex u, i.e., Cj>O,

create a new vertex group Vm+I, put v as well as its current capacity Cj into Vm+I, and

increase m by one. Likewise, all vertices which provide tokens are dealt with.

Step 3: After Step 2, all vertices connected with vertex U are found and labeled. Some of

them still have capacities and thus are put into new vertex groups (but they are labeled).

Therefore, two kinds of vertex groups exist: labeled vertex groups and unlabeled vertex

groups (the vertex groups have not yet been connected in the constructed graph). Take out

a vertex u from the labeled vertex group having the smallest label. Vertex u has capacity

and thus tokens are needed from other vertex groups (both labeled and unlabeled). There
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are many possible ways to draw tokens, and they manifest different graphs. The

construction procedure goes back to Step 2.

As an example, if a graph is subject to the following constraints: (1) the total number of

vertices is 8, (2) 4 vertices have 2 degrees, and (3) the other 4 vertices have 3 degrees, the

method described above gives 108 graphs meeting these constraints. This method is also

used for the application cases that will be introduced in Chapters 6 and 7 where some

more constraints (derived application) are added in addition to the two constraints

mentioned above. The method described above needs to be extended accordingly to deal

with the extra constraints.

5.4.2 Distinct Graph Enumeration

The graphs created by the proposed method may have isomorphic graphs. Distinct graph

enumeration requires to remove these isomorphic graphs. At this time, the canonical

labeling of graphs is applied for a graph isomorphism test.

Continue the discussion of the example previously mentioned. In this example, the graph

has 8 vertices, in which 4 vertices have 2 degrees and the other 4 vertices have 3 degrees.

It is known that there are 108 graphs that meet the constraints. Applying the canonical

labeling algorithm to these graphs leads to 25 distinct canonical codes, which imply that

25 graphs are distinct among 108 graphs. These 25 distinct graphs with their canonical

codes are shown in Figure 5.14.
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It may be clear by now that the enumeration of structures is a task depending on

applications. The next two chapters are devoted to the demonstration of the structure

enumeration for two applications: machine design and molecule design, respectively.

(1) 0061B5AO (2) 0061B720 (3) 0062E6AO (4) 0066D8AO (5) 00671660

(6) 006B3488 (7) 00719720 (8) 00729690 (9) 00A50FOC (10) 00E18F20

(11) 00E196AO (12) 00EIA720 (13) 00EIC6AO (14) 00EIE520 (15) 00E3A680

(16) OOE59680 (17) 00E5C4AO (18) 00E5C510 (19) 00E5DI08 (20) 00E5D201

(21) OOE5F040 (22) OOE68E80 (23) 00E9B240 (24) 01635460 (25) 01A70CCO

Figure 5.14 Enumeration of 8-vertex graphs (4 vertices for 3 degrees and other 4 for 2).
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5.5 Concluding Remarks

The Eigensystem approach has been further extended to solving the graph counting

problem and the graph canonical labeling or coding problem. These two problems are the

basis for developing algorithms for the structure/graph enumeration, which is the third

fundamental problem as mentioned in Chapter 1. One of the main purposes of the

canonical labeling of a graph is to have a compact code which uniquely represents the

graph and all graphs isomorphic to it. Therefore, the computer storage and retrieval of

graphs are very efficient. It is important to note that the Eigensystem approach has

provided a complete solution to graph isomorphism, graph counting, and graph labelirig

or coding in the sense that the solution is applicable to (1) non-weighted undirected

graphs, (2) weighted undirected graphs, (3) non-weighted directed graphs, and (4)

weighted directed graphs. The program Nauty has not shown the solution to the graph

counting and graph labeling problems for the weighted graphs. The method with its

algorithm developed in this thesis study to enumerate all graphs to the constraints is

novel; however, a more general method may be developed along with the constraint

satisfaction paradigm [Tsang 1993]. This is because the issue addressed here is

conceptually a constraint satisfaction problem. There is a wealth of solving tools available

to find all the solutions to a set ofpredefined constraints.

The implementation of the algorithm for canonical labeling of graphs can be seen in

Appendix B.
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CHAPTER 6
APPLICATION I: SYNTHESIS IN MECHANICAL DESIGN

6.1 Introduction

At several early phases for designing machines or mechanisms, decisions must be made

as to where the parts must be placed, how far and in what directions the parts must move,

which parts must be connected to which other parts, and how they must be connected, and

what the critical dimensions of the parts must be. Obviously, this phase involves the

interactions between geometry and motions, and it will result in drawings or sketches of

the general layout of the machine and will indicate how it will operate. These design tasks

(the studies of position, displacement, rotation, speed, velocity, and acceleration) are

referred to as the kinematic design of the machine [Vicker et al. 2003]. Kinematics is the

base of any design which concerns motion and is further divided into two complementary

fields: kinematic analysis and kinematic synthesis.

Kinematic analysis refers to the analysis of kinematic motion behavior, e.g., given the

motion of one link, find the motion of other links. Kinematic synthesis involves three.

steps: type synthesis, number synthesis, and dimensional synthesis. Type synthesis refers

to the selection of types of mechanisms: a linkage, a geared system, belts and pulleys, or

even a cam system. Number synthesis deals with the number of links (parts of a

mechanism) and the number of joints or kinematic pairs or just pairs (the connections,
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joint between the links) that are required to obtain a certain mobility. It relates to the

problem of the enumeration of structures, which is concerned in this thesis. Dimensional

synthesis refers to the determination ofthe dimensions of the individual links.

Highly simplified schematic diagrams and kinematic chains are used for describing a

machine or mechanism when studYing its kinematics. For examples, Figure 6.1 shows

three suspension topologies used in automobiles, their schematic diagrams, and their

related kinematic chains, respectively. Figure 6.1 also shows that there are two results of

a number synthesis for a six bar and one degree of freedom linkages, i.e., the six bars

shown in each of Figures 6.la and 6.lb, because the one shown in Figure 6.1c is the same

as the one in Figure 6.1a (to be revisited later).

Kinematic synthesis is an important topic in the design, in particular in the creative

design, of a machine [Johnson 1978]. This chapter discusses the application of the

Eigensystem approach for mechanical design synthesis, in particular for number

synthesis. Section 6.2 gives the concepts on mechanisms/kinematic chains. Section 6.3

reviews others' studies on the enumeration of mechanisms. Section 6.4 presents the

Eigensystem approach, which was described in Chapter 5, as applied to the enumeration

of structures (mechanisms/kinematic chains). Finally, Section 6.5 gives a concluding

remark.
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(a) Honda CR250 Pro-link (b) Kawasaki KX250 Uni-trak (c) Suzuki RM250 Full-floater

Figure 6.1 Three suspension topologies and their kinern.atic diagrams [Yan and Chen
1985].

6.2 Basic Concepts

When several links are movably connected together by joints, they are said to form a

kinematic chain. Links containing only two pair element connections are called binary

links; those having three, four, and five are called ternary, quaternary, and pentagonal

links, respectively. If every link in the chain is connected to at least two other links, the

chain forms one or more closed loops, and is called a closed kinematic chain; otherwise,

the chain is referred to as an open kinematic chain.
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Prior to kinematic synthesis, the number of degrees offreedom (OOF) of the mechanism

must be determined. When a link moves freely in a plane, it has three OOFs: the freedom

to translate along two independent directions and the freedom to rotate about an axis

perpendicular to the link. When two links are connected by a turning pair, the pair

provides a constraint of order 2 and thus these two links have four OOFs. For a

mechanism with the ground considered as one of the links, the relation between F

(degrees of freedom), N (number of links) and J (number ofjoints) is given by Gmbler's

equation [Dicker et ale 2003]

F =3(N -1)-2J (6.1)

Furthermore, let p be the highest connectivity of the link that can be used to form a chain

and ni be the number of links with connectivity i, 2 ~ i ~p. Two constraint equations exist

among links and joints, i.e.,

n +···+n. +···+n = N2 I P

and

2n +···+in. +···+pn =2J2 I P

(6.2)

(6.3)

For a given N and F, the highest connectivity p is easily determined using the following

formula [Rao and Deshmukh 2001]

(6.4)
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Once p is known by Equation (6.4) for a given Nand F, all ni can be obtained by solving

the linear equations from Equation (6.1) to Equation (6.3). For example, ifF = 1 and N =

6, by Equation (6.4), the highest connectivityp = 3. According to Equation (6.1) through

(6.3), one combination of links is obtained, i.e., (n3=2, n2=4). IfF = 3 and N = 8, thenp =

4 by Equation (6.4). There are two combinations of links ni (2 ~ i ~ p) which meet

respectively. Table 6.1 lists the number of combinations of links for a given N up to 12

andFupto 9.

Table 6.1 Number of link combinations for a given N up to 12 and F up to 9.

Degrees of freedom (DOF)
N

1 2 3 4 5 6 7 8 9

4 1 n/a n/a n/a n/a n/a n/a n/a n/a

5 0 1 n/a n/a n/a n/a n/a n/a n/a

6 1 1 1 n/a n/a n/a n/a n/a n/a

7 1 2 1 1 n/a n/a n/a n/a n/a

8 3 2 2 1 1 n/a n/a n/a n/a

9 3 4 3 2 1 1 n/a n/a n/a

10 7 5 5 3 2 1 1 n/a n/a

11 8 9 6 5 3 2 1 1 n/a

12 15 11 10 7 5 3 2 1 1

Number sYnthesis of kinematics enumerates all the distinct possible kinematic chains

with the specified number of links and degrees of freedom. In general, this includes three

tasks: (1) for a given Nand F, determining the highest connectivity p and the possible
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combinations ofnj (2 $; i $; p), as discussed above, (2) enumerating all possible kinematic

chains for each combination of links, and (3) identifying distinct kinematic chains from

them.

6.3 Others' Studies

Many studies were reported in the past using different approaches to enumerate all the

distinct kinematic chains with the given number of links and degrees of freedom. These

methods reported so far are based on intuition [Crossley 1965, 1966], Franke's notation

[Davies and Crossley 1966; Haas and Crossley 1969; Soni 1971], graph theory [Crossley

1965; Dobrjanskyj and Freudenstein 1967; Woo 1967; Freudenstein 1967], and

transformation of binary chains [Manolescu 1973; Mruthyunjaya 1979]. Mruthyunjaya

[1984] developed a computer program based on the method of transformation of binary

chains for the structural synthesis of kinematic chains with up 10 links and 3 DOFs.

Butcher and Hartman [2002] have enumerated 6856 single DOF chains with 12 links.

Sohn and Freudenstein [1986] used the concept of dual graphs and generated chains with

up to 11 links and two DOFs. Tuttle et al. [1989] used the theory of symmetric groups to

generate planar kinematic chains by performing contraction and expansion operations on

a base structure and obtained 2 DOFs chains with 12 links. Hwang and Hwang [1992]

have reported a computer-aided method to generate planar kinematic chains using the

concept of contracted link adjacency matrix. Rao and Raju [1991] reported the Hamming

number technique for the synthesis of chains, but the results still need to be tested for

isomorphism. Tischler et al. [1995] presented the method for generating the chains with

the idea of avoiding tests for isomorphism but concluded that it may not be possible to
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synthesize distinct chains without testing for isomorphism. This situation occurred in the

report of [Rao and Deshmukh 2001], where they used the concept of loop fonnation to

construct kinematic chains without isomorphism. However, this method still cannot

guarantee that no isomorphic chain exists in the results generated.

By collecting the literature, Table 6.2 lists the number of distinct kinematic chains, which

is known as a correct record, with up to 12 links and 3 DOF. It is noted that these

kinematic chains consider the same types of links and joints.

Table 6.2 The number ofdistinct kinematic chains with up to 12 links for known cases.

Number of links DOF=1 DOF=2 DOF=3

4 1

5

621

7 4

8 16

9 40

10 230 98

11

12 6856

6.4 The Enumeration of Kinematic Chains

6.4.1 Graph Representation

The Eigensystem approach can be used for structure synthesis of mechanismslkinematic

chains. The canonical codes of graphs can identify distinct graphs without an
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isomorphism test. Prior to enumerating kinematic chains, however, the schematic

diagrams of kinematic chains must be converted into graph representations (see Figure

6.1). The conversion between a schematic diagram and a graph representation is done by

replacing each link in the schematic diagram with a vertex in a graph representation and

replacing each joint between two links in the schematic diagram with an edge between

two vertices in the graph. Figure 6.2 shows the graph representations of the kinematic

chains shown in Figure 6.1. Note that the graph representation shown in Figure 6.2 is

different from the graph representation shown at the bottom of Figure 6.1. Figure 6.3

shows other six kinematic chains and their graph representations.

(a)

6

5

5

6

(b) (c)

5

6

Figure 6.2 The graph representations of the kinematic chains shown in Figure 6.1.
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10

7

6

3

10

Figure 6.3 Six kinematic chains and their graph representations.
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6.4.2 Enumeration of Kinematic Chains: Step 1

After the combinations of links are obtained for a given link number N and degrees of

freedom F, the next objective is to enumerate kinematic chains. Two steps are followed

here for this objective. The first step is to enumerate kinematic chains meeting a set of

constraints. The second step is to remove isomorphic ones from the kinematic chains

meeting the constraints.

To enumerate kinematic chains meeting the given constraints is to enumerate all possible

kinematic chains for each combination of links. There are two types of information

included in a combination of links: the number of links and the degrees of freedom for

each link. When kinematic chains are converted into graph representations, these two

types of information are changed into the number of vertices and the degrees of every

vertex because links and DOFs of links in kinematic chains are converted into vertices

and degrees of vertices in graph representations, respectively, as discussed in Section

6.4.1. A general method was developed and discussed in Chapter 5 to enumerate graphs

meeting these constraints, i.e., a given number of vertices and degrees of each vertex.

Therefore, the method can be applied here for enumerating the kinematic chains meeting

a given combination of links. Table 6.3 lists the numbers of these kinematic chains for a

givenNup to 12 andFup to 9.

However, one must notice that among kinematic chains generated based on the above

step, there may be cases in which the overall DOF of the kinematic chain is greater than

zero, but some of the features have DOF =:;; O. An example of this kind of case is shown in
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Figure 6.4, where the links marked by a cycle form a zero DOF chain. For this reason, the

kinematic chains listed in Table 6.3 are called the incomplete kinematic chains. The

kinematic chains shown in Figure 6.4 are incomplete, and they are actually degraded into

four links with one DOF. This thus calls for the elimination of such degraded cases. The

solution is to define new constraints and to incorporate them into the general pool of

constraints. In particular, the following constraint is established, i.e., any closed loop or

combination of loops created during the construction of a graph must greater than zero

DOF. This constraint is incorporated into the general method developed in Chapter 5.

Table 6.3 Number of kinematic chains meeting a given N up to 12 and F up to 9.

Degrees of freedom (DOF)
N

1 2 3 4 5 6 7 8 9

4 1 n/a n/a n/a n/a n/a n/a n/a n/a

5 0 1 n/a n/a n/a n/a n/a n/a n/a

6 7 0 1 n/a n/a n/a n/a n/a n/a

7 0 20 0 1 n/a n/a n/a n/a n/a

8 222 0 34 0 1 n/a n/a n/a n/a

9 0 681 0 52 0 1 n/a n/a n/a

10 9863 0 1565 0 75 0 1 n/a n/a

11 0 31235 0 3184 0 103 0 1 n/a

12 609582 0 82243 0 6030 0 136 0 1
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Figure 6.4 Two six-link kinematic chains each with totally 1 DOF but partly 0 DOF.

Figure 6.5 graphically illustrates how this constraint works for a kinematic chain with

four binary links and four ternary links (links and joints correspond to vertices and edges,

respectively). In Figure 6.5, the label in a cycle represents the label of the vertex, and the

label on an edge represents the step of a graph construction process. In Figure 6.5a, vertex

2 accepts a token from vertex 5 at the fourth step and then accepts a token from vertex 3

at the fifth step. Once vertex 2 accepts this token from vertex 3, a closed loop is formed

among vertices 1, 2, and 3. The sub-chain corresponding to this closed loop has zero

DOF. Therefore, such a configuration is eliminated by the program. In Figure 6.5b, when

vertex 3 accepts a token from vertex 5 at the fifth step, one closed loop is fonned among

vertices 1, 2, 3, and 5, and the corresponding sub-chain has one DOF. The construction

procedure continues until the seventh step where vertex 4 accepts a token from vertex 5.

In total, three loops are obtained, i.e., loop (1, 2, 4, 5), loop (1, 2, 3, 5), and loop (1, 3, 4,

5). It is interesting to note that a compound loop (1, 2, 3, 4, 5) fonned from these three

loops has zero DOF. Such a configuration (i.e., the compound loop with the zero DOF)

also has to be eliminated. Figure 6.5c shows closed loops and that their compound loops

formed at any step have greater than zero DOF. Therefore, such a configuration is

accessible.
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(a) (b) (c)

Figure 6.5 illustration ofconfiguring kinematic chains.

Table 6.4 lists the numbers of kinematic chains with up to 12 links and up to 9 DOFs

using the program developed with this thesis study. The program system which fmds all

kinematic chains meeting the constraints is called 'E_mechanism' (see Appendix C).

Table 6.4 Number ofpossible kinematic chains with up to 12 links and 9 DOFs.

Degrees of freedom (DOF)
N

1 2 3 4 6 7 8 95

4 1 nla nla nla nla nla nla nla nla

5 0 1 nla nla nla nla nla nla nla

6 4 0 1 n/a n/a n/a n/a n/a nla

7 0 10 0 1 nla n/a nla nla n/a

8 63 0 20 0 1 n/a nla nla nla

9 0 232 0 32 0 1 n/a n/a n/a

10 1775 0 668 0 51 0 1 n/a n/a

11 0 7885 0 1534 0 74 0 1 n/a

12 75440 0 26637 0 3210 0 102 0
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6.4.3 Distinct Kinematic Chains: Step 2

The kinematic chains generated in Table 6.4 may include isomorphs, which must be

removed. At this point, the Eigensystem approach is employed for this purpose. The

procedure is such that the canonical codes for all the kinematic chains listed in Table 6.4

are found. Among the kinematic chains with the same canonical code, only one is kept.

Table 6.5 lists the total number of distinct kinematic chains with up to 12 links and up to

9 DOFs. It is noted that the numbers marked with a star are the same as the numbers

shown in Table 6.1. The others listed in Table 6.4 are first reported to the author's

knowledge. The result obtained thus is remarkable in having proved the validity of the

Eigensystem approach for the enumeration ofkinematic chains or mechanisms.

Table 6.5 Number of all distinct kinematic chains with up to 12 links and 9 DOFs.

N DOF n7-6-S-4-3-2 Number 1: N DOF nr6-S-4-3~ Number 1:

4 1 0-0-0-0-0-4 1 1* 9 2 0-0-0-0-4-5 19 40·

5 2 0-0-0-0-0-5 1 1* 0-0-0-1-2-6 16

6 1 0-0-0-0-2-4 2 2* 0-0-0-2-0-7 3

3 0-0-0-0-0-6 1 1* 0-0-1-0-1-7 2

7 2 0-0-0-0-2-5 3 4* 4 0-0-0-0-2-7 8 10

0-0-0-1-0-6 1 0-0-0-1-0-8 2

4 0-0-0-0-0-7 1 1 6 0-0-0-0-0-9 1 1

8 1 0-0-0-0-4-4 9 16* 10 1 0-0-0-0-6-4 50 230*

0-0-0-1-2-5 5 0-0-0-1-4-5 95

0-0-0-2-0-6 2 0-0-0-2-2-6 57

3 0-0-0-0-2-6 6 7 0-0-0-3-0-7 3

0-0-0-1-0-7 1 0-0-1-0-3-6 15

5 0-0-0-0-0-8 1 1 0-0-1-1-1-7 8
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Table 6.5 (Continued)

10 1 0-0-2-0-0-8 2 12 1 0-0-0-4-0-8 37

3 0-0-0-0-4-6 46 98· 0-0-1-0-5-6 506

0-0-0-1-2-7 38 0-0-1-1-3-7 716

0-0-0-2-0-8 8 0-0-1-2-1-8 147

0-0-1-0-1-8 5 0-0-2-0-2-8 63

0-1-0-0-0-9 1 0-0-2-1-0-9 7

5 0-0-0-0-2-8 12 14 0-1-0-0-4-7 49

0-0-0-1-0-9 2 0-1-0-1-2-8 46

7 0-0-0-0-0-10 1 1 0-1-0-2-0-9 5

11 2 0-0-0-0-6-5 153 839 0-1-1-0-1-9 8

0-0-0-1-4-6 359 0-2-0-0-0-10 2

0-0-0-2-2-7 193 3 0-0-0-0-6-6 463 2424

0-0-0-3-0-8 13 0-0-0-1-4-7 1029

0-0-1-0-3-7 74 0-0-0-2-2-8 530

0-0-1-1-1-8 34 0-0-0-3-0-9 32

0-0-2-0-0-9 3 0-0-1-0-3-8 226

0-1-0-0-2-8 8 0-0-1-1-1-9 102

0-1-0-1-0-9 2 0-0-2-0-0-10 8

4 0-0-0-0-4-7 89 190 0-1-0-0-2-9 27

0-0-0-1-2-8 77 0-1-0-1-0-10 5

0-0-0-2-0-9 12 1-0-0-0-1-10 2

0-0-1-0-1-9 11 5 0-0-0-0-4-8 171 354

0-1-0-0-0-10 1 0-0-0-1-2-9 141

6 0-0-0-0-2-9 16 19 0-0-0-2-0-10 21

0-0-0-1-0-10 3 0-0-1-0-1-10 19

8 0-0-0-0-0-11 1 1 0-1-0-0-0-11 2

12 1 0-0-0-0-8-4 410 6856· 7 0-0-0-0-2-10 21 24

0-0-0-1-6-5 1873 0-0-0-1-0-11 3

0-0-0-2-4-6 2339 9 0-0-0-0-0-12 1 1

0-0-0-3-2-7 648 I
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6.5 Concluding Remarks

It must be pointed out that in the practical design of mechanisms, structure synthesis may

not be only bar linkage systems but also other structural schemes, such as spring

mechanisms, belt-pulley mechanisms, cam-linkage mechanisms, gear-linkage

mechanisms, chain-sprocket mechanisms, and hydraulic piston-cylinder mechanisms.

Besides, they can be connected into a planar system or a spatial system. All of these

mechanisms can be represented into a graph by 'coloring' its edges and vertices (although

it was not mentioned before, the Eigensystem approach can handle the situation when

both edges and vertices are weighted). For example, in Figure 6.1, the kinematic pair

between link 5 and link 6 differs from the other kinematic pairs. In order to represent this

difference, a different weight can be applied onto the edges between vertices 5 and 6 of

the graphs, as shown in Figure 6.2. Therefore, a weighted graph is created. The

enumeration of such kinematic chains becomes the enumeration of a weighted graph. As

discussed in Chapter 4, the Eigensystem approach can also deal with the isomorphism

problems of weighted and directed graphs. Therefore, the Eigensystem approach can

efficiently solve this kind of problem of the enumeration of structures. Evidently, the

Eigensystem approach is applicable to the enumeration of all four structures/graphs: (1)

non-weighted undirected graph, (2) weighted undirected graph, (3) non-weighted digraph,

and (4) weighted digraph.
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CHAPTER 7
APPLICATION II: SYNTHESIS IN MOLECULE DESIGN

7.1 Introduction

Synthesis of molecular structures plays a very important role in predicting molecular

properties, discovering new materials, and designing novel drugs [Basak and Niemi 1990;

Gute and Basak 2001]. Synthesis of molecular structures is also a necessary tool for

chemical documentation, which refers to the unambiguous naming and the indexed

system for chemical substances (single molecules and molecule complexes). The

application of the Eigensystem approach for synthesis in molecular design is discussed in

this chapter. Section 7.2 gives the basic concepts of molecular structures and their

representations. Section 7.3 discusses the isomer enumeration of the Alkane Series.

Section 7.4 gives a concluding remark.

7.2 Basic Concepts

7.2.1 Chemical Graph

A molecule is a combination of atoms held together by valence bonds and is represented

by a chemical constitutional formula. The constitutional formula for the chemist is a

special kind of graph called the chemical graph, which provides a representation of the

topological structure of a species, with the vertices representing the individual atoms and

the edges representing the valence bonds between pairs of atoms. Figure 7.1 illustrates a
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chemical graph. Figure 7.1 a shows a chemical constitutional formula of a compound that

consists of carbon and hydrogen atoms. Figure 7.1b illustrates its chemical graph, where

closed vertices represent carbon atoms, and open vertices represent hydrogen atoms.

Every carbon atom must be tetravalent (a chemical valence of four), while every

hydrogen atom is univalent. All closed vertices must therefore be of valence 4 in the

graph, and all open vertices must be of valence 1. Sometimes, hydrogen atoms are

omitted in a chemical graph for simplicity. Figure 7.1 c shows the chemical graph with the

hydrogen atoms omitted.

CH3

I
CH3--C---CH3

I
CH3

(a) (b) (c)

Figure 7.1 Chemical formula, graph, and the graph with omitted hydrogen atoms.

However, in many situations, the chemical graphs have to be 'colored' because there are

sometimes of various kinds of atoms and more than one valence bond between two

atoms. Different weights can be used to describe the different colors. Figure 7.2 shows

two chemical constitutional formulas and the chemical graphs, where the number of

valence bonds is used as weights of edges and the different shapes (weights) are used for

representing different atoms (hydrogen atoms are omitted).
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(a) Chemical constitutional fonnula (b) Chemical graph

Figure 7.2 Chemical constitutional fonnula and 'colored' chemical graph.

Although in most cases it is sufficient to know only the constitution of the molecule

[Bohanec and Perdih 1993], it should be noted that sometimes it is necessary to know the

geometry of the structures [Wilson and Beineke 1979]. In this situation, 'coloring' the

chemical graph would be a very complicated task.

7.2.2 Chemical Isomers

Clearly, not all conceivable graphs correspond to molecules, for each of the atoms

fonning a given structure has a given valence which must be satisfied in the structure into

which it is incorporated. It is evident that, in general, the same set of atoms chemically

united to yield a single molecule may be connected together in different ways; the

resulting structures are known as chemical isomers. For example, graphite is a chemical

isomer of diamond because they have the same atom set but different atom patterns; see

Figure 7.3. Detennining the number of isomers for a specific molecule involves the

application of graph enumeration. In fact, isomer enumeration has been one of the major

applications of graph theory to chemistry [Wilson and Beineke 1979]. There are many

reports which focused on detennining isomers or enumerating isomers [Henze and Blair

1931; Randic 1974; Bohanec and Perdih 1993; Faulon 1998].
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Graphite Diamond

Figure 7.3 Chemical isomers: graphite and diamond.

7.3 Isomer Enumeration of the Alkane Series

A hydrocarbon is any chemical compound containing only carbon and hydrogen.

Hydrocarbons can be separated into acyclic and cyclic types. The acyclic hydrocarbons

are characterized by a branched tree structure and can be separated into three categories:

(1) Alkanes contain only single bonds and have the general formula CnH2n+2.

(2) Alkenes contain a double bond and have the general formula CnH2n.

(3) Alkynes contain a triple bond and have the general formula CnH2n-2.

According to the definition of alkanes, one can configure it~ chemical graph with carbon

atoms regarded as vertices and chemical bonds regarded as edges by following three

constraints: (1) meeting the general formula, (2) only single bonds between two carbons,

and (3) no cycle is permitted. Figure 7.4 illustrates the chemical constitutional formula of

octane (CSHlS) and its chemical graph where hydrogen atoms are omitted. It is noted that

in Figure 7.4b there are four kinds of vertices in terms of the degrees of these vertices

from 1 to 4. Indeed, for the chemical graphs ofalkanes, the highest degree of vertices is 4,
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because a carbon has 4 chemical bonds. If given a number of carbons at this point, one

can calculate the combinations of such kinds of vertices such that the general formula is

satisfied. The following discusses the method ofcalculating these combinations.

r3 rJ

CH3-C-CH-eH2-CH3

I
CH3

(a) chemical formula CSH1S (b) chemical graph without hydrogen

Figure 7.4 The chemical constitutional formula of octane (CsH1S) and its chemical graph.

Suppose that ni (1 S; i S; 4) represents the number of the carbons having i bonds connected

with other carbons. For a carbon having i bonds connected with other carbons (i.e., a

vertex having i degrees in the chemical graph), it needs to connect another 4-i hydrogen

atoms (every carbon must have 4 chemical bonds). For a given number of carbons N

(hydrogen atoms 2N+2), there is

(7.1)

and

(7.2)

By combining Equations (7.1) and (7.2) and solving these linear equations, one can

achieve all possible combinations of carbons for a given N. For example, if N=5, three

solutions can be achieved by Equations (7.1) and (7.2), i.e., (nl=2, n2=3, n3=O, n4=O),
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(nl=3, n2=1, n3=1, n4=O), and (nl=4, n2=0, n3=0, n4=1). Table 7.1 lists the relationship

between the number of carbons up to 16 and its carbon-carbon bond combinations.

Table 7.1 The number ofcombinations ofcarbons having different carbon-earbon bonds.

N Comb. N Comb. N Comb. N Comb.

1 1 5 3 9 8 13 16

2 1 6 4 10 10 14 19

3 1 7 5 11 12 15 21

4 2 8 7 12 14 16 24

With these combinations of carbons, the chemical graphs meeting the general fonnula

CnH2n+2 can be enumerated by following the method discussed in Chapter 5. However, an

additional constraint has to be employed when configuring the chemical graphs of alkanes

using this method; i.e., no cycle is pennitted during configurations of graphs, as

mentioned above as the third constraint. This constraint can easily be incorporated into

the general constraints. Figure 7.5 shows the illustration of how this constraint works,

where the label on the edge indicates the step of the search. In Figure 7.5a, vertex 2

(carbon) accepts a token from vertex 5 (carbon) at the fourth step and then accepts a

token from vertex 3 (carbon) at the fifth step. Once vertex 2 accepts this token from

vertex 3, a closed loop is fonned among vertices 1,2, and 3. This closed loop results in a

cycle of carbons. Therefore, such a configuration must be eliminated. The same situation

happens in Figure 7.5b when vertex 4 (carbon) accepts a token from vertex 6 (carbon) at

the sixth step. In this case, the closed loop is fonned among vertices 1, 3, 4, and ~.

Therefore, the configuration must also be eliminated. However, in Figure 7.5c, there is no
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closed loop formed and thus this configuration is accessible and one chemical graph is

generated. Table 7.2 lists the number of the chemical graphs with up to 16 carbon atoms

meeting all three constraints of alkanes.

(a) (b) (c)

Figure 7.5 illustration of configuring chemical graphs ofalkanes.

Table 7.2 The number of chemical graphs meeting the constraints configuring alkanes.

Carbons Graphs Carbons Graphs Carbons Graphs Carbons Graphs

1 1 5 4 9 71 13 2746

2 1 6 7 10 172 14 7078

3 1 7 14 11 426 15 18374

4 2 8 31 12 1076 16 48050

The chemical graphs of alkanes generated in Table 7.2 may include isomorphs. These

isomorphs must be removed. At this point, the Eigensystem approach is employed for the

isomer enumeration. The procedure is such that the canonical codes for all the chemical

graphs listed in Table 7.2 are found. Among the chemical graphs of alkanes with the same

canonical code, only one is kept. Table 7.3 lists the total number of isomers of the Alkane

Series with up to 16 carbons. It should be noted that the results achieved here are the

same as the records in chemistry. Appendix D lists the program codes.
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Table 7.3 Number of all isomers of the Alkanes Series up to 16 carbons.

N n4-n3-n2-nt Number 1: N n4-n3-n2-nt Number 1:

1 0-0-0-0 1 1 9 1-1-2-5 8

2 0-0-0-2 1 1 1-2-0-6 2

3 0-0-1-2 1 1 2-0-1-6 2

4 0-0-2-2 1 2 10 0-0-8-2 1 75

0-1-0-3 1 0-1-6-3 7

5 0-0-3-2 1 3 0-2-4-4 17

0-1-1-3 1 0-3-2-5 10

1-0-0-4 1 0-4-0-6 2

6 0-0-4-2 1 5 1-0-5-4 6

0-1-2-3 2 1-1-3-5 17

0-2-0-4 1 1-2-1-6 8

1-0-1-4 1 2-0-2-6 5

7 0-0-5-2 1 9 2-1-0-7 2

0-1-3-3 3 11 0-0-9-2 1 159

0-2-1-4 2 0-1-7-3 8

1-0-2-4 2 0-2-5-4 27

1-1-0-5 1 0-3-3-5 24

8 0-0-6-2 1 18 0-4-1-6 6

0-1-4-3 4 1-0-6-4 9

0-2-2-4 5 1-1-4-5 33

0-3-0-5 1 1-2-2-6 28

1-0-3-4 3 1-3-0-7 4

1-1-1-5 3 2-0-3-6 10

2-0-0-6 1 2-1-1-7 8

9 0-0-7-2 1 35 3-0-0-8 1

0-1-5-1 5 12 0-0-10-2 1 355

0-2-3-4 9 0-1-8-3 10

0-3-1-5 3 0-2-6-4 43

1-0-4-4 5 0-3-4-5 55
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Table 7.3 (Continued)

N n4-n3-n2-n l Number 1: N n4-n3-nr n l Number 1:

12 0-4-2-6 24 14 0-3-6-5 206

0-5-0-7 2 0-4-4-6 183

1-0-7-4 11 0-5-2-7 52

1-1-5-5 58 0-6-0-8 4

1-2-3-6 73 1-0-9-4 18

1-3-1-7 21 1-1-7-5 153

2-0-4-6 20 1-2-5-6 364

2-1-2-7 28 1-3-3-7 275

2-2-0-8 6 1-4-1-8 52

3-0-1-8 3 2-0-6-6 61

13 0-0-11-2 1 802 2-1-4-7 186

0-1-9-3 12 2-2-2-8 132

0-2-7-4 63 2-3-0-9 14

0-3-5-2 109 3-0-3-8 28

0-4-3-6 69 3-1-1-9 21

0-5-1-7 11 4-0-0-10 2

1-0-8-2 15 15 0-0-13-2 1 4347

1-1-6-5 97 0-1-11-3 16

1-2-4-6 174 0-2-9-4 127

1-3-2-7 86 0-3-7-5 360

1-4-0-8 8 0-4-5-6 423

2-0-5-6 35 0-5-3-7 182

2-1-3-7 76 0-6-1-8 23

2-2-1-8 31 1-0-10-4 23

3-0-2-8 11 1-1-8-5 233

3-1-0-9 4 1-2-6-6 717

14 0-0-12-2 1 1858 1-3-4-7 759

0-1-10-3 14 1-4-2-8 254

0-2-8-4 92 1-5-0-9 15
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Table 7.3 (Continued)

N n4-n3-n2-nt Number 1: N n4-n3-n2-nt Number 1:

15 2-0-7-6 98 16 1-0-11-4 27

2-1-5-7 405 1-1-9-5 342

2-2-3-8 428 1-2-7-6 1311

2-3-1-9 101 1-3-5-7 1859

3-0-4-8 71 1-4-3-8 942

3-1-2-9 90 1-5-1-9 128

3-2-0-10 14 2-0-8-6 155

4-0-1-10 7 2-1-6-7 824

16 0-0-14-2 1 10359 2-2-4-8 1222

0-1-12-3 19 2-3-2-9 508

0-2-10-4 174 2-4-0-10 37

0-3-8-5 606 3-0-5-8 154

0-4-6-6 920 3-1-3-9 302

0-5-4-7 560 3-2-1-10 102

0-6-2-8 124 4-0-2-10 28

0-7-0-9 6 4-1-0-11 8

7.4 Concluding Remarks

As examples, the isomers of the Alkane Series with up to 16 carbons have been

enumerated in this chapter. For a given number of carbons, the combinations of different

carbons having different chemical bonds with other carbons are first calculated so that

these combinations of the carbons can meet the general formula CnH2n+2 and also meet

the single bond criteria. With these combinations of the carbons, all chemical graphs

meeting the general formula CnH2n+2 can be achieved by incorporating the constraint (no

closed loop is permitted) into the method discussed in Chapter 5. The Eigensystem
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approach has been applied lastly to enumerate all isomers of the Alkane Series. Canonical

codes of all chemical graphs of Alkane series have been created through the Eigensystem

approach. Unique canonical labels have been collected to create the enumeration of

distinct kinematic chains. For the known cases available in publications, the related

results obtained through the Eigensystem approach have been checked and confrrmed the

same as those reported in chemistry literature [Wilson and Beineke 1979].

Computational synthesis of nanotube based gears was studied by Han et al. [1997]; see

Figure 7.6 where two molecular multiple teeth gear systems are fashioned from carbon

nanotubes. The fact that the Eigensystem approach works effectively in structure

synthesis for moleculae design well implies that the Eigensystem approach can be used in

structure synthesis for nano molecular machine design.

On-line Off-line

Figure 7.6 Two molecular multiple teeth gear systems [Han et al. 1997].
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CHAPTER 8
CONCLUSIONS

8.1 Overview

Structure synthesis is a step in design that has the highest potential to result in innovative

products. This thesis study was motivated by two things: (1) the lack of effective

computational tools for general structure synthesis and (2) the author's preliminary

finding that both eigenvalues and eigenvectors are useful to general graph (or structure)

synthesis.

There are three fundamental problems in structures synthesis. Problem I: Coding and

indexing of structures for efficient computer storage and retrieval of structures. Problem

II: Identification of structure isomorphism (a kind of similarity). Problem ill:

Enumeration of structures subject to a set of constraints. The objective of this thesis study

was to develop theories/methods, algorithms, and computer programs to support the

solving process of these three problems.

As a first step, graphs were used to represent the structures. A graph contains a set of

vertices and edges. Both the vertex and the edge can have different types. When the types

are expressed in the graph, the colored graph forms. With this notion and the notion of

hierarchical organization, the graph becomes a powerful tool to represent various
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scenarios of the structure. With the graph, structure synthesis becomes graphs synthesis.

Furthennore, the graph can be represented by the matrix, in particular, the adjacency

matrix (AM). This then makes it possible to computer-manipulate the graph.

Among the three fundamental problems, Problem II, the graph isomorphism problem is

the basic. If there is a one-to-one mapping between two graphs, an isomorphic

relationship is established between these two graphs, or these two graphs are said to be

isomorphic. This problem is known to the graph theorist as the Non-detenninistic

Polynomial (NP) problem, which means that the computational· time for solving such a

kind of problem can be overwhelmingly long and, in the worst situation of some

applications, it may be beyond the capacity of the modem computing facility. Problem II

was first tackled in this thesis.

After a literature review (Chapter 2), the discussion was focused on the full development

of the method based on both the eigenvalues and eigenvectors of the adjacency matrix of

the graph - a finding generated by the author [He et al. 2000]. The key feature of this

method was to largely make use of the infonnation of eigenvectors, particularly their

components, in seeking a one-to-one mapping between two graphs. This method was

called the Eigensystem approach. It was demonstrated that the complexity of this

Eigensystem approach was O(m3n3 + m3ml(nlgn + n + m2)), which is the same as the well

known program called Nauty for the detection of graph isomorphisms. In addition to the

completely different thought underlYing the Eigensystem method compared with that

underlYing the program Nauty, the Eigensystem approach allows graphs with weight or
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non-weight and with directed edge or undirected edge to be all converted, Le., their

isomorphisms are detectable. It is noted that the current version of the program Nauty has

only demonstrated the detection of isomorphic graphs with non-weight (both undirected

and directed edge).

To tackle the frrst and third problems, this thesis further described the extension of the

Eigensystem approach for the basic problem called graph counting. The graph counting

problem adds one more requirement on top of the graph isomorphism, i.e., finding all the

one-to-one mappings (instead ofjust one such a mapping, which is the case for the graph

isomorphism problem). After the graph counting problem was elucidated, the canonical

labeling of graphs was discussed. It was demonstrated that the Eigensystem approach can

readily be extended to perfonn the canonical labeling, which results in a compact code for

a graph. Such a code has a one-to-one correspondence to a graph and all its isomorphic

graphs. Computer storage of graphs can be made possible via such a canonical code. A

method was proposed to solve the third fundamental problem (Le., the enumeration of

graphs). This method was basically constraint-oriented, i.e., converting application

problems into constraint equations on the graph, and then finding all the solutions which

satisfy the constraints. The role of the Eigensystem approach here was a tool to screen out

the isomorphic graphs that only met the constraint equations among all the graphs

generated.

Two examples were made to illustrate how to apply the methods and tools developed: one

is the machine design, and the other is the molecular design. These examples were also
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used to verify the methods and tools by comparing their results with others' results that

are known to be correct. There were also some new results generated.

8.2 Contribution

This thesis has proposed a novel method and developed a suite of computer algorithms

and programs for structure or graph synthesis. This new method, together with its

algorithms/ programs, may be simply called the Eigensystem approach. The spectra of

graphs covered by the Eigensystem approach include weighted/non-weighted,

directed/undirected graphs. The complexity of the Eigensystem approach is O(m3n3 +

m3m}(nlgn + n + m2», the same as that of the program Nauty which is the best

algorithm/program today for graph isomorphism, graph counting, and canonical labeling

problems. However, the program Nauty has so far demonstrated its applicability to non­

weighted graphs only. In the author's opinion, the extension of the program Nauty to any

kind of weighted graph can be very difficult owing to the fundamental thought underlYing

this program.

The developed method, which was based on the constraint satisfaction problem together

with the isomorphism detection for the enumeration of structures, can be very general and

robust. The application of this method to the mechanism design problem has resulted in

new fmdings for the total number ofdistinct structures of the kinematic chains that has 12

links and (5, 7, 9) DOFs. It is noted that, in the literature, the report for the total number

of distinct structures has been given for the 12 bar linkage with 1 DOF only.
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8.3 Future Work

Three issues, (I) synthesis of 3D structures, (2) enumeration of structures, and (3)

optimization of the algorithms, need to be addressed in the future.

The synthesis of 3D structures is becoming important in fields such as biochemistry. In

mechanical engineering, the need for 3D structure synthesis is emerging with the

expected design and development of microstructures and nanostructures. Different from

the synthesis of topological structures, the synthesis of 3D structures needs to consider the

geometrical information of structures together with the topological information. Here, the

major challenge is how the geometrical information of a 3D structure can be represented

into a graph.

In the general algorithm for the graphs enumeration developed in Chapter 5, only two

constraints (the total number of vertices and the degrees of vertices) were considered.

When new constraints are considered, the algorithm has to be extended in an ad-hoc

manner. The constraint satisfaction problem (CSP) appears to be readily applicable to the

problem of the structure enumeration. The benefits of CSP include: (1) CSP allows for

representing constraints in a declarative manner, and hence the adding of new constraints

does not require changing the algorithm for searching solutions that satisfy the

constraints, and (2) CSP has a rich suite of programs available to fmd all solutions given

a set ofconstraints.
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The major goal of the computer program developed in this thesis is to examine whether

the proposed algorithms are correct. At this point, the implementation of the algorithms

was developed in the MATLAB 6.5 environment. To improve the efficiency of the

implementation ofthese algorithms, it should be possible to code these algorithms outside

of any mathematical computation package environment. There is also some room to

streamline these algorithms for faster computational rates, for example, incorporating

Vector Choose Rule I discussed in Chapter 5 into algorithm 1-2.
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APPENDIX A
PROGRAM FOR GRAPH ISO-/AUTO-MORPHISM

The program in Appendix A is used for graph isomorphism/automorphism test. It consists

of seven functions running in MATLAB 5.0 and later version, i.e., graph,

QuadraticForm, recusive, CompareVector, checkisomorphism, DeterminingSign,

and NodeMatching. The main function is graph(A,B) in which two augments A and B

are adjacency matrices of two graphs, respectively. All possible isomorphism/

automorphism mappings are returned by running the program. A brief description for

each function is introduced at the beginning ofeach function.

% Program for graph isomorphism/automorphism and their counting
% MATLAB M-file
% August 2003
% Main function graph(A,B)
% for graph isomorphism, A and B are adjacency matrices of two graphs
% -- for graph automorphism, enter B=A

function graph(A,B)
% Input --- adjacency matrices of graph A and B
% Output --all possible isomorphic mappings between A and B

global FeaGroi
% FeaGro -- The matrix stored the node relationships of garph A and B
% with constructing the same feature (component of
eigenvector)
% into group
global group;
% number of feature groups
global n;
% n - node number of graph
global TaLi
global Bnode;
global total;

if (nargin-=2)
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disp{'Input arguments are undefined!');
error (' I);

end
i=size{A) ;
j =size (B) ;
if (i (1) -=i (2) I j (1) -=j (2))

disp('Must be square matrices!');
error (I ');

end
if (-isequal{A,A') I -isequal(B,B'))

disp('Must be symmetric matrices! I);
error (' I);

end
TOL = 0.0001;
group=l;
if (i (1) -=j (1))

disp{'They are not isomorphic graphs because of having different
nodes. I);
else

n = i(l);
P=ones(n,l) ;
Am=A*P;
Bm=B*P;
AAm=A;
BBm=B;
for k=l:n

AAm{k,k)=n-Am(k) ;
BBm(k,k)=n-Bm(k) ;

end
FeaGro{group) .number=l;
FeaGro(group) .index=zeros{2,n);
result=QuadraticForm(AAm,BBm);
if (result==2)

total=l;
result=recusive(AAm,BBm,n,FeaGro,group);
disp(IGroup-to-group mapping easel);
if (total>l)

disp{'These two graphs are isomorphic with ');
disp(total-1) ;
dispel vertex mappings stored in "result.txt".');
file=fopen('result.txt', 'Wi);
for j=1:total-1

for k=l:n
fprintf{file, 1%3d ' ,Bnode{j) .index(k));

end
fprintf(file, '\n');

end
fclose{file);

else
disp(IThese two graphs are not isomorphic. I);

end
elseif (result==l)

for j=l:group
disp(FeaGro(j) .index);

end
disp('These two graphs are isomorphic. I);

elseif (result==-l)
disp{'These two graphs are not isomorphic. I);

else
disp{'Oops! I can not make a decision now. I);
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disp('An optional relationship of node numbers between graph A and
B: I) i

[DisFea,Dislnx] =sort (FeaGro(group) .index ' );
disp(Dislnx')i

end

function result=QuadraticFor.m(A,B)
% A,B -- adjacency matrices of graph A and B, respectively
% result -- return 1 if having one-to-one relationship, return 0 if
% can't make a decision, return 2 if further test is needed,
% otherwise -1
%
% Av,Bv -- eigenvector matrices of A and B graphs
%
global FeaGroi
global AVi
global Bv;
global n;
global TOL;
ABm = AI;
[Av,Ad]=eig(ABm)i

ABm = B' i
[Bv,Bd]=eig(ABm);
M=ones(n,l);
ABd=Ad*Mi
[Ad1,IAd]=sort(ABd) ;

ABd=Bd*Mi
[Bd1,IBd]=sort(ABd) i
if (abs (Ad1-Bd1) <TOL)

X=li
r=2;
for i=1:n-1

if (abs(Ad1(i+1)-Ad1(x))>TOL)
if (i==x)

r=CompareVector(IAd(i) ,IBd(i))i
if (r<O)

breaki
end

end
x=i+1i

end
end
if (x==n & r>=O)

r=CompareVector(IAd(n),IBd(n))i
end
if (x==l & r>=O)

% only one eigenvalue, I guess that they are isomorphic
result=l;

else
if (r==2)

% every eigenvalue has at least a repeated root
result=O;

elseif (r==l)
% isomorphic
result=l;

elseif (r==-l)
% non-isomorphic
result=-li

else
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% Further test is required
result=2i

end
end

else
% non-isomorphic: eigenvalues are different
result=-li

end

function r=recusive(A,B,n,FeaGroPre,Fgroup)
% A,B ---- adjacency matrices of graph A and B
% n ------ number of vertices
% FeaGroPre ---- mapping relationships in feature groups
% Fgroup -- number of feature groups

global FeaGro;
global group;
global Bnode;
global totali

for k=l:Fgroup
AA=Ai
BB=B;
group=l ;
FeaGro(group)=FeaGroPre(k) ;
[TemFeaGro,Ifg]=sort(FeaGroPre(k) .index');
j =1;
t(l)=n;
t(2)=n;
for i=2:n

if (TemFeaGro(i,l)==TemFeaGro(i-1,l»
j =j +1;

else
if (j >1)

if (t(l»j)
t(l)=j; % the number of vertices in a feature group
t(2)=i-1; % the location of the final vertex in a feature

group
end
j=li

end
end

end
% Compare the last feature group
if (j>l)

if (t(l»j)
t(l)=j; % the number of vertices in a feature group
t(2)=i; % the location of the final vertex in a feature group

end
end
mm=t(2)-t(1)+li % Location of the first vertex in the group
ma=Ifg(mm,l)i
% Change an element of matrix A by plusing rna at 'rna'
AA(ma,ma) =AA(ma,ma) +ma;
for j=l:t(l)

mb=Ifg(mm+j-1,2) ;
% Plus the element of matrix B by rna at 'mb'
BB(mb,mb) =BB (mb,mb) +mai
r=QuadraticForm(AA,BB) ;
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if (r==2)
r=recusive(AA,BB,n,FeaGro,group);

else
if (r==l)

for l=l:group
[DisFea,Dislnx]=sort(FeaGro(l) .index');
r=checkisomorphism(A,B,Dislnx);
if (r==l)

Bnode(total) .index=[O l]*Dislnx';
disp(Bnode(total) .index);
total=total+1;

end
end

end
end
BB(mb,mb)=BB(mb,mb)-ma;
group=l;
FeaGro(group)=FeaGroPre(k);

end
end

function r-CompareVector(Ia,Ib)
% la, lb -- Respective column number of A and B matrices, which have a
% same eigenvalue of A and B graphs
% r -- return 1 if same and unique; return 0 if same and not unique;
otherwise -1
%

global FeaGro;
global group;
global Av;
global Bv;
global n;
global TOL;
M=zeros(n,l) ;
M(la)=l;
ABi=DeterminingSign(Av*M) ;
[Va,Val]=sort(ABi);
M=zeros(n,l);
M(lb)=l;
ABi=DeterminingSign(Bv*M);
[Vb,Vbl]=sort(ABi);
c1=O.O;
for j=l:n

c1=c1+abs(Va(j)-Vb(j));
end
TemGroup1=O;
if (abs(c1)<TOL)

TemGroup=group;
TemFeaGro=FeaGro;
NodeMatching(Va,Val,Vbl);
TemGroup1=group;
TemFeaGro1=FeaGro;
group=TemGroup;
FeaGro=TemFeaGro;

end
c2=O.O;
for j=l:n

c2=c2+abs(Va(j)+Vb(n-j+1)) ;
end
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if (abs(c2)<TOL)
for j=l:n

VBI(j)=VbI(n+l-j) ;
end
NodeMatching(Va,VaI,VBI) ;
for j=l:TemGroupl

FeaGro(group+j)=TemFeaGrol(j);
end
group=group+TemGroupl;

else
if (abs(cl)<TOL)

group=TemGroupl;
FeaGro=TemFeaGrol;

end
end
if (group==O I (abs(cl»TOL & abs(c2»TOL»

r=-l;
else

j=group;
group=l;
for i=2:j

k=O;
for l=l:group

if (isequal(FeaGro(l) . index, FeaGro (i) .index»
k=l;
break;

end
end
if (k==O)

group=group+l;
FeaGro(group)=FeaGro(i);

end
end
if (FeaGro(l) .number==n)

r=l;
else

r=O;
end

end

function r=checkisomorphism(A,B,x)

global FeaGro;
global n;

pmatrix=zeros(n,n) ;
for i=l:n

m=x(i,2);
pmatrix(i,m)=l;

end
C=pmatrix*B*pmatrix' ;
if (isequal(A,C»

r=l;
% checked;

else
r=-l;
% failed

end
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as a

the eigenvector in Eigensystem

if the eigenvector is sYmmetrical to its negative
then do nothing

(2) for each eigenvector comparing the absolute values of
smallest

component and the largest component
(3) let the component having the largest absolute value

negative and change the sign of the eigenvector if
%
%
needed

function x=Deter.miningSign(matr)
% matr -- an eigenvector
% x -- the standard expression of
approach
% The rule: (1)
%
%
between the
%

global n;
global TOL;
aa=sort (matr) ;
bb=sort (-matr) ;
if (abs(aa-bb) <TOL)

x=matr;
else

sign=l;
for i=l:n

y=abs(aa(i)+aa(n-i+1» ;
if (y>TOL)

if (abs(aa(i»<abs(aa(n-i+1}})
sign=-l;

end
break;

end
end
x=sign*matr;

end

function r=NodeMatching(matr,IaV,IbV}
% matr -- a eigenvector of graph A reordered to the compared column
% IaV,IbV -- index matrices of the eigenvector matr for A and B,
respectively
% r -- return 1 if there is a one-to-one relationship; return 0
% if can't make a decision; otherwise return -1
%

global FeaGro;
global group;
global n;
global TOL;
x=matr(l) ;
GroupN=l;
Tem(l,IaV(l})=GroupN;
Tem(2,IbV(1)}=GroupN;
for i=2:n

if (abs(matr(i}-x}>TOL)
x=matr (i) ;
GroupN=GroupN+1j

end
Tem(l,IaV(i}}=GroupNj
Tem(2,IbV(i}}=GroupNj

end
for l=l:group

r=Oj
temp=Temj
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FeaGroT=FeaGro(l) . index;
GroupN=l;
FeaGroMid=zeros(2,n);

for i=l:n
if (temp(l,i»=O)

FeaGroPre=zeros(2,n);
FeaGroCur=FeaGroPre;
for j=l:n

if (FeaGroT(l,j)==FeaGroT(l,i))
FeaGroPre(l,j)=l;

end
if (FeaGroT(2,j)==FeaGroT(1,i))

FeaGroPre(2,j)=1;
end
if (temp(l,j)==temp(l,i))

FeaGroCur(l,j) =1;
end
if (temp(2,j)==temp(1,i))

FeaGroCur(2,j)=1;
end

end
TemResult=FeaGroPre & FeaGroCur;
kl=l;
k2=1;
for j=l:n

if (TemResult(l,j) >0)
FeaGroMid(l,j)=GroupN;
FeaGroT(l,j)=-li
temp(l,j)=-l;
kl=kl+l;

end
if (TemResult(2,j) >0)

FeaGroMid(2,j)=GroupN;
FeaGroT(2,j)=-1;
temp(2,j)=-li
k2=k2+1;

end
end
if (kl==l I k2==1)

r=-li
break;

end
GroupN=GroupN+l;

end
end
if (r==-l)

FeaGro(l) .number=-l;
else

FeaGro(l) .number=GroupN-l;
FeaGro(l) .index=FeaGroMid;

end
end
GroupN=group;
group=O;
for l=l:GroupN

if (FeaGro(l) .number-=-l)
group=group+l;
FeaGro(group)=FeaGro(l);

end
end

190



APPENDIXB
PROGRAM FOR CANONICAL LABELING OF GRAPHS

The program in Appendix B is used for finding unique codes of graphs by canonically

labeling the graphs. It consists of eight functions running in MATLAB 5.0 and later

version, i.e., LabelingGraph, QuadraticForm, recusive, CompareVector,

checkisomorphism, CanonicalLabel, DeterminingSign, and NodeMatching. The main

function is LabelingGraph(A) in which augment A is adjacency matrix of a graph. The

unique code for a graph is returned by running the program. A brief description for each

function is introduced at the beginning ofeach function.

% Program for canonical labeling of graphs
% MATLAB M-file
% August 2003
% Main function LabelingGraph(A)
% -- A is the adjacency matrix of a graph

function Cano=LabelingGraph(A)
% Input --- the adjacency matrix of a graph
% Output -- canonical labeling and the canonical code

global FeaGro;
% FeaGro -- The matrix stored the node relationships of garph A and B
% with constructing the same feature (component of
eigenvector)
% into group
global group;
% number of feature groups
global n;
% n - node number of graph
global TaL;
global Bnode;
global total;
global Cano;

countTimel=cputime;
Cano=" ;

191



B=A;
i=size(A) ;
j=size (B) ;
if (i (1) -=i (2))

disp('Must be square matrices! I);
error (I ');

end
if (-isequal(A,A'))

disp('Must be symmetric matrices! I);
error (' I);

end
TOL = 0.0001;
group=1 ;
if (i(l)-=j(l))

disp('They are not isomorphic graphs because of having different
nodes. ') ;
else

n=i(l);
P=ones (n, 1) ;
Am=A*P;
Bm=B*P;
AAm=A;
BBm=B;
for k=l:n

AAm(k,k)=n-Am(k);
BBm(k,k)=n-Bm(k);

end
FeaGro(group) .number=l;
FeaGro(group) . index=zeros (2,n) ;
result=QuadraticForm(AAm,BBm);
if (result==2)

result=recusive(AAm,BBm,n,FeaGro,group);
elseif (result==l)

for j=l:group
[DisFea,Dislnx]=sort(FeaGro(j) .index ' );
r=checkisomorphism(A,B,Dislnx);
if (r==l)

disp('Canonical Labeling of the graph');
disp(Dislnx ' ) i

disp([O l]*Dislnx ' ) i

end
end
disp('Canonical Code of the graph') i
disp (Cano) i

elseif (result==-l)
disp(IThese two graphs are not isomorphic. I);

else
disp(IOops! I can not make a decision now. I) i

disp(IAn optional relationship of node numbers between graph A and
B: ' ) i

[DisFea,Dislnx]=sort(FeaGro(group) .index');
%disp(Dislnx')i

end
end
countTime2=cputimei
disp(ITime cost (seconds): I) i

disp(countTime2-countTimel)i
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function result=QuadraticFor.m(A,B)
% A,B -- adjacency matrices of graph A and B, respectively
% result -- return 1 if having one-to-one relationship, return 0 if
% can't make a decision, return 2 if further test is needed~

% otherwise -1
%
% AV,Bv -- eigenvector matrices of A and B graphs
%
global FeaGro;
global Av;
global Bv;
global n;
global TOL;
ABm = A';
[Av,Ad]=eig(ABm);

ABm = B';
[Bv,Bd]=eig(ABm);
M=ones(n,l);
ABd=Ad*M;
[Ad1,IAd]=sort(ABd) ;

ABd=Bd*M;
[Bd1, IBd] =sort (ABd) ;
if (abs (Ad1-Bd1) <TOL)

x=l;
r=2;
for i=1:n-1

if (abs(Ad1(i+1)-Ad1(x))>TOL)
if (i==x)

r=CompareVector(IAd(i) ,IBd(i));
if (r<O)

break;
end

end
x=i+1;

end
end
if (x==n & r>=O)

r=CompareVector(IAd(n) ,IBd(n);
end
if (x==l & r>=O)

% only one eigenvalue, I guess that they are isomorphic
result=l;

else
if (r==2)

% every eigenvalue has at least a repeated root
result=O;

elseif (r==l)
% isomorphic
result=l;

elseif (r==-l)
% non-isomorphic
result=-l;

else
% Further test is required
result=2;

end
end

else
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% non-isomorphic: eigenvalues are different
result=-l;

end

function r=recusive(A,B,n,FeaGroPre,Fgroup)
% A,B ---- adjacency matrices of graph A and B
% n ------ number of vertices
% FeaGroPre ---- mapping relationships in feature groups
% Fgroup -- number of feature groups

global FeaGro;
global group;
global Bnode;
global total;

for k=l:Fgroup
AA=A;
BB=B;
group=l;
FeaGro(group)=FeaGroPre(k);
[TemFeaGro,Ifg]=sort(FeaGroPre(k) .index');
j=l;
t(l)=n;
t(2)=n;
for i=2:n

if (TemFeaGro(i,1)==TemFeaGro(i-1,1))
j =j +1;

else
if (j>l)

if (t(l»j)
t(l)=j; % the number of vertices in a feature group
t(2)=i-1; % the location of the final vertex in a feature

group
end
j=l;

end
end

end
% Compare the last feature group
if (j>l)

if (t(l»j)
t(l)=j; % the number of vertices in a feature group
t(2)=i; % the location of the final vertex in a feature group

end
end
mm=t(2)-t(1)+1; % Location of the first vertex in the group
ma=Ifg(mm,l) ;
% Change an element of matrix A by plusing rna at 'mal
AA(ma,ma) =AA(ma,ma) +ma;
for j=l:t(l)

mb=Ifg(mrn+j-l,2) ;
% Plus the element of matrix B by rna at 'mb'
BB(mb,mb)=BB(mb,mb)+ma;
r=QuadraticForm(AA,BB) ;
if (r==2)
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r=recusive (AA,BB,n, FeaGro,group) ;
else

if (r==l)
for l=l:group

[DisFea,Dislnx] =sort (FeaGro(l) .index');
r=checkisomorphism(A,B,Dislnx) ;
if (r==l)

Bnode(total) .index=[O l]*Dislnx';
% disp(Dislnx ' );

% disp(Bnode(total) . index) ;
total=total+1;

end
end

end
end
BB(mb,mb)=BB(mb,mb)-ma;
group=l;
FeaGro(group)=FeaGroPre(k);

end
end

function r=checkisomorphism(A,B,x)

global FeaGro;
global n;
global Cano;

pmatrix=zeros(n,n) ;
pmatrix1=zeros(n,n) ;
for i=l:n

colurnnA=x(i,l) ;
columnB=x(i,2);
pmatrix(i,columnB) =1;
pmatrix1(i,colurnnA)=1;

end
Aa=pmatrix1*A*pmatrix1 1

;

Bb=pmatrix*B*pmatrix';
if (isequal(Aa,Bb))

r=l;
Cano=CanonicalLabel(Aa);

else
r=-l;

end

function r=CompareVector(Ia,Ib)
% la, lb -- Respective column number of A and B matrices, which have a
% same eigenvalue of A and B graphs
% r -- return 1 if same and unique; return 0 if same and not unique;
otherwise -1
%
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global FeaGro;
global group;
global Av;
global Bv;
global n;
global TOL;
M=zeros(n,l) ;
M(Ia)=l;
ABa=Av*M;
signl=DeterminingSign(ABa) ;
ABa=signl*ABa;
M=zeros(n,l);
M(Ib)=l;
ABb=Bv*M;
sign2=DeterminingSign(ABb);
ABb=sign2*ABb;
[Va,VaI]=sort(ABa) ;
[Vb,VbI] =sort (ABb) ;
cl=O.O;
for j=l:n

cl=cl+abs(Va(j)-Vb(j)) ;
end
TemGroupl=O;
if (abs(cl)<TOL)

TemGroup=group;
TemFeaGro=FeaGro;
NodeMatching(Va,VaI,VbI);
TemGroupl=group;
TemFeaGrol=FeaGro;
group=TemGroup;
FeaGro=TemFeaGro;

end
[Va,VaI]=sort(-ABa) ;
c2=O.O;
for j=l:n

c2=c2+abs(Va(j)-Vb(j)) ;
end
if (abs(c2) <TOL)

NodeMatching(Va,VaI,VbI);
for j=l:TemGroupl

FeaGro(group+j)=TemFeaGrol(j);
end
group=group+TemGroupl;

else
if (abs(cl) <TOL)

group=TemGroupl;
FeaGro=TemFeaGrol;

end
end
if (group==O (abs(cl»TOL & abs(c2»TOL))

r=-l;
else

j=group;
group=l;
for i=2:j

k=O;
for l=l:group

if (isequal(FeaGro(l) . index, FeaGro(i) .index))
k=l;
break;

end
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end
if (k==O)

group=group+l;
FeaGro(group}=FeaGro(i};

end
end
if (FeaGro(l) .number==n}

r=l;
else

r=O;
end

end

function pCano-CanonicalLabel(matr)
% matr The adjacency matrix which is the canonical labeling
% Cano the canonical labeling

global n;
global Cano;

pmatrix=zeros(n,n};
for i=l:n

pmatrix(i,n-i+l}=l;
end
matrl=pmatrix*matr*pmatrix ' ;
r=O;
for i=l:n-l

for j=i+l:n
if (matr(i,j}-=matrl(i,j})

r=l;
break;

end
end
if (r==l)

break;
end

end
if (r==l)

if (matr(i,j}>matrl(i,j})
matr=matrl;

end
end
m=n*(n-l}/2;
r=4-mod(m,4} ;
sYm=zeros(l,m+r} ;
ind=r+l;
for i=l:n-l

for j=i+l:n
sYm(l,ind)=matr(i,j) ;
ind=ind+l;

end
end
pCano= I I;

for i=1:4:m+r
x=S*sYm(l,i)+4*sYm(l,i+l)+2*sym(l,i+2)+sYm(l,i+3} ;
if (x<lO)

pcano=strcat(pCano,int2str(x)} ;
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elseif (x==10)
pCano=strcat(pCano,IA');

elseif (x==ll)
pCano=strcat(pCano, 'B');

elseif (x==12)
pCano=strcat(pCano, 'CI);

elseif (x==13)
pCano=strcat(pCano, 'D');

elseif (x==14)
pCano=strcat(pCano, IE');

else
pCano=strcat(pCano, IF');

end
end
r= f ix ( (m+3 ) /4) ;
if (isempty(Cano»

Cano=pCano;
else

for i=l:r
if (pCano(i)-=Cano(i»

if (pCano(i»Cano(i»
pCano=Cano;

end
break;

end
end

end

function sign=DeterminingSign(matr)
% matr -- an eigenvector
% sign -- the sign of the standard expression of the eigenvector in
Eigensystem approach

% The rule:
%
%
between the
%
%
%
needed

global n;
global TOL;

(1) if the eigenvector is sYmmetrical to its negative
then do nothing

(2) for each eigenvector comparing the absolute values of
smallest

component and the largest component
(3) let the component having the largest absolute value as a

negative and change the sign of the eigenvector if

aa=sort(matr) ;
bb=sort (-matr) ;
if (abs(aa-bb) <TOL)

sign=l;
else

sign=l;
for i=l:n

y=abs(aa(i)+aa(n-i+1»;
if (y>TOL)

if (abs(aa(i)-aa(n-i+1»<TOL)
if (aa (i) >0)

sign=-l;
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end
else

if (abs(aa(i}}<abs(aa(n-i+1}})
sign=-l;

end
end
break;

end
end

end

function r=NodeMatching(matr,IaV,IbV)
% matr -- a eigenvector of graph A reordered to the compared column
% IaV,IbV -- index matrices of the eigenvector matr for A and B,
respectively
% r return 1 if there is a one-to-one relationship; return 0
% if can't make a decision; otherwise return -1
\;

global FeaGro;
global group;
global n;
global TOL;
x=matr(l} ;
GroupN=l;
Tem(l,IaV(l)}=GroupN;
Tem(2,IbV(1))=GroupN;
for i=2:n

if (abs(matr(i)-x»TOL)
x=matr(i} ;
GroupN=GroupN+1;

end
Tem(l,IaV(i)}=GroupN i

Tem(2,IbV(i))=GroupN;
end
for l=l:group

r=O;
temp=Tem;
FeaGroT=FeaGro(l} . index;
GroupN=l;
FeaGroMid=zeros(2,n);
if (FeaGro(l) .number==l)

FeaGroT=ones(2,n};
end
for i=l:FeaGro(l) .number

tmax=O;
tmin=n;
FeaGroCur=zeros(2,n) ;
for j=l:n

if (FeaGroT(l,j)==i)
FeaGroCur(l,j}=temp(l,j};
if (temp(l,j»tmax)

tmax=temp(l,j} ;
end
if (temp(l,j)<tmin)

tmin=temp(l,j);
end

end
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if (FeaGroT(2,j)==i)
FeaGroCur(2,j)=temp(2,j);

end
end
for ii=tmin:tmax

kl=O;
k2=O;
for j=l:n

if (FeaGroCur(l,j)==ii)
FeaGroMid(l,j)=GroupN;
kl=kl+l;

end
if (FeaGroCur(2,j)==ii)

FeaGroMid(2,j)=GroupN;
k2=k2+1;

end
end
if (kl-=k2)

r=-l;
break;

end
GroupN=GroupN+l;

end
if (r==-l)

break;
end

end

if (r==-l)
FeaGro(l) .number=-l;

else
FeaGro(l) .number=GroupN-l;
FeaGro(l) .index=FeaGroMid;

end
end
GroupN=group;
group=O;
for l=l:GroupN

if (FeaGro(l) .number-=-l)
group=group+l;
FeaGro(group)=FeaGro(l) ;

end
end
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APPENDIXC
PROGRAM FOR ENUMERATION OF MECHANISMS

The program in Appendix C is used for listing all alternative mechanisms meeting design

constraints of mechanisms, i.e., the number of linkages and the number of degrees of

freedom. These alternative mechanisms have been converted into graphs and are stored in

output files with formats of adjacency matrices. The graphs stored in output files are then

uniquely coded by using the program in Appendix B to enumerate all distinct graphs

(mechanisms). The class name of the program is E_mechanism. It is written in Java code

and must be compiled in JDK 1.2 or later version environment before running it. A brief

description for each method in the class is introduced at the beginning of each method.

II Program for enumeration of kinematic chains meeting constraints
II JAVA
II August 2003
II Main function E mechanism

import java.io.*;
import java.lang.*;
import java.util.*;

class E mechanism
{

public static int graph=O;
public static File outputFile;
public static FileWriter out;

public static void main(String[] args) throws IOException
{

II dof -- Degree of Freedom
II linkN -- number of links
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II groupN -- the maximum joint values that the link
could have

II 2 binary; 3 ternary; 4 quaternary;
II linkType[] -- number of the ith link for

i=2,3, .. ,groupN.
II linkG[i] [j] -- number ot the jth kind of link type at

the ith possible group
II typeN -- number of possible groups where various

types of links combine together
int [] linkType=new int[20];
int [] [] temType=new int [50] [3] ;
int [] [] linkG=new int [200] [20] ;
int [] [] curType=new int [50] [3] ;
int [] [] graphAAM=new int [50] [50] ;
int x,dof,linkN,groupN,typeN;
String str;

BufferedReader stdin = new BufferedReader(new
InputStreamReader(System.in»;

System.out.print(lI\nDegree of Freedom = II);
str=stdin.readLine();
dof=Integer.parselnt(str,10) ;
System.out.print(lI\n\nNumber of links II);
str=stdin.readLine();
linkN=Integer.parselnt(str,10) ;
System.out.print(lI\n\nFilename of kinematic chains: II);
str=stdin.readLine();
System.out.println();
groupN=findJointValues(dof,linkN);
findLinkNumbers(dof,linkN,groupN,linkType);
String s=new String(enuNumber(linkType,groupN,linkN»;
typeN=findLinkGroup(groupN,s,dof,linkG);
System.out.println();
System.out.print(typeN);
System.out.println(II file(s) saving potential kinematic

chains will be created.\n");
for (int i=l;i<=typeN;i++)

{
s=new String(str);
s=s.concat(" II);
s=s.concat(String.valueOf(i» ;
outputFile= new File(s.concat(lI.kc_"»;

out = new FileWriter(outputFile);
out.write(linkN) ;

out.write(groupN+100);
for (int j=2;j<=groupN;j++)
{

temType [j -1] [0] =j;
temType [j -1] [1] =-linkG [i] [j] ;
temType [j -1] [2] =0;

out. write (linkG [i] [j] ) ;
}
graphAAM[O] [1]/=2;
for (x=groupN;x>=2;x--)

if (temType[x-1] [1] !=O) break;
II pick up one link with the maximum joint

values
tem~ype[x-1] [1]++;
graphAAM[O] [0]=0; Ilcounting face number of

graph
graphAAM[l] [l]=x;

202



int
cur_groupN=waitConnectingList(temType,groupN,curType) i

enumerationKC(graphAAM,l,l,x,curType,cur_groupN,dof)i
out.close()i

System.out.println(graph)i
}

System.out.println(IITotal graphs (isomorphic and
nonisomorphic): lI+graph) i

}

II Determining the maximum joint values of the link that a kinematic
chain could have

public static int findJointValues(int dof,int linkN)
{

int groupNi
if (dof>=2) {

int i=linkN-dof-li
int j=(linkN+dof-l)/2;
if (i>j) groupN=ji
else groupN=ii

}
else groupN=(linkN-dof+l) 12;
return groupNi

II Determining possible number of each link in a kinematic chain
public static void findLinkNumbers(int dof,int linkN,int

groupN,int [] linkType)
{

for (int i=3;i<=groupN;i++)
linkType[i]=(linkN-dof-3)/(i-2);

linkType [2] =linkN;

II Recurisive procedure for enumerating all possible link groups
public static String enuNumber(int L[] ,int groupN,int linkN)
{

int n;
String r;

r=1I LII.concat(String.valueOf(groupN));
r=r.concat(1I II);
if (groupN==2)
{

if (L[groupN] <linkN) r=r.concat(String.valueOf(-
1) ) ;

else r=r.concat(String.valueOf(linkN));
return r;

}
if (linkN==O)
{

r=r.concat(String.valueOf(O)) ;
return r;

}
if (L[groupN] <linkN) n=L[groupN];
else n=linkN;
String Num=new String();
for (int i=O;i<=n;i++)
{

Num=Num.concat(r) ;
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Num=Num.concat(String.valueOf(i)) ;
Num=Num.concat(enuNumber(L,groupN-1,linkN-i)) ;

}
return Num;

II Determining the number of each link in a possible kinematic
chain

public static int findLinkGroup(int groupN,String str,int
dof, int [] [] linkG)

{
int row,col,preC;
int [] jointV=new int[200];
String s=new String() ;

row=l;
col=groupN;
preC=col+1;
StringTokenizer st = new

StringTokenizer(str.substring(l));
while (st.hasMoreTokens())

s=st.nextToken();
if (s.charAt(O)=='L')
{

col=Integer.parselnt(s.substring(1),10);
if (col>=preC) {

if (jointV[row]==dof+3)
row++;
for (int

i=groupN;i>col;i--)

linkG [row] [i] =linkG [row-1] [i] ;

jointV[row]=jointV[row] +(3-i) *linkG[row] [i];

}
else

jointV[row] =0;
for (int

i=groupN;i>col;i--)

jointV [row] =jointV [row] + (3-i) *linkG [row] [i] ;
}

}
preC=col;

}
else

linkG [row] [col] =Integer .parselnt (s, 10) ;
if (linkG [row] [col] ==-1) row--;
else jointV[row]=jointV[row]+(3-

col) *linkG [row] [col] ;

}
if (jointV[row] !=dof+3) row--;
return row;

II Enumerating all possible kinematic chains
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public static void enumerationKC(int[] [] AAM,int aAm,int
l_num,int r_joint,int [] [] preType,int cur_groupN,int dof) throws
IOException

{
int i,j,n,num,aam,gNumber;
int [] [] linkGroup=new int [100] [20] ;
int [] [] curType=new int [50] [3] ;
int [] [] ncurType=new int [50] [3] ;
int [] [] graphAAM=new int[50] [50];

II linkGroup[i] [j] -- number of the link curType[j] [] in
the ith group

String str=new String();

str=chainEnumeration(preType,cur_groupN,r_joint);
if (!str.equals(II-1 11 »
{

gNumber=findChainGroup(cur groupN,str,linkGroup);
for (i=l;i<=gNumber;i++) -

{
for (int ii=l;ii<=cur_groupN;ii++)

{
curType [ii] [0] =preType [ii] [0] ;

curType [ii] [1] =preType [ii] [1] ;
curType [ii] [2] =preType [ii] [2] ;
}

for (int ii=l;ii<=aAm;ii++)
{

for (int jj=l;jj<=aAm;jj++)
graphAAM [ii] [j j] =AAM [ii] [j j] ;

num=cur_groupN;
aam=aAm;
for (j=l;j<=cur groupN;j++)

{ -
n=linkGroup [i] [j] ;

if (n==O) continue;
int y=curType[j] [1];

if (y>O) II It already joins into the
chain

curType [j] [0] -=n;
graphAAM[l_num] [y]=n;

graphAAM[y] [l_num]=n;
curType [j] [2] =0;
int '

jj=checkZeroDOF(graphAAM,aam,l_num,y,dof) ;
if (jj==l) break;
jj=checkZeroDOF2(graphAAM,aam,l_num,y) ;
if (jj==l) break;

else { II It doesn't yet join into
the chain

int z=aam+1;
for (int k=l;k<=n;k++)

{
aam++;

num++;

graphAAM[aam] [aam]=curType[j] [0];
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if (num==O)

graphAAM[l_num] [aam] =1;
graphAAM[aam] [l_num] =1;

curType [num] [0] =curType [j] [0] -1;
curType[num] [l]=aam;

if (n>l) curType[num] [2]=z;
else curType[num] [2]=0;

}
curType [j] [1] +=n;

}
if (j<=cur groupN) continue;
num=waitConnectingList(curType,num,ncurType) ;

if (num<2)
{

{
/* if (isPlanarKC(graphAAM,aam) ==0)

*/saveGraphAAM(graphAAM,aam);
}

else
for (j=l;j<=num;j++)

if (ncurType [j] [0] >0 &&
ncurType[j] [1]>0) break;

if (j<=num)
{

int i num=ncurType[j] [1];
int-c 1 num=ncurType[j] [1] ;

int c r num=ncurType[j] [0];
ncurType[j] [2]=0;

pickupLink(graphAAM,aam,i_num,ncurType,num) ;
int [] [] nncurType=new

int [50] [3] ;

num=waitConnectingList(ncurType,num,nncurType);

enumerationKC(graphAAM,aam,c 1 num,c r num,nncurType,num,dof);- - } - -

public static void pickupLink(int[] [] graphAAM,int aam,int
k,int[] [] curType,int num)

{
int i,j;
for (j=l;j<=aam;j++)
{

if (graphAAM[k] [j]>O)
{

for (i=l;i<=num;i++)
{

if (curType [i] [1] ==j)
{

curType [i] [0] =0;
break;
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II Removing completely connected links from the waiting 'list for
connection

II curType[] [0] - remain of joint values; curType[] [1] - link
No.

II if (curType[] [1]<0) then it means the link doesn't yet join
into the chain, and

II -curType[] [1] represents the number of this kind of link
public static int waitConnectingList(int[] [] preType,int

preNum,int[] [] curType)
{

int curNum=Oi

for (int j=l;j<=preNum;j++)
{

if (preType[j] [1] !=O && preType[j] [0] !=O)
{

curNum++i
curType[curNum] [O]=preType[j] [0] i

curType[curNum] [l]=preType[j] [1];
curType[curNum] [2]=preType[j] [2];
}

}
return curNumi

II Recurisive procedure for enumerating all possible chains
public static String chainEnumeration(int[] [] curType,int

indexN,int linkN)
{

int n,ii,jj,kki
int [] L=new int[20];

int [] mark=new int[20];
int [] [] linkGroup=new int [100] [20] ;
String str;
ii=li
kk=O;

for (int i=l;i<=indexN;i++)
{

if (curType [i] [1] <0)

ii++;
L[ii]=-curType[i] [1]; II nonconnected link
kk-=curType [i] [1] ;
mark[i]=ii;

else if (curType [i] [2] >0)

for (jj=lijj<i;jj++)
{

if (curType [i] [2] ==curType [j j] [2] )
{

int k=mark[jj];
L[k]++;
kk++;
mark[i]=k;
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break;

}
if (jj==i)
{

ii++;
L[ii]=l;
kk++;
mark[i]=ii;

}
else

ii++;
L[ii]=l;
kk++;
mark[i]=ii;

}
if (kk<linkN) return (11-1");
str=enuNumber(L,ii,linkN);

int gNumber=findChainGroup(ii-1,str,linkGroup);
int [] [] tmp=new int [100] [20] ;
for (int i=l;i<=gNumber;i++)
{

for (int j=l;j<ii;j++)
{

for (jj=l;jj<=indexN;jj++)
{

if (mark[jj]==j+1)
{

if (curType [jj] [2] >0)
{

int x=linkGroup[i] [j];
if (x==O) break;
for (kk=l;kk<=indexN;kk++)
{

if (curType[kk] [2] ==curType [jj] [2])
{

tmp[i] [kk} =1;
x--;

}
if (x==O) break;

}
else tmp [i] [j j] =linkGroup [i] [j] ;
break;

}
String s=new String() ;

for (int i=l;i<=gNumber;i++)
{

for (int j=indexN;j>=l;j--)
{

s=s.concat(" L");
s=s.concat(String.valueOf(j+1» ;
s=s.concat(" II);
s=s. concat (String. valueOf (tmp [i] [j] ) ) ;

}
}
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return s;

II find a kinematic chain group
public static int findChainGroup(int cur_groupN,String

str, int [] [] linkGroup)
{

int row,col,preC,mark;
String s=new String();

mark=l;
row=l;

col=cur_groupN;
preC=col+1;
StringTokenizer st = new

StringTokenizer(str.substring(l» ;
while (st.hasMoreTokens(»

s=st.nextToken();
if (s.charAt(O)=='L')
{

col=Integer.parseInt(s.substring(1),10)-
1;

if (col>=preC) {
if (mark==l)

row++;
for (int i=cur_groupN;i>col;i--)

linkGroup [row] [i) =linkGroup [row-1] [i] ;
}
else mark=l;

}
preC=col;

}
else

linkGroup[row] [col]=Integer.parseInt(s,10);
if (linkGroup[row] [col]==-l) mark=O;

}
return row;

II Check if this connection will result in a 0 OOF among links
II return 1 -- a 0 OOF; return 0 -- no 0 OOF
public static int checkZeroOOF(int[] [] graphAAM,int aam,int

prenum,int curnum,int deg)
{

int i,j,x,y,tri;

II checkining if there is a triangle among three links
for (i=l;i<=aam;i++)
{

j=graphAAM[prenum] [i]+graphAAM[curnum] [i];
if (j==2 && il=prenum && il=curnum) break;

}
if (i<=aam) return (1);
II checkining if there are more than two connections,
II each of which is jointed by one link, between the two

links
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for (i=l;i<=aam;i++)
{

if (prenum!=i)
{

tri=O;
for (j=l;j<=aam;j++)
{

if (j!=prenum && j!=i)
{

x=graphAAM[prenum] [j]+graphAAM[i] [j];
if (x==2) tri++;

}
if (tri>=3) return (1);

}
if (curnuml =i)
{

tri=O;
for (j=l;j<=aam;j++)
{

if (j!=curnum && j!=i)
{

x=graphAAM[curnum] [j]+graphAAM[i] [j];
if (x==2) tri++;

}
if (tri>=3) return (1);

}
II check if there is a zero OOF for 7 linked chains
for (i=l;i<=aam;i++)
{

for (j=l;j<=aam;j++)
{

if (i!=j && graphAAM[i] [j]==l)
{

int ii=isZeroOOF(graphAAM,aam,i,j);
if (ii==l) return (1);

}
II check if the OOF of partialy binary chains is more than

the OOF of the mechanism
for (i=l;i<=aam;i++)
{

if (graphAAM[i] [i]==2 && graphAAM[i] [0] 1=-1)
{

int bi=l;
graphAAM[i] [0]=-1;
for (j=l;j<=aam;j++)

if (graphAAM [i] [j] ==1)
bi=binaryChains(graphAAM,aam,j,i,bi);

if (bi>=deg+2 && bi<aam) return (1);

}
II check if OOF=O for the kinematic chains with the joint

between prenum & curnum
int [] temp=new int[SO];
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temp [prenum] =1;
temp [curnum] =1;
for (i=l;i<=aam;i++)
{

if «graphAAM[prenum] [i] !=o I I graphAAM[curnum] [i] 1=0) &&
i!=prenum && i!=curnum)

{
temp[i]=l;
if (i!=l) nextLink(graphAAM,aam,temp,i);

}
int DOF=O;
for (i=l;i<=aam;i++)
{

if (temp[i]==l)
{

tri=O;
for (j=l;j<=aam;j++)

if (graphAAM[i] [j]>O) tri++;
if (tri<=2) temp[i] =0; II the ith link has no closed

loop

}
for (i=l;i<=aam;i++)
{

if (temp[i] ==0) continue;
int tmp=O;
for (j=l;j<=aam;j++)

if (i! =j) tmp+=graphAAM [i] [j] *temp [j] ;
DOF+=3-tmp; II (3-tmp)*L=dof+3

}
if (DOF<=3) return (1);
else return (0);

II Check if this connection will result in a 0 DOF among links
II return 1 -- a 0 DOF; return 0 -- no 0 DOF
public static int checkZeroDOF2(int[] [] graphAAM,int aam,int

prenum,int curnum)
{

int [] [] temp=new int [SO] [SO] ;
int[] sign=new int[50];
int[] signl=new int[50];
int i,j,k,n,tmp;

n=2;
sign [prenum] =1;
sign[curnum]=li
while (nl=aam)
{

for (i=l;i<=aam;i++)
{

for (j=lij<=aamij++)
{

if (i! =j) temp [i] [j] =graphAAM [i] [j] ;
else temp [i] [j] =0;

}
for (i=l;i<=aam;i++)

signl [i] =sign [i] i
for (i=l;i<=aam;i++)'
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if (sign[i]==l)
{

for (j=l;j<=aam;j++)
{

if (temp [i] [j] ==1 && sign [j] ==0 && sign1 [j] ==0)
{

sign1[j]=1;
n++;

}
for (i=l;i<=aam;i++)

sign[i]=sign1[i] ;
for (i=l;i<=aam;i++)
{

if (sign[i]==O)
{

for (j=l;j<=aam;j++)
{

temp [i] [j] =0;
temp [j] [i] =0;

}
int r=l;
while (r==l)
{

r=O;
for (i=l;i<=aam;i++)
{

tmp=O;
for (j=l;j<=aam;j++)

tmp+=temp [i] [j] ;
if (tmp==l)
{

r=l;
for (k=l;k<=aam;k++)
{

temp [i] [k] =0;
temp[k] [i]=O;

}
int DOF=O;
int t=l;
for (i=l;i<=aam;i++)
{

tmp=O;
for (j=l;j<=aam;j++)

tmp+=temp [i] [j] ;
if (tmpl=O)
{

DOF+=3-tmp;
t=O;

}
if (DOF<=3 && t==O)
{
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n=-l;
break;

}
if (n==-l) return (1);
else return (0);

public static int binaryChains(int[] [] graphAAM,int aam,int
cur,int pre,int bi)

{
int i;

if (graphAAM[cur] [cur] !=2 I I graphAAM[cur] [0]==-1) return (bi);
for (i=l;i<=aam;i++)

if (graphAAM[cur] [i]==l && i!=pre) break;
graphAAM[cur] [0]=-1;
bi++;
bi=binaryChains(graphAAM,aam,i,cur,bi) ;
return (bi);

public static int isZeroDOF(int[] [] graphAAM,int aam,int node1,int
node2)

{
int i,j,k1,k2;

for (i=l;i<=aam;i++)
{

k1=0;
k2=0;
if (i!=node1 && i!=node2)
{

for (j=l;j<=aam;j++)
{

if (j!=node1 && j!=node2 && j!=i)
{

if (graphAAM[i] [j]>O && graphAAM[node1] [j]>O) k1++;
if (graphAAM[i] [j]>O && graphAAM[node2] [j]>O) k2++;

}
if (k1>=2 && k2>=2) return (1);

}
return (0);

II finding next link
public static void nextLink(int[] [] graphAAM,int aam,int[]

temp,int k)
{

for (int i=l;i<=aam;i++)
{

if (graphAAM[k] [i] !=o && temp[i] ==0)
{

temp[i]=l;
if (i!=l) nextLink(graphAAM,aam,temp,i);
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II Check if the mechanism is"a planar kinematic chains
public static int isPlanarKC(int[] [] gAAM,int index)
{

int[] [] graphAAM=new int[50] [50];
int[] number=new int[20];
int [] [] temp=new int [20] [20] ;
int[] L=new int[20];
int[] kk=new int[6];
int i,j,k,x,y,xx,yy,num,aam;
String str=new String();

for (i=l;i<=index;i++)
{

for (j=l;j<=index;j++)
graphAAM[i] [j]=gAAM[i] [j];

}
for (i=l;i<=index;i++)
{

if (graphAAM[i] [i]==2)
{

int n=O;
for (j=l;j<=index;j++)
{

if (graphAAM [i] [j] ==1)
{

n++;
kk[n]=j;

}
x=kk[l] ;
y=kk[2] ;
graphAAM [i] [0] =-1;
graphAAM[x] [y]=l;
graphAAM[y] [x]=l;
graphAAM[i] [x]=O;
graphAAM[x] [i]=O;
graphAAM[i] [y]=O;
graphAAM[y] [i]=O;

}
int col=O;
aam=O;
for (i=l;i<=index;i++)
{

if (graphAAM[i] [0]==-1) continue;
aam++;
col=O;
for (j=l;j<=index;j++)
{

if (graphAAM[j] [0]==-1) continue;
col++;
graphAAM[aam] [col]=graphAAM[i] [j];

}
for (i=0;i<20;i++)

L[i]=l;
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k=Oi
for (i=lii<=aamii++)
{

if (graphAAM[i] [i]>3)
{

k++i
number[k]=ii

}
if (k>=S) II KS
{

str=enuNumber(L,k+1,S) i

num=findChainGroup(k,str,temp)i
for (i=lii<=numii++)
{

int kkk=O;
for (j=l;j<=kij++)
{

if (temp [i] [j] ==1)
{

kk[kkk]=number[j] ;
kkk++i

}
for (X=OiX<SiX++)
{

xx=kk [x] i

for (y=Oiy<SiY++)
{

yy=kk[y] i
if (graphAAM[xx] [yy]==O) breaki

}
if (y<S) break;

}
if (x==S) return (-l)i

}
for (i=lii<=aamii++)
{

if (graphAAM[i] [i]==3)
{

k++i
number[k]=ii

}
if (k>=6) II K3,3
{

str=enuNumber(L,k+1,6) i

num=findChainGroup(k,str,temp)i
int[] k1=new int[6] i

int[] k2=new int[6] i
int kk1,kk2i
for (i=lii<=num;i++)
{

int kkk=Oi
for (j=lij<=kij++)
{

if (temp [i] [j] ==1)
{

kk[kkk]=number[j] i

kkk++i
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}
int [] [] tmp=new int [20] [20] ;
str=enuNurnber(L,6,2);
int nn=findChainGroup(S,str,tmp);
for (j=l;j<=nn;j++)
{

kk1=1;
kk2=0;
k1[kk1]=kk[0] ;
for (int jj=1;jj<=5;jj++)
{

if (tmp [j] [jj] ==1)
{

kk1++;
k1[kk1]=kk[jj] ;

}
else {

kk2++;
k2[kk2]=kk[jj] ;

}
int ii,jj;
for (ii=1;ii<=3;ii++)
{

xx=k1[ii];
for (jj=1;jj<=3;jj++)
{

yy=k2[jj] ;
if (graphAAM[xx] [yy]==O) break;

}
if (jj<=3) break;

}
if (ii>3) return (-1);

}
return (0);

II Save AAM of a graph (kinematic chains)
public static void saveGraphAAM(int[] [] graphAAM,int aam) throws

IOException
{

graph++;
for (int i=l;i<=aam;i++)
{

for (int j=l;j<=aam;j++)
{

if (i==j) out. wri te (aam-graphAAM [i] [j] ) ;
else out.write(graphAAM[i] [j]);
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APPENDIXD
PROGRAM FOR ENUMERATION OF THE ALKANE SERIES

The program in Appendix D is used for listing all alternative structures of the Alkane

series for a given number of carbon atoms. These alternative structures have been

converted into graphs and are stored in output files with formats of adjacency matrices.

The graphs stored in output files are then uniquely coded by using the program in

Appendix B to enumerate all distinct graphs (molecular structures). The class name of the

program is E_A1kane. It is written in Java code and must be compiled in IDK 1.2 or later

version environment before running it. A brief description for each method in the class is

introduced at the beginning of each method.

II Program for enumeration of the Alkane Series meeting constraints
II JAVA
II August 2003
II Main function E_Alkane

import java.io.*;
import java.lang.*;
import java.util.*;

class E Alkane
{

public static int graph=O;
public static File outputFile;
public static FileWriter out;

public static void main(String[] args) throws IOException
{

II linkN -- number of carbons
II groupN -- the maximum carbon-carbon bonds that the

carbon could have
II linkType[] -- number of the ith carbon for

i=2, 3, .. , groupN .
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II linkG[i] [j] -- number of the jth kind of carbon type
at the ith possible group

II typeN -- number of possible groups where various
types of carbons combine together

int [] linkType=new int[20];
int [] [] temType=new int [SO] [3] ;
int [] [] linkG=new int [200] [20] ;
int [] [] curType=new int [SO] [3] ;
int [] [] graphAAM=new int [SO] [SO] ;
int x,linkN,groupN,typeN;
String str;

groupN=4;
BufferedReader stdin = new BufferedReader(new

InputStreamReader(System.in)) ;
System.out.print("\n\nNumber of Carbon Atoms = II);
str=stdin.readLine();
linkN=Integer.parseInt(str,10) ;
System.out.print("\n\nFilename of Isomers of Alkane

Series: II);

str=stdin.readLine();
System.out.println();
findChemicalBonds(linkN,linkType);
String s=new

String(enuNumber(linkType,groupN,linkN,2*linkN+2)) ;
typeN=findBondGroup(groupN,s,linkG);

System.out.println() ;
System.out.print(typeN) ;
System.out.println(II file(s) saving potential isomers

are created.\n");
for (int i=l;i<=typeN;i++)

s=new String(str) ;
s=s.concat(" II);
s=s.concat(String.valueOf(i));
outputFile= new File(s.concat(".kc_"));
out = new FileWriter(outputFile);

out.write(linkN);
out.write(groupN+100);
for (int j=l;j<=groupN;j++)
{

temType [j] [0] =j ;
temType[j] [l]=-linkG[i] [j];
temType [j] [2] =0;

out. write (linkG [i] [j] ) ;
}
for (x=groupN;x>=l;x--)

if (temType [x] [1] ! =0) break;
II pick up one link with the maximum joint

values
temType [x] [1] ++;
graphAAM[l] [l]=x;
int

cur_groupN=waitConnectingList(temType,groupN,curType) ;

enumerationKC(graphAAM,l,l,x,curType,cur_groupN);
out.close();

System.out.println("Total· graphs (isomorphic and
nonisomorphic): "+graph);

}
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II Determining possible H atom number of each carbon in a alkane
public static void findChemicalBonds(int linkN,int [] linkType)
{

two bonds with other Carbon atoms
Max number of carbon atoms connected with

four bonds with other Carbon atoms
Max number of carbon atoms connected

linkType[3] -- three bonds with other Carbon atoms
Max number of carbon atoms connected with

linkType[4]II
II

atom
II
II

II linkType[2]
II

II linkType[l] -- one bond with other Carbon atoms
II max number of carbon atoms connected with

atoms
linkType [4] = (linkN-2) 13;
linkType [3] = (linkN-2) 12;
linkType [2] =linkN+l;
linkType[l]=2*(linkN+l)/3;

three H

two H atoms

one H atom

without H

II Recurisive procedure for enumerating all possible link groups
public static String enuNumber(int L[],int groupN,int linkN,int

bond)

int n;
String r;

r=" L".concat(String.valueOf(groupN));
r=r.concat(" ");
if (groupN==l)
{

if (L[groupN] <linkN) r=r.concat(String.valueOf(-
1) ) ;

else {
int re=bond-linkN*(4-groupN);
if (rel=O) r=r.concat(String.valueOf(-l));
else r=r.concat(String.valueOf(linkN));

}
return r;

}
if (linkN==O)
{

if (bondl=O) r=r.concat(String.valueOf(-l));
else r=r.concat(String.valueOf(O));
return r;

}
if (L[groupN] <linkN) n=L[groupN];
else n=linkN;
String Num=new String();
for (int i=O;i<=n;i++)
{

Num=Num.concat(r) ;
Num=Num.concat(String.valueOf(i)) ;
Num=Num.concat (enuNumber(L,groupN-l, linkN-

i,bond-i*(4-groupN)));
}
return Num;
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II Recurisive procedure for enumerating all possible link groups
public static String enuBondNumber(int L[] ,int groupN,int linkN)
{

int n;
String r;

r=" L".concat(String.valueOf(groupN));
r=r.concat(" II);
if (groupN==l)
{

if (L[groupN] <linkN) r=r.concat(String.valueOf(-
1) ) ;

else r=r.concat(String.valueOf(linkN));
return r;

}
if (linkN==O)
{

r=r.concat(String.valueOf(O)) ;
return r;

}
if (L[groupN] <linkN) n=L[groupN];
else n=linkN;
String Num=new String();
for (int i=O;i<=n;i++)
{

Num=Num.concat(r) ;
Num=Num.concat(String.valueOf(i));
Num=Num.concat(enuBondNumber(L,groupN-l,linkN-

i) ) ;
}
return Num;

II Determining the number of each link in a possible kinematic
chain

public static int findBondGroup(int groupN,String str,int [] []
linkG)

int row,col,preC;
String s=new String() ;

int tmp=O;
row=l;
col=groupN;
preC=col+l;
StringTokenizer st = new

StringTokenizer(str.substring(l)) ;
while (st.hasMoreTokens())

s=st.nextToken() ;
if (s.charAt(O)=='L')
{

col=Integer.parselnt(s.substring(l),lO) ;
if (col>=preC)
{

row++;
if (tmp==O)

for (int
i=groupN;i>col;i--)
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linkG [row] [i] =linkG [row-1] [i] ;
}
else tmp=O;

}
preC=col;

}
else

linkG [row] [col] =Integer .parseInt (s, 10) ;
if (linkG[row] [col]==-l) {row--; tmp=l;}

}
return row;

II Enumerating all possible kinematic chains
public static void enumerationKC(int[] [] AAM,int aAm,int

l_num,int r_joint,int [] [] preType,int cur_groupN) throws IOException
{

int i,j,n,num,aam,gNumber;
int [] [] linkGroup=new int [100] [20] ;
int [] [] curType=new int [50] [3] ;
int [] [] ncurType=new int [50] [3] ;
int [] [] graphAAM=new int [50] [50] ;

I I linkGroup [i] [j] - - number of the link curType [j] [] in
the ith group

String str=new String();

str=chainEnumeration(preType,cur_groupN,r_joint) ;
if (! str. equals (" -1") )
{

gNumber=findBondGroup(cur groupN,str,linkGroup);
for (i=l;i<=gNumber;i++)

for (int ii=l;ii<=cur_groupN;ii++)

curType [ii] [0] =preType [ii] [0] ;
curType [ii] [1] =preType [ii] [1] ;

curType [ii] [2] =preType [ii] [2] ;
}

for (int ii=l;ii<=aAm;ii++)
{

for (int jj=l;jj<=aAm;jj++)
graphAAM [ii] [j j] =AAM [ii] [j j] ;

num=cur_groupN;
aam=aAm;
for (j=l;j<=cur_groupN;j++)

n=linkGroup [i] [j] ;
if (n==O)

continue;
int y=curType [j] [1] ;

if (y>O) II It already joins into.
the chain

II No loop existed
break;
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/*

curType [j] [2] =0;
*/

the chain

z=aarn+1;

{int k=l;k<=n;k++}

curType [j] [0] -=n;
graphAAM[l_nurn] [y]=n;

graphAAM[y] [l_nurn]=n;

}
else { II It doesn't yet join into

int

for

aarn++;
nurn++;

graphAAM[aarn] [aam] =curType [j] [0];

graphAAM[l_num] [aam] =1;

graphAAM[aam] [l_num] =1;

curType [num] [0] =curType [j] [OJ -1;

curType[num] [1]=aam;

if (n>l) curType[nurn] [2J=z;

else curType[num] [2]=0;
}

curType [j] [1] +=n;

if (j<=cur_groupN) continue;

nurn=waitConnectingList(curType,num,ncurType} ;
if (num<2)

{
if (num==O)

saveGraphAAM(graphAAM,aam} ;
}

else {
for (j=1;j<=num;j++)

if (ncurType [j J [OJ >0 &&
ncurType [j J [1] >0 ) break;

if (j<=nurn)

int i_num=ncurType[j] [1];
int

int c r num=ncurType[j] [0];
ncurType[j] [2]=0;

pickupLink(graphAAM,aam,i num,ncurType,nurn};
- int [] [] nncurType=new

int[50] [3];

num=waitConnectingList(ncurType,num,nncurType};

enurnerationKC(graphAAM,aam,c 1 nurn,c r num,nncurType,num);
- -. -}-
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No.

public static void pickupLink(int[] [] graphAAM,int aam,int
k,int[] [] curType,int num)

{
int i,j;
for (j=l;j<=aam;j++)
{

if (graphAAM[k] [j]>O)
{

for (i=l;i<=num;i++)
{

if (curType [i] [1] ==j)
{

curType [i] [0] =0;
break;

II Removing completely connected links from the waiting list for
connection

II curType[] [0] - remain of joint values; curType[] [1] - link

II if (curType[] [1]<0) then it means the link doesn't yet join
into the chain, and

II -curType[] [1] represents the number of this kind of link
public static int waitConnectingList(int[] [] preType,int

preNum,int[] [] curType)
{

int curNum=O;

for (int j=l;j<=preNum;j++)
{

if (preType [j] [1] ! =0 && preType [j] [0] ! =0)
{

curNum++;
curType [curNum] [0] =preType [j] [0] ;
curType[curNum] [l]=preType[j] [1];

curType[curNum] [2]=preType[j] [2];
}

}
return curNum;

II Recurisive procedure for enumerating all possible chains
public static String chainEnumeration(int[] [] curType,int

indexN,int linkN)
{

int n,ii,jj,kk;
int [] L=new int[20];

int [] mark=new int[20];
int [] [] linkGroup=new int [100] [20] ;
String str;
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ii=O;
kk=O;

for (int i=l;i<=indexN;i++)
{

if (curType [i] [1] <0)
{

nonconnected link

ii++;
L [ii] =-curType [i] [1]; / /

kk-=curType [i] [1] ;
mark[i]=ii;

}
else if (curType [i] [2] >0)

{
for (jj=l;jj<i;jj++)
{

if
(curType [i] [2] ==curType [j j] [2] )

int k=mark[jj] ;
L[k]++;
kk++;
mark[i]=k;
break;

}
if (jj==i)
{

ii++;
L[ii]=l;
kk++;
mark[i]=ii;

}
}
else {

ii++;
L[ii]=l;
kk++;
mark[i]=ii;

}
if (kk<linkN) return ("-1");
str=enuBondNumber(L,ii,linkN);

int gNumber=findBondGroup(ii,str,linkGroup);
int [] [] tmp=new int [100] [20] ; .
for (int i=l;i<=gNumber;i++)
{

for (int j=l;j<=ii;j++)
{

for (jj=l;jj<=indexN;jj++)
{

if (mark[jj]==j)
{

if (curType [j j] [2] >0)
{

int
x=linkGroup[i] [j] ;

if (x==O) break;
for

(kk=l;kk<=indexN;kk++)
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if
(curType[kk] [2]==curType[jj] [2])

tmp [i] [kk] =1 j

x--;
}
if (x==O)

breakj

}
else

tmp [i] [j j] =linkGroup [i] [j] j

breakj

}
String s=new String()j

for (int i=lji<=gNumberji++)
{

for (int j=indexN;j>=l;j--)
{

s=s.concat(" L");
s=s.concat(String.valueOf(j)) ;
s=s.concat(" ") j

s=s. concat (String. valueOf (tmp [i] [j] ) ) j

}

return s;

II Save AAM of a graph (kinematic chains)
public static void saveGraphAAM(int[] [] graphAAM,int aam) throws

IOException
{

graph++;
for (int i=lji<=aamji++)
{

for (int j=ljj<=aam;j++)
{

if (i==j) out. write (aam-graphAAM [i] [j] ) ;
else out.write(graphAAM[i] [j]);
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